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ABSTRACT 

Foreign accent conversion (FAC) aims to generate a synthetic voice that has the 

voice identity of a given non-native speaker (NNS), but the pronunciation patterns (i.e., 

accent) of a native speaker (NS). This synthetic voice is often referred to as “Golden 

Speaker” in the computer-assisted pronunciation training literature. Prior FAC algorithms 

do not fully remove mispronunciations in the original non-native speech or fully capture 

the voice quality of the non-native speaker. More importantly, most prior methods require 

a reference utterance from a native speaker at synthesis time, thus limiting the application 

scope of FAC in pronunciation training. This dissertation aims to address these issues by 

proposing solutions to three interrelated problems: 

• Reducing mispronunciation in the accent converted speech

• Improving the voice similarity between the accent conversions and the NNS

• Removing the need for an NS reference utterance at synthesis time

To address the first problem, I propose an approach that matches frames from the

native reference speaker and non-native speakers based on their phonetic similarity. To 

generate accent conversions, I then use the paired frames to train a Gaussian Mixture 

Model (GMM) that converts the native reference utterance to match the voice identity of 

the non-native speaker. The algorithm outperforms earlier methods that match frames 

based on Dynamic Time Warping or acoustic similarity, improving ratings of acoustic 

quality and native accent while retaining the voice identity of the non-native speaker. I 
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also show that this approach can be applied to non-parallel training data and achieve com-

parable performance. 

To address the second problem, I develop a sequence-to-sequence speech synthe-

sizer that maps speech embeddings (e.g., phonetic posteriorgrams) from the non-native 

speaker into the corresponding spectrograms. At inference time, I drive the synthesizer 

with a speech embedding from an NS reference utterance. The proposed system produces 

speech that sounds clearer, and more natural and similar to the non-native speaker com-

pared with the model presented in the first work, while significantly reducing the per-

ceived accentedness compared with non-native utterances. 

To address the third and final problem, I present a reference-free FAC system. 

First, I generate a synthetic golden speaker for the non-native speaker using the method 

proposed in the second work. Then, I train a pronunciation-correction model that maps the 

non-native speaker utterance into the synthetic golden speaker utterance. Both objective 

and subjective evaluations show that the reference-free FAC model generates speech that 

resembles the non-native speaker’s voice while being significantly less accented. 

In the process of conducting this research, I also took a leading role in collecting, 

curating, and releasing a non-native speech corpus named L2-ARCTIC, which is the first 

open-source corpus of its kind and provides valuable resources for the speech community. 

I include descriptions of the curation process, data analysis, and applications of the corpus 

in this dissertation. 
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1. INTRODUCTION

Adult learners of a second language (L2) often speak with a foreign accent. This 

is a result of multiple social and linguistic factors, which include the age of L2 learning, 

length of residence in an L2-speaking country, gender, education level, and the learner’s 

native language’s (L1) transfer effect [1-3]. Although a foreign accent does not necessarily 

reduce the comprehensibility or intelligibility of the non-native speech [4], by improving 

pronunciation, L2 learners interacting with native speakers (e.g., immigrants, foreign em-

ployees) have much to gain in the workplace, career opportunities, social life, and educa-

tion [5-9]. 

In-person pronunciation coaching is an effective way to improve a learner’s pro-

nunciation but is often expensive and inaccessible for most learners. As such, listening 

and repeating after a pre-recorded native teacher’s reference speech has been a widely 

adopted and affordable alternative. Students can identify potential mispronunciations in 

their production by comparing their speech with a teacher’s utterance that has the same 

linguistic content, and then repeat after the teacher’s speech to resolve these issues. Sev-

eral studies [10, 11] have suggested that having a suitable native speaker to imitate – a so-

called golden speaker can be beneficial in pronunciation training. Felps et al. [12] sug-

gested that each learner’s golden speaker should be their voice, resynthesized to have a 

native accent, and that this synthetic voice could be created by foreign accent conversion 

(FAC). 
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Formally, foreign accent conversion aims to create an artificial voice that has the 

voice identity of a non-native speaker but the pronunciation characteristics (e.g., prosody, 

segmentals) of a native reference speaker. Multiple solutions have been proposed for ac-

cent conversion, including voice morphing [12-15], acoustic-similarity based frame pair-

ing [16], and articulatory synthesis [17-20]. Although they succeed in generating accent-

reduced syntheses, they have various limitations. The voice morphing methods cannot 

preserve the non-native speaker’s voice identity, resulting in a voice that sounds like a 

“third-speaker” who is neither the non-native nor the native speaker. The acoustic-simi-

larity pairing method creates a lookup table between the native and non-native speech 

frames by minimizing their acoustic distance, which is measured by the Euclidean distance 

in the Mel-Frequency Cepstral Coefficient (MFCC) feature space. The pairing method 

then uses the resulting frame pairs to train a voice conversion model [21] that maps the 

spectral features from a native reference utterance to match the non-native speaker’s iden-

tity. This method can synthesize speech that resembles the non-native speaker’s voice, but 

it retains segmental mispronunciations that are introduced in the frame pairing process. 

Finally, articulatory synthesis methods need specialized apparatus to collect articulation 

data and often involve challenging recording conditions1. Therefore, they are not practical 

for daily use or frequent training. Moreover, to correct the mispronunciations in a non-

native test utterance, all these methods require a pre-recorded native reference utterance, 

1 For example, recording the electromagnetic articulography (EMA) [22] requires placing sensor coils on 
the tongue and other articulators to measure their position and movement over time during speech produc-
tion. Recording the real-time magnetic resonance imaging (MRI) of the articulations [23] requires expen-
sive MRI machines, and they tend to produce a loud background noise, which is both uncomfortable for 
the participants and makes the audio recordings noisy. 
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which significantly limits their applications in real-world scenarios. Therefore, this dis-

sertation intends to resolve the issues mentioned above with previous foreign accent con-

version methods. 

The key to FAC is to map the raw speech signal into an intermediate feature space 

that separates the linguistic and phonetic information from voice identity, such that we can 

perform pronunciation modification in that feature space without interfering with the voice 

identity. Following this idea, speech embeddings produced by an acoustic model (AM) in 

an automated speech recognizer (ASR) become an ideal candidate for such a feature space. 

A speech embedding is the output of a selected layer (generally one of the last few layers) 

in a neural network-based AM. AMs that are trained on a large corpus with many native 

speakers generate speech embeddings that are speaker-independent while representing the 

linguistic and phonetic information. 

Figure 1.1: PPG of a spoken word balloon, whose pronunciation is “B AH L UW N” 
in the ARPAbet phoneme set. “SIL” means silence. An American English speaker 
uttered this word. 

Time
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One representative speech embedding is the phonetic posteriorgram (PPG) [24]. 

Figure 1.1 illustrates an example of the PPG of a spoken word. A PPG is computed by 

segmenting speech into frames and calculating the posterior probability that each frame 

belongs to a set of pre-defined phonetic units (e.g., phonemes or triphones/senones). Gen-

erally, the PPG is the output of the final softmax layer in the acoustic model. Alternatively, 

one can also use the hidden layer outputs (typically referred to as the bottleneck features) 

of the acoustic model as the speech embeddings. 

In the first part of this dissertation (Chapters 3, 4, and 5), I propose three novel 

FAC systems that utilize speech embeddings to address the limitations faced by prior FAC 

methods. In the second part of this dissertation (Chapter 6), I describe the FAC corpus that 

my collaborators and I collected and released during this dissertation research, which is 

the first open-source corpus for the accent conversion task. 

In the first work (Chapter 3), I address the residual mispronunciation issue of pre-

vious frame pairing-based FAC methods [16]. Instead of performing frame-pairing using 

Dynamic Time Warping (DTW) or acoustic similarity, the proposed method uses the pho-

netic similarity between PPGs to measure pronunciation differences between native and 

non-native speech frames. Performing frame pairing in the PPG space can reduce mis-

matches between speech frames and improve the nativeness and acoustic quality in the 

converted speech.  

In the second work (Chapter 4), I use a state-of-the-art speech synthesizer to im-

prove the voice similarity between the accent converted speech and the original non-native 

speech. Prior FAC methods need to borrow the excitation signal from the native reference 
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utterance, and then use a signal processing-based vocoder to combine the excitation signal 

with the converted spectral features to generate the audio waveform. Therefore, the output 

speech is diluted with voice identity cues from the native reference speaker and thus does 

not fully capture the voice individuality of the non-native speaker. In this work, I propose 

an end-to-end speech synthesizer that directly maps PPGs from the non-native speaker to 

their corresponding audio waveform. Then, I drive the speech synthesizer with speaker-

independent PPGs from a native reference utterance to produce the accent conversion. The 

end-to-end speech synthesizer is constructed with a sequence-to-sequence conversion 

model that converts between PPGs and mel-spectrograms, and a neural vocoder that di-

rectly recovers the speech waveform from mel-spectrograms. Therefore, one no longer 

needs the reference utterance’s excitation signal to generate the audio, improving the voice 

identity of the accent conversion. 

In the third work (Chapter 5), I propose a two-step solution to eliminate the re-

quirement of the native reference speech at inference/test time (i.e., runtime synthesis). In 

the first step, I train the speech synthesizer proposed in Chapter 4 on a dataset of utterances 

from the non-native speaker. Then, I generate a synthetic golden speaker by driving the 

speech synthesizer with speech embeddings from training native reference utterances. The 

resulting synthetic golden speaker has the voice identity of the non-native speaker (pro-

vided by the speech synthesizer) and the pronunciation and prosody of the native reference 

speaker. In the second step, I train a sequence-to-sequence [25] pronunciation correction 

model to directly map non-native speech to the synthetic golden speaker’s speech. Se-

quence-to-sequence models have shown promising results across multiple domains [26-



6 

28], and they can exploit the context-dependent nature of pronunciation errors in non-

native speech. The outputs of the sequence-to-sequence model contain the linguistic con-

tent of the input non-native speech but with the synthetic golden speaker’s native pronun-

ciation patterns. In the testing phase, foreign accent conversion can be produced by pass-

ing the non-native speech through the pronunciation correction model. 

The fourth and last part of this dissertation (Chapter 6) focuses on providing re-

sources for foreign accent conversion. With the assistance from my collaborators, I curated 

an open-source non-native English speech corpus, which includes high-quality recordings 

as well as annotations on segmental mispronunciations from a diverse group of non-native 

English speakers with six different first languages (Hindi, Korean, Mandarin, Spanish, 

Vietnamese, and Arabic). Since there was no existing corpus like this, having such a cor-

pus would positively promote future research on FAC methods for computer-assisted pro-

nunciation training. 

In summary, this dissertation research consists of four main objectives: 

(1) PPG frame pairing: Develop an accent conversion system using a frame-pairing

method based on phonetic similarity to improve the nativeness of the speech syn-

theses

(2) Accent conversion using the sequence-to-sequence model: Develop an accent

conversion model using state-of-the-art sequence-to-sequence speech synthesizers

for better speaker individuality

(3) Reference-free accent conversion: Develop an accent conversion algorithm that

does not need a reference utterance at synthesis time
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(4) Speech corpus: Build and release a high-quality and diverse non-native English

speech corpus

This dissertation research has the following major contributions. Objective (1) im-

proves the nativeness of accent conversion and eliminates the requirement of using paral-

lel training data. Objectives (2) and (3) improve voice similarity and acoustic quality sig-

nificantly. More importantly, they eliminate the need for native reference utterances at the 

synthesis time, and thus achieve end-to-end accent conversion. In essence, the non-native 

accent in the input speech signal is reduced directly with a single system. Objective (4) 

provides valuable resources for the future development of accent conversion algorithms. 

