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ABSTRACT

In this article we consider two probability models: stationary diffusion limited aggregation

(SDLA) and finitary random interlacements (FRI). SDLA is a stochastic process on the upper

half planar lattice, growing from an infinite line, with local growth rate proportional to stationary

harmonic measure. We first prove that stationary harmonic measure of an infinite set in the upper

planar lattice can be represented as the proper scaling limit of the classical harmonic measure of

truncations of the infinite set. Then we construct an infinite SDLA that is ergodic with respect to

left-right integer translation. For FRI, we prove a phase transition in the connectivity of FRI FIu,T

on Zd with respect to the average stopping time T .
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NOMENCLATURE

DLA Diffusion limited aggregation

FRI Finitary random interlacements

RI Random interlacements
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H Stationary harmonic measure
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1. INTRODUCTION

Random walk is one of the most basic and well-studied subjects in probability theory, and

research about random walks is still active today. In this article, we will focus on simple random

walks on the square lattice Zd. Let x ∈ Zd be a vertex. We write e1 = (1, 0, · · · , 0), · · · , ed =

(0, · · · , 0, 1) for the standard basis of Zd. We can consider a simple random walk on Zd starting at

x as a sum of i.i.d. random variables, i.e.

Sn = x+
n∑
i=1

Xi,

where P (Xi = ej) = P (Xi = −ej) = 1/(2d), for all 1 ≤ j ≤ d. For a more detailed description

of simple random walks on Zd, readers are referred to [4, 5, 6].

The model of percolation was introduced by Broadbent and Hammersley [7] in 1957. Imagine

water is flowing through a porous stone. We are interested in the question of macroscopic per-

colation of the water in the stone. In (bond) Bernoulli percolation on Zd, each edge is open with

probability p ∈ [0, 1] and is closed with probability 1 − p, independent of all other edges. A site

Bernoulli percolation is the same as the bond one except that each vertex is taken to be open or

closed. Bernoulli percolation is particularly interesting because it is one of the most simple models

that exhibit phase transitions:

Theorem 1.0.1 ([8, 9]). For d ≥ 2, there exists pc(Zd) ∈ (0, 1) such that:

1. (supercritical phase) for p > pc(Zd), there is a unique infinite component almost surely;

2. (subcritical phase) for p < pc(Zd), there is no infinite component almost surely.

One of most significant results in percolation theory is Kesten’s theorem [10] that shows

pc(Z2) = 1/2.

In recent years, probabilists are interested in “dependent” percolation models where states

of edges/vertices are not independent. These “dependent” percolation models provide tools to
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study many phenomena. For example, Ising model introduced by Lenz [11] is a model to study

ferromagnetism. We refer to [12] for more detailed description of Ising model. In particular, Peierls

[13] developed a technique, which is now commonly known as "Peierls argument", to show the

existence of a phase transition in the Ising model. We will use this technique in Chapter 3.

Another example of “dependent” percolation model is the random interlacement (RI) intro-

duced in 2007 by Sznitman [14]. RI is defined as a Poisson point process on the space of doubly

infinite random walk trajectories in the lattice Zd, with d ≥ 3. A simple way to describe RI is

the following: Fix u > 0 and a finite subset A ⊂ Zd. We sample a vertex x uniformly at random

from all vertices of the discrete torus (Z/NZ)d and run a simple random walk from x up to time

buNdc. This induces a measure on sites in A visited by the random walk. As N goes to infinity,

this measure converges weakly to the measure on sites of the RI in A.

Finitary random interlacements (FRI) was recently introduced by Bowen [15] to solve a special

case of the Gaboriau-Lyons problem. Informally speaking, FRI FIu,T can be described as a Pois-

son cloud of geometrically killed random walks on Zd, d ≥ 3, where u > 0 is the multiplicative

parameter controlling the number of geometrically killed random walks and T > 0 is the expected

length of each geometrically killed random walk. Bowen [15] showed that, for all u > 0, the

measure of FRI FIu,T converges to the one of RI Iu in the weak* topology as T goes to infinity.

In Chapter 3, we show a percolation phase transition in the connectivity of FRI FIu,T with

respect to the average stopping time T . For all u > 0, with probability one FIu,T has no infinite

connected component for all sufficiently small T > 0, and a unique infinite connected component

for all sufficiently large T <∞. This is different from RI. For all u > 0, the RI Iu is almost surely

connected, so Iu has only one component and it is infinite.

Now we turn our focus to another probability model that at least might seem different from FRI.

Diffusion limited aggregation (DLA) was introduced in 1983 by Witten and Sander [16] as a simple

model to study aggregation systems governed by diffusive laws. DLA is defined recursively as a

process on subsets {An} of Z2. Let A0 = {(0, 0)}, and An+1 = An ∪ an+1, where an+1 is a point

sampled from the harmonic measure of ∂outAn, the external vertex boundary of An. Intuitively,
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an+1 is the point that a random walk starting from infinity first visits ∂outAn.

Although DLA is easy to define, little is known rigorously. One of the notable exception is

Kesten’s 1987 paper [17] which showed an upper bound on the growth rate of the DLA cluster.

No non-trivial lower bound has been proved. The question whether the DLA cluster converges to

a ball after suitable scaling is still open.

Inspired by Itai Benjamini, Eviatar Procaccia started studying stationary versions of different

aggregation processes. In [18] Procaccia and Zhang defined a stationary version of the harmonic

measure on subsets of H, the upper half of the lattice Z2. In [18] they also showed an upper bound

on the stationary harmonic measure and a dominating interacting particle system for the stationary

DLA (SDLA) in the subsequent papers. In [19] Procaccia and Zhang showed that any subset in

H with an appropriate sub-linear horizontal growth has non-zero stationary harmonic measure.

On the other hand, any subset with super-linear horizontal growth has zero stationary harmonic

measure everywhere.

In Chapter 2, we show that:

1. stationary harmonic measure can be written as a normalized harmonic measure from one

point;

2. stationary harmonic measure of an infinite set can be represented as the proper scaling limit

of the classical harmonic measure of truncations of the infinite set;

3. SDLA is well-defined up to a fixed time t > 0.

One can see that the geometry of FRI and SDLA are strongly related to properties of simple

random walks on Zd.

Throughout this article, we will write P for probability and E for expectation. In addition, let

Px(·) = P(·|S0 = x) be the probability law of a simple random walk on Zd starting at x, and let Ex

be the corresponding expectation. We denote positive constants by c, C, c1, c
′, · · · , and their values

can be different from place to place. In Chapter 3, all positive constants will depend on dimension

d by default.

3



2. STATIONARY DIFFUSION LIMITED AGGREGATION

The content of this chapter appears in [1, 2].

2.1 Notations and Definitions

Let H = {(x, y) ∈ Z2 : y ≥ 0} be the upper half plane including the x-axis, and (Sn)n≥0 be a

2-dimensional simple random walk. For any x ∈ H, we write

x = (x(1), x(2)),

where x(i) denoting the i-th coordinate of x. For each n ≥ 0, define the subsets Ln ⊂ H as follows:

Ln = {(x, n) : x ∈ Z},

i.e. Ln is the horizontal line of height n. For each subset A ⊂ H, we define the stopping times

τA = min{n ≥ 1 : Sn ∈ A},

and

τA = min{n ≥ 0 : Sn ∈ A}.

For any R > 0, let B(0, R) = {x ∈ Z2 : ||x||2 < R} be the discrete ball of radius R, and

abbreviate

τR = τB(0,R), τ̄R = τ̄B(0,R).

Let || · ||1 be the l1 norm. We define

∂outA := {y ∈ H \ A : ∃x ∈ A, ||x− y||1 = 1}

4



as the outer vertex boundary of A, and define

∂inA := {y ∈ A : ∃x ∈ H \ A, ||x− y||1 = 1}

as the inner vertex boundary of A. Let Px(·) = P(·|S0 = x). The stationary harmonic measureHA

on H is introduced in [18]. Let A ⊂ H be a connected set. For any edge e = (x, y) with x ∈ A

and y ∈ H \ A, define

HA,N(e) =
∑

z∈LN\A

Pz
(
Sτ̄A∪L0

= x, Sτ̄A∪L0
−1 = y

)
.

Note thatHA,N(e) > 0 if and only if x ∈ ∂inA and ||x− y||1 = 1. For all x ∈ A, define

HA,N(x) =
∑

e starting from x

HA,N(e),

and for all y ∈ H \ A, define

ĤA,N(y) =
∑

e starting in A ending at y

HA,N(e).

Proposition 2.1.1 (Proposition 1 in [18]). For any A and e above, there is a finiteHA(e) such that

lim
N→∞

HA,N(e) = HA(e).

HA(e) is called the stationary harmonic measure of e with respect to A. The limits

HA(x) := lim
N→∞

HA,N(x)

and

ĤA(y) := lim
N→∞

ĤA,N(y)

5



also exist, andHA is called the stationary harmonic measure of x and y with respect to A.

Definition 2.1.2. We say that a set L0 ⊂ A ⊂ H has a polynomial sub-linear growth if there exists

a constant α ∈ (0, 1) such that

|{x = (x(1), x(2)) ∈ A : x(2) > |x(1)|α}| <∞.

For any connected A ⊂ H such that A ∩ L0 6= ∅, and any x ∈ A, HA(x) was proved to have

the following upper bounds that depends only on the height of x:

Theorem 2.1.3 (Theorem 1, [18]). There is some constant C < ∞ such that for each connected

A ⊂ H with L0 ⊂ A and each x = (x1, x2) ∈ A \ L0, and any N sufficiently larger than x2

HA,N(x) ≤ Cx
1/2
2 . (2.1.1)

Remark 2.1.4. It is easy to note that for any A ⊂ H such that A ∩ L0 6= ∅ and any x = (x1, x2) ∈

A \ L0,HA(x) = HA∪L0(x). Thus one may without loss of generality assume that L0 ⊂ A.

Remark 2.1.5. Since the constant C above does not depend on subset A or point x, without loss of

generality, one may (incorrectly) assume C = 1.

2.2 Stationary Harmonic Measure is Equivalent to Normalized Harmonic Measure

Lemma 2.2.1. For all x ∈ L0,HL0(x) = 1.

Proof. Like Proposition 1 in [18], the proof follows a coupling argument by translating one path

starting from a fixed point of LN horizontally. For each N , let S(0,N)
n be a simple random walk in

the probability space P(0,N)(·) starting at (0, N), and S(k,N)
n = S

(0,N)
n + (k, 0) for all k ∈ Z. Note

that S(k,N)
n is a simple random walk starting at (k,N). Let

τL0 = inf{n ≥ 0 : S(0,N)
n ∈ L0}

6



be a stopping time. Then we have

τL0 = inf{n ≥ 0 : S(k,N)
n ∈ L0}

for any k ∈ Z, and

S
(k,N)
τL0

= S
(0,N)
τL0

+ (k, 0).

Hence,

HL0,N(x) =
∑
k∈Z

P(S
(k,N)
τL0

= x) = 1.

By definition of the stationary harmonic measure,

HL0(x) = lim
N→∞

HL0,N(x) = 1.

We now define a new measure H̃A(·) which can be shown equivalent to the stationary harmonic

measureHA(·). For each n > 0, we first define

H̃A,n(x) = πnP(0,n)(SτA∪L0
= x).

Lemma 2.2.2. For all x = (x(1), 0) ∈ L0,

lim
n→∞

H̃L0,n(x) = 1.

Proof. By Theorem 8.1.2 in Lawler and Limic [4],

P(0,n)(SτL0
= x) =

n

π(n2 + (x(1))2)

(
1 +O

(
n

n2 + (x(1))2

))
+O

(
1

(n2 + (x(1))2)3/2

)
.

So,

lim
n→∞

H̃L0,n(x) = 1.

7



Similar to the construction of the stationary harmonic measure HA(·), we want to define a

measure H̃A on H as following:

H̃A(x) := lim
N→∞

H̃A,N(x),

and denote it by the in-harmonic measure. We want to show that H̃A = HA. We already proved

that H̃L0 = HL0 in Lemma 2.2.1 and Lemma 2.2.2.

Proposition 2.2.3. Let A ⊂ H be a connected finite subset. For any x ∈ H,

H̃A(x) := lim
N→∞

H̃A,N(x)

exists, and H̃A(x) = HA(x).

Proof. Without loss of generality, we assume x ∈ ∂outA. Let

k = max{x(2) : x = (x(1), x(2)) ∈ A},

and n > m > k so that Lm ∩ A = ∅. By the strong Markov property and translation invariance of

simple random walk,

H̃A,n(x)

= πnP(0,n)(SτA∪L0
= x)

= πn
∑
y∈Lm

P(0,n)(SτLm = y)Py(SτA∪L0
= x)

=
n

n−m
∑
y∈Lm

Py(SτA∪L0
= x)

[
π(n−m)P(0,n)(SτLm = y)

]
=

n

n−m
∑
y∈Lm

Py(SτA∪L0
= x)H̃L0,n−m(y0),

(2.2.1)
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where y0 = (y(1), 0). Then by Dominated Convergence Theorem and Lemma 2.2.2,

lim
n→∞

H̃A,n(x)

= lim
n→∞

∑
y∈Lm

Py(SτA∪L0
= x)

n

n−m
H̃L0,n−m(y0)

=
∑
y∈Lm

Py(SτA∪L0
= x)

[
lim
n→∞

n

n−m
H̃L0,n−m(y0)

]
=
∑
y∈Lm

Py(SτA∪L0
= x)

= HA,m(x).

(2.2.2)

We can apply Dominated Convergence Theorem in equation (2.2.2) because H̃L0,n−m(y0) is uni-

formly bounded from above for all n and y0 ∈ Z by Theorem 8.1.2 of [4] and the fact that

H̃L0,n−m(0) ≥ H̃L0,n−m(y0) for all y0 ∈ Z. We claim that HA,m(x) = HA(x). Let m1 > m.

By the strong Markov property and Lemma 2.2.1,

HA,m1(x)

=
∑
y∈Lm1

Py(SτA∪L0
= x)

=
∑
y∈Lm1

∑
z∈Lm

Py(SτLm = z)Pz(SτA∪L0
= x)

=
∑
z∈Lm

Pz(SτA∪L0
= x)

[ ∑
y∈Lm1

Py(SτLm = z)

]
=
∑
z∈Lm

Pz(SτA∪L0
= x)HL0,m1−m(z′)

=
∑
z∈Lm

Pz(SτA∪L0
= x)

= HA,m(x),

(2.2.3)

where z′ = z − (0,m). Hence,

H̃A(x) = HA,m(x) = lim
N→∞

HA,N(x) = HA(x).
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Our next goal is to show that the measures H̃A and HA are equivalent for sets that satisfy

polynomial sub-linear growth condition. We first prove the following combinatorial result: For

any positive integer n, consider the following rectangle in Z2:

In = [−n, n]× [0, n] (2.2.4)

with height n and width 2n. It is easy to see that In ⊂ B(0, 2n). Moreover, we let ∂inIn be the

inner vertex boundary of An, and let

∂inl In = {−n} × [1, n], ∂inr In = {n} × [1, n], ∂inu In = [−n, n]× {n}, ∂inb In = [−n, n]× {0}

be the four edges of ∂inIn.

Let {Sn, n ≥ 0} be a simple random walk starting from 0 and denote by P0 the probability

distribution of Sn. Define the stopping time

Tn = inf{k > 0, Sk ∈ ∂inIn}.

Using simple combinatorial arguments, we prove the following lemma:

Lemma 2.2.4. For any integer n > 1

P0

(
STn ∈ ∂inu In

)
≥ P0

(
STn ∈ ∂inl In ∪ ∂inr In

)
.

Proof. Let ∂inu,+In = [1, n]× {n} and ∂inu,−In = [−n,−1]× {n} be the left and right half of ∂inu In.

By symmetry it suffices to prove that

P0

(
STn ∈ ∂inu,+In

)
≥ P0

(
STn ∈ ∂inr In

)
. (2.2.5)

10



By definition, we have

P0

(
STn ∈ ∂inu,+In

)
=
∞∑
k=1

P0

(
Sk ∈ ∂inu,+In, Tn = k

)
and

P0

(
STn ∈ ∂inr In

)
=
∞∑
k=1

P0

(
Sk ∈ ∂inr In, Tn = k

)
.

Moreover, for each k,

P0

(
Sk ∈ ∂inu,+In, Tn = k

)
=
|U+
n,k|
4k

, P0

(
Sk ∈ ∂inr In, Tn = k

)
=
|Rn,k|

4k

where

U+
n,k = {(a0, a1, · · · , ak), such that a0 = 0, ‖ai+1 − ai‖ = 1, ∀i = 0, 1, · · · , k − 1,

aj ∈ An \ ∂inAn,∀j = 1, 2, · · · , k − 1, ak ∈ ∂inu,+In
}

and

Rn,k = {(a0, a1, · · · , ak), such that a0 = 0, ‖ai+1 − ai‖ = 1, ∀i = 0, 1, · · · , k − 1,

aj ∈ An \ ∂inAn,∀j = 1, 2, · · · , k − 1, ak ∈ ∂inr In
}

give the subsets of the random walk trajectories in events {STn ∈ ∂inu,+In} and {STn ∈ ∂inr In}.

Thus in order to show (2.2.5), we construct a one-to-one mapping ϕ between the trajectories in

Rn,k and U+
n,k. For any trajectory ~a = (a0, a1, · · · , ak) ∈ Rn,k, define

m(~a) = sup
{
i ≥ 0, a

(1)
i = a

(2)
i

}

to be the last point in the trajectory lying on the diagonal. Here a(1)
i and a(2)

i are the two coordinates

of ai. In this paper, we use the convention that sup{∅} = −∞. Then it is easy to see that

0 ∈
{
i ≥ 0, a

(1)
i = a

(2)
i

}
and thusm(~a) ≥ 0 and thatm(~a) < k. The reason of the latter inequality
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is that suppose m(~a) = k, then we must have ak = (n, n) which implies that ak−1 = (n− 1, n) or

(n, n− 1), which contradicts with the definition of ~a.

Now we can define

ϕ(~a) = ~a′ = (a′0, a
′
1, · · · , a′k)

such that

• a′i = ai for all i ≤ m(~a).

• a′i =
(
a

(2)
i , a

(1)
i

)
for all i > m(~a).

Figure 2.1: Mapping between trajectories inRn,k and U+
n,k

I.e., we reflect the trajectory after the last time it visits the diagonal line x = y. See Figure 2.1

for illustration of the map ϕ. By definition

(
am(~a)+1, am(~a)+2, · · · , ak−1

)
stays within {(x, y) ∈ Z2, 0 < y < x < n}, while ak ∈ Rn. Thus, under reflection we have

(
a′m(~a)+1, a

′
m(~a)+2, · · · , a′k−1

)
12



stays within {(x, y) ∈ Z2, 0 < x < y < n}, while a′k ∈ U+
n,k, which implies that ~a′ ∈ U+

n,k.

On the other hand, suppose we have two trajectories ~a and ~b both in Rn,k, such that ϕ(~a) =

ϕ(~b). Then one must have m(~a) = m(~b) = m and that ai = bi for all i ≤ m. Moreover, for all

i > m, we have (
a

(2)
i , a

(1)
i

)
= a′i = b′i =

(
b

(2)
i , b

(1)
i

)
which also implies that ai = bi. Thus we have shown that ϕ(~a) = ϕ(~b) if and only if ~a = ~b and ϕ

is a one-to-one mapping, which conclude the proof of this lemma.

We define

Fm = Fm,α = {−bm1/αc, bm1/αc} × Z≥0

as two vertical lines on H.

Lemma 2.2.5. Fix x ∈ H, then for all sufficiently large m,

Px(τFm,α < τL0) ≤ cm−1/α.

Proof. Let m > 4|x1|, and x′ = (x(1), 0). There exists a constant C > 0 independent of m such

that

CPx(τFm,α < τL0) ≤ Px′(τFm,α < τL0).

By translation invariance of simple random walk, we have

Px′(τFm,α < τL0) ≤ P0(τIbm1/α/2c
< τL0).

By Lemma 2.2.4,

P0(τIbm1/α/2c
< τL0) ≤ 2P0(τLbm1/α/2c

< τL0) ≤ cm−1/α.
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The next lemma claims thatHA is concentrated on the part arising from random walks starting

from y ∈ Lm such that |y(1)| ≤ bm1/αc.

Lemma 2.2.6. Let A ⊂ H be an infinite set that has polynomial sub-linear growth with parameter

α ∈ (0, 1). Let 1 > α1 = (α + 1)/2 > α, then for any x ∈ H,

lim
m→∞

∣∣∣∣∣ ∑
y∈Lm,|y(1)|≤bm1/α1c

Py(SτA∪L0 = x)−HA,m(x)

∣∣∣∣∣ = 0.

Proof. Note that {y ∈ Ln, |y(1)| ≤ bn1/α1c} ∩ A = ∅. Following the argument in [20, Lemma 2]

on time reversibility and symmetry of simple random walk, we have

Py(τx = k, S1, · · · , Sk−1 /∈ {x} ∪ L0)

= Px(τy = k, S1, · · · , Sk−1 /∈ {x} ∪ L0)

= Px(Sk = y, τ{x}∪L0 > k).

