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ABSTRACT

In this article we consider two probability models: stationary diffusion limited aggregation
(SDLA) and finitary random interlacements (FRI). SDLA is a stochastic process on the upper
half planar lattice, growing from an infinite line, with local growth rate proportional to stationary
harmonic measure. We first prove that stationary harmonic measure of an infinite set in the upper
planar lattice can be represented as the proper scaling limit of the classical harmonic measure of
truncations of the infinite set. Then we construct an infinite SDLA that is ergodic with respect to
left-right integer translation. For FRI, we prove a phase transition in the connectivity of FRT FZ*"

on Z® with respect to the average stopping time 7.
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1. INTRODUCTION

Random walk is one of the most basic and well-studied subjects in probability theory, and
research about random walks is still active today. In this article, we will focus on simple random
walks on the square lattice Z?. Let z € Z? be a vertex. We write e; = (1,0,---,0),--+ ,eq =
(0,---,0,1) for the standard basis of Z?. We can consider a simple random walk on Z¢ starting at

x as a sum of i.1.d. random variables, i.e.

S, =z + Zn:XZ-,
i=1

where P(X; = e;) = P(X; = —e;) = 1/(2d), forall 1 < j < d. For a more detailed description
of simple random walks on 7%, readers are referred to [4, 5, 6].

The model of percolation was introduced by Broadbent and Hammersley [7] in 1957. Imagine
water is flowing through a porous stone. We are interested in the question of macroscopic per-
colation of the water in the stone. In (bond) Bernoulli percolation on Z?, each edge is open with
probability p € [0, 1] and is closed with probability 1 — p, independent of all other edges. A site
Bernoulli percolation is the same as the bond one except that each vertex is taken to be open or
closed. Bernoulli percolation is particularly interesting because it is one of the most simple models

that exhibit phase transitions:

Theorem 1.0.1 ([8, 9]). For d > 2, there exists p.(Z%) € (0,1) such that:
1. (supercritical phase) for p > p.(Z%), there is a unique infinite component almost surely;
2. (subcritical phase) for p < p.(Z%), there is no infinite component almost surely.

One of most significant results in percolation theory is Kesten’s theorem [10] that shows
p(Z*) =1/2.
In recent years, probabilists are interested in “dependent” percolation models where states

of edges/vertices are not independent. These “dependent” percolation models provide tools to
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study many phenomena. For example, Ising model introduced by Lenz [11] is a model to study
ferromagnetism. We refer to [12] for more detailed description of Ising model. In particular, Peierls
[13] developed a technique, which is now commonly known as "Peierls argument”, to show the
existence of a phase transition in the Ising model. We will use this technique in Chapter 3.

Another example of “dependent” percolation model is the random interlacement (RI) intro-
duced in 2007 by Sznitman [14]. RI is defined as a Poisson point process on the space of doubly
infinite random walk trajectories in the lattice Z¢, with d > 3. A simple way to describe RI is
the following: Fix u > 0 and a finite subset A C Z<. We sample a vertex z uniformly at random
from all vertices of the discrete torus (Z/NZ)¢ and run a simple random walk from z up to time
|uN?]. This induces a measure on sites in A visited by the random walk. As N goes to infinity,
this measure converges weakly to the measure on sites of the Rl in A.

Finitary random interlacements (FRI) was recently introduced by Bowen [15] to solve a special
case of the Gaboriau-Lyons problem. Informally speaking, FRI FZ“” can be described as a Pois-
son cloud of geometrically killed random walks on Z%, d > 3, where u > 0 is the multiplicative
parameter controlling the number of geometrically killed random walks and 7" > 0 is the expected
length of each geometrically killed random walk. Bowen [15] showed that, for all v > 0, the
measure of FRI FZ"" converges to the one of RI Z* in the weak* topology as T" goes to infinity.

In Chapter 3, we show a percolation phase transition in the connectivity of FRI FZ*T with
respect to the average stopping time 7. For all u > 0, with probability one FZ"” has no infinite
connected component for all sufficiently small 7" > 0, and a unique infinite connected component
for all sufficiently large 7" < oo. This is different from RI. For all w > 0, the RI Z* is almost surely
connected, so Z* has only one component and it is infinite.

Now we turn our focus to another probability model that at least might seem different from FRI.
Diffusion limited aggregation (DLA) was introduced in 1983 by Witten and Sander [16] as a simple
model to study aggregation systems governed by diffusive laws. DLA is defined recursively as a
process on subsets { A, } of Z%. Let Ay = {(0,0)}, and 4,1 = A, U a1, where a,, 4 is a point

sampled from the harmonic measure of 9°** A,,, the external vertex boundary of A,. Intuitively,



@, 1 18 the point that a random walk starting from infinity first visits 9°“* A,,.

Although DLA is easy to define, little is known rigorously. One of the notable exception is
Kesten’s 1987 paper [17] which showed an upper bound on the growth rate of the DLA cluster.
No non-trivial lower bound has been proved. The question whether the DL A cluster converges to
a ball after suitable scaling is still open.

Inspired by Itai Benjamini, Eviatar Procaccia started studying stationary versions of different
aggregation processes. In [18] Procaccia and Zhang defined a stationary version of the harmonic
measure on subsets of H, the upper half of the lattice Z?. In [18] they also showed an upper bound
on the stationary harmonic measure and a dominating interacting particle system for the stationary
DLA (SDLA) in the subsequent papers. In [19] Procaccia and Zhang showed that any subset in
H with an appropriate sub-linear horizontal growth has non-zero stationary harmonic measure.
On the other hand, any subset with super-linear horizontal growth has zero stationary harmonic
measure everywhere.

In Chapter 2, we show that:

1. stationary harmonic measure can be written as a normalized harmonic measure from one

point;

2. stationary harmonic measure of an infinite set can be represented as the proper scaling limit

of the classical harmonic measure of truncations of the infinite set;
3. SDLA is well-defined up to a fixed time ¢ > 0.

One can see that the geometry of FRI and SDLA are strongly related to properties of simple
random walks on Z<.

Throughout this article, we will write [P for probability and [E for expectation. In addition, let
P,(-) = P(-|Sy = ) be the probability law of a simple random walk on Z? starting at z, and let E,
be the corresponding expectation. We denote positive constants by ¢, C, ¢y, ¢, - - -, and their values
can be different from place to place. In Chapter 3, all positive constants will depend on dimension

d by default.



2. STATIONARY DIFFUSION LIMITED AGGREGATION

The content of this chapter appears in [1, 2].
2.1 Notations and Definitions

Let H = {(z,y) € Z* : y > 0} be the upper half plane including the x-axis, and (.S, ),>o be a

2-dimensional simple random walk. For any x € H, we write

7= (@, 2),

where () denoting the ¢-th coordinate of x. For each n > 0, define the subsets L,, C H as follows:

L,={(x,n):z €7},

i.e. L, is the horizontal line of height n. For each subset A C H], we define the stopping times

T4 =min{n >1:5, € A},

and

To=min{n >0:S5, € A}.

For any R > 0, let B(0,R) = {z € Z* : ||z||]2 < R} be the discrete ball of radius R, and

abbreviate

TR = TB(0,R)s TR = TB(0,R)-

Let || - ||1 be the [; norm. We define

OPUA = {y e H\A: Jz € A [jx—y| =1}



as the outer vertex boundary of A, and define
O"A={ye A:Fx e H\ A, |z -yl =1}

as the inner vertex boundary of A. Let P,.(-) = IP(-|Sy = z). The stationary harmonic measure # 4
on H is introduced in [18]. Let A C H be a connected set. For any edge e = (x,y) with x € A

and y € H \ A, define

HA,N<€) = Z ]PZ (S?AULO = l', SfAuLofl = y)

ZGLN\A

Note that H 4 y(e) > 0if and only if x € 9" A and ||z — y||; = 1. For all z € A, define

Han(x) = Z Han(e),

e starting from x

and for all y € H \ A, define

Han(y) = > Han(e).

e starting in A ending at y

Proposition 2.1.1 (Proposition 1 in [18]). For any A and e above, there is a finite H A(e) such that
lim 'HAJV(G) = HA(G).

N—oo

H 4(e) is called the stationary harmonic measure of e with respect to A. The limits
Ha(x) := lim Han(z)
N—o0

and



also exist, and H 4 is called the stationary harmonic measure of x and y with respect to A.

Definition 2.1.2. We say thata set Ly C A C H has a polynomial sub-linear growth if there exists

a constant o € (0, 1) such that
o= (W, 2®) e 4: 2@ > 12V} < 0o,

For any connected A C H such that AN Ly # (), and any « € A, H 4(x) was proved to have

the following upper bounds that depends only on the height of x:

Theorem 2.1.3 (Theorem 1, [18]). There is some constant C' < oo such that for each connected

A C Hwith Ly C Aand each x = (x1,23) € A\ Lo, and any N sufficiently larger than -
Han(z) < Cayl. 2.1.1)

Remark 2.1.4. Tt is easy to note that for any A C H such that AN Ly # () and any z = (21, z3) €

A\ Lo, Ha(z) = Haur, (x). Thus one may without loss of generality assume that Ly C A.

Remark 2.1.5. Since the constant C' above does not depend on subset A or point x, without loss of

generality, one may (incorrectly) assume C = 1.

2.2 Stationary Harmonic Measure is Equivalent to Normalized Harmonic Measure
Lemma 2.2.1. Forall x € Ly, Hp,(x) = 1.

Proof. Like Proposition 1 in [18], the proof follows a coupling argument by translating one path
starting from a fixed point of Ly horizontally. For each N, let S,SO’N) be a simple random walk in

the probability space P x)(-) starting at (0, N), and SN = G0Ny (k,0) for all k € Z. Note

that 5™ is a simple random walk starting at (k,N). Let

?Lo = mf{n Z 0: S}LO’N) € Lo}



be a stopping time. Then we have
?Lo = mf{n >0: Sr(lk’N) € Lo}

for any k € Z, and
(k,N) _ ¢(O,N)
S = S;LO + (k,0).

?LO

Hence,

Hign(x) = PSS =a) =1,

kEZ

By definition of the stationary harmonic measure,
Hi,(x) = lim Hp,n(z) = 1.
N—o00

O]

We now define a new measure H 4(+) which can be shown equivalent to the stationary harmonic

measure H 4(-). For each n > 0, we first define
ﬁA,n($) = ﬂ—n]P)(O:n)(STAULO = ).
Lemma 2.2.2. Forall z = (2", 0) € Ly,
Nim Hign(z) = 1.

Proof. By Theorem 8.1.2 in Lawler and Limic [4],

n n 1
Plom(Sm, =2) = Ty (1 e <m>) ’ O<<n2 + <x<1>>2>3/2> |

So,

lim Hp,.(z) = 1.

n—o0



O]

Similar to the construction of the stationary harmonic measure H 4(-), we want to define a

measure H 4 on H as following:
Ha(z) = lim Han(z),
N—o0

and denote it by the n-harmonic measure. We want to show that Ha=Has We already proved

that ﬁLO = H, in Lemma 2.2.1 and Lemma 2.2.2.

Proposition 2.2.3. Let A C H be a connected finite subset. For any v € H,
Ha(z) = A}l_r}r;o ﬁA,N(l')

exists, and H(x) = Ha(x).

Proof. Without loss of generality, we assume x € 9°“*A. Let

k= max{z® : z = (W, 2?) € A},

and n > m > k so that L,, N A = (). By the strong Markov property and translation invariance of

simple random walk,

Hoan()
= ﬂ-n]P)(Oan)(STAULO = J})

=Tn Z P(O,TL)(STLW = y)Py(STAuLO = LE’)

YELm (2.2.1)
n
S By Sray = ) |70 = P52, =)
YELm
n -~
= n—m Z Py(S"’AuLO = x>HLo,nfm<yO),
YELm



where yo = (yV,0). Then by Dominated Convergence Theorem and Lemma 2.2.2,

lim Han(2)

n—oo

= lim ) P,(Sp,,, =)

yELm

= Z Py(STAULO = LL’)[ lim

y m

= Z Py(STAULO = ZE)

YELp,

- HA,m(x)-

n

7,-2 n—m
n—m Lo, (yo)

n

m’HLO,nfm(yo) (2.2.2)

We can apply Dominated Convergence Theorem in equation (2.2.2) because H Lo.n—m(Yo) 18 uni-
formly bounded from above for all » and yo € Z by Theorem 8.1.2 of [4] and the fact that
ﬁLO,n_m(O) > ﬁLO,n_m(yo) for all yo € Z. We claim that H 4 ,,(x) = Ha(z). Let m; > m.

By the strong Markov property and Lemma 2.2.1,

,HAWM (ZL’)

= Z Py(STAULO :ZL‘)

yELm,

- Z Z Py (S, = 2)P:(Sra, =)

yELm1 2ELm

= PSru, = x){ > Py(Ss, = z)} (2.2.3)

2ELm yELml

= Z PZ(STAULO = x)rHLo,ml*m(Z/)

ZGLm

= Z IP>Z(S7'AUL0 = [IZ’)

ZELm

= HA,m<x)7

where 2’ = z — (0, m). Hence,

Ha(x) = Ham(z) = lim Han(z) = Ha(z).

N—oo

9



O]

Our next goal is to show that the measures Ha and H 4 are equivalent for sets that satisfy
polynomial sub-linear growth condition. We first prove the following combinatorial result: For

any positive integer n, consider the following rectangle in Z?:

I, = [-n,n] x [0,n] (2.2.4)

with height n and width 2n. It is easy to see that I, C B(0,2n). Moreover, we let 9™, be the

inner vertex boundary of A,,, and let

oL, = {—n} x [I,n], 0", ={n} x [1,n], O"I, = [-n,n] x {n}, O"I, = [-n,n] x {0}

be the four edges of 9™ 1,,.
Let {S,,, n > 0} be a simple random walk starting from 0 and denote by PPy the probability

distribution of .S,,. Define the stopping time
T, = inf{k > 0, S, € 0"I,}.

Using simple combinatorial arguments, we prove the following lemma:

Lemma 2.2.4. For any integer n > 1

Py (Sr, € O"L,) > Py (S, € 9", UO™L,,).

Proof. Let 93, I, = [1,n] x {n} and 9;"_I,, = [—n, —1] x {n} be the left and right half of 9}"I,,.

By symmetry it suffices to prove that

Py (St, € 8 1,) > Py (Sp, € 0'1,) - (2.2.5)

10



By definition, we have
Po (St, € 00 1) = > Po(Sk € 0, I, T, = k)
k=1

and

Py (St, € 0'L,) = Py (Sk € 0" L, T = k).

k=1
Moreover, for each £,
Po (Sk € 0, I, T, = k) = 7 Po (Spedrl,, T, =k) = 1

where

L[;k = {(Cbo,(ll,"' ,ak), such that apg = 0, ||CL7;+1 —GZH = ]_, Vi = 0,]_,"' 7]{3— 1,

a; € Ag\0"Aj=1,2,-- k-1, a € ), I,}
and

Rn,k = {(ag,al, s ,ak), such that ag = O, ||ai+1 — CLZH = 1, VZ = 0, 1, e ,k’ — ]_,

a; € A, \ 0" A,V =1,2,-- k-1, ay € O"I,}

give the subsets of the random walk trajectories in events {Sr, € 0, I,,} and {Sp, € /"1, }.
Thus in order to show (2.2.5), we construct a one-to-one mapping  between the trajectories in

R, and Z/l;k. For any trajectory @ = (ag, a1, - ,ax) € Ry, define

(1)

%

to be the last point in the trajectory lying on the diagonal. Here a; ’ and al@) are the two coordinates
of a;. In this paper, we use the convention that sup{()} = —oo. Then it is easy to see that

0e€ {z >0, al(.l) = %(2)} and thus m(ad) > 0 and that m(@) < k. The reason of the latter inequality

11



is that suppose m(a@) = k, then we must have a;, = (n,n) which implies that ay_, = (n — 1,n) or
(n,n — 1), which contradicts with the definition of a.

Now we can define

such that
e a, = q; forall i < m(a).

e d = (agz), a£1)> for all i > m(a).

Figure 2.1: Mapping between trajectories in R, ;, and L[; i

Le., we reflect the trajectory after the last time it visits the diagonal line x = y. See Figure 2.1

for illustration of the map ¢. By definition

(am(d’)+17 Am(a@)+2, " " * 7ak—1)

stays within {(z,y) € Z?, 0 < y < x < n}, while a; € R,,. Thus, under reflection we have

/ / !/
(am(&’)+17 Um(@+27 """ 7ak—1)

12



stays within {(z,y) € Z*, 0 <z <y < n}, while aj, € U,,, which implies that @’ € U, ,.

On the other hand, suppose we have two trajectories @ and b both in Rk, such that p(ad) =
(). Then one must have m(@) = m(b) = m and that a; = b; for all i < m. Moreover, for all
1 > m, we have
(6. a) = o = by = (52.40)

[}

=,

which also implies that a; = b;. Thus we have shown that p(@) = ¢(b) if and only if @ = b and ¢

is a one-to-one mapping, which conclude the proof of this lemma. [

We define
Fy = Fm,a = {_ Lml/ajv Lml/aj} X ZZO

as two vertical lines on H.

Lemma 2.2.5. Fix x € H, then for all sufficiently large m,

]P)x(TFm,a < TLO) < cmfl/a.
Proof. Let m > 4|zy|, and 2’ = (xV,0). There exists a constant C' > 0 independent of m such
that

CP (TR0 < Tro) < Pur(Th, 0 < Tio)-

By translation invariance of simple random walk, we have

]P)ac’(TFm,a < TLO) < PO(TILml/U‘/u < TLO).

By Lemma 2.2.4,

< < em~ Ve,
PO(TI\_ml/D‘/2J < TLO) < 2]P>O(TLLm1/a/2j < TLO) scm

13



The next lemma claims that H 4 is concentrated on the part arising from random walks starting

from y € L,, such that [y(V)| < [m!/].

