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ABSTRACT

Multi-view data, that is matched sets of measurements on the same subjects, have become

increasingly common with technological advances in genomics, neuroscience and wearable tech-

nologies, etc. Despite its prevalence, traditional techniques for classification or association analysis

cannot be applied to multi-view data since they do not take into account the heterogeneity between

the views. In this dissertation, we focus on generalizing the existing high-dimensional methods

to multi-view data. First, we propose a framework for the Joint Association and Classification

Analysis of multi-view data (JACA). We support the methodology with theoretical guarantees

for estimation consistency in high-dimensional settings, and numerical comparisons with existing

methods. In addition, our approach is capable of using partial information where class labels or

subsets of views are missing. Second, we investigate the Pan-Cancer data with a goal to assess the

strength of association between different cellular composition estimations by exploring the Gener-

alized Association Study framework. We extract the shared and individual signals from each view,

and evaluate the relationship they have with the survival to find out the bio-markers that are predic-

tive for cancer prognosis. Lastly, we propose a low-rank canonical correlation analysis framework

to model heterogeneous data (both Gaussian and non-Gaussian) using exponential family distribu-

tions. We exploit a decomposition-based strategy to extract shared and individual structures from

underlying natural parameter matrices. In contrast to existing methods, our approach guarantees

that there is no shared information embedded in the individual structures. An alternating split

orthogonal constraints algorithm is developed to estimate the model parameters, and simulation

studies show the advantages of the proposed approach over other classical methods.
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1. INTRODUCTION

1.1 Background

Multi-view data, that is matched sets of measurements on the same subjects, have become in-

creasingly common with technological advances in genomics and other fields. For example, The

Cancer Genome Atlas Project (Weinstein et al., 2013) contains multiple views for the same set

of subjects, such as gene expression, genotype, metabolic measurements, etc. Each of them can

be considered as a view. In contrast to traditional high-dimensional data, multi-view usually have

some unique characteristics. On the one hand, since all the views have the same underlying sub-

jects, they share common information and are intrinsically correlated with each other. Therefore,

it is of interest to analyze associations across the views and use this information to further perform

supervised/unsupervised analysis. On the other hand, the views also contain heterogeneity, such

as scales, biological meanings and the types of data. This unique feature has prevented us from

applying the traditional methods to multi-view data.

In this dissertation, we aim to address two major challenges encountered in the analysis of

multi-view data. First, how to conduct classification analysis and association analysis when there

is class information available. In practice, multi-view data share the same underlying subjects, and

the subjects are often separated into known classes. Hence how to exploit this extra information

to assist association analysis is a popular topic, especially in biomedical studies. Meanwhile, pre-

dicting class assignments using multi-view data is also a prime interest in many fields, like cancer

study and web page classification (Zhao et al., 2017). In the literature, the association and classifi-

cation problems are usually addressed separately, and the joint analysis of them should increase the

estimation efficiency and provide more insights of the data. One of our goals is to develop a frame-

work that can simultaneously learn the classification rule and interrelationships between the views

based on multi-view data, and also apply it to modern datasets to provide scientific discoveries.

The second challenge is how to conduct association analysis for multi-view data with hetero-
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geneous types. While the abundance of data sources makes collecting data much easier, the down-

stream datasets from different platforms also tend to have different types, such as non-negative,

proportions or binary. For example, the transcriptomics deconvolution in bulk tumor samples is a

popular topic in genome research, and several tools (Newman et al., 2015; Li et al., 2017; Wang

et al., 2018) have been developed to estimate the cell composition of tumor samples from different

perspectives. Therefore, it is beneficial to find out what information is shared between them and

identify which cellular types are predictive of cancer prognosis. Nevertheless, the type of datasets

is proportion instead of real-valued. Hence, the classical Canonical correlation analysis (CCA)

method is not an appropriate choice in this scenario since correlations are usually not well-defined

for proportion data. Another goal of our work is to assess the strength of association between differ-

ent cell composition estimations by exploring the Generalized association study (GAS) framework

(Li and Gaynanova, 2018). Furthermore, we will incorporate this information to perform survival

analysis, and therefore identify key signals that are predictive of cancer prognosis.

1.2 Review of Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a commonly used methodology, and our works are

based on investigating CCA in different settings. Specifically, CCA aims to find linear associations

between the two datasets. It seeks linear combinations of two matrices of real-valued random

variables that have the largest correlation.

Consider two mean zero random vectors x1 ∈ Rp1 and x2 ∈ Rp2 with Σ1 = E(x1x
⊤
1 ),

Σ2 = E(x2x
⊤
2 ), Σ12 = E(x1x

⊤
2 ) and r = rank(Σ12) > 0. The population CCA seeks linear

combinations (θ1,θ2) that maximize Cor(θ⊤
1 x1,θ

⊤
2 x2), that is it seeks at most r pairs (θ(k)

1 ,θ
(k)
2 )

that satisfy

(θ
(k)
1 ,θ

(k)
2 ) = argmax

w
(k)
1 ,w

(k)
2

{
w

(k)⊤
1 Σ12w

(k)
2

}
subject to w

(k)⊤
1 Σ1w

(k)
1 = 1,w

(k)⊤
2 Σ2w

(k)
2 = 1,

w
(k)⊤
1 Σ1w

(j)
1 = 0, w

(k)⊤
2 Σ2w

(j)
2 = 0 for j < k.
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The pairs (θ(k)
1 ,θ

(k)
2 ) are called canonical vectors, and the values ρk = θ

(k)⊤
1 Σ12θ

(k)
2 are canonical

correlations. By definition, 1 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρr > 0 and
{
θ
(k)
d

}r

k=1
are orthonormal with

respect to Σd, θ(i)⊤
d Σdθ

(j)
d = 1{i=j}. Moreover, the population CCA problem can be equivalently

formulated as the matrix decomposition problem of Σ12, that is the r pairs (θ
(k)
1 ,θ

(k)
2 ) solve the

population CCA problem if and only if (Chen et al., 2013)

Σ12 = Σ1

(
r∑

k=1

ρkθ
(k)
1 θ

(k)⊤
2

)
Σ2. (1.1)

1.3 Dissertation overview

The rest of the dissertation is organized as follows. In Chapter 2, we focus on the first challenge

introduced in Section 1.1. We propose a joint framework for simultaneous classification and asso-

ciation analysis (JACA) of multimodal data by connecting linear discriminant analysis and canon-

ical correlation analysis. A naive approach to conduct classification analysis for multi-view data

is to apply the classical single-view methods to the concatenated matrix of views. Unfortunately,

this method does not perform well in the high dimensional cases due to the over-fitting problem,

especially when one view contains much stronger subtype-specific information. We demonstrate

this idea by numerical studies on simulated data. We develop an efficient block-coordinate descent

algorithm and use group-lasso type penalty to perform variable selection. We show the advantages

of the proposed approach over existing methods by applying them to colorectal and breast cancer

data from The Cancer Genome Atlas project.

Chapter 3 studies theoretical properties of the proposed methodology, JACA, in high dimen-

sional settings. To our knowledge, this is the first consistency result for joint learning frameworks.

By using an augmented approach and sub-exponential concentration bounds, we obtain the esti-

mation error bound that is of the same order as the known bounds for group-lasso linear regression

(Lounici et al., 2011; Nardi and Rinaldo, 2008). We also provide a semi-supervised extension of

JACA to handle block-missing structure. The semi-supervised JACA can be applied to the settings

with missing class labels, and the settings with missing subsets of views. We contrast two ver-
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sions of JACA and show that both classification and estimation accuracy can be improved when

the subjects with incomplete information are added to the analysis.

Chapter 4 presents an association analysis of cellular subtype proportions for various cancer

types. In the literature, several deconvolution methods have been proposed (Newman et al., 2015;

Li et al., 2017; Wang et al., 2018) to estimate the cellular subtype proportions, and they process

the tumor samples based on different sources, such as RNAseq and microarray. Driven by the

desire to find the connections between these methods and provide scientific discoveries for can-

cer studies, we focus on assessing the strength of association between cellular purity proportions

for prostate, bladder and colorectal cancers. The results are then being incorporated to perform

survival analysis, and therefore identify key signals that are predictive of cancer prognosis.

Chapter 5 describes a low-rank model to disentangle the common and individual signals of

two views, and extend it to handle non-Gaussian data by utilizing the exponential family. Most

methods in the literature assume there is no shared information between joint and individual sig-

nals, but fail to provide such guarantee for the individual signals. On the contrary, the proposed

low-rank model enforces the orthogonality between the individual scores, thus guarantees no more

shared information is embedded in the individual structures. The proposed optimization problem

for our method is not convex, and we derive an alternating algorithm to estimate the model param-

eters. Although the overall global convergence is not guaranteed, the estimators by the proposed

algorithm show consistent better performance than existing methods based on our experiments.

1.4 Notation

We consider n independent observations (x1i, . . . ,xDi, yi) ∈ Rp1 × · · · × RpD × {1, . . . , K},

where xdi is the ith sample’s measurements from view d, and yi is the corresponding class as-

signment. For two scalars a, b ∈ R, we let a ∨ b = max(a, b). For a vector v ∈ Rp, we

let ∥v∥2 = (
∑p

j=1 v
2
j )

1/2, ∥v∥1 =
∑p

j=1 |vj| and ∥v∥∞ = maxj |vj|. For matrices M ,N ∈

Rn×p, we let ∥M∥F = (
∑n

i=1

∑p
j=1m

2
ij)

1/2, ∥M∥∞,2 = max1≤i≤n(
∑p

j=1m
2
ij)

1/2, ∥M∥1,2 =∑n
i=1(
∑p

j=1m
2
ij)

1/2 and ⟨M ,N⟩ = Tr(M⊤N ). Define the nuclear norm of matrix M as

∥M∥∗ =
∑min(p,n)

i=1 σi(M), where σi(M ) is the ith singular value of M . We use I = Ip
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to denote p × p identity matrix, and 0 to denote zero matrix. For two sequences of scalars

a1, . . . , an, . . . and b1, . . . , bn, . . . , we use bn = o(an) if limn→∞(bn/an) = 0 and bn = O(an)

if limn→∞(bn/an) < C for some finite constant C. For two sequences of random variables

x1, . . . , xn, . . . and y1, . . . , yn, . . . , we use yn = op(xn) if for any ε > 0 P (|yn/xn| < ε) → 0

as n→∞, and yn = Op(xn) if for any ε > 0 there exists Mε such that P (|yn/xn| > Mε) < ε for

all n. For subspaces A and B, denote the orthogonal complement of B in A as A/B.
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2. JOINT ASSOCIATION AND CLASSIFICATION ANALYSIS

2.1 Introduction

This work is motivated by The Cancer Genome Atlas Project (Weinstein et al., 2013). TCGA

project contains multiple views for the same set of subjects, such as gene expression, genotype,

metabolic measurements, etc. At the same time, the subjects are separated into known classes.

For example, the breast cancer patients are typically separated into Basal, HER2, Luminal A and

Luminal B subtypes (The Cancer Genome Atlas Network, 2012). Since each view presents com-

plementary information regarding the subject’s biological system, it is of interest to answer two

questions: (1) how to predict the cancer subtype given information from multiple views? (2) what

are the associations between the views that are relevant for subtype prediction?

In the case of one view, the subtype prediction can be done using one of the many classification

methods such as multinomial regression, multi-class support vector machines, discriminant analy-

sis, etc. In case of multiple views, however, one has to either apply the chosen method separately

to each view, or apply the method to the concatenated matrix of views. The separate approach may

lead to inconsistent classification results across views. The concatenation approach ignores hetero-

geneity between the views in terms of scale and the number of measurements. Moreover, when one

view has a much stronger subtype-specific signal, the concatenation may mask the less-dominant

signals in other views. This is supported by our numerical results in Section 2.5.1.

To answer the second question, a line of research has focused on finding associations between

the views based on canonical correlation analysis (Chen et al., 2013; Gao et al., 2017; Witten

et al., 2009). These methods, however, do not use subtype information. Witten and Tibshirani

(2009) propose supervised canonical correlation analysis, however the method is designed for the

continuous response rather than the discrete class assignment, and only uses the response to filter

relevant measurements. Another strategy based on factor models is proposed by Li and Jung

(2017), who decompose each views into shared and individual structures that are informed by
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covariates. Both Witten and Tibshirani (2009) and Li and Jung (2017) use subtype information

indirectly, and are not tailored towards classification.

Recently, several methods have combined the task of finding associations between the views

with the task of learning the regression coefficients. Gross and Tibshirani (2015) propose to com-

bine canonical correlation analysis with linear regression. The method, however, is restricted to

univariate continuous response and can only be applied to two views. Luo et al. (2016) propose

to combine canonical correlation analysis objective with a general class of loss functions. Unlike

Gross and Tibshirani (2015), the method could be applied to more than two views, and binary

response. Nevertheless, the method is not suited for multi-group classification, has nonconvex op-

timization objective and requires rank pre-specification for model fitting. Finally, neither Gross and

Tibshirani (2015) nor Luo et al. (2016) discuss the underlying population model, and the methods

come with no theoretical guarantees.

In this work, we develop a framework for Joint Association and Classification Analysis (JACA)

of multi-view data by connecting discriminant analysis with canonical correlation analysis. Since

the method of Luo et al. (2016) also allows to perform joint association and classification in the

two-class case, we further contrast two approaches. First, we use discriminant analysis rather than

the regression framework, which allows us to fix the rank for model fitting to be K − 1, where

K is the number of classes. In Luo et al. (2016), the rank of the model has to be chosen by

the user. Secondly, we are able to formulate our method as a convex optimization problem by

using the optimal scoring formulation of multi-class discriminant analysis (Hastie et al., 1994) and

fixing the scores to be orthogonally invariant (Gaynanova, 2019). We add group-lasso type penalty

to the optimization objective to allow for variable selection, and use block-coordinate descent

algorithm to solve the corresponding convex problem. In contrast, the method of Luo et al. (2016)

is nonconvex, and requires the use of variable splitting and augmented Lagrangian.

The rest of the chapter is organized as follows. Section 2.2 establishes the connection between

canonical correlation analysis and linear discriminant analysis, and describes the proposed JACA

method. Section 2.3 describes the method’s implementation. Section 2.4 provides numerical com-
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parisons with other methods on simulated data. Section 2.5 provides the analysis of colorectal

cancer data from The Cancer Genome Atlas project. The technical proofs of the main results are

provided in Section 2.7.

2.2 Proposed methodology

2.2.1 Connection between canonical correlation and linear discriminant analysis

In this section, We demonstrate that discriminant vectors in LDA coincide with the subset of

canonical vectors in CCA, and use this connection to motivate the proposed method.

Consider LDA under Assumptions 1 and 2.

Assumption 1. P (y = k) = πk for k = 1, . . . , K.

Assumption 2. xd ∈ Rpd , d ∈ {1, . . . , D} are mean zero random vectors and have class-

conditional means and covariance matrices as

E



x1

...

xD


∣∣∣y = k

 =


µ1k

...

µDk

 , Cov



x1

...

xD


∣∣∣y = k

 = Σy =


Σ1y ... Σ1Dy

...

Σ⊤
1Dy ... ΣDy

 .

(2.1)

In Assumption 1, the random variable y indicates the class assignment. In Assumption 2, we

do not specify the distribution of xd, but only assume the existence of the first two moments. As in

LDA, we assume that the covariance matrices are equal between the groups (we keep subscript y to

differentiate the class-conditional covariance matrix Σy from the marginal covariance matrix Σ).

We next show that under additional assumptions on Σy, the class-conditional specification (2.1) is

equivalent to the factor model.

Proposition 1. Let y be a random variable satisfying Assumption 1, and let xd ∈ Rpd be random

vectors satisfying Assumption 2. Further, let Σldy = 0 for all l ̸= d ∈ {1, . . . , D}. Then each xd

can be equivalently specified via the factor model:

xd = µd +∆duy +Σ
1/2
dy ed, (2.2)
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where µd = 0 is the overall mean; uy = f(y) ∈ RK−1 is a random vector indicating class

assignment with E(uy) = 0, Cov(uy) = I; ∆d ∈ Rpd×(K−1) is such that ∆⊤
d Σ

−1
dy ∆d = Λd is

diagonal with E(µd +∆duy|y = k) = µdk; Σdy is class-conditional covariance matrix for view

d, and ed ∈ Rpd are isotropic noise vectors independent from y.

Remark 1. uy represents a transformed class indicator vector. Combined with ∆d, it reflects

the difference between the conditional mean and the overall mean. When K = 2, uy = f(y) =√
π2/π1 1{y = 1} −

√
π1/π2 1{y = 2}, case K > 2 is in Section 2.7 of the Supplementary

Materials.

Remark 2. If rank(∆⊤
d Σ

−1
dy ∆d) = r < K−1, then (2.2) is not identifiable as the effective number

of class-specific factors r is less than K − 1. For clarity, we assume throughout that r = K − 1,

but the results can be generalized at the expense of a more technical proof. When K = 2, the

restriction is equivalent to requiring the class-conditional means to be distinct.

The factor model (2.2) is directly connected with discriminant vectors in LDA. When K > 2,

Gaynanova et al. (2016) show that the matrix of discriminant vectors can be expressed as W d ∝

Σ−1
d ∆d, where ∝ is applied columnwise. Hence, by fixing the magnitude of discriminant vectors

in accordance with (2.2), we can rewrite the factor model as

xd = µd +ΣdyW duy +Σ
1/2
dy ed,

where W⊤
d ΣdyW d is a diagonal matrix. This representation allows to treat the matrix of discrimi-

nant vectors W d as a covariance-adjusted matrix of loadings in the above factor model. The main

limitation of Proposition 1, however, is the requirement Σldy = 0, that is the assumption that uy

are the only common factors between the views.

To consider a more general case with Σldy ̸= 0, we adjust the factor model (2.2) as

xd = µd +∆duy +Adu+ Σ̃
1/2

d ed, (2.3)
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where µd, ∆d, uy are as in Proposition 1, u ∈ Rq represents q extra common factors between

the D views, and ed ∈ Rpd is an independent noise vector with E(ed) = 0, Cov(ed) = I . Here

Σ̃d is no longer class-conditional covariance matrix, but rather covariance matrix after accounting

for both class membership (uy) and other shared factors (u). When Ad = 0, the model reduces

to (2.2). We assume Ad is full rank given q (with Ad = 0 for q = 0). As with model (2.2), we can

rewrite (2.3) in terms of view-specific discriminant vectors as

xd = µd + Σ̃dW duy +Adu+ Σ̃
1/2

d ed.

We next connect the LDA-based factor model (2.3) with the CCA decomposition (1.1).

Theorem 1. Consider the factor model (2.3), where µd, uy are as in Proposition 1; u ∈ Rq is

a random vector independent of y with E(u) = 0, Cov(u) = I; and the loadings matrix V d =

[Σ̃
−1/2

d ∆d Σ̃
−1/2

d Ad] ∈ Rpd×(K−1+q) is orthogonal following standard identifiability conditions

for factor models (Mardia et al., 1979, Chapter 9.2). Let Σld = E(xlx
⊤
d ) be the corresponding

marginal cross-covariance matrix between mean zero xl and xd.

1. If q = 0, (2.3) reduces to (2.2) and

Σld = Σl

(
K−1∑
k=1

ρkθ
(k)
l θ

(k)⊤
d

)
Σd,

where Θd = [θ
(1)
d . . .θ

(K−1)
d ] ∝ Σ−1

d ∆d is orthonormal with respect to Σd, and ρk are diagonal

elements of matrix (I +Λl)
−1/2Λ

1/2
l Λ

1/2
d (I +Λd)

−1/2.

2. If q > 0,

Σld = Σl

(
q+K−1∑
k=1

ρkθ
(k)
l θ

(k)⊤
d

)
Σd,

where
{
θ
(k)
d

}q+K−1

k=1
are orthonormal with respect to Σd, Σl

(∑q
k=1 ρkθ

(k)
l θ

(k)⊤
d

)
Σd = AlA

⊤
d

and Σl

(∑q+K−1
k=q+1 ρkθ

(k)
l θ

(k)⊤
d

)
Σd = ∆l∆

⊤
d are as in part 1.