(2.2.6)

Then taking the summation over all k, we have

Py(τx ≤ τL0)

=
∞∑
k=1

Py(τx = k, S1, · · · , Sk−1 /∈ {x} ∪ L0)

=
∞∑
k=1

Px(Sk = y, τ{x}∪L0 > k)

≤ Ex

[
number of visits to y in the time interval [0, τ{x}∪L0)

]

≤ Ex

[
number of visits to y in the time interval [0, τL0)

]
(2.2.7)
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Then,

lim
m→∞

∑
y∈Lm\A,|y(1)|≥dm1/α1e

Py(SτA = x)

≤ lim
m→∞

∑
y∈Lm\A,|y(1)|≥dm1/α1e

Py(τx ≤ τL0)

≤ lim
m→∞

∑
y∈Lm\A,|y(1)|≥dm1/α1e

Ex

[
number of visits to y in the time interval [0, τL0)

]

≤ lim
m→∞

Ex

[
number of visits to Gm,α1 in the time interval [0, τL0)

]
,

(2.2.8)

where Gm,α1 = {y ∈ Lm : |y(1)| ≥ dm1/α1e}. By Lemma 2.2.5, we have

lim
m→∞

∣∣∣∣∣ ∑
y∈Lm\A,|y(1)|≥dm1/α1e

Py(SτA = x)

∣∣∣∣∣
≤ lim

m→∞
Ex

[
number of visits to Gm,α1 in the time interval [0, τL0)

]

≤ lim
m→∞

4mPx(τGm,α1
< τL0)

≤ lim
m→∞

4mPx(τFm,α1
< τL0)

= 0.

(2.2.9)

The proof is complete.

Lemma 2.2.7. Let A ⊂ H be an infinite set that has polynomial sub-linear growth with parameter

α ∈ (0, 1). Let 1 > α1 = (α + 1)/2 > α, then for all x ∈ H and for all ε > 0 and for m and

n = n(m) large enough, we have

∣∣∣∣∣ ∑
y∈Lm,|y(1)|≤bm1/α1c

Py(SτA∪L0 = x)− H̃A,n(x)

∣∣∣∣∣ < ε.

Proof. Fix x ∈ H and ε > 0. Let l = max{y(2) : y ∈ A, y(2) > |y(1)|α}. Assume that n and m are

large with n > m > max{l, x(2)}. Let α1 = (α + 1)/2 as defined in Lemma 2.2.6. By the strong
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Markov property, we have

H̃A,n(x)

= πnP(0,n)(SτA = x)

=
∑

y∈Lm\A

πnP(0,n)(SτA∪Lm = y)Py(SτA = x)

≤
∑

y∈Lm,|y(1)|≤bm1/α1c

πnP(0,n)(SτA∪Lm = y)Py(SτA = x) + c
∑

y∈Lm\A,|y(1)|≥dm1/α1e

Py(SτA = x),

(2.2.10)

where c > 0 is a constant. The last inequality of equation (2.2.10) is using Theorem 8.1.2 in [4]

and the fact that

P(0,n)(SτA∪Lm = y) ≤ P(0,n)(SτLm = y).

By Lemma 2.2.6, we know

lim
m→∞

∑
y∈Lm\A,|y(1)|≥dm1/α1e

Py(SτA = x) = 0.

So there exists a M1 > max{l, x(2)} such that for all m > M1 and all sufficiently large n > m,

∣∣∣∣∣H̃A,n(x)−
∑

y∈Lm,|y(1)|≤bm1/α1c

πnP(0,n)(SτA∪Lm = y)Py(SτA = x)

∣∣∣∣∣ < ε

2
.

Denote the set

Ãm = {x ∈ H : x(1) > bm1/αc,m ≤ x(2) ≤ |x(1)|α}.

Note that Ãm contains the part of A that is above the horizontal line Lm. For y ∈ Lm such that

|y(1)| ≤ m1/α1 ,we have

P(0,n)(SτA∪Lm = y) ≤ P(0,n)(SτLm = y) (2.2.11)
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while

P(0,n)(SτA∪Lm = y) ≥ P(0,n)(Sτ
Ãm∪Lm

= y)

= P(0,n)(SτLm = y)−
∑
z∈Ãm

P(0,n)(Sτ
Ãm∪Lm

= z)Pz(SτLm = y).
(2.2.12)

Note that for z ∈ Ãm, P(0,n)(Sτ
Ãm∪Lm

= z) = 0 unless z is in the upper inner boundary of Ãm, i.e.

z = (k, bkαc) ∈ ∂inÃm for some k > bm1/αc. Suppose z = (k, bkαc) ∈ ∂inÃm with k > bm1/αc.

Let y ∈ Lm such that |y(1)| ≤ m1/α1 . By Theorem 8.1.2 in Lawler and Limic [4], we have

Pz(SτLm = y)

≤ c(bkαc −m)

(bkαc −m)2 + (k − bm1/α1c)2

≤ c(kα −m)

(bkαc −m)2 + (k −m1/α1)2
.

(2.2.13)

So,

∑
z∈Ãm

P(0,n)(Sτ
Ãm∪Lm

= z)Pz(SτLm = y)

≤
∑
z∈Ãm

Pz(SτLm = y)

≤ c
∞∑

k=dm1/αe

kα −m
(bkαc −m)2 + (k −m1/α1)2

≤ c

∞∑
s=1

(s+m1/α + 1)α −m
(b(s+ bm1/αc)αc −m)2 + (s+m1/α −m1/α1)2

.

(2.2.14)

It’s easy to see that the sum above converges and goes to 0 if m goes to infinity. Moreover, let’s

consider the sum

S := cm3/(2α)−1/2

∞∑
s=1

(s+m1/α + 1)α −m
(b(s+ bm1/αc)αc −m)2 + (s+m1/α −m1/α1)2

.
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Note that

cm3/(2α)−1/2

∞∑
s=1

(s+m1/α + 1)α −m
(b(s+ bm1/αc)αc −m)2 + (s+m1/α −m1/α1)2

≤ cm3/(2α)−1/2

∞∑
s=1

(s+m1/α + 1)α −m
(s+m1/α −m1/α1)2

.

(2.2.15)

For all 0 < α < 1, there is a M > 0 large enough such that for all s > 0 and m′ > M ,

∂

∂m

(
cm3/(2α)−1/2

∞∑
s=1

(s+m1/α + 1)α −m
(s+m1/α −m1/α1)2

)∣∣∣∣∣
m=m′

< 0.

So the sum S goes to 0 if m goes to infinity. Hence, we can take n = bm3/(2α)−1/2c. Note that

3/(2α)− 1/2 > 1/α. Then for any y ∈ Lm with |y(1)| ≤ bm1/α1c, we have

lim
m→∞

n
∑
z∈Ãm

P(0,n)(Sτ
Ãm∪Lm

= z)Pz(SτLm = y) = 0,

and

lim
m→∞

πnP(0,n)(SτA∪Lm = y) = 1.

Now fix N > max{l, x2}. From the proof of Theorem 1 in [18], we know that the sequence

HA,j(x) is decreasing for j ≥ N . There exists a M2 > N such that for all m > M2,

∣∣∣πnP(0,n)(SτA∪Lm = y)− 1
∣∣∣ < ε

2HA,N(x)
.

Therefore,

∣∣∣∣∣ ∑
y∈Lm,|y(1)|≤bm1/α1c

(
πnP(0,n)(SτA∪Lm = y)− 1

)
Py(SτA = x)

∣∣∣∣∣ < ε

2
.

Now take m > max{M1,M2}, and the proof is complete.

The following theorem is a direct consequence of Lemma 2.2.6 and Lemma 2.2.7.
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Theorem 2.2.8. Let A ⊂ H be an infinite set that has polynomial sub-linear growth. For any

x ∈ H,

H̃A(x) := lim
N→∞

H̃A,N(x)

exists, and H̃A(x) = HA(x).

Proof. Let ε > 0. By Lemma 2.2.6 and Lemma 2.2.7, there is an M > 0 such that for all m > M ,

|HA,m(x)− H̃A,m(x)| < ε.

We know

lim
m→∞

HA,m(x) = HA(x).

Hence,

H̃A(x) := lim
m→∞

H̃A,m(x)

exists and H̃A(x) = HA(x).

2.3 Stationary Harmonic Measure is the Scaling Limit of Truncated Harmonic Measure

In this section, we show the asymptotic equivalence between the stationary harmonic measure

of any given point with respect to subset A satisfying Definition 2.1.2 and the rescaled regular

harmonic measure of the same point with respect to the truncations of A.

Theorem 2.3.1. For any subset A satisfying Definition 2.1.2 and any positive integer n, let

An = A ∩
{

[−n, n]× Z
}

(2.3.1)

be the truncation of A with width 2n. There is a constant C ∈ (0,∞), independent of the set A,

such that any point x ∈ A \ L0,

C lim
n→∞

nHAn(x) = HA(x). (2.3.2)
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Moreover, C = 2/ limn→∞ nHDn(0), where Dn = {[−n, n] ∩ Z} × {0}.

Remark 2.3.2. For points in L0, we can replace the regular harmonic measure HAn(x) in (2.3.2) by

its edge version. I.e., we have for all x ∈ L0,

C lim
n→∞

lim
‖y‖→∞

nPy
(
SτAn = x, S

(2)
τAn−1 > 0

)
= HA(x). (2.3.3)

Later one can see the proof of (2.3.3) follows exactly the same argument as the one for (2.3.2).

In order to prove Theorem 2.3.1, we first show its special case when A = L0. We denote the

truncation of L0 with width 2n by Dn = {[−n, n] ∩ Z} × {0}.

Theorem 2.3.3. There is a constant c ∈ (0,∞) such that

lim
n→∞

nHDn(0) = c. (2.3.4)

The structure of this section is as follows: In subsections 2.3.1 and 2.3.2 we outline the proof of

Theorem 2.3.3 and Theorem 2.3.1. Then in the following subsections, we give the detailed proof

of the required propositions and lemmas.

2.3.1 Proof of Theorem 2.3.3

Theorem 2.3.3 can be proved according to the following outline: first, we show that nHDn(0)

has finite and positive upper and lower limits:

Proposition 2.3.4. There is a constant C ∈ (0,∞) such that

lim sup
n→∞

nHDn(0) ≤ C. (2.3.5)

Proposition 2.3.5. There is a constant c ∈ (0,∞) such that

lim inf
n→∞

nHDn(0) ≥ c. (2.3.6)
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The two propositions above guarantee that the decaying rate of HDn(0) is of order 1/n. To

show lim sup = lim inf, we further show the following coupling result:

Proposition 2.3.6. For any ε > 0 there is a δ > 0 such that for all sufficiently large n and any

x ∈ [−δn, δn]× {0}, we have ∣∣∣HDn(0)− HDn(x)
∣∣∣ < ε

n
(2.3.7)

Let B̄(0, R) = {x ∈ R2 : ||x||2 < R} be the continuous ball of radius R in R2. For standard

Brownian motion B(t) and subset A ⊂ R2, define the stopping time

TA = inf{t ≥ 0, B(t) ∈ A}.

For subset A ⊂ R2, HA denotes the continuous harmonic measure with respect to A.

Lemma 2.3.7. Fix δ ∈ (0, 1), then

lim
n→∞

HDn ([−δn, δn]× {0}) = H[−1,1]×{0}([−δ, δ]× {0}).

Once one has shown Proposition 2.3.4-2.3.7, the proof of Theorem 2.3.3 is mostly straight-

forward. Now suppose the limit in (2.3.4) does not exist. Then by Proposition 2.3.4 we must

have

0 < lim inf
n→∞

nHDn(0) < lim sup
n→∞

nHDn(0) <∞. (2.3.8)

Let

ε0 =
lim supn→∞ nHDn(0)− lim infn→∞ nHDn(0)

5
> 0.

By Proposition 2.3.6, we have there are δ0 > 0 and N0 < ∞ such that for all n > N0 and any

x ∈ [−δ0n, δ0n]× {0}, ∣∣∣HDn(0)− HDn(x)
∣∣∣ < ε0

n
.
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Moreover, for any N > N0, there are n1, n2 > N such that

n1HDn1
(0) < lim inf

n→∞
nHDn(0) + ε0

and that

n2HDn2
(0) > lim sup

n→∞
nHDn(0)− ε0.

At the same time, we have for the δ0 > 0 defined above,

HDn1
([−δ0n1, δ0n1]× {0}) =

∑
x∈[−δ0n1,δ0n1]×{0}

HDn1
(x)

≤ bδ0n1c+ 1

n1

[
lim inf
n→∞

nHDn(0) + 2ε0

] (2.3.9)

and
HDn2

([−δ0n2, δ0n2]× {0}) =
∑

x∈[−δ0n2,δ0n2]×{0}

HDn2
(x)

≥ bδ0n2c+ 1

n2

[
lim sup
n→∞

nHDn(0)− 2ε0

]
.

(2.3.10)

But by Lemma 2.3.7,

lim
n→∞

HDn ([−δ0n, δ0n]× {0}) = H[−1,1]×{0}([−δ0, δ0]× {0}),

which contradicts with (2.3.9) and (2.3.10).

2.3.2 Proof of Theorem 2.3.1

Define α1 = (1 + α)/2 ∈ (0, 1) and Box(n) = [−n, n] × [0, bnα1c]. Recalling the definition

of regular harmonic measure, and the fact that An ⊂ Box(n) for all sufficiently large n, we have

for any x ∈ A \ L0,

HAn(x) =
∑

y∈∂inBox(n)

HBox(n)(y)Py
(
Sτ̄An = x

)
.
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Then define
∂inu Box(n) = [−n, n]× {bnα1c}

∂ind Box(n) = [−n, n]× {0}

∂inl Box(n) = {−n},× [1, bnα1c − 1]

∂inr Box(n) = {n},× [1, bnα1c − 1]

to be the four edges of ∂inBox(n). Noting that L0 ⊂ A, it is easy to see that for any y ∈

∂ind Box(n) = [−n, n]× {0}, Py
(
Sτ̄An = x

)
= 0. Moreover, define α2 = (7 + α)/8, and

ln = [−bnα2c, bnα2c]× {bnα1c}

to be the middle section of ∂inu Box(n) and denote lcn = ∂inl Box(n)∪∂inr Box(n)∪∂inu Box(n)\ ln.

We further have the decomposition as follows:

HAn(x) =
∑
y∈lcn

HBox(n)(y)Py
(
Sτ̄An = x

)
+
∑
y∈ln

HBox(n)(y)Py
(
Sτ̄An = x

)
. (2.3.11)

From (2.3.11), we first note that HBox(n)(y) sums up to 1, which implies that

∑
y∈lcn

HBox(n)(y)Py
(
Sτ̄An = x

)
≤ max

y∈lcn
Py
(
Sτ̄An = x

)
. (2.3.12)

Thus our first step is to prove

Proposition 2.3.8. For Box(n), ln and lcn defined as above, we have

lim
n→∞

n ·max
y∈lcn

Py (Sτ̄An = x) = 0. (2.3.13)

With Proposition 2.3.8, it sufficient for us to concentrate on the asymptotic of

∑
y∈ln

HBox(n)(y)Py
(
Sτ̄An = x

)
.
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We are to show that

Proposition 2.3.9. For any x ∈ A and the truncations An defined in (2.3.1)

lim
n→∞

∑
y∈ln

Py
(
Sτ̄An = x

)
= HA(x). (2.3.14)

and that

Proposition 2.3.10. For any ε > 0, there is a N0 <∞ such that for all n ≥ N0 and all y ∈ ln,

∣∣2HBox(n)(y)− HDn(0)
∣∣ < ε/n. (2.3.15)

Once we have proved the lemmas above, Theorem 2.3.1 follows immediately from the combi-

nation of Proposition 2.3.8- 2.3.10, together with Theorem 2.3.3.

2.3.3 Existence of upper and lower limit

2.3.3.1 Bounds between harmonic measure and escaping probability

In this subsection we prove Proposition 2.3.4 and 2.3.5. First, recalling the notation

HD(y, x) = Py(τD = τx),

with standard time reversibility argument, see Lemma 2 of [20], we have for any n and x ∈ Dn

HDn(x) = lim
R→∞

1

|∂outB(0, R)|
∑

y∈∂outB(0,R)

HDn(y, x)

= lim
R→∞

1

|∂outB(0, R)|
Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]
.

Note that there is a finite constant C independent to R such that

1

|∂outB(0, R)|
≤ C

R
.
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At the same time, define Cn = [−bn/2c, 0]×{0} ⊂ Dn and apply Lemma 3-4 of [20] with r = n,

Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]
≤ Px(τR < τDn)

minw∈∂outB(0,R) Pw (τDn < τR)

≤ CR log(R)Px(τR < τDn)

= CR log(R)

 ∑
z∈∂outB(0,2n)

Px (τ2n < τDn , Sτ2n = z)Pz(τR < τDn)


≤ CR log(R)

 ∑
z∈∂outB(0,2n)

Px (τ2n < τDn , Sτ2n = z)Pz(τR < τCn)


≤ CR log(R)Px (τ2n < τDn) max

z∈∂outB(0,2n)
Pz(τR < τCn)

≤ CRPx (τ2n < τDn) .

Thus, there is a finite constant C independent to n such that

HDn(x) ≤ CPx (τ2n < τDn) . (2.3.16)

On the other hand, by Lemma 3.2 of [18], there is a constant C <∞ independent to the choice of

n and R� n such that for all w ∈ ∂outB(0, R)

Pw(τDn < τR) ≤ C[R log(R)]−1. (2.3.17)

Thus
Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]
≥ Px(τR < τDn)

maxw∈∂outB(0,R) Pw (τDn < τR)

≥ cR log(R)Px(τR < τDn).
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At the same time, by Lemma 3.3 of [18], there are constants 2 < c0 < ∞ and c > 0 independent

to the choice of n and R� n such that for any z ∈ ∂outB(0, c0n)

Pz(τR < τDn) ≥ c

log(R)
. (2.3.18)

Thus we have

Px(τR < τDn) =
∑

z∈∂outB(0,c0n)

Px
(
τc0n < τDn , Sτc0n = z

)
Pz(τR < τDn)

≥ cRPx (τc0n < τDn) .

which implies that

HDn(x) ≥ cPx (τc0n < τDn) . (2.3.19)

2.3.3.2 Proof of Proposition 2.3.4

With Lemma 2.2.4 and recalling the fact that In ⊂ B(0, 2n), we have that

P0(τ2n < τDn) ≤ P0(τIn < τDn)

= P0

(
STn ∈ Ln ∪ ∂inr In ∪ ∂inu In

)
≤ 2P0

(
STn ∈ ∂inu In

)
.

(2.3.20)

Moreover, note that

P0

(
STn ∈ ∂inu In

)
≤ P0 (τLn < τL0) =

1

4n
. (2.3.21)

Thus by (2.3.16), (2.3.20) and (2.3.21), the proof of Proposition 2.3.4 is complete.

2.3.3.3 Proof of Proposition 2.3.5

With (2.3.19), in order to Proposition 2.3.5, it is sufficient to show that
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Lemma 2.3.11. For any k ≥ 2, there is a ck > 0 such that

P0 (τkn < τDn) ≥ ck
n
.

Proof. Note that for a simple random walk starting from 0, it is easy to see that

τkn ≤ τLkn , τL0 ≤ τDn .

Thus we have

P0 (τkn < τDn) ≥ P0 (τLkn < τL0) =
1

4kn

and the proof of this lemma is complete.

With Lemma 2.3.11, the proof of Proposition 2.3.5 is complete.

2.3.4 Proof of Proposition 2.3.6

For the proof of Proposition 2.3.6, we without loss of generality assume that the first coordinate

of x is an even number, see Remark 2.3.13 for details. With Proposition 2.3.4 and 2.3.5, by spatial

translation it is easy to see there are constants 0 < c < C <∞ such that for all x ∈ [−n/2, n/2]

c

n
< HDn(x) <

C

n
. (2.3.22)

Moreover, recall that

HDn(x) = lim
R→∞

1

|∂outB(0, R)|
∑

y∈∂outB(0,R)

HDn(y, x)

= lim
R→∞

1

|∂outB(0, R)|
Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]
.

Thus for any n and x, there has to be a R0 such that for all R ≥ R0,

∣∣∣∣HDn(x)− 1

|∂outB(0, R)|
Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]∣∣∣∣ < ε

4n
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and ∣∣∣∣HDn(0)− 1

|∂outB(0, R)|
E0

[
number of visits to ∂outB(0, R) in [0, τDn)

]∣∣∣∣ < ε

4n
.

At the same time

Ex
[
number of visits to ∂outB(0, R) in [0, τDn)

]
=

∑
z∈∂outB(0,2n)

Px (τ2n < τDn , Sτ2n = z)
∑

w∈∂outB(0,R)

Pz (τR < τDn , SτR = w)

Pw (τDn < τR)

and
E0

[
number of visits to ∂outB(0, R) in [0, τDn)

]
=

∑
z∈∂outB(0,2n)

P0 (τ2n < τDn , Sτ2n = z)
∑

w∈∂outB(0,R)

Pz (τR < τDn , SτR = w)

Pw (τDn < τR)
.

Thus we have

|HDn(x)− HDn(0)|

≤ 1

|∂outB(0, R)|
∑

z∈∂outB(0,2n)

|P0 (τ2n < τDn , Sτ2n = z)− Px (τ2n < τDn , Sτ2n = z)|

·

 ∑
w∈∂outB(0,R)

Pz (τR < τDn , SτR = w)

Pw (τDn < τR)

+
ε

2n
.

(2.3.23)

Again by Lemma 3-4 of [20] with r = n, we have there is a constant C < ∞ such that for all n,

R� n and z ∈ ∂outB(0, 2n)

1

|∂outB(0, R)|

 ∑
w∈∂outB(0,R)

Pz (τR < τDn , SτR = w)

Pw (τDn < τR)


≤ Pz (τR < τDn)

|∂outB(0, R)|minw∈∂outB(0,R) Pw (τDn < τR)
≤ C.

(2.3.24)

Thus by (2.3.23) and (2.3.24), in order to prove Proposition 3.3.1, it suffices to show the following

lemma:

Lemma 2.3.12. For any ε > 0 there is a δ > 0 such that for all sufficiently large n and any
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x ∈ [−δn, δn]× {0}, we have

∑
z∈∂outB(0,2n)

|P0 (τ2n < τDn , Sτ2n = z)− Px (τ2n < τDn , Sτ2n = z)| < ε

n
. (2.3.25)

Proof. For any ε > 0, define δ = e−ε
−1

> 0. In order to prove this lemma, we construct the

following coupling between the simple random walk starting from 0 and x ∈ [−δn, δn]× {0}:

(i) Define subset Aεn = [−bn/2c, bn/2c]× [0, bεnc].

