
ONLINE SCHEDULING IN SMART MANUFACTURING

A Dissertation

by

JIN XU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Natarajan Gautam
Committee Members, Satish Bukkapatnam

Lewis Ntaimo
I-Hong Hou

Head of Department, Lewis Ntaimo

August 2020

Major Subject: Industrial Engineering

Copyright 2020 Jin Xu

ABSTRACT

Empowered by data collection entities and computing entities, smart manufacturing systems

are much more advanced than traditional manufacturing systems in terms of information availabil-

ity, systems reliability and productivity. Considered as the key to Industry 4.0, smart manufacturing

also brings research questions such as how to improve information availability and how to utilize

information in production planning, maintenance scheduling and other operational decisions. This

dissertation research thus focuses on several optimization problems that are or envisioned to be

prevalent in smart manufacturing systems, including joint production and maintenance decision

making problem, polling system scheduling problem, and age of information based scheduling

problem. In solving these optimization problems, we provide policies and algorithms from both

online scheduling and queueing control perspectives, and develop advanced mathematical frame-

works to evaluate the performance of these policies. While this research focuses on a small part of

the vast smart manufacturing domain, its scope is wide enough to cover many important problems

that exist in both physical and cyber layers of smart manufacturing systems. We expect our re-

search to contribute significantly to the advancement of smart manufacturing, and our models and

analysis to also contribute to development of online optimization, queueing theory and informa-

tion theory. Our models and methodologies can also be adapted to improve system efficiency and

reliability, in many other domains which are equipped with system intelligence.

ii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to Dr. Natarajan Gautam for his care, support,

guidance and mentoring during my Ph.D study. Working with Dr. Gautam is one of the luckiest

and most enjoyable things in my life. His wisdom and unwavering enthusiasm for research always

teach me how to become a good researcher.

I would like to thank Dr. Satish Bukkapatnam, for his support, collaboration and guidance in

this dissertation work. I am grateful to Dr. I-Hong Hou for being my research committee member,

and also for his advice and collaboration in this dissertation work. I also would like to sincerely

thank Dr. Lewis Ntaimo, for his help in my Ph.D study.

I want to express my gratitude to Dr. Yu Ding for his advice and help in my Ph.D study. I also

want to thank Dr. Bimal Nepal, for his support in Summer 2018.

I would like to thank my parents for supporting me all the way. Also I would like to thank Dr.

Yu Chen, for being my harbor and my light during my darkest time.

Special thanks to Dr. Hoang M. Tran, Dr. Min Kong and Dr. Ping-Chun Hsieh, for being my

research collaborators. I also want to recognize my friends in college station for making my life

meaningful.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of committee chair, Professor

Natarajan Gautam, and committee members, Professors Satish Bukkapatnam and Lewis Ntaimo

from the Department of Industrial and Systems Engineering, and Professor I-Hong Hou from the

Department of Electrical and Computer Engineering.

Part of this dissertation (Chapter 2) was conducted in collaboration with Dr. Hoang M. Tran

from Esmart Systems AS, Halden, Norway. All other work for the dissertation was completed by

the student independently.

Funding Sources

There are no outside funding contributions to acknowledge related to the research and compi-

lation of this document.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES. x

1. INTRODUCTION. 1

2. JOINT PRODUCTION AND MAINTENANCE OPERATIONS IN SMART CUSTOM-
MANUFACTURING SYSTEMS . 6

2.1 Introduction. 6
2.2 Problem Statement and Related Work . 8
2.3 Model and Notations . 11
2.4 Online Algorithms . 15

2.4.1 Properties of the Offline Problem. 15
2.4.2 Fixed Speed Approach . 21
2.4.3 Fixed Buffer Approach . 25

2.4.3.1 Bounded Workload . 25
2.4.3.2 Unbounded Workload . 32

2.5 Numerical Results . 33
2.6 Concluding Remarks and Future Work . 37

3. ON COMPETITIVE ANALYSIS FOR POLLING SYSTEMS. 39

3.1 Introduction. 39
3.1.1 Problem Statement . 41
3.1.2 Preliminaries . 41

3.1.2.1 Machine Scheduling Problems . 41
3.1.2.2 Online and Offline Problems. 43
3.1.2.3 Scheduling Policies . 43
3.1.2.4 Competitive Ratios . 45

3.1.3 Related Works . 45
3.2 Polling System with Bounded Workload Variation . 47

v

3.2.1 Cyclic Based and Exhaustive-like Policies . 49
3.2.2 Other Queue-length Based Policies. 56
3.2.3 Simulation-based Policies . 58

3.3 Polling System with Bounded Setup Times. 60
3.3.1 One Machine Policy and Gittins Index Policy for Polling system 61
3.3.2 Simulation-based Policies . 64
3.3.3 Other Results . 65
3.3.4 Clearing Problem . 69
3.3.5 On Approximating Algorithms for the Generalized Offline Problem. 70

3.4 A Mixed Strategy . 72
3.5 Concluding Remarks and Future Works . 76

4. PEAK AGE OF INFORMATION IN PRIORITY QUEUEING SYSTEMS 77

4.1 Introduction. 77
4.2 Related Work . 80
4.3 Queues with Buffer Size One . 83

4.3.1 Exact Analysis for M/M/1/1+
∑

1∗ Type Queues . 86
4.3.2 Bounds and Approximation for M/G/1/1+

∑
1∗ Type Queues 94

4.3.3 Exact Analysis for M/G/1/1+
∑

1 Type Queues . 98
4.4 Infinite Buffer Size . 99

4.4.1 Exact Analysis for M/G/1 Type Queues with FCFS . 99
4.4.2 Exact Analysis for M/G/1 Type Queues with LCFS . 101
4.4.3 Discussion of the Single Queue Case. 109
4.4.4 A Mixed Strategy . 112

4.5 Numerical Study . 113
4.6 Concluding Remarks and Future Work . 120

5. AGE OF INFORMATION FOR SINGLE BUFFER SYSTEMS WITH VACATION
SERVER . 122

5.1 Introduction. 122
5.2 Related Work . 126
5.3 Age of Information for Systems with Independent Vacations . 127

5.3.1 Conventional Buffer System . 131
5.3.2 Buffer Relaxation System . 133
5.3.3 Conventional Buffer System with Preemption in Service . 138
5.3.4 Discussions for Systems without Server Vacation . 139

5.4 Peak Age of Information for Systems with Dependent Vacations . 141
5.5 Numerical Study: Verification, Findings and Explanations . 147

5.5.1 CBS, BRS and CBS-P. 147
5.5.2 Systems with No Vacations . 148
5.5.3 Polling Systems. 151

5.6 Concluding Remarks . 154

6. CONCLUSION. 156

vi

6.1 Summary of Research. 156
6.2 Contributions . 158
6.3 Future Work . 160

REFERENCES . 161

APPENDIX A. APPENDIX FOR CHAPTER 3 . 178

A.1 Proof for Theorem 3.2.1 . 178
A.2 Proof for Theorem 3.2.2 . 190
A.3 Proof for Theorem 3.2.3 . 191

APPENDIX B. APPENDIX FOR CHAPTER 4 . 194

B.1 Proof for Theorem 5.3.7 . 194
B.2 Proof for Theorem 5.3.9 . 197
B.3 Proof for Theorem 5.3.10 . 200
B.4 Proof for Theorem 5.3.11 . 200
B.5 Exact Solution for PAoI in CBS-P with Dependent Vacation . 204
B.6 Proof for Theorem 5.4.1 . 204

vii

LIST OF FIGURES

FIGURE Page

1.1 A General Framework of This Dissertation . 5

2.1 Performance of Fixed Speed Approach when (a) wu = wb, (b) ν = 5 34

2.2 Performance of Fixed Buffer Approach when (a) wu = wb, (b) wu ≤ wb, ν = 5,
(c) wu ≥ wb, ν = 5 . 35

2.3 Performance of Modified Fixed Buffer Approach when workload is (a) Beta Dis-
tributed, ν = 5 (b) Exponential Distributed, ν = 5, (c) Log-Normal Distributed,
ν = 5. 36

3.1 Polling System with Four Queues . 42

4.1 Age of Information for a Single Queue . 78

4.2 System Model . 79

4.3 Buffer State for Queue i . 85

4.4 Initial Buffer and Main Queue for LCFS . 103

4.5 Initial Buffer and Total Queue Length (Including Initial Buffer and Main Queue)
for LCFS . 104

4.6 PAoI under FCFS and LCFS . 111

4.7 FCFS for M/M/1 Queue with µ = 1 . 111

4.8 M/M/1+
∑

1∗ Type Queues with Buffer Size One. 114

4.9 Average PAoI of M/M/1+
∑

1∗ Queues with Buffer Size One. 115

4.10 Bounds for M/G/1+
∑

1∗ Type Queues with Buffer Size One . 115

4.11 M/G/1 Type Queues with LCFS . 117

4.12 PAoI under Different Service Disciplines . 118

4.13 Average PAoI Across Queues under Different Service Disciplines . 118

4.14 Policy Comparison . 120

5.1 Age of Information Decomposition For Non-preemptive Service Systems. 128

viii

5.2 AoI in CBS vs AoI in BRS. Service and vacation times are exponential. 137

5.3 PAoI in CBS vs PAoI in CBS-P. Service time is Gamma distributed. Vacation time
is exponentially distributed. 140

5.4 Variance of Peak Age for M/M/1/1/preemptive system and M/M/1/2* system with
µ = 1. 141

5.5 A k-queue Polling System with Cyclic Polling Scheme . 144

5.6 Vacation Server Systems with E[H] = 1 and E[V] = 2 . 149

5.7 Single Queue System with E[H] = 1 . 150

5.8 PAoI of Polling Systems with Cyclic Scheme, λ = (0.1, 0.2, 0.7) ∗ Total Load,
Hi = H ∼ exp(1), Ui = U = 0.2 . 151

5.9 Average PAoI Across Queues, λ = (0.1, 0.2, 0.7) ∗ Total Load, Hi = H ∼
exp(1), Ui = U = 0.2 . 155

A.1 Truncated Optimal Solution . 181

A.2 Insert a Batch . 182

B.1 Age of Information Decomposition for Preemptive Service Systems 195

ix

LIST OF TABLES

TABLE Page

1.1 Summary of Research Objectives of Each Chapter . 5

2.1 Comparison of related literature . 10

2.2 Notations Used . 12

2.3 Taylor’s Parameter ν for different materials. 37

2.4 Performance of Different Methods for Different Values of ν . 37

3.1 Notations . 44

3.2 Competitive Ratios for Single Machine Scheduling Problem without Setup Times
(i.e., τ = 0) . 46

3.3 Competitive Ratios for Different Cases . 67

4.1 An Example of the Mixed Strategy . 112

5.1 Exact PAoI for the system with k = 8 and cyclic scheme. Queue 1 and 4 are
heavily loaded: each with 45% total load. Hi = H ∼ exp(1), Ui = U = 1

80
. 153

5.2 Exact PAoI for the system with k = 8 and different polling schemes. Queue 1
and 4 are heavily loaded: each with 45% total load. Total load = 0.5. Hi = H ∼
exp(1), Ui = U = 1

80
. 154

5.3 Exact PAoI for the system with k = 8 and different polling schemes. Queue 1
and 4 are heavily loaded: each with 45% total load. Total load = 20. Hi = H ∼
exp(1), Ui = U = 1

80
. 154

6.1 Summary of Research . 159

A.1 List of Notations for Appendix . 193

x

1. INTRODUCTION

One of the most significant advances in the development of data science, communication tech-

nologies, artificial intelligence, and manufacturing technologies is represented by smart manufac-

turing. Incorporated with sensor networks and computing entities, and empowered by the latest and

foreseeable further development of computer science and communication technology, smart man-

ufacturing is considered as the key to the 4th industrial revolution, frequently denoted as industry

4.0 (see [1]). Based on cyber-physical production systems, smart manufacturing differs dramati-

cally from traditional manufacturing in terms of information accessibility, information timeliness

and information utilization. It also brings in research questions in smart manufacturing such as

how to guarantee information freshness, how to make decisions under certainty or uncertainty, and

how to utilize available information for production and maintenance planning.

Motivated by this, in this dissertation research we consider several important optimization prob-

lems that are or envisioned to be prevalent in smart manufacturing systems. These problems occur

at either the physical layer (which contains human, machines, resources, products, etc.) or cyber

layer (which contains communication network, computers, cloud, etc.) of smart manufacturing

systems. Specifically, in the first part of this dissertation including Chapter 2 and Chapter 3, we fo-

cus on online scheduling problems that occur at the physical layer of smart manufacturing systems.

Different from other static systems where information is known and resources are determined be-

fore decision making, smart manufacturing systems are quite dynamic in terms of resource accessi-

bility and information availability. Although system information such as machine status, workload

of jobs, and processing progress can be monitored in real-time or accurately estimated by close

collaborations among smart sensors, communication systems and computing entities in a smart

manufacturing system, decision makers still need to deal with the uncertainty that exists in sup-

ply, demand and other uncontrollable factors in production such as human behavior or machine

breakdown. Further, in a smart manufacturing system that exchanges its physical entities and in-

formation with the outside world over time, the status of the system is time-varying. Therefore,

1

there are many challenges existing in smart manufacturing systems in terms of decision making,

including 1) how to utilize available information when making decisions; 2) how to make decisions

in real-time without knowing the future information; and 3) how to evaluate the performance of a

decision. In the first part of this dissertation, we aim to overcome these challenges by designing

online scheduling policies that balance information availability and future uncertainty, and evaluate

the performance of those policies from an online-scheduling perspective.

In Chapter 2 we consider a joint production and maintenance decision making problem in

a custom manufacturing system. In this system, jobs arrive over time but the pattern could be

general. A job reveals its workload upon its arrival at the system, while information about future

jobs is completely unknown. There is a degrading server in the system whose remaining useful life

depends on the processing speed of each job. If the server runs too fast, the server will soon reach

a degraded stage that requires a long maintenance time or replacement time. On the other hand, a

low processing speed will prolong the processing of jobs. In Chapter 2 we will focus on how to

model this problem and design online scheduling policies to minimize the makespan of arbitrary

job instances that occur in such a system. Moreover, we aim to evaluate the performance of these

online policies by comparing them with the offline optimal solution.

In Chapter 3 we consider a problem in which a flexible machine (which we call server) receives

multiple classes of jobs that are stored in input buffers or queues, one for each class. Whenever

the server starts processing a job from a different class (i.e., switching queues), a setup time is

incurred. This system is modeled as a multi-queue polling system. In this problem, the server

needs to decide when to switching queues and in which order to serve jobs so that to minimize the

total completion time for an arbitrary job instance. In Chapter 3, we aim to provide online policies

that utilize the available job information and also incorporate future uncertainty. We will focus

on evaluating the performance of these online policies by providing their worst-case performance

bounds.

In addition to scheduling problems that exist in the physical layer of a smart manufacturing

system, in the second part of this dissertation research (Chapter 4 and Chapter 5), we consider

2

scheduling problems that occur at the cyber layer. Information timeliness plays a crucial role in

smart manufacturing systems, especially when decisions have to be made timely or in real-time.

Any information delay or loss may undermine the quality of real-time decision making. As the

cyber layer of smart manufacturing systems is built upon communication networks and computing

entities, besides improving the performance of hardware, many challenges still exist in system

design and policy design. Age of information (AoI) is a metric that has been studied recently as

it characterizes the information freshness or timeliness by measuring the time elapsed from the

most recent updated data packet. In the second part of this dissertation research, we focus on

research questions such as how to design information transformation policies, and how to design

communication systems to optimize the AoI performance in smart manufacturing systems.

In Chapter 4 we consider the age performance of a system with a single server and multiple

data sources. In smart manufacturing systems where some data sources contain age sensitive in-

formation or emergency information such as high temperature and high pressure, static priority are

usually specified for data sources to guarantee the data packets from these age-sensitive sources

to be processed once the server becomes available. Motivated by this, we study a priority queue

system where job priority is pre-determined and job service order within the same queue is to be

decided to minimize the peak age of information (PAoI). In this research, we aim to answer the

question whether First Come First Serve (FCFS) or Last Come First Serve (LCFS) is optimal in

terms of minimizing PAoI. Also, it is unknown if keeping one packet at each queue is more effi-

cient than keeping all packets in terms of reducing age. In this chapter, we will focus on providing

a closed-form expression for PAoI of such a system under different service disciplines and buffer

management strategies. We aim to explore the advantage of each service discipline and buffer

management strategy to provide guidance in minimizing PAoI in such a system.

In Chapter 5 we consider a system where the server takes vacations over time. This research

is motivated by applications in smart manufacturing networks and other communication networks

where the server is not constantly available. In communication systems where the server can be

put into sleep or wake modes, the sleeping time can be modeled as a vacation time. Also in a

3

system where the server only collects or processes information from time to time, the absence

period of the server can also be regarded as a vacation time. In Chapter 5, we will focus on packet

management strategies to minimize the AoI and PAoI in such a vacation server system. We aim to

provide closed-form expressions of AoI and PAoI for systems with different packet management

strategies, and explore the advantage of each strategy.

Figure 1.1 shows a general framework of a smart manufacturing system which contains a phys-

ical layer and a cyber layer. In the physical layer, there could be human, machines, warehouses,

etc. Physical entities such as resources and products are exchanged in this layer. In the cyber layer,

there are communication networks, computing entities such as computers and smart phones, etc.

Information is usually exchanged in this layer. Notice that the physical layer and the cyber layer

are also connected through communication networks. Data collected by sensors and cameras in

the physical layer are sent to the cyber layer for processing, storing or sharing, and the computing

results and feedback obtained through the cyber layer are sent to the physical layer for improving

system performance. In Chapter 2 and Chapter 3, we mainly focus on scheduling problems at the

physical layer where machine and jobs are located. In Chapter 4 and Chapter 5 we mainly focus

on scheduling problems at the cyber layer where data packets and information are transmitted. The

main objectives of this research are summarized in Table 1.1. Note that this manuscript consists of

one published journal article [2] which corresponds to Chapter 2. The copyright and publication

information will be provided on the first page of that chapter. This manuscript also consists three

papers under review [3, 4, 5], corresponding to Chapters 3, 4 and 5 respectively. Each chapter of

this dissertation consists of individual sections including introduction, literature review, detailed

description of problem, solution approach, numerical experiments, and conclusion. In Chapter 6

we will conclude this dissertation research, and discuss future work as well as research opportuni-

ties.

4

Figure 1.1: A General Framework of This Dissertation

Chapter Type Objectives
Chapter 2

Physical Layer
Decide processing speeds for jobs

and maintenance for tools to
minimize total makespan of a job

instance
Chapter 3 Decide processing sequences for

jobs and queues to minimize total
completion time of a job list

Chapter 4
Cyber Layer

Decide data packets transmission
strategies to minimize PAoI

Chapter 5 Decide buffer management strategy
for minimizing AoI and PAoI in

vacation-server systems

Table 1.1: Summary of Research Objectives of Each Chapter

5

2. JOINT PRODUCTION AND MAINTENANCE OPERATIONS IN SMART

CUSTOM-MANUFACTURING SYSTEMS∗

2.1 Introduction

In the coming years it is envisioned that there would be a significant rise in the number of

custom manufacturing facilities (see [6]). These facilities are expected to have highly versatile

machines and actuators that are interconnected enterprise-wide through Internet of Things (IoT)

([1]). IoT enables universal manufacturing resource availability and accessibility by integrating

and connecting physical assets into an information network ([7]). From a production and main-

tenance operations standpoint, there are several benefits of IoT for custom manufacturing such

as reducing variability and uncertainty as well as jointly performing production and maintenance

activities in a single framework which significantly improves productivity and efficiency of the

system as a whole ([7, 8]). However, these necessitate the creation of new models and methods for

decision-making and control.

As a small step in that direction, we consider a custom manufacturing machine which is a more

generic version of a machine tool employed for flexible manufacturing operations (e.g., [9]) and

could use a much broader set of subtractive and/or additive manufacturing operations. The machine

is embedded with sensors and analytics to determine and communicate its internal state (e.g., tool

condition), gather statuses of various IoT-enabled jobs across the enterprise, and is capable of

autonomous operations, especially in terms of making and executing production planning and

control decisions.

Traditionally, such custom manufacturing systems have been analyzed either under a com-

pletely stochastic framework (with random inter-arrival times and service times of jobs, and ran-

dom breakdown and repairs of tools) (e.g., [10]), or a completely deterministic framework where

all information is available at the beginning of a day and a production plan is created (e.g., [11]).

∗This is an Accepted Manuscript of an article published by Taylor & Francis in IISE Transactions on January
2, 2019, available online at the Taylor & Francis Ltd web site: www.tandfonline.com with the link to the article -
https://www.tandfonline.com/doi/full/10.1080/24725854.2018.1511938

6

With IoT for custom manufacturing, a middle ground is more appropriate but under a more generic

and realistic setting. For example, jobs arrive arbitrarily into the system (not necessarily accord-

ing to a renewal process) at random times but once they arrive, their processing requirements (or

workloads) are revealed (i.e., known deterministically). That is because a job communicates its

dimensions, specifications and requirements (i.e., as-is and to-be states) to the machine, and the

machine develops a process plan through interactions with databases in a cloud. The plan would

include a set of sub-tasks to be performed by the machine and each sub-task is characterized by

the amount of workload. The machine also interacts with the tool to get updates on the remaining

life and assesses if another sub-task could be performed or would the tool have to be replaced (see

[7, 12]).

We keep our production decision fairly simplistic in that we wish to determine the speed at

which the tool operates for each job. We note that the approach is quite general to be applicable

to emerging custom manufacturing scenarios with IoT and smart manufacturing machines in that

sense. It can be used in processes that involve complex chain of sub-processes, such as multiple

steps of machining (e.g., drilling) operations. This scenario, for example, can reflect hole drilling

operations specified on custom integral (near-net shape) components employed in aerospace, de-

fense, energy and biomedical implant industry (e.g., integral aircraft or hull panels, oil pumps, hip

joints, or artificial hearts). It could also be used in milling, turning and drilling where material is

removed. We use the term “speed" as opposed to the more common term MRR (material removal

rate) or the deposition rate. The faster the speed is, the faster the job is finished, albeit the tool

degrades faster as well. We assume replacing a tool when it degrades (e.g., wears out) completely

is time-consuming. Hence it is important to plan both speeds and replacements in advance so that

tool replacements are scheduled between jobs, and not when a job is being executed, thereby effi-

ciently operating the machine. For that, the objective considered in this paper is to maximize the

effective processing capacity of the machine.

This paper is organized as follows. In Section 2.2 we describe the problem statement and

related work. In Section 2.3, we introduce notations and modeling details of our problem. We

7

explain analytic approaches to solve the problem and describe the asymptotic properties of the

solutions in Section 2.4. We provide numerical results in Section 2.5 and state concluding remarks

as well as future work in Section 2.6.

2.2 Problem Statement and Related Work

As described in Section 2.1, we consider a smart machine that can execute different custom

jobs using a single process type (e.g., drilling of custom panels). A list L of n(L) sub-tasks

L = (w1, w2, ..., wn(L)) are performed on the machine, where wi is the quantity of work that needs

to be performed for sub-task i. We assume that each wi is a random variable and when the sub-task

arrives, the random variable is realized. Let si be the speed for processing sub-task i. The time it

takes to complete sub-task i is wi
si

. Now, let D(s) be the tool degradation rate when it processes

a sub-task at speed s. After processing sub-task i, the tool degrades by amount D(si)
wi
si

. The

decision policy would determine the speed to process each sub-task and replacing the tool (xi = 1)

or not (xi = 0) before processing sub-task i. Here we assume that replacing a tool takes τ time

units.

The objective is to make a decision about tool replacement xi and machine speed si for all i

so that in the long run the total time spent per sub-task on average (this includes tool replacement

time, if any, and processing time) is minimized. This would be a good indication of the capacity

of the machine. It is important to note the implication of having a replacement time τ as it creates

a trade off since high processing speeds would imply too many tool changes and low processing

speeds would result in too few parts being processed. While we do not explicitly model job arrival

processes, it is important to note that we place no restriction on it either. Jobs can arrive individ-

ually or in batches, the inter-arrival times can be correlated (i.e. non IID), and even time-varying.

The same is the case with the workloads. This brings a tremendous amount of generality and can

be used to conveniently decompose the decisions at each machine. Moreover, we relax the defi-

nition of job arrivals. In our study, a job “arrival" does not need to be at the machine. Once the

workload of a job is revealed deterministically, we regard this job as an arrival. This is because it

would be possible to extract full information about a job upstream to a machine with the help of

8

IoT (see [7]).

An important aspect of this study is to make online decisions based on revealed information.

We consider the entire spectrum of revealed workload all the way from n(L) = 0 corresponding

to no available workload information to n(L)→∞ corresponding to the offline case in which full

information about workload is known before processing. Then we show that as more information

is available, the online algorithms perform better.

Manufacturing control has been discussed for decades and there is a rich literature related to

it. Many works such as [13, 14, 15, 16] and [17] consider the workload flow controlling problem

with continuous workload and objective of minimizing holding (i.e., inventory) cost. [16] modeled

a machine with two statuses (up and down), and [17] extend this to arbitrary number of machine

statuses. [14] considers the case where machine failure rate depends on processing rate. Discrete-

ness of workload brings randomness in workload processing. Works such as [18, 19, 20, 21, 22]

and [10] consider problems with discrete workload and objective of minimizing processing cost.

In these works, workload would not be revealed until the end of processing. The idea of reveal-

ing workload upon arrival is shown in online machine scheduling problems such as [23] and [24],

in which job sequence is considered to minimize mean completion times (sojourn times) of jobs.

However, speed controlling and machine maintenance are not considered in these models. [25] ad-

dress a makespan minimization problem in which workload is revealed upon arrival, and machines

are reconfigurable so that processing speed can be adjusted by changing different machine config-

urations. However, the setup times for reconfiguration is assumed to be negligible and tool degra-

dation is not considered in [25]. Offline machine scheduling problems with minimizing makespan

are also discussed, such as [26] and [27]. In these problems, workload is known deterministically

at the beginning. Job arrival and machine status are not considered in these works.

In summary, to the best of our knowledge, there aren’t any articles in the open literature that

consider the following four aspects in a single framework: a) Discrete part manufacturing; b)

Machine with degrading tools and degradation is a function of processing speed; c) Jobs where

workload is revealed upon “arrival"; and d) Objective of minimizing completion time.

9

Specifically, while we consider a manufacturing problem that has been discussed for decades,

the aformentioned unified framework is novel. The jobs are discrete which is different from the

settings in [14] as well as [15]. We incorparate the phenomenon where high processing speed

usually results in fast tool degradation, which is absent in [28, 29, 30, 31] and[25]. We show that

traditional approaches such as [31, 22, 32] and [33] are no longer applicable to our problem as

the uncertainty of tool breakage and workload is eliminated in our model. The greedy algorithm

used by [10] are not as effective as the online algorithms that we develop. Moreover, we show

that knowing the distribution of workload beforehand and revealing workload upon arrival are

crucial for decision making. We demonstrate the improvement by knowing workload distribution

in Section 5 of this paper. A comparison of relevant literature is provided in Table 2.1 below.

In addition, we provide a new problem setting where job arrivals do not have to be at the

machine to determine the workload. With the advent of IoT it would be possible to reveal workload

well before the job physically arrives at a machine. In that way our model is adaptable to futuristic

settings as compared to traditional control and scheduling models.

Paper Objective Job Arrival Speed Control Maintenance Tool Degradation Workload Algorithms
[15, 16, 13, 14,

17]
Holding Cost Yes Yes Yes Random Continuous Online

[32] Holding Cost Yes Yes Yes Random Random Online
[18, 20, 10, 22,

21, 19]
Processing Cost Yes Yes Yes Random Random Online

[34] Processing Cost Yes Yes No No Deterministic Offline
[35] Processing Cost No Yes Yes Random No Online

[23, 24] Sojourn time Yes No No No Revealed
deterministically

upon Arrival
[26, 27] Makespan No Yes No No Deterministic Offline

[28] Makespan No No Yes No Deterministic Offline
[31] Makespan No No Yes Random Random Online
[25] Makespan Yes Yes No No Revealed

Deterministically
upon Arrival

Online

Our Paper Makespan Yes Yes Yes Deterministic Revealed
deterministically

upon Arrival

Online&Offline

Table 2.1: Comparison of related literature

10

2.3 Model and Notations

Assume workload of job i is upper bounded by wu. Notice that in this paper we characterize

tool degradation by a physics-based deterministic model and we introduce remaining tool level

as the measure of its remaining processing capacity. For example, in drilling and other material

removal processes, the remaining level of a tool is the amount of wear, measured in terms of length

of the wear h it can sustain before it needs to be replaced. We assume all the new tools are of the

same level h∗ and their wear is governed by the same degradation function D(s). For convenience,

we provide a list for notations, which is shown in Table 2.2. When job i is about to be processed,

it observes the remaining tool level hi at that time. After the tool processes sub-task i at speed

s for time t̂, its remaining level is hi − D(s)t̂. In our paper, we mainly use Taylor’s formula to

characterize tool degradation (see [36]), since it perfectly describes the relation of tool degradation

and processing speed for jobs. Taylor’s formula is given by sT n = C∗, where T is the tool life

(i.e., the duration of the time the tool can be used in the specified processing condition), n ∈ (0, 1)

and C∗ are constants which are experimentally determined. For convenience, we let ν = 1
n

(hence

ν > 1), and Taylor’s formula can be written as

sνT = C, ν > 1 (2.1)

where C = (C∗)ν . When processing with speed s, a tool of remaining level h∗ is of lifetime Ts,

thus the degradation rate is given by

D(s) =
h∗

Ts
=
sν

C
h∗, ν > 1. (2.2)

Assume changing of speed and replacing the tool are not allowed during processing ([37]), thus

for job i of workload wi, it takes wi
si

to finish processing. Therefore hi can be updated by hi+1 =

hi − D(si)
wi
si

. Since tool level cannot be negative, we have for each job i: hi − D(si)
wi
si
> 0.

When a tool degrades to a status in which hi = 0, it has to be replaced by a new tool and the new

11

tool will be used to process job i, then we have hi = h∗. Note that we also allow replacing a tool

even if has not reached the final status. Since xi = {0, 1} is a binary variable denoting replacing

decision before processing job i, we can write hi , h∗xi + (1− xi)
(
hi−1 −D(si−1)wi−1

si−1

)
where

xi = 1 indicates replacing the tool before job i and xi = 0 for not.

Parameters
wi: Revealed workload of job i

wb =
(

(ν − 1)τC
1

ν−1

) ν−1
ν

: Optimal tool level
wu: Upper bound for the workload wi

wc: Tool/buffer capacity, the maximal workload a tool/buffer can serve/hold
Wi: Random variable denoting workload of future job i before revealing

hi: Remaining tool level before processing job i
h∗: Tool level for a new tool

Ts: Tool life time for a new tool with processing speed s
τ : Replacement time for one tool

ν =
1

n
, C: constants experimentally determined for Taylor’s formula

D(s): Degradation rate for processing speed s
ηj: Processed/packed workload by tool/buffer j

Variables
si: Processing speed for job i

xi: Decision variable for tool replacement before processing job i

Problems and Approaches
OF: Offline Problem

OFR: Offline Problem with Rearranging
BC: Best Case Problem

BC*: Modified Best Case Problem
FS: Fixed Speed Approach
FB: Fixed Buffer Approach

SOP: Stochastic Optimal Policy
SA: Simple Approach

Table 2.2: Notations Used

Note that the workload of a job is only revealed when the IoT system gathers sufficient infor-

mation about it. We first describe an offline problem in which we assume that all the information

about jobs in the future is obtained before processing, the objective is to find the optimal decision

s = {s1, s2, ..., sn(L)} and x = {x1, x2, ..., xn(L)} to minimize makespan. The Offline Problem

12

(OF) can be described as follows:

Problem 1 (Offline Problem).

TOF (L) = min
x,s

1

n(L)

n(L)∑
i=1

(
wi
si

+ τxi

)
(2.3)

s.t. hi+1 , h∗xi+1 + (1− xi+1)

(
hi −D(si)

wi
si

)
, (2.4)

hi −D(si)
wi
si
≥ 0, (2.5)

si > 0, (2.6)

xi = {0, 1} for i = 1, 2, ..., n(L). (2.7)

The objective function (2.3) is to minimize the average cycle time of each job that consists

of processing time and tool replacement time. The first constraint (2.4) is the update function,

showing that before processing job i, the remaining tool level is either h∗ if replacement happened

or the remaining level hi−1−D(si−1)wi−1

si−1
if replacement did not happen. Constraint (2.5) indicates

that tool level cannot be negative. Our decision variable speed si should be positive, and replacing

decision variable xi, which is binary, are shown in constraints (2.6) and (2.7).

If we also consider the order of service, we have the Offline Problem with Rearranging as

Problem 2, where R(L) is the set of lists in which each list is made by rearranging the order

of list L. Any list in R(L) is given by {w(1), w(2), ..., w(n(L))}, which is a permutation of list

{w1, w2, ..., wn(L)}.

Problem 2 (Offline Problem with Rearranging (OFR)).

TOFR(L) , min
L0∈R(L)

1

n(L0)

n(L0)∑
i=1

(
w(i)

si
+ τxi

)
(2.8)

s.t. hi+1 , h∗xi+1 + (1− xi+1)

(
hi −D(si)

w(i)

si

)
,

hi −D(si)
w(i)

si
≥ 0,

si > 0, xi = {0, 1}, for i = 1, ..., n(L0).

13

Notice we can also write OFR as

TOFR(L) , min
L0∈R(L)

TOF (L0) (2.9)

The permutation set R(L) has n(L)! elements. We want to choose the best order from R(L),

say L∗, whose optimal value of L∗ is less than that of any other lists in set R(L). When job list L

has finite number of sub-tasks, then we have L∗ = argminL0∈R(L) TOF (L0) such that TOFR(L) =

TOF (L∗). If we add a constraint on the Offline Problem with Rearranging that processing speed

is a constant, the modified problem is to find the minimal number of tool replacements, which is a

bin packing problem and known to be NP-hard (see [38]).

We select makespan as objective function because it is a good indication for machine capacity.

It allows for general arrival processes (i.e, correlated, time varying or in batches). Besides, arrival

does not need to be at the machine. As long as a job has revealed its workload, we regard it

as an arrival. Moreover, if there is a cost rate for machine in operation, say K, and cost for tool

replacement, sayR, then the makespan minimization problem can be written as a cost minimization

problem. Notice that since we do not allow tool breakage during processing, every job will be

processed successfully. The Cost Minimization Problem (CM) can be written as follows:

Cost Minimization : min

n(L)∑
i=1

(
K
wi
si

+Rxi

)
.

s.t. hi+1 , h∗xi+1 + (1− xi+1)

(
hi −D(si)

wi
si

)
,

hi −D(si)
wi
si
≥ 0,

si > 0, xi = {0, 1} for i = 1, 2, ..., n(L).

The setting of this problem relaxes the one investigated in [10] by considering that workload is

revealed on upon arrival. We will show in Section 5 of the paper that if we use the greedy approach

in [10], it would result a much weaker solution than ours. Notice CM is different from OF only in

the objective function. If τ =
R

K
, then these two problems are identical.

14

2.4 Online Algorithms

Since the workload of a job is not revealed until sufficient information is gathered, to solve OF

we must look through all n(L) jobs. A scenario we observe is that once new jobs are revealed

we can update our information about jobs dynamically. As more information becomes available,

better decisions can be made. Thus our approaches will focus on how to deal with the information

updating process. When future arrivals have not been revealed, we make decisions using online

algorithms. We use a behavior-imitating way to construct the online algorithms and we want the

online algorithms to behave similarly in some aspects as the optimal policy. We first characterize

some useful properties that our algorithms can imitate. Also we provide a lower bound of OF

that can be used to characterize the performance of approaches that we propose. After that we

provide an approach where we process jobs with a fixed speed, finally we introduce an approach

which solves OF part by part by choosing the size of sub-problems dynamically and show that

rearranging is unnecessary for online algorithms.

2.4.1 Properties of the Offline Problem

The main idea of constructing the online algorithms is to find some unique properties of OF

that online algorithms can imitate. So in this subsection we mainly discuss those properties of

OF. We first have Theorem 2.4.1 in the following to characterize the optimal solution to OF. Note

that in Theorem 2.4.1 we assume D(s)
s

is convex and increasing in s. This is true when using

Taylor’s formula (Equation (2.1)) to describe the degradation process, in which case degradation

rate is given by sν

C
h∗, as shown in Equation (2.2). Since ν > 1 in Taylor’s formula, we have

D(s)
s

= sν−1

C
h∗ to be convex and increasing when s > 0. However Theorem 2.4.1 is not confined

to using Taylor’s formula to define tool degradation rate function D(s).

Theorem 2.4.1. On solving OF, if D(s) is the degradation rate such that D(s)
s

is convex and

increasing when s > 0 with D(s)
s
|s=0 > 0, then the optimal processing speeds for jobs processed

by the same tool are identical, i.e. si = sj if job i and j are processed by the same tool.

Proof. We know that the optimal solution is a series of xi’s which are either 1 or 0. Without

15

loss of generality, assume that h1 = h∗ thus x1 = 1. Say x2 = x3 = · · · = xm−1 = 0 and

xm = 1. Thus there are m jobs served by this tool, and total time working on these m jobs is∑m
i=1

(
wi
si

)
+ τ . Since the same tool is used and no replacement happens during processing, tool

level cannot be negative in the end. Suppose ε of tool level remains when finishing these m jobs.

From the constraint (2.5) and (2.6), we have
∑m

i=1

wi
si
D(si) = h∗ − ε. We want to prove that

processing time is minimal when s1 = s2 = ... = sm.

First consider the following sub-problem with only the first m jobs of L. Notice its constraints

are specified in terms of the update function of Equation (2.4) and no replacement happens during

processing of these m jobs. Hence

min
m∑
i=1

(
wi
si

)
+ τ

s.t. h2 − h∗ +
w1

s1

D(s1) = 0,

...

hm − hm−1 +
wm−1

sm−1

D(sm−1) = 0, and

ε− hm +
wm
sm

D(sm) = 0.

Write the constraints of above problem as g(s) = (g1(s), g2(s), ..., gm(s))T = 0, where gi(s)

is the LHS of the ith constraint above. The Lagrange function of above problem can be written as

L(s, λ) =
m∑
i=1

(
wi
si

)
+ τ − λ1(h2 − h1 +

w1

s1

D(s1))− ...

−λm−1(hm − hm−1 +
wm−1

sm−1

D(sm−1))

−λm(ε− hm +
wm
sm

D(sm)).

From the first order condition of the Lagrange function we have−wi
s2
i

−λi
∂

∂si

(
wi
si
D(si)

)
= 0

for all i ∈ {1, ...,m}. It is easy to show that the point s∗ = {s∗1, s∗2, ..., s∗m} which satisfies

s∗1 = s∗2 = ... = s∗m is a stationary point. Thus we know that Z(s∗) = {w2,−w1, 0, ..., 0} is a null

16

space of ∇g(s∗) = 0. From the first order condition we have λi =
−wi

∂
∂si

(D(si)
si

)s2
i

|si=s∗i . Note that

λ∗ = (λ∗1, ..., λ
∗
m), then we know ∇ssL(s∗, λ∗) is a diagonal matrix with the ith diagonal element2wi

s3
i

+
wi

∂
∂s2i

(D(si)
si

)

∂
∂si

(D(si)
si

)s2
i

∣∣∣∣
si=s∗i

. Since
D(s)

s
is increasing, we have Z(s∗)T∇ssL(s∗, λ∗)Z(s∗) to be

positive definite. Since we know si’s being identical is a solution of above Lagrange function, from

convexity this solution is optimal (see [39]).

Corollary 2.4.2. One solution to OF is such that when the tool is about to be replaced, its remain-

ing level is zero. That is, when xi+1 = 1, we have that hi −D(si)
wi
si

= 0.

Proof. Suppose m jobs are processed by tool j and ε tool level is left when tool j is about

to be replaced. Then we have that
∑m

i=1

wi
si
D(si) = h∗ − ε, and time between replacements∑m

i=1

(
wi
si

)
+ τ , which is the portion corresponding to this tool in (2.3). From Theorem 2.4.1

we see that in the optimal solution, tool j processes its jobs with a single speed, say s∗j . If

ŵ =
∑m

i=1wi, we have the time between two replacements equal to ŵ
s∗j

+ τ , with the constraint

ŵ
D(s∗j)

s∗j
= h∗ − ε. Since D(s)

s
is increasing with respect to s, then the solution of ŵD(s0)

s0
= h∗, say

s0, is greater than s∗j . Then, since ŵ
s0
< ŵ

s∗j
, we can see ε = 0 will result in minimal time between

replacements.

So far we have seen that in the optimal solution of OF, jobs served by the same tool have

identical processing speed. We want our online algorithms to imitate this property. However,

to see how good it would be to fix the processing speed, we need a benchmark to compare our

algorithms against. For that, we solve another system which serves as the lower bound of OF. If

we find an algorithm that gets a result larger than but close to this lower bound, we can assure that

this result is close to what OF gets. Since we know TOFR ≤ TOF , then we can use the optimal

solution of OFR as the lower bound of OF. We introduce the following problem to get the solution

of OFR analytically.

17

Problem 3 (Best Case Problem (BC)).

TBC(L) , min
1

n(L)

n(L)∑
i=1

(
wi
si

+ τxi

)

s.t.

n(L)∑
i=1

wi
D(si)

si
≤

n(L)∑
i=1

xih
∗ (2.10)

si > 0, xi = {0, 1}, for i = 1, ..., n(L).

Notice the BC differs from OF only in the constraints. BC provides the number of tools needed

for serving a given total workload, without considering feasibility.

Lemma 2.4.3. For the same job list L, BC always gets optimal value no larger than OFR.

Proof. We only need to show for any order L0 ∈ R(L), TBC(L0) ≤ TOF (L0). Since the objective

functions of both BC and OF are the same, we only need to prove the feasible region of the OF

is contained in that of BC. For any feasible solution of OF, x = (x1, x2, ...) is made of a series of

ones and zeros. Suppose xlm and xlm+1 are two adjacent 1 in the solution, then
∑lm+1−1

i=lm
wi

D(si)
si
≤

h∗. Thus
∑n(L)

i=1 wi
D(si)
si
≤ h∗

∑n(L)
i=1 xi, we can get inequality (2.10). Then its feasible region is

contained in that of OF for any list L. From Equation (2.9) we get TBC(L) ≤ TOFR(L).

When the degradation rate is given by Equation (2.2), the next lemma gives a bound for

TBC(L).

Lemma 2.4.4. For BC with finite n(L), when D(s) = h∗ s
ν

C
, if wb =

(
(ν − 1)τC

1
ν−1

) ν−1
ν

and

wi ≤ wb, given that ŵ =
∑n(L)

i=1 wi, then its optimal solution is given by s =

(
Cy∗

ŵ

) 1
ν−1

,

y∗ =
∑n(L)

i=1 x∗i = b ŵ
wb
c or d ŵ

wb
e. We have either

τ
1
ν (ν − 1)

1
ν
−1νŵ

C
1
ν n(L)

≤ TBC(L) ≤
b ŵ
wb
cτν

n(L)
or

τ
1
ν (ν − 1)

1
ν
−1νŵ

C
1
ν n(L)

≤ TBC(L) ≤
d ŵ
wb
eτν

n(L)
. Also, if ŵ

wb
is an integer, then y∗ = ŵ

wb
.

Proof. Let y =
∑n(L)

i=1 xi. We first show that the optimal solution always guarantees that all si are

18

identical, say si = s∗1, and
∑n(L)

i=1 wi
s∗1
ν−1

C
= y. The Lagrange function of BC is

L(s, x, λ, µ) =

n(L)∑
i=1

(
wi
si

+ τxi

)
− λ

n(L)∑
i=1

(
wi
sν−1
i

C
− xi

)
.

By first and second order conditions we have that si = s∗1 (for ∀i) is the optimal solution. From

the constraint ŵs
ν−1

C
= y, we have that s = (Cy

ŵ
)

1
ν−1 . Then BC can by written as:

min
y∈Z+

ŵ

(Cy
ŵ

)
1

ν−1

+ y

Then the results in the theorem follow.

Notice that Lemma 2.4.3 and Lemma 2.4.4 hold for any lists L. From Lemma 2.4.4 we have

if ŵ
wb

is an integer, then exactly ŵ
wb

tools are used for processing ŵ amount of workload, with each

tool processingwb amount of workload. In this casewb gives the optimal workload a tool processes

in OFR based only on tool parameters C, ν and τ . If we only have one job whose workload is wb,

both OFR and BC have the same optimal value. If we are able to rearrange a job list so that each

tool processes exact wb amount of workload, then BC and OFR gets the same optimal makespan

for this list. But on what condition can we guarantee the existence of such a list?

Notice that if we add a constraint that specifies a maximal amount of workload a tool can

process, say wc, then this constrained OFR can be described as follows: we want to allocate jobs

to tools, with each tool getting wc workload so that the total makespan is minimized. This idea is

quite similar to the bin packing problem (see [40]). In the bin packing context, we have several

pieces to be packed into a few identical bins. In the one dimensional bin packing problem, we

have several pieces with different lengths and bins of identical capacity/length. We want to pack

pieces with minimal number of bins. In our paper, we can regard each tool as a bin with a specific

capacity, where the capacity is given by the maximal workload it can process. We also regard

jobs as pieces to be packed by bins, where the length of each piece is given by the workload.

We will discuss how to find the optimal wc later on, but once we fix wc, the problem now is to

19

allocate jobs of L to tools so as to use the least number of tools. As we can see, if all the tools

are fully ‘‘packed" by jobs, which means each tool processes exact wc amount of workload, we

have the minimal number of tool replacement. Suppose kopt(L) is the minimal number of tools

we use to process jobs in list L with rearranging under a fixed speed s∗ where s∗ is the solution

of wc
D(s∗)
s∗

= h∗. We say perfect packing happens when w(L) = koptwc. We have the following

theorem to show that OFR is asymptotically close to BC in a special case.

Theorem 2.4.5. If workload wi is drawn independently from a uniform distribution within [0, wu]

and wu ≤ wb, then as n(L)→∞,
E[TOFR(L)]

E[TBC(L)]
→ 1.

Proof. Suppose we have a finite job list L. We fix wc = wb and process all the jobs at speed

s∗, where s∗ is the solution of wb
D(s∗)
s∗

= h∗. Once the speed is fixed, we only need to allocate

jobs of L into tools whose capacities are wb. In the end we find the minimal number of tools we

used is kopt(L), in which k0(L) tools are fully packed. Let k1(L) = kopt(L) − k0(L). We know

k0(L) = 0 if no tool is fully packed. From Lemma 2.4.3 we have
E[k0(L)]wb

s∗
+ E[k0(L)]τ ≤

n(L)E[TBC(L)] ≤ n(L)E[TOFR(L)] ≤ E[k0(L)]wb
s∗

+ E[k0(L)]τ + E[k1(L)]
wb
s∗

+ E[k1(L)]τ . The

last equality holds because rearranging guarantees the optimal decision among all the possible

permutations. Thus

E[TOFR(L)]

E[TBC(L)]
≤ 1 +

E[k1(L)]
wb
s∗

+ E[k1(L)]τ

E[k0(L)]wb
s∗

+ E[k0(L)]τ

= 1 +
E[k1(L)]

E[k0(L)]

We now prove that limn(L)→∞
E[k1(L)]

E[k0(L)]
= 0 by contradiction. From [40] we know that once wi

is uniformly distributed within [0, wu], we have that limn(L)→∞
E[w(L)]

E[kopt(L)wb]
= 1. Suppose that

20

limn(L)→∞
E[k1(L)]

E[k0(L)]
= ε, then

E[w(L)]

E[kopt(L)wb]
=

wbE[k0(L)] + E[w(L)− k0(L)wb]

E[kopt(L)wb]

≤ wbE[k0(L)] + E[k1(L)wb]

E[kopt(L)wb]

=
wbE[k0(L)] + E[k1(L)wb]

wbE[k0(L) + k1(L)]
.

The second inequality is an equality only when k1(L) = 0, otherwise

E[w(L)]

E[kopt(L)wb]
<
wbE[k0(L)] + E[k1(L)wb]

wbE[k0(L) + k1(L)]
,

take the limit of both sides we have that 1 < 1, getting a contradiction. Hence proved.

So far we have acquired the asymptotic optimal value of OFR which can serve as the lower

bound of OF. Also we have a benchmark that we can compare our online algorithms against. Now

we discuss different ways to construct online algorithms by imitating the same speed property

(Theorem 2.4.1) of OFR.

2.4.2 Fixed Speed Approach

When we have only one revealed workload in system, we have little information to help us

make decisions. Using up one tool to process this job is not a good idea since replacement also

takes time. We shall see the performance of this policy later in Section 5. We still want to keep

some remaining tool level to process jobs in future. In this section we will discuss an online

approach which relies on one revealed workload and keeps a reasonable amount of tool life for

jobs in future.