If q = 0, then the only relationship between the views is due to shared class membership (uy).
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In this case, the canonical vectors Θd in CCA coincide with discriminant vectors W d in LDA. If

q > 0, then there exists extra q factors that are shared between the views, leading to q extra pairs of

canonical vectors in CCA. If the LDA directions correspond to the maximal ρk, then the first K−1

canonical pairs coincide with discriminant vectors. If the LDA directions do not correspond to the

maximal ρk, then the first K − 1 canonical pairs include other shared factors that are independent

of class membership.

2.2.2 Joint association and classification analysis

Our goal is to estimate view-specific matrices of canonical vectors that correspond to discrim-

inant directions in LDA, that is to estimate W d ∝ Σ−1
d ∆d. On the one hand, we want to perform

well in classification. On the other hand, we want to maximize the correlation between the views.

In light of correspondence between CCA and LDA explored in Theorem 1, our proposal is based

on combining the strengths of both approaches. When the leading canonical correlations are due

to shared class memberships, the leading canonical vectors Θd in CCA coincide with discriminant

vectors W d in LDA. We want to improve the estimation accuracy and efficiency of LDA in this

case by analyzing multiple views jointly. In other cases, we want the proposed model to not be

fooled by leading canonical correlations that are independent of shared class memberships.

For the classification, we reformulate sparse multi-group discriminant analysis (Gaynanova

et al., 2016) as penalized optimal scoring problem (Hastie et al., 1994).

Proposition 2. Let X ∈ Rn×p be the column-centered data matrix, Z ∈ Rn×K be the corre-

sponding class-indicator matrix, nk be the number of samples in class k and sk =
∑k

i=1 ni. Let

H ∈ RK×K−1 have columns H l ∈ RK defined as

H l =
({

(nnl+1)
1/2(slsl+1)

−1/2
}

l
, −(nsl)1/2(nl+1sl+1)

−1/2, 0K−1−l

)⊤
,

and let Ỹ = ZH . Then the discriminant vectors in multi-group sparse discriminant analysis

11



(Gaynanova et al., 2016) correspond to the solution of

minimize
V ∈Rp×(K−1)

{ 1

2n
∥Ỹ −XV ∥2F + λ

p∑
i=1

∥vi∥2
}
. (2.4)

Hence, the problem of finding sparse discriminant directions in the multi-group case can be

recast as the multi-response penalized least-squares linear regression problem.

For the correlation between the views, we rewrite the sample CCA criterion for column-

centered views Xd and X l as minimization of the least squares objective subject to orthogonality

constraints

minimize
W d,W l

∥XdW d −X lW l∥2F subject to
1

n
W⊤

d X
⊤
d XdW d = I,

1

n
W⊤

l X
⊤
l X lW l = I.

(2.5)

We propose to find the matrices of discriminant vectors W d ∈ Rpd×(K−1) by combining clas-

sification objective (2.4) with canonical correlation objective (2.5):

minimize
W 1,...,WD

{ α

2nD

D∑
d=1

∥Ỹ −XdW d∥2F +
1− α

2nD(D − 1)

D−1∑
d=1

D∑
l=d+1

∥XdW d −X lW l∥2F

+
D∑

d=1

λd Pen(W d)
}

subject to
1

n
W⊤

d X
⊤
d XdW d = I, for 1 ≤ d ≤ D.

(2.6)

Here Pen(W d) can be used to put structural assumptions on W d such as sparsity, and α ∈ [0, 1]

controls the relative weights between LDA and CCA criteria. When α = 0, (2.6) reduces to sparse

CCA. When α = 1, (2.6) reduces to sparse LDA with additional orthogonality constraints. While

the orthogonality constraints are required for CCA criterion (2.5) to avoid trivial zero solution, they

are not necessary in (2.6) as long as α > 0 due to the addition of the optimal scoring loss function.

Moreover, the classification rule in discriminant analysis is invariant to both scaling and orthogonal

transformation of the matrix of discriminant vectors (Gaynanova et al., 2016). To make the problem

convex and simplify computations, we only consider α > 0, and drop the orthogonality constraints

12



in (2.6) leading to

minimize
W 1,...,WD

{ α

2nD

D∑
d=1

∥Ỹ −XdW d∥2F

+
1− α

2nD(D − 1)

D−1∑
d=1

D∑
l=d+1

∥XdW d −X lW l∥2F +
D∑

d=1

λd Pen(W d)
}
.

(2.7)

We call (2.7) JACA for Joint Association and Classification Analysis, and choose convex

Pen(W d) =
∑pd

i=1 ∥wdi∥2 to encourage variable selection via row-wise sparsity in W d. We do

not consider ℓ1 penalty since it induces element-wise rather than row-wise sparsity in W d, hence

it does not completely eliminate the variables from the model and the sparsity pattern is not pre-

served under orthogonal transformations. We chose a convex penalty for computational reasons,

we refer to Huang et al. (2012) for other row-wise sparse penalties that are nonconvex.

Further, problem (2.7) can be rewritten as a multi-response linear regression problem using the

augmented data approach. We first illustrate the case D = 2. Let W = (W⊤
1 ,W

⊤
2 )

⊤,

Y ′ =

√
α√
nD


Ỹ

Ỹ

0

 , X ′ =
1√
nD


√
αX1 0

0
√
αX2√

(1− α)/(D − 1)X1 −
√

(1− α)/(D − 1)X2

 .

Then (2.7) is equivalent to

minimize
W

{
2−1∥Y ′ −X ′W ∥2F +

D∑
d=1

λd Pen(W d)
}
. (2.8)

When D > 2, let W = (W⊤
1 , . . . ,W

⊤
D)

⊤,

Y ′ =

√
α

nD

(
︸ ︷︷ ︸

D

Ỹ
⊤

. . . Ỹ
⊤

0 . . . 0

)⊤

,
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X ′ =



√
αX1 0 0 . . . 0

0
√
αX2 0 . . . 0

...

0 0 0 . . .
√
αXD√

1−α
D−1

X1 −
√

1−α
D−1

X2 0 . . . 0√
1−α
D−1

X1 0 −
√

1−α
D−1

X3 . . . 0√
1−α
D−1

X1 0 0 . . . −
√

1−α
D−1

XD

...

0 0 . . .
√

1−α
D−1

XD−1 −
√

1−α
D−1

XD



/
√
nD.

Then (2.7) is equivalent to

minimize
W

{
2−1∥Y ′ −X ′W ∥2F +

D∑
d=1

λd Pen(W d)
}
.

2.3 Implementation

2.3.1 Additional regularization via elastic net

It is well known that the lasso-type penalties can lead to erratic solution paths in the presence

of highly-correlated variables (Hastie et al., 2015, Chapter 4.2). To overcome this drawback, Zou

and Hastie (2005) propose an elastic net penalty which combines ridge and lasso penalties, thus

making highly correlated variables either being jointly selected or not selected in the model. Zou

and Hastie (2005) also advocate an extra scaling step which in regression context is equivalent to

replacing the sample covariance matrix X⊤X/n with the regularized version (1−ρ)X⊤X/n+ρI

for ρ ∈ [0, 1]. We adapt this idea to JACA, and replace X ′⊤X ′ in (2.8) with (1− ρ)X ′⊤X ′ + ρI
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for ρ ∈ [0, 1] leading to

minimize
W

{
1

2
∥Y ′ −X ′W ∥2F −

ρ

2
∥X ′W ∥2F +

ρ

2
∥W ∥2F +

D∑
d=1

λd Pen(W d)

}
. (2.9)

Problem (2.9) is still convex. When ρ = 0, problems (2.9) and (2.8) coincide.

2.3.2 Optimization algorithm

We use a block-coordinate descent algorithm to solve (2.9) for fixed values of ρ ∈ [0, 1] and

λd ≥ 0. Compared with the original problem, our augmented formulation (2.9) leads to easier

implementation, less iterations till convergence, and overall faster algorithm. Let wdj be the jth

row of W d, and let Pen(W d) =
∑pd

j=1 ∥wdj∥2. Since (2.9) is convex, and the penalty is separable

with respect to each wdj , the algorithm is guaranteed to converge to the global optimum from any

starting point (Tseng, 2001).

We assume that each Xd is standardized so that the diagonal entries of n−1X⊤
d Xd are equal to

one. This standardization is common in the literature (Zou and Hastie, 2005; Witten and Tibshirani,

2009), and effectively results in penalizing each variable proportionally to its standard deviation.

Moreover, using ρ > 0 with this standardization in (2.9) ensures the uniqueness of solution for any

λd due to strict convexity of the objective function.

Consider solving (2.9) with respect to a row-vector wdj , and let X ′
dj be the corresponding

column of X ′. The KKT conditions (Boyd and Vandenberghe, 2004) can be written as a set of∑D
d=1 pd equations of the form

(1− ρ)X ′⊤
dj X

′W + ρwdj −X ′⊤
dj Y

′ + λdudj = 0, (2.10)

where udj is the subgradient of ∥wdj∥2, that is udj = wdj/∥wdj∥2 when ∥wdj∥2 ̸= 0 and udj ∈

{u : ∥u∥2 ≤ 1} otherwise. Solving (2.10) with respect to wdj leads to

wdj =
{
X ′⊤

dj (Y
′ − (1− ρ)X ′W + (1− ρ)X ′

djwdj)− λdudj

}/{
(1− ρ) ∥X ′

dj∥22 + ρ
}
.
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Algorithm 1 Block-coordinate descent algorithm for (2.9)
Given: k = 0, W (0), ε > 0;
R← Y ′ − (1− ρ)X ′W (0);
while k ̸= kmax and

∣∣∣objective
(
W (k)

)
− objective

(
W (k−1)

)∣∣∣ ≥ ε do
k ← k + 1;
for d = 1 to D do

for j = 1 to pd do
w

(k)
dj ← Sλd

(X ′⊤
dj R+ (1− ρ)∥X ′

dj∥22w
(k−1)
dj )/{(1− ρ)∥X ′

dj∥22 + ρ};
R← R+ (1− ρ)X ′

dj(w
(k−1)
dj −w

(k)
dj )

end
end

end

For a vector v ∈ Rm and λ > 0, let Sλ(v) = max(0, 1−λ/∥v∥2)v be the vector soft-thresholding

operator. Then iterating block updates leads to Algorithm 1.

2.3.3 Selection of tuning parameters

JACA requires the specification of several parameters: α ∈ (0, 1] that controls the relative

weights of LDA and CCA criteria, ρ ∈ [0, 1] that controls the shrinkage induced by elastic net,

and λd ≥ 0 that control the sparsity level of each W d respectively. While it is possible to perform

cross-validation over all of the parameters, due to computational considerations we restrict the

space as follows. First, we set α = 0.5 in all of our simulations studies and data analyses. The

results were similar for α = 0.8, and slightly worse for α = 0.2. Further work is required to

determine whether there is an optimal choice. Secondly, we set λd = ϵλmax,d with ϵ ∈ (0, 1),

where λmax,d is such that Ŵ d = 0 for any λ ≥ λmax,d, similar strategy is used in Luo et al. (2016)

as it allows to control the sparsity of each W d at similar levels. The value of λmax,d is given below.

Proposition 3. Let λmax,d =
α
nD
∥X⊤

d Ỹ ∥∞,2. Then W d = 0 for all λ ≥ λmax,d.

We use cross-validation with F folds to select ρ ∈ [0, 1] and ϵ ∈ [10−4, 1], with a course grid

for ρ and a fine grid for ϵ.

It is typical to minimize the prediction error in cross-validation, for example the least squares

error in the linear regression. In our context, however, both classification rules and correlation
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measures are invariant to the scale of W d, hence we need a scale-invariant metric. We propose to

consider

CV (ρ, ε) =
1

F

F∑
f=1

{
α

D∑
d=1

|Cor(Ỹ
(f)

,X
(f)
d Ŵ

(−f)

d )|

+
(1− α)

D − 1

D−1∑
d=1

D∑
l=d+1

|Cor(X(f)
d W

(−f)
d ,X

(f)
l W

(−f)
l )|

}
,

(2.11)

where Ỹ
(f)

, X(f)
d correspond to the samples in the f th fold; and Ŵ

(−f)

d are solutions to (2.9) with

given ρ and ε based on samples in all folds except the f th. We define the correlation between two

centered matrices X and Y as the square root of the RV-coefficient (Robert and Escoufier, 1976),

where

RV(X,Y ) :=
Tr(XX⊤Y Y ⊤)√

Tr(XX⊤)2
√

Tr(Y Y ⊤)2
.

By definition,
√

RV(X,Y ) ∈ [0, 1], and is invariant to scale and orthogonal transformation. If X

and Y are vectors, then
√

RV(X,Y ) = |Cor(X,Y )|.

2.4 Simulation studies

We compare the performance of the following methods: (i) JACA: Joint Association and

Classification Analysis, the proposed approach; (ii) Sparse Linear Discriminant Analysis of Gay-

nanova et al. (2016) as implemented in the R package MGSDA (Gaynanova, 2016), either ap-

plied separately to each dataset (SLDA_sep), or jointly on concatenated dataset (SLDA_joint);

(iii) Sparse CCA: Sparse Canonical Correlation Analysis of Witten and Tibshirani (2009) as im-

plemented in the R package PMA (Witten et al., 2013). We use cross-validation to choose the

tuning parameters instead of the permutation method introduced in Witten and Tibshirani (2009),

since the former one gives better results. (iv) Sparse sCCA: Sparse supervised CCA proposed in

Witten and Tibshirani (2009). We first choose a set of variables with largest values of F-statistic

from a one-way ANOVA, and then apply Sparse CCA with selected variables; (v) CVR: Canonical

Variate Regression by Luo et al. (2016) as implemented in the corresponding R package (Luo and
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Chen, 2017).

2.4.1 Data generation

We generate the data using factor model (2.3). Specifically, given Σ̃d, d = 1, . . . , D, we

generate the factor loadings in (2.3) as follows

1. Generate row-sparse matrix Bd ∈ Rpd×K−1 with s = 10 non-zero rows. Draw nonzero

elements from uniform distribution on [−2,−1] ∪ [1, 2]. Given cd > 0, rotate and scale Bd

so that B⊤
d Σ̃dBd = diag(c2d), and set ∆d = Σ̃dBd. According to Theorem 1, this sets K−1

canonical correlations ρk between datasets d and l to be equal to

ρk = (cdcl)/
√
(1 + c2d)(1 + c2l ).

2. If q ̸= 0, generate M d ∈ Rpd×q with elements from N(0, 1), orthogonalize M d with respect

to ∆d as M d = (I − P∆d
)M d, where P∆d

is the projection matrix onto column space of

∆d. For canonical correlation ρk ∈ (0, 1), set ck =
√

ρk/(1− ρk), and rotate and scale M d

so that M⊤
d Σ̃dM d = diag(c2k). Set Ad = Σ̃dM d.

We further draw n independent y with P (y = k) = πk, n independent uq from N(0, Iq), and n

independent e1, . . . , ed, each from N(0, Ipd). We get n replicas X1, . . . ,Xd according to (2.3)

with given ∆d, Ad and µd = 0, d = 1, . . . , D. By construction, the population discriminant

vectors are proportional to Bd with corresponding row-sparsity pattern.

2.4.2 Evaluation criteria

We compare the methods in terms of misclassification rate and strength of association between

the views. Additional comparisons in terms of the estimation consistency and variable selection

results are provided in the Supplementary Material. To compare the classification accuracy, we

consider two prediction approaches for each method: prediction based on one view alone out of

(X1, . . . ,Xd) using the corresponding subset of canonical vectors, and prediction based on the

full concatenated dataset. All predictions are made by linear discriminant analysis model. The

18



misclassification rate of each classifier is calculated as

1

m

m∑
i=1

1 {label(xi) ̸= pred(xi)} ,

where xis are m new samples, label(xi) denotes the corresponding class membership and pred(xi)

denotes the predicted class membership.

To evaluate the strength of found association between the views, we consider

Sum correlation(W 1, . . . ,W d) =
D−1∑
d=1

D∑
l=d+1

CorΣ(W d,W l),

where

CorΣ(W d,W l) =

 Tr(W⊤
d ΣdlW lW

⊤
l ΣdlW d)√

Tr(W⊤
d ΣdW d)2

√
Tr(W⊤

l ΣlW l)2

 1
2

,

Σd is the marginal covariance matrix of view d, and Σdl is the marginal cross-covariance matrix

of view d and l as in Section 2.2.1. This criterion is similar to sum correlation in Gross and Tib-

shirani (2015), however our definition uses population covariance matrices rather than the sample

counterparts.

2.4.3 Two datasets, two groups

We set n = 160, K = 2, and generate n independent y ∈ {1, 2} with π1 = 0.4, and pairs

(x1,x2) ∈ Rp1 ×Rp2 with (p1, p2) ∈ {(100, 100), (100, 500), (500, 500)} following Section 2.4.1.

We consider autocorrelation structures Σ̃1 = (0.8|i−j|)ij , Σ̃2 = (0.5|i−j|)ij , and set the value of

canonical correlation due to shared class as ρ = 0.8 by letting c1 = c2 =
√
ρ/(1− ρ) in generating

Bd in Section 2.4.1. We consider the following cases for other shared factors:

Case 1: q = 0, no shared factors except class y;

Case 2: q = 2 with corresponding values for canonical correlations being 0.6 and 0.5;

Case 3: q = 2 with corresponding values for canonical correlations being 0.9 and 0.5.
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Table 2.1: Comparison of misclassification rates of Case 1 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the lowest values are highlighted in bold.

(p1, p2) Error rate (%) JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR

(100,100) (X1) 4.496 (0.037) 4.809 (0.070) 4.582 (0.044) 6.376 (0.048) 6.675 (0.043) 6.434 (0.189)
(X2) 3.168 (0.040) 3.533 (0.090) 4.552 (0.127) 4.069 (0.051) 4.415 (0.052) 7.860 (0.415)
(X1,X2) 0.594 (0.011) 0.729 (0.024) 0.934 (0.030) 1.708 (0.016) 1.862 (0.019) 2.197 (0.118)

(100,500) (X1) 4.299 (0.036) 4.593 (0.075) 4.418 (0.042) 6.286 (0.045) 6.612 (0.043) 6.485 (0.220)
(X2) 3.103 (0.050) 3.279 (0.041) 4.519 (0.107) 3.955 (0.061) 6.445 (0.080) 8.883 (0.418)
(X1,X2) 0.548 (0.013) 0.695 (0.028) 0.879 (0.027) 1.644 (0.019) 2.283 (0.025) 2.417 (0.118)

(500,500) (X1) 4.513 (0.035) 4.498 (0.033) 4.675 (0.041) 6.044 (0.040) 7.250 (0.060) 6.634 (0.167)
(X2) 3.537 (0.042) 3.764 (0.049) 4.938 (0.121) 4.546 (0.047) 6.713 (0.076) 8.732 (0.326)
(X1,X2) 0.629 (0.010) 0.670 (0.012) 0.953 (0.024) 1.447 (0.015) 2.353 (0.029) 2.408 (0.104)

Table 2.2: Comparison of misclassification rates of Case 2 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the lowest values are highlighted in bold.

(p1, p2) Error rate (%) JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR

(100,100) (X1) 4.479 (0.038) 4.785 (0.064) 4.571 (0.039) 9.992 (0.798) 6.920 (0.077) 8.004 (0.418)
(X2) 3.224 (0.041) 3.687 (0.127) 4.915 (0.146) 8.062 (0.873) 4.675 (0.071) 8.468 (0.364)
(X1,X2) 0.601 (0.011) 0.779 (0.041) 0.972 (0.027) 5.489 (0.895) 2.010 (0.037) 2.558 (0.114)

(100,500) (X1) 4.289 (0.034) 4.616 (0.084) 4.425 (0.044) 9.096 (0.831) 6.990 (0.079) 8.126 (0.440)
(X2) 3.088 (0.048) 3.264 (0.040) 4.473 (0.094) 6.552 (0.890) 6.542 (0.081) 9.760 (0.392)
(X1,X2) 0.543 (0.011) 0.687 (0.025) 0.876 (0.024) 4.476 (0.945) 2.495 (0.045) 3.029 (0.147)

(500,500) (X1) 4.541 (0.040) 4.493 (0.040) 4.675 (0.039) 13.489 (1.364) 7.307 (0.059) 7.575 (0.252)
(X2) 3.572 (0.042) 3.785 (0.043) 4.975 (0.126) 12.166 (1.433) 6.804 (0.079) 10.151 (0.416)
(X1,X2) 0.632 (0.011) 0.671 (0.015) 0.956 (0.026) 9.658 (1.557) 2.391 (0.030) 2.952 (0.135)

In Case 2, the leading canonical correlation between the views is due to shared class membership

despite the presence of other shared factors, whereas in Case 3 the leading canonical correlation is

due to factors independent from class membership. In order to evaluate the misclassification rates,

we further generate 10, 000 new samples as test data, and consider 100 replications for each case.