(ii) Let {S̄k}∞k=0 be a simple random walk starting from 0, T̄ εn = inf{k : S̄k ∈ ∂inAεn}, and

xεn = S̄T̄ εn .

(iii) For k ≤ T̄ εn, let S1,k = S̄k and S2,k = S̄k + x.

(iv) Let
{
Ŝ1,k

}∞
k=0

and
{
Ŝ2,k

}∞
k=0

be two simple random walks starting from xεn and xεn + x and

coupled under the maximal coupling.

(v) For k > T̄ εn, let S1,k = Ŝ1,k−T εn and S2,k = Ŝ2,k−T εn .

Remark 2.3.13. In Step (iv) we use the assumption that the first coordinate of x is an even number.

Otherwise, one can construct Ŝ1,k starting from xεn and Ŝ2,k starting uniformly from B(xεn + x, 1)

under maximal coupling.

By the strong Markov property, it is easy to see that S1,k and S2,k form two simple random walks

starting from 0 and x. Let τ (1)
· and τ (2)

· be the stopping time with respect to S1,k and S2,k respec-

tively. Thus

∑
z∈∂outB(0,2n)

|P0 (τ2n < τDn , Sτ2n = z)− Px (τ2n < τDn , Sτ2n = z)|

=
∑

z∈∂outB(0,2n)

∣∣∣P0

(
τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− Px

(
τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣ .
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Again we introduce

U ε
n = [−bn/2c, bn/2c]× bεnc, Bε

n = [−bn/2c, bn/2c]× 0

and

Lεn = −bn/2c × [1, bεnc − 1] Rε
n = bn/2c × [1, bεnc − 1]

as the four edges of ∂inAεn. Note that for all ε < 1/3

{
τ

(1)
2n < τ

(1)
Dn

}
∩
{
S̄T̄ εn ∈ B

ε
n

}
= ∅,

{
τ

(2)
2n < τ

(2)
Dn

}
∩
{
S̄T̄ εn ∈ B

ε
n

}
= ∅.

Thus for any z ∈ ∂outB(0, 2n), we have

P0

(
τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)

=P0

(
S̄T̄ εn ∈ U

ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)

+P0

(
S̄T̄ εn ∈ L

ε
n ∪Rε

n, τ
(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)

and
Px
(
τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)

=Px
(
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)

+Px
(
S̄T̄ εn ∈ L

ε
n ∪Rε

n, τ
(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)
.
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Thus we have

∑
z∈∂outB(0,2n)

∣∣∣P0

(
τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− Px

(
τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣

≤
∑

z∈∂outB(0,2n)

∣∣∣P(S̄T̄ εn ∈ U ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− P

(
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣

+
∑

z∈∂outB(0,2n)

P
(
S̄T̄ εn ∈ L

ε
n ∪Rε

n, τ
(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)

+
∑

z∈∂outB(0,2n)

P
(
S̄T̄ εn ∈ L

ε
n ∪Rε

n, τ
(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)

≤
∑

z∈∂outB(0,2n)

∣∣∣P(S̄T̄ εn ∈ U ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− P

(
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣

+2P
(
S̄T̄ εn ∈ L

ε
n ∪Rε

n

)
.

(2.3.26)

In order to control the right hand side of (2.3.26), we first concentrate on controlling its second

term. Note that by invariance principle it is easy to check that there is a constant c > 0 such that

for any integer m > 1 and any integer j with |j| ≤ m, we have

P(0,j)

(
τ∂inl Im∪∂inr Im < τ∂inu Im∪∂inb Im

)
< 1− c. (2.3.27)

Moreover, by Lemma 2.2.4,

P(0,0)(τ∂inl Im∪∂inr Im < τ∂inu Im∪∂inb Im) ≤ P(0,0)(τLm < τL0) =
1

4εm
. (2.3.28)

In the rest of the proof we call the event in (2.3.27) a side escaping event. The detailed proof of

(2.3.27) follows exactly the same argument as the proof of Equation (11) in [19], which can also

be illustrated in Figure 2.2.

Moreover, define m(ε, n) = bεnc. Note that in the event {S̄T̄ εn ∈ Lεn ∪ Rε
n}, our simple

random walk has to first escape Am(ε,n) through Lm(ε,n) ∪ Rm(ε,n) and then has at least K(ε, n) =⌊
bn/2c/m(ε, n)

⌋
independent times of side escaping events. Thus by Lemma 2.2.4, (2.3.27),
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(0,j)

(m,0)(-m,0)

(m,m)(-m,m)

(m,j-m)(-m,j-m)

(m,j+m)(-m,j+m)

Figure 2.2: Invariance principle for (2.3.27)

(2.3.28), and the fact that for all sufficiently small ε > 0,

K(ε, n) =
⌊
bn/2c/m(ε, n)

⌋
≥ 1

3ε

we have

P
(
S̄T̄ εn ∈ L

ε
n ∪Rε

n

)
≤ 1

4εn
(1− c)

1
3ε
−1 � ε

n
(2.3.29)

for all sufficiently small ε > 0. Thus in order to prove Lemma 2.3.12, it suffices to show that

∑
z∈∂outB(0,2n)

∣∣∣P(S̄T̄ εn ∈ U ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− P

(
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣

� ε

n
.

(2.3.30)

Recall that in our construction,
{
Ŝ1,k

}∞
k=0

and
{
Ŝ2,k

}∞
k=0

are simple random walks coupled under

the maximal coupling. Define events:

A1 =
{
Ŝ1,k /∈ Dn ∪ ∂outB(0, 2n), ∀k ≤ ε4n2

}
,

A2 =
{
Ŝ2,k /∈ Dn ∪ ∂outB(0, 2n), ∀k ≤ ε4n2

}
,
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and

A3 =
{

there exists a k ≤ ε4n2 such that Ŝ1,j = Ŝ1,j,∀j ≥ k
}
.

By definition, one can easily see that

{
S̄T̄ εn ∈ U

ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
}
∩ A1 ∩ A2 ∩ A3

=
{
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
}
∩ A1 ∩ A2 ∩ A3

(2.3.31)

which implies that

∑
z∈∂outB(0,2n)

∣∣∣P(S̄T̄ εn ∈ U ε
n, τ

(1)
2n < τ

(1)
Dn
, S

1,τ
(1)
2n

= z
)
− P

(
S̄T̄ εn ∈ U

ε
n, τ

(2)
2n < τ

(2)
Dn
, S

2,τ
(2)
2n

= z
)∣∣∣

≤ 2P
(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac1

)
+ 2P

(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac2

)
+ 2P

(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac3

)
.

(2.3.32)

Thus, it suffices to control the probabilities on the right hand side of (2.3.32). For its first term, we

have by Proposition 2.1.2 of [4] there are constants c, β ∈ (0,∞), independent to n such that

P (Ac1) ≤ ce−β/ε
2

, P (Ac2) ≤ ce−β/ε
2

.

By the strong Markov property, we have

P
(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac1

)
≤ ce−β/ε

2

ε
n−1 � ε

n
(2.3.33)

and

P
(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac2

)
≤ ce−β/ε

2

ε
n−1 � ε

n
(2.3.34)

for all sufficiently small ε > 0. Finally, for the last term

P
(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac3

)
recall that the first coordinate of x is even and that

{
Ŝ1,k

}∞
k=0

and
{
Ŝ2,k

}∞
k=0

be two simple random
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walks starting from xεn and xεn + x and coupled under the maximal coupling. We have that

P (Ac3) ≤ dTV

(
Ŝ1,bε4n2c, Ŝ2,bε4n2c

)

where dTV (·, ·) stands for the total variation distance between the distributions of two random

variables. On the other hand, note that

dTV

(
Ŝ1,bε4n2c, Ŝ2,bε4n2c

)
=

1

2

∑
z∈Z2

∣∣∣P(Ŝ1,bε4n2c = z
)
− P

(
Ŝ2,bε4n2c = z

)∣∣∣
≤ 1

2

[
P
(
Ŝ1,bε4n2c ∈ Bc(0, 2n)

)
+ P

(
Ŝ2,bε4n2c ∈ Bc(0, 2n)

)
+

∑
z∈B(0,2n)

∣∣∣P(Ŝ1,bε4n2c = z
)
− P

(
Ŝ2,bε4n2c = z

)∣∣∣ ].
And again by Proposition 2.1.2 of [4] there are constants c, β ∈ (0,∞), independent to n such that

P
(
Ŝ1,bε4n2c ∈ Bc(0, 2n)

)
≤ ce−β/ε

4

, P
(
Ŝ2,bε4n2c ∈ Bc(0, 2n)

)
≤ ce−β/ε

4

. (2.3.35)

And for any z ∈ B(0, 2n), condition on S̄T̄ εn = xεn, applying Proposition 4.1 of [21] with x0 = xεn,

n0 = bε4n2c and R = bε4nc, there are constant h > 0 and C <∞ independent to n and the choice

of xεn, ∣∣∣P(Ŝ1,bε4n2c = z
∣∣∣S̄T̄ εn = xεn

)
− P

(
Ŝ2,bε4n2c = z

∣∣∣S̄T̄ εn = xεn

)∣∣∣
≤ C

(
e−

1
ε

ε4

)h

sup
(n,y)∈Q

Py (Sn = z) ,

where Q = [n0−2R2, n0]×B(xεn, 2R). Moreover, by Local Central Limit Theorem, see Theorem

2.1.1 of [4] for example, there is a finite constant C <∞ independent to n such that

sup
(n,y)∈Q

Py (Sn = z) ≤ C

ε4n2
,
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which implies that (
e−

1
ε

ε4

)h

sup
(n,y)∈Q

Py (Sn = z) ≤ Ce−
h
ε ε−4(1+h)n−2

and that

∣∣∣P(Ŝ1,bε4n2c = z
)
− P

(
Ŝ2,bε4n2c = z

)∣∣∣
≤
∑
xεn

∣∣∣P(Ŝ1,bε4n2c = z
∣∣∣S̄T̄ εn = xεn

)
− P

(
Ŝ2,bε4n2c = z

∣∣∣S̄T̄ εn = xεn

)∣∣∣P (S̄T̄ εn = xεn
)

≤ Ce−
h
ε ε−4(1+h)n−2

∑
xεn

P
(
S̄T̄ εn = xεn

)
≤ Ce−

h
ε ε−4(1+h)n−2.

(2.3.36)

Thus, ∑
z∈B(0,2n)

∣∣∣P(Ŝ1,bε4n2c = z
)
− P

(
Ŝ2,bε4n2c = z

)∣∣∣
≤

∑
z∈B(0,2n)

Ce−
h
ε ε−4(1+h)n−2

≤ Ce−
h
ε ε−4(1+h).

(2.3.37)

Combining (2.3.35) and (2.3.37) we have

P (Ac3) ≤ dTV

(
Ŝ1,bε4n2c, Ŝ2,bε4n2c

)
≤ 1

2

(
2ce−β/ε

4

+ Ce−
h
ε ε−4(1+h)

)
. (2.3.38)

By the strong Markov property,

P
(
{S̄T̄ εn ∈ U

ε
n} ∩ Ac3

)
≤ 1

8εn

(
2ce−β/ε

4

+ Ce−
h
ε ε−4(1+h)

)
� ε

n
(2.3.39)

for all sufficiently large n and sufficiently small ε. Thus the proof of this lemma is complete.

With Lemma 2.3.12, the proof of Proposition 2.3.6 is complete.
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2.3.5 Proof of Lemma 2.3.7

Let M,M0 ∈ Z+ such that M > M0 > 1. By the strong Markov property,

P(0,Mn)(τ[−δn,δn]×{0} = τDn)

=
∑

y∈∂outB(0,M0n)

P(0,Mn)(τ∂outB(0,M0n) = y)Py(τ[−δn,δn]×{0} = τDn).
(2.3.40)

So by law of total probability,

min
y∈∂outB(0,M0n)

Py(τ[−δn,δn]×{0} = τDn)

≤ P(0,Mn)(τ[−δn,δn]×{0} = τDn)

≤ max
y∈∂outB(0,M0n)

Py(τ[−δn,δn]×{0} = τDn).

(2.3.41)

Notice that if we fix n,

lim
M→∞

P(0,Mn)(τ[−δn,δn]×{0} = τDn) = HDn([−δn, δn]× {0}),

and thus
min

y∈∂outB(0,M0n)
Py(τ[−δn,δn]×{0} = τDn)

≤ HDn([−δn, δn]× {0})

≤ max
y∈∂outB(0,M0n)

Py(τ[−δn,δn]×{0} = τDn).

(2.3.42)

Let {yn : yn ∈ ∂outB(0,M0n)} be a sequence of points in Z2. Note that ||yn||2 → ∞ as n → ∞.

By invariance principle,

lim sup
n→∞

Pyn(τ[−δn,δn]×{0} = τDn) ≤ sup
z∈∂B̄(0,M0)

PBMz (τ[−δ,δ]×{0} = τ[−1,1]×{0}),
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where PBMz is the law of a Brownian motion starting at the point z ∈ R2. Since the choice of {yn}

is arbitrary,

lim sup
n→∞

max
y∈∂outB(0,M0n)

Py(τ[−δn,δn]×{0} = τDn) ≤ sup
z∈∂B̄(0,M0)

PBMz (τ[−δ,δ]×{0} = τ[−1,1]×{0}).

Similarly,

lim inf
n→∞

min
y∈∂outB(0,M0n)

Py(τ[−δn,δn]×{0} = τDn) ≥ inf
z∈∂B̄(0,M0)

PBMz (τ[−δ,δ]×{0} = τ[−1,1]×{0}).

Note that
lim

M0→∞
sup

z∈∂B̄(0,M0)

PBMz (τ[−δ,δ]×{0} = τ[−1,1]×{0})

= lim
M0→∞

inf
z∈∂B̄(0,M0)

PBMz (τ[−δ,δ]×{0} = τ[−1,1]×{0})

= H[−1,1]×{0}([−δ, δ]× {0}).

(2.3.43)

Therefore,

lim
n→∞

HDn([−δn, δn]× {0}) = H[−1,1]×{0}([−δ, δ]× {0}).

With Lemma 2.3.7, the proof of Theorem 2.3.3 is complete.

2.3.6 Proof of Proposition 2.3.8

In order to prove

lim
n→∞

n ·max
y∈lcn

Py
(
Sτ̄An = x

)
= 0

we first recall that

ln = [−bnα2c, bnα2c]× {bnα1c} ,

α1 = (1 + α)/2, α2 = (7 + α)/8, and that

lcn = ∂inl Box(n) ∪ ∂inr Box(n) ∪ ∂inu Box(n) \ ln.
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Thus for any point y ∈ lcn, define

Ty = {by(1)/2c} × [0,∞)

to be the vertical line located in the exact midway between 0 and y. Noting that τTy < τx, by the

strong Markov property we have

Py
(
Sτ̄An = x

)
=
∑
z∈Ty

Py
(
τTy < τ̄An , SτTy = z

)
Pz
(
Sτ̄An = x

)
=
∑

z∈Ty , z(2)≥n4

Py
(
τTy < τ̄An , SτTy = z

)
Pz
(
Sτ̄An = x

)
+
∑

z∈Ty , z(2)<n4

Py
(
τTy < τ̄An , SτTy = z

)
Pz
(
Sτ̄An = x

)
≤ Py

(
τTy < τ̄An , S

(2)
Ty
≥ n4

)
+ max
z∈Ty , z(2)<n4

Pz
(
Sτ̄An = x

)
Py
(
τTy < τ̄An

)
.

(2.3.44)

To control the right hand side of (2.3.44), we first define

D̄n =
{
Ty ∪ [by/2c,∞)× {0}

}
∩B(y, n4)

and then note that

Py
(
τTy < τ̄An , S

(2)
Ty
≥ n4

)
≤ Py

(
τ∂outB(y,n4) < τD̄n

)
.

Moreover, it is easy to see that

rad(D̄n) ≥ n4/2

for n sufficiently large, and that

d(D̄n, y) ≤ bnα1c.
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We apply Theorem 1 in [22] with κ = 1 and A = D̄n on the discrete ball B(y, n4), then there

exists a constant C > 0 such that

Py
(
τ∂outB(y,n4) < τD̄n

)
≤ Py

(
τ∂outB(y,n4) < τD̄n

[nα1 ,n4/2]

)
≤ C

√
nα1

n4
= o

(
1

n

)
. (2.3.45)

Note that this is a Beurling estimate for random walk. And for the second term in the right hand

side of (2.3.44), note that for

D̃n = L0 ∩B (y, nα2/2)

we have {
τTy < τ̄An

}
⊂
{
τ∂outB(y,nα2/2) < τ̄D̃n

}
(2.3.46)

Using again the Theorem 1 of [22] to the right hand side of (2.3.46) we have

Py
(
τTy < τ̄An

)
≤ Py

(
τ∂outB(y,nα2/2) < τ̄D̃n

)
≤ Cn−(α2−α1)/2. (2.3.47)

At the same time, for any z ∈ Ty such that z(2) < n4, again by the reversibility of simple random

walk we have

Pz
(
Sτ̄An = x

)
=
∞∑
n=1

Pz (S1, S2, · · · , Sn−1 /∈ An, Sn = x)

=
∞∑
n=1

Px (S1, S2, · · · , Sn−1 /∈ An, Sn = z)

= Ex [# of visits to z in [0, τAn)]

= Px (τz < τAn)Ez [# of visits to z in [0, τAn)]

=
Px (τz < τAn)

Pz (τAn < τz)
.

(2.3.48)

To control the right hand side of (2.3.48), we first refer to the well known result:
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Lemma 2.3.14. (Lemma 1 of [20]) The series

a(x) =
∞∑
n=0

[P0(Sn = 0)− P0(Sn = x)] (2.3.49)

converge for each x ∈ Z2, and the function a(·) has the following properties:

a(x) ≥ 0, ∀x ∈ Z2, a(0) = 0, (2.3.50)

a
(
(±1, 0)

)
= a
(
(0,±1)

)
= 1 (2.3.51)

Ex[a(S1)]− a(x) = δ(x, 0), (2.3.52)

so a(Sn∧τv − v) is a nonnegative martingale, where τv = τ{v}, for any v ∈ Z2. And there is some

suitable c0 such that ∣∣∣∣a(x)− 1

2π
log ‖x‖ − c0

∣∣∣∣ = O(‖x‖−2), (2.3.53)

as ‖x‖ → ∞.

Now we prove the following lower bound on the denominator:

Lemma 2.3.15. There is a finite constant C <∞ such that for any nonzero x ∈ Z2,

P0(τx < τ0) ≥ C

(log ‖x‖)2
.

Proof. First, it suffices to show this lemma for all x sufficiently far away from 0. We consider

stopping time

Γ = τ0 ∧ τ‖x‖/2,
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By Lemma 2.3.14, we have

1 = E0

[
a(SΓ)

∣∣τ‖x‖/2 < τ0

]
P0

(
τ‖x‖/2 < τ0

)
.

Thus by (2.3.53),

P0

(
τ‖x‖/2 < τ0

)
=

1

E0

[
a(SΓ)

∣∣τ‖x‖/2 < τ0

] ≥ π

log ‖x‖
(2.3.54)

for all x sufficiently far away from 0. By the strong Markov property,

P0(τx < τ0) =
∑

y∈∂outB(0,‖x‖/2)

P0

(
τ‖x‖/2 < τ0, Sτ‖x‖/2 = y

)
Py (τx < τ0)

≥ π

log ‖x‖
min

y∈∂outB(0,‖x‖/2)
Py (τx < τ0) .

(2.3.55)

At the same time, for stopping time Γ1 = τ∂outB(x,‖x‖/3), and Γ2 = τ∂outB(x,‖x‖/2), we have

Py (τx < τ0) ≥
∑

z∈∂outB(x,‖x‖/3)

Py
(
Γ1 < τ‖x‖/3, SΓ1 = z

)
Pz (τx < Γ2) . (2.3.56)

For the right hand side of (2.3.56), we have by translation invariance of simple random walk,

Pz (τx < Γ2) = Pz−x
(
τ0 < τ‖x‖/2

)
.

Moreover, [
1− Pz−x

(
τ0 < τ‖x‖/2

)]
Ez−x

[
a(SΓ)

∣∣τ‖x‖/2 < τ0

]
= a(z − x),

which implies that

Pz−x
(
τ0 < τ‖x‖/2

)
=

Ez−x
[
a(SΓ)

∣∣τ‖x‖/2 < τ0

]
− a(z − x)

Ez−x
[
a(SΓ)

∣∣τ‖x‖/2 < τ0

] . (2.3.57)

Again, by Lemma 2.3.14, we have that there are positive constants c, C ∈ (0,∞) such that uni-
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formly for all n, x and z defined above,

Ez−x
[
a(SΓ)

∣∣τ‖x‖/2 < τ0

]
− a(z − x) ≥ c,

while

Ez−x
[
a(SΓ)

∣∣τ‖x‖/2 < τ0

]
≤ C log ‖x‖.

Thus we have

Pz (τx < Γ2) = Pz−x
(
τ0 < τ‖x‖/2

)
≥ c

log ‖x‖
(2.3.58)

uniformly for all n, x and z defined above.

On the other hand, by invariance principle, there is a constant c > 0 such that for any y ∈

∂outB(0, ‖x‖/2),

Py
(
Γ1 < τ‖x‖/3

)
≥ c.

Thus,

Py (τx < τ0) ≥
∑

z∈∂outB(x,‖x‖/3)

Py
(
Γ1 < τ‖x‖/3, XΓ1 = z

)
Pz (τx < Γ2) ≥ c

log ‖x‖
. (2.3.59)

Now combining, (2.3.54), (2.3.55), and (2.3.59). The proof of this lemma is complete.