Lemma 2.2.6. Let A C H be an infinite set that has polynomial sub-linear growth with parameter

a€(0,1). Let 1 > a; = (a +1)/2 > «, then for any x € H,

nll_r};o Z ]py(STAULo = ZC) - ,HA,m(:C) =0.
yeLmv‘y(l)‘SLml/alJ

Proof. Note that {y € L,, |yV| < |[n*/*1]} N A = (). Following the argument in [20, Lemma 2]

on time reversibility and symmetry of simple random walk, we have

]Py(Tx = k’ Sla 'S Skfl ¢ {x} U Lo)
=Py(1, =k, S1, -+, Sk1 & {2} U Ly) (2.2.6)

= Px(Sk =Y, T{z}ULy > k‘)

Then taking the summation over all k£, we have

Py (Tm < TLO)

S Py(r =k Sty -, Sie1 € {2} U L)

i
I

P.’L’(Sk =Y, T{x}ULo > k)

[
NE

(2.2.7)

i
I

IA
=
8

number of visits to y in the time interval [0, Ty} Lo)]

IN
=

» | number of visits to y in the time interval [0, TLO)]

14



Then,

Tim > Py(S,, = )
YELm\A,|yD[>m!/ 1]
< 1
< lim. > Py (7, < 71,)
YELm\A,|ly(V|>[m!/*1]
(2.2.8)
< lim Z [E, | number of visits to y in the time interval [0, TLO)]
m—oQ
YELm\A [y > [m!/*1]
< lim E, | number of visits to G,, o, in the time interval [0, TLO)] ,
m—r0o0
where G0y = {y € Ly, ¢ [yP| > [m'/*1]}. By Lemma 2.2.5, we have
nlLI%o Z ]P)y(S’TA = :L‘)
yELm\Av‘yU”Z’—ml/al-'
< lim E, | number of visits to G,, o, in the time interval [0, TL0>]
m—0o0
(2.2.9)
< lim 4mP,(7q,, ., < TL,)
m—00 ’
< lim 4mP. (75, . < TL,)
m—o0 ’
=0.
The proof is complete. 0

Lemma 2.2.7. Let A C H be an infinite set that has polynomial sub-linear growth with parameter

a € (0,1). Let 1 > ag = (a+1)/2 > «, then for all x € H and for all € > 0 and for m and

n = n(m) large enough, we have

Z ]P)y(STAULO = m) - j'zA,n(x) < €.

YELm,[yM|<[m! /1]

Proof. Fixz € Hand e > 0. Let [ = max{y® : y € A,y® > |y(V|*}. Assume that n and m are

large with n > m > max{l,z®}. Let oy = (o + 1)/2 as defined in Lemma 2.2.6. By the strong

15



Markov property, we have

Hanl(z)
= WHP(O,n)(S—rA = IL’)

= Z ﬂ—n]P)(O,n)(STAuLm = y)]P)y<STA = 37)
yELm\A

< Z Trn]P)(O,n)(STAuLm = y)Py(STA = :U) +c Z ]P)y<STA = l’)?

YELim,lyM|<mb/1 | YyELm\A,ly(M|>[ml/e1]

(2.2.10)

where ¢ > 0 is a constant. The last inequality of equation (2.2.10) is using Theorem 8.1.2 in [4]

and the fact that

]P)(O,n) (STAuLm = y) S IED(Q”)(‘STL,” = y)

By Lemma 2.2.6, we know

lim > P,(S,, = z) = 0.

m—0o0
YELm\A,Jy(D|>[mb/a1]

So there exists a M; > max{l, x(2)} such that for all m > M, and all sufficiently large n > m,

Han(r) - > TP (Srair,, = Y)Py (S, = 7)| <

YELm,[y|<[m! /1]

Denote the set

A, = {zeH:2W > |mV*|,m < 2@ < |zW)°).

Note that A, contains the part of A that is above the horizontal line L,,. For y € L,, such that
lyM| < m'/*1, we have

Py (Sracs, =) < Pony(Sr, =) (2.2.11)

16



while

P(O,n)(‘STAuLm - y) Z P(Ovn) (STgmULm - y>

- ]P)(O’n)(STLm - y) - Z P(()’”)(STXmULm = Z>]P>z(STLm = y)

Zegm

(2.2.12)

Note that for z € A,,, P, (S = z) = O unless z is in the upper inner boundary of A, ie.

TAmULm

2= (k, |k*]) € 8™ A,, for some k > |m'/*|. Suppose z = (k, |k*|) € ™A, with k > |m!/].

Lety € L, such that |y("| < m!/®1. By Theorem 8.1.2 in Lawler and Limic [4], we have

P.(S,, =)
(] —m)

= T =m)+ (b= [/ 2 2219
c(k* —m)

= T =)+ (b=t

So,

< Y P(Sy, =)

ZGA‘m

(2.2.14)

[e.e]

kY —m
<
>~ Ck_[zl/oq (LkaJ _ m)2 + (k _ ml/a1)2

o0

. (s +mY* 4+ 1) —m
< 2 (G )] = P + s e =

s=1

It’s easy to see that the sum above converges and goes to 0 if m goes to infinity. Moreover, let’s

consider the sum

e}

1/a 1) —
o 3/(20)—1/2 (s+m'*+1)*—m
5= cm Z(L(5+ [mY/e])e] —m)2 + (s +ml/e —mb/a)2’

s=1

17



Note that

o0

o3/ (20)-1/2 Z (s+m'*+1)* —m
o—1 ([(s + [mYe])a| —m)2 + (s + ml/e — ml/o1)2
> 1/ 1) —
30 -1/2 X (8 T mY/C+1)* —m
<cm Z (s L mi/a —mijar)2

(2.2.15)

s=1

For all 0 < « < 1, there is a M > 0 large enough such that for all s > 0 and m' > M,

< 0.

o o 1/a 1) —
v (cmS/(Qa)l/Z Z (s +m'*+1) m)

om (s +ml/e — ml/a1)2

s=1 m=m'

So the sum S goes to 0 if m goes to infinity. Hence, we can take n = [m3/(*)~1/2| Note that

3/(2a) — 1/2 > 1/a. Then for any y € L,, with |[y| < |m!/*1], we have

TT{I*I;IIOOTL Z ]P)(O’n)(STZ"LULm - Z)IP)Z(STLm = y) - 07
2€Am
and

lim WHP(O,n)(STAULm =y)=1.

m—0o0

Now fix N > max{l,x2}. From the proof of Theorem 1 in [18], we know that the sequence

H 4 j(x) is decreasing for j > N. There exists a My > N such that for all m > My,

€
Po.n) (S =y)— 1| < —/——.
‘ﬂ—n (0, )( AULm, y) 2HA,N(~1')
Therefore,
€
3 (mao,n)(smwm —y) - 1>1P’y(STA =)/ <.
YELm JyV|<[m! /1]
Now take m > max{M;, M}, and the proof is complete. O

The following theorem is a direct consequence of Lemma 2.2.6 and Lemma 2.2.7.
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Theorem 2.2.8. Let A C H be an infinite set that has polynomial sub-linear growth. For any
xr € H,

Ha(z) = lim Han(z)
exists, and Ha(x) = Ha(x).

Proof. Let e > 0. By Lemma 2.2.6 and Lemma 2.2.7, there is an M > 0 such that for all m > M,

Mg () — Hoam(z)| < e

We know
li_r}n HAWL(QS) = HA(x)
Hence,
Ha(z) = lim Ham(2)
exists and H 4 () = Ha(x). O

2.3 Stationary Harmonic Measure is the Scaling Limit of Truncated Harmonic Measure

In this section, we show the asymptotic equivalence between the stationary harmonic measure
of any given point with respect to subset A satisfying Definition 2.1.2 and the rescaled regular

harmonic measure of the same point with respect to the truncations of A.

Theorem 2.3.1. For any subset A satisfying Definition 2.1.2 and any positive integer n, let
A, = AN {[—n, n] X Z} 2.3.1)

be the truncation of A with width 2n. There is a constant C' € (0, 00), independent of the set A,

such that any point x € A\ Ly,

C lim nHa, (z) = Ha(x). (2.3.2)

n—00
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Moreover, C' = 2/ lim,,_,o nHp, (0), where D,, = {[—n,n] N Z} x {0}.

Remark 2.3.2. For points in L, we can replace the regular harmonic measure Hy, (x) in (2.3.2) by

its edge version. L.e., we have for all x € Ly,

Clim lim nP, (STAn —2,5% > o) = Ha(). 23.3)

n—00 [jy|| o0

Later one can see the proof of (2.3.3) follows exactly the same argument as the one for (2.3.2).

In order to prove Theorem 2.3.1, we first show its special case when A = L,. We denote the

truncation of Ly with width 2n by D,, = {[—n,n] NZ} x {0}.

Theorem 2.3.3. There is a constant ¢ € (0, 00) such that

lim nHp, (0) = c. (2.3.4)

n—oo

The structure of this section is as follows: In subsections 2.3.1 and 2.3.2 we outline the proof of
Theorem 2.3.3 and Theorem 2.3.1. Then in the following subsections, we give the detailed proof

of the required propositions and lemmas.
2.3.1 Proof of Theorem 2.3.3

Theorem 2.3.3 can be proved according to the following outline: first, we show that nHp, (0)

has finite and positive upper and lower limits:

Proposition 2.3.4. There is a constant C' € (0, 00) such that

limsup nHp, (0) < C. (2.3.5)

n—o0

Proposition 2.3.5. There is a constant ¢ € (0, 00) such that

liminf nHp, (0) > c. (2.3.6)

n—o0
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The two propositions above guarantee that the decaying rate of Hp, (0) is of order 1/n. To

show lim sup = lim inf, we further show the following coupling result:

Proposition 2.3.6. For any € > 0 there is a 0 > 0 such that for all sufficiently large n and any
x € [—0n,dn] x {0}, we have

(2.3.7)

Let B(0,R) = {x € R? : ||z||s < R} be the continuous ball of radius R in R2. For standard

Brownian motion B(t) and subset A C R?, define the stopping time

Ty = inf{t >0, B(t) € A}

For subset A C R?, H4 denotes the continuous harmonic measure with respect to A.

Lemma 2.3.7. Fix 6 € (0, 1), then

lim HDn ([—5n, (571] X {O}) = H[fl,l]x{o}([_da 5] X {0})

n—oo

Once one has shown Proposition 2.3.4-2.3.7, the proof of Theorem 2.3.3 is mostly straight-
forward. Now suppose the limit in (2.3.4) does not exist. Then by Proposition 2.3.4 we must
have

0 < liminfnHp, (0) < limsup nHp, (0) < oo. (2.3.8)

n—00 n—00
Let
_ limsup,,_,, nHp, (0) — liminf,_, nHp, (0)

€ = 5 > 0.

By Proposition 2.3.6, we have there are J > 0 and Ny < oo such that for all n > N, and any
x € [—don, don] x {0},

€
HDn(O) — HDn(x) < EO
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Moreover, for any N > N, there are ny, ns > N such that

niHp, (0) <liminfnHp, (0) + €

n—oo

and that

n9Hp,, (0) > limsup nHp, (0) — €.

n—oo

At the same time, we have for the d, > 0 defined above,

Hp,, ([~don1,doni] x {0}) = > Hp, ()
z€[—don1,00n1]x{0} (239)
1
< Lomj+1 [lim inf nHp, (0) + 260]
s n—oo
and

Hp,, ([~dona, dona] x {0}) = > Hp,, ()

mG[—éong,éonQ]X{O} (2310)
0 1
> Looma] + 1 {lim supnHp, (0) — 260:| .
N2 n—00

But by Lemma 2.3.7,

lim Hp, ([~6on. don] x {0}) = Hioy ax oy (=60, 8] x {0}).

n—oo

which contradicts with (2.3.9) and (2.3.10). [
2.3.2 Proof of Theorem 2.3.1
Define a; = (1 + «)/2 € (0,1) and Box(n) = [—n,n] x [0, [n®! |]. Recalling the definition

of regular harmonic measure, and the fact that A,, C Box(n) for all sufficiently large n, we have

forany x € A\ Lo,

HAn (l’) = Z HBoz(n) (y)]P)y (S‘T'An = x) :

y€J™ Box(n)
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Then define
8. Box(n) = [—n,n] x {[n"']}

9 Box(n) = [—n,n] x {0}
9" Box(n) = {—n}, x [1, [n*]| — 1]
9" Box(n) = {n}, x [1, [n*'] — 1]

to be the four edges of 9" Box(n). Noting that Ly C A, it is easy to see that for any y €

9 Box(n) = [-n,n] x {0}, P, (S;, = ) = 0. Moreover, define a, = (7 + ) /8, and

bn = [=[n%], [n*]] x {[n""]}

to be the middle section of 9" Boz(n) and denote [¢ = 9" Box(n) U " Box(n) UJ" Box(n) \ L.

We further have the decomposition as follows:
Ha, (z) = Z HBow(n) (Y)Py (SfAn = :E) + Z HBox(n) (Y) Py (S?An = x) : (2.3.11)
From (2.3.11), we first note that Hpoy(n)(y) sums up to 1, which implies that

> Hpooiw) W)Py (S, =) < maxP, (S-, =z). (2.3.12)

elg
yele Yyeiy
Thus our first step is to prove

Proposition 2.3.8. For Box(n), I, and IS, defined as above, we have

lim n-maxP, (S74, =) = 0. (2.3.13)

n—00 y€els

With Proposition 2.3.8, it sufficient for us to concentrate on the asymptotic of

> Hporm (W)Py (S5, = 7).

Y€Eln
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‘We are to show that

Proposition 2.3.9. For any x € A and the truncations A,, defined in (2.3.1)
lim P, (Sr,, =) =Ha(a). (2.3.14)

and that

Proposition 2.3.10. For any € > 0, there is a Ny < oo such that for alln > Ny and all y € 1,

|2HBou(n) (y) — Hp, (0)] < €/n. (2.3.15)

Once we have proved the lemmas above, Theorem 2.3.1 follows immediately from the combi-

nation of Proposition 2.3.8- 2.3.10, together with Theorem 2.3.3. [
2.3.3 Existence of upper and lower limit
2.3.3.1 Bounds between harmonic measure and escaping probability

In this subsection we prove Proposition 2.3.4 and 2.3.5. First, recalling the notation

HD<y7 l‘) = Py(TD = TI>’
with standard time reversibility argument, see Lemma 2 of [20], we have for any n and z € D,

, 1
o, (v) = I 5w B(0, ) By ZE;(O . Hp, (y, )
y out R
1

= Rh_f& WI& [number of visits to 9°**B(0, R) in [0, 7p,,)] -

Note that there is a finite constant C' independent to R such that

1

C
|0°*B(0,R)| — R
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At the same time, define C,, = [—|n/2],0] x {0} C D,, and apply Lemma 3-4 of [20] with r = n,

E, [number of visits to 9”* B(0, R) in [0, 7p,,)]

- P.(tr < 7p,)
- minweaoutB(o’R) P, (TDn < TR)

< CRlog(R)P,(Tr < Tp,,)

= CRlog(R) Z P, (Ton, < 7D, s Sry, = 2) Po(TR < TD,,)

z€0°4t B(0,2n)
< CRlog(R) Z P, (Ton < Tp,s Spy,, = 2) P.(TR < 70¢,)
z€0°vt B(0,2n)

< CRlog(R)P; (720 < 7p,) _ pnax P.(mr < 7c,)

S CRIP(E (TQn < TDn) .

Thus, there is a finite constant C' independent to n such that
HDn($) < CP, (Tgn < TDn) . (2.3.16)

On the other hand, by Lemma 3.2 of [18], there is a constant C' < oo independent to the choice of

n and R > n such that for all w € 9°“* B(0, R)
P, (mp, < mr) < C[Rlog(R)]™*. (2.3.17)

Thus
E, [number of visits to 9”*B(0, R) in [0, 7p,, )]

> ]P)I(TR < TDn)
T maXyepout Bo,R) Puw (tp, < TR)

> cRlog(R)P.(Tr < Tp,,)-

25



At the same time, by Lemma 3.3 of [18], there are constants 2 < ¢y < oo and ¢ > 0 independent

to the choice of n and R >> n such that for any 2z € 9°* B(0, con)

c
P, < >
(7<) 2 Tog(R)
Thus we have
P.(tr < 7p,) = Z P, (TCOn <D, Sregn = z) P.(tr < 7p,)

2€0°%t B(0,con)

> cRP, (Tegn < Tp,,) -

which implies that

Hp, () > Py (Tegn < Tp,,) -

2.3.3.2  Proof of Proposition 2.3.4

With Lemma 2.2.4 and recalling the fact that /,, C B(0,2n), we have that

Po(7on < 1p,) < Po(711, < 7D,)
=Py (Sr, € L, UL, U T,)
< 2P (St, € O'1,) -

Moreover, note that

4 1
IP)O (STn c (‘ann) < PO (TLn < TLO) = R

Thus by (2.3.16), (2.3.20) and (2.3.21), the proof of Proposition 2.3.4 is complete.

2.3.3.3  Proof of Proposition 2.3.5

With (2.3.19), in order to Proposition 2.3.5, it is sufficient to show that

26
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Lemma 2.3.11. Forany k > 2, there is a c¢;, > 0 such that

| 5

C
PO(TIm<7—Dn)Z .