As we observe from OFR, jobs are allocated to tools in a way which is similar to the bin

packing problem. In the bin packing context, we have a policy called Next-Fit ([41]). In one

dimensional space, assume pieces each of a specific length come in a sequence, say i = 1, 2, 3,

We have infinite number of identical bins whose capacity is c and pieces are packed into bins one

21

by one. We define the level of a bin by the sum length of all the pieces in that bin. The Next-Fit

tells us that if the length of piece i plus the current bin level is greater than c, we finish our current

bin and pack piece i into a new bin. If we index our bin by j = 1, 2, ..., the Next-Fit can be

described as: If lengthi + levelj < c, choose bin j + 1 for piece i, otherwise choose bin j + 1.

We find that it may be a good idea to serve jobs in a Next-Fit way. In our problem, if we fix a

processing speed for every job, say s∗, from constraint of wD(s∗)
s∗

= h∗ we know that each tool can

process at most h∗s∗

D(s∗)
amount of workload. We let wc = h∗s∗

D(s∗)
be the tool capacity, which is the

maximal workload a tool can process. Similarly, we regard each tool as a “bin" which we describe

above by defining ηj as the workload tool j has already processed. The remaining tool level then

becomes wc − ηj because each tool can process at most wc amount of workload. Therefore, if we

process jobs in a Next-Fit way, when wi + ηj ≤ wc for job i and tool j, we process job i with tool

j at speed s∗, otherwise we process job i with tool j + 1 at speed s∗.

So the problem is how to find s∗. The speed should not be slow, otherwise the processing

may be sluggish hence impacting the objective. On the other hand, from constraint wc
D(s∗)
s∗

= h∗

and the monotonicity of D(s)
s

, fast speed always results in a small wc. If we assume workload of

each job is bounded by wu, then wc should not be less than wu, otherwise we would not be able

to process jobs with workload wu at speed s∗. Suppose w∗c is the optimal tool capacity we fix to

determine s∗, we call this the Fixed Speed Approach (FS). Denote TFS(L) as the processing time

for list L under FS, and FS can be described by Algorithm 2.1.

Algorithm 2.1 Fixed Speed Approach

Speed s∗ is determined by wc
D(s∗)

s∗
= h∗.

for i=1:n(L) do
if hi −D(s∗)

wi
s∗

> 0 then Keep the current tool and process job i at speed s∗;
else Replace the tool and then process job i at speed s∗ using the new tool;
end if
if i==n(L) then Replace the tool;
end if

end for

22

Theorem 2.4.6. If processing speed is fixed at s∗ =

(
C

w∗c

) 1
ν−1

and w∗c ≥ wu where w∗c is the

optimal tool capacity, then
E[TBC(L)]

E[TFS(L)]
∈ [

(1− β)ν

(ν − 1)(1− β) + 1
, 1], where 1 − β =

E[ηi]

w∗c
, as

n(L)→∞.

Proof. We first show the result by fixing wc = wb, i.e. wc =
(
τ(ν − 1)C

1
ν−1

) ν−1
ν

, though we

know there should be a better choice for wc. In this case, the speed is fixed at s0 =

(
C

wb

) 1
ν−1

.

Suppose under FS, k tools have been used to process jobs in list L and tool (k + 1) is just about

to be put into use for processing a new job outside of L and this job cannot be processed by tool k

under speed s0. At this point, n(L)T 0
FS(L) =

∑k
i=1

ηi
s∗

+ kτ . Workload served by these k tools is

given by w(k) =
∑k

i=1 ηi. When w(k) workload is done under BC, from Theorem 2.4.4 we know

that

τ
1
ν (ν − 1)

1
ν
−1νŵ

C
1
ν n(L)

≤ TBC(L) ≤
(
ŵ

wb
+ 1)τν

n(L)
.

From [41] we know that {ηi} is a continuous Markov Chain, so we know that when k → ∞

we have limk→∞
E[w(k)]

k
= E[ηi] = (1 − β)wb. Suppose w0 is the first workload served by the

last tool, then

lim
n(L)→∞

E[TBC(L)]

E[T 0
FS(L)]

≥ lim
n(L)→∞

τ
1
ν (ν − 1)

1
ν
−1νE[w(k)]

C
1
ν E[
∑k−1

i=1
ηi
s∗

+ wb
s∗

+ kτ]

≥ lim
k→∞

τ
1
ν (ν − 1)

1
ν
−1νE[

∑k−1
i=1 ηi + w0]

C
1
ν E[
∑k−1

i=1
ηi
s∗

+ wb
s∗

+ kτ]
=

(1− β)ν

(1− β)(ν − 1) + 1
.

Now, to show limn(L)→∞
E[TBC(L)]

E[T 0
FS(L)]

≤ (1− β)ν

(1− β)(ν − 1) + 1
, we have

lim
n(L)→∞

E[TBC(L)]

E[T 0
FS(L)]

≤ lim
n(L)→∞

E[w(k)
wb

+ 1]τν

E[
∑k−1

i=1
ηi
s∗

+ w0

s∗
+ kτ]

= lim
k→∞

(E[
∑k−1

i=1
ηi
wb

+ 1)τν]

E[
∑k−1

i=1
ηi
s∗

+ w0

s∗
+ kτ]

=
(1− β)ν

(1− β)(ν − 1) + 1
.

23

We know we can definitely find other better options for wc, thus proving the theorem.

Corollary 2.4.7. If wu = wb and wc = wb, which means wi is drawn from U(0, wb) and tool

capacity is also wb, we have that limn(L)→∞
E[TBC(L)]

E[TFS(L)]
=

3ν

3ν + 1
.

Proof. From [41] we know that E[η] = 3
4
wu, and by Theorem 2.4.6 we have the result.

Notice in FS, wc is not necessarily equal to wb. That is to say, wb is not the optimal option to

fix speed by solving wc
D(s)
s

= h∗. Here we did not give the actual optimal wc. Although the cdf

of bin level is given by [40], the expectation of bin level is difficult to characterize analytically.

Numerical tests are provided in the Section 2.5.

If we do not reveal the workload upon arrival and wu = wb, the optimal policy is to process

each job by exhausting one tool. We call this policy the Stochastic Optimal Policy (SOP). The

following corollary provides the performance of this policy.

Corollary 2.4.8. If wu = wb and no workload is revealed upon arrival, the optimal speed is

determined by wb
D(s)

s
= h∗. Then we have limn(L)→∞

E[TBC(L)]

E[TSOP]
=

ν

ν + 1
.

Intuitively we can guess that FS performs better than SOP since FS has more information (FS

reveals one workload and SOP reveals none). We will compare the performance of FS and SOP

numerically in Section 2.5. FS is simple as it does not require much computation or storage space.

It does not rely on workload distribution either, since wc can be preassigned with only information

of wu (notice that wc ≥ wu). However, as stated before, we have to fix wc such that it is no smaller

than wu, the upper bound of workload of each job. In the case when wu is large, wc must be

larger than wb. Intuitively when wc is much larger than wb, FS would not be promising. We will

show numerical results in Section 2.5. Another drawback of this method is that tools sometimes

are discarded though they have not been used up. They are replaced just because the new job has

larger workload than the tool can handle under a fixed speed. This implies that FS can be definitely

improved when there are more than one job in system, so we introduce an algorithm which makes

full use of every tool in Section 2.4.3.

24

2.4.3 Fixed Buffer Approach

In the case where more than one workload is revealed, we may consider another way to better

imitate the optimal solution to OF. Notice that in FS we fix a speed for all jobs, however the

solution of OF only tells us to fix the speed for the same tool. In other words, once we know how

much workload a tool processes, we can then fix the speed accordingly. This is the idea for Fixed

Buffer Approach (FB) that we will provide in this subsection.

2.4.3.1 Bounded Workload

We first show the performance of FB in the case when wu is bounded. The idea of FB in the

bounded workload case is very similar to FS that we discuss in Section 2.4.2. To see this, we

suppose there is a sequence of virtual buffers in front of our machine. Jobs entering the system

are not processed instantly one by one, but put into the first buffer. We start processing jobs in

this buffer when it is unable to accept more jobs, and put new arrivals into the next buffer, the

same as Next-Fit described in Section 2.4.2. Buffers are indexed by j = 1, 2, We abuse our

notation by defining the capacity of a buffer to be wc, which is the maximal amount of workload

a buffer could hold. Note this is different from the maximal workload that a tool can process that

we defined in Section 2.4.1 and 2.4.2. Here we mainly use wc to denote a threshold because want

FB to be applied in a more generic case (Section 4.3.2) in which workload may be unbounded.

Again, we use ηj to denote the level of buffer j, which means the amount of workload that buffer

j already received. So the buffer packing procedure can be described as following: we pack job i

into buffer j+ 1 if wi +ηj > wc, and process jobs in buffer j at speed sj where sj is the solution to

ηj
D(sj)

sj
= h∗. The machine serves the buffers one by one, with one tool serving only one buffer.

We call it Fixed Buffer Approach (FB). As we can see, FB can make full use of every tool. No

tool would be replaced with non-zero level. FB is described in Algorithm 2.2.

Notice in Algorithm 2.2, FB can also deal with the case when workload is unbounded, we leave

the discussion for unbounded workload case to Section 4.3.2. Here we mainly focus on discussion

for bounded workload cases.

25

Algorithm 2.2 Fixed Buffer Approach

for i=1:n(L) do
if η + wi ≤ wc then Put job i into the buffer and η ← η + wi;
else if η + wi ≥ wc && wi < wc then Process jobs in buffer with speed s determined by

ηD(s)
s

= h∗; η ← wi;
else Process jobs in buffer with speed s determined by ηD(s)

s
= h∗; Replace; Process job wi

with speed si determined by wi
D(si)
si

= h∗; Replace; η ← 0;
end if
if i==n(L) then Process jobs in buffer with speed s determined by ηD(s)

s
= h∗; Replace the

tool;
end if

end for

Now the problem is how to fix the buffer’s capacity. Notice that if wu ≤ wb, then wc = wb

may be a good option since perfect packing is achievable in this case. When wu > wb, we may

try fixing wc = wu. Again, here we assume that workload is uniformly distributed within [0, wu].

We choose wc = max{wb, wu}. In this case we denote processing time of job list L under FB as

T 0
FB(L). Notice that this choice of wc is not optimal. However, by showing the performance of this

we will find the lower bound that FB can achieve. Notice that the solution of TBC(L) may not be

achievable by OFR when wu > wb. Definitely we can use BC as a benchmark but it may perform

far from OFR. To find the optimal value of OFR, we provide the following lemma.

Lemma 2.4.9. Let D(s) = sν

C
h∗, given a list of jobs L where there is a subset of L in which

each workload is less than or equal to wb, say L1, if L1 can be perfectly put into buffers each of

capacity wb, then the optimal solution to OFR contains two parts: jobs in L1 are perfectly packed

into buffers thus TOFR(L1) = TBC(L1), and jobs in L0 = L \ L1 each is served by one tool thus

TOFR(L0) = TOF (L0).

Proof. We prove our theorem by contradiction. Suppose L∗ ∈ R(L) is the optimal order for OFR,

which means the optimal value of L∗ by solving OF is less than the optimal value of any other lists

in R(L). First we prove that in the optimal solution to the TOF (L∗), it is impossible that one tool

serves more than one jobs whose workload is greater than wb. Suppose that w1 ≥ w2 ≥ wb and w1

26

and w2 are served by the same tool. Then the processing time plus replacement time is

(w1 + w2)
ν
ν−1

C
1

ν−1

+ τ ≥
w

ν
ν−1

1 + ν
ν−1

w
1

ν−1

1 w2

C
1

ν−1

+ τ

≥
w

ν
ν−1

1 + ν
ν−1

w
ν
ν−1

2

C
1

ν−1

+ τ

≥ w
ν
ν−1

1 + w
ν
ν−1

2

C
1

ν−1

+
1

ν − 1

w
ν
ν−1

b

C
1

ν−1

+ τ =
w

ν
ν−1

1 + w
ν
ν−1

2

C
1

ν−1

+ 2τ.

Since the last expression of the above inequalities is the processing time when w1 and w2 done by

two tools separately, then we cannot have the case where two large jobs are served by one tool.

Now suppose that in list L∗, when getting the optimal solution of OF, there are elements in

L0, say w0j , which are served with some of the elements in L1 by same tools. Since we only

consider the workload served by tools, the tools that serve L0 are serving
∑n(L0)

j=1 (w0j + γj) in

total, where γj denotes the workload from L1 which is served with w0j by the same tool. Let

ŵ = w(L)−
∑n(L0)

j=1 (w0j + γj). Then the time spent on L∗ under OF is

n(L∗)TOF (L∗) ≥
n(L0)∑
j=1

(w0j + γj)
ν
ν−1

C
1

ν−1

+ n(L0)τ +
ŵ

ν
ν−1

(C ŵ
wb

)
1

ν−1

+ τ
ŵ

wb
.

The inequality holds since given any list L, TOF (L) ≥ TBC(L). Let γ =
∑n(L0)

i=1 γi. Suppose

TB1(L∗) is the processing time by using the way described in Lemma 2.4.9, i.e.,

n(L∗)TB1(L∗) =
ŵ + γ

C
1
ν

ν(ν − 1)
1−ν
ν τ

1
ν +

n(L0)∑
j=1

w
ν
ν−1

0j

C
1

ν−1

+ n(L0)τ.

From the fact that
ŵ

C
1
ν

ν(ν − 1)
1−ν
ν τ

1
ν =

ŵ
ν
ν−1

(C ŵ
wb

)
1

ν−1

+ τ
ŵ

wb
, we have

n(L∗) (TOF (L∗)− TB1(L∗)) =

n(L0)∑
j=1

(w0j + γj)
ν
ν−1

C
1

ν−1

− γ

C
1
ν

ν(ν − 1)
1−ν
ν τ

1
ν −

n(L0)∑
j=1

w
ν
ν−1

0j

C
1

ν−1

.

27

From Taylor’s expansion and wj > wb we have

(w0j + γj)
ν
ν−1 ≥ w

ν
ν−1

0j +
ν

ν − 1
w

1
ν−1

0j γj > w
ν
ν−1

0j +
ν

ν − 1

(
(ν − 1)τC

1
ν−1

) 1
ν
γj.

Thus we show that
∑k

j=1

(w0j + γj)
ν
ν−1

C
1

ν−1

− γ

C
1
ν

ν(ν − 1)
1−ν
ν τ

1
ν −

∑k
j=1

w
ν
ν−1

0j

C
1

ν−1

> 0. Hence we can

see that TOF (L∗)− TB1(L∗) > 0, which means that L∗ is not the best order.

Now suppose we have a list L in which workload of each job is uniformly distributed within

[0, wu] where wu > wb. Extract the elements whose workload are greater than wb from L to form

a new list L0. From the remaining elements we extract those that can be perfectly packed by tools

with capacity wb and form them as list L1. The other elements are gathered to be list L2. Notice

we do not consider the order of these lists since we only discuss the rearranging method here.

Given any list L, we have that n(L)TOFR(L) ≤ n(L1 ∪ L2)TOFR(L1 ∪ L2) + n(L0)TOFR(L0)

since rearranging always guarantees the optimal order of the entire list L. Also notice that

TOFR(L1) = TBC(L1), from Lemma 2.4.9 we have n(L)TOFR(L) ≥ n(L1∪L0)TOFR(L1∪L0) =

n(L1)TOFR(L1) +n(L0)TOFR(L0). Notice that L1∪L2 contains all the elements whose workload

is less than or equal to wb, and L0 contains all elements whose workload are greater than wb. We

want to get the expected number of jobs in these sets when given n(L). We have the following

lemma, for which we define W as the workload of a job arriving in the future:

Lemma 2.4.10. P(W ≤ a|W > wb) is the cdf of a uniform distribution in [wb, wu] if W is

uniformly distributed in [0, wu].

Proof. Consider the conditional cdf when a > wb

P(W ≤ a|W > wb) =
P(wb < W < a)

P(W > wb)
=

a− wb
wu − wb

.

If a ≤ wb we have that P(W < a|W > wb) = 0.

Similarly, we can show that P(W ≤ a|W < wb) is also a cdf for a uniform distribution in

28

[0, wb]. Let θ = wu
wb

then E[n(L1 ∪ L2)|n(L)] = 1
θ
n(L) and E[n(L0)|n(L)] = θ−1

θ
n(L). To

characterize E[TOFR(L1 ∪ L2)], from Lemma 2.4.10 we know that the elements in L1 ∪ L2 have

uniform distribution with upper boundwb. From Theorem 2.4.5 as n(L1∪L2)→∞, E[TOFR(L1∪

L2)] → E[TBC(L1 ∪ L2)]. Also from Lemma 2.4.4 we know that limn(L1∪L2)→∞ E[TBC(L1 ∪

L2)] ≤ limn(L1∪L2)→∞
(E[w(L1∪L2)]

wb
+ 1)τν

n(L1 ∪ L2)
=
τν

2
, and

lim
n(L1∪L2)→∞

E[TBC(L1 ∪ L2)] ≥ lim
n(L1∪L2)→∞

τ
1
ν (ν − 1)

1
ν
−1νE[w(L1 ∪ L2)]

C
1
ν n(L1 ∪ L2)

=
τν

2
.

Thus limn(L1∪L2)→∞ E[TBC(L1 ∪ L2)] =
τν

2
.

Now we wish to show that

lim
n(L)→∞

E[n(L1)TBC(L1)|n(L)]

n(L)
= lim

n(L)→∞

E[n(L1 ∪ L2)TBC(L1 ∪ L2)|n(L)]

n(L)
.

Since
n(L1)

n(L)
TBC(L1) ≤ n(L1 ∪ L2)

n(L)
TBC(L1 ∪ L2), and its RHS has the property that

n(L1 ∪ L2)

n(L)
TBC(L1 ∪ L2) ≤ n(L1)

n(L)
TBC(L1) +

n(L2)

n(L)
TBC(L2), we want to show that

lim
n(L)→∞

E[n(L2)|n(L)]

n(L)
= 0.

Otherwise assume that limn(L)→∞
E[n(L2)|n(L)]

n(L)
= δ > 0 holds, then

lim
n(L1∪L2)→∞

E[w(L1 ∪ L2)|n(L)]

E[kopt(L1 ∪ L2)|n(L)]
= lim

n(L)→∞

E[w(L1 ∪ L2)|n(L)]

E[kopt(L1) + kopt(L2)|n(L)]
< wb.

Thus limn(L)→∞
E[n(L2)TBC(L2)|n(L)]

n(L)
= 0.

29

Then we have that

lim
n(L)→∞

E[TOFR(L)] = lim
n(L1∪L2)→∞

1

θ
E[TBC(L1 ∪ L2)] + lim

n(L0)→∞

θ − 1

θ
E[TOF (L0)]

=
τν

2θ
+ lim

n(L0)→∞

θ − 1

θ
E[TOF (L0)].

Next we wish to evaluate limn(L0)→∞ E[TOF (L0)]. Let m = ν
ν−1

and W be uniformly distributed

in [0, wu], then

E[Wm|W > wb] =

∫ wu

wb

1

wu − wb
xmdx

=
1

(m+ 1)(wu − wb)
(
wm+1
u − wm+1

b

)
=

1

m+ 1

1

θ − 1
wmb (θm+1 − 1).

Then we have limn(L0)→∞ E[TOF (L0)] =
1

m+ 1

1

θ − 1

wmb

C
1

ν−1

(θm+1 − 1) + τ. Thus as n(L)→

∞,

E[TOFR(L)]→
(
ν

2θ
+
θ − 1

θ
+

ν − 1

θ(m+ 1)
(θm+1 − 1)

)
τ.

Lemma 2.4.11. Let fL(x) be the probability density function of level of each tool, if capacity of

each tool is wu and the workload of each job is uniformly distributed in [0, wu], then fL(x) =
3x2

w3
u

where x ∈ [0, wu].

Proof. Proof is given by [41].

From Lemma 2.4.11 we have that

E[ηm] =

∫ wu

0

3xm+2

w3
u

dx =
3

3 +m
wmu .

Thus limn(L)→∞ E[T 0
FB(L)] =

2

3
(

3

3 +m

θmwmb

C
1

ν−1

+ τ).

30

Then as n(L)→∞,
E[TOFR(L)]

E[T 0
FB(L)]

→
ν − 2 + 2θ +

2(ν − 1)2

2ν − 1
(θm+1 − 1)

4(ν − 1)2

4ν − 3
θm+1 + 4

3
θ

.

Remark 2.4.12. If workload of each job is uniformly distributed within [0, wu] and θ = wu
wb
≥ 1,

suppose w∗c ≥ wu is the optimal tool capacity to be fixed in FB, then as n(L)→∞,

E[TOFR(L)]

E[TFB(L)]
∈ [

ν − 2 + 2θ +
2(ν − 1)2

2ν − 1
(θm+1 − 1)

4(ν − 1)2

4ν − 3
θm+1 + 4

3
θ

, 1].

Notice we do not use TBC(L) here as frame of reference anymore since it may not be achievable

when wu > wb.

Remark 2.4.13. We use uniform distribution because in Section 2.4.2 we showed that the tool level

or the buffer level η is determined by wu
wb

. When tool replacement time is large, wb is large also.

Uniform distribution in this case provides us with an extreme case where wu can be at least as large

as wb. Results for some other distributions are shown in Section 2.5.

As we can see, if we fix buffer capacity as wc when wu ≤ wc, both FB FS process at most wc

workload. The only difference is that if both FB and FS process the same amount of workload,

say η̂ ≤ wc, using the same tool, FB will process at speed ŝ, which is the solution of η̂
D(ŝ)

ŝ
= h∗,

whereas FS processes it at speed s∗, where s∗ satisfies wc
D(s∗)
s∗

= h∗. Notice that η̂ ≤ wc and the

fact that
D(s)

s
is an increasing function of s, we have that ŝ ≥ s∗. In this case we can see that

TFB(L) ≤ TFS(L) for any list L. Then we have the following theorem.

Theorem 2.4.14. For FS we fix a speed s∗ as the solution of wc
D(s∗)
s∗

= h∗, for FB we fix an

buffer capacity also as wc and use s∗ to process jobs in the last buffer, then TFS(L) ≥ TFB(L) ≥

TOF (L) ≥ TOFR(L) ≥ TBC(L) for any L.

Proof. It is easy to observe that TFS(L) ≥ TFB(L) and TOF (L) ≥ TOFR(L), and TBC(L) would

be the smallest as it is the best case. We only need to prove that TFB(L) ≥ TOF (L). From FB

we know its processing speed is determined by ηD(s)
s

= h∗, thus remaining tool level cannot be

31

negative. Then it is easy to see that any feasible solutions of FB are in the feasible region of OF.

Thus TFB(L) ≥ TOF (L).

In previous sections we do not consider the waiting process or the queue in the systems since

stability does not hamper the performance of our approaches. We now characterize the capacity

of the system under different approaches. For FS with capacity wc, the service rate for list L is

w(L)
n(L)TFS(L)

. Notice that if k + 1 tools are used for processing L and ηi is the workload served

by tool i, then the service rate can be given by w(L)
n(L)TFS(L)

=
∑k
i=1 ηi+ηk+1∑k+1

i=1
ηi
s

+(k+1)τ
≤ (k+1)wc

(k+1)wc
2s

+(k+1)τ
,

where s =
(
C
wc

) 1
ν−1

. By dominated convergence theorem and strong law of large numbers, we

have that as n(L) → ∞, E[w(L)
n(L)TFS(L)

] → (1−β)wc

(1−β)w
ν
ν−1
c

C
1

ν−1

+τ

= (1−β)wcC
1

ν−1

(1−β)w
ν
ν−1
c +τC

1
ν−1

, where 1 − β =

E[η]. For the optimal capacity w∗c for FS we have E[w(L)
n(L)TFS(L)

] ∈ [(1−β)wbC
1

ν−1

(1−β)w
ν
ν−1
b +τC

1
ν−1

, wb
ντ

] knowing

that BC provides the maximal service rate and w∗c provides higher service rate than wb does for

FS. Thus an arrival rate no greater than (1−β)wcC
1

ν−1

(1−β)w
ν
ν−1
c +τC

1
ν−1

is the necessary condition for stability

of FS. Likewise, for capacity of FB, we have as n(L) → ∞, E[w(L)
n(L)TFB(L)

] → E[η]

E[η
ν
ν−1]

C
1

ν−1

+τ

=

E[η]C
1

ν−1

E[η
ν
ν−1]+τC

1
ν−1

. Specifically, when Wi ∼ U(0, wu), wu > wb and based on the optimal capacity,

we have the arrival rate up to
3
4
wuC

1
ν−1

3ν−3
3ν−2

w
ν
ν−1
u +τC

1
ν−1

as the necessary condition of the stability for FB.

2.4.3.2 Unbounded Workload

Here we discuss the case when workload is unbounded. In this case, we may receive jobs with

workload greater than wc so that a single buffer cannot hold it. However, Taylor’s Formula in

Equation (2.1) tells us to use a relative low speed to process a large job. FB can adjust the process-

ing speed accordingly without putting the large job in a “virtual buffer", as stated in Algorithm 2.2.

Jobs with small workload are still put into buffers one by one. Once a buffer is full, FB processes

jobs in this buffer using the optimal speed, and new jobs are put into the next buffer. Once a job

with workload wi > wc arrives, we know this job cannot be put into either the current buffer or a

new buffer whose capacity is wc. In this case FB would firstly process jobs in the current buffer

32

using the optimal speed, then process this large job using one tool by speed si, where si is the

solution to wi
D(si)
si

= h∗.

In the unbounded workload case, the optimal value of OFR can no longer be approximated

by BC, thus we can only use BC as the benchmark. However BC may not be a good benchmark

because a real workload greater thanwb can never be packed in a buffer with capacitywc = wb (See

Section 2.4.1 and Theorem 2.4.5 for detail). We thus provide a modified BC to approximate the

optimal makespan of TOFR(L). For simplicity in notation, we denote the modified problem BC*.

Similar to Lemma 6, we letL1 be the subset ofL containing jobs whose workload is smaller thanwb

and L0 = L\L1. Let k∗ = bw(L1)
wb
c, then from Lemma 3 we have k∗τν ≤ n(L1)TBC(L1) < (k∗ +

1)τν. We let TBC∗(L) = k∗τν + TOFR(L0), and by Lemma 6 we have TBC∗(L) ≤ TOFR(L) <

(k∗ + 1)τν + TOFR(L0). Then limn(L)→∞
E[TBC∗(L)]

E[TOFR(L)]
= 1 if we assume workload is uniformly

distributed in (0, wu), This implies that we can also use BC* to approximate OFR for the results

in Section 4.3.1. Note that without the uniform distribution assumption, we still have TBC∗(L) ≤

TOFR(L). We then use BC* as the benchmark to compare FB against. The numerical study of this

case is provided in Section 2.5.

2.5 Numerical Results

In this section we perform numerical experiments to develop insights in terms of performance

for various model parameters as well as compare methods. Since in Section 2.4.2 and 2.4.3 we

only give the optimal bound for both FS and FB, now we will study their performance using

simulation. Notice that in Theorem 2.4.6, the expression limn(L)→∞
E[TBC(L)]

E[TFS(L)]
depends only on

ν and β, where ν is determined by Taylor’s Formula (2.1) which is also shown in Equation (2.2)

and β is determined by wu
wb

, knowing that wb is a constant given in Lemma 2.4.4 and wu is the

upper bound of each workload. Similarly, the expression limn(L)→∞
E[TBC(L)]

E[TFB(L)]
in Theorem 2.4.9

depends only on ν and θ, where θ is determined by wu. So we start by testing the performance of

FS and FB for different ν and wu. For numerical results, we choose C = 100 and τ = 100. Once

C and τ are fixed, wb depends only on ν as shown in Lemma 2.4.4. All the numerical tests are

done in MATLAB and TOF (L) is solved by Bonmin solver (see [42]).

33

Figure 2.1: Performance of Fixed Speed Approach when (a) wu = wb, (b) ν = 5

We begin by considering the influence of ν on FS. From [36] we can get some typical ν for

several common tool materials, which is provided in the Table 2.3. We let n(L) = 105, a finite but

large number which helps show the asymptotic results, selecting wb as defined in Lemma 2.4.4.

We then get Figure 2.1(a) for different ν’s by letting wu = wb, and each line is the average result

over 100 independent lists with each list having length n(L) = 105. As shown in Figure 2.1(a),

large ν improves the performance of FS. When ν = 10, FS is close to BC no matter how we

choose the tool capacity wc. Next we show the influence of wu by fixing n = 0.2, i.e., ν = 5. Let

workload be drawn from U(0, wu). We test FS by letting n(L) = 105 for each of the 100 lists and

we get Figure 2.1(b) for different wu’s. From Figure 2.1(b) we can see small wu
wb

also improves

the performance of FS. From a practical standpoint, when replacement time τ is large, then the

corresponding wb is large thus wu
wb

is small, making FS work extremely well. Figure 2.1(b) also

shows that wb is not always the best option for fixing wc. When wu = 0.5wb and wu = wb, the

maximal points of both lines correspond to best wc’s which are larger than wb.

Now we show the performance of FB for different ν’s and wu’s. Notice that when wu > wb

we cannot use BC to approximate the optimal value of OFR, as stated in Lemma 2.4.9. Thus

we use BC* as the frame of reference (details are in Section 4.3.2). We draw n(L) = 105 jobs

independently for each of 100 job lists to approximate the expected optimal value of FB and OFR.

Similarly, we find from Figure 2.2(a) where we let wu = wb that large ν improves the performance

of FB. When ν = 10, we can see the best performance of FB is as good as OFR. Next we show

34

Figure 2.2: Performance of Fixed Buffer Approach when (a) wu = wb, (b) wu ≤ wb,
ν = 5, (c) wu ≥ wb, ν = 5

the performance of FB for different wu’s. We fix ν = 5 and let workload be drawn from U(0, wu).

The performance of FB is shown in Figure 2.2(b) and Figure 2.2(c) for wu ≤ wb and wu ≥ wb

respectively. Similarly, we observe that small wu
wb

improves the performance of FB. Notice that

when given a large replacement time τ , the corresponding wb is large, causing wu
wb

to be small.

So the case where wu ≥ wb is an extreme case, but it turns out that FB works well even wu is

large. Besides, as shown in Figure 2.2(d) where we also test FB on modified beta distribution

with different parameters, the optimal performance of FB is not sensitive to the assumption of

probability distributions.

In Section 4.3.2 we show FB can be applied to the case when workload is unbounded, here we

show in Figure 2.3 the performance of FB under different workload distributions. For all the cases

in Figure 2.3, we assume ν = 5. In Figure 2.3(a) we assume workload is according to modified

Beta distributions. BC is used as the benchmark in this case since OFR cannot be approximated by

BC. As we can see, the performance of FB under Beta distributions is similar to it has for uniform

distribution, which shows when workload is bounded, the performance of FB is not sensitive to

assumptions for workload distribution. Figure 2.3(b) and (c) show the performance for FB when

workload is unbounded. BC* is used as the benchmark. Similarly, we find if we fix tool capacity

for FB to be around 1.5wb, the gap between BC* and FB is always small (TBC∗
TFB
∈ (0.98, 1)), which

shows the robustness of FB.

We then provide a comparison of methods to show the power of revealing workload using IoT.

35

Figure 2.3: Performance of Modified Fixed Buffer Approach when workload is (a)
Beta Distributed, ν = 5 (b) Exponential Distributed, ν = 5, (c) Log-Normal Dis-
tributed, ν = 5.

We select the parameters so that each method performs its own best. We again let wu = wb, and

fix wc1 = 1.6wb when ν = 5 and wc1 = wb when ν = 2 for FS since they are numerically near

optimal. Similarly we fix wc2 = 1.4wb when ν = 5 and wc2 = 1.3wb when ν = 2 for FB. We test

FS, FB and OF by drawing workload n(L) = 45 times independently from U(0, wu) where we let

wu = wb. We choose n(L) = 45 and each tool serves 3
2

jobs on average as shown in Section 2.4.3,

thus every n(L) jobs correspond to nearly 30 tools. We run this experiment for 100 times and the

average result over these 100 experiments are shown in Table 2.4.

Knowing the workload also results in a tremendous improvement in the performance of online

algorithms. In the case where no workload is revealed and if wu = wb, then the optimal policy is:

the tool processes every job with a fixed speed which is determined by wb
D(s)

s
= h∗. This is also

the control policy provided in [10]. The performance comparison is provided by the Stochastic

Optimal Policy (SOP) in Table 2.4 below. The actual performance of this optimal policy is given

by limn(L)→∞
E[TBC(L)]

E[TSOP (L)]
=

ν

ν + 1
. The Fixed Speed Approach requires one revealed workload,

and we see from Table 2.4 below a big improvement of performance it makes (94.38% of optimal

offline) compared to the Stochastic Optimal Policy (83.33% of optimal offline). Ability to acquire

workload distribution beforehand is also important. It helps improve the performance of online

algorithms. If workload is revealed however the distribution of future workload is unknown, the

optimal control policy for this case would be myopic as well: we choose the maximal speed (given

36

Material n ν = 1/n
High Speed Steels 0.1-0.17 5.88-10.0

Uncoated WC Tools 0.2-0.25 4.0-5.0
TiN or TiN Coated WC Tools 0.3 3.3
Al2O3 Coated WC Tools 0.4 2.5

Solid Ceramics Tools 0.4-0.6 1.67-2.5

Table 2.3: Taylor’s Parameter ν for
different materials.

XXXXXXXXXXXXXMethods

TBC
TMethod when ν = 5 when ν = 2

Stochastic Optimal Policy (No revealed workload) 0.8286 0.6600
Simple Approach (No distribution knowledge) 0.8933 0.7347

Fixed Speed (One revealed workload) 0.9402 0.8509
Fixed Buffer (More than one revealed workload) 0.9929 0.9727

Offline (All revealed information) 0.9957 0.9842

Table 2.4: Performance of Different
Methods for Different Values of ν

by w
D(s)

s
= h∗) to process the current job w. We call it Simple Approach (SA) (a simplified

data-driven method) which is shown in Table 2.4. When using Simple Approach we assume

workloads are drawn from a single uniform distribution; however our online algorithms can be

modified accordingly if workload distributions are changed.

2.6 Concluding Remarks and Future Work

In this paper we consider a custom-manufacturing setting with IoT. A benefit of using IoT

is that it is possible to accurately ascertain workloads and tool degradation before processing a

job as well as to know workload distribution beforehand. However until information is available

in custom-manufacturing settings there is uncertainty. We use a behavior-imitating method to

construct our online algorithms so that algorithms behave similar to offline solutions thus have

performance guaranteed. We achieve a middle ground in our algorithm using a bin-packing setting

where jobs are “packed" into each tool so that the tool is used to process those jobs and then

discarded. We call these algorithms Fixed Speed Approach (i.e., FS) and Fixed Buffer Approach

(i.e., FB) where information for certain small number of jobs is needed and as a result, they perform

exceedingly well. In addition, the setting considers fairly arbitrary arrival processes and hence can

easily be extended to multi-station systems.

The contribution of this paper is as follows. We provide a model under IoT manufacturing

which considers in a single frame work (1) discrete part manufacturing, (2) machine with degrading

tools and degradation is a function of processing speed, (3) jobs where workload is revealed upon

“arrival" and (4) objective of minimizing completion time. In addition, we provide the idea of

behavior-imitation which can be adapted to other online algorithms as well. There are also several

37

insights that can be gleaned from our problem. We show that job re-sequencing is unnecessary for

general settings where the workload is far less than the tool replacement time. This implies when

replacement takes a long time, online algorithms perform very well. Also because the loss caused

by prohibiting re-sequencing is compensated by the ability of fast processing, the online algorithms

that we provide work reasonably well in the case when future jobs’ information is unavailable.

Moreover, we provide a list of optimal resource (tools) and time needed for processing a job list,

which greatly enhance production planning. We show the optimal workload a tool serves depends

only on the tool properties. Further, the performance of online algorithm in our setting relies

heavily on the tool material. This helps practitioners to choose tool material scientifically.

There are several extensions to this research that can be considered in the future. Single stations

with multiple tools per machine and multiple machines can be considered with degrading tools.

The key idea would be to extend the policies that have been shown to be powerful in this paper.

Subsequently, it would also be possible to extend to multiple workstations with various part flows.

It needs to be seen if a decomposed approach would indeed result in efficient operations under

such a setting. The effects of uncertainty especially in terms of random failures and random tool

wear could also be considered in the future. While these problems do get much more complex

than what is considered in this paper, we believe that the theories would nicely extend to more

complex scenarios and they can be useful in designing and controlling large scale IoT-based smart-

manufacturing systems with customized production.

38

3. ON COMPETITIVE ANALYSIS FOR POLLING SYSTEMS

3.1 Introduction

This study has been motivated by operations in smart manufacturing systems. As an illus-

tration, consider a 3D printing machine that uses a particular material informally called ‘ink’ to

print. Jobs of the same prototype are printed using the same ink, and when a different prototype

(for simplicity, say a different color) is to be printed, a different ink is required and the machine

undergoes a setup that takes time to switch inks. The unprocessed jobs of the same prototype can

be regarded as a ‘queue’. This problem can thus be modeled as a polling system where the server

polls a queue, processes jobs, incurs a switch over time, processes another queue, and so on. In

practice, besides the ink (material), other factors such as processing temperature, equipment set-

ting and other processing requirements that require by different job prototypes will also incur setup

times.

Another interesting feature of 3D printing is that it is possible to reveal the workload of each

job (i.e., processing time) upon the job’s arrival. This is because before getting printed, the printing

requirements such as temperature, nozzle route, printing speed, and so on are specified for the job,

and using that we can easily acquire the printing time before processing. Therefore, it is unneces-

sary to assume that the workload of a job is stochastic at the start of processing, even though many

other queueing research works do so. In this paper, we assume that the workload of jobs could be

arbitrary, and could be revealed deterministically upon arrival. Furthermore, the 3D printer that

prints customized parts usually receives jobs with different processing requirements. Job arrivals

thus could be time-varying, non-renewal, in batches, dependent, or even arrivals without a pattern.

It motivates us to consider the generic polling system without imposing any stochastic assumptions

on future arrivals.

The above is actually an example of the general polling system. In such a system, job arrivals

are arbitrary, workload of each job is revealed deterministically upon arrival, and a setup time

39

occurs when the server switches from one queue to another. We call such a polling system ‘gen-

eral’ mainly because we do not impose any stochastic assumptions on job arrivals or service times.

Polling system was firstly introduced in 1970’s and it is one of the most important system in queue-

ing literature due to its wide application [43, 44, 45, 46]. There are practical needs for studying

the polling system with general settings as in many cases, job processing requirements and arrivals

are unpredictable and could be in any pattern. Besides 3D printing, many other examples of such

a general polling system can be found in computer-communication systems, reconfigurable smart

manufacturing systems and smart traffic systems [43, 47, 46], where arrivals could be arbitrary

and service time gets revealed upon job’s arrival. Having a scheduling policy that works well in

such general settings could prevent the system from performing erratically when rare events occur.

Knowing the worst case performance of a policy also aids in designing reliable systems. There are

also needs from theory for studying the polling system with general settings. Most of the previous

works model the polling system from a stochastic standpoint by assuming certain distributions for

arrival, service and switching processes. As a consequence, these works are limited in describing

the average performance of certain polling systems that rely on specific stochastic assumptions.

There are very few studies discussing the optimal policies or online scheduling algorithms for the

polling system without stochastic assumptions due to the complexity of analysis [48]. It is still un-

known if those scheduling policies designed for specific polling systems work well in the general

settings. In our paper, we study the polling system from an online optimization perspective and

perform worst case analysis for the generic polling system that does not rely on any stochastic as-

sumptions for arrival, service or switching processes. More specifically, we consider a completion

time minimization problem in such a polling system and obtain the worst case performance (i.e.,

competitive ratios) of several widely used scheduling policies with known average performance,

such as Gittins Index Policy, Stochastic Largest Queue (SLQ) as well as cyclic exhaustive and

gated policies. Our work also bridges the scheduling and queueing communities by showing that

some queueing policies that work well under stochastic assumptions also work well in the general

scheduling settings. In this work we, for the first time, provide conditions for existence of constant

40

competitive ratios for online policies in polling systems. Moreover, we suggest a mixed strategy in

this paper that works well under practical scenarios.

3.1.1 Problem Statement

As mentioned earlier, the unprocessed jobs from the same prototype (or family) can be modeled

as a queue. We thus consider a single server system with k parallel queues. Jobs arrive at each

queue will wait until being served by the server. Figure 3.1 shows a polling system with k =

4 queues. The processing time (workload) pi of the ith arriving job is revealed instantly upon

its arrival time ri. The server can serve the jobs that are waiting in queues in any order non-

preemptively. However, a setup time τ is incurred when the server switches from one queue to

another. We assume that once the setup is in progress, it can be interrupted but it is not resumable.

Next time when the server switches to this queue, a setup time τ is still needed. Information (rj, pj)

about a future job j (for all j) remains unknown to the server until job j arrives in the system. The

objective is to find service order for jobs and queues to minimize total completion time over all

jobs, where the completion time of a job is the time period from time 0 to when the job has been

served (exits the system). It is assumed that the number of jobs is an arbitrary large finite quantity.

We wish to also state that previous studies of polling systems usually assume that (rj, pj) follows

certain random distributions (see [49]), but in our paper we study polling systems from an online

scheduling perspective and allow polling systems to have arbitrary arrival times and processing

times.

3.1.2 Preliminaries

In this subsection we mainly introduce some concepts and terminologies that we use in this

paper. Important notations in this paper are provided in Table 3.1.

3.1.2.1 Machine Scheduling Problems

The polling system scheduling problem belongs to the class of one machine online scheduling

problems since there is only one server (machine or scheduler) in the system. Using the notation

for one machine scheduling problems [50], we write our problem as 1 | ri, τ |
∑
Ci, where ‘1’

41

Figure 3.1: Polling System with Four Queues

refers to the single machine in the system, ri and τ in the middle part of the notation refer to

the release date and setup time constraints, and
∑
Ci means that the objective of this scheduling

problem is to minimize the total completion time. This type of notation is widely used to briefly

describe the input, constraints and objective for any scheduling problem. The notation is of the type

Pm | constraints | objective. The first column in the notation denotes the number of machines in

the system. For example, it could be 1 for one machine or Pm for m parallel machines. The middle

column denotes the constraints. In the later part of this paper we would introduce other constraints

such as τ ≤ θpmin and pmax ≤ γpmin, where pmax = supi pi is the upper bounded workload

and pmin = infi pi is the lower bound workload. We say the workload variation is bounded if

pmax ≤ γpmin for constant γ. If no constraint is specified in this column, it means 1) all jobs are

available at time zero, 2) no precedence constraints are imposed, 3) preemption is not allowed, and

4) no setup time exists. In this paper, we assume jobs and setup times are non-resumable and all

the policies that we discuss are non-preemptive, unless we specifically point out. The last column

of the notation represents the objective for the scheduling problem (default to be minimization

problems). In this paper it is
∑
Ci, which means minimizing the total completion time. In other

papers it could be Cmax [51], which means minimizing the maximal completion time (makespan),

or
∑
wiCi which is minimizing the weighted completion time [23], where wi is the weight for job

i.

42

3.1.2.2 Online and Offline Problems

A job instance I with n(I) number of jobs is defined as a sequence of jobs with certain arrival

times and processing times, i.e., I = {(ri, pi), 1 ≤ i ≤ n(I)}. In this work we mainly focus

on an online scheduling problem, where online means ri and pi remain unknown to the server

until job i arrives. In contrast to the online problem, the offline problem has entire information

for the job instance I , i.e., (r1, r2, ..., rn(I)) and (p1, p2, ..., pn(I)) from time 0. The offline problem

is usually of great complexity. The offline version of the online problem that we want to solve,

i.e., 1|ri, τ |
∑
Ci, is strongly NP-hard since the offline problem with τ = 0 is strongly NP-hard

[52, 23, 53]. However it is important to note that if preemption is allowed, then serving the shortest

remaining processing time (SRPT) is the optimal policy for 1|ri, pmtn|
∑
Ci with τ = 0 (see [54]).

SRPT is online and polynomial-time solvable. It can be used as a benchmark for online scheduling

policies to compare against.

3.1.2.3 Scheduling Policies

A scheduling policy π specifies when the server should serve which job. In our paper we mainly

focus on online policies. Online policies provide feasible solutions for online problems, without

knowing the information of future jobs. Online policies are also called non-anticipative policies

in some literatures [55, 56]. Online policies can be either deterministic or randomized. There is

only one unique solution if a job instance is given to a deterministic policy. For example, SRPT

is a deterministic policy. A randomized policy may toss a coin before making decision, and the

decision may depend on the outcome of this coin toss [56]. This means for a random policy with

a certain internal random variable, its solution may depend on the outcome of this internal random

variable. If the same job instance is given to a randomized policy multiple times, each time the

solution may be different from the others due to different outcomes by the internal random variable.

Detailed discussions for randomized algorithms can be found in [57, 24]. In this paper, we mainly

focus our discussion on deterministic policies.

43

Notations Meaning Notations Meaning

ri

Release date, the time
when job i arrives in the

system
pi

Workload (processing
time) for job i

pmax
Maximum workload,
pmax = maxi{pi}

pmin
Minimum workload,
pmin = mini{pi}

τ
Setup time is τ for all

queues
I = {ri, pi}, for
1 ≤ i ≤ n(I)

Job instance, set of jobs
with information about

release date and
processing time for all

jobs in it

Cπ(I)
Total completion time for
jobs in instance I under

policy π
C∗(I)

Total completion time for
jobs in instance I under
the optimal policy of the

offline problem

Cπ
i

The completion time for
job i under policy π

n(I)
Number of jobs in job

instance I

γ
Workload variation, a

constant such that
pmax ≤ γpmin

θ
A constant such that

τ ≤ θpmin

k
Number of queues in the

system
κ =

max{3
2
γ, k + 1}

Competitive ratio for
cyclic-based and

exhaustive-like policies, a
constant

Table 3.1: Notations

44

3.1.2.4 Competitive Ratios

Competitive ratio is a ratio between the solution obtained by an online policy and the bench-

mark. In this paper, the optimal solution to the offline problem is the benchmark that we com-

pare the online policy against. Thus we say the competitive ratio for an online policy is ρ if

supI
Cπ(I)
C∗(I)

≤ ρ for any job instance I , where Cπ(I) is the completion time for job instance I by a

deterministic scheduling policy π and C∗(I) is the optimal completion time of the offline problem.

We say a competitive ratio is tight if there exists an instance I such that C
π(I)

C∗(I)
= ρ.

3.1.3 Related Works

Since in this paper we analyze the polling system from a scheduling perspective, there are

many research works in scheduling which are related to our work. The single machine scheduling

problems that consider setup times or costs have been widely studied from various perspectives.

A detailed review of the literature can be found in [58, 59, 60, 61, 62]. Other works considering

machine setup can be found in [63, 64, 65, 66, 67]. However, almost all of these works are focused

on solving the offline problem where all the release times and processing times are revealed at time

0.

In this paper we are more interested in the online problem where the current state of the system

is known and future is uncertain. Thus our work also falls into the class of the online single machine

scheduling problem. Numerous research papers have shed light on the online single machine

scheduling problem, without considering setup times. Table 3.2 summarizes the current state of art

of competitive ratio analysis over existing online algorithms for single machine scheduling problem

without setup times. Besides all the algorithms provided in Table 3.2, a recent work [68] provides

a new method to approximate the competitive ratio for general online algorithms. However, since

these works mainly focus on solving problem without setup times, the online policies provided in

these works are not directly applicable to polling systems.

Only few articles so far have focused on the online single machine scheduling problem with

queue setup times, i.e., the polling system. The online makespan minimization problem for the

45

Problem
Deterministic Randomized

Lower Bounds Upper Bounds Lower Bounds Upper Bounds
1|ri, pmtn|

∑
Ci 1 1 [54] 1 1 [54]

1|ri, pmtn|
∑
wiCi 1.073 [69] 1.566 [70] 1.038 [69] 4

3
[71]

1|ri|
∑
Ci 2 [72] 2 [72, 73, 74] e

e−1
[57] e

e−1
[24]

1|ri|
∑
wiCi 2 [72] 2 [75] e

e−1
[57] 1.686 [76]

1|ri, pmaxpmin
≤ γ|

∑
wiCi 1 +

√
4γ2+1−1

2γ
[77] 1 +

√
4γ2+1−1

2γ
[77] Unknown Unknown

1|ri, pmaxpmin
≤ γ|

∑
Ci Numerical [78] 1 + γ−1

1+
√

1+γ(γ−1)
[78] Unknown Unknown

Table 3.2: Competitive Ratios for Single Machine Scheduling Problem without Setup
Times (i.e., τ = 0)

polling system is considered in [79] and an O(1) algorithm is proved to exist. However the com-

petitive ratio provided in [79] is very large. A 3-competitive online algorithm for the polling system

with minimizing the completion time is provided in [80], but only for the case where k = 2 and

jobs are identical. To the best of our knowledge, the online algorithms for general polling systems

with setup time consideration have not been well studied.