With Lemma 2.3.15, we look back at the right hand side of (2.3.48). Noting that for any z ∈ Ty,

τTy ≤ τz and that τAn ≤ τDn , we give the following upper bound estimate on its numerator:

Lemma 2.3.16. Recall that α2 = (7 + α)/8. Then for each x ∈ A,

Px
(
τTy < τDn

)
≤ c

nα2
(2.3.60)

for all sufficiently large n and all y ∈ lcn.

Proof. For any given x ∈ A, define x0 = (x(1), 0) be the projection of x on L0. Note that x0

and x are connected by a path independent to n, which implies that there is a constant c > 0 also
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independent to n such that

Px0

(
τTy < τDn

)
≥ cPx

(
τTy < τDn

)
.

Thus to prove Lemma 2.3.16 it suffices to replace x by x0. Moreover, recall that lcn = ∂inl Box(n)∪

∂inr Box(n)∪∂inu Box(n) \ ln. For any y ∈ lcn, by the translation invariance of simple random walk,

we have

Px0

(
τTy < τDn

)
≤ P0

(
τIbnα2/4c < τDn

)
.

Here recall the definition of In in (2.2.4). Now by lemma 2.2.4,

P0

(
τIbnα2/4c < τDn

)
≤ C

bnα2/4c

and the proof of this lemma is complete.

Now apply (2.3.47), (2.3.48), Lemma 2.3.15, and Lemma 2.3.16 together to the last term of

(2.3.44), we have

max
z∈Ty , z(2)<n4

Pz
(
Sτ̄An = x

)
Py
(
τTy < τ̄An

)
≤ Cn−α2−(α2−α1)/2(log n)2

≤ Cn−
17
16

+ α
16 (log n)2 � n−1

for all sufficiently large n. Thus, the proof of Proposition 2.3.8 is complete.

2.3.7 Proof of Proposition 2.3.9

To show

lim
n→∞

∑
y∈ln

Py
(
Sτ̄An = x

)
= HA(x),

we first prove that
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Lemma 2.3.17. For any x ∈ A and the truncations An defined in (2.3.1)

lim
n→∞

∑
y∈ln

Py (Sτ̄A = x) = HA(x). (2.3.61)

Proof. Recall that by definition that

HA(x) = lim
k→∞

∑
z∈Lk

Pz (Sτ̄A = x)

and that

ln = [−bnα2c, bnα2c]× {bnα1c} .

Thus

lim
n→∞

∑
z∈Lbnα1c

Pz (Sτ̄A = x) = HA(x),

while in order to prove Lemma 2.3.17, it suffices to show that

lim
n→∞

∑
z∈Lbnα1c\ln

Pz (Sτ̄A = x) = 0. (2.3.62)

Apply reversibility of simple random walk on each z ∈ Lbnα1c \ ln, we have

∑
z∈Lbnα1c\ln

Pz (Sτ̄A = x) = Ex
[
# of visits to Lbnα1c \ ln in [0, τ̄A)

]

≤
Px
(
τLbnα1c\ln < τL0

)
min

z∈Lbnα1c\ln
Pz
(
τL0 < τLbnα1c\ln

) . (2.3.63)

First, for the denominator of (2.3.63), note that

τLbnα1c ≤ τLbnα1c\ln
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We have for any z ∈ Lbnα1c \ ln

Pz
(
τL0 < τLbnα1c\ln

)
≥ Pz

(
τL0 < τlbnα1c

)
≥ c

bnα1c
. (2.3.64)

On the other hand, using exactly the same argument as in the proof of Lemma 2.3.16

Px
(
τLbnα1c\ln < τL0

)
≤ C

bnα2c
. (2.3.65)

Thus, combining (2.3.63)-(2.3.65), the proof Lemma 2.3.17 is complete.

Now with Lemma 2.3.17, it suffices to prove that

lim
n→∞

∑
y∈ln

[
Py
(
Sτ̄An = x

)
− Py (Sτ̄A = x)

]
= 0. (2.3.66)

Again by reversibility,

Py
(
Sτ̄An = x

)
= Ex [# of visits to y in [0, τAn)]

and

Py (Sτ̄A = x) = Ex [# of visits to y in [0, τA)] ,

which implies that for each y

Py
(
Sτ̄An = x

)
− Py (Sτ̄A = x) = Ex [# of visits to y in [τA, τAn)]

and that ∑
y∈ln

[
Py
(
Sτ̄An = x

)
− Py (Sτ̄A = x)

]
= Ex [# of visits to ln in [τA, τAn)] .

(2.3.67)

Here we use the natural convention that the number of visits equals to 0 over an empty interval.
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Moreover, define T̄n = {−n, n} × [0,∞) and

Γ4 = inf{n > τA, Sn ∈ T̄n}.

Noting that

{τA < Γ4 < τAn} ⊂ {τA < τAn} ⊂ {τT̄n < τAn},

thus by the strong Markov property, one can see that

Ex [# of visits to ln in [τA, τAn)] ≤ Px (τT̄n < τAn)

min
z∈ln

Pz(τAn < τln)
. (2.3.68)

First, for any z = (z(1), z(2)) ∈ ln, consider

(z(1), 0) +
{

[−bnα1c, bnα1c]× [0, bnα1c]
}
.

By Lemma 2.2.4 and translation/reflection invariance of simple random walk,

Pz(τAn < τln) ≥ P0

(
τ∂inu Ibnα1c

< τL0

)
≥ P0

(
τ∂inu Ibnα1c

= τ∂inIbnα1c

)
≥ 1

2
P0

(
τ∂inIbnα1c

< τL0

)
≥ 1

2
P0

(
τLbnα1c < τL0

)
=

1

8bnα1c
.

(2.3.69)

On the other hand, we have

Px (τT̄n < τAn) ≤ Px (τT̄n < τL0)

≤ CP0

(
τ∂inIbn/2c < τL0

)
≤ 2CP0

(
τ∂inu Ibnα1c

= τ∂inIbn/2c

)
≤ 2CP0

(
τLbn/2c < τL0

)
≤ C

n
.

(2.3.70)

Now combining (2.3.67)-(2.3.70), we have shown (2.3.66) and the proof of Proposition 2.3.9 is
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complete.

2.3.8 Proof of Proposition 2.3.10

At this point, in order to prove Theorem 2.3.1, we only need to show that for all sufficiently

large n and any y ∈ ln, 2HBox(n)(y)/HDn(0) can be arbitrarily close to one. First, for any y ∈ ln,

define

M(y, n) = n+
∣∣y(1)

∣∣, m(y, n) = n−
∣∣y(1)

∣∣.
Recall that Box(n) = [−n, n]× [0, bnα1c] and that ln = [−bnα2c, bnα2c]× {bnα1c}. We have

n− bnα2c ≤ m(y, n) ≤ n ≤M(y, n) ≤ n+ bnα2c.

Moreover, noting that

Box(n) ⊂
[
y(1) −M(y, n), y(1) +M(y, n)

]
× [0, bnα1c]

and that [
y(1) −m(y, n), y(1) +m(y, n)

]
× [0, bnα1c] ⊂ Box(n),

by definition we have

H[y(1)−M(y,n),y(1)+M(y,n)]×[0,bnα1c](y) ≤ HBox(n)(y)

and

H[y(1)−m(y,n),y(1)+m(y,n)]×[0,bnα1c](y) ≥ HBox(n)(y).

Thus, combine translation invariance and Theorem 2.3.3, and note that for all y ∈ ln, M−1(y, n)−

n−1 = o(n−1), m−1(y, n) − n−1 = o(n−1). It is immediate to see that Proposition 2.3.10 is

equivalent to the following statement:
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Lemma 2.3.18. For all integers m,n > 0, define

B̂ox(m,n) = [−n, n]× [−m, 0].

For any ε > 0, we have

HDn(0)− 2HB̂ox(m,n)(0) ∈
[
0,

ε

n

)
(2.3.71)

for all sufficiently large n and all 0 < m ≤ 2nα1 .

Proof. First, for the lower bound estimate, note that

Dn ⊂ B̂ox(m,n)

and that by the definition of harmonic measure, we have

HDn(0) = lim
k→∞

P(k,0) (τDn = τ0)

and that

HB̂ox(m,n)(0) = lim
k→∞

P(k,0)

(
τB̂ox(m,n) = τ0

)
.

Moreover, by symmetry we have for all k > n,

P(k,0) (τDn = τ0) = 2P(k,0) (τDn = τ0, Sτ0−1 = (0, 1)) .

At the same time on can see that in the event
{
τB̂ox(m,n) = τ0

}
, the random walk has to visit 0

through (0, 1), which implies that

P(k,0) (τDn = τ0, Sτ0−1 = (0, 1)) ≥ P(k,0)

(
τB̂ox(m,n) = τ0

)
.

Taking limit as k → ∞, we have shown the lower bound estimate. For the upper bound estimate,
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again we note that for each sufficiently large k and a random walk starting from (k, 0)

{τDn = τ0, Sτ0−1 = (0, 1)} \
{
τB̂ox(m,n) = τ0

}
= {τDn = τ0, Sτ0−1 = (0, 1)} ∩

{
τB̂ox(m,n)\Dn < τDn

}
,

(2.3.72)

which, by the strong Markov property implies that

P(k,0) (τDn = τ0, Sτ0−1 = (0, 1))− P(k,0)

(
τB̂ox(m,n) = τ0

)
≤ max

y∈B̂ox(m,n)\Dn
Py
(
τ(0,1) < τDn

)
.

(2.3.73)

Now in order to find the upper bound of the right hand side of (2.3.73), we consider the following

two cases based on the location of point y = (y(1), y(2)) ∈ B̂ox(m,n) \Dn:

Case 1:

Box(m,n)

(0, 1)

y

P = O(n−1 log n)

P = O(n−(1−α)/2)

Figure 2.3: Illustration of proof for Case 1

If
∣∣y(1)

∣∣ ≤ n/3, for all nearest neighbor paths starting at y which hit (0, 1) before Dn, they first
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have to hit ∂outB(0, n/2). Thus we have

Py
(
τ(0,1) < τDn

)
=
∑

z∈∂outB(0,n/2)

Py
(
τn/2 < τDn , Sτn/2 = z

)
Pz
(
τ(0,1) < τDn

)
≤ Py

(
τn/2 < τDn

)
max

z∈∂outB(0,n/2)
Pz
(
τ(0,1) < τ̄Dn

)
.

(2.3.74)

See Figure 2.3 for illustration of Case 1. For the first term of the right hand side of (2.3.74),

recalling that d(y,Dn) =
∣∣y(2)

∣∣ = m ≤ 2nα1 and that
∣∣y(1)

∣∣ < n/3, we have by the same Beurling

estimate, there exists a constant C < ∞ independent to the choice of n,m and y satisfying Case

1, such that

Py
(
τn/2 < τDn

)
≤ Cn−(1−α1)/2. (2.3.75)

At the same time, for any z ∈ ∂outB(0, n/2), to control the upper bound on Pz
(
τ(0,1) < τ̄Dn

)
, one

can concentrate on the upper half plane, since each path from y to (0, 1) must pass through some

point z ∈ ∂outB(0, n/2) ∩ {x ∈ H : x(2) > 0}. Now for any such z, by reversibility, we have

Pz
(
τ(0,1) < τ̄Dn

)
= E(0,1)

[
# of visits to z in [0, τDn∪{(0,1)})

]
≤

P(0,1) (τz < τ̄Dn)

Pz (τ̄Dn < τz)
. (2.3.76)

For the numerator, note that for all sufficiently large n, [−bn/3c, bn/3c]× [0, bn/3c] ⊂ B(0, n/2).

Applying the same argument as we repeatedly used in this paper, we have

P(0,1) (τz < τ̄Dn) ≤ C

n
.

At the same time,

Pz (τ̄Dn < τz)

≥
∑

w∈∂outB(z, z
(2)

2
)

Pz
(
τ̄
∂outB(z, z

(2)

2
)
< τz, τ̄∂outB(z, z

(2)

2
)

= τw

)
Pw
(
τ̄Dn < τ

∂outB(z, z
(2)

3
)

)
.

And by invariance principle and the fact that z(2) ∈ (0, n], we have there is a constant c > 0
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independent to the choices of n, z and w, such that

Pw
(
τ̄Dn < τ

∂outB(z, z
(2)

3
)

)
≥ c.

Thus by Lemma 2.3.15,

Pz (τ̄Dn < τz) ≥ cPz
(
τ̄
∂outB(z, z

(2)

2
)
< τz

)
≥ c(

log z(2)

2

)2 ≥
c

(log n)2
,

which by (2.3.76) implies that

Pz
(
τ(0,1) < τ̄Dn

)
≤ C(log n)2

n
. (2.3.77)

Now combining (2.3.73), (2.3.74), (2.3.75), and (2.3.77),

Py
(
τ(0,1) < τDn

)
≤ Cn−(3−α1)/2(log n)2 � n−1 (2.3.78)

and thus our lemma hold when y in Case 1.

Case 2:

Box(m,n)

(0, 1)

y

P = O(n−1 log n)

P = O(n−(1−α)/2)

Figure 2.4: Illustration of proof for Case 2
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Otherwise, if
∣∣y(1)

∣∣ > n/3, our proof follows the same techniques on slightly different stopping

times. Consider two neighborhoods: B(0, n
7
) and B(y, n

7
). It is easy to see that

∂outB
(

0,
n

7

)
∩ ∂outB

(
y,
n

7

)
= ∅.

Using the same argument as in Case 1,

Py
(
τ(0,1) < τDn

)
=
∑

w∈∂outB(y,n
7

)

Py
(
τ∂outB(y,n

7
) < τDn , Sτ∂outB(y, n7 )

= w
)
Pw
(
τ(0,1) < τDn

)
.

Moreover for any w ∈ ∂outB(y, n
7
) the random walk starting at w has to first visit ∂outB(0, n

7
)

before ever reaches (0, 1). This implies that

Pw
(
τ(0,1) < τDn

)
=
∑

z∈∂outB(0,n
7

)

Pw
(
τn/7 < τDn , Sτn/7 = z

)
Pz
(
τ(0,1) < τDn

)
≤ max

z∈∂outB(0,n
7

)
Pz
(
τ(0,1) < τDn

)
.

See Figure 2.4 for illustration of Case 2. We have

Py
(
τ(0,1) < τDn

)
≤ Py

(
τ∂outB(y,n

7
) < τDn

)
max

z∈∂outB(0,n
7

)
Pz
(
τ(0,1) < τDn

)
. (2.3.79)

Now since y(2) = −m ≥ −2nα1 , it is easy to see that

rad
(
B
(
y,
n

7

)
∩Dn

)
≥ n

4

for all sufficiently large n. Thus by (2.3.75) and (2.3.77), there exists a constant C <∞ indepen-

dent to the choice of n,m and y satisfying Case 2, such that

Py
(
τ∂outB(y,n

7
) < τDn

)
≤ Cn−(1−α1)/2. (2.3.80)
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and that

max
z∈∂outB(0,n

7
)
Pz
(
τ(0,1) < τDn

)
≤ C(log n)2

n
. (2.3.81)

Thus we also have

Py
(
τ(0,1) < τDn

)
≤ Cn−(3−α1)/2(log n)2 � n−1 (2.3.82)

and thus our lemma hold when y in Case 2 and the proof of Lemma 2.3.18 is complete.

With Lemma 2.3.18, we have concluded the proof of Proposition 2.3.10.

2.4 Stationary Diffusion Limited Aggregation is Well-defined

In this section, we define a (infinite) SDLA whose transition rate is given by the stationary

harmonic measure, starting from the infinite initial configuration L0.

Theorem 2.4.1. Let t > 0 and A0 = L0, then there is a well defined SDLA process {A∞s }s≤t.

Remark 2.4.2. The result remains true if one replace the initial state L0 by any subset A0 that

can be seen as a connected forest of logarithmic horizontal growth rate. To be precise, A0 can be

written as ∪∞n=−∞Tree
n
0 , where Treen0 is connected for each n, with Treen0 ∩ L0 = (n, 0) and

moreover diam(Treen0 ) ≥ log n for only finite number of n’s. We present the proof for A0 = L0

for simplicity but without loss of (much) generality.

A major tool one obtains for the study of SDLA is ergodicity of the process.

Theorem 2.4.3. For every t > 0, A∞t is ergodic with respect to shift in Z× {0}.

2.4.1 Coupling construction

With the upper bounds of the harmonic measure on the upper half plane (see Theorem 2.1.3),

a pure growth model called the interface process was introduced in [18] which can be used as

a dominating process for both the DLA model in H and the stationary DLA model that will be

introduced in this paper. Consider an interacting particle system ξ̄t defined on {0, 1}H, with 1

standing for an occupied site and 0 for a vacant site, with transition rates as follows:
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(i) For each occupied site x = (x1, x2) ∈ H, if x2 > 0 it will try to give birth to each of its

nearest neighbors at a Poisson rate of
√
x2. If x2 = 0, it will try to give birth to each of its

nearest neighbors at a Poisson rate of 1.

(ii) If x attempts to give birth to a nearest neighbor y that is already occupied, the birth is sup-

pressed.

We proved that an interacting particle system determined by the dynamic above is well-defined.

Proposition 2.4.4 (Proposition 3, [18] ). The interacting particle system ξ̄t ∈ {0, 1}H satisfying (i)

and (ii) is well defined.

Then when the initial aggregation V0 is the origin or finite, we defined the DLA process in

H starting from V0 (Theorem 5, [18]), according to the graphic representation (see [23] for intro-

duction) of the interface process ξ̄t and a procedure of Poisson thinning, see Page 30-31 of [18]

for details. Note that under this construction, the DLA model with finite initial aggregation is

contained in the interface process.

Now in order to prove Theorem 2.4.1, we construct a sequence of processes {Ant }∞n=1, each of

which is the DLA in H with initial aggregation V n
0 = [−n, n]× 0, coupled together with the same

interface process. To be precise, recall the graphic representation in [18]:

• For each x = (x1, x2) and y = (y1, y2) ∈ H such that ‖x − y‖ = 1, we associate the edge

~e = (x, y) with an independent Poisson processNx→y
t , t ≥ 0 with intensity λx→y =

√
x2∨1.

• For each x = (x1, x2) and y = (y1, y2) ∈ H such that ‖x − y‖ = 1 let {Ux→y
i }∞i=1 be

i.i.d. sequences of U(0, 1) random variables independent of each other and of the Poisson

processes.

At any time t when there is Poisson transition for edge ~e = (x, y), we draw the directed edge (~e, t)

in the phase space H × [0,∞). For any x ∈ L0 and any fixed time t, recall that Ixt is the set of

all y’s in H that are connected with x by a path going upwards vertically or following the directed
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edges. Then in [18] it has been proved that for all V0 ⊂ H,

ξ̄V0
t =

⋃
x∈V0

Ixt

distributed as the interface process with initial state V0. Moreover, it was proven that for each

t < ∞ and all x ∈ H, |Ixt | < ∞ with probability one, and there can be only a finite number of

different paths emanating from x by time t, which may only have finite transitions involved. Now

for all finite V0, in [18] we look at the finite set of all the transitions involved in the evolution of

ξ̄V0
s , s ∈ [0, t], and order them according to the time of occurrence. Then the following thinning

was applied in order to define a process At = (Vt, Et) starting at A0 = (V0, ∅): when a new

transition arrives at time ti, say it is the jth Poisson transition on the edge ~e = (x, y). Suppose one

already knew Ati− := lims↑ti As.

• If x /∈ Vti− or y ∈ Vti−, nothing happens.

• Otherwise:

– If Ux→y
j ≤ HVti−

(~e)/λ~e, then Vti = Vti− ∪ {y}, Et = Et− ∪ {~e}.

– Otherwise, nothing happens.

Thus we defined the process At up to all time t with Vt identically distributed as our DLA process

starting from A0. Now, for each n define Ant as the process with An0 = ([−n, n] × 0, ∅). Then we

have coupled all Ant ’s using the same graphic representation and thinning factors. Now in order to

prove Theorem 2.4.1, we first show the following theorem which states that for a finite space-time

box, the discrepancy probabilities for our An’s are summable.

Theorem 2.4.5. For any compact subset K ⊂ H and any T <∞, we have

∞∑
n=1

P
(
∃t ≤ T, s.t. Ant ∩K 6= An+1

t ∩K
)
<∞. (2.4.1)
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Here for any A = (V,E), we use the convention that A∩K = (V ∩K, {~e = (x, y) ∈ E, {x, y} ∩

K 6= ∅}).

Remark 2.4.6. Without loss of generality, we will assume that T = 1.

The proof of Theorem 2.4.5 is immediate once one proves that there exist constants α > 0 and

C <∞ such that for all sufficiently large n

P
(
∃t ≤ 1, s.t. Ant ∩K 6= An+1

t ∩K
)
≤ C

n1+α
. (2.4.2)

The same argument also implies

Corollary 2.4.7. Let An,+t be the process with An,+0 = ([−n, n+1]×0, ∅). Then for all sufficiently

large n

P
(
∃t ≤ 1, s.t. Ant ∩K 6= An,+t ∩K

)
≤ C

n1+α
.

The same result holds for An,−t with An,−0 = ([−n− 1, n]× 0, ∅).

Note that at t = 0, the initial aggregationsAn0 andAn+1
0 are different only by the two end points

(±(n + 1), 0). Now we want to control the subset of the discrepancies so that they will not reach

K by time 1. Intuitively, the idea we will follow in the detailed proof in the following sections can

be summarized as the follows:

(I) With very high probability none of An1 and An+1
1 can reach height log(n).

(II) For any α > 0, with very high probability the two processes will have fewer than nα dis-

crepancies by time 1.

(III) For all these discrepancies ever created till time 1, with very high probability none of them

will ever find its way to K.

2.4.2 Logarithmic growth of the interface process

In this section, we prove the logarithmic growth upper bound for Ant and An+1
t with t ∈ [0, 1].