3

Proof. Note that for a simple random walk starting from 0, it is easy to see that

Thn < TLins TLo < TD,-

Thus we have

1
Po (Tkn < 7p,) 2 Bo (T2, < T20) = 7~
and the proof of this lemma is complete. 0
With Lemma 2.3.11, the proof of Proposition 2.3.5 is complete. U

2.3.4 Proof of Proposition 2.3.6

For the proof of Proposition 2.3.6, we without loss of generality assume that the first coordinate
of z 1s an even number, see Remark 2.3.13 for details. With Proposition 2.3.4 and 2.3.5, by spatial

translation it is easy to see there are constants 0 < ¢ < C' < oo such that for all x € [—n/2,n/2]

C
€ <Hp (z) < 2. (2.3.22)
n n
Moreover, recall that
Hp, (2) = I : S Hp(ya)
)= 11m —— x
Dy, Resoo ‘8outB(0, R)| D, \Y,
yedout B(0,R)
1

= }%1_{130 WEQE [number of visits to 9°**B(0, R) in [0, 7p,, )] -

Thus for any n and x, there has to be a R such that for all R > Ry,

1
E, [number of visits to 0°*B(0, R) in [0, 7p,)]| < <

B0 () = o B0, R)] i
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and

1
Eo [number of visits to 9”* B(0, R) in [0, 7p,)] | < —.

i, 0) = G B0 7)) n

At the same time

E, [number of visits to 0°* B(0, R) in [0, 7p, )]

= Z ]P)x (Tgn < ’7'[)71,57—2n = Z) Z

2€0°% B(0,2n) wed**t B(0,R)

PZ(TR<TDn,STR:’LU)
Pw(TDn <7'R)

and
E, [number of visits to 9°* B(0, R) in [0, TDn)}
S

P, (g < Tp,
— ZPO(TQn<TDn’ST2n:Z)Z Z<I}; (TD7<:'R)
z€9°ut B(0,2n) wedv B(0,R) @A Pn f

:w)

Thus we have

[Hp, () — Hp, (0)|
1

S 10°ut B(0, R)| Z IPo (T2, < Tp,,, Sy, = 2) — Py (Ton, < 7, , Sy, = 2|

z€9°*t B(0,2n) (2323)

Z P, (tr < Tp,, Srp = W) L

P on’
wedut B(O,R) ¥ (7D, < 7r)

Again by Lemma 3-4 of [20] with » = n, we have there is a constant C' < oo such that for all n,

R > nandz € 9°*B(0, 2n)

1 Z ]P)z (TR < TDy s S‘I‘R = ’U))
0°“B(0, R P, <
07 B0, B \ ooy B (700 < 7R) (2.3.24)

]Pz (TR < TDn)

3 . <cC
= |80utB(0’ R)| mlnweaomB(O,R) ]Pw (TDn < TR)

Thus by (2.3.23) and (2.3.24), in order to prove Proposition 3.3.1, it suffices to show the following

lemma:

Lemma 2.3.12. For any ¢ > 0 there is a 0 > 0 such that for all sufficiently large n and any
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€ [—on,on] x {0}, we have

3" IBo (Ton < Ty Sray = 2) = Pa (Ton < T, Sy, = 2)| < — (2.3.25)
z€0°vt B(0,2n) "
Proof. For any € > 0, define § = e~ > 0. In order to prove this lemma, we construct the

following coupling between the simple random walk starting from 0 and x € [—dn, dn] x {0}:
(i) Define subset AS = [—|n/2], [n/2]] x [0, [en]].

(ii) Let {5y}, be a simple random walk starting from 0, T¢ = inf{k : S, € 9™AS}, and

(iii) For k < T, let Sy = Sy and Sop, = S, + .

(iv) Let {S* Lk} and {52 k} be two simple random walks starting from x5, and z;, + « and
k=

coupled under the maximal coupling.
(v) For k > be, let S1 = S’Lk_Tﬁ and Sy, = SQ’k_T;L.

Remark 2.3.13. In Step (iv) we use the assumption that the first coordinate of x is an even number.

Otherwise, one can construct Sy ;, starting from z¢, and S, ;, starting uniformly from B(z¢, 4 z,1)

under maximal coupling.

By the strong Markov property, it is easy to see that Sy ; and S3 ;, form two simple random walks

starting from O and x. Let 7V and 7% be the stopping time with respect to .Sy , and Ss ;. respec-

tively. Thus

Z |]P)0 (7—271 < TDn’ STQn = Z) - Px (T2n < TDn’ STQ'IL = Z)l

z€9°ut B(0,2n)

= Z ’IP’O <7’2n < TD 751 ) = z) -P, (7’2(2) < Tgn), S, @ = z) .
sTon '2n

z€0°vt B(0,2n)
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Again we introduce

U, = [=1n/2], [n/2]] x |en], B; = [=[n/2],|n/2]] x 0

n

and

Ly, = =[n/2] x[L, [en] = 1] R, = [n/2] x[L, [en] — 1]
as the four edges of 9" A¢. Note that for all € < 1/3
() <dbo{SyeBy =0 {f) < }n{SyeB}=0.
Thus for any z € 9°* B(0, 2n), we have

]P)O (7'2(713 < Té),slq_(l) = Z> :]P)O (gTe € UE T2n < TJ(D)7 S (1) = Z)
11 2n

+Py (5 € L UR,, i) <), 8, = )

and
Py ( 2(721) < T§)752772(i> = Z> =P, <5’*e eU;, T 2(,21) < 7'1(7273, 52’7(2) = z)
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Thus we have

Z )IP’O (Tzn < TD ,S1 = z) -P, (7’2(? < Tgn), S, @ = z)
z€0°4tB(0,2n) o o
€ o € 2
S Z )}P} (STE € U T2n < T(D)7 51’7_2(711) = Z> —P (ST;L < U 7—2(”) < 'Té), S2,7'2(i) = Z)‘
z€0°vt B(0,2n)
€ e (1) (1) -
+ Y IP’(STE e L UR, o) <70). 8, o _z)
z€9°“t B(0,2n)
e e (2) (2) —
+ Y IP’(STe €L UR,, i) <), S, w fz>
z€9°ut B(0,2n)

< ¥ )P (STG cUs, ) <+ g = z> P (STG U, < 8 = z)
11 2n 112n

z€0°4tB(0,2n)

+2P (Sp. € Ly, URy,) .
(2.3.26)

In order to control the right hand side of (2.3.26), we first concentrate on controlling its second
term. Note that by invariance principle it is easy to check that there is a constant ¢ > 0 such that

for any integer m > 1 and any integer j with |j| < m, we have
Po,5) <Ta;'"1mua¢lnlm < Tagnlmuagn1m> <l-ec (2.3.27)

Moreover, by Lemma 2.2.4,

1

P0,0) (Tafnlmuainlm < Ta;;nlmua;wm) < P, (1L, < Try) = Tem (2.3.28)

In the rest of the proof we call the event in (2.3.27) a side escaping event. The detailed proof of
(2.3.27) follows exactly the same argument as the proof of Equation (11) in [19], which can also
be illustrated in Figure 2.2.

Moreover, define m(e,n) = |en]|. Note that in the event {S;. € Lf U RS}, our simple
random walk has to first escape A, (¢ ) through L, ) U R, (,,) and then has at least K (e,n) =

|[n/2]/m(e,n)| independent times of side escaping events. Thus by Lemma 2.2.4, (2.3.27),
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(-m,m) % (m,m)
(_m’o/‘ T ‘(m,O)
(-m,j-m) A I :(m,J -m)

Figure 2.2: Invariance principle for (2.3.27)

(2.3.28), and the fact that for all sufficiently small € > 0,

K(e,n) = Hn/ZJ/m(e,n)J > %
we have
1

P(Sp € LyURL) < —(1—o)F "< = (2.3.29)

for all sufficiently small e > 0. Thus in order to prove Lemma 2.3.12, it suffices to show that

3 ‘IP (STe cUS, 7)< 7P S o = z) P (STE e Us, i <), 8, 0 = z>)
sTon 2n

z€9°vt B(0,2n)

<< —.
n
(2.3.30)

~ o8} N e ]
Recall that in our construction, {S l,k} and {SM} are simple random walks coupled under
k=0 k=0

the maximal coupling. Define events:
Av= {815 ¢ D, U™ B(0,20), Yk < 'n?},
Ay = {S},k ¢ D, Ud*B(0,2n), Vk < e4n2} ,
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and

Az = {there exists a k < €'n? such that Sy ; = S ;,Vj > k} .

By definition, one can easily see that

{STE c U6 T2n <Tg), Slr(l) :Z}ﬂAlﬂAgﬁAg
' 2n

(2.3.31)
:{STe c U6 TQn < Tg), 527_52) = Z} ﬂAl ﬂAQ Q.Ag
which implies that
€ (1) _ _ Q € (2) _
Z ‘]P’(STF e U, 72n <Tp.s S, .M —z) IP’(STF c U} TQn <7Tp.; S —z>‘

z€9°“t B(0,2n) o

< 2P ({Sp. € Uy NAf) + 2P ({Spe € U} N A3) + 2P ({ Sz € Ug} N AS) .
(2.3.32)

Thus, it suffices to control the probabilities on the right hand side of (2.3.32). For its first term, we

have by Proposition 2.1.2 of [4] there are constants ¢, 5 € (0, 00), independent to n such that
P(AS) < ce™/, P (A) < ce/.

By the strong Markov property, we have

Q € c Ce_ﬂ/e -1 €
P ({Sr. € Us} NAJ) < S (2.3.33)
and
q € c ce /e -1 €
P ({Sz. € Usy N A3) < —n <~ (2.3.34)

for all sufficiently small € > 0. Finally, for the last term

P ({gfﬁ S Ufl} N Ag)

oo

A~ oo A~
recall that the first coordinate of x is even and that {S 1, k} and {527 k} be two simple random
k=0 k=0
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walks starting from z{, and «{, + = and coupled under the maximal coupling. We have that

P (A3) < drv (Sl,Le4n2J7 SQ,Le4n2J>

where drv (-, ) stands for the total variation distance between the distributions of two random

variables. On the other hand, note that

A A 1 A A
dTV <51,LE47L2J>SQ7LE4R2J> = 5 Z ’P <517L64n2j = Z) —P <527L54n2j = Z)‘

2€72

1 A N
< B []P (Sl,\_e4n2J e B%O,Qn)) +P (52,L64n2J € BC(O,QTL)>

n Z ‘]P’ <»§1,L54n2J = z) —P (5’2734“2] = z)‘]

z€B(0,2n)

And again by Proposition 2.1.2 of [4] there are constants ¢, 5 € (0, c0), independent to n such that
P (SLLW | € B0, 2n)> <ce Pl P (32,L€4n2 | € B0, zn)) < ce Pl (2.3.35)

And for any z € B(0,2n), condition on gfﬁ = ¢, applying Proposition 4.1 of [21] with zy = z¢,
no = |e'n?] and R = |e'n], there are constant 4 > 0 and C' < co independent to n and the choice

of ¢

n’

=
C

- sup P, (S, =2),
(n,y)eQ

where Q = [ng — 2R? ng| x B(z¢, 2R). Moreover, by Local Central Limit Theorem, see Theorem

IN

2.1.1 of [4] for example, there is a finite constant C' < oo independent to n such that

sup Py (S =2) <
(n,9)€Q ! e'n?
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which implies that

and that
‘]P) (Sl,Le4n2j = Z) —P <‘§2,L64n2j = Z) ‘
< Z ’P (SI,L641’L2J =z S'sz = xi) —P <‘§2,Le4n2J =z

< Cle e ¢ 41+h) =2 Z P (ST =

Q_ __ €

< Ce’%e"‘(l*h)n”

Thus,
Z ’H’D (S(LLE‘WZ% = Z) —P (§2,Le4n2j = Z)
z€B(0,2n)
< Y oot
z€B(0,2n)

< Ce 66 1+h)

Combining (2.3.35) and (2.3.37) we have

N | —

P(A3) < drv (31,Le4n% S ein? J) <

By the strong Markov property,

P ({Sr. € Us} NAj5) < SL (206_5/64 + C'e_%e_4(1+h)> <=

(206_6/64 + C’e_%e_4(1+h)) .

(2.3.36)

(2.3.37)

(2.3.38)

(2.3.39)

for all sufficiently large n and sufficiently small €. Thus the proof of this lemma is complete. [

With Lemma 2.3.12, the proof of Proposition 2.3.6 is complete.
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2.3.5 Proof of Lemma 2.3.7

Let M, My € Z, such that M > M, > 1. By the strong Markov property,

P(0,11n) (T{—sm.6n]x {0} = TD»)

= Z Po,a1n) (Toout B, Mon) = Y)Py(T(—sn.6n)x{0} = TD,,)-
yedout B(0,Mon)

So by law of total probability,
. P (r _
yeaou{%l(%,Mon) y<T[ on,on]x{0} TD">
< Po,mn) (T=n,6n]x {0} = TD,,)

< max P,(m_ =1Tp ).
- yea"“tB(O,Mon) y< [ 6nv6n]><{0} D’ﬂ)

Notice that if we fix n,

P, a) (T-6n5n) (0} = Tp,) = Hp, ([=0n, on] x {0}),

and thus

min P, (T(—sn.6n]x {0} = TD,,
yea"“tB(O,Mgn) y( [ n, n]X{ } )

< Hp, ([-dn,dn] x {0})

< max P, (71— =1Tp, ).
S coeimax y(T[—6n.6n)x {0} = TD,,)

(2.3.40)

(2.3.41)

(2.3.42)

Let {y, : y. € 0°“B(0, Myn)} be a sequence of points in Z2. Note that ||y,||» — oo as n — oc.

By invariance principle,

2

limsup Py, (7-sn.snix{0} = 7p,) < sup P
. 2€85(0,Mo)
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where PZM s the law of a Brownian motion starting at the point z € R2. Since the choice of {y, }
is arbitrary,

lim su max P, (71— =T < su pBEM
n—>oop y€0°4t B(0,Mon) y( [=9n,dn]x{0} Dn) - P

5 2 (T=s 0% {0} = T-1,1)x{0})-
2€0B(0,Mo)

Similarly,

lim inf i P, (Tr—_sn.om — > inf PBM(7_ =7 .
minf o min - By(Tesnanxioy = 7p,) 2 il B (Tosa0p = Txoy)

Note that
lim sup ]PEM(T%,& o} = Tl-1,1 0)
Mo—+50 050 Mo) [—4,8]x{0} [-1,1]x{0}
lim inf  PBM(r_ — 7 (2.3.43)
Mo—00 2€9B(0,Mo) (Msaxqor = T-vai<0)
= Hi_1,1x{0y ([=6, 6] x {0}).
Therefore,

Tim Hp, ([~dn, 6] x {0}) = Hi 11000y ((=3,6] x {0}).

With Lemma 2.3.7, the proof of Theorem 2.3.3 is complete.

2.3.6 Proof of Proposition 2.3.8

In order to prove

lim n-maxP, (S, =x) =0
n—00 yelg y( TAn )

we first recall that

b = [=[n%], [n*]] x {[n""]},

a; = (14 «@)/2, ay = (7T+ «)/8, and that
I¢ = 0" Box(n) U 0" Box(n) U 0™ Box(n) \ L.
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Thus for any point y € [¢, define

T, = {ly"V/2]} x [0, 00)

to be the vertical line located in the exact midway between 0 and y. Noting that 77, < 7, by the

strong Markov property we have

Py (S5, =) = 3Py (71, < Tans Sy = 2) Ps (S, = 2)

ZE,Ty

= 3P, (7, < Tass Sery = 2) P2 (Sr,, =)

2€Ty, 2(D)>n4

+ > P, (rTy < Ay Sep, = Z) P, (S, =z)

2€Ty, 2D <nt
_ 2
<P, (TTy < TA,, S(Ty) > n4>

+ max P, (S;An = m) P, (TTy < ?An) .

2€Ty, 2D <nd

To control the right hand side of (2.3.44), we first define
D, = {1, Ully/2],50) x {0}} N By, n")
and then note that
P, (TTy < Ta,, Sg) > n4) <P, (TaoutB(ym4) < TDn) )

Moreover, it is easy to see that

rad(D,,) > n*/2

for n sufficiently large, and that

d(Dy,y) < [n™].
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We apply Theorem 1 in [22] with k = 1 and A = D,, on the discrete ball B(y,n*), then there

exists a constant C' > 0 such that

ne 1
Py (Toout gty < T5,) < Py <Taout3(y,n4) < TDH[H%JA/Q]) <C\/— =0 (ﬁ) . (2345

Note that this is a Beurling estimate for random walk. And for the second term in the right hand
side of (2.3.44), note that for
Dn = LO nB (ya na2/2)

we have

{TTy < 7_—An} - {TaoutB(y,nOQ/Q) < fﬁn} (2.3.46)

Using again the Theorem 1 of [22] to the right hand side of (2.3.46) we have

Py (t7, < Ta,) < By (Tooutpiymenjo) < Tp,) < Cn~ 027002, (2.3.47)

At the same time, for any z € T}, such that z?) < n*, again by the reversibility of simple random

walk we have

NE

IPDz (S‘T'An = l') ]P)z (Sla 827 e 7Sn71 ¢ Ana Sn = l’)

3
Il
—

]P)z (S17527"' 7871—1 ¢ An? Sn = Z)

hE

3
Il
_

(2.3.48)

I
&=

« [# of visits to z in [0, 74, )]

I
~

e (T, < 7a,) E, [# of visits to z in [0, 74, )]

e (T2 < Ta,)
L (Ta, <T.)

I
| e

To control the right hand side of (2.3.48), we first refer to the well known result:
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Lemma 2.3.14. (Lemma I of [20]) The series

oo

a(z) =Y [Po(Sy = 0) — Py(S, = )] (2.3.49)

n=0

converge for each x € 72, and the function a(-) has the following properties:

a(x) >0, Vz € Z*, a(0) =0, (2.3.50)
a((£1,0)) = a((0,£1)) =1 (2.3.51)
E,[a(S1)] — a(z) = 6(x,0), (2.3.52)

50 a(Syar, — v) is a nonnegative martingale, where T, = Ty,y, for any v € Z*. And there is some

suitable cq such that

1
a(w) = 5-log||z] = co| = O(l|=] ), (2.3.53)
as ||z|| — oc.
Now we prove the following lower bound on the denominator:

Lemma 2.3.15. There is a finite constant C < oo such that for any nonzero x € 72,

C
Po(re < 19) 2 ——.
o 0 (log [|])?

Proof. First, it suffices to show this lemma for all = sufficiently far away from 0. We consider
stopping time

I'= 70 A Tjz) /2,
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By Lemma 2.3.14, we have

1 =Eo [a(St)|7ali/2 < 70) Po (Tja/2 < 70) -

Thus by (2.3.53),
Po (T2 < 7o) ! p— (2.3.54)
0 T 0) — = ..
el Eo [a(S0)|Tjay2 < 70] — log |z
for all x sufficiently far away from 0. By the strong Markov property,
Po(1: < 70) = Z Py <7'||$H/2 <70y Stz = y> P, (1, < 7o)
yedout B(0,[|lz[l/2) (2.3.55)

™

P, (1, < 79) -

> min
log ||z|| yeaoutB(0,||z]/2)

At the same time, for stopping time I'y = Tgout g(s || /3)> a0 I's = Tgout (| /2)» WE have

Py(ro<70)> Y Py(T1 <7y Sr, =2)P. (. <T3). (2.3.56)

2€0°U B(w,[|z||/3)

For the right hand side of (2.3.56), we have by translation invariance of simple random walk,
P, (s <T2) = Psrs (70 < Tay2) -
Moreover,
[1=Pea (70 < T 2)] Bema [a(S0)[ 7ot 2 < 70] = alz = 2),
which implies that

E. ., [a(Sr)| a2 < 0] —alz — @.
E. . [a(S)| a2 < 7o)

Py (To < Tjayj2) = (2.3.57)

Again, by Lemma 2.3.14, we have that there are positive constants ¢, C' € (0, c0) such that uni-
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formly for all n, x and z defined above,
E,. . [a(SpMTHI”/Q < 7'0} —a(z—1x) > ¢,

while
E. . [Q(SI‘)‘T”;UH/Q < 19] < Clog||z|.

