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ABSTRACT

This dissertation consists of the two independent studies on statistical inference in high-

dimensional models. The first study considers high-dimensional linear model where the number of

predictors is greater than the sample size. The second study covers high-dimensional association

tests in genomics where the number of features exceeds the sample size.

In the first study, we develop a new method to estimate the projection direction in the debiased

Lasso estimator. The basic idea is to decompose the overall bias into two terms corresponding

to strong and weak signals respectively. We propose to estimate the projection direction by bal-

ancing the squared biases associated with the strong and weak signals as well as the variance of

the projection-based estimator. Standard quadratic programming solver can efficiently solve the

resulting optimization problem. In theory, we show that the unknown set of strong signals can be

consistently estimated and the projection-based estimator enjoys the asymptotic normality under

suitable assumptions. A slight modification of our procedure leads to an estimator with a poten-

tially smaller order of bias comparing to the original debiased Lasso. We further generalize our

method to conduct inference for a sparse linear combination of the regression coefficients. Numer-

ical studies demonstrate the advantage of the proposed approach concerning coverage accuracy

over some existing alternatives.

The second study presents a novel two-stage approach for more powerful confounder adjust-

ment in large-scale multiple testing to strike a balance between the Type I error and power. Specif-

ically, we use the unadjusted z-statistics to enrich signals in the first stage and then use the adjusted

z-statistics to remove the false signals due to confounders in the second stage. We develop a new

way of simultaneously choosing the two cutoffs in both steps. This is based on our estimates for

the false rejections by using nonparametric empirical Bayes approach. We show that our proposed

method provides asymptotic false discovery rate control and delivers more power than the tradi-

tional one-stage approach. Promising finite sample performance is demonstrated via simulations

and real data illustration in comparison with existing competitors.
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1. INTRODUCTION

This dissertation consists of the two independent studies on statistical inference in high-

dimensional models where the number of predictors (or features) exceeds the sample size. The

first study focus on high-dimensional linear model in Chapter 2. The second study considers high-

dimensional association tests in genomic association analysis in Chapter 3.

Chapter 2 : Projection-based Inference for High-dimensional Linear Models

Though the statistical properties of Lasso have been extensively studied, relatively little is

known about its statistical inference. It is a challenging problem because the Lasso does not have

a tractable asymptotic limit. To tackle this problem, the debiased Lasso is recently introduced in

the seminal works such as Zhang and Zhang (2014), van de Geer et al. (2014) and Javanmard

and Montanari (2014). Zhang and Zhang (2014) introduced the idea of regularized projection,

which is designed to remove the bias in the Lasso. The resulting debiased Lasso is shown to have

an asymptotic normal limit. However, its empirical performance often turns out to be relatively

unstable and can be very undesirable in some numerical experiments.

Chapter 2 is motivated by an attempt to more directly taking into account the bias term. As the

asymptotic normality depends on the bias term, the debiased Lasso would have performed well if

it had fully removed the bias term. However, the original debiased Lasso often showed the larger

bias for some finite samples. Also, it could be numerically observed that the bias term associated

with the strong signals contributes more to the overall bias.

The main contribution of the project is to propose an alternative way to find the projection

direction for the debiased Lasso estimator. Specifically, taking into account different contribution

of signal strengths to the overall bias, we formulate an optimization problem which appropriately

balances the squared biases associated with the strong and weak signals as well as the variance of

the projection-based estimator for efficiency. For a more adaptive estimation, we assign different

weights to the squared bias terms associated with the strong and weak signals in the objective

function. The resulting optimization problem can be cast into a quadratic programming problem
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which can be efficiently solved using a standard quadratic programming solver.

For the method to be self-contained, we further address the following two points: (1) the esti-

mation of the set of strong signals and (2) the selection of the weights to the squared bias terms.

For (1), we develop a new method to obtain a surrogate set, which is shown to estimate the set

of strong signals consistently. For (2), we employ the residual bootstrap approach to estimate the

coverage probabilities associated with different choices of weights and select the one that delivers

the shortest interval width while ensuring that the bootstrap estimate of the coverage probability is

close to the nominal level.

In theory, under suitable assumptions, we show that the newly obtained projection-based es-

timator enjoys the asymptotic normality. Also, a slight modification of our procedure leads to an

estimator with a potentially smaller order of bias compared to the original debiased Lasso. We

further generalize our method to conduct statistical inference for a sparse linear combination of the

regression coefficients under a suitable assumption on a loading vector. By extensive simulations,

it could be verified that the proposed approach shows promising performance and smaller bias than

some alternatives do.

Chapter 3 : Two-Stage Large-Scale Multiple Testing with Confounding Factors

In genome-wide association studies, it is important to identify genomic features that are asso-

ciated with a variable of interest such as disease status. However, due to the constraint of clinical

sample collection, potential confounding factors exist. While failing to adjust for confounding fac-

tors may lead to inflated type I error, adjustment for confounding effects can exacerbate the already

low statistical power in genome-scale association tests.

Thus, to strike a balance between type I error and power, we propose a novel two-stage ap-

proach for more powerful confounder adjustment in large-scale multiple testing. Given m features

and thresholds t1, t2 ≥ 0, the two-stage procedure can be described as follows:

Step 1. Use the unadjusted statistics to determine a preliminary set of features D1 ={
1 ≤ i ≤ m : |ZU

i | ≥ t1
}

,

Step 2. Reject the null hypothesis for the i-th feature H0,i when |ZA
i | ≥ t2 and i ∈ D1. As a
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result, the final set of discoveries is given by D2 =
{

1 ≤ i ≤ m : |ZU
i | ≥ t1, |ZA

i | ≥ t2
}

,

where ZU
i , Z

A
i denote the unadjusted and adjusted z-statistics associated with the i-th feature,

respectively. In the first step, we try to enrich the signals by using the unadjusted statistics. In the

second step, we then remove the false signals due to confounders and try to control the FDR at the

desired level. Since we use a more lenient p-value cutoff in the second step due to a much less

multiple testing burden, the two-stage procedure achieves a way better power than the commonly

used adjusted procedure. We also propose an approach of simultaneously selecting both cutoffs.

Specifically, the thresholds are chosen to control the estimate for the FDR while maximizing the

number of rejections.

The main difficulty here is to estimate the expected number of false rejections, which depends

on the effects of the confounding factors on each feature. As the number of features could be

in the thousands, it thus requires estimating a large number of nuisance parameters. To tackle

this difficulty, we adopt an empirical Bayes approach by assuming that the nuisance parameters

are generated from a common prior distribution, which allows us to express the expected number

of false rejections as a functional of the prior distribution. Therefore, we can translate the task

into estimating the prior distribution instead of direct estimation of a large number of nuisance

parameters. The prior distribution is estimated via the general maximum likelihood empirical

Bayes estimation, as in Jiang and Zhang (2009) and Koenker and Mizera (2014), which can be cast

into a convex optimization problem. Under suitable assumptions, we show that our estimate for the

expected number of false rejections is consistent, and the proposed method provides asymptotic

FDR control. Through extensive numerical studies, we demonstrate that the recommended two-

stage procedure outperforms the commonly used approaches in a wide range of settings.
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2. PROJECTION-BASED INFERENCE FOR HIGH-DIMENSIONAL LINEAR MODELS

2.1 Introduction

Uncertainty quantification after model selection has been an active field of research in statistics

for the past few years. The problem is challenging as the Lasso type estimator does not admit a

tractable asymptotic limit due to its non-continuity at zero. Standard bootstrap and subsampling

techniques cannot capture such non-continuity and thus fail for the Lasso estimator even in the low-

dimensional regime. Several attempts have been made in the recent literature to tackle this chal-

lenge. For example, (Multi) sample-splitting and subsequent statistical inference procedures have

been developed in Wasserman and Roeder (2009) and Meinshausen et al. (2009). Meinshausen

and Bühlmann (2010) proposed the so-called stability selection method based on subsampling in

combination with selection algorithms. Chatterjee and Lahiri (2011, 2013) have considered the

bootstrap methods that can provide valid approximation to the limiting distributions of the Lasso

and adaptive Lasso estimators, respectively.

For statistical inference after model selection, Berk et al. (2013) developed a post-selection in-

ference procedure by reducing the problem to one of simultaneous inference. Lockhart et al. (2014)

constructed a statistic from the Lasso solution path and showed that it converges to a standard ex-

ponential distribution. To account for the effects of the selection, Lee et al. (2016) developed an

exact post-selection inference procedure by characterizing the distribution of a post-selection es-

timator conditioned on the selection event. By leveraging the same core of statistical framework,

Tibshirani et al. (2016) proposed a general scheme to derive post-selection hypothesis tests at any

step of forward stepwise and least angle regression, or any step along the Lasso regularization

path. Barber and Candès (2015) proposed an inferential procedure by adding knockoff variables

to create certain symmetry among the original variables and their knockoff copies. By exploring

such symmetry, they showed that the method provides finite sample false discovery rate control.

The knockoff procedure has been extended to the high dimensional linear model in Barber and
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Candès (2019) and the settings in which the conditional distribution of the response is completely

unknown in Candès et al. (2018).

Along with a different line that is more closely related to the current work, Zhang and Zhang

(2014) first introduced the idea of regularized projection, which has been further explored and

extended in van de Geer et al. (2014) and Javanmard and Montanari (2014). The common idea

is to find a projection direction designed to remove the bias term in the Lasso estimator. The

resulting debiased Lasso estimator which is no longer sparse was shown to admit an asymptotic

normal limit. To find the projection direction, the nodewise Lasso regression by Meinshausen and

Bühlmann (2006) was adopted in both Zhang and Zhang (2014) and van de Geer et al. (2014),

while Javanmard and Montanari (2014) considered a convex optimization problem to approximate

the precision matrix of the design. Zhang and Cheng (2017) and Dezeure et al. (2017) proposed

boostrap-assisted procedures to conduct simultaneous inference based on the debiased Lasso es-

timators. Belloni et al. (2014) developed a two-stage procedure with the so-called post-double-

selection as first and least squares estimation as second stage. Ning and Liu (2017) proposed

a decorrelated score test in a likelihood based framework. Zhu and Bradic (2018a,b) developed

projection-based methods that are robust to the lack of sparsity in the model parameter. More re-

cent advances along this direction include Neykov et al. (2018) and Chang et al. (2019). Focusing

on the theoretical aspects of debiased Lasso, Javanmard and Montanari (2018) studied the opti-

mal sample size for debiased Lasso and Cai and Guo (2017) showed that the debiased estimator

achieves the minimax rate. Although the methodology and theory for the debiased Lasso estimator

are elegant, its empirical performance could be undesirable. For instance, the average coverage

rate for active variables could be far lower than the nominal levels in finite sample [see, e.g., van

de Geer et al. (2014)].

A natural question to ask is whether there exist alternative projection directions that can im-

prove the finite sample performance in the original debiased Lasso estimator. In this paper, we

propose a new method to estimate the projection direction and construct a novel Bias Reducing

Projection (BRP) estimator, which is designed to further reduce the bias of the original debiased
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Lasso estimator. Different from the nodewise Lasso adopted in both Zhang and Zhang (2014) and

van de Geer et al. (2014), we propose a direct approach to estimate the projection direction. Our

method is related to the procedure in Javanmard and Montanari (2014) but differs in the following

aspects. (i) We formulate a different objective function which appropriately balances the squared

bias and the variance of the BRP estimator; (ii) We decompose the bias term into two parts accord-

ing to a preliminary estimate of the signal strength: one associated with the strong signals and the

other one related to the weak signals and noise; (iii) We develop new methods to estimate the set

of strong signals and to select the tuning parameters involved in the objective function.

Our approach relies crucially on the following observation in finite sample: the bias term as-

sociated with the strong signals contributes more to the overall bias. Motivated by this fact, we

estimate the projection direction by minimizing an objective function that assigns different weights

to the squared bias terms associated with the strong and weak signals. The set of strong signals

is unknown but can be consistently estimated based on a preliminary debiased Lasso estimator.

The resulting optimization problem can be cast into a quadratic programming problem which can

be efficiently solved using a standard quadratic programming solver. We use residual bootstrap to

estimate the coverage probabilities associated with different choices of weights and select the one

that delivers the shortest interval width while ensuring that the bootstrap estimate of the coverage

probability is close to the nominal level.

In theory, we show that the unknown set of strong signals can be consistently estimated by a

surrogate set based on a preliminary projection-based Lasso estimator, where the projection direc-

tion is obtained using a novel formulation. The BRP estimator is shown to enjoy the asymptotic

normality under suitable assumptions. As one of the main contributions, we prove that a slight

modification of our BRP estimator leads to an estimator with a potentially smaller order of bias

comparing to the original debiased Lasso. We further generalize our BRP estimator to conduct

statistical inference for a sparse linear combination of the regression coefficients under suitable

assumptions on a loading vector. We demonstrate the usefulness of the proposed approach by

comparing it with the state-of-the-art approaches in simulations.
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The rest of Chapter 2 is organized as follows. We introduce the projection-based estimator and

develop a new formulation to find the projection direction in Section 2.2. We propose a method

to estimate the set of strong signals and show its consistency in Section 2.3.1. We establish the

asymptotic normality of the BRP estimator in Section 2.3.2 and the modified BRP estimator which

could result in a potentially smaller order of bias compared to the original debiased Lasso is pro-

posed in Section 2.3.3. Section 2.4 generalizes the method to conduct inference for a sparse linear

combination of the regression coefficients. In Section 2.5, we discuss several details about the

implementation of our new method including a bootstrap-assisted procedure for choosing the tun-

ing parameters. Section 2.6 presents some numerical results. Technical details and additional

numerical results are gathered in Section A.1 and A.2, respectively.

Throughout Chapter 2, we use the following notations: For a matrix A ∈ Rd×d and two sets

I, J ⊆ [d] := {1, 2, . . . , d}, denote by AI,J (A−I,−J ) the submatrix of A with (without) the rows

in I and columns in J . Write A[d],−I = A−I . Similarly for a vector a ∈ Rq, write aI (a−I) the

subvector of a with (without) the components in I . Let ‖a‖q with 0 ≤ q ≤ ∞ be the lq norm of a

and write ‖a‖ = ‖a‖2. For two sets S1,S2, let S1 \ S2 be the set of elements in S1 but not in S2.

Denote by |S1| the cardinality of S1. For a square matrix A, let λmax(A) and λmin(A) be its largest

and smallest eigenvalues respectively. Define ‖A‖ = ‖A‖op = supa∈Sd−1 ‖Aa‖ as the operator

norm of A, where Sd−1 is the unit sphere in Rd. The sub-gaussian norm of a random variable

X which we denote by ‖X‖ψ2 is defined as ‖X‖ψ2 = supq≥1 q
−1/2(E|X|q)1/q. For a random

vector X ∈ Rd, its sub-gaussian norm can be defined as ‖X‖ψ2 = supa∈Sd−1 ‖a>X‖ψ2 . The

sub-exponential norm of a random variable X which we denote by ‖X‖ψ1 is defined as ‖X‖ψ1 =

supq≥1 q
−1(E|X|q)1/q. For a random vector X ∈ Rd, its sub-exponential norm can be defined as

‖X‖ψ1 = supa∈Sd−1 ‖a>X‖ψ1 . Let (M, ρ) be a metric space and let ε > 0. A subset Nε ofM is

called an ε-net ofM if every point x ∈ M can be approximated within ε by some point y ∈ Nε,

i.e., ρ(x, y) ≤ ε. The minimal cardinality of an ε-net ofM is called the covering number ofM.
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2.2 Projection-based estimator

To illustrate the idea, we shall focus on the high-dimensional linear model:

Y = Xβ + ε, (2.1)

where Y = (y1, . . . , yn)> ∈ Rn×1 is the response vector, X = (X1, . . . , Xp) ∈ Rn×p is the design

matrix, β = (β1, . . . , βp)
> ∈ Rp×1 is the vector of unknown regression coefficients with ‖β‖0 = s0

and ε = (ε1, . . . , εn)> is the vector of independent errors with the common variance σ2.

2.2.1 Motivation

Suppose we are interested in conducting inference for a single regression coefficient βj for

1 ≤ j ≤ p. We first rewrite model (2.1) as

ηj := Y −X−jβ−j = Xjβj + ε. (2.2)

If the value of ηj is known, the problem would reduce to the inference about βj in a simple linear

regression model. As ηj is not directly observable, a natural idea is to replace ηj by a suitable

estimator defined as

η̂j = Y −X−jβ̂−j = Xjβj + ε+ X−j(β−j − β̂−j), (2.3)

where β̂ is a preliminary estimator for β. Here (2.3) is an approximation to (2.2) with the extra

term X−j(β−j − β̂−j) due to the estimation effect by replacing β−j with β̂−j . In this paper, we

focus on the Lasso estimator given by

β̂ = argmin
β̃∈Rp

{
1

2n
‖Y −Xβ̃‖2 + λ‖β̃‖1

}

whose properties have now been well understood [see e.g. Bühlmann and van de Geer (2011);

Hastie et al. (2015)]. We also try the alternative Lasso formulation without penalizing βj in our
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numerical studies and find that it does not improve the finite sample performance. Now given a

projection vector vj = (vj,1, . . . , vj,n)> ∈ Rn×1 such that v>j Xj = n, we define the projection-

based estimator for βj as

β̃j(vj) :=
1

n
v>j η̂j = βj +

1

n
v>j ε+R(vj, β−j), (2.4)

where R(vj, β−j) = n−1v>j X−j(β−j − β̂−j) is the bias term caused by the estimation effect. (2.4)

implies that

√
n(β̃j(vj)− βj) =

1√
n
v>j ε+

√
nR(vj, β−j).

To ensure that β̃j(vj) has asymptotically tractable limiting distribution, we require the bias term
√
nR(vj, β−j) to be dominated by the leading term n−1/2v>j ε, which converges to a normal

limit under suitable assumptions. In other words, the bias term
√
nR(vj, β−j) controls the non-

Gaussianity of β̃j(vj). A practical challenge here is that the bias
√
nR(vj, β−j) can be hardly

estimated directly from the data. It is common in the literature to replace |
√
nR(vj, β−j)| by a

conservative estimator using the l1 − l∞ bound, i.e.,

‖
√
n(β−j − β̂−j)‖1‖n−1v>j X−j‖∞. (2.5)

See Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard and Montanari (2014). We

note that the variance of n−1/2v>j ε is equal to σ2n−1‖vj‖2. To achieve efficiency, we shall also

try to minimize σ2n−1‖vj‖2 given that the bias
√
nR(vj, β−j) is properly controlled. Because the

first term in (2.5) is independent of vj , we can seek a projection direction to minimize a linear

combination of ‖n−1v>j X−j‖2∞ and the variance σ2n−1‖vj‖2. However, the l1 − l∞ bound on the

whole bias term could be conservative as it does not take into account the specific form of the bias
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term. We note that the bias term can be written as

√
nR(vj, β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̂k)

=
1√
n

∑
k∈S(1)j (ν)

v>j Xk(βk − β̂k) +
1√
n

∑
k∈S(2)j (ν)

v>j Xk(βk − β̂k)

=
√
nR(1)(vj, β−j) +

√
nR(2)(vj, β−j),

(2.6)

where S(1)
j (ν) := S(ν)\{j} and S(2)

j (ν) := S(ν){\{j} denote the index sets (except j) associated

with the strong and weak signals respectively for S(ν) := {k : |βk| ≥ ν} and both R(1)(vj, β−j)

and R(2)(vj, β−j) are defined accordingly. Here ν is a threshold that separates the coefficients into

two-groups namely the group with strong signals and the group with weak or zero signal. For

example, one can set ν = c0
√

log(p)/n for some large enough constant c0, which is the minimax

rate for support recovery.

The formulation (2.6) using the decomposition associated with signal strengths can be em-

prically motivated. Specifically, it generally provides a smaller bias than the one without such

decomposition with the simulated data. Figure 2.1 illustrates one such representative case where

we make a comparison of the biases for projection vectors calculated based on two different meth-

ods: the one solves (2.8) by using the estimated set of strong signals as in Section 2.3.1 (denoted

by “With Decomposition”) and the other one solves the same problem but with A(1)
j = ∅ (denoted

by “Without Decomposition”). It can be seen that “With Decomposition” shows a smaller bias

than “Without Decomposition.” Similar results could be observed in various simulation settings.
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Figure 2.1: Boxplots of the absolute values of the normalized bias terms defined in (2.25) by
“With Decomposition" and “Without Decomposition." The non-zero βj’s are independently gen-
erated from U(0, 4) with s0 = 10. All the simulation settings are the same as the case with the
Toeplitz covariance structure and standard normal error in Section 2.6. The results are based on
100 simulation runs.

2.2.2 A new projection direction

In this subsection, we propose a novel formulation to find the projection direction. When

|S(1)
j (ν)| ≤ n, we have the freedom to choose vj to make the term ‖n−1v>j XS(1)j (ν)

‖∞ arbitrarily

small. In fact, we can always choose vj such that it is orthogonal to all Xk with k ∈ S(1)
j (ν). The

basic idea here is to find a projection direction vj such that it is “more orthogonal" to the space

spanned by {Xk}k∈S(1)j (ν)
as compared to the space spanned by {Xk}k∈S(2)j (ν)

. With this intuition

in our mind and the goal to balance the squared bias with the variance, we formulate the following
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optimization problem

min
vj

(
γ1 max

k∈S(1)
j (ν)

|n−1v>j Xk|2 + γ2 max
k∈S(2)j (ν)

|n−1v>j Xk|2 + σ2n−1‖vj‖2
)
,

s.t. v>j Xj = n, (2.7)

where γ1, γ2 > 0 are tuning parameters which control the trade-off between the squared bias and

the variance. The term γ1 max
k∈S(1)

j (ν)
|n−1v>j Xk|2 (γ2 max

k∈S(2)
j (ν)

|n−1v>j Xk|2) corresponds to

the l1− l∞ bound for R2
(1) (R2

(2)). By introducing two ancillary variables uj1, uj2, (2.7) can be cast

into the following quadratic programming problem

min
uj1,uj2,vj

(γ1u
2
j1 + γ2u

2
j2 + σ2n−1‖vj‖2),

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ S(1)
j (ν),

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ S(2)
j (ν),

which can be solved efficiently using existing quadratic programming solver.

The set S(1)
j (ν) is generally unknown and needs to be replaced by a surrogate set A(1)

j with

|A(1)
j | ≤ n. In Section 2.3.1, we describe a method to selectA(1)

j based on a preliminary projection-

based estimators. We show that A(1)
j converges asymptotically to a nonrandom limit, i.e.,

P
(
A(1)
j = B(1)

j

)
→ 1,

for a nonrandom subset B(1)
j of [p]. We remark that B(1)

j does not need to agree with S(1)
j (ν) for

our procedure to be valid. To ensure that the remainder term is negligible, the theoretical analysis

in Section 2.3.2 suggests that γ1 and γ2 should both be of the order O (σ2n/ log p). Combining

the above discussions, we now state the optimization problem for obtaining the optimal projection
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direction

min
uj1,uj2,vj

(
C1

n

log p
u2j1 + C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

− uj1 ≤ n−1v>j Xk ≤ uj1, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j ,

(2.8)

whereA(2)
j :=

(
A(1)
j

){
\{j} and C1, C2 > 0 are tuning parameters whose choice will be discussed

in Section 2.5.1.

Remark 2.1. A related method is the refitted Lasso by Liu and Yu (2013). The idea is to refit the

model selected by the Lasso and conduct inference based on the refitted least squares estimator.

Such an estimator fits into the framework of the projection-based estimators. To see this, let Ŝ be

the set of active variables selected by the Lasso and note that β̂k = 0 for k /∈ Ŝ. For each j ∈ Ŝ,

let ŵj be the projection of Xj onto the orthogonal space of XŜ\{j}. Then the refitted least squares

estimator is given by ŵ>j (Y −X−jβ̂−j)/(ŵ>j Xj). It is easy to see that the bias for the refitted least

squares estimator is proportional to
∑

k/∈Ŝ ŵ
>
j Xkβk, which disappears when the selected model

contains all significant variables. However, when the model selection consistency fails, such a

procedure is no longer valid due to the nonnegligible bias.

2.3 Methodology

2.3.1 Surrogate set

We describe a procedure to estimate the set of strong signals based on a preliminary projection-

based estimator. It should be noted that the estimator here is different from the original debiased

Lasso because it is based on the novel formulation (2.8). Specifically, for some τ > 0, we define

our estimate for the set of strong signals as

A(τ) := {l : |Tl| >
√
τ log p} where Tl =

√
nβ̃l(v̂l)

σ̂n−1/2||v̂l||
(2.9)
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where σ̂ is an estimator of the noise level σ and β̃l(v̂l) is a projection-based estimator with v̂l being

the solution to the following optimization problem

min
ul,vl

(
C0

n

log p
u2l + n−1‖vl‖2

)
,

s.t. v>l Xl = n,

− ul ≤ n−1v>l Xk ≤ ul, k 6= l.

(2.10)

In practice, both C0 and τ need to be appropriately chosen. The details for the selection are

discussed in Section 2.5.2. Note that (2.10) is a special case of (2.8) when we have no knowledge

about the set of strong signals, that is, A(1)
l = ∅. We define the surrogate sets to be

A(1)
j (τ) := A(τ) \ {j}, A(2)

j (τ) := A(τ){ \ {j}. (2.11)

Throughout the paper, we consider the variance estimator

σ̂2 =
1

n
‖Y −Xβ̂‖2 (2.12)

which appears to outperform an alternative estimator ‖Y −Xβ̂‖2/(n − ‖β̂‖0) studied in Reid et

al. (2016), see Figure A.11 in the supplementary material for a comparison. Before presenting the

main result of this subsection, we introduce some assumptions.

Assumption 2.1. There exist a set B ⊆ [p] = {1, 2, . . . , p} and 0 ≤ d0 < d1 such that

max
l∈B{

|
√
nβl|
σ

≤
√
d0 log p,

min
l∈B

|
√
nβl|
σ

≥
√
d1 log p.

Assumption 2.2. The error ε is a mean-zero sub-gaussian random vector with the sub-gaussian

norm κε.
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Assumption 2.3. The preliminary estimator satisfies that

√
n‖β̂ − β‖1 = Op(s0

√
log(p)).

Assumption 2.4. The variance estimator σ̂2 is consistent in the sense that σ̂/σ
p→ 1.

