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ABSTRACT

Re-identification (ReID) has been one of the most intensively studied problems in computer

vision and finds extensive applications in multi-camera systems such as for public safety, in-

door/outdoor monitoring, and smart city/community. Being presented with a subject-of-interest

(query) captured in one frame, the ReID algorithms aim to identify the occurrences (matches) of

the same subject in other video frames, e.g., at different times of the day, or by other cameras.

Typically, a standard ReID system contains three main components: object detection including

bounding box proposal and recognition, representation learning, and evaluation for retrieval. Most

of the existing ReID approaches aim to learn identity-related features or equivalently, design sim-

ilarity metrics, and measure identity similarities between image pairs. The main goal for ReID

problem is to correctly match two images of the same object under intensive appearance changes

caused by either intrinsic factors i.e. various pose and viewpoint, or extrinsic factors e.g. occlusion,

illumination change, and various environmental background.

With the rapidly increasing demand for ReID in multi-camera video surveillance systems, the

core technical challenge of the ReID problem is not only just the performance in an enclosed or

fixed environment, but also the model’s robustness and transferability to diverse and large-scale

unseen cases. In seeking a highly robust ReID algorithm for large-scale real-world scenarios, we

strive to tackle this challenging problem from four interlinked perspectives: image understanding

in poor visibility environments, robust representation learning with noisy labels, domain-invariant

learning for better generalizability, and potential mesh recovery for video-based ReID.

To address the robustness of re-identification with large variations, we first conduct a thorough

examination of how environmental variances can affect image quality and the visual task, e.g.,

recognition and detection, and propose a low-level enhancement pipeline as image preprocessing

module to help eliminate degradations in complex environmental variations. The proposed image

enhancement pipeline wins the second prize in CVPR 2018 UG2 competition for automatic object

recognition in poor visibility environment.
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In addition, we comprehensively discuss the main challenge in ReID, i.e., how to correctly

match two images of the same subject under intensive appearance changes caused by intrinsic and

environmental factors. To be more specific, we introduce an effective yet efficient loss function a

fast-approximated triplet (FAT) loss for representation to extract informative features from noisy

data. The FAT loss provably converts the point-wise triplet loss into its upper bound form, consist-

ing of a point-to-set loss term plus cluster compactness regularization. It preserves the effectiveness

of triplet loss, while leading to linear complexity to the training set size. A label distillation strat-

egy is further designed to learn refined soft-labels in place of the potentially noisy labels, from

only an identified subset of confident examples, through teacher-student networks. We conduct ex-

tensive experiments on three most popular ReID benchmarks, and demonstrate that FAT loss with

distilled labels lead to ReID features with remarkable accuracy, efficiency, robustness, and direct

transferability to unseen datasets.

Meanwhile, we present an adversarial domain-invariant feature learning framework (ADIN)

to eliminate extrinsic misleading information. The ADIN framework explicitly learns to separate

identity-related features from challenging variations, where for the first time “free” annotations in

ReID data such as video timestamp and camera index are utilized. Experiments on existing large-

scale person/vehicle ReID datasets demonstrate that ADIN learns more robust and generalizable

representations, as evidenced by its outstanding direct transfer performance across datasets, which

is a criterion that can better measure the generalizability of large scale Re-ID methods.

Furthermore, we explore the possibility of modeling 3D-mesh and capturing video motion as

an alternative representation for ReID to completely get rid of any environmental distraction in

appearance.
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1. INTRODUCTION

Re-identification (ReID) has attracted tremendous attention owing to its many applications in

video surveillance, public safety, and so on. To re-identify, by definition, is to recognize the same

subject encountered on other occasions. (Fig. 1.1). Most hand-crafted ReID models [1, 2, 3, 4, 5,

6, 7] or deep learning ReID approaches [8, 9, 10, 11, 12, 13, 14, 15, 16] attempt to learn identity-

related features or equivalently, to design similarity metrics [17, 18, 19, 20, 21, 22, 23, 24, 25], in

order to measure identity similarities between image pairs. That makes ReID essentially an open-

set problem, namely, the learned feature extractor or metric should be able to generalize to unseen

queries and ideally match identities captured in any locations, at any time, and by any cameras.

Object-of-Interest

Gallery ImagesQuery Image

Figure 1.1: Overview of the Re-Identification Problem. Re-Identification is to identify the same
subject encountered on other occasions. Left is the query image with a vehicle-of-interest; Right
are gallery images of vehicles taken by other cameras. The green bounding boxes indicate that the
retrieved vehicle is a correct match while the red bounding boxes indicate false positive retrievals.
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With the rapidly increasing demand for ReID in multi-camera systems, the core technical chal-

lenge of the ReID problem is no longer just the performance in an enclosed or fixed environment:

it has to stay effective to new subjects, scale up to new locations, and be reliable over time. We

believe this issue remains yet overlooked in the ReID community, especially when the data vol-

ume explodes incredibly and the open scenarios go beyond the controlled conditions in training

datasets. Despite a few notable research progress, there remain to be major gaps between the

research efforts and the practical needs in large-scale deployment of ReID.

Gap #1: Oversimplified Scenarios. A recent study [26] showed that in 2014, there were

125 video surveillance cameras per thousand people in the U.S.; whereas most ReID datasets

were collected only from 20 or fewer cameras (see Table 1.1). Besides, most of the existing

datasets cover only single scene in a small region, making them oversimplified in reference to the

complexity and diversity of the large-scale scenarios. Those dynamic environments e.g., moving

platforms, bad weathers, and various illumination can cause severe visual degradations such as

reduced contrasts, detail occlusions, abnormal illumination, fainted surfaces, and color shift. While

most ReID models are designed to perform in ideal enclosed environments, i.e., where subjects are

well observable without significant attenuation or alteration, practical ReID systems need to reckon

with a complex unconstrained environment.

Benchmark #cameras #ID #boxes per ID #scenarios

pe
rs

on

Market-1501 [27] 6 1501 21.5 campus supermarket
DukeMTMC-ReID[28, 29] 8 1812 20.1 University campus

CUHK03[30] 2 1467 9.0 Campus
MSMT17[31] 15 4101 30.8 outdoor & indoor

PKU-VehicleID[32] 2 26267 8.4 a small city
VeRi-776[33] 20 776 63.6 1.0 km2 area

Vehicle-1M[34] multiple 55527 16.9 several cities

Table 1.1: Publicly Available Benchmarks for ReID. Statistics show the number of cameras, iden-
tities, average bounding boxes per identity and scenarios covered in the dataset.
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Gap #2: Low Variation Coverage. Existing datasets are constructed from short-time surveil-

lance videos without significant lighting changes and the hand-picked video frames captured in

similar outdoor environments and/or under relatively normal lighting conditions. However, practi-

cal ReID algorithms need to cope with drastically diverse locations, complex backgrounds, indoor-

outdoor matching, intensive day-long illumination variations, and more. Overfitting the unitary

environmental nuisances in the limited training data can prohibit ReID algorithms from extracting

robust and generalized representations for unseen scenarios in large-scale ReID. Although data

augmentation and domain adaptation methods have been explored to improve ReID feature gen-

eralization, they either require explicit re-training for every new dataset or redundant training data

(with still limited diversity). The huge gap between enclosed datasets and large-scale diverse real

cases (domains) will potentially make domain adaptation-related methods suboptimal.

Gap #3: Insufficient Number of Subjects and Spatio-temporal imbalance. Existing ReID

datasets are limited in data volume: the number of identities and cameras are not large enough,

especially when compared with the real surveillance video data. The limited data restricted in not

only subject numbers but also variations coverage. Generally, a ReID dataset consists of images

from different subjects, where every subject has an indefinite but finite number of images captured

by several cameras (Fig.1.2 left) within some certain time periods (Fig.1.2 right). Similarly, differ-

ent nuisances may also appear in a dataset with certain frequencies, and some subjects may display

strong yet superficial correlations with some nuisances, making it highly challenging to decouple

them. In real-world ReID, however, a subject may have infinite images that are (very likely) only

captured by a small portion of cameras within a small portion of time periods. Intuitively, a person

or a vehicle usually appears most in certain regions within certain hours, rather than being a wan-

derlust anywhere anytime “uniformly” in a city. Hence, the conditional distribution of nuisances

given a subject is extremely non-i.i.d. The imbalances spatiotemporal coverage have placed jeop-

ardy for practical large-scale ReID. Existing ReID algorithms trained on a single dataset are prone

to overfitting nuisances of the training set, and therefore suffering from poor generalizability, as

indicated by poor direct transfer performance to unseen datasets.
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Figure 1.2: Low Spatiotemporal Coverage in ReID Datasets. The low spatiotemporal coverage
issue in ReID datasets (MSMT17 [31] as an example). The imbalance manifests in: (left) his-
togram of camera numbers in which each subject was captured; (right) histogram of time period
numbers (1/2/3: morning/noon/afternoon) during which each subject was captured. The two his-
tograms show to be clearly skewed towards the lower end, implying the “localized” patterns of
person activities in MSMT17. Similar observations can be found in other peer datasets.

Gap #4: Unpredictable Label Noise and Outliers The growing scale of training datasets em-

brace the potential of a more powerful model, but introduces sample outliers and label noise during

data collection and annotation. [35] observed that a face recognition model trained with only a sub-

set 30% manually cleaned-label samples can achieve comparable performance with models trained

on the full dataset. Those noises and outliers provide misleading information and can significantly

damage the representation learning. Unfortunately, ReID datasets are notorious to have many

noisy labels and outliers, such as label flipping, mislabel, and multi-person coexistence, due to the

tedious and error-prone manual annotation process. Meanwhile, sample outliers and label noise

in the ReID dataset are common, yet unpredictable and random, that challenges any off-the-shelf

data cleaning tools (manual, or automatic). Moreover, the popular margin-based losses for ReID

are fragile to label noises. Therefore, learning for large-scale ReID becomes more daunting, due

to the not only massive but also noisy datasets.

To bridge the gaps between the research efforts and the practical needs in large-scale deploy-

ment of ReID, this dissertation aims to evoke a comprehensive exploration on ReID algorithms
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from four interlinked perspectives: image understanding in poor visibility environments, robust

representation learning with noisy labels, domain-invariant learning for better generalizability, and

potential motion capture for video-based ReID.

Section 2 first presents a literature survey of the up-to-date ReID-related research progress, in

order to put this dissertation work in its context. We summarize current ReID benchmarks in Sec-

tion 2.1 as well as real-world benchmark with large variations for other visual task, i.e. detection

and recognition in Section 2.2. Then we introduce the state-of-the-art algorithms to learn robust

representation with noisy labels in Section 2.3 and generalizable features in large-scale ReID in

Section 2.4. Previous mesh recovery methods and options of the simplified parametric deformable

human model to represent a human subject that could be assembles into ReID representations are

introduced in 2.5.

In Section 3, we present an in-depth analysis on how image restoration could benifit visual

recognition task on the UG2 dataset [36, 37], a large-scale benchmark composed of video imagery

captured under challenging conditions in real-world complex scenarios. To further extend this

topic to the most common poor visibility scenarios for outdoor ReID, i.e. hazy, low-light and rainy

conditions, we launch the UG2+ challenge [38, 39, 40]. To our best knowledge, it is the first and

currently largest effort of benchmark aiming to evoke a comprehensive discussion and exploration

about whether and how low-level vision techniques can benefit the high-level automatic visual

recognition in various scenarios. Section 3.3 provides the detailed introduction of the haze track in

UG2+ challenge, summarizes the interesting observations, and discusses the future directions.

In Sections 4 and 5, we address that ReID is essentially an “open-ended” retrieval problem

rather than a closed-set classification, e.g., the training and testing sets usually have no overlapped

identity classes. To overcome the limitation of training data volume, we introduce the comparative

losses e.g. triplet loss, which compares the distances between the sample pairs, as a naturally

better choices ReID task. Furthermore, we propose the fast approximately triplet (FAT) loss [41]

to retain its effectiveness while significantly reduce the computational expensiveness in Section

4. To further improve the robustness of FAT loss as well as triplet loss, we consider a distillation
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network to explicitly handle label noise and further boost ReID performance in Section 5.

In Section 6, we demonstrate how to incorporate the freely available video timestamp and

camera index, provided in video surveillance as metadata, as auxiliary supervision to eliminate

the scene-related nuisances [42]. We exploit the adversarial framework to extract ReID features

that can: (1) be utilized to faithfully classify subjects into correct classes; (2) be resilient and

invariant to those identified nuisances – in other words: no reliable classifier can be trained on

those features to predict those nuisances. To our best knowledge, we are the first to utilize those

“free” annotations for image-based ReID, to effectively suppress the overfitting of nuisances.

A fundamental challenge for image-based ReID is that it learns color and generic features of

appearance that are shown to be fragile to image degradation and artifacts. An interesting question

arises that whether we can disentangle the pose and body shape and learn an approximate "nude

shape" of the body for re-identification. We consider the target object to be rigid, while the camera,

pose and shape parameters from mesh recovery are treated as parameters that can be disentangled

from the body nude shape. Section 7 then presents a preliminary investigation on the video mesh

recovery and motion capture via an optimization-based approach, bringing new potential for the

future video-based ReID task.

Finally, Section 8 concludes this dissertation with pointers to future directions.
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2. LITERATURE REVIEW

2.1 Re-Identification Benchmarks

2.1.1 ReID Datasets

The disconnection between research-level datasets and community/city-level video warehouse

remains to hinder the real-life applications of ReID. Table 1.1 summarizes mainstream person

ReID and vehicle ReID datasets. For person ReID, considering that even in a grocery store there

are usually dozens even more than 100 cameras and over 550 visitors per day, current datasets

are more or less overly simplistic. More specifically, the Market-1501 [27], DukeMTMC-ReID

[28, 29] and CUHK03 [30] are all collected in small outdoor regions, and in short time periods

(usually well-lighted daytime). The latest MSMT17 dataset [31] led positive progress towards

real large-scale usage, by including geo-spatially diverse cameras (both indoor and outdoor) and

varying time periods (morning, noon and afternoon) and illuminations.

Vehicle ReID witness similar situations, where exiting benchmarks’ scale and diversity are still

far from being comparable to reality. Previous datasets such as VehicleID [32] have small camera

or vehicle numbers, as well as limited viewpoints. A recent VeRi-776 dataset [33] presents a

relatively realistic benchmark with cameras spanning a large spatial coverage and other variations,

which is one step close to being representative for large-scale vehicle ReID.

In this project, we conduct extensive experiments on popular person re-identification bench-

marks Market-1501 [27], DukeMTMC-reID [28, 29], and MSMT17 [31], as well as vehicle re-

identification benchmarks PKU-VehicleID[32] and VeRi-776[33].

2.1.2 ReID Evaluation Metrics

The standard ReID pipeline picks a dataset, learning the model from its training set and eval-

uating the model’s retrieval accuracy or mean average precision (mAP) on the held-out testing set

(with non-overlapping subjects). However, this single-dataset evaluation is often insufficient in

reflecting true generalizability (Fig.2.1) since they overlook a fact, i.e., due to the low coverage
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of most datasets, the training and testing sets of the same ReID dataset tend to be highly similar

in terms of spatiotemporal nuisances (even overlapping or sharing camera IDs). Therefore, high

accuracy on the same testing set may be misleading, as that could be a result of nuisance overfitting.

HHL

HHL

Figure 2.1: ADIN ReID Performance. Top-1 accuracy on a single-dataset (MSMT17 [31]) and
direct transfer from MSMT17 to Market1501 [27] (left) and to DukeMTMC-ReID [28, 29] (right).
In contrast to our ADIN (red dot in top-right) which achieved competitive performance on both
a single dataset and direct transfer, we find other (single-dataset) top-performers suffer from very
poor generalizability to unseen domains, indicating the misaligned goal between overfitting small-
scale single dataset and generalizing to large-scale unseen scenarios in real life. See Section 6 for
details. Methods studied: Spatial-Attention [43], PCB[44], RPP [44], MGN [45], HHL∗[46].

Increasing attention has been paid to domain adaption in ReID recently, i.e., training on one

source dataset, tuning the trained model on some different target domain data, and finally evalu-

ating model accuracy/mAP on the target dataset. Domain adaptation methods [46] emphasize the

generalizability of ReID to new data. Unfortunately, they require target domain data (sometimes

even auxiliary attribute annotations in target domain [47]) for re-training purposes. Considering

the city growth as well as the explosive increase of cameras, it is unrealistic to collect new data and

re-train ReID models for every new domain (e.g., a new camera or a group of cameras in a local

∗HHL uses images from both source and target domain for domain adaptation, and thus has no single-dataset
performance. We use a horizontal line to represent its domain adaptation performance.
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region), making it non-trivial for domain adaptation to scale up. In contrast, we advocate a far

more challenging but practically evaluation criterion: direct transfer performance across datasets,

to measure ReID model generalizability.