Thus we have

C

P.(r, <Iy) =P., (7’0 < 7-||~”CH/2) > (2.3.58)

log [l
uniformly for all n,  and 2 defined above.
On the other hand, by invariance principle, there is a constant ¢ > 0 such that for any y €
9 B0, |l /2),
Py (T < Tayys) > c.

Thus,
c
Py(ro<m)> Y Py(T1< s Xr, =2)P.(r, <To) > sl (2.3.59)
2€0°u B(x,||z||/3) &
Now combining, (2.3.54), (2.3.55), and (2.3.59). The proof of this lemma is complete. ]

With Lemma 2.3.15, we look back at the right hand side of (2.3.48). Noting that forany z € T,

71, < 7. and that 74, < 7p,,, we give the following upper bound estimate on its numerator:

Lemma 2.3.16. Recall that oy = (7 + «)/8. Then for each v € A,

c

noez

P, (tr, < mp,) < (2.3.60)

for all sufficiently large n and all y € [¢.

Proof. For any given x € A, define x; = (2!, 0) be the projection of z on Ly. Note that z

and x are connected by a path independent to n, which implies that there is a constant ¢ > 0 also
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independent to n such that
P, (TTy < TDn) > P, (TTy < TDn) .

Thus to prove Lemma 2.3.16 it suffices to replace x by zg. Moreover, recall that [¢ = ;" Box(n)U
9" Box(n) U d" Box(n) \ l,,. For any y € [¢, by the translation invariance of simple random walk,

we have

]P)zo (TTy < TDn) S ]P)() (7’[“1&2/4J < TDn) .
Here recall the definition of [, in (2.2.4). Now by lemma 2.2.4,

P < —C

o (Tramssy <) < Gy

and the proof of this lemma is complete. [
Now apply (2.3.47), (2.3.48), Lemma 2.3.15, and Lemma 2.3.16 together to the last term of

(2.3.44), we have

max P, (S;, =z)P, (r, < 7a,) < Cn~o2~(@2m0)/2 (g )2
2€Ty, 2D <nt "

[

7

< Cn 146 (logn)? < n!

for all sufficiently large n. Thus, the proof of Proposition 2.3.8 is complete. [
2.3.7 Proof of Proposition 2.3.9

To show

TLILIEOZIP’ZJ (87, =) =Ha(x),

y€Ely,

we first prove that
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Lemma 2.3.17. For any x € A and the truncations A,, defined in (2.3.1)

lin > Py (Sr, =) =Ha(2). (2.3.61)

Y€Eln

Proof. Recall that by definition that

(@) = Jim D . (-

z€Lg

and that

= [=[n®], [n®]] > A" ]}

Thus
lim > P.(S:, = 1) =Hal(x),

ZGL\_n(’lj

while in order to prove Lemma 2.3.17, it suffices to show that

lim > P.(S:, =1)=0. (2.3.62)
ZELLnalj\l"

Apply reversibility of simple random walk on each z € L|na1) \ I, we have

Z P, (S:, =z)=E, [# of visits to L1 \ I, in [0, 7",4)}
ZELLnqu\ln
e <) sy

min P (TL <TL w l>
ZGLLnaH\ln z 0 In 1J\n

<

First, for the denominator of (2.3.63), note that

TLer; < TLpar \in
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We have for any z € L1 \ In

c
P, <7'L0 < TLLnQIJ\zn> > P, (TLO < Tana1J> >

~ )
On the other hand, using exactly the same argument as in the proof of Lemma 2.3.16

C
[ne2]

P, <7'Ltna”\ln < TL0> <

Thus, combining (2.3.63)-(2.3.65), the proof Lemma 2.3.17 is complete.

Now with Lemma 2.3.17, it suffices to prove that

Tllgrolo Z [Py (S7,, =z) =P, (S, =2)] =0.

y€Ely,

Again by reversibility,
P, (S7, =) =E, [# of visits to y in [0, 74,)]

and

P, (S7, = ) = E, [# of visits to y in [0, 74)]

which implies that for each y
P, (Sz,, =) —P, (S, =) = E, [# of visits to y in [74, 74, )]

and that

Z [Py (Sﬂn = :1:) — P, (S7, = x)]

y€Ely

=, [# of visits to [, in [74, 74, )] -

(2.3.64)

(2.3.65)

(2.3.66)

(2.3.67)

Here we use the natural convention that the number of visits equals to 0 over an empty interval.
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Moreover, define T), = {—n,n} x [0, 00) and

[y =inf{n > 74, S, € T,,}.

Noting that
{TA<F4 <7'An} - {TA<TAH}C {TTn <TAn}7

thus by the strong Markov property, one can see that

P, (77, < Ta,)

E, [# of visits to [, in [74, T4, )] < rniln P.ra <) (2.3.68)
FASI2
First, for any z = (2™, 2(?)) € [,,, consider
(=0,0) + { [=Ln* ], Ln* ] x [0, [n™*}.
By Lemma 2.2.4 and translation/reflection invariance of simple random walk,
P.(1a, <m,) > Py (Taznjtnalj < TLO>
> Py (Tagnlmau = TainanJ)
1 (2.3.69)
> 5[[)0 (Tamlma” < TL0>
1 1
B .
On the other hand, we have
P, (77, < 7a,) < Pu (77, < 71,)
< CPy (o1, 0y < 1) (2.3.70)

C
< 2CPO (Taﬁnﬂnalj = TamanmJ) < 2CP0 (TLLn/2J < TLO) < E

Now combining (2.3.67)-(2.3.70), we have shown (2.3.66) and the proof of Proposition 2.3.9 is

46



complete. O
2.3.8 Proof of Proposition 2.3.10

At this point, in order to prove Theorem 2.3.1, we only need to show that for all sufficiently
large n and any y € 1,,, 2Hpoz(n)(v)/Hp, (0) can be arbitrarily close to one. First, for any y € [,,,
define

M(y,n) =n+|y"

, m(y,n) =n— |y"].

Recall that Box(n) = [—n,n] x [0, [n*]] and that [,, = [—|n*?], [n®?|] x {[n*']}. We have
n—[n®] <m(y,n) <n < M(y,n) <n+[n"].
Moreover, noting that
Box(n) C [y = M(y,n),y™ + M(y,n)] x [0, [n*]]

and that

[y —m(y,n), y" +m(y,n)] x [0, [n**]] C Box(n),

by definition we have

H[yu)_M(y,n),y(1>+M(y,n)] x[0,[ne1 ] (y) < HBoz(n) (v)

and

Hy0) -y +mtym] <10, lno 11 (Y) 2 HBon(n) (4)-

Thus, combine translation invariance and Theorem 2.3.3, and note that for all y € 1,,, M ~*(y,n) —
nt = o(n™ 1), mY(y,n) — n=' = o(n~!). It is immediate to see that Proposition 2.3.10 is

equivalent to the following statement:
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Lemma 2.3.18. For all integers m,n > 0, define

—

Box(m,n) = [-n,n] x [-m,0].

For any € > 0, we have

Hp, (0) — 2Hgm ) (0) € [0, %) 2.3.71)
for all sufficiently large n and all 0 < m < 2n*1.

Proof. First, for the lower bound estimate, note that
D, C Eo\x(m, n)
and that by the definition of harmonic measure, we have
Hp, (0) = kh_)rgo P.0) (Tp,, = To)

and that

Hg\m(mm)(()) = lim P ) (Tg\m(mm) = 7'0> )

k—o0

Moreover, by symmetry we have for all k£ > n,

Poy (70, = 70) = 2P0) (7D, = 70, Sr—1 = (0,1)).

At the same time on can see that in the event {Tg\w () = 7'0}, the random walk has to visit 0

through (0, 1), which implies that

P0) (70, = 70, Sr-1 = (0, 1)) 2 Pprp) (TEED(m,n) = To) :

Taking limit as £ — oo, we have shown the lower bound estimate. For the upper bound estimate,
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again we note that for each sufficiently large & and a random walk starting from (%, 0)

{TDn = To, STo—l = (07 1)} \ {TEO\:t(m:n) - TO}

(2.3.72)
{70, = 70, S = 0, D} N {7z m, < 700 }
which, by the strong Markov property implies that
Pk, 0) (7D, = 70, Srp—1 = (0,1)) — Pk 0) <T§;x(m7n) = To>
(2.3.73)

< max P, (7'(071) < TDn) .
yEBox(m,n)\Dn

Now in order to find the upper bound of the right hand side of (2.3.73), we consider the following

two cases based on the location of point y = (y1,y®) € Boz(m,n) \ D,:

Case 1:

Figure 2.3: Illustration of proof for Case 1

If ‘y(1)| < n/3, for all nearest neighbor paths starting at y which hit (0, 1) before D, they first
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have to hit 9°** B(0,n/2). Thus we have

P, (7'(071) < TDn) = Z P, (Tn/g < Tp,, STn/2 = z) P, (7'(0,1) < TDn)
2€0°u B(0,1/2) (2.3.74)

<P, (Tn/2 < TDn) zeaﬂ%,nm P, (7(071) < %Dn) .

See Figure 2.3 for illustration of Case 1. For the first term of the right hand side of (2.3.74),
recalling that d(y, D,,) = |y®| = m < 2n® and that |y!)| < n/3, we have by the same Beurling
estimate, there exists a constant C' < oo independent to the choice of n, m and y satisfying Case
1, such that

Py, (Tn2 < 7p,) < Cn~ U700/, (2.3.75)

At the same time, for any z € 9°** B(0,n/2), to control the upper bound on P, (7(01) < 7p, ), one
can concentrate on the upper half plane, since each path from y to (0, 1) must pass through some

point z € 9°**B(0,n/2) N {z € H : 2® > 0}. Now for any such z, by reversibility, we have

]P)(Ol) (TZ < Tp, )

P.(7p. <7.) ' (2.3.76)

P, (7'(0,1) < 7_-Dn) = E(OJ) [# of visits to z in [O, TDnu{(O,l)})} <

For the numerator, note that for all sufficiently large n, [—|n/3], |n/3]] x [0, [n/3]] C B(0,n/2).

Applying the same argument as we repeatedly used in this paper, we have

Py (1. < Tp,) <

1A

At the same time,

]P)Z (?Dn < Tz)

> E T P, | ™D T .
< 601“5B Z(Z ) < Z’ 8outB( (2> ) w) w < n < aoutB( z(2> ))
wedout B(z, 220 )

And by invariance principle and the fact that z'*) € (0,n], we have there is a constant ¢ > 0
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independent to the choices of n, z and w, such that

T >
Py <7'Dn < TaoutB(z,@» > c.

Thus by Lemma 2.3.15,

c 5 _ ¢
(log %)2 ~ (logn)?’

P, (77_Dn < TZ) > (P, <77-80utB(z,%2>) < TZ> >

which by (2.3.76) implies that

C(logn)?

P, (7(0,1) < 'fDn) < -

Now combining (2.3.73), (2.3.74), (2.3.75), and (2.3.77),
P, (10,1) < 7p,) < Cn~ G702 (logn)? < n™!

and thus our lemma hold when y in Case 1.

Case 2:

B R P = O(n tlogn)
P_=O(n (=72
S C e
l// i \\‘ | //I Box(m,n) i
\ - y J,' 77777777 lfifffff::77/7777777777777777”‘

Figure 2.4: Illustration of proof for Case 2
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Otherwise, if ‘y(l)‘ > n/3, our proof follows the same techniques on slightly different stopping

times. Consider two neighborhoods: B(0, %) and B(y, 7). It is easy to see that
n n
aoutB <0’ _) a aoutB ( ’_) — (Z)
7 v
Using the same argument as in Case 1,

Py (7(0,1) < TDn) = Z Py <7'8(”“B(y,%) < TDy; STaoutB(%%) = w) Py (7'(0,1) < 7'Dn) .
wedUt By, )

Moreover for any w € 0°“B(y, %) the random walk starting at w has to first visit 0°B(0, %)

before ever reaches (0, 1). This implies that

Py (7(071) < TDn) = ZIP’w (Tn/7 < Tp,, St = z) P, (7'(071) < TDn)

2€0°utB(0,7)
< max P, (7'(0,1) < TDn) i

2€0°41 B(0,2)

See Figure 2.4 for illustration of Case 2. We have

Py (7o) < 70,) < Py (Towenz) < 70,) _max | P. (7o) < 7p,). (2.3.79)
2€0°u1B(0,2)

Now since y(2) = —m > —2n°!, itis easy to see that

rad (B (y, g) N Dn> >

13

for all sufficiently large n. Thus by (2.3.75) and (2.3.77), there exists a constant C' < oo indepen-

dent to the choice of n, m and y satisfying Case 2, such that

Py (Torsens) < 7, ) < O~/ (2.3.80)
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and that

C(l 2
max P, (ron < 7p,) < 208" (2.3.81)
2€8°ut B(0,2) n
Thus we also have
P, (ro1) < 70,) < Cn~B=0/2(logn)? < 1! (2.3.82)
and thus our lemma hold when y in Case 2 and the proof of Lemma 2.3.18 is complete. [
With Lemma 2.3.18, we have concluded the proof of Proposition 2.3.10. [

2.4 Stationary Diffusion Limited Aggregation is Well-defined

In this section, we define a (infinite) SDLA whose transition rate is given by the stationary

harmonic measure, starting from the infinite initial configuration L.
Theorem 2.4.1. Let t > 0 and Ay = Ly, then there is a well defined SDLA process { AL }s<:.

Remark 2.4.2. The result remains true if one replace the initial state Ly by any subset A, that
can be seen as a connected forest of logarithmic horizontal growth rate. To be precise, Ay can be

written as U

n=—oo

Treef, where Treef is connected for each n, with Treef N Ly = (n,0) and
moreover diam(7'reel) > logn for only finite number of n’s. We present the proof for Ay = L,

for simplicity but without loss of (much) generality.

A major tool one obtains for the study of SDLA is ergodicity of the process.
Theorem 2.4.3. For everyt > 0, A is ergodic with respect to shift in 7. x {0}.

24.1 Coupling construction

With the upper bounds of the harmonic measure on the upper half plane (see Theorem 2.1.3),
a pure growth model called the interface process was introduced in [18] which can be used as
a dominating process for both the DLA model in H and the stationary DLA model that will be
introduced in this paper. Consider an interacting particle system &, defined on {0, 1}¥, with 1

standing for an occupied site and O for a vacant site, with transition rates as follows:
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(i) For each occupied site © = (x1,x2) € H, if x5 > 0 it will try to give birth to each of its
nearest neighbors at a Poisson rate of |/zy. If x5 = 0, it will try to give birth to each of its

nearest neighbors at a Poisson rate of 1.

(i1) If x attempts to give birth to a nearest neighbor y that is already occupied, the birth is sup-

pressed.
We proved that an interacting particle system determined by the dynamic above is well-defined.

Proposition 2.4.4 (Proposition 3, [18] ). The interacting particle system &, € {0, 1} satisfying (i)
and (ii) is well defined.

Then when the initial aggregation Vj is the origin or finite, we defined the DLA process in
H starting from V[, (Theorem 5, [18]), according to the graphic representation (see [23] for intro-
duction) of the interface process & and a procedure of Poisson thinning, see Page 30-31 of [18]
for details. Note that under this construction, the DLA model with finite initial aggregation is
contained in the interface process.

Now in order to prove Theorem 2.4.1, we construct a sequence of processes { A?}°° ,, each of
which is the DLA in H with initial aggregation V' = [—n,n| x 0, coupled together with the same

interface process. To be precise, recall the graphic representation in [18]:

e Foreach z = (z1,75) and y = (y1,y2) € H such that ||z — y|| = 1, we associate the edge

€ = (x,y) with an independent Poisson process N, ¥, ¢ > 0 with intensity A\, ,, = /72 V 1.

e For each x = (21,79) and y = (y1,v2) € H such that ||z — y|| = 1 let {U 7Y}, be
i.i.d. sequences of U(0, 1) random variables independent of each other and of the Poisson

processes.

At any time ¢ when there is Poisson transition for edge € = (z, y), we draw the directed edge (€, t)
in the phase space H x [0,00). For any x € L, and any fixed time ¢, recall that I’ is the set of

all y’s in H that are connected with = by a path going upwards vertically or following the directed
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edges. Then in [18] it has been proved that for all V, C H,

g=Ur
zeVp
distributed as the interface process with initial state V{). Moreover, it was proven that for each
t < ooandall z € H, |I]| < oo with probability one, and there can be only a finite number of
different paths emanating from x by time ¢, which may only have finite transitions involved. Now
for all finite Vj, in [18] we look at the finite set of all the transitions involved in the evolution of
¢¥o. s € [0,1], and order them according to the time of occurrence. Then the following thinning
was applied in order to define a process A; = (V;, E;) starting at Ay = (Vp,0): when a new

transition arrives at time ¢;, say it is the jth Poisson transition on the edge ¢ = (, y). Suppose one

already knew A;,_ := limgy, As.
o If v ¢ V;,_ ory € V;,_, nothing happens.
e Otherwise:

- If U7 < Hy, _()/Xe, then Vi, = V,,_ U{y}, B, = E,_ U {é}.

— Otherwise, nothing happens.
Thus we defined the process A; up to all time ¢ with V; identically distributed as our DLA process
starting from Ay. Now, for each n define A} as the process with Ay = ([—n,n] x 0,0). Then we
have coupled all A}’s using the same graphic representation and thinning factors. Now in order to

prove Theorem 2.4.1, we first show the following theorem which states that for a finite space-time

box, the discrepancy probabilities for our A™’s are summable.