As we mentioned before, there are articles that study polling systems from a stochastic perspec-

tive by assuming job arrivals, service times and setup times are stochastic. Average performance of

policies is considered for different types of stochastic assumptions [48]. Exact mean value analysis

for cyclic routing policies with exhaustive, gated and limited service disciplines for polling system

of M/G/1 type queues have been provided in [81, 49, 82, 83, 84, 85]. Service disciplines within

queues (such as FCFS, SRPT and others) are discussed in [86], however the routing discipline

(choose which queue to serve) and optimal service discipline between queues are not discussed in

[86]. Optimal service policy for the symmetric polling system is provided by [87], where ‘sym-

metric’ means that jobs arrive evenly into each queue and jobs are stochastically identical. Most

of the works from this stochastic perspective are restricted to average performance analysis. The

structure of the optimal solution to the general polling system yet remains unknown [47, 48]. Ap-

proximating algorithms for the polling system are very few, and none of those popular policies

with proven average performance have been showed the adaptivity in general settings.

In summary, so far there is no work which provides optimal or approximating scheduling poli-

46

cies for the polling system with a general setting and the objective of minimizing the total comple-

tion times. In addition, the conditions under which the polling system allows constant competitive

ratios for online algorithms are also unknown. Besides, the competitive ratios for widely-used

policies in polling systems (such as cyclic policies with exhausted and gated service discipline) re-

main unknown. The contribution of this paper is fourfold: (1) Our work for the first time analyzes

polling systems without stochastic assumptions, evaluates policy performance by competitive ratio,

provides the conditions for existence of competitive ratio in polling systems, and proves competi-

tive ratios for some well-studied policies such as cyclic exhaustive and gated policy. (2) Our work

bridges the queueing and scheduling communities by showing that some widely-used queueing

policies also have decent performance in terms of worst case performance in online scheduling

problems. (3) We provide a lower bound for the competitive ratio for all the possible online poli-

cies, and show that no online algorithm can have a competitive ratio smaller than this lower bound.

(4) We also provide new online policies that balance future uncertainty and utilize known informa-

tion, which may open up a new research direction that would benefit from revealing information

and reducing variability. This paper is organized as follows: in Section 3.2 we consider the case of

bounded workload variation and obtain competitive ratios for various policies; in Section 3.3 we

consider the case with unbounded workload variation; in Section 3.4 we provide a mixed strategy

to deal with a practical scenario; we make concluding remarks in Section 3.5.

3.2 Polling System with Bounded Workload Variation

From [54, 88] we know that in the single machine problem (no setup times) with minimizing

completion times, i.e., 1|ri|
∑
Ci, it is always beneficial to schedule jobs preemptively with the

smallest remaining processing time (SRPT) first. The reason is that by doing this, small jobs

are quickly processed thus the number of waiting jobs is reduced. This idea of scheduling small

workload first can be used in polling systems as well. An efficient scheduling policy may avoid the

case where a large number of jobs are waiting in the queue while a single large job is in process.

It should also avoid the case when a large number of small jobs are waiting in a queue, but the

server is busy serving other queues and not able to switch to this queue immediately. Thereby, the

47

main idea of designing a scheduling policy is to avoid either of these extreme cases happening. A

good online policy should balance job priority and queue priority so that small jobs are processed

in a timely manner and switching does not happen frequently. The priority of a job is usually

determined by the job information, such as processing time and release date. In contrast, queue

priority is usually determined by the queue information such as the number of waiting jobs, the

sum of remaining workload in a queue, and so on. If the variation of processing time is large and

setup times are trivial, then perhaps the server should favor the job priority more than the queue

priority since a large job in process may cause a much larger delay than switching. In the case

where variation of processing times is small, the server may need to favor the queue priority. We

leave the discussion for unbounded variation to Section 3.3, and in this section we mainly discuss

the case where workload variation is bounded (i.e., pmax ≤ γpmin for some constant γ; recall that

pmax = supi pi and pmin = infi pi). The case of bounded workload variation, in the 3D printing

example that we introduced earlier in this paper, corresponds to the scenario in which jobs have

similar printing requirements, i.e., jobs have similar processing times.

In this work, we suppose the decision of when to switch out from a queue and in which order

the jobs get served is determined by the service discipline of a policy. The decision of which

queue to serve next is determined by the routing discipline. Notice that once the variation of

processing times is small, queue priority should be favored. We shall show later in this section

that when workload variation is small, service discipline does not impact the policy performance

greatly, as long as it follows an exhaustive-like pattern. Thereby in this section, we mainly focus

our discussion on the routing discipline. There are many widely used routing disciplines and

here we classify them into two types. One is called static routing discipline, which means the

server always follows a fixed routing order (also called a general routing table), such as the policy

provided in [89]. The other is called dynamic routing discipline, which means the server follows a

dynamic routing policy which may use any available information as the processing goes on, such

as Stochastic Largest Queue (SLQ) provided in [87] or selecting queues randomly such as the

random routing discipline provided in [90]. For static routing disciplines, we focus our discussion

48

on the cyclic routing policy (also called periodic), and later in this section we shall show that cyclic

routing is the optimal static routing discipline in terms of the worst case performance. We will also

show that random routing discipline is generally no better than static ones in terms of the worst

case performance, which may be surprising and non-intuitive at beginning but it indeed reflects the

underlying difference between average performance with worse case performance. Since in this

section we only consider the case where workload variation is bounded, we assume the maximal

processing time (across all queues) for an arbitrary job is bounded by a constant ratio of minimal

possible processing time across all queues, i.e., pmax ≤ γpmin for some constant γ. And we assume

the setup time for all queues is fixed as τ . So our problem is denoted as 1 | ri, τ, pmax ≤ γpmin |∑
Ci where pmax ≤ γpmin is a constraint imposed. Unlike in [78] where pmin is assumed to be

non-zero, here we also allow pmin = pmax = 0, for which we assume γ = 1.

3.2.1 Cyclic Based and Exhaustive-like Policies

In this subsection we mainly discuss policies that use cyclic routing discipline and serve each

queue in an exhaustive manner. A queue is called ‘exhausted’ if there is no job left in the queue

by the time the server switches out. These policies form a policy set Πr which we will define later.

We begin our discussion with a set of policies Π1 called Cyclic Exhaustive Policies with Skipping

Empty Queues whose description is shown in Algorithm 3.1. This set contains all the policies that

1) serves queues in a cyclic way (from queue 1 to k and then again from 1 to k and so on), 2) serves

each queue exhaustively, and 3) waits in the queue for a certain amount of time before switching

out. Once the server decides to switch out, it selects the next non-empty queue to switch to. If

all queues are empty, the server will idle at the last queue that it served. Note that for an arbitrary

policy π ∈ Π1, during each visit to queue i, the server has to serve all the available jobs in queue

i before switching out. After serving all the jobs in queue i, the server is allowed to wait in queue

i for some extra time to receive more arrivals. If the server processes nwi jobs in its wth visit to

queue i, it can stay in queue i for at most nwi pmax amount of time in this visit. If a new arrival

occurs at queue i during the time that the server is waiting, then nwi ← nwi + 1 and the server can

process this job at any time before it switches out, as long as the server does not stay in the queue

49

for time longer than the updated nwi pmax. Note that if during wth visit to queue i, all the jobs have

workload pmax, then the server will switch out when a queue is exhausted. Also note that we do

not specify the service order of jobs for policies in Π1. As long as a policy satisfies the description

of Algorithm 3.1, it belongs to Π1. The next theorem provides the competitive ratio for policies in

Π1. Since the proofs of this and some subsequent theorems are lengthy, they are provided in the

appendices.

Theorem 3.2.1. Any policy e ∈ Π1 has competitive ratio of κ = max{3
2
γ, k + 1} for the polling

system 1 | ri, τ, pmax ≤ γpmin |
∑
Ci. When 3

2
γ ≤ k + 1, for arbitrary ε > 0, there is an instance

I such that C
e(I)

C∗(I)
> κ− ε.

Proof. The main idea of the proof is to consider each ‘batch’ under the online policy, which are

the jobs served by the server during each visit to a queue. The detail of the proof is in Appendix

A.1.

Algorithm 3.1 Cyclic Exhaustive Policies with Skipping Empty Queues Π1

Require: Instance I
1: server = 1;w = 1
2: while I has not been fully processed do
3: Process all jobs that are present in queueserver during server’s wth visit to queueserver (the

total number of jobs is denoted as nwserver), where the length of each visit period is at most
nwserverpmax

4: if queue server < j ≤ k is not empty then
5: server = server +min{j}
6: else if queue 1 ≤ j ≤ server − 1 is not empty then
7: server = min{j}; w = w + 1
8: else
9: server = l if next arrival occurs at queue l; w = 1

10: end if
11: end while
12: return Total completion time Ce(I)

Notice that if pi = 1 for all jobs i and k = 2, then κ = 3, which is the result shown in [80].

50

However Theorem 3.2.1 implies a stronger result since we allow k to be general (k ≥ 2) and pi’s

to be different. Next we show a set of policies Π2 which keep switching even when the system is

empty, called Cyclic Exhaustive Policies without Skipping Empty Queues and shown as Algorithm

3.2. The only difference between Π1 and Π2 is under any policy from Π2, the server sets up a queue

no matter if it is empty or not. Similar to policies in Π1, policies from Π2 allow the server to stay

in the queue i for no more than nwi pmax amount of time for its wth visit, so waiting is also allowed.

The policy without waiting (just exhaustively serving) belongs to Π2 and it has provable average

performance for M/G/1 type queues [81, 49, 82, 83]. Here we show the competitive ratio for the

policies in Π2 is also κ.

Algorithm 3.2 Cyclic Exhaustive policy without Skipping Empty Queues Π2

Require: Instance I
1: server = 1;w = 1
2: while I has not been fully processed do
3: Process all jobs that are present in queueserver during server’s wth visit to queueserver (the

total number of jobs is denoted as nwserver), where the length of each visit period is at most
nwserverpmax

4: server = Rem(server, k) + 1
5: if server == 1 then
6: w = w + 1
7: end if
8: end while
9: return Total completion time Ce(I)

Theorem 3.2.2. Any policy e ∈ Π2 has competitive ratio of κ = max{3
2
γ, k + 1} for the polling

system 1 | ri, τ, pmax ≤ γpmin |
∑
Ci. When 3

2
γ ≤ k + 1, for arbitrary ε > 0, there is an instance

I such that C
e(I)

C∗(I)
> κ− ε.

Proof. The proof of Theorem 2 is similar to the one for Theorem 1. A detailed proof is provided

in Appendix A.2.

Notice that the policies in Π1 and Π2 are different only in the way that the server deals with

51

empty queues. All the policies in Π1 and Π2 use an exhaustive service discipline. Besides the

exhaustive discipline, the gated discipline is often discussed because its average performance

for M/G/1 type queues is also provable under cyclic routing discipline without skipping empty

queues [49, 83]. Under the gated discipline, the server only serves the jobs that are in the queue

before the server sets up the queue, and jobs that arrive after that time would be left to the next

cycle of service. We do not specify the service order for the gated discipline either. We let Π3

be the set of policies that follow cyclic routing discipline without skipping the empty queues and

serve each queue with gated discipline. We also allow server to wait after clearing a queue under

Π3. Once the server has set up a queue, the number of jobs that are served during this visit is

determined. This is different from policies from Π1 or Π2. Similarly, we can have a policy set

Π4 in which policies are cyclic and gated, but skipping empty queues when switching. We do not

provide the detailed description of Π4 here since it is similar to policy set Π3. Policies in Π3 and

Π4 also have competitive ratio κ, as shown in the following theorem.

Theorem 3.2.3. Any policy e ∈ Π3 ∪ Π4 has competitive ratio of κ = max{3
2
γ, k + 1} for the

polling system 1 | ri, τ, pmax ≤ γpmin |
∑
Ci. When 3

2
γ ≤ k + 1, for arbitrary ε > 0, there is an

instance I such that C
e(I)

C∗(I)
> κ− ε.

Proof. The proof of Theorem 3 is also similar to the one for Theorem 1. A detailed proof is

provided in Appendix A.3.

So far we have shown the competitive ratio for policies based on exhaustive and gated disci-

plines, with and without skipping empty queues. Notice that all the policies in Πi, i = 1, ..., 4

use the cyclic routing discipline and have the same competitive ratio. We let these policies form a

policy set Πr, i.e., Πr = ∪4
i=1Πi. Again, it is important to note that the service order of jobs during

the server’s visit to a queue is not specified by Πr. The service order could be First Come First

Serve (FCFS), Shortest Processing Time First (SPT) or any other non-preemptive processing order,

but all of them result in the same competitive ratio and the competitive ratio is approximately tight

when 3
2
γ ≤ k + 1. It indicates that although revealing processing times provides additional infor-

52

mation for job scheduling, when the workload variation is small, the revealed information does not

improve the worst case performance of an online policy. It is not a coincidence that all policies in

Πr have the same competitive ratio. All the policies in Πr follow an exhaustive-like manner, even

for the gated discipline. An arbitrary gated policies from Π3 would exhaust all the jobs that arrive

before the queue is set up, and if a large number of jobs arrive after the queue is set up, they will

anyway be exhaustively processed in the next round. So we can see the gated discipline also has

some ‘exhaustive’ characteristics. In fact, Theorem 3.2.4 in the following shows that exhaustive

discipline is the optimal service discipline when pmax = pmin.

Theorem 3.2.4. For the polling system 1|ri, τ, pmin = pmax|
∑
Ci, there always exists an exhaus-

tive policy which outperforms a non-exhaustive policy in terms of total completion time.

Proof. The case where pi = 0 is trivial. Now we let pi = 1 with appropriate units. Since preemp-

tion is not allowed and all the jobs are identical, the server only needs to decide when to switch

out and which queue to switch to. If there are jobs in the queue that the server is currently serving,

there are two options for the server: to continue serving the next job in this queue, or to switch to

a nonempty queue and later come back to this queue again. If at time 0 the server is at queue 1 and

there is an unfinished job in queue 1, then the server has to come back after it switches out. Suppose

under a non-exhaustive policy π′ , the server chooses to switch to some queue(s) and come back to

queue 1 at time T . Say the server serves instance I ′ during this period. Suppose there is an adver-

sary policy which has the same instance at time 0, and this policy chooses to serve one more job in

queue 1, and then follows all decisions that policy π′ has made (including waiting). Note that every

decision policy π′ made is available to the adversary policy because the adversary policy serves

one more job before leaving queue 1. The total completion time under π′ is Cπ
′

= 1 + T +C(I
′
),

and the completion time achieved by the adversary is Cad = 1 +C(I
′
) +n(I

′
), where C(I

′
) is the

completion time of instance I served by policy π′ during (0, T]. Thus Cad−Cπ
′
≤ n(I

′
)−T ≤ 0.

Notice that the makespan of these two schemes are the same (including the final setup time of

queue 1 for the adversary). The theorem is proved.

53

Recall that all the policies in Πr use a static and cyclic routing discipline. Next we show in

Theorem 3.2.5, the cyclic routing discipline results in the smallest competitive ratio among all the

static routing disciplines.

Theorem 3.2.5. No online policy with a static or random routing discipline can guarantee a com-

petitive ratio smaller than k for 1|ri, τ, pmax ≤ γpmin|
∑
Ci. Further, cyclic is the optimal static

routing discipline for such a system. No online policy has a competitive ratio smaller than 2 for

1|ri, τ, pmax ≤ γpmin|
∑
Ci.

Proof. Since 1|ri, τ, pi = 1|
∑
Ci is a special case of 1|ri, τ, pmax ≤ γpmin|

∑
Ci, we only need to

show the result holds for 1|ri, τ, pi = 1|
∑
Ci. We first show the case for static routing policies. For

an arbitrary policy that follows a static routing discipline, we suppose the server starts from queue

1, and queue k is the last one visited. Before the server visits queue k, queue i (1 ≤ i ≤ k − 1)

has been visited vi times (suppose v(1) ≤ v(2) ≤ ... ≤ v(k−1) is the ascending order for vi’s). We

construct a special job instance I by assuming that there is one job arriving at each queue i every

time the server visits queue i for i = 1, ..., k − 1. Also we suppose there are nk jobs at queue k at

time 0 for a large nk, and say they form a batch bk. If we let g(bk) = nk(nk+1)
2

, then we have

Cπ(I ∪ bk) ≥ Cπ(I) + nkτ(
k−1∑
i=1

vi + 1) + g(bk),

C∗(I ∪ bk) ≤ Cπ(I) + nkτ + g(bk) + n(I)(nk + τ),

and Cπ(I∪bk)
C∗(I∪bk)

≥
∑k−1

i=1 vi + 1 if we let τ = (nk)
2 and nk → ∞. Since for any static routing

discipline we can construct a job instance like this, to achieve the smallest ratio we need vi = 1 for

i = 1, ..., k−1. Thus cyclic is the optimal static routing discipline. Notice a random routing policy

always generates a routing table randomly. Thus the result holds for random routing policies as

54

well.

The lower bound competitive ratio for 1|ri, τ, pi = 1|
∑
Ci is 2 as given in [80]. Since problem

1|ri, τ, pi = 1|
∑
Ci is a special case for 1 | ri, τ, pmax ≤ γpmin |

∑
Ci and 1|ri, τ |

∑
Ci , we

know that no online algorithm can have a competitive ratio smaller than 2 for 1 | ri, τ, pmax ≤

γpmin |
∑
Ci or 1|ri, τ |

∑
Ci.

So far we have shown that for problem 1|ri, τ, pmax ≤ γpmin|
∑
Ci, the policies in Πr all have

competitive ratio κ = max{3
2
γ, k+1}. From Theorem 3.2.5 we know that the smallest competitive

ratio based on cyclic routing discipline is at least k. The problem that whether there exists either a

lower bound competitive ratio greater than k or an online policy whose competitive ratio is smaller

than κ remains open. If we let γ → ∞, then κ → ∞. This means that the competitive ratio

we provide goes to infinity in this case, but it does not mean that policies in Πr all have infinite

competitive ratios, since the competitive ratio is approximately tight only when 3
2
γ ≤ k + 1 as

shown in Theorems 3.2.1, 3.2.2 and 3.2.3. However, Theorem 3.2.6 that we introduce next shows

that policies in Πr do not have constant competitive ratio if γ is infinite.

Theorem 3.2.6. Policies in Πr do not guarantee constant competitive ratios for 1|ri, τ |
∑
Ci.

Proof. We prove the theorem by giving a special job instance I . We assume pmin = 0 and pmax = p

so that γ = ∞. Suppose at time 0 each of queue i = 2, ..., k has one job of processing time p and

queue 1 has no job. At time τ + ε there are n jobs arriving at queue 1, with each of these n jobs

has processing time 0. For any policy π in Πr, the server would either setup queue 1 at time 0 then

switch to queue 2 at time τ , or setup queue 2 at time 0. In either of the case the server will be back

to queue 1 when queue k is served in the first cycle. Then we have

Cπ(I) ≥ k(k − 1)

2
p+ n(k − 1)p+ τ ((n+ k − 1) + (n+ k − 2) + ...+ n) ,

and

55

C∗(I) =
k(k − 1)

2
p+ τ ((n+ k − 1) + (k − 1) + ...+ 1) + ε(n+ k − 1).

Letting p = (n)2 and n→∞, we have Cπ(I)
C∗(I)

→∞.

3.2.2 Other Queue-length Based Policies

Note that not all the policies with cyclic routing discipline have competitive ratio κ. Policies in

Πr have a constant competitive ratio because they all serve as many available jobs as possible in

each visit to a queue, which reduces the frequency of switching. Some other cyclic policies may

not have constant competitive ratios for 1|ri, τ, pmax ≤ γpmin|
∑
Ci. We first consider a policy

called l-limited policy. This policy is also based on the cyclic routing discipline. However, the

server under l-limited policy only serves at most l jobs during each visit to a queue, then switches

to the next queue. A detailed description for this policy and its average performance for M/G/1

type queues can be found in [49, 85, 84]. Interestingly, as we shall show in Corollary 3.2.7, no

constant competitive ratio is guaranteed by l-limited policy, no matter the server sets up empty

queues or not.

Corollary 3.2.7. The l-limited policy (l < ∞, with or without skipping empty queues) does not

have a constant competitive ratio for 1 | ri, τ, pmax ≤ γpmin |
∑
Ci.

Proof. We prove this result by giving a special instance I . Suppose there are (l∗n) number of jobs

(l, n ∈ Z+) at every queue at time 0, and each job has processing time p = 1. The server would 1)

sets up the first queue, 2) serve l number of jobs in the first queue, and 3) make a tour from queue

2 to queue k by setting up each queue and serving l jobs at each queue. After returning to queue

1, the server will again set up queue 1 and serve l jobs. This process will be repeated for n times

before the entire instance I is processed. Let C l(I) be the total completion time for the l-limited

policy (the policies with or without skipping empty queues have the same completion time for this

56

job instance), we have

C l(I)

C∗(I)
=

knl(knl+1)
2

+ τ l kn(kn+1)
2

knl(knl+1)
2

+ τnl k(k+1)
2

.

If we let τ = (n)2 and n→∞, then Cl(I)
C∗(I)

→∞.

Although from Theorem 3.2.6 we show policies in Πr do not have constant competitive ratios

for 1 | ri, τ |
∑
Ci, they do have a constant competitive ratio for 1 | ri, τ, pmax ≤ γpmin |

∑
Ci.

Corollary 3.2.7 shows that l-limited policy does not belong to Πr, and it does not have a constant

competitive ratio for either 1 | ri, τ |
∑
Ci or 1 | ri, τ, pmax ≤ γpmin |

∑
Ci.

Next we discuss the worst case performance of a policy that selects queues based on queue

length information. As provided in [87], to serve the stochastic largest queue (SLQ) is the optimal

policy when the system is stochastically symmetric. Here ‘symmetric’ means that 1)if an arrival

occurs, it will join one of the k queues randomly but equally likely, and 2) service time for jobs in

different queues are identically distributed. Note that ‘symmetric’ does not mean the inter-arrival

time of jobs are fixed or job workload is revealed to be identical. It only means that the queues are

equivalent from a stochastic perspective. The following proposition shows that SLQ is the optimal

policy for a symmetric and stochastic polling system.

Proposition 3.2.8. For a symmetric polling system, the optimal policy is given by SLQ which is

as follows: 1) The server serves jobs in a queue non-preemptively; 2)The server should neither

idle nor switch when it is at a non-empty queue (exhaustive); 3)The server stays idling in the last

queue it visits when the system is empty; 4) When a queue is finished, the server switches to the

next queue with the largest number of jobs in queue.

Proof. See [87].

For a symmetric stochastic polling system, although we know the stochastic assumptions for

each queue is identical, once the arrival and service times (random variables) are revealed deter-

ministically, they may not be the same from a deterministic standpoint. The following corollary

57

says SLQ for the symmetric system is no longer optimal when information is revealed determinis-

tically. Further, we show that SLQ does not even have a constant competitive ratio.

Corollary 3.2.9. The SLQ policy does not have a constant competitive ratio for 1|ri, τ |
∑
Ci, thus

it is not the optimal policy for 1|ri, τ |
∑
Ci.

Proof. We prove the result by giving a special instance I . Suppose there are only 2 queues in the

system. The first queue has 1 job with processing time p at time 0, while the second queue has no

job at time 0 but has n jobs with processing time 0 arriving at time τ. SLQ will serve from queue

1 to queue 2, so that

CSLQ(I) = τ + 2nτ + p+ np,

and

C∗(I) = nτ + 2τ + p.

Let p = n and n→∞ we have CSLQ(I)
C∗(I)

→∞.

We conclude this section by noting that all of the policies we have discussed are mainly focused

on routing disciplines: policies in Πr use cyclic routing discipline, and SLQ are purely queue-

length based. Some of these policies have constant competitive ratios when the workload variation

is bounded, but when workload variation is unbounded, these policies no longer have constant

competitive ratios. In the Section 3.3 we will introduce some job-priority based policies under the

condition where workload variation is unbounded.

3.2.3 Simulation-based Policies

Now we consider policies that are based on simulation results. There are many simulation-

based online algorithms in the literature such as the One Machine policy in [74] and the α-

scheduling provided in [24]. These policies make decisions based on the result of simulations

58

on a virtual system. For instance, One Machine policy simulates a virtual system that has the same

arrivals as the real system, however in the virtual system preemption is allowed and SRPT is the

optimal policy. So One Machine policy schedules jobs in the order that they are scheduled in the

virtual system. Simulation-based policies usually need to simulate a virtual online benchmark in

parallel and use the simulation result. For the polling system, we may want to simulate policies on

virtual instances. Here we introduce two instances I and Ī which we call workload reduced and

augmented instance respectively, such that I and Ī are of the same arrivals as I but I is of pro-

cessing time pmin and Ī is of processing time pmax for all jobs. We can construct policies for I by

simulating the policies on I or Ī and following the simulation results. Now we show that a policy

which follows the decision that π ∈ Πr makes on either I or Ī has competitive ratio γ(k + 1).

Corollary 3.2.10. A policy π that works on I but follows the decision that a policy π̄ ∈ Πr makes

on either I or Ī is of competitive ratio γ(k + 1) for 1|ri, pmax ≤ γpmin, τ |
∑
Ci.

Proof. Since there is only one type of jobs in either I or Ī , preemption is not needed. We suppose

π̄ ∈ Πr is a policy that works on I , then C π̄(I) ≤ (k + 1)C∗(I) where C∗(I) is the optimal

completion time for instance I . Because π̄ is not preemptive, when π̄ starts processing a job in

I at time t, we know the process will be done at time t + pmin. Thus we construct the policy π

by letting π follow the same service order that π̄ has. Easily we have Cπ(I) ≤ γC π̄(I) because

pi ≤ γpmin for every job i in instance I . Since I is a reduced instance, we have C∗(I) ≤ C∗(I).

Thus Cπ(I) ≤ γC π̄(I) ≤ γ(k + 1)C∗(I) ≤ γ(k + 1)C∗(I).

If π̄ works on Ī , where instance Ī is the augmented instance for instance I , with workload for

all jobs in Ī is pmax. Then, we have Cπ(I) ≤ C π̄(Ī) ≤ (k+ 1)C∗(Ī). Let C ∗̄(Ī) be the completion

time for a new policy which works on Ī but always makes the same decisions as the optimal policy

for I , then C ∗̄(Ī) ≤ γC∗(I). Using C∗(Ī) ≤ C ∗̄(Ī) we have

Cπ(I) ≤ C π̄(Ī) ≤ (k + 1)C∗(Ī) ≤ (k + 1)C ∗̄(Ī) ≤ γ(k + 1)C∗(I).

59

Corollary 3.2.10 says we can simulate policies from Πr on both workload augmented and

reduced instances and follow the decisions that simulated policies make. Interestingly we find that

choosing either I or Ī to simulate policies on results in the same competitive ratios. However, the

competitive ratio for this simulation-based policy is larger than κ defined for policies in Πr, since

γ(k + 1)− (k + 1) ≥ 0 and γ(k + 1)− 3
2
γ > 0.

We conclude this section by noting that all of the policies we have discussed are mainly focused

on queue priority, where policies in Πr use cyclic routing discipline, and SLQ are purely queue-

length based. These policies may have constant competitive ratios under the bounded condition

for the workload. In the case when workload variation is unbounded, it is costly to process a large

job and let small jobs wait. In the next section we will introduce some job-priority based policies

under the condition where workload variation is unbounded.

3.3 Polling System with Bounded Setup Times

In this section we mainly discuss policies for the polling system with bounded setup times.

Here we allow the workload variation to be unbounded. This setting in the 3D printing example

corresponds to the scenario when jobs of a different color need to be printed, inks need to be

switched and the switching time is bounded. When the setup times are bounded and workload

variation is unbounded, an online policy may want to favor job priority instead of queue priority.

For convenience of analysis, we assume switching time τ is bounded by a ratio of the minimal

workload, that is τ ≤ θpmin. If τ = pmin = 0, we let θ = 1. Using the standard notation for

scheduling problems from [50], we denote this polling problem as 1|ri, τ ≤ θpmin|
∑
Ci. Notice

that when setup time is small, i.e., θ is small, switching may not be the major contributor to the

completion time delay. We shall show how to define a ‘small’ θ in Section 3.4. In this section, we

mainly show that several policies which are designed for solving the problem without setup times,

also work well in the polling system when setup times are small. Since job processing time is

revealed upon arrival, we may want online policies to use job size information by selecting small

jobs to process first.

60

3.3.1 One Machine Policy and Gittins Index Policy for Polling system

In this subsection we introduce two policies that favor jobs with short processing times. We first

introduce a benchmark for deriving the competitive ratio of those policies. Usually the competitive

ratio ρ is defined by supI
Cπ(I)
C∗(I)

≤ ρ where C∗(I) is the completion time for I in the offline

optimal solution. However the offline problem is strongly NP-hard. To non-rigorously show the

NP-hardness, we know if no preemption is allowed, even the easier problem 1|ri|
∑
Ci (without

switching time) is strongly NP-hard [52, 23, 53]. Instead of using offline optimal solution to

serve as the benchmark for online policies, in this section we mainly use a lower bound of the

optimal solution as the benchmark. To get a lower bound for the optimal solution in the case with

unbounded processing times and bounded setup times, we introduce the idea of setup time reduced

instance. Suppose instance I is an arbitrary instance, the setup time reduced instance of I , say I˜,

is an instance that has the same arrivals and workload as I but has no setup times. The optimal

scheduling policy for I˜ to minimize total completion times is SRPT [54]. This schedule policy is

also online, which is handy for online policies to emulate. The completion time of instance I˜ under

SRPT is denoted as Cp(I˜). Note that setup time does not exist in I˜, thus Cp(I˜) ≤ C∗(I). In our

problem, we only consider policies without preemption, but using SRPT as the benchmark. When

preemption is not allowed, One Machine (OM) policy is proved to be the online scheduling policy

with smallest competitive ratio for I˜ [74]. When setup time is small, we can adopt OM directly

into I , regardless of the setup times. It is important to note that OM is a simulation based policy.

Under OM, SRPT is simulated in parallel and decisions for OM is based on the job sequences

under SRPT. The description of OM is provided in Algorithm 3.3, and the competitive ratio of OM

is provided in Theorem 3.3.1.

Algorithm 3.3 One Machine Scheduling (OM)
1. Simulate SRPT policy on the setup time reduced instance I˜.
2. Schedule the jobs non-preemptively in the order of completion time of jobs by SRPT on I˜.

61

Theorem 3.3.1. OM is a (2 + θ)-competitive online algorithm for the polling system 1|ri, τ ≤

θpmin|
∑
Ci.The competitive ratio is tight when using SRPT on the reduced instance as the bench-

mark.

Proof. Let the completion time of the jth job under OM scheduling beCo
j , and the completion time

of the jth job completed under SRPT as Cp
j . Since job j is also the jth job that completes service

under SRPT, we have
∑j

i=1 pi ≤ Cp
j . Then we have Co

j ≤ Cp
j +

∑
i:Cpi ≤C

p
j
pi + jτ ≤ (1 + θ)Cp

j +∑j
i=1 pi ≤ (2 + θ)Cp

j . Since Cp(I˜) ≤ C∗(I), we get
∑
Co
i ≤ (2 + θ)

∑
Cp
i ≤ (2 + θ)

∑
C∗i . The

competitive ratio is tight when there is only one job in the instance I which is available at time 0.

Suppose this job has processing time 1. Then Cp(I) = 1, and Co(I) = 1 + (1 + θ) = 2 + θ.

OM algorithm is intuitive, easy to apply and polynomial-time solvable. Despite its simplicity,

we may find it inefficient since setup times are ignored. Although each of the unnecessary switch

only brings a small amount of delay, we may still want to avoid switching too often. Thus we

provide another policy which is based on Gittins Index. Gittins Index policy is a well-studied

method for solving problems such as the multi-armed bandit problem [91, 88]. Gittins Index policy

is also the optimal policy for the M/G/1 multi-class queue scheduling problem to minimize the

mean average sojourn times [92]. Here we modify the Gittins Index policy and use it on the

polling system with setup time by assigning indices to jobs and choosing the best index. We call it

the Gittins Index policy for polling system (GIPP), which is shown in Algorithm 3.4. In GIPP, we

first simulate SRPT, and then regard the departure time of each job under SRPT as the new ‘arrival’

time in GIPP. We next assign Gittins index for these newly ‘arrived’ jobs, where the Gittins index

for a job with processing time p is given by 1
p

if this job and the server are at the same queue; if not,

the Gittins index of this job is given by 1
p+τ

. Among all the jobs that are waiting in the queue, we

select the one with the largest Gittins index. By doing this, jobs from the queue which the server is

serving may have larger indices than jobs from other queues. The server will prefer the jobs from

the queue that it is currently serving, thus avoid switching frequently. We denote the completion

time of job i in I by GIPP as Cg
i . The performance of GIPP is provided in Theorem 3.3.2.

62

Algorithm 3.4 Gittins Index Policy for Polling System (GIPP)
Require: Instance I

1: Denote the queue that the server is serving as queueserver
2: while I has not been fully processed do
3: Simulate SRPT. Regard the departure time of the ith job in SRPT as the ith arrival time in

GIPP. Denote the Gittins index of job i as indexi
4: if ith arrival is at queueserver then
5: indexi = 1

pi
6: else
7: indexi = 1

pi+τ

8: end if
9: Schedule the available jobs by the largest index first

10: end while
11: return Total completion time Cg(I)

Theorem 3.3.2. GIPP is a (2 + θ)-competitive online algorithm for 1|ri, τ ≤ θpmin|
∑
Ci.The

competitive ratio is tight when using SRPT on the reduced instance as the benchmark.

Proof. Note both GIPP and OM simulate SRPT on I˜ and schedule job i only after job i has been

processed in SRPT. So we can regard OM as FCFS in a job instance whose arrival times are

{Cp
i ,i = 1, 2, ...}, while GIPP serves the job with the largest Gittins index first in this instance of

arrival times {Cp
i ,i = 1, 2, ...}. We have Cg

j ≤ Cp
j +

∑j
i=1 p̃i, where p̃i is given by inverse of the

Gittins index of job i. Since GIPP schedules the available jobs in the descending order of p̃i, we

have Cg
j ≤ Cp

j +
∑j

i=1 p̃i ≤ Cp
j +

∑
i:Cpi ≤C

p
j
(pi + τ) ≤ (2 + θ)Cp

j . We give the same example as

the one in Theorem 3.3.1 to show the tightness of competitive ratio: Suppose there is only one job

with p = 1 in instance I , available at time 0. Then Cp(I) = 1, and Cg(I) = 1 + (1 + θ) = 2 + θ.

Hence proved.

Intuitively, GIPP might perform better than OM since GIPP always schedules jobs of large

indices and leaves jobs with small indices later. A job from a queue different from the server may

have a small Gittins Index due to the setup time τ , thus GIPP may avoid switching frequently. Sur-

prisingly however, GIPP does not have a competitive ratio smaller than OM. Both OM and GIPP

have the same competitive ratio (see Theorems 3.3.1 and 3.3.2), when using SRPT on reduced

63

instance as the benchmark.

Next we show the lower bound competitive ratio of the problem 1|ri, τ = θpmin|
∑
Ci. Notice

this is a special case for the problem 1|ri, τ ≤ θpmin|
∑
Ci if τ and pmin are both revealed deter-

ministically. There is no online algorithm that has a competitive ratio smaller than the lower bound

for 1|ri, τ = θpmin|
∑
Ci.

Theorem 3.3.3. If τ = θpmin and θ ≥ 0, then there is no online algorithm whose competitive ratio

is smaller than θ + 1, using SRPT on the reduced instance as the benchmark.

Proof. If there is one job of processing time pmin in the system we have Cπ(I)
Cp(I)

≥ (1+θ)pmin
pmin

= 1+θ.

If τ = pmin = 0, then the lower bounded ratio is θ + 1 = 2 as provided in [72] since we assume

θ = 1 in this case.

A natural question is whether this lower bound is the best lower bound that one can have. The

answer remains open. There could be either an online policy whose competitive ratio is exactly

equal to this lower bound, or a larger lower bound which is closer to the ratio (2 + θ).

3.3.2 Simulation-based Policies

In Section 3.2 we introduced the idea of simulation-based policies. A simulation-based policy

usually simulates an online policy in parallel, and schedules jobs based on results of the simulated

policy. In the case when setup times are bounded, we can also construct simulation-based policies,

knowing that SRPT is the optimal policy for the problem without setup times. Given any instance

I for the polling system, there is a reduced instance I˜ in which arrival times are the same as I but

setup time is 0. There is also a setup time augmented instance Ĩ , where setup time is 0 but each

workload is augmented with τ , i.e., pi ∈ I corresponds pi + τ in Ĩ . Any online algorithm can

simulate policies on Ĩ and I˜ in parallel, and make decisions based on the simulation results. We

have the following results via Corollaries 3.3.4 and 3.3.5.

Corollary 3.3.4. By simulating any ρ-competitive online algorithm that we call σ on I˜ and

scheduling jobs by the order of completion times under σ, we obtain an online algorithm on I

that is ρ(2 + θ)-competitive for 1|ri, τ ≤ θpmin|
∑
Ci.

64

Proof. Denote the new online algorithm on I as π. Cπ
j ≤ Cσ

j +
∑j

i=1 pi + jτ ≤ (2 + θ)Cσ
j . Thus∑

Cπ
j ≤

∑
(2 + θ)Cσ

j ≤
∑
ρ(2 + θ)Cp

j .

SRPT is the optimal policy on I˜ and it is online, thus it is 1−competitive for 1 | ri |
∑
Ci. By

following the decision that SRPT makes we have a policy with competitive ratio (2 + θ), which

is the same as the result of Theorem 3.3.1. We can also simulate online policies on augmented

instance Ĩ and follow their decisions, by which we have the following corollary.

Corollary 3.3.5. By simulating a ρ-competitive online algorithm that we call σ on Ĩ and schedul-

ing jobs by the order of their completion times under σ, we obtain an online algorithm on I that is

2ρ(1 + θ)-competitive for 1|ri, τ ≤ θpmin|
∑
Ci.

Proof. Denote the online algorithm on I as π. We first show that Cp(Ĩ) ≤ (1 + θ)Cp(I˜). For an

arbitrary job p̃i ∈ Ĩ , it satisfies p̃i = pi + τ ≤ (1 + θ)pi˜ . Let σ̃ be a policy that works on Ĩ but

schedules jobs in the same order as SRPT on I˜, and serves each job the same portion as SRPT on

I˜. Thus Cp(Ĩ) ≤ C σ̃(Ĩ) ≤ (1 + θ)Cp(I˜). By Cπ
j ≤ C̃σ

j +
∑j

i=1 pi + jτ ≤ 2C̃σ
j we have

Cπ(I) ≤ 2Cσ(Ĩ) ≤ 2ρCp(Ĩ) ≤ 2ρ(1 + θ)Cp(I˜) ≤ 2ρ(1 + θ)Cp(I).

Hence proved.

Since the optimal policy for Ĩ is SRPT, ρ in Corollary 3.3.4 is at least 1. By simulating SRPT

on Ĩ and following its decisions we haveCπ(I) ≤ 2(1+θ)Cp(I), which is greater than ratio (2+θ)

that we get by simulating SRPT on I˜. Furthermore, if we simulate the same online policy based

on either I˜ or Ĩ , we have ρ(2 + θ) ≤ 2ρ(1 + θ) for any ρ ≥ 1, which implies that it is always better

to simulate it on the reduced instance I˜.

3.3.3 Other Results

So far we have discussed the cases of bounded workload variation in Section 3.2 and bounded

setup times in this section. We next discuss the case when both setup time and workload variation

are bounded. Obviously both OM and GIPP work under this scenario and have constant competi-

65

tive ratios. The algorithms in Πr which we provide in Section 3.2 also have a constant competitive

ratio in this case when the number of queues is fixed. However, in this special case we may have

more policies with constant competitive ratios. Next we show that all the work-conserving policies

(in which server never idles when the system is not empty) have a constant competitive ratio when

setup time and workload variation are bounded.

Theorem 3.3.6. Any non-preemptive work-conserving (WC) policy on the polling system with

pmax ≤ γpmin and τ ≤ θpmin is at least (γ + θ)-competitive with respect to the optimal solution

to the offline problem.

Proof. Let Î be the workload and setup time augmented instance that all jobs are of workload

p̂ = pmax + τ ≤ (γ + θ)pmin, setup time is 0 in Î and arrivals are the same as I . Note that any

non-preemptive work-conserving policy on Î is optimal since processing times for jobs in Î are

identical. Let σ be a non-preemptive work-conserving policy on I , and σ̂ is a policy that works

on Î and serves jobs in the same order as σ does in I . Then σ̂ is work-conserving since σ never

idles when there are unfinished jobs in system, and therefore C σ̂(Î) = C∗(Î). Now we show

C∗(Î) ≤ (γ + θ)C∗(I). Let Ŝ∗i be the starting time of job i in Î under the optimal solution and S∗i

be the starting time of job i in I under the optimal solution. Let δ be a policy that works on Î and

finishes each job i at (γ + θ)C∗i . Notice that (γ + θ)C∗i = (γ + θ)(S∗i + pi) ≥ (γ + θ)S∗i + p̂. Let

W ∗
i be the non-service times of the optimal policy on I from time 0 to S∗i , i.e., sum of setup times

and idling times till S∗i . Then (γ+ θ)S∗i = (γ+ θ)(W ∗
i +

∑i−1
j=1 pj) ≥ (γ+ θ)W ∗

i + (i− 1)p̂ ≥ Ŝ∗i .

The last inequality holds because Ŝ∗i − (i − 1)p̂ is the non-service time of the optimal policy on

Î . Since the the optimal policy on Î is work-conserving, its non-service time is shorter than the

non-service time of policy δ which is (γ+ θ)W ∗
i . Thus we have shown that δ is a feasible schedule

on Î . In summary, we have

Cσ(I) ≤ C σ̂(Î) = C∗(Î) ≤ Cδ(Î) = (γ + θ)C∗(I).

66

Assumption pmax τ Competitive Ratio
Bounded Workload and

Setup Time
pmax ≤ γpmin τ ≤ θpmin min{2 + θ, γ + θ,max{3

2
γ, k + 1)}}

Bounded Setup Time N/A τ ≤ θpmin 2 + θ
Bounded Workload pmax ≤ γpmin N/A max{3

2
γ, k + 1}

Unbounded Workload
and Setup Time

N/A N/A ≥ 2

Table 3.3: Competitive Ratios for Different Cases

Hence proved.

So far we have shown the existence of constant competitive ratios under different assumptions

for polling systems. Table 3.3 summarizes the competitive ratios that we prove in this paper. We

find from Table 3.3 that when either pmax ≤ γpmin or τ ≤ θpmin holds we can have constant

competitive ratio for polling systems. In fact in many practical scenarios either the workload

(processing time) is bounded or the setup time is bounded or both, where constant competitive

ratio algorithms exist. In the following theorem we show that certain type of policies cannot

achieve competitive ratios smaller than k.

Theorem 3.3.7. There is no online policy with competitive ratio smaller than k for 1 | ri, τ |
∑
Ci

if its routing discipline is static or random, or is purely queue-length based, or purely job-priority

based.

Proof. Theorem 3.2.5 shows that no policy with static or random routing discipline has competitive

ratio smaller than k. To show that it holds for any queue-length based routing policy π1, we give an

instance I where there is one job at each queue at time 0, with the job in queue 1 having workload

p and jobs in other queues having workload 0. Since π1 is purely queue-length based, it treats all

queues equally since the queue lengths are equal. Suppose the server serves from queue 1 to queue

k, we then have

67

Cπ1(I) ≥ p+ (k − 1)p+ τ
k(k + 1)

2
,

and

C∗(I) = p+ τ
k(k + 1)

2
.

Letting p→∞, we have Cπ1 (I)
C∗(I)

≥ k.

To show that the result holds for any purely job-priority based policy π2, we give an instance I ′

where there are n jobs at queue 1 and one job at queue i = 2, ..., k at time 0, with all jobs having

workload 0. Since π2 is purely job priority based, it does not consider any queue information.

Notice both OM and GIPP are purely job priority based. Suppose π2 serves I ′ from queue k to

queue 1, thus

Cπ2(I
′
) ≥ τ ((n+ k − 1) + (n+ k − 2) + ...+ n) ,

and

C∗(I
′
) = τ ((n+ k − 1) + (k − 1) + ...+ 1) .

Letting n→∞, we have Cπ2 (I
′
)

C∗(I′)
≥ k. Hence proved.

Theorem 3.2.5 says that the lower bound competitive ratio is given by 2, however Theorem

3.3.7 says that if an online policy has purely static or random routing policy, or purely queue-length

based routing policy or purely job-priority based routing policy, the best achievable competitive

ratio is k ≥ 2. This implies that if an online policy wants to achieve a competitive ratio smaller

68

than k, a novel routing discipline which combines queue priority and job priority is needed. So far

we have introduced policies that are either static (such as Πr) or job priority based (such as OM

and GIPP) in terms of routing discipline, and they all have competitive ratios greater than k when

θ ≥ k− 2. To achieve a smaller competitive ratio, we may need a strategy that balance both queue

and job priorities. We use this idea and introduce a mixed strategy in Section 3.4 to show that a

better performance can be achieved when we balance queue and job priorities.

3.3.4 Clearing Problem

In Subsection 3.3.1 we show both OM and GIPP are (2 + θ) competitive, however the lower

bound competitive ratio is (1 + θ) as shown in Theorem 3.3.3. This means either there exists a

better algorithm with competitive ratio smaller than (2 + θ) or the actual lower bound is greater

than (1 + θ). However, in this subsection we show the lower bound (1 + θ) is not trivial for

the clearing problem. Note that the clearing problem is a special case of the online problem,

with all arrivals happen at time 0. We show in this subsection that for the clearing problem,

both of OM and GIPP have a tight competitive ratio (1 + θ). We denote the clearing problem as

1|ri = 0, τ ≤ θpmin|
∑
Ci. Moreover, since there is no arrival in the future, both OM and GIPP do

not need to simulate SRPT in parallel. We thus modify OM and GIPP, by truncating the simulation

part, then OM schedules jobs by smallest workload first and GIPP schedules jobs by the largest

Gittins index first.

Theorem 3.3.8. OM and GIPP both have competitive ratio θ + 1 for 1|ri = 0, τ ≤ θpmin|
∑
Ci.

Proof. There is no idling time in schedule Co. Suppose jobs are indexed in ascending workload

order so that pp1 ≤ pp2 ≤ ... ≤ ppn, then Co
j ≤

∑j
i=1 p

p
i + τj. Since Cp

j =
∑j

i=1 p
p
i and τ ≤ θpmin,

we have Co
j ≤ (1 + θ)Cp

j , thus Co(I) ≤ (1 + θ)Cp(I).

We now follow jobs scheduled by GIPP. Let pgi be the inverse of Gittins index for ith job

scheduled by GIPP. If ppi is available for GIPP to schedule, then we have pgi ≤ ppi + τ . Now we

consider the case in which ppi is not available to GIPP as GIPP serves ppi before pgi . Let S˜(i) be the

set of jobs served by SRPT but not by GIPP after the ith schedule. At time Cg
i−1, if S˜(i− 1) = ∅,

69

then ppi is available for GIPP to schedule. Thus we assume S˜(i − 1) is non-empty. Choose an

arbitrary job p∗ from S˜(i − 1) we have pgi ≤ p∗ + τ ≤ ppi + τ , so that pgi ≤ ppi + τ . Therefore

Cg
j =

∑j
i=1 p

g
i ≤

∑j
i=1 p

p
i + jτ and Cg(I) ≤ (1 + θ)Cp(I).

We know the clearing problem with fixed number of queues is polynomial time solvable [93,

94]. The problem with dynamic number of queues is solvable using a 2-approximating algorithm

provided in [95]. However here we say that if pmin > 0 and τ is bounded, simple algorithms exist

for the clearing problem and their competitive ratios are proved to be tight and optimal. The results

look worse than competitive ratio 2, however here we use SRPT as the benchmark, which means

the actual competitive ratio could be smaller than θ+1. The work [95] does not show the tightness

of algorithms. Before presents a mixed strategy in Section 3.4, we next present algorithms for the

offline algorithm.