The works presented in this dissertation were submitted to or published in top-tier 

peer-reviewed venues. Initial results from Objective (1) were published at the 2018 Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP); a thorough 

examination of the proposed method was published by the IEEE/ACM Transactions on 

Audio, Speech, and Language Processing (TASLP). Results from Objective (2) were pub-

lished at Interspeech 2019. A detailed description of the findings in Objective (3) is being 

submitted to TASLP. A paper introducing the corpus built in Objective (4) was published 

at Interspeech 2018, and the corpus is openly accessible online. 

The rest of this dissertation is organized as follows. Chapter 2 summarizes the 

necessary background knowledge for this work. Chapters 3, 4, 5, and 6 introduce the 

works from the four main objectives, respectively. Chapter 7 concludes this dissertation 

work and discusses possible future research directions. I include Appendix A to list the 

related publications, Appendix B to document an open-source foreign accent conversion 
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tool developed during this dissertation research, and Appendix C to cover model-building 

strategies I adopt in this work. 
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2. BACKGROUND

The speech signal, which emerges from a speaker’s mouth, nose, and cheeks, is a 

longitudinal pressure wave that is formed of compressions and rarefactions of air mole-

cules [29]. Microphones capture and convert the fluctuating air pressure into electrical 

signals, which are then quantized into discrete values for further digital signal processing. 

The primary information carried by a speech signal is linguistic (e.g., the words 

spoken). This information is then convolved with the speaker’s voice identity, regional 

accent/dialect, and emotions to produce a speech waveform. Speech modification tech-

niques parameterize different attributes of the speech signal and manipulate them individ-

ually. In this dissertation, I focus on the modification of a speaker’s pronunciation pat-

terns (or accent, for short). More specifically, I seek to modify a non-native speaker’s ut-

terance to match a native teacher’s accent. With this in mind, I first review related concepts 

in non-native speech. Second, I introduce the fundamentals of speech signal analysis and 

synthesis, such as common speech parameterizations and vocoders. Lastly, I summarize 

the basic ideas of the encoder-decoder (sequence-to-sequence) paradigm, which we use 

extensively in this dissertation work. 

2.1. Non-native accents 

Moyer [30] defines an accent as “a set of dynamic segmental and suprasegmental 

habits that convey linguistic meanings along with social and situational affiliations.” This 

definition applies to both native and non-native speakers. Language learners who start to 

learn a second language (L2) can rarely acquire native-like accents after a certain age – 
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the so-called “critical period” [31, 32]. A foreign accent can be viewed as the systematic 

deviation from the standard norm of a spoken language. The deviations can be observed 

in the substitution, deletion, or insertion of phones, differences in intonation, sylla-

ble/word/sentence stress, or even the choice of vocabulary and syntax. All these deviations 

emphasize that the salience of a foreign accent can be reflected at multiple levels.  

The factors that affect the degree of foreign accents have been a long-standing 

research question in the linguistic and language acquisition community [1]. Scovel [32] 

and Lenneberg [33] suggest that passing beyond the critical period (suspected of running 

before the age of puberty), the brain loses its plasticity, and some neurofunctional reor-

ganizations occur during the development of the brain. As a result, it becomes harder for 

adult second language learners to distinguish between new phones, making it more diffi-

cult for them to produce the correct pronunciations. Prior research works give various 

endpoints of the critical period. For example, Long [34] suggested the age of six years old, 

while Scovel [35] suggested the age of 12 years, and Patkowski [36] extended the endpoint 

to 15 years old. 

Alternatively, Oyama, Flege, and Bialystok, among others [37-39], suggest that 

age-related changes in the degree of foreign accent are results of the nature and the extent 

of the interaction between a language learner's native language and L2 systems. According 

to this line of reasoning, age is an index of the state of development of the native language 

system. The more fully developed the native language system is when the L2 acquisition 

happens, the more strongly the native language will influence the L2. Consequently, the 



11 

differences in the phonetic inventory between the learner’s primary and the second lan-

guages have a strong influence on a learner’s foreign accent [40-42]. 

As an example, I discuss how the phonological differences between Chinese (Pu 

Tong Hua) and English manifest into the common characteristics of Chinese-accented 

English. English has around 15 vowels [43], while Chinese only has around five vowels 

[44]. English vowels such as /æ/, /ɑu/, and /ɛə/ do not exist in the Chinese vowel set. 

Therefore, a Chinese English learner has to learn these new sounds without the luxury of 

a reference from their native language. Even when a vowel does exist in both languages, 

the vowel’s place and manner of articulation might be different. One classic example is 

the Chinese vowel /ɪ/ and English vowels /ɪː/ and /ɪ/. In Chinese, the long vowel /ɪː/ and 

short vowel /ɪ/ do not form minimal pairs, which means that the duration difference of the 

/ɪ/ sound in Chinese does not change the meaning of a word. Therefore, it is common for 

Chinese learners to mix the long /ɪː/ and the short /ɪ/ when they speak English – causing 

mistakes such as substituting /ʃɪːp/ (sheep) to /ʃɪp/ (ship). Chinese and English have about 

the same number of consonants. However, some English consonants do not exist in Chi-

nese. For example, Chinese English speakers find it hard to produce dental fricatives /θ/ 

(as in “theta”) and /ð/ (as in “thee”) since they do not exist in their native phonology. 

Therefore, they often substitute them with similar-sounding consonants such as /z/ and /s/. 

The Chinese /ʃ/ and /r/ have different realizations in terms of place and manner of articu-

lation compared with their English counterparts. Therefore, it is not surprising to find mis-

pronunciations by Chinese English learners when they utter words like “English,” “pro-

nunciation,” “rose,” or “rise.” 
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The phonology of a language also dictates what kinds of consonants clusters (pho-

notactics) are allowed. In Chinese, morphemes are generally made up of a consonant plus 

a vowel with no consonants cluster and usually end with a vowel. As a result, Chinese 

speakers commonly insert a vowel after an ending consonant (e.g., pronouncing words 

“book” and “bed” as /bukə/ and /bedə/). Chinese and English also have significant pro-

sodic differences. For example, Chinese is a tonal language, while English is an intonation 

language. Besides, Chinese is syllable-timed, meaning that the syllables are roughly the 

same duration, whereas English is stress-timed (durations between stressed consecutive 

syllables are equal). Thus, the intonation and rhythm in Chinese-accented English differ 

significantly from that of native English. 

The influence of a speaker’s native language in their production of the second lan-

guage is such a reliable indicator of their mother tongue such that it can be identified with 

high accuracy. For example, Behravan [45] used an i-vector framework [46] to distinguish 

between seven non-native English accents (Hindi, Russian, Korean, Japanese, Thai, Can-

tonese, and Vietnamese) and achieved 74% overall detection accuracy. 

2.2. Speech signal analysis and synthesis 

In this subsection, I briefly review the source-filter model of speech production, 

the speech parameterizations (i.e., features) used in this work, as well as the speech vo-

coders I adopt for speech modification. The vocoding process consists of converting audio 

waveform into speech features and resynthesizing these features back to the waveform, 

and a vocoder is a set of algorithms and tools that perform the vocoding process. 
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2.2.1. Source-filter model for speech production 

The source-filter model [47] is a well-known theory of speech production. The 

model argues that speech occurs when a source excitation signal passing through the lar-

ynx (or at some point along the length of the vocal tract) is modified by the vocal tract 

acting as a filter. More specifically, the vibration of the vocal cords produces a complex 

periodic wave, and the spectrum of this wave contains energy at the fundamental fre-

quency of laryngeal vibration and multiples of the fundamental frequency – harmonics. 

The vocal tract acts as a filter to accentuate and attenuate the source signals at particular 

frequencies when they pass through the vocal tract. When the vocal tract configuration 

changes through articulations, the resonance characteristics of the vocal tract also change, 

resulting in different speech sounds. From a signal processing point of view, using the 

theory of linear time invariant (LTI) systems, the overall process can be modeled in the 𝑧-

domain as 𝑌 (𝑧) = 𝑈(𝑧)𝑉 (𝑧)𝑅(𝑧), where 𝑌 (𝑧) is the speech signal, 𝑈(𝑧) is the glottal 

source, and 𝑉 (𝑧) and 𝑅(𝑧) are the transfer functions of the vocal tract and lips. 

2.2.2. Mel-spectrogram 

Speech processing tasks are generally carried out in the frequency domain. To do 

so, it is typical to convert the time domain speech waveform into power spectra2 using the 

Short-Time Fourier Transform (STFT); see Figure 2.1 for an illustration. 

2 The English plural “spectrums” is not preferred in speech processing. 
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Figure 2.1: Converting speech waveform to power spectra. A spectrogram is a short-
time spectrum plotted over time. 

The mel-spectrogram is computed by passing the power spectra through mel filter-

banks (Figure 2.2), which are the overlapping triangular filters uniformly spaced in the 

mel scale frequency3. The mel scale has a frequency resolution that is similar to the human 

auditory system, and therefore it is useful for speech synthesis and recognition tasks [49]. 

Recently, mel-spectrograms have become increasingly popular in speech synthesis due to 

advances in neural vocoders, which can directly synthesize high-quality speech wave-

forms from them. I introduce neural vocoders in Section 2.2.7. 

3 A popular formula ([48], p. 150) for the conversion between the mel scale frequency 𝑚 and the linear 
scale frequency 𝑓  is 𝑚 = 2595 log10(1 + 𝑓 700⁄ ). 
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Figure 2.2: Convert power spectra to mel-spectrogram (8 kHz cut-off). The mel-spec-
trogram was produced by passing the power spectra through 80 mel filter banks. For 
visualization purposes, we only plotted 13 such triangular filter banks in the figure. 

2.2.3. Mel Frequency Cepstral Coefficients (MFCCs) 

The cepstral coefficients are calculated by taking the discrete cosine transform 

(DCT) of the log power spectrum of the speech. The source and filter components of the 

speech signal can then be separated by “liftering” (low-pass filtering in the cepstral do-

main). The most commonly used cepstral coefficients – Mel Frequency Cepstral Coeffi-

cients (MFCCs) [50] are obtained by (1) calculating the mel filter bank energies (com-

pressing the STFT spectra through the mel filter banks; the same process as in computing 
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the mel-spectrogram); (2) taking the logarithm of the output mel filter bank energies; and 

(3) taking the DCT of the log mel filter bank energies. See Figure 2.3 for an illustration of

this process. Due to its relation with the human auditory system, MFCC has become the 

de facto representation for speech recognition [51]. 

Figure 2.3: Compute MFCCs from mel filter bank energies. 