The results are summarized in Tables 2.1–2.4.

JACA gives the best classification results in most scenarios, and has low variance for misclas-

sification rates. JACA also performs the best in terms of sum correlation except for Case 3, where

sum correlation for Sparse CCA is stronger. This is not surprising, since in Case 3 the largest

canonical correlation is due to the factor independent from class membership. This explanation is
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Table 2.3: Comparison of misclassification rates of Case 3 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the lowest values are highlighted in bold.

(p1, p2) Error rate (%) JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR
(100,100) (X1) 4.428 (0.034) 4.647 (0.060) 4.544 (0.040) 40.189 (0.197) 12.862 (1.020) 10.062 (0.511)

(X2) 3.295 (0.041) 3.606 (0.099) 5.278 (0.154) 40.446 (0.257) 11.296 (1.036) 9.638 (0.424)
(X1,X2) 0.609 (0.011) 0.746 (0.034) 1.030 (0.030) 40.306 (0.217) 8.862 (1.148) 2.538 (0.105)

(100,500) (X1) 4.298 (0.034) 4.686 (0.085) 4.441 (0.044) 40.268 (0.188) 10.256 (0.612) 9.232 (0.448)
(X2) 3.091 (0.049) 3.274 (0.041) 4.456 (0.102) 40.453 (0.236) 8.911 (0.426) 11.364 (0.454)
(X1,X2) 0.544 (0.013) 0.723 (0.024) 0.872 (0.024) 40.362 (0.201) 5.908 (0.619) 3.029 (0.119)

(500,500) (X1) 4.537 (0.039) 4.471 (0.030) 4.664 (0.039) 40.583 (0.262) 8.947 (0.340) 9.216 (0.483)
(X2) 3.577 (0.042) 3.799 (0.057) 5.017 (0.125) 40.566 (0.255) 8.404 (0.303) 10.944 (0.372)
(X1,X2) 0.626 (0.011) 0.657 (0.011) 0.960 (0.024) 40.575 (0.261) 4.118 (0.346) 3.067 (0.118)

Table 2.4: Comparison of sum correlation over 100 replications when D = 2, K = 2. Standard
errors are given in the brackets and the highest values are highlighted in bold.

Case (p1, p2) JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR
Case 1 (100,100) 0.752 (0.001) 0.744 (0.001) 0.732 (0.002) 0.715 (0.001) 0.708 (0.001) 0.670 (0.006)

(100,500) 0.750 (0.001) 0.743 (0.001) 0.730 (0.001) 0.717 (0.001) 0.685 (0.001) 0.656 (0.006)
(500,500) 0.750 (0.001) 0.747 (0.001) 0.729 (0.002) 0.716 (0.001) 0.677 (0.001) 0.661 (0.005)

Case 2 (100,100) 0.752 (0.001) 0.742 (0.002) 0.728 (0.002) 0.686 (0.006) 0.704 (0.001) 0.641 (0.009)
(100,500) 0.751 (0.001) 0.743 (0.001) 0.731 (0.001) 0.681 (0.011) 0.682 (0.001) 0.623 (0.008)
(500,500) 0.750 (0.001) 0.748 (0.001) 0.729 (0.002) 0.604 (0.021) 0.676 (0.001) 0.632 (0.006)

Case 3 (100,100) 0.751 (0.001) 0.744 (0.002) 0.724 (0.002) 0.874 (0.000) 0.715 (0.003) 0.549 (0.017)
(100,500) 0.751 (0.001) 0.742 (0.001) 0.731 (0.001) 0.861 (0.000) 0.684 (0.002) 0.553 (0.014)
(500,500) 0.750 (0.001) 0.748 (0.001) 0.729 (0.002) 0.854 (0.000) 0.675 (0.001) 0.573 (0.012)

also supported by the poor classification results for Sparse CCA in Case 3. In Table 2.3, Sparse

CCA achieves around 40% misclassification rate, which is no better than random guessing. Finally,

CVR is slightly better than Sparse CCA in Case 2 and worse than Sparse CCA in Case 3 in terms of

miscalssification rates. However, it performs worse than JACA and SLDA methods. We conjecture

this is likely due to CVR using logistic model for estimation rather than factor model (2.3).

2.4.4 Multiple datasets, multiple groups

We set n = 240, K = 3, and generate n independent y ∈ {1, 2, 3} with π1 = 0.4, π2 = π3 =

0.3. We also generate n tuples (x1,x2,x3) ∈ Rp1 × Rp2 × Rp3 with p1 = p2 = p3 ∈ {100, 500}
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following Section 2.4.1, and set Σ̃1 = (0.8|i−j|)ij , Σ̃2 = (0.5|i−j|)ij and Σ̃3 = I . We let canonical

correlations due to class membership be ρ1 = ρ2 = 0.8, and consider the following cases for other

shared factors:

Case 1: q = 0, no shared factors except class y;

Case 2: q = 3 with ρ3 = ρ4 = ρ5 = 0.6;

Case 3: q = 3 with ρ3 = 0.9, ρ4 = 0.9, ρ5 = 0.5.

Similar to Section 2.4.3, the misclassification rates are evaluated on 10, 000 independently gen-

erated test samples. We do not consider Sparse CCA methods because they are not directly ap-

plicable to the case of more than two views and more than two classes. While the issue of more

than two views can be addressed by Multi CCA generalization (Witten and Tibshirani, 2009), both

Sparse CCA and Multi CCA find K − 1 pairs of canonical vectors sequentially. As a result, one

also needs to tune sparsity parameters sequentially leading to computationally expensive procedure

with different sparsity patterns across canonical vector pairs. We also do not consider CVR as it is

only implemented for binary classification problem.

The results for JACA and SLDA methods are reported in Tables 2.5 and 2.6. JACA performs

the best in terms of misclassification rates in most scenarios, and always performs the best in

terms of sum correlation. When predicted based on X1 alone, JACA has similar performance

with SLDA_sep, but SLDA_sep’s performance decreases significantly as p increases. On the other

hand, SLDA_joint performs poorly in most cases.

2.5 Data analysis

2.5.1 TCGA-COAD dataset

We consider the colorectal cancer (COAD) data from The Cancer Genome Atlas project with

two views: RNAseq data of normalized counts and miRNA expression. We extracted samples cor-

responding to primary tumor tissue using TCGA2STAT R package (Wan et al., 2015). To account

for data skewness and zero counts, we further log10-transformed both datasets with offset 1, and
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Table 2.5: Comparison of misclassification rates over 100 replication when D = 3, K = 3.
Standard errors are given in the brackets and the lowest values are highlighted in bold.

p1 = p2 = p3 = 100 p1 = p2 = p3 = 500

Error rate (%) JACA SLDA sep SLDA joint JACA SLDA sep SLDA joint
Case 1 (X1) 2.632 (0.051) 2.511 (0.056) 7.182 (0.155) 4.555 (0.076) 5.398 (0.105) 7.014 (0.150)

(X2) 2.112 (0.017) 2.350 (0.046) 4.746 (0.241) 1.988 (0.013) 2.343 (0.062) 4.328 (0.160)
(X3) 1.750 (0.016) 1.802 (0.035) 22.344 (0.957) 1.450 (0.016) 1.581 (0.041) 22.041 (1.044)
(X1,X2,X3) 0.010 (0.001) 0.015 (0.001) 0.389 (0.034) 0.025 (0.001) 0.051 (0.003) 0.430 (0.036)

Case 2 (X1) 2.545 (0.049) 2.370 (0.040) 7.389 (0.166) 4.524 (0.077) 5.361 (0.100) 7.245 (0.188)
(X2) 2.127 (0.017) 2.363 (0.043) 4.596 (0.151) 1.994 (0.013) 2.225 (0.042) 4.441 (0.165)
(X3) 1.770 (0.016) 1.790 (0.032) 22.771 (0.935) 1.458 (0.017) 1.550 (0.037) 22.573 (0.992)
(X1,X2,X3) 0.009 (0.001) 0.015 (0.001) 0.363 (0.027) 0.025 (0.001) 0.048 (0.003) 0.449 (0.036)

Case 3 (X1) 2.384 (0.039) 2.289 (0.039) 7.355 (0.140) 4.391 (0.080) 5.351 (0.105) 7.259 (0.182)
(X2) 2.139 (0.018) 2.393 (0.049) 4.534 (0.147) 2.006 (0.015) 2.337 (0.059) 4.536 (0.190)
(X3) 1.818 (0.017) 1.809 (0.033) 23.773 (0.980) 1.485 (0.018) 1.589 (0.036) 22.821 (1.004)
(X1,X2,X3) 0.010 (0.001) 0.016 (0.001) 0.364 (0.029) 0.025 (0.001) 0.052 (0.004) 0.472 (0.038)

Table 2.6: Comparison of sum correlation over 100 replication when D = 3, K = 3. Standard
errors are given in the brackets and the highest values are highlighted in bold.

p1 = p2 = p3 = 100 p1 = p2 = p3 = 500

JACA SLDA sep SLDA joint JACA SLDA sep SLDA joint
Case 1 2.321 (0.001) 2.309 (0.004) 1.196 (0.021) 2.282 (0.001) 2.185 (0.011) 1.231 (0.023)
Case 2 2.322 (0.001) 2.314 (0.002) 1.190 (0.020) 2.282 (0.001) 2.186 (0.010) 1.213 (0.023)
Case 3 2.326 (0.001) 2.316 (0.003) 1.196 (0.020) 2.284 (0.002) 2.183 (0.011) 1.206 (0.022)

filtered the data to select 1572 variables for RNA-Seq and 375 for miRNA with highest standard

deviation across samples. Recently, the Colorectal Cancer Consortium determined 4 consensus

molecular subtypes (CMS) of colorectal cancer based on gene expression (Guinney et al., 2015),

and we have extracted the assigned subtypes for COAD data from the Synapse platform (Synapse

ID syn2623706). The resulting data has 282 subjects in total, with Table 2.7 displaying the pat-

tern of available information for each subject. Our primary goal is to identify covarying patterns

between RNA-Seq and miRNA data that are relevant for subtype discrimination.

First, we compare different methods from Section 2.4 using the subset of subjects with com-

plete views and subtype information (n = 167). We do not consider CVR since it is only imple-
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Table 2.7: Number of available samples in COAD data with different missing patterns of CMS
class/RNAseq/miRNA.

CMS class RNAseq miRNA Sample size
yes yes yes 167
yes yes no 27
no yes yes 51
no yes no 37

Total: 282

mented for the binary classification problem. We randomly select 137 subjects for training and 35

for testing for the total of 100 random splits. The average misclassification rates and the number

of selected variables for each method are presented in Table 2.8. We consider two prediction ap-

proaches for each method: prediction based on one view alone (either RNA-seq or miRNA) using

the corresponding subset of canonical vectors, and prediction using the concatenated dataset. In

general, the performance using miRNA data is worse, which is not surprising since the subtypes

were determined using gene expression data alone (Guinney et al., 2015). Although JACA se-

lects more variables than SLDA_sep, it performs the best in terms of misclassification rates, with

SLDA_sep being the second best. SLDA_joint achieves a competitive misclassification rate using

RNAseq data but not miRNA. We conjecture this is because RNAseq view has a much stronger

class-specific signal that masks miRNA’s signal when datasets are concatenated. This explanation

is supported by the mean number of variables selected by SLDA_joint from each view. Both su-

pervised and unsupervised CCA methods perform poorly in classification. Based on results from

Section 2.4, this suggests that the subtype-specific association between the views is weak compared

to association due to other common factors.

We also compare the out-of-sample correlation values, that is Cor(X1Ŵ 1,X2Ŵ 2), where

(X1,X2) are RNAseq and miRNA data from test samples, and Ŵ 1, Ŵ 2 are estimated on the

training data. We do not consider CCA methods due to their poor classification performance. The

results are presented in Table 2.9, with JACA achieving the strongest correlation value.
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Table 2.8: Mean misclassification rates in percentages and mean number of selected features over
100 random splits of 167 samples from COAD data with complete information, standard errors are
given in brackets and the lowest values are highlighted in bold.

Misclassification Rate (%) Cardinality

Method RNAseq miRNA Both RNAseq miRNA Both
JACA 2.06 (0.30) 6.03 (0.49) 3.49 (0.35) 385.1 (8.8) 202.3 (3.4) 587.4 (12.2)
SLDA_sep 3.91 (0.42) 7.97 (0.61) 4.03 (0.41) 65.4 (3.1) 57.8 (1.6) 123.2 (3.7)
SLDA_joint 4.26 (0.45) 53.26 (1.82) 4.11 (0.46) 59.5 (2.8) 3.3 (0.4) 62.8 (3.2)
Sparse sCCA 41.89 (0.34) 47.71 (0.47) 42.6 (0.30) 932.5 (4.0) 251.4 (1.0) 1183.9 (4.6)
Sparse CCA 42.11 (0.35) 47.97 (0.46) 42.37 (0.34) 1287.5 (6.9) 369.5 (0.6) 1657 (6.8)

Table 2.9: Analysis based on 167 samples from COAD data with complete view and subtype
information based on 100 random splits. Mean correlation between X1Ŵ 1 and X2Ŵ 2 where
X1,X2 are samples from test data, and Ŵ 1, Ŵ 2 are estimated from the training data, standard
errors are given in brackets and the highest value is highlighted in bold.

JACA SLDA_sep SLDA_joint
Correlation 0.95 (0.002) 0.88 (0.003) 0.36 (0.027)

2.5.2 TCGA-BRCA dataset

We consider breast cancer data from The Cancer Genome Atlas project with 4 views: gene

expression (GE), DNA methylation (ME), miRNA expression (miRNA), and reverse phase protein

array (RPPA). The samples are separated into 4 breast cancer subtypes: Basal, LumA, LumB

and Her2 (The Cancer Genome Atlas Network, 2012). Five samples are labelled as Normal-like,

and we exclude them from the analyses. Li et al. (2016) incorporate subtypes into supervised

singular value decomposition, however only GE view is considered. Lock and Dunson (2013) and

Gaynanova and Li (2019) jointly analyze all views, however do not take advantage of the subtypes.

In this section, we apply JACA to understand the subtype-driven relationships between the views.

We use data from https://tcga-data.nci.nih.gov/docs/publications/brca_2012 and the same data-

processing as in Lock and Dunson (2013). While the combined number of subjects is 792, only

377 have complete view/subtype information (see Table 2.10).
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Table 2.10: Number of samples in BRCA data with different missing patterns of views and cancer
subtype. There are only 377 samples with complete information.

GE ME miRNA RPPA Cancer type Count
yes yes yes yes yes 377
yes yes yes no yes 114
yes yes no yes yes 19
yes yes no no yes 3
yes no yes yes yes 1
no yes yes yes no 1
no yes yes no no 193
no yes no no no 84

Total = 792

First, we compare JACA with SLDA_sep and SLDA_joint on the 377 subjects with complete

view/subtype information following the same strategy as in Section 2.5.1. We do not consider

CVR due to K > 2 and D > 2, and we do not consider Sparse CCA or Sparse sCCA due to their

poor performance on COAD data. Tables 2.11 and 2.12 display the mean misclassification error

rates and the number of selected variables for each view, where the predictions are made either

separately on each view, or jointly using all views. The results are similar to Section 2.5.1. The

error rates are higher when using ME, miRNA or RPPA compared to GE, which is not surprising

since BRCA subtypes are originally determined based on gene expression. SLDA_joint achieves a

similar error rate using GE alone and higher error rates when using other views. The reason is that

it selects very few variables from other views since the subtype-specific signal is the strongest in

GE view. JACA has similar performance with SLDA_sep using GE, but outperforms SLDA_sep

on other views, which suggests the advantage of taking into account the associations between the

views. JACA also has higher cardinality, which is consistent with simulation results in Section 2.4.

Table 2.13 displays the sum correlation, with JACA performing best compared to SLDA methods.
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Table 2.11: Mean misclassification error rates over 100 splits of 377 samples from BRCA data,
standard errors are given in brackets and the lowest values are highlighted in bold.

Misclassification Rate (%)

Method GE ME miRNA RPPA All
JACA 10.17 (0.34) 16.65 (0.51) 16.4 (0.41) 21.76 (0.43) 13.54 (0.42)
SLDA_sep 10.15 (0.42) 20.32 (0.73) 17.32 (0.49) 23.4 (0.46) 12.4 (0.44)
SLDA_joint 10.77 (0.36) 51.33 (1.11) 54.95 (1.52) 42.4 (1.04) 10.79 (0.36)

Table 2.12: Mean numbers of selected features over 100 splits of 377 samples from BRCA data,
standard errors are given in brackets and the lowest values are highlighted in bold.

Cardinality

Method GE ME miRNA RPPA All
JACA 183.2 (1.8) 191.6 (2) 129.7 (1.5) 82.2 (0.7) 374.8 (3.6)
SLDA_sep 62.8 (2.8) 85.8 (4.5) 48.6 (2.4) 27.2 (1.8) 148.6 (5.6)
SLDA_joint 48.1 (2.3) 2.6 (0.3) 1.8 (0.2) 3.4 (0.2) 50.7 (2.5)

Table 2.13: Analysis based on 377 samples from BRCA data with complete view and subtype
information based on 100 random splits. Mean correlation between X1Ŵ 1 and X2Ŵ 2 where
X1,X2 are samples from test data, and Ŵ 1, Ŵ 2 are estimated from the training data, standard
errors are given in brackets and the highest value is highlighted in bold.

JACA SLDA_sep SLDA_joint
Correlation 5.54 (0.01) 5.06 (0.014) 1.26 (0.057)

2.6 Additional simulation studies

2.6.1 Alternative evaluation criteria

In this section, we compare different methods in terms of estimation consistency and variable

selection. Let Θd ∝ Σ̃
−1

d ∆d ∈ Rpd×(K−1) be the population matrix of class-specific canonical

vectors for view d with Σ̃d as in (2.3), and W d be the estimated matrix. To evaluate estimation
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performance, we consider

CorΣ(W d,Θd) =

 Tr(W⊤
d Σ̃dΘdΘ

⊤
d Σ̃dW d)√

Tr(W⊤
d Σ̃dW d)2

√
Tr(Θ⊤

d Σ̃dΘd)2

 1
2

as a measure of similarity between W d and Θd with CorΣ(W d,Θd) = 1 if and only if W d is equal

to Θd up to scaling and orthogonal transformation, and CorΣ(W d,Θd) = 0 if W⊤
d Σ̃dΘd = 0. We

do not use the Frobenius norm considered since it is not invariant to column scaling and orthogonal

transformation, and hence will make the evaluation positively biased towards our proposed method.

We use precision and recall to compare the methods in terms of variable selection. Let Ad be

the set of nonzero rows of Θd, and let Âd be the set of nonzero rows in Ŵ d. Let #{Ad} denote

the cardinality of Ad. We define the precision and recall as

Precision(W d) =
#{Ad ∩ Âd}

#{Âd}
and Recall(W d) =

#{Ad ∩ Âd}
#{Ad}

.

2.6.2 Two datasets, two groups

We consider the simulation setting from Section 2.4.3. The estimation consistency results

are summarized in Tables 2.14–2.16, and the values of precision and recall for different methods

are reported in Figure 2.1. Overall, JACA gives the best estimation results in most scenarios,

and has low estimation variance. Since in Case 3 the largest canonical correlation is due to the

factor independent from class membership, the loadings estimated from sparse CCA are almost

orthogonal to the true discriminant vectors Θd as demonstrated by low values of CorΣ(W d,Θd).

JACA also achieves the best trade off between precision and recall. JACA’s precision is second

best to SLDA_joint, but SLDA_joint has the lowest values of recall. JACA’s recall is comparable

to SLDA_sep and worse than the recall of sparse CCA methods, but the latter has low values of

precision.
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Table 2.14: Comparison of estimation correlation of Case 1 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the highest values are highlighted in bold.