2.1.3 Triplet Loss and Hard Sample Mining

The triplet loss is first introduced in FaceNet [48] by Google to train face embeddings for the

recognition task, where softmax cross-entropy loss failed to handle a variable number of classes.

The goal of triplet loss is to maximize the inter-class variation while minimizing the intra-class

variation. The triple loss is formulated as (2.1) below, where the triplet is defined as an anchor

sample a, a positive sample p from the same class and a negative sample n from a different class

(ya, yp, yn denote class labels for a, p, n, respectively):

Ltri =
∑
a,p,n
yp=ya
yn 6=ya

max{d(a, p) +m− d(a, n), 0} (2.1)

FaceNet picks a random negative for every pair of anchor and positive, which is computation-

ally much more expensive (cubic or quadratic w.r.t. training set size) than the simple classification

loss, which prohibits its wide usage in the ReID application. Later on, [49] improves the efficiency

of triplet loss for the ReID task, by proposing two triplet selection strategies: batch all and batch

hard. The batch all strategy selects all valid triplets and averaged the loss. The batch hard strategy

selects the hardest positive and negative samples within the batch when forming the triplets shown

in Fig. 4.1. The author suggests that batch hard strategy with soft margin to yield better perfor-

mance. A naive triplet loss that compares every possible pair of training samples will incur cubic

complexity w.r.t. the training set size [49].

Also, triplet loss relatively quickly learns to correctly map most trivial triplets, rendering a

large fraction of all triplets uninformative. Applying triplet loss with randomly selected triplets

can accelerate training but quickly stagnates, or becomes difficult to converge. [50] reveals that

selecting the hardest triplets often led to bad local minima. They argue that the bias in the triplet

selection degraded the performance of learning with triplet loss, and propose a new variant of
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triplet loss that adaptively corrects the distribution shift on the selected triplets.

Besides, there are many other successful practices in applying triplet loss to ReID task. [51]

proposes a multi-channel convolutional neural network to learn global-local parts features and

improves the triplet loss requiring the intra-class feature distances to be less than a predefined

threshold. [52] extends the triplet loss to a quadruplet form and required the intra-class variations

to be smaller than any inter-class variations. [53] generalizes the point-to-point (P2P) triplet loss to

the point-to-set (P2S) form by assuming a positive set (to which the anchor belongs) and a negative

set (including all other clusters) for each anchor. It then penalizes the difference between the

distance from the anchor to the positive set centroid and the anchor-to-negative-centroid distance.

The model is also trained in a soft hard-mining scheme with greater weights to harder samples.

Being related to previous works [49, 53], FAT loss differs substantially in the following ways:

• FAT loss has linear time complexity w.r.t training dataset size: O(PK) or O(PK2) (de-

pending on the choice of negative set), where K denotes the average image number per

identity and P the number of identities. Previous triplet losses have either cubic (vanilla)

and quadratic (with hard sample mining) time complexity w.r.t training dataset size.

• FAT loss is analytically derived from the upper bound of standard triplet loss. It consists of

a P2S loss term and intra-class compactness regularization. Up to our best knowledge, all

previous approximations or accelerations for triplet loss, e.g., [51, 53], are only empirical.

• We studied different choices of the negative cluster/centroid, and compared their impacts.

Note that FAT loss chooses the negative on “cluster” level, and does not refer to any individ-

ual sample mining.

2.1.4 Posed-/Mask-guided ReID

The 2D pose landmarks indicate the body keypoints position and are conductive to ReID prob-

lem to track the subject-of-interest [54], align body parts [55, 56, 57], introduce pose variations in

training data [58] or eliminate the posture variations in learned representations [59]. In specific,
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[54] combines the holistic representations and body pose layout to match and track the subject-of-

interest. In order to handle the pose-variations in ReID feature learning, [59] proposes the Feature

Distilling Generative Adversarial Network (FD-GAN) is proposed for learning identity-related and

pose-unrelated representations. while [58] developes a pose transferred sample augmentations to

enrich the pose variations in training data. Pose are widely used for parts alignment in ReID, e.g.,

[55] explicitly leverages the human pose for local body parts matching and global/local feature

fusions. [56] learns a part-aligned representation for person re-identification by aggregating the

local similarities of the corresponding pose-aligned body parts. [57] exploits pose landmarks to

generate attention maps for the specific body part and the occluded regions, so as to disentangle

the useful information from the occlusion noise.

In the meanwhile, the binary body masks are also used in ReID problems in two respects.

Firstly, it can be used to detect occlusions and help to remove the background clutters in pixel-

level [60, 61]. Besides, the mask contains body shape information which can be regarded as the

important gait features [61]. It has been proved that the segmentation mask can greatly improve

the robustness of ReID models under various background conditions. Meanwhile, using shape

information in the body mask as ReID features is robust to illumination and appearance changes.

2.2 Benchmark for Visual Recognition in Poor Circumstances

2.2.1 UG2 Benchmark for Visual Quality and Recognition Evaluation

In the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) UG2 prize

challenge [36], the UG2 dataset was introduced as a large-scale benchmark for to evaluate image

restoration and enhancement algorithms for visual recognition. The UG2 dataset is composed of

video imagery captured under three challenging conditions: UAV, Glider, and Ground and consists

of over 200,000 annotated frames representing 228 ImageNet [62] classes and super-class (most

of the super-classes in the dataset are composed of more than one ImageNet synset).

The UAV collection contains videos with problematic weather/scene conditions, e.g. night/low

light video, fog, cloudy conditions and occlusion due to snowfall, and includes eight video artifacts,
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i.e. glare/lens flare, poor image quality, occlusion, over/under exposure, camera shaking and noise,

motion blur, and fish-eye lens distortion. Videos in Glider collection are taken in conditions such

as fog, clouds, and occlusion due to rain, and six different video artifacts were observed including

glare/lens flare, over/under exposure, camera shaking and noise, occlusion, motion blur, and fish-

eye lens distortion. The Ground collection contains videos taken in several weather conditions

(sun, clouds, rain, snow). Several common artifacts, i.e. motion blur and fish-eye lens distortion,

was intentionally induced for a fair comparison.

Image restoration algorithms are treated as an image pre-processing step and evaluated by per-

formance gain of object recognition, i.e. the improvement of accuracy on the enhanced cropped

bounding box over the un-altered tight bounding box. To measure accuracy, pretrained classifica-

tion models are used, and each of them predicts a list of the ImageNet synsets. If the predicted

synset belongs to the ground truth super-class, the prediction is considered to be correct. The M1

and M2 scores are then calculated as the accuracy evaluation metrics. The M1 measures the rate of

achieving at least one correctly synset class in the top-5 predictions and the M2 measures the rate

of placing all the correct synset classes in the super-class labels.

2.2.2 Image Restoration and Enhancement

There are numerous algorithms aiming to enhance visibility of the degraded imagery, such as

image and video denoising/inpainting [63, 64, 65, 66, 67], deblurring [68, 69, 70, 71, 72], super-

resolution [73, 74, 75, 76] and interpolation [77].

Here we introduce the six most powerful restoration algorithms, as evaluated on UG2 datasets.

Histogram Equalization balances the distribution of pixel intensities and increases the global con-

trast of images. To do this, Contrast Limited Adaptive Histogram Equalization (CLAHE) is

adopted [78]. The image is partitioned into regions and the histogram of the intensities in each

is mapped to a more balanced distribution. As the method is applied at the region level, it is more

robust to locally strong over-/under-exposures and can preserve edges better. Given that removing

blur effects is widely found to be helpful in fast-moving aerial cameras, and/or in low light filming

conditions, Deblur-GAN [70] is employed as an enhancement module in which, with adversarial
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training, the generator in the network is able to transform a blurred image to a visually sharper

one. Recurrent Residual Net for Super-Resolution is proposed in [79]. Due to the large distance

between objects and aerial cameras, low-resolution is a bottleneck for recognizing most objects

from UAV photos. This model is a recurrent residual convolutional neural network consisting of

six layers and skip-connections. Deblocking-Net [80] is an autoencoder-based neural network

with dilation convolutions to remove blocking effects in videos, which was fine-tuned using the

VGG-19 perceptual loss function, after training using JPEG-compressed images. Since lossy video

coding for on-board sensors introduced blocking effects in many frames, the adoption of the de-

blocking net was found to suppress visual artifacts. RED-Net [80] is trained to restore multiple

mixed degradations, including noise and low-resolution together. Images with various noise levels

and scale levels are used for training. The network can improve the overall quality of images.

HDR-Net [81] can further enhance the contrast of images to improve the quality for machine and

human analysis. This network learns to produce a set of affine transformations in bilateral space to

enhance the image while preserving sharp edges.

2.2.3 Haze Benchmarks and Dehazing Algorithms

Most datasets used for image restoration aims to evaluate with the quantitative (PSNR, SSIM,

etc.) or qualitative (visual subjective quality) of enhanced images. Those datasets, e.g. Haz-

eRD [82], OHAZE [83] and IHAZE [84] for dehazing, usually come with more diverse scene

content, provide no integration with subsequent high-level tasks. The popularity of deep learn-

ing methods has increased demand for training and testing data. A few works [85, 86, 87] and

aerial vehicles bechmarks [88, 89, 90] make preliminary attempts for visual understanding, video

summarization, or face recognition in unconstrained and potentially degraded environments. How-

ever, few works specifically consider the impacts of image enhancement and high-level visual task

jointly. Prior to this UG2+ effort, a large-scale hazy image dataset and a comprehensive study:

REalistic Single Image DEhazing (RESIDE) [91], is proposed to thoroughly examine visual re-

construction and vision recognition in hazy images. The RESIDE haze benchmark brought new

light on the comparisons and limitations of state-of-the-art algorithms, and suggest promising fu-
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ture directions.

Besides, numerous dehazing methods have been proposed to study visual behavior on hazy

scenarios. Early-stage dehanze algorithm rely on the exploitation of natural image priors and

depth statistics, e.g. locally constant constraints and decorrelation of the transmission [92], dark

channel prior [93], color attenuation prior [94], nonlocal prior [95]. In [96, 97], Retinex theory

is utilized to approximate the spectral properties of object surfaces by the ratio of the reflected

light. Recently, deep learning and convolutional neural models bring in the new prosperity for

dehazing. Several methods [98, 99] rely on various CNNs to learn the transmission fully from

data. Beyond estimating the haze related variables separately, successive works make their efforts

to estimate them in a unified way. In [100, 101], the authors use a factorial Markov random field

that integrates the estimation of transmission and atmosphere light. some researchers focus on the

more challenging night-time dehazing problem [102, 103]. In addition to image dehazing, AOD-

Net [104, 105] considers the joint interplay effect of dehazing and object detection in an unified

framework. The idea is further applied to video dehazing by extending the model into a light-

weight video hazing framework [106]. In another recent work [107], the semantic prior is also

injected to facilitate video dehazing. In this dissertation, we follow the footsteps of predecessors

to advance the fields by proposing new benchmarks.

2.3 Learning from Noisy Labels and Network Distillation

2.3.1 Label Noise in ReID Benchmarks

Deep learning models with fully-supervision assume the correctness of annotations in training

datasets, which is not always the truth. Label noise is inevitable in either manually labeled or

auto-annotated dataset, especially in the large-scale benchmarks. Fig. 2.2 shows some fail cases

due to label noises in MSMT17, the largest person ReID dataset, which provide incorrect/imprecise

information of training data and therefore significantly damage the representation learning process.

We could observe three typical cases of label noise in ReID dataset:

• Label flipping: the query label should be 1748 but 1749 is provided, therefore the correct
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retrievals are determined as false positives due to the wrong query label;

• Mislabel: the query image contains incomplete person (a blue jacket with orange hood) and

that partial human body lacks sufficient information for a successful retrieval;

• Multi-person coexistence: the image contains multiple people while the label indicates only

one of them, which makes the model fail to learn an accurate representation.

2.3.2 Label Denoising in ReID

Few works in ReID has been done to handle label noise. [108] learns a snippet embedding for

video-based person ReID to avoid noise and outliers in pair-wise learning. [109] proposes to anno-

tate unlabeled data with top-k counts label for unsupervised video-based person re-identification

(re-ID). [110] exploites a reinforcement Learning model to free up annotation labors and auto-

select attention from bounding boxes. [111] and [112] utilizes body segments to learn pose-guided

features so as to overcome person body misalignment caused by detectors or pose variations. [61]

introduces binary segmentation mask-guided contrastive attention model to reduce the background

clutters and learn features from the foreground only.
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2.3.3 Label Denoising in Deep Learning

To overcome the negative effect of noisy labels, [113] proposes a bootstrap technique to modify

the labels on-the-fly by augmenting the prediction objective with a notion of consistency. [114]

extends [115] and proposes a re-weighting method that can be combined with any surrogate loss

function for classification, to handle class-conditional random label flipping. [116] introduces

an extra noise layer to absorb the label noise by adapting the network outputs to the noisy label

distribution. [117] further augments the correction architecture by adding a softmax layer on top

to explicitly connect the correct labels to noisy ones. [118] provids a forward-and-backward loss

correction method given a class-condition label flipping probability. [119] proposes a generic

conditional random field (CRF) model as a robust loss to be plugged into any existing network

for label space smoothness and therefore noise resistance. [47] designs a Siamese network to

distinguish clean labels from noisy labels and to simultaneously give clean labels more emphasis.

Previous approaches either employ temporal information in video-based ReID or apply a pose-

/mask-guided attention to providing for feature alignment, which needs extra efforts or processing

of training data and is not scalable to large-scale datasets. In the dissertation, we integrate the

robustness of classification loss and effectiveness of comparative loss and propose a label distil-

lation network to assign soft labels for samples in place of potentially noisy hard labels for ReID

representation learning.

2.3.4 Network Distillation

Develops in [120], network distillation aims to transfer the knowledge in an ensemble of mod-

els to a single model, using a soft target distribution produced by the former models. [121] uses

distillation to train a more efficient and accurate predictor. [122] unifies distillation and privi-

leged information into one generalized distillation framework to learn better representations. [123]

further extends data distillation to omni-supervised learning by an ensemble of predictions from

multiple transformations of unlabeled data to generate new training annotations using a single net-

work. [124, 125] applies data distillation to multi-modal training, while the testing sets might have
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noisy or missing modalities. As a relevant work, [126] argues that noisy labels contain useful "side

information" and shall not be discarded. The authors proposes a distillation approach to learn from

noisy data guided by a knowledge graph.

Our proposed distillation algorithm to learn from noisy labels differs from previous ones in the

following respects:

• We are free from the assumption of the existence of a manually-cleaned set. Instead, we train

the teacher network with the entire noisy dataset, but only use most confident samples within

a batch to update the parameters. We observed that the model updated based on a subset of

confident samples can achieve similar or better performance, compared to the model trained

with all noisy-labeled samples.

• We investigate different loss functions for distillation; the teacher network is trained with

cross entropy loss with the purpose of providing pseudo soft label associated with a confi-

dence; the student network is trained with FAT loss using the soft pseudo labels generated by

the teacher network. Hence instead of mimicking a similar softmax classifier as the teacher

network, the student network has the capability to “innovate” on a different task with the

help of FAT loss, and eventually outperforms the teacher network.

2.4 Improving ReID Generalizability

To resolve the specific challenge of transferability among different ReID datasets, several data

augmentation and unsupervised domain adaptation methods have been proposed to expand the

diversity of the limited source domain (training set) and mimic the target domain (an unseen testing

set for the trained feature extractor) variations and distributions.

2.4.1 Data Augmentation for Large-Scale ReID

[127, 128, 129] follows a data augmentation approach to incorporate nuisances into training

data. Specifically, [127] proposes a random-background data augmentation to generate images of

the same identity with a different background. [128] learns a camera-invariant descriptor subspace

and transferred the camera styles to each sample as a data augmentation approach. [129] proposes
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a novel two-stage pipeline to first learn a set of disentangled foreground, background, and pose

factors, followed by re-composing them into novel samples.