Theorem 2.4.5. For any compact subset K C H and any T’ < oo, we have

>PELST, st A NK # AP N K) < oo, (2.4.1)

n=1
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Here for any A = (V, E), we use the convention that ANK = (VN K, {€= (z,y) € E,{z,y} N
K # 0}).
Remark 2.4.6. Without loss of generality, we will assume that 7" = 1.

The proof of Theorem 2.4.5 is immediate once one proves that there exist constants o > 0 and
C' < oo such that for all sufficiently large n

C

P(3t<1, st. AJNK#AMNK) < e

(2.4.2)

The same argument also implies

Corollary 2.4.7. Let A}"" be the process with A" = ([~n,n+1] x 0,0). Then for all sufficiently

large n

P(3t<1, st AFNK#AP NK) < ——.
n «

The same result holds for A}"~ with Ay~ = ([-n — 1,n] x 0,0).

Note that at ¢ = 0, the initial aggregations AZ and Ayt are different only by the two end points
(£(n +1),0). Now we want to control the subset of the discrepancies so that they will not reach
K by time 1. Intuitively, the idea we will follow in the detailed proof in the following sections can

be summarized as the follows:

(I) With very high probability none of A7 and A"! can reach height log(n).

(II) For any o > 0, with very high probability the two processes will have fewer than n® dis-

crepancies by time 1.

(IIT) For all these discrepancies ever created till time 1, with very high probability none of them

will ever find its way to K.

2.4.2 Logarithmic growth of the interface process

In this section, we prove the logarithmic growth upper bound for A" and A} with ¢ € [0, 1].

Note that both are contained in the interface process It[_"_l’"ﬂ]xo. Thus it suffices to show that
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Theorem 2.4.8. For any C' < oo,

P <Il[_n’"]XO Z [-n —logn,n + logn] x [O,logn]) <.

for all sufficiently large n.

Proof. First noting that

]1[—n,n}><0 _ U If

x€[—n,n]x0

By union bound, it suffices to show that for any C' < oo and all sufficiently large &,
P (|1, > k) < exp(—Ck), (2.4.3)

where

| Allo = ma 2]

for all finite A C H. In order to get (2.4.3), one first proves

Lemma 2.4.9. Let {T;}% | be independent exponential random variables with parameters \; =

4P+ 1. Then, P(|| 19|y > k) < 4*P(XF, T; < 1).

Proof. Under the event {||I?|| > k}, by definition and the fact that I} is a nearest neighbor growth
model, there has to exist a nearest neighbor sequence of points 0 = g, x1, - , T, With ||z,,|| > &
such that for stopping times

n;, =inf{s >0: z; € Ig}

we have that

O=m<m < - <nyp <Ll

Noting that xg, 1, - - - , z,, is a nearest neighbor path with ||z,,|| > &, which implies m > k, we

may without loss of generality assume m = k. More precisely, there exists a nearest neighbor
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sequence of points 0 = xg, 1, - - - , % such that for stopping times
n; =inf{s >0: z; € I’}
we have that
O=m<m<---<m <L
Note that there are no more than 4 such different nearest neighbor sequences of points within H

starting at 0. And for each given path 0 = xg, x1,--- , xx, and each 1 < ¢ < k, define

A; = min lnf{s >0: Ngi—ﬁ—s - Nf{; + 1}'

y:lly—zif|=1

Then by definition and the strong Markov property, A; is an exponential random variable with

rate 5\1- = > Aoz, < 4v/1+ 1, independent to F,, ,. At the same time, note that

y:lly—zif|=1

by definition A; < 1; — n;_1, which implies that A; € F,,, and that {Ai}le is a sequence of

independent random variables. Thus

k k
]P(n0<771<"'<77k<1)§P<ZAi<1) §P<ZE<1>.

i=1 =1

For some constants ¢y, co > 0 (to be chosen later) define the event

Lemma 2.4.10. Foranyt > 0 and k € N large enough (depending on the choices of ¢, and c3),

i=1

P (iT < 1> < P(G°).
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Proof. Under the event G,

k
Co 1
T, > T, > 1k = —cieoVk > 1, 2.4.4
Zl 2 2 Tizakgms =saavk2 (2.4.4)
1= i Ty > %
=i
where the last inequality holds for any sufficiently large &. 0

Lemma 2.4.11. Lett > 0 any ¢ € (0, 00), then there exists ¢y, co > 0 such that for any sufficiently
large k,
P(G°) < exp(—ck).

Proof. Define X; = 1 {T_ e 1, thus Zle X; is a binomial random variable with parameters £

2 Vi+1l
ca

andp =P (TZ- > \/z_Tl) = e~%_ which converges to 1 when ¢, — 0. By the large deviation

principle for the binomial distribution

k
P (Z X, < clk:) < e ll@nk
=1

For p close enough to 1 we have I(cy, p) > ¢ (see [24] for the exact rate function). [

Proof of Theorem 2.4.8. For any C' € (0,00), fix a ¢ = C + log(4) + 1. Then Theorem 2.4.8
follows from the combination of (2.4.3) and Lemma 2.4.9-2.4.11. L]
2.4.3 Truncated processes and number of discrepancies

In this section we complete Step (II) in the outline. But prior to that, we would like to use
Theorem 2.4.8 to define a truncated version of coupled process (A?, A7*!). Define the stopping
time

F=inf{t>0: VUV & [-n—logn,n+logn] x [0,logn]}

to be the first time A7 or A7 grows outside the box [—n — logn,n + logn] x [0, logn].

Remark 2.4.12. Tt is easy to see that V;” or V"™ grows outside our box if and only if £ or "

does so.
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Now we can define the truncated processes
(A7, AT = (Al AT -

Le., we have the coupled processes stopped once either of them goes outside the box [—n —

logn,n + logn| x [0,logn]. By definition, we have
(A}, A7) = (A}, A7)
forall ¢ € [0, ']. At the same time, note that
voyte U w
z€[-n—1,n+1]x0

for all £ > 0. Thus for all C' < oo and all sufficiently large n,

P (Aj} — A A = A7 v e o, 1])
[-n—1,n+1]x{0}
<P ([1 ¢ [-n—1—1log(n+1),n+14log(n+ 1)] x [0,log(n + 1)])

< —.
nC

(2.4.5)
Thus in order to show Theorem 2.4.5, it suffices to prove that there exists constants o > 0 and
C < oo such that for all sufficiently large n

C

nlta :

P <3t <1, st. APNEK £ AN K) < (2.4.6)

Now we formally define the set of discrepancies for the coupled process (/1?, /1?“). For any
t < oo, define

Vo= {af €H, s.t.3s <t, x € ‘ZnNA/an}
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as the set of vertex discrepancies, and
EPm — {g: (z,y), 1,y € H, s.t. Is < t, &€ EgAEg“}
as the set of edge discrepancies, where /A stands for the symmetric difference of sets. From their
definition, we list some basic properties of the sets of discrepancies as follows:
o Vo ={(£(n+1),0)} Ef" = 0.
e Both VtD’" and Ef) " are non-decreasing with respect to time.

e Forany z € V""", then either x = ((n+1),0) or there has to be an edge &, € E" ending

at x.
— D,TL : D,”
e Forany ¢ = (a,x) € E,", zhastobeinz € V,".

e Whenever a new vertex is added in VtD’”, there has to be a new edge added to EZD ™. However,

when a new edge is added to EtD ™, there may or may not be a a new vertex added in VtD ",

From the observations above, it is immediate to see that VtD’" is the same as the collection of all
ending points in £;”", which also implies that |V,”"| < |E”"| + 2.

Moreover, for the event of interest, we have
(Bt<i st dpnr 2 arinrb={vPrnK 20}, 2.4.7)

As we outlined in the previous section, in order to prove the event in (2.4.7) has a super-linearly
decaying probability as n — oo, we first control the growth of |EtD ™|. Le., by time 1 there cannot

be too many discrepancies created in the coupled system. To be precise, we prove that

Lemma 2.4.13. For any o > 0, there is a ¢ > 0 such that
P (1B > n%) < exp(—n°)
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for all sufficiently large n.

Proof. Note that |[E.™| = 0. Fori = 1,2, - - -, define the stopping time A; = inf{t > 0, |E"| =
i}, with the convention inf ) = co. Given the configuration of (A, A?*1), we first discuss the
rate at which a new discrepancy is created. If ¢ > I, each such rate equals to zero by definition.
Otherwise, each edge € = (x,y) in H can be classified according to the configuration as follows:
define the indicator matrix

A Loepn  Loepn  Lacpn
A7 AP @ = | e e

:H'fEE‘A/tTH—l ]]_yG‘A/tn+1 ]]'é‘GEAZH—l

Then by definition, the only edges that contribute to the increasing rate of EtD ™ are those with

indicator matrices as one of the following:

1 00 1 10

]Il - ) ]12 - )
1 00 100
1 00 100

]I3 - 9 ]I4 - )
0 00 010
100 000

]I5 - ) ]IG - )
110 100
010

I; =
100

and we will denote the collections of such edges £y, Es, - - - | E7.
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Now the rate that a new edge is added to EtD "™ can be written as the follows:

N AP = 3 [ (@) = Hipa (9)

ecFEn
+ > Hpra (@) + Y Hpn(@) + Y Hpnl@) (2.4.8)
ecks ecFEs ecEy

+ > Hpn(@+ D Hyraa (@) + Y Honnr(8).
€ Es &€ Ee éeEr
For any € € UT_,E;, note that at least one end point of & has to be within V;"AV"*! < VP,
Moreover, recall that for each point in H, there can be no more than 4 directed edges emanating
from it and 4 edges going towards it. Thus, | UT_, E;| < 8|V;""| < 8(|E™| + 2). Now recalling
t <T, Ar U AM! € [—n —logn,n + logn] x [0,logn], which implies that for each & € U7_, E;,

the corresponding harmonic measure in (2.4.8) is bounded from above by 2+/log n. Thus

S Hppr (@ + Y Hon@ + Y Hi (@)

gEEQ ecEs €€E4

+ Y Hpn (@) + Y Hpnr(€)+ > Hynnr (6) < 16(1E"| +2)1/log n.

ee ks ecFEg eeEr

(2.4.9)

Now for each & = (x,y) € Ey, by definition z has to be in the inner boundary of V;* N V;"+, while

y 1s in the complement of ‘A/t” U f/t”H. Moreover, we have

’Hth(éj - H‘ytn+1(é> < H‘ytnm*/tnﬂ(é) — H%’LUZ"+1<63' (2.4.10)

Using a similar method as in Section 5 of [18] and recalling the definition of stationary harmonic
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measure,

Hynqpni (€) — Hoyngpni (€)

— lim (H%Wlw(é‘) - 7—[WUW+17N(€)>

N—o0
= lim P, (X =z, X 1=
N—oo w T(thﬁvtn+1)ULo ’ T(Vt"th”+1)uL0 1 Yy
weLN
— lim E P, (X =z, X =
N—o0 v T(V,"U‘7t"+1)ULo ’ T(Vt”UVt"+1)uL0 1 Yy
weLn )

. 9 9 1
= lim E P, (X =z X 1=y, X I VAYAN Vas
N—o00 T w T(Vt"th”+1)uL0 ! T(Vt7lth"+1)uL0 1 Y T(f/t"th"+1)uL0 ¢ ¢

weln

=1m Y. Y B (X = )P, (X =1, X L=y).
N—oo w Trpuvthur o Tooprav oL P T At oL 1 Y

WELN zeVn AV

Taking the summation over all € € F4, and note that for all z € I%"AIAQ”H,

Y B (X —z X = )< 1
z T(Vt"m?t”"'l)uLO ’ T(Vt7lth”+1)uL0 1 v) =
e=(z,y)EE

since the summation above are over disjoint events. We have

Z H‘A/t”ﬁf/t"*l(é‘) - Hf/t"u\?t"“(é) < H@nuﬂnﬂ(‘énﬂ‘énﬂ),

ecky
Moreover, noting that by definition f/t” U V;”*l is connected in H, and that
VEAVTH < VP < BT 42,

one may, by Theorem 2.1.3 have,

D Hipmaiy 1 (€) = Hpnpprin (€) < (1B +2)3/log n. (2.4.11)

eck;
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Now combining (2.4.9)-(2.4.11) and plugging them back to (2.4.8) gives us

AP (AP, ArHYY < 17(|EP™| + 2)4/log n (2.4.12)

Then recalling the definition of A;, by Poisson thinning and the strong Markov property again we

have
n%—1 n®—1
]P’(]ElD’"] 271“) :IP’<Z A; < 1) gP(Z o < 1)
i=0 =0
where {o; ?20_ ! is an independent sequence of exponential random variables with i = 17(i 4+

2)v/log n.

Thus, in order to prove Lemma 2.4.13, it suffices to prove the following result:

Lemma 2.4.14. Let 0, be defined as above. Then for all « < 1, f < a and any c3 > 0, for all n

large enough

n*—1
P <Z 0; < 1) < e’
i=0
Proof. For f < « defined in the lemma and some constants ¢;, co > 0 (to be chosen later) define

the events for j € [1,n%/n’] NN,
= P <i<gnfio > ——2 Vs bl
J {H(] )" <i<gn’:o = i+2)Vlogn cin

inB— . . . . .
, thus M; = 77" (j_ll)nﬁ N; is a binomial random variable with

Define N; = 1
. c2
{alz<i+2) Tog n

c2

parameters n” and p = PP (ai > W@) = e~ 172 which converges to 1 when ¢, — 0. By the

large deviation principle for binomial random variable

P(G5) =P (M; < eyn”) < e f@rn” < emeon”,

where the last inequality follows by taking p close enough to 1 such that (c;,p) > ¢ (see [24]

for the exact rate function). Since ¢ was arbitrary, for a slightly smaller c3 we can obtain for large
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enough n

P U G; < na—ﬂe—cénﬁ < €_anﬂ,

J€[L,....,n%*/nPINN

But under the event {ﬂje[l,...,na/nﬁ]nN Gj}

aﬁ]nﬁl

— = logn nf+1 2nf+1 no=Pnf +1

J=1 (j—1)nf

1
> 50102(04 — B)\/logn > 1,

where the last two inequalities require taking a large enough n. O
Thus the proof of Lemma 2.4.13 completes. [l

2.4.4 Locations of discrepancies and proof of Theorem 2.4.5

In the previous section, we have shown that, for any o > 0, by time 1 with stretch-exponentially
high probability, there will be no more than n® discrepancies. Now we show that it is highly
unlikely that the first n® possible discrepancies may ever reach our finite subset K.

To show this, note that now the truncated model (A?, A?H) forms a finite state Markov process.

In this section, it is more convenient to concentrate on the embedded chain
(AP AP £ =0,1,2,---
where all configuration (A7, A™1) with
VUV & [—n —logn, n + logn] x [0,logn]

are absorbing states.
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Remark 2.4.15. Without causing further confusion, we will, in this section use the parallel nota-

tions such as (A7, A1), VP and EP™ etc., for the embedded chain without more specification.

Now we recall the stopping times for the creation of new discrepancies:
A; =inf{k >0, |[ED"| =i},

with the convention inf () = co. In order to show Step (IIT), we only need to prove the lemma as

follows:

Lemma 2.4.16. There exists an o > O whose value will be specified later such that for any compact
K CH,
P(ERMNKAD) <n o0
for all sufficiently large n.
Proof. We define
EX"\EX" | if A; < 00

€; =
0, otherwise

Note that €; is either an empty set or a singleton with one edge. If it is a singleton, we do not
distinguish between the singleton set and its unique element.

Now we are ready to introduce classifications on discrepancies as follows: Let 0 < av < 1/5.

e Forany i = 1, we say ¢é; is good if either &, = () or
d(éy, (n+1,0)) < n'™5

Here d(-, -) is defined as the minimum distance over all endpoints.

e Forany i > 1, we say ¢; is good if either €; = () or

d(ei, EX") < n'=.
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Otherwise, we will say €; is bad.

e If an ¢; is bad, we call it devastating if and only if €; intersects with [—n!=3* nl=39] x

[0, log n].

Moreover, one can also define
k =inf{i > 1, s.t. €; is bad}.

By definition, one may see that EZ’:; N K # () only if either of the following two events happens:
e Event A: k < n®, and € is devastating.

e Event B: Kk < n®, ¢, is bad but not devastating, and there is at least one bad event within

kK+1,k+2,---,n%

To see the above assertion, one can from the definition of A and B see that (A U B)° can also be

written as the union of C' U D, where the events are defined as follows:
(07

e Event C: €; are good forall t = 1,2, --- ,n®.

e Event D: k < n?, é, is bad but not devastating, and there are no bad events within x+ 1, kK +

«
s ,n-.

Moreover, for each i, we define
[} = min {x(l) >0 s.t. 32P with z = (Y, 2(?) a vertex for some edge within Ef;"} )
and

r; = max {x(l) <0: s.t. 3@ with 2 = (2, 2?) a vertex for some edge within Ef;"} .
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Thus under event C' or D,
l+ > nl—3o¢ —n®x n1—5a > n1—3a/2

and

7’; < _n173a + n® x n175a < _nlf?)oz/z7

which implies no discrepancy may be within [—n'=3%/2, n'=3% /2] x [0,logn| D K for all suffi-
ciently large n.

Thus, now we only need to find the desired upper bound for the probability of events A and B.
For any k, define event

Gy ={€eisgoodfori=1,--- k—1}.

2.4.4.1 Upper bounds on P(A)

For event A, by definition and the strong Markov property one has

ne

P(A) = ZIP’ (Gy, € is devastating)
k=1

-3y 3 (Gk, Apy <00, Ap— Ay >, (AR, AR L) = (AO,AO))

k=1 j5=0 (Aofio)

Pi,.4y) (A1 = 1, €} is devastating) ,
(2.4.13)

where P 5 ;) stands for the distribution of the truncated embedded process (A7, AZ“) starting
from initial condition (A, Ag).