3.3.5 On Approximating Algorithms for the Generalized Offline Problem

In this subsection we discuss the case in which job information is available to the server at time

0 but arrival times in the future are known, unlike the clearing problem where all jobs are available

at time 0. Because the focus of this paper is mainly on solving the online scheduling problem,

we do not wish to discuss the offline problem in detail. The main purpose of this subsection is to

model the offline problem and provide an approximation method as well. To make the formulation

more comprehensive and general, we add another constraint known as precedence, through the use

of priorities. If job j has higher priority than job i, we note j � i and job i cannot be served before

j. We suppose each job i has a weight wi, and we want to minimize the total weighted completion

times. This problem is NP-hard [23]. For the convenience of notation, we denote this problem as

1|ri, τ, prec|
∑
wiCi and formulate it in the following manner, where ξi is the queue where job i

arrives:

70

min
∑n

i=1wiCi

s.t. Ci ≥ ri + pi for i = 1, ..., n, (3.1)

Cj ≥ Ci + pi for all j � i and i = 1, ..., n (3.2)

Ci ≥ Cj + pj + τ1ξi 6=ξj or Cj ≥ Ci + pi + τ1ξi 6=ξj for each pair (i, j). (3.3)

Notice the constraint (3.3) is non-linear, we relax it by using the method provided in [23]. We

thus have

n∑
i=1

piCi ≥
n∑
j=1

pj(

j∑
i=1

pi) =
1

2

(
p(I)2 + p2(I)

)
, (3.4)

where p(I) =
∑n

i=1 pi and p2(I) =
∑n

i=1 p
2
i .

We extend Inequality (3.4) to every subset of instance I , so that for arbitrary S ⊆ I we have

∑
i∈S

piCi ≥
1

2

(
p(S)2 + p2(S)

)
. (3.5)

Notice the linear problem which minimizes
∑
wiCi with only constraints (3.1), (3.2) and (3.5)

is solvable in polynomial time via the ellipsoid algorithm [96, 23], we obtain the optimal solution

to this linear problem as C̄1, ..., C̄n, and then schedule the jobs in order of non-decreasing C̄i. We

note this schedule as Schedule by C̄i.

Theorem 3.3.9. The Schedule by C̄i is a (3 + 2θ)−competitive algorithm for 1|ri, τ ≤

θpmin, prec|
∑
wiCi.

Proof. We let C̃i be the actual completion time for job i by following schedule by C̄i. We assume

C̄1 ≤ ... ≤ C̄n are completion times on solving min
∑
wiCi under constraints (3.1), (3.2) and

71

(3.5), then for any S = {1, 2, ..., j} we have

C̄j

j∑
i=1

pi ≥
j∑
i=1

C̄ipi ≥
1

2

(
p(S)2 + p2(S)

)
.

Since C̃j ≤ maxji=1 ri+
∑j

i=1 pi+jτ and maxji=1 ri ≤ C̄j , therefore C̃j ≤ (3+2θ)C̄j. Suppose

C∗i is the optimal completion time for job i in the original problem with constraints (3.1) and

(3.3), because constraint (3.5) is a relaxation of (3.3), then
∑
wiC̄i ≤

∑
wiC

∗
i . Thus

∑
wiC̃i ≤

(3 + 2θ)
∑
wiC

∗
i .

This competitive ratio looks worse than the ratio 2 + θ achieved by online policies, however

we should notice in this offline problem we have precedence constraints. This also points to the

problem with precedence is harder than the one without. The discussion for the offline precedence

and release time constrained scheduling problem can be found in [97, 74, 23], but none of them

consider a setup time constraint.

3.4 A Mixed Strategy

In Section 3.2 we provided a policy set Πr. Policies in Πr are based on cyclic routing discipline,

and they have competitive ratio κ when workload variation is bounded. When workload variation

is unbounded, we may want to use GIPP, with competitive ratio θ+2. In reality, it is common to see

cases where workload variation is unbounded, and setup times are large but bounded. For example

in the reconfigurable manufacturing, robust components are used to process customized jobs and

also designed to reduce setup times to make the manufacturing system more efficient. It is very rare

to see unbounded setup times [98]. In the 3D printing example, jobs are usually highly customized

and heterogeneous, and the workload variation could be large in this case. Besides, when jobs

from a very different prototype is received, many setup steps need to be performed so that setting

up the 3D printer would take a large amount of time (usually bounded). Thus in this section we

discuss the problem where setup time is large but bounded, and workload variation is unbounded.

From Section 3.3 we know that this online problem can be solved by OM or GIPP, however, if a

72

large workload is rare, we may want to adopt a policy πe from Πr most of time when it gives a

competitive ratio smaller than θ + 2. This motivates us to construct a mixed strategy such that if

there is no workload greater than a threshold, say ηpmin, then a policy from Πr is applied, resulting

in a competitive ratio max{3
2
η, k + 1}; if there is a new arrival with workload greater than ηpmin,

then GIPP is applied so competitive ratio is θ + 2. If κ(η) = max{3
2
η, k + 1} ≤ θ + 2, this mixed

strategy has a better expected performance than simply using GIPP for a finite job instance, as we

will see later. Specifically, we assume that the exhaustive policy πe serves continuously without

waiting and skips empty queues when switching. Within a queue we let πe serve following Shortest

Processing Time First (SPT). It helps reduce the queue length within each queue, though this does

not reflect on the competitive ratio. A formal statement of this mixed strategy πm is provided in

Algorithm 3.5.

Algorithm 3.5 Deterministic Mixed Strategy πm

1: while The system is not empty do
2: Use πe: When a service is done, serve the next job in the queue with shortest processing

time first; switch to the next non-empty queue when the current queue has been exhausted
3: if There is an arrival whose workload is greater than ηpmin then
4: if The server is serving then
5: Finish the current job
6: else if The server is setting up then
7: Halt setting up and the server stays in the current queue
8: end if
9: Use GIPP

10: end if
11: end while
12: return Total completion time Cπm(I)

Theorem 3.4.1. If pmin > 0, η ≤ θ, κ(η) ≤ θ+2 and workload is drawn from a known distribution,

then

E[
Cπm(I)

C∗(I)
] ≤ ν(η),

73

where ν(η) = κ(η)µ(η)n(I) + (θ+ 2)(1−µ(η)n(I)) and µ(η) = P(pi ≤ ηpmin), prior to revealing.

Proof. Let pmin = 1. If all the jobs are of workload smaller than η, then throughout the busy

period, πm = πe and Cπ
m

(I)
C∗(I)

≤ κ(η). Now we show that if there is a workload in the busy period

with workload greater than η, then Cπ
m

(I)
C∗(I)

≤ θ+2. Suppose I = I1∪I2, where I1 is the job instance

that is served by πe in I , and I2 is the rest of I which is served by GIPP. Let S2 be the time when

GIPP is triggered. Then Cπm(I) = Cπe(I1) + S2n(I2) + Cg(I2) where Cg(I2) is the completion

time for GIPP triggered at time S2. For the optimal solution, we have C∗(I) = C∗(I1 ∪ I2) ≥

C∗(I1) +R2n(I2) +Cp(I2), where R2 is the time when a job with workload greater than η arrives

and Cp(I2) is the completion time for I2 under SRPT. Since R2 ≤ S2 ≤ R2 +max{θ, η} = R2 +θ

by η ≤ θ, we have,

Cπm(I)

C∗(I)
≤ Cπe(I1) + S2n(I2) + Cg(I2)

C∗(I1) +R2n(I2) + Cp(I2)
≤ Cπe(I1) + (R2 + θ)n(I2) + Cg(I2)

C∗(I1) +R2n(I2) + Cp(I2)
.

If R2 ≥ θ, then we have Cπ
m

(I)
C∗(I)

≤ max{κ(η), 2, θ + 2} = θ + 2. If R2 < θ, then the server

is setting up when the new arrival occurs. Setup is aborted immediately and GIPP is started, thus

S2 = R2 and

Cπm(I)

C∗(I)
≤ Cg(I2)

Cp(I2)
≤ θ + 2.

Therefore

E[
Cπm(I)

C∗(I)
] = E[

Cπm(I)

C∗(I)
|I2 = ∅]P(I2 = ∅) + E[

Cπm(I)

C∗(I)
|I2 6= ∅]P(I2 6= ∅)

≤ κ(η)µ(η)n(I) + (θ + 2)(1− µ(η)n(I)).

Hence proved.

If only a policy from Πr is used when I2 6= ∅, then the expected performance is smaller than

74

κ = max{3
2
γ, k + 1}, which may be greater than θ+ 2 when γ is large. Also we know that if only

GIPP is applied, the expected performance is bounded by θ+ 2. Since ν(η) = κ(η)µ(η)n(I) + (θ+

2)(1 − µ(η)n(I)), the Deterministic Mixed Strategy has an expected performance bound smaller

than κ(η) or (θ + 2). Note that κ(η) = max{3
2
η, k + 1}. If 3

2
η ≤ k + 1, then κ(η) = k + 1.

The optimal η∗ for minimizing ν(η) in this case is given by 2
3
(k + 1) since µ(η) is an increasing

function of η. If 3
2
η ≥ k + 1, then ν(η) = (θ+ 2) + µ(η)n(I)(3

2
η − (θ+ 2)), and the optimal value

η∗ can be obtained by solving

min (θ + 2) + µ(η)n(I)(3
2
η − (θ + 2)) (3.6)

s.t. 2
3
(k + 1) ≤ η ≤ min{2

3
(θ + 2), θ}.

Notice η = 2
3
(k+ 1) is a feasible solution to System (3.6), thus by solving System (3.6) we can

obtain the optimal solution to ν(η), which is η∗. Note that ν(η∗) is smaller than κ(η∗) and θ + 2.

In the online problem where the information of future jobs is unknown to the server, the server

cannot actually optimize the System (3.6). A practical way is letting η = 2
3
(k + 1) for the De-

terministic Mixed Strategy, which eventually results in an expected performance bound smaller

than θ + 2 for a finite n(I). It is important to note that Deterministic Mix Strategy has expected

performance bound smaller than max{κ, θ + 2}, however this only happens when pi values are

drawn from a single distribution and the number of jobs n(I) is finite. It is also important to point

out that ν(η) is an expected value. The real competitive ratio of this strategy is θ + 2. However,

this strategy shows that by balancing queue and job priorities, one could design policies with better

performance. This strategy also gives us insights of revealing future information, and shows that if

one can reveal or estimate the number of jobs in a busy period as well as the workload distribution,

then the System (3.6) is solvable and a smaller expected competitive ratio may be obtained. In

a future research study we will discuss how to estimate future information and use it for better

system performance.

75

3.5 Concluding Remarks and Future Works

In this paper we consider scheduling policies in the polling system without stochastic assump-

tions. Our analysis provides a novel way to classify scheduling policies for polling systems by

considering their worst case performance, i.e., competitive ratio. It allows one to describe the

performance of some policies even when their average performance is intractable. Conditions

for the existence of constant competitive ratio are discussed and the worst case performance

for several well-studied polling system scheduling policies are provided. We show that both

cyclic exhaustive policy and cyclic gated policy have a constant competitive ratio κ for problem

1 | ri, τ, pmax ≤ γpmin |
∑
Ci, but they do not have a constant competitive ratio for the problem

1 | ri, τ |
∑
Ci. Interestingly, we find cyclic is the optimal static routing discipline, and when

cyclic routing discipline is adopted, revealing the processing times for jobs is not helpful in re-

ducing the competitive ratio if 3
2
γ ≤ k + 1. We also find some policies with provable average

performance do not have constant competitive ratios for 1 | ri, τ, pmax ≤ γpmin |
∑
Ci such as l-

limited policy and SLQ policy. We provide online policies that balance well the future uncertainty

and current information availability, such as GIPP. Besides, we show that if the routing discipline

for an online policy relies only on a routing table (static or random), queue-length, or job process-

ing times, then the competitive ratio of this policy cannot be smaller than k. We then provide a

mixed strategy which performs better that Πr and GIPP when number of jobs in finite. Our analysis

suggests a policy with competitive ratio smaller than k may need to incorporate more information

besides job processing times or number of jobs in queue. However, the question that whether there

exists an online policy with constant competitive ratio for the problem 1 | ri, τ |
∑
Ci without any

bound conditions for workload and setup times remains open. Also, it is unclear if there exists a

better lower bound competitive ratio for all the online policies. A future problem to consider will

be searching for online policies with smaller competitive ratios and deriving a better competitive

ratio lower bound for all the online policies.

76

4. PEAK AGE OF INFORMATION IN PRIORITY QUEUEING SYSTEMS

4.1 Introduction

In the recent years the notion of Age of Information (AoI) has garnered attention from several

researchers. The main applications that have been cited include sensor networks, wireless networks

and autonomous vehicle systems [99], as in all those cases it is important to know the freshness of

information. Our research has been motivated by an application in smart manufacturing of the fu-

ture where edge devices, sensors in particular, with limited processing capabilities, would monitor

the health of various tools, condition of components and quality of work pieces in machines. This

sensed information would be used to make real-time decisions such as tool changes, re-calibration

and rework, thereby improving overall cost and quality of the manufactured products. Hence it is

crucial to consider the freshness of information to make these decisions, for some type of which

AoI is an ideal choice.

AoI is a metric defined and used by researchers such as Kaul et al [99] to describe the freshness

of data. We consider a system where a data source (sensor or resource) from time to time sends

updates or files (in this paper we call each update or file a “packet”) to the processor (also called

server). The time when the data source generates a packet can also be regarded as the arrival

time (also called release time) of the packet into the system. The server processes packets in a

non-preemptive way. Unprocessed packets are queued due to the limited processing capacity of

the server. AoI at an arbitrary time point t is defined as the length of period between time t and

the most recent release time among all the packets that have been processed. Mathematically,

we define the AoI at time t as 4(t) = t − max{rl : Cl ≤ t}, where rl is the release time of

the lth packet that is generated and Cl is the time when it is processed by the server (also called

completion time). While the time-average AoI could be a metric to measure data freshness, many

researchers consider Peak Age of Information (PAoI) as a more tractable metric [100, 101]. We let

the nth peak value of 4(t) be An, which is a random variable and it is shown in Figure 4.1. The

77

Figure 4.1: Age of Information for a Single Queue

expectation of this peak value, i.e., E[An], is then defined as PAoI for this data source. Next we

extend this notion to multiple sources and formulate our model.

It has been well documented and accepted that monitoring and sensing according to a Poisson

process is effective [102]. In that light we consider multiple data sources (sensors) that monitor

according to a Poisson process with potentially different rates due to the difficulty in sensing (recall

our motivation example of a manufacturing setting). Also, not all streams of packets have the same

priorities, and we consider a setting where there are k data sources prioritized from 1 (highest) to

k (lowest). There is a single processor (server) that “serves” the k packet streams based on a static

priority mechanism. We study the static queue priorities mainly because in many cases, there

are some data sources whose packets contain age sensitive information or emergency information

such as high temperature, high pressure (see [103]). These data packets need to be transmitted as

soon as possible, thus high static priorities for these data sources are needed. Another example

is given by Maatouk et al [104], which says that in the vehicle network, the safety related data

should be allocated higher priorities over the other non-safety related data to improve the traveling

experience. All these real applications motivate us to consider a multi-queue system with static

78

priorities.

The system model is provided in Figure 4.2. We consider two settings in this paper: one in

which there is a buffer for each data source that can hold only one packet at a time; another where

each buffer can hold infinitely many packets. It is still unknown which setting has a smaller PAoI

for each queue. For the first setting we discuss the system M/G/1/1+
∑

1∗ and M/G/1/1+
∑

1

for general service times. The notation 1 +
∑

1∗ means besides the processing area at the server,

each data source has a buffer with size one. The asterisk means that the packet waiting in the

buffer is replaced by the newest arrival, the same as the notation used in [105]. If there is no

asterisk, i.e., M/G/1/1+
∑

1, then it means that packet that enters the buffer will not be replaced

by new arrivals. For the setting of infinite buffer size, we discuss the M/G/1 type queues with First

Come First Serve (FCFS) and Last Come First Serve (LCFS) service disciplines respectively. Our

objective is to obtain the PAoI for each class of sensed information under each setting assuming a

general distribution of service time for packets, and then discuss the advantage of each setting.

Figure 4.2: System Model

This system is modeled as a multi-class multiple parallel queueing system with static priorities.

The performance of PAoI in this system has not been studied before. The main contributions of

our paper are listed as follows:

1. We first provide a novel modeling method to evaluate the PAoI of multi-queue systems by

79

focusing on the busy period of server and buffer status. Using this method we provide the

exact PAoI for single buffer prioritized system M/M/1/1 +
∑

1∗ and system M/G/1/1 +
∑

1

with small number of queues k. And we further provide the bounds (which are also excellent

approximations) for PAoI of the system M/G/1/1 +
∑

1∗.

2. We provide the exact PAoI for the infinite buffer prioritized system M/G/1 with FCFS and

LCFS for general number of queues k. We also provide a mixed strategy which allows some

queues to apply FCFS and the others to apply LCFS, and the PAoI of each queue under this

mixed strategy can be obtained by our exact analysis.

3. By providing the exact PAoI of systems above, we show a surprising result that LCFS is

not the optimal service discipline for minimizing PAoI among all the non-preemptive work-

conserving disciplines in the system where buffer size of each queue is infinite. We also

show a counter-intuitive finding that having a buffer with size one at each queue does not

always provide lower PAoI than the having a buffer with infinite size.

4. We reveal the fact that PAoI of queues with low priorities are sensitive to the traffic intensity

of queues with high priorities, so queues that contain important or time-sensitive information

should be given high priorities. Also, if the PAoI averaged across queues is to be minimized,

we show that it is beneficial to assign low priorities to high traffic queues.

The rest of this paper is organized as follows. A summary of the literature is provided in Section

4.2. Then, in Section 4.3 we provide the PAoI analysis for M/G/1/1+
∑

1∗ and M/G/1/1+
∑

1 type

queues, where arrivals are Poisson and service times for packets are iid and generally distributed.

In Section 4.4 we provide the PAoI analysis for queues with infinite buffer size, under both FCFS

and LCFS disciplines within each queue. We perform numerical studies in Section 4.5, and make

concluding remarks as well as discuss the future work in Section 4.6.

4.2 Related Work

The idea of data age, freshness and timeliness for data warehouses are introduced and discussed

in [106, 107]. In recent years, data freshness has drawn much more attention because of the

80

development of Internet of Things, fog computing and edge data storage [108, 109]. Kaul et al

[99] firstly provided average AoI for M/M/1, M/D/1 and D/M/1 type queues. Costa et al [105] then

obtained analytical results of average AoI and PAoI under FCFS for M/M/1/1, M/M/1/2 (which

allows drop of new arrivals) as well as M/M/1/2* (which allows update for the waiting packet)

queues. The performance of LCFS policy for the single queue case where service times are gamma

distributed was provided by Najm and Nasser [110]. Soysal and Ulukus [111] considered G/G/1/1

type queues and provided bounds of AoI for different arrival and service processes. Zou et al [112]

discussed PAoI and AoI under the waiting procedure in M/G/1/1 and M/G/1/2* cases. Kosta et al

[113] discussed the performance of AoI and PAoI for the single-queue slotted-time system with

and without packets management. Inoue et al [101] discussed the relationship between PAoI and

AoI for the single queue case, and they provided the AoI/PAoI analysis for different single queue

models including M/G/1 and G/M/1 systems with FCFS, preemptive LCFS, and non-preemptive

LCFS. Some recent works have considered AoI for single server with multiple queues. Huang and

Modiano [100] provided the PAoI for multi-class M/G/1 and M/G/1/1 queues where all packets

flow into a combined queue. Najm and Telatar [114] considered the M/G/1/1 system with multiple

sources updating while allowing preemption. Kosta et al [115] considered a slotted time system

and discussed the performance of round-robin, working-conserving and random policy. Jiang et al

[116] considered an AoI minimization problem with Bernoulli arrivals in slotted time system and

modeled it as a MDP problem to determine which data source to serve next. They showed that

Whittle’s index policy is a near optimal policy and they also provided a decentralized policy which

achieves nearly identical performance as the Whittle’s index policy. The optimality of Whittle’s

index policy was further discussed by Maatouk et al in [117]. Kadota et al [118] considered an AoI

minimization problem in a slotted time system with throughput constraint considerations. Talak et

al [119] considered weighted AoI and PAoI minimization problem in a discrete timed system with

channel errors. It is also pointed out by [119] that the PAoI/AoI for the discrete time queues may

differ significantly from their continuous time counterpart. Other AoI/PAoI minimization problems

for discrete time systems can be found in [120, 121, 116, 122, 123, 124]. The multi-class queues

81

with FCFS and LCFS across queues are discussed in Yates and Kaul [125]. A detailed review for

the current literature for AoI is also provided in [125].

However, we notice that if FCFS or LCFS across queues is adopted in the multi-queue system,

queues with high arrival rates will be served more frequently. It is not always the case that the

queues with higher arrival rates are more important. Queues with low traffic intensities may also

be important, and their packets may need to be processed as soon as they enter the queues. Besides,

spending too much time processing a certain data source is a waste of service resource. We thus

want to consider a service policy which gives certain queues higher priorities. Such a multiple-

queue system with queue priorities has been studied for a long time, however most of previous

works focused on different metrics such as queue lengths and waiting time distributions [126, 127].

AoI and PAoI are metrics introduced in recent years, and their performance under queue priorities

are not well understood. Najm et al [103] considered a system with two streams of different

priorities and discussed different service disciplines for the low priority stream. Recently, Kaul and

Yates [128] modeled the AoI of M/M/1 priority queues as a hybrid system by assuming the waiting

room (buffer size) for the system is either null or one. However, their model is restrictive since there

is at most one buffer for all queues. Maatouk et al [104] discussed the model where each queue has

an individual buffer, and provided a closed-form expression for AoI using a hybrid system analysis.

However, it is assumed in [104] that arrival and service rates for all queues are exponential and

identical. It is still unknown if having finite buffer can help reduce the PAoI for each queue in the

multi-queue scenario, especially when arrival and service rates differ from one queue to another. In

our work, we for the first time provide the exact PAoI for the system where queues are prioritized

and each queue has its independent waiting room (buffer), arrival rate and service rate. In this

paper we only consider static queue priorities because in many applications, some data streams

have more important information which need to be transmitted as soon as possible. Moreover,

the queue performance is more tractable when queue priorities are fixed, however the behavior

of PAoI in this case has not been fully understood. In this paper, we provide a new modeling

approach of calculating age-related metrics by focusing on the buffer state. We derive the exact

82

PAoI for M/M/1 +
∑

1∗ system and M/G/1 +
∑

1 system, as well as bounds for M/G/1 +
∑

1∗

queues with priorities. Also, for the infinite buffer size case, we derive the exact PAoI for M/G/1

system with FCFS and LCFS service disciplines within each queue. We seek to find a priority

order and service discipline that would result in low average PAoI across queues. We also seek

to understand the effect of arrival rates and service times on the PAoI for systems under different

settings for buffer size and service disciplines.

4.3 Queues with Buffer Size One

In this section we first discuss the system M/G/1/1+
∑

1∗ in which the buffer size for each

queue is one, and the arrival process for each queue i is a Poisson process with rate λi. The service

time (processing time) Pi for packets from queue i is iid with cdf Fi(x) and mean 1
µi
. A new arrival

will replace the packet waiting in the queue (if there is one) since the newest packet contains

the most recent information of the source. Note that this model is different from the M/G/1/1

model introduced in [100, 114]. In their model, there is no buffer for each queue, so whenever a

packet arrives and sees the server being busy, the packet is either rejected or preempts the packet

in service. Further, when the server becomes available, it has to wait until the next packet arrives.

In our model, the buffer allows the server to serve packets whenever the server becomes available,

which is potentially more efficient by not waiting for the next packet. Moreover, only keeping the

most recent packet in the buffer can possibly reduce the server’s load, and also guarantee that the

most recent packet can be processed once the server becomes available.

The difficulty in analyzing such a system with waiting room for one packet in each queue is that

packets entering the system are only a subset of packets generated by the data source, due to some

getting rejected. Focusing on how each packet goes through the system often makes modeling

more complicated [128]. Instead, in our model we introduce a new way of modeling such systems,

which is to incorporate the buffer state. Note that we can also use this idea to derive PAoI for

other systems with buffer size more than one, as we will see in Section 4.4. In this section we only

consider the model with buffer size of one for each queue, we now show how this buffer size of one

helps us characterize PAoI. We depict a sample path of the buffer state for queue i in Figure 4.3

83

with notations described subsequently. From Figure 4.3 we can see that buffer state of queue i is

either 0 or 1. When the buffer state is 1 (the buffer is full), we say the buffer is busy. We use rij , Sij

and Cij to denote the release time, starting time of processing and completion time of jth packet

that arrives at queue i (note that Sij and Cij only exist if the packet is processed by the server).

Suppose at time ri1 packet 1 arrives at queue i. It waits until time Si1 when the server becomes

available to serve it by removing the packet from the buffer and placing it in the processing area.

Right after time Si1 buffer i becomes empty until packet 2 arrives at time ri2. Packet 2 stays in

the buffer for a while, then gets replaced by packet 3 at time ri3. Packet 3 is then replaced by

packet 4 at time ri4. At time Si4 the server becomes available and starts serving packet 4, and the

buffer becomes empty again. The service of packet 4 is completed at time Ci4, and the peak age of

information upon the completion of packet 4 is given as Ci4 − ri1, which is equal to

Ci4 − ri1 = (Ci4 − Si4) + (Si4 − ri2) + (ri2 − Si1) + (Si1 − ri1). (4.1)

The term (Ci4 − Si4) of Equation (4.1) is the processing time of packet 4, and (Si4 − ri2) is the

time period during which the buffer has one packet. The third term (ri2 − Si1) is the time period

during which the buffer stays empty, and the last term (Si1 − ri1) is the waiting time of packet 1.

Recall that the processing times of packets from the same source are iid, so the expected value of

(Ci4−Si4) isE[Pi] = 1
µi
. The buffer is empty during time (ri2−Si1), and we know that there is no

arrival in (ri1, Si1]. Using the memoryless property of exponential inter-arrival times, the expected

time of buffer staying empty is the expected inter-arrival time, E[Ii] = 1
λi

. Therefore we can write

the PAoI for source i as

E[Ai] = E[Pi] +E[Wi] +E[Ii] +E[Gi], (4.2)

where E[Gi] is the expected waiting time (in buffer) of the packet that is eventually processed

by the server, and E[Wi] is the expected length of time period when the buffer is continuously

occupied (busy). Note that Equation (4.2) holds true for every queue i. For M/G/1 type queues,

84

Figure 4.3: Buffer State for Queue i

we have already stated that E[Pi] = 1
µi

and E[Ii] = 1
λi

. The difficult part remains in calculating

E[Wi] and E[Gi]. From Figure 4.3 we observe that if we reject new arrivals (instead of new

arrivals replacing ones in the buffer) when the buffer is full, Wi is not changed. If we reject the

most recent arrival (instead of the system that we are analyzing) when the buffer is full, then Wi is

the waiting time for the packet that enters the buffer, which equals toWi if we keep the most recent

arrival. Using this property, if we let pi be the probability that buffer i is full, then from Little’s

Law we know the average queue length is pi = λi(1− pi)E[Wi]. So we have

E[Wi] =
pi

λi(1− pi)
. (4.3)

From Equation (4.3), E[Wi] can be obtained once we know pi. We shall discuss how to find

pi later in this section. Now we continue with the system where new arrivals replace the existing

ones in queue. We first characterize Gi, which depends on Wi, as we will see in Lemma 4.3.1.

Lemma 4.3.1. E[Gi|Wi = t] = 1
λi

(1− e−λit).

Proof. Suppose there are N(t) = m packets arriving during Wi, then Gi is the time gap from the

release time of the mth packet Rm to time t. From Campbell’s Theorem (P173, Theorem 5.14 in

[129]) we have

85

P (Gi < x|N(t) = m,Wi = t)

= P (Rm > t− x|N(t) = m,Wi = t)

=

∫ t

t−x

m

t
(
u

t
)m−1du

= 1− (
t− x
t

)m.

Thus by integrating P (Gi > x|N(t) = m,Wi = t) for x from 0 to t, we have

E[Gi|N(t) = m,Wi = t] =
t

m+ 1
.

Then, unconditioning using P (N(t) = m) = e−λit (λit)
m

m!
, we get

E[Gi|Wi = t] =
∞∑
m=0

t

m+ 1
e−λit

(λit)
m

m!

=
∞∑
m=0

e−λit
(λit)

m+1

(m+ 1)!

1

λi

=
e−λit

λi
(eλit − 1).

Lemma 4.3.1 shows that one needs to know the distribution of Wi or its Laplace–Stieltjes

transform (LST) to get E[Gi]. The exact LST of Wi can be obtained when service times are

exponentially distributed, as we will see in Section 4.3.1. If service times are generally distributed,

we provide the bounds for PAoI based on result of Lemma 4.3.1, which we will see in Section

4.3.2.

4.3.1 Exact Analysis for M/M/1/1+
∑

1∗ Type Queues

In this subsection we consider a special case where the processing time Pi is exp(µi) for all i

and discuss how to calculate E[Wi] and E[Gi]. Knowing the LST of Wi can help us obtain both

86

E[Wi] andE[Gi], so in this subsection we focus on calculating LST ofWi. SinceWi is not affected

by which packet we reject when the buffer is full, in this subsection, we assume that we reject the

most recent arrivals. We adopt the method used to characterize the busy period in [130] to derive

the LST of Wi, i.e., E[e−sWi]. Let Bi(t) be the number of priority i packets in buffer i at time t,

Bi(t) ∈ {0, 1}. Let J(t) ∈ {0, 1, ..., k} be the packet that is in service at time t, where J(t) = 0

means the server is idling. The vector S(t) = (J(t), B1(t), ..., Bk(t)) thus indicates the state of the

system at time t. Obtaining the stationary state seen by packets that enter the system (which are

not all the arrivals) is crucial for our analysis, so in the following we introduce an approach to find

its stationary probability. From PASTA [129] we know that the time average performance of the

system is the same as that seen by Poisson arrivals. If a packet from class i sees Bi(t) = 0, it then

enters the buffer if the server is busy, or enters the server directly if the server is idling. Thus the

state that an entering packet from source i observes is always Bi(t) = 0. We let ψj(s) =
µj
µj+s

be

the LST of service time for packets from queue j. Because the service time is exponential, ψj(s) is

also the LST of remaining service time of the packet observed by an entering packet, if the packet

in service is from queue j. Let Ui be the remaining service time observed by a packet entering

queue i. If we assume that the system starts from time 0, then we have for queue 1 that

E[e−sW1|B1(0) = 0] = E[e−sU1|B1(0) = 0]

= P (J(0) = 0|B1(0) = 0) +
k∑
j=1

ψj(s)P (J(0) = j|B1(0) = 0).

Before characterizing E[e−sW2] for buffer 2, we first introduce the busy period of the server.

Let T1 be the time period that the server is continuously busy processing packets from buffer 1,

and η1(s) = E[e−sT1]. The busy period T1 always starts from processing a packet from buffer 1.

Suppose the processing time of this packet is of length P1 = l and if there is more than one priority

1 packet arriving during [0, l], then another busy period will start from time l and the new busy

period is identically distributed as T1. Thus we have E[e−s(l+T1)|P1 = l, B1(l) = 1] = e−slη1(s).

87

If there is no arrival then the busy period would be l only, then by unconditioning on B1(l) we

have

E[e−(l+T1)|P1 = l] = e−slη1(s)(1− e−λ1l) + e−sle−λ1l.

Unconditioning on P1 = l we have

η1(s) = η1(s)[ψ1(s)− ψ1(s+ λ1)] + ψ1(s+ λ1).

Thus the LST of T1 is given by η1(s) = ψ1(s+λ1)
1−ψ1(s)+ψ1(s+λ1)

= µ1(s+µ1)

s2+2µ1s+sλ1+µ21
and the derivative

of η1(s) at s = 0 is given by η′1(s)|s=0 = −λ1−µ1
µ21

.

Now we characterize the LST of W2 by the fact that E[e−sW2] = E[e−s(U2+T1)] and condition-

ing on different scenarios observed by the packets that enter buffer 2. If the server is idling when

a packet from source 2 enters, then

E[e−s(U2+T1)|B1(0) = 0, J(0) = 0, B2(0) = 0] = 1.

If the server is busy processing a packet from buffer j for j ∈ {1, ..., k}, and buffer 1 is not

empty, then we have

E[e−s(U2+T1)|B1(0) = 1, J(0) = j, B2(0) = 0] = E[e−sU2|J(0) = j]E[e−sT1] = ψj(s)η1(s).

If the server is busy processing a packet from buffer j for j ∈ {1, ..., k}, and buffer 1 is empty,

then we have

E[e−s(U2+T1)|B1(0) = 0, J(0) = j, U2 = u,B1(u) = 1, B2(0) = 0] = e−suη1(s),

88

and

E[e−s(U2+T1)|B1(0) = 0, J(0) = j, U2 = u,B1(u) = 0, B2(0) = 0] = e−su.

By unconditioning on B1(u) we have

E[e−s(U2+T1)|B1(0) = 0, J(0) = j, U2 = u,B2(0) = 0] = e−suη1(s)(1− e−λ1u) + e−sue−λ1u.

By unconditioning on U2 = u we have

E[e−s(U2+T1)|B1(0) = 0, J(0) = j, B2(0) = 0] = ψj(s)η1(s)− ψj(s+ λ1)η1(s) + ψj(s+ λ1).

So far we have characterized the LST of W2 conditioning on different scenarios. We only need

the probabilities of P (B1(0) = {0, 1}, J(0) = j|B2(0) = 0) to obtain E[e−sW2], which we will

discuss at the end of this subsection. Before doing that, we now consider how to obtain LST of

W3 by conditioning on different scenarios. For simplicity of analysis we here assume λ1 = λ2

and µ1 = µ2. The argument for distinct λ1 and λ2 or µ1 and µ2 are similar, however notationally

cumbersome. We let T12 be the busy time during which the server continuously serves packets

from queue 1 and queue 2 and let B12(t) = B1(t) +B2(t). We now characterize the LST of T12 by

letting η12,0(s) = E[e−sT12 | B12(0) = 0] and η12,1(s) = E[e−sT12 | B12(0) = 1].

Since the busy time T12 always starts with processing either a packet from source 1 or 2, we

suppose that the busy period starts with processing a packet with processing time P1 = l. We then

have

E[e−s(l+T12)|B12(0) = 0, P1 = l, B12(l) = 0, B3(0) = 0] = e−sl,

89

E[e−s(l+T12)|B12(0) = 0, P1 = l, B12(l) = 1, B3(0) = 0] = e−slη12,0(s),

E[e−s(l+T12)|B12(0) = 0, P1 = l, B12(l) = 2, B3(0) = 0] = e−slη12,1(s),

E[e−s(l+T12)|B12(0) = 1, P1 = l, B12(l) = 1, B3(0) = 0] = e−slη12,0(s),

E[e−s(l+T12)|B12(0) = 1, P1 = l, B12(l) = 2, B3(0) = 0] = e−slη12,1(s).

Note that B12(0) = 2 has probability 0 since the busy period T12 always starts with processing

a packet from either buffer 1 or 2. Unconditioning on B12(l), we have

E[e−s(l+T12)|B12(0) = 0, P1 = l, B3(0) = 0] = e−sle−2λ1l + 2(1− e−λ1l)e−λ1le−slη12,0(s)

+e−sl(1− e−λ1l)2η12,1(s),

and

E[e−s(l+T12)|B12(0) = 1, P1 = l, B3(0) = 0] = e−sle−λ1lη12,0(s) + e−sl(1− e−λ1l)η12,1(s).

90

Unconditioning on P1 = l, we have

η12,0(s) = ψ1(s+ 2λ1) + 2[ψ1(s+ λ1)− ψ1(s+ 2λ1)]η12,0(s)

+[ψ1(s)− 2ψ1(s+ λ1) + ψ1(s+ 2λ1)]η12,1(s),

and

η12,1(s) = ψ1(s+ λ1)η12,0(s) + [ψ1(s)− ψ1(s+ λ1)]η12,1(s).

By solving the two equations above for η12,0(s) and η12,1(s), we have

η12,0(s)

=
ψ1(s+ 2λ1)

1− 2[ψ1(s+ λ1)− ψ1(s+ 2λ1)]− ψ1(s+λ1)
1−ψ1(s)+ψ1(s+λ1)

[ψ1(s)− 2ψ1(s+ λ1) + ψ1(s+ 2λ1)]
,

and

η12,1(s) =
η12,0(s)ψ1(s+ λ1)

1− ψ1(s) + ψ1(s+ λ1)
.

Recall that U3 is the remaining service time observed by a packet that enters buffer 3, we then

have the LST of busy period of buffer 3 as conditioned on various scenarios:

E[e−s(U3+T12)|B12(0) = 0, J(0) = 0, B3(0) = 0] = 1,

91

E[e−s(U3+T12)|B12(0) = 0, J(0) = j, B3(0) = 0]

= ψj(s+ 2λ1) + 2[ψj(s+ λ1)− ψj(s+ 2λ1)]η12,0(s)

+[ψj(s)− 2ψj(s+ λ1) + ψj(s+ 2λ1)]η12,1(s),

E[e−s(U3+T12)|B12(0) = 1, J(0) = j, B3(0) = 0] = ψj(s+ λ1)η12,0(s)

+[ψj(s)− ψj(s+ λ1)]η12,1(s),

and

E[e−s(U3+T12)|B12(0) = 2, J(0) = j, B3(0) = 0] = ψj(s)η12,1(s).

Thus we can characterize the LST of W3 once we know the stationary probability of each

scenario. For queues with lower priorities, the analysis requires more argument, but they are all

similar (albeit cumbersome notationally). To get the stationary probability of each scenario, we

model S(t) = (J(t), B1(t), B2(t), ..., Bk(t)) as a CTMC and obtain the stationary probabilities.

Here we only show the example for the case of k = 2, for k > 2 the analysis is similar. The rate

matrix Q of the two-queue case is:

92

Q =

(0,0,0) (1,0,0) (2,0,0) (1,1,0) (1,0,1) (2,1,0) (2,0,1) (1,1,1) (2,1,1)

(0,0,0) −λ1 − λ2 λ1 λ2 0 0 0 0 0 0

(1,0,0) µ1 −λ1 − λ2 − µ1 0 λ1 λ2 0 0 0 0

(2,0,0) µ2 0 −λ1 − λ2 − µ2 0 0 λ1 λ2 0 0

(1,1,0) 0 µ1 0 −λ2 − µ1 0 0 0 λ2 0

(1,0,1) 0 0 µ1 0 −λ1 − µ1 0 0 λ1 0

(2,1,0) 0 µ2 0 0 0 λ2 − µ2 0 0 λ2

(2,0,1) 0 0 µ2 0 0 0 −λ1 − µ2 0 λ1

(1,1,1) 0 0 0 0 µ1 0 0 −µ1 0

(2,1,1) 0 0 0 0 µ2 0 0 0 −µ2

.

The stationary distribution π̂ (which is a vector) is given by solving π̂Q = 0 and π̂1 = 1, and

we have

p1 = π̂(1, 1, 0) + π̂(2, 1, 0) + π̂(1, 1, 1) + π̂(2, 1, 1),

p2 = π̂(1, 0, 1) + π̂(2, 0, 1) + π̂(1, 1, 1) + π̂(2, 1, 1),

P (J(0) = 1|B1(0) = 0) =
π̂(1, 0, 0) + π̂(1, 0, 1)

1− p1

,

and

P (B1(0) = 0, J(0) = 1|B2(0) = 0) =
π̂(1, 0, 0)

1− p2

.

The other conditional probabilities can be calculated similarly.

In summary, in order to obtain the exact PAoI for queue i in M/M/1/1+
∑

1∗ type queues, one

needs to first have the LST of Wi conditioning on each event of (B1(0) = {0, 1}, ..., Bi−1(0) =

{0, 1}, Bi(0) = 0, J(0) = {0, 1, ..., k}), then apply the CTMC analysis to obtain the steady

state probability of each event of (B1(0) = {0, 1}, ..., Bi−1(0) = {0, 1}, Bi(0) = 0, J(0) =

93

{0, 1, ..., k}). By further unconditioning on each event one can eventually get the LST of Wi. This

approach becomes cumbersome when the number of queues becomes large. However, this model-

ing method by focusing on the busy period of the server could useful in many cases as we will see

in Section 4.4.

4.3.2 Bounds and Approximation for M/G/1/1+
∑

1∗ Type Queues

Here we generalize the analysis in Subsection 4.3.1 so that the service times are generally

distributed, hence the system is an M/G/1/1+
∑

1∗ system. Without the assumption that the service

time is exponentially distributed, the remaining service time observed at an arbitrary time is no

longer what is observed by an entering packet, thus the analysis in Subsection 4.3.1 does not hold

for M/G/1 type queues. However, since arrivals still follow Poisson processes, Lemma 4.3.1 holds.

We can write the PAoI of queue i as

E[Ai] = E[Pi] +E[Wi] +E[Ii] +E[Gi]

=
1

µi
+

pi
λi(1− pi)

+
2

λi
− 1

λi
E[e−λiWi]

≤ 1

µi
+

pi
λi(1− pi)

+
2

λi
− 1

λi
e
− pi

1−pi . (4.4)

The last inequality of (4.4) follows from the Jensen’s inequality by knowing that e−λix is a

convex function. Notice that Equation (4.4) gives an upper bound of PAoI in terms of probability

pi (which is the steady state probability that buffer i is full). Takenaka [131] considered a multi-

queue M/G/1 system with each queue having a unique buffer size. Our system thus becomes a

special case of the model in Takenaka [131] since in our model each queue has a buffer with size

one. Takenaka [131] introduces the relationship of pi with the stationary state that is seen by

departures, for the system in which service times for packets from different queues are identically

distributed with Fi(x) = F (x) and µi = µ for all i. Thus one can get the stationary distribution of

states by solving an embedded Markov chain. It is important to note that the result in [131] only

works for identically distributed service times. For heterogenous service times with k > 2, the

results are difficult to obtain [132, 131]. So till the end of this subsection, we assume that service

94

times for packets across queues are identically distributed. To use the result in [131] to get pi’s, we

first introduce some notations here. Let ψ(s) be the LST of service time. Let Sk be our original

system which has k queues. Say Sl is the subsystem of Sk which contains only queue 1 to queue l,

and packets from queue l+1 to k do not arrive in system Sl. Let πl(B1, B2, ..., Bl) be the stationary

distribution in which the system Sl hasBi ∈ {0, 1} number of packets in queue i immediately after

the departure of a packet. Now we re-write a theorem from [131] for our model.

Theorem 4.3.2. (Theorem 3 of [131]) The steady state probability of the buffer with size one at

queue i being full is given by pi = 1− πi−1(0,...0)−πi(0,...,0)
λi
µ

+
λi∑k
j=1

λj
πk(0,...,0)

− πk(0,...,0)∑k
j=1

λj

µ
+πk(0,...,0)

for all i ∈ {1, 2, ..., k},

where π0(0, ..., 0) = 1.

To obtain the probability pi, we only need to find the stationary distribution that is seen by

departures. For that, we model the system state seen by departures as an embedded Markov chain.

We only introduce the case for k = 2 here. For k > 2 the analysis is similar but not presented

here for notational and space restrictions. Since the departure can see at most one packet waiting

at each buffer, the transition matrix for k = 2 is given as follows:

P̃2 =

(0,0) (0,1) (1,0) (1,1)

(0,0) a0 a1 a2 a3

(0,1) a0 a1 a2 a3

(1,0) a0 a1 a2 a3

(1,1) 0 b0 0 1− b0

,

where a0 =
∫∞

0
e−(λ1+λ2)xdF (x), a1 =

∫∞
0
e−λ1x(1 − e−λ2x)dF (x), a2 =

∫∞
0

(1 −

e−λ1x)eλ2xdF (x), a3 =
∫∞

0
(1−e−λ1x)(1−e−λ2x)dF (x) and b0 =

∫∞
0
e−λ1xdF (x). The stationary

distribution π2(0, 0) can thus be obtained by solving the linear system π2P̃2 = π2 with π21 = 1,

where π2 = (π2(0, 0), π2(0, 1), π2(1, 0), π2(1, 1)). Notice from Theorem 4.3.2 that we also need

π1(0) to get pi’s. To obtain π1(0) we solve the subsystem S1 with π1P̃1 = π1 and π11 = 1, where

the transition matrix P̃1 of the embedded Markov chain is given by

95

P̃1 =

(0) (1)

(0) b0 1− b0

(1) b0 1− b0

.
By solving the embedded Markov chains, we have π1(0) = ψ(λ1) and π2(0, 0) =

ψ(λ1+λ2)ψ(λ1)
1−ψ(λ2)+ψ(λ1+λ2)

. Then using Theorem 4.3.2 we have p1 = 1 − 1−ψ(λ1)
λ1
µ

+
λ1

λ1+λ2
π2(0,0)

− π2(0,0)
λ1+λ2
µ

+π2(0,0)

and p2 = 1− ψ(λ1)−π2(0,0)
λ2
µ

+
λ2

λ1+λ2
π2(0,0)

− π2(0,0)
λ1+λ2
µ

+π2(0,0)
. In summary, to obtain the probability pi of a system

with k queues, one needs to compute the stationary probability πj(0, ..., 0) for j = 1, ..., i − 1 by

solving the embedded Markov chain and then apply Theorem 4.3.2. For systems with large k, solv-

ing all the embedded Markov chains could be tedious. Fast approximations for pi’s are provided

in [133].

Corollary 4.3.3. The PAoI for a single M/G/1/2* queue is upper bounded by 1
µ

+
λ1
µ

+ψ(λ1)−1

λ1
+

2
λ1
− 1

λ1
e−

λ1
µ
−ψ(λ1)+1, where ψ(s) is the LST of service time.

Proof. It follows directly from Theorem 4.3.2 that when k = 1, the probability of buffer being full

is 1− 1
λ1
µ

+ψ(λ1)
.

So far we characterized the probability pi for Equation (4.4), which we can use to obtain the

bounds of PAoI for each queue. In fact, the upper bounds that we provide in Equation (4.4) are

decent approximations of PAoI for queues. We will show it numerically in Section 4.5.

It is found by Costa et al [105] that for M/M/1/1, M/M/1/2 and M/M/1/2* queues, increasing

the arrival rate can reduce the PAoI continuously. However, it is not the case in our model with

multiple queues. We find that by increasing the arrival rate of a certain queue, its PAoI will be

decreased, however PAoI for queues with lower priorities will be increased drastically. We will

show the detail numerically in Section 4.5. Besides, we have the following theorem discussing the

scenario when the arrival rate of a certain queue becomes large. We still keep the assumption that

the service times are homogeneous with cdf F (x).

96

Theorem 4.3.4. For 1 ≤ i ≤ k, if λi → ∞, then E[Aj] → ∞ for j > i, and E[Aj] will be

bounded for j ≤ i.

Proof. We first show that as λi →∞, then πj(0, ..., 0)→ 0 for j ≥ i. To show this, we know that

in the subsystem Sj , the first element of the transition matrix for the embedded Markov chain is

given by

a0 =

∫ ∞
0

e−(
∑j
l=1 λl)xdF (x) =

∫ ∞
0

(

j∑
l=1

λl)e
−(
∑j
l=1 λl)xF (x)dx.

Since F (x) ≤ 1 for any x ∈ [0,∞), by dominated convergence theorem, we have

lim
λi→∞

∫ ∞
0

e−(
∑j
l=1 λl)xdF (x)dx = 0.

Thus a0 → 0 and by result from [131] that πj(0, ..., 0) =
∑j

l=1 a0πj(0, ...,
l

1, ..., 0) +a0πj(0, ..., 0),

we have πj(0, ..., 0) → 0 for j ≥ i. From Theorem 4.3.2 we have pj = 1 − πj−1(0,...0)−πj(0,...,0)
λj
µ

+
λj∑k
l=1

λl
πk(0,...,0)

−

πk(0,...,0)∑k
l=1

λl
µ

+πk(0,...,0)
→ 1 for j ≥ i. We then have E[Aj]→∞ for j > i.

For j < i, we have pj ≤ 1 − πj−1(0,...0)−πj(0,...,0)
λj
µ

+
λj∑k
l=1

λl

. From the fact that πj(0, ..., 0) for j < i will

not be affected by λi and πj(0, ..., 0) < πj−1(0, ..., 0) if λj 6= 0 (see Theorem 1 of [131]), we then

have pj ≤ 1− πj−1(0,...0)−πj(0,...,0)
λj
µ

< 1 as λi →∞. Thus E[Aj] is bounded by Equation (4.4).

For j = i, we have

pi
λi(1− pi)

=

1− πi−1(0,...0)−πi(0,...,0)
λi
µ

+
λi∑k
j=1

λj
πk(0,...,0)

− πk(0,...,0)∑k
j=1

λj

µ
+πk(0,...,0)

λi(
πi−1(0,...0)−πi(0,...,0)
λi
µ

+
λi∑k
j=1

λj
πk(0,...,0)

+ πk(0,...,0)∑k
j=1

λj

µ
+πk(0,...,0)

)

=

1− πi−1(0,...0)−πi(0,...,0)
λi
µ

+
λi∑k
j=1

λj
πk(0,...,0)

− πk(0,...,0)∑k
j=1

λj

µ
+πk(0,...,0)

πi−1(0,...0)−πi(0,...,0)
1
µ

+ 1∑k
j=1

λj
πk(0,...,0)

− λiπk(0,...,0)∑k
j=1

λj

µ
+πk(0,...,0)

≤ 1
πi−1(0,...0)−πi(0,...,0)
1
µ

+ 1∑k
j=1

λj
πk(0,...,0)

− πk(0,...,0)∑k
j=1

λj

µλi
+
πk(0,...,0)

λi

.