However, data augmentation not only adds to the training burden but also introduces a consid-

erable level of noise that leads to training oscillations. Besides, those data augmentation methods

would still fail when transferred to an unseen dataset, since no single dataset can cover all possible

variations existing in all real-world data. The ReID performance improvement brought by data

augmentation also appears to be in general limited.

2.4.2 Domain Adaptation for Transferable ReID

[130] proposes an Unsupervised Multi-task Dictionary Learning (UMDL) model, that learns

a joint dictionary to capture view-invariant identity attributes, as well as task-specific modules

to capture dataset-unique appearance attributes. [47] introduces a Transferable Joint Attribute-

Identity Deep Learning (TJ-AIDL) to learn attribute and identity representations under a multi-task

framework. However, this method requires extra annotated attribute labels in the source domain.

[131] first extracts target domain spatial-temporal patterns using a classifier trained on source do-

main, and further optimizes a target domain identity classifier with a Bayesian fusion model and

a learning-to-rank based mutual promotion procedure. [132] proposes a method to generate a new

dataset consisting of images whose identities are from the labeled source domain, while the cam-

era styles are translated from the unlabeled target domain. [46] introduces a Hetero-Homogeneous

Learning (HHL) method to learn person embedding with camera variances and domain connect-

edness, through inter-domain and intra-domain pairwise contrastive learning.

Unsupervised domain adaptation methods promote the transfer performance of ReID models

to new datasets. One critical difference between them and our proposed method lies in that domain

adaptation needs explicit joint training or fine-tuning when seeing a new target domain, making

it ineffective to scale up to many different and unseen domains. In contrast, ADIN framework

proposed in the dissertation is designed to be directly transferable to unseen domains without any

extra hassle.
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2.5 Mesh Recovery and Motion Capture

2.5.1 Deformable Human Mesh Models

To recover a 3D mesh from a 2D image can be fundamentally ambiguous due to lacking precise

depth information. The most effective methods to alleviate ambiguity is to integrate a strong prior.

Extensive work have been done to modeling human bodies [133, 134, 135, 136, 137], hands

[138, 139, 140, 141, 142, 143, 144, 145, 146] and faces [147, 148, 149, 150, 151, 152, 153, 154,

155]. However, none of these methods, model correlations in face shape and body shape. In [156],

the author trains a new, unified, 3D model of the human body, SMPL-X from thousands of 3D

scans, that extends SMPL [157] with fully articulated hands and an expressive face.

The SMPL-X model uses standard vertexbased linear blend skinning with learned corrective

blend shapes, N = 10, 475 vertices and K = 54 joints. It is defined by a function M(θ, β, ψ) :

R|θ×|β|×|ψ|| → R3N , where the θ encodes the human pose including hands, β encodes body shape

(the first three coefficient indicates the global rotation) and ψ encodes facial expressions. The body

template is fitted to four datasets of 3D human scans to get 3D alignments. The shape coefficients

are trained on 3800 alignments in an A-pose capturing variations across identities, while the body

pose coefficients are trained on 1786 alignments in diverse poses. The hands and faces are then

learned from 1500 hand and 3800 head high resolution scans respectively.

The total number of model parameters in SMPL-X is 119: 3 parameters for the global body

rotation and 72 parameters for joints rotations, 24 parameters for the lower-dimensional hand pose,

10 parameters for subject shape, and 10 parameters for the facial expressions. SMPL-X is realistic,

expressive, differentiable, and easy to fit. The model parameters in SMPL-X can be potentially

used for ReID purposes.

2.5.2 Human Mesh Recovery Approaches

Since SMPL-X model is recently released, few works has been done to fit it to RGB images or

videos. Here, we summarize approaches that methods estimate the SMPL model (focused on body

mesh) from a single image [158, 159, 160, 161, 156, 162, 163, 164].
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To address this, SMPLify [157] fits the SMPL model to the 2D joint locations by penalizing the

error between the projected 3D model joints and detected 2D joints in an optimization framework.

HMR [165] trains an end-to-end model to reconstruct 3D mesh from 2D keypoints with the repro-

jection loss along with an adversarial loss to validate the human body parameter. HMMR [163]

learns a representation of 3D dynamics of humans from 2D video pose annotations. They propose

to utilize the unlabeled video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D

pose detector and observe a monotonical improvement 3D prediction performance. HMD [162]

further utilizes the constraints from body joints, silhouettes, and per-pixel shading information to

ensure that the mesh reprojection can better fit to the input image. In addition to the functional

tricks mentioned above, our proposed optimization-based mesh recovery algorithm further utilized

pseudo-3D pose as supervisions and temporal consistency as regularization to reduce the ambiguity

in 3D mesh recovery from the 2D pose.
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3. IMAGE ENHANCEMENT FOR DETECTION AND RECOGNITION *

3.1 Motivation

Current ReID video data collected by a ground surveillance camera or UAV systems are com-

monly suffering from image degradations such as low resolution, motion blur, poor illumination,

and noise problems. Those degradations prohibit the detection module of ReID systems from

extracting precise bounding boxes for the subject-of-interest. In this section, we studied how low-

level image enhancement algorithms can benefit high-level visual tasks and adopted an image

restoration module to improve the detection problem (the first step) in ReID.

Fig. 3.1 shows an example of images taken at the hazy condition and the performance of pre-

trained pedestrian or vehicle detection/recognition algorithms can be largely jeopardized by various

challenging conditions in the unconstrained environments (comparing the ground truth bounding

box (left column) and pre-trained Mash R-CNN [166] detection results (right column) on the raw

hazy images). Failure to detect pedestrians and vehicles in traffic surveillance can cause a severe

problem in automatic pilot and public safety.

One possible solution is to take advantage of image restoration and enhancement algorithms to

improve the quality of video frames, and therefore boost the detection performance. As proposed

to be functional, the enhancement algorithms can largely improve the visual quality of image

captured in poor visibility environments (i.e. AOD-Net[105], DCPDN[167] and MSCNN[168]

for dehazing, shown in Fig. 3.6. Besides, the image enhancement module can further improve

* Part of the material reported in this section is reprinted with permission from “Bridging the gap between
computational photography and visual recognition” by W. Scheirer, R. VidalMata, S. Banerjee, B. RichardWebster,
M. Albright, P. Davalos, S. Mc- Closkey, B. Miller, A. Tambo, S. Ghosh, S. Nagesh, Y. Yuan, Y. Hu, J. Wu, W.
Yang, X. Zhang, J. Liu, Z. Wang, H. Chen, T. Huang, W. Chin, Y. Li, M. Lababidi, and C. Otto, IEEE Transactions on
Pattern Analysis and Machine Intelligence, DOI: 10.1109/TPAMI.2020.2996538, 2020. Copyright 2020 by IEEE, and
from “Advancing image understanding in poor visibility environments: A collective benchmark study” by W. Yang, Y.
Yuan, W. Ren, J. Liu, W. J. Scheirer, Z. Wang, T. Zhang, Q. Zhong, D. Xie, S. Pu, Y. Zheng, Y. Qu, Y. Xie, L. Chen,
Z. Li, C. Hong, H. Jiang, S. Yang, Y. Liu, X. Qu, P. Wan, S. Zheng, M. Zhong, T. Su, L. He, Y. Guo, Y. Zhao, Z. Zhu,
J. Liang, J. Wang, T. Chen, Y. Quan, Y. Xu, B. Liu, X. Liu, Q. Sun, T. Lin, X. Li, F. Lu, L. Gu, S. Zhou, C. Cao, S.
Zhang, C. Chi, C. Zhuang, Z. Lei, S. Z. Li, S. Wang, R. Liu, D. Yi, Z. Zuo, J. Chi, H. Wang, K. Wang, Y. Liu, X. Gao,
Z. Chen, C. Guo, Y. Li, H. Zhong, J. Huang, H. Guo, J. Yang, W. Liao, J. Yang, L. Zhou, M. Feng, and L. Qin, IEEE
Transactions on Image Processing, vol. 29, pp. 5737–5752, 2020. Copyright 2020 by IEEE.
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MASK R-CNN detection performance and quantitatively (Fig. 3.7) and qualitatively by correcting

coexistence (Fig. 3.8), mislabel issue (Fig. 3.9), and imprecise bounding box position (Fig. 3.10).

Therefore, it is highly desirable to study how challenging visual conditions can be coped with for

the goal of achieving robust pedestrian detection in the wild.

In the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) UG2 prize

challenge [36], we proposed a novel image enhancement pipeline, Cascaded Degradation Removal

Modules (CDRM), to improve visual recognition performance on an intentionally difficult, real-

world videos dataset collected by unmanned aerial vehicles, manned gliders, and ground cameras.

The pipeline assembles light adjustment, super-resolution, deblurring, denoising, high-dynamic

ranging, and deblocking modules into one joint deep learning-based cascade. The algorithm

achieved preliminary success and won the challenge. Please see Section 3.2 for more details of our

observations and proposed approaches for the UG2 Challenge.

Considering that human visual recognition and machine vision often have considerable mis-

alignment, existing image restoration/enhancement algorithms developed for human perception

are not directly applicable to improving ReID detection performance. To better understanding

how image enhancement could benefit visual task e.g. detection and recognition, we organized the

CVPR 2019&2020 UG2+ prize challenge [38, 39] and further extend this topic to poor visibility

enhancement under hazy, low-light and rainy conditions, the common scenarios for outdoor ReID.

A detailed introduction of our datasets, challenges, evaluation protocols, and baseline results as

well as the interesting observations and the reflected insights are briefly discussed Section 3.3.

To our best knowledge, this is the first and currently largest effort of benchmark aiming to evoke

a comprehensive discussion and exploration about whether and how low-level vision techniques

can benefit the high-level automatic visual recognition in various scenarios.
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Figure 3.1: Failure Case of Object Detection in Poor Visibility Environments. The left column dis-
plays the raw hazy image annotated with ground truth bounding boxes; the right column displays
raw image with bounding boxes detected by pre-trained Mask R-CNN.
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3.2 Visual Recognition in Challenging Circumstances

To study how image restoration and enhancement could help visual understanding in less than

ideal circumstances, we participated in UG2 Image Recognition Challenge [36] composed of video

imagery captured under challenging conditions. Assume the bounding box is provided, we take

advantage of the image restoration modules as reprocess step and validate the visual recognition

improvement on enhanced images compared to unaltered images. We conducted a thorough ex-

amination on the UG2 benchmark (Fig.3.2), and observed that independently removing any sin-

gle type of degradation could, in fact, undermine performance in the recognition task since other

degradations were not simultaneously considered and those artifacts might be amplified during this

process. To measure accuracy, pretrained classification models are used, and each of them predicts

a list of the ImageNet synsets. If the predicted synset belongs to the ground truth super-class, the

prediction is considered to be correct. The M1 and M2 scores are then calculated as the accuracy

evaluation metrics. The M1 measures the rate of achieving at least one correctly synset class in

the top-5 predictions and the M2 measures the rate of placing all the correct synset classes in the

super-class labels.
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Fig. 8. Comparison of classification rates at rank 5 for each collection after applying classification driven image enhancement algorithms by Sharma
et al. [91]. Markers in red indicate results on original images.
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Fig. 9. Comparison of classification rates at rank 5 for each collection after applying the four algorithms submitted by teams for this task.

a result of evolution. Based on this observation, we devel-
oped a psychophysics-based evaluation regime for human
assessment and a realistic set of quantitative measures for
object recognition performance. The code for conducting
such studies will be made publicly available following the
publication of this article.

Inspired by the success of the UG2 challenge workshop
held at CVPR 2018, we intend to hold subsequent iterations
with associated competitions based on the UG2 dataset.
These workshops will be similar in spirit to the PASCAL
VOC and ImageNet workshops that have been held over
the years and will feature new tasks, extending the reach
of UG2 beyond the realm of image quality assessment and
object classification.
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Figure 3.2: Evaluation of Single Restoration Module on UG2 Dataset. We could observe that (1)
None of the image restoration algorithms could outperform the raw degradated images without any
enhancement; (2) Image enhancement can have a different impact on different collections.
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Besides, images captured from different real-world scenarios (e.g. controlled videos taken on

the ground, uncontrolled videos were taken by UAVs and manned gliders) may have different

degradation characteristics (motion blur are more common in UAV collected dataset while illu-

mination change exists in ground surveillance systems that captures long-time videos). Different

degradation type usually needs to be handled by a specific enhancement module, e.g. guided fil-

ters and image sharpening works best with UAV and glider collections while the Weighted Least

Squares benefits Ground collections (Fig.3.2).

Consequently, we proposed an image preprocessing pipeline, the Cascaded Degradation Re-

moval Modules (CDRM), that consists of sequentially cascaded degradation removal modules to

improve both visual quality and recognition performance. The preprocessing pipeline functions by

first identifying the incoming images as belonging to one of the three degradation collections as

a form of quality estimation, and then deploying a specific processing model for each collection

(Fig. 3.3).

We adopted six state-of-the-art image enhancement modules in CDRM pipeline, including

light adjustment (Histogram Equalization [78]), deblurring (Deblur-GAN [70]), super-resolution

(Recurrent Residual Net for Super-Resolution [79]), deblocking (Deblocking-Net [80]), denoising

(RED-Net [80]), high-dynamic ranging (HDR-Net [81]), to alleviate the detection/recognition per-

formance drop caused by the most common image degradations (e.g. glare/lens flare, compression

artifacts, occlusion, over/under exposure, camera shaking, sensor noise, motion blur, and fish-eye

lens distortion).

We submitted our CDRM to UG2 Challenge to evaluate the recognition on the hold-out testing

set, along with the other three algorithms submitted by participants (CCRE, MA-CNN, and TM-

DIP). As can be observed in Fig. 3.4, most of the submitted algorithms were able to improve

the recognition performance on the Ground collection but failed in improving that for the aerial

collections. Most noteworthy is our CDRM achieves the highest classification improvement with

an improvement of 5.30% and 5.21% over the baselines for the Inception M1 and M2 metrics.
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Figure 3.3: Overview of the CDRM Image Enhancement Pipleline. If no degradation is detected,
no action is taken (task performance is deemed to be good enough by default). This pipeline
process an image in 14 seconds.

3.3 Object Detection in Poor Visibility Environments

Existing enhancement methods are empirically expected to help the high-level-end computer

vision task i.e. pedestrian detection: however, that is observed to not always be the case in prac-

tice. To provide a more thorough examination and fair comparison for detection in poor visibility

enhancements caused by haze, we introduced the UG2+ [38, 39] haze benchmark.

3.3.1 Collection and Annotation

Collected in real-world hazy conditions, the UG2+ haze benchmark consists of 4,322 annotated

real-world hazy images from the RESIDE RTTS set [] as the training and/or validation sets, 4,807

unannotated real-world hazy images collected from the same traffic camera sources, for the possi-

ble usage of semi-supervised training, and 2,987 real-world hazy images collected from the same

sources as the test set. Five categories of objects (car, bus, bicycle, motorcycle, pedestrian) are la-
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Fig. 9. Comparison of classification rates at rank 5 for each collection after applying the four algorithms submitted by teams for this task.

a result of evolution. Based on this observation, we devel-
oped a psychophysics-based evaluation regime for human
assessment and a realistic set of quantitative measures for
object recognition performance. The code for conducting
such studies will be made publicly available following the
publication of this article.

Inspired by the success of the UG2 challenge workshop
held at CVPR 2018, we intend to hold subsequent iterations
with associated competitions based on the UG2 dataset.
These workshops will be similar in spirit to the PASCAL
VOC and ImageNet workshops that have been held over
the years and will feature new tasks, extending the reach
of UG2 beyond the realm of image quality assessment and
object classification.
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Figure 3.4: Evaluation of CDRM on UG2 Dataset. Comparison of classification rates at rank 5 for
each collection after applying the submitted algorithms from UG2 Challenge participants.

beled with tight bounding boxes. Table 3.1, 3.2 and Fig. 3.5 presents a summary of the benchmark

statistics.

#Images #Bounding Boxes

Training/Validation 4,310 41,113
Test (held-out) 2,987 24,201

Table 3.1: Image and Object Statistics of UG2+ Haze Benchmarks.

3.3.2 Evaluation Metrics

The evaluation criteria are set to be the Mean average precision (mAP) on each held-out test

set, with a default Interception-of-Union (IoU) threshold as 0.5. If the ratio of the intersection of a

detected region with an annotated object is greater than 0.5, a score of 1 is assigned to the detected

region, and 0 otherwise. When mAPs with IoU as 0.5 are equal, the mAPs with higher IoUs (0.6,

0.7, 0.8) will be compared sequentially.
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Categories Car Person Bus Bicycle Motorcycle

Training/Validation 25,317 11,366 2,590 698 1,232
Test (held-out) 18,074 1,562 536 225 3,804

Table 3.2: Label Statistics of UG2+ Haze Benchmarks.