2.2.4. Mel-Cepstral Coefficients (MCCs/MCEPs) 

In another widely used variant of mel-cepstral analysis, instead of using MFCCs, 

we compute the 𝑀 -th order Mel-Cepstral Coefficients (MCCs/MCEPs) 𝑐!(𝑚) to model 

the spectrum 𝐻(𝑒"#) of the speech signal, 
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𝐻(𝑧) = exp ∑ 𝑐!(𝑚)𝑧−̃%
&

%=0
, (2.1) 

where the first order all-pass transfer function is expressed as, 

𝑧−̃1 = 𝑧−1 − 𝛼
1 − 𝛼𝑧−1 , |𝛼| < 1. (2.2) 

The variable 𝛼 controls the phase characteristic of the all-pass transfer function. 

The actual value of 𝛼 is empirically determined based on the sampling rate of the speech 

signal. Common 𝛼 values include 0.554 (48 kHz), 0.544 (44.1 kHz), 0.42 (16 kHz), 0.35 

(10 kHz), and 0.31 (8 kHz). 

MCEPs can be estimated by minimizing a cost function based on the unbiased log 

spectrum estimation method [49] using the Newton-Raphson method. Figure 2.4 shows 

an example of the MCEP feature. MCEP is one of the most common spectral representa-

tions used in statistical parametric speech synthesis, as shown by its performance in prior 

works on speech synthesizers [21, 52-54]. 
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Figure 2.4: Compute MCEPs from the log spectra with unbiased log spectrum esti-
mation [49]. 

2.2.5. STRAIGHT vocoder 

STRAIGHT (Speech Transformation and Representation using Adaptive Interpo-

lation of weiGHTed spectrum) is a vocoder that uses bilinear interpolation over the time-

frequency representation of the speech signal to estimate the spectrogram [55]. 

STRAIGHT analysis decomposes the speech signal into three independent components 

(Figure 2.5): (1) a spectrogram that is decoupled (as much as possible) from the funda-

mental frequency and the harmonics, (2) a one-dimensional fundamental frequency (𝐹0) 

signal, and (3) an aperiodicity signal, which is the spectrogram of the nondeterministic 

excitation signal (e.g., noise). This model allows independent modification of these three 
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components without any significant decrease in the naturalness and the acoustic quality of 

the synthesis. Due to the naturalness of the synthesis and the flexibility of the model, the 

STRAIGHT vocoder has gained popularity in applications such as voice conversion [21, 

56] and parametric text-to-speech synthesis [53]. In the first proposed foreign accent con-

version system, I extract MCEPs from the STRAIGHT spectrogram. 

Figure 2.5: Speech analysis and synthesis using conventional vocoders (STRAIGHT 
or WORLD). 

2.2.6. WORLD vocoder 

The WORLD vocoder [57] follows the same design philosophy as the STRAIGHT 

vocoder; it also decomposes speech waveform into a smoothed spectral envelope, an 𝐹0 

Smooth spectrogram !! Aperiodicity

STRAIGHT/WORLD vocoder

[STRAIGHT/WORLD vocoder]-1
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trajectory, and an aperiodicity signal (Figure 2.5). However, the WORLD vocoder uses 

more accurate algorithms for estimating the three vocoder features – the DIO algorithm 

[58] for estimating the 𝐹0, the CheapTrick algorithm [59] for computing the spectral en-

velope, and the PLATINUM algorithm [60] for extracting the aperiodicity. Since the 

WORLD vocoder produces significantly higher-quality speech with a much better real-

time factor compared with the STRAIGHT vocoder [61], recent works on speech modifi-

cation and synthesis tend to choose the WORLD vocoder. In this dissertation, when ap-

plicable4, I use the WORLD vocoder to extract the spectrogram, 𝐹0, and aperiodicity. 

2.2.7. Neural vocoder 

The neural vocoder is inspired by neural network-based Text-To-Speech (TTS) 

systems such as the WaveNet model [62]. The inputs to a neural TTS system are the lin-

guistic features extracted from the text input, and the outputs are speech waveforms. To 

build a neural vocoder, the input to the neural TTS model is replaced with acoustic fea-

tures. These acoustic features can be the output of a conventional vocoder (e.g., 

STRAIGHT, WORLD) or raw features like mel-spectrogram. There are different varia-

tions of neural vocoders; a few notable works include WaveNet [63], WaveGlow [64], 

FFTNet [65], and LPCNet [66]. 

The main advantage of a neural vocoder is that it can generate speech with audio 

quality that is comparable to natural speech. On the downside, the neural vocoder needs 

to be trained with a relatively large amount of speech data, and the training process can be 

4 Some proposed works were performed before the WORLD vocoder was released. 
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slow. The first neural vocoder, the WaveNet vocoder, suffers from slow inference speed 

due to its autoregressive nature, but this can be resolved with alternative implementations, 

such as Parallel-WaveNet [67] and WaveGlow. An interesting property of a neural vo-

coder is that even if the vocoder is trained on only one speaker, it can generally synthesize 

speech for another speaker from the same gender. Recent research [68] has proposed 

speaker-independent neural vocoders. 

2.3. Sequence-to-sequence models 

A sequence-to-sequence (seq2seq) model is a neural network model that can di-

rectly transform an input sequence from one domain to an output sequence from another 

domain. Figure 2.6 provides a high-level illustration of a seq2seq model. Most commonly, 

a seq2seq model contains an encoder that consumes the input sequence and generates a 

hidden representation, and a decoder that reads the hidden representation and predicts the 

output sequence in an autoregressive manner. The encoder and decoder usually consist of 

Recurrent Neural Network (RNN) cells, such as the Long Short-Term Memory (LSTM) 

[69] units or Gated Recurrent Unit (GRU) [70].

Figure 2.6: High-level illustration of a vanilla sequence-to-sequence model. <EOS> 
represents the end of the sequence. 

<EOS><EOS>

Input sequence

Encoder Decoder

Output sequence
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Figure 2.7: Conceptual illustration of a sequence-to-sequence model with the atten-
tion mechanism. <EOS> represents the end of the sequence. ⨁  represents the 
weighted sum operation. 

A major improvement to this “vanilla” seq2seq model is the introduction of an 

attention mechanism [71]. As the name suggests, the essential idea of the attention mech-

anism is to let the model decide what parts of the input sequence contain useful infor-

mation when making the predictions. Instead of using the last frame output from the en-

coder as the hidden representation, the attention mechanism computes a weighted sum of 

all the outputs from the encoder at each decoding time step and then uses the weighted 

attention-context vector as the hidden representation to predict the output features. See 

Figure 2.7 for a conceptual illustration of the attention mechanism. The attention weights 

are generally produced by learnable layers (i.e., parameters) of the seq2seq model. 

Seq2seq models obtained early success in the machine translation task [28]. Later, 

they were adopted by the speech recognition community to produce end-to-end automatic 

speech recognition [71, 72]. Seq2seq models have also been adopted in the speech syn-

thesis community to develop end-to-end TTS synthesizers [73, 74]. Due to the sequential 
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Input sequence

Encoder Decoder
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and monotonic nature of the speech signal, the seq2seq model and the attention mechanism 

are especially suitable for speech-related tasks, and I use this type of model extensively in 

my dissertation. 
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3. USING PHONETIC POSTERIORGRAM BASED FRAME PAIRING FOR SEG-

MENTAL ACCENT CONVERSION* 

3.1. Overview 

Accent conversion (AC) aims to transform non-native utterances to sound as if the 

speaker had a native accent. This can be achieved by mapping source speech spectra from 

a native speaker into the acoustic space of the target non-native speaker. In prior work, we 

proposed an AC approach that matches frames between the two speakers based on their 

acoustic similarity after compensating for differences in vocal tract length. In this chapter, 

we propose a new approach that matches frames between the two speakers based on their 

phonetic (rather than acoustic) similarity. Namely, we map frames from the two speakers 

into a phonetic posteriorgram using speaker-independent acoustic models trained on na-

tive speech. We thoroughly evaluate the approach on a speech corpus containing multiple 

native and non-native speakers. The proposed algorithm outperforms the prior approach, 

improving ratings of acoustic quality (22% increase in mean opinion score) and native 

accent (69% preference) while retaining the voice quality of the non-native speaker. Fur-

* © 2019 IEEE. Reprinted, with permission, from G. Zhao and R. Gutierrez-Osuna, "Using phonetic poste-
riorgram based frame pairing for segmental accent conversion," IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 27, no. 10, pp. 1649-1660, 2019. In reference to IEEE copyrighted
material, which is used with permission in this dissertation, the IEEE does not endorse any of Texas A&M
University's products or services. Internal or personal use of this material is permitted. If interested in re-
printing/republishing IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to http://www.ieee.org/publications_stand-
ards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. This reprint
contains necessary modifications to include suggestions from the dissertation committee.
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ther, we show that the approach can be used in the reverse conversion direction, i.e., gen-

erating speech with a native speaker’s voice quality and a non-native accent. Finally, we 

show that this approach can be applied to non-parallel training data, achieving the same 

accent conversion performance. 

3.2. Introduction 

Learners who acquire a second language (L2) after a “critical period” [33] usually 

speak with a non-native accent. Having a non-native accent can often reduce the speaker’s 

intelligibility [4] and may also lead to discriminatory attitudes [75, 76]. Therefore, non-

native speakers have much to gain by improving their pronunciation. Several studies [10, 

11] have shown that having a suitable native (L1) speaker to imitate – a so-called “golden

speaker” with similar voice characteristics as the learner but with a native accent, can be 

beneficial in pronunciation training. Based on these findings, Felps et al. [12] suggested 

that such a “golden speaker” could be created by resynthesizing the non-native speaker’s 

own voice with a native accent borrowed from a native reference speaker.  

Traditional voice-conversion (VC) methods [21, 77-79] cannot be used for this 

purpose since VC cannot decouple the speaker’s voice quality from her or his accent, i.e., 

VC assumes that accent is part of the speaker’s identity. In this work, we distinguish two 

concepts: voice quality, which focuses on the physical characteristics of the speaker’s 

voice (e.g., vocal tract and glottal configuration, pitch range), and speaker identity, a com-

bination of voice quality and other speaker characteristics (e.g., accent, speaking rate, in-

tonation, word choice).  
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To address the accent-and-voice-quality entanglement issue of traditional VC 

methods, Aryal and Gutierrez-Osuna [16] proposed a modified VC method where source 

frames (i.e., from the native reference speaker) and target frames (i.e., from the non-native 

speaker) were paired based on their acoustic similarity. In a first step, the authors applied 

vocal-tract length normalization (VTLN) to the source speech, so it matched the target 

speaker’s vocal-tract length. Then, they paired each frame in the source corpus with the 

closest frame in the target corpus, and vice versa. Though VTLN did improve frame pair-

ing compared to time alignment (i.e., the conventional approach in VC), vocal-tract length 

is just one of the potentially many differences between speakers, and it is too coarse to 

account for differences in pronunciation.  