Assumption 2.5. Suppose the design matrix X ∈ Rn×p has i.i.d. rows with zero population mean

and covariance matrix Σ = (Σi,j)
p
i,j=1. Assume that

1. maxj Σj,j <∞;

2. λmin(Σ) ≥ Λmin > 0;

3. The rows of X are sub-gaussian with the sub-gaussian norm κ <∞.

Assumption 2.6. n, p and s0 satisfy the rate condition s0 log p/
√
n = o(1).

Assumption 2.1 allows the strengths of strong and weak signals to be the same order and thus is

much weaker than the “beta-min” condition which requires the weak signals to be of smaller order.

Assumptions 2.3 and 2.4 are satisfied for the Lasso estimator and the variance estimator σ̂ in (2.12)

under suitable regularity conditions [Bühlmann and van de Geer (2011)]. Assumptions 2.2 and 2.5

require the error and design to be sub-gaussian. Similar assumptions have been made in van de

Geer et al. (2014). Like Javanmard and Montanari (2014), the validity of our method does not

rely on the sparsity of the precision matrix of the design, which is required in the nodewise Lasso

regression for the original debiased Lasso. In view of Cai and Guo (2017), the rate condition in

Assumption 2.6 cannot be relaxed without extra information. Zhu and Bradic (2018a,b) proposed

testing procedures in high-dimensional linear models which impose much weaker restrictions on

model sparsity or the loading vector representing the hypothesis. However, their methods require

certain auxiliary sparse models, which are not needed for our procedure.

Define Σj\−j = Σj,j − Σj,−jΣ
−1
−j,−jΣ−j,j and κ0j = 2

(
1 +

√
Λ−1minΣj,j

)
κ2 for 1 ≤ j ≤ p.

The following proposition shows that the surrogate setA(1)
j (τ) with a properly chosen τ converges

to B \ {j}.
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Proposition 2.1. Define A(1)
j (τ) and A(2)

j (τ) as in (2.11) and let v̂l be the solution to (2.10) for

l 6= j. Suppose d0, d1 and τ satisfy

σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1

and
√
d1/M −

√
τ > 0 where

M =

(
min
1≤l≤p

Σl\−l

)2
(

2C0

(
min
1≤l≤p

1

8e2
1

(κ0l)2

)−1
+ max

1≤l≤p
Σl\−l

)
.

Then under Assumptions 2.1-2.6, we have

P

(
max
l∈B(2)j

|Tl| ≤
√
τ log p

)
→ 1,

P

(
min
l∈B(1)j

|Tl| >
√
τ log p

)
→ 1,

where B(1)
j := B \ {j} and B(2)

j :=
(
B(1)
j

){
\ {j}. As a consequence, P

(
A(1)
j (τ) = B(1)

j

)
→ 1.

Remark 2.2. As shown in Proposition 2.1, the surrogate set in (2.11) has an asymptotic (nonran-

dom) limit, which implies that the projection direction obtained in (2.8) is asymptotically inde-

pendent of the random error ε. This fact is useful in the proof of Theorem 2.1 later. To ensure

the independence between the projection direction and the random error, we can also employ the

sample splitting strategy, i.e., we split the samples into two subsamples, estimate the set of strong

signals based on the first subsample and construct the projection-based estimator based on another

subsample. As we use all samples in building the projection-based estimator, our method is more

efficient than the sample splitting strategy.

Remark 2.3. When d0 = 0, B coincides with the support of β. Proposition 2.1 suggests that one

can consistently recover the support of β by thresholding the projection-based estimator.
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2.3.2 Bias reducing projection (BRP) estimator

In this subsection, we introduce the bias reducing projection (BRP) estimator and study its

asymptotic behavior. Let ṽj be the solution to (2.8) based the surrogate sets in (2.11). Then the

BRP estimator β̃j(ṽj) is defined as

β̃j(ṽj) =
1

n
ṽ>j η̂j =

1

n
ṽ>j (Y −X−jβ̂−j).

In the following, we introduce the two asymptotic results depending on whether the surrogate set is

estimated from the same data set used to find the projection direction. We first state the following

theorem on the asymptotic normality when the surrogate set is estimated via (2.11).

Theorem 2.1. Denote by ṽj the solution to (2.8) with A(1)
j (τ) and A(2)

j (τ) in (2.11). Suppose the

assumptions in Proposition 2.1 hold and further assume that for some δ > 0,

‖ṽj‖2+δ = oa.s.(‖ṽj‖). (2.13)

Then we have √
n
(
β̃j(ṽj)− βj

)
σ̂n−1/2‖ṽj‖

d→ N(0, 1). (2.14)

Thus an asymptotic 100(1− α)% confidence interval for βj is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n(β̃j(ṽj)− b)
σ̂n−1/2‖ṽj‖

∣∣∣∣∣ ≤ z1−α/2

}
, (2.15)

where z1−α/2 is the 1− α/2 quantile of N(0, 1).

(2.13) is a Lyapunov type condition which implies the central limit theorem. This type of

assumption regarding the projection direction has also been imposed in Dezeure et al. (2017). It

can be dropped under the Gaussian assumption on the errors. If the surrogate set is chosen based

on prior knowledge or estimated from an independent data set (e.g., based on sample splitting),

then Assumptions 2.1-2.2 can be relaxed and we have the following result.
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Corollary 2.1. Suppose the surrogate set A(1)
j is independent of the data. Under Assumptions

2.3-2.6 and further assuming that for some δ > 0, E[|εi|2+δ] <∞ and ‖ṽj‖2+δ = oa.s.(‖ṽj‖), then

(2.14) still holds.

2.3.3 Modified bias reducing projection (MBRP) estimator

We introduce a modified bias reducing projection (MBRP) estimator which is motivated by

Proposition 2.1 and the refitted Lasso idea. This new estimator would lead to a potentially smaller

order of bias compared to that of the original debiased Lasso estimator under suitable assumptions

as shown in Proposition 2.2. Thus, it is expected to provide better empirical coverage probability.

See more details in Section 2.6. To motivate the MBRP estimator, we note that the bias associated

with the BRP estimator based on some estimator β̌ for β can be written as

√
nR(vj, β−j) =

1√
n

∑
k 6=j

v>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v>j Xk(βk − β̌k)

where B(1)
j ,B(2)

j are the same as in Proposition 2.1. When |B(1)
j | ≤ n, we can always require vj to

be exactly orthogonal to XB(1)j
. So, the bias associated with the set of strong signals becomes zero.

Thus it suffices to control the bias term associated with B(2)
j by properly choosing vj and β̌, which

will be clarified below.

To find the projection direction for the MBRP estimator, we consider the optimization problem

min
uj2,vj

(
C2

n

log p
u2j2 + n−1‖vj‖2

)
,

s.t. v>j Xj = n,

n−1v>j Xk = 0, k ∈ A(1)
j ,

− uj2 ≤ n−1v>j Xk ≤ uj2, k ∈ A(2)
j .

(2.16)

Different from (2.8), we require the projection direction to be orthogonal to the column space of
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XA(1)
j

in (2.16). Instead of using the Lasso estimator β̂, we shall adopt the refitted least squares

estimator β̌ as our preliminary estimator, i.e.,

β̌A(1)
j

= argmin
β̃

1

2n
‖Y −XA(1)

j
β̃‖2, β̌A(2)

j
= 0. (2.17)

The MBRP estimator is then defined as

β̃j(v̄j) =
1

n
v̄>j (Y −X−jβ̌−j) = βj +

1

n
v̄>j ε+R(v̄j, β−j) (2.18)

where R(v̄j, β−j) = n−1v̄>j X−j(β−j − β̌−j) and v̄j is the solution to problem (2.16). The MBRP

estimator can be viewed as an intermediate estimator between the refitted Lasso and the BRP

estimator based on (2.8). While (2.16) is a variant of (2.8) seeking for a projection direction that is

exactly orthogonal to the column space of XA(1)
j

, the modified procedure uses the refitted estimator

for β as the refitted Lasso does as noted in Remark 2.1.

We argue that the bias term
√
nR(v̄j, β−j) which controls non-Gaussianity could have a potne-

tially smaller order compared to that of the original debiased Lasso estimator in the following.

Proposition 2.2. Denote by v̄j the solution to (2.16) with A(1)
j (τ) and A(2)

j (τ) defined in (2.11).

Let β̌ be the refitted least square estimator in (2.17). Conditional on the event {A(2)
j = B(2)

j }, we

have

|
√
nR(v̄j, β−j)| ≤ Op

(√
d0‖βB(2)j ‖0

log p√
n

)
(2.19)

under Assumptions 1 and 5. If we further assume that

√
d0‖βB(2)j ‖0 = o(s0), (2.20)

the bias
√
nR(v̄j, β−j) is asymptotically negligible with smaller order than that of the original

debiased Lasso given by Op(s0 log p/
√
n).

In particular, (2.20) holds if d0 = o(1) and d1 = O(1), i.e., the strength of weak signals is
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of smaller order compared to the strong signals. It is more stringent than Assumption 2.1 where

the magnitudes of the set of strong signals and weak signals are allowed to be of the same order.

However, it should be mentioned that Proposition 2.2 is not necessary for the asymptotic normality

in Corollary 2.2 to be achieved. The following result shows the asymptotic normality of (2.18)

which can be proved by using similar arguments as those for Theorem 2.1.

Corollary 2.2. Under the assumptions in Theorem 2.1, we have

√
n
(
β̃j(v̄j)− βj

)
σ̂n−1/2‖v̄j‖

d→ N(0, 1),

where β̃j(v̄j) is defined in (2.18) and v̄j is the solution to (2.16).

2.4 Inference on a sparse linear combination of parameters

In some applications, one may be interested in conducting inference on a>β for a (sparse)

loading vector a = (a1, . . . , ap)
> ∈ Rp with ‖a‖0 = s� n. Denote by S = S(a) = {1 ≤ j ≤ p :

aj 6= 0} the support set of a. Our method can be generalized to construct estimator and conduct

inference for a>β = a>SβS . Recall that β̂ is the preliminary estimator of β. Define

ηS = Y −X−Sβ−S = XSβS + ε

and

η̂S =Y −X−Sβ̂−S = XSβS + ε+ X−S(β−S − β̂−S).

We construct an estimator for a>β in the form of n−1v>a η̂S , where va = (va,1, . . . , va,n)> is a

projection direction such that n−1v>a η̂S has tractable asymptotic limit. Notice that

n−1v>a η̂S =n−1v>a XSβS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S)

=a>SβS + (n−1v>a XS − a>S )βS + n−1v>a ε+ n−1v>a X−S(β−S − β̂−S).
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Under the equality constraint that n−1v>a XS − a>S = 0 and by rearranging the above terms, we

have

√
n(n−1v>a η̂S − a>SβS) = n−1/2v>a ε+

√
nR(va, β−S), (2.21)

where R(va, β−S) = n−1v>a X−S(β−S − β̂−S). Similar to (2.6), the bias term can be decomposed

into two parts corresponding to different strengths of the signals. Let A(1)
S be the surrogate set

for the set of strong signals (excluding the elements in S), which can be obtained in a similar

way as described in Section 2.3.1. Following the derivations in Section 2.2, we can formulate the

following optimization problem to find va

min
ua1,ua2,va

(
C1

n

log p
u2a1 + C2

n

log p
u2a2 + n−1‖va‖2

)
,

s.t. v>a XS = na>S ,

− ua1 ≤ n−1v>a Xk ≤ ua1, k ∈ A(1)
S ,

− ua2 ≤ n−1v>a Xk ≤ ua2, k ∈ A(2)
S ,

(2.22)

whereA(2)
S :=

(
A(1)
S ∪ S

){
. Denote by (ũa1, ũa2, ṽa) the solution to (2.22). Our estimator for a>β

is thus given by n−1ṽ>a η̂S whose asymptotic normality is established in the following theorem.

Theorem 2.2. With ‖a‖0 = s � n, suppose the assumptions in Proposition 2.1 hold and

‖ṽa‖2+δ = oa.s.(‖ṽa‖) for some δ > 0. Then, we have

√
n
(
n−1ṽ>a η̂S − a>β

)
σ̂n−1/2‖ṽa‖

d→ N(0, 1). (2.23)

Thus an asymptotic 100(1− α)% confidence interval for a>β is given by

CI(1− α) =

{
b ∈ R :

∣∣∣∣∣
√
n
(
n−1ṽ>a η̂S − b

)
σ̂n−1/2‖ṽa‖

∣∣∣∣∣ ≤ z1−α/2

}
,

where z1−α/2 is the 1− α/2 quantile of N(0, 1).
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We mention some existing works for inference on linear combinations of β. When the spar-

sity level s0 is known, Cai and Guo (2017) obtained the minimax expected length of confidence

intervals for a>β in both the sparse and dense loading regions. They further showed that without

the knowledge of s0, rate-optimal adaptation in the sparse loading regime is only possible under

Assumption 2.6 and in the dense loading regime, adaptation to s0 is impossible. In Zhu and Bradic

(2018b), the authors proposed a test for linear hypothesis, which does not impose restriction on

model sparsity or the loading vector representing the hypothesis. Nevertheless, compared to our

method, the method by Zhu and Bradic (2018b) requires an additional sparse model to account for

the dependence between the so-called synthesized feature and the stabilized feature.

Parallel to Corollary 2.1, if the surrogate set is estimated based on prior information or an

independent data set, Assumptions 2.1-2.2 can be dropped and the asymptotic normality can be

established as follows.

Corollary 2.3. Suppose the surrogate set A(1)
j is independent of the data. Under Assumptions

2.3-2.6 and further assuming that for some δ > 0, E[|εi|2+δ] <∞ and ‖ṽa‖2+δ = oa.s.(‖ṽa‖), then

(2.23) still holds.

2.5 Implementation details

2.5.1 Selecting the tuning parameters

Bootstrap for debiased Lasso has been recently studied in both Zhang and Cheng (2017) and

Dezeure et al. (2017) to approximate the sampling distribution of the debiased Lasso estimator.

Here we propose a bootstrap-assisted approach for choosing the tuning parameters in (2.8), (2.10)

and (2.16). Specifically, the residual bootstrap is used to obtain the empirical coverage rate and its

standard error for selecting the optimal tuning parameters. We focus our discussions on (2.8) and

remark that the procedure is applicable to (2.10) and (2.16) as well. Let

ε = (ε1, . . . , εn)> = Y −Xβ̂
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and ε̄i = εi − n−1
∑n

j=1 εj be the centered residual where β̂ denotes the cross-validated Lasso

estimator. Given a sequence of tuning parameters
{(
c1,j,(k), c2,j,(k)

)}K
k=1

, we first calculate

ṽj
(
c1,j,(k), c2,j,(k)

)
which is the solution to (2.8) given

(
c1,j,(k), c2,j,(k)

)
. Note that the projec-

tion direction ṽj only needs to be calculated once for each pair of tuning parameters. Given{
ṽj
(
c1,j,(k), c2,j,(k)

)}K
k=1

, we do the following.

1. To generate the b-th bootstrap sample, we sample n residuals with replacement from {ε̄i}ni=1

and denote the corresponding samples by ε∗b = (ε∗b,1, . . . , ε
∗
b,n)>. Then, generate Y ∗b such that

Y ∗b = Xβ̂ + ε∗b .

2. With (X, Y ∗b ), calculate the cross-validated Lasso estimator β̂∗b as well as the projection-

based estimator

β̃j(ṽj(c1,j,(k), c2,j,(k))) =
ṽj(c1,j,(k), c2,j,(k))

>(Y ∗b −X−jβ̂
∗
b,−j)

n
,

where β̂∗b,−j denotes β̂∗b without the j-th component. We then calculate the 100(1 − α)%

confidence interval CI∗b,j,(k) by using (2.15). For each j, calculate I(β̂j ∈ CI∗b,j,(k)) which is 1

if β̂j is covered by CI∗b,j,(k) and 0 otherwise. Also, calculate the length of CI∗b,j,(k) and denote

it as Len∗b,j,(k).

3. Repeat the above steps for B bootstrap samples. We then obtain the bootstrap coverage rate

for each β̂j as

Ĉoverj,(k) =

∑B
b=1 I(β̂j ∈ CI∗b,j,(k))

B
,

and its standard error

SE(Ĉoverj,(k)) =

√
Ĉoverj,(k)(1− Ĉoverj,(k))

B
,

and its average length

AvgLenj,(k) =

∑B
b=1 Len∗b,j,(k)

B
.
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4. We choose the tuning parameters for βj as

(c∗1,j,(k), c
∗
2,j,(k)) = argmin

k

AvgLenj,(k)

s.t. Ĉoverj,(k) + SE(Ĉoverj,(k)) ≥ 1− α.

In words, the optimal pair of tuning parameters is selected with the minimum average interval

length among all the pairs whose empirical coverage rate increased by one standard error is

at least the nominal level 1− α.

2.5.2 Empirical analysis of the effect of tuning parameters

We empirically investigate the sensitiveness of our method to the choice of tuning parameters.

Throughout this subsection, we suppose the rows of X ∈ R100×500 are i.i.d realizations from

N(0,Σ) with Σj,k = 0.9|j−k| (Toeplitz) or Σj,k = 0.8 (Equicorrelation) for j 6= k and Σjj = 1.

Regression coefficients βj’s are generated by either Case 1 with s0 = 10 or Case 2 with s0 = 4

as described in Section 2.6. The errors are independently generated from the standard normal

distribution. The nominal level is 95% and results are based on 100 independent simulation runs.

We first explore the effect of C0 on the estimation of the surrogate set and the impact of C1 and

C2 on the coverage rate and interval width of the BRP-based confidence interval. The results for

βj generated from Case 2 with s0 = 4 and Toeplitz covariance Σ are summarized in Figure 2.2.

As seen from Panel A, the surrogate set A(τ) with τ = 2 correctly identifies the large coefficients

when C0 ≥ 2. Panels B-D provide the average coverage rate, bias and length of the BRP-based

confidence intervals for the active set over a prespecified set of grid points for (C1, C2). The

coverage probability and interval width both tend to increase with the values of C1 and C2. These

results appear to suggest that fixing one parameter at a reasonably large value while choosing the

other parameter to balance the coverage probability and interval width would generally deliver

similar results as simultaneously selecting the two parameters.

To confirm this intuition, we set C0 = 2, C1 = 8 and use the procedure in Section 2.5.1 to
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select C2 over the following prespecified grid points

{
c2,j,(k)

}K
k=1

= {0.3, 0.6, · · · , 14.7, 15.0} . (2.24)

We denote the corresponding procedures by “Fix-BRP" and “Fix-MBRP" and compare their per-

formance with the procedures that select all tuning parameters automatically using the method in

Section 2.5.1. Notice that fixing C0 and C1 would significantly ease the computational burden.

Figure 2.3 presents the empirical coverage probabilities and lengths of the 95% confidence inter-

vals and the normalized overall bias as in (2.25). Fix-BRP and Fix-MBRP perform equally well in

terms of the coverage accuracy and bias as compared to BRP and MBRP but with a much lower

computational cost. Indeed similar results are observed for the other simulation setups in Sec-

tion 2.6.1. For the rest of the paper, we shall adopt the above procedure by fixing C0 and C1 to

implement the proposed method.

Finally, we study the impact of B and τ . Figure 2.4 summarizes the performance of the BRP

and MBRP-based confidence intervals with different values of B and τ . The results are not sen-

sitive to the bootstrap sample size B. We also observe that a larger τ tends to deliver higher

coverage for MBRP in the equicorrelation case. Unreported numerical studies show that similar

phenomenon can be observed for the other simulation setups. In Section 2.6 below, we shall fix

B = 200 and τ = 2.
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Figure 2.2: The first set of figures on empirical analysis of the effect of tuning parameters for BRP.
Panel A shows the barplots of the average cardinality ofA(τ) against C0. Error bars in the barplots
represent the interval within one standard error of the average value. Panel B (C or D) shows the
heatmap of the average coverage rates (bias or length) by the BRP estimator over a prespecified
grid points for (C1, C2). The number represents the average coverage probability (bias or length)
of the 95% confidence intervals for the active set.

26



Figure 2.3: The second set of figures on empirical analysis of the effect of tuning parameters for
BRP. Panel A shows the barplots of the empirical coverage and Panels B-C display the boxplots
for the length and bias of the 95% confidence intervals of each method. In Panel A, the horizontal
line indicates the nominal level and error bars represent the interval within one standard deviation
of the empirical coverage. Panel D shows the boxplots of the computation time (in seconds) for
each method.
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Figure 2.4: Set of figures on empirical analysis of the effect of tuning parametersB and τ . Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals for
both the active and inactive sets with different values of B and τ . The horizontal line in the
barplots indicates the nominal level. Error bars in the barplots represent the interval within one
standard deviation of the empirical coverage. The data are independently generated from Case 1
with s0 = 10 and standard normal error as in Section 2.6.
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2.6 Numerical results

2.6.1 Confidence interval for a single regression coefficient

We conduct simulations to evaluate the finite sample performance of the proposed BRP and

MBRP estimators. We use the R package quadprog to solve the quadratic programming prob-

lems involved in our methods and the R package doMC with 5 cores for parallel computation. All

the other implementation details are the same as described in Section 2.5. For comparison, we

implement the debiased Lasso in van de Geer et al. (2014) (denoted by DB) using the R package

hdi and the method in Javanmard and Montanari (2014) (denoted by JM) using the code posted

on the authors’ website. As we encounter some numerical issue when implementing JM’s code for

the equicorrelation covariance structure of X in (ii). Therefore, we only report the results of JM for

the toeplitz covariance structure of X. In addition, we present the results of the double selection

approach in Belloni et al. (2014) (denoted by BCH) using the R package hdm. Due to the high

computational cost of BCH in the case of equicorrelation covariance, we only report the result for

the active set. We also implement the method in Zhu and Bradic (2018b) (denoted by “ZB" and

“ZB2"). The only difference between ZB and ZB2 lies on the choice of the constant c in the tuning

parameter η =
√
c(log p)/n in (12) of their paper. In ZB, we set c = 2 as suggested by the authors

while in ZB2, we let c = 10−3.

In (2.1), the rows of X are considered to be i.i.d realizations from N(0,Σ) with Σjj = 1 under

two scenarios: (i) Σj,k = 0.9|j−k| (denoted as Tp); (ii) Σj,k = 0.8 for all j 6= k (denoted as Eq). To

generate β, we consider the following two cases,

Case 1: βj
i.i.d.∼ U(0, 4) with s0 = 3, 5, 10, 15.

Case 2: Half of the non-zero βj’s are independently generated from U(0, 0.5) and the rest

are generated from U(2.5, 3) with s0 = 4, 8, 12, 16.

The errors are independently generated from (a) the standard normal distribution; (b) the studen-

tized t(4) distribution, i.e., t(4)/
√

2; (c) the centralized and studentized Gamma(4,1) distribution,
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i.e., (Gamma(4, 1) − 4)/2. The simulation results for (b) and (c) are summarized in the supple-

mentary material. To save space, we only included the results of BCH, ZB and ZB2 for case (a).

Throughout the simulations, we set n = 100, p = 500 and the nominal level 1− α = 0.95. All the

simulation results are based on 100 independent simulation runs.

We summarize the empirical coverage probabilities, the corresponding confidence interval

lengths and the absolute value of the overall normalized bias defined as

Bias =
|
√
nR(vj, β−j)|√
σ̂2n−1‖vj‖2

(2.25)

for both the active set and the inactive set in Figures 2.5-2.8. The R code of Javanmard and Monta-

nari (2014) makes a finite sample adjustment. To avoid unfair comparison, we do not include their

method in the bias comparison. As inverting the test statistic in Zhu and Bradic (2018b) doesn’t

provide a closed form of confidence interval, the interval lengths of ZB and ZB2 are numerically

calculated by using the bisection-type method. To avoid computational burden therein, we only

calculate the lengths of 5 confidence intervals of ZB and ZB2 for inactive set in each simulation

runs.

We observe that (i) BRP and MBRP generally provide more accurate coverage for the active

set in comparison to DB and JM. The coverage probability for the active set based on DB can be

significantly lower than the nominal level. While BCH shows similar or slightly higher coverage

rate than BRP for the Toeplitz covariance structure, its coverage rate is lower than the nominal

level in the equicorrelation case; (ii) The interval length of BCH is generally similar or wider than

the lengths of BRP and MBRP, which is in turn wider than that of DB for the active set. Both ZB

and ZB2 tend to provide wider confidence intervals compared to the other methods. (iii) For the

equicorrelation covariance structure and s0 ≥ 10, ZB2 delivers the most accurate coverage rate

followed by MBRP. In contrast, the other methods significantly undercover in these cases. (iv) The

better coverage of the active set for our method is closely related to the smaller bias. Interestingly,

the coverage rate for the inactive set seems not sensitive to the bias; (v) The computation time of
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our method is between those of DB and ZB as shown in Table 2.1; (vi) The bias associated with

the active set tends to be larger than that with the inactive set especially in the case of Toeplitz

covariance. BRP seems to overally reduce the bias associated with both the active and inactive sets

in such case; (vii) The coverage rate for the inactive set is usually close or above the nominal level

for all methods except for ZB. According to our extensive simulations, the over-coverage is partly

caused by the overestimation of the noise level as illustrated in Figure A.11 in the supplementary

material. Overall, our proposed method appears to outperform DB, JM, BCH and ZB in terms of

coverage accuracy.

Min Q1 Median Q3 Max

BRP 107.60 125.30 126.70 127.80 135.20

MBRP 89.65 104.34 105.21 106.35 109.03

DB 26.29 33.45 34.41 35.66 38.20

ZB 457.90 471.30 476.50 483.20 499.50

Table 2.1: Computation time (in seconds) of each method for constructing 500 confidence intervals
calculated by the R package microbenchmark. The five number summaries are obtained based
on 100 independent simulation runs.

Figures 2.9-2.10 plot the bias and length of BRP and MBRP against C2 selected by the proce-

dure in Section 2.5.1. It is interesting to note that for BRP, the interval width generally increases

while the bias decreases with C2. The pattern is less obvious for MBRP with most of the values of

C2 concentrate around the lower end of the grid points in (2.24).
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Figure 2.5: Simulation results for Case 1 with s0 = 3, 5 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 2.6: Simulation results for Case 1 with s0 = 10, 15 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 2.7: Simulation results for Case 2 with s0 = 4, 8 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 2.8: Simulation results for Case 2 with s0 = 12, 16 and standard normal random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure 2.9: Scatterplots of the bias and length of the BRP-based confidence interval for the active
set with s0 = 3 and Toeplitz covariance structure for X against the selected C2. The point shapes
and colors indicate whether the constructed confidence intervals include the true parameter or not.