3.3.3 Baseline Composition

We report baseline results using cascading off-the-shelf enhancement methods and popular

pre-trained detectors without joint training performed Table 3.3. We test four state-of-the-art ob-

ject detectors: Mask R-CNN [166], RetinaNet [169], YOLO-V3 [170], and Feature Pyramid

Network (FPN) [171]. We also try three state-of-the-art dehazing approaches: AOD-Net [104],

Multi-Scale Convolutional Neural Network (MSCNN) [99], and Densely Connected Pyramid De-

hazing Network (DCPDN) [167]. All dehazing models adopt officially released versions.

3.3.4 Results and Analysis

Fig. 3.1 shows the object detection performance on the original hazy images of RESIDE RTTS

set using Mask RCNN. The detectors are pretrained on Microsoft COCO, a large-scale object

detection, segmentation, and captioning dataset.

The overall detection performance (Table 3.3) has an mAP of only 41.83% using Mask RCNN

and 42.54% using YOLO-V3. More detailed detection performance on the five objects can be

found in Table 3.4. Results show that without preprocessing or dehazing, the object detectors

pretrained on clean images fail to predict a large number of objects in the hazy image. Among all

the five object categories, the person has the highest detection AP, while the bus has the lowest AP.

https://github.com/matterport/Mask_RCNN, pretrained on Microsoft COCO dataset.
https://github.com/fizyr/keras-retinanet, , pretrained on Microsoft COCO dataset.
https://github.com/ayooshkathuria/pytorch-yolo-v3, , pretrained on Microsoft COCO dataset.
https://github.com/DetectionTeamUCAS/FPN_Tensorflow, FPN using ResNet-101 backbone is pretrained on the

PASCAL Visual Object Classes (VOC) dataset.
https://github.com/Boyiliee/AOD-Net
https://github.com/rwenqi/Multi-scale-CNN-Dehazing
https://github.com/hezhangsprinter/DCPDN
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Besides, the choice of pre-trained detectors also matters here: Mask R-CNN outperforms the other

two detectors on both validation and test sets, before and after dehazing.

We also compare the validation and test set performance in Table 3.3 and Table 3.4. One

possible reason for the performance gap between validation and test sets is that the bounding box

size of the latter is smaller compared to the former, as shown in Fig. 3.5.

mAP hazy AOD-Net [104] DCPDN [99] MSCNN [167]

va
lid

at
io

n RetinaNet 36.18 33.87 36.37 37.27
Mask R-CNN 41.83 39.55 42.56 42.28

YOLO-V3 42.54 41.64 42.06 43.52
FPN 32.25 31.82 31.17 34.02

te
st

RetinaNet 12.79 12.69 12.87 14.18
Mask R-CNN 16.92 17.02 17.42 18.09

YOLO-V3 14.69 14.83 15.08 15.78
FPN 10.69 10.77 9.88 11.61

Table 3.3: Overall Detection Performance (mAP) on UG2+ Haze Benchmarks.

3.3.5 Effect of Dehazing

We further evaluate the current state-of-the-art dehazing approaches on the hazy dataset, with

pre-trained detectors subsequently applied without tuning or adaptation. Fig. 3.6, 3.8, 3.9, 3.10

shows examples that dehazing algorithms can improve not only the visual quality of the images but

also the detection accuracies. More detection results are included in Table. 3.4. Detection mAPs

of dehazed images using DCPDN and MSCNN approaches are 1% higher on average compared to

those of hazy images.

3.3.6 Conclusions

The results of our baseline results lead to some surprises. Even though the dehaze algorithms

tends to improve the visual quality for the hazy imagery, no approach can able to uniformly im-
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prove the detection performance on all classes over the baseline detection on the raw hazy image.

Moreover, in some cases, the dehaze process can even introduce artifacts (e.g. color distortion)

that might be detrimental to the ReID task. Based on this observation, the image enhancement

procedure is only utilized for the detection step in the ReID task, and the bounding box extracted

from the original frames is used for the representation learning and retrieval process.
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Figure 3.5: Statistical Distributions of UG2+ Haze Benchmarks. Training/validation set (the top
row) and the held out test set (the bottom row). The first column shows the image size distribution
(number of pixels per image), The second column the bounding box count distribution (number of
bounding boxes per image), the third column the bounding box size distribution (number of pixels
per bounding box), and the last column the ratios of bounding box size compared to frame size.
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mAP hazy AOD-Net [104] DCPDN [99] MSCNN [167]
va

lid
at

io
n

RetinaNet

Person 55.85 54.93 56.70 58.07
Car 41.19 37.61 42.68 42.77

Bicycle 39.61 37.80 36.96 38.16
Motorcycle 27.37 23.31 29.18 29.01

Bus 16.88 15.70 16.34 18.34

Mask R-CNN

Person 67.52 66.71 67.18 69.23
Car 48.93 47.76 52.37 51.93

Bicycle 40.81 39.66 40.40 40.42
Motorcycle 33.78 26.71 34.58 31.38

Bus 18.11 16.91 18.25 18.42

YOLO-V3

Person 60.81 60.21 60.42 61.56
Car 47.84 47.32 48.17 49.75

Bicycle 41.03 42.22 40.18 42.01
Motorcycle 39.29 37.55 38.17 41.11

Bus 23.71 20.91 23.35 23.15

FPN

Person 51.85 52.35 51.04 54.50
Car 37.48 36.05 37.19 38.88

Bicycle 35.31 35.93 32.57 37.01
Motorcycle 23.65 21.07 22.97 23.86

Bus 12.95 13.68 12.07 15.83

te
st

RetinaNet

Person 17.64 18.23 16.65 19.34
Car 31.41 29.30 33.31 32.97

Bicycle 0.42 0.84 0.38 0.75
Motorcycle 1.69 1.37 1.93 2.03

Bus 12.77 13.70 12.07 15.82

Mask R-CNN

Person 25.60 26.63 24.59 27.94
Car 39.31 39.71 42.76 42.57

Bicycle 0.64 0.52 0.22 0.37
Motorcycle 3.37 2.81 2.83 2.99

Bus 15.66 15.41 16.69 16.55

YOLO-V3

Person 20.64 21.41 21.42 22.11
Car 34.68 33.90 34.52 35.93

Bicycle 0.50 0.38 0.98 0.57
Motorcycle 4.26 4.10 4.72 5.27

Bus 13.55 14.35 13.75 15.04

FPN

Person 12.65 12.57 11.13 14.19
Car 30.54 31.24 27.81 32.68

Bicycle 1.91 0.39 1.12 0.97
Motorcycle 2.25 1.7 1.96 1.89

Bus 6.08 7.93 7.39 8.31

Table 3.4: Detailed Detection Performance (mAP) on UG2+ Haze Benchmarks.
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Figure 3.6: Image Enhancement Improves Visual Quality. The left column displays the raw hazy
image; the right column displays images enhanced using pre-trained MSCNN.
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Figure 3.7: Image Enhancement Benefits Detection Quantitatively. The top row displays the raw
hazy image annotated with ground truth bounding boxes; the second row displays raw image with
bounding boxes detected by pre-trained Mask R-CNN; the third and forth row displays image
enhanced by pre-trained MSCNN and DCPDN with bounding boxes detected by pre-trained Mask
R-CNN.
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Figure 3.8: Image Enhancement Corrects Coexistence in Detection. The top row displays the raw
hazy image annotated with ground truth bounding boxes; the middle row displays raw image with
bounding boxes detected by pre-trained Mask R-CNN; the bottom row displays image enhanced
by pre-trained MSCNN with bounding boxes detected by pre-trained Mask R-CNN.
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Figure 3.9: Image Enhancement Corrects Mislabel in Detection. The top row displays the raw
hazy image annotated with ground truth bounding boxes; the middle row displays raw image with
bounding boxes detected by pre-trained Mask R-CNN; the bottom row displays image enhanced
by pre-trained MSCNN with bounding boxes detected by pre-trained Mask R-CNN.
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Figure 3.10: Image Enhancement Corrects Bounding Box Position in Detection. The top row
displays the raw hazy image annotated with ground truth bounding boxes; the middle row displays
raw image with bounding boxes detected by pre-trained Mask R-CNN; the bottom row displays
image enhanced by pre-trained MSCNN with bounding boxes detected by pre-trained Mask R-
CNN.
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4. A FAST-APPROXIMATED TRIPLET LOSS FOR REPRESENTATION LEARNING *

4.1 Motivation

Existing deep learning ReID algorithms usually use a classification loss to train their feature

learning backbones [172, 173, 174, 175, 16, 42]. However, ReID is essentially an “open-ended”

retrieval problem rather than closed-set classification, e.g., the training and testing sets usually

have no overlapped identity classes. The learned feature extractor should be able to generalize to

matching unseen identities. The testing performance is evaluated by the precision and recall of the

matching instances, rather than classification accuracy. Therefore, classification-driven learning

could be misaligned with the end goal. Instead, the comparative losses [48, 176, 177, 178], which

compares the distances between two sample pairs, are naturally better choices, as empirically vali-

dated by a handful of works [179, 175, 52, 180, 181]. Among many, the triplet loss [49] (illustrated

in Fig. 4.2a), which maximizes the margin between the intra-class distance and the inter-class dis-

tance, has been mostly used in ReID, in order to explicitly embed the relative orders between right

and wrong matches (i.e., the correct matches should always be closer to the query than the wrong

ones).

An important downside of triplet loss lies in its computational expensiveness, which prohibits

its wide usage in the large-scale ReID applications. The vanilla triplet loss needs to calculate over

all PK(K − 1)(PK −K) possible triplets, where K denotes the average number of images per

identity and P identities in total [49]. Hard sample mining [50, 182] has recently become the

standard practice in using triplet loss, to select only “informative” (a.k.a. hard) pairs rather than

all pairs to enforce the loss. Given the query image, the correct retrievals are positive samples

that come from the same class as the query image, while the false positive is negative samples

from other classes. Typically, the positive hard sample is an image from the same class but is least

* Part of the material reported in this section is reprinted with permission from “In defense of the triplet loss again:
Learning robust person re-identification with fast approximated triplet loss and label distillation” Y. Yuan, W. Chen,
Y. Yang, and Z. Wang, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, June 2020. Copyright 2020 by IEEE.
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similar to the query image (Fig. 4.1 top left). The negative hard sample is an image that is most

similar to the query image but belongs to another class (Fig. 4.1 bottom right). Although the hard

sample mining can help to reduce the time complexity to PK(PK − 1) + PK, it runs the risk of

causing sample bias [50], often appears fragile to outliers, and suffers from “sample imbalance”

issue that the negative pairs (images from a different class) are quantitatively much more than

positive ones (images from the same class) during pairwise training [183].

Query Image

False Positive

Correct Retrievals

Negative Hard Samples

Positive Hard Samples

Figure 4.1: Illustration of Hard Samples Mining in Triplet Loss. The positive samples are the
images from the query vehicle, but of different viewpoints. The negative hard samples are image
that come from different vehicles but are in a similar viewpoints

In this paper, we propose a new fast-approximated triplet (FAT) loss to trim down the compu-

tational cost of triplet loss without hampering its effectiveness. Viewing all images belonging to

the same identity class as a cluster, the proposed FAT loss re-defines a triplet to include an anchor,

its corresponding cluster centroid, and the centroid of another cluster. The main idea of FAT loss

is to replace point-to-point distances with point-to-cluster distances, through an upper bound re-

40



laxation of the triplet form. Such a relaxation simultaneously requires the query to be closest to its

ground-truth-cluster centroid and enforces each cluster to have a compact radius.

Being related to previous triplet loss [49], FAT loss differs substantially in the following ways:

• FAT loss has linear time complexity w.r.t training dataset size: O(PK) or O(PK2) (de-

pending on the choice of the negative set), where K denotes the average image number per

identity and P the number of identities. Previous triplet losses have either cubic (vanilla)

and quadratic (with hard sample mining) time complexity w.r.t training dataset size.

• FAT loss is analytically derived from the upper bound of standard triplet loss. It consists of a

point-to-set loss term and intra-class compactness regularization. Up to our best knowledge,

all previous approximations or accelerations for triplet loss, e.g., [51, 53], are only empirical.

• We studied different choices of the negative cluster/centroid and compared their impacts.

Note that FAT loss chooses the negative on the “cluster” level, and does not refer to any

individual sample mining. Therefore the model is least affected by the sample imbalance

issue.

Given an anchor image a with the identity label ya, the triplet loss attempts to find a positive

sample p with the same identity label yp = ya and a negative sample n with a different label

yn 6= ya, and then maximizes the difference of distances between the positive pair d(a, p) and the

negative pair d(a, n) by a margin m. We typically use the euclidean distance (or cosine similar-

ity) between learned ReID features fE(a), fE(p), fE(n) as distance metrics. However, computing

triplet loss exhaustively over all possible pairs is too expensive to be practical.

4.2 Fast-Approximated Triplet Loss

To retain the effectiveness of triplet loss while improve its efficiency, we propose a relaxation of

the triplet loss 2.1 into its upper bound form. We first have the following two triangle inequalities:

max{0, d(a, ca)− d(ca, p)} ≤ d(a, p) ≤ d(a, ca) + d(ca, p)

max{0, d(a, cn)− d(cn, n)} ≤ d(a, n) ≤ d(a, cn) + d(cn, n)

(4.1)

41



Anchor

Hard 
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Hard 
Negative

Anchor

Negative 
Center

Positive 
Center

(a) Triplet Loss

(b) FAT Loss

Figure 4.2: Comparison of the Standard Triplet Loss and the FAT Loss. The former compares
point-to-point distances, while the latter compares point-to-set distances while regularizing all
cluster sets to be compact. The solid arrows depict the “push and pull” effect of triplet loss and the
point-to-set term of FAT loss. The dash arrows represents the compactness regularization of FAT
loss.

where ca, cn are defined as the centroids (average) of the clusters that a, n belong to, respectively.

Their proofs are self-evident, given that d() is a well-defined distance function in some metric

space. Notice that although we use Euclidean distance for d() by default, our derivations are

applicable to other distances too.

We next expand our derivation as in the algorithm (1). Interestingly, the upper bound consists

of two terms: a point-to-set (P2S) term which depends on the anchor point; plus a penalty term on

the cluster compactness, defined as the largest cluster “radius” among all clusters, whose value is

decided by the entire dataset and is agnostic to the anchor. We minimize this upper bound instead,

and name it as the fast approximated triplet (FAT) loss:

LFAT =
∑
a,n
n6=ya

max{0, d(a, ca) +m− d(a, cn)}+R(a) +R(n). (4.2)
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Algorithm 1 Derivation of FAT loss as an upper bound for triplet loss (2.1).

Ltri = max{0, d(a, p) +m− d(a, n)}
≤ max{0, d(a, ca) + d(ca, p) +m−max{0, d(a, cn)− d(cn, n)}}

. refer to both inequalities in (4.1)
= max{0, d(a, ca) + d(ca, p) +m− d(a, cn) + min{d(cn, a), d(cn, n)}}

. move d(a, cn) out of inner max then reverse sign
= max{0, d(a, ca) +m− d(a, cn) + d(ca, p) + min{d(cn, a), d(cn, n)}}
= max{0, d(a, ca) +m− d(a, cn)}+ d(ca, p) + min{d(cn, a), d(cn, n)}

. move non-negative sums out of max

≤ max{0, d(a, ca) +m− d(a, cn)}+ d(cp, p) + d(cn, n)

. ca = cp; min{d(cn, a), d(cn, n)} ≤ d(cn, n)
≤ max{0, d(a, ca) +m− d(a, cn)}︸ ︷︷ ︸

anchor-dependent point-to-set loss

+ R(a) +R(n)︸ ︷︷ ︸
cluster compactness

. R() defines the radius of the cluster (pre-computed)

As the name suggests, the new loss will give rise to similarly competitive ReID performance

compared to the full triplet loss, but with tremendously better efficiency. We now analyze FAT loss

w.r.t. the triplet loss from two aspects.