At the same time, with similar calculation we have forany £ = 1,2,--- , n®

P(Gk,Ak < OO) =

Z Z P <Gk7 Aoy <00, Mg = Aoy > J (AR, AR L) = (AOHZlO)) (2.4.14)

Jj=0 (Ao ,AQ)

P(AO,AO) (Al — 1) S 1
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Note that for any configuration (A, Ay) such that
P (Gk, Ajoy <00, Ay — Ay >, (AR, 1+J7An+l ;)= (AO»AO)) # 0,

one must have |EOAEO| < k — 1. Now recalling the transition dynamic of the embedded chain,

one has for all feasible (Ay, Ag) such that Vo UV C [—n — logn, n 4 logn] x [0, log n]

Piay g (A1 =1)= +)
where AP (-, -) was defined in (2.4.8) and
A (Ag, Ag) = Zmax{?—[vo (€), Hy, (€)}.
Otherwise P 5, 4,) (A1 = 1) = 0. Now for
P 1,,4,) (A1 = 1, € is devastating)

recall that in (2.4.8) we have

AP (Ao, Ag) = 3 |He, (8) — Hy, (@)

ecFEn

) He @+ ) Hp @+ D Hiy (@)

ecks ecks ecEy

+ > Hp @+ > He (@) + Y Hy, ()

ecEs eécFEg eckEr

For any € € Uzzin, recall that at least one of the endpoints of ¢ has to be in %AVO. Thus it is

easy to see

(e, Ex" ) =0.

Combining this with the fact that for all feasible (Ay, Ag), E¢AEy C (—00, —n + 2n!'~%) U (n —
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2n1=4% 00) x [0,log n], which is disjoint with [—2n! =3 2n1=3%] x [0, log n], we have

Zf?:(f,y)EEl,lmIS?nl*M ’HVO (a - 7‘[‘70 (éj}
)\T(A()a AO)

P 40,40) (A; = 1,¢ is devastating) < (2.4.15)

when Vy UV C [-n — logn,n + logn] x [0,logn] and equals to 0 otherwise. Thus for any

configuration (A, Ay) such that
P (Gk, Ap1 <00, Ap — D1 > 7, ( Azk,ﬁpAZﬁﬁj) - (AOM‘IO)) # 0,

and that
P(AO,AO) (Ay = 1, € is devastating) # 0,

we have

P 4,4y (A1 = 1, ¢ is devastating) _ Y () B | <2mi e | 7 (€) = My, (€)]

< — (2.4.16)
Py 4y (A1 =1) AP(Ap, Ag)
Now for the numerator of (2.4.16), again we have
Z },HVO (€) — HVO (é)’
é=(z,y)€E1,|r1|<2n1 3
S Z [HVOQVO (é) - %V()UVO (é>:|
&=(x,y)€E1,|z1|<2nl -3 (2.4.17)

- Z Z %Vouv() (Z>]Pz <XT(\700\70)UL071 =Y XT(VOHVO)ULO =z

5:(x,y)€E1,|x1 |§2n1—3a ZEVOAVO

< HVOUVO(%A%> sup P, (TBO.T < TLO) )
zE\_/OAVO

where

Box = [-2n'73* 2n' %] x [0, log n).
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At the same time, note that for any feasible configuration (A, 1210),
VoAVy C Boxg = [n — 2074 n +logn] U [—n — logn, —n + 2n* %] x [0,log n]
which implies that

sup P, (Tpow < 71,) < sup P, (Tgox < Tr,) - (2.4.18)
ZEV()AVO z€Bozxg

Moreover, for each edge € = (z,w) such that z € VoAV, and w ¢ Vou Vo, by definition it has to

belong to E'3 U Eg and thus by (2.4.8)
AP (Ag, Ao) > Hiyui (VoAVh). (2.4.19)
Now combining (2.4.13)-(2.4.19) we have

P(A) <n® sup P, (Thox < Tr,) - (2.4.20)

x€Boxg

Now we prove the following lemma:

Lemma 2.4.17. For all o« < 1/5 and all sufficiently large n

sup P, (Tgos < T1,) < n 125

€ Boxg

Proof. The proof of Lemma 2.4.17 follows a similar argument as in [1]. Note that for any z €

Boxy,

P, (TBow < TLy) < Z P (7 < TL,)-

y€d™ Box
Then let V,, = {n/2} x [0,00), VI = n/2 x [0,n?), and V> = n/2 x (n* co0). By a similar
argument as in [1] we have

P, (1y, < T,) < n~1te/s (2.4.21)
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while
1
P, (Tvn < TLy, TV, = Tvg) < 5

Thus by the strong Markov property,

P.(1y < T1,) = Z P, (v, < Ty, Tv, = T2) P.(1, < T1,)
z€Vn

1 (2.4.22)
< =t Z P, (1v, < Ty, v, = 7o) Pu(1y < 71,)-
z€V,1
Moreover, for each 2z € V!, by reversibility of random walk ([20]), we have
P.(ry < 71) < Py(7, < 71, )E[# of visits to z in [0, 7, )] (2.4.23)

For the first term in (2.4.23), the same argument for (2.4.21) implies that

Py(1. < 710) < Py(1v, < 71) < n~itels,

While for the second term in (2.4.23), by [1] we have there is a constant C' < oo independent to n

such that for all z € V!

E. [# of visits to z in [0, 77,)] < C'logn.

Thus we have

P.(7, < 71,) < Cn~'T*"logn. (2.4.24)

Combining (2.4.21)-(2.4.24), we have for any & € Boxg, y € 0" Bou,

P.(1, < 71,) < Cn =22 logn.
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Finally, noting that |0 Box| < 5n'~3*, we have

sup Py (Tpee < 71,) < Cn~2F205 ogp . pl =30 < 717250
r€ Boxg

for all sufficiently large n. 0

Combining (2.4.20) and Lemma 2.4.17, we have

P(A) <n® sup P, (Tox < Tr,) < n 1715 (2.4.25)

x€Boxg

2.4.4.2 Upper bounds on P(B)

Now we find the upper bound for P(B). Recall that

e Event B: kK < n?, €, is bad but not devastating, and there is at least one bad event within

k+1,k+2,--- ,n%

For any £ > 1 define event

By = {é1,- -+, €1 are good, € is bad} .

Then by Markov property, we have

n®—1 n®—k
P(B) = Z Z P (Bk, €, is not devastating, (Azk, flgl) = (Ao, flo)> (Z P(AO,AO)(BJ‘>> :
k=1 (4o,A0) =1

(2.4.26)
Using the argument in Subsection 2.4.4.1 we have for all £+ 7 < n® and any feasible configuration

(/_10, 1210) such that

P (Bk, €y, is not devastating, (flzk, AZZl) = (Ao, flo)> #0
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and such that P 7 7,,(B;) > 0 for some i < n® — k, we have

P 10,40)(Bi) S P4, 40)(Gi: A < 00)Po10gn) (Tv, < Tro) < Poojlogn) (Tv, < Ti)

where U,, = {—n'72*/2,n1752/2} x [0, 00). Again from [1], we have

Piojogn) (Tv, < 7o) < n~ 1102 (2.4.27)
Thus by (2.4.26) and (2.4.27),
n®—1
P(B) < n~'*7e (Z P(Bk)) : (2.4.28)
k=1

Again using the same argument, we have for any £k < n® — 1,
]P)(Bk) S P(Gk, Ak < OO)P(O,logn) (TUn < TLO) S n*1+6“
which implies that
P(B) < n~ 2o, (2.4.29)

Letting = 1/16, then Lemma 2.4.16 follows from Lemma 2.4.17 and (2.4.29). ]

Proof of Theorem 2.4.5. At this point, Theorem 2.4.5 follows from the combination of Lemma

2.4.13 and Lemma 2.4.16. L]

2.4.5 Proof of Theorem 2.4.1: Existence of the SDLA

Theorem 2.4.1 follows immediately once we show that the limiting process obtained by Theo-

rem 2.4.5 has the desired property.

Lemma 2.4.18. Fix a finite set K, t > 0 and some € > 0. AN finite a.s., such that for all n > N,

forall0 < s <tandanyx € K,
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[ Hirguan(z) — Higua, (z)] < e (2.4.30)

Proof. By [1, Lemma 2.6] and the sub-linear growth of the interface model proved in Theorem
2.4.8 and the fact we constructed all A? to be subsets of the interface model, there exists some

m > 0 such that for every every n € NU {oco} and z € K,

> Py (Srigons =) = Hagonr (1) < e/2. (2.431)

|y‘<m1.1

Let K’ C H be a large finite subset such that

1.1

2m' max P ) (Tke < T) < €/2.

|y|<m1.1

By Theorem 2.4.5 we know that there is some N € N large enough such that for every n > N,

APNK =AYNK' = A,NnK'

Thus

> Pym (SrLouAg = w) — > Pl (Srpoa, = )| <€/2,

|y|<m1Al |y|<m1Al
Together with (2.4.31) we obtain (2.4.30).
[

It remains to prove that { A, }s<; is Markov with the correct stationary harmonic measure as the

infinitesimal generator.

Lemma 2.4.19. For every finite subset K C H and any t > 0, for any s € [0,t] and x € K,

. P(Asias(r) = 1A (2) = 0,{Ac}e<s)
11m
As—0 As

= HLOUAS (ﬁ) a.s.

Proof. Let ¢ > 0 and G,, be the event that for all s < ¢t and for all z € K, A?(z) = As(z) and in
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addition,

|H rovan (2) — Higua, (z)] < e

By Lemma 2.4.18 and Theorem 2.4.5, lim,, . P(G¢) = 0. Now uniformly for all s < ¢ and As

small enough, there is an n € N such that

P (Asias(z) = 1[As(z) = 0, {Ac}e<s)

€ P(Asras(@) = 1A(z) = 0, {Ac}ecs, Gn) + (=€, ¢)

=P (A% A7) = 1A (2) = 0, {Agte<s, Gn) + (—¢€,¢)

€ P (A} as(@) = 1A () = 0, [Hrguar (v) — Hioua, ()] < € As) + (—2¢, 2¢)

€ (1 — e AsMrguas@te 1§ o=As(Hrouas(@=9y 4 (_9¢ ),

where we use the dominated convergence theorem for the first and second approximations. Now

taking ¢ — 0 and then As — 0 we obtain the result. [

Proof of Theorem 2.4.1. By Lemma 2.4.19 we obtain that the almost sure limit
{Ashocs = lim {AT }ocy

obtained in Theorem 2.4.5 is a SDLA. O]

2.4.6 Proof of Theroem 2.4.3: Ergodocity of the SDLA

Proof. By Lemma 2.4.19 and the fact that the stationary harmonic measure is (well...) stationary,
we obtain that A7 is stationary with respect to the translation A\, (A{°) = A + n, for any n € Z.
It is enough then to prove that A is strongly mixing. Let ¢ > 0 and K7, K> be two finite subsets
of H of distance max{|zy — x| : 11 € K1, 22 € Ky} > 4n (n will be chosen big enough). We now
consider two copies of A} constructed according to Poisson thinning of the same interface model,

A?(1) is centered around an arbitrary point ; € K and A}'(2) is centered around an arbitrary
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point 2y € K,. Fori € {1,2} and configurations & € {0, 1}%. Define the events:

B, = {A®NK, =&} (2.4.32)

C;={AY(i)NK; =&} (2.4.33)

D; = { max |z —x;| < 3n/2} (2.4.34)
x€AP (1)

Under the event DN D, the events C'; and C' are independent. This follows from the independence

of Poisson processes on non intersecting domains. Moreover we know by Theorem 2.4.8 that

lim P (DS U D5) =0,

n—o0

and by Theorem 2.4.5 that
n—oo

Thus

n—00

n—o0 n—0o0

(2.4.35)

= lim P(By) - P(B,) = P(B,) - P(By), (2.4.36)

n—00

where in the last equality we used stationarity and abused notations to clarify that the limit is

actually a constant sequence. [
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3. FINITARY RANDOM INTERLACEMENTS

We show that there exists a phase transition in FRI on Z? with d > 3. This partially answered
a question of Bowen (see Question 2, [25] for details). The content of this chapter appears in [3].
Consider FZ*" as a random subgraph of Z? (we will define #Z*” in Section 3.1). For any two
vertices r,y € FIuT, x and y are said to be connected if there exist vertices xg,x1, -+ , T, €

FI"T such that x = x¢, y = 2, and (;, 7,,,) are edges in the graph FZ*7 forall 0 < i < n.

Theorem 3.0.1 (Supercritical phase). For all u > 0, there is a Ti(u,d) > 0 such that for all

T > Ty, FI“" has an unique infinite cluster almost surely.

Theorem 3.0.2 (Subcritical phase). For all uw > 0, there is a To(u,d) > 0 such that for all 0 <

T < Ty, FI" has no infinite cluster almost surely.

The proof of Theorem 3.0.1 relies on a renormalization/block construction argument along
with coupling the FRI to RI. We define a good block event in Section 3.2, and we prove that
this good event occurs with high probability in Section 3.3. In Section 3.4 we apply a standard
renormalization/block construction argument to see the spread of our “good blocks" dominates a
supercritical Bernoulli percolation. The proof of uniqueness is presented in Section 3.5. The proof

of Theorem 3.0.2 is presented in Section 3.6.
3.1 Notations and Definitions

In this section, we collect some preliminary results on finitary random interlacements. Most of
these results first appear in [25]. We begin with recalling the formal definition of FRI in [25]. Con-
sider the lattice Z¢, for d > 3. A finite walk on Z is a nearest-neighbor path w : {0,1,--- | N} —
74, for some N € Z, U {0}. N is called the length of the finite walk w. Let W®>) be the set of
trajectories of all finite walks. And note that W>>) is a countable set.

For z € Z% and n € N, let P be the law of the simple random walk started at x and killed at
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time n. Define

1 s T \"
PO = [ —— — ) P
0~ (757) > (757) P

n=0
Le. P! is the law of a geometrically killed simple random walk started at = with 1/(7"+ 1) killing
rate. The expected length is 7. We sometimes call geometrically killed random walk a killed
random walk.

For 0 < T < oo, let v™) be the measure on WI0:2°) defined by

2d
@ _ N~ 24 pm)
v Z T+1 T

x€Zd
Note that v(7) is a o-finite measure.

Definition 3.1.1. For 0 < u, T’ < oo, the finitary random interlacements (FRI) point process j is a

Poisson point process (PPP) on W) with intensity measure uv(”).

Meanwhile, one may equivalently define FZ*" constructively as follows:

Definition 3.1.2. For each vertex = € Z?, define an independent Poisson random variable N, with
parameter 2du/(T + 1). We start independent N, geometrically killed random walks from x, and
each of them has expected length 7. The FRI can be defined as the point measure on W%

composed of all the geometrically killed random walk trajectories above from all vertices in Z.
It is easy to see the two definitions above are equivalent:

Proposition 3.1.3. The random point measure defined in Definition 3.1.2 is identically distributed

as the Poisson point process defined in Definition 3.1.1.

Proof. The equivalence follows directly from the standard construction of Poisson point process

with a o —finite intensity measure. See (4.2.1) of [26] for example. [

Remark 3.1.4. The construction in Definition 3.1.2 was informally described in Subsection 1.3.2,

[25].
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Remark 3.1.5. Without causing further confusion, we will use FZ to denote both the Poisson point

process on W) and the random subgraph of Z it induces.

The rest of this section mainly concerns the distribution of paths within FZ*” traversing a
certain finite subset of Z<. Let K C Z® be a finite subset. Let W C W% be the set of all finite

walks that visit K at least once. Define the stopping times
Hyg(w)=inf{t > 0:w(t) € K},

and

Hy(w) =inf{t > 1:w(t) € K}.

For a finite path w, we say Hg(w) = oo if w vanishes before it hits the set K. Similar for

Hy (w) = oo. Define
W® = {(a,b) € W) 5x W% - 4(0) = b(0)}.
Let K C L C Z9 be finite subsets. Forz € L\ K, let {éT) be the measure on W given by

&1 (L@ b)}) = 2d - 1, (o P {a}) Lt )= P ({0}).

Define a measure Q(LTE( on W® by

Q=D &

zeL\K

Define the concatenation map Con : W2 — W) py

Con(a,b) = (a(len(a)), a(len(a) —1),--- ,a(0),b(1),--- ,b(len(b))).
Proposition 3.1.6 (Proposition 4.1 in [25]). For any 0 < u,T" < oo, let u be FRI with parameters
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u, T and K C L C Z" be finite subsets. Then Ly, \w,p is a PPP with intensity measure u -

Con*Q(LTJ)( = Ty, \wyw' D), where Con*Q(LTJ)( = Q(LTI)( o Con™" is the push-forward measure.

Corollary 3.1.7. Let u, T, ju be as in Proposition 3.1.6 and K C 7 be a finite subset. Then
uo™ (W) =24 P (Hy = o0).
zeK
Consequently,

lm P(u(Wg) = 0) = e 2er®) = p(727 0 K = ),

T—o0

where L" is the random interlacements at level u.

Proof. This follows from Proposition 3.1.6 and the fact that

lim P (Hx = 00) = P,(Hg = 0).

T
T—o00

]

Consider the space {0, 1}Zd with the canonical product o-algebra. For u > 0, let P* be the

unique probability measure on {0, 1}%" such that for all finite subset K C Z¢,
]P)u({w < {O, 1}Zd . w(x) — 07f01- all ¢ € K}) — 6—u-cap(K)7

i.e. P“ is the probability law for random interlacements at level u. For 0 < u, T < oo, let P“” be

the probability measure on {0, I}Zd such that for all finite subset K C Z¢,
P“T({w € {0, l}Zd cw(z) =0, forallz € K}) = e 20wy ek PéT)(ﬁKZOO)’

i.e. P“T is the law for finitary random interlacements with parameters u, T".

Theorem 3.1.8 (Theorem A.2 in [25]). For any v > 0, P*7 converges to P*™ weakly as T — oo

in the space of probability measures on {0, 1}Zd.
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Let K C Z? be a finite subset. Define the killed equilibrium measure by

Define the killed capacity by

cap™(K) ==Y el ().

zeK

Let

e(T)(J:)
g (z) = —E 2
K capD)(K)

be the normalized equilibrium measure. Let W} := {w € Wy : w(0) € K}. Define a map
sK:WKBwHU)OEWIO(,

where w' = sy (w) is the unique element of W3- such that w°(:) = w(H (w)+1) forall ¢ > 0 and
len(w®) = len(w) — Hi(w). Le. we keep the part of the trajectory of w after hitting K, and index
the trajectory in a way such that the hitting of K occurs at time 0. If m(-) is a measure supported

on K, then we define the measure

P, = Z m(z)PD)
zeK

on Wy, for some T" > 0.