To address this issue, we present an approach that matches source and target 

frames based on their phonetic content. Leveraging advances in acoustic modeling [80], 

we extract phonetic information from phonetic posteriorgrams (PPGs) [24]. Namely, we 

compute the posteriorgram for each source and target speech frame through a speaker-

independent acoustic model trained on a large corpus of native speech. Then, we use the 

symmetric Kullback-Leibler (KL) divergence [81] in posteriorgram space to match source 

and target frames. The result is a set of source-target frames that are paired based on their 

phonetic similarity, with which we train a Gaussian Mixture Model (GMM) to model the 

joint distribution of source and target Mel-Cepstral Coefficients (MCEPs). In a final step, 

we map source MCEPs into target MCEPs using maximum likelihood estimation of spec-

tral parameter trajectories considering the global variance [21] of the target speaker. Our 

implementation is based on a conventional GMM spectral mapping method to ensure a 
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fair comparison with the prior study [16], but our proposed frame matching method can 

be combined with any spectral mapping methods (e.g., neural networks, frequency warp-

ing) that take frame pairs as input. 

Our approach differs from prior works on accent conversion, which modify speech 

features that carry accent information, such as prosody, formants, spectral envelopes, or 

articulatory gestures [12, 13, 15, 82]. Instead, we use a VC technique to capture the voice 

quality of the (target) non-native speaker while preserving the (source) native speaker’s 

pronunciation characteristics – both segmental and prosodic. Unlike VC methods, how-

ever, we avoid the issue of time aligning source and target utterances, which is problematic 

when the target speaker is non-native. Our approach is related to that of Xie et al. [83], 

who used speaker-adaptive acoustic models to generate posteriorgrams for VC. Their 

method groups all target speaker training data into phonetic clusters in the posteriorgram 

space using symmetric KL divergence and K-means clustering. Then, each frame of the 

source speaker’s corpus is mapped to the centroid of the closest target phonetic cluster. 

The final converted speech is generated from those closest cluster centroids using the max-

imum probability trajectory generation algorithm. In contrast with their frame clustering 

approach, we use PPGs to produce frame pairs between source and target speakers, and 

then we train a GMM using those frame pairs. A second major difference with their ap-

proach is that we use speaker-independent acoustic models trained on native speech to 

ensure that the PPGs only reflect native pronunciations, whereas their approach uses 

speaker-adaptive training, which would introduce non-native pronunciations into the 
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acoustic models. Initial findings from this work were presented at the International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP) in 2018 [84]. That earlier 

conference paper presented preliminary listening test results that verified the effectiveness 

of the PPG-based frame-matching method. The present manuscript describes our method 

in detail and significantly expands the perceptual studies and data analyses, including an 

experimental comparison of the proposed method on parallel and non-parallel data. 

3.3. Literature review 

3.3.1. Algorithms for accent conversion 

Foreign and non-native accents occur when speech deviates from the expected 

acoustic (e.g., formants) and prosodic (e.g., intonation, duration, and rate) norms of a lan-

guage [12]. Therefore, prior work has focused on modifying certain speech characteristics 

to alter the perceived accent. In early work, Yan, et al. [85] used a voice-morphing soft-

ware to change the trajectories of formants, pitch, and duration to convert between three 

different English dialects (British, Australian, and General American English). The au-

thors found that prosodic modifications produced noticeable differences on perceived ac-

cent, although not as significant as those produced by modifying formant trajectories. In 

the approach of Felps et al. [12], the spectral envelope of the non-native speech was re-

placed with that of the native speaker’s, which had been normalized to the non-native 

speaker’s vocal tract length with a piecewise linear warping function. Their results showed 

that the segmental correction was able to significantly reduce the foreign accentedness of 

the modified utterances. More recently, Jügler, et al. [86] used PSOLA to correct the pros-

ody of non-native German speech spoken by native French speakers. Prosodic (duration 
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and pitch) corrections were performed at the syllable level, and the results showed a mod-

erate but significant reduction in accentedness of the corrected speech. 

A couple of studies also tried to blend native and non-native spectra to control the 

accent. Huckvale and Yanagisawa [15] blended the spectral envelope of non-native Japa-

nese speech produced by an English Text-To-Speech (TTS) with its native counterpart 

through voice morphing to reduce the accent. Aryal, et al. [13] decomposed the cepstrum 

into spectral slope and spectral detail, and then generated accent conversions by combin-

ing the spectral slope of the non-native speaker with a morph of the spectral detail of the 

native speaker. Though these spectra-blending methods can reduce non-native accents, 

they also tend to produce syntheses that are perceived as a “third speaker,” one who is 

different from either the source (native) or target (non-native) speaker. To tackle this prob-

lem, Aryal and Gutierrez-Osuna [16] adapted VC techniques to perform accent conver-

sion. The authors used vocal-tract-length normalization (VTLN) before pairing acoustic 

frames between source (native) and target (non-native) speaker, then built a GMM using 

those frame pairs to perform VC. This method was able to reduce non-native accent sig-

nificantly, while retaining the non-native speaker’s voice quality; however, it required a 

relatively large set of parallel recordings from the two speakers, and VTLN only accounted 

for a subset of the speaker characteristics. 

An alternative to using acoustic methods is to operate in the articulatory domain. 

Along these lines, Felps, et al. [82] used an articulatory synthesizer based on unit-selection 

to replace mispronounced non-native diphones with those from the non-native corpus that 

matched the articulatory configuration of a reference utterance from a native speaker. 
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Later, Aryal and Gutierrez-Osuna used GMMs [17] and DNNs [87] to build an articulatory 

synthesizer (i.e., a mapping from articulatory gestures into acoustics) for the non-native 

speaker, then drove the GMM/DNN with articulatory gestures from a native speaker. 

Methods based on articulatory data generate syntheses that sound more like the non-native 

(target) speaker than acoustic methods, since they effectively decouple linguistic infor-

mation (e.g., articulatory gestures from a native [source] speaker) from voice quality (cap-

tured by the articulatory-to-acoustic synthesizer of the non-native speaker). However, ar-

ticulatory methods are expensive and require specialized equipment to collect articulatory 

data, so they are impractical for pronunciation training. 

3.3.2. Connection between accent and voice conversion 

Accent conversion is closely related to the problem of voice conversion [88]. 

Voice conversion transforms a source speaker’s speech into that of a (known) target 

speaker. The conversion aims to match the voice characteristics of the target speaker, 

which may include vocal tract configuration, glottal characteristics, pitch range, pronun-

ciation, and speaking rate. Ideally, the only information retained from the source speech 

is its linguistic content, i.e., the words that were uttered. Popular methods for voice con-

version include joint-density GMMs [21], frequency warping [89, 90], DNNs [91, 92], 

and sparse coding [79, 93-95]. Accent conversion modifies speech at a finer level of gran-

ularity, and seeks to combine the linguistic content and pronunciation of the source 

speaker with the voice quality of the target speaker. Therefore, accent conversion is a more 

challenging problem than voice conversion in the sense that, first, there is no ground truth 

for the output voice, and second, accent conversion needs to split the speech into voice 
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quality (converted) and accent (preserved), whereas voice conversion jointly converts 

both. 

 

 

Figure 3.1: PPG for the word “air,” whose phonetic transcription in ARPAbet is “EH 
R.” For visualization purposes, we used a subset of the ARPABET phoneme set and 
omitted phonemes that had small values. 

 

3.4. Method 

3.4.1. Phonetic posteriorgrams 

At its core, our proposed method relies on Phonetic Posteriorgrams (PPGs) to 

measure the similarity of speech frames across speakers. A phonetic posteriorgram is com-

puted by segmenting speech into frames and computing the posterior probability that each 

frame belongs to a set of pre-defined phonetic units. As an example, Figure 3.1 shows the 
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PPG of the spoken word “air.” In practice, it is advisable to include context when compu-

ting the PPG by concatenating each speech frame with its neighboring right and left 

frames. Moreover, phoneme labels are too coarse to describe the variety of speech sounds. 

Therefore, the dimensions in a phonetic posteriorgram are often associated with triphones, 

as we will see next. 

Generally, the phonetic posteriorgram is computed from the acoustic model in an 

automatic speech recognizer (ASR). The acoustic model in ASR acts as a sequential clas-

sifier: given an input acoustic feature vector, the acoustic model assigns how likely it is 

that the vector belongs to each of a set of states/senones. In recent years, acoustic models 

based on DNNs have yielded state-of-the-art speech recognition accuracy [80]. The most 

advanced ASR systems can achieve Word Error Rates that are comparable to or better 

than expert human transcribers on specific tasks [96].  

In this work, we compute phonetic posteriorgrams using a 𝑝-norm DNN [97] as 

the acoustic model. The input layer accepts a feature frame accompanied by its left and 

right neighbors; then the input is de-correlated by a fixed linear transformation [98]. The 

de-correlated features are then passed through 𝑁  hidden layers, each employing the 𝑝-

norm non-linearity 𝑦 = ‖𝒙‖) = (∑ |𝑥*|)* )1 )⁄ , where 𝑦 is one output dimension of a hid-

den layer and 𝒙 represents a group of hidden neurons of that layer. Therefore, the number 

of output dimensions of each hidden layer is smaller than the number of hidden neurons. 

The output of the 𝑝-norm layer is then processed by a normalization layer to limit its stand-

ard deviation to one [97]. The output of the final hidden layer is fed into a softmax layer 

that produces more output nodes than the desired number of senones using a technique 
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called “mixing-up” [97]. “Mixing-up” operates as follows. About halfway through train-

ing, the dimension of the softmax layer is increased by letting each output senone’s prob-

ability be a sum over potentially multiple “mixture components.” The mixture components 

are distributed using a power rule, proportional to the senone class priors. The neural net-

work then “group-sums” the output of the softmax layer according to the group assignment 

defined in the “mixing-up” step, resulting in the final output nodes that correspond to in-

dividual senones. Figure 3.2 shows the overall structure of the 𝑝-norm deep neural net-

work that we use in this work. 

 

 

Figure 3.2: P-norm deep neural network structure for acoustic modeling. 
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During training, inputs to the 𝑝-norm DNN consist of stacked MFCC frames 𝑿, 

whereas target outputs 𝒀  are senone labels obtained from force-alignment using an exist-

ing GMM-HMM speech recognizer. The training objective is the sum (across all frames 

of training data) of the log-probability of 𝒀  given 𝑿: ∑ log 𝑝(𝒀*|𝑿*)* . After the DNN 

is fine-tuned using Stochastic Gradient Descent [99], we compute the posterior probability

of observing senone 𝑙 given the speech frame 𝒙 by doing a complete forward propagation,

𝑝(𝑙|𝒙) = ∑
exp(𝑥+

′ )
∑ exp(𝑥-

′ )-+∈/
, (3.1) 

where 𝑥-
′  is the output of the hidden layer that precedes the softmax layer, and 𝐺 is the set

of softmax outputs that are grouped into senone 𝑙 during the “mixing-up” procedure. A

PPG frame of 𝒙 is constructed by forming a vector from all possible values of 𝑝(𝑙|𝒙), see

eq. (3.2).

3.4.2. Frame pairing

Conventional voice conversion methods use time alignment to pair frames from 

source and target utterances. As such, a VC model trained from time-aligned frame pairs 

will retain the non-native speaker’s accent. Instead, to perform accent conversion, the 

pairing must be based on the phonetic similarity between source and target frames. In this 

way, each native speech frame is associated with its most similar non-native counterpart 

in terms of pronunciation. If we train a spectral conversion model between these frame 

pairs, the pronunciation from the native speech data will be preserved and the spectral 

envelope of the native speaker will be modified to match the non-native speaker’s voice 

quality. 
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Figure 3.3: L1: native, L2: non-native. (a) AC-PPG: proposed AC algorithm that 
uses phonetic similarity. (b) AC-SIM: Baseline 1 that uses acoustic similarity through 
VTLN to pair frames [16]. (c) AC-DTW: Baseline 2; native and non-native frames 
are time-aligned following their ordering in the data. 