97

As λi →∞, pi
λi(1−pi) ≤

1
µπi−1(0,...,0)

. By Equation (4.4) we prove the theorem.

Theorem 4.3.4 shows that if we increase the arrival rate for a queue, the PAoI of queues with

lower priorities will be greatly increased, while PAoI of queues with higher priorities will be

bounded. Like we discussed in Section 4.1, some data sources may have information more im-

portant or time-sensitive than other data sources. Theorem 4.3.4 implies that if higher priorities are

given to data sources which are more important, the PAoI of these data sources with high priorities

can always be guaranteed at a bounded level. It also implies that if we have queues with traffic

intensity significantly greater than the others, it is better to give high priorities to those queues with

low traffic intensities to guarantee that all queues have a relatively low PAoI.

4.3.3 Exact Analysis for M/G/1/1+
∑

1 Type Queues

Notice that in system M/G/1/1+
∑

1∗, we keep the most recent arrival in the buffer. If we

instead, keep the first arrival in the buffer and reject the future arrival before the buffer becomes

empty, the system becomes M/G/1/1+
∑

1. In the single queue case, the system is denoted as

M/G/1/2 which was analyzed in [105]. From Equation (4.2), the PAoI of source i in M/G/1/1+
∑

1

is given by

E[Ai] = E[Pi] + 2E[Wi] +E[Ii]. (4.5)

From Subsection 4.3.2, we know the method of calculating the probability pi. From the fact

that E[Wi] = pi
λi(1−pi) from Equation (4.3) we find that the exact PAoI of queues in M/G/1/1+

∑
1

system can also be obtained. However, the following corollary states that the PAoI of each source

in M/G/1/1+
∑

1 system is always larger than or equal to that of an M/G/1/1+
∑

1∗ system.

Corollary 4.3.5. PAoI of each queue in M/G/1/1+
∑

1 is always greater than or equal to that of

an M/G/1/1+
∑

1∗ system, if both systems have the same parameters.

Proof. From Equation (4.2) and (4.5) we only need to show that E[Gi] ≤ E[Wi]. Since E[Gi] =

1
λi

(1−E[e−λiWi]) and from the fact that e−λiWi ≥ 1−λiWi, we haveE[G] ≤ 1
λi

(1−(1−λiWi)) =

98

E[Wi]. Hence proved.

Corollary 4.3.5 reveals the fact that if service times are iid for each source, then for the system

with buffer size one at each queue, it is always beneficial to keep the most recent arrival in the

buffer for reducing PAoI.

4.4 Infinite Buffer Size

Although dropping redundant packets such as in system M/G/1+
∑

1∗ can potentially reduce

the system traffic, it is not clear if keeping all the packets can result in a smaller PAoI. More impor-

tantly, for some applications, dropping packets is not an option when the entire data stream must

been obtained for performing offline diagnostics (also see [113]). In such a scenario, processing all

the generated packets is necessary and for that, buffer size of each queue needs to be large enough.

In this section we discuss a model in which buffer size of each queue is infinite. This model has

been discussed in [100, 125], however they do not consider queues with priorities. In this section,

since there could be multiple packets waiting in each queue, it is necessary to ascertain the order of

service within a queue. We consider FCFS and LCFS service discipline separately when the server

serves packets from the same queue. Still, the server starts serving packets from high priority

queues when the server becomes available. Throughout this section, we assume that
∑k

j=1
λj
µj
< 1

so that the system is stable.

4.4.1 Exact Analysis for M/G/1 Type Queues with FCFS

We first discuss the model in which each queue is served according to FCFS discipline. From

the definition of PAoI we know that when processing is complete for the jth arrival from queue i,

the random variable corresponding to PAoI is equal to Aij = Cij − ri(j−1) = (Cij − rij) + (rij −

ri(j−1)). Since Cij − rij is the sojourn time of packet j and rij − ri(j−1) is the inter-arrival time

between packet j−1 and j, the PAoI for queue i can be written asE[Ai] = E[Pi]+E[Wi]+E[Ii],

where E[Wi] is the expected waiting time in queue and E[Ii] = 1
λi

is the expected inter-arrival

time. From [85] we have the exact expression of E[Wi] for M/G/1 type queues with priority, thus

the PAoI of queue i is given by:

99

E[Ai] = E[Wi] +E[Ii] +E[Pi]

=
1
2

∑k
j=1 λjE[P 2

j]

(1−
∑i

j=1
λj
µj

)(1−
∑i−1

j=1
λj
µj

)
+

1

λi
+

1

µi
. (4.6)

Interestingly, from the expression of E[Wi], we find that the packets from higher priority

queues always have shorter expected waiting times in queue compared with those from low prior-

ity queues. However, Equation (4.6) shows that higher priority queues do not always have shorter

PAoI because 1
λi

and 1
µi

also contribute to PAoI. Another interesting point from Equation (4.6) is

that by increasing arrival rate λi we can reduce the PAoI for queue i but greatly enlarge the PAoI

for queues with priority lower than i. We will also show this result numerically in Section 4.5.

Bedewy et al [134] considered the scheduling policy to minimize the average PAoI across

queues, i.e., 1
k

∑k
i=1E[Ai]. If we also consider the same objective and ask the design question

of how to minimize the average PAoI across queues by assigning queue priorities, the answer is

assigning high priorities to queues with low ρi = λi
µi

, as we see in Theorem 4.4.1.

Theorem 4.4.1. If the queue priorities satisfy ρ1 ≤ ρ2 ≤ ... ≤ ρk, then the average PAoI across

queues given by this priority order is the smallest among all the priority orders.

Proof. Since

1

k

k∑
i=1

E[Ai] =
1

k

k∑
i=1

[
1
2

∑k
j=1 λjE[P 2

j]

(1−
∑i

j=1 ρj)(1−
∑i−1

j=1 ρj)
+

1

λi
+

1

µi

]
, (4.7)

changing priority orders only affects the denominator of the first term in Equation (4.7). So min-

imizing the average PAoI across queues is equivalent to minimizing
∑k

i=1
1

(1−
∑i
j=1 ρj)(1−

∑i−1
j=1 ρj)

.

If (ρ1, ρ2, ..., ρk) is the optimal priority order with ρi ≥ ρi+m, by switching the order of ρi and

ρi+m we have a new priority order (ρ∗1, ρ
∗
2, ..., ρ

∗
k) with ρ∗i = ρi+m, ρ∗i+m = ρi and ρ∗j = ρj for

j ∈ {1, ..., k}\{i, i + m}. Then we have
∑j

l=1 ρl =
∑j

l=1 ρ
∗
l for j < i,

∑j
l=1 ρl ≥

∑j
l=1 ρ

∗
l for

100

i ≤ j < i+m and
∑j

l=1 ρl =
∑j

l=1 ρ
∗
l for j ≥ i+m. Thus we have

k∑
l=1

1

(1−
∑l

j=1 ρj)(1−
∑l−1

j=1 ρj)
−

k∑
l=1

1

(1−
∑l

j=1 ρ
∗
j)(1−

∑l−1
j=1 ρ

∗
j)

=
i+m∑
l=i

[
1

(1−
∑l

j=1 ρj)(1−
∑l−1

j=1 ρj)
− 1

(1−
∑l

j=1 ρ
∗
j)(1−

∑l−1
j=1 ρ

∗
j)

]
≥ 0,

which contradicts to the assumption that (ρ1, ρ2, ..., ρk) is the optimal priority order. Therefore

we prove the theorem.

From Theorem 4.4.1 we see that for M/G/1 type queues with FCFS discipline, it is always better

to give higher queue priorities (if we have the option) to queues with smaller traffic intensities when

the objective is to minimize the average PAoI across all queues. In fact, this observation is also

true for M/G/1/1+
∑

1∗ queues that we discussed in Section 4.3. The intuitive reason for this is

if we do the opposite, i.e., allowing high traffic queues to have high priority, the server would be

busy serving high traffic intensity queues and barely have chance to serve low priority queues.

Packets from low priority queues therefore would suffer a large waiting time. We will show this

numerically in Section 4.5.

4.4.2 Exact Analysis for M/G/1 Type Queues with LCFS

In this subsection, we derive the PAoI for priority queues with LCFS within each queue. The

server still chooses the highest priority queue when it becomes available, and from each queue

it serves the last arrived packet first. There is no preemption during service. To derive the exact

expression of PAoI, we use the method in Section 4.3 and focus on buffer state. Different from the

model discussed in Section 4.3, here in each queue the buffer size is infinite. We now introduce a

new service scheme here which has the same PAoI as LCFS. We first divide each queue into two

virtual parts: initial buffer and main queue. The initial buffer can hold only one packet. Whenever

a new arrival occurs, we send this new arrival into the initial buffer if it is empty. If there is a

packet waiting in the initial buffer when a new arrival occurs, we replace it with the newly arrived

101

packet and transfer the old one to the main queue. When the server starts serving a queue, it

serves the packet from initial buffer first if it is not empty, then serves packets from main queue in

an arbitrary order with the understanding that service times are iid. However, if an arrival occurs

when the server is busy, this arrival goes to the initial buffer and waits for the next available service.

A demonstrative graph of the idea of initial buffer and main queue is shown in Figure 4.4. As we

see from Figure 4.5, the initial buffer is to hold the most recent arrivals. For queue 1, the initial

buffer is empty since its most recent arrival has been processed. The initial buffer of queue 2 is

full. When the server switches to queue 2, the packet in initial buffer 2 will be processed first.

This service scheme has the same PAoI as LCFS since the staled packets would not incur age

peaks and the most recent arrival is always stored in the initial buffer. The benefit of modeling the

LCFS system in this way is that we can characterize the PAoI of each queue by focusing on the

initial buffer. The state of the initial buffer is either 0 or 1, and each period length of state 0 (when

the buffer is empty), is equal to the inter-arrival time Ii between packets. We abuse our notation

by letting the time period of state 1 (when the initial buffer is full) be Wi, which we call the busy

period of the initial buffer. Using the analysis in Section 4.3.1, the PAoI for queue i is given as

E[Ai] = E[Pi] +E[Wi] +E[Ii] +E[Gi], where E[Pi] = 1
µi

is the expected service time, E[Wi]

is the expected length of period when initial buffer is full, E[Ii] = 1
λi

is the expected inter-arrival

time, and E[Gi] = E[1
λi

(1 − e−λiWi)] is the expected waiting time of the most recently arrived

packet before the buffer becomes empty, which is given in Lemma 4.3.1.

Similar to what we did in Section 4.3.2, since in the system of M/G/1 type queues with LCFS,

there is one initial buffer in each queue, we can thus give the PAoI for queue i as:

E[Ai] = E[Pi] +E[Wi] +E[Ii] +E[Gi]

=
1

µi
+

pi
λi(1− pi)

+
2

λi
− 1

λi
E[e−λiWi], (4.8)

for all i ∈ {1, ..., k}, where we abuse our notation here by letting pi be the steady state prob-

102

Figure 4.4: Initial Buffer and Main Queue for LCFS

ability that the initial buffer is full (notice that in Section 4.3 we used it as the probability that the

buffer is full). Now we introduce the method of finding pi’s by providing Lemma 4.4.2 for the case

of k = 1 first.

Lemma 4.4.2. For the M/G/1 queue with LCFS of k = 1, the probability that the initial buffer is

full is given by p1 = λ1
µ1
− 1 + ψ1(λ1), where ψ1(u) is the LST of the service time.

Proof. From Figure 4.5 we find that the busy period of the initial buffer always occurs when the

server is serving (busy), and ends when the service is complete. From Figure 4.5 we see that the

period during which the initial buffer being full, i.e., Ŵ , is the waiting time of the first packet that

arrives during the processing time P1 of a certain packet. From the property of Poisson arrivals

and Campbell’s Theorem we have

E[Ŵ |P1 = u] =
∞∑
m=1

m

m+ 1
ue−λ1u

(λ1u)m

m!

= u− 1

λ1

+
1

λ1

e−λ1u.

By unconditioning on P1 = u we have E[Ŵ] =
∫∞

0
(u − 1

λ1
+ 1

λ1
e−λ1u)dF1(u) = 1

µ1
− 1

λ1
+

ψ1(λ1)
λ1

. However, it is important to note that this E[Ŵ] is the expected busy time for initial buffer

during the processing time of a packet. To obtain pi, we need the following argument. Suppose

103

Figure 4.5: Initial Buffer and Total Queue Length (Including Initial Buffer and Main
Queue) for LCFS

n(t) packets have been served during (0, t]. Thus the amount of time that the initial buffer being

full during (0, t] is n(t)E[Ŵ]. If the queue is stable, we have n(t) converging to λ1t as t → ∞.

Therefore

lim
t→∞

n(t)E[Ŵ]

t
= λ1E[Ŵ],

which is the stationary probability that the initial buffer is full (i.e., p1). Note that λ1
µ1
−1+ψ1(λ1)

is a legitimate probability as it always lies within [0, 1]. To show this, from the fact that ψ1(λ1) =∫∞
0
e−λxdF1(x) ≤ 1, we have λ1

µ1
− 1 + ψ1(λ1) ≤ λ1

µ1
< 1 from stability assumption. Since

ψ1(λ1) =
∫∞

0
e−λxdF1(x) ≥

∫∞
0

(1− λ1x)dF1(x) = 1− λ1
µ1

, we have λ1
µ1
− 1 + ψ1(λ1) ≥ 0. Thus

λ1
µ1
− 1 + ψ1(λ1) is a legitimate probability.

Now we discuss the case when k ≥ 2. Notice that for each packet that is in service, if there is a

new arrival from queue 1 occurring during this service time, then the busy period for initial buffer

1 is from the arrival time of this new packet to the completion time of the packet being processed.

From Lemma 4.4.2, the busy period for initial buffer 1 if a type i packet is being processed when

104

the busy period starts, is given by 1
µi
− 1
λ1

+ 1
λ1
ψi(λ1), and we have p1 =

∑k
i=1 λi(

1
µi
− 1
λ1

+ 1
λ1
ψi(λ1))

.

To get the probability pi for queue i ≥ 2, we use the idea introduced by Kella and Yechiali

[135]. We merge the queues with priority higher than i as one class and the other queues as

another class by letting λai =
∑i−1

j=1 λj , λbi =
∑k

j=i λj , ρai =
∑i−1

j=1 ρj and ρbi =
∑k

j=i ρj . We

also let Fai(x) =
∑i−1

j=1
λj
λai
Fj(x) be the service time distribution for packets from queue j < i,

with mean E[Pai] and Fbi(x) =
∑k

j=i
λj
λbi
Fj(x) be the service time distribution for packets from

queue j ≥ i, with meanE[Pbi]. Notice that the busy period of initial buffer i only ends when there

is no packet from queue j < i. We now classify the busy periods of server (the time period during

which the server is continuously serving packets) into two types, and by doing so we can further

characterize the busy period of initial buffer i. One type of busy period Vai of the server starts with

processing a packet with priority higher than i, and ends when there is no packet of priority higher

than i left in the system. The other type of busy period Vbi start with processing a packet with

priority equal to or lower than i, and also ends when there is no packet of priority higher than i left

in the system. Notice that if there is no higher priority packet arriving during processing the first

packet in Vbi, the length of Vbi is the processing time of a packet of priority i or lower. If there is

one packet of higher priority arriving during processing the first packet in Vbi, then after the current

processing, a busy period Vai is followed. Similar to the analysis in [135, 130] and what we did in

Section 4.3.1, by conditioning on service time of the first packet in a busy period, the LST of Vai

and Vbi, denoted as Ṽai(s) and Ṽbi(s), are given as

Ṽai(s) = ψai(s+ λai − λaiṼai(s)) (4.9)

and

Ṽbi(s) = ψbi(s+ λai − λaiṼai(s)), (4.10)

where ψai(s) is the LST of Fai(x) and ψbi(s) is the LST of Fbi(x). By taking the derivative of

105

Ṽai(s) and Ṽbi(s) at s = 0, the expected length of server’s busy periods can be given as

E[Vai] =
E[Pai]

1− ρai
,

and

E[Vbi] =
E[Pbi]

1− ρai
.

Note that busy period Vbi always starts with one packet from queue j ≥ i, thus we know

P (system in Vbi) = λbi
E[Pbi]

1− ρai
.

Since when the server is busy, it is either in busy period Vai or Vbi , we have

P (system in Vai) =
k∑
j=1

ρj − λbi
E[Pbi]

1− ρai
= λ̂ai

E[Pai]

1− ρai
,

where

λ̂ai =

∑k
j=1 ρj − λbi

E[Pbi]
1−ρai

E[Pai]
1−ρai

(4.11)

is the “arrival rate” of busy period Vai. We now use F V
ai (x) and F V

bi (x) to denote the CDF of Vai

and Vbi. From Lemma 4.4.2 we know that during busy period Vai, the time period of initial buffer

being busy is given as

E[Ŵai] =

∫ ∞
0

(u− 1

λi
+

1

λi
e−λiu)dF V

ai (u)

=
E[Pai]

1− ρai
− 1

λi
+

1

λi
Ṽai(λi). (4.12)

Similarly, we have E[Ŵbi] = E[Pbi]
1−ρai −

1
λi

+ 1
λi
Ṽbi(λi). In many cases where Ṽai(λi) and Ṽbi(λ)

106

cannot be solved analytically, numerical methods such as bisection method or Newton’s method

(see [136]) can be applied to find the root numerically. From the same argument in Lemma 4.4.2,

we have

pi = λ̂aiE[Ŵai] + λbiE[Ŵbi]. (4.13)

Next we introduce the process of obtaining E[e−λiWi] for Equation (4.8). Notice that Ŵai is

the length of initial buffer being full during period Vai. Similar to the argument in Lemma 4.4.2,

we have

E[e−sŴai|Vai = t] =

∫ t

0

e−sx
∞∑
m=1

mxm−1

tm
e−λit

(λit)
m

m!
dx+ e−λit

=

∫ t

0

e−sxe−λit
∞∑
m=1

xm−1 (λi)
m

(m− 1)!
dx+ e−λit

= e−λit
λi

λi − s
(e(λi−s)t − 1) + e−λit

=
λi

λi − s
e−st − s

λi − s
e−λit.

By unconditioning on Vai = t we have

E[e−sŴai] =
λi

λi − s
Ṽai(s)−

s

λi − s
Ṽai(λi),

and

E[e−sŴbi] =
λi

λi − s
Ṽbi(s)−

s

λi − s
Ṽbi(λi).

Using L’Hospital rule taking the limit s→ λi, we have

E[e−λiŴai] = −λiṼ
′

ai(λi) + Ṽai(λi), (4.14)

107

and

E[e−λiŴbi] = −λiṼ
′

bi(λi) + Ṽbi(λi). (4.15)

From the formula of Ṽai(s) and Ṽbi(s) given above we have

Ṽ
′

ai(λi) =
ψ
′
ai(λi + λai − λaiṼai(λi))

1 + λaiψ
′
ai(λi + λai − λaiṼai(λi))

, (4.16)

and

Ṽ
′

bi(λi) = ψ
′

bi(λi + λai − λaiṼai(λi))(1− λaiṼ
′

ai(λi)). (4.17)

Notice that Wi is the busy period of the initial buffer during each age peak Ai, and only (1−pi)

portion of arrivals in queue i incur peak ages, so the “arrival rate” for Wi is λi(1 − pi). Since Ŵi

is the busy period of initial buffer during each Vai and Vbi with arrival rate λ̂ai and λbi respectively,

from the fact that λbi =
∑k

j=i λj ≥ λi(1− pi), we have the following relationship

λ̂aiE[e−λiŴai] + λbiE[e−λiŴbi] = λi(1− pi)E[e−λiWi] + (λ̂ai + λbi − λi(1− pi)).

Therefore,

E[e−λiWi] =
λ̂aiE[e−λiŴai] + λbiE[e−λiŴbi]− (λ̂ai + λbi − λi(1− pi))

λi(1− pi)
. (4.18)

A closed-form formula of PAoI in M/G/1 type queues with LCFS is then given in the following

theorem.

Theorem 4.4.3. The PAoI of queue i in M/G/1 system with LCFS is given by E[Ai] =

1
µi

+ 1
λi(1−pi) −

1
λ2i (1−pi)

[
λ̂ai(−λiṼ

′
ai(λi) + Ṽai(λi)− 1) + λbi(−λiṼ

′

bi(λi) + Ṽbi(λi)− 1)
]
, where

Ṽai(s) = ψai(s + λai − λaiṼai(s)), Ṽbi(s) = ψbi(s + λai − λaiṼai(s)), pi =

108

λ̂ai

[
E[Pai]
1−ρai −

1
λi

+ 1
λi
Ṽai(λi)

]
+ λbi

[
E[Pbi]
1−ρai −

1
λi

+ 1
λi
Ṽbi(λi)

]
, and λ̂ai =

∑k
j=1 ρj−λbi

E[Pbi]

1−ρai
E[Pai]

1−ρai

.

Proof. To obtain the exact PAoI for queue i of M/G/1 system with LCFS, we first solve Ṽai(λi) and

Ṽbi(λi) using Equation (4.9) and (4.10). And all the required components for computingE[e−λiWi]

in Equation (4.18) can be then obtained from Equations (4.11) - (4.17). After that the PAoI of

queue i can be obtained using Equation (4.8).

Note here that this approach of calculating PAoI of queue i in M/G/1 type system LCFS can

still be applied even when the number of queues k is large. In such a case, queues with priority

lower than i can be merged as a single queue and queues with priority equal to or greater than i

can also be merged into another queue. Then the analysis provided above can be applied easily to

obtain PAoI. The numerical test of this approach will be provided in Section 4.5.

4.4.3 Discussion of the Single Queue Case

The LST of PAoI for single queue with LCFS was provided in [101], however its expression

is quite involved (see Equation (99) in [101]). Here we use our approach introduced in Subsection

4.4.2 to provide a concise expression for PAoI of M/G/1/LCFS queue in the following corollaries.

Since we only have one queue here, for simplicity of the notation, in this subsection we remove

the subscript of each variable.

Corollary 4.4.4. The PAoI of M/G/1/LCFS is given by E[A] = 1
µ

+ 2
λ

+
2λ
µ
−2+ψ(λ)+λψ

′
(λ)

λ(2−λ
µ
−ψ(λ))

, where

ψ(λ) is the LST of service time.

Proof. Since we know E[e−λŴ] = −λψ′(λ) + ψ(λ) from Equation (4.15) and E[e−λW] =

E[e−λŴ]−p
1−p from Equation (4.18), also from Lemma 4.4.2 we know p = λ

µ
− 1 +ψ(λ), we have our

corollary proved.

Corollary 4.4.5. The PAoI of M/M/1/LCFS is given by E[A] = 1
λ

+ 1
µ

+ 2λµ+λ2

(λ+µ)(µ2+λµ−λ2)
.

It was shown in [137] that LCFS can reset the generation time of the freshest packet that

has arrived (i.e., max{rl : Cl ≤ t}) into a lower level than the other non-preemptive service

109

disciplines do. However, here we show that LCFS is actually not the optimal service discipline for

minimizing PAoI among all the non-preemptive service disciplines. To do this, we simply consider

the exponential service case. Then the PAoI of FCFS is given by E[AFCFS] = 1
λ

+ 1
µ

+ λ
µ(µ−λ)

.

We thus have

E[AFCFS]−E[ALCFS]

=
λ

µ(µ− λ)
− 2λµ+ λ2

(λ+ µ)(µ2 + λµ− λ2)

=
−λ4 + λ3µ+ 3λ2µ2 − λµ3

µ(µ− λ)(λ+ µ)(µ2 + λµ− λ2)
.

If we let µ = 1 in the formula above, we have E[AFCFS] − E[ALCFS] = −λ4+λ3+3λ2−λ
(1−λ)(λ+1)(1+λ−λ2)

.

By numerically solving it we know thatE[AFCFS] ≤ E[ALCFS] when 0 ≤ λ < λ∗ = 0.3111, and

E[AFCFS] > E[ALCFS] when 1 > λ > λ∗, which is also shown in Figure 4.7(a). Similarly, in

Section 4.5, we will show that LCFS is not the optimal service discipline for the multi-queue case

either, when the objective is to minimize PAoI of each queue.

This result is counter-intuitive considering the optimality of LCFS was correctly proven in

[137] where each time when a packet is processed, LCFS would reset the age to the lowest level.

The reason why LCFS cannot always have the lowest PAoI is when we calculate PAoI under LCFS,

we average on the number of packets that enter the initial buffer (not all the arrivals). And when we

calculate PAoI under FCFS, we take average over the number of all arrivals. Demonstrative graphs

for this are shown in Figure 4.6. As we see from Figure 4.6, upon the processing of each packet,

the age level under LCFS (Figure 4.6(b)) is always smaller than that under FCFS (Figure 4.6(a)).

However, the average PAoI in Figure 4.6(a) is smaller than PAoI in Figure 4.6(b), simply because

in LCFS the PAoI is only averaged on the number of packets that cause age decrease (instead of the

number of all packets that are served). The advantage of FCFS will become more obvious when

the traffic intensity is small, since when traffic intensity is large, the waiting time of each packet

under FCFS becomes large, which overshadows the effect caused by the number of packets that

PAoI is averaged over.

110

(a) PAoI under FCFS. The first 6
packets result in 6 age peaks

(b) PAoI under LCFS. The first 6 pack-
ets result in 4 age peaks

Figure 4.6: PAoI under FCFS and LCFS

It is shown in [105] that M/M/1/2∗ system has smaller PAoI than M/M/1/2 and M/M/1/1 sys-

tems. Interestingly, we also find that M/M/1/2∗ system has smaller PAoI than M/M/1/LCFS, since

E[AM/M/1/LCFS]−E[AM/M/1/2∗] =
λ3(2µ+ λ)

(λ+ µ)2(µ2 + λµ− λ2)µ
≥ 0.

However, FCFS can still sometimes have smaller PAoI than M/M/1/2∗ system, as shown in Figure

4.7(b). This result indicates that although having buffer with size one can potentially reduce the

server’s load, it does not always minimize the PAoI. In Section 4.5 we will show that for the

multi-queue case, having buffer with size one can sometimes result a larger PAoI than FCFS.

(a) FCFS versus LCFS (b) FCFS versus M/M/1/2∗

Figure 4.7: FCFS for M/M/1 Queue with µ = 1

111

4.4.4 A Mixed Strategy

Notice that when we introduce the method of obtaining the exact PAoI of M/G/1 type queues

with FCFS in Subsection 4.4.1, the PAoI of queue i does not depend on the service sequence of

the other queues. That is, if FCFS is only applied in queue i while other work-conserving service

disciplines are applied in other queues, we can still use Equation (4.6) to obtain the exact PAoI

for queue i. Similarly, in Subsection 4.4.2 we find that the PAoI of queue i does not depend on

the service sequence of the other queues when LCFS is applied to queue i. Also, from Subsection

4.4.3 we find that FCFS sometimes has a smaller PAoI than LCFS. It thus motivates us to consider

a mixed strategy in which some queues are served following FCFS and the others are served by

LCFS. We can still use the methods introduced in Subsection 4.4.1 and 4.4.2 to obtain the exact

PAoI of each queue. When system parameters such as k, λ and µ are given, one can first calculate

the PAoI of each queue under FCFS and LCFS using the exact analysis that we introduced earlier,

and then choose the service discipline with smaller PAoI. We next introduce an example to show

how the mixed strategy is constructed.

Example 4.4.6. Suppose we have a system with k = 8. The service time of packets from all

queues are exponentially distributed with the same parameter µ = 1. The parameters of λi and

exact PAoI under each service discipline are shown in Table 4.1.

Queue 1 2 3 4 5 6 7 8
λi

1
20

1
3

1
20

1
20

1
3

1
20

1
20

1
20

PAoI FCFS 22.0175 5.6501 23.7663 24.3017 14.2053 60.5455 108 369
PAoI LCFS 22.8842 5.8018 25.4927 26.1755 7.8664 44.7605 54.2891 73.7247

Service
Discipline

under Mixed
Strategy

FCFS FCFS FCFS FCFS LCFS LCFS LCFS LCFS

PAoI Mixed
Strategy

22.0175 5.6501 23.7663 24.3017 7.8664 44.7605 54.2891 73.7247

Table 4.1: An Example of the Mixed Strategy

112

From Table 4.1 we see that the mixed strategy always selects the service discipline with smaller

PAoI. The PAoI of each queue under the mixed strategy is thus smaller than simply using FCFS or

LCFS over all queues. The PAoI of each queue under the mixed strategy can be obtained using the

method that we introduced in Subsection 4.4.1 and 4.4.2.

4.5 Numerical Study

In this section we will firstly use a numerical study to verify the exact solutions for

M/M/1+
∑

1∗ that we provided in Section 4.3.1, and then test the bounds of M/G/1+
∑

1∗ which

we provided in Section 4.3.2. We will then verify the exact solution for M/G/1 type queues with

LCFS. Besides, we will compare the performance of different service disciplines, and develop our

insights based on the numerical studies.

We begin our discussion by comparing simulation results with exact solutions for M/M/1+
∑

1∗

system with k = 2. The comparison is done by changing one parameter from λ1, λ2, µ1 and µ2

while keeping the others fixed. The results are shown in Figure 4.8. From plots in Figure 4.8 we

can see that the simulation results match the exact solutions that we provide in Section 4.3.1, thus

verifying our results. Figure 4.8(a) shows that when we increase the arrival rate for the priority

1 queue, its PAoI is drastically decreased, while the PAoI for queue 2 increasing linearly. Figure

4.8(b) shows that if we increase the arrival rate of queue 2, its PAoI will decrease dramatically,

while PAoI of queue 1 increases slowly. Figure 4.8(c) and (d) show that when service rate in-

creases, PAoI for both queues are decreased. Interestingly, we find that when queue 1 has a low

service rate, PAoI for both queues will be large, while PAoI of queue 1 is not significantly affected

by the service rate change of queue 2. It also implies that the average PAoI across all queues, i.e.,

1
k

∑k
i=1E[Ai], is more sensitive to the arrival rate and service rate of high priority queues. We then

test how the average PAoI across queues is affected by parameters, which we show in Figure 4.9.

From Figure 4.9(a) we see that by increasing the service rate of either queues, the average PAoI

across queues will be reduced, and increasing the service rate of queue 1 makes this reduction

more significant. Figure 4.9(b) shows that by increasing the arrival rate of queue 2, the average

PAoI across queues is decreased. This is because the PAoI for queue 1 is not sensitive to the arrival

113

rate of queue 2, as we also show in Theorem 4.3.4. However, when we increase the arrival rate of

queue 1, the average PAoI will decrease drastically at the beginning, and increase afterwards. This

is because the PAoI of queue 2 increases constantly when we increase λ1, which we also see from

Figure 4.8(a). Note that although we only discuss the optimization problem of minimizing aver-

age PAoI across queues here, since we have the exact solution for PAoI, we could also formulate

and solve optimization problems such as minimizing average weighted PAoI (similar to [119]) and

minimizing the maximum PAoI (similar to [100]).

(a) µ1 = 1
10 , λ2 = 1

10 , µ2 = 1
10 (b) λ1 = 1

10 , µ1 = 1
10 , µ2 = 1

10

(c) λ1 = 1
10 , λ2 = 1

10 , µ2 = 1
10 (d) λ1 = 1

10 , µ1 = 1
10 , λ2 = 1

10

Figure 4.8: M/M/1+
∑

1∗ Type Queues with Buffer Size One

114

(a) λ1 = 1
10 , λ2 = 1

10 (b) µ1 = 1
10 , µ2 = 1

10

Figure 4.9: Average PAoI of M/M/1+
∑

1∗ Queues with Buffer Size One

(a) λ2 = λ3 = 1
30 , P1, P2, P3 ∼

exp(1
10)

(b) λ2 = λ3 = 1
30 , P1, P2, P3 ∼

Unif(0, 20)

(c) λ2 = λ3 = 1
30 , P1, P2, P3 ∼

Gamma(10, 1)

Figure 4.10: Bounds for M/G/1+
∑

1∗ Type Queues with Buffer Size One

115

Next we consider queues with general service times. The bounds for M/G/1+
∑

1∗ type queues

with buffer size one and k = 3 are shown in Figure 4.10, where the bounds are provided by

Equation (4.4). We test the bounds by letting service time follow exponential, uniform and gamma

distributions. Note that in Figure 4.10 we provide the approximations for exponential service

too, although we have the exact solution for PAoI when service times are exponential. We find

from Figure 4.10 that Equation (4.4) serves as a decent approximation for the actual PAoI since the

bounds and simulation curves for all queues are close. The three service distributions in Figure 4.10

have the same mean but the LST of these distributions vary from each other. From our discussion

in Section 4.3 we find that the probability pi is related to the LST of service time. Therefore,

different service time distributions result in different probability pi, and further result in different

PAoI.

Then we consider queues with infinite buffer size. The exact PAoI and simulation results for

M/G/1 type queues with LCFS are shown in Figure 4.11. We also test the cases for exponential,

uniform and gamma distributed service times. In Figure 4.11 we see that the exact PAoI that we

provide in Subsection 4.4.2 match the simulation results. We also find that in M/G/1 type queues

with LCFS, by increasing the arrival rate of queue 1, PAoI of queue 1 is significantly reduced, and

PAoI for lower priority queues is increased at the same time. We do not present the numerical test

for M/G/1 queues with FCFS here, as its analysis is exact and also straightforward.

Next we address PAoI by comparing the single buffer size case against infinite buffer size

cases under FCFS and LCFS. In fact, since in the M/G/1 system with infinite buffer size, if we

keep replacing the packets in buffers with new arrivals, then there is at most one packet waiting

in each queue, therefore the system will act exactly the same as M/G/1+
∑

1∗ system. So here we

consider the PAoI under M/G/1+
∑

1∗and M/G/1 with FCFS and LCFS altogether. In Figure 4.12

we plot the PAoI for each queue in the case of k = 2, and in Figure 4.13 we plot the average PAoI

across all queues (1
k

∑k
i=1E[Ai]). In both Figure 4.12 and 4.13 we use exact results for exponential

service case with FCFS, LCFS and M/M/1+
∑

1∗ model with k = 2. From Figure 4.12 we see that

under FCFS, LCFS and M/M/1+
∑

1∗, PAoI of queue 2 is sensitive to the change of λ1, however

116

(a) λ2 = λ3 = 1
50 , P1, P2, P3 ∼

exp(1
10)

(b) λ2 = λ3 = 1
50 ,P1, P2, P3 ∼

Unif(0, 20)

(c) λ2 = λ3 = 1
50 ,P1, P2, P3 ∼

Gamma(10, 1)

Figure 4.11: M/G/1 Type Queues with LCFS

PAoI of queue 1 is less sensitive to λ2. This is because the PAoI for queue 2 highly depends

on the busy time of queue 1. For FCFS, the PAoI increases greatly when arrival rate becomes

large. This is because under FCFS, every packet that arrives the system needs to be processed, and

increasing arrival rate enlarges the average queue size, causing packets to wait a longer time. From

the average PAoI across queues shown in Figure 4.13, we can see that increasing the arrival rate

for the high priority queue enlarges the PAoI much faster than increasing λ2. It indicates that when

designing the priority for queues to minimize average PAoI across queues, the one with the lowest

traffic intensity should be allocated with the highest priority. We also proved this result in Section

4.4 for M/G/1 queues with FCFS. Note that in Subsection 4.4.4 we introduced a mixed strategy

for smaller PAoI. However, the PAoI of each queue under the mixed strategy is the smaller value

117

(a) λ2 = 1
100 , µ1 = µ2 = 1

10 (b) λ1 = 1
100 , µ1 = µ2 = 1

10

Figure 4.12: PAoI under Different Service Disciplines

(a) λ2 = 1
100 , µ1 = µ2 = 1

10 (b) λ1 = 1
100 , µ1 = µ2 = 1

10

Figure 4.13: Average PAoI Across Queues under Different Service Disciplines

of the PAoI under FCFS and LCFS. For conciseness, here we do not plot the PAoI for the mixed

strategy.

Also, it is interesting to observe that having a single-sized buffer at each queue is not always

the optimal strategy to minimize PAoI, as we observe from Figure 4.12 and Figure 4.13. This fact

can be seen more clearly in Figure 4.12(b) and Figure 4.13(b) when the traffic intensity of queue 2

is higher. In Figure 4.12(b), the PAoI of queue 1 under FCFS is lower than that under the other two

policies. In Figure 4.13(b), FCFS results in lower average PAoI than the other two policies when

the traffic intensity is low. This result also indicates that LCFS is not the optimal policy among

118

all work-conserving non-preemptive policies when minimizing PAoI. The advantage of FCFS is

more obvious when the traffic intensity is small since when traffic intensity becomes large, the

drastic increase in waiting time E[W] under FCFS overshadows the effect caused by the number

of packets that PAoI is averaged on.

We now compare the performance of priority queue policy (which we introduce in this paper),

Maximal Age First (MAF) (see [134]) and random policy (see [115]) in M/M/1/1 +
∑

1∗ system.

Under the MAF policy, the server would choose the queue with the largest age as the candidate to

serve next. Under the random policy, the server would pick a queue randomly and equally likely

from the queues with full buffers. The simulation results for these three policies in a system with

k = 2 are provided in Figure 4.14. As we can see from figure 4.14(a), when the traffic intensity of

the first queue is large, priority queue policy has similar performance with the other two policies

on queue 1, however priority queue policy causes a higher PAoI for queue 2. This is because queue

1 has higher priority under the priority queue policy and the server is busy processing packets from

queue 1 most of times. When traffic intensity of queue 2 is large, priority queue policy results a

smaller PAoI for queue 1 than the other policies, as we can see from Figure 4.14(b). It is because

priority queue policy guarantees packets with high priorities to be transmitted once the server

becomes available. Like we mentioned in Section 4.1, there could be data sources which have

information more important or time-sensitive than the other data sources. Priority queue policy

actually helps reduce the PAoI of these data sources by assigning them with higher priorities. Even

when the traffic of those unimportant data sources is large, priority queue policy can still guarantee

that the PAoI of these prioritized sources remains at a low level, which we can see from Figure

4.14(b). When we consider the average PAoI across queues, as we see from Figure 4.14(c) and

(d), priority queue policy can result a smaller average PAoI than the other two policies if higher

priority is assigned to queues with low traffic intensity. This also implies that in a system where

traffic intensities of queues are not even, priority queue policy is recommended to be applied to

reduce the average PAoI over queues.

119

(a) λ2 = 1
50 , µ1 = µ2 = 1

10 (b) λ1 = 1
50 , µ1 = µ2 = 1

10

(c) λ2 = 1
50 , µ1 = µ2 = 1

10 (d) λ1 = 1
50 , µ1 = µ2 = 1

10

Figure 4.14: Policy Comparison

4.6 Concluding Remarks and Future Work

In this research we considered a multi-class multi-buffer queueing system where each class of

data source generates packets according to a Poisson process and a single processor uses a static

priority scheme to serve the packets. We characterized the PAoI for such a system under two

situations: (i) when the buffer size for each queue is one; (ii) when the buffer size for each queue

is infinite and service disciplines within each queue can be FCFS or LCFS. We obtained exact

expressions for PAoI in case (i) when the service times are exponential, and bounds (which serve

as excellent approximations) for case (i) when service times are generally distributed. The method

of obtaining PAoI for case (i) becomes cumbersome when the number of queues is large. For case

(ii) with general service times, we provide the exact methods for calculating PAoI, and this method

120

can be applied when the number of queues is large.

Using PAoI results we make a few observations that are useful in determining priorities, ser-

vice disciplines and sampling rates for arrivals. We first find that LCFS is not the optimal service

discipline in minimizing PAoI, and we also find that systems with buffer size one at each queue

does not always provide smaller PAoI than the systems with infinite buffer size. From both ana-

lytical and numerical results, we show that for minimizing the average PAoI across queues, it is

beneficial to give higher priorities to queues with lower traffic intensities. Besides, we find that

the PAoI of queues with low priorities are more sensitive to the packet arrival rate of high priority

queues, and increasing the arrival rate for one queue, while reducing the PAoI for this certain data

source, would significantly increase the PAoI of queues with lower priorities. We also provide a

mixed strategy which allows the server to use different service disciplines (FCFS or LCFS) across

queues for a smaller PAoI.

Since in this paper we mainly focus on static queue priorities, in our future work we will

consider a system with dynamic priorities. Besides, in smart manufacturing systems where the

status of machines changes over time, sampling with a time-varying rate is also possible and it is

interesting to consider the PAoI with time-varying arrival rates. Moreover, the variance of PAoI

is also useful in measuring the data freshness in real-time systems, and the distribution of PAoI

is also of interest. Thus, there are numerous opportunities for research in the area of PAoI for

multi-priority queues.

121

5. AGE OF INFORMATION FOR SINGLE BUFFER SYSTEMS WITH VACATION

SERVER

5.1 Introduction

Age of Information (AoI) has drawn wide attention of researchers recently due to its appli-

cations in sensor networks, communication networks and autonomous vehicle systems [99, 105].

Different from the long-established queueing metrics such as delay or waiting time, AoI measures

the time elapsed since the generation time of a packet that is most recently delivered. AoI is

deemed as a new but useful metric to describe the freshness of data and timeliness of information

[138, 100, 137]. An example of application of AoI can be found in smart manufacturing where

data sensed by sensors at machines are further processed by edge devices and processors with lim-

ited processing capabilities. Processed information would be used for estimating the Remaining

Useful Life (RUL) [139], detecting defects of manufactured products [140], or making real-time

process controls [141]. However, the long processing time of data packets and inter-sampling time

would prevent the decision maker from knowing the real-time status of the ongoing manufacturing

processes. In this scenario, AoI can be used as a metric to characterize the information freshness.

AoI was first defined by [99] to describe the freshness of data and it is usually analyzed by

queueing models (see [105, 100, 101, 104]). For the purpose of introducing the idea of AoI, we

only discuss the system with one date source, which we call the primary data source. Since it

is widely accepted and documented that sampling following Poisson processes is effective [102],

we assume that the time period between generating two data packets (although these chunks of

information could be in several packets, we here regard each chunk itself as a packet) in this

primary data source, follows an exponential distribution with parameter λ. Packets generated by

the data source are sent to the server for further processing. There is a buffer at the server which

can hold at most one packet at a time. We assume that only the most recent arrived packet is kept in

the buffer as it contains the freshest information about the data source. If a new packet is generated

122

and there is an old packet waiting in the buffer, the old packet will be discarded when the new

packet enters the buffer. There is a single server in the system which processes (serves) packets

from the buffer once it becomes available. The processing time of each packet is i.i.d. The age at

time t is thus defined as ∆(t) = t−max{r{l} : C{l} ≤ t}, where r{l} is the generation time of the

lth packet that is processed by the server, and C{l} is the time when this packet has been processed

by the server. Note that the packets that are not processed by the server are not included in the age

calculation. The time-average age is then defined as ∆̄ = limT→∞
1
T

∫ T
0

∆(t)dt. By assuming the

system being ergodic, we have E[∆] = limt→∞E[∆(t)] = ∆̄, and in this paper we use the term

“AoI” to refer E[∆]. While AoI is a useful metric to measure data freshness, many researchers

also analyzed a metric called Peak Age of Information (PAoI) for its tractability [105, 100, 101].

We let the lth peak of ∆(t) be A{l}, and define the expectation of this peak value, i.e., E[A{l}], as

PAoI.

Specifically, in this paper we consider AoI in scenarios where the server/processor in the com-

munication network takes “vacations” over time. We assume that the server takes a vacation once

a packet has been processed. If the server finds no packet waiting in the buffer upon its returning

from a vacation, it then takes another vacation. This specific model is motivated by the application

in smart manufacturing, where keeping the energy-consuming server/processor idling when there

is no data packet, is not efficient in terms of energy saving. To save system energy as well as guar-

antee other system performance, a strategy is letting the server go for a low-energy-cost sleeping

period when there is no packet waiting in the buffer, and wake up if a packet is observed in buffer

when a sleeping period is over. The advantage of this strategy in energy saving has been discussed

in [142, 143], however its performance in AoI related metrics have not been studied. Another

motivation of our model comes from the underwater sensor networks in the petroleum industry

or underwater environment monitoring, where acoustic transmissions are not energy efficient and

would result in the batteries needing frequent replacements (see [144, 145]). In such a case, an

efficient way for data transmission is to store the sensed data in an underwater node, and use a

rechargeable autonomous underwater vehicle that is sent from surface to upload or collect data

123

from the node in a periodic way (see [146, 147]). So we abstract the underwater vehicle arrival as

a completion of a vacation, collection of data as service and leaving back to the surface as the start

of the next vacation. A third application of our model can be found in remote health monitoring,

where the health data is acquired by a wearable device from a patient and transmitted to the health-

care provider over time (see [148, 149]). Our model corresponds to the case where a doctor at the

healthcare center checks the patient’s updated information from time to time, where the time for

the doctor to analyze the data can be modeled as the service time and the time between the doctor

checks the updated data for a specific patient can be regarded as the vacation time.

In addition, this vacation server model has a wide range of other applications in smart manu-

facturing sensor networks and computer-communication systems where the server has additional

tasks aside from processing the primary data source of interest [47, 4, 135]. Whenever the server

schedules these “non-primary” tasks during the idling period of the primary data source, we can

regard this server as “taking vacations”. Many queueing network systems such as the priority

queue system [4] and the polling system [150], can also be regarded as vacation server systems.

Systems with server maintenance (see [151]) or server turning on/off (see [152]) can be modeled as

vacation server systems as well. Other vacation server models have been discussed in the queueing

literature such as [153, 154, 155, 156], however age related metrics in vacation server models have

not been fully studied yet.

In this paper we consider three following variations of the vacation server model with single

buffer system:

• Conventional Buffer System (CBS) (see [157, 158, 159, 160]): In this system, the buffer

becomes empty only when the server finishes serving the packet. New arrivals during pro-

cessing will be rejected.

• Buffer Relaxation System (BRS) (see [158, 159]): In this system, the buffer becomes available

once the server starts serving. The vacation will start once a service is done.

• Conventional Buffer System with Preemption in Service (CBS-P): In this system, new ar-

124

rival during processing will preempt the packet in service. The preempted packet will be

discarded.

Note that in BRS, there could be at most two packets in the system at the same time, with one in

processing and one waiting in the buffer. We also notice that in BRS, the server will anyway take

a vacation after processing a packet, and the packet arriving during processing will be processed

only when the vacation is over. This service discipline is also called gated in some literatures about

vacation servers (see [150, 49, 85]). In these three systems above, a packet arriving during vacation

will always preempt the packet waiting in the buffer.

The major contributions of this paper are summarized as follows:

• We provide a decomposition approach which decomposes the peak age of single buffer sys-

tem into independent components, so that the Laplace-Stieltjes Transform (LST) of peak age

in CBS, BRS and CBS-P can be obtained when the vacation time is i.i.d. We then provide

closed-form expressions for AoI, PAoI and variance of peak age for CBS, BRS and CBS-P.

• We prove that when vacation time is i.i.d., BRS always has smaller PAoI than CBS, regard-

less of vacation or service time distribution. We also provide the condition under which

CBS-P always has smaller PAoI than CBS.

• Unlike PAoI, for AoI we show that when vacation time is i.i.d., BRS does not always have

smaller AoI than CBS, and CBS-P does not always have smaller AoI than CBS.

• We extend our discussion to systems with non-i.i.d vacation times, and provide an approach

to calculate PAoI for polling systems with Markovian polling schemes. We show that in

polling systems, BRS no longer has advantage over CBS in terms of small PAoI, and CBS-P

has smaller PAoI than CBS when the service time is exponential.

The rest of this paper is organized as follows: A summary of the literature is provided in Section

5.2. In Section 5.3 we consider the cases where server takes i.i.d vacations. In Section 5.4 we

consider the case with non-i.i.d vacations, and discuss the polling system as an example of non-i.i.d

125

vacation model. We perform numerical studies and develop insights in Section 5.5, and provide

concluding remarks and ideas of future work in Section 5.6.

5.2 Related Work

The system with vacation server has been studied by many researchers due to its wide appli-

cations [153, 154, 155, 156, 135, 150]. However, most of the previous papers focused on metrics

such as average waiting time, queue length, throughput and rejection rate. The AoI related met-

rics of the system with vacation server has not been fully studied. In the last few years, the data

freshness has drawn much attention due to the need of timely information processing and sharing.