Lemma 3.1.9. For 0 < u,T < oo, let 1 be FRI with parameters u,T and K C 7% be a finite

subset. Then |1 = Skt is a PPP on Wy with intensity measure 2du, - cap(T)(K)]P’é(T).
K

Proof. The proof follows from the Proposition 3.1.6 and properties of PPP (see Exercise 4.6(c) in

[26]). O
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As a consequence of Lemma 3.1.9, we have

KN ( U range(w)) =Kn ( U range(w)>7
PK)

wESupp( wESupp(p)
where K, i1, i are the same as in Lemma 3.1.9.

Lemma 3.1.10. Let Ni be a Poisson random variable with parameter 2du - cap™™ (K), and
{w;};>1 are i.i.d. killed random walks with distribution IP’é(T) and independent from Ng. Then
K

the point measure
Ng
f = Z Ouw,
j=1
is a PPP on Wy with intensity measure 2du - cap(T)(K )Pém. In particular, [ix has the same
K

distribution as 1.

Proof. The proof follows from the construction of PPP (see section 4.2 in [26]) and the merging

and thinning property of Poisson distribution. ]

Remark 3.1.11. A similar result (Corollary 4.2) was proved in [25]. Here the previous two lemmas

are stated in the form better suitable for the later use in this paper.

In this chapter, all positive constants ¢, C, ¢y, - - - will depend on dimension d by default.
3.2 Definition of Good Boxes

In this section we define the "good" block event in which there is a locally generated large
connected cluster in the corresponding “box". The viability of such event will be proved in the
Section 3.3. Parts of the definition below are inspired by [27]. This also enables us to apply their
estimates for regular interlacements in the next section.

Without loss of generality, we will always assume here the FRI’s are constructed according to
Definition 3.1.2. For any u,T > 0, the FRI FZ"7 is identically distributed as the union of two

independent copies of FRI with intensity level u/2 and average stopping time 7, i.e.

FI" = FIy*T U FTy T
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where ffj/ >T is the i-th copy. Moreover, similar to [27], we may write

‘/—_-I?/Q,T U qu/ (2d—4),

where }"Ilf’/j@d_@j are i.i.d. copies of finitary interlacements with intensity level u/(2d — 4) and
average stopping time 7. For x € Z%and R € Z,, let B(z, R) := x + [~ R, R]? be a box of length
R centered at z. Note that we define B(z, R) differently in Chapter 2. We write B(R) = B(0, R).
Let B(R) := [—64R?, 64R%]" be a box in the lattice Z?. We define some subboxes in B(R). For
0<i<8Rand1 < j <d,let

T = (—32R2 + 8Ri)ej,
where ¢; is the j-th unit vector in Z%. Let

~

biJ’(R) = mi,j + [—R, R]d C B(R),

and

l;i,j(R) = l’iJ + [—QR, 2R]d C E(R)

For any subset A C Z?, we define the internal vertex boundary of A by
O"A:={xc A:JyecZ\ Asuchthat [z —y|; = 1},
and define the external vertex boundary by
O"A:={r € Z*\ A:Jy € Asuchthat |z —y|, = 1}.

Recall the construction of FRI in Definition 3.1.2. Let D; be the random subgraph in Z¢ consisting
of all trajectories of killed random walks starting in B(0, 128 R?) in FRI FZ"/*"  fori = 1,2, and

D = D; U D,. For any subsets A, B C 7 where A is connected, let C(A, B) be the connected
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component of A U B containing A. Define the random set

~

CZ‘J'(ZE) = C(ZE, bZ’J(R) N Dl)

For 1 < j < d, we define the “top" half of B (R) in the j-direction by

~

Bf(R)={z €R": 0 <x; <64R* and —64R*> < z; < 64R’, ifi # j},

and define the “bottom" half of B(R) in the j-direction by

~

By (R)={z eR’: —64R* < ; <0, and — 64R* < x; < 64R?, ifi # j}.

Let

AN(R) = {z € R": 96R* < x; < 128R?, and — 128R* < z; < 128R% if i # j},

and

A7(R) = {z e R": —128R* < z; < —96R?, and — 128R* < x; < 128R% if i # j}.

Definition 3.2.1. We say B(R) is good if the following conditions hold:

1. Forall0 <i<8Rand 1< j <d,let
Eij = {x €b;(R)NDs: cap(Ci’j(x)) > R2(d—2)/3}_

We have E; ; # () for all 4, j.

2. Forall0 <¢<8Rand1 < j<d,andforallz € F; ;,andy € E;, j,

Cit1,;(y) N C(Cij(x), D2) # 0.
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Le., C; j(x) and C;11 (y) are connected by Ds.

3. Forall 1 < j < d, no geometrically killed random walks starting in A} (R) intersect with

N

— . . . . _ . . A~ +
Bj (R), and no geometrically killed random walks starting in A} (R) intersects with B (R).

Remark 3.2.2. All conditions in Definition 3.2.1 are restrictions on the trajectories of the killed
random walks starting in B(0,128 R?). This fact is crucial in the renormalization argument in

Section 3.4.

Now we define the shift of the box B(R) in Z¢. For = € Z, let
B,(R) = 32R*z + B(R).

We say that B, (R) is good if B(R) is a good box in FZ»T — 32R?x.

Remark 3.2.3. Suppose = and y are two neighboring vertices in Z%, and both B, (R) and B, (R)
are good, then by condition (3) in Definition 3.2.1 the connectivity event in B, (R) N B,(R) can
be generated only by the random walk paths starting in B(x, 128 R?) N B(y, 128 R?), so we have a

large connected component crossing B, (R) and B, (R).

Now we define a family {Y, : x € Z¢} of {0, 1}-valued random variables given by

1, if B,(R) is good;
Y, = (3.2.1)

0, otherwise.

If there is an infinite open cluster in the lattice {Y} } <74, then by Remark 3.2.3 there is an infinite
open cluster in the underlying original lattice. When 7' = R3, we will show that E’(R) is good
with high probability for all sufficiently large R. Then we will use a renormalization argument to

show that there is an infinite cluster in FZ“™ almost surely for large R.

Remark 3.2.4. For simplicity, we will assume R € Z, for the rest of this paper. For R € R, \ Z,
one can replace R and R? by |R| and | R]? respectively in the definition of good boxes, and all

results will follow accordingly.
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3.3 B(R) is Good with High Probability

In this section, we prove that E(R) is good with high probability. L.e.,

Theorem 3.3.1. Consider the FRI fI“’R3. For all uw > 0, we have

lim P(Yp=1) =1.

R—o00

To show Theorem 3.3.1, we will consider the following weaker version of conditions (1) and

(2) in Definition 3.2.1:

(1*) Forall0 <: < 8Rand1 < j <d, let

Cij(x) = C(,bi;(R) N FIyT).

and

Ei,j = {JJ c bz,J<R> N fqu’T : cap(ém(x)) Z RQ(d72)/3}.
We have F; ; # () for all i, 5.

(2*%) Forall0 <7< 8Rand1 < j <d,and forall x € Ei,j, and y € EN]HLj,

Cis1(y) NC (Coyw), FTZT) £0.

We first prove that condition (1*) and (2*) occur with high probability. Then we show that no
killed random walk starting in Z? \ B(128R?) will reach B(R) with high probability. Combining
these we know condition (1) and (2) in Definition 3.2.1 occur with high probability. We will show
condition (3) occurs with high probability separately in Lemma 3.3.14.

We will often use the following large deviation bound for Poisson distributions.
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Lemma 3.3.2 (equation 2.11 in [26]). If X is a Poisson distribution with parameter \, then
P(A\/2< X <2)\) > 1—2e V10

3.3.1 Coupling of FRI and RI

In this subsection we introduce a coupling of FRI and RI that is crucial in the proof of Lemma
3.3.9. Let K C Z? be a finite subset, and let u,T" > 0. For any points x € K, let N, be i.1.d.
Poisson random variables with parameter 2du. Let {Y:,c(ljf) + 1}°, and {YI(TT” + 1}9°, be iid.
geometric random variables with parameter 1/(7" + 1). Moreover, for i € Z, let {ST(LZ,’;) }>° , and
{S,(:;f)}ff:o be independent copies of simple random walks starting at z. Now we can construct a

random point measure zT (u, K) on W10:20) a5 follows: foreach z € K and 1 < i < Ny u, if

oy
{87(117,;)}”23 NK = @,

we add a delta measure on

A Y("'vi)
{Si o

in Z7 (u, K).

The following lemma is a consequence of Lemma 3.1.10. Let pux = Zjvfl 0., be the restriction
of FRI Poisson point measure on /X with parameters « and 7', where N is a Poisson random vari-
able with parameter 2du - cap’) (K), and {w;};>; are i.i.d. killed random walks with distribution

Pém and independent from Ny.
K
Lemma 3.3.3. 77 (u, K) is identically distributed as ji.

Proof. Notice thatif we fix x € K and1 <1 < N, ,, then

y L

, D) .
P<{Ss;“}nz€ nK = @) = P{O(H = o00) = e (x).

x
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By Lemma 3.1.10, jux is a PPP with intensity measure 2du - cap™ (K )P_(r), and by definition
K
et (z) = cap™(K)ei.

The result follows from the thinning property of Poisson distributions. 0

Consider those trajectories in Z7 (u, K') with length larger or equal to a fixed number T > 0.

We define the random point measure ZTTo (u, K) as follows: foreachx € K and 1 < i < N, ,, if
Yx(ng) Z T07

and

{Sll}nxT ﬂK:(Z),

we add a delta measure on

(sioped
in 777 (u, K). Note that by definition Z77 (u, K) € Z7 (u, K). Here we say Z; C Z, if all edges
open in the support of Z; is also open in support of Z,.
Now we construct a third random point measure Z770 (u, K') which is identically distributed
as the collection of all trajectories within a RI traversing K, and we also define a Z7°T0 (u, K) C
Z7T0(y, K) when all trajectories in Z7>70(u, K) are truncated at a fixed time T. For each v € K
and 1 < i < N, if

YI(Z‘Z) Z T07

and

{Si N K =0,

we add a delta measure on

{Si
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in ZT7 (u, K) and we add a delta measure on

{SIinT,

in 777 (u, K). Note that by definition Z”7 (u, K) ¢ 2770 (u, K) c 277 (u, K) for any T > 0.
Note that if Ty = 0, Z7%(u, K) is identically distributed as set of all trajectories in Z?™ travers-

ing K but not including the backward parts before they enter K for the first time. We write
I7(u, K) = I7%(u, K).

Lemma 3.3.4. Let Y + 1 be a geometric random variable with parameter 1/(T + 1) independent

from everything else, and q = q(T,Ty) := P(Y > Tp). Let [ix be restriction of RI at level 2duq

on the set K. Then T77 (u, K) is identically distributed to fix = Z;V:Kl 3, where Ny is Poisson
random variable with parameter 2duq - cap(K), and {0;};>1 are i.i.d. simple random walks with

distribution P, and independent from Ng.

Proof. This is similar to the proof of Lemma 3.3.3. For z € 9" K,
P({Sffé)}zozo NK = Q)) =P, (Hg = o0) = ex(x).
Note that for all z € K \ 0K,
P({Sg;g};ozo NK = @) = 0.

The result again follows from the thinning property of Poisson distributions. 0

By Exercise 5.9 of [26], jix is the restriction of the PPP for RI at level 2duq on the set K.
3.3.2 Facts about capacity

We often use the following facts about capacity (or killed one) in our proof.
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Lemma 3.3.5 (Proposition 6.5.2 in [4]). There are constants cy,co > 0 such that for all R > 0,
cR7T? < cap(B(R)) <y R72.
Lemma 3.3.6 (Subadditivity of Capacity; Lemma 1.11 in [26]). For any finite set E,, By C 74,
cap(Ey U Ey) < cap(E1) + cap(E»).

Lemma 3.3.7 (Subadditivity of Killed Capacity). For any finite sets E,, Ey C Z% and for all
T >0,

capD(Ey U By) < cap™ (Ey) + cap™ (Ey).
Proof. Follows the proof of Lemma 1.11 in [26] using the killed equilibrium measure. [

Lemma 3.3.8 (Monotonicity of Capacity; Exercise 1.15 in [26]). For any finite sets E, C E, C Z¢,
cap(E1) < cap(Ey).

3.3.3 Condition (1*)

By translation invariance, one may without loss of generality prove the desired result for: = 4R
and j = 1. This this case, we have 2451 = 0, byp1(R) = B(R), and byp1(R) = B(2R).

To begin with, let us consider the following random variable
N, = [{o € BR)cap (e (o, T 0 B(R 4+ B9)) > cor?7)

and event Aill%’l ={N 5112),1 > 1}, where ¢y > 0 the constant in Lemma 6, [27], which is independent

to R. We first prove that

Lemma 3.3.9. There is a constant ¢ = c(u) > 0 such that for all sufficiently large R,

IP’(AS%J) > 1 —exp(—cR).
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u/ (2d—4),R3

Proof. Note that N, i .1 18 determined by trajectories within FZ; traversing B(R), which

can be sampled according to Subsection 3.3.1. Define

A~

Nipy = [{(@.0) € 9"B(R) x 2, 5.1 < Nowyaaay, {88010 0 BR) = 0,

Y, = RYS, (ST C o B(R), cap ({s rd }R”) > cRMH.
By the definitions of V. 48%)71’ N 421%)71, and Lemma 3.3.6, we have
P(Nig, 2 1) <P(Njp, = 1) = P(4jp,).
Note that for each (z, 1), the events

{1 < Npwj2d-1)}
{{SUD}e N B(R) =0},

(Vi = R,

{{sgg>}§;f C z+ B(R"), cap ({s ) ) > cPJ”}
are independent to each other. At the same time
P ({S} “)}n {NB(R) =0) = epry(x)
while
P (YR > RYS, {SCVEY 2 4 B(RY), cap ({5 PR 1) > CRO~7) = q(R) > 1/2

for all sufficiently large R. The last inequality is derived from
(1) The PMF estimate of geometric random variable Y;T’;g
(2) Hoeffding’s inequality.
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(3) Lemma 6, [27] with T} = R'% and ¢ = 1/8.

Thus we have

NE%)J ~ Poisson (ql(R)cap(B(R))u/Qd — 4))

and the desired result follows from Lemma 3.3.2 and Lemma 3.3.5.

Given event ASI% 1> one may sample a point uniformly at random from the random subset

Sir1 = {:c € B(R), cap (C(az .7-"211‘/12‘1 4,1 ﬂB(R+R09))> S CORO‘7}

and denote it by xf&%’l. Moreover, for the random subset

Comifp, = (i3, FTU " 0 B(R + B™))

by definition we have

cap (Comiﬁ%’l) > cR™.

Now forany k = 2,3,--- ,d — 2 may define
Comify, =€ (Comify), FLUE0M A B(R + kE™))

together with event

Ail;%)1 {cap(Com4l%)1) > CISRO'W“} .

Note that for any k = 2,3,--- ,d —2,C Omfﬁgf ) is measurable with respect to
Op1 =0 (fff/l Q=12 FruPe R ff?f,ffcf_4)’R3)
u/(2d 4),R3

which is independent to FZ; . Thus for any connected component cé’“‘” within B(R +
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(k — 1)R"9) with

cap(Cékfl)) > c’SRO'WC

given Comfﬁ{f ) = Co ("1 the distribution of C’omﬁ) 1 18 determined by by the configuration of

/(2d—4),R3

trajectories in JF I“ traversing CO Wthh can again be sampled according to Subsection

5.1:

e For each x € C (k=1) , let Niki J(2d—1) be i.i.d. Poisson random variables independent to oy,

with intensity u/(2d — 4).

e Foreach x € Cék , and positive integer 7, let {554 }°¢ | and {S7*}° | be independent

simple random walks starting from z.

e For each = € Cék_l), and positive integer i, let Y“;ff and Yl “k be independent geometric

random variables with parameter p = 1/(1 + R?).

Then recalling the construction in Subsection 5.1, one has
(k—1 k—1
P( 4R1’00m4R1)_C(() )>

>P | cap U SOy | > chROTE {SUIMYEY o 4 B(R™), W(x,4) € I "

k—1)
(z, z)EIiR 1

where
1k = {(a:,z) cone %L, siti < N( ) J(2d—1yr {5 ke neg ™ =, Y;}Z%«’f = R16}

4R,1

Then again by Lemma 6 and Lemma 8 of [27],

kf
< 4R1|C 4R1 —Cé 1)) > 1 —eXp(_Rl/n)

95



for all sufficiently large 2. Thus we have proved that

d—2

]P(E;;R’l #* (Z)) >P (ﬂ AELI;%’l) >1- exp(_R1/18> (3.3.1)

k=1
for all sufficiently large R.
3.34 Condition (2%)

Again, Condition (2*) can be without loss of generality checked for byr 1 (R) and byr11(R).
And one may follow a similar argument as Subsection 3.3.3 to check Condition (2*). To be precise,
one can pick any two points xg, x; from Esp; and E4ri1:. Then we can look at the paths in
}"IZ/ 28 (which is independent to }'qu/ 2’Rg) traversing Cyp1(xo). We keep only those whose
backward part never returning to Cyp 1 (o) while the forward part is not truncated until the R%*5th
step. Then one can apply Lemma 11 and 12 in [27] for intensity u/4 to prove that with stretch
exponentially high probability, at least one of the paths we kept in the procedure above has to
intersect with Cyp11.1(21) before they exit B(4Re;, CR), where C' is the same constant as in
Lemma 11 of [27].

However, since for the finitary interlacements, one can only guarantee that the first %5 steps in
the froward paths we keep are within F. IS/ 25 S0 the only extra estimate needed is the following

lower bound on the first exiting time of B(C'R).

Lemma 3.3.10. There is a ¢ > 0 independent to R such that
PO(HB‘”“B(CR) > R2'5) < exp(—cR0‘5).
Proof. By central limit theorem/invariance principle, there is a constant ¢ > 0 such that

sup P.(Hpoupory > R?) < Po(Hpoupcr) > R*) <1—c< 1. (3.3.2)
z€B(CR)
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Then foreachi = 1,2, --- , | R%°], consider event
Es; = {Hpoupcry > i+ R*}.
Then by (3.3.2) and Markov property we have
Py(Es1) <1—c¢,

and

Po(ESZ'+1’ESZ') S sup Pm(Ha‘”“fB(CR) > RQ) S 1-— C,
z€B(CR)

forall 2 > 1. Thus
Po(Haoupory > R*®) < Po(Es|pos)) < (1 — ) < exp(—cR%9).