Figure 2.10: Scatterplots of the bias and length of the MBRP-based confidence interval for the
active set with s0 = 8 and equicorrelation covariance structure for X against the selected C2.
The point shapes and colors indicate whether the constructed confidence intervals include the true
parameter or not.

36



2.6.2 Confidence interval for a sparse linear combination of regression coefficients

In this subsection, we investigate the finite sample performance of the method in Section 2.4.

We consider the case where a linear contrast for two coefficients is of interest. We set the true

regression coefficient β = (b1, b1, b2, b3, 0, · · · , 0)>, where b1, b2, b3 are drawn independently from

U(0, 4). Depending on a, we consider the following two cases:

1. Contrast 1: a = (1,−1, 0, · · · , 0)> and a>β = b1 − b1 = 0;

2. Contrast 2: a = (0, 0, 1,−1, , 0, · · · , 0)> and a>β = b2 − b3 6= 0.

We adopt the same procedures as before for choosing the surrogate set and the tuning parameters

but the results are based on 300 independent simulation runs. The configuration for ε is the same

as in the previous subsection. The results for t-distributed and gamma errors are presented in the

supplementary material.

Figure 2.11 shows the empirical coverage rates, the corresponding confidence interval widths

as well as the bias for each contrast. For the Toeplitz covariance structure, BRP and MBRP provide

closer coverage rate to the nominal level but with wider interval length than DB does. In particular,

MBRP delivers the smallest bias. Thus, the better coverage for our method is again closely related

to the smaller bias in the finite sample. For the equicorrelation covariance structure, the coverage

rates of all the methods are close to the nominal level. We also note that ZB2 provides satisfactory

coverage probabilities while ZB significantly undercovers in the case of Toeplitz covariance struc-

ture. Similar to the case for a single regression coefficient, the lengths of ZB and ZB2 are generally

wider than those of the other methods.
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Figure 2.11: Simulation results for a sparse linear combination of β and standard normal random
error. Barplots for the empirical coverage and boxplots for the length and bias of the 95% confi-
dence intervals for each contrast. The horizontal line in the barplots indicates the nominal level.
Error bars in the barplots represent the interval within one standard deviation of the empirical
coverage.
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2.6.3 Real data analysis

As a real data application, we consider a dataset of riboflavin (vitamin B2) production by

Bacillus subtilis. The dataset is available in the R package hdi and has also been analyzed in van

de Geer et al. (2014) and Javanmard and Montanari (2014). It contains n = 71 observations of

p = 4088 covariates of gene expressions and a response of riboflavin production. We model the

data using (2.1) and consider the following multiple hypothesis testing for the significance of each

gene:

Hj,0 : βj = 0 for j = 1, · · · , 4088.

We use Theorem 2.1 and Corollary 2.2 to calculate the p-values based on BRP and MBRP respec-

tively. The Holm procedure is adopted for multiplicity adjustment with the 5% significance level.

Neither of our methods finds any significant predictors, which is also the case for DB while there

turn out to be two significant genes YXLD-at and YXLE-at identified by JM.
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3. TWO-STAGE FALSE DISCOVERY RATE CONTROL FOR CONFOUNDER

ADJUSTMENT IN GENOMICS STUDIES

3.1 Introduction

One central theme of genomic data analysis is to identify genomic features that are associated

with a variable of interest such as disease status. The associated features are subject to further

replication and validation, and the validated features could then be followed up for more in-depth

mechanistic study or be used as biomarkers for disease presentation, diagnosis, and prognosis

if they have sufficient predictive power. Due to the constraint of clinical sample collection, the

variable of interest is often correlated with other variables, which may potentially confound the

associations of interest. One example is the identification of microbiome biomarkers for endome-

trial cancer based on a comparison between benign and malignant tumor samples. Patients with

benign tumors are usually much younger than those with malignant tumors since the progression

to malignancy requires multiple genomic events. Age has also been known to be associated with

the female genital microbiome. Therefore, age is a confounding factor, and we need to control it if

the aim is to identify cancer-related microbiome biomarkers reliably. Controlling the confounders

could significantly increase the rate of successful validation, reduce the overall cost and shorten the

time from discovery to clinical tests. However, confounder adjustment exacerbates the already low

statistical power for genome-scale association tests due to a substantial multiple testing burden. If

no confounder adjustment is performed, we are faced with a severely inflated type I error, with

the extent of inflation depending on the number and strength of associations with the confounder.

Increasing the statistical power for a confounded association study while controlling for the false

positives is a statistical topic of critical importance. Surprisingly, few statistical efforts have been

made for this important topic. Some recent contributions include Price et al. (2006), Leek and

Storey (2008), Sun et al. (2012) and Wang et al. (2017).

The traditional way of confounder adjustment for high-dimensional association tests is to adjust
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for confounders for each genomic feature and further correct the individual association p-values

for multiple testing using false discovery rate (FDR) control. This procedure seems a standard

statistical practice for genomic association analysis with the aim to maintain the correct type I error

rate level. Here we show that such a method is subject to lower statistical power and we propose

a novel two-stage FDR procedure for more powerful confounder adjustment. In the first stage, we

use the unadjusted z-statistics to enrich signals (for both false and real signals). We then remove the

false signals in the second stage due to confounders by using the adjusted z-statistics and control

the FDR at the desired level. Since in the second step we use a more lenient p-value cutoff due to a

much less multiple testing burden, we could achieve a way better power than the commonly used

adjusted procedure. A particular challenge is the choice of the cutoff values in the two stages. Our

main contribution is to propose a new way of simultaneously selecting both cutoffs. By choosing

two thresholds simultaneously, we automatically take into consideration the selection effect caused

by the first stage. The proposed method can be viewed as a two-dimensional generalization of

the classical Benjamini-Hochberg (BH) procedure, where we search for the cutoff values in a

two-dimensional region. In the BH procedure, one replaces the number of false rejections by its

expectation under the null to come up with a (conservative) estimate for the FDR. The threshold

is chosen to control the estimate for the FDR while maximizing the number of rejections. An

intrinsic difficulty in our case is that the expected number of false rejections depends on the effects

of the confounding factors on each feature. As the number of features could be in the thousands, it

thus requires estimating a large number of nuisance parameters. To tackle this challenge, we adopt

an empirical Bayesian viewpoint by assuming that the nuisance parameters are generated from a

common prior distribution. The Bayesian viewpoint allows us to express the expected number of

false rejections as a functional of the prior distribution. Therefore, we can translate the task into

estimating the prior distribution instead of a direction estimation of a large number of nuisance

parameters. It is worth mentioning that the problem we are facing is in a similar spirit to the

g-factor of intelligence of Spearman (1904). The prior distribution is estimated via the general

maximum likelihood empirical Bayes estimation [Jiang and Zhang (2009); Koenker and Mizera

41



(2014)], which can be cast into a convex optimization problem. Under suitable assumptions, we

show that the empirical Bayes estimate of the expected number of false rejections is consistent and

the proposed method provides asymptotic FDR control. Through extensive numerical studies, we

demonstrate that the recommended two-stage procedure outperforms the commonly used one-stage

approach in a wide range of settings.

The rest of this chapter proceeds as follows. We introduce the two-stage FDR controlling pro-

cedure in Section 3.2. Section 3.3 justifies the asymptotic validity of the proposed procedure. We

conduct asymptotic power analysis in Section 3.4. Section 3.5 presents numerical results from both

simulations and real data analysis. As modern genomics data are generated based on sequencing,

the response Yi in (3.1) would not be necessarily continuous. For such case, we extend the pro-

posed two-step procedure to generalized linear model in Section B.2. The technical details are

gathered in Section B.3.

In Chapter 3, we use the following notations: For x, y ∈ R, let x ∨ y = max(x, y) and

x ∧ y = min(x, y). Let dH(f, g) = (1/2)
∫

(
√
f(x) −

√
g(x))2dx be the Hellinger distance

between two densities f and g. For a matrix C, denote by PC = C(C>C)−1C> the projection

matrix associated with the column space of C and define P⊥C = I − PC. Let ‖C‖2 and ‖C‖max

be the spectral norm and the elementwise maximum norm of C, respectively. Denote by λmin(C)

and λmax(C) the minimum and maximum eigenvalues of C. Let φ(·) and Φ(·) be the probability

density function and cumulative distribution function of the standard normal distribution. Denote

by χ2
k the chi-square distribution with k degrees of freedom.

3.2 Methodology

3.2.1 Basic setup

Consider the following linear models:

Yi = 1n×1b+Xαi + Zβi + ei, ei
i.i.d.∼ N(0, σ2

i In), 1 ≤ i ≤ m, (3.1)
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where Yi ∈ Rn×1 is the response vector, X = (X1, . . . , Xn)> ∈ Rn×1 is the covariate of interest,

Z = (z1, . . . , zn)> ∈ Rn×d is the design matrix associated with the confounding factors, and

αi ∈ R and βi = (βi1, . . . , βid)
> ∈ Rd×1 are the parameters associated with the covariate and

confounding factors respectively. By centering the response, covariate and confounding factors,

we can assume without loss of generality that b = 0 throughout the following discussions.

Under (3.1), there are four different categories to consider

A. Solely associated with the variable of interest: αi 6= 0,βi = 0;

B. Solely associated with the confounder: αi = 0,βi 6= 0;

C. Associated with both the variable of interest and confounder: αi 6= 0,βi 6= 0;

D. Not associated with either the variable of interest or confounder: αi = 0,βi = 0.

The goal of this work is to develop a multiple testing procedure for simultaneously testing m

hypotheses

H0,i : αi = 0 versus Ha,i : αi 6= 0, i = 1, 2, . . . ,m,

while adjusting for the confounding effects. We let α̂Ai be the estimator of αi after adjusting for the

confounding effect, and α̂Ui be the unadjusted version without taking into account the confounding

factors. Specifically, we have

α̂Ai = (X>P⊥ZX)−1X>P⊥Z Yi = αi + (X>P⊥ZX)−1X>P⊥Z ei,

α̂Ui = (X>X)−1X>Yi = αi + (X>X)−1X>Zβi + (X>X)−1X>ei.

Under (3.1), the estimator of the noise level σ2
i is given by

σ̂2
i =

1

n− d− 1
(Yi −Xα̂Ai − Zβ̂i)

>(Yi −Xα̂Ai − Zβ̂i) =
1

n− d− 1
Y >i P

⊥
WYi,

where β̂i = (Z>P⊥XZ)−1Z>P⊥XYi and W = (X,Z). Let Ω = X>X/n, Γ = X>Z/n, ΩX|Z =

X>P⊥ZX/n and ΩZ|X = Z>P⊥XZ/n. The adjusted and unadjusted z-statistics for testing H0,i can
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be defined as

ZA
i =
√
nΩ

1/2
X|Zα̂

A
i /σ̂i =

√
nΩ

1/2
X|Zαi/σ̂i + Ω

−1/2
X|Z X

>P⊥Z ei/(
√
nσ̂i),

ZU
i =
√
nΩ1/2α̂Ui /σ̂i =

√
nΩ1/2αi/σ̂i +

√
nΩ−1/2Γβi/σ̂i + Ω−1/2X>ei/(

√
nσ̂i),

where we have used the variance estimator under model (3.1) for both statistics.

Figure 3.1 shows that the average power of the traditional approach only using the adjusted

statistics decreases as the confounding effect gets stronger. Motivated by this fact, we propose a

novel two-stage procedure which can be described as follows: given the thresholds t1, t2 ≥ 0,

Step 1. Use the unadjusted statistics to determine a preliminary set of features D1 ={
1 ≤ i ≤ m : |ZU

i | ≥ t1
}

.

Step 2. Reject H0,i for |ZA
i | ≥ t2 and i ∈ D1. As a result, the final set of discoveries is given

by D2 =
{

1 ≤ i ≤ m : |ZU
i | ≥ t1, |ZA

i | ≥ t2
}

.

The first two plots in Figure 3.2 illustrates the above procedure step by step. The basic idea

of this procedure is to find the threshold for the unadjusted statistics in step 1 to screen out a

large number of noises in Category D. This step enriches both true and false signals. Then, the

second step tries to find out another threshold for the adjusted statistics to separate true signals in

Categories A and C from false signals in Category B. Although the unadjusted statistics are unable

to distinguish the noise in Category B from the signals, they can preserve or even increase the

signal strength. To see this, we note that

|Ω1/2αi| ≥ |Ω1/2
X|Zαi|.

When βi = 0, the unadjusted statistics can better preserve the signal strength comparing to the

adjusted one.

44



Figure 3.1: Barplots of the true positive rates for the different values of r in (B.1). Here r is propor-
tional to the correlation between X and Z which thus represent the magnitude of the confounding
effect. The data generation scheme is shown in Section B.1. Error bars in the bar plots represent
the interval within two standard devation of the true positive rate.

Figure 3.2: Scatter plots of |ZU
i | against |ZA

i | to illustrate the traditional one-step method and two-
step procedure. The figures are based on a single dataset generated as described in Section B.1
with r = 2. While the first two plots describes the two-step procedure where the red vertical and
horizontal lines denote the chosen cutoff. The plot on the far right shows the traditional one-step
method where the horizontal line denotes the cutoff found by the Storey’s procedure.
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3.2.2 Approximation of the false discovery proportion

Recall that ti is the threshold in Step i for i = 1, 2. We propose a method to simultaneously

select the two thresholds. Note that the ith hypothesis will be rejected if and only if

|ZU
i | ≥ t1 and |ZA

i | ≥ t2.

In Step 2, all rejections from Categories B and D (αi = 0) will be considered as false rejec-

tions/discoveries. Therefore, the false discovery proportion (FDP) is defined as

FDP(t1, t2)

=

∑
i:αi=0 1{|ZU

i | ≥ t1, |ZA
i | ≥ t2}∑m

i=1 1{|ZU
i | ≥ t1, |ZA

i | ≥ t2}
(3.2)

=

∑
i:αi=0 1{|

√
nΩ−1/2Γβi/σ̂i + Ω−1/2X>ei/(

√
nσ̂i)| ≥ t1, |Ω−1/2X|Z X

>P⊥Z ei/(
√
nσ̂i)| ≥ t2}∑m

i=1 1{|ZU
i | ≥ t1, |ZA

i | ≥ t2}
.

Let (V1, V2) be the bivariate normal random variables such that

V1
V2

 ∼ N2


0

0

 ,

 1 Ω−1/2Ω
1/2
X|Z

Ω
1/2
X|ZΩ−1/2 1


 .

Replacing the numerator by the corresponding expectation (conditional on X,Z and βi’s) and σ̂i

by σi in (3.2), we obtain

FDP(t1, t2) ≈
∑

i:αi=0 L(µi, t1, t2)∑m
i=1 1{|ZU

i | ≥ t1, |ZA
i | ≥ t2}

≤
∑m

i=1 L(µi, t1, t2)∑m
i=1 1{|ZU

i | ≥ t1, |ZA
i | ≥ t2}

, (3.3)

where µi = µi,n :=
√
nΩ−1/2Γβi/σi and L(µ, t1, t2) = P (|µ+ V1| ≥ t1, |V2| ≥ t2|µ).

The major challenge here is the estimation of the expected number of false rejections given by∑m
i=1 L(µi, t1, t2), which involves a large number of nuisance parameters µi’s. A natural strategy is

to estimate each µi separately by µ̂i, and replace L(µi, t1, t2) by the plug-in estimate L(µ̂i, t1, t2).

It seems natural to use the least squares estimator given by µ̂i =
√
nΩ−1/2Γβ̂i/σ̂i. However,
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this method does not lead to a consistent estimation of the number of false rejections when there

is non-negligible proportion of weak confounding factors.1 To see this, we note that µ̂i approxi-

mately follows a normal distribution with mean µi and varianceA2 = Ω−1/2ΓΩ−1Z|XΓTΩ−1/2. Some

algebra shows that

L(µ̂i, t1, t2) ≈ P (|µi + Ṽ1| ≥ t1, |Ṽ2| ≥ t2|µi) 6= L(µi, t1, t2),

where Ṽ1
Ṽ2

 ∼ N2


0

0

 ,

 1 + A2 Ω−1/2Ω
1/2
X|Z

Ω
1/2
X|ZΩ−1/2 1


 .

Compared to the joint distribution of (V1, V2), we see that the least squares estimator introduces

extra variation to the first component of the bivariate normal distribution. We have also consid-

ered soft and hard thresholding estimators for µi. The consistency of these regularized estimators

requires a minimum signal assumption which again rules out the case of weak confounding fac-

tors. To overcome the difficulty, we shall adopt a Bayesian viewpoint by assuming that µi’s are

generated from a common prior distribution. The Bayesian viewpoint allows us to borrow cross-

sectional information (from different linear models) to estimate the number of false rejections

without estimating individual µi’s respectively.

3.2.3 Nonparametric empirical Bayes

In this subsection, we propose a nonparametric empirical Bayes approach to estimate the num-

ber of false rejections. Define

â =
Ω−1/2Γ√

Ω−1/2ΓΩ−1Z|XΓ>Ω−1/2
, ξ̂i =

√
nβ̂i/σi, ξi =

√
nβi/σi.

1A confounding factor is said to be weak if its coefficient βi decays to zero at the rate n−1/2 or faster. In this case,
lim supn→+∞ |µi,n| = δi ∈ [0,+∞).
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Under (3.1) and conditional on W = (X,Z), we have the Gaussian location model,

η̂i = ηi + εi (3.4)

where η̂i = â>ξ̂i is an estimator for ηi = â>ξi and εi
i.i.d.∼ N(0, 1).

Suppose ξi’s are independently generated from some distribution, see Assumption 3.5. Under

suitable assumptions detailed in Section 3.3, we can show â
a.s.→ a for a defined in (3.9). Denote

by G0 the (prior) distribution for a>ξi. The goal here is to estimate G0 based on {η̂i}. It will

become clear later that how the estimate of G0 is useful in estimating the expected number of false

rejections. Following Kiefer and Wolfowitz (1956) and Jiang and Zhang (2009), we consider the

general maximum likelihood estimator (GMLE) Ĝm,n for Gn defined as

Ĝm,n = argmax
G∈G

m∑
i=1

log fG(η̂i) (3.5)

where G denotes the set of all probability distributions on R and fG(x) =
∫
φ(x− u)dG(u) is the

convolution between G and φ. As σi’s are generally unknown in practice, however, Ĝm,n is not

obtainable. To obtain a feasible estimator, we consider the GMLE G̃m,n defined as

G̃m,n = argmax
G∈G

m∑
i=1

log fG(η̃i) (3.6)

where η̃i = â>ξ̃i for ξ̃i =
√
nβ̂i/σ̂i. By the Carathéodory’s theorem, there exist discrete solutions

to (3.5) and (3.6) with no more than m+ 1 support points . Thus we can write the solutions as

Ĝm,n(u) =
m∑
j=1

π̂j1 {ŝj ≤ u} , G̃m,n(u) =
m∑
j=1

π̃j1 {s̃j ≤ u}

where
∑m

j=1 π̂j =
∑m

j=1 π̃j = 1 for π̂j, π̃j ≥ 0, {ŝ1, · · · , ŝm} and {s̃1, · · · , s̃m} are two sets of

support points for Ĝm,n and G̃m,n, respectively. From the definition of Ĝm,n and fĜm,n , the support

of Ĝm,n(u) is always within the range of η̂i due to the monotonicity of φ(x−u) in |x−u|. Similarly,
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the support of G̃m,n(u) is always within the range of η̃i. These observations would be useful for

our theoretical analysis, see Section B.3. It is also worth noting that the optimization in (3.6) can

be cast as convex optimization problem that can be efficiently solved by modern interior point

methods. The readers are referred to Koenker and Mizera (2014) for more detailed discussions.

3.2.4 Two-stage Benjamini-Hochberg procedure

Given the feasible estimator G̃m,n of the prior distribution and in view of (3.3), we consider an

approximate upper bound for FDP(t1, t2) defined as

F̃DP(t1, t2) :=

∑m
i=1

∫
L(Ax, t1, t2)dG̃m,n(x)∑m

i=1 1 {|ZU
i | ≥ t1, |ZA

i | ≥ t2}
=

m
∫
L(Ax, t1, t2)dG̃m,n(x)∑m

i=1 1 {|ZU
i | ≥ t1, |ZA

i | ≥ t2}
.

For a desired FDR level q ∈ (0, 1), we choose the optimal threshold such that

(T ∗1 , T
∗
2 ) = argmax

(t1,t2)∈Fq

m∑
i=1

1
{
|ZU

i | ≥ t1, |ZA
i | ≥ t2

}
(3.7)

where Fq = {(t1, t2) ∈ R+ × R+ : F̃DP(t1, t2) ≤ q} with R+ = (0,+∞). This procedure can be

viewed as a variant of the Benjamini-Hochberg (BH) procedure adapted to the two-stage approach

introduced in Section 3.2.1.

Remark 3.1. The rejection region we consider is of the form

{(zU , zA) : |zU | ≥ t1, |zA| ≥ t2}.

In particular, if t1 = 0, it reduces to the usual rejection region {zA : |zA| ≥ t2} from the one-

stage approach based on the adjusted statistics. Therefore, our approach produces at least as many

rejections as the one-stage approach as we are searching over a larger class of rejection regions to

maximize the number of discoveries.

It is well known that when the number of signals is a substantial proportion of the total number

of hypotheses, the BH procedure will be overly conservative. To adapt to the proportion of signals,
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we develop a modification of John Storey’s approach [Storey (2002)] in our setting. To illustrate

the idea, we assume that ZA
i approximately follows the mixture model:

π0iN(0, 1) + (1− π0i)N(µAi , 1)

where µAi =
√
nΩ

1/2
X|Zαi/σi and π0i denotes the probability that αi = 0.2 Notice that

P (|ZA
i | ≤ λ) = π0i(1− 2Φ(−λ)) + (1− π0i)P (|N(µAi , 1)| ≤ λ) ≈ π0i(1− 2Φ(−λ)),

provided that P (|N(µAi , 1)| ≤ λ) ≈ 0. Thus 1
{
|ZA

i | ≤ λ
}
/{1 − 2Φ(−λ)} can be viewed as a

conservative estimator for the mixing probability π0i. We note

1

m

∑
i:αi=0

L(µi, t1, t2) =
1

m

m∑
i=1

1{αi = 0}L(µi, t1, t2)

≈
∫
L(Ax, t1, t2)dG̃m,n(x)

1

m

m∑
i=1

π0i

≤
∫
L(Ax, t1, t2)dG̃m,n(x)

1

m

m∑
i=1

P (|ZA
i | ≤ λ)

1− 2Φ(−λ)

≈
∫
L(Ax, t1, t2)dG̃m,n(x)

1

m

m∑
i=1

1
{
|ZA

i | ≤ λ
}

1− 2Φ(−λ)
.

In view of the above derivation, we consider the FDR estimate given by

F̃DPλ(t1, t2) =

∫
L(Ax, t1, t2)dG̃m,n(x)

∑m
i=1 1

{
|ZA

i | ≤ λ
}

(1− 2Φ(−λ))
∑m

i=1 1 {|ZU
i | ≥ t1, |ZA

i | ≥ t2}
,

where λ is a prespecified number as in John Storey’s approach. With this modification, for a desired

FDR level q ∈ (0, 1), we choose the optimal threshold such that

(T̃ ∗1 , T̃
∗
2 ) = argmax

(t1,t2)∈Fq,λ

m∑
i=1

1
{
|ZU

i | ≥ t1, |ZA
i | ≥ t2

}
, (3.8)

2We emphasize that the validity of our procedure does not rely on the mixture model assumption which is merely
used to motivate John Storey’s procedure.
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where

Fq,λ :=
{

(t1, t2) ∈ R+ × R+ : F̃DPλ(t1, t2) ≤ q
}
.

3.3 Asymptotic FDR control

The two-stage procedure is shown to provide asymptotic FDR control under suitable assump-

tions. Denote bym0 andm1 the number of null and alternative hypotheses among them hypotheses

respectively. Let Z̆U
i and Z̆A

i be the z-statistics by replacing σ̂i with σi in ZU
i and ZA

i , respectively.

Define L0(µ, t1, t2) = P(|µ+ V̆1| ≥ t1, |V̆2| ≥ t2|µ) where

V̆1
V̆2

 ∼ N2


0

0

 ,

 1 E[Ω]−1/2C
1/2
X|Z

C
1/2
X|ZE[Ω]−1/2 1




with CX|Z = E[Ω] − E[Γ]E[Ψ]−1E[Γ]> for Ψ = Z>Z/n. We also let A2
0 =

E[Ω]−1/2E[Γ]C−1Z|XE[Γ]>E[Ω]−1/2 and

a> =
E[Ω]−1/2E[Γ]√

E[Ω]−1/2E[Γ]C−1Z|XE[Γ]>E[Ω]−1/2
(3.9)

where CZ|X = E[Ψ]−E[Ω]−1E[Γ]>E[Γ]. We first introduce the following definitions and assump-

tions.

Definition 3.1. A random variable X ∈ R is said to be sub-gaussian with the variance proxy σ2 if

E[X] = 0 and its moment generating function satisfies

E[exp(tX)] ≤ exp

(
σ2t2

2

)
for any t ∈ R.

Definition 3.2. A random variable X ∈ R is said to be sub-exponential with the parameter θ if
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E[X] = 0 and its moment generating function satisfies

E[exp(tX)] ≤ exp

(
θ2t2

2

)
for any |t| ≤ 1

θ
.

Assumption 3.1. Suppose m0/m→ π0 ∈ (0, 1).

Assumption 3.2. Assume that

∑
i:αi=0 1

{
|Z̆U

i | ≥ t1, |Z̆A
i | ≥ t2

}
m0

a.s.→ K0(t1, t2),∑
i:αi 6=0 1

{
|Z̆U

i | ≥ t1, |Z̆A
i | ≥ t2

}
m1

a.s.→ K1(t1, t2),

for every (t1, t2) ∈ R+ × R+, where

K0(t1, t2) = Ea>ξ[L0(A0a
>ξ, t1, t2)] for a>ξ ∼ G0 (3.10)

and K0(t1, t2), K1(t1, t2) are both non-negative continuous functions of the arguments (t1, t2).

Assumption 3.3. Assume that

λmin(CZ|X) > 0, λmin(E[Ψ]) > 0, E[X2
1 ] > 0,

0 < min
1≤i≤m

σi ≤ max
1≤i≤m

σi <∞.

Assumption 3.4. Assume that the components of Z and X are both sub-gaussian.