As can be obviously seen from its form, FAT loss greatly accelerates the cubic/quadratic time

complexity of computing triplet loss, to linear complexity, w.r.t. the training set size. We also

examine how tight it approximates the original triplet loss. Observing (1), three relaxations take

place in the second, sixth and seven lines. For the first one, the equality in (4.1) could be met when:

a, ca, p are co-linear with a, p on the same side of ca; while a, cn, n are also co-linear with a, n on

different sides of cn. The second relaxation becomes tight if and only if d(a, cn) ≥ d(n, cn), which

implies that a is sufficiently far away from the cluster of cn. For the last one, the exact equality can

only be taken in a very special case, when every cluster has the same radius and every sample in a

cluster distributes on a circle. In sum, when clusters are well-separated and balanced in size, FAT

loss can provide a relatively tighter approximation for triplet loss. However, it is always reasonable

to expect that minimizing this upper bound would lead to suppressing the original triplet loss value.
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4.3 Normalized FAT Loss

As a margin loss, FAT loss, as well as triplet loss, is sensitive to input scales. Given the fact

that ReID features are also scale-sensitive: neighboring features in the normalized space can be far

away from each other in the original feature space, the learned feature are often normalized before

feeding into the evaluation metrics. That could be reflected in a normalized FAT loss:

LFATnorm = max{0, d(
a

||a||
, c′a) +m− d(

a

||a||
, c′n)}+R′(a) +R′(n), (4.3)

where R′ is similarly defined as the radius of the normalized sample set. In practice, we empir-

ically find that adding a cross entropy (CE) loss LCE term will help stabilize training with FAT or

Normalized FAT loss notably. That leads to minimizing a hybrid loss (LCE-FAT can be replaced to

LFAT-N; λ is a scalar):

LCE-FAT = LFAT + λ ∗ LCE (4.4)

4.4 Choices of Centroids

The choice of cluster centroids is also found to be critical to the effectiveness of FAT loss.

Four options of cluster centroids are available: i) mean of cluster features; ii) mean of normalized

cluster features; iii) normalized mean of cluster features; and iv) normalized mean of normalized

cluster features. A visual comparison of the four options are in Figure 4.3. Mathematically:

Ci1 =
1

Ni

∑
yk=i

fE(Xk), Ci2 =
1

Ni

∑
yk=i

fE(Xk)

‖fE(Xk)‖

Ci3 =

∑
yk=i

fE(Xk)

‖
∑

yk=i
fE(Xk)‖

, Ci4 =

∑
yk=i

fE(Xk)
‖fE(Xk)‖

‖
∑

yk=i
fE(Xk)
‖fE(Xk)‖

‖

(4.5)

Since the original FAT loss (4.2) is calculated based on un-normalized features, only the first

centroid option Ci1 makes sense for it. The remaining three options can all be utilized for the

normalized FAT loss (4.3). Our experiments indicate that the normalized mean of normalized

cluster features Ci4 works best with the normalized FAT loss.
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Figure 4.3: Example of Four Different Centroid Options.

4.5 Implementation of FAT Loss

We implement our FAT loss in PyTorch deep learning framework. In the training phase, all

images are resized to 144×432 and then randomly cropped into 128×384 sub-images. Standard

horizontal flipping is adopted for data augmentation. In the test phase, all images are re-sized to

128×384 and no data augmentations are applied. All images have the training set mean subtracted

and then normalized by the training set standard deviation, before feeding into the network.

Following a standard ReID protocol, we use ResNet [184] or Densenet [185] backbone as the

feature extractor fE towards learning a pedestrian representation directly supervised by FAT loss

Lfat. The cluster centroids are computed at the beginning of each epoch, using Ci1 for FAT loss and

Ci4 for normalized FAT loss in Equation 4.5. Besides, we also compare four different options of

choosing the negative cluster cn for computing FAT loss each time: i) ctrdAll: identity classes that

are different from the one a belong to; ii) ctrdAvg: consider all other classes, except the one that a
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belongs to, as one cluster and obtain one negative centroid by computing the average of all negative

centroids, which is similar to [53] but differs in the way of calculating all negative samples’ mean;

iii) ctrdHM: find a hard negative cluster (in terms of closest centroid to the one that a belongs to),

from all classes of the whole dataset; iv) batchHM: find a hard negative sample on “batch level”,

e.g., from all classes that are sampled by the current batch.

4.6 Results and Analysis of FAT loss

We first present a comprehensive ablation study on the effectiveness of FAT loss in Table 4.1,

using the Market1501 dataset. By default, we use the CE-FAT loss defined in (4.4), with λ = 1, as

it consistently improves over either FAT or CE loss alone. The margin m is chosen as 1 for FAT

loss and 0.1 for normalized FAT loss, as validated to be effective in experiments. We study on the

four choices of the negative cluster (only ctrdAvg was previously explored in a similar form [53]),

as well as the FAT loss hyperparameter (margin m). We also compare CE-FAT with CE-P2S, the

latter defined by removing the cluster compactness term in FAT loss; as well as the normalized

versions for both, denoted as CE-FATnorm and CE-P2S norm, respectively.

We evaluate different methods in terms of their top-1/top-5/top-10 accuracy and mean average

precision (mAP) values obtained on the Market1501 testing set. Moreover, we use the direct trans-

fer performance of the Market1501-trained feature extraction to the DukeMTMC-reID dataset, as

an additional performance criterion, to avoid overfitting small ReID datasets. A few popular ReID

loss options proposed in previous works [186, 175, 187, 49] are also included into comparison, so

is a CycleGAN [132] baseline for transfer evaluation. Note that CycleGAN is a domain adaption

method that demands re-training on the target domain, while the direct transfer needs no extra

re-training.

First, comparing CE-FAT with ctrdAll, ctrdAvg, ctrdHM, and batchNeg, it is clear that batch-

Neg outperforms the other three. Second, comparing CE-P2S with CE-FAT in fair settings, we

show the necessity of cluster compactness regularization in addition to the P2S loss; for example,

without the compactness term, we will see 1.8% (ctrdAll) and 2.2% (batchNeg) top-1 accuracy

drops on the Market1501 test case, and 7.5% (ctrdAll) and 9.2% d(batchNeg) top-1 accuracy drops
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on the transfer case to DukeMTMC-reID. The performance gaps clearly differentiate FAT loss from

previous empirical P2S losses, thanks to our more rigorous upper-bound derivation. Third, no per-

formance gain has been observed on Market1501, when using normalized features for FAT/P2S.

Finally, CE-FAT outperforms all state-of-the-art losses trained with the same ResNet50, on the

Market1501 testing set. Furthermore, after we replace the backbone into DenseNet161, CE-FAT

achieves not only further boosted Market1501 testing results, but also impressive direct transfer

performance to DukeMTMC-reID, even surpassing Cycle-GAN domain adaption [132] that is re-

trained with the target domain data.

Tables 4.2 and 4.3 report similar experiments using DukeMTMC-reID ad MSMT17 datasets,

respectively. With most observations aligned with the Market1501 cases, we find the training

behavior on MSMT17 to slightly differ from the other two (much) smaller datasets. In particular,

while batchNeg remains effective for its own testing set, ctrdAll becomes the best option when

it comes to the feature transferability evaluation. That might be attributed to the heavier label

noise on MSMT17, that likely benefits from averaging the triplet effects between with current one

and all other clusters. Also, we observe CE-FATnorm to outperform CE-FAT, when transferring

from MSMT17 to the other two datasets. That implies that normalization may become essential to

overcome feature scale variances on large datasets. Finally, training ResNet50 with CE-FAT loss

and batchNeg has surpassed the state-of-the-art performance [31] ever reported on MSMT17.

Besides, we use t-SNE to visualize the feature distributions learned using cross entropy loss

(Figure 4.4 top) and FAT loss (Figure 4.4 bottom). Twenty identities are randomly selected from

the MSMT17 dataset and their IDs are listed below the graphs. We can see that the distances

between identity features become much larger when we switch from the cross entropy loss to the

FAT loss, indicating that the proposed FAT loss is a better optimization target for maximizing the

inter-class distance.

4.7 Conclusion

This work proposes the fast-approximated triplet (FAT) loss, which remarkably improves the

efficiency over the standard triplet loss in ReID models. Instead of using point-to-point distances,
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the FAT loss uses a point-to-set distance with cluster compactness regularization, which is derived

rigorously as an upper bound of standard triplet loss, with linear complexity to the training set

size. A distillation network is also designed to assign soft labels for samples in place of potentially

noisy hard labels. Extensive experiments demonstrate the high effectiveness and promise of the

proposed FAT loss along with label distillation.
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Settings Test on Market1501
loss negative margin top1 top5 top10 mAP

Histogram Loss [186] NA NA 59.5 80.7 86.9
Multi-loss class [175] NA NA 83.9 - - 64.4
Point to Set Similarity [187] NA NA 70.7 - - 44.3
Triplet loss [49] NA 1 84.9 94.2 - 69.1
Support Neighbor Loss [188] NA NA 88.3 - - 73.4

CE-FAT ctrdAll 1 89.1 95.0 96.7 71.6
CE-FAT ctrdAvg 1 89.2 95.3 97.0 72.4
CE-FAT ctrdHM 1 87.1 94.7 96.3 69.9
CE-FAT batchNeg 1 89.4 95.6 97.1 73.1
CE-P2S ctrdAll 1 87.4 95.0 96.7 68.9
CE-P2S batchNeg 1 87.2 94.6 96.7 67.0
CE-P2Snorm batchNeg 0.1 87.5 95.3 96.8 68.1
CE-FATnorm batchNeg 0.1 88.6 95.1 96.7 69.7

CE-FAT* (DenseNet161) batchNeg 1 91.4 96.6 97.7 76.4

Settings Transfer to DukeMTMC-reID
loss negative margin top1 top5 top10 mAP

CycleGAN [132] NA NA 38.5 54.6 60.8 19.9

CE-FAT ctrdAll 1 34.4 51.5 57.6 18.9
CE-FAT ctrdAvg 1 35.1 51.2 57.6 19.2
CE-FAT ctrdHM 1 34.3 50.8 56.9 18.0
CE-FAT batchNeg 1 37.3 52.3 58.4 20.3
CE-P2S ctrdAll 1 27.6 42.9 50.0 14.1
CE-P2S batchNeg 1 28.1 42.6 49.2 14.3
CE-P2Snorm batchNeg 0.1 27.8 41.7 48.7 13.6
CE-FATnorm batchNeg 0.1 35.0 50.6 57.4 18.9

CE-FAT* (DenseNet161) batchNeg 1 40.8 57.1 63.2 23.4

Table 4.1: Comparison Analysis of FAT Loss on Market-1501 Dataset. Evaluation results on
Market1501 and transfer results from Market1501 to DukeMTMC-reId. We use Resnet50 as
our default backbone and trained on Market1501, with only one exception indicated by * using
DenseNet161 backbone.
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Settings Test on DukeMTMC-reID
loss negative margin top1 top5 top10 mAP

Deep-Person [189] NA NA 80.9 - - 64.8
CE-P2Snorm batchNeg 0.1 76.5 87.3 90.6 57.3
CE-FATnorm batchNeg 0.1 77.9 87.8 91.4 58.3
CE-P2S batchNeg 1 78.2 88.5 91.8 59.5
CE-FAT batchNeg 1 78.8 88.7 91.5 60.8

CE-FAT* (DenseNet161) batchNeg 1 80.8 89.5 92.0 63.1

Settings Transfer to Market1501
loss negative margin top1 top5 top10 mAP

CycleGAN [132] NA NA 48.1 66.2 72.7 20.7
CE-P2Snorm batchNeg 0.1 46.5 63.9 71.0 19.9
CE-FATnorm batchNeg 0.1 49.8 65.8 73.2 21.2
CE-P2S batchNeg 1 47.0 64.6 71.4 19.7
CE-FAT batchNeg 1 49.1 67.1 73.9 21.8

CE-FAT* (DenseNet161) batchNeg 1 54.7 70.8 77.4 25.2

Table 4.2: Comparison Analysis of FAT Loss on DukeMTMC-reID Dataset. Evaluation results on
DukeMTMC-reID and transfer results from DukeMTMC-reID to Market1501. We use Resnet50
as our backbone, and trained on DukeMTMC-reID, with only one exception indicated by * using
DenseNet161 backbone.
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loss negative set Test on MSMT17

CE-P2Snorm batchNeg 64.8 78.3 83.0 33.8
CE-FATnorm batchNeg 66.2 79.4 83.7 33.1

CE-P2S batchNeg 65.2 78.5 82.9 33.7
CE-FAT ctrdAll 68.8 81.4 85.4 39.1
CE-FAT ctrdAvg 67.0 80.2 84.6 37.4
CE-FAT ctrdHM 67.7 80.2 84.5 36.2
CE-FAT batchNeg 69.4 81.5 85.6 39.2

loss negative set Transfer to DukeMTMC-reID Transfer to Market1501

HHL [46] NA 45.0 59.4 64.4 23.0 56.0 75.8 81.2 26.7

CE-P2Snorm batchNeg 49.1 64.9 70.6 29.2 51.6 68.9 75.5 23.9
CE-FATnorm batchNeg 51.2 66.1 71.1 29.5 54.8 70.9 76.5 25.1

CE-P2S batchNeg 49.9 67.6 74.5 22.9 48.7 63.5 69.3 28.5
CE-FAT ctrdAll 50.9 65.0 70.2 30.7 51.5 69.4 75.9 24.4
CE-FAT ctrdAvg 45.0 61.7 67.0 25.4 48.3 65.6 73.0 21.5
CE-FAT ctrdHM 50.1 64.4 70.2 28.4 48.4 66.0 72.5 21.5
CE-FAT batchNeg 49.2 64.8 69.6 28.7 50.6 68.0 74.9 23.6

Table 4.3: Comparison Analysis of FAT Loss on MSMT17 Dataset. Evaluation results on
MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and trained
on MSMT17 with different negative sets.
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Figure 4.4: T-SNE Visualization of Feature Learned via FAT Loss. Cross entropy loss (top) and
FAT loss (bottom). Twenty identities are randomly selected from the MSMT17 dataset and their
IDs are listed below the graphs.
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5. ROBUST LEARNING WITH NOISY LABEL VIA DISTILLATION NETWORK *

5.1 Motivation

Typically, there are three common label noises in ReID datasets 2.2: i) label flip, i.e., an image

is assigned to a wrong identity class; ii) mislabeling, i.e., an image does not belong to any known

identity class; iii) multiple identities co-exist in one image. Similar to other margin-based losses,

triplet loss is highly sensitive to label noise. Since the proposed FAT loss has a P2S term where

all samples within the same cluster are averaged, hence alleviating noisy labels to some extent.

We hereby propose a label distillation approach based on a teacher-student model, to improve FAT

loss robustness to label noise further, using “soft labels” predicted from another teacher model,

trained with a loss that is less sensitive to label noise, e.g., cross-entropy. The pipeline is plotted in

Fig.5.1: the teacher network generates soft pseudo labels for each sample associated with a con-

fidence coefficient; then the feature extractor of the teacher network is loaded to student network

as pretrained extractor and those soft labels instead of the original noisy labels are feed into the

student network for fine-tuning, where each individual samples’ contribution to the model update

is re-weighted by their label confidence.

Our proposed distillation algorithm is free from the assumption of the existence of a manually-

cleaned set. Instead, we train a teacher network with the entire noisy dataset but only use the most

confident samples within a batch to update the parameters. We observed that the model updated

based on a subset of confident samples can avoid overfitting on the noisy labels and achieve similar

performance, compared to the model trained with all noisy-labeled samples.

Besides, we investigate different loss functions for distillation; the teacher network is trained

with cross-entropy loss (relatively robust to label noise) with the purpose of providing pseudo soft

label associated with a confidence coefficient; the student network is trained with FAT loss (more

* Part of the material reported in this section is reprinted with permission from “In defense of the triplet loss again:
Learning robust person re-identification with fast approximated triplet loss and label distillation” Y. Yuan, W. Chen,
Y. Yang, and Z. Wang, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, June 2020. Copyright 2020 IEEE.
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ReID images X Feature Extractor Classifier
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Figure 5.1: Overview of the Label Distillation Pipeline. A distillation network is proposed to
assign soft labels learned by teacher network for samples in place of the original potentially-noisy
hard labels in the student network.

effective for retrieval task) using the soft pseudo labels generated by the teacher network. Hence

instead of mimicking a similar classification behavior as the teacher network, the student network

has the capability to “innovate” on a different retrieval task, and eventually outperforms the teacher

network for ReID performance.

5.2 Implementation of Label Distillation

Overall, the model is composed of two components, the feature extractor, and a classifier. The

feature extractor learns a robust representation of the person images while the auxiliary classifier

computes the cross-entropy loss to supervise training.