3.4.2.1. Frame pairing based on phonetic similarity (AC-PPG) 

We use PPGs to pair frames between the native and non-native speaker. Our ra-

tionale is straightforward: if an ASR trained on native speech determines that a non-native 
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speech segment 𝒚 is close to the native speech production of a particular phoneme (or 

triphone, in our case), then it is reasonable to pair 𝒚 with a native speech segment 𝒙 with 

the same phonetic label; see Figure 3.3 (a). Specifically, our approach works as follows. 

In a first step, we compute PPG frames for speech frames from the two speakers, 

ℒ0!
= [𝑝(𝑙1|𝒙1), 𝑝(𝑙2|𝒙1), … ,  𝑝(𝑙3 |𝒙1)], (3.2) 

where 𝒙1 is the acoustic feature vector of the 𝑖-th speech frame; 𝑉 = {𝑙1,  𝑙2, … ,  𝑙3 } is 

the predefined senone set; 𝑃 (𝑙"∣𝒙1) is the conditional probability that the speech frame 

belongs to senone 𝑙" given 𝒙1; ∑ 𝑃 (𝑙"|𝒙1)" = 1.  

Given posterior feature vectors ℒ0!
 and ℒ0"

, we calculate their distance using the 

symmetric KL divergence, 

𝐷(ℒ0!
, ℒ0"

) = (ℒ0!
− ℒ0"

) ⋅ (log ℒ0!
− log ℒ0"

). (3.3) 

The symmetric KL divergence is commonly used to compute the similarity be-

tween distributions, and here, each frame of the PPG functions like a distribution. For each 

source (i.e., native) frame 𝒙1 we find its closest target (i.e., non-native) frame 𝒚1
∗, 

𝒚1
∗ = argmin

∀6
𝐷(ℒ0!

, ℒ6) . (3.4) 

Likewise, for each non-native frame 𝒚1 we find its closest native frame 𝒙1
∗, 

𝒙1
∗ = argmin

∀0
𝐷(ℒ0, ℒ6!

) . (3.5) 

Each frame pairing process only involves two speakers – the given native and non-

native speakers. The frame pairing does not constrain the search space. Therefore, it is 

possible to pair multiple frames from one speaker with the same frame from the other 



 

 37 

speaker. In this case, we duplicate that frame multiple times. The resulting frame pairs are 

used to train a Gaussian Mixture Model (GMM). 

3.4.2.2. Baseline methods for frame pairing 

We compared the proposed PPG-based method against two baseline techniques 

for frame pairing: the acoustic similarity method of Aryal and Gutierrez-Osuna [16], and 

dynamic time warping.   

Baseline 1 (AC-SIM). Following [16], we measured acoustic similarity as the in-

verse of the L2-norm between native and non-native speaker frames, after normalizing the 

native speaker to match the vocal tract length of the non-native speaker; see Figure 3.3 

(b). 

In a first step, we learn a VTLN transform to reduce physiological differences in 

vocal tract between the two speakers. For this purpose, we time-align parallel training 

utterances of the two speakers, each utterance represented as a sequence of MFCCs. Fol-

lowing Panchapagesan and Alwan [100], we then learn a linear transform between the 

MFCCs of both speakers using ridge regression: 

𝑇 ∗ = argmin
7

‖𝒙 − 𝑇𝒚‖2 + 𝜆‖𝑇 ‖2, (3.6) 

where 𝒙 and 𝒚 are vectors of MFCCs from the native and non-native speakers, respec-

tively, and 𝑇 ∗ is the VTLN transform. Next, for each native vector 𝒙1 we find its closest 

non-native vector 𝒚8
∗ as: 

𝒚8
∗ = argmin

∀6
‖𝒙1 − 𝑇 ∗𝒚‖2 . (3.7) 

We repeat the process for each non-native vector 𝒚1 to find its closest match 𝒙8
∗: 
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𝒙8
∗ = argmin

∀0
‖𝒙 − 𝑇 ∗𝒚1‖2 . (3.8) 

The above process results in a lookup table where each native and non-native 

frame in the database is paired with the closest one from the other speaker. 

Baseline 2 (AC-DTW). As our second baseline method, we use Dynamic Time 

Warping (DTW) [101] to time-align native and non-native frames, as illustrated in Figure 

3.3 (c). 

We note that baselines 1 and 2 need parallel data for training, whereas the proposed 

method can operate on non-parallel data, as we shall see in the experiments. 

3.4.2.3. Spectral conversion 

To ensure a fair comparison between the three frame-pairing methods, we use a 

common spectral conversion technique to map a native source speaker’s spectral features 

to match a non-native target speaker’s voice quality. Following Toda et al. [21], we use a 

GMM to model the joint distribution of source and target frame pairs, and then use maxi-

mum likelihood parameter generation (MLPG) with global variance (GV) [102] to gener-

ate the converted speech for a given source utterance. Specifically, we use 2𝐷-dimen-

sional acoustic features, 𝑋9 = [𝑥9
7 , Δ𝑥9

7 ]7  from the source speaker, and 𝑌9 = [𝑦9
7 , Δ𝑦9

7 ]7  

from the target speaker, consisting of 𝐷-dimensional static and dynamic features, where 

(∙)7  denotes the transpose. Given the paired source and target features, we train a GMM 

to model the joint probability density 𝑝(𝑋, 𝑌 |Θ) where Θ denotes model parameters, es-

timated using Expectation-Maximization (EM): 

Θ = EM (argmax
Θ

𝑝(𝑋, 𝑌 |Θ)) . (3.9) 
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When converting source static and dynamic feature vectors 𝑋 =

[𝑋1
7 , 𝑋2

7 , … , 𝑋7
7 ]7  to the target static feature vectors 𝑦 = [𝑦1

7 , 𝑦2
7 , … , 𝑦7

7 ]7  – after the 

GMM is trained, we maximize the function below with respect to 𝑦, 

𝑦 ̂ = argmax
;

log{𝑝(𝑌 |𝑋, Θ)#𝑝(𝑣(𝑦)|𝜃<)} ,      𝑌 = 𝑊𝑦, (3.10) 

where 𝑝(𝑌 |𝑋, Θ) denotes the conditional probability density function (PDF) on the target 

static and dynamic feature vectors, and 𝑝(𝑣(𝑦)|𝜃<) represents the likelihood of a PDF on 

the global variance of the target feature vectors, which is represented as a separate GMM 

(one mixture) and trained using the EM algorithm as well. 𝑊  is a matrix that appends 

dynamic features to the static features, and 𝜔 adjusts the relative importance between the 

two distributions and is set as the ratio of number of dimensions between vectors 𝑣(𝑦) and 

𝑌  (= 1/2𝑇 ). We use a GMM instead of a DNN in this study to focus on low-resource 

accent conversion scenarios – in real pronunciation training applications, we generally 

have a limited amount of data from the non-native speakers. 

3.4.2.4. Pitch scaling 

Previous studies [12, 15, 85] have shown that prosody modification is an essential 

part of accent conversion, and the pitch contour contains identity-related information. 

Since pitch modification is not the focus of this study, we follow the standard procedure 

[21] and use the pitch trajectory from the source (native) speaker, which captures native 

intonation patterns, then normalize it to match the pitch range of the target (non-native) 

speaker using mean and variance normalization in the log 𝐹0 space. 
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3.5. Experimental setup 

3.5.1. DNN acoustic model for extracting PPG 

To train the DNN acoustic model, we used Kaldi’s Librispeech recipe5. The model 

is a 𝑝-norm DNN (𝑝=2), as introduced in the method section, with five hidden layers. We 

extracted 13-dim MFCC vectors with a 7-frame context, passed the concatenated 91-dim 

(13×7) MFCCs through a Linear Discriminant Analysis (LDA) to generate a 40-dim input 

feature vector, then concatenated nine frames of such 40-dim LDA features as the final 

input to the DNN. The 360-dim (40×9) input features were de-correlated using a fixed 

linear transform. All hidden layers had 5,000 hidden neurons and output 500 activations 

because each p-norm non-linearity was computed over ten hidden neurons. Every hidden 

layer was fully-connected with the previous layer. Right after the last hidden layer was a 

softmax layer of 14,000 nodes; those nodes were then “group-summed” to produce the 

final output across senones (5,816 dimensions, which were obtained from state-tying on a 

phonetic decision tree built from the transcripts of the training data; see [103] for more 

details on how the decision tree was constructed). The DNN acoustic model was trained 

on Librispeech’s [104] training set, a speech recognition corpus that contains 960 hours 

of native English speech, the majority being American English. In the following experi-

ments, the Librispeech corpus was used solely for building the acoustic model. 

5 https://github.com/kaldi-asr/kaldi/tree/master/egs/librispeech 
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3.5.2. Speech corpus for accent conversion 

For the native speech synthesis corpus, we used two speakers from the CMU ARC-

TIC dataset [105]: BDL and CLB. Those recordings have a sampling rate of 16 kHz. For 

the non-native (L2) English speech synthesis corpus, we used five non-native speakers 

from the L2-ARCTIC corpus6 [106]: two native Hindi speakers, two native Korean speak-

ers; and one native Arabic speaker. Each non-native speaker produced the full ARCTIC 

dataset (~1100 utterances; around one hour of speech). The speech was recorded in a quiet 

room at 44.1 kHz. For the following experiments, we down-sampled all the non-native 

speech data to 16 kHz using sox7. The speaker demographic information is summarized 

in Table 3.1. For the non-native speakers, their English proficiency level was measured in 

their TOEFL iBT scores8 [109]. 

Table 3.1: Demographic information of the speakers. 

Speaker Gender Native Language English Proficiency 
BDL M English Native 
CLB F English Native 
RRBI M Hindi 91 
TNI F Hindi 99 

HKK M Korean 114 
YKWK M Korean N/A 
ABA M Arabic 94-101

6 https://psi.engr.tamu.edu/l2-arctic-corpus/ 
7 http://sox.sourceforge.net/Main/HomePage 
8 Speaker ABA only reported his IELTS [107]  score (7.0). We converted it to a TOEFL iBT score follow-
ing [108]. 
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3.5.3. System configurations 

In what follows, we will refer to the proposed frame-pairing algorithm, baseline 1 

(acoustic similarity), and baseline 2 (dynamic time warping) as AC-PPG, AC-SIM, and 

AC-DTW, respectively. 

We used the TANDEM-STRAIGHT vocoder9 [112] to decompose speech into 

aperiodicity (AP), 𝐹0 , and a 513-dim spectral envelope. Then, we computed 25-dim 

MFCCs10 from the spectral envelopes to learn the VTLN transform and pair frames using 

acoustic similarity (AC-SIM); see Section 3.4.2.2. AC-DTW also used those MFCCs (ex-

cluding MFCC0) to time-align a source speaker to a target speaker. AC-PPG used the 

5816-dim PPGs extracted by the acoustic model to perform frame pairing. 