(p1, p2) CorΣ JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR
(100,100) (W 1,Θ1) 0.839 (0.002) 0.823 (0.003) 0.835 (0.002) 0.752 (0.002) 0.740 (0.002) 0.756 (0.007)

(W 2,Θ2) 0.907 (0.003) 0.889 (0.005) 0.825 (0.006) 0.841 (0.003) 0.825 (0.003) 0.704 (0.013)

(100,500) (W 1,Θ1) 0.842 (0.002) 0.824 (0.003) 0.833 (0.002) 0.755 (0.002) 0.742 (0.001) 0.751 (0.007)
(W 2,Θ2) 0.893 (0.003) 0.882 (0.003) 0.816 (0.005) 0.844 (0.003) 0.734 (0.003) 0.666 (0.011)

(500,500) (W 1,Θ1) 0.839 (0.002) 0.839 (0.002) 0.830 (0.002) 0.758 (0.001) 0.711 (0.002) 0.745 (0.006)
(W 2,Θ2) 0.897 (0.003) 0.883 (0.003) 0.817 (0.006) 0.836 (0.003) 0.738 (0.003) 0.674 (0.009)

Table 2.15: Comparison of estimation correlation of Case 2 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the highest values are highlighted in bold.

(p1, p2) CorΣ JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR
(100,100) (W 1,Θ1) 0.840 (0.002) 0.825 (0.003) 0.836 (0.002) 0.687 (0.016) 0.744 (0.002) 0.726 (0.010)

(W 2,Θ2) 0.907 (0.003) 0.883 (0.006) 0.816 (0.006) 0.755 (0.020) 0.823 (0.003) 0.697 (0.011)

(100,500) (W 1,Θ1) 0.844 (0.001) 0.825 (0.003) 0.834 (0.002) 0.704 (0.017) 0.745 (0.002) 0.718 (0.010)
(W 2,Θ2) 0.895 (0.003) 0.883 (0.002) 0.818 (0.004) 0.780 (0.021) 0.732 (0.003) 0.640 (0.010)

(500,500) (W 1,Θ1) 0.838 (0.002) 0.840 (0.002) 0.831 (0.002) 0.592 (0.029) 0.711 (0.002) 0.718 (0.007)
(W 2,Θ2) 0.898 (0.003) 0.884 (0.003) 0.817 (0.006) 0.657 (0.033) 0.738 (0.003) 0.637 (0.011)

Table 2.16: Comparison of estimation correlation of Case 3 over 100 replications when D = 2,
K = 2. Standard errors are given in the brackets and the highest values are highlighted in bold.

(p1, p2) CorΣ JACA SLDA sep SLDA joint Sparse CCA Sparse sCCA CVR
(100,100) (W 1,Θ1) 0.843 (0.001) 0.830 (0.003) 0.837 (0.002) 0.098 (0.004) 0.682 (0.015) 0.727 (0.007)

(W 2,Θ2) 0.904 (0.003) 0.888 (0.005) 0.805 (0.006) 0.040 (0.003) 0.720 (0.017) 0.714 (0.009)

(100,500) (W 1,Θ1) 0.844 (0.002) 0.822 (0.004) 0.833 (0.002) 0.117 (0.004) 0.728 (0.007) 0.731 (0.006)
(W 2,Θ2) 0.896 (0.003) 0.884 (0.002) 0.820 (0.005) 0.043 (0.003) 0.700 (0.007) 0.625 (0.010)

(500,500) (W 1,Θ1) 0.839 (0.002) 0.842 (0.001) 0.831 (0.002) 0.033 (0.002) 0.694 (0.004) 0.714 (0.008)
(W 2,Θ2) 0.898 (0.003) 0.885 (0.003) 0.817 (0.006) 0.033 (0.003) 0.716 (0.005) 0.636 (0.009)

2.6.3 Multiple datasets, multiple groups

We consider the simulation setting from Section 2.4.4. The estimation consistency results for

JACA and SLDA methods are reported in Table 2.17, and the values of precision and recall for
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Figure 2.1: Precision and Recall over 100 replications when D = 2 and K = 2.

different methods are reported in Figure 2.2, and the conclusions are similar to the case of two-

groups and two-views. Overall, JACA performs the best in terms of estimation consistency and

also achieves the best trade off between precision and recall.
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Table 2.17: Comparison of estimation correlation over 100 replication when D = 3, K = 3.
Standard errors are given in the brackets and the highest values are highlighted in bold.

p1 = p2 = p3 = 100 p1 = p2 = p3 = 500

CorΣ JACA SLDA sep SLDA joint JACA SLDA sep SLDA joint
Case 1 (W 1,Θ1) 0.903 (0.002) 0.906 (0.002) 0.795 (0.002) 0.848 (0.002) 0.825 (0.003) 0.800 (0.002)

(W 2,Θ2) 0.945 (0.001) 0.929 (0.003) 0.794 (0.008) 0.937 (0.001) 0.913 (0.004) 0.801 (0.008)
(W 3,Θ3) 0.959 (0.001) 0.960 (0.002) 0.710 (0.010) 0.969 (0.001) 0.961 (0.003) 0.726 (0.011)

Case 2 (W 1,Θ1) 0.908 (0.002) 0.914 (0.002) 0.795 (0.002) 0.850 (0.002) 0.827 (0.003) 0.798 (0.002)
(W 2,Θ2) 0.946 (0.001) 0.931 (0.003) 0.799 (0.007) 0.937 (0.001) 0.921 (0.003) 0.797 (0.007)
(W 3,Θ3) 0.959 (0.001) 0.962 (0.002) 0.709 (0.010) 0.969 (0.001) 0.963 (0.002) 0.726 (0.010)

Case 3 (W 1,Θ1) 0.917 (0.002) 0.921 (0.002) 0.802 (0.002) 0.855 (0.002) 0.828 (0.003) 0.799 (0.002)
(W 2,Θ2) 0.948 (0.001) 0.930 (0.003) 0.805 (0.007) 0.937 (0.001) 0.914 (0.004) 0.794 (0.008)
(W 3,Θ3) 0.957 (0.001) 0.963 (0.002) 0.702 (0.010) 0.967 (0.001) 0.960 (0.003) 0.719 (0.010)
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Figure 2.2: Precision and Recall over 100 replications when D = 3 and K = 3.

31



2.7 Technical proofs

2.7.1 Proof of Proposition 1

Proof. Under the stated conditions, xd in (2.2) satisfies (2.1) by construction, therefore it remains

to show the reverse. Consider (2.1) with Σldy = 0. Then

xd = µd +
K∑
k=1

(µdk − µd)1{y = k}+Σ
1/2
dy ed,

where ed are independent from y. We next show that there exists function f : {1, 2 . . . , K} →

RK−1 such that µd +
∑K

k=1(µdk −µd)1{y = k} = µd +∆df(y) = µd +∆duy with uy and ∆d

satisfying the stated conditions.

Consider K = 2. Let uy = f(y) =
√
π2/π1 1{y = 1} −

√
π1/π2 1{y = 2}, then E(uy) = 0,

Cov(uy) = 1. Setting ∆d =
√
π1π2(µ1 − µ2) gives the desired factor model since

E(µd +∆Duy|y = 1) = π1µ1 + π2µ2 +
√
π1π2(µ1 − µ2)

√
π2/π1 = µ1,

and similarly E(µd +∆Duy|y = 2) = µ2.

Consider K ≥ 2. Let Θ ∈ RK×(K−1) have columns Θl with

Θl =

({√
πl+1∑l

i=1 πi

∑l+1
i=1 πi

}
l

,−

√ ∑l
i=1 πi

πl+1

∑l+1
i=1 πi

, 0K−1−l

)⊤

,

and let Z = g(y) ∈ RK be a unit norm class-indicator random vector with zk = 1 if observation

belongs to class k. Consider ũy = f̃(y) = Θ⊤g(y) = Θ⊤Z and let π = (π1 . . . πK)
⊤. Then

E(ũy) = Θ⊤E(Z) = Θ⊤π = (Θ⊤
1 π . . .Θ⊤

K−1π) = 0K−1,

Cov(ũy) = Θ⊤ Cov(Z)Θ = Θ⊤(diag(π)− ππ⊤)Θ = Θ⊤diag(π)Θ = IK .
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Next define ∆̃d ∈ Rp×(K−1) to have columns ∆̃dr with

∆̃dr =

√
πr+1

{∑r
i=1 πi(µdi − µd(r+1))

}√∑r
i=1 πi

∑r+1
i=1 πi

.

Then

E(µd + ∆̃df̃(y)|y = k) =
K∑

m=1

πmµdm + ∆̃dΘ
⊤g(k)

=
K∑

m=1

πmµdm −

√ ∑k−1
i=1 πi

πk

∑k
i=1 πi

∆̃d(k−1) +
K−1∑
l=k

√
πl+1∑l

i=1 πi

∑l+1
i=1 πi

∆̃dl

=µdk,

where in the last step we used the properties of orthogonal group-mean contrasts for unbalanced

data, see Searle (2006) and also Proposition 2 in Gaynanova et al. (2016). Consider the eigende-

composition ∆̃
⊤
d Σ

−1
dy ∆̃d = RdΛdR

⊤
d . Setting ∆d = ∆̃dRd and uy = R⊤

d ũy leads to desired

factor model.

2.7.2 Proof of Theorem 1

Proof. 1. When q = 0, Σld = ∆l∆
⊤
d = Σl

[
Σ−1

l ∆l∆
⊤
d Σ

−1
d

]
Σd. Let Λd = ∆⊤

d Σ̃
−1

d ∆d, where

Λd is diagonal by definition of factor model (2.3). Using Woodbury matrix identity,

∆⊤
d Σ

−1
d ∆d = ∆⊤

d (Σ̃d +∆d∆
⊤
d )

−1∆d = Λ
1/2
d (I +Λd)

−1Λ
1/2
d .

Let Θd = Σ−1
d ∆dΛ

−1/2
d (I +Λd)

1/2, then Θ⊤
d ΣdΘd = I , and

Σld = Σl

[
Θl(I +Λl)

−1/2Λ
1/2
l Λ

1/2
d (I +Λd)

−1/2Θ⊤
d

]
Σd = Σl

(
K−1∑
k=1

ρkθ
(k)
l θ

(k)⊤
d

)
Σd,

where ρk are the diagonal elements of matrix (I + Λl)
−1/2Λ

1/2
l Λ

1/2
d (I + Λd)

−1/2, and θ
(k)
l , θ(k)

d

are corresponding columns of Θl, Θd.

33



2. Consider

Σld = AlA
⊤
d +∆l∆

⊤
d

= Σl

{
Σ

−1/2
l

(
Σ

−1/2
l AlA

⊤
d Σ

−1/2
d +Σ

−1/2
l ∆l∆

⊤
d Σ

−1/2
d

)
Σ

−1/2
d

}
Σd

= Σl

{
Σ

−1/2
l

(
RqDqP

⊤
q +RK−1DK−1P

⊤
K−1

)
Σ

−1/2
d

}
Σd,

where we used singular value decomposition

Σ
−1/2
l AlA

⊤
d Σ

−1/2
d = RqDqP

⊤
q

and

Σ
−1/2
l ∆l∆

⊤
d Σ

−1/2
d = RK−1DK−1P

⊤
K−1.

Since A⊤
d Σ̃

−1

d ∆d = 0, by Woodbury matrix identity A⊤
d Σ

−1
d ∆d = 0, and therefore R⊤

q RK−1 = 0

and P⊤
q P k−1 = 0. From the above display,

Σld = Σl

{
Σ

−1/2
l Rq+K−1Dq+K−1P

⊤
q+K−1Σ

−1/2
d

}
Σd.

The result follows by setting Θd = Σ
−1/2
d P q+K−1, and using the results from part 1.

2.7.3 Proof of Proposition 2

Proof. Gaynanova et al. (2016) consider optimization problem

minimize
V ∈Rp×(K−1)

{
1

2
Tr(V ⊤WV ) +

1

2
∥D⊤V − I∥2F + λ

p∑
i=1

∥vi∥2

}
, (2.12)

where W = 1
n

∑K
i=1(ni − 1)Si is the within-class sample covariance matrix, Si is the sample

covariance matrix for class i and D ∈ Rp×(K−1) has columns Dl defined as

Dl =

√
nl+1(

∑l
i=1 ni(x̄i − x̄l+1))

√
n
√∑l

i=1 ni

∑l+1
i=1 ni

.
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Here, x̄i is the sample mean for class i. Since ∥D⊤V − I∥2F = Tr{(D⊤V − I)⊤(D⊤V − I)} =

Tr(V ⊤DD⊤V − 2D⊤V + I), function (2.12) can be written as

minimize
V ∈Rp×(K−1)

{
1

2
Tr(V ⊤(W +DD⊤)V )− Tr(D⊤V ) + λ

p∑
i=1

∥vi∥2

}
. (2.13)

Since X is centered, W +DD⊤ = X⊤X/n. By the definition of Z and H ,

X⊤Z =

(
n1x̄1 ... nkx̄k

)
, X⊤ZH = nD.

Plugging the above equality into (2.13) leads to

minimize
V ∈Rp×(K−1)

{
1

2n
Tr(V ⊤X⊤XV )− 1

n
Tr(V ⊤X⊤ZH) + λ

p∑
i=1

∥vi∥2

}
.

Denote ZH by Ỹ , then the above display can be expressed as

minimize
V ∈Rp×(K−1)

{ 1

2n
∥Ỹ −XV ∥2F + λ

p∑
i=1

∥vi∥2
}
.
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3. PROPERTIES OF JACA AND ITS SEMI-SUPERVISED EXTENSION

3.1 Introduction

In Chapter 2, we formulate the JACA method for Joint Classification and Association Analy-

sis via a convex optimization problem. In this chapter, we provide theoretical guarantees on the

estimation consistency of JACA which are absent for previously proposed joint learning methods

(Luo et al., 2016; Gross and Tibshirani, 2015).

While estimation consistency has been established separately for discriminant analysis (Li and

Jia, 2017; Gaynanova, 2019) and canonical correlation analysis (Gao et al., 2017), providing sim-

ilar guarantees for JACA is not straightforward due to the unique structure of our framework. We

use the augmented data approach to rewrite our method as a penalized linear regression problem,

and use sub-exponential concentration bounds to control the inner-product between the augmented

random design matrix and the random matrix of residuals. Despite the dependency between corre-

sponding design matrix and the matrix of residuals, we obtain the estimation error bound that is of

the same order as the known bounds for group-lasso linear regression (Lounici et al., 2011; Nardi

and Rinaldo, 2008).

Another advantage of the proposed method is that it can be extended to the multi-view data

with block-missing structure, that is to cases where a subset of views or class labels is missing

for some subjects. In Section 3.5.1 we consider colorectal cancer data, where out of 282 subjects

with RNAseq data, only 167 subjects have corresponding miRNA and cancer subtype information.

While most methods can only use data from 167 subjects with complete information, our approach

can utilize data from 78 extra subjects for which at least two types of information are available (two

views with no class labels, or class labels with only one view). Section 3.4 shows an improved

classification accuracy of JACA when the subjects with incomplete information are added to the

analysis.

In summary, this work has two main contributions. First, we provide finite sample bounds on
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estimation consistency of our method in high-dimensional settings. Secondly, we generalize our

approach to the settings with block-missing data without the use of imputation.

3.2 Estimation consistency

In this section, we derive the finite sample bound on the estimation error of the minimizer

of (2.8) with Pen(W d) =
∑pd

i=1 ∥wdi∥2. From Theorem 1, our goal is to estimate the view-

specific matrices of discriminant vectors Θd, which are equal to Σ−1
d ∆d up to column scaling. To

connect (2.8) with Θd, consider the population objective function of (2.8) with λd = 0

E(2−1∥Y ′ −X ′W ∥2F ) = 2−1 Tr{W⊤E(X ′⊤X ′)W } − Tr{W⊤E(X ′⊤Y ′)}+ C, (3.1)

where C is a constant independent of W . Using the definition of augmented X ′ and Y ′,

E(X ′⊤X ′) =



Σ1 − 1−α
D−1

Σ12 · · · − 1−α
D−1

Σ1D

− 1−α
D−1

Σ21 Σ2 · · · − 1−α
D−1

Σ2D

...

− 1−α
D−1

ΣD1 − 1−α
D−1

ΣD2 · · · ΣD


/D := G,

and using Lemma 8 in Gaynanova and Kolar (2015) for the rth column of X ′⊤Y ′

E(X ′⊤Y ′
r) =

α

D
E{ 1

n
(X⊤

1 Ỹ r . . .X
⊤
DỸ r)

⊤} = ∆̃r + o(1).

Here o(1) term captures the differences between empirical class proportions nk/n and prior class

probabilities πk, and ∆̃ ∈ R(
∑D

i=1 pi)×(K−1) has rth column defined as

∆̃r =
α

D

√
πr+1

∑r
k=1 πk(µk − µr+1)√∑r
k=1 πk

∑r+1
k=1 πk

.
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Therefore, the objective in (3.1) can be written as

E(2−1∥Y ′ −X ′W ∥2F ) = 2−1Tr{W⊤GW } − Tr{W⊤∆̃}+ o(1) + C. (3.2)

Let W ∗ = G−1∆, then W ∗ is the minimizer of population loss function in (3.2) up to the o(1)

term. We further show that W ∗ also corresponds to the matrix of discriminant vectors Θd up to

orthogonal transformation and column-scaling.

Lemma 1. Under factor model (2.3) and for α ∈ (0, 1], there exists orthogonal matrices Rd such

that W ∗
dR

⊤
d is equal to Θd up to column scaling.

The proof of Lemma 1 indicates that the choice of α only affects the magnitude of the columns

of W ∗. Thus, W ∗ corresponds to Θd up to orthogonal transformation and column-scaling for any

α ∈ (0, 1]. Thus, the population loss (3.2) can be viewed as the quadratic loss with respect to

discriminant vectors Θd with a particular choice of orthogonal transformation and scaling, which

affect neither the classification rule nor the row-sparsity pattern. In what follows, we show that

minimizer Ŵ of (2.8) is consistent at estimating W ∗ under the following assumptions.

Assumption 3. Θd is row-sparse with the support Sd = {j : ∥e⊤j Θd∥2 ̸= 0} and sd = card(Sd)

. Hence W ∗
d is also row-sparse with the same support, and W ∗ is row-sparse with the support

S = (S1, . . . , SD) and s = card(S) =
∑D

d=1 sd.

Assumption 4. P (y = k) = πk for k = 1, . . . , K with 0 < πmin ≤ πk ≤ πmax < 1.

Assumption 5. xd|y = k ∼ N (µdk,Σdy) for all k = 1, . . . , K.

Assumption 6. Let pmax = maxd pd and pmin = mind pd. Then for some constant C > 0

log(pmax)

log(pmin)
≤ C and log pd = o(n), for all d = 1, . . . , D.

These assumptions are typical for multivariate analysis methods and high-dimensional settings.

Assumption 3 states that population matrices of discriminant vectors are row-sparse. Assump-
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tion 4 states that the class proportions are not degenerate. Assumption 5 states that the measure-

ments are normally distributed conditionally on the class membership, and it can be relaxed to

sub-gaussianity without affecting the rates. Assumption 6 allows to have a larger number of mea-

surements than the number of samples, and states that the views have comparable numbers of

measurements on the log scale. Because of the log scale, this assumption is mild. For example,

taking pmax = 1, 000, 000 and pmin = 100 leads to C = log(pmax)/log(pmin) = 3.

Similar to the assumptions required for estimation consistency in linear regression with group-

lasso penalty (Nardi and Rinaldo, 2008; Lounici et al., 2011), we also require restricted eigenvalue

condition satisfied on the weighted cone.

Definition 1 (Weighted cone). Let λ = (λ1, . . . , λd) and S = (S1, . . . , SD). Then

C(S,λ) =
{
M ∈ R

∑D
d=1 pd×(K−1) :

D∑
d=1

λd∥M d,Sc
d
∥1,2 ≤ 3

D∑
d=1

λd∥M d,Sd
∥1,2
}
.

Definition 2. A matrix Q ∈ Rq×p satisfies restricted eigenvalue condition RE(S,λ) with parameter

γQ = γ(S,λ,Q) if for some set S, and for all A ∈ C(S,λ) it holds that

∥QA∥2F ≥ γQ∥A∥2F .

We are now ready to state the main result. Let δ = ∥∆̃∥∞,2, let g = maxj{G−1}jj be the largest

diagonal entry of G−1, and let τ = maxj
√

σ2
j +maxk µ2

k,j , where σj are diagonal elements of Σy

and µk,j are elements of µk.