AoI and PAoI as metrics that measure data freshness, have been studied mostly from a queue-

ing perspective. Kaul et al [99] first introduced the idea of AoI, and provided the average AoI

for M/M/1, M/D/1 and D/M/1 queues. Costa et al [105] provided the average AoI and PAoI for

M/M/1/1, M/M/1/2 and M/M/1/2* queues (the asterisk means keeping the most recent packet in

the buffer), and pointed out that retaining the most recent packet is more efficient than keeping all

packets that the data source generates. Najm and Telatar [114] considered M/G/1/1 queue with

preemption. Najm and Nasser [110] considered Last Come First Serve (LCFS) scheme with and

without preemption in a single queue system with single buffer and gamma service time. M/G/1/1

queue systems with hybrid ARQ (HARQ) protocols are discussed in Najm et al[161]. Soysal and

Ulukus [111] considered G/G/1/1 type queues and provided bounds of AoI for different arrival or

service processes. Zou et al [112] discussed the waiting procedure in M/G/1/1 and M/G/1/2* sys-

tems. Inoue et al [101] discussed the relationship between AoI and PAoI for single queue systems,

and derived the LST of AoI and PAoI for different variations of single queue systems. Some recent

papers have considered the system with single server but multiple queues. Huang and Modiano

[100] considered PAoI of multi-class M/G/1 and M/G/1/1 queues, and they assumed there is one

single buffer for all queues in the M/G/1/1 case. Kaul and Yates [128] also considered a model

with priority queues with and without waiting rooms for preempted packets. Moltafet et al [162]

derived the closed-form of AoI for multi-class M/G/1 queues with First Come First Serve (FCFS)

scheme. The system with packet deadlines is considered in Kam et al[163]. Many research arti-

126

cles considered AoI/PAoI in slotted time systems, such as [115, 123, 120, 121, 119]. However, as

pointed out by Talak et al [119], PAoI/AoI for the discrete time systems may differ significantly

from their continuous time counterpart. For continuous time systems, in many cases the average

AoI or PAoI is difficult to obtain, and advanced modeling and mathematical methodologies are

thus needed, such as the Stochastic Hybrid System (SHS) used in [125, 104, 128]. Among all the

AoI related literature, to the best of our knowledge, there are very few papers discussing systems

with vacation server. Maatouk et al [164] considered a special case where server vacations occur

in a random manner. Najm et al [103] considered a system with two streams with different pri-

orities and discussed several service disciplines for the low priority stream. Xu and Gautam [4]

discussed the M/G/1/2* and M/G/1 priority queues and allowed each queue to have an individual

buffer. Closed-form expressions for PAoI under different service disciplines are derived in [4] by

modeling the system as vacation server system. However, the general system with single buffer

and vacation server has not been fully studied. It is still unclear which variation of the single buffer

system, which we introduced in Section 5.1, has smallest AoI or PAoI. And it is unknown how

vacation times will influence the AoI/PAoI performance of each system. In this paper, we extend

our discussion of vacation server in [4], and introduce a simple but useful decomposition approach

to derive closed-form expressions of AoI and PAoI for different variation of the single buffer sys-

tem. Using the decomposition approach we can also obtain the variance of peak age for general

queueing systems with single buffer. We further discuss the advantage of each system under certain

conditions. We then extend our discussion to polling system with a single buffer at each queue,

and show that the decomposition approach can be easily applied to multi-queue systems to derive

closed-form expression of PAoI.

5.3 Age of Information for Systems with Independent Vacations

In this section we consider the system in which the vacations that the server takes are i.i.d. If

we regard a vacation as the period when server is sleeping for energy saving, then this setting is the

same as the multi-sleep scheme that was discussed in [142]. Later in Section 5.4 we will discuss

the case where vacations are non-i.i.d. Throughout this section, we assume that each vacation V

127

that the server takes is a random variable with Laplace–Stieltjes transform (LST) V ∗(s). The server

will take a vacation once the service is over. When the server comes back from a vacation, it will

process the packet if the buffer is non-empty; otherwise a new vacation is taken. In this section we

consider three variations of the system by varying the assumption of buffer availability: CBS, BRS

and CBS-P, which we defined in Section 5.1.

Figure 5.1: Age of Information Decomposition For Non-preemptive Service Systems.
Variables r{l}, S{l} and C{l} are the generation time, time to start service and com-
pletion time for lth packet that is served by the server. The second age peak A{2} is
decomposed into three components A{2} = G{1} + I{2} + H{2}. The first component
G{1} is the waiting time of the first served packet. The second component I{2} is the
time between the server starts serving two packets. The third component H{2} is the
service time of the second served packet.

In our previous work [4], we decomposed PAoI into four components where each component

could be derived easily. However, such a decomposition cannot be used to derive AoI as the

decomposed components are not mutually independent. Therefore, here we introduce a new de-

composition method for computing AoI and PAoI in non-preemptive service systems, i.e., CBS

and BRS. Since the decomposition approach for CBS-P differs from the decomposition approach

128

for CBS and BRS, we leave our discussion for CBS-P in Appendix B.2. From Figure B.1, we

find that the peak age of CBS or BRS is always the time span from the completion time of the

recently processed packet, to the generation time (arrival time) of the previously processed packet.

This time span can then be divided into three components: waiting time G (in queue) of the pre-

vious packet, inter-service-starting time I between the recent and previous processed packets, and

service time H of the recent packet. These three components are mutually independent. This is

because how long the packet has waited in the buffer has no influence on its processing time or the

vacation that the server will take next, thus G is independent of I and H . Also because the service

time does not depend on how long the previous vacation lasted, then G, I and H are mutually

independent. Thus the PAoI of this system can be given as

E[A] = E[G] +E[I] +E[H], (5.1)

and the AoI can be given as

E[∆] =
E[(G+ I +H)2]−E[(G+H)2]

2E[I]
=
E[I2]

2E[I]
+E[G] +E[H]. (5.2)

Note that Equation (5.1) and (5.2) are for non-preemptive service systems, i.e., CBS and BRS.

The discussion for CBS-P is left in Appendix B.1. It is important to point out that Equations (5.1)

and (5.2) still hold true even when the vacations are non-i.i.d., as the independence of the three

decomposed component does not rely on the assumption about vacations.

Assume the LST of G, I and H exist and are given by G∗(s), I∗(s) and H∗(s). Since those

three components are mutually independent, we have the LST of A as

A∗(s) = G∗(s)I∗(s)H∗(s). (5.3)

PAoI can be easily obtained by calculating the first moment of A∗(s). The variance of peak age

129

can be used as a metric to measure the age violations, and the variance of peak age can be given as

V ar(A) = G∗(2)(0) + I∗(2)(0) +H∗(2)(0)− {G∗(1)(0)}2 − {I∗(1)(0)}2 − {H∗(1)(0)}2(5.4)

= V ar(G) + V ar(I) + V ar(H). (5.5)

It is shown in [4] that

E[G] =
1

λ
(1−E[e−λW]), (5.6)

where W is the time period that the buffer is occupied. Note that if we consider a different system

where we only keep the first packet that arrives in the buffer and reject the others, W is also

the waiting time of the packet that enters the buffer. If W ∗(s) is the LST of W , then E[G] =

1
λ
(1−W ∗(λ)). Therefore, once we have W ∗(s) and I∗(s), we are able to obtain E[∆] and E[A].

In order to obtain the variance of A, one also needs to know the LST of G. The LST of G can also

be written as a function of W ∗(s), as shown in the following lemma.

Lemma 5.3.1. G∗(s) = λ
λ+s

+ s
λ+s

W ∗(λ+ s) for the system with single buffer.

Proof. It is shown in [4] that P (G ≤ x|m(t) = m,W = t) = 1 − (t−x
t

)m if there are m(t) = m

packets arriving during time W . From the fact that E[e−sG|m(t) = 0,W = t] = e−st we have

E[e−sG|W = t] =

∫ t

x=0

e−sx
∞∑
m=1

m(t− x)m−1

tm
e−λt

(λt)m

m!
dx+ e−ste−λt

=
λ

λ+ s
+

s

λ+ s
e−(λ+s)t.

By unconditioning on W = t we can prove the lemma.

In the remaining part of this section we introduce the way to derive I∗(s) and W ∗(s) for CBS,

BRS and CBS-P.

130

5.3.1 Conventional Buffer System

In this subsection we mainly derive theE[∆],E[A] and V ar(A) of the CBS where arrivals are

rejected when the server is serving. Recall that in CBS, the buffer will not be available until the

processing is done, and the server will start a vacation once the buffer becomes empty. We provide

the results for CBS in the following theorem.

Theorem 5.3.2. The AoI of CBS is given as E[∆CBS] =

−
H∗(2)(0)+2H∗(1)(0)

V ∗(1)(0)
1−V ∗(λ)+

V ∗(2)(0)
1−V ∗(λ)+2

V ∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

2

(
H∗(1)(0)+

V ∗(1)(0)
1−V ∗(λ)

) + 1
λ

+ V ∗(1)(λ)
1−V ∗(λ)

− H∗(1)(0), the PAoI of CBS

is given as E[ACBS] = 1
λ

+ V ∗(1)(λ)−V ∗(1)(0)
1−V ∗(λ)

− 2H∗(1)(0), and the variance of peak age of CBS is

given by V ar(ACBS) = 1
λ2

+ V ∗(2)(0)−V ∗(2)(λ)
1−V ∗(λ)

−
(
V ∗(1)(λ)−V ∗(1)(0)

1−V ∗(λ)

)2

+ 2H∗(2)(0)− 2
(
H∗(1)(0)

)2
.

Proof. We first show that I∗(s) = H∗(s)V
∗(s)−V ∗(s+λ)
1−V ∗(s+λ)

for CBS. Notice that the period I starts

once the server starts serving, and ends when the server comes back from a vacation and observes

a packet waiting in the buffer. Therefore we have I∗(s) = E[e−s(H+B)], where B is the time

period during which the server is continuously in vacation. Let B∗(s) be the LST of B. By

conditioning on the length of the first vacation V1 that the server takes after serving a packet, and

also conditioning on the number of arrivals (including the rejected ones) during V1, i.e., m(V1),

we have E[e−sB|V1 = v1,m(V1) ≥ 1] = e−sv1 and E[e−sB|V1 = v1,m(V1) = 0] = e−sv1B∗(s).

Unconditioning on m(v1) we have E[e−sB|V1 = v1] = e−sv1(1 − e−λv1) + e−sv1B∗(s)e−λv1 .

Then by unconditioning on V1, we have B∗(s) = V ∗(s) − V ∗(s + λ) + B∗(s)V ∗(s + λ) and

B∗(s) = V ∗(s)−V ∗(s+λ)
1−V ∗(s+λ)

. Therefore we have I∗(s) = H∗(s)V
∗(s)−V ∗(s+λ)
1−V ∗(s+λ)

.

We next derive the expression forE[G]. From Equation (5.6) we know thatE[G] can be given

using the formula of the LST of W , where W is the time period when the buffer is occupied. So

we now derive the LST of W . Since when the buffer becomes occupied, the server must be on a

vacation. From Campbell’s Theorem (P173, Theorem 5.14 in [129]) we have

E[e−sW |m(t) = m,V1 = t] =

∫ t

0

e−sx
mxm−1

tm
dx.

131

Unconditioning on m(t) = m and using the fact that P (m(t) = m|m(t) ≥ 1) =

(λt)m

m!
e−λt

1−e−λt ,we have

E[e−sW |V1 = t,m(V1) ≥ 1] =
∞∑
m=1

∫ t

x=0

e−sx
mxm−1

tm
e−λt

1− e−λt
(λt)m

m!
dx

=

∫ t

x=0

e−sx
e−λt

1− e−λt
∞∑
m=1

(λx)m−1

(m− 1)!
λdx

=
e−λt − e−st

(s− λ)(1− e−λt)
λ.

Now we need to find P (t < V1 ≤ t+ dt|m(V1) ≥ 1). From

P (V1 ≤ x|m(V1) ≥ 1) =
P (V1 ≤ x,m(V1) ≥ 1)

P (m(V1) ≥ 1)
=

∫ x
0
dV (u)(1− e−λu)∫∞

0
dV (u)(1− e−λu)

=

∫ x
0
dV (u)(1− e−λu)

1− V ∗(λ)
,

we have P (t < V1 ≤ t+ dt|m(V1) ≥ 1) = dV (t)(1−e−λt)
1−V ∗(λ)

. Therefore

E[e−sW |m(V1) ≥ 1] =

∫ ∞
0

E[e−sW |V1 = t,m(V1) ≥ 1]
dV (t)(1− e−λt)

1− V ∗(λ)

=

∫ ∞
0

e−λt − e−st

(s− λ)(1− e−λt)
λ
dV (t)(1− e−λt)

1− V ∗(λ)

=
V ∗(λ)− V ∗(s)

(s− λ)(1− V ∗(λ))
λ.

Since W is the period that the buffer is occupied, and the buffer is only occupied when m(V1) ≥ 1,

so thatE[e−sW |m(V1) ≥ 1] = E[e−sW].We thus haveW ∗(s) = V ∗(λ)−V ∗(s)
(s−λ)(1−V ∗(λ))

λ. Using L’Hospital

rule at s = λ we have E[e−λW] = −λV ∗(1)(λ)
1−V ∗(λ)

. From the fact that E[G] = 1
λ
(1 − W ∗(λ)), we

have E[G] = 1
λ

+ V ∗(1)(λ)
1−V ∗(λ)

. Then from Equation (5.1) and (5.2) we can obtain the closed-form

expressions for AoI and PAoI using the expression for E[G] and I∗(s). By Lemma 5.3.1 we have

G∗(s) = λ
λ+s

1−V ∗(s+λ)
1−V ∗(λ)

. By taking the second derivative of G∗(s) we have

G∗(2)(0) =
2

λ2
+

2

λ

V ∗(1)(λ)

1− V ∗(λ)
− V ∗(2)(λ)

1− V ∗(λ)
.

132

Using Equation (5.4), the variance A is given by

V ar(ACBS) =
1

λ2
+
V ∗(2)(0)− V ∗(2)(λ)

1− V ∗(λ)

−
(
V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)

)2

+ 2H∗(2)(0)− 2
(
H∗(1)(0)

)2
.

In the following corollary we provide the E[∆], E[A] and V ar(A) for the case where service

times and vacation times are both exponential.

Corollary 5.3.3. If the vacation time is exponentially distributed with parameter v, and service

time is exponentially distributed with parameter µ, then we haveE[∆CBS] = 1
λ

+ 1
v
− λ+v+µ

vλ+µλ+µv
+

1
v+λ

+ 2
µ

, E[ACBS] = 1
λ

+ 1
v

+ 1
v+λ

+ 2
µ

and V ar(ACBS) = 1
(λ+v)2

+ 1
λ2

+ 1
v2

+ 2
µ2
.

Proof. When the vacation time is exponentially distributed, we have I∗(s) = µvλ
(µ+s)(v+s)(λ+s)

. So

from E[I] = vλ+µλ+µv
µvλ

and E[I2] = 2 (vλ+µλ+µv)2

µ2v2λ2
− 2λ+v+µ

µvλ
, we have V ar(I) = 1

µ2
+ 1

v2
+ 1

λ2
.

Also we know E[G] = 1
v+λ

and E[G2] = 2
(v+λ)2

. So that we have the results from Equation (5.1)

and (5.2).

5.3.2 Buffer Relaxation System

In this subsection we derive the AoI and PAoI for the BRS, where the buffer becomes avail-

able as soon as the service starts. Recall that the server will go on a vacation after serving one

packet. The arrival during processing a packet will be processed after the vacation is over. A po-

tential benefit by applying this “gated” policy is that it prevents the server from serving the buffer

continuously without taking vacations, when the arrival rate is large. As discussed in Section 5.1,

many systems can be modeled as queueing systems with vacation server, and the vacation is also

important for some systems such as the priority queue systems [4], in which “vacation” actually

corresponds to “serving the non-primary queues”. Therefore, it is sometime crucial for the server

to take vacations. Also, as we will see in this subsection, BRS may have advantage over CBS in

some cases.

133

Next we derive the AoI and PAoI for BRS in the following theorem.

Theorem 5.3.4. The AoI of BRS is given by E[∆BRS] = −I∗(2)(0)

2I∗(1)(0)
+ 1

λ
+ V ∗(1)(λ)H∗(λ) +

V ∗(λ)H∗(1)(λ) + V ∗(1)(λ)
1−V ∗(λ)

V ∗(λ)H∗(λ) − H∗(1)(0), and PAoI of BRS is given by E[ABRS] =

−I∗(1)(0) + 1
λ

+ V ∗(1)(λ)H∗(λ) + V ∗(λ)H∗(1)(λ) + V ∗(1)(λ)
1−V ∗(λ)

V ∗(λ)H∗(λ) − H∗(1)(0), where

I∗(s) = H∗(s)V ∗(s) +H∗(λ+ s)V
∗(s+λ)(V ∗(s)−1)

1−V ∗(s+λ)
.

Proof. We first show that in BRS, I∗(s) = H∗(s)V ∗(s) +H∗(λ+ s)V
∗(s+λ)(V ∗(s)−1)

1−V ∗(s+λ)
. Since each I

starts with processing a packet with processing time H, if there is more than one arrival during the

processing time H , then the server only takes one vacation after processing the current packet. If

there is no arrival during this processing time, the server takes vacations until a packet is observed

in buffer when a vacation is over. By conditioning on scenarios during H , we have E[e−sI |H =

h,m(H) ≥ 1] = e−shV ∗(s), and E[e−sI |H = h,m(H) = 0] = e−shB∗(s). We thus have

E[e−sI |H = h] = e−shV ∗(s)(1 − e−λh) + e−shB∗(s)e−λh. Therefore E[e−sI] = H∗(s)V ∗(s) −

H∗(λ+ s)V ∗(s) +H∗(λ+ s)B∗(s), where B∗(s) = V ∗(s)−V ∗(s+λ)
1−V ∗(s+λ)

.

We next derive E[G] for BRS. From Equation (5.6) we know that E[G] can be written as

a formula of the LST of W , which is the time period when the buffer is occupied. So in the

following we first derive the LST of W . If there is more than one arrival before the server returns

from the first vacation, then

E[e−sW |m(V1 +H) ≥ 1] =
V ∗(λ)H∗(λ)− V ∗(s)H∗(s)
(s− λ)(1− V ∗(λ)H∗(λ))

λ.

If there is no arrival before the server returns from the first vacation, we have

E[e−sW |m(V1 +H) = 0] =
V ∗(λ)− V ∗(s)

(s− λ)(1− V ∗(λ))
λ.

134

We thus have

E[e−sW] =
V ∗(λ)H∗(λ)− V ∗(s)H∗(s)
(s− λ)(1− V ∗(λ)H∗(λ))

λ {1− V ∗(λ)H∗(λ)}

+
V ∗(λ)− V ∗(s)

(s− λ)(1− V ∗(λ))
λV ∗(λ)H∗(λ).

Using L’Hospital rule at s = λ, we have

E[e−λW] = −λV ∗(1)(λ)H∗(λ)− λV ∗(λ)H∗(1)(λ)− V ∗(1)(λ)

1− V ∗(λ)
λV ∗(λ)H∗(λ).

ThereforeE[G] = −V ∗(1)(λ)H∗(λ)−V ∗(λ)H∗(1)(λ)− V ∗(1)(λ)
1−V ∗(λ)

λV ∗(λ)H∗(λ). Using Equation

(5.1) and (5.2) we can then obtain the PAoI and AoI of BRS.

We can also obtain the variance of peak age for BRS, although its closed-form expression is

complex. To obtain the variance of peak age, we need the LST of G, I and H as we show in

Equation (5.4). The LST of I has been given in Theorem 5.3.4, which is I∗(s) = H∗(s)V ∗(s) +

H∗(λ+ s)V
∗(s+λ)(V ∗(s)−1)

1−V ∗(s+λ)
. We also have

G∗(s) =
λ

λ+ s

{
1 +

V ∗(λ)H∗(λ)

1− V ∗(λ)
(1− V ∗(λ+ s))− V ∗(λ+ s)H∗(λ+ s)

}

from the fact that G∗(s) = λ
λ+s

+ s
λ+s

W ∗(λ+ s) where W ∗(s) is given in Theorem 5.3.4. We will

show the numerical results for the variance of peak age for BRS in Section 5.5. In the next corollary

we show the results for the system with exponential service time and exponential vacation time.

Corollary 5.3.5. For exponential vacation time with parameter v and exponential service time

with parameter µ, we haveE[∆BRS] =
1
v2

+ 1
vµ

+ 1
µ2

+ µ
λv(λ+µ)

+ µ

λ2(λ+µ)
+ µ

λ(λ+µ)2

1
v

+ 1
µ

+ 1
λ
− 1
λ+µ

+ 1
λ+v

+ λv
(λ+µ)2(λ+v)

+ 1
µ

and E[ABRS] = µ2−µv+λµ
(λ+µ)2(λ+v)

+ 1
v

+ 2
µ

+ 1
λ
.

Proof. The results follow from Theorem 5.3.4 with V ∗(s) = v
v+s

and H∗(s) = µ
µ+s

.

135

A question is whether BRS always has smaller AoI or PAoI than CBS. In the next theorem we

show that BRS always has smaller PAoI than CBS, for all arbitrary service and vacation distribu-

tions.

Theorem 5.3.6. PAoI in BRS is always smaller than PAoI in CBS, if the arrival process is Poisson,

and service times as well as vacation times are i.i.d.

Proof. From Theorem 5.3.2 we have

E[ACBS] = −2H∗(1)(0) +
1

λ
+
V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
,

and from Theorem 5.3.4 we have

E[ABRS] = −2H∗(1)(0)− V ∗(1)(0) +
1

λ
+ V ∗(1)(λ)H∗(λ) + V ∗(λ)H∗(1)(λ)

+
H∗(λ)V ∗(λ)

1− V ∗(λ)
(V ∗(1)(λ)− V ∗(1)(0)).

We then have

E[ACBS]−E[ABRS]

=
V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
(1−H∗(λ)V ∗(λ)) + V ∗(1)(0)− V ∗(1)(λ)H∗(λ)− V ∗(λ)H∗(1)(λ)

=

[
V ∗(1)(λ)− V ∗(1)(0)V ∗(λ)

]
(1−H∗(λ)) + V ∗(λ)H∗(1)(λ)(V ∗(λ)− 1)

1− V ∗(λ)
.

Notice that H∗(1)(λ) ≤ 0 and 0 ≤ V ∗(λ) ≤ 1, we have V ∗(λ)H∗(1)(λ)(V ∗(λ) − 1) ≥ 0.

Since 0 ≤ H∗(λ) ≤ 1, to show that E[ACBS]−E[ABRS] ≥ 0, we only need to show V ∗(1)(λ)−

V ∗(1)(0)V ∗(λ) ≥ 0. Since V ∗(1)(λ) − V ∗(1)(0)V ∗(λ) = −E[V e−λV] + E[V]E[e−λV], we let

X = V , Y = e−λV with CDF FX(x), FY (x) and joint CDF F (x, y). We now show that P (X ≤

136

Figure 5.2: AoI in CBS vs AoI in BRS. Service and vacation times are exponential.

x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y). Notice that

F (x, y) = P (X ≤ x, Y ≤ y) = P (V ≤ x, e−λV ≤ y) = P (− ln y

λ
≤ V ≤ x)

= P (V ≤ x)− P (V ≤ − ln y

λ
)

≤ P (V ≤ x)− P (V ≤ − ln y

λ
)P (V ≤ x)

= FX(x)FY (y).

From [165] we knowE[XY]−E[X]E[Y] =
∫∞
−∞

∫∞
−∞ [F (x, y)− FX(x)FY (y)] dxdy. There-

fore V ∗(1)(λ)− V ∗(1)(0)V ∗(λ) = E[X]E[Y]−E[XY] ≥ 0 and E[ACBS]−E[ABRS] ≥ 0.

However, BRS does not always have smaller AoI than CBS. A graph for comparison is pro-

vided in Figure 5.2 where service time and vacation time are both exponential. As we see from

Figure 5.2, when vacation time is large (i.e., small v),E[∆BRS] is smaller thanE[∆CBS].However

when vacation time is small, the CBS has smaller AoI than BRS.

137

5.3.3 Conventional Buffer System with Preemption in Service

In this subsection we consider the system when preemption is allowed in service, i.e., CBS-P.

Note that when allowing preemption in service, both CBS and BRS will reduce to CBS-P. Different

from the non-preemptive service case, in CBS-P, the age peak cannot be decomposed as shown in

Equation (5.1) simply because the packet that result in age peak may not have waiting time G (as it

may be a preemptive packet). A detailed decomposition approach for CBS-P is given in Appendix

B.1. The AoI and PAoI in CBS-P is given in the following theorem.

Theorem 5.3.7. The PAoI for CBS-P is given by E[ACBS−P] = 1−H∗(λ)−λH∗(1)(λ)+H∗(λ)2

λH∗(λ)
+

H∗(λ)V ∗(1)(λ)−V ∗(1)(0)
1−V ∗(λ)

, and the AoI for this system is given by

E[∆CBS−P] =

V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

− 2 V ∗(1)(0)
1−V ∗(λ)

1−H∗(λ)
λH∗(λ)

+ 2
λH∗(λ)2

[
1
λ
− H∗(λ)

λ
+H∗(1)(λ)

]
2(− V ∗(1)(0)

1−V ∗(λ)
+ 1−H∗(λ)

λH∗(λ)
)

−H
∗(1)(λ)

H∗(λ)
+H∗(λ)

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
.

Proof. Detailed proof is shown in Appendix B.1.

Corollary 5.3.8. For exponential vacation time with parameter v and exponential service time with

parameter µ, we haveE[ACBS−P] = 1
λ

+ 1
µ

+ 1
v

+ λ+µ+p
(λ+µ)(λ+v)

andE[∆CBS−P] =
v+λ

v2λ
+ 1
λ2

+ v+λ
λvµ

+ 1
µ2

1
λ

+ 1
µ

+ 1
v

+

1
µ+λ

+ µ
(µ+λ)(v+λ)

.

Theorem 5.3.9. If the service time is exponentially distributed, then the system CBS-P has both

AoI and PAoI smaller than CBS.

Proof. Detailed proof is shown in Appendix B.2.

Notice that Theorem 5.3.9 holds true for exponential service times only. A question is whether

the inequalities still holds between CBS and CBS-P if the service is not exponential. In the next

theorem, we provide a sufficient condition under which CBS-P will always have smaller PAoI than

CBS.

138

Theorem 5.3.10. If the service time H satisfiesE[H] ≥ 1−H∗(s)
sH∗(s)

for all s > 0, then CBS-P always

has smaller PAoI than CBS.

Proof. Detailed proof is shown in Appendix B.3.

Theorem 5.3.10 provides a useful sufficient condition for checking whether CBS-P has smaller

PAoI than CBS, and this sufficient condition does not rely on the vacation time distribution. Neces-

sary condition can be obtained by directly comparing the closed-form expression of PAoI for CBS-

P and CBS, however it is quite involved. We can also provide sufficient and necessary conditions

for CBS-P to have smaller AoI or variance of peak age than CBS or BRS, by simply comparing

their closed-form expressions. However those conditions are specific and complicated. In Section

5.5 we will compare E[A], .E[∆] and V ar(A) numerically. We now provide some examples on

how Theorem 5.3.10 can be applied. When the service time is exponential with parameter µ, we

have 1−H∗(s)
sH∗(s)

=
1− µ

µ+s

s µ
µ+s

= 1
µ

= E[H]. Then by Theorem 5.3.10 we can conclude that CBS-P has

smaller PAoI than CBS, which is the same as our conclusion in Theorem 5.3.9. We next give an

example where the service time is Gamma distributed with parameters α and β. Since the LST of

Gamma distribution is given byH∗(s) = (1+βs)−α, we have 1−H∗(s)
sH∗(s)

= (1+βs)α−1
s

. By Bernoulli’s

inequality we have that (1 + βs)α ≥ 1 +αβs when α ≥ 1, and (1 + βs)α < 1 +αβs when α < 1.

From the fact that E[H] = αβ, we have 1−H∗(s)
sH∗(s)

≥ E[H] when α ≥ 1 and 1−H∗(s)
sH∗(s)

≤ E[H] when

α < 1. A numerical study of this example is given in Figure 5.3, where service time is Gamma

distributed and vacation time is exponential. In Figure 5.3(a), we find that when α = 1
2
, CBS-P

does not always have smaller PAoI than CBS. However, in Figure 5.3(b) where α = 2, the service

distribution satisfies E[H] ≥ 1−H∗(s)
sH∗(s)

, we find that CBS-P has smaller PAoI than CBS, for all the

positive values of λ and v.

5.3.4 Discussions for Systems without Server Vacation

We realize that when the server takes no vacations or takes vacation infinitely fast, then CBS is

equal to the M/G/1/1 non-preemptive system, BRS is equal to the M/G/1/2* system (the asterisk

means that only the most recent packet is kept in the buffer as defined in [105, 112]), and CBS-P

139

(a) H ∼ Gamma(12 , 1) (b) H ∼ Gamma(2, 1)

Figure 5.3: PAoI in CBS vs PAoI in CBS-P. Service time is Gamma distributed. Vaca-
tion time is exponentially distributed.

becomes M/G/1/1/preemptive system. Different variations of these systems has been discussed in

[114, 100, 112, 105, 163, 101], however the variance of peak age in these single buffer systems

has not been studied. We here provide the variance of peak age for the systems without server

vacations, as an extension of our discussion about vacation server systems. With the decomposition

approach that we introduced earlier, we are able to provide the variance of peak age for M/G/1/1,

M/G/1/2* and M/G/1/1/preemptive systems, as shown in the following theorem.

Theorem 5.3.11. For M/G/1/1 system we have E[AM/G/1/1] = 1
λ
− 2H∗(1)(0), E[∆M/G/1/1] =

2
λ2
− 2
λ
H∗(1)(0)+H∗(2)(0)
1
λ
−H∗(1)(0)

−H∗(1)(0) and V ar(AM/G/1/1) = 1
λ2

+ 2H∗(2)(0)− 2{H∗(1)(0)}2.

For M/G/1/1/preemptive system we have E[AM/G/1/1/preemptive] = −H∗(1)(λ)
H∗(λ)

+ 1
λH∗(λ)

,

E[∆M/G/1/1/preemptive] = 1
λH∗(λ)

, and V ar(AM/G/1/1/preemptive) = H∗(2)(λ)
H∗(λ)

− {H∗(1)(λ)}2
H∗(λ)2

+

1
λ2H∗(λ)2

+ 2H∗(1)(λ)
λH∗(λ)2

.

For M/G/1/2* system we have E[AM/G/1/2∗] = −2H∗(1)(0) + 1
λ

+ H∗(1)(λ), E[∆M/G/1/2∗] =
1
2
H∗(2)(0)+ 1

λ2
H∗(λ)− 1

λ
H∗(1)(λ)

−H∗(1)(0)+
H∗(λ)
λ

+ 1
λ
− 1

λ
H∗(λ) + H∗(1)(λ) − H∗(1)(0), and V ar(AM/G/1/2∗) =

2H∗(2)(0)− 2H∗(1)(0) + 2H∗(λ)[H∗(1)(0)+H∗(1)(λ)]
λ

+ 2H∗(λ)(1−H∗(λ))
λ2

+ 1
λ2
−H∗(2)(λ)− 2

λ
H∗(1)(λ)−

H∗(1)(λ)2.

Proof. The detailed proof is shown in Appendix B.4.

140

Figure 5.4: Variance of Peak Age for M/M/1/1/preemptive system and M/M/1/2* sys-
tem with µ = 1.

Corollary 5.3.12. The variance of peak age in M/M/1/1 is V ar(AM/M/1/1) = 1
λ2

+ 2
µ2
, the vari-

ance of peak age in M/M/1/1/preemptive is V ar(AM/M/1/1/preemtive) = 1
(λ+µ)2

+ 1
λ2

+ 1
µ2

, and the

variance of peak age in M/M/1/2* is V ar(AM/M/1/2∗) = 1
λ2

+ 2
µ2
− 2λ2+4λµ+3µ2

(λ+µ)4
.

From Corollary 5.3.12 we find that the variance of PAoI in M/M/1/2* system is smaller than

PAoI in M/M/1/1 system. Also we find that the variance of peak age in M/M/1/1/preemptive

system is smaller than it in M/M/1/1 system. Now we compare the variance of peak age for

M/M/1/1/preemptive system with M/M/1/2* system. First we have

V ar(AM/M/1/1/preemptive)− V ar(AM/M/1/2∗) =
−λ4 − 4λ3µ− 3λ2µ2 + 2λµ3 + 3µ4

(λ+ µ)4µ2
.

We find that only when λ is large can we have V ar(AM/M/1/1/preemptive)−V ar(AM/M/1/2∗) ≤

0. A demonstrative graph of the case where µ = 1 is shown in Figure 5.4. We can get from

numerical study and Figure 5.4 that when λ ≤ 0.8168, M/M/1/2* system has smaller variance of

peak age than M/M/1/1/preemptive system.

5.4 Peak Age of Information for Systems with Dependent Vacations

In this section we extend our discussion in Section 5.3 to a more general case by allowing the

vacations to be non-i.i.d. In this case, obtaining LST or the second moment of I is difficult, and

the closed-form expression for AoI may become intractable. However, the PAoI is still solvable in

141

this case. In this section, we will discuss the approach for deriving the exact solution for PAoI.

From our discussion in Section 5.3 we have E[G] = 1
λ
(1 − W ∗(λ)), where W is the time

period when the buffer is occupied. Also from Equation (5.1) and our discussion in Appendix B.5,

we have

E[A] =

− 1
λ
W ∗(λ) + 2

λ
+E[W] + 2E[H] for CBS,

− 1
λ
W ∗(λ) + 2

λ
+E[W] +E[H] for BRS, and

−H∗(1)(λ)
H∗(λ)

+H∗(λ) 1
λ
(1−W ∗(λ)) +E[W] + 1

λH∗(λ)
for CBS-P.

When W ∗(s) is available, then the closed-form of PAoI can be obtained. In the remaining part of

this section, we will focus our discussion on the polling system as it is a system where the server

takes non-i.i.d vacations (see [166]). We will next show the approach to calculate exact PAoI for

polling system by obtaining W ∗(s).

A polling system is a queueing system that contains a single server and k classes of packets.

Each packet class would have its own queue, so there are k queues in the system. The server serves

packets by switching between queues, and a switchover time is incurred when the server switches

from one queue to another. A demonstrative graph of polling systems is provided in Figure 5.5.

Polling systems have a wide application in communication networks and other networks (see [86,

47, 5]), while the PAoI in polling systems has not been fully studied. Specifically, if there are

multiple data nodes in the underwater sensor network example which we discussed in Section 5.1

(also see [147, 146]), we can then model the underwater system as a polling system, where each

data node can be modeled as a queue/buffer and the autonomous vehicle can be regarded as the

server that collects/processes data from each node in a periodic manner.

In this paper we are interested in single buffer systems, so we assume that each queue has a

single buffer that can hold only one packet at a time. Similar to our discussion in Section 5.3,

we assume that only the most recently arrived packet is kept in the buffer, and we consider three

variations of the polling system by making different assumptions about the buffer and service pre-

142

emption. To distinguish from the names in Section 5.4, we call these three polling systems Conven-

tional Buffer Polling System (CBPS), Buffer Relaxation Polling System (BRPS), and Conventional

Buffer Polling System with Preemption in Service (CBPS-P) respectively. In CBPS, the buffer is

not available until the current packet completes its service. When the server is busy processing,

newly arrived packets in this queue will be rejected. So that each queue can only have at most one

packet at any time. In BRPS, the buffer becomes available once the service has started, however

the new arrival during the service time will be served in the next polling instant. In CBPS-P, the

new arrival will preempt the packet in service, and the preempted packet will be discarded. The

server will switch to next queue when the service of a packet is complete. In all these three sys-

tems, the server will start another switching process if the it observes an empty queue. We assume

that the arrival process of packets in each queue i follows a Poisson process with rate λi, and the

service time Hi for packets at each queue is i.i.d. with mean hi and LST H∗i (s). The switchover

time from queue i to queue j has mean uij , CDF Uij(x) and LST U∗ij(s). In the remaining part of

this section we use the subscript i to denote the parameter for queue i in the polling system.

There are multiple widely used routing schemes that determine which queue to switch to next

for the server. Routing schemes include cyclic [160, 158, 167, 81], Markovian polling [159, 168]

and random polling [157]. For most of those polling systems with single buffer in each queue,

W ∗(s) can be derived (see [158, 159, 157]). In this paper we mainly discuss the Markovian polling

scheme, since random polling and cyclic polling schemes are both special cases of the Markovian

polling scheme, as we will see later. In the Markovian polling scheme, after serving queue i, the

probability of serving queue j next is given by pij . Considering all the possible states for the current

queue and next queue, the switching process can be characterized by a discrete Markov chain with

transition matrix P = [pij]. In this paper we assume that P is irreducible positive recurrent. For

the cyclic polling scheme, the transition matrix is given by for i, j ∈ {1, 2, ..., k},

pij =

1 if j = i+ 1,

0 otherwise.

143

Figure 5.5: A k-queue Polling System with Cyclic Polling Scheme

Two special polling schemes were discussed in [159]. One is called load-oriented-policy

(LOP), which is defined by the transition matrix with pij =
λj∑k
l=1 λl

for all i and j. The other

polling scheme is called symmetric random polling, in which pij = 1
k

for all i and j. We will show

the performance of these schemes numerically in Section 5.5.

The service process for each individual queue in polling systems can be modeled as a single

server with multiple vacations: when the server polls the queue, it serves the packet if the queue is

not empty, and takes a vacation (switches out and serves other queues) once the service completes;

if the queue is empty when polled, the server takes another vacation. It is important to note that

as pointed out by Kofman in [166], even when cyclic polling scheme is applied, the vacations that

the server takes in a polling system are not i.i.d. Suppose Wi is the time period that the buffer i

is occupied, with LST W ∗
i (s). Then our methods for deriving W ∗(s) for i.i.d vacations in Section

5.3 cannot be applied here for deriving W ∗
i (s) in general polling systems.

We now summarize how W ∗
i (s) is obtained by Chung et al[159] and use it to derive the PAoI

for queue i (i.e., E[Ai]). The main idea in [159] of deriving W ∗
i (s) is to solve the following linear

system:

144

Fi(z1, ..., zk) =
k∑
j=1

πj
πi
pjiŨ∗ij

{
(1− H̃∗j)Fj(z1, ..., zk)zj=0 + H̃∗jFj(z1, ..., zk)zj=1

}
for i = 1, ..., k, (5.7)

where Fi(z1, ..., zk) is a probability generating function with Fi(1, ..., 1) = 1, (π1, ..., πk) is the

stationary distribution of the transition matrix P , Ũ∗ij = U∗ij(
∑k

l=1 λl(1− zl)), and

H̃∗j =

H∗j (
∑k

l=1,l 6=j λl(1− zl)) for CBPS,

H∗j (
∑k

l=1 λl(1− zl)) for BRPS, and

H∗j (
∑k
l=1,l 6=j λl(1−zl)+λj)∑k

l=1,l 6=j λl(1−zl)∑k
l=1,l 6=j λl(1−zl)+λj

+
λj∑k

l=1,l 6=j λl(1−zl)+λj
H∗j (

∑k
l=1,l 6=j λl(1−zl)+λj)

for CBPS-P.

(5.8)

In [159] only H̃∗j in CBPS and BRPS are discussed. In both CBPS and BRPS, the server would

switch out from queue j after serving a packet from queue j. Here we also discuss the case of

CBPS-P. Notice that in CBPS-P, the server switches out from queue j only when one packet has

been completely served. If we consider the time period when the server is continuously serving in

CBPS-P as the service time for “one packet”, then we can also regard CBPS-P as CBPS. The only

difference is that in CBPS, each service period is Hj for queue j. While in CBPS-P, the service

period is Lj with LST

L∗j(s) =
H∗j (s+ λj)

s
s+λj

+
λj
s+λj

H∗j (s+ λj)
. (5.9)

A detailed derivation of Equation (5.9) can be found in Appendix B.1. Then, the formula of H̃∗j

for CBPS-P in Equation (5.8) is obtained by simply using Equation (5.9) and the formula H̃∗j for

CBPS.

To solve the system (5.7) analytically is quite involved as shown in [159], however the expected

value of Wi can be obtained by solving the system (5.7) with zj = 0 or 1 for j = 1, ..., k, where

145

only k(2k − 1) linear equations need to be solved. The expected time Wi is then given as

E[Wi] =
γi
λiαi

− 1

λi
,

where αi = 1−Fi(1, ...,
i

0, ..., 1) (the notation Fi(1, ...,
i

0, ..., 1) means that zi = 0 and zl 6=i = 1

in Fi(z1, ..., zk)) and

γi =

λi
πi

∑k
j=1 πj(αjhj +

∑k
l=1 pjlujl)− λiαihi for CBPS,

λi
πi

∑k
j=1 πj(αjhj +

∑k
l=1 pjlujl) for BRPS, and

λi
πi

∑k
j=1 πj(αj

1−H∗j (λj)

λH∗j (λj)
+
∑k

l=1 pjlujl)− λiαi
1−H∗i (λi)

λiH∗(λi)
for CBPS-P.

(5.10)

To obtain E[Gi], we need to get W ∗
i (λi). From [159, 158] we have

W ∗
i (s) =

1

αi

λi
s− λi

{
1− αi − fi(1−

s

λi
)

}
,

where fi(z) = Fi(1, ...,
i
z, ..., 1). Using L’Hospital rule we have

W ∗
i (λi) =

f
(1)
i (0)

αi
=

1

αi

∂Fi(1, ..., z, ..., 1)

∂z
|z=0,

in which the derivative of Fi(1, ..., z, ..., 1) is needed. Therefore we need to compute the partial

derivative of Equation (5.7) with respect to zl for l = 1, ..., k, which is to solve the following linear

system:

∂Fi(z1, ..., zk)

∂zl
=

∂

∂zl

{
k∑
j=1

πj
πi
pjiŨ∗ij

(
(1− H̃∗j)Fj(z1, ..., zk)zj=0 + H̃∗jFj(z1, ..., zk)zj=1

)}
for i = 1, ..., k and l = 1, ..., k. (5.11)

Note here we only need to solve system (5.11) for zj = 0 or 1 for j = 1, ..., k to obtainW ∗
i (λi),

so that k22k number of equations need to be solved. After solving system (5.7) and (5.11), the

146

closed-form of PAoI can be obtained from the following equations:

E[Ai] =

− 1
λi
W ∗
i (λi) + 2

λi
+E[Wi] + 2E[Hi] for CBPS,

− 1
λi
W ∗
i (λi) + 2

λi
+E[Wi] +E[Hi] for BRPS, and

−H
∗(1)
i (λi)

H∗i (λi)
+H∗i (λi)

1
λi

(1−W ∗
i (λi)) +E[Wi] + 1

λiH∗i (λi)
for CBPS-P.

Similar to our discussion in Section 5.3, in the next theorem we show that for polling system with

exponential service time, CBPS-P always has smaller PAoI than CBPS.

Theorem 5.4.1. If the service time for each queue is exponentially distributed, then CBPS-P will

always have smaller PAoI than CBPS.

Proof. A detailed proof is shown in Appendix B.6.

However, when the service time is not exponential, CBPS-P will not always have smaller PAoI

than CBPS. We will show more computational results in Section 5.5.

5.5 Numerical Study: Verification, Findings and Explanations

In this section, we first perform a set of numerical experiments for systems with i.i.d. vacations

that we introduced in Section 5.3, and then provide the numerical results to verify the exact solu-

tion of PAoI for polling systems. We then describe the results for polling system under different

Markovian polling schemes.

5.5.1 CBS, BRS and CBS-P

We begin our discussion by comparing the AoI, PAoI and variance of peak age for CBS, BRS,

and CBS-P, as shown in Figure 5.6. In each subfigure of Figure 5.6 we plot simulation and exact

results. As we observe from each subfigure of Figure 5.6, the simulation result matches the exact

result for each system.

In Figure 5.6(a) and Figure 5.6(d) we compare the AoI for these three systems under different

service and vacation time assumptions. As we see from Figure 5.6(a), CBS-P has advantage over

147

the other two systems in terms of smaller AoI, when service time is exponentially distributed.

However, in Figure 5.6(d) when service time is deterministic, CBS-P does not have smaller AoI

than the other two systems when the arrival rate is large. This is because in CBS-P, the server would

start a new packet when an arrival preempts the service. The server will continuously serve only

until an inter-arrival time is smaller than the constant service time. If arrival rate is large (which

means the expected inter-arrival time is small), then the probability of the inter-arrival time being

smaller than the constant service time is small. Thus the AoI of CBS-P becomes large when arrival

rate is large, for deterministic service time cases. In Section 5.5.2 we will see that this observation

is mainly due to the constant service time and not the change of vacation distributions, since in the

cases when the server does not take vacations, we observe similar phenomenons.

In Figure 5.6(b) and Figure 5.6(e) we compare the PAoI of these three systems. We find that

CBS always has larger PAoI than BRS for both exponential and deterministic service cases, as we

proved in Theorem 5.3.6. Also we find that when service time is deterministic, the PAoI of CBS-P

will increase drastically as arrival rate increases. From Figure 5.6(a) and Figure 5.6(b) we also find

that CBS-P has smaller AoI and PAoI than CBS for the exponential service cases, as we proved in

Theorem 5.3.9. In Figure 5.6(c) and Figure 5.6(f) we compare the variance of peak age for these

three systems. We find that when service time is exponential, the CBS as relatively larger variance

than the other two systems, and when service time is deterministic, CBS-P will have large variance

as arrival rate becomes large. From all the subfigures in Figure 5.6, we find that for both CBS and

BRS, increasing the arrival rate would reduce the AoI, PAoI and variance of peak age.

5.5.2 Systems with No Vacations

We next compare the AoI, PAoI and variance of peak age for M/G/1/1, M/G/1/2* and

M/G/1/1/preemptive systems, under exponential and deterministic service cases. As we discussed

in Section 5.3.4, when the vacation time becomes zero, CBS would become M/G/1/1 system, BRS

would be M/G/1/2* system, and CBS-P now becomes M/G/1/1/preemptive system. The compar-

ison results are shown in Figure 5.7. In each subfigure of Figure 5.7, we plot the exact result and

simulation result for each system, and we find that the simulation result matches the exact result

148

(a) AoI Comparison,
H ∼ exp(1),V ∼
exp(12)

(b) PAoI Comparison,
H ∼ exp(1),V ∼
exp(12)

(c) Variance of
Peak Age Compar-
ison, H = exp(1),
V ∼ exp(12)

(d) AoI Compar-
ison, H = 1,
V ∼ gamma(2, 1)

(e) PAoI Comparison,
H = 1, V ∼
gamma(2, 1)

(f) Variance of Peak Age
Comparison, H = 1,
V ∼ gamma(2, 1)

Figure 5.6: Vacation Server Systems with E[H] = 1 and E[V] = 2

that we provided in Section 5.3.4 for each system. Similar to the vacation server cases, we find

that when there is no vacation for the server, AoI, PAoI and variance of peak age will still decrease

in M/G/1/1 and M/G/1/2* as arrival rate increases. For M/G/1/1/preemptive system, the AoI, PAoI

and variance of peak age will increase dramatically when arrival rate becomes large, when the ser-

vice time is deterministic. We also find that when service time is exponential, the variance of peak

age in M/M/1/2* system is smaller than the variance in M/M/1/1 system, and the variance of peak

age in M/M/1/1/preemptive system is smaller than the variance in M/M/1/1 system, as we showed

in Section 5.3.4. When the service time is deterministic, M/D/1/2* system has lower variance of

peak age than the other two systems.

149

(a) AoI Comparison with
H ∼ exp(1)

(b) PAoI Comparison
with H ∼ exp(1)

(c) Variance of Peak Age
Comparison with H ∼
exp(1)

(d) AoI Comparison
with H = 1

(e) PAoI Comparison
with H = 1

(f) Variance of Peak Age
Comparison with H = 1

Figure 5.7: Single Queue System with E[H] = 1

150

5.5.3 Polling Systems

We now perform numerical studies for different polling systems. In Figure 5.8 we compare

the exact solutions of PAoI that we provided in Section 5.4 with the simulation results for the

polling system with k = 3 and cyclic polling scheme. We find that the exact results match the

simulation results from Figure 5.8. Interestingly, we find that increasing the traffic load will not

always reduce the PAoI for CBPS, BRPS and CBPS-P. As we observed from Figure 5.8(c), when

the traffic load increases, the PAoI of queue 3 in all three systems will increase. This is mainly

because the numerical test of Figure 5.8 is based on the cyclic polling scheme, and increasing the

traffic load for all queues will reduce the chance that the server observes an empty buffer when the

queue is polled. For queue 3, the vacation time actually increases since the other queues are more

likely to be served during the server’s vacation. Although we know that increasing the traffic load

will reduce the waiting time of the packet that is eventually processed (i.e., the server is more likely

to find a fresh packet when vacation is over), the vacation time for queue 3 will also be affected

as the server becomes more likely to serve queue 1 and queue 2 during vacation. Therefore, the

increase in vacation time for queue 3 overshadows the reduction in G, so that we see in Figure 5.8

that the PAoI is increasing for queue 3 as total traffic load increases.