We first use a self-bootstrapping approach to learn the teacher model robustly. The teacher

net is first trained with cross-entropy loss on classifying all samples (including noisy labels) for 5

epochs. It was previously observed that the network would be more inclined to learning with high

confidence for “easy samples”, within the early stage of training [190, 191]. Those confident, easy

samples are hypothesized to have labels that are semantically consistent and correct, less confusing

and ambiguous, and therefore more reliable. We identify those most confidently predicted samples

based on the entropy of their currently predicted softmax vectors. We then resume training for

another 5 epochs; but now in each epoch, we will keep using those identified confident samples,
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while not using or only partially using the others that are more likely to contain label noise or

outliers. We periodically repeat the above process, and each time we may gradually enlarge the

pool of confident examples as the training continues.

After the teacher model is trained, its predictions are treated as soft labels to replace the original

labels, for training the student model with FAT loss. Only the “confident” labels eventually selected

by the teacher net will participate in averaging to estimate the cluster centroids. If we use the hybrid

FAT loss (4.4), then soft labels are the prediction targets for the cross-entropy (softmax) loss too.

Following the basic routine described above, we further study four different modes of identi-

fying confident samples: i) hard threshold: select all samples whose softmax entropy values are

below a pre-set threshold t as the trusted training subset, and discard all un-selected samples; ii)

soft threshold: select all samples whose softmax entropy values are below a pre-set threshold t/2,

and then randomly select 50% of the remaining (unselected) samples to add into the trusted train-

ing subset; iii) hard percentage: always select 50% samples with lowest softmax entropy values,

as the trusted training subset; iv) hard percentage: always select 25% samples with lowest softmax

entropy values first, and then randomly select another 1/3 from the remaining 75% (unselected)

samples to add into the trusted training subset.

The important difference between “threshold” and “percentage” methods lies in whether we

keep a constant or dynamic size of the trusted training subset for the teacher model. For the first

two threshold-based methods, even sticking to the same t throughout one training, the portion

of samples selected into the trusted set will be dynamic, as more samples might become better

confident as training continues. Figure 5.2 visualizes this trend: given t ≤ 0.1, the final training

stage will always have considered all training samples as trusted; while a larger t may lead to more

“conservative” selection. We choose t = 0.1 as the empirical default value found in experiments

for i) and ii). Also, for the two “soft” strategies ii) and iv), our hope is to utilize a larger set of

samples while letting the stochastic selection “smooth out” the impacts from noisy labels.
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Figure 5.2: Illustration of Teacher-Student Network Training Process. The number of samples ac-
tually used as the trusted training subset, when training the ResNet-50 teacher model with different
soft threshold t values, on the Market1501 dataset.

5.3 Effect of Label Distillation

To overcome the noisy label issue on MSMT17, we next investigate label distillation to further

unleash the power of FAT loss. Both teacher and student nets adopt the same ResNet50 backbone

for simplicity.

As shown in Table 5.1, for the training of the teacher net, the soft threshold/percentage methods

appear to outperform their hard counterparts, as they can learn with a wider variety of samples

(while hard methods may tend to select too many similar easy samples), meanwhile smoothing

out the negative impacts of potential noisy samples due to stochastic sampling/averaging effects.

In comparison, the soft threshold seems to produce superior results on the same MSMT17 testing

set, whereas soft percentage leads to better feature transferability. It implies that soft percentage

suffers from less overfitting, because of its curriculum-style learning (as Figure 5.2 shows) that
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progressively takes into account the entire dataset information. To our surprise, our teacher net

trained with only the trusted subsets by soft threshold/percentage yield competitive or even superior

performance than the one trained with the whole dataset, in particular on transfer cases. That proves

that the teacher net learns effectively and without being misled by noisy labels.

We then pick the teacher net trained with soft percentage, due to its best transfer performance,

to provide soft pseudo labels for training the student net. The training of the student net is su-

pervised by the CE-FAT loss with the batchNeg strategy, using the soft pseudo labels in place of

original one-hot labels for both CE and FAT terms. The new model in Table 5.2, dubbed CE-

FAT-distillation, does not lead to better test results on MSMT17 than our best result (CE-FAT with

batchNeg). However, it produces state-of-the-art direct transfer performance from MSMT17

to DukeMTMC-reID. Its transfer performance to Market1501 largely surpasses that of CE-FAT

without distillation, and shows competitiveness to state-of-the-art HHL domain adaption [46]. To

re-iterate, the direct transfer does not re-train on target domain data as domain adaption has to.

5.4 Conclusion

This work proposes the fast-approximated triplet (FAT) loss, which remarkably improves the

efficiency over the standard triplet loss in ReID models. Instead of using point-to-point distances,

the FAT loss uses a point-to-set distance with cluster compactness regularization, which is derived

rigorously as an upper bound of standard triplet loss, with linear complexity to the training set

size. A distillation network is also designed to assign soft labels for samples in place of potentially

noisy hard labels. Extensive experiments demonstrate the high effectiveness and promise of the

proposed FAT loss along with label distillation.
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Method
Test on MSMT17

top1 top5 top10 mAP

whole set 65.1 78.2 82.8 34.5

hard threshold 64.5 77.8 82.2 33.7
soft threshold 64.8 78.3 83.0 34.2

hard percentage 64.2 77.5 82.1 34.2
soft percentage 62.9 76.1 80.9 32.6

Method
Tranfer to DukeMTMC-reID Tranfer to Market1501
top1 top5 top10 mAP top1 top5 top10 mAP

whole set 48.2 63.8 69.9 29.0 51.1 68.3 74.2 23.5

hard threshold 46.5 62.8 69.0 27.4 49.9 66.2 73.3 23.0
soft threshold 48.2 63.5 69.0 28.9 49.6 67.3 74.1 23.1

hard percentage 49.3 64.4 69.8 29.8 52.0 69.2 76.5 24.8
soft percentage 50.5 66.0 71.0 30.3 52.4 69.6 76.0 24.6

Table 5.1: Performance of Teacher Network in Label Distillation. Evaluation results of the Teacher
Net on MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and
trained on MSMT17.

loss negative set Test on MSMT17

CE-FAT batchNeg 69.4 81.5 85.6 39.2
CE-FAT-distillation batchNeg 66.2 79.2 83.6 36.5

loss negative set Transfer to DukeMTMC-reID Transfer to Market1501

HHL [46] NA 45.0 59.4 64.4 23.0 56.0 75.8 81.2 26.7
CE-FAT batchNeg 49.2 64.8 69.6 28.7 50.6 68.0 74.9 23.6

CE-FAT-distillation batting 50.9 66.6 72.2 31.3 52.8 69.2 75.9 25.4

Table 5.2: Performance of Student Network in Label Distillation. Evaluation results of the Student
Net on MSMT17, DukeMTMC-reID, and Market1501. We use ResNet50 as our backbone and
trained on MSMT17.
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6. DOMAIN-INVARIANT LEARNING FOR LARGE-SCALE APPLICATIONS *

6.1 Motivation

With rapidly increasing demand for ReID in multi-camera systems such as for public safety,

indoor/outdoor monitoring, traffic surveillance and smart city/community, the core technical chal-

lenge of ReID problem is no longer just the performance in an enclosed or fixed environment: it

has to stay effective to new subjects, scale up to new locations, and be reliable over time.

However, the scale and diversity of existing ReID datasets are still far from being comparable

to real scenarios. A recent study [26] showed that in 2014, there were 125 video surveillance

cameras per thousand people in the U.S.; whereas most ReID datasets were collected only from 10

or fewer cameras (see Section 2.1.1). Trained on limited data, most existing ReID algorithms may

not have addressed the generalization issue well: the model’s robustness and transferability can

not be extend to diverse and large-scale unseen cases, such as changing background, illumination,

viewpoint, and other camera parameters, which may hinder their deployment in practice.

Most scene-related nuisances are caused by camera-specific and/or time-specific factors. For-

tunately, video timestamp or camera index are freely available in video surveillance as metadata

and are provided by almost all the existing ReID datasets. The nuisance labels can be potentially

utilized as auxiliary supervision, although few image-based ReID methods have taken advantage of

them. Inspired by [192, 193], we aim to improve the generalizability of ReID models in large-scale

settings, by resorting to a novel domain-invariant feature learning perspective.

We consider samples (of different subjects) with the same nuisance to be from one domain

(such as images captured by the same fixed camera, or in the same time period). This is because

scene-related changes (background, illumination, viewpoint, etc.) heavily dominate the appear-

ances of images. Different types of nuisances hence becomes domain-specific features. In con-

* Part of the material reported in this section is reprinted with permission from “Calibrated domain-invariant
learning for highly generalizable large scale re-identification” by Y. Yuan, W. Chen, T. Chen, Y. Yang, Z. Ren, Z. Wang,
and G. Hua, in Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2019. Copyright 2019
by IEEE.
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trast, one subject can be captured at different cameras and time periods, and the subject’s identity

features should apparently remain domain-invariant. Therefore, our main idea is to extract ReID

features that can: (1) be utilized to faithfully classify subjects into correct classes; (2) be resilient

and invariant to those identified nuisances – in other words: no reliable classifier can be trained on

those features to predict those nuisances.

We formulate our adversarial domain-invariant learning framework (ADIN), by taking advan-

tage of “free” annotations like video timestamp and camera index, to separate identity-related fea-

tures from scene-specific nuisances. To our best knowledge, we are the first to utilize those “free”

annotations for image-based ReID, to effectively suppress the overfitting of nuisances. Moreover,

we find the imbalance of nuisance distribution w.r.t. subjects hampers the adversarial learning.

A novel calibrated adversarial loss is therefore introduced to tackle the nuisance class imbalance

for ADIN. Measured by a new direct transfer performance criterion (discussed in Section 2 Sec-

tion 2.1.2) on several popular large-scale ReID benchmarks, our ADIN demonstrates outstanding

generalizability and outperform previously reported results and even some that rely on domain

adaptation using target data.

6.2 Domain-Invariant Learning Formulation

Given a training image X with the identity labels YI and the (freely) available nuisances label

YN (one or multiple, such as camera ID, video timestamp, etc.), our goal is to learn a feature

representation fE(X) that is highly relevant to the identity label, yet being invariant or irrelevant

to the nuisances label. Using a function R to represent the correlation between the feature and the

label, our learning goal is mathematically described as:

R(fE(X), YI) ≈ R(X, YI), R(fE(X), YN)� R(X, YN). (6.1)

We adopted an identity prediction module fI which projects the feature fE(X) into identity-

related features, and a nuisance prediction module fN that extracts scene-specific nuisances from

fE(X). Without loss of generality, both of them are assumed to have softmax-form outputs. Note
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that fE , fI and fN all need to be learned together. Their interactions provide mutual supervision.

In particular, fN will serve as an “adversary” role.

To evaluateR practically, a straightforward choice is to use two standard classification-oriented

loss functions LI and LN (e.g., cross-entropy) for fI and fN respectively and minimize the clas-

sification error rate of YI from fE(X), while maximizing the classification error rate of YN from

fE(X). Our task then becomes to simultaneously train fE , fI and fN , so as to minimize the identity

classification loss meanwhile maximizing the nuisance classification loss.

min
fE

LI(fI(fE(X)), YI), max
fE

LN(fN(fE(X)), YN). (6.2)

Maximizing LN(fN(fE(X)), YN) is not straightforward to implement. Previous work [194]

reversed the sign of gradient computed from minimizing LN(fN(fE(X)), YN), i.e., using gradient

ascent. However, we observed in experiments that the reverse gradient approach yielded unsta-

ble training process. Instead, we introduce a new Ladv loss, to encourage the disparity between

fN(fE(X)) and YN : a smaller Ladv value is expected to indicate a worse correlation between them.

A detailed discussion about the choice of Ladv will be presented in section 6.3.

Finally, the training goal of ADIN is represented below (β > 0 is a scalar):

min
fE

LI(fI(fE(X)), YI) + βLadv(fN(fE(X)), YN). (6.3)

Meanwhile, in order to keep adversarial domain-invariant feature learning effective so as to

learn meaningful fE , we need to also maintain fN to be a strong competitor. That implies a

hidden constraint, i.e., avoiding LN(fN(fE(X)), YN) growing large too quickly, in which case fN

becomes to have too poor nuisance classification ability so that it cannot make a useful adversary.
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6.3 Calibrated Adversarial Loss for Imbalanced Nuisances

As noted in Section 1, both subject and nuisance classes (conditioned on the subject) suffer

from sample imbalances. We experimentally observed the subject imbalance to have less severe

impact on ReID performance (e.g., comparing using standard and reweighted softmax loss), and

therefore keep using a standard softmax function for LI . However, the nuisance class imbalance

was found to cause considerable training instability and performance degradation for the adversar-

ial learning. We thus focus a detailed discussion on how we derive a robust Ladv for the imbalanced

nuisances.

We denote c = [c1, ..., cK ] as the softmax-form output of fN , where K is the total nuisance

class number. We next present three options that we tried for Ladv, among which our proposed

new Option #3 is experimentally validated to be the best choice for ADIN (see section 6.6.1 for

details).

Option #1: Reverse Gradient (RG). One possibility is to adopt the reversal gradient layer [195].

It computes the gradient for minimizing the cross-entropy between fN(fE(X)) and YN , then re-

versing the gradient sign. However, this objective becomes problematic in our case, as it was

observed to cause large fluctuations in the training curve and failure of convergence. Moreover,

when both fN and fE are initialized from pre-trained models (practically improving convergence

and results), the gradients start with very small magnitudes and the model updates become too

slow. RG is written as (Y ∗ is the true label):

Ladv(X, YN) = −LN =
K∑
k=1

1[k=Y ∗] log(ck) (6.4)

Option #2: Negative Entropy (NE). An alternative is to minimize the negative entropy function

of the softmax vector (or equivalently, its cross-entropy with uniform distribution), as to encourage

“uncertain” predictions of nuisance attributes (e.g., camera ID and video timestamps) from the

extracted ReID features. The rationale is that, if the nuisance prediction is only as good as the

random guess (uniform distribution over all classes), then the feature is not informed of nuisances
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and therefore can generalize to unseen nuisances. NE could be written as

Ladv(X, YN) =
K∑
k=1

ck log(ck). (6.5)

Importantly, although YN does not explicitly occur in the loss form, it will still be utilized in re-

training fN to make a sufficiently strong competitor (section 6.4). We previously also tried the KL

Divergence and the Jensen-Shannon Divergence between the softmax and uniform distribution, but

NE appears to work best in practice.

Option #3 (Proposed): Calibrated Negative Entropy Loss (CaNE). Despite boosting uncer-

tainty, NE overlooks the practical imbalance of nuisance class distribution w.r.t. subjects. A

well-known solution is to add a modulating factor to cross-entropy loss, ensuring that the ma-

jority class/easy decisions do not overwhelm the loss [196]. We propose a reweighted form of NS,

called Calibrated Negative Entropy Loss (CaNE), to make Ladv attentive to the skewed nuisance

distribution

Ladv(X, YN) =
K∑
k=1

pkck log(ck), (6.6)

where pk denotes the nuisance class distribution in the given training set. To our best knowledge,

there has been no similar discussion addressing the class imbalance issue in (adversarial) domain

adaption among existing ReID works.

6.4 Training Strategy Overview

Figure 6.1 overviews the concrete training workflow of ADIN, which consists of three modules:

feature extractor fE , subject identity classifier fI , and nuisance classifier fN . fE takes the image

X as input and outputs the feature fE(X), which is then passed through fI and fN . Both fI and

fN aim to accurately predict their corresponding labels from the learned features. The training of
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fE strives to boost the prediction of fI(fE(X)), while suppressing the prediction of fN(fE(X)).

It is important to keep fN strong to maintain a meaningful competition for learning nontrivial fE .

ReID images X Feature Extractor
fE(X)

Identity Classifier 
fI(fE(X)) 

Nuisances Classifier
fN(fE(X))

Identity Loss  
LI(fI(fE(X)), YI)

Adversarial Loss  
Ladv(fN(fE(X)))

Nuisances Loss  
LN(fN(fE(X)), YN)

Feed forward
Back propogation

Resume

Penalize

Retrain

Retrain

Figure 6.1: Overview of the ADIN framework. Illustration of its training strategy.