Theorem 2. Under Assumptions 3–6, if λd = C (τ ∨ τ 2δg)D−1
√

(K − 1) log[(K − 1)pd]/n for

some constant C > 0, s2dlog[(K − 1)pd] = o(n) and G−1/2 satisfies condition RE(S,λ) with

parameter γ = γ(S,λ,G−1/2), then

∥Ŵ −W ∗∥F = Op

(τ ∨ τ 2δg
) 1

Dγ

√√√√K − 1

n

D∑
d=1

sd log[(K − 1)pd]

 .
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Remark 3. If pd ≥ K for all d, then log[(K − 1)pd] = log(K − 1) + log pd < 2 log pd, and the

rate could be simplified to

∥Ŵ −W ∗∥F = Op

(τ ∨ τ 2δg
) 1

Dγ

√√√√K − 1

n

D∑
d=1

sd log(pd)

 .

Our results allow both the number of variable pd and the number of classes K to grow with n.

The scaling requirement s2dlog[(K − 1)pd] = o(n) is needed to ensure that restricted eigenvalue

condition on G implies restricted eigenvalue condition on random X ′⊤X ′ via the infinity norm

bound. When K = 2, Ŵ and W ∗ are vectors, and this condition can be dropped using the results

of Rudelson and Zhou (2013). Nevertheless, the estimation error itself has the same rate as esti-

mation error in linear regression with group-lasso (Lounici et al., 2011; Nardi and Rinaldo, 2008).

While our method can be viewed as multi-response linear regression due to formulation (2.8), the

group lasso results cannot be directly applied for several reasons. First, both X ′ and Y ′ have de-

pendencies across rows and contain fixed blocks of 0 values. Second, the linear model assumption

between Y ′ and X ′ does not hold. Third, the residuals Ψ = Y ′ − X ′W ∗ do not have nor-

mal distribution and are dependent with X ′. These challenges required the use of different proof

techniques, and the full proof of Theorem 2 can be found in the Supplementary Material.

3.3 Missing data case - semi-supervised learning

In the joint analysis of multi-view data, it is typical to perform complete case analysis, that

is only consider the subjects for which all the views are available. This is often not the case in

practice. One example is described in Section 3.5.1, where out of 282 subjects with RNAseq data,

only 218 have also available miRNA measurements. Moreover, 51 subjects out of these 218 have

no class labels, and therefore can not be used to train supervised classification algorithms. Most of

the available methods require either imputation of missing views/group labels, or perform complete

case analysis (only use samples for which all the views and the group labels are available). A

particular advantage of our framework is that we can also use the samples for which we have either

a class-label or at least two views available without the need to impute the missing values. In
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other words, our proposal allows to perform semi-supervised learning, that is to use information

from both labeled and unlabeled subjects to construct classification rules. In what follows, we

assume that for each view and each subject, the measurements are rather completely missing, or

not missing at all, that is we do not consider the case where a subset of measurements from one

view is missing.

Consider an equivalent representation of (2.7) as

minimize
W 1,...,WD

{ α

2nD

D∑
d=1

n∑
i=1

∥ỹi − x⊤
idW d∥22

+
α

2nD(D − 1)

D∑
d=1

D∑
l=d+1

n∑
i=1

∥x⊤
idW d − x⊤

ilW l∥22 +
D∑

d=1

λd Pen(W d)
}
,

(3.3)

where xid is the ith row of matrix Xd. Next, assume some samples have missing views or class

labels. Let Ady be the subset of samples (out of n) for which both class label and view d are

available, and let Bdl be the subset of samples for which both views d and l available. In case

there are no missing labels/views, Ady = Bdl = {1, . . . , n} for all d = 1, . . . , D, l = 1, . . . , D.

Then (3.3) can be rewritten as

minimize
W 1,...,WD

{ α

2nD

D∑
d=1

∑
i∈Ady

∥ỹi − x⊤
idW d∥22

+
α

2nD(D − 1)

D−1∑
d=1

D∑
l=d+1

∑
i∈Bdl

∥x⊤
idW d − x⊤

ilW l∥22 +
D∑

d=1

λd Pen(W d)
}
,

(3.4)

that is we can use all samples with class labels and at least one view for the first part (discrimi-

nant analysis), and all samples with at least two views for the second part (canonical correlation

analysis). The only samples that we can not use are the ones for which there is no class label

and only one view. Like (3.3), problem (3.4) is convex, and can be rewritten as multi-response

linear regression problem using augmented data approach similar to Section 2.2.2. This means
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that the implementation of Section 2.3 can also be used for problem (3.4). We refer to (3.4) as

semi-supervised JACA (ssJACA).

To adopt the proposed cross-validation scheme in Section 2.3.3 for ssJACA, we stratify the

samples based on the patterns of “missingness", and split each stratum into F folds. For clarity,

we illustrate the case when D = 3. Let H be the subset of samples (out of n) with no missing

labels/views. Let My be the subset of samples for which only class labels are missing, and Md

be the subset of samples for which only view d is missing. Similarly, let Mdy be the subset of

samples for which only class label and view d are missing, and Mdl be the subset of samples for

which only views d and l are missing. We first randomly divide each of these strata into F folds:

H(f),M
(f)
y ,M

(f)
d ,M

(f)
dy and M

(f)
dl where f = 1, 2, . . . , F . For each f , we then hold out the union

of H(f),M
(f)
y ,M

(f)
d ,M

(f)
dy and M

(f)
dl for testing, and use the remaining samples for training so that

the criterion (3.5) can still be applied.

CV (ρ, ε) =
1

F

F∑
f=1

{
α

D∑
d=1

|Cor(Ỹ
(f)

,X
(f)
d Ŵ

(−f)

d )|

+
(1− α)

D − 1

D−1∑
d=1

D∑
l=d+1

|Cor(X(f)
d W

(−f)
d ,X

(f)
l W

(−f)
l )|

}
,

(3.5)

3.4 Simulation studies

We compare the performance of the following methods: (i) JACA: Joint Association and Clas-

sification Analysis, the proposed approach; (ii) ssJACA: semi-supervised Joint Association and

Classification Analysis. We generate the data using factor model (2.3) as in Section 2.4.1. We

compare the methods in terms of misclassification rate, strength of association between the views,

estimation consistency and variable selection results.

3.4.1 Two datasets, two groups

We set n = 200, K = 2, and generate n independent y ∈ {1, 2} with π1 = 0.4, and pairs

(x1,x2) ∈ Rp1 ×Rp2 with (p1, p2) ∈ {(100, 100), (100, 500), (500, 500)} following Section 2.4.1.
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Figure 3.1: Comparison of misclassification rates between JACA and semi-supervised JACA (ss-
JACA) over 100 replications when D = 2, K = 2. JACA uses 100 samples with complete
view/class information, whereas ssJACA additionally uses 100 samples with missing class infor-
mation.

Further, we randomly set class information for 100 samples as missing, so that n1 = 100 sam-

ples have complete view and class information, whereas the remaining n2 = 100 samples have

information on both views but no class assignment. We compare JACA based on n1 = 100 com-

plete samples with ssJACA based on all n1 + n2 = 200 samples. As before, we generate 10, 000

new samples as test data to evaluate the misclassification rates. The results over 100 replications

are displayed in Figure 3.1. In every scenario, ssJACA improves JACA in both miscalssification

rates and sum correlation, confirming the advantage of incorporating samples with missing class

information in the analysis.

In Figure 3.2 we compare the variable selection performance of JACA with ssJACA. The av-

erage performance of both approaches is similar, with ssJACA having lower variability across the

replications.
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Figure 3.2: Comparison between JACA and semi-supervised JACA (ssJACA) over 100 replica-
tions when D = 2, K = 2. JACA uses n = 100 samples with complete view/class information,
whereas ssJACA uses extra 100 samples with missing class information. Left: estimation consis-
tency results. Right: variable selection results.

3.4.2 Multiple datasets, multiple groups

We set n = 200, K = 3, and generate n independent y ∈ {1, 2, 3} with π1 = 0.4, π2 = π3 =

0.3. We also generate n tuples (x1,x2,x3) ∈ Rp1 × Rp2 × Rp3 with p1 = p2 = p3 ∈ {100, 500}

following Section 2.4.1. We further set class information for 100 samples as missing. We compare

JACA based on n1 = 100 complete samples with ssJACA based on all n1 + n2 = 200 samples,

and the misclassification rates are evaluated on 10, 000 test samples as before. The results over

100 replications are displayed in Figure 3.3. When p1 = p2 = p3 = 100, ssJACA improves

JACA in both misclassification rates and in sum correlation. When p1 = p2 = p3 = 500, ssJACA

performs slightly better than JACA in misclassification rates, but it obtains higher sum correlation

confirming the advantage of incorporating samples with missing class information.
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Figure 3.3: Comparison between JACA and semi-supervised JACA (ssJACA) over 100 replications
when D = 3, K = 3. JACA uses 100 samples with complete view/class information, whereas
ssJACA additionally uses 100 samples with missing class information.

Table 3.1: Number of available samples in COAD data with different missing patterns of CMS
class/RNAseq/miRNA. Complete cases analysis will only be able to use 167 samples, whereas our
semi-supervised approach allows to use 245 (all except the last row).

CMS class RNAseq miRNA Sample size
yes yes yes 167
yes yes no 27
no yes yes 51
no yes no 37

Total: 282

3.5 Data analysis

3.5.1 TCGA-COAD dataset

We revisit the colorectal cancer (COAD) data from The Cancer Genome Atlas project. Recall

that the data has 282 subjects in total, with Table 3.1 displaying the pattern of available information

for each subject.
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Table 3.2: Numbers of features selected by JACA and ssJACA on COAD data. JACA is trained
using 167 subjects and ssJACA is trained using 245 subjects. The last column corresponds to the
number of features shared by both approaches.

JACA ssJACA Intersection
RNA-seq 277 345 227
miRNA 164 188 161

We compare JACA fitted on 167 subjects (all views and subtypes available) with ssJACA fitted

on 245 subjects (at least two views available). Both methods achieve the same misclassification

rates on 167 subjects. For 27 subjects with missing miRNA data, the subtypes can only be pre-

dicted based on RNAseq. JACA has 11.11% misclassification rate on these 27 subjects, whereas

ssJACA has 0% misclassification rate. This is perhaps not surprising since these 27 subjects are

used by ssJACA for training, however it does show that including additional subjects changes the

resulting classification rule. Similarly, for 51 subjects with missing subtype information, the corre-

lation between X∗
1Ŵ 1 and X∗

2Ŵ 2 for JACA and ssJACA methods are 0.84 and 0.92 respectively,

demonstrating that ssJACA leads to higher associations between the views. Table 3.2 shows the

numbers of features selected by both methods. We observe that there is a significant overlap in

the selected features, with ssJACA selecting a larger number. Due to the limitations of the data,

we can only compare two methods on 245 subjects with at least two views available. However,

the simulations in Section 3.4 suggest that incorporating samples with missing information should

lead to improved estimation.

The heatmaps of RNAseq and miRNA data with features selected by ssJACA are shown in

Figure 3.4. Both views demonstrate different patterns across CMS classes, with the separation on

RNASeq being visually much clearer. This is not surprising as CMS classes have been determined

based on gene expression data only. Our analysis, however, also allows to determine co-varying

patterns in miRNA, with subtype CMS4 being visually the most distinct in that view.

We also consider the visual separation of subtypes based on the projection of RNAseq and

miRNA data using discriminant directions found by JACA and ssJACA (Figure 3.5). The triangular
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Figure 3.4: Heatmaps of RNAseq and miRNA views from COAD data based on features selected
by ssJACA. We use Ward’s linkage with euclidean distances for feature ordering.

points in transparent colors indicate 167 subjects with complete view and subtype information. The

round points in solid colors are subjects who have missing subtypes, but for whom the subtypes

have been previously predicted using random forest classifier (Guinney et al., 2015). We treat these

predictions as the gold standard. The square points in solid colors are subjects with no assigned
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Table 3.3: Number of samples in BRCA data with different missing patterns of views and cancer
subtype. There are only 377 samples with complete information, whereas semi-supervised JACA
approach allows to use 708 (all except the last row).

GE ME miRNA RPPA Cancer type Count
yes yes yes yes yes 377
yes yes yes no yes 114
yes yes no yes yes 19
yes yes no no yes 3
yes no yes yes yes 1
no yes yes yes no 1
no yes yes no no 193
no yes no no no 84

Total = 792

subtype, which are deemed to have mixed subtype membership (Guinney et al., 2015). The subtype

separation is clear based on the projected values, with square points being often in the middle of

other subtypes, thus confirming the possibility of mixed subtype membership for those subjects.

3.5.2 TCGA-BRCA dataset

We revisit breast cancer data from Section 2.5.2. Recall that the datasets have 4 views: gene

expression (GE), DNA methylation (ME), miRNA expression (miRNA), and reverse phase protein

array (RPPA). The samples are separated into 4 breast cancer subtypes: Basal, LumA, LumB and

Her2 (The Cancer Genome Atlas Network, 2012). For completeness, we list the number of samples

in BRCA data with different missing patterns of views and cancersub type in Table 3.3).

We compare JACA fitted on 377 subjects (all views available) with ssJACA fitted on 708 (at

least two views available). In Table 3.4 we compare in-sample misclassification errors based on (i)

377 samples with complete information; and (ii) additional 137 samples for which GE and class

information is available, but at least one other view is missing. On 377 samples, ssJACA misclassi-

fication rates are better based on GE and ME data, but are somewhat worse for miRNA and RPPA.

On 137 samples, ssJACA has a much better performance, likely because ssJACA can incorporate

the information from those sample within the estimation procedure. Table 3.5 compares the num-
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Figure 3.5: Projection of RNAseq and miRNA views from COAD data onto discriminant directions
found by JACA and ssJACA.
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Table 3.4: Number of misclassified samples on BRCA data. JACA uses 377 subjects and ssJACA is
uses 708 subjects. Second to sixth columns correspond to 377 subjects with complete information,
whereas the last column corresponds to 137 subject with GE and subtype information, but at least
one other view missing.

out of 377 subjects out of 137 subjects

Method GE ME miRNA RPPA All GE
JACA 23 40 38 65 34 13
ssJACA 19 38 39 72 33 6

Table 3.5: Cardinality comparison of JACA and ssJACA on BRCA data. JACA is trained using
377 subjects and ssJACA is trained using 708 subjects. The third row is the numbers of features
shared by both methods.

GE ME miRNA RPPA
JACA 465 393 299 129
ssJACA 579 457 318 135
Intersection 394 371 277 128

ber of features selected by both methods. ssJACA tends to select more variables than JACA, with

a significant overlap between the two.

3.6 Technical Proofs

3.6.1 Proof of Lemma 1

Proof. By multiplying the covariance matrix G on both sides of W ∗
dR

⊤
d ∝ Σ−1

d ∆d, it remains

to show that for some orthogonal matrices Rd, ∆̃diag(R1 · · · ,RD)
⊤ ∝ Gdiag(Σ)−1∆, where
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diag(Σ)−1 = diag(Σ−1
1 , · · · ,Σ−1

D ). Expending the right hand side leads to

Gdiag(Σ)−1∆ =


I −1−α

D
Σ12Σ

−1
2 · · · −1−α

D
Σ1DΣ

−1
D

...

−1−α
D

ΣD1Σ
−1
1 −1−α

D
ΣD2Σ

−1
2 · · · I



∆1

...

∆D



=


∆1 − 1−α

D

∑
d ̸=1Σ1dΣ

−1
d ∆d

...

∆D − 1−α
D

∑
d ̸=D ΣDdΣ

−1
d ∆d

 .

From the factor model decomposition (2.3), A⊤
d Σ

−1
d ∆d = 0 holds, and hence

ΣldΣ
−1
d ∆d = ∆l∆

⊤
d Σ

−1
d ∆d = ∆lΛd(Λd + I)−1,

where ∆⊤
d Σ

−1
dy ∆d = Λd. It follows that

∆l −
1− α

D

∑
d ̸=l

ΣldΣ
−1
d ∆d = ∆l −

1− α

D

∑
d ̸=l

∆lΛd(Λd + I)−1 ∝∆l.

Choosing Rd as an orthogonal matrix such that ∆̃dR
⊤
d = ∆d completes the proof.

3.6.2 Proof of Theorem 2

Proof. Consider the concatenated X̃ =

(
X1 X2 · · · XD

)
. From Lemmas 3 and 7 in Gay-

nanova (2019), with probability at least 1− η and some constant C

∥ 1
n
X̃

⊤
X̃ −ΣT∥∞ ≤ Cτ 2

√
log(

∑D
i=1 piη

−1)

n
,
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where τ = maxj
√
σ2
j +maxk µ2

kj , σj are diagonal elements of Σy and µk,j are elements of µk.

Therefore, with probability at least 1− η

∥G−X ′⊤X ′∥∞ ≤
1

D
∥ 1
n
X̃

⊤
X̃ −ΣT∥∞ ≤

Cτ 2

D

√
log(

∑D
i=1 piη

−1)

n
.

From Lemma 5, if sd ≤ γλ2
min(32Dλ2

d∥G − X ′⊤X ′∥∞)−1, then X ′ satisfies RE(S, 3,λ) and

γ ≤ 2γ. Hence, using λd = C (τ ∨ τ 2δg)D−1
√
(K − 1) log[(K − 1)pd]/n, Assumption 6 and the

condition s2dlog[(K − 1)pd] = o(n) leads to sd ≤ γλ2
min(32Dλ2

d∥G −X ′⊤X ′∥∞)−1. Therefore,

by Theorems 3 and 4

∥Ŵ −W ∗∥F = Op

(τ ∨ τ 2δg
) 1

Dγ

√√√√K − 1

n

D∑
d=1

sd log[(K − 1)pd]

 .

Proof of Proposition 3. By the KKT conditions (2.10), W d = 0 leads to X ′⊤
dj Y

′ = λudj , hence

by the definition of subgradient
∥∥X ′⊤

dj Y
′∥∥

2
=

∥∥∥∥(αX⊤
d Ỹ

nD

)
j

∥∥∥∥
2

= λ∥udj∥2 ≤ λ. This implies that

W d = 0 satisfies KKT conditions whenever λ ≥ α(nD)−1∥X⊤
d Ỹ ∥∞,2.

3.6.3 Supporting Theorems and Lemmas

Lemma 2. Let ϕd = α
nD

X⊤
d

(
Ỹ −XdW

∗
d

)
+ 1−α

nD(D−1)

∑
j ̸=d

(
XjW

∗
j −XdW

∗
d

)
, and let Ŵ

be the solution to (2.8) with λd ≥ 2∥X⊤
d ϕd∥∞,2. Let H = Ŵ −W ∗, and S as defined in

Assumption 3, then H ∈ C(S, λ).

Proof. Consider the KKT conditions for (2.8)

0 = −X ′⊤(Y ′ −X ′Ŵ ) + ŝ,

where ŝdj ∈ ∂(λd∥wdj∥2) evaluated at Ŵ . Multiplying (W ∗ − Ŵ )⊤ on both sides gives

(W ∗ − Ŵ )⊤
(
X ′⊤(Y ′ −X ′Ŵ )− ŝ

)
= 0.
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Let Ψ = Y ′−X ′W ∗. Replacing Y ′ with Y ′ +X ′W ∗−X ′W ∗ and using properties of subgra-

dient of convex functions leads to

∥X ′(W ∗ − Ŵ )∥2F ≤ ⟨X ′⊤Ψ, Ŵ −W ∗⟩+
D∑

d=1

λd∥W ∗
d∥1,2 −

D∑
d=1

λd∥Ŵ d∥1,2.

Since ⟨X ′⊤Ψ, Ŵ −W ∗⟩ =
∑D

d=1⟨X
⊤
d ϕd, Ŵ d − Ŵ

∗
d⟩, applying Hölder inequality twice and

using conditions on λd leads to

∥X ′(W ∗ − Ŵ )∥2F ≤
D∑

d=1

⟨X⊤
d ϕd, Ŵ d −W ∗

d⟩+
D∑

d=1

λd∥W ∗
d∥1,2 −

D∑
d=1

λd∥Ŵ d∥1,2

≤
D∑

d=1

∥X⊤
d ϕd∥∞,2∥Ŵ d −W ∗

d∥1,2 +
D∑

d=1

λd∥W ∗
d∥1,2 −

D∑
d=1

λd∥Ŵ d∥1,2

≤
D∑

d=1

λd

2

(
∥Hd,Sd

∥1,2 + ∥Hd,Sc
d
∥1,2
)
+

D∑
d=1

λd∥W ∗
d∥1,2 −

D∑
d=1

λd∥Ŵ d∥1,2.