]

Remark 3.3.11. An alternative argument following (2.9) of [28] derives a slightly weaker result,

but also suitable for the use here.
3.3.5 Condition (1) and (2)

We recall the construction of FRI in Definition 3.1.2. We first show that with high probability

no killed random walks of FZ*™ starting in Z% \ B(128R?) intersect with B(R). Define the event
G(u, R) = {No Killed random walks of FZ"" starting in Z% \ B(128R?) reach B(R)}.
Lemma 3.3.12. For all u > 0, we have

lim P(G(u, R)) = 1.

R—o0
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Proof. We first fix u > 0 and R > 0. We define a sequence of subsets { A(m, R)}>°_, of Z<. Let
A(1,R) := B((128 + 64)R?) \ B(R),
and for all m > 1,
A(m, R) := B((128 + 64m)R?) \ B((128 4 64(m — 1)) R?)

Note that { A(m, R)}>°_, are pairwise disjoint, and

AR (B(R) u | Am, R)).

Let 2z € A(m, R) NZ® for some m > 1. Recall the construction of FRI in Definition 3.1.2. Let NN,
be the number of killed random walks starting at z. So N, is a Poisson distribution with parameter

2du/(R? + 1). By Markov inequality, for all sufficiently large R,

4
P(Nw > QZZ?}E ) < EeNe]e2dumBY/ () < o) gmeamB

for some constants ¢; (u), co(u) > 0. We also need to estimate the probability that a killed random
walk escape from a big box. If Y is a geometric random variable with parameter 13, then for all
sufficiently large R,

P(Y > R"/?) < ¢ R (3.3.3)

for some ¢ > 0 independent of R. By Azuma’s inequality and the tail estimate of geometric

distribution in (3.3.3), for all sufficiently large R,
P(()R3)(HB(64R2) < OO) < e—C3R1/2’

for some c3 > 0. If # € A(m, R) N Z¢, then a geometrically killed random walk must escape
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from m boxes of size 64R? before it reaches B(R) By the memoryless property of geometric
distribution,

P (Hy gy < 00) < &7,

Note that the number of vertices in A(m, R) is bounded above by cym?R?¢, for some ¢, > 0. So

by union bound,

v 2dum R
P(G(u, R)°) < mzjl (C4de2dcle_02mR + C4de2d—RZ”Z : e—cstW)’

for all sufficiently large R. Let

N 2dumR*
S(R) = Z <C4de2dcle—szR + C4de2dRZ—T;Z16_C3mR1/2) ‘
m=1

Note that the sum S(R) converges for all R > 0, and
R—o0
S(R) —— 0.

Therefore,

P(G(u, R)*) =% 0.

Lemma 3.3.13. Let u > 0. Consider the FRI FI“"’. Then

lim P<C0nditi0ns (1) and (2) are satisﬁed) = 1.

R—o0

Proof. The result follows by the discussions in Subsections 3.3.3 and 3.3.4, and Lemma 3.3.12.

]

3.3.6 Condition (3)

By translation invariance and symmetry, it suffices to show the following lemma.
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Lemma 3.3.14. Let u > 0, then there are constants c(u), C(u) > 0 such that for all sufficiently

large R > 0, we have
P(El a killed random walk starting in AT (R) reach Bf(R)) < Rt CRY?.

Proof. One can easily adapt the calculations in the proof of Lemma 3.3.12. The result follows
from Definition 3.1.2, and tail estimates of geometric and Poisson distributions, and Azuma’s

inequality. 0
3.4 Renormalization and Proof of Existence

Recall the family {Y },cze of {0, 1}-valued random variables defined in (3.2.1). In this sec-
tion, we show that {Y } stochastically dominates an i.i.d. supercritical site percolation when R is

sufficiently large and thus it has an infinite open cluster almost surely.

Remark 3.4.1. Note that {Y, },cz« themselves form a finitely dependent percolation, and that the
probability that each edge is open is high enough. An alternative “block construction" approach

according to Durrett and Griffeath, [29] can also give us the desired result.

Lemma 3.4.2. For any v > 0 and for all R > 0 that is sufficiently large (depending on u),
the random field {Y, },czq generated by FIur stochastically dominates an i.i.d. site percolation
{7} weza such that P(Zy = 1) > p.(Z%), where p.(Z2) is the critical probability of site percolation

on 74,

Proof. By the definition of good boxes in Section 3.2 and Remark 3.2.2, the random field {Y, } ,cza
is 9-dependent. The stochastic domination over an i.i.d supercritical site percolation follows from

the domination by product measures result by Liggett, Schramm, and Stacey [30] and Theorem

3.3.1. ]

Corollary 3.4.3. For any v > 0 and for all R > 0 that is sufficiently large (depending on u),

3 o
FI"T has an infinite cluster almost surely.
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Proof. We can choose the same R as in Lemma 3.4.2. By the definition of good boxes and Remark

3.2.3, FZ"™ has an infinite cluster if {Y, },cz« has one. O

Now back to the proof of Theorem 3.0.1, for any v > 0 and sufficiently large 7', one may let

R = |T"/3| and the proof is complete. O
3.5 Uniqueness of Infinite Cluster

We have shown that the FRI FZ“ has an infinite cluster almost surely if R > Rg(u), for
some Ry(u) > 0. In this section, we show that the infinite cluster of FIF s unique almost

surely. Let z € 7%, we define the canonical lattice shift
T, : {0,1}%" = {0,1}*

by (T3(€))(y) = &(y + ), for any £ € {0, 1}%" and y € Z?. We will first show that FRI is ergodic

with respect to lattice shifts.

Lemma 3.5.1. Let ;v = 1, 7 be the PPP measure for FI“'. For any x € Z¢ and any u, T > 0,

the map T, preserves the measure |i.

Proof. Fix z € Z%. By Dynkin’s 7-\ Lemma, it suffices to show that for any finite subset K C Z¢,
B(FT (K — ) = 0) — PFIT (1 K ) = ¢ oo™

Note that

]Py(]_-Iu,T N (K . J]) — @) — 6—2du~cap(T)(K—z) — 6—2du~cap(T)(K).
The proof is complete. O

Let 2 € Z4, define the evaluation map

@, : {0,1}*" = {0,1}
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by ®,(&) = &(x). We write o(+) for the product o-algebra generated by a set or the o-algebra

generated by a set of functions. The following lemma is a classical approximation result.

Lemma 3.5.2. Let ({0, 1} 5({0,1}2%), Q) be a probability space, and let B € o (0, 1129,

then for any € > 0, there is a finite subset K C 7.* and B, € o(®, : v € K) such that
Q(BABE) <e.

We need one more auxiliary lemma.

Lemma 3.5.3. Let K C Z% be a finite subset, and K, C K, and Ky = K \ K,. Then for all
u, T > 0,
P(FI'INK = Ki) = Y (—1)/F e 2duwcn @0k

K'CK;
Proof. This follows from inclusion-exclusion formula (see equaiton 2.1.3 of [26] for a similar

result in RI). O

Proposition 3.5.4. For any u,T > 0 and any 0 # v € Z% the measure preserving map T, is

ergodic with respect to the FRI measure [t = [1,, .

Proof. This is similar to the proof of ergodicity for RI (see Theorem 2.1 of [14]). Fix 0 # z € Z¢
and u, T > 0. By Lemma 3.5.2, it suffices to show for any finite subset K C Z? and B, € o(®, :
x € K), we have

pu(B: N (Be)) = p(Be). (3.5.1)

From (3.5.1), one can deduce that for any invariant A € o({0, 1}%),

so 1(A) € {0,1}. In order to prove (3.5.1), we first claim for any finite subsets K, Ky C Z4,

lim cap™ (K, U (K3 + 2)) = cap™) (K;) + cap'™) (K>). (3.5.2)

|z]—o0
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The proof of (3.5.2) is exactly the same as the RI case (see equation 2.2.5 in [26]). If A is a cylinder

event supported on a finite set X C Z%, i.e. A is of the from
A={FI""NK = K},

where K; C K. Denote K := K \ K. Take n large enough such that K N (K + nx) = (). By

Lemma 3.5.3,
p(ANTHA))
= ,u(]-'I“’T N(KU(K+nzx)) =K U(K;+ mﬁ)) (3.5.3)

= YT (DR e (2w cap™ (K U Ko) U (K U Ky) + ) ).

K’CKl K”CKl

By (3.5.2) and Lemma 3.5.3, we have

lim p(ANTY(A))

n—o0
Z Z DIEHE  exp ( — 2du(cap™ (K" U Ky) + cap™ (K" U Ko)))
K'CK1 K"CK, (3.5.4)
_ Z (_1)\K’\e—Qdu-cap(T)(K'UKo) Z (_1)\K”Ie—2du-cap(T)(K”UKo)
K'CK, K'"CKq
= u(A)*.

Note that all events in o(®,, : z € K) can be extended by cylinder events in form of event A. The

proof is complete. O

Theorem 3.5.5. For any u > 0 and for all sufficiently large R > 0 (depending on u), FI*" has

a unique infinite open cluster almost surely.

Proof. We adapt the proof of uniqueness in percolation model by Burton and Keane [9] (see Grim-
mett [8]). Fix u > 0. Let N be the number of infinite open clusters in FI"® . Since N is
translation-invariant, /V is constant almost surely by Proposition 3.5.4. By Corollary 3.4.3, there

is a Ro(u) > 0 such that for all R > Ry, FZ“"" has an infinite open cluster almost surely. We fix
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R > Ry, s0 P(N = 0) = 0. Suppose P(N = k) = 1for2 < k < oo. Let Mp,) be the number of

infinite open clusters in FZ“™ intersecting B(n). Noting that
P(Mpm) >2) 5 P(N >2) =1,

there has to be a n such that

P(MB(n) > 2) > 0.

Recall Definition 3.1.2. Let F} ( be the subgraph in Z? generated by paths starting from B(n — 1),
Fy; be the subgraph in Z¢ generated by paths starting from 9" B(n), and F; = Fio U Fy;.
Moreover, let Iy be the subgraph in Z¢ generated by paths starting from B¢(n).

Note that /| o and F} ; may only have countable many configurations, there has to be a pair of

(finite) configurations F; o and F; 1, and a j > 2 such that
P(MB(n) =7, Fio=Fio, F1,1= 71,1) > 0,
which implies that
]P’(Fo U F1,0 U Fi,1 has k infinite components, among which j components intersect B(n)) > 0.

We denote the last event by Ay and note that A, is measurable with respect to Fj and thus inde-
pendent to F o and F ;.

Now let -7:—1,1 =FioUFi1\ B(n—1),andlet
.7:"1,0:{a:iej, r€Bn-1),j=12"--,d}

be the collection of all edges starting from B(n — 1) (or all the edges within B(n)). One can
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immediately see that
P(Am Fio= ]:—1,07 Fi,= .7:—1,1) = P(AO)P(FLO = ]:—1,0, Fiq = ]}1,1) > 0.
However, given the event above, note that
RUF =FUF UFi1UFy.

Since ]:"170 contains all the edges within B(n), all the j components in Fj U F; o U F; ; intersecting
B(n) merge to one, and the FRI with positive probability only has & — j + 1 infinite components.
This contradicts with P(N = k) = 1.

Now suppose IP(N = oo) = 1. We say a point x € Z is a trifurcation if:
1. z is in an infinite open cluster of FIuF,
2. there exist exactly three open edges incident to x;

3. removing the three open edges incident to = will split this infinite open cluster of = into

exactly three disjoint infinite open clusters.

Define the event A, := {x is a trifurcation}. By translation invariance, P(A,) is constant for all

x € Z%. Therefore,

1
——FE 14, | =P(Ap).
ZOR PR
Recall that Mp,) is the number of infinite open clusters in FIur intersecting B(n). Note that

n—oo

P(Mp(m > 3) — P(N >3) = 1.
Define the event

E, = {No killed random walks starting in Z¢ \ B(2n) intersects B(n)}
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By Lemma 3.3.12, the probability of event £ decays stretch exponentially. We can choose n large
enough such that

P(Mpg > 3, E,) > 1/2.

Similarly, let F} and F, be the random subgraphs in Z¢ generated by the trace of all killed random
walks starting in B(n) and B(2n)\ B(n), respectively. Note that F; and F; are independent. Since
there are only countably many choices for F} and F5, there exist two finite subgraphs F; and F3
in Z< such that

P(Mpgy > 3, E,, Fi = F1, F, = F») > 0.

Ifwe {Mpg > 3, E,, Fi = Fi, I, = Fa}, then there exist 2(w), y(w), z(w) € 0" B(n) lying in
three distinct infinite open clusters in Z¢ \ B(n). There are three paths connecting the origin and

x, 1, z, respectively, in the following way:
1. 0 is the unique common vertex in any two paths;
2. each path touches exactly one vertex in 9" B(n).
Let D, , ., be the event that:
1. there are exactly three killed random walks starting at the origin;

2. these three killed random walk paths end at z, y, 2, respectively, and they satisfy the condi-

tions above;
3. no killed random walks start at any vertices in B(n) \ {0}.

It is easy to see that P(D,., . ,) > 0 for all n > 0 and all distinct z,y, z € 9" B(n). Since F; and
JF> are fixed and finite,

]P’(Fg —FUFR\ B(n)) > 0.

Forw € {Mpw) > 3, E,, F1 = F1,Fy, = F,}, we can resample all N, for z € B(2n), and then

we resample all killed random walk paths starting in B(2n) accordingly. Note that the resulting
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graph is still distributed as FRI FZ"_ If the events D,y .nand {Fy = F; UF, \ B(n)} occur

after the resample, then 0 is a trifucation. Therefore,
P(Ao) > ]P’(Dx,w,n)P(Fg — FLUF\ B(n))IP’(MB(n) >3, B, F) = Fi, Fy = fz) > 0.

Now we can apply the same finite energy argument in Burton and Keane [9]. For each trifurcation
t € B(n), there is a one-to-one corresponding point y; € 9" B(n). However, the number of

trifurcation points grow in B(n) as n?, but 3 B(n) grows as n?~!. We have a contradiction. [

3.6 Subcritical Phase
In this section we present the proof of Theorem 3.0.2.
Proof of Theorem 3.0.2. We use the Peierls argument [13]. Fix ©v > 0. Let C be the connected

component that contains the origin in the FRI, FZ“”. It suffices to show that there is a constant

To(u) > 0 such that forall 0 < T' < Tg,
P(|C| = o00) = 0.

We say a path is self-avoiding if it does not visit the same edge twice. Note that the number of
self-avoiding paths in Z¢ which have length n and start at the origin is bounded above by (2d)".
Let N(n) be the number of such paths which are open. If the origin belongs to an infinite open

cluster, then there are open self-avoiding paths starting at the origin of all lengths. So for all n > 0,
P(Ic| = 00) <P(N(n) > 1) <E[N(n)].

Let v be a self-avoiding path that has length n and starts at the origin. We want to estimate the
probability that v is open. Let /N, be the number of killed random walks that traverse . Recall

that IV, is a Poisson random variable with parameter 2du - cap™) (). Since the path ~ has length
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n, it has n + 1 vertices. By the subadditivity of killed capacity,
cap"(7) <m+ 1,

for all 7' > 0. By exponential Markov inequality,

IED(N7 > 2du - e(n+1) + (n+1) 1og(3d))
_ E[e™]
~ exp (2du- e(n+1) + (n + 1) log(3d))

exp (2du(e — 1) - cap™® (7)) 3.6.1)
exp (2du - e(n+ 1) + (n + 1) log(3d))

<exp (— (n+1)log(3d))

= (3d)™ ..

If the path + is open in FZ"7, then the N, killed random walks that traverse v must travel more
than n steps in total after they first enter . Assume 0 < 7" < 1. Note that the survival rate for
killed random walks at each step is 7'/(7" + 1), which is smaller than 7. Let Y7, Y5, - be i.i.d.

geometric random variables with parameter 1 — 7'. Let
L:=[2du-e(n+1)+ (n+1)log(3d)].

Then,

i=1

L
IP’(fyis 0pen’N7 < L) < IP’(ZY; > L+n>.
By Chernoff bound,

I N L
: —t(L+n) (1 — T)e _ _—tn 1-7
IP’(ZY@“”)S@ (ﬁ =i )

i=1
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for all ¢ > 0 such that Te* < 1. Take ¢, = log(6d). We choose 0 < Tp(u) < 1 such that
T()eto = 6dT0 < 1,

and [2du-e+log(3d)]
(1_—TO> < 2.

Then forall 0 < T' < Ty,

. o 1=T
IP’(vls open‘N7 < L) < g o (m

) < (6d)~ ™2™ = 2(3d) "

So,
P(y is open) < P(y is open| N, < L) + P(N, > L) < 2(3d)™" + (3d) "

Since 7 is arbitrary,
P(IC| = o0) < E[N(n)] < (2d)"(2(3d) " + (3d) ") *== 0,

The proof is complete.
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4. FURTHER STUDY

Here we present two problems for future study.

1. Finite branches of the SDLA. Define
T.(t) = { connected component of x in A7° \ (Lo \ {x})}

to be “branch” in A?° rooted at x. The following conjecture predicts that all branches finally

fall under the shadow of other branches and stop growing:

Conjecture 1. Define

t>0

Then with probability one,

T,| < oo forall x € Ly.

2. Chemical distance in FRI. Given Theorem 3.0.1, it is natural to ask about the chemical
distance in the unique infinite cluster. In the case of random interlacements it was proved
in [31, 32, 33] that the chemical distance in RI is proportional to the Z? distance with high

probability.

Conjecture 2. The chemical distance in the unique infinite cluster of FRI is proportional to
the 7 distance with high probability. Moreover, We can denote by dzrur(-,-) and dzu(-,-)
the chemical distances in FRI and RI respectively. Given Theorem 3.1.8, one may show that
for every u > 0,

lim lim M_ lim dZQd“([OL[x])

T—00 ||z]|1 — oo AR " lalii—o0 (EalR 7

where [1] denotes the closest vertex in the appropriate infinite component of FL"" or T*™

tox € 7°
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