Note that both are contained in the interface process I [−n−1,n+1]×0
t . Thus it suffices to show that
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Theorem 2.4.8. For any C <∞,

P
(
I

[−n,n]×0
1 * [−n− log n, n+ log n]× [0, log n]

)
<

1

nC

for all sufficiently large n.

Proof. First noting that

I
[−n,n]×0
1 =

⋃
x∈[−n,n]×0

Ix1 .

By union bound, it suffices to show that for any C <∞ and all sufficiently large k,

P
(
‖I0

1‖2 ≥ k
)
< exp(−Ck), (2.4.3)

where

‖A‖2 = max
x∈A
‖x‖2

for all finite A ⊂ H. In order to get (2.4.3), one first proves

Lemma 2.4.9. Let {Ti}ki=1 be independent exponential random variables with parameters λi =

4
√
i+ 1. Then, P(‖I0

1‖2 > k) ≤ 4kP(
∑k

i=1 Ti < 1).

Proof. Under the event {‖I0
1‖2 > k}, by definition and the fact that I0

1 is a nearest neighbor growth

model, there has to exist a nearest neighbor sequence of points 0 = x0, x1, · · · , xm with ‖xm‖ ≥ k

such that for stopping times

ηi = inf{s ≥ 0 : xi ∈ I0
s}

we have that

0 = η0 < η1 < · · · < ηm < 1.

Noting that x0, x1, · · · , xm is a nearest neighbor path with ‖xm‖ ≥ k, which implies m ≥ k, we

may without loss of generality assume m = k. More precisely, there exists a nearest neighbor

57



sequence of points 0 = x0, x1, · · · , xk such that for stopping times

ηi = inf{s ≥ 0 : xi ∈ I0
s}

we have that

0 = η0 < η1 < · · · < ηk < 1.

Note that there are no more than 4k such different nearest neighbor sequences of points within H

starting at 0. And for each given path 0 = x0, x1, · · · , xk, and each 1 ≤ i ≤ k, define

∆i = min
y:‖y−xi‖=1

inf
{
s > 0 : Ny→xi

ηi−1+s = Ny→xi
ηi−1

+ 1
}
.

Then by definition and the strong Markov property, ∆i is an exponential random variable with

rate λ̂i =
∑

y:‖y−xi‖=1 λy→xi ≤ 4
√
i+ 1, independent to Fηi−1

. At the same time, note that

by definition ∆i ≤ ηi − ηi−1, which implies that ∆i ∈ Fηi , and that {∆i}ki=1 is a sequence of

independent random variables. Thus

P(η0 < η1 < · · · < ηk < 1) ≤ P

(
k∑
i=1

∆i < 1

)
≤ P

(
k∑
i=1

Ti < 1

)
.

For some constants c1, c2 > 0 (to be chosen later) define the event

G =

{∣∣∣∣{1 ≤ i ≤ k : Ti ≥
c2√
i+ 1

}∣∣∣∣ > c1k

}
.

Lemma 2.4.10. For any t > 0 and k ∈ N large enough (depending on the choices of c1 and c2),

P

(
k∑
i=1

Ti < 1

)
≤ P(Gc).
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Proof. Under the event G,

k∑
i=1

Ti ≥
∑

i: Ti≥
c2√
i

Ti ≥ c1k
c2√
k + 1

=
1

2
c1c2

√
k ≥ 1, (2.4.4)

where the last inequality holds for any sufficiently large k.

Lemma 2.4.11. Let t > 0 any c̃ ∈ (0,∞), then there exists c1, c2 > 0 such that for any sufficiently

large k,

P(Gc) ≤ exp(−c̃k).

Proof. Define Xi = 1{
Ti≥

c2√
i+1

}, thus
∑k

i=1Xi is a binomial random variable with parameters k

and p = P
(
Ti ≥ c2√

i+1

)
= e−4c2 , which converges to 1 when c2 → 0. By the large deviation

principle for the binomial distribution

P

(
k∑
i=1

Xi < c1k

)
≤ e−I(c1,p)k.

For p close enough to 1 we have I(c1, p) > c̃ (see [24] for the exact rate function).

Proof of Theorem 2.4.8. For any C ∈ (0,∞), fix a c̃ = C + log(4) + 1. Then Theorem 2.4.8

follows from the combination of (2.4.3) and Lemma 2.4.9-2.4.11.

2.4.3 Truncated processes and number of discrepancies

In this section we complete Step (II) in the outline. But prior to that, we would like to use

Theorem 2.4.8 to define a truncated version of coupled process (Ant , A
n+1
t ). Define the stopping

time

Γ = inf
{
t ≥ 0 : V n

t ∪ V n+1
t * [−n− log n, n+ log n]× [0, log n]

}
to be the first time Ant or An+1

t grows outside the box [−n− log n, n+ log n]× [0, log n].

Remark 2.4.12. It is easy to see that V n
t or V n+1

t grows outside our box if and only if En
t or En+1

t

does so.
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Now we can define the truncated processes

(Ânt , Â
n+1
t ) =

(
Ant∧Γ, A

n+1
t∧Γ

)
.

I.e., we have the coupled processes stopped once either of them goes outside the box [−n −

log n, n+ log n]× [0, log n]. By definition, we have

(Ant , A
n+1
t ) = (Ânt , Â

n+1
t )

for all t ∈ [0,Γ]. At the same time, note that

V n
t ∪ V n+1

t ⊂
⋃

x∈[−n−1,n+1]×0

Ixt

for all t ≥ 0. Thus for all C <∞ and all sufficiently large n,

P
(
Ant ≡ Ânt , A

n+1
t ≡ Ân+1

t , ∀t ∈ [0, 1]
)

≤ P
(
I

[−n−1,n+1]×{0}
1 * [−n− 1− log(n+ 1), n+ 1 + log(n+ 1)]× [0, log(n+ 1)]

)
<

1

nC
.

(2.4.5)

Thus in order to show Theorem 2.4.5, it suffices to prove that there exists constants α > 0 and

C <∞ such that for all sufficiently large n

P
(
∃t ≤ 1, s.t. Ânt ∩K 6= Ân+1

t ∩K
)
≤ C

n1+α
. (2.4.6)

Now we formally define the set of discrepancies for the coupled process (Ânt , Â
n+1
t ). For any

t <∞, define

V D,n
t =

{
x ∈ H, s.t. ∃s ≤ t, x ∈ V̂ n

s 4V̂ n+1
s

}
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as the set of vertex discrepancies, and

ED,n
t =

{
~e = (x, y), x, y ∈ H, s.t. ∃s ≤ t, ~e ∈ Ên

s4Ên+1
s

}

as the set of edge discrepancies, where4 stands for the symmetric difference of sets. From their

definition, we list some basic properties of the sets of discrepancies as follows:

• V D,n
0 = {(±(n+ 1), 0)}, ED,n

0 = ∅.

• Both V D,n
t and ED,n

t are non-decreasing with respect to time.

• For any x ∈ V D,n
t , then either x = (±(n+1), 0) or there has to be an edge ~ex ∈ ED,n

t ending

at x.

• For any ~e = (a, x) ∈ ED,n
t , x has to be in x ∈ V D,n

t .

• Whenever a new vertex is added in V D,n
t , there has to be a new edge added toED,n

t . However,

when a new edge is added to ED,n
t , there may or may not be a a new vertex added in V D,n

t .

From the observations above, it is immediate to see that V D,n
t is the same as the collection of all

ending points in ED,n
t , which also implies that |V D,n

t | ≤ |ED,n
t |+ 2.

Moreover, for the event of interest, we have

{
∃t ≤ 1, s.t. Ânt ∩K 6= Ân+1

t ∩K
}

=
{
V D,n

1 ∩K 6= ∅
}
. (2.4.7)

As we outlined in the previous section, in order to prove the event in (2.4.7) has a super-linearly

decaying probability as n→∞, we first control the growth of |ED,n
t |. I.e., by time 1 there cannot

be too many discrepancies created in the coupled system. To be precise, we prove that

Lemma 2.4.13. For any α > 0, there is a c > 0 such that

P
(
|ED,n

1 | ≥ nα
)
≤ exp(−nc)
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for all sufficiently large n.

Proof. Note that |ED,n
0 | = 0. For i = 1, 2, · · · , define the stopping time ∆i = inf{t ≥ 0, |ED,n

t | =

i}, with the convention inf ∅ = ∞. Given the configuration of (Ânt , Â
n+1
t ), we first discuss the

rate at which a new discrepancy is created. If t > Γ, each such rate equals to zero by definition.

Otherwise, each edge ~e = (x, y) in H can be classified according to the configuration as follows:

define the indicator matrix

I(Ânt , Ân+1
t )(~e) =

 1x∈V̂ nt
1y∈V̂ nt

1~e∈Ênt

1x∈V̂ n+1
t

1y∈V̂ n+1
t

1~e∈Ên+1
t

 .

Then by definition, the only edges that contribute to the increasing rate of ED,n
t are those with

indicator matrices as one of the following:

I1 =

 1 0 0

1 0 0

 , I2 =

 1 1 0

1 0 0

 ,

I3 =

 1 0 0

0 0 0

 , I4 =

 1 0 0

0 1 0

 ,

I5 =

 1 0 0

1 1 0

 , I6 =

 0 0 0

1 0 0

 ,

I7 =

 0 1 0

1 0 0


and we will denote the collections of such edges E1, E2, · · · , E7.
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Now the rate that a new edge is added to ED,n
t can be written as the follows:

λD(Ânt , Â
n+1
t ) =

∑
~e∈E1

∣∣∣HV̂ nt
(~e)−HV̂ n+1

t
(~e)
∣∣∣

+
∑
~e∈E2

HV̂ n+1
t

(~e) +
∑
~e∈E3

HV̂ nt
(~e) +

∑
~e∈E4

HV̂ nt
(~e)

+
∑
~e∈E5

HV̂ nt
(~e) +

∑
~e∈E6

HV̂ n+1
t

(~e) +
∑
~e∈E7

HV̂ n+1
t

(~e).

(2.4.8)

For any ~e ∈ ∪7
i=2Ei, note that at least one end point of ~e has to be within V̂ n

t 4V̂ n+1
t ⊂ V D,n

t .

Moreover, recall that for each point in H, there can be no more than 4 directed edges emanating

from it and 4 edges going towards it. Thus, | ∪7
i=2 Ei| ≤ 8|V D,n

t | ≤ 8(|ED,n
t | + 2). Now recalling

t < Γ, Ânt ∪ Ân+1
t ⊂ [−n− log n, n+ log n]× [0, log n], which implies that for each ~e ∈ ∪7

i=2Ei,

the corresponding harmonic measure in (2.4.8) is bounded from above by 2
√

log n. Thus

∑
~e∈E2

HV̂ n+1
t

(~e) +
∑
~e∈E3

HV̂ nt
(~e) +

∑
~e∈E4

HV̂ nt
(~e)

+
∑
~e∈E5

HV̂ nt
(~e) +

∑
~e∈E6

HV̂ n+1
t

(~e) +
∑
~e∈E7

HV̂ n+1
t

(~e) ≤ 16(|ED,n
t |+ 2)

√
log n.

(2.4.9)

Now for each ~e = (x, y) ∈ E1, by definition x has to be in the inner boundary of V̂ n
t ∩ V̂ n+1

t , while

y is in the complement of V̂ n
t ∪ V̂ n+1

t . Moreover, we have

∣∣∣HV̂ nt
(~e)−HV̂ n+1

t
(~e)
∣∣∣ ≤ HV̂ nt ∩V̂

n+1
t

(~e)−HV̂ nt ∪V̂
n+1
t

(~e). (2.4.10)

Using a similar method as in Section 5 of [18] and recalling the definition of stationary harmonic
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measure,

HV̂ nt ∩V̂
n+1
t

(~e)−HV̂ nt ∪V̂
n+1
t

(~e)

= lim
N→∞

(
HV̂ nt ∩V̂

n+1
t ,N(~e)−HV̂ nt ∪V̂

n+1
t ,N(~e)

)
= lim

N→∞

∑
w∈LN

Pw
(
Xτ

(V̂ nt ∩V̂
n+1
t )∪L0

= x, Xτ
(V̂ nt ∩V̂

n+1
t )∪L0

−1 = y
)

− lim
N→∞

∑
w∈LN

Pw
(
Xτ

(V̂ nt ∪V̂
n+1
t )∪L0

= x, Xτ
(V̂ nt ∪V̂

n+1
t )∪L0

−1 = y
)

= lim
N→∞

∑
w∈LN

Pw
(
Xτ

(V̂ nt ∩V̂
n+1
t )∪L0

= x, Xτ
(V̂ nt ∩V̂

n+1
t )∪L0

−1 = y, Xτ
(V̂ nt ∪V̂

n+1
t )∪L0

∈ V̂ n
t 4V̂ n+1

t

)
= lim

N→∞

∑
w∈LN

∑
z∈V̂ nt 4V̂

n+1
t

Pw
(
Xτ

(V̂ nt ∪V̂
n+1
t )∪L0

= z
)
Pz
(
Xτ

(V̂ nt ∩V̂
n+1
t )∪L0

= x, Xτ
(V̂ nt ∩V̂

n+1
t )∪L0

−1 = y
)
.

Taking the summation over all ~e ∈ E1, and note that for all z ∈ V̂ n
t 4V̂ n+1

t ,

∑
~e=(x,y)∈E1

Pz
(
Xτ

(V̂ nt ∩V̂
n+1
t )∪L0

= x, Xτ
(V̂ nt ∩V̂

n+1
t )∪L0

−1 = y
)
≤ 1

since the summation above are over disjoint events. We have

∑
~e∈E1

HV̂ nt ∩V̂
n+1
t

(~e)−HV̂ nt ∪V̂
n+1
t

(~e) ≤ HV̂ nt ∪V̂
n+1
t

(V̂ n
t 4V̂ n+1

t ).

Moreover, noting that by definition V̂ n
t ∪ V̂ n+1

t is connected in H, and that

|V̂ n
t 4V̂ n+1

t | ≤ |V D,n
t | ≤ |ED,n

t |+ 2,

one may, by Theorem 2.1.3 have,

∑
~e∈E1

HV̂ nt ∩V̂
n+1
t

(~e)−HV̂ nt ∪V̂
n+1
t

(~e) ≤ (|ED,n
t |+ 2)

√
log n. (2.4.11)
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Now combining (2.4.9)-(2.4.11) and plugging them back to (2.4.8) gives us

λD(Ânt , Â
n+1
t ) ≤ 17(|ED,n

t |+ 2)
√

log n (2.4.12)

Then recalling the definition of ∆i, by Poisson thinning and the strong Markov property again we

have

P
(
|ED,n

1 | ≥ nα
)

= P

(
nα−1∑
i=0

∆i ≤ 1

)
≤ P

(
nα−1∑
i=0

σi ≤ 1

)

where {σi}n
α−1
i=0 is an independent sequence of exponential random variables with λ̃i = 17(i +

2)
√

log n.

Thus, in order to prove Lemma 2.4.13, it suffices to prove the following result:

Lemma 2.4.14. Let σi be defined as above. Then for all α < 1, β < α and any c3 > 0, for all n

large enough

P

(
nα−1∑
i=0

σi ≤ 1

)
< e−c3n

β

Proof. For β < α defined in the lemma and some constants c1, c2 > 0 (to be chosen later) define

the events for j ∈ [1, nα/nβ] ∩ N,

Gj =

{∣∣∣∣{(j − 1)nβ ≤ i < jnβ : σi ≥
c2

(i+ 2)
√

log n

}∣∣∣∣ > c1n
β

}
.

Define Ni = 1{
σi≥

c2
(i+2)

√
logn

}, thus Mj =
∑jnβ−1

i=(j−1)nβ
Ni is a binomial random variable with

parameters nβ and p = P
(
σi ≥ c2

(i+2)
√

logn

)
= e−17c2 , which converges to 1 when c2 → 0. By the

large deviation principle for binomial random variable

P(Gc
j) = P

(
Mj ≤ c1n

β
)
≤ e−I(c1,p)n

β ≤ e−c3n
β

,

where the last inequality follows by taking p close enough to 1 such that I(c1, p) > c′3 (see [24]

for the exact rate function). Since c′3 was arbitrary, for a slightly smaller c3 we can obtain for large
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enough n

P

 ⋃
j∈[1,...,nα/nβ ]∩N

Gc
j

 ≤ nα−βe−c
′
3n
β ≤ e−c3n

β

.

But under the event
{⋂

j∈[1,...,nα/nβ ]∩NGj

}

nα∑
i=1

σi =
nα−β∑
j=1

jnβ−1∑
(j−1)nβ

σi ≥
c2√
log n

(
c1n

β

nβ + 1
+

c1n
β

2nβ + 1
+ · · ·+ c1n

β

nα−βnβ + 1

)
>

1

2
c1c2(α− β)

√
log n > 1,

where the last two inequalities require taking a large enough n.

Thus the proof of Lemma 2.4.13 completes.

2.4.4 Locations of discrepancies and proof of Theorem 2.4.5

In the previous section, we have shown that, for any α > 0, by time 1 with stretch-exponentially

high probability, there will be no more than nα discrepancies. Now we show that it is highly

unlikely that the first nα possible discrepancies may ever reach our finite subset K.

To show this, note that now the truncated model (Ânt , Â
n+1
t ) forms a finite state Markov process.

In this section, it is more convenient to concentrate on the embedded chain

(Ânk , Â
n+1
k ), k = 0, 1, 2, · · ·

where all configuration (Ânk , Â
n+1
k ) with

V̂ n
k ∪ V̂ n+1

k * [−n− log n, n+ log n]× [0, log n]

are absorbing states.
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Remark 2.4.15. Without causing further confusion, we will, in this section use the parallel nota-

tions such as (Ânk , Â
n+1
k ), V D,n

k and ED,n
k etc., for the embedded chain without more specification.

Now we recall the stopping times for the creation of new discrepancies:

∆i = inf{k ≥ 0, |ED,n
k | = i},

with the convention inf ∅ = ∞. In order to show Step (III), we only need to prove the lemma as

follows:

Lemma 2.4.16. There exists an α > 0 whose value will be specified later such that for any compact

K ⊂ H,

P
(
ED,n

∆nα
∩K 6= ∅

)
≤ n−1−α

for all sufficiently large n.

Proof. We define

~ei =


ED,n

∆i
\ ED,n

∆i−1
, if ∆i <∞

∅, otherwise
.

Note that ~ei is either an empty set or a singleton with one edge. If it is a singleton, we do not

distinguish between the singleton set and its unique element.

Now we are ready to introduce classifications on discrepancies as follows: Let 0 < α < 1/5.

• For any i = 1, we say ~e1 is good if either ~e1 = ∅ or

d(~e1, (n+ 1, 0)) < n1−5α.

Here d(·, ·) is defined as the minimum distance over all endpoints.

• For any i ≥ 1, we say ~ei is good if either ~ei = ∅ or

d(~ei, E
D,n
∆i−1

) < n1−5α.
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Otherwise, we will say ~ei is bad.

• If an ~ei is bad, we call it devastating if and only if ~ei intersects with [−n1−3α, n1−3α] ×

[0, log n].

Moreover, one can also define

κ = inf{i ≥ 1, s.t. ~ei is bad}.

By definition, one may see that ED,n
∆nα
∩K 6= ∅ only if either of the following two events happens:

• Event A: κ < nα, and ~eκ is devastating.

• Event B: κ < nα, ~eκ is bad but not devastating, and there is at least one bad event within

κ+ 1, κ+ 2, · · · , nα.

To see the above assertion, one can from the definition of A and B see that (A ∪ B)c can also be

written as the union of C ∪D, where the events are defined as follows:

• Event C: ~ei are good for all i = 1, 2, · · · , nα.

• Event D: κ < nα, ~eκ is bad but not devastating, and there are no bad events within κ+1, κ+

2, · · · , nα.

Moreover, for each i, we define

l+i = min
{
x(1) > 0 : s.t. ∃x(2) with x = (x(1), x(2)) a vertex for some edge within ED,n

∆i

}
,

and

r−i = max
{
x(1) < 0 : s.t. ∃x(2) with x = (x(1), x(2)) a vertex for some edge within ED,n

∆i

}
.
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Thus under event C or D,

l+i ≥ n1−3α − nα × n1−5α ≥ n1−3α/2

and

r−i ≤ −n1−3α + nα × n1−5α ≤ −n1−3α/2,

which implies no discrepancy may be within [−n1−3α/2, n1−3α/2] × [0, log n] ⊃ K for all suffi-

ciently large n.

Thus, now we only need to find the desired upper bound for the probability of events A and B.

For any k, define event

Gk = {~ei is good for i = 1, · · · , k − 1}.

2.4.4.1 Upper bounds on P(A)

For event A, by definition and the strong Markov property one has

P(A) =
nα∑
k=1

P (Gk, ~ek is devastating)

=
nα∑
k=1

∞∑
j=0

∑
(Ā0,Ã0)

P
(
Gk, ∆k−1 <∞, ∆k −∆k−1 > j, (Ân∆k−1+j, Â

n+1
∆k−1+j) = (Ā0, Ã0)

)
P(Ā0,Ã0) (∆1 = 1, ~e1 is devastating) ,

(2.4.13)

where P(Ā0,Ã0) stands for the distribution of the truncated embedded process (Ânk , Â
n+1
k ) starting

from initial condition (Ā0, Ã0).

At the same time, with similar calculation we have for any k = 1, 2, · · · , nα

P(Gk,∆k <∞) =

∞∑
j=0

∑
(Ā0,Ã0)

P
(
Gk,∆k−1 <∞,∆k −∆k−1 > j, (Ân∆k−1+j, Â

n+1
∆k−1+j) = (Ā0, Ã0)

)
P(Ā0,Ã0) (∆1 = 1) ≤ 1.