Since

∥Ŵ d∥1,2 = ∥W ∗
d + Ŵ d −W ∗

d∥1,2 = ∥W ∗
d,Sd

+Hd,Sd
∥1,2 + ∥Hd,Sc

d
∥1,2

≥ ∥W ∗
d,Sd
∥1,2 − ∥Hd,Sd

∥1,2 + ∥Hd,Sc
d
∥1,2,

combining the above two displays gives

∥X ′(W ∗ − Ŵ )∥2F ≤
D∑

d=1

3

2
λd∥Hd,Sd

∥1,2 −
D∑

d=1

1

2
λd∥Hd,Sc

d
∥1,2. (3.6)

Since ∥X ′(W ∗ − Ŵ )∥2F ≥ 0, the statement follows.

Theorem 3. Let Ŵ be the solution to (2.8) with λd ≥ 2∥X⊤
d ϕd∥∞,2, where ϕd are defined in
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Lemma 2. Under Assumption 3, if X ′ satisfies RE(S,λ) with γ = γ(S,λ,X ′), then

∥Ŵ −W ∗∥F ≤
3

2γ

√√√√ D∑
d=1

λ2
dsd.

Proof. From equation (3.6), using H = Ŵ −W ∗,

∥X ′(W ∗ − Ŵ )∥2F ≤
D∑

d=1

3λd

2
∥W ∗

d,Sd
− Ŵ d,Sd

∥1,2 ≤
3

2

D∑
d=1

λd

√
sd∥W ∗

d,Sd
− Ŵ d,Sd

∥F .

Applying Cauchy-Schwartz inequality gives

∥X ′(W ∗ − Ŵ )∥2F ≤
3

2

√√√√ D∑
d=1

λ2
dsd∥W

∗
S − Ŵ S∥F .

Since X ′ satisfies RE(S,λ) and H ∈ C(S,λ), by Lemma 2

∥W ∗ − Ŵ ∥2F ≤
1

γ
∥X ′(W ∗ − Ŵ )∥22 ≤

1

γ

3

2

√√√√ D∑
d=1

λ2
dsd∥W

∗
S − Ŵ S∥F

≤ 1

γ

3

2

√√√√ D∑
d=1

λ2
dsd∥W

∗ − Ŵ ∥F .

If ∥W ∗−Ŵ ∥2F = 0, the bound holds trivially. Otherwise, dividing by ∥W ∗−Ŵ ∥F on both sides

leads to the desired bound.

Theorem 4. Under Assumptions 4–6, there exists C > 0 such that

∥X⊤
d ϕd∥∞,2 ≤ C

(
τ ∨ τ 2δg

) 1

D

√
(K − 1) log((K − 1)pdη−1)

n
, d = 1, . . . , D,

with probability at least 1− η, where ϕd are from Lemma 2.

Proof. Without loss of generality, consider d = 1 and let ∆̃ =

(
∆̃

⊤
1 ∆̃

⊤
2 · · · ∆̃

⊤
D

)⊤

, where
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∆̃d ∈ Rpd×K−1. Applying the triangle inequality gives

∥X⊤
1 ϕ1∥∞,2

= ∥ α

nD
X⊤

1 (Ỹ −X1W
∗
1) +

1− α

nD(D − 1)

∑
l ̸=1

X⊤
1 (X lW

∗
l −X1W

∗
1)∥∞,2

= ∥ α

nD
X⊤

1 (Ỹ −X1W
∗
1)− ∆̃1 + ∆̃1 +

1− α

nD(D − 1)

∑
l ̸=1

X⊤
1 (X lW

∗
l −X1W

∗
1)∥∞,2

≤ ∥ α

nD
X⊤

1 Ỹ − ∆̃1∥∞,2︸ ︷︷ ︸
:=I1

+ ∥∆̃1 −
α

nD
X⊤

1 X1W
∗
1 +

1− α

nD(D − 1)

∑
l ̸=1

X⊤
1 (X lW

∗
l −X1W

∗
1)∥∞,2︸ ︷︷ ︸

:=I2

.

Consider I1. From Lemma 4 in Gaynanova (2019), there exists C1 > 0 such that

∥ α

nD
X⊤

1 Ỹ − ∆̃1∥∞,2 ≤
C1

D
max

j
σ1,j

√
(K − 1) log(p1η−1)

n
≤ C1

D
τ

√
(K − 1) log(p1η−1)

n

with probability at least 1− η.

Consider I2.

I2 =
∥∥∥∆̃1 −

1

n
X⊤

1

{
α
1

D
X1W

∗
1 +

1− α

D
X1W

∗
1 −

1− α

D(D − 1)

∑
l ̸=1

X lW
∗
l

}∥∥∥
∞,2

=
∥∥∥∆̃1 −

1

Dn
X⊤

1

{
X1W

∗
1 −

1− α

D − 1

∑
l ̸=1

X lW
∗
l

}∥∥∥
∞,2

= ∥∆̃1 −
1

Dn
X⊤

1 U∥∞,2,

where U = X1W
∗
1 − 1−α

D−1

∑
l ̸=1X lW

∗
l ∈ Rn×(K−1). Since the first p1 rows of G are

(
Σ1 − 1−α

D−1
Σ12 · · · − 1−α

D−1
Σ1D

)
/D,
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we have

E
(

1

Dn
X⊤

1 U

)
=

1

D
E
(
1

n
X⊤

1

(
X1 − 1−α

D−1
X2 · · · − 1−α

D−1
XD

)
W ∗

)
=

1

D

(
Σ1 − 1−α

D−1
Σ12 · · · − 1−α

D−1
Σ1D

)
G−1∆̃

=

(
Ip1 0

)
∆̃ = ∆̃1.

Combining the above gives

I2 =

∥∥∥∥∆̃1 −
1

Dn
X⊤

1 U

∥∥∥∥
∞,2

≤
√
K − 1

∥∥∥∥∆̃1 −
1

Dn
X⊤

1 U

∥∥∥∥
∞

=
√
K − 1

∥∥∥∥E( 1

Dn
X⊤

1 U

)
− 1

Dn
X⊤

1 U

∥∥∥∥
∞
.

From Lemma 3 in Gaynanova (2019), all elements of X1 are subgaussian with parameter at most

τ . From Lemma 3, all elements of U are subgaussian with parameter at most 2τδg. Therefore, by

Lemma 4, there exist C2 > 0 such that with probability at least 1− η

I2 ≤ C2
τ 2δg

D

√
(K − 1) log((K − 1)p1η−1)

n
.

Combining the results for I1 and I2 leads to the desired bound.

Lemma 3. Under Assumptions 4–5, all elements of U d = XdW
∗
d − 1−α

D−1

∑
l ̸=d X lW

∗
l , d =

1, . . . , D, are subgaussian with parameter 2τδg.

Proof. Without loss of generality, let d = 1 and V =

(
X1 − 1−α

D−1
X2 · · · − 1−α

D−1
XD

)
∈

Rn×
∑D

i=1 pi so that U 1 = U = V W ∗. Let vi be the ith row of V . Under Assumptions 4–5,

vi|yi = k follows normal distribution with

E
[
vi

∣∣∣yi = k
]
= Pµk,Cov

[
vi

∣∣∣yi = k
]
= PΣyP = Σ̄y,
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where P = diag(Ip1 ,− 1−α
D−1

Ip2 , . . . ,− 1−α
D−1

IpD). Therefore,

W ∗⊤vi = ∆̃
⊤
G−1vi

= ∆̃
⊤
G−1(P

K∑
k=1

µk 1{yi = k}+ Σ̄
1/2
y ei)

= ∆̃
⊤
G−1P

K∑
k=1

µk 1{yi = k}+ ∆̃
⊤
G−1Σ̄

1/2
y ei

:= v1i + v2i,

where ei ∼ N (I) and v1i, v2i are independent random vectors.

Let M = (µ1 µ2 · · · µK) ∈ R
∑D

i=1 pi×K . Since ∥G−1∥∞ ≤ g,

∥v1i∥∞ = ∥∆̃
⊤
G−1P

K∑
k=1

µk 1{yi = k}∥∞ ≤ ∥∆̃
⊤
G−1PM∥∞,2

≤ ∥∆̃∥∞,2∥G−1∥∞∥PM∥∞ ≤ δτg,

where the second inequality holds because of ∥AB∥∞,2 ≤ ∥A∥∞∥B∥∞,2 (Obozinski et al., 2011,

Lemma 8). Hence all elements of v1i are subgaussian with parameter at most δτg.

On the other hand, v2i is a normally distributed vector with mean 0 and covariance Cov(v2i) =

∆̃
⊤
G−1Σ̄yG

−1∆̃. Since

∥Cov(v2i)∥∞ = ∥∆̃
⊤
G−1Σ̄yG

−1∆̃∥∞

≤ ∥∆̃∥2∞∥G−1∥2∞∥Σy∥∞∥P ∥2∞

≤ ∥∆̃∥2∞,2∥G−1∥2∞∥Σy∥∞ ≤ δ2τ 2g2,

all elements of v2i are also subgaussian with parameter δτg.

Combining the results for v1i and v2i,

E(eλuij) = E{eλ(v1ij+v2ij)} = E(eλv1ij)E(eλv2ij) ≤ eλ
2{2τδg}/2.
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This implies that all elements of U 1 are subgaussian with parameter 2τδg.

Lemma 4. Let (xi,yi) ∈ Rp × Rq be independent identically distributed pairs of mean zero

random vectors with E(xiy
⊤
i ) = Σxy, and let all elements of xi and yi be sub-gaussian with

parameters τ1 and τ2, respectively. Let X = [x1 . . .xn]
⊤, Y = [y1 . . .yn]

⊤ If log(pq) = o(n),

then with probability at least 1− η for some constant C > 0

∥∥∥∥ 1nX⊤Y −Σxy

∥∥∥∥
∞
≤ Cτ1τ2

√
log(pq/η)

n
.

Proof. Let uikj = xjiyjk, then uikj is sub-exponential with parameter 2τ1τ2 (Vershynin, 2012,

Lemma 5.14). Let σik be elements of Σxy, then uikj − σik are sub-exponential with parameter

4τ1τ2, and using Bernstein’s bound (Vershynin, 2012, Proposition 5.16)

pr
(∥∥∥ 1

n

n∑
j=1

uikj − σik

∥∥∥
∞
≥ ε
)
≤ 2 exp

{
− Cmin(

ε2

16τ 21 τ
2
2

,
ε

4τ1τ2
)n
}

for some C > 0. By union bound

pr(∥X⊤Y /n−Σ∥∞ ≥ ε) ≤ pq pr
(∥∥∥ 1

n

n∑
j=1

uikj − σik

∥∥∥
∞
≥ ε
)
.

Setting ε = C1τ1τ2

√
log(pq/η)

n
and using log(pq) = o(n) completes the proof.

Lemma 5. Let G1/2 satisfy RE(S,λ) with γ = γ(S,λ,G1/2), and let λmin := mind=1,...,D λd. If

sd ≤ γλ2
min(32Dλ2

d∥G−X ′⊤X ′∥∞)−1 , then X ′ satisfies RE(S,λ) and

0 < γ(S,λ,X ′) ≤ 2γ(S,λ,G1/2).

Proof. Since G1/2 satisfies RE(S,λ), for all A ∈ C(S,λ)

58



Tr(A⊤X ′⊤X ′A) = Tr(A⊤GA) + Tr{A⊤(G−X ′⊤X ′)A}

≥ γ∥A∥2F − ∥A∥21,2∥G−X ′⊤X ′∥∞.

Since A ∈ C(S,λ), we have

∥A∥1,2 ≤
D∑

d=1

λd

λmin

(∥Ad,Sd
∥1,2 + ∥Ad,Sc

d
∥1,2)

≤ 4
D∑

d=1

λd

λmin

∥Ad,Sd
∥1,2 ≤ 4

D∑
d=1

√
sd

λd

λmin

∥Ad,Sd
∥F

≤ 4

√∑D
d=1 λ

2
dsd

λ2
min

∥AS∥F ≤ 4

√∑D
d=1 λ

2
dsd

λ2
min

∥A∥F ,

Therefore

Tr(A⊤X ′⊤X ′A) ≥ γ∥A∥2F − 16

∑D
d=1 λ

2
dsd

λ2
min

∥A∥2F∥G−X ′⊤X ′∥∞

≥ γ∥A∥2F −
γ

2
∥A∥2F =

γ

2
∥A∥2F ,

where the last inequality holds because of the condition on sd.
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4. PAN-CANCER ASSOCIATION ANALYSIS

4.1 Introduction

The transcriptomics deconvolution in bulk tumor samples is a popular topic in genome re-

search. And in-depth knowledge of the role of genome has been proved to be essential to un-

derstand the nature of the cancer and to improve its prognosis. However, analyzing bulk gene

expression data is difficult due to the changes in identifying cell composition (Newman et al.,

2015), especially when cell subsets are contaminated by unknown mixtures. Therefore, such cell

type heterogeneity makes it more complicated to identify genes signatures and bio-markers that

are crucial to the interpretation of cancer.

Recently, various work has been developed to investigate the cellular heterogeneity problem.

Newman et al. (2015) proposed CIBERSORT method to characterize cell heterogeneity using

micro-array data. However, it produces only relative proportions of cellular subtypes and requires

the reliability of the reference profiles. Li et al. (2017) developed Tumor Immune Estimation Re-

source (TIMER) to analyze the abundance of immune infiltrates. Wang et al. (2018) proposed

DeMixT to estimate heterogeneous tumor sample compositions using RNA-seq data from a fre-

quentist perspective. These methods utilize different genome information to estimate the cellular

purity, thus also contain heterogeneity.

In this work, we apply CIBERSORT, TIMER or DeMixT methods to various cancer types from

The Cancer Genome Atlas project (Weinstein et al., 2013). Since these methods produces tumor

purity estimations through different channels, our primary goal is to find out what information is

shared between them and identify which cellular types are predictive of prognosis. However, one

of the major challenges of this task is that the estimations are proportion instead of Gaussian, thus

prevents us from applying the commonly used CCA methods.

Several methods have been proposed to extend CCA to handle non-Gaussian data such as non-

negative, binary or integer-valued data. Klami et al. (2010) proposed a Bayesian framework by
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generalizing probabilistic CCA (Bach and Jordan, 2005) with exponential family. Instead of im-

posing the normality assumptions, they assume the prior of the sources is a specific combination

of Gaussians. However, this method lacks identifiability guarantees and is computationally ex-

pensive for large data. Podosinnikova et al. (2016) presented a generalization of the CCA model

by factoring the data directly. Nevertheless, this method can only be applied to count data. Li

and Gaynanova (2018) proposed the Generalized association study framework (GAS) to extend

CCA through a frequentist perspective. It assumes the entries of data matrices follow the exponen-

tial family distributions and decomposes the corresponding natural parameter matrices into joint

and individual parts. Nevertheless, the model was initially developed for binary and Poisson data

instead of proportion data.

In this chapter, we assess the associations between cellular purity estimations by different tools

in Pan-Cancer data by exploring the GAS framework. We extended the GAS to handle proportion

data. Next, the patients are clustered based on obtained scores from corresponding common or

individual signals. The relationship that the estimated common and individual signals have with

the survival is then being investigated, using the overall survival probability or the progression-free

probability for different types of cancer. The difference in survival probability of different clusters

will be assessed to find out which signal is informative for survival and predictive of prognosis.

The rest of the Chapter is organized as follows. Section 4.2 discuss the data cleaning process

and describes the methods used in the analysis. Section 4.3 provides association and survival

analysis results for prostate, bladder and colorectal cancer. We conclude with a summary of the

scientific discoveries in Section 4.4.

4.2 Data and methodology

4.2.1 Data discription

In this work, we consider Prostate Cancer (PROD), Bladder Cancer (BLCA) and Colorectal

Cancer (COLON) from the the Cancer Genome Atlas Project (Weinstein et al., 2013). We ap-

ply CIBERSORT and DeMixT to BLCA and COLON to obtain proportion estimates, and apply
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TIMER and DeMixT to PROD as prostate cancer is known to be immune cold, thus CIBERSORT

produce much less meaningful estimates. For each patient, CIBERSORT produces 22 estimates;

TIMER produces 6 estimates and DeMixT produces 3 estimates. We further gather clinical results

for patients to aid future survival analysis.

4.2.2 Data preprocessing

To facilitate analysis, we first pair the CIBERSORT/TIMER estimates and DeMixT estimated

proportions by patients, and only the patients with both types of information available are selected

for association analysis. For CIBERSORT estimates, we remove attributes that contains more

than 85% of zero entries from further analysis, which lead to removal of T.cells.gamma.delta and

Eosinophils for BLCA, T.cells.CD4.naive and T.cells.gamma.delta for COLON. The remaining

zero-valued entries of TIMER/CIBERSORT estimates were replaced by 2.42 × 104 in PROD,

3.010 × 10−5 in BLCA and 6.218 × 10−6 in COLON, which correspond to minimal values of

non-zero entries in each respective dataset. DeMixT estimates contain three cellular proportions:

immune, stroma and tumor. We only keep two of them, as these three proportions sum to one.

4.2.3 Review of the generalized association study framework

In this subsection, we review the Generalized association study framework (GAS) (Li and

Gaynanova, 2018) that finds associations between estimations by different tools. The GAS model

assumes the entries of data matrices follow the exponential family distributions, and it decomposes

the corresponding natural parameter matrices into an intercept, common and individual structure.

The common structure contains information shared by both data matrices; whereas the individual

structure contains the remaining information. Specifically, let Xk be the data matrix of size n×pk,

k = 1, 2. And let Θk be the corresponding natural parameter matrix. GAS decomposed the natural

parameter matrices as

Θ1 = 1nµ
⊤
1 +U 0V

⊤
1 +U 1A

⊤
1 ,

Θ2 = 1nµ
⊤
2 +U 0V

⊤
2 +U 2A

⊤
2 .
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where µk ∈ Rpk is the intercept vector, U 0 ∈ Rn×r0 is the shared score matrix between Θ1 and Θ2,

and U k ∈ Rn×rk is the individual scores. V k and Ak are corresponding loading matrices. r0, r1

and r2 correspond to the ranks of joint and two individual structures, respectively. Essentially, the

joint structure implicitly assumes the existence of shared factors between X1 and X2.

The GAS model was originally proposed for binary and Poisson data. Since proportions can

be treated as the outcome of multiple binomial trials, We use binomial family to model all cellular

estimates. The ranks of common and individual signals were determined based on a two-step

data-driven method as described in Li and Gaynanova (2018). Specifically, we first estimate the

ranks of the centered natural parameter matrices of X1, X2 and concatenated matrix (X1,X2) by

cross-validation scores. Secondly, we determine the ranks of joint or individual structures by the

estimated ranks in the first step. To test the significance of the association, we use the permutation

test with 1000 permutations (Li and Gaynanova, 2018).

4.2.4 Association coefficient

To assess the strength of association between the two proportion matrices, we use the associa-

tion coefficient introduced in Li and Gaynanova (2018). Since the correlation is not well-defined

for non-Gaussian data, Li and Gaynanova (2018) propose to use the relative weights of the joint

structure of natural parameter matrices as a criterion to evaluate the association. For completeness,

we reproduce the definition here.

Definition 3. Let X1 ∈ Rn×p1 and X2 ∈ Rn×p2 be two matrices, and let Θ1 ∈ Rn×p1 and Θ2 ∈

Rn×p2 be the corresponding natural parameter matrices. Further let sΘ1 ∈ Rn×p1 and sΘ2 ∈ Rn×p2

be the column centered natural parameter matrices. We define the association coefficient as

association coefficient =
∥sΘ

⊤
1

sΘ2∥∗
∥sΘ1∥F∥sΘ2∥F .

(4.1)

Note that the range of the association coefficient is from 0 to 1, with larger value indicates

stronger association. For more details, we refer to Section 3.1 in Li and Gaynanova (2018).
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4.3 Analysis results

4.3.1 Prostate cancer

In this section, we consider prostate cancer data in TCGA with TIMER and DeMixT estimates,

where we replaced two readings of Dendritic in TIMER estimates (1.028, 1.052) by 1. For DeMixT

proportions, we noticed that immune and tumor proportions are highly correlated. Figure 4.1

shows the scatter plots of DeMixT estimates and its corresponding natural parameters. Due to the

high correlation between immune and tumor proportions, we keep immune and stroma proportions

for further analysis. The resulting dataset contains 293 subjects in total, 6 and 2 proportions for

TIMER and DeMixT estimates, respectively.