Assumption 3.5. Assume {ξi}di=1 is a sequence of i.i.d. continuous random vectors with the density

h whose support set is given by
{
x ∈ Rd : ‖x‖max ≤ B(logm)b

}
for some B, b ≥ 0.

Assumption 3.6. Assume m = m(n) such that m(n) → +∞ as n → +∞ and

lim supn→+∞
m(n)
np0

<∞ for some p0 > 0.

Assumption 3.1 requires the asymptotic null proportion to be strictly between zero and one.

Assumption 3.2 allows certain forms of dependence, such as m-dependence, ergodic dependence
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and certain mixing type dependence. Assumption 3.3 implies that C−1Z|X exists and the noise level

is uniformly bounded from below and above. Assumption 3.4 allows us to use concentration

inequalities for sub-gaussian and sub-exponential random variables. Assumption 3.5 implies that

G0 has a bounded support that expands slowly with m. From Assumption 3.6, the number of

features m is some function of n and m is allowed to be polynomially larger than the sample size

n.

Remark 3.2. The assumption that ξi has a density is merely used to simplify the presentation of

the proof of Lemma B.7. When ξi has a discrete distribution, the similar arguments in the proof

of Lemma B.7 can be modified to obtain a similar result. We omit the details here to conserve the

space.

Before stating the main result, we introduce the following lemma which establishes the uniform

convergence of
∫
L(Ax, t1, t2)dG̃m,n(x).

Lemma 3.1. Let G̃m,n be the estimator of G0 as defined in (3.6). Under Assumptions 3.3-3.6, for

any t′1, t
′
2 > 0, we have

sup
t1≤t′1,t2≤t′2

∣∣∣∣∫ L(Ax, t1, t2)dG̃m,n(x)−
∫
L0(A0x, t1, t2)dG0(x)

∣∣∣∣ a.s.→ 0.

Let

Vm(t1, t2) =
∑
i:αi=0

1
{
|ZU

i | ≥ t1, |ZA
i | ≥ t2

}
, Sm(t1, t2) =

∑
i:αi 6=0

1
{
|ZU

i | ≥ t1, |ZA
i | ≥ t2

}
,

Fm(λ) =
1

m

m∑
i=1

1
{
|ZA

i | ≤ λ
}
, F (λ) = π0(1− 2Φ(−λ)) + (1− π0)(1−K1(0, λ)).

The following lemma shows the almost sure convergence as in Assumption 3.2 with (Z̆U
i , Z̆

A
i )

replaced by (ZU
i , Z

A
i ).
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Lemma 3.2. Under Assumptions 3.2-3.3 and 3.6, we have

1

m0

Vm(t1, t2)
a.s.→ K0(t1, t2),

1

m1

Sm(t1, t2)
a.s.→ K1(t1, t2), Fm(λ)

a.s.→ F (λ).

Recall that

F̃DPλ(t1, t2) =

∫
L(Ax, t1, t2)dG̃m,n(x)

∑m
i=1 1

{
|ZA

i | ≤ λ
}

(1− 2Φ(−λ))
∑m

i=1 1 {|ZU
i | ≥ t1, |ZA

i | ≥ t2}

and (T̃ ∗1 , T̃
∗
2 ) is the optimal threshold as defined in (3.8). By Lemmas 3.1-3.2, under Assumptions

3.1-3.2, it then follows that

F̃DPλ(t1, t2)
a.s.→ FDP∞λ (t1, t2)

where

FDP∞λ (t1, t2) :=
Ea>ξ[L0(A0a

>ξ, t1, t2)] {π0(1− 2Φ(−λ)) + (1− π0)(1−K1(0, λ))}
(1− 2Φ(−λ))K(t1, t2)

and K(t1, t2) = π0K0(t1, t2) + (1− π0)K1(t1, t2). We impose the following assumption to reduce

the searching region for (t1, t2) to a rectangle of the form [0, t∗1]× [0, t∗2].

Assumption 3.7. Assume that there exist t∗1 and t∗2 such that FDP∞λ (t∗1, 0) < q, FDP∞λ (0, t∗2) < q

and K(t∗1, t
∗
2) > 0.

Let

F̃DRm = E

[
Vm(T̃ ∗1 , T̃

∗
2 )

Vm(T̃ ∗1 , T̃
∗
2 ) + Sm(T̃ ∗1 , T̃

∗
2 )

]
.

We show the asymptotic FDR control in the following theorem.

Theorem 3.1. Under Assumptions 3.1-3.7, we have

lim sup
m

F̃DRm ≤ q.
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3.4 Power analysis

In this section, we derive the asymptotic power of the two-stage John Storey procedure. Our

derivation is heuristic but can be made rigorous under suitable assumptions. Define

(T1,Two, T2,Two) = argmax
(t1,t2)∈Fq,Two

K(t1, t2)

where

Fq,Two =
{

(t1, t2) ∈ R+ × R+ : FDP∞λ (t1, t2) ≤ q
}
.

Then, the asymptotic power of the two-stage procedure is given by

PowerTwo = lim
m→∞

∑
i:αi 6=0 1

{
|ZU

i | ≥ T1,Two, |ZA
i | ≥ T2,Two

}
m1

= K1(T1,Two, T2,Two).

As a comparison the asymptotic power of the one-step procedure is equal to

PowerOne = K1(0, T2,One)

where T2,One = argmaxt2∈Fq,One
K(t1, t2) with Fq,One = {t2 ∈ R+ : FDP∞λ (0, t2) ≤ q}. Since

Fq,One ⊂ Fq,Two, we have

K(T1,Two, T2,Two) ≥ K(0, T2,One),

that is, the two-stage procedure delivers more rejections.

Lemma 3.3. Suppose FDP∞λ (t1, t2) is a continuous function of (t1, t2). Then, we have PowerTwo ≥

PowerOne.

Proof of Lemma 3.3. Let M(λ) = (1 − 2Φ(−λ))−1(1 − π0)(1 −K1(0, λ)). Since FDP∞λ (t1, t2)
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is a continuous function of (t1, t2), we must have

π0K0(T1,Two, T2,Two) +M(λ)K0(T1,Two, T2,Two)

K(T1,Two, T2,Two)
= q,

π0K0(0, T2,One) +M(λ)K0(0, T2,One)

K(0, T2,One)
= q.

(3.11)

The fact that K(T1,Two, T2,Two) ≥ K(0, T2,One) implies both K0(T1,Two, T2,Two) ≥ K0(0, T2,One)

from (3.11) and

(1− π0)K1(T1,Two, T2,Two)−M(λ)K0(T1,Two, T2,Two)

=(1− q)K(T1,Two, T2,Two)

≥(1− q)K(0, T2,One) = (1− π0)K1(0, T2,One)−M(λ)K0(0, T2,One)

after rearranging the terms in (3.11). As K0(T1,Two, T2,Two) ≥ K0(0, T2,One), it follows that

(1− π0)K1(T1,Two, T2,Two) ≥ (1− π0)K1(0, T2,One) +M(λ) {K0(T1,Two, T2,Two)−K0(0, T2,One)}

≥ (1− π0)K1(0, T2,One)

which completes the proof. ♦

3.5 Numerical studies

3.5.1 Simulation

3.5.1.1 Simulation setup

We conduct extensive simulations to evaluate the finite-sample performance of the proposed

method. As the numbers of hypotheses could range from thousands to millions in genome-scale

multiple testing, we set m = 10, 000 and n = 100. For demonstration purpose, we consider

X,Z ∈ Rn×1 and generate the response Yi’s by (3.1) with σi = 1. To have a comprehensive

study of the performance of the proposed method under different scenarios, we vary the following

parameter configurations for simulations:
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Config 1: The correlation between X and Z (denoted by Corr(X,Z)).

Config 2: The density and strength of the signals of interest (αi 6= 0).

Config 3: The density and strength of the confounding signals (βi 6= 0).

Config 4: The number of co-location of the signals of interest and confounding signals.

For Config 1, we induce the correlation between X and Z by simulating

X0 ∼ Nn(0n, In), X|X0 ∼ Nn(ρX0, In), Z|X0 ∼ Nn(ρX0, In),

where ρ = 0.5, 1.25 and 2, which correspond to Corr(X,Z) = 0.2, 0.6 and 0.8 (denoted as “low",

“medium" and “high" in Figures 3.3-3.9), respectively. For Config 2 and Config 3,

αi, βi ∼
π

2
Unif(−l − r,−l) +

π

2
Unif(l, l + r) + (1− π)δ(0),

where δ(0) denotes a point mass at 0. Here, we try three levels of signal density π = 0.05, 0.01

and 0.20 (denoted as “low", “medium" and “dense" in Figures 3.3-3.9) and three levels of signal

strength l = 0.2, 0.3 and 0.4 (denoted as “weak", “moderate" and “strong" in Figures 3.3-3.9) with

r = 0.2. For Config 4, we consider the following two cases:

1. No co-location: αiβi = 0 for all i.

2. 50% co-location: |Sαβ| = 0.5×min{|Sα|, |Sβ|} where

Sαβ = {i|αiβi 6= 0}, Sα = {i|αi 6= 0}, Sβ = {i|βi 6= 0}.

One assumption of our method is the independence of the errors across different features. Such

assumption may be violated in some real applications. We thus study the robustness of our method

to the violation of the independence assumption. Specifically, we investigated the robustness of

the proposed method to correlated errors by considering
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1. AR(1) correlation structure with Corr(εij, εik) = 0.6|j−k| where εij and εik denote the j-th

and k-th element of εi = (εi1, . . . , εin)>, respectively.

2. Block correlation structure of random errors where we simulate 100 blocks with within-

block correlation 0.6.

Our proposed approach is denoted by “TwoStage-T" in Figures 3.3-3.9. For comparison, we

also report the results of the following methods:

(i) OneStage-U: linear regression with the covariate of interest without adjustment of the con-

founder.

(ii) OneStage-A: linear regression with the covariate of interest adjusting the confounder; This

is the traditional procedure.

(iii) TwoStage-N: a naive two-stage procedure, which first runs “OneStage-A", and if the con-

founder is not significant, “OneStage-U" is applied.

All the methods (i)-(iii) use the q-value approach by Storey (2002) for multiplicity control after

the computation of feature-wise p-values. We evaluate the performance based on FDR control and

power with a target FDR level of 5%. Results are averaged over 100 simulation runs. Both the

means and their 95% CIs are reported in the bar plots.

3.5.1.2 Simulation results

Figure 3.3 shows the performance of the proposed method under varying signal density and

signal strength of X with the different degrees of Corr(X,Z). We first note that both OneStage-

A and TwoStage-T control the FDR at the target level across the settings while OneStage-U and

TwoStage-N show the inflated type I error rates which gets even higher as Corr(X,Z) increases.

Thus, we make a power comparison between TwoStage-T and OneStage-A in Panel B. Clearly,

our proposed method has a substantial increase in power when the confounding is strong while

the power is comparable when the confounding is weak. The power improvement is more striking
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when the signal is weak or moderate. Thus, TwoStage-T could be particularly useful for real

applications where it is challenging to identify weak signals among many potential confounders.

Figure 3.4 shows the effect of the density and strength of the confounding signal with π = 0.1

and the moderate strength for αi. Our proposed approach provides FDR control at the target level

across settings and has the same power advantage when the confounding is not weak. However, the

power difference decreases as the confounding signal becomes denser. Such phenomenon seems to

be natural since the traditional OneStage-A, which adjusts the confounder for every feature, would

be effective when the confounder affects every feature. The strength of the confounding signal also

reduces the power difference slightly, which could be explained by the increased statistical power

of OneStage-A due to significant reduction of the error variance.

Figure 3.5 summarizes the result for Case 2 where the signal of interest and the signal from

the confounder have co-locations. Our proposed approach still turns out to be more powerful than

the traditional approach when the signal density of the confounder is low or the confounding is

strong. However, as the density of the confounding signal gets denser, the power improvement

decreases. Also, TwoStage-T is slightly less powerful than OneStage-A when the confounding is

weak. Therefore, our method is more advantageous when the confounding signal is not dense and

the confounding signal does not tend to co-locate with the signal of interest.

The simulation results of the block and AR(1) correlation structure are shown in Figures 3.6-

3.7. Under both covariance structures, the proposed method controls the FDR around the target

level and its power is comparable to that of the independent error case, indicating the robustness

of our method.

As our proposed method provides asymptotic FDR control for a large number of features, it

would be worth to see how its finite sample performance changes under a much smaller feature size

than m = 10, 000. The results with the feature sizes of 100 and 500 are shown in Figures 3.8-3.9.

We note FDR is controlled at the target level with m = 500, but the FDR is slightly inflated with

m = 100, especially when Corr(X,Z) is high. Thus, a relatively large m needs to be set for our

method for FDR control while a conservative target FDR level should be used for a small m.
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Figure 3.3: Performance comparison across different densities (sDensity) and strengths (sEffect)
of the signal from the covariate of interest. The density of the confounding signal is 10% with a
medium strength.
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Figure 3.4: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder. The density of the signal of interest is 10% with a medium
strength.
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Figure 3.5: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder when 50% of the confounding signal having co-locations with
the signal of interest. The density of the signal of interest is 10% with a medium strength.
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Figure 3.6: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder when the errors from different features have a block correlation
structure. The density of the signal of interest is 10% with a medium strength.
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Figure 3.7: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder when the errors from different features have an AR(1) correlation
structure. The density of the signal of interest is 10% with a medium strength.
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Figure 3.8: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder at m = 500. The density of the signal of interest is 10% with a
medium strength.
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Figure 3.9: Performance comparison across different densities (cDensity) and strengths (cEffect)
of the signal from the confounder at m = 100. The density of the signal of interest is 10% with a
medium strength.
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3.5.2 Real data analysis

3.5.2.1 Application to Metabolomics data

We apply OneStage-A and TwoStage-T in Section 3.5.1 to the real data in Metabolomics from

the association studies of insulin resistance (IR) and serum metabolome. In this data set, IR is

estimated by homeostatic model assessment (HOMA-IR) and serum metabolome profiles consist

of 325 polar metabolites and 876 molecular lipids with n = 289. The details of the data can be

found in Pedersen et al. (2016).

We fit the model (3.1) with HOMA-IR and each serum metabolome as X and Yi, respec-

tively. In addition, Body mass index (BMI) is included in the model as confounder Z because

HOMA-IR is known to be largely influenced by BMI in epidemiological studies. Figure 3.10

shows that TwoStage-T discovers more metabolites/lipids significantly associated with HOMA-IR

than OneStage-A does.

It is worth to explain the metabolites/lipids significantly associated with HOMA-IR in terms

of Biology. Pedersen et al. (2016) introduces the notion of clusters to group a large number of

serum metabolomes and biologically explains the data in view of clusters. In short, a set of polar

metabolites (or that of molecular lipids) constitutes a cluster. Such cluster is referred as either IR-

metabotype or insulin sensitivity (IS)-metabotype if it is positively or negatively correlated with

HOMA-IR. For more details, see Pedersen et al. (2016).

Figure 3.11 implies that the number of discoveries by TwoStage-T is comparable to that by

OneStage-A for IR-metabotype while TwoStage-T discovers 11 more serum metabolomes for IS-

metabotype. We can briefly mention the biological insights for some illustrative discoveries by

TwoStage-T.

1. IR-metabotype: Similar to the result by Pedersen et al. (2016), OneStage-A finds 4 amino

acids in cluster labelled as M10. TwoStage-T not only successfully discovers those branched

chain amino acids but also M_75_Hydrocinnamic acid. Importantly, hydrocinnamic acid is

a known inhibitor of branched-chain α-keto acid dehydrogenase kinase, which regulates the
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breakdown of branched chain amino acids by Tso et al. (2013).

2. IS-metabotype: According to Pedersen et al. (2016), IS-metabotype is solely made up with

lipids, phospholipids and triacylglycerols with odd carbon number and high double bond

content. TwoStage-T discovers 4 more phospholipids (L_175_PE(38:3), L_162_PE(34:0),

L_300_PC(36:5), L_734_PC(30:0e)) than OneStage-A does. Interestingly, L_14_ sphin-

gomyelin(d18:1/16:0) in cluster L14 and L_825_SM(d18:1/26:2) in cluster L20 are founded

by TwoStage-T only.

Figure 3.10: Venn diagrams of the number of polar metabolites and molecular lipids significantly
associated with HOMA-IR by OneStage-A and TwoStage-T.
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Figure 3.11: Venn diagrams of the number of polar metabolites and molecular lipids in either IR-
metabotype or IS-metabotype that are significantly associated with HOMA-IR by OneStage-A and
TwoStage-T.

3.5.2.2 Application to Methylation data

We also apply OneStage-A and TwoStage-T for the Methylation data in Huang et al. (2020). 54

EWAS datasets are summarized from 51 Gene Expression Omnibus (GEO) methylation datasets

grouped by phenotype, tissue source and cell type. Each EWAS dataset is sequenced by Infinium

Human Methylation 450K BeadChip platform and is preprocessed including data normalization,

quality control for samples and quality control for probes. To capture the significant sources of

variability, surrogate variable analysis is implemented by the packages isva and SmartSVA in

Teschendorff et al. (2011) and Chen et al. (2017), respectively. As a measure for DNA methylation,

we use M-values transformed from beta values. For more details about the data, see Huang et al.

(2020).

54 EWAS data are independently analyzed each of which has its own phenotype such as disease

status, smoke, etc. Specifically, for each EWAS data, we fit the model (3.1) with M-values as Yi’s,
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the phenotype as X and the surrogate variables as Z. In this context, the number of discoveries is

often said to be the detected number of differentially methylated CpG positions (DMPs). Panel A

in Figure 3.12 shows that log of the number of discoveries by OneStage-A and TwoStage-T. The

median of detected DMPs by TwoStage-T is 55 while that by OneStage-A is 22.5. Thus, compared

to OneStage-A, our proposed method provides more discoveries of genomic features.

We next conduct the down-sampling analysis with EWAS22 dataset with n = 111 and smoke

as phenotype. The goal here is to see whether TwoStage-T finds more DMPs than OneStage-A

does at a smaller sample size. We first define a list of “gold standard” fDMPs from the association

p-values based on the full dataset by applying Bonferroni correction (α = 0.05). We draw the

stratified sub-sample from the full data with size 20, 40, 60, 80 and 100 as the phenotype is binary.

Then, we compare the percentage of fDMPs detected by OneStage-A to that by TwoStage-T. Panel

B in Figure 3.12 shows the result of down-sampling analysis with 100 independent replications.

While the power gradually increases as the sub-sample size gets bigger for both methods, it is clear

that our proposed method detects more fDMPs than OneStage-A at any sample sizes.

To examine whether the additional discoveries by TwoStage-T is by random or not, we per-

form validation analysis on the five age-associated EWAS datasets (EWAS26, EWAS27, EWAS30,

EWAS39 and EWAS45). Given the exclusively identified DMPs (the phenotypes found to be not

significant by TwoStage-T only) for each EWAS data, we compare the distributions of the associ-

ation p-values corresponding to those discoveries in the other 4 EWAS datasets with the estimated

density of the association p-values in each EWAS dataset. In Figure 3.13, the histograms in the

first four columns show steep slopes while the density in the last column has relatively gentle slope

for each age-associated EWAS dataset. This implies that the extra findings by TwoStage-T is not

random. If those are randomly detected, the overall trend of histograms shall be similar to that of

the corresponding density.
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Figure 3.12: Figures for the application to Methylation data. Panel A shows boxplots of log of
Positive DMPs for OneStage-A and TwoStage-T on the EWAS datasets. “Positive DMPs" simply
denotes the number of DMPs plus a pseudo-count of 1 to avoid 0 in log. Panel B shows barplots
of the proportion of fDMPs discovered by OneStage-A and TwoStage-T at sample size 20, 40, 60,
80 and 100. Error bar indicates the standard error of 100 iterations.

Figure 3.13: A set of figures for validation of the additional discoveries by TwoStage-T in age-
associated EWAS datasets. The distributions of the association p-values corresponding to the ad-
ditional discoveries by TwoStage-T are shown in the first 4 columns. The plots in the last column
illustrate the density of the association p-values for each EWAS dataset. Each EWAS dataset is
shown in one color.
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4. SUMMARY AND CONCLUSIONS

In Chapter 2, we have proposed a new method to find the projection direction in the debiased

Lasso estimator and demonstrated its advantage over the original debiased Lasso estimator in van

de Geer et al. (2014) and the method in Javanmard and Montanari (2014). The main contributions

of this work are summarized below.

• We propose a new formulation to estimate the projection direction by properly balancing the

biases associated with the strong and weak signals respectively.

• We show that the set of strong signals can be consistently estimated and establish the asymp-

totic normality of the proposed estimator.

• We further propose a modified estimator which can lead to a smaller order of bias comparing

to the original debiased Lasso both theoretically and empirically.

• We generalize our idea to conduct inference for a sparse linear combination of regression

coefficients.

As for future research, we expect that our method can be extended to other settings such as the

generalized linear models, the Cox proportional hazards model and nonparametric additive models.

In Chapter 3, a novel two-stage procedure is developed for high-dimensional association tests

in genomics with the presence of confounding variables. The main contributions of this work can

be summarized as follows.

• We propose a way of simultaneously selecting both cutoffs in the proposed method. Specif-

ically, the thresholds are chosen to control the estimate for the FDR while maximizing the

number of rejections.

• This estimate for the FDR is based on the nonparametric empirical Bayes approach to ap-

proximate the expected number of false rejections rather than directly estimating the nui-

sance parameters.
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• We show that our estimate for the expected number of false rejections is consistent and the

newly proposed method provides asymptotic FDR control.

For future research, it would be interesting to apply the idea of the two-step procedure to jointly

analyze multiple p-values which are readily available these days from different studies.
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APPENDIX A

SUPPLEMENTARY MATERIAL TO CHAPTER 2

A.1 Technical Details

A.1.1 Concentration Inequalities

We first define several quantities which will appear throughout the supplementary material. Let

θj = Xj −X−jb−j and

b−j = argmin
b̃∈Rp−1

E||Xj −X−j b̃||22 = Σ−1−j,−jΣ−j,j.

Define κ1 = 2κ2, κ2j = 2κ2
√

Λ−1minΣj,j and κ3j = 2κ2Λ−1minΣj,j .

The following lemmas shows the concentration inequalities for sub-exponential and sub-

gaussian random variables which are motivated by Lemmas 5.5, 5.15 and Propositions 5.10, 5.16

in Vershynin (2010).

Lemma A.1. Let X1, · · · , XN be i.i.d. mean-zero sub-exponential random variables with

‖Xi‖ψ1 = K1. Then, for every a = (a1, · · · , aN)> ∈ RN×1 and any t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.

Proof of Lemma A.1. We first derive an upper bound of the moment generating function of Xi.

By expanding the exponential function in the Taylor series, we have

E[exp(λXi)] = E

[
1 + λXi +

∞∑
p=2

(λXi)
p

p!

]
= 1 +

∞∑
p=2

λpE[Xp
i ]

p!

≤ 1 +
∞∑
p=2

λp(K1p)
p

(p/e)p
= 1 +

∞∑
p=2

(eλK1)
p = 1 +

(eλK1)
2

1− (eλK1)
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provided that |eλK1| < 1. The inequality follows by the definition of sub-exponential norm

E[Xp
i ] ≤ (K1p)

p

and Stirling’s approximation p! ≥ (p/e)p. In addition, if |eλK1| < 0.5, the quantity on the right

hand side can be bounded above by

1 + 2(eλK1)
2 ≤ exp(2(eλK1)

2).

Thus, combining all of the above implies

E[exp(λXi)] ≤ exp(2(eλK1)
2) for |λ| < 1

2eK1

. (A.1)

Next, for λ > 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
λ

N∑
i=1

aiXi

)
≥ exp(λt)

)

≤ exp(−λt)E

[
exp

(
λ

N∑
i=1

aiXi

)]
= exp(−λt)

N∏
i=1

E[exp(λaiXi)]

by the exponential Markov inequality for
∑N

i=1 aiXi. If λ is small enough so that |λ| <

(2eK1‖a‖∞)−1, (A.1) gives

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp(−λt)

N∏
i=1

exp(2(eλaiK1)
2) = exp(−λt+ 2e2λ2‖a‖2K2

1).

By choosing λ = min (t(4e2‖a‖2K2
1)−1, (2eK1‖a‖∞)−1), we obtain

P

(
N∑
i=1

aiXi ≥ t

)
≤ exp

{
−min

(
t2

8e2‖a‖2K2
1

,
t

4eK1‖a‖∞

)}
.
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The second term in min can be obtained as follows. When λ = (2eK1‖a‖∞)−1, we have

−λt+ 2e2λ2‖a‖2K2
1 = − t

2eK1‖a‖∞
+
‖a‖2

2‖a‖2∞
≤ − t

4eK1‖a‖∞

where the last inequality follows as

λ =
1

2eK1‖a‖∞
≤ t

(4e2‖a‖2K2
1)

which implies
‖a‖2

‖a‖∞
≤ t

2eK1

.

By repeating the same argument for −Xi, we get the same bound for P(−
∑N

i=1 aiXi ≥ t), which

completes the proof. ♦

Lemma A.2. Let X1, · · · , XN be i.i.d. mean-zero sub-gaussian random variables with ‖Xi‖ψ2 =

K2. Then, we have the following results.

1. For any |ω1| ≤ 1,

E

[
exp

(
ω2
1

X2
i

4eK2
2

)]
≤ exp(ω2

1). (A.2)

2. For ω2 ∈ R,

E[exp(ω2Xi)] ≤ exp(8eK2
2ω

2
2). (A.3)

3. For every a = (a1, · · · , aN) ∈ RN and any t ≥ 0,

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

32eK2
2‖a‖2

)
. (A.4)
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Proof of Lemma A.2. Let Yi = Xi/(2
√
eK2). We note that, for |ω2

1/2| < 1,

E[exp(ω2
1Y

2
i )] = 1 +

∞∑
k=1

ω2k
1 E[Y 2k

i ]

k!

≤ 1 +
∞∑
k=1

1

(4e)k
(2ω2

1k)k

(k/e)k
=
∞∑
k=0

(
ω2
1

2

)k
=

(
1− ω2

1

2

)−1

by the Taylor series expansion of the exponential function and Stirling’s approximation. We can

further bound

E[exp(ω2
1Y

2
i )] ≤ exp(ω2

1) for |ω1| ≤ 1

by using the inequality (1− x)−1 ≤ exp(2x) for 0 ≤ x ≤ 0.5, which completes (A.2).