(a) PAoI of Queue 1 (b) PAoI of Queue 2 (c) PAoI of Queue 3

Figure 5.8: PAoI of Polling Systems with Cyclic Scheme, λ = (0.1, 0.2, 0.7) ∗
Total Load, Hi = H ∼ exp(1), Ui = U = 0.2

151

The numerical study for a polling system with k = 8 and cyclic scheme is provided in Table

5.1. We choose the same system parameters as the numerical study in [158] by letting two queues

be heavily loaded (each takes 45% of the total load). As we proved in Theorem 5.3.6, BRS always

has smaller PAoI than CBS when the server’s vacations are i.i.d. However, we observe in polling

system that PAoI of BRPS is not always smaller than PAoI of CBPS. This is because in polling

systems the vacations that the server takes are not i.i.d., as pointed out in [166]. Moreover, the

vacation that the server takes also depends on the service time of the previous packet. If the service

time of a packet is long, the other queues will become more likely to receive packets during this

service time, resulting in a longer vacation time in the next cycle. The complexity of the vacation

in polling system thus prevents Theorem 5.3.6 from holding true. However, from Table 5.1 we can

see that it still holds true that PAoI in CBPS is larger than PAoI in CBPS-P when the service time

is exponential, as we proved in Theorem 5.4.1.

Now we consider the PAoI of the polling system under different polling schemes that are de-

scribed in Section 5.4. We keep the same set of parameters for service and switching time for Table

5.2 and 5.3, and provide the computational results for cyclic, LOP and symmetric random polling

schemes with different total traffic loads. From both Table 5.2 and 5.3, we find that cyclic scheme

and symmetric random scheme perform similarly when total traffic load is low. When traffic load

is high, symmetric scheme provides lower PAoI for those queues with high arrival rates than cyclic

scheme, and provides higher PAoI for other queues than cyclic scheme. From both Table 5.2 and

5.3 we find that LOP has lower PAoI than the other two polling schemes for queues with high

arrival rates, especially when total traffic load is high. However LOP causes very large PAoI for

queues with low arrival rates. This is because the server under LOP would serve queues with high

arrival rates more frequently. Notice that in Theorem 5.4.1, we do not specify the polling scheme

for CBPS or CBPS-P. So when service time is exponential, CBPS-P will always have smaller PAoI

than CBPS, regardless of the polling scheme. This can also be observed from Table 5.2 and 5.3.

Next we consider the average PAoI across queues (i.e.,
∑k

i=1E[Ai]) under those three different

Markovian polling schemes, as shown in Figure 5.9. The average PAoI across queues was also

152

Queue
CBPS BRPS CBPS-P

PAoI Simu PAoI Simu PAoI Simu
1 5.4396 5.4235 5.0996 5.1078 5.0688 5.0567
2 74.2941 75.7875 73.6306 73.9982 74.2684 74.1001
3 74.2984 74.6491 73.6372 74.9442 74.2726 72.9671
4 5.4386 5.4292 5.0985 5.1076 5.0677 5.0804
5 74.2897 73.3433 73.6236 75.2181 74.2639 74.6225
6 74.2938 73.2033 73.6300 74.3852 74.2680 75.7437
7 74.2980 75.8521 73.6366 74.2756 74.2723 75.8249
8 74.3024 75.7529 73.6433 73.2163 74.2766 73.6263

(a) Total load = 0.85

Queue
CBPS BRPS CBPS-P

PAoI Simu PAoI Simu PAoI Simu
1 8.7298 8.7368 8.8934 8.8892 7.7298 7.7360
2 10.9433 10.9366 10.9663 10.9606 10.0502 10.0833
3 10.9513 10.9366 10.9697 10.9589 10.0584 10.0699
4 8.7296 8.7433 8.8935 8.8942 7.72963 7.7357
5 10.9352 10.9290 10.9630 10.9432 10.0419 10.0419
6 10.9426 10.9026 10.9662 10.9835 10.0494 10.0817
7 10.9509 10.9874 10.9698 10.9990 10.0578 10.0799
8 10.9601 10.9653 10.9735 10.9509 10.0672 10.0768

(b) Total load = 30

Table 5.1: Exact PAoI for the system with k = 8 and cyclic scheme. Queue 1 and 4
are heavily loaded: each with 45% total load. Hi = H ∼ exp(1), Ui = U = 1

80
.

considered in [134, 4]. In Figure 5.9 we find that cyclic scheme achieves the lowest average PAoI

under different traffic loads for both CBPS, BRPS and CBPS-P. LOP has the highest average PAoI

among these three polling schemes. This is because under LOP, the server would serve the queues

with high arrival rates more likely, and queues with low arrival rates would be polled infrequently.

Since PAoI is more sensitive to the arrival rate change when arrival rate is small (which we can

observe from Figure 5.6 and 5.7), the PAoI reduction in queues with high arrival rates would be

easily overshadowed by the PAoI increase caused by queues with low arrival rates, when LOP

is applied. This observation implies that if one wants to reduce the average PAoI for the entire

system, a good strategy is to avoid polling certain queues too frequently. Therefore, policies with

even polling frequency for queues such as symmetric or cyclic scheme are recommended for small

average PAoI.

153

Queue
CBPS BRPS CBPS-P

Cyclic LOP Symmetric Cyclic LOP Symmetric Cyclic LOP Symmetric
1 7.0216 6.9340 7.1243 6.4694 6.3262 6.5428 6.7901 6.7137 6.8840
2 123.1109 125.6743 123.2638 122.2918 126.2261 122.6218 123.0980 125.5646 123.2504
3 123.1121 125.6743 123.2638 122.2935 126.2261 122.6218 123.0992 125.5646 123.2504
4 7.0212 6.9340 7.1243 6.4690 6.3262 6.5428 6.7897 6.7137 6.8840
5 123.1097 125.6743 123.2638 122.2900 126.2261 122.6218 123.0969 125.5646 123.2504
6 123.1108 125.6743 123.2638 122.2917 126.2261 122.6218 123.0980 125.5646 123.2504
7 123.1120 125.6743 123.2638 122.2933 126.2261 122.6218 123.0991 125.5646 123.2504
8 123.1131 125.6743 123.2638 122.2951 126.2261 122.6218 123.1003 125.5646 123.2504

Table 5.2: Exact PAoI for the system with k = 8 and different polling schemes. Queue
1 and 4 are heavily loaded: each with 45% total load. Total load = 0.5. Hi = H ∼
exp(1), Ui = U = 1

80
.

Queue
CBPS BRPS CBPS-P

Cyclic LOP Symmetric Cyclic LOP Symmetric Cyclic LOP Symmetric
1 8.0632 3.5189 6.9849 8.3780 3.3630 7.0477 7.0635 2.5353 5.9902
2 11.6450 42.6585 12.2968 11.6605 63.3207 12.3081 10.8810 41.7180 11.5688
3 11.6663 42.6585 12.2968 11.6715 63.3207 12.3081 10.9019 41.7180 11.5688
4 8.0620 3.5189 6.9849 8.3778 3.3630 7.0477 7.0622 2.5353 5.9902
5 11.6232 42.6585 12.2968 11.6493 63.3207 12.3081 10.8596 41.7180 11.5688
6 11.6413 42.6585 12.2968 11.6590 63.3207 12.3081 10.8773 41.7180 11.5688
7 11.6624 42.6585 12.2968 11.6700 63.3207 12.3081 10.8980 41.7180 11.5688
8 11.6870 42.6585 12.2968 11.6825 63.3207 12.3081 10.9221 41.7180 11.5688

Table 5.3: Exact PAoI for the system with k = 8 and different polling schemes. Queue
1 and 4 are heavily loaded: each with 45% total load. Total load = 20. Hi = H ∼
exp(1), Ui = U = 1

80
.

5.6 Concluding Remarks

In this paper we considered AoI related metrics such as AoI, PAoI as well as variance of peak

age in queueing systems with server vacations. We discussed cases with both i.i.d vacations and

non-i.i.d vacations, and for non-i.i.d vacation systems we considered polling system specifically.

We provided a general decomposition approach that decomposes the system age into independent

components, which can be used to derive AoI, PAoI as well as the variance of peak age for i.i.d

vacation systems, and PAoI for non-i.i.d vacation systems. In these systems with vacation servers,

we discussed three system variations, i.e., CBS, BRS and CBS-P, which differs in assumption

about buffer availability and service preemptions. We proved that when vacation time is i.i.d, PAoI

154

(a) CBPS (b) BRPS (c) CBPS-P

Figure 5.9: Average PAoI Across Queues, λ = (0.1, 0.2, 0.7)∗Total Load,Hi = H ∼
exp(1), Ui = U = 0.2

in BRS is always smaller than PAoI in CBS. However, when vacation time is nom-i.i.d., this result

is no longer true. We derived the conditions under which CBS-P system has smaller PAoI than

CBS. We further provided numerical study to justify our findings, and discuss the advantage of

each system in terms of AoI, PAoI or variance of peak age. In our future work, we will consider

the closed-form of AoI for system with non-i.i.d vacations such as polling systems. We will also

consider the optimal switching scheme and scheduling scheme for polling systems in the future.

155

6. CONCLUSION

6.1 Summary of Research

This dissertation research is motivated by smart manufacturing applications which need to

solve optimization problems. Equipped with sensor networks, communication networks and com-

puting entitles, smart manufacturing also brings research questions such a how to utilize available

information in decision making, how to make decisions without future information, and how to

guarantee information freshness. In this dissertation work, we addressed those research questions

by considering several optimization problems that are or envisioned to be prevalent in smart man-

ufacturing systems. The research objectives of this dissertation research include providing online

scheduling strategies and system designs, and developing mathematical frameworks to evaluate the

performance of online scheduling strategies and system designs.

In Chapter 2 we considered a joint production and maintenance decision making problem in a

custom manufacturing system with degrading server. We solved this problem by providing several

online scheduling policies that do not require the future information. To evaluate the performance

of those online policies, we derived a benchmark using some special properties of the offline

optimal solution, and then compared our online policies against the benchmark. We showed both

analytically and numerically that our online policies perform closely to the optimal solution. We

found that job re-sequencing is unnecessary when the replacement time is large compared with the

workload. Besides, our analysis showed that revealing the workload upon a job’s arrival is crucial

for the efficiency of an online policy. We also used our analytic model to show that the more job

information revealed, the better decisions the online policies can make.

In Chapter 3 we considered an online scheduling problem in polling systems. Different from

other studies that analyzed polling system from a stochastic perspective, our analysis in this chapter

does not rely on any assumptions about arrival processes or service processes. We compared

the online policies with the offline optimal policy by considering their worst-case performance.

156

We then provided the competitive ratios for several widely-used policies in polling systems, and

we showed that some policies that have a decent long-run average performance may also have a

bounded competitive ratio. We also provided the conditions for existence of constant competitive

ratios in polling systems, and we derived the competitive ratio lower bound for general scheduling

policies in polling systems. In addition, several online policies that utilize the available information

but also balance future uncertainties were provided in this research, and these policies can be

applied to general polling systems without any stochastic assumptions.

It is important to point out that the problems studied in both Chapter 2 and Chapter 3 are

mainly from the physical layer of smart manufacturing systems. When studying those problems,

we assumed that each job reveals its workload or processing time upon its arrival into the system. In

both chapters, we analyzed the problems from an online scheduling or a combinatorial optimization

perspective. We evaluated the performance of online policies by comparing them with the offline

optimal policy. The research work in these two chapters contributes to the methodologies in online

optimization, combinatorial optimization, and scheduling theory.

We then studied the age performance of a system with single server and multiple data sources

in Chapter 4. Motivated by the applications where some data sources are more time-sensitive thus

requires higher priorities, we modeled the system as a priority queue system. In this research, we

provided a novel modeling approach to derive closed-form expressions of PAoI for systems with

different buffer capacity assumptions. Moreover, we evaluated the PAoI performance for service

disciplines such as FCFS and LCFS. Although LCFS was believed to have advantage over other

scheduling policies in minimizing PAoI, our analysis showed that LCFS is not the optimal service

discipline, and FCFS would result in a smaller PAoI than LCFS when arrival rate is small. Also, it

was believed that keeping the most recent packet in the buffer was effective in minimizing PAoI,

however our analysis showed that this strategy does not always perform better than FCFS.

In Chapter 5 we consider the AoI and PAoI in a system where the server takes a vacation

after serving a packet. This research is motivated by applications in smart manufacturing networks

and other communication networks where the server becomes unavailable from time to time. In

157

this research, we considered packet management strategies in buffers and provide closed-form

expressions for AoI and PAoI for three systems with different packet management strategies: CBS,

BRS and CBS-P. We also extended our work to systems with non-i.i.d vacations such as polling

systems, and we used our analysis to exactly compute the PAoI for polling system. Our analysis

explored the condition under which one packet management strategy can perform better than the

other two in terms of either AoI or PAoI.

The problems studied in both Chapter 4 and Chapter 5 exist mainly in the cyber layer of smart

manufacturing systems. We analyzed the problems in both chapters from a queueing or stochastic

perspective, and evaluated the performance of each policy by its long-run average AoI or PAoI,

which is completely different from our analysis in Chapter 2 and Chapter 3. The methodologies

contributions in Chapter 4 and Chapter 5 are in probability theory, renewal processes and queueing

theory.

The models and methodologies that are used in this dissertation research are summarized in

Table 6.1. We also want to mention that polling systems are studied in both Chapter 3 and Chapter

5. However, we studied different metrics of polling systems in those two chapters. In Chapter

3 we focused on the total completion time of an arbitrary job instance that occurs in a general

polling system, while in Chapter 5, we focused on the PAoI in polling systems. Moreover, the

methodologies used in those two chapters are distinct, like we mentioned earlier. In Chapter 3

we considered the worst-case performance of online scheduling policies, and the analysis does not

rely on stochastic assumptions. In Chapter 5, the analysis relies on the Poisson assumption about

arrivals and IID assumptions about processing times. Interestingly, in both chapters, we found

that some routing disciplines, such as cyclic routing discipline, being efficient in many scenarios

on minimizing both completion time and PAoI. Both Chapter 3 and Chapter 5 analyzed polling

systems from novel perspectives which were not found in the literature. This dissertation research

therefore furthers knowledge and understanding about polling systems.

6.2 Contributions

We summarize the contributions of this dissertation research as follows.

158

Chapter Type Model Methodologies
Chapter 2

Physical Layer
Degrading

Server
Online optimization,
combinatorial optimization,
and scheduling theoryChapter 3 Polling

Systems
Chapter 4

Cyber Layer
Priority
Queues

Probability theory, renewal
processes, and queueing
theory.Chapter 5 Vacation

Server

Table 6.1: Summary of Research

• We discussed the merits of smart manufacturing in a quantitative manner by modeling and

analyzing specific scheduling problems that exist in both physical layer and cyber layer of

smart manufacturing systems, and integrated elements and objectives including productivity,

maintenance, service efficiency, and information availability in a united and collaborative

framework.

• We provided online policies with decent performance that can be used in general manufac-

turing systems with degrading server. More importantly, we showed mathematically that the

performance of online policies can be greatly improved by information availability and fore-

casting ability, which indicates the benefit of bringing in smartness and value of information

in manufacturing systems. (Chapter 2)

• Our research took a non-traditional approach especially in the queueing and scheduling

research communities by evaluating the worst-case performance for several widely-used

scheduling policies in polling systems. We also provided a bound for competitive ratio

for general online policies in polling systems. Several online scheduling policies that can

be used in general polling settings were also proposed by our research and proved to have

decent performance guarantee. (Chapter 3)

• We proposed a novel modeling approach to derive closed-form expressions of PAoI for

159

queueing systems, and we used that to provide closed-form expressions of PAoI for sev-

eral service disciplines in priority queue systems. Our analysis revealed that LCFS is not the

optimal service discipline to minimize PAoI for each queue, and having at most one packet

stored in the buffer is not always better than keeping all the packets, in terms of minimizing

PAoI. Our work also showed that the PAoI for low priority queues are sensitive to the arrivals

with high priority queues, thus it is important to let age-sensitive queues have high priorities.

(Chapter 4)

• We proposed a decomposition approach to derive closed-form expressions for AoI, PAoI and

variance of peak age for systems with server vacations. We showed that having the buffer

available when service starts is not always optimal in terms of minimizing AoI, PAoI or

variance of peak age. We also showed that preemption in service is not always better than

non-preemption in terms in minimizing AoI, PAoI or variance of peak age. (Chapter 5)

6.3 Future Work

This dissertation work brings up many new research directions in smart manufacturing domain.

In addition to the future work discussion at the end of each chapter of this dissertation work, here

we provide some of other future work that is motivated by the entire dissertation work in the

following:

• In most of current online scheduling literature, job information is assumed to be completely

unknown until its arrival into a system. However, with the advent of smart manufacturing

technologies, forecasts for job information become available and may contribute in improve-

ment of online scheduling optimality. The quantitative relation between forecasting accuracy

and online scheduling optimality remains unknown.

• AoI and PAoI are metrics to measure information freshness. It is believed that information

freshness will affect the online decision quality, however the model to quantify the relation

between information freshness and online scheduling optimality has not been studied.

160

REFERENCES

[1] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer,

G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems in manufacturing,” CIRP Annals,

vol. 65, no. 2, pp. 621–641, 2016.

[2] J. Xu, H. M. Tran, N. Gautam, and S. T. Bukkapatnam, “Joint production and mainte-

nance operations in smart custom-manufacturing systems,” IISE Transactions, vol. 51, no. 4,

pp. 406–421, 2019.

[3] J. Xu, I.-H. Hou, and N. Gautam, “Age of information for single buffer systems with vaca-

tion server,” arXiv preprint arXiv:2004.11847, 2020.

[4] J. Xu and N. Gautam, “Peak age of information in priority queueing systems,” arXiv preprint

arXiv:1906.12278, 2019.

[5] J. Xu and N. Gautam, “On Competitive Analysis for Polling Systems,” arXiv preprint arXiv:

2001.02530, 2020.

[6] M. K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R. I. Campbell, I. Gibson, A. Bernard,

J. Schulz, P. Graf, B. Ahuja, et al., “Design for additive manufacturing: Trends, opportuni-

ties, considerations, and constraints,” CIRP annals, vol. 65, no. 2, pp. 737–760, 2016.

[7] R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, and M. Helu, “Cloud-enabled

prognosis for manufacturing,” CIRP annals, vol. 64, no. 2, pp. 749–772, 2015.

[8] T. Takenaka, Y. Yamamoto, K. Fukuda, A. Kimura, and K. Ueda, “Enhancing products and

services using smart appliance networks,” CIRP Annals, vol. 65, no. 1, pp. 397–400, 2016.

[9] E. Uhlmann, B. Mullany, D. Biermann, K. Rajurkar, T. Hausotte, and E. Brinksmeier, “Pro-

cess chains for high-precision components with micro-scale features,” CIRP Annals - Man-

ufacturing Technology, vol. 65, no. 2, pp. 549–572, 2016.

161

[10] C. Conrad and N. McClamroch, “The drilling problem: A stochastic modeling and con-

trol example in manufacturing,” IEEE Transactions on automatic control, vol. 32, no. 11,

pp. 947–958, 1987.

[11] G. Niu, B.-S. Yang, and M. Pecht, “Development of an optimized condition-based mainte-

nance system by data fusion and reliability-centered maintenance,” Reliability Engineering

and System Safety, vol. 95, no. 7, pp. 786–796, 2010.

[12] K. Liu and J. Shi, “Internet of things (iot)-enabled system informatics for service decision

making: Achievements, trends, challenges, and opportunities,” IEEE Intelligent Systems,

vol. 30, no. 6, pp. 18–21, 2015.

[13] F. Martinelli, “Optimality of a two-threshold feedback control for a manufacturing system

with a production dependent failure rate,” IEEE Transactions on Automatic Control, vol. 52,

no. 10, pp. 1937–1942, 2007.

[14] J.-Q. Hu, P. Vakili, and G.-X. Yu, “Optimality of hedging point policies in the production

control of failure prone manufacturing systems,” IEEE Transactions on Automatic Control,

vol. 39, no. 9, pp. 1875–1880, 1994.

[15] N. Srivatsan and Y. Dallery, “Partial characterization of optimal hedging point policies in un-

reliable two-part-type manufacturing systems,” Operations Research, vol. 46, no. 1, pp. 36–

45, 1998.

[16] R. Akella and P. Kumar, “Optimal control of production rate in a failure prone manufactur-

ing system,” IEEE Transactions on Automatic control, vol. 31, no. 2, pp. 116–126, 1986.

[17] A. Sharifnia, “Production control of a manufacturing system with multiple machine states,”

IEEE Transactions on Automatic Control, vol. 33, no. 7, pp. 620–625, 1988.

[18] D.-P. Song, “Optimal production and backordering policy in failure-prone manufacturing

systems,” IEEE transactions on automatic control, vol. 51, no. 5, pp. 906–911, 2006.

162

[19] T. Cheng, C. Gao, and H. Shen, “Production and inventory rationing in a make-to-stock sys-

tem with a failure-prone machine and lost sales,” IEEE transactions on automatic control,

vol. 56, no. 5, pp. 1176–1180, 2011.

[20] Z. Pang, “Optimal control of a single-product assemble-to-order system with multiple de-

mand classes and backordering,” IEEE Transactions on Automatic Control, vol. 60, no. 2,

pp. 480–484, 2015.

[21] Y. Feng and B. Xiao, “Optimal threshold control in discrete failure-prone manufacturing

systems,” IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1167–1174, 2002.

[22] E.-K. Boukas, Q. Zhang, and G. Yin, “Robust production and maintenance planning in

stochastic manufacturing systems,” IEEE Transactions on Automatic Control, vol. 40, no. 6,

pp. 1098–1102, 1995.

[23] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, “Scheduling to minimize average

completion time: Off-line and on-line approximation algorithms,” Mathematics of opera-

tions research, vol. 22, no. 3, pp. 513–544, 1997.

[24] C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, “Approximation techniques for average

completion time scheduling,” SIAM Journal on Computing, vol. 31, no. 1, pp. 146–166,

2001.

[25] N. Gans and G. Van Ryzin, “Optimal control of a multiclass, flexible queueing system,”

Operations Research, vol. 45, no. 5, pp. 677–693, 1997.

[26] S. V. Sevastianov and G. J. Woeginger, “Makespan minimization in open shops: A polyno-

mial time approximation scheme,” Mathematical Programming, vol. 82, no. 1, pp. 191–198,

1998.

[27] L. A. Hall, “Approximability of flow shop scheduling,” Mathematical Programming,

vol. 82, no. 1-2, pp. 175–190, 1998.

163

[28] G. Rabadi, R. J. Moraga, and A. Al-Salem, “Heuristics for the unrelated parallel machine

scheduling problem with setup times,” Journal of Intelligent Manufacturing, vol. 17, no. 1,

pp. 85–97, 2006.

[29] C.-Y. Lee and C.-S. Lin, “Single-machine scheduling with maintenance and repair rate-

modifying activities,” European Journal of Operational Research, vol. 135, no. 3, pp. 493–

513, 2001.

[30] C.-Y. Lee and V. J. Leon, “Machine scheduling with a rate-modifying activity,” European

Journal of Operational Research, vol. 128, no. 1, pp. 119–128, 2001.

[31] X. Cai, X. Wu, and X. Zhou, “Stochastic scheduling subject to preemptive-repeat break-

downs with incomplete information,” Operations Research, vol. 57, no. 5, pp. 1236–1249,

2009.

[32] Y. Feng and H. Yan, “Optimal production control in a discrete manufacturing system

with unreliable machines and random demands,” IEEE Transactions on Automatic Control,

vol. 45, no. 12, pp. 2280–2296, 2000.

[33] S. Sana, S. K. Goyal, and K. Chaudhuri, “A production–inventory model for a deteriorat-

ing item with trended demand and shortages,” European Journal of Operational Research,

vol. 157, no. 2, pp. 357–371, 2004.

[34] P. J. Schweitzer and A. Seidmann, “Optimizing processing rates for flexible manufacturing

systems,” Management Science, vol. 37, no. 4, pp. 454–466, 1991.

[35] R. Rishel, “Controlled wear process: Modeling optimal control,” IEEE Transactions on

Automatic Control, vol. 36, no. 9, pp. 1100–1102, 1991.

[36] D. A. Stephenson and J. S. Agapiou, Metal Cutting Theory and Practice, Third Edition.

CRC Press, April 2016.

[37] W. Xu and L. Cao, “Optimal tool replacement with product quality deterioration and random

tool failure,” International Journal of Production Research, vol. 53, no. 6, 2015.

164

[38] B. Korte, J. Vygen, B. Korte, and J. Vygen, Combinatorial optimization, vol. 2. Springer,

2012.

[39] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Programming: Second Edition.

Society for Industrial and Applied Mathematics, January 2009.

[40] N. Karmarkar, “Probabilistic analysis of some bin-packing problems,” in 23rd Annual Sym-

posium on Foundations of Computer Science, IEEE SFCS’08., pp. 107–111, 1982.

[41] E. Coffman, K. So, M. Hofri, and A. Yao., “A stochastic model of bin-packing,” Information

and Control, vol. 44, pp. 105–115, February 1980.

[42] P. Bonami, “Bonmin users’ manual,” 2007.

[43] H. Levy and M. Sidi, “Polling systems: applications, modeling, and optimization,” IEEE

Transactions on Communications, vol. 38, no. 10, pp. 1750–1760, 1990.

[44] R. D. van der Mei and A. Roubos, “Polling models with multi-phase gated service,” Annals

of Operations Research, vol. 198, no. 1, pp. 25–56, 2012.

[45] M. A. Boon, I. J. Adan, E. M. Winands, and D. Down, “Delays at signalized intersections

with exhaustive traffic control,” Probability in the Engineering and Informational Sciences,

vol. 26, no. 3, pp. 337–373, 2012.

[46] D. Miculescu and S. Karaman, “Polling-systems-based autonomous vehicle coordination in

traffic intersections with no traffic signals,” IEEE Transactions on Automatic Control, 2019.

[47] M. A. Boon, R. Van der Mei, and E. M. Winands, “Applications of polling systems,” Surveys

in Operations Research and Management Science, vol. 16, no. 2, pp. 67–82, 2011.

[48] V. Vishnevskii and O. Semenova, “Mathematical methods to study the polling systems,”

Automation and Remote Control, vol. 67, no. 2, pp. 173–220, 2006.

[49] H. Takagi, “Queuing analysis of polling models,” ACM Computing Surveys (CSUR), vol. 20,

no. 1, pp. 5–28, 1988.

165

[50] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimization and approximation

in deterministic sequencing and scheduling: a survey,” in Annals of discrete mathematics,

vol. 5, pp. 287–326, Elsevier, 1979.

[51] J. K. Lenstra, D. B. Shmoys, and E. Tardos, “Approximation algorithms for scheduling

unrelated parallel machines,” Mathematical programming, vol. 46, no. 1-3, pp. 259–271,

1990.

[52] E. L. Lawler, J. K. Lenstra, A. H. R. Kan, and D. B. Shmoys, “Sequencing and scheduling:

Algorithms and complexity,” Handbooks in operations research and management science,

vol. 4, pp. 445–522, 1993.

[53] A. R. Kan, Machine scheduling problems: classification, complexity and computations.

Springer Science & Business Media, 2012.

[54] D. R. Smith, “A new proof of the optimality of the shortest remaining processing time

discipline,” Operations Research, vol. 26, no. 1, pp. 197–199, 1978.

[55] A. Wierman and B. Zwart, “Is tail-optimal scheduling possible?,” Operations research,

vol. 60, no. 5, pp. 1249–1257, 2012.

[56] N. Bansal, B. Kamphorst, and B. Zwart, “Achievable performance of blind policies in heavy

traffic,” Mathematics of Operations Research, 2018.

[57] L. Stougie and A. P. Vestjens, “Randomized algorithms for on-line scheduling problems:

how low can’t you go?,” Operations Research Letters, vol. 30, no. 2, pp. 89–96, 2002.

[58] E. Altman, A. Khamisy, and U. Yechiali, “On elevator polling with globally gated regime,”

Queueing Systems, vol. 11, no. 1, pp. 85–90, 1992.

[59] A. Allahverdi, C. Ng, T. E. Cheng, and M. Y. Kovalyov, “A survey of scheduling prob-

lems with setup times or costs,” European journal of operational research, vol. 187, no. 3,

pp. 985–1032, 2008.

166

[60] A. Allahverdi, “The third comprehensive survey on scheduling problems with setup

times/costs,” European Journal of Operational Research, vol. 246, no. 2, pp. 345–378, 2015.

[61] A. Allahverdi and H. Soroush, “The significance of reducing setup times/setup costs,” Eu-

ropean Journal of Operational Research, vol. 187, no. 3, pp. 978–984, 2008.

[62] R. Ruiz and J. A. Vázquez-Rodríguez, “The hybrid flow shop scheduling problem,” Euro-

pean Journal of Operational Research, vol. 205, no. 1, pp. 1–18, 2010.

[63] E. Vallada and R. Ruiz, “A genetic algorithm for the unrelated parallel machine scheduling

problem with sequence dependent setup times,” European Journal of Operational Research,

vol. 211, no. 3, pp. 612–622, 2011.

[64] O. Hinder and A. J. Mason, “A novel integer programing formulation for scheduling with

family setup times on a single machine to minimize maximum lateness,” European Journal

of Operational Research, vol. 262, no. 2, pp. 411–423, 2017.

[65] C. Ng, T. E. Cheng, J. Yuan, and Z. Liu, “On the single machine serial batching scheduling

problem to minimize total completion time with precedence constraints, release dates and

identical processing times,” Operations Research Letters, vol. 31, no. 4, pp. 323–326, 2003.

[66] G. Mosheiov, D. Oron, and Y. Ritov, “Minimizing flow-time on a single machine with inte-

ger batch sizes,” Operations Research Letters, vol. 33, no. 5, pp. 497–501, 2005.

[67] L. Shen, S. Dauzère-Pérès, and J. S. Neufeld, “Solving the flexible job shop scheduling

problem with sequence-dependent setup times,” European Journal of Operational Research,

vol. 265, no. 2, pp. 503–516, 2018.

[68] E. Lübbecke, O. Maurer, N. Megow, and A. Wiese, “A new approach to online scheduling:

Approximating the optimal competitive ratio,” ACM Transactions on Algorithms (TALG),

vol. 13, no. 1, p. 15, 2016.

[69] L. Epstein and R. van Stee, “Lower bounds for on-line single-machine scheduling,” Theo-

retical Computer Science, vol. 299, no. 1, pp. 439–450, 2003.

167

[70] R. Sitters, “Competitive analysis of preemptive single-machine scheduling,” Operations Re-

search Letters, vol. 38, no. 6, pp. 585–588, 2010.

[71] A. S. Schulz and M. Skutella, “The power of α-points in preemptive single machine schedul-

ing,” Journal of Scheduling, vol. 5, no. 2, pp. 121–133, 2002.

[72] J. A. Hoogeveen and A. P. Vestjens, “Optimal on-line algorithms for single-machine

scheduling,” in International Conference on Integer Programming and Combinatorial Op-

timization, pp. 404–414, Springer, 1996.

[73] X. Lu, R. Sitters, and L. Stougie, “A class of on-line scheduling algorithms to minimize total

completion time,” Operations Research Letters, vol. 31, no. 3, pp. 232–236, 2003.

[74] C. Phillips, C. Stein, and J. Wein, “Minimizing average completion time in the presence of

release dates,” Mathematical Programming, vol. 82, no. 1-2, pp. 199–223, 1998.

[75] E. J. Anderson and C. N. Potts, “Online scheduling of a single machine to minimize total

weighted completion time,” Mathematics of Operations Research, vol. 29, no. 3, pp. 686–

697, 2004.

[76] M. X. Goemans, M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang, “Single ma-

chine scheduling with release dates,” SIAM Journal on Discrete Mathematics, vol. 15, no. 2,

pp. 165–192, 2002.

[77] J. Tao, Z. Chao, Y. Xi, and Y. Tao, “An optimal semi-online algorithm for a single ma-

chine scheduling problem with bounded processing time,” Information Processing Letters,

vol. 110, no. 8-9, pp. 325–330, 2010.

[78] J. Tao, Z. Chao, and Y. Xi, “A semi-online algorithm and its competitive analysis for a

single machine scheduling problem with bounded processing times,” Journal of Industrial

and Management Optimization, vol. 6, no. 2, pp. 269–282, 2010.

[79] S. Divakaran and M. Saks, “An online algorithm for a problem in scheduling with set-ups

and release times,” Algorithmica, vol. 60, no. 2, pp. 301–315, 2011.

168

[80] L. Zhang and A. Wirth, “Online machine scheduling with family setups,” Asia-Pacific Jour-

nal of Operational Research, vol. 33, no. 04, p. 1650027, 2016.

[81] M. Ferguson and Y. Aminetzah, “Exact results for nonsymmetric token ring systems,” IEEE

Transactions on Communications, vol. 33, no. 3, pp. 223–231, 1985.

[82] D. Sarkar and W. Zangwill, “Expected waiting time for nonsymmetric cyclic queueing sys-

tems exact results and applications,” Management Science, vol. 35, no. 12, pp. 1463–1474,

1989.

[83] E. M. Winands, I. J.-B. F. Adan, and G.-J. van Houtum, “Mean value analysis for polling

systems,” Queueing Systems, vol. 54, no. 1, pp. 35–44, 2006.

[84] M. Van Vuuren and E. M. Winands, “Iterative approximation of k-limited polling systems,”

Queueing Systems, vol. 55, no. 3, pp. 161–178, 2007.

[85] N. Gautam, Analysis of queues: methods and applications. CRC Press, 2012.

[86] A. Wierman, E. M. Winands, and O. J. Boxma, “Scheduling in polling systems,” Perfor-

mance Evaluation, vol. 64, no. 9, pp. 1009–1028, 2007.

[87] Z. Liu, P. Nain, and D. Towsley, “On optimal polling policies,” Queueing Systems, vol. 11,

no. 1-2, pp. 59–83, 1992.

[88] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation indices. John Wiley

& Sons, 2011.

[89] J. Baker and I. Rubin, “Polling with a general-service order table,” IEEE Transactions on

Communications, vol. 35, no. 3, pp. 283–288, 1987.

[90] L. Kleinrock and H. Levy, “The analysis of random polling systems,” Operations Research,

vol. 36, no. 5, pp. 716–732, 1988.

[91] J. N. Tsitsiklis, “A short proof of the Gittins index theorem,” The Annals of Applied Proba-

bility, vol. 4, no. 1, pp. 194–199, 1994.

169

[92] S. Aalto, U. Ayesta, and R. Righter, “On the gittins index in the M/G/1 queue,” Queueing

Systems, vol. 63, no. 1-4, p. 437, 2009.

[93] C. L. Monma and C. N. Potts, “On the complexity of scheduling with batch setup times,”

Operations research, vol. 37, no. 5, pp. 798–804, 1989.

[94] J. B. Ghosh, “Batch scheduling to minimize total completion time,” Operations Research

Letters, vol. 16, no. 5, pp. 271–275, 1994.

[95] S. Divakaran and M. Saks, “Approximation algorithms for problems in scheduling with set-

ups,” Discrete Applied Mathematics, vol. 156, no. 5, pp. 719–729, 2008.

[96] M. Queyranne, “Structure of a simple scheduling polyhedron,” Mathematical Programming,

vol. 58, no. 1, pp. 263–285, 1993.

[97] J. Du, J. Y.-T. Leung, and G. H. Young, “Minimizing mean flow time with release time

constraint,” Theoretical Computer Science, vol. 75, no. 3, pp. 347–355, 1990.

[98] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufacturing systems: Key

to future manufacturing,” Journal of Intelligent manufacturing, vol. 11, no. 4, pp. 403–419,

2000.

[99] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?,” in

INFOCOM, 2012 Proceedings IEEE, pp. 2731–2735, IEEE, 2012.

[100] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-class queueing sys-

tem,” in 2015 IEEE International Symposium on Information Theory (ISIT), pp. 1681–1685,

IEEE, 2015.

[101] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for the stationary

distribution of the age of information and its application to single-server queues,” IEEE

Transactions on Information Theory, vol. 65, no. 12, pp. 8305–8324, 2019.

[102] E. Masry, “Poisson sampling and spectral estimation of continuous-time processes,” IEEE

Transactions on Information Theory, vol. 24, no. 2, pp. 173–183, 1978.

170

[103] E. Najm, R. Nasser, and E. Telatar, “Content based status updates,” IEEE Transactions on

Information Theory, 2019.

[104] A. Maatouk, M. Assaad, and A. Ephremides, “Age of information with prioritized streams:

When to buffer preempted packets?,” in 2019 IEEE International Symposium on Informa-

tion Theory (ISIT), pp. 325–329, IEEE, 2019.

[105] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information in status update sys-

tems with packet management,” IEEE Transactions on Information Theory, vol. 62, no. 4,

pp. 1897–1910, 2016.

[106] D. Theodoratos and M. Bouzeghoub, “Data currency quality factors in data warehouse de-

sign.,” in DMDW, p. 15, 1999.

[107] M. Bouzeghoub, “A framework for analysis of data freshness,” in Proceedings of the 2004

international workshop on Information quality in information systems, pp. 59–67, ACM,

2004.

[108] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera: dynamic

flow scheduling for data center networks.,” in Nsdi, vol. 10, pp. 89–92, 2010.

[109] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a compre-

hensive definition of fog computing,” ACM SIGCOMM Computer Communication Review,

vol. 44, no. 5, pp. 27–32, 2014.

[110] E. Najm and R. Nasser, “Age of information: The gamma awakening,” in 2016 IEEE Inter-

national Symposium on Information Theory (ISIT), pp. 2574–2578, IEEE, 2016.

[111] A. Soysal and S. Ulukus, “Age of information in G/G/1/1 systems,” arXiv preprint

arXiv:1805.12586, 2018.

[112] P. Zou, O. Ozel, and S. Subramaniam, “Waiting before serving: A companion to packet

management in status update systems,” IEEE Transactions on Information Theory, 2019.

171

[113] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Queue management for age sensi-

tive status updates,” in 2019 IEEE International Symposium on Information Theory (ISIT),

pp. 330–334, IEEE, 2019.

[114] E. Najm and E. Telatar, “Status updates in a multi-stream M/G/1/1 preemptive queue,” in

IEEE Infocom 2018-IEEE Conference On Computer Communications Workshops (Infocom

Wkshps), pp. 124–129, IEEE, 2018.

[115] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age of information performance of

multiaccess strategies with packet management,” Journal of Communications and Networks,

vol. 21, no. 3, pp. 244–255, 2019.

[116] Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Can decentralized status update achieve

universally near-optimal age-of-information in wireless multiaccess channels?,” in 2018

30th International Teletraffic Congress (ITC 30), vol. 1, pp. 144–152, IEEE, 2018.

[117] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “On the optimality of the whit-

tle’s index policy for minimizing the age of information,” arXiv preprint arXiv:2001.03096,

2020.

[118] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for optimizing age of in-

formation in wireless networks with throughput constraints,” IEEE/ACM Transactions on

Networking, vol. 27, no. 4, pp. 1359–1372, 2019.

[119] R. Talak, S. Karaman, and E. Modiano, “Optimizing information freshness in wireless

networks under general interference constraints,” IEEE/ACM Transactions on Networking,

2019.

[120] Q. He, D. Yuan, and A. Ephremides, “Optimal link scheduling for age minimization in

wireless systems,” IEEE Transactions on Information Theory, vol. 64, no. 7, pp. 5381–5394,

2017.

172

[121] Y.-P. Hsu, E. Modiano, and L. Duan, “Age of information: Design and analysis of opti-

mal scheduling algorithms,” in 2017 IEEE International Symposium on Information Theory

(ISIT), pp. 561–565, IEEE, 2017.

[122] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely status update

in massive iot systems: Decentralized scheduling for wireless uplinks,” arXiv preprint

arXiv:1801.03975, 2018.

[123] Z. Jiang, B. Krishnamachari, X. Zheng, S. Zhou, and Z. Niu, “Timely status update in

wireless uplinks: Analytical solutions with asymptotic optimality,” IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 3885–3898, 2019.

[124] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for

minimizing age of information in broadcast wireless networks,” IEEE/ACM Transactions on

Networking, vol. 26, no. 6, pp. 2637–2650, 2018.

[125] R. D. Yates and S. K. Kaul, “The age of information: Real-time status updating by multiple

sources,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1807–1827, 2019.

[126] N. K. Jaiswal, Priority queues. Elsevier, 1968.

[127] I. Adan, O. J. Boxma, and J. A. C. Resing, “Queueing models with multiple waiting lines,”

Queueing Systems, vol. 37, no. 1-3, pp. 65–98, 2001.

[128] S. K. Kaul and R. D. Yates, “Age of information: Updates with priority,” in 2018 IEEE

International Symposium on Information Theory (ISIT), pp. 2644–2648, IEEE, 2018.

[129] V. G. Kulkarni, Modeling and analysis of stochastic systems. Chapman and Hall/CRC, 2016.

[130] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of scheduling. Courier Corporation,

2003.

[131] T. Takenaka, “Analysis of a nonpreemptive ΣMi/G/1(ΣNi) system,” Electronics and Com-

munications in Japan (Part I: Communications), vol. 72, no. 3, pp. 75–84, 1989.

173

[132] T. Takenaka, “Buffer management schemes for a heterogeneous packet switching sys-

tem,” Electronics and Communications in Japan (Part I: Communications), vol. 67, no. 11,

pp. 46–54, 1984.

[133] T. Takenaka, T. Akaike, and K. Takami, “Characteristics and approximation methods of a

nonpreemptive ΣMi/G/1(ΣNi) system,” Electronics and Communications in Japan (Part

I: Communications), vol. 72, no. 3, pp. 85–94, 1989.

[134] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal sampling and trans-

mission scheduling in multi-source systems,” arXiv preprint arXiv:1812.09463, 2018.

[135] O. Kella and U. Yechiali, “Priorities in M/G/1 queue with server vacations,” Naval Research

Logistics (NRL), vol. 35, no. 1, pp. 23–34, 1988.

[136] E. W. Cheney and D. R. Kincaid, Numerical mathematics and computing. Cengage Learn-

ing, 2012.

[137] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in multihop networks,”

IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1248–1257, 2019.

[138] J. Zhong, R. D. Yates, and E. Soljanin, “Two freshness metrics for local cache refresh,” in

2018 IEEE International Symposium on Information Theory (ISIT), pp. 1924–1928, IEEE,

2018.

[139] C. Song, K. Liu, and X. Zhang, “A generic framework for multisensor degradation modeling

based on supervised classification and failure surface,” IISE Transactions, vol. 51, no. 11,

pp. 1288–1302, 2019.

[140] Y. Cheng and M. A. Jafari, “Vision-based online process control in manufacturing applica-

tions,” IEEE Transactions on Automation Science and Engineering, vol. 5, no. 1, pp. 140–

153, 2008.

[141] B. Yao and H. Yang, “Constrained markov decision process modeling for sequential opti-

mization of additive manufacturing build quality,” IEEE Access, vol. 6, pp. 54786–54794,

2018.

174

[142] X. Guo, Z. Niu, S. Zhou, and P. Kumar, “Delay-constrained energy-optimal base station

sleeping control,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 5,

pp. 1073–1085, 2016.

[143] J. Wu, S. Zhou, and Z. Niu, “Traffic-aware base station sleeping control and power match-

ing for energy-delay tradeoffs in green cellular networks,” IEEE Transactions on Wireless

Communications, vol. 12, no. 8, pp. 4196–4209, 2013.

[144] A. K. Mohapatra, N. Gautam, and R. L. Gibson, “Combined routing and node replacement

in energy-efficient underwater sensor networks for seismic monitoring,” IEEE Journal of

Oceanic Engineering, vol. 38, no. 1, pp. 80–90, 2012.

[145] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, “Research challenges and applications for

underwater sensor networking,” in IEEE Wireless Communications and Networking Confer-

ence, 2006. WCNC 2006., vol. 1, pp. 228–235, IEEE, 2006.

[146] J. Heidemann, M. Stojanovic, and M. Zorzi, “Underwater sensor networks: applications, ad-

vances and challenges,” Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, vol. 370, no. 1958, pp. 158–175, 2012.

[147] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collection, storage, and

retrieval with an underwater sensor network,” in Proceedings of the 3rd international con-

ference on Embedded networked sensor systems, pp. 154–165, 2005.

[148] C. Doukas and I. Maglogiannis, “Managing wearable sensor data through cloud computing,”

in 2011 IEEE Third International Conference on Cloud Computing Technology and Science,

pp. 440–445, IEEE, 2011.

[149] S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,”

Sensors, vol. 17, no. 1, p. 130, 2017.

[150] H. Takagi, “Analysis of finite-capacity polling systems,” Advances in Applied Probability,

vol. 23, no. 2, pp. 373–387, 1991.

175

[151] S. W. Fuhrmann and R. B. Cooper, “Stochastic decompositions in the M/G/1 queue with

generalized vacations,” Operations research, vol. 33, no. 5, pp. 1117–1129, 1985.

[152] V. J. Maccio and D. G. Down, “On optimal policies for energy-aware servers,” Performance

Evaluation, vol. 90, pp. 36–52, 2015.

[153] T. T. Lee, “M/G/1/N queue with vacation time and limited service discipline,” Performance

Evaluation, vol. 9, no. 3, pp. 181–190, 1989.

[154] T. T. Lee, “M/G/1/N queue with vacation time and exhaustive service discipline,” Opera-

tions Research, vol. 32, no. 4, pp. 774–784, 1984.

[155] S. Fuhrmann, “A note on the M/G/1 queue with server vacations,” Operations research,

vol. 32, no. 6, pp. 1368–1373, 1984.

[156] A. Frey and Y. Takahashi, “A note on an M/GI/1/N queue with vacation time and exhaustive

service discipline,” Operations Research lLetters, vol. 21, no. 2, pp. 95–100, 1997.

[157] T. Y. S. Lee and J. Sunjaya, “Exact analysis of asymmetric random polling systems with

single buffers and correlated input process,” Queueing Systems, vol. 23, no. 1-4, pp. 131–

156, 1996.

[158] T. Takine, Y. Takahashi, and T. Hasegawa, “Exact analysis of asymmetric polling systems

with single buffers,” IEEE Transactions on Communications, vol. 36, no. 10, pp. 1119–

1127, 1988.

[159] H. Chung, C. K. Un, and W. Y. Jung, “Performance analysis of markovian polling systems

with single buffers,” Performance Evaluation, vol. 19, no. 4, pp. 303–315, 1994.

[160] B. Mukherjee, C. K. Kwok, A. C. Lantz, and W.-H. Moh, “Comments on" exact analysis of

asymmetric polling systems with single buffers,” IEEE Transactions on Communications,

vol. 38, no. 7, pp. 944–946, 1990.

176

[161] E. Najm, R. Yates, and E. Soljanin, “Status updates through M/G/1/1 queues with HARQ,”

in 2017 IEEE International Symposium on Information Theory (ISIT), pp. 131–135, IEEE,

2017.

[162] M. Moltafet, M. Leinonen, and M. Codreanu, “On the age of information in multi-source

queueing models,” arXiv preprint arXiv:1911.07029, 2019.

[163] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and A. Ephremides, “On the age

of information with packet deadlines,” IEEE Transactions on Information Theory, vol. 64,

no. 9, pp. 6419–6428, 2018.

[164] A. Maatouk, M. Assaad, and A. Ephremides, “The age of updates in a simple relay network,”

in 2018 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2018.

[165] E. L. Lehmann, “Some concepts of dependence,” The Annals of Mathematical Statistics,

pp. 1137–1153, 1966.

[166] D. Kofman, “Blocking probability, throughput and waiting time in finite capacity polling

systems,” Queueing Systems, vol. 14, no. 3-4, pp. 385–411, 1993.

[167] H. Takagi, “Analysis and application of polling models,” in Performance Evaluation: Ori-

gins and Directions, pp. 423–442, Springer, 2000.

[168] O. J. Boxma and J. A. Weststrate, “Waiting times in polling systems with markovian

server routing,” in Messung, Modellierung und Bewertung von Rechensystemen und Net-

zen, pp. 89–104, Springer, 1989.

177

APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Proof for Theorem 3.2.1

In this section we mainly provide the proof for Theorem 1 of our original paper. We first

introduce a fact that will be useful later.

Fact A.1.1. For positive numbers {ai, bi}ni=1, we have
∑n
i=1 ai∑n
i=1 bi

≤ maxni=1{aibi }.