The corresponding association coefficients is found to be 0.389. The association coefficient

is highly significant based on permutation tests (p-value ≤ 0.001), thus indicating presence of

moderate associations between TIMER and DeMixT proportions for prostate cancer. Based on the

cross-validation scores in Figure 4.2, the rank of the joint structure is equal to 1, and the ranks of

individual structures are equal to 2 and 1 for TIMER and DeMixT proportions correspondingly.

This implies that DeMixT proportions in PROD contain individual signal that is not shared by

TIMER estimates, thus explaining the moderate value of association coefficient.

To assess biological relevance of found associations, we investigated the relationship that

the estimated common and individual signals have with the survival, using the progression-free

interval (PFI). The subjects are clustered into 2 groups based on the joint/individual scores or

TIMER/DeMixT estimates, and the difference in survival probability was assessed. The 2 groups

clustered by TIMER estimates and individual signals do not have significant difference in sur-

vival probability (log-rank test p-value = 0.520, 0.479, 0.126 if clustered by TIMER estimates,

individual signals of TIMER and DeMixT estimates, respectively). However, we observe a signif-

icant difference in survival based on 2 groups clustered by joint signals (Figure 4.3 left, log-rank

test p-value = 0.002). The corresponding TIMER cells contributed the most to the common

signal were (+)Macrophage, (+)Dendritic, (+)CD4_Tcell. We also observe a significant differ-
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Figure 4.1: Top: scatter plots of DeMixT proportions from Prostate cancer. Bottom: scatter plots
of saturated natural parameters of DeMixT proportions from Prostate cancer.
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Figure 4.2: Cross-validation scores for TIMER, DeMixT and (TIMER, DeMixT) of PROD, re-
spectively. The red solid line indicates the median of CV scores.

ence in survival based on 2 groups clustered by DeMixT proportions (Figure 4.3 right, log-rank

test p-value = 0.001). Figure 4.4 shows the distributions of immune and stroma proportions of

DeMixT estimates in different groups. We observed that both immune and normal stroma are

predictive to survival outcomes. In general, patients with higher immune and higher normal pro-

portions tended to have longer PFI.

4.3.2 Bladder cancer

We consider bladder cancer data in TCGA with CIBERSORT and DeMixT estimates. For

DeMixT proportions, we keep immune and stroma proportions as in Section 4.3.1. However,
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Figure 4.3: Kaplan-Meier plot for progression-free interval for prostate cancer. The log-rank test
is used to compare the survival curves of two clusters and calculate p-values. Left: The patients
are clustered by common signals. Right: The patients are clustered by DeMixT proportions.
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Figure 4.4: The boxplots of immune-normal proportions. Subjects are clustered by DeMixT pro-
portions.

unlike prostate cancer, we do not observe high correlation between immune and tumor proportions

for bladder cancer. The resulting data contains 385 samples, 20 and 2 proportions for CIBERSORT
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Figure 4.5: Cross-validation scores for CIBERSORT, DeMixT and (CIBERSORT, DeMixT) of
BLCA, respectively. The red solid line indicates the median of CV scores.

and DeMixT proportions, respectively.

Figure 4.5 shows the rank selection results. The rank of the joint structure is equal to 2, and

the ranks of individual structures are equal to 4 and 0 for CIBERSORT and DeMixT proportions,

respectively. This implies that all the signal in DeMixT proportions is shared by CIBERSORT

proportions, however there is additional information in CIBERSORT proportions. The association

coefficient is found to be 0.553. The association coefficient is highly significant based on permu-

tation tests (p-value ≤ 0.001), thus indicating rather strong association between CIBERSORT and

DeMixT proportions.

We investigated the relationship that the estimated common and individual signals had with the

survival, using the progression-free interval (PFI). The subjects are clustered into 2 groups based on
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Figure 4.6: Loadings of CIBERSORT proportions correspond to two shared scores.

the joint/individual scores or CIBERSORT/DeMixT estimates, and Figure 4.7 shows the survival

results. The 2 groups clustered by CIBERSORT proportions and its individual signals do not have

significant difference in survival probability (log-rank test p-value = 0.483, 0.416, respectively).

On the other hand, the 2 groups clusters based on common signal have significantly different

survival probability (log-rank test p-value = 0.029). Figure 4.6 shows the six immune subtype cells

with the largest contributions to the common scores of CIBERSORT estimates. T.cells.CD4.naive

dominates the first loading vector and T.cells.CD4.memory.resting dominates the second loading

vector. We also observe a significant difference in survival based on 2 groups clustered by DeMixT

proportions (log-rank test p-value = 0.004). Note that clustering results by common signals and

immune-stroma proportions are similar, and Table 4.1 confirms this observation.

Figure 4.8 shows the distributions of immune and stroma proportions in different groups. Un-

like prostate cancer, only immune proportions were predictive to survival outcomes, and patients

with higher immune proportions tended to have shorter PFI.
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Figure 4.7: Kaplan-Meier plot for progression-free interval for bladder cancer. Top left: clustered
by joint signals. Top right: clustered by individual signals of CIBERSORT. Bottom left: clustered
by CIBERSORT proportions. Bottom right: clustered by DeMixT proportions.

4.3.3 Colorectal cancer

We consider colorectal cancer data in TCGA with CIBERSORT and DeMixT proportions. We

keep immune and stroma proportions of DeMixT proportions as in Section 4.3.1. The resulting

data contains 420 samples, 20 and 2 proportions for CIBERSORT and DeMixT proportions, re-
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Table 4.1: Number of patients in different groups clustered by common sigals or DeMixT propor-
tions.

Clustered by
common signals

Clustered by DeMixT group 1 group 2
group 1 238 19
group 2 1 92
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Figure 4.8: The boxplots of DeMixT proportions. Patients were clustered by common signals.

spectively.

The rank selection results are presented in Figure 4.9. The rank of the joint structure is equal

to 2, and the ranks of individual structures are equal to 4 and 0 for CIBERSORT and DeMixT

proportions, respectively. Similar to BLCA, this implies that all the signal in DeMixT proportions

are shared by CIBERSORT proportions, however there is additional information in CIBERSORT

proportions. The association coefficient is found to be 0.347. The association coefficient is highly

significant based on permutation tests (p-value ≤ 0.001), thus indicating moderate associations

between CIBERSORT and DeMixT proportions.

We investigated the relationship that the estimated common and individual signals have with
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Figure 4.9: Cross-validation scores for CIBERSORT, DeMixT and (CIBERSORT, DeMixT) of
COLON, respectively. The red solid lines indicate the median of CV scores.

the survival, using the survival time. The subjects are clustered into 3 groups based on the

joint/individual scores or CIBERSORT/DeMixT estimates. We do not cluster the subjects into 2

groups since the clustering results are imbalanced. Figure 4.10 shows the results of survival analy-

sis. In contrast to PROD and BLCA, only the clusters based on individual signals of CIBERSORT

have significantly different survival probability (log-rank test p-value = 0.038). This implies that

the additional information in CIBERSORT proportions are predictive to cancer prognosis.

4.4 Discussion

In this chapter, we compare different cellular subtype estimations for Pan-cancer data. In par-

ticular, we identified a rather strong association between CIBERSORT and DeMixT estimations
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Figure 4.10: Kaplan-Meier plot for progression-free interval for colorectal cancer. Top left: clus-
tered by joint signals. Top right: clustered by individual signals of CIBERSORT. Bottom left:
clustered by CIBERSORT proportions. Bottom right: clustered by DeMixT proportions.

for BLCA, and moderate associations between TIMER and DeMixT estimations for PROD, and

between CIBERSORT and DeMixT estimations for COLON. Based on the survival results, we

observe that immune proportions are predictive of the prognosis of BLCA and PROD, but have

the opposite relationship with the progression-free interval. On the one hand, patients with higher
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immune proportions tend to have longer PFI for PROD, but have shorter PFI for BLCA. On the

other hand, for COLON, immune proportions do not show a clear relationship with survival. Nev-

ertheless, the additional information in CIBERSORT proportions after removing the shared signals

with DeMixT estimations are predictive to colorectal cancer prognosis.

There are a few works to be done. First, how immune proportion estimations is related to PFI is

still not clear. A thorough investigation will not only help us understand the mechanism of cancer,

but also shed lights on personalized medicine and anticancer therapies. Second, the individual

structures extracted by GAS still contain shared information, since they are not orthogonal to each

other. By further decompose individual structures, we may gain more knowledge regarding the

cellular heterogeneity problem of different tissues. We will look into this problem in the next

chapter.
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5. LOW-RANK CANONICAL CORRELATION ANALYSIS

5.1 Introduction

With the advancement of biomedical technologies, the complexity and number of sources of

tumor data has been growing rapidly, and multi-view data becomes common in the downstream

analysis of cancer data. Often, multi-view data comes from different platforms are processed by

different tools, thus the measurements have heterogeneous types in practice. One major challenge

of this type of data is how to conduct association analysis. For example, the Pan-cancer dataset

discussed in Section 4.2 consists of compartment-specific gene expression data for tumor samples.

Different views are estimated proportions or abundances by various deconvolution methods pro-

posed by the biomedical community (Newman et al., 2015; Li et al., 2017; Wang et al., 2018).

Since the ranges of the data are usually bounded between zero and one instead of real-valued, the

standard CCA method is no longer an appropriate tool in this scenario. The reason is two folded.

First, CCA implicitly assumes that the input variables are real-valued, and Bach and Jordan (2005)

provided a probabilistic interpretation of CCA under the Gaussian assumption by using a factor

model. However, this assumption may be inappropriate if data is proportion. Secondly, correla-

tions are usually not well-defined for proportion data. Therefore the objective function of CCA

lacks a straightforward interpretation when it is applied to non-Gaussian data.

In order to address this challenge, a typical approach is to disentangle the common and indi-

vidual signals of two views (Lock et al., 2013; OConnell and Lock, 2016; Shu et al., 2019). These

methods factorize the common and individual signals of two data matrices, and then use them to

further perform integrative or discriminative analysis. Nevertheless, these methods are proposed

for Gaussian data and cannot be applied to the non-Gaussian cases. Recently, several methods

have been proposed to extend this idea to handle non-Gaussian data by connecting to the exponen-

tial family. Such methods include Exponential Family CCA (Klami et al., 2010), discrete CCA

(Podosinnikova et al., 2016) and the Generalized association study framework (Li and Gaynanova,
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2018). However, these decomposition-based methods assume the shared factors or score matrix are

identical between two views. Therefore, the extracted common parts usually do not coincide with

the desired canonical variables, even when applied to the Gaussian cases. In addition, with the ex-

ception of D-CCA (Shu et al., 2019), most methods only enforces the column-space orthogonality

between the common and individual structures, and hence do not guarantee the orthogonality be-

tween two individual parts of two data matrices. In other words, although each dataset is factored

into common and individual parts, there is still shared information embedded in the individual

parts.

In this chapter, we propose a decomposition based method to conduct association analysis

for both Gaussian and non-Gaussian data, such as non-negative, binary or count data. We call

it low-rank CCA. Throughout the chapter, we assume that the variables in each dataset follows

the exponential family distribution conditioned on the underlying natural parameters. Our model

decomposes the corresponding natural parameter matrices into a low-rank joint structure and indi-

vidual structure, and use the joint structure to capture the shared information between the views. In

contrast to the existing decomposition methods, a unique characteristic of our approach is that we

allow the joint scores of two views to take different values. In addition, our method imposes the

orthogonality between two individual parts, hence guarantees that no shared information retained

in the individual parts.

The proposed optimization problem for our method is not convex and therefore the traditional

gradient descent algorithm cannot be used. For implementation, we derive an alternating algorithm

that optimize over each component alternatively. Within each step, the optimization problem can

be formulated as a convex question with a quadratic equality constraint, and we propose to modify

the splitting orthogonality constraints method (Lai and Osher, 2014) to solve it. Although the

overall global convergence is not guaranteed, our numerical experiments show that the proposed

method has promising performance.

The rest of the chapter is organized as follows. Section 5.2 introduces the low-rank CCA

model under a low-rank frame and connect it to the exponential family. We also discuss the corre-
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sponding regularity conditions. Section 5.3 describes an alternating algorithm to fit the model. In

Section 5.4, we demonstrate the effectiveness of the proposed method based on simulation studies.

Section 5.5 summarizes the major conclusions and discusses future extensions.

5.2 Proposed methodology

In this section, we first review the natural exponential family. Then we introduce the proposed

method by connecting the structural decomposition method with the exponential family.

5.2.1 Natural exponential family

Assume a random variable x follows from an exponential family distribution, then the distri-

bution function given the parameter θ has the form

f(x|θ) = c(x) exp{xθ − b(θ)},

where θ is called the canonical natural parameter, b(·) is a real-valued convex function that has

different forms for members in the exponential family, and c(·) ensures that the probability function

f(x|θ) is normalized. We further note that µ = E(x|θ) = b′(θ) = ∂b(θ)/∂θ and Var(x|θ) =

b′′(θ) = ∂2b(θ)/∂θ2. Define the canonical link function g(·) such that g(b′(θ)) = g(∂b(θ)/∂θ) = θ.

Therefore g(µ) = b′−1(µ) holds.

5.2.2 The normal case

In this subsection, we reformulate CCA problem under normal distribution and propose a low-

rank method to decompose the matrices. Without loss of generality, let X1 ∈ Rn×p1 and X2 ∈

Rn×p2 be two column-centered data matrices with rank r1 < p1 and r2 < p2, respectively. Assume

the covariance matrix of X1 and X2 has rank r0 with 0 ≤ r0 ≤ min(r1, r2). Define ℓ-th pair of

canonical variables ul, vl as

ul, vl = argmax
u,v

Cor(u, v), subject to Var(u) = Var(v) = 1,

and u ∈ Col(X1)/span({ui}l−1
i=1), v ∈ Col(X2)/span

(
{vi}l−1

i=1

)
,
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where Col(Xk) is the column space of the matrix Xk, and span(u) is the space spanned by the

vector u. Here Cor(ul, vl) = ρl is ℓ-th canonical correlation.

Remark 4. Let {ui}r1i=r0+1 be a set of arbitrary orthogonal basis of Col(X1)/span({ui}r0i=1), and

let {vi}r2i=r0+1 be a set of arbitrary orthogonal basis of Col(X2)/span({ui}r0i=1). Then {ui}r1i=1 is a

set of orthogonal basis of the column space of X1, and {vi}r2i=1 is a set of orthogonal basis of the

column space of X2.

Theorem 5. Define U 1 = [u1, · · · , ur0 ] ∈ Rn×r0 , U 2 = [v1, · · · , vr0 ] ∈ Rn×r0 . Further define

Z1 = [ur0+1, · · · , ur1 ] ∈ Rn×(r1−r0) and Z2 = [vr0+1, · · · , vr2 ] ∈ Rn×(r2−r0). Then the covariance

matrices of J1 =

(
U 1 Z1

)
, J2 =

(
U 2 Z2

)
are

Cov(J1) = Ir1 ,Cov(J2) = Ir2 and

Cov(J1,J2) =

Λr0 0

0 0(r1−r0)×(r2−r0)

 ,

where 0p×q is a p× q zero-valued matrix, and Λr0 = diag(λ1, · · · , λr0) is a diagonal matrix.

The rigorous proof of Theorem 5 is similar to Theorem 1 in Shu et al. (2019). We restate this

theorem here for completeness. Theorem 5 indicates that the correlations between X1 and X2 are

captured by U 1 and U 2, and Z1 and Z2 are orthogonal to each other. Based on the construction, J1

is a set of basis of Col(X1), and J2 is a set of basis of Col(X2). This motivates us to characterize

the joint and individual parts by a low-rank plus noise structure.

In general, when X1 and X2 are not column-centered, we propose to model them as


X1 = 1nµ

⊤
1 +U 1V

⊤
1 +Z1A

⊤
1

X2 = 1nµ
⊤
2 +U 2V

⊤
2 +Z2A

⊤
2

. (5.1)

where 1n is a vector of all ones with length n. We call (5.1) low-rank CCA. Essentially, each

data matrix is decomposed into three parts: the intercept(the first term), the joint structure (the
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second term) and the individual structure (the third term). We call µ1 ∈ Rp1 and µ2 ∈ Rp2

the intercept vectors. Denote U 1 ∈ Rn×r0 and U 2 ∈ Rn×r0 to be shared score matrices and

V 1 ∈ Rr0×p1 and V 2 ∈ Rr0×p2 to be corresponding loading matrices. Denote Z1 ∈ Rn×(r1−r0)

and Z2 ∈ Rn×(r2−r0) to be individual score matrices and V 1 ∈ R(r1−r0)×p1 and V 2 ∈ R(r2−r0)×p2

to be corresponding loading matrices. In contrast to GAS and D-CCA, we allow U 1 and U 2 to

take different values. They can be considered as common latent factors, and we assume any shared

information are bared in them.

To ensure the identifiability of model (5.1) and maintain the desired constraints in Theorem 5,

we consider the following regularity conditions

• The rank of U k or V k is r0. The rank of Z1 or A1 is r1. The rank of Z2 or A2 is r2.

• The intercept vectors µk are independent from the columns of joint and individual loading

matrices (V k and Ak, for k = 1, 2).

• The score matrices (U k and Zk) are column centered and have orthonormal columns.

• The column spaces of U k and Z l are orthogonal, and the column spaces of Z1 and Z2 are

also orthogonal, that is,

U⊤
1 U 2 = Λ,Z⊤

1 Z2 = 0,U⊤
kZ l, for k, l = 1,2.

The first two conditions guarantee that the joint and individual score matrices are not ill-

conditioned, and the ranks are correctly specified. Therefore, the model cannot be further reduced.

The third condition assures the score matrices are unique up to orthogonal transformation. The last

condition states that there is no shared information between joint and individual structures, and we

additionally enforce that no common structure is retained in the individual structures.

5.2.3 Exponential CCA

Suppose we observe two data matrices X1 ∈ Rn×p1 and X2 ∈ Rn×p2 , where rows are n

matched samples, and each variable comes from an exponential family distribution with different
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natural parameters. Therefore, each data matrix Xk, k = 1, 2 corresponds to a natural parameter

matrix Θk ∈ Rn×pk . We assume that each variable of X1 and X2 is independent from each

other, given the natural parameters. This assumption is also used in Li and Gaynanova (2018) and

Landgraf and Lee (2015).

We consider decomposing natural parameter matrix Θk instead of data matrices as in Sec-

tion 5.2.1. In other words, we assume that the natural parameter matrices admit a low-rank structure

which describes the associations among the variables. We propose to model the natural parameter

matrices as


Θ1 = 1nµ

⊤
1 +U 1V

⊤
1 +Z1A

⊤
1

Θ2 = 1nµ
⊤
2 +U 2V

⊤
2 +Z2A

⊤
2

, (5.2)

with the same regularity conditions in Section 5.2.1. A nice structure of this method is that in the

normal distribution, the natural parameter are θ = x, thus model (5.2) reduce to (5.1).

5.3 Estimation of parameters

We propose to use an alternating algorithm to estimate the score and loading matrices in (5.2),

based on prefixed ranks of joint and individual structures. Essentially, this minimization problem

is not convex overall the parameters. However, this problem can be formulated as a set of convex

problems or convex problems with a quadratic equality constraint.

We consider the joint negative log-likelihood of the data matrices X1 and X2 as the loss

function. Since the variables are conditionally independent given natural parameters, the loss

function takes the form

min
Θ1,Θ2

L = min
Θ1,Θ2

L(X1|Θ1) + L(X2|Θ2)

= min
Θ1,Θ2

{
n∑

i=1

p1∑
j=1

(−x1,ijθ1,ij + b1(θ1,ij)) +
n∑

i=1

p2∑
j=1

(−x2,ijθ2,ij + b2(θ2,ij))

}
,

(5.3)

where xk,ij and θk,ij are i, jth element of Xk and Θk, for k = 1, 2. The model parameters in (5.3)
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include intercept µk, joint score matrices U k, individual score matrices Zk and loading matrices

V k and Ak. Since the minimization problem (5.3) is not convex in u, v, µ1 and µ2 together,

we adopt an alternating method that estimate each parameter matrix alternatively until the whole

algorithm converges. Although the global convergence is not guaranteed, our simulation provide

evidence of its effectiveness if the initial points are chosen appropriately.