For (A.3), we notice that

E[exp(ωYi)] ≤ E[ωYi + exp(ω2Y 2
i )] ≤ exp(ω2) (A.5)

for |ω| ≤ 1 where the first inequality follows by ex ≤ x + ex
2 for any x ∈ R and the second one

does by (A.2). If |ω| ≥ 1, we have

E[exp(ωYi)] ≤ exp(ω2)E[exp(Y 2
i )] ≤ exp(ω2 + 1) ≤ exp(2ω2) (A.6)

due to ωYi ≤ ω2 + Y 2
i for any ω, Yi and (A.2). Thus, combining (A.5) with (A.6) gives

E[exp(ωYi)] ≤ exp(2ω2).

for any ω ∈ R. Letting ω2 = ω/(2
√
eK2) completes (A.3).
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For (A.4), notice that

E

[
exp(ω2

N∑
i=1

aiXi)

]
=

N∏
i=1

E [exp(ω2aiXi)]

≤
N∏
i=1

exp(8eK2
2ω

2
2a

2
i ) = exp(8eK2

2ω
2
2‖a‖2).

For ω2 ≥ 0, we have

P

(
N∑
i=1

aiXi ≥ t

)
= P

(
exp

(
ω2

N∑
i=1

aiXi

)
≥ exp(ω2t)

)

≤ exp(−ω2t)E

[
exp

(
ω2

N∑
i=1

aiXi

)]

≤ exp(−ω2t+ 8eω2
2K

2
2‖a‖2)

≤ exp

(
− t2

32eK2
2‖a‖2

)

and the same bound can be obtained for P
(
−
∑N

i=1 aiXi ≥ t
)

. Thus, combining those bounds

gives (A.4). ♦

A.1.2 Technical details in Section 2.3

Lemma A.3. Under Assumption 2.5,

P

(
n−1‖θ>j X−j‖∞ ≥ ε0j

√
log p

n

)
≤ 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}

for 0 < ε0j ≤ κ0j
√
n(log p)−1.

Proof of Lemma A.3. Let Z = (Z1 · · ·Zp−1) = n−1(X>j X−j − b>−jX−j>X−j). Then we have

Z =
1

n

n∑
i=1

(Xi,j − b>−jXi,−j)X
>
i,−j
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where Xi,j is the value of the jth predictor of the ith observation and

X>i,−j = (Xi,1 · · ·Xi,j−1, Xi,j+1 · · ·Xi,p).

Fix some k ∈ {1, 2, . . . , p} \ {j} and let Z(k)
i,j = (Xi,j − b>−jXi,−j)X

(k)
i,−j , where X(k)

i,−j denotes the

kth element of Xi,−j . Then Zk = n−1
∑n

i=1 Z
(k)
ij , where E[Z

(k)
i,j ] = 0 and Z(k)

i,j ’s are independent

across 1 ≤ i ≤ n.

We derive an upper bound for ‖Z(k)
i,j ‖ψ1 . Notice that

‖Z(k)
i,j ‖ψ1 = ‖(Xi,j − b>−jXi,−j)X

(k)
i,−j‖ψ1 ≤ 2‖Xi,j − b>−jXi,−j‖ψ2‖X

(k)
i,−j‖ψ2

= 2‖X>i,·γ−j‖ψ2‖X
(k)
i,−j‖ψ2

≤ 2κ2‖γ−j‖2

≤ 2(1 +
√

Λ−1minΣj,j)κ
2,

where X>i,· = (Xi,j, X
>
i,−j) and γ>−j = (1,−b>−j). Here, the first inequality holds from the fact that

‖XY ‖ψ1 ≤ 2‖X‖ψ2‖Y ‖ψ2 for any two random variables X, Y ; the second inequality comes from

q−1/2(E|X>i,·γ−j|q)1/q = ‖γ−j‖q−1/2{E|X>i,·(γ−j/‖γ−j‖)|q}1/q ≤ ‖γ−j‖κ

and the third inequality follows from

‖γ−j‖2 =
√

1 + ‖b−j‖2 ≤ 1 + ‖b−j‖ ≤ 1 +
√
λmax(Σ

−1
−j,−j)Σj,j.

By Lemma A.1, for any ε > 0, we have

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

{
−nmin

(
1

8e2

(
ε

κ0j

)2

,
1

4e

ε

κ0j

)}
.
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Choosing ε = ε0j
√
n−1 log p and assuming that n ≥ ε20j(κ0j)

−2 log p, then

P

(
1

n

∣∣∣∣∣
n∑
i=1

Z
(k)
i,j

∣∣∣∣∣ ≥ ε0j

√
log p

n

)
≤ 2 exp

{
− 1

8e2
ε20j

(κ0j)2
log p

}
.

The result follows from the union bound over k ∈ {1, 2, . . . , p− 1}. ♦

An implication of Lemma A.3 is that

n−1‖θ>j X−j‖∞ ≤ ε0j

√
log p

n
(A.7)

with probability tending to 1 for a fixed ε0j such that ε20 > (κ0j)
28e2. We introduce an additional

result below for a later use.

Lemma A.4. Under Assumption 2.5, we have

P

(∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j

)
≥ 1− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n

}

− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

}

for 0 < ε1j ≤ min{(Σj\−j)
−1, 4 min(κ1, κ2j)(Σj\−j)

−2} and

P
(∣∣∣∣‖θj‖2n

−Σj\−j

∣∣∣∣ ≤ ε2j

)
≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}

− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}

for 0 < ε2j ≤ 3 min(κ1, 2κ2j, κ3j).

Proof of Lemma A.4. We notice that

θ>j Xj = X>j Xj −
n∑
i=1

p−1∑
k=1

b−j,kX
(k)
i,−jXi,j,
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where b−j,k is the kth element of b−j and X(k)
i,−j is the kth element of X−j . Then, we see that

θ>j Xj

n
−Σj\−j =

1

n

n∑
i=1

(X2
i,j −Σj,j)−

1

n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)
.

By Lemma A.1,

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ δj

)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ1

)2

n

}

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ δj

)
≥ 1− 2 exp

{
− 1

8e2

(
δj
κ2j

)2

n

}

for 0 < δj ≤ min(κ1, κ2j). Also, for ε1j ≤ (Σj\−j)
−1, we have

{∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≥ ε1j

}

⊂
[{∣∣∣∣∣ 1n

n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}
⋃{∣∣∣∣∣ 1n

n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≥ Σ2
j\−j

4
ε1j

}]
.

Thus, for ε1j ≤ min{(Σj\−j)
−1, 4 min(κ1, κ2j)(Σj\−j)

−2}, we have

P

(∣∣∣∣∣ n

θ>j Xj

− 1

Σj\−j

∣∣∣∣∣ ≤ ε1j

)
≥ 1− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n

}

− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

}
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which proves the first inequality. Next, we note that

‖θj‖2

n
−Σj\−j =

(
X>j Xj

n
−Σj,j

)
︸ ︷︷ ︸

(∗)

−2

(
X>j X−j

n
−Σj,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗)

+ Σj,−jΣ
−1
−j,−j

(
X−j

>X−j
n

−Σ−j,−j

)
Σ−1−j,−jΣ−j,j︸ ︷︷ ︸

(∗∗∗)

.

The concentration inequalities for (∗) and (∗∗) are given respectively as

P

(∣∣∣∣∣ 1n
n∑
i=1

(X2
i,j −Σj,j)

∣∣∣∣∣ ≤ ε2j
3

)
≥ 1− 2 exp

{
− 1

8e2

(
ε2j
3κ1

)2

n

}
, (A.8)

and

P

(∣∣∣∣∣ 1n
n∑
i=1

(
p−1∑
k=1

b−j,kX
(k)
i,−jXi,j −Σj,−jΣ

−1
−j,−jΣ−j,j

)∣∣∣∣∣ ≤ ε2j
6

)

≥1− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
, (A.9)

for 0 < ε2j ≤ min(3κ1, 6κ2j). Also, we notice that

(∗ ∗ ∗) =
1

n

n∑
i=1

(
p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j.

Lemma A.1 gives us

P

∣∣∣∣∣∣ 1n
n∑
i=1

(p−1∑
k=1

X
(k)
i,−jb−j,k

)2

−Σj,−jΣ
−1
−j,−jΣ−j,j

∣∣∣∣∣∣ ≤ ε2j
3


≥1− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}
(A.10)

for 0 < ε2j ≤ 3κ3j . Combining (A.8), (A.9) and (A.10) finishes the proof. ♦

The following result directly follows by Lemmas A.3 and A.4.

87



Corollary A.1. Let v̆j = nθj/(θ
>
j Xj) and ŭj = n−1‖v̆>j X−j‖∞. Under Assumption 2.5, v̆j satis-

fies v̆>j Xj = n,

P

(
n−1‖v̆j‖2 ≤

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j)

)

≥ 1− 2 exp

{
− 1

8e2

(
ε2j

3κ1j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

6κ2j

)2

n

}
− 2 exp

{
− 1

8e2

(
ε2j

3κ3j

)2

n

}

− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ1j

)2

n

}
− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

}
,

and

P

(
ŭj ≤ ε0j

√
log p

n

(
1

Σj\−j
+ ε1j

))

≥ 1− 2 exp

{(
1− 1

8e2
ε20j

(κ0j)2

)
log p

}
− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ1

)2

n

}

− 2 exp

{
− 1

8e2

(
Σ2
j\−jε1j

4κ2j

)2

n

}
,

for ε0j, ε1j, ε2j given in Lemmas A.3 and A.4.

Lemma A.5. Let Rl = n−1v̂>l X−l(β−l − β̂−l) where v̂l and ûl denote the solution to (2.10). Then,

max
l
Rl = op(1).

Proof of Lemma A.5. According to the definition of v̂l,

C2
n

log p
û2l + n−1‖v̂l‖2 ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2

where ûl = n−1‖v̂>l X−l‖∞, v̆l = nθl/θ
>
l Xl and ŭl = n−1‖v̆lX−l‖∞. Then, we have

√
C2

n

log p
ûl ≤ C2

n

log p
ŭ2l + n−1‖v̆l‖2
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which implies

√
C2

n

log p
max
l
n−1‖v̂>l X−l‖∞ ≤

(
max
l

(Σl\−l)
−1 + ε′1

)2 (
C2(ε

′
0)

2 + max
l

Σl\−l + ε′2

)

with probability tending to 1 by (A.12). Therefore,

max
l
Rl ≤ max

l
n−1‖v̂>l X−l‖∞

√
n‖β̂ − β‖1 = op(1)

by Assumptions 2.3 and 2.6. ♦

The following inequalities are direct consequences of Lemmas A.3-A.4 and the definition of

v̂l.

Corollary A.2. Let v̂l be the solution to (2.10). Then, we have

P

(
max
l
n−1‖θ>l X−l‖∞ ≥ ε′0

√
log p

n

)
≤ 2 exp

{
− 1

8e2

(
min
l

1

κ20l

)
(ε′0)

2 log p+ 2 log p

}
,

P
(

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}
,

P
(

max
l

‖θl‖2

n
≤ max

l
Σl\−l + ε′2

)
≥ 1− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,
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and

P
(

max
l
n−1‖v̂l‖2 ≤M ′

)
≥ 1− 2 exp

{
− 1

8e2

(
min
l

1

(κ0l)2

)
(ε′0)

2 log p+ 2 log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ1)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

(Σl\−l)
4

(4κ2l)2

)
(ε′1)

2n+ log p

}
− 2 exp

{
− 1

8e2(3κ1)2
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(6κ2l)2

)
(ε′2)

2n+ log p

}
− 2 exp

{
− 1

8e2

(
min
l

1

(3κ3l)2

)
(ε′2)

2n+ log p

}
,

where

M ′ = (max
l

(Σl\−l)
−1 + ε′1)

2(C2ε
′2
0 + max

l
Σl\−l + ε′2) (A.11)

for 0 < ε′0 ≤ (minl κ0l)
√
n(log p)−1, 0 < ε′1 ≤ minl {min((Σl\−l)

−1, 4 min(κ1, κ2l)(Σl\−l)
−2)}

and 0 < ε′2 ≤ minl(min(3κ1, 6κ2l, 3κ3l)).

Under Assumption 2.6, Corollary A.2 implies that

max
l
n−1‖θ>l X−l‖∞ ≤ ε′0

√
log p

n
,

max
l

n

|θ>l Xl|
≤ max

l
(Σl\−l)

−1 + ε′1,

max
l
n−1‖θl‖2 ≤ max

l
Σl\−l + ε′2,

max
l
n−1‖v̂l‖2 ≤M ′,

(A.12)

with probability tending to 1 for a fixed (ε′0)
2 minl(κ0l)

−2 > 16e2 and fixed ε′1, ε
′
2 as in Corollary

A.2.
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Proof of Proposition 2.1. Noting that (n−1/2‖v̂l‖)−1 ≤ ‖Xl‖/
√
n, we have

|Tl| =
σ

σ̂

∣∣∣∣∣
√
n(β̃l(v̂l)− βl)
σn−1/2‖v̂l‖

+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣∣
=
σ

σ̂

∣∣∣∣ 1

σn−1/2‖v̂l‖

(
1√
n
v̂>l ε+

√
nRl

)
+

√
nβl

σn−1/2‖v̂l‖

∣∣∣∣
≤ σ

σ̂

(
|Zl|+

∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣+

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣)
≤ σ

σ̂

(
|Zl|+

‖Xl‖√
n

∣∣∣∣√nRl

σ

∣∣∣∣+
‖Xl‖√
n

∣∣∣∣√nβlσ

∣∣∣∣) ,
and

|Tl| ≥
σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ∣∣∣∣ √
nRl

σn−1/2‖v̂l‖

∣∣∣∣)
≥ σ

σ̂

(∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− |Zl| − ‖Xl‖√
n

∣∣∣∣√nRl

σ

∣∣∣∣) ,
where Rl = n−1v̂>l X−l(β−l − β̂−l). We also observe that

[{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε

}⋂{
max
l∈B(2)j

|Zl|+D′ max
l∈B(2)j

∣∣∣∣√nRl

σ

∣∣∣∣+D′ max
l∈B(2)j

∣∣∣∣√nβlσ

∣∣∣∣ ≤√τ log p

}
⋂{

max
l

‖Xl‖√
n
≤ D′

}]
⊂

{
max
l∈B(2)j

|Tl| ≤
√
τ log p

}
,

and [{
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRl

σ

∣∣∣∣ >√τ log p

}
⋂{∣∣∣∣ σ̂σ − 1

∣∣∣∣ ≤ ε

}⋂{
max
l

‖Xl‖√
n
≤ D′

}]
⊂

{
min
l∈B(1)j

|Tl| >
√
τ log p

}

and where D′ =
√

maxl Σl,l + ε′ for 0 < ε′ ≤ 2κ2. Note that

P
{

max
l

‖Xl‖√
n
≤ D′

}
≥ 1− 2 exp

{
− 1

8e2
(ε′)2

4κ4
n+ log p

}
. (A.13)

We prove Proposition 2.1 in the following two steps.
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1. Under Assumption 2.1, it suffices to show that

P

(
max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p

)
→ 1,

where c1 =
√
τ −D′

√
d0. We have, for ε′′ > 0,

P

(
max
l∈B(2)j

|Zl|+
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ c1

√
log p

)

≥P

({
max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
}⋂{

D′

σ
max
k∈B(2)j

|
√
nRl| ≤ ε′′

})

≥P

(
max
l∈B(2)j

|Zl| ≤ c1
√

log p− ε′′
)

+ P

(
D′

σ
max
l∈B(2)j

|
√
nRl| ≤ ε′′

)
− 1

≥P

(
D′

σ
max
k∈B(2)j

|
√
nRk| ≤ ε′′

)
− 2p exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
.

Here the last inequality follows by Lemma A.2 under Assumption 2.2, i.e.,

P

(
max
l∈B(2)j

|Zl| ≥ c1
√

log p− ε′′
)

≤P

 ⋃
l∈B(2)j

{
|Zl| ≥ c1

√
log p− ε′′

}
≤|B(2)

j | × P

(∣∣∣∣∣ 1

σ‖v̂l‖

n∑
i=1

v̂liεi

∣∣∣∣∣ ≥ c1
√

log p− ε′′
)

≤|B(2)
j | × 2× exp

{
−σ

2(c1
√

log p− ε′′)2

32eκ2ε

}
(A.14)

conditional on v̂l. By the assumption

σ2

32eκ2ε
(
√
τ −

√
d0 max

l
Σl,l)

2 > 1,

we have
σ2

32eκ2ε
c21 > 1
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for small enough ε′. Together with (A.13), Lemma A.5 and Assumption 2.4, we obtain

P

(
max
l∈B(2)j

|Tl| ≤
√
τ log p

)
→ 1.

2. We define c2 =
√
d1/M ′′ −

√
τ , where

M ′′ =
(

min
l

Σl\−l + ε′1

)2(2C2

8e2

(
min
l

1

(κ0l)2

)−1
+ max

l
Σl\−l + 2ε′2

)

by letting (ε′0)
2 = 2 ((8e2)−1 minl(κ0l)

−2)
−1

+ ε′2 in (A.11). We have, for ε′′ > 0,

P

(
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| −D′ max
l∈B(1)j

∣∣∣∣√nRl

σ

∣∣∣∣ >√τ log p

)

≥P

({
min
l∈B(1)j

∣∣∣∣ √
nβl

σn−1/2‖v̂l‖

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

}⋂{
D′

σ
max
l∈B(1)j

∣∣√nRl

∣∣ ≤ ε′′

})

≥P

({
min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

}⋂{
min
l∈B(1)j

1

n−1/2‖v̂l‖
≥ 1√

M ′′

})

+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 1

≥P

(
min
l∈B(1)j

∣∣∣∣ √nβlσ
√
M ′′

∣∣∣∣− max
l∈B(1)j

|Zl| >
√
τ log p+ ε′′

)
+ P

(
max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′

)

+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 2

≥P

(
max
l∈B(1)j

|Zl| < c2
√

log p− ε′′
)

+ P

(
max
l∈B(1)j

n−1‖v̂l‖2 ≤M ′′

)

+ P

(
D′

σ
max
l∈B(1)j

|
√
nRl| ≤ ε′′

)
− 2

≥1− 2
∣∣∣B(1)

j

∣∣∣ exp

{
− σ2

32eκ2ε
(b
√

log p− ε′′)2
}

+ P

(
max
k∈B(1)j

n−1‖v̌k‖2 ≤M ′′

)

+ P

(
D′

σ
max
k∈B(1)j

|
√
nRk| ≤ ε′′

)
− 2
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where the last inequality follows from (A.14). By the assumption
√
d1/M −

√
τ > 0, we

have c2 =
√
d1/M ′′ −

√
τ > 0 for small enough ε′1, ε

′
2. Since

∣∣∣B(1)
j

∣∣∣ ≤ s0 � p, by (A.12),

(A.13), Lemma A.5 and Assumption 2.4, we get P
(

min
l∈B(1)j

|Tl| >
√
τ log p

)
→ 1.

♦

Proof of Theorem 2.1. The argument below is conditional on the event {A(k)
j (τ) = B(k)

j for k =

1, 2} which occurs almost surely by Proposition 2.1. Let ŭj1 = max
k∈A(1)

j (τ)
n−1|v̆>j Xk| and

ŭj1 = max
k∈A(2)

j (τ)
n−1|v̆>j Xk| where v̆j is as in Corollary A.1. Then, (ŭj1, ŭj1, v̆j) is a feasible

point to problem (2.8). By the definition of ṽj ,

C1
n

log p
ũ2j1 + C2

n

log p
ũ2j2 + n−1‖ṽj‖2 ≤ C1

n

log p
ŭ2j1 + C2

n

log p
ŭ2j2 + n−1‖v̆j‖2,

where ũj1 = max
k∈A(1)

j
n−1|ṽ>j Xk| and ũj2 = max

k∈A(2)
j
n−1|ṽ>j Xk|. Then, for i = 1, 2, we must

have

√
Ci

n

log p
ũji ≤ max{C1, C2}ε20j

(
1

Σj\−j
+ ε1j

)2

+

(
1

Σj\−j
+ ε1j

)2

(Σj\−j + ε2j),

with probability tending to 1 by Corollary A.1. Then, by Assumptions 2.3 and 2.6,

|
√
nR(ṽj, β−j)| =n−1/2|ṽ>j X−j(β−j − β̂−j)| ≤ n−1 max

k 6=j
|ṽ>j Xk|

√
n‖β̂−j − β−j‖1 = op(1).

Hence, we obtain

√
n(β̃j(ṽj)− βj) =

1√
n
ṽ>j ε+ op(1). (A.15)

Note that

∑n
i=1E[(ṽj,iεi)

2+δ|ṽj]
σ2+δ‖ṽj‖2+δ

=
Eε2+δ1

σ2+δ

‖ṽj‖2+δ2+δ

‖ṽj‖2+δ
= oa.s.(1).
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Conditional on the event that {‖ṽj‖2+δ/‖ṽj‖ → 0}, the Lyapunov condition is satisfied and thus

ṽ>j ε/{σ‖ṽj‖} converges to N(0, 1). If ε ∼ N(0, σ2I), ṽ>j ε/{σ‖ṽj‖} ∼ N(0, 1) conditional on ṽj.

The conclusion thus follows from (A.15) and Assumption 2.4 by the Slutsky’s theorem. ♦

Proof of Proposition 2.2. All the arguments below are conditional on the event {A(2)
j = B(2)

j }

which occurs almost surely by Proposition 2.1. With the projection direction v̄j from (2.16) and

the refitted least square estimator β̌, the bias (2.6) reduces to

√
nR(v̄j, β−j) =

1√
n

∑
k 6=j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈B(1)j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈B(2)j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(1)

j

v̄>j Xk(βk − β̌k) +
1√
n

∑
k∈A(2)

j

v̄>j Xk(βk − β̌k)

=
1√
n

∑
k∈A(2)

j

v̄>j Xkβk,

where we have used the fact that v̄>j Xk = 0 for k ∈ A(1)
j from (2.16) and β̌A(2)

j
= 0 by (2.17).

Thus, we have

|
√
nR(v̄j, β−j)| ≤ ‖n−1v̄>j X−j‖∞

√
n‖βA(2)

j
‖1

≤ ‖n−1v̄>j X−j‖∞σ
√
d0 log p‖βB(2)j ‖0

≤ Op

(√
log p

n

)
σ
√
d0 log p‖βB(2)j ‖0

where the second inequality holds by Assumption 2.1 under the event {A(2)
j = B(2)

j }. The last

inequality follows from the fact that ‖n−1v̄>j X−j‖∞ = Op(
√

log p/n), which can be verified by

using similar arguments as in the proof of Corollary 1 together with the definition of v̄j under

Assumption 2.5. The last statement follows immediately from condition (2.20). ♦
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A.1.3 Technical details in Section 2.4

We first state the following results which are parallel to Lemma A.3 and the first inequality in

Corollary A.2. As the proof is similar to the one in Lemma A.3, we omit the details.

Corollary A.3. Let θl = Xl − X−Sbl with bl = argminb̃E‖Xl − X−S b̃‖2 for l ∈ S. Under

Assumption 2.5,

P

(
n−1‖θ>l X−S‖∞ ≥ ξ0l

√
log p

sn

)
≤ 2 exp

{(
1− cl,S

δ20l
s(ξ0l)2

)
log p

}

for 0 < ξ0l ≤ κ0l
√
sn(log p)−1 where cl,S > 0 is an absolute constant and κ0l =

2

(
1 +

√
Λ−1minΣl,l

)
κ2. As a consequence, we have

P

(
max
l∈S

n−1‖θ>l X−S‖∞ ≥ ξ′0

√
log p

sn

)
≤ 2 exp

{
−
(

min
l

cl,S
s(κ0l)2

)
(ξ′0)

2 log p+ 2 log p

}
.

for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1.

The following results are introduced for the proof of Theorem 2.2 which follows from a direct

application of Proposition 2.1 in Vershynin (2012) .

Lemma A.6. For every δ > 0, we have

P
(
‖n−1X>SXS −ΣS,S‖ ≤

√
4

Cκ

s

n
log

2

δ

)
≥ 1− δ,

where Cκ > 0 is an absolute constant which only depends on δ and κ.

We next introduce the following lemma which provides an upper bound for the operator norm

of a matrix.

Lemma A.7. Let B be a m × m matrix and Nε be an ε-net of the unit sphere Sm−1 for some

ε ∈ (0, 1/2). Then

‖B‖ ≤ (1− 2ε)−1 sup
c,d∈Nε

∣∣c>Bd
∣∣ .
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Proof of Lemma A.7. For any c, d ∈ Sm−1, we can choose cN , dN ∈ Nε such that max{‖c −

cN‖, ‖d− dN‖} ≤ ε. Some algebra gives us

c>Bd = c>NBdN + (c− cN )>Bd+ c>NB(d− dN ),

which implies that

∣∣c>Bd
∣∣ ≤ 2ε‖B‖+ sup

cN ,dN∈Nε

∣∣c>NBdN
∣∣ .

Taking supremum over all c, d ∈ Sm−1 and rearranging terms give us the desired result. ♦

Lemma A.8. For every δ > 0, we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

where Cκ′ > 0 denotes an absolute constant which only depends on κ′ = 2κ2
√

Λ−1minD
2.

Proof of Lemma A.8. We prove the result in several steps. First, we bound the operator norm by

using the so-called ε-net argument. Then we apply the concentration inequality for sub-exponential

random variables and finally use the union bound to finish the proof. For two vectors a, b ∈ Rq×1,

write 〈a, b〉 = a>b. By Lemma A.7 and Lemma 5.2 in Vershynin (2012), we have

‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖

= sup
c,d∈Ss−1

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
≤3 sup

c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣
where N1/3 denotes a 1/3-net of Ss−1 with the covering number |N1/3| ≤ 7s.