In practice, we implement the training using an iterative strategy. We initialize fE , fI and fN

by jointly training the feature extractor fE and identity classifier fI , and then fixing fE and pre-

training fN solely on top of that. Afterwards, we alternate between optimizing two sub-problems:

min
fE ,fN

Ladv(fN(fE(X))), min
fE ,fI

LI(fI(fE(X)), YI). (6.7)

In each alternating round, we optimize the first objective until the validation error of identity

classification reducing below a pre-set thresholdI-target. We then switch to optimizing the second

objective, meanwhile monitoring the resulting changes on the identity classification validation

error (since fE is altered): if it drops below another pre-set thresholdI−trigger, we will switch back

to the first object and start the next round of alternations.
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Algorithm 2 The Training Strategy of ADIN Framework.
Given pre-trained feature extractor fE , identity classifier fI and nuisances classifier fN
valI , valN ← identity classifier validation accuracy, nuisances classifier validation accuracy.
for number of training epoches do

if valI < thresholdI−trigger then . Avoid weak identity recognition performance
while valI ≤ thresholdI−target do

for number of batches do
Sample minibatch of m examples {X1, ..., Xm}
Jointly update the fE and the fI by descending its gradient with loss LI

end for
valI ← identity classifier validation accuracy.

end while
else if valN > thresholdN then . Suppress nuisance discriminator performance

Feed all training examples {X1, ..., Xn} into the model
Jointly update fE and fN by descending its gradient with the adversarial loss Ladv

else . Further boost identity recognition performance
for number of batches do

Sample minibatch of m examples {X1, ..., Xm}
Jointly update fE and fI by descending its stochastic gradient with loss LI

end for
end if
Re-initialize fI , fN

. Empirically restart the classifier to avoid it overfitting extracted features
Train fI , fN by descending its gradient with classification loss LI , fN correspondingly
valI , valN ← identity classifier validation accuracy, nuisances classifier validation accuracy.

end for
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6.5 Implementation of ADIN Framework

As a general framework, ADIN can take any backbone for fE , fI and fN . In section 6.6.1,

we first test our ADIN with fE being a basic ResNet50 [184] to illustrate the effectiveness of our

adversarial training. Afterwards, we adopt a more sophisticated dual-branch feature extractor for

fE , as inspired by [44, 45, 16], to demonstrate further boosted performance over state-of-the-arts.

The configuration of the dual-branch model is depicted in Fig.6.2. For our dual-branch backbone,

the first four blocks share the same design as in ResNet50. After the forth block, the network was

split into a global and a local branch. In the global branch, the feature passes a global average-

pooling and then is fed into the classifier. In the local branch, feature is horizontally partitioned

into two equal parts, where each part adopts a separate global average-pooling layer and classifier.

During inference the outputs from two branches are concatenated together as the final feature for

image retrieval. On top of the fE , we append two simple classifiers as fI and fN (Fig. 6.1),

either taking two fully connected layers. LI is always implemented using the hybrid loss of cross-

entropy and center loss [197]. An ablation study of Ladv is presented in section 6.3; after that, the

Calibrated Negative Entropy (CaNE) loss will be our default Ladv unless otherwise specified.

6.6 Results and Analysis

6.6.1 Ablation Study of the Adversarial Loss Ladv

Table 6.1 displays a step-by-step comparison for choosing Ladv, with the direct transfer perfor-

mance from DukeMTMC-ReID (source domain) to Market1501 (target domain) as the indicator.

Without the adversarial domain-invariant training, both the ResNet50 and Dual-branch backbones

achieve low direct transfer accuracy, due to the domain discrepancy across two datasets. We also

empirically observe the adversarial effect provided by the reverse gradient (RG) hard to converge,

owing to the gradient vanishing/explosion and its sensitivity to the loss magnitude from the nui-

sance classifier fN . With the negative entropy (NE) loss, our adversarial domain-invariant training

forces the entropy of the nuisance classifier’s prediction to be maximized, leading to nuisance-

uninformative features learned by the feature extractor fE and reliable direct transfer performance.
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Figure 6.2: Overview of the Dual-Branch Backbone.

More importantly, as pointed out in section 2.1, the sampling of nuisances are imbalanced, which

intrinsically results in imbalanced levels of adversarial effects on each nuisance. Thus our pro-

posed calibrated negative loss (CaNE) further enables the adversarial training to be attentive w.r.t.

different nuisances frequencies. Table 6.1 shows that both backbones benefit most from our pro-

posed CaNE adversarial loss. It is worth noting that even trained within a small-scale domain like

DukeMTMC-ReID, the generalizability of both of the two backbones can be boosted by ADIN.

6.6.2 Direct Transfer between Datasets without Retraining or Adaption

We evaluate three direct transfer cases, two on person ReID: MSMT17→ DukeMTMC-ReID,

MSMT-17→Market1501; and one on vehicle ReID: VeRi-776 [198]→ VehicleID [32]. As com-

parison baselines, we train the same dual-branch backbones (without any adversarial learning) on

the source datasets, and test their direct transfer performance too. We train and compare with sev-
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Settings
DukeMTMC-ReID→Market1501
top1 top5 top10 mAP

ResNet50 (baseline) 46.8 63.5 70.3 19.0

ADIN
ResNet50 + Reverse Gradient Unable to converge

ResNet50 + NE 48.8 66.2 72.7 20.4
ResNet50 + CaNE 51.7 68.6 76.0 22.1

Dual-branch (baseline) 54.8 71.7 77.6 25.9

ADIN
Dual-branch + Reverse Gradient Unable to converge

Dual-branch + NE 55.9 72.5 78.6 26.5
Dual-branch + CaNE 57.2 73.0 80.0 27.4

Table 6.1: Ablation Study of Adversarial Loss. Performance of different Ladv (direct transfer from
DukeMTMC-ReID to Market1501).

eral state-of-the-art ReID models on MSMT17: Spatial-Attention [43], PCB [44], RPP [44], MGN

[45] (Person ReID); and RAM [199] (Vehicle ReID). We further compare with existing best per-

formers of domain adaptation: HHL [46] (Person ReID), and DAVR [200] (Vehicle ReID), which

reported the current best transfer results between DukeMTMC-ReID/Market1501, and from VeRi-

776 [198] to VehicleID [32], respectively. Note that both HHL and DAVR need to use (unlabeled)

target domain data and perform extra (re-)training for the source domain models, while ours need

not: the comparisons are thus apparently to our competitors’ advantage.

As can be seen from Tables 6.2 and 6.3, while baselines without adversarial learning fail to

transfer well as expected, ADIN demonstrates highly impressive results on all three transfer cases.

In particular, by training on MSMT17 and directly transferring, ADIN not only surpasses the direct

transfer results from other methods but also outperforms state-of-the-art ReID domain adaption

model HHL [46] and DAVR [200], while costing literally none of their hassles such as (re-)training.

In contrast to our ADIN, we find other (single-dataset) top-performers [43, 44, 45] generalize

very poorly to unseen domains, indicating the misaligned goals between overfitting small-scale

single dataset, and generalizing to large-scale unseen scenarios in real life. As in Fig.2.1, our

ADIN framework lies in the top-right corner, while others stay in the left region with high single-
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MSMT17→ DukeMTMC-ReID MSMT17→Market1501

top1 top5 mAP top1 top5 mAP

Spatial-Attention[43] 52.2 68.1 32.9 49.7 68.9 25.1
PCB[44] 54.4 69.6 34.6 52.7 71.3 26.7
RPP[44] 56.7 71.4 36.7 50.2 70.7 26.3

MGN[45] 55.5 70.2 35.1 48.7 66.9 25.1

HHL[46]* 62.2 78.8 31.4 46.9 61.0 27.2

ResNet50 (baseline) 49.7 65.7 28.2 47.7 64.3 21.2
ResNet50 + CaNE 52.6 67.9 30.4 50.1 66.4 22.5

Dual-branch 59.5 73.5 38.4 57.8 73.9 29.4
Dual-branch + CaNE 60.7 74.7 39.1 59.1 75.4 30.3

Table 6.2: Generalizability Evaluation of ADIN on Person ReID datasets. Direct transfer perfor-
mance from MSMT17 [31] to DukeMTMC-ReID [28, 29] and to Market1501 [27].
* indicates method using images from both source and target domain.

Method
Test size = 1600 Test size = 3200

top1 top5 mAP top1 top5 mAP

RAM[199] 30.5 49.5 39.5 24.5 40.3 32.4
Spatial-Attention[43] 39.5 57.2 47.9 33.7 49.6 41.6

PCB[44] 41.3 58.8 49.7 35.4 51.4 43.2
RPP[44] 40.6 58.4 49.1 35.0 51.1 42.9

MGN[45] 39.9 62.4 50.6 32.7 53.1 42.7

DAVR[200]* 45.2 64.0 49.7 38.7 55.9 42.9

ResNet50 (baseline) 42.3 58.5 46.2 36.1 52.2 39.9
ResNet50 + CaNE 43.3 59.7 47.2 37.0 53.4 40.9

Dual-branch 47.3 65.3 51.6 41.2 57.9 45.3
Dual-branch + CaNE 48.7 67.3 53.1 42.1 59.5 46.3

Table 6.3: Generalizability Evaluation of ADIN on Vehicle ReID datasets. Direct transfer perfor-
mance from VeRi-776 [198] to VehicleID[32].
* indicates method using images from both source and target domain.
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dataset accuracy but poor direct transfer performance. We believe the effective direct transfer is

the right choice for evaluating and promoting larger-scale ReID practice, and hope our proposals

and arguments could invoke more discussions in the community.

6.6.3 Visulization of Retrieval Correctness via ADIN Framework

Figure 6.3 shows five visual retrieval examples. In both queries, the spatiotemporal nuisances

(e.g. the door of same geo-location, certain lighting condition or glare) have a strong presence in

images. As can be seen in the top row of each case, the baselines overfit background, tending to

retrieve images with similar nuisances (illumination, viewpoints, scene backgrounds, etc.). In con-

trast, ADIN successfully eliminates them, and leads to much more robust matching under drastic

visual appearance changes, as seen in the bottom rows.

To understand the model behaviors with or without the ADIN framework, we present a vi-

sualization of sample feature space in Figure 6.4. We randomly select ten identity classes from

MSMT17, and plot the t-SNE of fE(X) using ResNet50 backbone, before and after using adver-

sarial learning, in the top and bottom rows, respectively. For the left column of Figure 6.4, we color

those points based on their subject identity classes (using numerical IDs in the original dataset); for

the right column, the points are colored based on their nuisances labels (timestamps). The exam-

ples are colored based on their identity IDs (the numerical showing in the left) and nuisances labels

(showing in the right). Figure 6.4 indicates that without adversarial loss, the points are strongly

clustered according to their nuisance labels. For example, the identity 1200 cluster can be viewed

as composed of two subgroups caused by nuisance variations, with images taken in the afternoon

more similar to identity 1500, while those taken in the noon are more similar to identity 1800.

After nuisance elimination, the clustered structure based on timestamp is eliminated, showing the

invariance of the learned features to nuisances (e.g., samples of identity 1200 are now well-mixed

among different timestamps). Meanwhile, the grouping structure on the identity classes is pre-

served with ADIN framework, and in fact displays larger inter-cluster variances, suggesting more

favorable retrieval performance.
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Figure 6.3: Comparison of Retrieval Results w/o ADIN. Retrieval results on the DukeMTMC-
ReID (a), MSMT17 (b, c), and VeRi-776 (d, e). The leftmost image in each panel is a query
image. For the five columns in each panel, the top row shows top-5 retrieval results using a vanilla
ResNet50 model [184], and the bottom row shows top-5 results using ResNet50 adopted with
ADIN framework. Green boxes mark the correct matches, while red boxes denote the wrong
matches. The vanilla ResNet50 tend to retrieve images with similar nuisances (illumination, view-
points, scene backgrounds, etc.), while ADIN successfully eliminates nuisances and leads to more
robust matching under drastic visual appearance changes.

6.7 Conclusion

This project proposes the adversarial domain-invariant (ADIN) learning framework, which

remarkably improves the generalizability of ReID models and resolves the nuisances-overfitting

problem. Free annotations like video timestamp and camera index are for the first time utilized.

In extensive experiments, measured by the new direct transfer performance criterion, ADIN ex-

hibits impressive generalization to unseen datasets without any fine-tuning or re-trainig. In sum,
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Figure 6.4: T-SNE Visualization of Representation learned via ADIN Loss. Before (top row)
and after (bottom row) using adversarial disentanglement. Randomly selected ten identity classes
number from MSMT17 and video time-stamps are listed below the graphs.

ADIN proves to make a substantial improvement in overcoming the generalizability challenge: the

ADIN feature extractor learned on one dataset is directly generalizable to others, without seeing

or adapting on any new data. To our best knowledge, ADIN is the first CNN-based ReID model

that can establish strong direct transfer performance. It sets up state-of-the-art generalizability for

ReID, which we believe is valuable for pursuing real-world large-scale ReID applications.
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7. MESH RECOVERY FOR VIDEO-BASED REID

7.1 Motivation

As is introduced in Section 1, current ReID model suffers from numerous variations. The

adversarial framework we proposed in Section 6 eliminates the environmental nuisances from the

learned ReID representations. The remaining challenge for ReID lies in how to correctly match

two images under appearance changes (e.g., posture variations), as well as dynamic environment

nuisances (e.g., blur, occlusion and color distortion).

Recently, several pose-guided approaches are introduced to address the above issues: they in-

tegrate human pose/keypoints estimations to align body part regions in the pedestrian images so as

to learn a structured body region features. Those algorithms [55, 56, 57, 58, 59] have been proved

to be effective in extracting features from the well-organized and aligned body regions while being

invariant to the entire background regions, thus reduce the negative impact of posture variations

and background nuisances. However, it can not fully disentangle posture from the learned repre-

sentation for the retrieval.

On the other hand, most of image-based ReID approaches learn features of the subject solely

from the RGB image, which contains not only the subject-of-interest but also the background

clutters. Some work proposed to utilize binary segmentation masks to accurately remove the

background in the images, so as to learn a representation that only contains information of the

subject body. The binary segmentation mask can also guide the algorithm to focus on the subject

shape, so as to provide more information beyond appearance. However, the segmentation mask

can roughly represent the silhouette of the subject which is sensitive to occlusion, deformation,

and noisy boundaries. Besides, similar to the RGB image, 2D segmentation masks are lacking

depth information for fully recover the 3D object and may fail in multi-viewpoint ReID systems.

Therefore, the segmentation masks are not ideal to capture the body shape.

Moreover, one fundamental challenge for image-based ReID is that it learns color and generic
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epitome features of appearance that are shown to be susceptible to image degradation and artifacts.

Therefore, an ideal solution to capture "nude shape" of the body for ReID applications needs to

(1) be able to disentangle the posture, body shape, and background; (2) be simplified so as to be

spatio-temporally consistent and insensitive to appearance change; and (3) contains depth infor-

mation for full recovery in any view-points. The deformable mesh recovery satisfies all the above

requirements. The entire mesh assumes a rigid template for the subject and is fully determined by

tens of intrinsic parameters: camera-related parameters (e.g. focal length, camera center, camera

rotation, camera translation), pose and shape parameters. Those low-dimensional parameters are

disentangled and subject-wise distinguishable, and can be directly used as features for ReID.

Numerous works [201, 202, 166] are proposed to accurately extract the human pose and seg-

mentation mask from the image. Those estimated pose coordinates and binary masks do not con-

tain any information regarding the background or the subject appearance, but capture sufficient

information of body pose and shape for mesh recovery. Therefore, in this project, we assume the

correctness of the offline 2D pose detector, rely on its prediction as pseudo ground truth, and take

the 2D pose estimation as input to reconstruct the 3D mesh.

The goal of 3D mesh recovery is to wrap the mesh template to best fit and represent the input

image. However, it is infeasible to directly match a mesh to an RGB image. Instead, we can use the

reprojection error for evaluation and optimization purposes, i.e., to minimize the weighted robust

distance between the reprojection of corresponding keypoints on the mesh surface and the 2D pose

pseudo ground truth. More formally:

Lreproj =
P∑
i

||vi(xi − x̂i)||2. (7.1)

Here xi ∈ R2 is the ith ground truth 2D joints coordinates and vi ∈ [0, 1] is the confidence score

provided in pose detection for each of the P joints in 2D pose.

One drawback of reconstructing mesh for ReID is that the recovery of 3D mesh from a 2D

image can be ambiguous. Fortunately, temporal consistency in the video can amend the 3D esti-
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mation and make up for the missing depth information in mesh recovery [203]. In this section, we

propose an optimization-based video mesh recovery pipeline with 3D supervision and temporal

consistency, to learn accurate 3D meshes and extract shape features for ReID representation.