(2.4.14)
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Note that for any configuration (Ā0, Ã0) such that

P
(
Gk, ∆k−1 <∞, ∆k −∆k−1 > j, (Ân∆k−1+j, Â

n+1
∆k−1+j) = (Ā0, Ã0)

)
6= 0,

one must have |Ē04Ẽ0| ≤ k − 1. Now recalling the transition dynamic of the embedded chain,

one has for all feasible (Ā0, Ã0) such that V̄0 ∪ Ṽ0 ⊂ [−n− log n, n+ log n]× [0, log n]

P(Ā0,Ã0) (∆1 = 1) =
λD(Ā0, Ã0)

λT (Ā0, Ã0)

where λD(·, ·) was defined in (2.4.8) and

λT (Ā0, Ã0) =
∑
~e

max{HV̄0
(~e),HṼ0

(~e)}.

Otherwise P(Ā0,Ã0) (∆1 = 1) = 0. Now for

P(Ā0,Ã0) (∆1 = 1, ~e1 is devastating)

recall that in (2.4.8) we have

λD(Ā0, Ã0) =
∑
~e∈E1

∣∣HV̄0
(~e)−HṼ0

(~e)
∣∣

+
∑
~e∈E2

HṼ0
(~e) +

∑
~e∈E3

HV̄0
(~e) +

∑
~e∈E4

HV̄0
(~e)

+
∑
~e∈E5

HV̄0
(~e) +

∑
~e∈E6

HṼ0
(~e) +

∑
~e∈E7

HṼ0
(~e).

For any ~e ∈ ∪7
i=2Ei, recall that at least one of the endpoints of ~e has to be in V̄0∆Ṽ0. Thus it is

easy to see

d(~e, ED,n
∆k−1

) = 0.

Combining this with the fact that for all feasible (Ā0, Ã0), Ē04Ẽ0 ⊂ (−∞,−n+ 2n1−4α)∪ (n−
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2n1−4α,∞)× [0, log n], which is disjoint with [−2n1−3α, 2n1−3α]× [0, log n], we have

P(Ā0,Ã0) (∆1 = 1, ~e1 is devastating) ≤
∑

~e=(x,y)∈E1,|x1|≤2n1−3α

∣∣HV̄0
(~e)−HṼ0

(~e)
∣∣

λT (Ā0, Ã0)
(2.4.15)

when V̄0 ∪ Ṽ0 ⊂ [−n − log n, n + log n] × [0, log n] and equals to 0 otherwise. Thus for any

configuration (Ā0, Ã0) such that

P
(
Gk, ∆k−1 <∞, ∆k −∆k−1 > j, (Ân∆k−1+j, Â

n+1
∆k−1+j) = (Ā0, Ã0)

)
6= 0,

and that

P(Ā0,Ã0) (∆1 = 1, ~e1 is devastating) 6= 0,

we have

P(Ā0,Ã0) (∆1 = 1, ~e1 is devastating)

P(Ā0,Ã0) (∆1 = 1)
≤
∑

~e=(x,y)∈E1,|x1|≤2n1−3α

∣∣HV̄0
(~e)−HṼ0

(~e)
∣∣

λD(Ā0, Ã0)
. (2.4.16)

Now for the numerator of (2.4.16), again we have

∑
~e=(x,y)∈E1,|x1|≤2n1−3α

∣∣HV̄0
(~e)−HṼ0

(~e)
∣∣

≤
∑

~e=(x,y)∈E1,|x1|≤2n1−3α

[
HV̄0∩Ṽ0

(~e)−HV̄0∪Ṽ0
(~e)
]

=
∑

~e=(x,y)∈E1,|x1|≤2n1−3α

∑
z∈V̄0∆Ṽ0

HV̄0∪Ṽ0
(z)Pz

(
Xτ(V̄0∩Ṽ0)∪L0

−1 = y,Xτ(V̄0∩Ṽ0)∪L0
= x

)
≤ HV̄0∪Ṽ0

(V̄04Ṽ0) sup
z∈V̄04Ṽ0

Pz (τBox < τL0) ,

(2.4.17)

where

Box = [−2n1−3α, 2n1−3α]× [0, log n].
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At the same time, note that for any feasible configuration (Ā0, Ã0),

V̄04Ṽ0 ⊂ Box0 = [n− 2n1−4α, n+ log n] ∪ [−n− log n,−n+ 2n1−4α]× [0, log n]

which implies that

sup
z∈V̄04Ṽ0

Pz (τBox < τL0) ≤ sup
z∈Box0

Pz (τBox < τL0) . (2.4.18)

Moreover, for each edge ~e = (z, w) such that z ∈ V̄04Ṽ0 and w /∈ V̄0 ∪ Ṽ0, by definition it has to

belong to E3 ∪ E6 and thus by (2.4.8)

λD(Ā0, Ã0) ≥ HV̄0∪Ṽ0
(V̄04Ṽ0). (2.4.19)

Now combining (2.4.13)-(2.4.19) we have

P(A) ≤ nα sup
x∈Box0

Px (τBox < τL0) . (2.4.20)

Now we prove the following lemma:

Lemma 2.4.17. For all α < 1/5 and all sufficiently large n

sup
x∈Box0

Px (τBox < τL0) ≤ n−1−2.5α.

Proof. The proof of Lemma 2.4.17 follows a similar argument as in [1]. Note that for any x ∈

Box0,

Px (τBox < τL0) ≤
∑

y∈∂inBox

Px(τy < τL0).

Then let Vn = {n/2} × [0,∞), V 1
n = n/2 × [0, n4), and V 2

n = n/2 × (n4,∞). By a similar

argument as in [1] we have

Px (τVn < τL0) ≤ n−1+α/5 (2.4.21)
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while

Px
(
τVn < τL0 , τVn = τV 2

n

)
≤ 1

n3
.

Thus by the strong Markov property,

Px(τy < τL0) =
∑
z∈Vn

Px (τVn < τL0 , τVn = τz)Pz(τy < τL0)

≤ 1

n3
+
∑
z∈V 1

n

Px (τVn < τL0 , τVn = τz)Pz(τy < τL0).
(2.4.22)

Moreover, for each z ∈ V 1
n , by reversibility of random walk ([20]), we have

Pz(τy < τL0) ≤ Py(τz < τL0)Ez[# of visits to z in [0, τL0)]. (2.4.23)

For the first term in (2.4.23), the same argument for (2.4.21) implies that

Py(τz < τL0) ≤ Py(τVn < τL0) ≤ n−1+α/5.

While for the second term in (2.4.23), by [1] we have there is a constant C <∞ independent to n

such that for all z ∈ V 1
n

Ez[# of visits to z in [0, τL0)] ≤ C log n.

Thus we have

Pz(τy < τL0) ≤ Cn−1+α/5 log n. (2.4.24)

Combining (2.4.21)-(2.4.24), we have for any x ∈ Box0, y ∈ ∂inBox,

Px(τy < τL0) ≤ Cn−2+2α/5 log n.
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Finally, noting that |∂inBox| ≤ 5n1−3α, we have

sup
x∈Box0

Px (τBox < τL0) ≤ Cn−2+2α/5 log n · n1−3α ≤ n−1−2.5α

for all sufficiently large n.

Combining (2.4.20) and Lemma 2.4.17, we have

P(A) ≤ nα sup
x∈Box0

Px (τBox < τL0) ≤ n−1−1.5α. (2.4.25)

2.4.4.2 Upper bounds on P(B)

Now we find the upper bound for P(B). Recall that

• Event B: κ < nα, ~eκ is bad but not devastating, and there is at least one bad event within

κ+ 1, κ+ 2, · · · , nα.

For any k ≥ 1 define event

Bk = {~e1, · · · , ~ek−1 are good, ~ek is bad} .

Then by Markov property, we have

P(B) =
nα−1∑
k=1

∑
(Ā0,Ã0)

P
(
Bk, ~ek is not devastating, (Ân∆k

, Ân−1
∆k

) = (Ā0, Ã0)
)(nα−k∑

j=1

P(Ā0,Ã0)(Bj)

)
.

(2.4.26)

Using the argument in Subsection 2.4.4.1 we have for all k+j ≤ nα and any feasible configuration

(Ā0, Ã0) such that

P
(
Bk, ~ek is not devastating, (Ân∆k

, Ân−1
∆k

) = (Ā0, Ã0)
)
6= 0
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and such that P(Ā0,Ã0)(Bi) > 0 for some i ≤ nα − k, we have

P(Ā0,Ã0)(Bj) ≤ P(Ā0,Ã0)(Gj,∆j <∞)P(0,logn) (τUn < τL0) ≤ P(0,logn) (τUn < τL0)

where Un = {−n1−5α/2, n1−5α/2} × [0,∞). Again from [1], we have

P(0,logn) (τUn < τL0) ≤ n−1+6α. (2.4.27)

Thus by (2.4.26) and (2.4.27),

P(B) ≤ n−1+7α

(
nα−1∑
k=1

P(Bk)

)
. (2.4.28)

Again using the same argument, we have for any k ≤ nα − 1,

P(Bk) ≤ P(Gk,∆k <∞)P(0,logn) (τUn < τL0) ≤ n−1+6α

which implies that

P(B) ≤ n−2+14α. (2.4.29)

Letting α = 1/16, then Lemma 2.4.16 follows from Lemma 2.4.17 and (2.4.29).

Proof of Theorem 2.4.5. At this point, Theorem 2.4.5 follows from the combination of Lemma

2.4.13 and Lemma 2.4.16.

2.4.5 Proof of Theorem 2.4.1: Existence of the SDLA

Theorem 2.4.1 follows immediately once we show that the limiting process obtained by Theo-

rem 2.4.5 has the desired property.

Lemma 2.4.18. Fix a finite set K, t > 0 and some ε > 0. ∃N finite a.s., such that for all n > N ,

for all 0 ≤ s ≤ t and any x ∈ K,
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|HL0∪Ans (x)−HL0∪As(x)| < ε. (2.4.30)

Proof. By [1, Lemma 2.6] and the sub-linear growth of the interface model proved in Theorem

2.4.8 and the fact we constructed all Ans to be subsets of the interface model, there exists some

m > 0 such that for every every n ∈ N ∪ {∞} and x ∈ K,

∣∣∣∣∣∣
∑
|y|<m1.1

P(y,m)

(
SτL0∪Ans

= x
)
−HL0∪Ans (x)

∣∣∣∣∣∣ < ε/2. (2.4.31)

Let K ′ ⊂ H be a large finite subset such that

2m1.1 max
|y|<m1.1

P(y,m)(τK′c < τK) < ε/2.

By Theorem 2.4.5 we know that there is some N ∈ N large enough such that for every n > N ,

Ans ∩K ′ = ANs ∩K ′ = As ∩K ′.

Thus ∣∣∣∣∣∣
∑
|y|<m1.1

P(y,m)

(
SτL0∪Ans

= x
)
−

∑
|y|<m1.1

P(y,m)

(
SτL0∪As

= x
)∣∣∣∣∣∣ < ε/2.

Together with (2.4.31) we obtain (2.4.30).

It remains to prove that {As}s≤t is Markov with the correct stationary harmonic measure as the

infinitesimal generator.

Lemma 2.4.19. For every finite subset K ⊂ H and any t > 0, for any s ∈ [0, t] and x ∈ K,

lim
∆s→0

P (As+∆s(x) = 1|As(x) = 0, {Aξ}ξ≤s)
∆s

= HL0∪As(x) a.s.

Proof. Let ε > 0 and Gn be the event that for all s ≤ t and for all x ∈ K, Ans (x) = As(x) and in
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addition,

|HL0∪Ans (x)−HL0∪As(x)| < ε.

By Lemma 2.4.18 and Theorem 2.4.5, limn→∞ P(Gc
n) = 0. Now uniformly for all s < t and ∆s

small enough, there is an n ∈ N such that

P (As+∆s(x) = 1|As(x) = 0, {Aξ}ξ≤s)

∈ P (As+∆s(x) = 1|As(x) = 0, {Aξ}ξ≤s, Gn) + (−ε, ε)

= P
(
Ans+∆s(x) = 1|Ans (x) = 0, {Aξ}ξ≤s, Gn

)
+ (−ε, ε)

∈ P
(
Ans+∆s(x) = 1|Ans (x) = 0, |HL0∪Ans (x)−HL0∪As(x)| < ε,As

)
+ (−2ε, 2ε)

∈ (1− e−∆s(HL0∪As (x)+ε), 1− e−∆s(HL0∪As (x)−ε)) + (−2ε, 2ε),

where we use the dominated convergence theorem for the first and second approximations. Now

taking ε→ 0 and then ∆s→ 0 we obtain the result.

Proof of Theorem 2.4.1. By Lemma 2.4.19 we obtain that the almost sure limit

{As}s≤t := lim
m→∞

{Ams }s≤t

obtained in Theorem 2.4.5 is a SDLA.

2.4.6 Proof of Theroem 2.4.3: Ergodocity of the SDLA

Proof. By Lemma 2.4.19 and the fact that the stationary harmonic measure is (well...) stationary,

we obtain that A∞t is stationary with respect to the translation λn(A∞t ) = A∞t + n, for any n ∈ Z.

It is enough then to prove that A∞t is strongly mixing. Let t > 0 and K1, K2 be two finite subsets

of H of distance max{|x1−x2| : x1 ∈ K1, x2 ∈ K2} > 4n (n will be chosen big enough). We now

consider two copies of Ant constructed according to Poisson thinning of the same interface model,

Ant (1) is centered around an arbitrary point x1 ∈ K1 and Ant (2) is centered around an arbitrary
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point x2 ∈ K2. For i ∈ {1, 2} and configurations ξi ∈ {0, 1}Ki . Define the events:

Bi = {A∞t ∩Ki = ξi} (2.4.32)

Ci = {Ant (i) ∩Ki = ξi} (2.4.33)

Di = { max
x∈Ant (i)

|x− xi| < 3n/2} (2.4.34)

Under the eventD1∩D2 the eventsC1 andC2 are independent. This follows from the independence

of Poisson processes on non intersecting domains. Moreover we know by Theorem 2.4.8 that

lim
n→∞

P (Dc
1 ∪Dc

2) = 0,

and by Theorem 2.4.5 that

lim
n→∞

P (B1 \ C1 ∪B2 \ C2) = 0.

Thus

lim
n→∞

P(B1 ∩B2) = lim
n→∞

P(C1 ∩ C2|D1 ∩D2) = lim
n→∞

P(C1|D1 ∩D2) · P(C2|D1 ∩D2)

(2.4.35)

= lim
n→∞

P(B1) · P(B2) = P(B1) · P(B2), (2.4.36)

where in the last equality we used stationarity and abused notations to clarify that the limit is

actually a constant sequence.

78



3. FINITARY RANDOM INTERLACEMENTS

We show that there exists a phase transition in FRI on Zd with d ≥ 3. This partially answered

a question of Bowen (see Question 2, [25] for details). The content of this chapter appears in [3].

Consider FIu,T as a random subgraph of Zd (we will define FIu,T in Section 3.1). For any two

vertices x, y ∈ FIu,T , x and y are said to be connected if there exist vertices x0, x1, · · · , xn ∈

FIu,T such that x = x0, y = xn, and (xi, xi+1) are edges in the graph FIu,T for all 0 ≤ i < n.

Theorem 3.0.1 (Supercritical phase). For all u > 0, there is a T1(u, d) > 0 such that for all

T > T1, FIu,T has an unique infinite cluster almost surely.

Theorem 3.0.2 (Subcritical phase). For all u > 0, there is a T0(u, d) > 0 such that for all 0 <

T < T0, FIu,T has no infinite cluster almost surely.

The proof of Theorem 3.0.1 relies on a renormalization/block construction argument along

with coupling the FRI to RI. We define a good block event in Section 3.2, and we prove that

this good event occurs with high probability in Section 3.3. In Section 3.4 we apply a standard

renormalization/block construction argument to see the spread of our “good blocks" dominates a

supercritical Bernoulli percolation. The proof of uniqueness is presented in Section 3.5. The proof

of Theorem 3.0.2 is presented in Section 3.6.

3.1 Notations and Definitions

In this section, we collect some preliminary results on finitary random interlacements. Most of

these results first appear in [25]. We begin with recalling the formal definition of FRI in [25]. Con-

sider the lattice Zd, for d ≥ 3. A finite walk on Zd is a nearest-neighbor path w : {0, 1, · · · , N} →

Zd, for some N ∈ Z+ ∪ {0}. N is called the length of the finite walk w. Let W[0,∞) be the set of

trajectories of all finite walks. And note that W[0,∞) is a countable set.

For x ∈ Zd and n ∈ N, let Pnx be the law of the simple random walk started at x and killed at
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time n. Define

P(T )
x =

(
1

T + 1

) ∞∑
n=0

(
T

T + 1

)n
Pnx.

I.e. P(T )
x is the law of a geometrically killed simple random walk started at x with 1/(T +1) killing

rate. The expected length is T . We sometimes call geometrically killed random walk a killed

random walk.

For 0 < T <∞, let v(T ) be the measure on W[0,∞) defined by

v(T ) =
∑
x∈Zd

2d

T + 1
P(T )
x .

Note that v(T ) is a σ-finite measure.

Definition 3.1.1. For 0 < u, T <∞, the finitary random interlacements (FRI) point process µ is a

Poisson point process (PPP) on W[0,∞) with intensity measure uv(T ).

Meanwhile, one may equivalently define FIu,T constructively as follows:

Definition 3.1.2. For each vertex x ∈ Zd, define an independent Poisson random variable Nx with

parameter 2du/(T + 1). We start independent Nx geometrically killed random walks from x, and

each of them has expected length T . The FRI can be defined as the point measure on W[0,∞)

composed of all the geometrically killed random walk trajectories above from all vertices in Zd.

It is easy to see the two definitions above are equivalent:

Proposition 3.1.3. The random point measure defined in Definition 3.1.2 is identically distributed

as the Poisson point process defined in Definition 3.1.1.

Proof. The equivalence follows directly from the standard construction of Poisson point process

with a σ−finite intensity measure. See (4.2.1) of [26] for example.

Remark 3.1.4. The construction in Definition 3.1.2 was informally described in Subsection 1.3.2,

[25].

80



Remark 3.1.5. Without causing further confusion, we will use FI to denote both the Poisson point

process on W[0,∞) and the random subgraph of Zd it induces.

The rest of this section mainly concerns the distribution of paths within FIu,T traversing a

certain finite subset of Zd. Let K ⊂ Zd be a finite subset. Let WK ⊂ W[0,∞) be the set of all finite

walks that visit K at least once. Define the stopping times

HK(w) = inf{t ≥ 0 : w(t) ∈ K},

and

H̃K(w) = inf{t ≥ 1 : w(t) ∈ K}.

For a finite path w, we say HK(w) = ∞ if w vanishes before it hits the set K. Similar for

H̃K(w) =∞. Define

W (2) := {(a, b) ∈W[0,∞) ×W[0,∞) : a(0) = b(0)}.

Let K ⊂ L ⊂ Zd be finite subsets. For x ∈ L \K, let ξ(T )
x be the measure on W (2) given by

ξ(T )
x ({(a, b)}) = 2d · 1H̃L(a)=∞P

(T )
x ({a})1HK(b)=∞P

(T )
x ({b}).

Define a measure Q(T )
L,K on W (2) by

Q
(T )
L,K =

∑
x∈L\K

ξ(T )
x .

Define the concatenation map Con : W (2) →W[0,∞) by

Con(a, b) =
(
a(len(a)), a(len(a)− 1), · · · , a(0), b(1), · · · , b(len(b))

)
.

Proposition 3.1.6 (Proposition 4.1 in [25]). For any 0 < u, T <∞, let µ be FRI with parameters
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u, T and K ⊂ L ⊂ Zd be finite subsets. Then 1WL\WK
µ is a PPP with intensity measure u ·

Con∗Q
(T )
L,K = 1WL\WK

uv(T ), where Con∗Q
(T )
L,K = Q

(T )
L,K ◦ Con−1 is the push-forward measure.

Corollary 3.1.7. Let u, T, µ be as in Proposition 3.1.6 and K ⊂ Zd be a finite subset. Then

uv(T )(WK) = 2d
∑
x∈K

P(T )
x (H̃K =∞).

Consequently,

lim
T→∞

P
(
µ(WK) = 0

)
= e−2du·cap(K) = P

(
I2du ∩K = ∅

)
,

where Iu is the random interlacements at level u.

Proof. This follows from Proposition 3.1.6 and the fact that

lim
T→∞

P(T )
x (H̃K =∞) = Px(H̃K =∞).

Consider the space {0, 1}Zd with the canonical product σ-algebra. For u > 0, let Pu be the

unique probability measure on {0, 1}Zd such that for all finite subset K ⊂ Zd,

Pu({w ∈ {0, 1}Zd : w(x) = 0, for all x ∈ K}) = e−u·cap(K),

i.e. Pu is the probability law for random interlacements at level u. For 0 < u, T < ∞, let Pu,T be

the probability measure on {0, 1}Zd such that for all finite subset K ⊂ Zd,

Pu,T ({w ∈ {0, 1}Zd : w(x) = 0, for all x ∈ K}) = e−2du·
∑
x∈K P

(T )
x (H̃K=∞),

i.e. Pu,T is the law for finitary random interlacements with parameters u, T .

Theorem 3.1.8 (Theorem A.2 in [25]). For any u > 0, Pu,T converges to P2du weakly as T →∞

in the space of probability measures on {0, 1}Zd .
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Let K ⊂ Zd be a finite subset. Define the killed equilibrium measure by

e
(T )
K (x) := P(T )

x (H̃K =∞).

Define the killed capacity by

cap(T )(K) :=
∑
x∈K

e
(T )
K (x).