Let us fix c, d ∈ N1/3. Because each row of XS and X−S is independent sub-gaussian random

vector, we can apply the concentration inequality in Corollary 5.17 of Vershynin (2010). Specifi-
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cally, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>ΣS,−SΣ−1−S,−SΣ−S,Sd

)∣∣∣∣∣ ≥ ε

)

≤2 exp

(
−cn ε2

(κ′)2

)

provided that ε2 ≤ (κ′)2, where ‖〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉‖ψ1 ≤ κ′ and c > 0 is an absolute

constant. Applying the union bound over c, d ∈ N1/3, we have

sup
c,d∈N1/3

∣∣∣∣∣ 1n
n∑
i=1

(
〈Xi,S, c〉〈ΣS,−SΣ−1−S,−SXi,−S, d〉 − c>(ΣS,−SΣ−1−S,−SΣ−S,S)d

)∣∣∣∣∣ ≥ ε

with probabiliity at most 2|N1/3|2 exp [−cnε2/(κ′)2], which implies

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ < 3ε

)
≥ 1− 2|N1/3|2 exp

[
−cn

( ε
κ′

)2]
≥ 1− 2 exp

[
4s− nε2Cκ′

]
where Cκ′ = c/(κ′)2. Then by letting ε2 = (8/Cκ′) log(2/δ)(s/n), we have

P
(
‖(n−1X>SX−S −ΣS,−S)Σ−1−S,−SΣ−S,S‖ ≤ 3

√
8

Cκ′
log

2

δ

s

n

)
≥ 1− δ

which completes the proof. ♦

Lemma A.9. Let Â = n−1X>SΘ and A = ΣS,S − ΣS,−SΣ−1−S,−SΣ−S,S . Under the assumption

that s/n = o(1) and ‖A−1‖ ≤ B for some constant B > 0, we have ‖w‖ = Op(‖aS‖).

Proof of Lemma A.9. Note that

‖w‖ = ‖(n−1X>SΘ)−1aS‖ ≤ ‖Â−1‖‖aS‖.
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We want to bound ‖Â−1‖. Using the properties of operator norm, we have

‖Â−1‖ ≤ ‖Â−1 −A−1‖+ ‖A−1‖ ≤ ‖Â−1‖‖A−1‖‖A− Â‖+ ‖A−1‖.

Rearranging the terms, we obtain

‖Â−1‖(1− ‖A−1‖‖A− Â‖) ≤ ‖A−1‖.

With the assumption ‖A−1‖ ≤ B, we have

1− ‖A−1‖‖A− Â‖ ≥ 1−B‖A− Â‖.

Under the assumption s/n = o(1), by Lemmas A.6 and A.8, we have ‖A − Â‖ = op(1). Thus

1−‖A−1‖‖A− Â‖ is bounded from below by a positive constant with probability tending to one.

Thus

‖Â−1‖ ≤ (1− ‖A−1‖‖A− Â‖)−1‖A−1‖ ≤ (1−B‖A− Â‖)−1‖A−1‖

which implies that ‖Â−1‖ = Op(1). The conclusion follows directly. ♦

Lemma A.10. Let Θ ∈ Rn×s where the l-th column vector is θl for l ∈ S as in Corollary A.3 and

v̆a = Θw where w = (n−1X>SΘ)−1aS . Then, under Assumption 2.5 and ‖aS‖ = O(1), we have

n−1‖v̆a‖2 = Op(1).

Proof of Lemma A.10. We note that

‖Θw‖2 ≤ ‖XS −X−SΣ−1−S,−SΣ−S,S‖2‖w‖22 ≤ 2 {‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2}︸ ︷︷ ︸
I

‖w‖22.
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We shall control I below. Lemma 5.3 in Vershynin (2012) gives us

‖XS‖2 ≤ 4 max
c∈N1/2

c>X′SXSc,

‖X−SΣ−1−S,−SΣ−S,S‖2 ≤ 4 max
d∈N1/2

d>ΣS,−SΣ−1−S,−SX′−SX−SΣ−1−S,−SΣ−S,Sd.

Let Q = ΣS,−SΣ−1−S,−S
(
n−1X>−SX−S −Σ−S,−S

)
Σ−1−S,−SΣ−S,S . Since the elements of the terms

inside the maximization can be expressed as a sum of independent sub-exponential random vari-

ables, we can use similar arguments as in the proof of Lemma A.3 to show that for every δ > 0,

P
(
‖Q‖ ≤

√
4

Cκ′

s

n
log

2

δ

)
≤ 1− δ

where Cκ′ > 0 is an absolute constant which only depends on κ′ = 2κ2
√

Λ−1minD
2. Together with

Lemma A.6, we have

n−1{‖XS‖2 + ‖X−SΣ−1−S,−SΣ−S,S‖2} ≤C0

{
op(1) + λmax(ΣS,S) + λmax(ΣS,−SΣ−1−S,−SΣ−S,S)

}
≤C0 {op(1) + 2λmax(ΣS,S)} ,

for some constant C0. Therefore, we have

n−1‖Θw‖22 ≤ 2C0(op(1) + 2Λ−2min)Op(‖aS‖2) = Op(1).

♦

Proof of Theorem 2.2. The arguments below are conditional on the sets A(1)
S and A(2)

S which

have nonrandom limits by Proposition 2.1. Let ŭa1 = max
k∈A(1)

j
n−1|v̆>a Xk| and ŭa2 =

max
k∈A(2)

j
n−1|v̆>a Xk|, where v̆a is as in Lemma A.10. Then, (ŭa1, ŭa2, v̆a) is a feasible point

to problem (2.22). By the definition of ṽa,

C1
n

log p
ũ2a1 + C2

n

log p
ũ2a2 + n−1‖ṽa‖2 ≤ C1

n

log p
ŭ2a1 + C2

n

log p
ŭ2a2 + n−1‖v̆a‖2.
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Then, for i = 1, 2, we must have

√
Ci

n

log p
ũai ≤ max{C1, C2}

n

log p
max
k/∈S

n−1|w>Θ>Xk|+ n−1‖v̆a‖2

≤ max{C1, C2}‖w‖(ξ′0)2 +Ma

with probability tending to 1 for 0 < ξ′0 ≤ minl κ0l
√
sn(log p)−1 and some constant Ma according

to Corollary A.3 and Lemma A.10. Then, by Assumptions 2.3 and 2.6,

|
√
nR(ṽa, β−S)| =n−1/2|ṽ>a X−S(β−S − β̂−S)| ≤ n−1 max

k/∈S
|ṽ>a Xk|

√
n‖β̂−S − β−S‖1 = op(1).

Hence, we obtain

√
n(β̃S(ṽa)− a>SβS) =

1√
n
ṽ>a ε+ op(1). (S1)

Finally we can apply the central limit theorem as in the proof of Theorem 2.1, which completes

the proof. ♦
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A.2 Additional numerical results

Figure A.1: Simulation results for Case 1 with s0 = 3, 5 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure A.2: Simulation results for Case 1 with s0 = 10, 15 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure A.3: Simulation results for Case 1 with s0 = 4, 8 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure A.4: Simulation results for Case 1 with s0 = 12, 16 and t-distributed random error. Barplots
for the empirical coverage and boxplots for the length and bias of the 95% confidence intervals.
The horizontal line in the barplots indicates the nominal level. Error bars in the barplots represent
the interval within one standard deviation of the empirical coverage.
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Figure A.5: Simulation results for Case 1 with s0 = 3, 5 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure A.6: Simulation results for Case 1 with s0 = 10, 15 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure A.7: Simulation results for Case 2 with s0 = 4, 8 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure A.8: Simulation results for Case 2 with s0 = 12, 16 and Gamma-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals. The horizontal line in the barplots indicates the nominal level. Error bars in the barplots
represent the interval within one standard deviation of the empirical coverage.
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Figure A.9: Simulation results for a sparse linear combination of β and t-distributed random error.
Barplots for the empirical coverage and boxplots for the length and bias of the 95% confidence
intervals for each contrast. The horizontal line in the barplots indicates the nominal level. Error
bars in the barplots represent the interval within one standard deviation of the empirical coverage.
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Figure A.10: Simulation results for a sparse linear combination of β and Gamma-distributed ran-
dom error. Barplots for the empirical coverage and boxplots for the length and bias of the 95%
confidence intervals for each contrast. The horizontal line in the barplots indicates the nominal
level. Error bars in the barplots represent the interval within one standard deviation of the empiri-
cal coverage.

111



Figure A.11: Boxplots of the two different error variance estimators. Data i s generated by Case
1 with s0 = 3, 5, 10 and 15. “1st" denotes the estimator ‖Y − Xβ̂‖2/n and “2nd" denotes the
estimator ‖Y − Xβ̂‖2/(n − ‖β̂‖0). The number on the top of each panel denotes the number of
non-zero coefficients. The horizontal dashed line corresponds to the true error variance.
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APPENDIX B

SUPPLEMENTARY MATERIAL TO CHAPTER 3

B.1 Data generation for Figures 3.1-3.2

To generate Figures 3.1-3.2, 300 independent simulation runs are conducted with n = 100,

m = 2000 and d = 1. We simulate X = (X1, · · · , X100)
>, Z = (Z1, · · · , Z100)

> by

Xk ∼ N(rε∗k, 1), Zk ∼ N(rε∗k, 1) (B.1)

where r = 1.0, 1.5, 2.0 and ε∗k
i.i.d.∼ N(0, 1). We generate Yi ∈ R100×1 under (3.1) with α =

(α1, . . . , αm)> and β = (β1, . . . , βm)> such that

Category A : αIA = 0.5× 1|IA|, βIA = 0|IA|, Category B : αIB = 0|IB |, βIB = 0.5× 1|IB |,

Category C : αIC = βIC = 0.5× 1|IC |, Category D : αID = βID = 0|ID|,

where IA, IB, IC , ID ⊂ {1, . . . ,M} denote some mutually disjoint index sets. We fix |IA| =

67, |IB| = 66, |IC | = 66 and randomly generate these index sets for each simulation run. And the

following R command is used to generate the grids for thresholds t1, t2 are used:

for t1 : seq(min |ZU
i |,max |ZU

i |,len = 250), for t2 : seq(min |ZA
i |,max |ZA

i |,len = 250).

B.2 Extension of the two-step procedure to GLM

Our goal here is to extend the idea of the two-step procedure under the model (3.1) to the

generalized linear model (GLM) setup.

B.2.1 Setup

Assume we have the response vector Yi = (Yi1, . . . , Yin)> ∈ Rn×1 for i = 1, . . . ,m and let

X = (X1, . . . , Xn)> ∈ Rn×1 and Z = (Z1, . . . , Zn)> ∈ Rn×d be the covariate of interest and the
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design matrix associated with the confounding factors, respectively. Under the GLM framework,

the response is often modeled by the exponential family with the probability density such that

f(Yij; θij, φ) = exp

{
Yijθij − κ(θij)

a(φ)
+ c(Yij, φ)

}
(B.2)

where θij is called the natural parameter and φ is the fixed dispersion parameter and κ(·), a(·), c(·)

are the known function. Recall that the GLM relates the linear predictor ηij = Xjα0i + Z>j β0i to

the mean of the response µij by using the link function g such that

E[Yij] = κ′(θij) = µij = g−1(ηij)

where α0i ∈ R and β0i ∈ Rd×1 denote the true parameters associated with the covariate and

confounding factors, respectively. If g is chosen to be the so-called canonical link function1 such

that θij = ηij , the log-likelihood is

`n(αi, βi) =
n∑
j=1

{
Yij(Xjαi + Z>j βi)− κ(Xjαi + Z>j βi)

a(φ)
+ c(Yij, φ)

}
(B.3)

under (B.2). Recall that our main interest is to conduct multiple testing for the set of the null

hypotheses {H0i : α0i = 0}mi=1 by using both the unadjusted and adjusted z-statistics which will be

defined in the following section.

B.2.2 Unadjusted and Adjusted z-statistics in GLM with the canonical link

Let α̂Ai be the estimator of α0i after adjusting for the confounding effect and α̂Ui be the unad-

justed version without taking into account the confounding factors. Then, α̂Ui and α̂Ai are defined

as
α̂Ui = argmax

τi

`Un (τi) = argmax
τi

`n(τi, 0),

(α̂Ai , β̂
A
i )> = argmax

αi,βi

`n(αi, βi).

(B.4)

1We consider the canonical link for g just to simplify the notation. The similar arguments in the next section can
be also used to define the unadjusted and adjusted z-statistics for the other choice of g.
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Recall that the asymptotic joint distribution of α̂Ui and α̂Ai needs to be derived to define the ad-

justed and unadjusted z-statistics. To do so, we follow the same idea in the classical MLE theory:

applying the Taylor expansion and Central Limit Theorem (CLT).

According to Fahrmexr (1990)2, under suitable conditions, the quasi-MLE α̂Ui is weakly con-

sistent for τ0i := τ0i(n) such that τ0i is the root of the following equation:

sn(τi) = E
[
∂`Un (τi)

∂τi

]
= 0. (B.5)

Let f : Rd+2 → Rd+2 be the function such that

f(τ0i, α0i, β0i) =

(
∂`Un (τi)

∂τi

∣∣∣∣
τi=τ0i

∇`n(α0i, β0i)

)>

=
n∑
j=1

a(φ)−1



Xj {Yij − κ′(Xjτ0i)}

Xj

{
Yij − κ′(Xjα0i + Z>j β0i)

}
Zj1
{
Yij − κ′(Xjα0i + Z>j β0i)

}
...

Zjd
{
Yij − κ′(Xjα0i + Z>j β0i)

}


where ∇`n(α0i, β0i) denotes the gradient of `n evaluated at (α0i, β0i) and Z>j = (Zj1, . . . , Zjd).

By using the Taylor expansion for the vector-valued function, it follows that

f(α̂Ui , α̂
A
i , β̂

A
i ) ≈ f(τ0i, α0i, β0i) + {Df(τ0i, α0i, β0i)} (α̂Ui − τ0i, α̂Ai − α0i, β̂

A
i − β0i)>

2For more details about the misspecified GLM, see Fahrmexr (1990).

115



where

Df(τ0i, α0i, β0i) =

∂
2`Un (τi)

∂τ 2i

∣∣∣∣
τi=τ0i

01×(d+1)

0(d+1)×1 ∇2`n(α0i, β0i)



=


−X>Q1X 0 01×d

0 −X>Q2X −X>Q2Z

0d×1 −Z>Q2X −Z>Q2Z


for

Q1 = diag {κ′′(Xjτ0i)/a(φ)}nj=1 , Q2 = diag
{
κ′′(Xjα0i + Z>j β0i)/a(φ)

}n
j=1

.

Let b>k be the k-th row vector of {−∇2`n(α0i, β0i)}−1 and W = (W1, . . . ,Wn)> = (X,Z). By

the first-order condition such that f(α̂Ui , α̂
A
i , β̂

A
i ) = 03×1 from (B.4), it follows that


α̂Ui − τ0i

α̂Ai − α0i

β̂Ai − β0i

 ≈ {−Df(τ0i, α0i, β0i)}−1 f(τ0i, α0i, β0i) =
n∑
j=1

Vj

where

Vj = a(φ)−1



(X>Q1X)−1Xj {Yij − κ′(Xjτ0i)}

b>1Wj

{
Yij − κ′(Xjα0i + Z>j β0i)

}
...

b>d+1Wj

{
Yij − κ′(Xjα0i + Z>j β0i)

}


.

Since Vj’s are the independent (but not identically distributed) random vectors, the multivariate

version of the Lindeberg-Feller CLT can be used. Thus, we have the following asymptotic normal-

ity such that
1

n

n∑
j=1

Vj ≈ Nd+2

(
0(d+2)×1,

S̄

n

)
(B.6)

by (B.5) and the fact that E[Yij] = κ′(Xjα0i + Z>j β0i) where S̄ = n−1
∑n

j=1 E[(Vj − E[Vj])(Vj −
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E[Vj])
>]. By some algebra,

∑n
j=1 E[(Vj − E[Vj])(Vj − E[Vj])

>] can be calculated as

a(φ)−2

(X>Q1X)−2(X>MX) M1

M>
1 M2


where

M = diag
{
E((Yij − κ′(Xjα0i + Z>j β0i))

2)
}n
j=1

= diag
{
κ′′(Xjα0i + Z>j β0i)a(φ)

}n
j=1

,

M1 =

(
(X>Q1X)−1(X>MWb1) . . . (X>Q1X)−1(X>MWbd+1)

)
,

M2 =


(b>1 W>MWb1) . . . (b>1 W>MWbd+1)

... . . . ...

(b>d+1W
>MWb1) . . . (b>d+1W

>MWbd+1)

 .

Thus, (B.6) implies that the asymptotic joint distribution of α̂Ui and α̂Ai is

α̂Ui
α̂Ai

 ≈ N2


τ0i
α0i

 ,

 σ2
i1 ρiσi1σi2

ρiσi1σi2 σ2
i2


 (B.7)

where σ2
i1 = a(φ)−2(X>Q1X)−2(X>MX), σ2

i2 = a(φ)−2b>1 W>MWb1 and

ρi =
X>MWb1√

X>MX
√
b>1 W>MWb1

.

Note that Q1,M and b1 depend on the unknown parameters τ0i, α0i and β0i. Thus, we consider

their estimated versions Q̂1, M̂ and b̂1 by replacing those with α̂Ui , α̂
A
i , β̂

A
i . Then, σ2

i1 and σ2
i2 can

be estimated by

σ̂2
i1 = a(φ)−2(X>Q̂1X)−2(X>M̂X), σ̂2

i2 = a(φ)−2b̂>1 W>M̂Wb̂1
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and the unadjusted and adjusted z-statistics are defined as

ZU
i =

α̂Ui
σ̂i1

, ZA
i =

α̂Ai
σ̂i2

and we have ZU
i

ZA
i

 ≈ N2


σ−1i1 τ0i
σ−1i2 α0i

 ,

 1 ρi

ρi 1


 (B.8)

from from (B.7).

B.2.3 Two-stage procedure for GLM with the canonical link

Recall that the two-stage procedure rejects the null hypothesis H0i : α0i = 0 when

|ZU
i | ≥ t1, |ZA

i | ≥ t2

for some thresholds t1, t2 ∈ R+. The false discovery proportion (FDP) can be written as

FDP(t1, t2) ≈
∑

i:H0i is true L(σ−1i1 τ0i, ρi; t1, t2)

1 ∨
∑M

i=1 1{|ZU
i | ≥ t1, |ZA

i | ≥ t2}

≤
∑m

i=1 L(σ−1i1 τ0i, ρi; t1, t2)

1 ∨
∑M

i=1 1{|ZU
i | ≥ t1, |ZA

i | ≥ t2}

where L(σ−1i1 τ0i, ρi; t1, t2) = P(|σ−1i1 τ0i + B1| ≥ t1, |B2| ≥ t2|σ−1i1 τ0i, ρi) for the bivariate normal

random variables (B1, B2) such that

B1

B2

 ∼ N2


0

0

 ,

 1 ρi

ρi 1




where ρi is the same as (B.7). Recall that our goal at this point is to estimate the numerator of the

upper bound of FDP.

We again use the nonparametric empirical Bayes approach to estimate the prior distribution of

the location parameter σ−1i1 τ0i of ZU
i . One additional thing to deal with is for ρi: though it is to be
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known conditional on X,Z in the linear model, that is not the case in the GLM setup. Thus, we

use the plug-in estimates ρ̂i for ρi calculated by using α̂Ui , α̂
A
i , β̂

A
i . Note that we have the following

approximate Gaussian location model such that

ZU
i ≈ σ−1i1 τ0i + εi, εi ∼ N(0, 1)

from (B.8). Suppose that σ−1i1 τ0i
i.i.d.∼ Gn where the dependence on n is due to τ0i from (B.5). Then,

we estimate it by using the general maximum likelihood estimator (GMLE) G̃m,n such that

G̃n,m = argmax
G∈G

m∑
i=1

log fG(ZU
i )

where G denotes the set of all probability distributions on R and fG(x) =
∫
φ(x − u)dG(u) is

the convolution between G and φ. Based on this, we approximate
∑m

i=1 L(σ−1i1 τ0i, ρi; t1, t2) by∑m
i=1

∫
L(x, ρ̂i; t1, t2)dG̃m,n(x). With a modification of John Storey’s approach, we consider the

FDR estimate given by

F̃DP
GLM
λ (t1, t2) =

∑m
i=1

∫
L(x, ρ̂i; t1, t2)dG̃m,n(x)1

{
|ZA

i | ≤ λ
}

(1− 2Φ(−λ))
∑m

i=1 1 {|ZU
i | ≥ t1, |ZA

i | ≥ t2}
,

where λ is a prespecified number as in John Storey’s approach. Thus, for a desired FDR level

q ∈ (0, 1), we choose the optimal threshold such that

(T̃GLM
1 , T̃GLM

2 ) = argmax
(t1,t2)∈FGLM

q,λ

m∑
i=1

1
{
|ZU

i | ≥ t1, |ZA
i | ≥ t2

}
,

where

FGLM
q,λ :=

{
(t1, t2) ∈ R+ × R+ : F̃DP

GLM
λ (t1, t2) ≤ q

}
.

B.3 Technical Details

We first introduce some concentration inequalities for a later use.
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Lemma B.1. Under Assumptions 3.3-3.4, for x0 > 0, we have

P (|Ω− E[Ω]| > x0) ≤ C0 exp
{
−c0n(x20/c

′
0 ∧ x0/c′′0)

}
,

P (‖Ψ− E[Ψ]‖max > x0) ≤ C1 exp
{
−c1n(x20/c

′
1 ∧ x0/c′′1)

}
,

P (‖Γ− E[Γ]‖max > x0) ≤ C2 exp
{
−c2n(x20/c

′
2 ∧ x0/c′′2)

}
,

and, for 0 < x1 < 3 (1 ∧D2
0/D2 ∧D2

0E[Ω]−1),

P
(
‖ΩZ|X − CZ|X‖max > x1

)
≤ C3 exp

{
−c3n(x21/c

′
3 ∧ x1/c′′3)

}
, (B.9)

and, for 0 < x2 < L−1 (3 ∧ 3D2
0/D2 ∧ 3D2

0E[Ω]−1) ∧
(

1 ∧ 3w
−1/2
0

(1∧D−1
0 )
∧ (D1d)−1

)
:= L′,

P (‖â− a‖max > x2) ≤ C4 exp
{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
, (B.10)

where Cl, cl, c
′
l, c
′′
l > 0 denote some absolute constants for l = 0, · · · , 4 and, for w0 =

E[Γ]C−1Z|XE[Γ]>,

L =

(
w

3/2
0

(
1 ∧D−10

)
6 {d2(1 + 2D0)D1 +D2

0D
2
1d

3}+D1dw
3/2
0

(
1 ∧D−10

) ∧ 1

)

and D0, D1, D2 > 0 are some constants such that ‖E[Γ]‖max ≤ D0, ‖C−1Z|X‖2 ≤ D1 and E[X2
1 ] ≥

D2. As a consequence of the above concentration inequalities, we have

Ω−1Z|X
a.s.→ C−1Z|X , ΩX|Z

a.s.→ CX|Z, A
a.s.→ A0.

Proof of Lemma B.1. Each element of Ψ − E[Ψ], Γ − E[Γ] and Ω − E[Ω] is sub-exponential.

The first three inequalities thus follow from the union bound and the tail bound for sum of sub-

exponential random variables, see e.g. Corollary 5.17 of Vershynin (2010). For (B.9), some algebra

gives us
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‖ΩZ|X − CZ|X‖max ≤‖Ψ− E[Ψ]‖max +D2
0|Ω−1 − E[Ω]−1| (B.11)

+
{
|Ω−1 − E[Ω]−1|+D−12

}{
‖Γ− E[Γ]‖2max + 2D0‖Γ− E[Γ]‖max

}
.

Then, for 0 < x1 < 3 (1 ∧D2
0/D2 ∧D2

0E[Ω]−1), the following inclusion of events can be verified

{
‖ΩZ|X − CZ|X‖max > x1

}⊂
[{
‖Ψ− E[Ψ]‖max >

x1
3

}⋃{
|Ω−1 − E[Ω]−1| > x1

3D2
0

}
⋃{

‖Γ− E[Γ]‖max >

(
D2

2(1 + 2D0)
∧ 1

)
x1
3

}]

⊂
[{
‖Ψ− E[Ψ]‖max >

x1
3

}⋃{
|Ω− E[Ω]| > D2

2x1
6D2

0

}
⋃{

‖Γ− E[Γ]‖max >

(
D2

2(1 + 2D0)
∧ 1

)
x1
3

}]
.

The first inclusion follows because, conditional on the events such that

[{
‖Ψ− E[Ψ]‖max ≤

x1
3

}⋂{
|Ω−1 − E[Ω]−1| ≤ x1

3D2
0

}
⋂{

‖Γ− E[Γ]‖max ≤
(

D2

2(1 + 2D0)
∧ 1

)
x1
3

}]
,

(B.11) implies that

‖ΩZ|X − CZ|X‖max

≤x1
3

+

(
x1

3D2
0

+D−12

){(
D2

2(1 + 2D0)
∧ 1

)2
x21
32

+ 2D0

(
D2

2(1 + 2D0)
∧ 1

)
x1
3

}
+D2

0

x1
3D2

0

≤x1
3

+ 2D−12 (1 + 2D0)

(
D2

2(1 + 2D0)
∧ 1

)
x1
3

+
x1
3
≤ x1.
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The second inclusion holds by noticing that

{
|Ω−1 − E[Ω]−1| > x1

3D2
0

}
=

{
|Ω− E[Ω]| > |ΩE[Ω]| x1

3D2
0

}

⊂
[{
|Ω− E[Ω]| > |ΩE[Ω]| x1

3D2
0

, |ΩE[Ω]| > E[Ω]2

2

}⋃{
|ΩE[Ω]| ≤ E[Ω]2

2

}]
(B.12)

⊂
[{
|Ω− E[Ω]| > E[Ω]2x1

6D2
0

}⋃{
|Ω− E[Ω]| > E[Ω]

2

}]
⊂

{
|Ω− E[Ω]| > D2

2x1
6D2

0

}

when x1 < 3D2
0E[Ω]−1 and E[Ω] = E[X2

1 ] ≥ D2.

As for the last inequality, we first observe that

‖â− a‖max =

∥∥∥∥ Γ√
w
− E[Γ]
√
w0

∥∥∥∥
max

≤
∣∣∣∣ 1√
w
− 1
√
w0

∣∣∣∣ {‖Γ− E[Γ]‖max + ‖E[Γ]‖max}+
1
√
w0

‖Γ− E[Γ]‖max (B.13)

where w = ΓΩ−1Z|XΓ> and w0 = E[Γ]C−1Z|XE[Γ]>. It also follows that, for 0 < x′′ < w
−1/2
0 ,

{∣∣∣∣ 1√
w
− 1
√
w0

∣∣∣∣ > x′′
}
⊂ {∣∣√w −√w0

∣∣ > w0

2
x′′
}

=

{∣∣∣∣ √w√w0

− 1

∣∣∣∣ > √w0

2
x′′
}

⊂
{∣∣∣∣ ww0

− 1

∣∣∣∣ > √w0

2
x′′
}

=

{
|w − w0| >

w
3/2
0

2
x′′

}
.