We also computed 25-dim MCEPs from the spectral envelopes as the acoustic fea-

ture (excluding MCEP0 since it is energy) to train the spectral conversion models (GMMs) 

and convert speech from the native speaker to the non-native speaker. MCEPs from the 

two speakers were frame paired using the three methods (AC-PPG, AC-SIM, AC-DTW) 

before being fed to the GMMs. Following Aryal and Gutierrez-Osuna [16], all GMMs had 

128 mixture components with diagonal covariance matrices. Input features to the GMM 

include delta features, and therefore the joint feature vectors had 96 dimensions. Once we 

converted the native speaker’s MCEPs to the non-native speaker’s space, we reconstructed 

9 We used the NDF 𝐹0 extractor [110] instead of the default 𝐹0 extractor that comes with TANDEM-
STRAIGHT, because based on our experience and a prior study [111], the NDF 𝐹0 extractor is more ro-
bust than the TANDEM-STRAIGHT default. 
10 We only used those MFCCs to generate the frame pairing lookup tables in AC-SIM and AC-DTW and 
discarded in other tasks 
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the spectrogram from the converted MCEPs (MCEP0 being copied from the native 

speaker), and combined it with the native speaker’s AP and normalized 𝐹0 to synthesize 

speech using the TANDEM-STRAIGHT vocoder. The conversion pipeline is illustrated 

in Figure 3.4. 

All experiments were conducted on a desktop running Windows 10 with an Intel 

Core i7-7700K CPU @ 4.2GHz, 16GB of memory, and an NVidia GTX 1070 GPU. Most 

of the algorithms were implemented and run on Matlab v9.3, except for the acoustic model 

and PPGs, which were computed using Kaldi on Ubuntu 16.04. 

Figure 3.4: Accent conversion workflow; frame pairing can be AC-PPG, AC-SIM 
(baseline 1), or AC-DTW (baseline 2). 

3.6. Results 

We conducted three sets of perceptual listening studies to evaluate different prop-

erties of the proposed frame-pairing algorithm. In the first experiment, we compared the 

approach against the two baseline systems by its ability to reduce perceived accents while 

matching the voice quality of the non-native speakers. In the second experiment, we eval-

uated whether the approach could also be used for the reverse purpose, i.e., to impart a 
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non-native accent to a native speaker’s voice. In the third and final experiment, we evalu-

ated the approach to perform accent conversion using non-parallel speech corpora. 

We recruited anonymous human participants from Amazon’s Mechanical Turk 

platform11 for our listening tests. Following Buchholz and Latorre [113], all listening tests 

included calibration trials designed to be easy to judge, and we used the participants’ re-

sponses on those calibration trials to detect cheating behaviors. We excluded data from 

participants whose responses were below chance level on those calibration questions. All 

participants’ calibration responses were excluded from the final analyses. In addition, and 

following [82], all human subjects passed a screening test that consisted of identifying 

various American English accents. We compensated participants for their time at an 

hourly rate of eight USD. In all experiments, the reference native and non-native English 

speech were resynthesized from their MCEPs using TANDEM-STRAIGHT to keep their 

acoustic quality comparable with the converted speech, which went through the same vo-

coder compression. When selecting testing samples, we always randomly draw from the 

available pools, i.e., we did not cherry-pick the audio clips. All test trials were randomly 

presented. For any listening tests that required pairwise comparisons, the presentation or-

der within an utterance pair was counterbalanced. Unless otherwise noted, we used paired-

sample t-tests for the analyses. 

11 https://www.mturk.com/ 
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3.6.1. Experiment 1: Comparing AC-PPG against baselines 

In this experiment, we considered five native to non-native speaker pairings for 

accent conversion: BDL to RRBI, BDL to HKK, BDL to YKWK, BDL to ABA, and CLB 

to TNI. For each speaker pair, we used 100 parallel utterances for training and 50 utter-

ances for testing; there was no overlap between the two sets. We performed accent con-

version on all 50 test utterances using models trained on each of the three frame-pairing 

algorithms, i.e., AC-PPG, AC-SIM, and AC-DTW. 

Figure 3.5: Mean Opinion Scores for the proposed method (AC-PPG) and the two 
baseline methods (AC-SIM, AC-DTW); the error bars show 95% confidence inter-
vals. 

Acoustic quality. We used a standard five-point (1-Bad, 2-Poor, 3-Fair, 4-Good, 

5-Excellent) Mean Opinion Score (MOS) to rate the acoustic quality of the synthesized

speech. Thirty listeners rated 150 test samples: 50 per system, 10 utterances per conversion 

direction. Results are shown in Figure 3.5. The proposed method (AC-PPG) received a 
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MOS rating of 2.99, which was significantly higher than either baseline: AC-SIM (2.45 

MOS, 22% relative improvement; 𝑡(29) = 15.61, 𝑝 ≪ 0.001 ; one-tail) and AC-DTW 

(2.55 MOS, 17% relative improvement; 𝑡(29) = 12.04, 𝑝 ≪ 0.001; one-tail). These re-

sults suggest that the proposed algorithm can boost the acoustic quality of the converted 

speech using exactly the same training data without even having to modify the GMM 

training and spectral conversion methods. 

Voice quality. Following our prior work [95], we used a voice similarity score 

(VSS) ranging from -7 (definitely different speakers) to +7 (definitely same speaker) to 

assess the speaker’s voice quality. Twenty-six participants rated 150 utterance pairs: 50 

pairs per system (25 AC-L1 and 25 AC-L2 pairs, each pair contained one AC and one L1 

[native]/L2 [non-native] utterance), and ten pairs per conversion direction. Following 

Felps et al. [12], we played utterances in reverse to prevent the accent from interfering 

with the perception of voice quality. In each trial, listeners first answered whether both 

utterances were produced by the same speaker (+1) or different speakers (-1), and then 

rated their confidence level on a 7-point scale (1-Not at all confident, 7-Extremely confi-

dent). The VSS was then compiled by multiplying the response from the first question 

with the confidence rating. Results are summarized in Figure 3.6. 
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Figure 3.6: Voice quality results; AC-L1: VSS between AC and native (L1) speaker; 
AC-L2: VSS between AC and non-native (L2) speaker; the middle bars in the boxes 
show the median values and diamond markers (◊) show the mean values, the plus 
signs (+) indicate outliers, those notations apply to all boxplots in this chapter. 

Overall, the three systems have similar VSS, and AC-L1 pairs received an average 

VSS between -3.29 to -3.62, indicating that listeners were “confident” that the AC utter-

ances had a different voice quality from those of the native speaker. Likewise, AC-L2 

pairs received an average VSS between 3.50 to 4.07, indicating that listeners were “confi-

dent” that the same speaker produced the AC and L2 utterances. When analyzing the AC-

L1 pairs, we found no significant differences in VSS between AC-PPG and either baseline 

(AC-PPG:AC-SIM 𝑡(25) = 1.13, 𝑝 = 0.27; AC-PPG:AC-DTW, 𝑡(25) = 1.95, 𝑝 = 0.06; 

two-tail). These results suggest that the three methods are equivalent in terms of producing 

AC-SIM AC-DTW AC-PPG
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speech that is different from the native speaker. When analyzing AC-L2 pairs, we found 

no significant difference between AC-PPG and AC-SIM (𝑡(25) = 0.42, 𝑝 = 0.68, two-

tail), suggesting that the new accent conversion algorithm did not sacrifice the speaker’s 

voice quality. However, AC-DTW achieved a higher VSS (4.07) than AC-PPG (3.50); 

one-tail t-test (𝑡(25) = 3.59, 𝑝 ≪ 0.05). One possible explanation for this result is that 

listeners still picked up subtle cues of non-native accent in the AC-DTW speech samples, 

and used it to rate voice quality. Because AC-DTW only performs voice conversion, it 

retains some of the non-native speaker’s accent. This residual non-native accent may have 

led listeners to rate samples from AC-DTW as more similar to the non-native speech, even 

though the recordings were played backwards. This explanation is consistent with prior 

studies [114, 115] showing that, even when speech is played backwards, native English 

speakers can still detect non-native English accents. 

Non-native accentedness. We used a preference test to determine if AC-PPG does 

indeed make the converted speech sound more native-like. Thirty native English speakers 

rated 150 utterance pairs: 50 pairs for each comparison: AC-PPG vs. AC-SIM, AC-PPG 

vs. AC-DTW, and AC-PPG vs. L2 (i.e., original utterances from the non-native speaker), 

ten pairs of utterances per conversion direction, each utterance pair was from the same 

sentence. Listeners were asked to choose the most native-like (least foreign) utterance 

from each pair, and then rate their confidence level using a seven-point scale (1-Not con-

fident at all, 7-Very confident). Aryal and Gutierrez [16] had previously established that 

AC-SIM outperforms AC-DTW and L2 in this task; therefore, we omitted those compar-

isons in this study.  
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Figure 3.7: Accent preference score with 95% confidence interval. 

 

In a first analysis, we sought to determine if a particular system was preferred as 

“less-accented” and compared the preference ratings from the participants. Results are 

summarized in Figure 3.7. On average, listeners were very confident (mean: 98%, STD: 

3%) that the AC-PPG conversions were more native-like than the original non-native ut-

terances. More importantly, listeners were positive that AC-PPG outperformed both AC-

SIM (mean: 69%, STD: 11%) and AC-DTW (mean: 72%, STD: 10%). All the above pref-

erence scores are statistically significant (𝑝 ≪ 0.001; one-tail) compared with chance lev-

els (50%). Since preference tests sometimes are too coarse and will mask out nuances in 

raters’ attitudes, we further used the confidence ratings to compute a more detailed meas-

urement – the cumulative confidence score (CCS) [116]. The CCS for each system in each 

comparison pair was computed as follows. We treat each response as if it were assigning 
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a number of points to a system; for example, if a listener preferred the AC-PPG system 

and was “somewhat confident” (rated as three), then the AC-PPG system would receive 

three points. We then computed the average CCS that listeners allocated to each system. 

Therefore, the highest score a system can get is 350 points (7×50), within a comparison 

pair. Results are summarized in Figure 3.8. As shown, all comparison pairs have the same 

trend as in the preference test, with AC-PPG performing significantly better than both 

baselines. All differences in CCS were statistically significant (𝑝 ≪ 0.001, one-tail). 

 

 

Figure 3.8: Cumulative confidence score for accentedness with 95% confidence in-
terval. 

 

3.6.2. Experiment 2: Native to non-native conversion 

In a second experiment, we evaluated whether AC-PPG can perform the accent 

conversion task in the opposite direction – creating a voice that has the native speaker’s 
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voice quality but speaking with a non-native accent. Prior work [117] has tackled this 

problem from a Text-To-Speech perspective, so we wanted to determine if it could also 

be achieved through accent conversion. Accordingly, for this experiment we performed 

accent conversion in five directions that were from non-native to native English speakers, 

i.e., RRBI to BDL, HKK to BDL, YKWK to BDL, ABA to BDL, and TNI to CLB. The

training and testing data for all speakers were identical to those used for Experiment 1. 