Let

ẽ
(T )
K (x) :=

e
(T )
K (x)

cap(T )(K)

be the normalized equilibrium measure. Let W 0
K := {w ∈ WK : w(0) ∈ K}. Define a map

sK : WK 3 w 7→ w0 ∈ W 0
K ,

where w0 = sK(w) is the unique element ofW 0
K such that w0(i) = w(HK(w)+i) for all i ≥ 0 and

len(w0) = len(w)−HK(w). I.e. we keep the part of the trajectory of w after hitting K, and index

the trajectory in a way such that the hitting of K occurs at time 0. If m(·) is a measure supported

on K, then we define the measure

Pm :=
∑
x∈K

m(x)P(T )
x

on WK , for some T > 0.

Lemma 3.1.9. For 0 < u, T < ∞, let µ be FRI with parameters u, T and K ⊂ Zd be a finite

subset. Then µK = sK∗µ is a PPP on WK with intensity measure 2du · cap(T )(K)P
ẽ
(T )
K

.

Proof. The proof follows from the Proposition 3.1.6 and properties of PPP (see Exercise 4.6(c) in

[26]).
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As a consequence of Lemma 3.1.9, we have

K ∩

( ⋃
w∈Supp(µK)

range(w)

)
= K ∩

( ⋃
w∈Supp(µ)

range(w)

)
,

where K,µ, µK are the same as in Lemma 3.1.9.

Lemma 3.1.10. Let NK be a Poisson random variable with parameter 2du · cap(T )(K), and

{wj}j≥1 are i.i.d. killed random walks with distribution P
ẽ
(T )
K

and independent from NK . Then

the point measure

µ̃K =

NK∑
j=1

δwj

is a PPP on WK with intensity measure 2du · cap(T )(K)P
ẽ
(T )
K

. In particular, µ̃K has the same

distribution as µK .

Proof. The proof follows from the construction of PPP (see section 4.2 in [26]) and the merging

and thinning property of Poisson distribution.

Remark 3.1.11. A similar result (Corollary 4.2) was proved in [25]. Here the previous two lemmas

are stated in the form better suitable for the later use in this paper.

In this chapter, all positive constants c, C, c1, · · · will depend on dimension d by default.

3.2 Definition of Good Boxes

In this section we define the "good" block event in which there is a locally generated large

connected cluster in the corresponding “box". The viability of such event will be proved in the

Section 3.3. Parts of the definition below are inspired by [27]. This also enables us to apply their

estimates for regular interlacements in the next section.

Without loss of generality, we will always assume here the FRI’s are constructed according to

Definition 3.1.2. For any u, T > 0, the FRI FIu,T is identically distributed as the union of two

independent copies of FRI with intensity level u/2 and average stopping time T , i.e.

FIu,T = FIu/2,T1 ∪ FIu/2,T2 ,
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where FIu/2,Ti is the i-th copy. Moreover, similar to [27], we may write

FIu/2,T1 =
d−2⋃
j=1

FIu/(2d−4),T
1,j

where FIu/(2d−4),T
1,j are i.i.d. copies of finitary interlacements with intensity level u/(2d − 4) and

average stopping time T . For x ∈ Zd and R ∈ Z+, let B(x,R) := x+ [−R,R]d be a box of length

R centered at x. Note that we define B(x,R) differently in Chapter 2. We write B(R) = B(0, R).

Let B̂(R) := [−64R2, 64R2]d be a box in the lattice Zd. We define some subboxes in B̂(R). For

0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

xi,j = (−32R2 + 8Ri)ej,

where ej is the j-th unit vector in Zd. Let

bi,j(R) := xi,j + [−R,R]d ⊂ B̂(R),

and

b̂i,j(R) := xi,j + [−2R, 2R]d ⊂ B̂(R).

For any subset A ⊂ Zd, we define the internal vertex boundary of A by

∂inA := {x ∈ A : ∃y ∈ Zd \ A such that |x− y|1 = 1},

and define the external vertex boundary by

∂outA := {x ∈ Zd \ A : ∃y ∈ A such that |x− y|1 = 1}.

Recall the construction of FRI in Definition 3.1.2. LetDi be the random subgraph in Zd consisting

of all trajectories of killed random walks starting in B(0, 128R2) in FRI FIu/2,Ti , for i = 1, 2, and

D = D1 ∪ D2. For any subsets A,B ⊂ Zd where A is connected, let C(A,B) be the connected
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component of A ∪B containing A. Define the random set

Ci,j(x) := C
(
x, b̂i,j(R) ∩ D1

)
.

For 1 ≤ j ≤ d, we define the “top" half of B̂(R) in the j-direction by

B̂+
j (R) =

{
x ∈ Rd : 0 < xj ≤ 64R2, and − 64R2 ≤ xi ≤ 64R2, if i 6= j

}
,

and define the “bottom" half of B̂(R) in the j-direction by

B̂−j (R) =
{
x ∈ Rd : −64R2 ≤ xj < 0, and − 64R2 ≤ xi ≤ 64R2, if i 6= j

}
.

Let

A+
j (R) =

{
x ∈ Rd : 96R2 ≤ xj ≤ 128R2, and − 128R2 ≤ xi ≤ 128R2, if i 6= j

}
,

and

A−j (R) =
{
x ∈ Rd : −128R2 ≤ xj ≤ −96R2, and − 128R2 ≤ xi ≤ 128R2, if i 6= j

}
.

Definition 3.2.1. We say B̂(R) is good if the following conditions hold:

1. For all 0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

Ei,j :=
{
x ∈ bi,j(R) ∩ D1 : cap

(
Ci,j(x)

)
≥ R2(d−2)/3

}
.

We have Ei,j 6= ∅ for all i, j.

2. For all 0 ≤ i < 8R and 1 ≤ j ≤ d, and for all x ∈ Ei,j , and y ∈ Ei+1,j ,

Ci+1,j(y) ∩ C (Ci,j(x),D2) 6= ∅.
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I.e., Ci,j(x) and Ci+1,j(y) are connected by D2.

3. For all 1 ≤ j ≤ d, no geometrically killed random walks starting in A+
j (R) intersect with

B̂−j (R), and no geometrically killed random walks starting inA−j (R) intersects with B̂+
j (R).

Remark 3.2.2. All conditions in Definition 3.2.1 are restrictions on the trajectories of the killed

random walks starting in B(0, 128R2). This fact is crucial in the renormalization argument in

Section 3.4.

Now we define the shift of the box B̂(R) in Zd. For x ∈ Zd, let

B̂x(R) = 32R2x+ B̂(R).

We say that B̂x(R) is good if B̂(R) is a good box in FIu,T − 32R2x.

Remark 3.2.3. Suppose x and y are two neighboring vertices in Zd, and both B̂x(R) and B̂y(R)

are good, then by condition (3) in Definition 3.2.1 the connectivity event in B̂x(R) ∩ B̂y(R) can

be generated only by the random walk paths starting in B(x, 128R2) ∩B(y, 128R2), so we have a

large connected component crossing B̂x(R) and B̂y(R).

Now we define a family {Yx : x ∈ Zd} of {0, 1}-valued random variables given by

Yx =


1, if B̂x(R) is good;

0, otherwise.
(3.2.1)

If there is an infinite open cluster in the lattice {Yx}x∈Zd , then by Remark 3.2.3 there is an infinite

open cluster in the underlying original lattice. When T = R3, we will show that B̂(R) is good

with high probability for all sufficiently large R. Then we will use a renormalization argument to

show that there is an infinite cluster in FIu,R3

almost surely for large R.

Remark 3.2.4. For simplicity, we will assume R ∈ Z+ for the rest of this paper. For R ∈ R+ \Z+,

one can replace R and R2 by bRc and bRc2 respectively in the definition of good boxes, and all

results will follow accordingly.
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3.3 B̂(R) is Good with High Probability

In this section, we prove that B̂(R) is good with high probability. I.e.,

Theorem 3.3.1. Consider the FRI FIu,R3

. For all u > 0, we have

lim
R→∞

P
(
Y0 = 1

)
= 1.

To show Theorem 3.3.1, we will consider the following weaker version of conditions (1) and

(2) in Definition 3.2.1:

(1*) For all 0 ≤ i ≤ 8R and 1 ≤ j ≤ d, let

C̃i,j(x) := C
(
x, b̂i,j(R) ∩ FIu,T1

)
.

and

Ẽi,j :=
{
x ∈ bi,j(R) ∩ FIu,T1 : cap

(
C̃i,j(x)

)
≥ R2(d−2)/3

}
.

We have Ẽi,j 6= ∅ for all i, j.

(2*) For all 0 ≤ i < 8R and 1 ≤ j ≤ d, and for all x ∈ Ẽi,j , and y ∈ Ẽi+1,j ,

C̃i+1,j(y) ∩ C
(
C̃i,j(x),FIu,T2

)
6= ∅.

We first prove that condition (1∗) and (2∗) occur with high probability. Then we show that no

killed random walk starting in Zd \ B(128R2) will reach B̂(R) with high probability. Combining

these we know condition (1) and (2) in Definition 3.2.1 occur with high probability. We will show

condition (3) occurs with high probability separately in Lemma 3.3.14.

We will often use the following large deviation bound for Poisson distributions.
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Lemma 3.3.2 (equation 2.11 in [26]). If X is a Poisson distribution with parameter λ, then

P
(
λ/2 ≤ X ≤ 2λ) ≥ 1− 2e−λ/10.

3.3.1 Coupling of FRI and RI

In this subsection we introduce a coupling of FRI and RI that is crucial in the proof of Lemma

3.3.9. Let K ⊂ Zd be a finite subset, and let u, T > 0. For any points x ∈ K, let Nx,u be i.i.d.

Poisson random variables with parameter 2du. Let {Y (l,i)
x,T + 1}∞i=1 and {Y (r,i)

x,T + 1}∞i=1 be i.i.d.

geometric random variables with parameter 1/(T + 1). Moreover, for i ∈ Z+, let {S(l,i)
n,x }∞n=0 and

{S(r,i)
n,x }∞n=0 be independent copies of simple random walks starting at x. Now we can construct a

random point measure IT (u,K) on W [0,∞) as follows: for each x ∈ K and 1 ≤ i ≤ Nx,u, if

{S(l,i)
n,x }

Y
(l,i)
x,T

n=0 ∩K = ∅,

we add a delta measure on

{S(r,i)
n,x }

Y
(r,i)
x,T

n=0

in IT (u,K).

The following lemma is a consequence of Lemma 3.1.10. Let µK =
∑NK

j=1 δwj be the restriction

of FRI Poisson point measure on K with parameters u and T , where NK is a Poisson random vari-

able with parameter 2du · cap(T )(K), and {wj}j≥1 are i.i.d. killed random walks with distribution

P
ẽ
(T )
K

and independent from NK .

Lemma 3.3.3. IT (u,K) is identically distributed as µK .

Proof. Notice that if we fix x ∈ K and 1 ≤ i ≤ Nx,u, then

P
(
{S(l,i)

n,x }
Y

(l,i)
x,T

n=0 ∩K = ∅
)

= P(T )
x (H̃K =∞) = e

(T )
K (x).
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By Lemma 3.1.10, µK is a PPP with intensity measure 2du · cap(T )(K)P
ẽ
(T )
K

, and by definition

e
(T )
K (x) = cap(T )(K)ẽ

(T )
K .

The result follows from the thinning property of Poisson distributions.

Consider those trajectories in IT (u,K) with length larger or equal to a fixed number T0 > 0.

We define the random point measure ÎT,T0(u,K) as follows: for each x ∈ K and 1 ≤ i ≤ Nx,u, if

Y
(r,i)
x,T ≥ T0,

and

{S(l,i)
n,x }

Y
(l,i)
x,T

n=0 ∩K = ∅,

we add a delta measure on

{S(r,i)
n,x }

Y
(r,i)
x,T

n=0

in ÎT,T0(u,K). Note that by definition ÎT,T0(u,K) ⊂ IT (u,K). Here we say I1 ⊂ I2 if all edges

open in the support of I1 is also open in support of I2.

Now we construct a third random point measure ĪT,T0(u,K) which is identically distributed

as the collection of all trajectories within a RI traversing K, and we also define a ĨT,T0(u,K) ⊂

ĪT,T0(u,K) when all trajectories in ĪT,T0(u,K) are truncated at a fixed time T0. For each x ∈ K

and 1 ≤ i ≤ Nx,u, if

Y
(r,i)
x,T ≥ T0,

and

{S(l,i)
n,x }∞n=0 ∩K = ∅,

we add a delta measure on

{S(r,i)
n,x }∞n=0
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in ĪT,T0(u,K) and we add a delta measure on

{S(r,i)
n,x }

T0
n=0

in ĨT,T0(u,K). Note that by definition ĨT,T0(u,K) ⊂ ÎT,T0(u,K) ⊂ ĪT,T0(u,K) for any T > 0.

Note that if T0 = 0, ĪT,0(u,K) is identically distributed as set of all trajectories in I2du travers-

ing K but not including the backward parts before they enter K for the first time. We write

ĪT (u,K) := ĪT,0(u,K).

Lemma 3.3.4. Let Y + 1 be a geometric random variable with parameter 1/(T + 1) independent

from everything else, and q = q(T, T0) := P (Y ≥ T0). Let µ̃K be restriction of RI at level 2duq

on the set K. Then ĪT,T0(u,K) is identically distributed to µ̃K =
∑ÑK

j=1 δw̃j , where ÑK is Poisson

random variable with parameter 2duq · cap(K), and {w̃j}j≥1 are i.i.d. simple random walks with

distribution PeK and independent from ÑK .

Proof. This is similar to the proof of Lemma 3.3.3. For x ∈ ∂inK,

P
(
{S(l,i)

n,x }∞n=0 ∩K = ∅
)

= Px(H̃K =∞) = eK(x).

Note that for all x ∈ K \ ∂inK,

P
(
{S(l,i)

n,x }∞n=0 ∩K = ∅
)

= 0.

The result again follows from the thinning property of Poisson distributions.

By Exercise 5.9 of [26], µ̃K is the restriction of the PPP for RI at level 2duq on the set K.

3.3.2 Facts about capacity

We often use the following facts about capacity (or killed one) in our proof.
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Lemma 3.3.5 (Proposition 6.5.2 in [4]). There are constants c1, c2 > 0 such that for all R > 0,

c1R
d−2 ≤ cap

(
B(R)

)
≤ c2R

d−2.

Lemma 3.3.6 (Subadditivity of Capacity; Lemma 1.11 in [26]). For any finite set E1, E2 ⊂ Zd,

cap(E1 ∪ E2) ≤ cap(E1) + cap(E2).

Lemma 3.3.7 (Subadditivity of Killed Capacity). For any finite sets E1, E2 ⊂ Zd and for all

T > 0,

cap(T )(E1 ∪ E2) ≤ cap(T )(E1) + cap(T )(E2).

Proof. Follows the proof of Lemma 1.11 in [26] using the killed equilibrium measure.

Lemma 3.3.8 (Monotonicity of Capacity; Exercise 1.15 in [26]). For any finite setsE1 ⊂ E2 ⊂ Zd,

cap(E1) ≤ cap(E2).

3.3.3 Condition (1∗)

By translation invariance, one may without loss of generality prove the desired result for i = 4R

and j = 1. This this case, we have x4R,1 = 0, b4R,1(R) = B(R), and b̂4R,1(R) = B(2R).

To begin with, let us consider the following random variable

N
(1)
4R,1 =

∣∣∣{x ∈ B(R), cap
(
C
(
x,FIu/(2d−4),R3

1,1 ∩B(R +R0.9)
))

> c0R
0.7
}∣∣∣

and eventA(1)
4R,1 = {N (1)

4R,1 ≥ 1}, where c0 > 0 the constant in Lemma 6, [27], which is independent

to R. We first prove that

Lemma 3.3.9. There is a constant c = c(u) > 0 such that for all sufficiently large R,

P(A
(1)
4R,1) ≥ 1− exp(−cR).
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Proof. Note that N (1)
4R,1 is determined by trajectories within FIu/(2d−4),R3

1,1 traversing B(R), which

can be sampled according to Subsection 3.3.1. Define

N̂
(1)
4R,1 :=

∣∣∣{(x, i) ∈ ∂inB(R)× Z+, s.t. i ≤ Nx,u/(2d−4), {S(l,i)
n,x }∞n=1 ∩B(R) = ∅,

Y r,i
x,R3 ≥ R1.6, {S(r,i)

n,x }R
1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> cR0.7

}∣∣∣.
By the definitions of N (1)

4R,1, N̂ (1)
4R,1, and Lemma 3.3.6, we have

P
(
N̂

(1)
4R,1 ≥ 1

)
≤ P

(
N

(1)
4R,1 ≥ 1

)
= P

(
A

(1)
4R,1

)
.

Note that for each (x, i), the events

{i ≤ Nx,u/(2d−4)},{
{S(l,i)

n,x }∞n=1 ∩B(R) = ∅
}
,{

Y r,i
x,R3 ≥ R1.6

}
,{

{S(r,i)
n,x }R

1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> cR0.7

}

are independent to each other. At the same time

P
(
{S(l,i)

n,x }∞n=1 ∩B(R) = ∅
)

= eB(R)(x)

while

P
(
Y r,i
x,R3 ≥ R1.6, {S(r,i)

n,x }R
1.6

n=1 ⊂ x+B(R0.9), cap
(
{S(r,i)

n,x }R
1.6

n=1

)
> cR0.7

)
= q1(R) > 1/2

for all sufficiently large R. The last inequality is derived from

(1) The PMF estimate of geometric random variable Y r,i
x,R3 .

(2) Hoeffding’s inequality.
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(3) Lemma 6, [27] with T1 = R1.6 and ε = 1/8.

Thus we have

N̂
(1)
4R,1 ∼ Poisson

(
q1(R)cap(B(R))u/(2d− 4)

)
and the desired result follows from Lemma 3.3.2 and Lemma 3.3.5.

Given event A(1)
4R,1, one may sample a point uniformly at random from the random subset

S4R,1 =
{
x ∈ B(R), cap

(
C
(
x,FIu/(2d−4),R3

1,1 ∩B(R +R0.9)
))

> c0R
0.7
}

and denote it by x(1)
4R,1. Moreover, for the random subset

Com
(1)
4R,1 = C

(
x

(1)
4R,1,FI

u/(2d−4),R3

1,1 ∩B(R +R0.9)
)

by definition we have

cap
(
Com

(1)
4R,1

)
> cR0.7.

Now for any k = 2, 3, · · · , d− 2 may define

Com
(k)
4R,1 = C

(
Com

(k−1)
4R,1 ,FI

u/(2d−4),R3

1,k ∩B(R + kR0.9)
)

together with event

A
(k)
4R,1 =

{
cap
(
Com

(k)
4R,1

)
> ck0R

0.7k
}
.

Note that for any k = 2, 3, · · · , d− 2, Com(k−1)
4R,1 is measurable with respect to

σk−1 = σ
(
FIu/(2d−4),R3

1,1 ,FIu/(2d−4),R3

1,2 , · · · ,FIu/(2d−4),R3

1,k−1

)

which is independent to FIu/(2d−4),R3

1,k . Thus for any connected component C(k−1)
0 within B(R +
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(k − 1)R0.9) with

cap(C(k−1)
0 ) > ck0R

0.7k

given Com(k−1)
4R,1 = C(k−1)

0 , the distribution of Com(k)
4R,1 is determined by by the configuration of

trajectories inFIu/(2d−4),R3

1,k traversing C(k−1)
0 , which can again be sampled according to Subsection

5.1:

• For each x ∈ C(k−1)
0 , let N (k)

x,u/(2d−4) be i.i.d. Poisson random variables independent to σk−1

with intensity u/(2d− 4).

• For each x ∈ C(k−1)
0 , and positive integer i, let {S(l,i,k)

n,x }∞n=1 and {S(r,i,k)
n,x }∞n=1 be independent

simple random walks starting from x.

• For each x ∈ C(k−1)
0 , and positive integer i, let Y r,i,k

x,R3 and Y l,i,k
x,R3 be independent geometric

random variables with parameter p = 1/(1 +R3).

Then recalling the construction in Subsection 5.1, one has

P
(
A

(k)
4R,1

∣∣Com(k−1)
4R,1 = C(k−1)

0

)
≥P

cap
 ⋃

(x,i)∈I(k−1)
4R,1

{S(r,i,k)
n,x }R

1.6

n=1

 > ck0R
0.7k, {S(r,i,k)

n,x }R
1.6

n=1 ⊂ x+B(R0.9), ∀(x, i) ∈ I(k−1)
4R,1


where

I
(k−1)
4R,1 =

{
(x, i) ∈ ∂inC(k−1)

0 ×Z+, s.t. i ≤ N
(k)
x,u/(2d−4), {S

(l,i,k)
n,x }∞n=1∩C

(k−1)
0 = ∅, Y r,i,k

x,R3 ≥ R1.6
}
.

Then again by Lemma 6 and Lemma 8 of [27],

P
(
A

(k)
4R,1

∣∣Com(k−1)
4R,1 = C(k−1)

0

)
≥ 1− exp(−R1/17)
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for all sufficiently large R. Thus we have proved that

P(E4R,1 6= ∅) ≥ P

(
d−2⋂
k=1

A
(k)
4R,1

)
≥ 1− exp(−R1/18) (3.3.1)

for all sufficiently large R.

3.3.4 Condition (2∗)

Again, Condition (2∗) can be without loss of generality checked for b4R,1(R) and b4R+1,1(R).

And one may follow a similar argument as Subsection 3.3.3 to check Condition (2∗). To be precise,

one can pick any two points x0, x1 from E4R,1 and E4R+1,1. Then we can look at the paths in

FIu/2,R
3

2 (which is independent to FIu/2,R
3

1 ) traversing C4R,1(x0). We keep only those whose

backward part never returning to C4R,1(x0) while the forward part is not truncated until the R2.5th

step. Then one can apply Lemma 11 and 12 in [27] for intensity u/4 to prove that with stretch

exponentially high probability, at least one of the paths we kept in the procedure above has to

intersect with C4R+1,1(x1) before they exit B(4Re1, CR), where C is the same constant as in

Lemma 11 of [27].