(B.14)
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Combining (B.13) with (B.14) implies that, for 0 < x′ <

(
3 ∧ 3w

−1/2
0

(1∧D−1
0 )

)
,

{‖â− a‖max > x′}

⊂
[{∣∣∣∣ 1√

w
− 1
√
w0

∣∣∣∣ > √x′√3

}⋃{
‖Γ− E[Γ]‖max >

√
x′√
3

}
(B.15)

⋃{∣∣∣∣ 1√
w
− 1
√
w0

∣∣∣∣ ‖E[Γ]‖max >
x′

3

}⋃{
1
√
w0

‖Γ− E[Γ]‖max >
x′

3

}]

⊂
[{∣∣∣∣ 1√

w
− 1
√
w0

∣∣∣∣ > x′

3

(
1 ∧D−10

)}⋃{
‖Γ− E[Γ]‖max >

x′

3
(1 ∧
√
w0)

}]

⊂
[{
|w − w0| >

x′

6
w

3/2
0

(
1 ∧D−10

)}⋃{
‖Γ− E[Γ]‖max >

x′

3
(1 ∧
√
w0)

}]
.

Thus, we need to derive the tail bound of |w − w0|. Note that

|w − w0| ≤
∣∣∣ΓΩ−1Z|XΓ> − E[Γ]Ω−1Z|XE[Γ]> + E[Γ]Ω−1Z|XE[Γ]> − E[Γ]C−1Z|XE[Γ]>

∣∣∣
≤
∣∣∣ΓΩ−1Z|XΓ> − E[Γ]Ω−1Z|XE[Γ]>

∣∣∣︸ ︷︷ ︸
(∗)

+‖E[Γ]‖22‖Ω−1Z|X − C
−1
Z|X‖2

and
(∗) =

∣∣∣(Γ− E[Γ])
(

Ω−1Z|X − C
−1
Z|X + C−1Z|X

)
(Γ− E[Γ] + 2E[Γ])>

∣∣∣
≤
{
‖Γ− E[Γ]‖22 + 2‖Γ− E[Γ]‖2‖E[Γ]‖2

}{
‖Ω−1Z|X − C

−1
Z|X‖2 + ‖C−1Z|X‖2

}
,

which implies that

|w − w0| (B.16)

≤d2
{
‖Γ− E[Γ]‖2max + 2D0‖Γ− E[Γ]‖max

}{
‖Ω−1Z|X − C

−1
Z|X‖2 +D1

}
+D2

0d
2‖Ω−1Z|X − C

−1
Z|X‖2.
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We have

‖Ω−1Z|X − C
−1
Z|X‖2 = ‖Ω−1Z|X(CZ|X − ΩZ|X)C−1Z|X‖2

≤ d‖ΩZ|X − CZ|X‖max‖Ω−1Z|X‖2‖C
−1
Z|X‖2

≤ D2
1d‖ΩZ|X − CZ|X‖max

{
1−D1d‖ΩZ|X − CZ|X‖max

}−1
.

(B.17)

The last inequality holds when ‖ΩZ|X − CZ|X‖max < (D1d)−1 due to the fact that

‖Ω−1Z|X‖2 ≤ ‖Ω
−1
Z|X − C

−1
Z|X‖2 + ‖C−1Z|X‖2

≤ ‖Ω−1Z|X‖2‖C
−1
Z|X‖2‖CZ|X − ΩZ|X‖2 + ‖C−1Z|X‖2

≤ D1d‖Ω−1Z|X‖2‖ΩZ|X − CZ|X‖max + ‖C−1Z|X‖2

which is equivalent to ‖Ω−1Z|X‖2
{

1−D1d‖ΩZ|X − CZ|X‖max

}
≤ ‖C−1Z|X‖2.

For 0 < x < (1 ∧ (D1d)−1) where κ = d2(1 + 2D0)D1 +D2
0D

2
1d

3 and

L =

{
w

3/2
0

(
1 ∧D−10

)
6κ+D1dw

3/2
0

(
1 ∧D−10

) ∧ 1

}
,

we have [{
‖ΩZ|X − CZ|X‖max ≤ Lx

}
∩ {‖Γ− E[Γ]‖max ≤ Lx}

]
⊂

{
|w − w0| ≤

w
3/2
0

(
1 ∧D−10

)
6

x

} (B.18)

because, conditional on the two events
{
‖ΩZ|X − CZ|X‖max ≤ Lx

}
and {‖Γ− E[Γ]‖max ≤ Lx},

(B.16) and (B.17) provide

|w − w0| ≤ d2
(
L2x2 + 2D0Lx

)( D2
1dLx

1−D1dLx
+D1

)
+D2

0d
2 D2

1dLx

1−D1dLx

≤ d2(1 + 2D0)Lx

(
D1

1−D1dLx

)
+
D2

0D
2
1d

3Lx

1−D1dLx
=

κLx

1−D1dLx

≤
κw

3/2
0

(
1 ∧D−10

)
x

6κ+D1dw
3/2
0

(
1 ∧D−10

)
−D1dw

3/2
0

(
1 ∧D−10

)
x
≤
w

3/2
0

(
1 ∧D−10

)
6

x.
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For 0 < x2 < L−1 (3 ∧ 3D2
0/D2 ∧ 3D2

0E[Ω]−1) ∧
(

1 ∧ 3w
−1/2
0

(1∧D−1
0 )
∧ (D1d)−1

)
, by (B.15) and

(B.18), we have

{‖â− a‖max > x2}

⊂
[{
‖ΩZ|X − CZ|X‖max > Lx2

}∪
{
‖Γ− E[Γ]‖max >

((
1 ∧√w0

)
3

∧ L

)
x2

}]
,

which completes the proof by applying the union bound and together the tail bounds of ‖ΩZ|X −

CZ|X‖max and ‖Γ− E[Γ]‖max.

A direct implication of the exponential tail bounds is

Ω
a.s.→ E[Ω], Γ

a.s.→ E[Γ], ΩZ|X
a.s.→ CZ|X (B.19)

by the Borel-Cantelli lemma. We next show

Ω−1Z|X
a.s.→ C−1Z|X , ΩX|Z

a.s.→ CX|Z. (B.20)

Since ΩZ|X
a.s.→ CZ|X , we have Ω−1Z|X

a.s.→ C−1Z|X by (B.17). Similarly, it can be shown that ΩX|Z
a.s.→

CX|Z under the assumption that λmin(E[Ψ]) > 0. Thus, by the continuous mapping theorem

together with (B.19) and (B.20), we conclude that A a.s.→ A0. ♦

The following lemma shows the strong uniform consistency of σ̂2
i and the tail bound for σ̂2

i /σ
2
i .

Lemma B.2. Under Assumptions 3.3 and 3.6,

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ a.s.→ 0 (B.21)

and, for 0 < δ1 < (n− d− 1)/ logm,

P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > ν1
√
δ1

∣∣∣W)
≤ 2m exp {−δ1(logm)} (B.22)
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where ν1 = 4
√

logm/(n− d− 1).

Proof of Lemma B.2. Since σ̂2
i /σ

2
i |W ∼ χ2

n−d−1/(n − d − 1), by the tail bound for chi-square

random variable as in Lemma 1 of Laurent and Massart (2000), we have

P

(∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 2

√
δ0

n− d− 1
+ 2

δ0
n− d− 1

∣∣∣W)
≤ 2 exp(−δ0)

for δ0 > 0. By the union bound, we have

P

(
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 2

√
δ0

n− d− 1
+ 2

δ0
n− d− 1

∣∣∣W)
≤ 2m exp(−δ0).

Letting δ0 = (n− d− 1)δ′0 for 0 < δ′0 < 1,

P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 2
√
δ′0 + 2δ′0

∣∣∣W)
≤ P

(
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 4δ′0

∣∣∣W)
≤ 2m exp(−(n− d− 1)δ′0).

Thus, under Assumptions 3.3 and 3.6, (B.21) follows by the Borel-Cantelli Lemma because

P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 4δ′0

)
= EW

[
P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ > 4δ′0

∣∣∣W)]
≤ 2m exp(−(n− d− 1)δ′0).

Choosing δ0 = δ1(logm) for 0 < δ1 < (n− d− 1)/ logm, we have

P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

∣∣∣W)
≥ P

(
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ 2

(
δ1(logm)

n− d− 1
+

√
δ1(logm)

n− d− 1

)∣∣∣W)

> 1− 2m exp {−δ1(logm)} .

♦

We next derive the tail bounds for max1≤i≤m |η̂i| and max1≤i≤m |η̃i|.

Lemma B.3. Under Assumptions 3.3-3.5, for 0 < δ1 < (n− d− 1)/(16 logm), δ2 > 0 and x2 as
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in Lemma B.1, we have

P
(

max
1≤i≤m

|η̂i| > ν2(1 + δ2)

)
≤ C4m exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
+ 2m exp

{
−ν22δ22

}
,

P
(

max
1≤i≤m

|η̃i| > ν2

(
1− ν1

√
δ1

)−1
(1 + δ2)

)
≤2m exp {−δ1(logm)}+ C4m exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
+ 2m exp

{
−ν22δ22

}
,

where ν1 = 4
√

logm/(n− d− 1) and ν2 = (d+ ‖a‖1)B(logm)b∨
1
2 .

Proof of Lemma B.3. Note that

P(|εi| ≤ x) ≥ 1− 2 exp(−x2) (B.23)

for any x > 0 by the well known result about the tail bound of a standard normal random variable.

Under model (3.4), we have

P (|η̂i| ≤ ν2(1 + δ2)) ≥ P ({|ηi| ≤ ν2} ∩ {|εi| ≤ ν2δ2})

≥ P (|ηi| ≤ ν2) + P (|εi| ≤ ν2δ2)− 1

≥ P (|ηi| ≤ ν2, ‖â− a‖max ≤ x2)− 2 exp
{
−ν22δ22

}
= P (‖â− a‖max ≤ x2)− 2 exp

{
−ν22δ22

}
≥ 1− C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
− 2 exp

{
−ν22δ22

}
where the third inequality follows by choosing x = ν2δ2 for δ2 > 0 in (B.23) and the equality

holds by Lemma B.1 because

|ηi| = |â>ξi| ≤ ‖â‖1‖ξi‖max ≤ (‖â− a‖1 + ‖a‖1)B(logm)b

≤ (d‖â− a‖max + ‖a‖1)B(logm)b

≤ (dx2 + ‖a‖1)B(logm)b ≤ (d+ ‖a‖1)B(logm)b = ν2

(B.24)

conditional on the event {‖â− a‖max ≤ x2} for x2 as in Lemma B.1 which is smaller than 1.
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Thus, it follows that

P
(

max
1≤i≤m

|η̂i| ≤ ν2(1 + δ2)

)
= P

(
m⋂
i=1

{|η̂i| ≤ ν2(1 + δ2)}

)

≥ 1− C4m exp
{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
− 2m exp

{
−ν22δ22

}
.

For the second inequality, we first observe that

∣∣∣∣ σ̂iσi − 1

∣∣∣∣ ≤ ∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ (B.25)

and, provided that |σ̂i/σi − 1| < 1,

|η̃i| =
∣∣∣∣σiσ̂i − 1 + 1

∣∣∣∣ |η̂i| ≤ ( |σ̂i/σi − 1|
1− |σ̂i/σi − 1|

)
|η̂i|+ |η̂i| =

|η̂i|
1− |σ̂i/σi − 1|

.

Thus, we have

P
(

max
1≤i≤m

|η̃i| ≤ ν2

(
1− ν1

√
δ1

)−1
(1 + δ2)

)
≥P
({

max
1≤i≤m

∣∣∣∣ σ̂iσi − 1

∣∣∣∣ ≤ ν1
√
δ1

}⋂{
max
1≤i≤m

|η̂i| ≤ ν2(1 + δ2)

})
≥P
({

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

}⋂{
max
1≤i≤m

|η̂i| ≤ ν2(1 + δ2)

})
≥1− 2m exp {−δ1(logm)} − C4m exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
− 2m exp

{
−ν22δ22

}
where the last inequality follows due to

P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

)
= EW

[
P
(

max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

∣∣∣W)]
≥ 1− 2m exp {−δ1(logm)}

(B.26)

by (B.22). ♦

We derive the concentration inequalities for m−1
∑m

i=1 η̂i and m−1
∑m

i=1 η̂
2
i in the following

lemma.
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Lemma B.4. Under Assumptions 3.3-3.5, for δ3 > 0, 0 < δ4 < 25ν3 and x2 as in Lemma B.1, we

have

P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂i − E [η1]

∣∣∣∣∣ > δ3

)
≤ 2 exp

{
−mδ

2
3

2ν3

}
+ C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
, (B.27)

and

P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E
[
η21
]
− 1

∣∣∣∣∣ > δ4

)

≤2 exp

{
− mδ24

211ν23

}
+ 2 exp

{
− mδ24

32(d+ ‖a‖1)2B2(logm)2bν3

}
+3C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
,

where ν3 = 4(d+ ‖a‖1)2B2(logm)2b + 1.

Proof of Lemma B.4. We have

P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂i − E [η1]

∣∣∣∣∣ > δ3

)

≤P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂i − E [η1]

∣∣∣∣∣ > δ3, ‖â− a‖max ≤ x2

)
+ P (‖â− a‖max > x2) .

Since the model (3.4) can be rewritten as

η̂i − E[η1] = ηi − E[η1] + εi

and, by (B.24), |ηi−E[η1]| ≤ 2(d+‖a‖1)B(logm)b conditional on the event {‖â− a‖max ≤ x2},

(ηi −E[η1])’s can be shown to be sub-gaussian with the variance proxy 4(d+ ‖a‖1)2B2(logm)2b.

Thus, (η̂i − E[η1])’s are also sub-gaussian with the variance proxy ν3 as εi’s are sub-gaussian with

the variance proxy one and ηi’s and εi’s are independent. Then, the first inequality follows from

Lemma 4 and Corollary 1.7 in Rigollet and Hütter (2015).
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For the second inequality, we observe that

(η̂i − E[η1])
2 − E[(η̂i − E[η1])

2] = η̂2i − E[η̂21]− 2E[η1](η̂i − E[η̂1])

= η̂2i − E[η21]− 1− 2E[η1](η̂i − E[η1])

under model (3.4). By Lemma 1.12 in Rigollet and Hütter (2015), conditional on the event

{‖â− a‖max ≤ x2}, it follows that

η̂2i − E[η21]− 1− 2E[η1](η̂i − E[η1])

is sub-exponential with the parameter 16ν3. According to Theorem 1.13 in Rigollet and Hütter

(2015),

P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1− 2E[η1]

(
1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ > δ4
2

)

≤P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1− 2E[η1]

(
1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ > δ4
2
, ‖â− a‖max ≤ x2

)

+ P (‖â− a‖max > x2)

≤2 exp

{
−m

2

(
δ24

210ν23
∧ δ4

25ν3

)}
+ C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
for any δ4 > 0. Since we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1− 2E[η1]

(
1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ > δ4
2

)

≥P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1

∣∣∣∣∣ > δ4

)
+ P

(∣∣∣∣∣2E[η1]

(
1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ ≤ δ4
2

)
− 1

≥P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1

∣∣∣∣∣ > δ4

)

+ P

(∣∣∣∣∣
(

1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ ≤ δ4
4|E[η1]|

, ‖â− a‖max ≤ x2

)
− 1
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and

P

(∣∣∣∣∣
(

1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ ≤ δ4
4|E[η1]|

, ‖â− a‖max ≤ x2

)

≥P

(∣∣∣∣∣
(

1

m

m∑
i=1

η̂i − E[η1]

)∣∣∣∣∣ ≤ δ4
4(d+ ‖a‖1)B(logm)b

, ‖â− a‖max ≤ x2

)
(∵ (B.24))

≥1− 2 exp

{
− mδ24

32(d+ ‖a‖1)2B2(logm)2bν3

}
− 2C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
by letting δ3 = δ4/(4(d+ ‖a‖1)B(logm)b) in (B.27), the proof can be completed. ♦

Lemma B.5. For 0 < δ1 < (n − d − 1)/ (16 logm) , δ2, δ3 > 0 and 0 < δ4 ≤ 25ν3 and x2 as in

Lemma B.1, under Assumptions 3.3-3.5, we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣ > ν1
√
δ1

1− ν1
√
δ1

(
E[η21] + 1 + δ4

2
+ ν2(1 + δ2){|E[η1]|+ δ3}

))

≤2m exp
{
−ν22δ22

}
+ 2m exp {−δ1(logm)}+ 2 exp

{
−mδ

2
3

2ν3

}
+ 2 exp

{
− mδ24

211ν23

}
+ 2 exp

{
− mδ24

32(d+ ‖a‖1)2B2(logm)2bν3

}
+ (m+ 4)C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
and

P

(∣∣∣∣∣ 1

m

m∑
i=1

log
fG̃m,n(η̂i)

fG̃m,n(η̃i)

∣∣∣∣∣ > ν1
√
δ1

1− ν1
√
δ1

(
E[η21] + 1 + δ4

2
+
ν2(1 + δ2)

1− ν1
√
δ1
{|E[η1]|+ δ3}

))

≤2m exp
{
−ν22δ22

}
+ 4m exp {−δ1(logm)}+ 2 exp

{
−mδ

2
3

2ν3

}
+ 2 exp

{
− mδ24

211ν23

}
+ 2 exp

{
− mδ24

32(d+ ‖a‖1)2B2(logm)2bν3

}
+ (m+ 4)C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
where ν1 = 4

√
logm/(n− d− 1), ν2 = (d+ ‖a‖1)B(logm)b∨

1
2 and ν3 = B2(logm)2b + 1.
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Proof of Lemma B.5. When |σ̂i/σi − 1| < 1, by (B.25), we have

∣∣∣∣∣
m∑
i=1

(η̃2i − η̂2i )

∣∣∣∣∣ ≤ max
1≤i≤m

∣∣∣∣σ2
i

σ̂2
i

− 1

∣∣∣∣
∣∣∣∣∣
m∑
i=1

η̂2i

∣∣∣∣∣ ≤ max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣
∣∣∣∣∣
m∑
i=1

η̂2i

∣∣∣∣∣ ,∣∣∣∣∣
m∑
i=1

(η̂i − η̃i)

∣∣∣∣∣ ≤ max1≤i≤m

∣∣∣ σ̂iσi − 1
∣∣∣

1−max1≤i≤m

∣∣∣ σ̂iσi − 1
∣∣∣
∣∣∣∣∣
m∑
i=1

η̂i

∣∣∣∣∣ ≤ max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣
∣∣∣∣∣
m∑
i=1

η̂i

∣∣∣∣∣ .
Recall that Ĝm,n(u) =

∑m
j=1 π̂j1 {ŝj ≤ u} denotes the solution of (3.5), where π̂j ≥ 0 with∑m

j=1 π̂j = 1 and {ŝ1, · · · , ŝm} is the set of support points for Ĝm,n. It follows that

∣∣∣∣∣ 1

m

m∑
i=1

log fĜm,n(η̂i)−
1

m

m∑
i=1

log fĜm,n(η̃i)

∣∣∣∣∣ =

∣∣∣∣∣ 1

m

m∑
i=1

log

[∑m
j=1 φ(η̂i − ŝj)π̂j∑m
j=1 φ(η̃i − ŝj)π̂j

]∣∣∣∣∣
=

∣∣∣∣∣ 1

m

m∑
i=1

log

[
exp

{
−(η̂2i − η̃2i )/2

} ∑m
j=1 exp

{
η̃iŝj + (η̂i − η̃i)ŝj − ŝ2j/2

}
π̂j∑m

j=1 exp
{
η̃iŝj − ŝ2j/2

}
π̂j

]∣∣∣∣∣ (B.28)

≤

∣∣∣∣∣ 1

m

m∑
i=1

(
|η̃2i − η̂2i |

2
+ |η̂i − η̃i| max

1≤j≤m
|ŝj|
)∣∣∣∣∣ ≤

∣∣∣∣∣ 1

m

m∑
i=1

(
|η̃2i − η̂2i |

2
+ |η̂i − η̃i| max

1≤i≤m
|η̂i|
)∣∣∣∣∣

≤
max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

2
(

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣)
∣∣∣∣∣ 1

m

m∑
i=1

η̂2i

∣∣∣∣∣+ max
1≤i≤m

|η̂i|
max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

η̂i

∣∣∣∣∣ ,
where the second inequality follows from the fact that the support of Ĝm,n(u) is always within the

range of η̂i as noticed in Section 3.2.3. Let

U :=
max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

2
(

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣)
∣∣∣∣∣ 1

m

m∑
i=1

η̂2i

∣∣∣∣∣+ max
1≤i≤m

|η̂i|
max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣

1−max1≤i≤m

∣∣∣ σ̂2
i

σ2
i
− 1
∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

η̂i

∣∣∣∣∣ ,
um,n :=

ν1
√
δ1

1− ν1
√
δ1

(
E[η21] + 1 + δ4

2
+ ν2(1 + δ2)(|E[η1]|+ δ3)

)
.
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We have the following inclusions of the events

[{
max
1≤i≤m

|η̂i| ≤ ν2(1 + δ2)

}⋂{
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

}
⋂{∣∣∣∣∣ 1

m

m∑
i=1

η̂i − E [η1]

∣∣∣∣∣ ≤ δ3

}⋂{∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E
[
η21
]
− 1

∣∣∣∣∣ ≤ δ4

}]
(B.29)

⊂
[{

max
1≤j≤m

|η̂i| ≤ ν2(1 + δ2)

}⋂{
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

}
⋂{∣∣∣∣∣ 1

m

m∑
i=1

η̂i

∣∣∣∣∣ ≤ |E[η1]|+ δ3

}⋂{∣∣∣∣∣ 1

m

m∑
i=1

η̂2i

∣∣∣∣∣ ≤ E[η21] + 1 + δ4

}]
⊂ {U ≤ um,n} .

Thus, by (B.28)-(B.29), we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣ ≤ um,n

)
≥ P (U ≤ um,n)

≥P
(

max
1≤i≤m

|η̂i| ≤ ν2(1 + δ2)

)
+ P

(
max
1≤i≤m

∣∣∣∣ σ̂2
i

σ2
i

− 1

∣∣∣∣ ≤ ν1
√
δ1

)
+ P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂i − E [η1]

∣∣∣∣∣ ≤ δ3

)
+ P

(∣∣∣∣∣ 1

m

m∑
i=1

η̂2i − E[η21]− 1

∣∣∣∣∣ ≤ δ4

)
− 3,

which completes the proof of the first inequality by Lemmas B.3-B.4 and (B.26). Similar argument

can be used to verify the second inequality. ♦

In the following lemma, we introduce the large deviation inequality for dH
(
fG̃m,n , fGn

)
which

can be proved by using the similar argument in Theorem 1 in Zhang (2009) with the fact (B.24).

Lemma B.6. Under Assumptions 3.3-3.5 and the event {‖â− a‖max ≤ x2} for x2 as in Lemma

B.1, if G̃m,n satisfies
m∏
i=1

{
fG̃m,n(η̂i)

fGn(η̂i)

}
≥ e−2t

2mc2m/15 (B.30)

where

cm =

√
2(logm)b+

1
2
+(b∨ 1

2
)

√
m

[
m1/p

√
logm {(d+ ‖a‖1)B ∨ 1} (logm)b

]p/(2+2p)

,
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then there exists an universal constant t∗ such that for all t ≥ t∗ and logm ≥ 4/p,

P
(
dH

(
fG̃m,n , fGn

)
≥ tcm|W

)
≤ exp

{
− t

2mc2m
2 logm

}
≤ e−t

2 logm.

The following lemma shows that dH
(
fG̃m,n , fGn

)
= oa.s.(1).

Lemma B.7. Under Assumptions 3.3-3.6, dH
(
fG̃m,n , fGn

)
= oa.s.(1).

Proof of Lemma B.7. Define dH := dH

(
fG̃m,n , fGn

)
and note that dH is indexed by both n and

m. Since dH is indexed by only n under Assumption 3.6, for any ε > 0, it suffices to show that∑∞
n=1 P (dH ≥ ε) <∞ by the Borel-Cantelli Lemma.

For the same x2 in Lemma B.1 and large enough n, it follows that

P (dH ≥ ε) ≤ P (dH ≥ tcm) (B.31)

≤ P (dH ≥ tcm, ‖â− a‖max ≤ x2) + P (‖â− a‖max > x2)

where the first inequality follows because cm can be made arbitrary small for large enough n under

Assumption 3.6. By noticing that

P (dH ≥ tcm, ‖â− a‖max ≤ x2)

≤P

(
dH ≥ tcm, ‖â− a‖max ≤ x2,

1

m

m∑
i=1

log
fG̃m,n(η̂i)

fGn(η̂i)
≥ −2t2c2m

15

)

+ P

(
‖â− a‖max ≤ x2,

1

m

m∑
i=1

log
fG̃m,n(η̂i)

fGn(η̂i)
< −2t2c2m

15

)
,

we aim to get an upper bound for each term on the right hand side. Lemma B.6 provides

P

(
dH ≥ tcm, ‖â− a‖max ≤ x2,

1

m

m∑
i=1

log
fG̃m,n(η̂i)

fGn(η̂i)
≥ −2t2c2m

15

)
(B.32)

=EW

[
P

(
dH ≥ tcm,

1

m

m∑
i=1

log
fG̃m,n(η̂i)

fGn(η̂i)
≥ −2t2c2m

15

∣∣∣W)
1 {‖â− a‖max ≤ x2}

]
≤ D3m

−2
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for some constant D3 > 0 and large enough t.