In an initial listening test, we recruited 20 subjects to rate the non-native English 

accent of the converted speech using a nine-point Likert-scale rating test [4], where 1 cor-

responded to  “no accent” and 9 to “very strong accent.” For each conversion direction, 

we randomly picked five utterances, and we made sure that the final 25 (5×5) utterances 

for evaluation were from different elicitation sentences. To provide a reference, we also 

included the same set of sentences that were uttered by the native and non-native speakers 

in the test. Therefore, all listeners rated 75 (25×3) sentences. Given that our native speak-

ers (BDL and CLB) spoke American English, before the test, we instructed listeners to 

consider that “A ‘foreign accent’ is defined as an accent that is different from the General 

American English accent.” We also provided two samples of American accent English 

that were produced by native speakers not used in this study. All listeners were geograph-

ically located in the United States and all but one listener self-reported to be native English 

speakers. The only listener whose native language is not English is a native Italian speaker 

who also speaks English and French, and since this participant passed our American accent 

pretest, we did not exclude this participant’s responses. Results are summarized in Figure 

3.9. On average, listeners rated the native speech to be 1.4 points (closer to “no accent”) 
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and the non-native speech to be 6.4 points (closer to “very strong accent”). The accent-

converted speech had an average rating of 6.2 points (closer to “very strong accent”), 

which was similar to the ratings of the non-native speech. No significant difference was 

found between accentedness ratings of non-native and AC speech (𝑡(19) = 0.82, 𝑝 =

0.42, two-tail). Therefore, this experiment indicates that our accent conversion approach 

was able to impart the non-native accent of the non-native speaker to utterances from a 

native speaker. 

Figure 3.9: Foreign accentedness ratings for L1 (native English), L2 (non-native Eng-
lish), and AC speech; the error bars show 95% confidence intervals. 
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Figure 3.10: Voice similarity score for AC-L1 and AC-L2 comparisons. 

In a second listening test, we focused on evaluating whether the converted speech 

retained the voice quality of the original (native) speaker. Accordingly, we used the same 

VSS test as in Experiment 1 to produce voice similarity scores between AC sentences and 

the original native/non-native sentences. Twenty listeners rated 50 utterance pairs, among 

which 25 were AC-L1, and the rest were AC-L2 pairs. As before, we randomized all 

presentation order and played the recordings in reverse. Results are summarized in Figure 

3.10. Listeners were “confident” that AC utterances had the voice quality of the native 

speakers (mean AC-L1 VSS score 2.87), and was different from the non-native speaker 

(mean AC-L2 VSS score -3.90) despite that they share the same accent.  Considering the 
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results from both listening tests in this experiment, we can conclude that AC-PPG is able 

to impart a non-native accent to native voices. 

3.6.3. Experiment 3: AC-PPG using non-parallel training data 

Our method does not impose timing constraints when pairing native and non-na-

tive speech frames: an acoustic frame from the native speaker is paired with a frame in the 

non-native speaker’s training set by minimizing the symmetric KL divergence between 

their respective PPGs. Thus, in principle, our method removes the constraint that native 

and non-native speakers must produce the same set of utterances. This property is partic-

ularly useful for real-world applications because it allows more flexibility when recording 

training sentences.  Therefore, in a third and final experiment we evaluated the AC per-

formance by comparing two variants of our method:  

• AC-PPG-P: the same system used in Experiment 1, i.e., using parallel sentences

as the training data;

• AC-PPG-NP: a system that used non-parallel sentences. For this purpose, we ran-

domly selected 100 native training utterances that were different from those in the

non-native training or non-native test sentences. As a result, the native and non-

native speakers never uttered any common sentence. All other configurations for

this system were the same as AC-PPG-P.

The AC directions and test sentences were the same as those used in Experiment

1. For each system, we generated accent converted sentences from all 50 testing samples

for evaluation. 
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In a first listening study, we used a preference test to determine which system 

yielded better acoustic quality. Twenty participants rated 50 utterance pairs – one from 

AC-PPG-P and the other from AC-PPG-NP, both utterances having the same linguistic 

content. We randomly selected 10 utterance pairs from each AC direction. For each pair, 

participants were asked to pick the utterance that has the best acoustic quality. The test 

allowed them to choose “no preference” as their response. Results are summarized in Fig-

ure 3.11. The majority of the votes (40.3%) reflected no difference between the acoustic 

quality of the two systems (“no preference”), and both systems received a similar percent-

age of votes (29.7% for AC-PPG-P; 30.0% for AC-PPG-NP). We found no significant 

difference in terms of acoustic quality between using parallel or non-parallel data (𝑡(19) =

0.11, 𝑝 = 0.91, two-tail). 

Figure 3.11: Preference scores for comparing the acoustic quality of AC-PPG-P and 
AC-PPG-NP; the error bars display the 95% confidence intervals. 
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Figure 3.12: Preference scores for comparing foreign accentedness of AC-PPG-P and 
AC-PPG-NP; the error bars display the 95% confidence intervals. 

In a second listening test, we investigated whether using non-parallel data would 

affect the non-native ratings of the converted speech. The experimental protocol was the 

same as the one we used in the acoustic quality experiment, except that in this case, for 

each AC-PPG-P and AC-PPG-NP utterance pair, we asked participants to select the one 

that had the “least foreign accent.” Twenty participants rated 50 utterance pairs, 10 pairs 

for each AC direction. Results are summarized in Figure 3.12. The vast majority of the 

votes (84.3%) indicated that there was no difference between the two systems. Further-

more, a t-test on the preference scores for AC-PPG-P (mean 7.7%) and AC-PPG-NP 

(mean 8.0%) revealed no significant differences (𝑡(19) = 0.17, 𝑝 = 0.86, two-tail). 

Finally, we asked 21 listeners to rate AC-PPG-NP sentences in terms of voice 

quality. Each listener rated 50 converted utterances, where we randomly selected 10 utter-

ances from all 5 conversion directions. The VSS scores are summarized in Figure 3.13. 

The average AC-L1 VSS is -2.64 (std: 1.52), and 3.07 (std: 1.48) for AC-L2. Using a two-
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tail independent samples t-test assuming unequal variances12, we found no significant dif-

ference between the average VSS for the AC-PPG system in Figure 3.6 and those in Figure 

3.13. For AC-L1, the test gave 𝑡(43) = 1.44, 𝑝 = 0.16 . For AC-L2, the test yielded 

𝑡(40) = 1.06, 𝑝 = 0.29. Thus, this experiment verified that using non-parallel data still 

allows our frame-pairing technique to preserve the non-native speaker’s voice quality in 

the converted speech. 

Figure 3.13: Voice similarity scores for AC-PPG-NP 

12 The two groups we are comparing have 26 (AC-PPG in Figure 3.6) and 21 (AC-PPG-NP) subjects re-
spectively, therefore, it is not reasonable to assume that they have the same variance. 
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3.7. Discussion 

In prior work [16], Aryal and Gutierrez-Osuna had shown that paring speech 

frames based on acoustic similarity (i.e., the AC-SIM baseline in our study), and then 

using the resulting frame pairs to train a voice conversion model could be used to create a 

voice that captured a native speaker’s pronunciation and a non-native speaker’s voice 

quality. Their method was able to achieve a significantly better accentedness rating com-

pared with pairing frames using DTW, though the results were based on a single pair of 

speakers. During our internal evaluations (results not shown) with multiple pairs of speak-

ers and several sets of non-native accents, we found that the speech generated by AC-SIM 

still contained noticeable mispronunciations. Since AC-SIM normalizes the vocal tract 

length difference between native and non-native speakers, we hypothesized that there re-

mains a lot of other unattended speaker-dependent (SD) information in the VTLN-trans-

formed acoustic feature space, which makes the resulting frame pairing not ideal. PPGs, 

on the other hand, are produced by speaker-independent (SI) acoustic models built for 

ASR. As a result, the most dominant information in PPGs is linguistic information. These 

analyses reinforced our intuition to use AC-PPG to eliminate the effects of SD cues in the 

frame pairing process. 

The listening tests in Experiment 1 show that the proposed frame pairing method 

can significantly reduce the non-native accent ratings compared with two baselines. In 

terms of voice similarity between the non-native speaker and the converted speech, AC-

PPG performs as well as AC-SIM. Although the speech generated by AC-DTW was rated 
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more similar to the non-native speaker than AC-PPG, we suspected that it is hard to de-

couple the influence of accent and voice quality on the perceived speaker identity (refer 

to the introduction of this chapter for the difference between voice quality and speaker 

identity). Listeners may have used the remaining foreign accent in the AC-DTW utter-

ances to select the speaker identity of the utterances instead of their voice quality. There-

fore, an interesting future direction would be to design a new perceptual experiment pro-

tocol that can better decouple voice quality and accent in spoken sentences, compared with 

the current solution of playing audio in reverse. 

Another interesting observation from Experiment 1 is that despite using the same 

spectral conversion model as the two baseline systems, AC-PPG can significantly boost 

the acoustic quality of the synthesis. When comparing the speech syntheses from AC-PPG 

with the others, we did notice that there were fewer noises and artifacts. One possible 

explanation for this is that AC-PPG pairs frames with similar phonetic context. Therefore, 

frame pairs have similar spectral structures, making the statistical regression model for 

spectra estimation less likely to introduce odd shapes in the predicted spectral envelopes. 

Consequently, better spectral predictions lead to better synthesis quality. Future work 

could investigate if this property of AC-PPG generalizes to other statistical conversion 

models that take frame pairs as training input (e.g., deep neural networks [78, 92], direct 

waveform modification [77]). 

Experiments 2 and 3 investigated other interesting aspects of the proposed frame-

pairing method. Experiment 2 verified that AC-PPG could also work in the opposite con-

version direction – creating an artificial voice that has a native speaker’s voice quality 
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while speaking in a foreign accent. This artificial voice can be useful for generating ma-

terials for perceptual studies. For example, it can map speech from speakers that have 

different accents to the same voice quality, therefore removing the impact of voice quality 

when comparing differences in accents. Experiment 3 verified that we could use a non-

parallel dataset to achieve the same accent conversion performance (measured in acoustic 

quality, accentedness, and voice quality) using AC-PPG. One possible reason why we 

could use non-parallel training data is that AC-PPG looks at a fine-grained context (95 ms 

in the current implementation)13, and this context size is comparable with the duration of 

a vowel [118] or consonant [119] segment in American English. Therefore, as long as the 

two sets of training data from native and non-native speakers have a balanced phonetic 

distribution, the approach is indifferent to the actual word-level prompts. The non-parallel 

data constraint is much more relaxed than the widely used parallel constraint, making the 

proposed method applicable to real-world scenarios, where parallel data are scarce or te-

dious to obtain.  

AC-PPG can run efficiently with careful optimization and GPU-based paralleliza-

tion. In our experiments, it generally took no more than two minutes to compute the pair-

ing between 100 training utterances (~5 minutes of speech) from the native and non-native 

speakers. Further reductions in computation time may be achieved via dimensionality re-

duction and clustering. 