Proof. Without loss of generality, assume an
bn

= maxni=1{aibi }, then for any i we have an
bn
≥ ai

bi
, thus

anbi ≥ aibn holds for all i = 1, ..., n. Since an
bn
−
∑n
i=1 ai∑n
i=1 bi

=
an
∑n
i=1 bi−bn

∑n
i=1 ai

bn(
∑n
i=1 bi)

=
∑n
i=1(anbi−aibn)

bn(
∑n
i=1 bi)

≥

0, we have
∑n
i=1 ai∑n
i=1 bi

≤ an
bn

= maxni=1{aibi }.

In Theorem 1 we want to show supI
Ce(I)
C∗(I)

≤ ρ for some constant ρ. However, by Fact A.1.1 we

only need to show that this inequality holds for the instance processed in each busy period. Here

we first introduce the concept of busy periods. If there is at least one job in the system, we say the

system is busy, otherwise it is empty. When the system is empty, the server is not serving under the

online policy. The status of the system under the online policy can be described as a busy period

following an empty period, and then following by a busy period, and so on. There are two types

of busy periods that we are interested in. Type I busy period (denoted as I-B) is the busy period in

which the server under online policy resumes work without setting up. This is because the server

was idling at the last queue it served (say queue i) after the previous busy period, and the first

arrival in the new busy period also occurs at queue i. Type II busy period (denote as II-B) is the

busy period in which the server resumes work with a setting up, which is because the new arrival

occurs at a queue different from the queue that the server was idling at. We will consider these

two types of busy period separately in the proof. To show the online policy has competitive ratio

ρ, from Fact A.1.1 we only need to show that supI
Ce(I)
C∗(I)

≤ ρ holds for any instance I processed in

a busy period.

178

In the following we only focus our discussion in a single busy period. Since the server in the

online policy serves queues in a cyclic way, without loss of generality, we assume that the server

serves from queue 1 to queue k, and then switches back to queue 1, and so on. A cycle (round)

starts when the server visits queue 1 and ends when it visits queue 1 the next time. If at some time

point a queue, say queue i, is empty and skipped by the server, we still say that queue i has been

visited in this cycle, with setup time 0. We define the job instance served by the server in its wth

visit to queue as bwi (for i = 1, ..., k), and we call each bwi a batch. Batch bwi is a subset of job

instance I . In each cycle, there are k batches served by the online policy, and some of them may be

empty but not all of them (if all of them are empty then the system is empty and the server would

idle at queue 1). We let Iw = ∪ki=1b
w
i . For each batch bwi with the number of jobs n(bwi) = nwi , Swi

is the earliest time when a job from bwi starts being processed under the online policy, andRw
i is the

earliest release date (arrival time) over all jobs from batch bwi . Notice thatRw
i ≤ Swi . Each batch bwi

may be processed by the optimal offline policy in a different way from the online policy. Suppose

Ew∗
i is the earliest time when a job in batch bwi starts service under the optimal offline policy. Note

Ew∗
i may differ from Swi . Before time Swi , we know all the batches (∪w−1

j=1 I
j) ∪ (∪i−1

l=1b
w
l) have

been served by the online policy. However in the optimal offline policy, only some jobs from

these batches have been served. We suppose qwi number of jobs in (∪w−1
j=1 I

j)∪ (∪i−1
l=1b

w
l) have been

served by the optimal offline policy before time Ew∗
i . Note that qwi is just a number instead of a

job instance. We let Ce(I) be the cumulative completion times of all jobs in job instance I under

online policy e ∈ Π1, and C∗(I) be the cumulative completion times of all jobs in I under the

offline optimal policy. For convenience, we let g(I) = n(I)(n(I)+1)
2

for job instance I , which is the

sum of arithmetic sequence from 1 to n(I). Also, g(I) can be regarded as the completion time of

I when 1) all the jobs are available at time 0, 2) each of them are of processing time 1, and 3) no

setup time is considered. All the notations are summarized in Table A.1 of this document. Before

going to the proof of Theorem 3.2.1, we first provide an example to show how the total completion

time is characterized.

Example A.1.2. Suppose there is a job instance I with n(I) = n1 + n2 jobs which arrives at time

179

R. Each of the job has processing time 1. Under policy π the server starts to process the first

n1 jobs, and idles for time W , and then processes the rest of n2 jobs without idling. The total

completion time for I is given by

Cπ(I) = (R + 1) + (R + 2) + ...+ (R + n1) + (R + n1 +W + 1)

+(R + n1 +W + 2) + ...+ (R + n1 +W + n2)

= (n1 + n2)R + n2W + g(I).

Notice the completion time of I is made up of three components. The first component (n1 +

n2)R is because all the jobs in I arrive at time R. The second term n2W is because the rest n2 jobs

wait for another W amount of time. The third term g(I) is the pure completion time if we process

jobs one by one without idling.

Having showed the idea of calculating total completion times in Example A.1.2, now we move

on to show the proof of Theorem 3.2.1. We next introduce the idea of truncated optimal schedule.

Notice that the optimal policy may not always be work-conserving (i.e., never idles when there

are jobs in the system). The optimal policy may wait at some queue in order to receive more jobs

which will arrive in the future. The truncated optimal solution is defined by the completion time

for the optimal offline problem with subtracting the completion time caused by idling, which is

shown in Figure A.1. There is a waiting (idling) period W between b1
1 and b2

1 in Figure A.1. The

truncated optimal solution is given by C∗(b1
1 ∪ b2

1 ∪ b1
2 ∪ b1

3)−W (n2
1 + n1

2 + n1
3). We use Ct(I) to

denote the total completion time for instance I under the truncated optimal schedule. Note that the

truncated optimal solution is always a lower bound for the real optimal solution.

Lemma A.1.3. Suppose I is a job instance, b is a batch and pmin = 1, then Ct(I ∪ b) ≥ Ct(I) +

g(b) + En(b) + n(b)(n(I)− q), where E is the time when the server starts serving batch b in the

truncated optimal solution, and q is the number of jobs in I that are served before time E.

Proof. We suppose the optimal solution is given, and now we consider the total completion time

180

Figure A.1: Truncated Optimal Solution

of I ∪ b under truncated optimal solution. If all the jobs from b are served after I in the optimal

solution, then we have Ct(I ∪ b) ≥ Ct(I) + g(b) +En(b). If not, we let δ(b) = Ct(I ∪ b)−Ct(I)

be the additional completion time incurred by inserting b into I . Notice that δ(b) is minimized

when all jobs in b has pmin = 1. If we can show that δ(b) ≥ g(b) + En(b) + n(b)(n(I)− q) with

every job in b having pmin = 1, we can then prove the lemma. So we assume here that every job

in b has pmin = 1. Since the earliest time to process batch b in the truncated optimal solution is E,

if we combine all jobs in b altogether and serve them in one batch from time E to time E + n(b),

then δ(b) is again minimized since all the jobs in b have the smallest processing time. So in the

following we show that by inserting batch b at time E, the additional completion time incurred is

at least g(b) +En(b) +n(b)(n(I)− q). By inserting batch b into I from time E to E +n(b), some

jobs from I served after E in the original truncated optimal solution (with total number (n(I)−q))

are moved after batch b, resulting an increase of delay n(b)(n(I) − q) for these jobs. Besides,

inserting a batch b at time E increases the total completion time by g(b) + En(b). So inserting a

batch b can increase at least g(b) + En(b) + n(b)(n(I)− q) amount of completion time. We thus

prove the lemma.

181

Figure A.2: Insert a Batch

To make the proof of Lemma A.1.3 easier to understand, an example is given in Figure A.2.

The first schedule in Figure A.2 is the truncated optimal for the batch b1
1 ∪ b1

2 ∪ b1
3. The second

schedule is the truncated optimal schedule for b1
1 ∪ b1

2 ∪ b1
3 ∪ b, where b is separated into two

parts. If all jobs in b are of workload pmin = 1, it is always beneficial to schedule all jobs of b

in the same batch, which is shown as the third schedule in Figure A.2. Notice that in Figure A.2,

q = n(b1
1 + b2

1) = n1
1 + n2

1.

Lemma A.1.4. Suppose I is a job instance, b is a batch and pmin = 1, then C∗(I ∪ b) ≥ C∗(I) +

g(b) +E∗n(b), where E∗ is the time when the server starts serving batch b in the optimal solution.

Proof. Since the earliest service time in the optimal solution for b is at E∗, we have the minimal

total completion time for b is g(b) + E∗n(b). Hence proved.

We now introduce a benchmark for the online policy by combining the optimal solution and

the truncated optimal solution. We let Cm(I) = αC∗(I) + (1−α)Ct(I) be the benchmark, where

α = 1
1+k

. We notice that C∗(I) ≥ Cm(I) ≥ Ct(I) from the fact that C∗(I) ≥ Ct(I). If we have

Ce(I)
Cm(I)

≤ ρ, then we can show that C
e(I)

C∗(I)
≤ ρ.

Next we restate Theorem 3.2.1 in the main paper and describe the proof.

182

Theorem A.1.5. (Theorem 3.2.1 in the main paper) Any policy in Π1 has competitive ratio of

κ = max{3
2
γ, k + 1} for the polling system 1 | ri, τ, pmax ≤ γpmin |

∑
Ci. When 3

2
γ ≤ k + 1, for

arbitrary ε > 0, there is an instance I such that C
e(I)

C∗(I)
> κ− ε.

Proof. We prove the theorem by induction. In this proof we only consider an instance I that the

cyclic policy e ∈ Π1 serves in a busy period. By induction we can finally conclude that Ce(I)
Cm(I)

≤ κ

for instance I , which also implies that Ce(I)
C∗(I)

≤ κ. We first show that the batches served by the

online policy in the first cycle, i.e., I1 ∈ I , satisfies Ce(I1)
Cm(I1)

≤ κ. We next prove that if the result

holds true for ∪w−1
j=1 I

j , then it also holds for (∪w−1
j=1 I

j) ∪ bw1 . We next show the result holds true for

(∪w−1
j=1 I

j) ∪ (∪l+1
i=1b

w
i) if the result holds for (∪w−1

j=1 I
j) ∪ (∪li=1b

w
i).

To start, we first assume pmin = 1 and pmax = γ (the case where pmin = 0 is similar). Notice

that I1 = ∪ki=1b
1
i is the union of batches served in the first cycle under the online policy. Without

loss of generality, we assume the server serves from queue 1 to queue k in each cycle. Knowing

that I1 = ∪ki=1b
1
i , we let n1

(k) ≥ n1
(k−1) ≥ ... ≥ n1

(1) be the descending permutation of (n1
1, ..., n

1
k),

and E1 = minki=1E
1
i , S1 = minki=1 S

1
i . Then we have (with explanation given later)

Ct(I1) ≥ g(I1) + τ
k∑
i=2

k∑
j=i

n1
(k−j+1) + E1

k∑
i=1

n1
i , (A.1)

and

Ce(I1) ≤ γg(I1) + τ
k∑
i=2

k∑
j=i

n1
(j) + S1

k∑
i=1

n1
i . (A.2)

The RHS of Inequality (A.1) is the minimal completion time of a list which has the same

number of jobs in each queue as I1 and all of these jobs arrive at time E1 with each job having

processing time 1. The first term g(I1) is the pure completion time. The second term is because

n1
(k) ≥ n1

(k−1) ≥ ... ≥ n1
(1), if all batches are available at time E1 and there is no further arrivals,

183

the best order of serving the batches is to serve from the longest one to the shortest one. Note that

the optimal policy may start without setting up since it may be the same queue that the server was

idling at and resumed with. In the case where there is no setup for the first queue, the completion

time incurred by setup is τ
∑k

i=2

∑k
j=i n

1
(k−j+1). The third term in RHS of Inequality (A.1) is

because the entire service process for the optimal solution starts from E1. Therefore, the RHS

of Inequality (A.1) is a lower bound for Ct(I1). The RHS of inequality (A.2) is the upper bound

for the online policy, which says that the online policy may serve batches from the shortest to the

longest, starting from time point S1, and all jobs are of the maximal workload γ. Since we consider

I-B in this case, the server in the online policy does not set up for the first batch as the server was

idling in the same queue as the new arrival. So the completion time resulted by setup is upper

bounded by τ
∑k

i=2

∑k
j=i n

1
(j).

We let Z(k) =
∑k

i=1

∑k
j=i n

1
(j) and Zt(k) =

∑k
i=1

∑k
j=i n

1
(k−j+1) then

Z(k)

Zt(k)
=

kn1
(k) + (k − 1)n1

(k−1) + ...+ n1
(1)

kn1
(1) + (k − 1)n1

(2) + ...+ n1
(k)

≤
kn1

(k) + kn1
(k−1) + ...+ kn1

(1)

n1
(1) + n1

(2) + ...+ n1
(k)

≤ k.

From Fact A.1.1 we have

Ce(I1)

Ct(I1)
≤

γg(I1) + τ
∑k

i=2

∑k
j=i n

1
(i) + S1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + E1

∑k
i=1 n

1
i

≤ γg(I1) + τ(Z(k)−
∑k

i=1 n
1
i) + E1

∑k
i=1 n

1
i

g(I1) + τ(Zt(k)−
∑k

i=1 n
1
i) + E1

∑k
i=1 n

1
i

≤ max{γ, k, 1} < κ. (A.3)

The Inequality (A.3) follows from the fact that τ ≤ minki=1 S
1
i = minki=1{R1

i } ≤ minki=1 E
1
i

because there must be a busy period happening before an I-B. So far we have shown Ce(I1)
Cm(I1)

≤ κ

from the fact that Ct(I1) ≤ Cm(I1). Now we prove that Ce((∪w−1
j=1 I

j) ∪ bw1) ≤ κCm((∪w−1
j=1 I

1) ∪

bw1). Clearly if nw1 = 0 then the conclusion holds. Now we let n̄ =
∑w−1

j=1

∑k
i=1 n

j
i + nw1 and

184

suppose nw1 6= 0, we then have

Ce((∪w−1
j=1 I

j) ∪ bw1) ≤ Ce(∪w−1
j=1 I

j) + γg(bw1) + nw1

(
γ

k∑
i=1

nw−1
i + kτ + Sw−1

1

)
, (A.4)

and

Cm((∪w−1
j=1 I

j) ∪ bw1) = αC∗((∪w−1
j=1 I

j) ∪ bw1) + (1− α)Ct((∪w−1
j=1 I

j) ∪ bw1)

≥ αC∗(∪w−1
j=1 I

j) + αEw∗
1 nw1 + αg(bw1)

+(1− α)Ct(∪w−1
j=1 I

j) + (1− α)g(bw1)

+(1− α)Ew
1 n

w
1 + (1− α)nw1 (n̄− qw1), (A.5)

where

Ew
1 ≥ S1 + qw1 , (A.6)

and

Ew∗
1 ≥ Rw

1 ≥ Sw−1
1 + nw−1

1 . (A.7)

The RHS of Inequality (A.4) is because the completion time of batch bw1 is bounded by γ

times its pure completion time g(bw1), which is the maximal pure completion time for bw1 (if all the

workload in bw1 is pmax = γ), plus nw1 times the maximal starting time γ
∑k

i=1 n
w−1
i + kτ + Sw−1

1 .

Inequality A.5 follows from Lemma A.1.3 and A.1.4 directly. Inequality (A.6) holds because

before Ew
1 , the server has served qw1 number of jobs. Inequality (A.7) is because the earliest time

to serve bw1 is no earlier than Rw
1 . From Inequalities (A.4,A.5,A.6 and A.7) we have

185

Ce((∪w−1
j=1 I

j) ∪ bw1)

Cm((∪w−1
j=1 I

j) ∪ bw1)

≤
Ce(∪w−1

j=1 I
j) + γg(bw1) + nw1

(
γ
∑k

i=1 n
w−1
i + kτ + Sw−1

1

)
αC∗(∪w−1

j=1 I
j) + (1− α)Ct(∪w−1

j=1 I
j) + αSw−1

1 nw1 + g(bw1) + (1− α)nw1 n̄+ (1− α)nw1 τ

≤ max{
Ce(∪w−1

j=1 I
j)

Cm(∪w−1
j=1 I

j)
,
γg(bw1)

g(bw1)
,

kτ + Sw−1
1

αSw−1
1 + (1− α)τ

,
γn̄

(1− α)n̄
}

≤ max{κ, γ, k + 1,
γ

1− α
}.

Notice that max{κ, γ, k + 1, γ
1−α} = max{κ, γ, k + 1, γ k+1

k
} ≤ max{κ, γ, k + 1, 3

2
γ} = κ

from the fact that k ≥ 2 and α = 1
k+1

.

Now suppose the result holds for b̄ =
(
∪w−1
j=1 I

j
)
∪
(
∪li=1b

w
i

)
where w ≥ 2, and we want to

show it also holds for b̄∪ bwl+1 =
(
∪w−1
j=1 I

j
)
∪
(
∪l+1
i=1b

w
i

)
for l < k by induction, where nwl+1 6= 0. We

abuse the notion by letting n̄ =
∑w−1

j=1

∑k
i=1 n

j
i +

∑l
i=1 n

w
i be the number of jobs served before

bwl+1, and n̄wl+1 =
∑k

j=l+1 n
w−1
j +

∑l
j=1 n

w
j be the number of jobs served between Sw−1

l+1 and Swl+1.

Because the server stays in queue i at the kth visit for no more than time γnki and serves nki jobs

,we have

Ce(b̄ ∪ bwl+1) ≤ Ce(b̄) + γg(bwl+1) + nwl+1

(
γn̄wl+1 + kτ + Sw−1

l+1

)
,

and

Cm(b̄ ∪ bwl+1) = αC∗(b̄ ∪ bwl+1) + (1− α)Ct(b̄ ∪ bwl+1)

≥ αC∗(b̄) + αEw∗
l+1n

w
l+1 + αg(bwl+1)

+(1− α)Ct(b̄) + (1− α)g(bwl+1)

+(1− α)Ew
l+1n

w
l+1 + (1− α)nwl+1(n̄− qwl+1),

186

where

Ew
l+1 ≥ τ + qwl+1,

and

Ew∗
l+1 ≥ Rw

l+1 > Sw−1
l+1 + nw−1

l+1 .

Similar to our discussion above, we have

Ce(b̄ ∪ bwl+1)

Cm(b̄ ∪ bwl+1)

≤
Ce(b̄) + γg(bwl+1) + nwl+1

(
γn̄wl+1 + kτ + Sw−1

l+1

)
αC∗(b̄) + (1− α)Ct(b̄) + αSw−1

l+1 n
w
l+1 + g(bwl+1) + (1− α)nwl+1n̄+ (1− α)nw1 τ

≤ max{ C
e(b̄)

Cm(b̄)
,
γg(bwl+1)

g(bwl+1)
,

kτ + Sw−1
l+1

αSw−1
l+1 + (1− α)τ

,
γn̄

(1− α)n̄
}

≤ max{κ, γ, k + 1,
γ

1− α
} = κ.

Now we show that results hold for the second type of busy period, i.e., II-B. For II-B, the first

arrival occurs in a different queue from where the server was idling, thus the server starts this

period with a setup. Note that the very first busy period is also a II-B. If I1 belongs to the first busy

period, then

Ct(I1) ≥ g(I1) + τ
k∑
i=1

k∑
j=i

n1
(k−j+1).

Ce(I1) ≤ γg(I1) + τ

k∑
i=1

k∑
j=i

n1
(j) + τ

k∑
i=1

n1
i .

187

Thus

Ce(I1)

Ct(I1)
≤ γg(I1) + τZ(k) + τ

∑k
i=1 n

1
i

g(I1) + τZt(k)
≤ max{γ, k + 1} ≤ κ.

If I1 does not belong to the first busy period, then

Ct(I1) ≥ g(I1) + τ
k∑
i=2

k∑
j=i

n1
(k−j+1) + E1

k∑
i=1

n1
i ,

and

Ce(I1) ≤ γg(I1) + τ
k∑
i=2

k∑
j=i

n1
(j) + S1

k∑
i=1

n1
i .

Thus if R1 ≥ 2τ , then R1

R1−τ ≤ 2, then

Ce(I1)

Ct(I1)
≤

γg(I1) + τ
∑k

i=2

∑k
j=i n

1
(j) + S1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + E1

∑k
i=1 n

1
i

≤
γg(I1) + τ

∑k
i=2

∑k
j=i n

1
(j) + (R1 + τ)

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) +R1

∑k
i=1 n

1
i

(A.8)

≤ γg(I1) + τZ(k) +R1
∑k

i=1 n
1
i

g(I1) + τZt(k) + (R1 − τ)
∑k

i=1 n
1
i

≤ max{γ, k, 2}

< κ.

Inequality (A.8) follows from E1 ≥ R1 = minki=1R
1
i ≥ τ and S1 = R1 + τ because the server

would immediately set up the queue where a new arrival occurs after an idling period. If R1 ≤ τ

then I1 belongs to the very first busy period, which we have discussed. If τ < R1 < 2τ , then the

online policy has only scheduled at most one batch before R1. Since the new busy period belongs

to II-B, both online and optimal policy in this busy period start from processing a queue different

188

from the queue processed in the previous busy period. We then have E1 ≥ 2τ and

Ce(I1)

Ct(I1)
≤

γg(I1) + τ
∑k

i=2

∑k
j=i n

1
(j) + (R1 + τ)

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + 2τ

∑k
i=1 n

1
i

≤ γg(I1) + τZ(k) +R1
∑k

i=1 n
1
i

g(I1) + τZt(k) + τ
∑k

i=1 n
1
i

≤ max{γ, k, 2} < κ.

Discussion for (∪w−1
j=1 Ij) ∪ bwl+1 for l = 0, ..., k − 1 is similar to our discussion for I-B.

Now we prove the approximate tightness argument of this theorem by constructing a special

instance I . When 3
2
γ ≤ (k + 1), we have κ = k + 1. Suppose at time 0 there is one job with

workload γ at queue 1 and one job with p = 1 at the other queues. At time γ + τ + ε1 (with small

ε1 > 0) a batch b2
1 arrives at queue 1 and each job in b2

1 has workload p = 1. We thus have

Ce(I) ≥ g(I) + n2
1(k + 1)τ +

k(k + 1)

2
τ,

and

C∗(I) ≤ γg(I) + (n2
1 + k − 1)(γ − 1) + n2

1(τ + ε1) +
k(k + 1)

2
τ + (k − 1)ε1.

Thus when τ = (n2
1)2 there is an n2

1 such that for arbitrary ε,

Ce(I)

C∗(I)
> 1 + k − ε.

The theorem also holds for pmax = 0, for simplicity we do not show the proof here.

189

A.2 Proof for Theorem 3.2.2

Theorem A.2.1. (Theorem 3.2.2 in the main paper) Any policy in Π2 has competitive ratio of

κ = max{3
2
γ, k + 1} for the polling system 1 | ri, τ, pmax ≤ γpmin |

∑
Ci. When 3

2
γ ≤ k + 1, for

arbitrary ε > 0, there is an instance I such that C
e(I)

C∗(I)
> κ− ε.

Proof. The proof is similar to the one for Cyclic with Skipping the Empty Queue, however this

time we only need to show Cew(I) ≤ κCm(I) for any busy period I where Cew(I) is the com-

pletion time by a policy from Π2. Notice we no longer need to consider different cases for I-B

and II-B because even when the system is idling, the cyclic policy still keeps setting up queues in

cycle. When a new arrival occurs after the system being empty for some time, we simply regard

this time R1 as the beginning of a busy period. Without loss of generality, we assume the server

begins serving with queue 1 in this busy period. Let n1
(k) ≥ n1

(k−1) ≥ ... ≥ n1
(1) be the descending

permutation of (n1
1, ..., n

1
k) , R1 = minki=1 R

1
i , E1 = minki=1E

1
i and S1 = minki=1 S

1
i . Notice some

of n1
(i) may be zero (not all of them) but the server still sets up the queue even if the queue is empty.

We have

Cm(I1) ≥ g(I1) + τ
k∑
i=2

k∑
j=i

n1
(k−j+1) + E1

k∑
i=1

n1
i ,

and

Cew(I1) ≤ γg(I1) + τk
k∑
i=1

n1
(i) +R1

k∑
i=1

n1
i .

To show Cew(I1)
Cm(I1)

≤ κ, by abusing the notation a little, we first let Z(k) = k
∑k

i=1 n
1
(i) and Zt(k) =∑k

i=1

∑k
j=i n

1
(k−j+1), so

190

Z(k)

Zt(k)
=

kn1
(k) + kn1

(k−1) + ...+ kn1
(1)

kn1
(1) + (k − 1)n1

(2) + ...+ n1
(k)

≤
kn1

(k) + kn1
(k−1) + ...+ kn1

(1)

n1
(1) + n1

(2) + ...+ n1
(k)

≤ k.

Thus

Cew(I1)

Cm(I1)
≤

γg(I1) + τk
∑k

i=1 n
1
(i) +R1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + E1

∑k
i=1 n

1
i

=
γg(I1) + τk

∑k
i=1 n

1
(i) +R1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + max{τ, R1}

∑k
i=1 n

1
i

≤ max{γ, k + 1} (A.9)

≤ κ.

Inequality (A.9) holds because if R1 ≤ τ , then

γg(I1) + τk
∑k

i=1 n
1
(i) +R1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + E1

∑k
i=1 n

1
i

≤
γg(I1) + τk

∑k
i=1 n

1
(i) + τ

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + τ

∑k
i=1 n

1
i

≤ max{γ, k + 1}.

And if R1 > τ, then

γg(I1) + τk
∑k

i=1 n
1
(i) +R1

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=2

∑k
j=i n

1
(k−j+1) + E1

∑k
i=1 n

1
i

≤
γg(I1) + τ(k + 1)

∑k
i=1 n

1
(i) + (R1 − τ)

∑k
i=1 n

1
i

g(I1) + τ
∑k

i=1

∑k
j=i n

1
(k−j+1) + (R1 − τ)

∑k
i=1 n

1
i

≤ max{γ, k + 1, 1}.

The discussions for (∪w−1
j=1 Ij) ∪ bwl+1 is similar to proof of Theorem 3.2.1.

A.3 Proof for Theorem 3.2.3

Theorem A.3.1. (Theorem 3.2.3 in the Main Paper) Any policy in Π3 has competitive ratio of

κ = max{3
2
γ, k + 1} for the polling system 1 | ri, τ, pmax ≤ γpmin |

∑
Ci. When 3

2
γ ≤ k + 1, for

191

arbitrary ε > 0, there is an instance I such that C
e(I)

C∗(I)
> κ− ε.

Proof. We only show the proof for the policy without skipping the empty queue. The proof is

similar to the proof for Theorem 3.2.2. We prove the theorem by induction. Again for simplicity,

we assume pmin = 1 so that pmax = γ. We want to show Cg(I) ≤ κCm(I) holds for any

instance I , where Cg(I) is the completion time for any policy g ∈ Π3. Again we assume the server

routes from queue 1 to queue k in each cycle. Let n1
(k) ≥ n1

(k−1) ≥ ... ≥ n1
(1) is the descending

permutation of (n1
1, ..., n

1
k) and E1 = minki=1E

1
i , S1 = minki=1 S

1
i , we have

Ct(I1) ≥ g(I1) + τ
k∑
i=2

k∑
j=i

n1
(k−j+1) + E1

k∑
i=1

n1
i ,

and

Cg(I1) ≤ g(I1) + τk
k∑
i=1

n1
(i) + S1

k∑
i=1

n1
i .

The rest of discussions are similar to the proof of Theorem 3.2.1, except now we haveEw∗
l+1 > Rw

l+1

because the policy is gated.

192

Notation Meaning Notation Meaning

bwi ,
i = 1, ..., k

The job instance that
are served by the cyclic

online policy during
the wth visit (wth

cycle) to queue i,
within a busy period

Iw, w = 1, 2, ...

Iw = ∪ki=1b
w
i , the union

of instances that are
served by the online
policy during the wth

cycle within a busy
period

nwi = n(bwi),
i = 1, ..., k

The number of jobs in
batch bwi

α = 1
k+1

A constant

Swi ,
i = 1, ..., k

The time when the
online policy starts to

serve batch bwi

S1 =
minki=1{S1

i }

The earliest staring
time for I1 by the

online policy

Rw
i , i = 1, ..., k

The earliest release
time (arrival time) of

batch bwi

R1 =
minki=1{R1

i }
The earliest release

time of I1

Ew
i

The time when the
truncated optimal

offline policy starts to
serve batch bwi

E1 =
minki=1{E1

i }

The earliest time when
the truncated optimal
offline policy starts to

serve I1

Ew∗
i

The time when the
optimal offline policy

starts to serve batch bwi
qwi , i = 1...k

The jobs in
(∪w−1

j=1 I
j) ∪ (∪i−1

l=1b
w
l)

that have been served
by the optimal policy

before Ew
i

g(I) =
n(I)(n(I)+1)

2

Pure completion time
for instance I

Busy period

The time period
between two

consecutive empty
periods

I-B

Type I busy period.
The server start the

new busy period
without setting up

II-B

Type II busy period.
The server start the
new busy period by

setting up

Table A.1: List of Notations for Appendix

193

APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Proof for Theorem 5.3.7

Theorem 5.3.7. The PAoI for CBS-P is given by E[ACBS−P] = 1−H∗(λ)−λH∗(1)(λ)+H∗(λ)2

λH∗(λ)
+

H∗(λ)V ∗(1)(λ)−V ∗(1)(0)
1−V ∗(λ)

, and the AoI for this system is given by

E[∆CBS−P] =

V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

− 2 V ∗(1)(0)
1−V ∗(λ)

1−H∗(λ)
λH∗(λ)

+ 2
λH∗(λ)2

[
1
λ
− H∗(λ)

λ
+H∗(1)(λ)

]
2(− V ∗(1)(0)

1−V ∗(λ)
+ 1−H∗(λ)

λH∗(λ)
)

−H
∗(1)(λ)

H∗(λ)
+H∗(λ)

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
.

Proof. Different from the case of non-preemptive service, in the case where service is preempted

by new arrivals, we decompose the age peak into three pieces

E[A] = E[D] +E[B] +E[L], (B.1)

where D is the delay of a packet that is eventually processed by the server, B is the time period

when the server is on vacation (the same as we defined in Theorem 5.3.2), and L is the time when

the server is busy in serving. A demonstrative graph is given by Figure B.1. Note that these three

components are mutually independent. Therefore the AoI of this system can be given as

E[∆] =
E[L2] + 2E[L]E[B] +E[B2]

2(E[L] +E[B])
+E[D]. (B.2)

We now derive the LST of D, denoted as D∗(s). We first notice that if the service time of a

packetH is smaller than the inter-arrival time T , then the packet is served without being preempted.

Therefore, all the packets that are eventually processed must have the service time smaller than the

inter-arrival time. If the packet that we serve arrives during the last vacation, then its delay D is its

194

Figure B.1: Age of Information Decomposition for Preemptive Service Systems. The
second age peak is decomposed into three components: A{2} = D{1} + B{2} + L{2},
where D{1} is the delay of packet 1, B{2} is period when the server is on vacation, and
L{2} is the time period when the server is serving. Notice that in this example, packet
2 is preempted by packet 3 at time r{3}, and packet 3 is not preempted by any packet.

waiting time G plus its service time. If it arrives during service (it preempts the previous packet in

service), then the delay is its service time only. Thus we have E[e−sD|H < T] = G∗(s)Ĥ(s) and

E[e−sD|H ≥ T] = Ĥ(s), where Ĥ(s) = E[e−sH |H < T].

Since the inter-arrival time is exponential, by letting F (x) be the CDF of service time H , we

have Ĥ(s) =
∫∞
0 e−sudF (u)

∫∞
u λe−λxdx

P (H<I)
=

∫∞
0 e−(s+λ)udF (u)∫∞

0 dF (u)
∫∞
u λe−λxdx

= H∗(λ+s)
H∗(λ)

. Then we have

D∗(s) = G∗(s)
H∗(λ+ s)

H∗(λ)
H∗(λ) +

H∗(λ+ s)

H∗(λ)
(1−H∗(λ))

= H∗(λ+ s)

(
G∗(s) +

1

H∗(λ)
− 1

)
.

195

From the expression for E[G] in Theorem 5.3.2, we have

E[D] = −D∗(1)(0) = −H
∗(1)(λ)

H∗(λ)
−H∗(λ)G∗(1)(0)

= −H
∗(1)(λ)

H∗(λ)
+H∗(λ)

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
. (B.3)

The LST of B is given in Theorem 5.3.2 as B∗(s) = V ∗(s)−V ∗(s+λ)
1−V ∗(s+λ)

, withE[B] = −B∗(1)(0) =

− V ∗(1)(0)
1−V ∗(λ)

and E[B2] = B∗(2)(0) = V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

.

Now we derive the LST for L, i.e., L∗(s). Notice that if the inter-arrival time T is greater than

service time H , then the packet is processed without being preempted. If the inter-arrival time T

is smaller than H , then a new period L is started after T . We then have E[e−sL|H < T] = Ĥ(s)

and E[e−sL|H ≥ T] = E[e−sTL(s)|H ≥ T]. Thus

L∗(s) =

∫ ∞
0

e−sudF (u)

∫ ∞
u

λe−λxdx+ L(s)

∫ ∞
0

dF (u)

∫ u

0

e−sxλe−λxdx

= H∗(s+ λ) + L∗(s)
λ

s+ λ
(1−H∗(s+ λ)).

We can then get

L∗(s) =
H∗(s+ λ)

s
s+λ

+ λ
s+λ

H∗(s+ λ)
, (B.4)

E[L] = −L∗(1)(0) =
1−H∗(λ)

λH∗(λ)
, (B.5)

and

E[L2] = L∗(2)(0) =
2

λH∗(λ)2

(
1

λ
− H∗(λ)

λ
+H∗(1)(λ)

)
.

196

The PAoI for the system can now be given as

E[A] = E[D] +E[B] +E[L]

= −H
∗(1)(λ)

H∗(λ)
+H∗(λ)

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
− V ∗(1)(0)

1− V ∗(λ)
+

1−H∗(λ)

λH∗(λ)

=
1−H∗(λ)− λH∗(1)(λ) +H∗(λ)2

λH∗(λ)
+
H∗(λ)V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
.

B.2 Proof for Theorem 5.3.9

Lemma B.2.1. It holds true for any LST function V ∗(s) that V ∗(1)(λ)
1−V ∗(λ)

≥ − 1
λ

for any positive λ.

Proof. A non-rigorous but intuitive way of proving this is that by the fact that E[G] = 1
λ

+

V ∗(1)(λ)
1−V ∗(λ)

≥ 0 in CBS, then V ∗(1)(λ)
1−V ∗(λ)

≥ − 1
λ

must hold. We now prove this inequality in another way

without using the property of E[G].

Since

V ∗(1)(λ)

1− V ∗(λ)
=
−E[V e−λV]

1−E[e−λV]

=
−E[λV − λ2V 2 + λ3V 3

2!
− λ4V 4

3!
+ λ5V 5

4!
− ...]

λE[λV − λ2V 2

2!
+ λ3V 3

3!
− λ4V 4

4!
+ ...]

,

we only need to show that λV − λ2V 2 + λ3V 3

2!
− λ4V 4

3!
+ λ5V 5

4!
− ... ≤ λV − λ2V 2

2!
+ λ3V 3

3!
−

λ4V 4

4!
+ λ5V 5

5!
− ... for any V ≥ 0 and λ ≥ 0. By letting

β(x) = (1− 1

2!
)x2 − (

1

2!
− 1

3!
)x3 + (

1

3!
− 1

4!
)x4 − ...,

197

we now only need to show that β(x) ≥ 0 for any x ≥ 0. Notice that

β(x) =
1

2
x2 − 2

3!
x3 +

3

4!
x4 − 4

5!
x5 + ...

= x(x− 1

2
x2 +

1

3!
x3 − 1

4!
x4 + ...) + (− 1

2!
x2 +

1

3!
x3 − 1

4!
x4 +

1

5!
x5 + ...)

= x(1− e−x) + (−e−x + 1− x)

= 1− e−x − xe−x.

Since ∂β(x)
∂x

= e−x − e−x + xe−x ≥ 0 and x ≥ 0, we have β(x) ≥ 0. Therefore we have

V ∗(1)(λ)
1−V ∗(λ)

≥ − 1
λ
.

Theorem 5.3.9. If the service time is exponentially distributed, then the system CBS-P has

both AoI and PAoI smaller than CBS.

Proof. We assume that the service time is exponentially distributed with parameter µ. We first

show the conclusion holds true for AoI. When the service time is exponentially distributed, we

have

E[∆CBS] = −
H∗(2)(0) + 2H∗(1)(0) V

∗(1)(0)
1−V ∗(λ)

+ V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

2
(
H∗(1)(0) + V ∗(1)(0)

1−V ∗(λ)

)
+

1

λ
+

V ∗(1)(λ)

1− V ∗(λ)
−H∗(1)(0)

=

2
µ2
− 2

µ
V ∗(1)(0)
1−V ∗(λ)

+ V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

2
(

1
µ
− V ∗(1)(0)

1−V ∗(λ)

) +
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)
+

1

µ

198

and

E[∆CBS−P] =

V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

− 2 V ∗(1)(0)
1−V ∗(λ)

1−H∗(λ)
λH∗(λ)

+ 2
λH∗(λ)2

[
1
λ
− H∗(λ)

λ
+H∗(1)(λ)

]
2(− V ∗(1)(0)

1−V ∗(λ)
+ 1−H∗(λ)

λH∗(λ)
)

−H
∗(1)(λ)

H∗(λ)
+H∗(λ)

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)

=

V ∗(2)(0)
1−V ∗(λ)

+ 2V
∗(1)(0)V ∗(1)(λ)
(1−V ∗(λ))2

− 2 V ∗(1)(0)
1−V ∗(λ)

1
µ

+ 2
µ2

2(− V ∗(1)(0)
1−V ∗(λ)

+ 1
µ
)

+

µ
(µ+λ)2

µ
µ+λ

+
µ

µ+ λ

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
.

Therefore, by using Lemma B.2.1, we have

E[∆CBS]−E[∆CBS−P] =
1

µ
+

λ

µ+ λ

V ∗(1)(λ)

1− V ∗(λ)

≥ 1

µ
− λ

µ+ λ

1

λ

=
λ

µ(µ+ λ)
≥ 0.

Now we show the result holds true for PAoI. Since we have

E[ACBS] =
1

λ
+
V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
+

2

µ

and

E[ACBS−P] =
1−H∗(λ)− λH∗(1)(λ) +H∗(λ)2

λH∗(λ)
+
H∗(λ)V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)

=
1− µ

µ+λ
+ λµ

(µ+λ)2
+ (µ

µ+λ
)2

λµ
µ+λ

+

µ
µ+λ

V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
,

199

then

E[ACBS]−E[ACBS−P] =
1

λ
+

1

µ
− 1

λ
+

λ

µ+ λ

V ∗(1)(λ)

1− V ∗(λ)

≥ 1

µ
− 1

µ+ λ
≥ 0.

B.3 Proof for Theorem 5.3.10

Theorem 5.3.10. If the service time H satisfies E[H] ≥ 1−H(s)
λH(s)

for all s > 0, then CBS-P

always has smaller PAoI than CBS.

Proof. We first have

E[ACBS]−E[ACBS−P] =
1

λ
+
V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)
+ 2E[H]

−1−H∗(λ)− λH∗(1)(λ) +H∗(λ)2

λH∗(λ)
− H∗(λ)V ∗(1)(λ)− V ∗(1)(0)

1− V ∗(λ)

= (1−H∗(λ))

(
1

λ
+

V ∗(1)(λ)

1− V ∗(λ)

)
+ 2E[H]

−1−H∗(λ)− λH∗(1)(λ)

λH∗(λ)
.

From Lemma B.2.1 we know that 1
λ

+ V ∗(1)(λ)
1−V ∗(λ)

≥ 0 and 1 − H∗(λ) ≥ −λH∗(1)(λ), then we

have

E[ACBS]−E[ACBS−P] ≥ 2E[H]− 2
1−H∗(λ)

H∗(λ)
≥ 0.

B.4 Proof for Theorem 5.3.11

Theorem 5.3.11. For M/G/1/1 we have E[AM/G/1/1] = 1
λ
− 2H∗(1)(0), E[∆M/G/1/1] =

2
λ2
− 2
λ
H∗(1)(0)+H∗(2)(0)
1
λ
−H∗(1)(0)

−H∗(1)(0) and V ar(AM/G/1/1) = 1
λ2

+ 2H∗(2)(0)− 2{H∗(1)(0)}2.

200

For M/G/1/1/preemptive we have E[AM/G/1/1/preemptive] = −H∗(1)(λ)
H∗(λ)

+ 1
λH∗(λ)

,

E[∆M/G/1/1/preemptive] = 1
λH∗(λ)

, and V ar(AM/G/1/1/preemptive) = H∗(2)(λ)
H∗(λ)

− {H∗(1)(λ)}2
H∗(λ)2

+

1
λ2H∗(λ)2

+ 2H∗(1)(λ)
λH∗(λ)2

.

For M/G/1/2* we have E[AM/G/1/2∗] = −2H∗(1)(0) + 1
λ

+ H∗(1)(λ), E[∆M/G/1/2∗] =
1
2
H∗(2)(0)+ 1

λ2
H∗(λ)− 1

λ
H∗(1)(λ)

−H∗(1)(0)+
H∗(λ)
λ

+ 1
λ
− 1

λ
H∗(λ) + H∗(1)(λ) − H∗(1)(0), and V ar(AM/G/1/2∗) =

2H∗(2)(0)− 2H∗(1)(0) + 2H∗(λ)[H∗(1)(0)+H∗(1)(λ)]
λ

+ 2H∗(λ)(1−H∗(λ))
λ2

+ 1
λ2
−H∗(2)(λ)− 2

λ
H∗(1)(λ)−

H∗(1)(λ)2.

Proof. We first show the variance of peak age in M/G/1/1. Realizing that in M/G/1/1 system, once

a packet arrives, the server will start processing it immediately. Thus there is no waiting time for

all packets. Then the LST of peak age in M/G/1/1 can be given as A∗(s) = I∗(s)H∗(s). The

inter-service time I can be further decomposed into the idling time T (exponentially distributed)

and service time H , i.e., I = T + H . We thus have A∗(s) = T ∗(s)H∗(s)2. By some simple

algebra we have E[AM/G/1/1] = 1
λ
− 2H∗(1)(0), E[∆M/G/1/1] =

2
λ2
− 2
λ
H∗(1)(0)+H∗(2)(0)
1
λ
−H∗(1)(0)

−H∗(1)(0)

and V ar(AM/G/1/1) = 1
λ2

+ 2H∗(2)(0)− 2{H∗(1)(0)}2.

Similarly, for M/G/1/1/preemptive system, there is no waiting time for packets. Thus by

the argument in Appendix B.1, we have D∗(s) = H∗(s+λ)
H∗(λ)

. Then the LST of peak age can

be given as A∗(s) = D∗(s)T ∗(s)L∗(s), where L∗(s) is given by Equation (B.4). We then

have E[AM/G/1/1/preemptive] = −H∗(1)(λ)
H∗(λ)

+ 1
λH∗(λ)

and E[∆M/G/1/1/preemptive] = 1
λH∗(λ)

. And

the variance of peak age of M/G/1/1/preemptive system is given by V ar(AM/G/1/1/preemptive) =

H∗(2)(λ)
H∗(λ)

− {H
∗(1)(λ)}2
H∗(λ)2

+ 1
λ2H∗(λ)2

+ 2H∗(1)(λ)
λH∗(λ)2

.

For M/G/1/2* system, the inter-service time is H if there is an arrival during processing time.

If there is no arrival during processing time, the next service starts when the next arrival occurs. By

memoryless property of Poisson arrivals, we have I = T in this case. Therefore I = max{H,T}.

201

To calculate the LST of I, by letting F (h) be the CDF of H , we have

I∗(s) = E[e−sI] =

∫ ∞
h=0

∫ ∞
t=h

λe−λte−stdF (h)dt+

∫ ∞
h=0

∫ h

t=0

e−shλe−λtdF (h)dt

=
λ

λ+ s
H∗(s+ λ) +H∗(s)−H∗(s+ λ)

= H∗(s)− s

λ+ s
H∗(s+ λ).

We can then have

I∗(1)(0) = H∗(1)(0)− H∗(λ)

λ
,

and

I∗(2)(0) = H∗(2)(0) +
2

λ2
H∗(λ)− 2

λ
H∗(1)(λ).

The waiting time only occurs when there is an arrival during processing time H , so that W =

max{H − T, 0}. The LST of W is thus be given as

W ∗(s) =

∫ ∞
h=0

∫ h

t=0

e−s(h−t)dF (h)λe−λtdt+

∫ ∞
h=0

dF (h)

∫ ∞
t=h

λe−λtdt

=
λ

λ− s
(H∗(s)−H∗(λ)) +H∗(λ)

=
λ

λ− s
H∗(s)− s

λ− s
H∗(λ).

From Lemma 5.3.1 we have

G∗(s) =
λ

λ+ s
+

s

λ+ s
W ∗(λ+ s)

=
λ

λ+ s
− λ

λ+ s
H∗(λ+ s) +H∗(λ).

202

By taking the first and second derivative of G∗(s), we have

G∗(1)(0) = −1

λ
+

1

λ
H∗(λ)−H∗(1)(λ)

and

G∗(2)(0) =
2

λ2
− 2

λ2
H∗(λ) +

2

λ
H∗(1)(λ)−H∗(2)(λ).

By Equation (5.1) and (5.2), we have

E[AM/G/1/2∗] = −2H∗(1)(0) +
1

λ
+H∗(1)(λ)

and

E[∆M/G/1/2∗] =
1
2
H∗(2)(0) + 1

λ2
H∗(λ)− 1

λ
H∗(1)(λ)

−H∗(1)(0) + H∗(λ)
λ

+
1

λ
− 1

λ
H∗(λ) +H∗(1)(λ)−H∗(1)(0).

Using Equation (5.4), we have the variance of peak age

V ar(AM/G/1/2∗) =
2

λ2
− 2

λ2
H∗(λ) +

2

λ
H∗(1)(λ)−H∗(2)(λ)−

[
−1

λ
+

1

λ
H∗(λ)−H∗(1)(λ)

]2

+H∗(2)(0) +
2

λ2
H∗(λ)− 2

λ
H∗(1)(λ)−

[
H∗(1)(0)− H∗(λ)

λ

]2

+H∗(2)(0)−H∗(1)(0)2

= 2H∗(2)(0)− 2H∗(1)(0) +
2H∗(λ)[H∗(1)(0) +H∗(1)(λ)]

λ

+
2H∗(λ)(1−H∗(λ))

λ2
+

1

λ2
−H∗(2)(λ)− 2

λ
H∗(1)(λ)−H∗(1)(λ)2.

203

B.5 Exact Solution for PAoI in CBS-P with Dependent Vacation

Notice that in CBS-P, the server’s vacation time B can be divided into B = T + W , where

T is the inter-arrival time of packets which is exponentially distributed, and W is the time when

the buffer is occupied (the same as their definition in Section 5.4). Because of the memoryless

property of exponential distribution, we have E[B] = 1
λ

+E[W].

By Equation (5.6), (B.1), (B.3), and (B.5), the PAoI for CBS-P can be written as

E[A] = E[D] +E[B] +E[L]

= −H
∗(1)(λ)

H∗(λ)
+H∗(λ)

1

λ
(1−W ∗(λ)) +

1

λ
+E[W] +

1−H∗(λ)

λH∗(λ)

= −H
∗(1)(λ)

H∗(λ)
+H∗(λ)

1

λ
(1−W ∗(λ)) +E[W] +

1

λH∗(λ)
.

B.6 Proof for Theorem 5.4.1

Theorem 5.4.1. If the service time for each queue is exponentially distributed, then CBPS-P

will always have smaller PAoI than CBPS.

Proof. When the service time is exponentially distributed, from Equation (5.9), we have

L∗j(s) =
H∗j (s+ λj)

s
s+λj

+
λj
s+λj

H∗j (s+ λj)
=

µj
s+λj+µj

s
s+λj

+
λj
s+λj

µj
s+λj+µj

=
µj

s+ µj
.

So that the expressions for H̃∗j in Equation (5.8) are identical for CBPS and CBPS-P. Both sys-

tems will have the same Fj(z1, ..., zk) for all j after solving for Equation (5.7). Similarly, since
1−H∗j (λj)

λjH∗(λj)
= 1

µj
, both CBPS and CBPS-P will have the same expression for γj in Equation (5.10)

for all j. Therefore, CBPS and CBPS-P have the same expressions for W ∗
j (λj) and E[Wj] for all

queue j.

204

We then have

E[ACBPSj]−E[ACBPS−Pj]

= − 1

λj
W ∗
j (λj) +

2

λj
+E[Wj] + 2E[Hj]

−

[
−
H
∗(1)
j (λj)

H∗j (λj)
+H∗j (λj)

1

λj
(1−W ∗

j (λj)) +
1

λj
+E[Wj] +

1−H∗j (λj)

λjH∗j (λj)

]
=

(
1−H∗j (λj)

) 1

λj

(
1−W ∗

j (λj)
)

+
1

µj
− 1

µj + λj
≥ 0.

205