Also,

P

(
1

m

m∑
i=1

log
fG̃m,n(η̂i)

fGn(η̂i)
< −2t2c2m

15
, ‖â− a‖max ≤ x2

)

=P
(

1

m

m∑
i=1

log
fĜm,n(η̂i)

fGn(η̂i)
− 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)
− 1

m

m∑
i=1

log
fG̃m,n(η̃i)

fG̃m,n(η̂i)

+
1

m

m∑
i=1

log
fG̃m,n(η̃i)

fĜm,n(η̃i)
< −2t2c2m

15
, ‖â− a‖max ≤ x2

)
(B.33)

≤P

(
2t2c2m

15
<

∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

log
fG̃m,n(η̃i)

fG̃m,n(η̂i)

∣∣∣∣∣ , ‖â− a‖max ≤ x2

)

≤P

(
2um,n <

∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣+

∣∣∣∣∣ 1

m

m∑
i=1

log
fG̃m,n(η̃i)

fG̃m,n(η̂i)

∣∣∣∣∣ , ‖â− a‖max ≤ x2

)

≤P

(
um,n <

∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣
)

+ P

(
um,n <

∣∣∣∣∣ 1

m

m∑
i=1

log
fĜm,n(η̂i)

fĜm,n(η̃i)

∣∣∣∣∣
)

where the second inequality follows due to the fact that, conditional on the event

{‖â− a‖max ≤ x2},

um,n =
ν1
√
δ1

1− ν1
√
δ1

(
E[η21] + 1 + δ4

2
+ ν2(1 + δ2)(|E[η1]|+ δ3)

)
= O

(
(logm)b+

1
2
+(b∨ 1

2
)

√
n

)

by (B.24) and

2t2c2m
15

≥ 2t2

15

(logm)b+
1
2
+(b∨ 1

2
)

mp/(1+p)
≥ 2t2

15D5

(logm)b+
1
2
+(b∨ 1

2
)

√
n

≥ 2t2

15D4D5

um,n ≥ 2um,n (B.34)

for large enough n and t ≥ (t∗ ∨
√

15D4D5) where D4, D5 ≥ 0 denote some constants such that

um,n ≤ D4
(logm)b+

1
2+(b∨ 1

2 )

√
n

and mp/(1+p) ≤ D5

√
n under Assumptions 3.5-3.6.
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Thus, for large enough n, combining (B.31) together with (B.32) and (B.33) implies that

P (dH ≥ ε)

≤D3m
−2 + 4m exp

{
−ν22δ22

}
+ 6m exp {−δ1(logm)}+ 4 exp

{
−mδ

2
3

2ν3

}
+ 4 exp

{
− mδ24

211ν23

}
+ 4 exp

{
− mδ24

32(d+ ‖a‖1)2B2(logm)2bν3

}
+ (2m+ 9)C4 exp

{
−c4n(x22/c

′
4 ∧ x2/c′′4)

}
by Lemma B.5. Then, under Assumption 3.6, each infinite series with respect to n on the right

hand side can be shown to be finite with the choice of δ1 > 2 and δ2 >
√

2/((d + ‖a‖1)B). This

implies
∑∞

n=1 P (dH ≥ ε) <∞, which completes the proof. ♦

We next show dH (fGn , fG0) = oa.s.(1) in the following lemma.

Lemma B.8. Under Assumptions 3.3-3.6, we have dH (fGn , fG0) = oa.s.(1).

Proof of Lemma B.8. We first note that d2H (fGn , fG0) ≤ dTV (fGn , fG0) where dTV denotes the

total variation distance such that

dTV (fGn , fG0) =
1

2

∫ ∣∣∣∣∫ φ(x− y)
{
dP (â>ξi ≤ y|W)− dP (a>ξi ≤ y)

}∣∣∣∣ dx.
The main idea of the proof is to find an upper bound of dTV (fGn , fG0) in terms of ‖â− a‖max.

Let ξ = (ξ1, · · · , ξd)> be a random vector with a density h and a = (a1, · · · , ad)>. Without

loss of generality, we suppose the first l elements of a are zero and the rest is non-zero for some

0 ≤ l ≤ d. Then, the density of a>ξ can be written as

fa>ξ(y) =


1
|ad|

∫
h

(
z1, · · · , zd−1,

y−
∑d−1
i=l+1 aizi

ad

)
dz1 · · · dzd−1 for l < d,

δy=0 for l = d

where
∑d−1

i=l+1 aizi is defined to be 0 if l = d − 1. We show this when l < d because it is
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straightforward if l = d. When l < d, the joint density of (a1ξ1, · · · , adξd) is

ga(z) =

(
l∏

i=1

δzi=0

)
1∏d

i=l+1 |ai|
h−l

(
zl+1

al+1

, · · · , zd
ad

)

where
∏l

i=1 δzi=0 is defined to be 1 if l = 0 and h−l denotes the density of (ξl+1, · · · , ξd). Then,

the density of a>ξ is

fa>ξ(y) =
1∏d

i=l+1 |ai|

∫
h−l

(
zl+1

al+1

, · · · ,
y −

∑d−1
i=l+1 zi

ad

)
dzl+1 · · · dzd−1

=
1

|ad|

∫
h−l

(
zl+1, · · · , zd−1,

y −
∑d−1

i=l+1 aizi

ad

)
dzl+1 · · · dzd−1

=
1

|ad|

∫
h

(
z1, · · · , zd−1,

y −
∑d−1

i=l+1 aizi

ad

)
dz1 · · · dzd−1.

Without loss of generality, we also consider the first k elements of â are zero and the rest is non-

zero for some 0 ≤ k ≤ d. Similarly, the density of â>ξ is

fâ>ξ(y) =


1
|âd|

∫
h

(
z1, · · · , zd−1,

y−
∑d−1
i=k+1 âizi

âd

)
dz1 · · · dzd−1 for k < d,

δy=0 for k = d.

Though we only show the case l < d and k < d below, it can be verified that dTV (fGn , fG0) is
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upper bounded by 1
2

∫ ∣∣∫ {φ(x− â>z)− φ(x− a>z)
}
h(z)dz

∣∣ dx for the other cases. Note that

dTV (fGn , fG0) =
1

2

∫ ∣∣∣∣∫ φ(x− y)

|âd|

∫
h

(
z1, · · · , zd−1,

y −
∑d−1

i=k+1 âizi

âd

)
dz1 · · · dzd−1dy

−
∫
φ(x− y)

|ad|

∫
h

(
z1, · · · , zd−1,

y −
∑d−1

i=l+1 aizi

ad

)
dz1 · · · dzd−1dy

∣∣∣∣dx
≤ 1

2

∫ ∣∣∣∣∫ φ(x− â>z)h(z)dz− φ(x− a>z)h(z)dz

∣∣∣∣ dx
≤ 1

2

∫ ∫ ∣∣φ(x− â>z)− φ(x− a>z)
∣∣ dxh(z)dz

≤ 1

2

∫ {
exp

{
|(â− a)>z|2

}
− 1
}1/2

h(z)dz

≤ 1√
2

∫ √
|(â− a)>z|2h(z)dz ≤ dB(logm)b‖â− a‖max√

2

under the event that ‖â − a‖max ≤ (dB(logm)b)−1ε for 0 < ε < 1 because ex ≤ 1 + 2x for any

0 < x < 1 and

|(â− a)>z|2 ≤ ‖â− a‖2max‖z‖21 ≤ (dB(logm)b)2‖â− a‖2max.

under Assumption 3.5. Then, for 0 < ε <
√

2dB(logm)bL′ where L′ is the same as in Lemma

B.1, it follows that

{
d2H(fGn , fG0) > ε/2

}⊂ [{
dTV (fGn , fG0) > ε/2, ‖â− a‖max ≤ (dB(logm)b)−1ε

}
⋃{
‖â− a‖max > (dB(logm)b)−1ε

}]
⊂

[{
dB(logm)b‖â− a‖max√

2
> ε/2, ‖â− a‖max ≤ (dB(logm)b)−1ε

}
⋃{
‖â− a‖max > (dB(logm)b)−1ε

}]

⊂ {
‖â− a‖max > (dB(logm)b)−1ε/

√
2
}
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Under Assumption 3.6, for large enough n and any fixed 0 < r < 1, we have

P
(
d2H(fGn , fG0) > ε/2

)
≤ P

(
‖â− a‖max > (dB(logm)b)−1ε/

√
2
)

≤ P
(
‖â− a‖max >

ε√
2dB(log n)b

)
≤ P

(
‖â− a‖max >

ε′√
2dBnr/2

)

where D6 > 0 is some constant such that (logm)b ≤ D6(log n)b for large enough n which must

exist under Assumption 3.6. The last inequality follows by the fact that log n ≤ nr/2b for large

enough n. Thus, we can conclude that dH (fGn , fG0) = oa.s.(1) by the Borel-Cantelli lemma with

Lemma B.1. ♦

Now we introduce the proofs of Lemmas 3.1 and 3.2, respectively.

Proof of Lemma 3.1. Note that

∣∣∣∣∫ L(Ax, t1, t2)dG̃m,n(x)−
∫
L0(A0x, t1, t2)dG0(x)

∣∣∣∣
≤
∣∣∣∣∫ {L(Ax, t1, t2)− L0(A0x, t1, t2)} dG̃m,n(x)

∣∣∣∣+

∣∣∣∣∫ L0(A0x, t1, t2)(dG̃m,n(x)− dG0(x))

∣∣∣∣ .
It thus suffices to show that

sup
t1≤t′1,t2≤t′2,x∈R

|L(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0, (B.35)

sup
t1≤t′1,t2≤t′2

∣∣∣∣∫ L0(A0x, t1, t2)(dG̃m,n(x)− dG0(x))

∣∣∣∣ a.s.→ 0. (B.36)

We first verify the pointwise convergence in (B.35), (B.36) and proceed to show the uniform con-

vergence as stated. As G̃m,n = G̃m(n),n under Assumption 3.6, throughout the proof, we denote

G̃m,n by G̃n for the notational simplicity.

1. Pointwise convergence

Let an = an(t1, t2) =
∣∣∣∫ L0(A0x, t1, t2)(dG̃n(x)− dG0(x))

∣∣∣ under Assumption 3.6. By
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Lemmas B.7 and B.8,

dH(fG̃n(x), fG0(x)) ≤ dH(fG̃n(x), fGn(x)) + dH(fGn(x), fG0(x)) = oa.s.(1). (B.37)

Since
∫
|f(x) − g(x)|dx ≤ 2dH(f, g)

√
2− d2H(f, g) and fG(x) ≤ 1/

√
2π for any G, we

have ∫
|fG̃n(x)− fG0(x)|2dx ≤ 2√

2π

∫
|fG̃n(x)− fG0(x)|dx = oa.s.(1).

For a density function or distribution function f , denote by f ∗ its Fourier transformation. By

the Parseval’s identity, we have

∫
|fG̃n(x)− fG0(x)|2dx =

∫ ∣∣∣φ∗(t)G̃∗n(t)− φ∗(t)G∗0(t)
∣∣∣2 dt

=

∫
φ∗(t)2

∣∣∣G̃∗n(t)−G∗0(t)
∣∣∣2 dt = oa.s.(1).

Consider any convergent subsequence of an, say anj . As
∫
φ∗(t)2

∣∣∣Ĝ∗nj(t)−G∗0(t)∣∣∣2 dt =

oa.s.(1), there exists a further subsequence Ĝ∗njk (t) such that

Ĝ∗njk
(t)

a.s.→ G∗0(t)

for almost every t with respect to the measure φ∗(t)dt (and thus also with respect to the

Lebesgue measure). By the continuity theorem, Ĝnjk
(t)

a.s.→ G0(t) for any continuous point

t of G0(t). Then, we have anjk → 0 by the Portmanteau theorem. As anj is convergent, it

must converge to zero as well. Since anj is an arbitrary convergent subsequence, we have

an =

∣∣∣∣∫ L0(A0x, t1, t2)(dG̃n(x)− dG0(x))

∣∣∣∣ a.s.→ 0 (B.38)

for any t1, t2. To show that |L(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0 for given x, t1 and t2, we

note that the covariance matrix of (V1, V2) converges almost surely to the covariance matrix
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of (V̆1, V̆2) by Lemma B.1. It follows from the continuous mapping theorem that

|L(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0.

2. Uniform convergence

We first show (B.35). For any δ > 0, we can choose a large enough M ′ = M ′(δ) such that

∫
|x|>M ′

dG0(x) < δ. (B.39)

For such M ′, using similar argument as above, we can verify that

∣∣∣∣∫
|x|>M ′

(dG̃n(x)− dG0(x))

∣∣∣∣ a.s.→ 0. (B.40)

We partition the rectangular region [0, t′1] × [0, t′2] into finite disjoint sets ∪1≤j≤B1Vj such

that uniformly over j,

sup
(t1,t2),(t̃1,t̃2)∈Vj

∣∣∣∣∫ (L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2))dG0(x)

∣∣∣∣ < δ, (B.41)

and also for |x| ≤M ′

sup
(t1,t2),(t̃1,t̃2)∈Vj

∣∣L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2)
∣∣ < δ. (B.42)
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We have for large enough m and uniformly over j,

sup
(t1,t2),(t̃1,t̃2)∈Vj

∣∣∣∣∫ (L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2))dG̃n(x)

∣∣∣∣
≤ sup

(t1,t2),(t̃1,t̃2)∈Vj

∣∣∣∣∫
|x|≤M ′

(L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2))dG̃n(x)

∣∣∣∣
+ sup

(t1,t2),(t̃1,t̃2)∈Vj

∣∣∣∣∫
|x|>M ′

(L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2))dG̃n(x)

∣∣∣∣
≤ sup

(t1,t2),(t̃1,t̃2)∈Vj

∣∣∣∣∫
|x|≤M ′

(L0(A0x, t1, t2)− L0(A0x, t̃1, t̃2))dG̃n(x)

∣∣∣∣
+ 2

∣∣∣∣∫
|x|>M ′

(dG̃n(x)− dG0(x) + dG0(x))

∣∣∣∣ ≤ 5δ

(B.43)

almost surely from (B.39),(B.40) and (B.42). Choosing (tj1, t
j
2) ∈ Vj for 1 ≤ j ≤ B1, we

have

sup
t1≤t′1,t2≤t′2

∣∣∣∣∫ L0(A0x, t1, t2)(dG̃n(x)− dG0(x))

∣∣∣∣
= sup

(t1,t2)∈∪1≤j≤BVj

∣∣∣∣∫ L0(A0x, t1, t2)(dG̃n(x)− dG0(x))

∣∣∣∣
= max

1≤j≤B
sup

(t1,t2)∈Vj

∣∣∣∣∣
∫ {

L0(A0x, t1, t2)− L0(A0x, t
j
1, t

j
2) + L0(A0x, t

j
1, t

j
2)
}

(dG̃n(x)− dG0(x))

∣∣∣∣∣ ≤ 6δ + max
1≤j≤B1

∣∣∣∣∫ L0(A0x, t
j
1, t

j
2)(dG̃n(x)− dG0(x))

∣∣∣∣
by (B.41) and (B.43). The proof for (B.35) is completed in view of (B.38).

To show (B.36), by the triangle inequality, it suffices to show that

sup
t1≤t′1,t2≤t′2,x∈R

|L(Ax, t1, t2)− L0(Ax, t1, t2)|
a.s.→ 0, (B.44)

sup
t1≤t′1,t2≤t′2,x∈R

|L0(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0. (B.45)

Then, (B.44) follows by applying the Scheffe’s Lemma with the pointwise almost sure con-

vergence of the probability density of (V1, V2) to that of (V̆1, V̆2) by Lemma B.1. We next

142



show (B.45). We first observe that, for any a, t1, t2 ∈ R,

L0(a, t1, t2) = P(a+ V̆1 ≥ t1, V̆2 ≥ t2) + P(a+ V̆1 ≤ −t1, V̆2 ≥ t2)

+ P(a+ V̆1 ≥ t1, V̆2 ≤ −t2) + P(a+ V̆1 ≤ −t1, V̆2 ≤ −t2)

= {Φ(−t2)− Φ(t1 − a) + Ψ1(t1 − a, t2)}

+ {Φ(−t1 − a)−Ψ1(−t1 − a, t2)}+ {Φ(−t2)−Ψ1(t1 − a,−t2)}

+ Ψ1(−t1 − a,−t2),

(B.46)

where Ψ1(t1, t2) = P(V̆1 ≤ t1, V̆2 ≤ t2). For any δ > 0, we can choose some large enough

M ′′(δ, t′1, t
′
2, A0) > 0 such that

{Φ(t′1 − A0M
′′) ∨Ψ1(t

′
1 − A0M

′′, t′2)} ≤ δ,

{Φ(−t′1 + A0M
′′) ∧Ψ1(−t′1 + A0M

′′,−t′2)} ≥ 1− δ
(B.47)

which implies, for any x ≥M ′′, t1 ≤ t′1, t2 ≤ t′2,

Φ(−t1 − A0x) ≤ δ,

Ψ1(−t1 − A0x,−t2) ≤ δ,

Ψ1(t1 − A0x,−t2) ≤ δ,

(B.48)

and, for any x ≤ −M ′′,

1− δ ≤ Φ(t1 − A0x),

1− δ ≤ Ψ1(−t1 − A0x, t2),

1− δ ≤ Ψ1(t1 − A0x, t2).

(B.49)

Here we use the fact that Φ and Ψ1 are non-decreasing continuous function. Thus, to show

(B.45), it suffices to show that

sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|L0(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0, (B.50)
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sup
t1≤t′1,t2≤t′2,|x|<M ′′

|L0(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0. (B.51)

By (B.46),

sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|L0(Ax, t1, t2)− L0(A0x, t1, t2)|

≤ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Φ(−t1 − Ax)− Φ(−t1 − A0x)|

+ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Φ(t1 − Ax)− Φ(t1 − A0x)|

+ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Ψ1(−t1 − Ax,−t2)−Ψ1(−t1 − A0x,−t2)|

+ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Ψ1(−t1 − Ax, t2)−Ψ1(−t1 − A0x, t2)|

+ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Ψ1(t1 − Ax,−t2)−Ψ1(t1 − A0x,−t2)|

+ sup
t1≤t′1,t2≤t′2,|x|≥M ′′

|Ψ1(t1 − Ax, t2)−Ψ1(t1 − A0x, t2)| .

Since A a.s.→ A0, by (B.47), there exists some N(M ′′(δ, t′1, t
′
2, A0, ω)) > 0 such that n ≥

N(M ′′(δ, t′1, t
′
2, A0, ω)) implies that

{Φ(t′1 − AM ′′) ∨Ψ1(t
′
1 − AM ′′, t′2)} ≤ δ,

{Φ(−t′1 + AM ′′) ∧Ψ1(−t′1 + AM ′′,−t′2)} ≥ 1− δ

Since Φ and Ψ1 are non-decreasing continuous function, for |x| ≥M ′′,

Φ(−t1 − Ax) ≤ δ,

Ψ1(−t1 − Ax,−t2) ≤ δ,

Ψ1(t1 − Ax,−t2) ≤ δ,

(B.52)
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or
1− δ ≤ Φ(t1 − Ax),

1− δ ≤ Ψ1(−t1 − Ax, t2),

1− δ ≤ Ψ1(t1 − Ax, t2).

(B.53)

Therefore, (B.50) can be verified by (B.48)-(B.49) and (B.52)-(B.53) as δ can be arbitrary.

For (B.51), since L0 is Lipschitz with respect to the first argument, it follows that

|L0(Ax, t1, t2)− L0(A0x, t1, t2)| ≤
6√
2π
|Ax− A0x| <

6M ′′
√

2π
|A− A0| (B.54)

which completes the proof because A a.s.→ A0.

♦

Proof of Lemma 3.2. We first note that

Vm(t1, t2) =
∑
i:αi=0

1
{
|Z̆U

i | ≥ r̂it1, |Z̆A
i | ≥ r̂it2

}
= V̆m(r̂it1, r̂it2)

where r̂i = σ̂i/σi. Define an event

A =

{
max
1≤i≤m

|σ̂2
i /σ

2
i − 1| → 0

}
⋂{

sup
t1≤t′1,t2≤t′2

∣∣∣∣∣m−10

∑
i:αi=0

1
{
|Z̆U

i | ≥ t1, |Z̆A
i | ≥ t2

}
−K0(t1, t2)

∣∣∣∣∣→ 0

}
.

Then, P(A) = 1 by Assumption 3.2 and Lemma B.2. For any ω ∈ A and δ > 0, we have

1− δ < r̂i < 1 + δ for any i when m is large enough. For this ω, we have

V̆m((1 + δ)t1, (1 + δ)t2) ≤ Vm(t1, t2) ≤ V̆m((1− δ)t1, (1− δ)t2)
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for large enough m. By Assumption 3.2, we get

K0((1+δ)t1, (1+δ)t2) ≤ lim inf
m

1

m0

Vm(t1, t2) ≤ lim sup
m

1

m0

Vm(t1, t2) ≤ K0((1−δ)t1, (1−δ)t2).

AsK0 is continuous and δ is arbitrary, we have Vm(t1, t2)/m0 → K0(t1, t2) for any ω ∈ A. Similar

arguments can be used to show the rest. ♦

Theorem 3.1 is proved as follows.

Proof of Theorem 3.1. By the Glivenko-Cantelli lemma, we can show that the convergence in

Lemma 3.2 holds uniformly, i.e.,

sup
t1≤t∗1,t2≤t∗2

∣∣∣∣Vm(t1, t2)

m0

−K0(t1, t2)

∣∣∣∣ a.s.→ 0 and sup
t1≤t∗1,t2≤t∗2

∣∣∣∣Sm(t1, t2)

m1

−K1(t1, t2)

∣∣∣∣ a.s.→ 0.

This implies, under Assumption 3.1,

sup
t1≤t∗1,t2≤t∗2

|Km(t1, t2)−K(t1, t2)|
a.s.→ 0 (B.55)

where Km(t1, t2) = m−1 {Vm(t1, t2) + Sm(t1, t2)}. We next show that

sup
t1≤t∗1,t2≤t∗2

|F̃DPλ(t1, t2)− FDP∞λ (t1, t2)|
a.s.→ 0, (B.56)

sup
t1≤t∗1,t2≤t∗2

∣∣∣∣ Vm(t1, t2)

Vm(t1, t2) + Sm(t1, t2)
− π0K0(t1, t2)

K(t1, t2)

∣∣∣∣ a.s.→ 0. (B.57)

To show (B.56), we first observe that, for large enough m,

|Km(t1, t2)−K(t1, t2)| ≤
|K(t1, t2)|

2

which implies

|Km(t1, t2)| ≥
|K(t1, t2)|

2
≥ K(t∗1, t

∗
2)

2
> 0
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because inft1≤t∗1,t2≤t∗2 |K(t1, t2)| ≥ K(t∗1, t
∗
2) > 0. For large enough m, it follows that

|F̃DPλ(t1, t2)− FDP∞λ (t1, t2)|

=
1

(1− 2Φ(−λ))|Km(t1, t2)K(t1, t2)|

∣∣∣∣∣
∫
L(Ax, t1, t2)dG̃m,n(x)Fm(λ)K(t1, t2)

− Ea>ξ[L0(A0a
>ξ, t1, t2)]F (λ)Km(t1, t2)

∣∣∣∣∣
≤ 2

(1− 2Φ(−λ))K(t∗1, t
∗
2)

2

∣∣∣∣∣
∫
L(Ax, t1, t2)dĜm(x)Fm(λ)K(t1, t2)

− Ea>ξ[L0(A0a
>ξ, t1, t2)]F (λ)Km(t1, t2)

∣∣∣∣∣.
Thus, for (B.56), it suffices to verify that

sup
t1≤t∗1,t2≤t∗2

∣∣∣∣∣
∫
L(Ax, t1, t2)dĜm(x)Fm(λ)K(t1, t2)

−Ea>ξ[L0(A0a
>ξ, t1, t2)]F (λ)Km(t1, t2)

∣∣∣∣∣ a.s.→ 0,

which can be shown by (B.55) and Lemmas 3.1-3.2. We can also show (B.57) by using similar

argument.

As FDP∞λ (t∗1, 0) < q and FDP∞λ (0, t∗2) < q, we have for large enough m,

F̃DPλ(t∗1, 0) < q and F̃DPλ(0, t∗2) < q,
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which implies that T̃ ∗1 ≤ t∗1 and T̃ ∗2 ≤ t∗2. Thus we have

lim inf
m

{
F̃DPλ(T̃ ∗1 , T̃

∗
2 )− Vm(T̃ ∗1 , T̃

∗
2 )

Vm(T̃ ∗1 , T̃
∗
2 ) + Sm(T̃ ∗1 , T̃

∗
2 )

}

≥ lim
m

inf
t1≤t∗1,t2≤t∗2

{
F̃DPλ(t1, t2)−

Vm(t1, t2)

Vm(t1, t2) + Sm(t1, t2)

}
= lim

m
inf

t1≤t∗1,t2≤t∗2

{
F̃DPλ(t1, t2)− FDP∞λ (t1, t2) +

π0K0(t1, t2)

K(t1, t2)
− Vm(t1, t2)

Vm(t1, t2) + Sm(t1, t2)

+ FDP∞λ (t1, t2)−
π0K0(t1, t2)

K(t1, t2)

}
≥ 0

by (B.56), (B.57) and the fact that

FDP∞λ (t1, t2)−
π0K0(t1, t2)

K(t1, t2)
≥ 0

from (3.10). As F̃DPλ(T̃ ∗1 , T̃
∗
2 ) ≤ q, we obtain

lim sup
m

Vm(T̃ ∗1 , T̃
∗
2 )

Vm(T̃ ∗1 , T̃
∗
2 ) + Sm(T̃ ∗1 , T̃

∗
2 )
≤ q.

Finally by Fatou’s lemma, we get

lim sup
m

F̃DRm ≤ E

[
lim sup

m

Vm(T̃ ∗1 , T̃
∗
2 )

Vm(T̃ ∗1 , T̃
∗
2 ) + Sm(T̃ ∗1 , T̃

∗
2 )

]
≤ q.

♦

We justify (3.10) as follows.

Corollary B.1. Under Assumptions 2.3-2.6, for every t1, t2 > 0, we have

∣∣∣∣∫ L(Ax, t1, t2)dGn(x)−
∫
L0(A0x, t1, t2)dG0(x)

∣∣∣∣ a.s.→ 0.
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Proof of Corollary B.1. Note that

∣∣∣∣∫ L(Ax, t1, t2)dGn(x)−
∫
L0(A0x, t1, t2)dG0(x)

∣∣∣∣
=

∣∣∣∣∫ L(Ax, t1, t2)dGn(x)−
∫
L0(A0x, t1, t2)dGn(x)

∣∣∣∣
+

∣∣∣∣∫ L0(A0x, t1, t2)dGn(x)−
∫
L0(A0x, t1, t2)dG0(x)

∣∣∣∣ .
Thus, it suffices to show that

|L(Ax, t1, t2)− L0(A0x, t1, t2)|
a.s.→ 0,∣∣∣∣∫ L0(A0x, t1, t2)(dGn(x)− dG0(x))

∣∣∣∣ a.s.→ 0,

both of which can be verified by using the similar arguments as in Lemma 3.1. ♦
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