7.2 Unified 3D Human Mesh

To better represent the mesh and extract features for the ReID task, we assume a rigid structure

of humans and exploit the deformable unified human body model SMPL eXpressive (SMPL-X)

[156] for human mesh recovery.

SMPL-X is a body model that combines SMPL body model (representing the trunk) with the

FLAME head model and the MANO hand model. It is registered to 5,586 3D scans to capture

the natural pose-dependent correlations between the shape of bodies, faces, and hands. SMPL-X

works by factoring the human bodies into shape (individuals variations in height, weight, body

proportions) and pose (articulation that deforms the 3D surface).

The shape β ∈ R10 is parameterized by the first 10 coefficients of a PCA shape space along

with ψ ∈ R10 for facial expressions. The pose θ ∈ R3K is modeled by a relative 3D rotation of

K = 54 joints in axis-angle representation via forwarding kinematics, including joints for the neck,

jaw, eyeballs, fingers, and additional one indicating the global rotation. In all, the SMPL-X model

has N = 10, 475 vertices with a differentiable vertex-based linear blend skinning function W (.)

that can export a triangulated mesh with the corrective blend shapes and pose. The reconstructed

mesh M can be formulated as:

M(β, θ, ψ) = W (Tp(β, θ, ψ), J(β), θ,W), (7.2)

where TP (.) represents sampled vertices on the surface; J(.) severs as a 3D joint sparse linear

selector that regresses joint locations from mesh vertices and those joints later works as anchors to

rotates the vertices; the rotation is smoothed by blend weightsW ∈ RN×K .
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Given a template T̄ , the TP can be computed via

TP (β, θ, ψ) = T̄ +BS(β;S) +BE(ψ; E) +BP (θ;P), (7.3)

where S ∈ R3N×|β| in the second term is orthonormal principle components of vertex displace-

ments capturing shape variations and the BS(.) : R|β| → R3N is the shape blend function; Simi-

larly, BE(.) blends the mesh with facial expression and BP is the pose blend function, which adds

corrective pose-dependent vertex displacements to the final mesh.

A weak-perspective camera model is further employed to reproject the reconstructed mesh

back to the 2D image by solving a translation factor t ∈ R2 and a scale factor s ∈ R. The model

can also outputs X(θ, β) ∈ R3P 3D keypoints and the corresponding 2D pose reprojection with

a linear regression from the mesh vertices, where P is the number of joints that varies from pose

template (e.g., P = 17 for COCO pose template). With an orthographic projection function Π the

2D pose reprojection x̂ can be expressed as:

x̂ = sΠ(M(β, θ, ψ)) + t. (7.4)

7.3 Optimization-based Human Mesh Recovery

Reprojection loss along can not guarantee a reasonable mesh recovery due to the ambiguity in

reconstructing 3D from 2D. The intrinsic pose/shape restriction of SMPL-X model is not sufficient

to avoid local minima during the optimization which leads to some kinematically impracticable

posture and abnormal shape. In order to enforce a feasible body pose and shape in the mesh

model, we take inspiration from previous works [156] to employ a pose prior and shape prior to

adding more constrains for mesh recovery. Here we adopted a pretrained pose prior, VPoser, as a

regularization in mesh optimization. The VPoser is a variational autoencoder that learns a latent

representation of human pose on a large human motion dataset and regularizes the distribution of
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the latent code to be a normal distribution. The Vpose prior regularization can be formulated as:

Lprior = ||V(θ)||22, (7.5)

where V(.) indicates the encoder to map pose parameter θ to the latent embedding.

Learning a mesh representation from 2D pose can be deemed as estimate the 3D coordinates of

all the N = 10, 475 vertices on the mesh surface corresponding to the 2D coordinates of P = 17

keypoints on the pose. Directly optimizing all β, θ, ψ, s, t in one step is an extremely challenging

task, especially when all these parameters contribute to the overall reprojection. The imprecise

estimation of one factor can be remedied by other factors, results in accumulated errors in the opti-

mization process. To reduce the burden on the optimizer and make progressive changes recurrently

to the current estimate, we introduce a divide and conquer pipeline. Inspired by [157], we simpli-

fied the camera parameter estimation to mapping the four anchor points on T-pose (shoulders and

hips) to corresponding points on 2d pose ground truth. We can then optimize the pose and shape

priors separately and alternately. The overall pipeline is shown in in Fig.7.1.

7.4 Mesh Recovery with 3D Pose Supervision

One big challenge of 3D mesh recovery is lacking sufficient mesh ground truth to capture the

pose and shape variations. Mesh collection usually requires special 3D laser scanners and high-

speed motion capture system to capture the entire surface of a person. Even so, the mesh dataset

annotations are usually “pseudo-label” obtained by fitting the mesh template to 3D scans [204].

On the other hand, 3D pose estimation has been studied extensively in recent years and a large

amount of 3D pose annotations have already been collected. Given that the pose parameters on

mesh models are indeed the axis-angle rotation of those articulations, we propose to estimate the

pose parameters from 3D pose coordinators and ensemble 3D pose supervision to mesh recovery.

To eliminate the effect of camera parameters and body shape parameters when estimating the

pose parameter from 3D pose coordinators, we build a kinetic tree to represent the correlation

between pose keypoints. Considering the connection between adjacent keypoints on the kinetic
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Figure 7.1: Overview of the Mesh Recovery Pipeline.

tree as a "rigid bone", we can now derive the direction from current keypoints to its kinetic child

and build a vectorized 3D kinetic tree. It can be further normalized to reduce the impact of bone

length, resulting in a normalized 3D kinetic tree (formulized as below), which is purely composed

of human pose information and insensitive to any camera/shape changes.

d(i) =
ci+1 − ci
||ci+1 − ci||22

, (7.6)

where ci is the 3D coordinates of the ith keypoint.

In this dissertation, we propose to use the normalized 3D kinetic tree as a weak supervision of

mesh recovery optimization by minimizing the difference between the rotation of the "rigid bone"

on the kinetic tree and the rotation of corresponding connection from the predicted mesh.

L3d = 1− cos(d(i), ˆd(i)), (7.7)
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where the d() is the kinetic direction from the ith keypoint to its child keypoint on the kinetic tree.

7.5 Video-Based Mesh Recovery with Temporal Consistency

Optimization-based mesh recovery can output a rough mesh for a single frame. To further

ensure the consistency and robustness the reconstructed mesh over appearance change in the long-

period video, we propose a temporal consistency regularization for video-based mesh recovery

(VMR). Given a video with normal framerate, the keypoints movement between adjacent frames

should be in a small range, especially for keypoints lays near the root of the kinetic tree. To

enforce a temporal consistency, we introduced a temporal regularization to jointly optimize the

pose parameter in mesh models by minimizing its change between adjacent frames weighted by

its position on the kinetic tree. Given a short clip with n frames, θk,i is the ith pose parameters at

the kth frame and the pi is the joint weight based on its position on the kinetic tree, the temporal

consistency loss can be formulated as

Ltemporal =
n∑
k=2

K∑
i=1

pk||θk,i − θk−1,i||22. (7.8)

The impact of temporal consistency highly depends on previous frames, thus the initialization

of the first frame becomes crucial. In order to start the optimization with a good initialization, we

select a teaser frame in the video whose 2D pose is most similar to T-pose (the pose parameter θ of

T-pose is defined to be all zeros). We start the optimization with the adjacent frames of the teaser

frame and then moving the sliding window of clips for temporal consistency until all frames in

the video have been covered. Temporal regularization with teaser initialization not only boost the

mesh recovery performance, but also greatly accelerate optimization progress.

To summarize, the loss for reconstructing the 3D mesh from a 2D image is formulated as:

Ltotal = Lreproject + Lprior + L3d + Ltemporal. (7.9)
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Algorithm 3 The optimization strategy of video mesh recovery
Select a teaser frame i in the video whose 2D pose is most similar to T-pose
θ, β ← 0, optimize camera parameters s, t with Ltotal of anchor points only
while not the last frame do . Moving the sliding window for temporal assistency forward

Initialize i, i+ 1, ..., i+ k with the parameters of i
Fixed θ and β, and optimize s, t for i, i+ 1, ..., i+ k frames with Ltotal of anchor points only
Fixed β, s, t and optimize θ for i, i+ 1, ..., i+ k frames with Ltotal
Fixed θ, s, t and optimize β for i, i+ 1, ..., i+ k frames with Ltotal
i← i+ k

end while
Set the pointer i to the teaser frame index
while not the first frame do . Moving the sliding window for temporal assistency backward

Temporally reverse i, i− 1, ..., i− k frames
Initialize i, i− 1, ..., i− k with the parameters of i
Fixed θ and β, and optimize s, t for i, i− 1, ..., i−k frames with Ltotal of anchor points only
Fixed β, s, t and optimize θ for i, i− 1, ..., i− k frames with Ltotal
Fixed θ, s, t and optimize β for i, i− 1, ..., i− k frames with Ltotal
Reverse back i, i− 1, ..., i− k frames
i← i− k

end while

7.6 Implementation Details of Video Mesh Recovery

The optimization-based approach does not require a large amount of training data. The pre-

liminary results in this dissertation are conducted on videos downloaded from the internet. We

utilized the official code of OpenPose [201] for 2D keypoint detection and VideoPose3D [203] for

3D pose estimation in video from 2D keypoint trajectories.

In practice, we implement the optimization using an iterative strategy. We initialize the model

with the teaser frame and set the pose parameters θ to be all zeros, and then fixed pose parameters

θ and shape parameters β while optimizing camera parameters s, t by fitting the four anchor points

on T-pose (shoulders and hips) to corresponding points on 2d pose ground truth. Afterward, we

alternate between optimizing pose parameters θ and shape parameters β until converge. The overall

training procedure is shown in Algorithm 3.
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7.7 Rendering of Proposed Mesh Recovery Approach

The recovered mesh are rendered and evaluated via visual check. Without 3D pose supervision

and temporal regularization, the image-based mesh recovery is well-performed on reprojection ex-

amination but fails in multi-view examination due to ambiguity. Fig. 7.2 shows the mesh recovery

results on the first ten frames from the video, in which the actor is still but motion blur exists. The

recovered mesh are expected to be similar among these frames, but the prediction are imprecise

and noisy. We could observe that a slight change from 2D pose input can result in a large fluc-

tuation on the recovered 3D mesh. Our proposed 3D supervision and temporal regularization can

overcome the depth ambiguity issue. As is shown in Fig. 7.3, the predictions tends to consistent.

We also compare the rendering on ten continuous frames (Fig. 7.4), in which the actor is danc-

ing and posture change could be clearly observed. The 3D supervision and temporal regularization

and improve the stability of mesh recovery. Besides, we compare the rendering of proposed ap-

proach to previous state-of-the-art mesh recovery methods on ten randomly selected frames (the

optimization is process on the entire video, while only ten frames are displayed here), and obvi-

ously our video-based approach outperforms all the other methods (Fig. 7.5).

The preliminary results do not include quantitative evaluations, which is supposed to be ana-

lyzed in future work. We plan to evaluate the proposed approach on Human3.6M [205, 206] and

AMASS dataset [207] with (1) reconstruction error with ground truth 3D mesh annotations, (2) on

the standard 3D joint estimation task, and (3) an auxiliary task of body part segmentation.

7.8 Conclusion and Future Work

In this section, we discuss the possibility to utilize human mesh recovery for ReID represen-

tation learning. To be more specific, we proposed to reconstruct 3D mesh from 2D images and

ensemble the pose/shape parameters in the mesh model for ReID retrieval. Given the mesh de-

formable model can disentangle pose, shape, and camera factor, and is insensitive to appearance

change, we believe that the body parameters could be a auxiliary feature for ReID tasks.
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8. SUMMARY AND FUTURE WORK

8.1 Summary

The research topics discussed throughout this dissertation share the same underlying theme:

developing a generalizable and transferable ReID approach to bridge the algorithm in research and

the real-world application.

My research started with an interesting question, how to bridge the low-level enhancement

and high-level visual task models, to be more specific, how to remove degradations and improve

the detection performance to extract precise bounding boxes and annotate them with correct la-

bels. To address this problem, we proposed the Cascaded Degradation Removal Modules (CDRM)

for image enhancement and reveal that image enhancement can indeed benefit detection qualita-

tively and quantitatively. The dissertation also introduced a new benchmark to better analyze the

gap/alignment between image restoration and high-level visual tasks.

Degradation variation is only one of the gaps between ReID in research and life. To overcome

the challenge caused by the low data volume, variation coverage, and spatio-temporal imbalance,

my research was focused on effective, efficient, robust, and generalizable feature learning models,

that emphasize feature selection and disentanglement in ReID application. The fast-approximate-

triplet loss with label distillation and the adversarial domain-invariant network were presented

along this thread, to reveal how to enforce the intra-class feature similarity and eliminate the inter-

class shared nuisances.

In addition to deriving more novel ReID feature learning from appearance, I also had the am-

bition to introduce the body model coefficients in mesh recovery as an auxiliary feature for ReID

recognition. Reconstructed mesh via a deformable parametric model can maximally disentangle

between the retrieval-unnecessary feature, identity consistently shared parameters, and background

factors, which brought new insight to the ReID community.
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8.2 Conclusion

In this dissertation, several interesting observations could be concluded:

• The challenging visual conditions usually give rise to nonlinear and data-dependent degra-

dation during data acquisition. Those degradation can severely impact not only the visual

quality of images collected in the real-world situation but also the quality of feature extracted

during the subsequent ReID process. Image restoration and enhancement algorithms that si-

multaneously handle multiple degradation tended to be beneficial to both of these objectives

on the diverse imagery such as UG2. On the other hand, we could also observe that sepa-

rate consideration of enhancement and detection might lead to a deteriorated performance in

detection as is shown on UG2+ dataset. How to bridge the gaps between visual quality and

high-level vision tasks is still a very difficult, under-explored, yet highly meaningful class of

computer vision problems in practice.

• The major gap between the research efforts and the practical needs in large-scale deploy-

ment of ReID lies in the insufficient data volume, low variation coverage, the heavily non-

i.i.d spatio-temporal distribution, unpredictable noise and outliers, and the abundance of

those nuisances in real-world scenarios. Those gaps are detrimental to the generalizability

of ReID models to unseen identities. Comparative losses such as triplet loss and FAT loss

can be remarkably effective in guiding the feature extractor to minimize the distances of

intra-class features, while domain-invariant framework further improves the robustness by

disentangling subject-irrelevant nuisances. In extensive experiments, FAT loss and ADIN

framework exhibit both state-of-the-art performance on popular benchmarks and impressive

generalization to unseen datasets without needing additional domain adaption.

• The standard image-based ReID method learns texture, appearance, and illumination from

the subject-of-interest that are shown to be fragile to image degradation, artifacts, and ap-

pearance change. A promising direction is to learn an intrinsic representation of the subject

that is insensitive to both subject behavior-related factors such as pose or viewpoint vari-
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ations, and the environmental factor such as illumination changes. The deformable mesh

is a perfect solution that can disentangle the posture and body shape from the background,

and meanwhile it is spatio-temporally consistent and insensitive to any appearance change.

Therefore, it is demanding to further explore how to ensemble mesh recovery and motion

capture into the ReID representations learning to tackle the robust ReID problems.

8.3 Future Work

Surveillance systems combined with Deep Learning and AI approaches are becoming more and

more prevalent, and they are playing a key role in smart cities and contribute to public safety. Yet

for accurate predictions, those AI models often hinge on storing and analyzing users’ private data,

such as name, gender, address, or personal videos/images. The abuse or misuse of surveillance

data has reinvigorated the privacy and fairness debate. It is thus also appealing to explore: on the

premise of learning a robust and generalizable representation for ReID application, how to apply

learning techniques to protect the privacy in the data, and ensure fairness for the users.

This question suggests a dilemma in ReID applications that we would like to develop an ap-

proach to recognize the subject-of-interest while preventing it from extracting sensitive information

to preserve privacy and fairness. Classical solutions secure user privacy by adding a mosaic to the

sensitive region on the image e.g. face or car template. However, they might erase the characteristic

patterns of the natural images and consequently lead to the failure of the ReID application.

For future direction, I would be interested in studying the anonymization of user data: how to

learn an appropriate auto-transform on the collected raw visual data from the local camera end, so

that the cryptographic data itself will only enable the ReID task while obstructing other undesired

privacy or fairness related tasks.
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