However, since for the finitary interlacements, one can only guarantee that the firstR2.5 steps in

the froward paths we keep are within FIu/2,R
3

2 . So the only extra estimate needed is the following

lower bound on the first exiting time of B(CR).

Lemma 3.3.10. There is a c > 0 independent to R such that

P0(H∂outB(CR) > R2.5) < exp(−cR0.5).

Proof. By central limit theorem/invariance principle, there is a constant c > 0 such that

sup
x∈B(CR)

Px(H∂outB(CR) > R2) ≤ P0(H∂outB(2CR) > R2) ≤ 1− c < 1. (3.3.2)
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Then for each i = 1, 2, · · · , bR0.5c, consider event

Esi = {H∂outB(CR) > i ·R2}.

Then by (3.3.2) and Markov property we have

P0(Es1) ≤ 1− c,

and

P0(Esi+1|Esi) ≤ sup
x∈B(CR)

Px(H∂outB(CR) > R2) ≤ 1− c,

for all i ≥ 1. Thus

P0(H∂outB(CR) > R2.5) ≤ P0(EsbR0.5c) ≤ (1− c)bR0.5c < exp(−cR0.5).

Remark 3.3.11. An alternative argument following (2.9) of [28] derives a slightly weaker result,

but also suitable for the use here.

3.3.5 Condition (1) and (2)

We recall the construction of FRI in Definition 3.1.2. We first show that with high probability

no killed random walks of FIu,R3

starting in Zd \B(128R2) intersect with B̂(R). Define the event

G(u,R) :=
{

No killed random walks of FIu,R3

starting in Zd \B(128R2) reach B̂(R)
}
.

Lemma 3.3.12. For all u > 0, we have

lim
R→∞

P
(
G(u,R)

)
= 1.
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Proof. We first fix u > 0 and R > 0. We define a sequence of subsets {A(m,R)}∞m=1 of Zd. Let

A(1, R) := B
(
(128 + 64)R2

)
\ B̂(R),

and for all m > 1,

A(m,R) := B
(
(128 + 64m)R2

)
\B
(
(128 + 64(m− 1))R2

)
Note that {A(m,R)}∞m=1 are pairwise disjoint, and

Zd =

(
B̂(R) ∪

∞⋃
m=1

A(m,R)

)
.

Let x ∈ A(m,R)∩Zd for some m ≥ 1. Recall the construction of FRI in Definition 3.1.2. Let Nx

be the number of killed random walks starting at x. So Nx is a Poisson distribution with parameter

2du/(R3 + 1). By Markov inequality, for all sufficiently large R,

P
(
Nx >

2dumR4

R3 + 1

)
≤ E[eNx ]e−2dumR4/(R3+1) ≤ c1e

−c2mR,

for some constants c1(u), c2(u) > 0. We also need to estimate the probability that a killed random

walk escape from a big box. If Y is a geometric random variable with parameter R3, then for all

sufficiently large R,

P(Y > R7/2) ≤ e−cR
1/2

, (3.3.3)

for some c > 0 independent of R. By Azuma’s inequality and the tail estimate of geometric

distribution in (3.3.3), for all sufficiently large R,

P(R3)
0

(
HB(64R2) <∞

)
≤ e−c3R

1/2

,

for some c3 > 0. If x ∈ A(m,R) ∩ Zd, then a geometrically killed random walk must escape
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from m boxes of size 64R2 before it reaches B̂(R). By the memoryless property of geometric

distribution,

P(R3)
x

(
HB̂(R) <∞

)
≤ e−c3mR

1/2

.

Note that the number of vertices in A(m,R) is bounded above by c4m
dR2d, for some c4 > 0. So

by union bound,

P
(
G(u,R)c) ≤ ∞∑

m=1

(
c4m

dR2dc1e
−c2mR + c4m

dR2d2dumR4

R3 + 1
e−c3mR

1/2

)
,

for all sufficiently large R. Let

S(R) :=
∞∑
m=1

(
c4m

dR2dc1e
−c2mR + c4m

dR2d2dumR4

R3 + 1
e−c3mR

1/2

)
.

Note that the sum S(R) converges for all R > 0, and

S(R)
R→∞−−−→ 0.

Therefore,

P
(
G(u,R)c) R→∞−−−→ 0.

Lemma 3.3.13. Let u > 0. Consider the FRI FIu,R3

. Then

lim
R→∞

P
(

Conditions (1) and (2) are satisfied
)

= 1.

Proof. The result follows by the discussions in Subsections 3.3.3 and 3.3.4, and Lemma 3.3.12.

3.3.6 Condition (3)

By translation invariance and symmetry, it suffices to show the following lemma.
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Lemma 3.3.14. Let u > 0, then there are constants c(u), C(u) > 0 such that for all sufficiently

large R > 0, we have

P
(
∃ a killed random walk starting in A+

1 (R) reach B̂−1 (R)
)
≤ cR2d+1e−CR

1/2

.

Proof. One can easily adapt the calculations in the proof of Lemma 3.3.12. The result follows

from Definition 3.1.2, and tail estimates of geometric and Poisson distributions, and Azuma’s

inequality.

3.4 Renormalization and Proof of Existence

Recall the family {Yx}x∈Zd of {0, 1}-valued random variables defined in (3.2.1). In this sec-

tion, we show that {Yx} stochastically dominates an i.i.d. supercritical site percolation when R is

sufficiently large and thus it has an infinite open cluster almost surely.

Remark 3.4.1. Note that {Yx}x∈Zd themselves form a finitely dependent percolation, and that the

probability that each edge is open is high enough. An alternative “block construction" approach

according to Durrett and Griffeath, [29] can also give us the desired result.

Lemma 3.4.2. For any u > 0 and for all R > 0 that is sufficiently large (depending on u),

the random field {Yx}x∈Zd generated by FIu,R3

stochastically dominates an i.i.d. site percolation

{Zx}x∈Zd such that P (Z0 = 1) > pc(Zd), where pc(Zd) is the critical probability of site percolation

on Zd.

Proof. By the definition of good boxes in Section 3.2 and Remark 3.2.2, the random field {Yx}x∈Zd

is 9-dependent. The stochastic domination over an i.i.d supercritical site percolation follows from

the domination by product measures result by Liggett, Schramm, and Stacey [30] and Theorem

3.3.1.

Corollary 3.4.3. For any u > 0 and for all R > 0 that is sufficiently large (depending on u),

FIu,R3

has an infinite cluster almost surely.
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Proof. We can choose the sameR as in Lemma 3.4.2. By the definition of good boxes and Remark

3.2.3, FIu,R3

has an infinite cluster if {Yx}x∈Zd has one.

Now back to the proof of Theorem 3.0.1, for any u > 0 and sufficiently large T , one may let

R = bT 1/3c and the proof is complete.

3.5 Uniqueness of Infinite Cluster

We have shown that the FRI FIu,R3

has an infinite cluster almost surely if R > R0(u), for

some R0(u) > 0. In this section, we show that the infinite cluster of FIu,R3

is unique almost

surely. Let x ∈ Zd, we define the canonical lattice shift

Tx : {0, 1}Zd → {0, 1}Zd

by
(
Tx(ξ)

)
(y) = ξ(y+ x), for any ξ ∈ {0, 1}Zd and y ∈ Zd. We will first show that FRI is ergodic

with respect to lattice shifts.

Lemma 3.5.1. Let µ = µu,T be the PPP measure for FIu,T . For any x ∈ Zd and any u, T > 0,

the map Tx preserves the measure µ.

Proof. Fix x ∈ Zd. By Dynkin’s π-λ Lemma, it suffices to show that for any finite subset K ⊂ Zd,

P
(
FIu,T ∩ (K − x) = ∅

)
= P

(
FIu,T ∩K = ∅

)
= e−2du·cap(T )(K).

Note that

P
(
FIu,T ∩ (K − x) = ∅

)
= e−2du·cap(T )(K−x) = e−2du·cap(T )(K).

The proof is complete.

Let x ∈ Zd, define the evaluation map

Φx : {0, 1}Zd → {0, 1}
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by Φx(ξ) = ξ(x). We write σ(·) for the product σ-algebra generated by a set or the σ-algebra

generated by a set of functions. The following lemma is a classical approximation result.

Lemma 3.5.2. Let
(
{0, 1}Zd , σ({0, 1}Zd), Q

)
be a probability space, and let B ∈ σ({0, 1}Zd),

then for any ε > 0, there is a finite subset K ⊂ Zd and Bε ∈ σ(Φx : x ∈ K) such that

Q
(
B4Bε

)
≤ ε.

We need one more auxiliary lemma.

Lemma 3.5.3. Let K ⊂ Zd be a finite subset, and K1 ⊂ K, and K0 = K \ K1. Then for all

u, T > 0,

P
(
FIu,T ∩K = K1

)
=
∑
K′⊂K1

(−1)|K
′|e−2du·cap(T )(K′∪K0).

Proof. This follows from inclusion-exclusion formula (see equaiton 2.1.3 of [26] for a similar

result in RI).

Proposition 3.5.4. For any u, T > 0 and any 0 6= x ∈ Zd, the measure preserving map Tx is

ergodic with respect to the FRI measure µ = µu,T .

Proof. This is similar to the proof of ergodicity for RI (see Theorem 2.1 of [14]). Fix 0 6= x ∈ Zd

and u, T > 0. By Lemma 3.5.2, it suffices to show for any finite subset K ⊂ Zd and Bε ∈ σ(Φx :

x ∈ K), we have

µ
(
Bε ∩ T nx (Bε)

)
= µ(Bε)

2. (3.5.1)

From (3.5.1), one can deduce that for any invariant A ∈ σ({0, 1}Zd),

µ(A) = µ(A)2,

so µ(A) ∈ {0, 1}. In order to prove (3.5.1), we first claim for any finite subsets K1, K2 ⊂ Zd,

lim
|z|→∞

cap(T )
(
K1 ∪ (K2 + z)

)
= cap(T )(K1) + cap(T )(K2). (3.5.2)
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The proof of (3.5.2) is exactly the same as the RI case (see equation 2.2.5 in [26]). IfA is a cylinder

event supported on a finite set K ⊂ Zd, i.e. A is of the from

A = {FIu,T ∩K = K1},

where K1 ⊂ K. Denote K0 := K \K1. Take n large enough such that K ∩ (K + nx) = ∅. By

Lemma 3.5.3,

µ
(
A ∩ T nx (A)

)
= µ

(
FIu,T ∩ (K ∪ (K + nx)) = K1 ∪ (K1 + nx)

)
=
∑
K′⊂K1

∑
K′′⊂K1

(−1)|K
′|+|K′′| exp

(
− 2du · cap(T )

(
(K ′ ∪K0) ∪ ((K ′′ ∪K0) + nx)

))
.

(3.5.3)

By (3.5.2) and Lemma 3.5.3, we have

lim
n→∞

µ
(
A ∩ T nx (A)

)
=
∑
K′⊂K1

∑
K′′⊂K1

(−1)|K
′|+|K′′| exp

(
− 2du

(
cap(T )(K ′ ∪K0) + cap(T )(K ′′ ∪K0)

))
=
∑
K′⊂K1

(−1)|K
′|e−2du·cap(T )(K′∪K0)

∑
K′′⊂K1

(−1)|K
′′|e−2du·cap(T )(K′′∪K0)

= µ(A)2.

(3.5.4)

Note that all events in σ(Φx : x ∈ K) can be extended by cylinder events in form of event A. The

proof is complete.

Theorem 3.5.5. For any u > 0 and for all sufficiently large R > 0 (depending on u), FIu,R3

has

a unique infinite open cluster almost surely.

Proof. We adapt the proof of uniqueness in percolation model by Burton and Keane [9] (see Grim-

mett [8]). Fix u > 0. Let N be the number of infinite open clusters in FIu,R3

. Since N is

translation-invariant, N is constant almost surely by Proposition 3.5.4. By Corollary 3.4.3, there

is a R0(u) > 0 such that for all R > R0, FIu,R3

has an infinite open cluster almost surely. We fix
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R > R0, so P (N = 0) = 0. Suppose P (N = k) = 1 for 2 ≤ k <∞. Let MB(n) be the number of

infinite open clusters in FIu,R3

intersecting B(n). Noting that

P
(
MB(n) ≥ 2

) n→∞−−−→ P(N ≥ 2) = 1,

there has to be a n such that

P
(
MB(n) ≥ 2

)
> 0.

Recall Definition 3.1.2. Let F1,0 be the subgraph in Zd generated by paths starting from B(n− 1),

F1,1 be the subgraph in Zd generated by paths starting from ∂inB(n), and F1 = F1,0 ∪ F1,1.

Moreover, let F0 be the subgraph in Zd generated by paths starting from Bc(n).

Note that F1,0 and F1,1 may only have countable many configurations, there has to be a pair of

(finite) configurations F1,0 and F1,1, and a j ≥ 2 such that

P
(
MB(n) = j, F1,0 = F1,0, F1,1 = F1,1

)
> 0,

which implies that

P
(
F0 ∪ F1,0 ∪ F1,1 has k infinite components, among which j components intersect B(n)

)
> 0.

We denote the last event by A0 and note that A0 is measurable with respect to F0 and thus inde-

pendent to F1,0 and F1,1.

Now let F̂1,1 = F1,0 ∪ F1,1 \B(n− 1), and let

F̂1,0 = {x± ej, x ∈ B(n− 1), j = 1, 2, · · · , d}

be the collection of all edges starting from B(n − 1) (or all the edges within B(n)). One can
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immediately see that

P
(
A0, F1,0 = F̂1,0, F1,1 = F̂1,1

)
= P

(
A0

)
P
(
F1,0 = F̂1,0, F1,1 = F̂1,1

)
> 0.

However, given the event above, note that

F0 ∪ F1 = F0 ∪ F1,0 ∪ F1,1 ∪ F̂1,0.

Since F̂1,0 contains all the edges within B(n), all the j components in F0∪F1,0∪F1,1 intersecting

B(n) merge to one, and the FRI with positive probability only has k − j + 1 infinite components.

This contradicts with P(N = k) = 1.

Now suppose P
(
N =∞

)
= 1. We say a point x ∈ Zd is a trifurcation if:

1. x is in an infinite open cluster of FIu,R3

;

2. there exist exactly three open edges incident to x;

3. removing the three open edges incident to x will split this infinite open cluster of x into

exactly three disjoint infinite open clusters.

Define the event Ax := {x is a trifurcation}. By translation invariance, P(Ax) is constant for all

x ∈ Zd. Therefore,
1

|B(n)|
E

[ ∑
x∈B(n)

1Ax

]
= P(A0).

Recall that MB(n) is the number of infinite open clusters in FIu,R3

intersecting B(n). Note that

P
(
MB(n) ≥ 3

) n→∞−−−→ P(N ≥ 3) = 1.

Define the event

En :=
{

No killed random walks starting in Zd \B(2n) intersects B(n)
}
.
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By Lemma 3.3.12, the probability of event Ec
n decays stretch exponentially. We can choose n large

enough such that

P
(
MB(n) ≥ 3, En

)
> 1/2.

Similarly, let F1 and F2 be the random subgraphs in Zd generated by the trace of all killed random

walks starting inB(n) andB(2n)\B(n), respectively. Note that F1 and F2 are independent. Since

there are only countably many choices for F1 and F2, there exist two finite subgraphs F1 and F2

in Zd such that

P
(
MB(n) ≥ 3, En, F1 = F1, F2 = F2

)
> 0.

If ω ∈ {MB(n) ≥ 3, En, F1 = F1, F2 = F2}, then there exist x(ω), y(ω), z(ω) ∈ ∂inB(n) lying in

three distinct infinite open clusters in Zd \ B(n). There are three paths connecting the origin and

x, y, z, respectively, in the following way:

1. 0 is the unique common vertex in any two paths;

2. each path touches exactly one vertex in ∂inB(n).

Let Dx,y,z,n be the event that:

1. there are exactly three killed random walks starting at the origin;

2. these three killed random walk paths end at x, y, z, respectively, and they satisfy the condi-

tions above;

3. no killed random walks start at any vertices in B(n) \ {0}.

It is easy to see that P(Dx,y,z,n) > 0 for all n > 0 and all distinct x, y, z ∈ ∂inB(n). Since F1 and

F2 are fixed and finite,

P
(
F2 = F1 ∪ F2 \B(n)

)
> 0.

For ω ∈ {MB(n) ≥ 3, En, F1 = F1, F2 = F2}, we can resample all Nx for x ∈ B(2n), and then

we resample all killed random walk paths starting in B(2n) accordingly. Note that the resulting
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graph is still distributed as FRI FIu,R3

. If the events Dx,y,z,n and {F2 = F1 ∪ F2 \ B(n)} occur

after the resample, then 0 is a trifucation. Therefore,

P
(
A0

)
≥ P

(
Dx,y,z,n

)
P
(
F2 = F1 ∪ F2 \B(n)

)
P
(
MB(n) ≥ 3, En, F1 = F1, F2 = F2

)
> 0.

Now we can apply the same finite energy argument in Burton and Keane [9]. For each trifurcation

t ∈ B(n), there is a one-to-one corresponding point yt ∈ ∂inB(n). However, the number of

trifurcation points grow in B(n) as nd, but ∂inB(n) grows as nd−1. We have a contradiction.

3.6 Subcritical Phase

In this section we present the proof of Theorem 3.0.2.

Proof of Theorem 3.0.2. We use the Peierls argument [13]. Fix u > 0. Let C be the connected

component that contains the origin in the FRI, FIu,T . It suffices to show that there is a constant

T0(u) > 0 such that for all 0 < T < T0,

P
(
|C| =∞

)
= 0.

We say a path is self-avoiding if it does not visit the same edge twice. Note that the number of

self-avoiding paths in Zd which have length n and start at the origin is bounded above by (2d)n.

Let N(n) be the number of such paths which are open. If the origin belongs to an infinite open

cluster, then there are open self-avoiding paths starting at the origin of all lengths. So for all n > 0,

P
(
|C| =∞

)
≤ P

(
N(n) ≥ 1

)
≤ E

[
N(n)

]
.

Let γ be a self-avoiding path that has length n and starts at the origin. We want to estimate the

probability that γ is open. Let Nγ be the number of killed random walks that traverse γ. Recall

that Nγ is a Poisson random variable with parameter 2du · cap(T )(γ). Since the path γ has length
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n, it has n+ 1 vertices. By the subadditivity of killed capacity,

cap(T )(γ) ≤ n+ 1,

for all T > 0. By exponential Markov inequality,

P
(
Nγ > 2du · e(n+ 1) + (n+ 1) log(3d)

)
≤

E
[
eNγ
]

exp
(
2du · e(n+ 1) + (n+ 1) log(3d)

)
=

exp
(
2du(e− 1) · cap(T )(γ)

)
exp

(
2du · e(n+ 1) + (n+ 1) log(3d)

)
≤ exp

(
− (n+ 1) log(3d)

)
= (3d)−n−1.

(3.6.1)

If the path γ is open in FIu,T , then the Nγ killed random walks that traverse γ must travel more

than n steps in total after they first enter γ. Assume 0 < T < 1. Note that the survival rate for

killed random walks at each step is T/(T + 1), which is smaller than T . Let Y1, Y2, · · · be i.i.d.

geometric random variables with parameter 1− T . Let

L := d2du · e(n+ 1) + (n+ 1) log(3d)e.

Then,

P
(
γ is open

∣∣Nγ ≤ L
)
≤ P

(
L∑
i=1

Yi ≥ L+ n

)
.

By Chernoff bound,

P

(
L∑
i=1

Yi ≥ L+ n

)
≤ e−t(L+n)

(
(1− T )et

1− Tet

)L

= e−tn

(
1− T

1− Tet

)L

,
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for all t > 0 such that Tet < 1. Take t0 = log(6d). We choose 0 < T0(u) < 1 such that

T0e
t0 = 6dT0 < 1,

and (
1− T0

1− T0et0

)d2du·e+log(3d)e

≤ 2.

Then for all 0 < T < T0,

P
(
γ is open

∣∣Nγ ≤ L
)
≤ e−t0n

(
1− T

1− Tet0

)L

≤ (6d)−n2n+1 = 2(3d)−n.

So,

P
(
γ is open

)
≤ P

(
γ is open

∣∣Nγ ≤ L
)

+ P
(
Nγ > L

)
≤ 2(3d)−n + (3d)−n−1.

Since γ is arbitrary,

P
(
|C| =∞

)
≤ E

[
N(n)

]
≤ (2d)n

(
2(3d)−n + (3d)−n−1

)
n→∞−−−→ 0.

The proof is complete.
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4. FURTHER STUDY

Here we present two problems for future study.

1. Finite branches of the SDLA. Define

Tx(t) =

{
connected component of x in A∞t \ (L0 \ {x})

}

to be “branch” in A∞t rooted at x. The following conjecture predicts that all branches finally

fall under the shadow of other branches and stop growing:

Conjecture 1. Define

Tx =
⋃
t≥0

Tx(t)

Then with probability one, |Tx| <∞ for all x ∈ L0.

2. Chemical distance in FRI. Given Theorem 3.0.1, it is natural to ask about the chemical

distance in the unique infinite cluster. In the case of random interlacements it was proved

in [31, 32, 33] that the chemical distance in RI is proportional to the Zd distance with high

probability.

Conjecture 2. The chemical distance in the unique infinite cluster of FRI is proportional to

the Zd distance with high probability. Moreover, We can denote by dFIu,T (·, ·) and dIu(·, ·)

the chemical distances in FRI and RI respectively. Given Theorem 3.1.8, one may show that

for every u > 0,

lim
T→∞

lim
‖x‖1→∞

dFIu,T ([0], [x])

‖x‖1

= lim
‖x‖1→∞

dI2du([0], [x])

‖x‖1

,

where [x] denotes the closest vertex in the appropriate infinite component of FIu,T or I2du

to x ∈ Zd.
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