Consider solving (5.3) in terms of µ1 and A1 with other parameters fixed. We only need to

consider the first term of (5.3), which is L(X1|Θ1), since the second term doesn’t contain µ1 and

A1. Let µ1,i be ith element of µ1, V 1,i: be the ith row vector of V 1 and A1,i: be the ith row vector

of A1. Then the ith column of Θ1 can be formulated as

θ1,:i = µ1,i1n +U 1V 1,i: +Z1A1,i:,

where the second term (U 1V 1,i:) is fixed. Therefore, the optimisation problem can be further

separated into p1 convex problems:

min
µ1,j ,A1,j:

n∑
i=1

[−x1,ijθ1,ij(µ1,j,A1,j:) + b1(θ1,ij(µ1,j,A1,j:))] , for j = 1, · · · , p1.

We use the damped Newton’s method to estimate µ1,j and A1,j:, and choose the step size

that satisfies Armijo-Wolfe conditions (Fletcher, 2013; Nocedal and Wright, 2006). Therefore,

by choosing the step size carefully, the convergence of damped Newton’s method is guaranteed.

What’s more, these p1 convex problems can be solved in parallel, which accelerate the speed of the

algorithm.

Next, we estimate µ1 and A1 in a similar manner by separating them into p2 convex prob-

lems. The damped Newton’s method with proper step size is again used to solve the optimization

problems. At this step, we update the intercepts and the individual loading matrices.

Now we estimate the joint score matrices Z1 and Z2. With other parameters fixed, we formu-
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late the estimation problem as

min
Z1,Z2

L = min
Z1,Z2

L(X1|Θ1) + L(X2|Θ2)

subject to
(

1n U 1 U 2

)⊤(
Z1 Z2

)
= 0 and

(
Z1 Z2

)⊤(
Z1 Z2

)
= I,

(5.4)

where the constraints are inherited from the regularity conditions. We remark that the problem is

actually convex with orthogonality and linear constraints. In general, this type of problems are

challenging due to the non-convex constraints, and may have several different local minimizers.

In the literature, several methods have been proposed to convex problems with only orthogonality

constraint (Lai and Osher, 2014; Wen and Yin, 2013). Inspired by the idea of method of splitting

orthogonality constraints (SOC) and Bregman iteration method (Yin et al., 2008; Lai and Osher,

2014), we propose a new algorithm to solve (5.4).

We introduce two auxiliary variables P 1 = Z1 and P 2 = Z2 to separate the original con-

straints into an orthogonal constrained problem with an analytical solution and an unconstrained

one. Hence the minimization problem (5.4) becomes

min
Z1,Z2,P 1,P 2

L = min
Z1,Z2,P 1,P 2

L(X1|Θ1) + L(X2|Θ2)

subject to
(
Z1 Z2

)
=

(
P 1 P 2

)
,

(
1n U 1 U 2

)⊤(
P 1 P 2

)
= 0

and
(
P 1 P 2

)⊤(
P 1 P 2

)
= I.

Solving the above problem by adding Bregman penalties leads to an iteration algorithm that solves
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Zk
1,Z

k
2,P

k
1,P

k
2 = minZ1,Z2,P 1,P 2 L+ γ

2
∥Z1 − P 1 +Bk

1∥2F + γ
2
∥Z2 − P 2 +Bk

2∥2F ,

subject to
(

1n U 1 U 2

)⊤(
P 1 P 2

)
= 0 and

(
P 1 P 2

)⊤(
P 1 P 2

)
= I,Bk

1

Bk
2

 =

Bk−1
1

Bk−1
2

+

Zk
1

Zk
2

−
P k

1

P k
2

 ,

where γ is a positive tuning parameter. Noticing that the first optimization problem is separable

and can be solved by iteratively updating Zk and P k, k = 1, 2, and the iteration algorithm can be

further formulated as

Zk
1 = minZ1 L(X1|Θ1) +

γ
2
∥Z1 − P 1 +Bk

1∥2F

Zk
2 = minZ2 L(X2|Θ2) +

γ
2
∥Z2 − P 2 +Bk

2∥2F

P k
1,P

k
2 = minP 1,P 2

γ
2
∥Z1 − P 1 +Bk

1∥2F + γ
2
∥Z2 − P 2 +Bk

2∥2F , subject to(
P 1 P 2

)⊤(
P 1 P 2

)
= I and

(
1n U 1 U 2

)⊤(
P 1 P 2

)
= 0,Bk

1

Bk
2

 =

Bk−1
1

Bk−1
2

+

Zk
1

Zk
2

−
P k

1

P k
2

 .

The first iteration is convex and can be solved similarly as individual loading matrices by using

the damped Newton’s method with a proper step size. The second constrained problem has a

closed-form solution illustrated in theorem 6.

Theorem 6. Let U ∈ Rn×r be an orthogonal matrix and C ∈ Rn × p be a full-rank matrix. Then

the constrained quadratic problem:

P ∗ = argmin
P
∥P −C∥2F , s.t. U⊤P = 0 & P⊤P = I.
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has the following closed-form solution:

P ∗ = MIn×pN
⊤,

where M and N are two orthogonal matrices and D ∈ Rn×p is a diagonal matrix satisfying the

SVD factorization (I −UU⊤)C = MDN⊤.

Proof. We first decompose C into UU⊤C and (I −UU⊤)C. Assume the constraint U⊤P = 0

holds, then the objective function becomes

∥P −C∥2F =
∥∥P − [UU⊤C + (I −UU⊤)C

]∥∥2
F

=
∥∥P − (I −UU⊤)C

∥∥2
F
+
∥∥UU⊤C

∥∥2
F

Therefore, the constrained quadratic problem is equivalent to the following one

P ∗ = argmin
P
∥P − (I −UU⊤)C∥2F , s.t. U⊤P = 0 & P⊤P = I.

Note that the above problem can be relaxed to the following Orthogonal Procrustes problem

P̃ = argmin
P
∥P − (I −UU⊤)C∥2F , s.t. P⊤P = I.

By the results from Theorem 1 in Lai and Osher (2014) and Manton (2002), we have P̃ =

MIn×pN
⊤. Since U⊤P̃ = 0, we have P ∗ = P̃ = MIn×pN

⊤.

Based on the above theorem, the iterating updates leads to Algorithm 2.

We next estimate the joint structures with the individual parts fixed. We again use the damped

Newton’s method to update µ1,V 1 and µ2,V 2. The estimation of U 1 and U 2 is separable, and

each sub-problem can be again solved by the Splitting orthogonal constraint algorithm described

in Algorithm 2.
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Algorithm 2 Splitting orthogonal constraint algorithm for (5.4)
Given: k = 0, Z0

1, Z
0
2, U =

(
1n, U 1, U 2

)
;

P 0
1 = Z0

1,P
0
2 = Z0

2,B
0
1 = 0,B0

2 = 0;
while k ̸= kmax and ’not converge’ do

k ← k + 1;
Zk

1 ← minZ1 L(X1|Θ1) +
γ
2
∥Z1 − P k−1

1 +Bk−1
1 ∥2F .

Zk
2 ← minZ2 L(X2|Θ2) +

γ
2
∥Z2 − P k−1

2 +Bk−1
2 ∥2F .

Compute SVD of (I −UU⊤)
(
Zk

1 +Bk−1
1 , Zk

2 +Bk−1
2

)
= MDN⊤.(

P k
1, P k

2

)
←MIN⊤.

Bk
1 ← Bk−1

1 +Zk
1 − P k

1.
Bk

2 ← Bk−1
2 +Zk

2 − P k
2.

end

However, the estimated U 1 and U 2 may not satisfy the last regularity condition in Section 5.2.2.

Therefore, we further normalize them such that U⊤
1 U 2 is a diagonal matrix. Denote the estimated

U k and V k as Ũ k and Ṽ k, for k = 1, 2. Assume the SVD of Ũ kṼ
⊤
k is

Ũ kṼ
⊤
k = U θkΛkV

⊤
θk,

where U θk and V θk are orthogonal matrices. Let the SVD of U⊤
θ1U θ2 be

U⊤
θ1U θ2 = Γ1Λ12Γ

⊤
2 ,

where Γ1 and Γ2 are orthogonal matrices. Further we let

Û k = U θkΓk, V̂ k = V θkΛkΓk.

Since Û
⊤
k Û k = I and Û

⊤
1 Û 2 = Λ12, the normalized estimators Û k satisfy all the regularity

conditions and the likelihood stays the same after the normalization.

In summary, we estimate the joint and individual structures using an alternating method. In

each iteration, we either solve a convex problem with the damped Newton’s method, or solve a

convex problem with orthogonal and linear constraints using the method of splitting orthogonality
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Algorithm 3 The alternating method.

Given: k = 0, µ(0)
1 ,µ

(0)
2 ,U

(0)
1 ,U

(0)
2 ,V

(0)
1 ,V

(0)
2 ,Z

(0)
1 ,Z

(0)
2 ,A

(0)
1 ,A

(0)
2 ;

while ’not converge’ and k ≤ kmax do
k ← k + 1;
Update µ1 and A1 via the damped Newton’s method
Update µ2 and A2 via the damped Newton’s method
Update Z1 and Z2 via SOC
Update µ1 and V 1 via the damped Newton’s method
Update µ2 and V 2 via the damped Newton’s method
Update U 1 and U 2 via SOC
Normalize U 1 and U 2 such that U⊤

1 U 2 is diagonal.
end

constraints. The detailed estimation approach is given in Algorithm 3. In each iteration, the nega-

tive log-likelihood is non-increasing. Since the negative log-likelihood is bounded from below, the

algorithm will always converge (including converging to the infinity).

5.4 Simulation studies

In this section, we demonstrate the effectiveness of our model by comparing the performance

of low-rank CCA with existing ones in different settings. We consider the following methods: (i)

Low-rank CCA, the proposed model; (ii) an ad hoc exponential CCA method, where we first com-

pute the saturated natural parameters, then apply CCA to the estimated natural parameter matrices.

We still denote this method by CCA since it reduces to standard CCA in the normal settings. All

simulations are implemented using R.

The SOC algorithm in low-rank CCA requires a tuning parameter γ. Intuitively, the user should

always choose a large gamma to ensure the equality constraint holds. To avoid complication, we

set γ = 10 in our experiments. In addition, we set the joint and individual ranks (r0, r1 and r2)

to be the true ranks. For CCA, we set the ranks of natural parameter matrices to the true ranks

by keeping the leading r1 or r2 pairs of canonical variables and the corresponding loading vectors

only. Consequently, low-rank CCA and CCA yields natural parameter estimations with the same

ranks.
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5.4.1 Data generation

We generate the data using model (5.2) with the corresponding regularity conditions. More

specifically, we set the joint rank r0 = 2 and total ranks r1 = r2 = 4. We set sample size n = 150

and the dimensions of both data matrices to be p1 = p2 = 10. All elements in U 1,U 2,Z1 and

Z2 are generated from a uniform distribution between (−2,−0.5) ∪ (0.5, 2). Each matrix is then

centered and normalized such that the regularity conditions are satisfied. U 1 and U 2 are further

normalized such that the canonical correlations are ρ1 = 0.8 and ρ2 = 0.6, that is U⊤
1 U 2 =

diag(0.8, 0.6). Next, we generate µk,V k and Ak in a similar manner for k = 1, 2. We consider

the following settings for the experiments and repeat the simulations 100 times.

1. Gaussian distribution. We generate the natural parameter matrices as described above, and

further add white noise with mean zero to each element. The standard deviation of noises is

set to be 0.05 or 0.1. Note that the resulting data sets has standard deviation close to 0.5.

2. Binomial distribution. The natural parameter matrices are generated similarly to the Gaus-

sian case. The size of the binomial distribution is set to 50 or 100, and the observed data

matrices X1 and X2 are generated based on natural parameters using corresponding distri-

butions. The columns of X1 and X2 are further standardized by its size.

5.4.2 Result

We compare the low-rank CCA and ad hoc CCA in terms of estimation accuracy. To compare

the estimation accuracy of the joint scores, we consider the subspace difference (Ye and Lim, 2016)

between the estimated and the true joint scores (U 1 and U 2). In particular, the subspace distance

is defined as ∥∥∥U kU
⊤
k − Û kÛ

⊤
k

∥∥∥
2
, k = 1, 2,

where ∥ · ∥2 denotes the matrix 2−norm; U k denotes the true joint scores and Û k denotes the

estimated joint scores. To compare the overall estimation accuracy, we consider the relative error
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of the reconstructed natural parameter matrices denoted as

relative error =
∥Θk − Θ̂k∥2F
∥Θk∥2F

,

where Θ̂k represents the estimated natural parameter matrices and Θk denotes the true natural

parameter matrices.

Figure 5.1 shows the results where two datasets are both generated from Gaussian distribution.

In this case, low-rank CCA is generally better than standard CCA. More specifically, low-rank

CCA gives lower subspace distance between true and estimated joint scores, and also has signifi-

cantly lower relative error with smaller variance. This is not surprising, since the proposed method

utilizes the low-rank assumption and explicitly assumes the orthogonality between the individual

structures. Consequently, the estimation of individual structures is more accurate.

Figure 5.2 reports the results where distributions are both binomial. The low-rank CCA and

ad hoc CCA have similar performance for the estimation of the joint score matrices U k, although

the subspace distances are greater than those of the Gaussian case. We conjecture this is because

binomial data is in general difficult to model, since the binomial data can be seen as the summation

of multiple Bernoulli data, and Bernoulli distribution is known to have convergence issues (Li

and Gaynanova, 2018; Collins et al., 2001). On the other hand, the low-rank CCA still shows

significantly smaller relative error, which indicates the proposed method outperforms ad hoc CCA

in terms of estimating the individual parts.

5.5 Discussion

In this Chapter, we present a low-rank CCA model for the association analysis of two datasets.

A unique characteristic of the proposed model is that it imposes orthogonal constraints on the

individual score matrices to guarantee no more shared information is rendered in the individual

structures. The simulation studies suggest that the proposed method outperforms the classical

CCA in the cases of both Gaussian and binomial distributions.

There are many possible future studies for the current proposal. First, the current model does
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not consider the similarity between the joint score matrices U k. One possible extension is to

allow the user to control the magnitude of the estimated canonical correlations, which are the

diagonal elements of U⊤
1 U 2. This goal can be achieved by considering additional penalties on

U k. Specifically, we consider the objective function (5.5) with the same regularity conditions

min
Θ1,Θ2

L = min
Θ1,Θ2

L(X1|Θ1) + L(X2|Θ2) + ρ∥U 1 −U 2∥2F , (5.5)

where ρ > 0 is a tuning parameter to control the weight of the penalty. We remark that since U k

are orthogonal matrices, adding ∥U 1 − U 2∥2F to the objective function (5.3) is the same to add

−Tr(U⊤
1 U 2).

Another possible extension is to allow the ranks r0, r1 and r2 to be determined in a data-driven

way. We adopt a two-step strategy similar to the method introduced in Li and Gaynanova (2018).

We first use cross-validation to determine the ranks of the natural parameter matrices of X1 and

X2, which are r1 and r2, and then iterate r0 from 1 to min(r1, r2) to determine its best value. We

refer to Li and Gaynanova (2018) for the cross-validation method to determine the rank of a matrix.

Third, the application of the proposed method to the Pan-cancer deconvolution data is promis-

ing. We consider clustering the patients based on estimated joint score matrices, and then compare

the overall survival probability differences among different clusters of patients. The results will be

compared with those by the GAS model.
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Figure 5.1: Simulation results under the Gaussian setup based on 100 replications. Top: Compari-
son of subspace difference of joint scores between Low-rank CCA and CCA. Bottom: Comparison
of relative error between Low-rank CCA and CCA.

90



U1 U2

size =
 50

size =
 100

ECCA CCA ECCA CCA

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

method

D
is

ta
nc

e method

ECCA

CCA

●

●

●●
●●

●

●

size =
 5

size =
 10

ECCA CCA

0.075

0.100

0.125

0.04

0.06

0.08

variable

R
el

at
iv

e 
E

rr
or

s

variable

ECCA

CCA

Figure 5.2: Simulation results under the binomial setup based on 100 replications. Top: Compari-
son of subspace difference of joint scores between Low-rank CCA and CCA. Bottom: Comparison
of relative error between Low-rank CCA and CCA.
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6. SUMMARY

Modern datasets, such as multi-view data, have become more common with the advancement

of scientific technologies. Meanwhile, it also introduces new challenges to statistical inference

because the cross-platform datasets are intrinsically correlated. In this dissertation, we investigate

the challenges of association analysis of multi-view data under different settings. First, we address

the problem of simultaneous classification and association problems for multi-view data. Then

we conduct an association analysis between different cellular composition estimations using Pan-

Cancer data, and further identify the critical cellular proportions that are predictive to the cancer

prognosis. Finally, a low-rank CCA method is proposed to handle both Gaussian and non-Gaussian

data.

In Chapter 2, we develop a joint framework for classification and association analysis of multi-

view data by exploring the connections between linear discriminant analysis and canonical corre-

lation analysis. An efficient algorithm using block-coordinate descent method is proposed to fit

the model, and a corresponding R package is available on GitHub. We support the methodology

with numerical comparisons with existing methods. Nevertheless, there are several parts of the

method that requires further investigation. First, the trade-off between classification and associ-

ation criteria in (2.7) is controlled by the parameter α. While we fix α = 1/2 for the analysis,

it would be of interest to investigate whether there is the optimal value, both from empirical and

theoretical perspectives. Secondly, we treat all views equally within our framework; however, in

practice, some views may have stronger associations with class membership as well as with each

other. This scenario can be addressed by adding view-specific weights within (2.7), however, it is

unclear how to choose the weights in practice. Finally, we focused on row-sparse structure via a

group-lasso penalty to perform variable selection. However, the method could be used with other

structured penalties depending on the problem of interest.

In Chapter 3, we provide theoretical guarantees for estimation consistency in high-dimensional

settings for JACA, which are absent from recent joint learning approaches. We demonstrate that
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the estimation error of discriminant vectors converges to zero in the same rates as that of group-

lass. In addition, we show that a particular advantage of our approach is that it allows us to use both

samples with missing class labels and samples with missing subsets of views. And such advantage

is demonstrated based on simulation studies and colorectal cancer data from The Cancer Genome

Atlas project. However, throughout the chapter, we have assumed that the views are normally dis-

tributed conditioned on the responses. One possible extension of JACA is to allow non-Gaussian

views, such as composition and binary data. This goal can be achieved by considering the expo-

nential family distributions. Similar ideas have been explored in Collins et al. (2001) and Landgraf

and Lee (2019) to extend PCA to non-Gaussian data.

In Chapter 4, we study the associations among different cellular composition estimates by

various tools for Pan-cancer data. We compute the association coefficients to assess the strength of

association. The common and individual signals are extracted from the estimates for each cancer

type, and then being used in clustering and survival analysis to give further insights of the cancer

prognosis. In particular, we found that the common signals are informative for survival in PROD

and BLCA, but not informative in COLON. For PROD, patients with higher immune and higher

normal proportions tend to have longer PFI, whereas, for BLCA, higher immune proportions were

associated with shorter PFI. In contrast to PROD and BLCA, the DeMixT proportions are not

informative to the prognosis, but the corresponding individual signals of CIBERSORT proportions

are strongly associated with survival for COLON. In the next step, it is of interest to understand the

relationship between cancer and immune proportions, and investigate how it affects PFI differently

for BLCA and PROD.

In Chapter 5, we propose a decomposition-based CCA in the low-rank framework, and extend

it to the non-Gaussian settings. In contrast to the other decomposition methods, the proposed

method guarantees that all shared information is rendered in the joint structures. We develop

an alternating method to estimate the parameters and propose a splitting orthogonal constraint

algorithm to solve the orthogonal constrained sub-problems. There are several ways to extend

the proposed formulation. In the case of high-dimensional settings, we consider sparse penalty
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on the loadings to perform variable selection. Further, the alternating algorithm does not require

substantial changes as the corresponding sub-problem is still convex. Finally, given the simulation

results, we also expect to use the method to handle other exponential family distributions, such

as Bernoulli and Poisson distribution, which is known to be challenging to fit (Li and Gaynanova,

2018).
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