13 Each frame of PPG feature looks at a larger context than the analysis window (25 ms), because the input 
to the acoustic model consists of nine frames of adjacent LDA feature, and each frame was computed from 
seven consecutive MFCC feature vectors (25 ms). Therefore, the total context for a frame of PPG feature 
is 9+7-1=15 consecutive analysis windows, which converts to 95 ms under a 5 ms window shift.  
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At present, our ratings of acoustic quality are on the low end of what state-of-the-

art voice conversion systems can achieve [120]. This is largely due to the choice of voice 

conversion system used, i.e., a conventional GMM-based spectral conversion system as a 

case study, which was needed to ensure a fair comparison with our previous work [16]. 

Fortunately, our frame-pairing approach can be combined with other spectral conversion 

methods to produce higher quality speech synthesis. For example, instead of converting 

speech frame-by-frame, we could perform the conversion over a larger context (e.g., se-

quence to sequence conversion [28].) Using a larger conversion context is likely to in-

crease the acoustic quality [26, 27]. More importantly, mispronunciations often occur at 

the segment level, which is beyond the scope of frame-level conversion, and contextual 

information has to be taken into consideration to accurately correct segmental pronuncia-

tion errors in accent conversion.  

Another line of ongoing work in our group is to relax the non-parallel data con-

straint further to allow the use of cross-lingual training data. In preliminary experiments 

(not shown here), we successfully performed accent conversion using utterances recorded 

in the target speaker’s native language to capture their voice quality14. 

3.8. Conclusion 

We have proposed a new frame-pairing method based on the phonetic similarity 

between acoustic frames. To measure phonetic similarity, we map source and target 

14 In these preliminary experiments, we used native Brazilian Portuguese speakers from the SID dataset 
[121] as the target speakers. Since Portuguese share some phonological similarities with English [122], we
used the acoustic model used in this study directly to produce the PPGs from native Portuguese speech.
For future work and more general cases (e.g., languages from the Sino-Tibetan family), we have to include
senones from the target speaker’s native tongues in the acoustic modeling process.
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frames into a phonetic posteriorgram space using speaker-independent acoustic models 

trained on a native English corpus. Through a series of perceptual studies, we have shown 

that merely changing the frame pairing method can lead to significant improvement in 

acoustic quality and “nativeness,” while keeping the voice quality of the non-native 

speaker. Our results also show that the approach works well across multiple non-native 

speakers with different native tongues. Additionally, the proposed algorithm does not need 

parallel data for training, which is ideal for real-world applications. Our approach only 

requires 5-10 minutes of speech data from the non-native speaker, making it practical for 

pronunciation training in realistic settings [123]. The implementation of the proposed sys-

tem can be found at https://github.com/guanlongzhao/ppg-gmm. 
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4. FOREIGN ACCENT CONVERSION BY SYNTHESIZING SPEECH FROM PHO-

NETIC POSTERIORGRAMS* 

4.1. Overview 

Methods for foreign accent conversion (FAC) aim to generate speech that sounds 

similar to a given non-native speaker but with the accent of a native speaker. Conventional 

FAC methods borrow excitation information (𝐹0 and aperiodicity; produced by a conven-

tional vocoder) from a reference (i.e., native) utterance during synthesis time. As such, the 

generated speech retains some aspects of the voice quality of the native speaker. We pre-

sent a framework for FAC that eliminates the need for conventional vocoders (e.g., 

STRAIGHT, WORLD) and therefore the need to use the native speaker’s excitation. Our 

approach uses an acoustic model trained on a native speech corpus to extract speaker-

independent phonetic posteriorgrams (PPGs), and then train a speech synthesizer to map 

PPGs from the non-native speaker into the corresponding spectral features, which in turn 

are converted into the audio waveform using a high-quality neural vocoder. At runtime, 

we drive the synthesizer with the PPG extracted from a native reference utterance. Listen-

ing tests show that the proposed system produces speech that sounds more clear, natural, 

and similar to the non-native speaker compared with a baseline system, while significantly 

reducing the perceived foreign accent of non-native utterances. 

* © 2019 ISCA. Reprinted, with permission, from G. Zhao, S. Ding, and R. Gutierrez-Osuna, "Foreign ac-
cent conversion by synthesizing speech from phonetic posteriorgrams," in Interspeech, 2019, pp. 2843-
2847. DOI: 10.21437/Interspeech.2019-1778. This reprint contains necessary modifications to include
suggestions from the dissertation committee.
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4.2. Introduction 

Foreign accent conversion [12, 16, 18] aims to create a new voice that has the voice 

quality15 of a given non-native speaker and the pronunciation patterns (e.g., prosody, seg-

mentals) of a native speaker. This can be achieved by combining accent-related cues from 

a native utterance with the voice quality of the non-native speaker. FAC has potential 

application in computer-assisted pronunciation training [10, 12, 123], where it could be 

used as a model voice to imitate. 

The main challenge in FAC is to divide the speech signal into accent-related cues 

and voice quality. Multiple solutions have been proposed, including voice morphing [12-

15], frame pairing [16, 84], and articulatory synthesis [17-20]. These approaches can re-

duce the accent of non-native utterances, but have various limitations. Voice morphing 

often generates voices that sound like a “third” speaker, one who is different from either 

speaker. Frame-pairing methods can synthesize speech that resembles the non-native 

speaker’s voice but the syntheses retain some aspects of the native speaker’s voice quality; 

this is because excitation information from the native speaker is used to synthesize the 

speech. Finally, articulatory synthesis needs specialized apparatus to collect articulation 

data, so they are not practical for real-world applications. 

In this work, we propose to perform FAC in a speaker-independent phonetically-

rich speech embedding: a phonetic posteriorgram (PPG) [24]. A PPG is defined as the 

15 In the context of FAC, we use voice quality to refer solely to the organic aspects of a speaker’s voice, 
e.g., pitch range, vocal tract dimensions.
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posterior probability that each speech frame belongs to a set of pre-defined phonetic units 

(phonemes or triphones/senones), which retain the linguistic and phonetic information of 

the utterance. Our approach works as follows. In a first step, we generate a PPG for the 

non-native speaker using a speaker-independent acoustic model that is trained on a large 

corpus of native speech. Then, we construct a sequence-to-sequence speech synthesizer 

that captures the voice quality of the non-native speaker. The synthesizer takes a PPG 

sequence from the non-native speaker as the input and produces the corresponding mel-

spectrogram sequence as the output. Finally, we train a neural vocoder, WaveGlow [64], 

to convert the mel-spectrogram into a raw speech signal. During testing, we feed the syn-

thesizer with a PPG sequence from a native utterance. The resulting output contains the 

native speaker’s pronunciation patterns and the non-native speaker’s voice quality. The 

overall workflow of the proposed system is shown in Figure 4.1. 
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Figure 4.1: Overall workflow of the proposed system. L1: native, L2: non-native. 

The proposed system has three advantages. First, it eliminates the need to borrow 

excitation information from the native reference speech, which prevents aspects of the 

native speaker’s voice quality from leaking into the synthesized speech. Second, our sys-

tem does not require any training data from the native reference speaker. Thus, we have 

the flexibility to use any reference voices during testing. Third, our system captures con-

textual information by means of a sequence-to-sequence model, which has shown state-

of-the-art performance on multiple tasks [25, 28, 73], helping produce better audio quality. 
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4.3. Related work 

Early attempts at accent conversion used voice morphing [12-15] to control the 

degree of accent by blending spectral components from the native and non-native speak-

ers.  In [86, 124], the authors used PSOLA to modify the duration and pitch patterns of 

accented speech. Aryal and Gutierrez-Osuna [16] adapted voice conversion (VC) tech-

niques, replacing Dynamic Time Warping (DTW) with a technique that matched source 

and target frames based on their MFCC similarity after vocal tract length normalization. 

Later, Zhao et al. [84] used PPG similarity instead of MFCC similarity to pair acoustic 

frames. 

PPGs have been applied to many tasks, e.g., neural-network-based speech recog-

nition [80, 125], spoken term detection [24], mispronunciation detection [126], and per-

sonalized TTS [127]. PPGs have also gained much recent attention for VC. Xie et al. [83] 

divided PPGs from a target speaker into clusters and then mapped PPGs from a source 

speaker into the closest cluster of the target speaker. Sun et al. [128] used PPGs for many-

to-one voice conversion. Miyoshi et al. [26] extended the PPG-based VC framework to 

include a mapping between source and target PPGs using LSTMs; they obtained better 

speech individuality ratings but worse audio quality than a baseline that did not include 

the PPG mapping process. Zhang et al. [25] concatenated bottleneck features and mel-

spectrograms from a source speaker, then used a sequence-to-sequence model to convert 

the source mel-spectrograms into those of the target speaker, and finally recovered the 

speech waveform using a WaveNet [62] vocoder. Their model required parallel recordings 

and needed to train a new model for each speaker pair. They then applied text supervision 
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[129] to resolve some of the mispronunciations and artifacts in the converted speech. Re-

cently, Zhou et al. [130] adopted bilingual PPG for cross-lingual voice conversion. 

4.4. Method 

Our system is composed of three major components; a speaker independent acous-

tic model (AM) that extracts PPGs, a speech synthesizer for the non-native speaker that 

converts PPGs into mel-spectrograms, and a WaveGlow vocoder to generate speech wave-

form from the mel-spectrograms in real-time. 

4.4.1. Acoustic modeling and PPG extraction 

We use a DNN with multiple hidden layers and the 𝑝-norm non-linearity as the 

AM. We train the AM on a native speech corpus [104] by minimizing the cross-entropy 

between outputs and senone labels obtained from a pre-trained GMM-HMM forced 

aligner. Training on native speech is critical for our task because the native and non-native 

frames have to be matched in a native phonetic space. For more details about the AM, 

please refer to [97]. 

4.4.2. PPG-to-Mel-spectrogram conversion 

We convert PPGs from the non-native speaker into their corresponding mel-spec-

trograms using a modified Tacotron 2 model [74]. The original Tacotron 2 model (shown 

in Figure 4.2) takes a one-hot vector representation of characters and passes it to an en-

coder LSTM that converts it into a hidden representation, which is then passed to a decoder 

LSTM with a location-sensitive attention mechanism [71] that predicts the mel-spectro-

gram. 
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Figure 4.2: The original Tacotron 2 model architecture. Characters (represented by 
one-hot vectors) are passed to an encoder Bi-LSTM and a decoder LSTM with a 
location-sensitive attention mechanism to predict the mel-spectrogram. The speech 
waveform is generated by a WaveNet vocoder. A stop token is also predicted to de-
termine when to stop the prediction. 

To improve model performance, the character embedding is passed through mul-

tiple convolution layers before being fed to the encoder LSTM. The decoder appends a 

PreNet (two fully connected layers with the ReLU activation; Figure 4.3 (a)) before pass-

ing the predicted mel-spectrogram to the attention and decoder LSTM to extract structural 

information. It also applies a PostNet (five 1-D convolutional layers with the tanh activa-

tion; Figure 4.3 (b)) after the decoder to predict spectral details and add them to the raw 

prediction. 
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Figure 4.3: (a) PreNet: Two filly connected layers with the ReLU activation. (b) Post-
Net: Five 1-D convolutional layers; kernel size 5, stride 1; tanh activation after all 
but the last layer. When the input is the mel-spectrogram, the convolution kernels 
move along the time axis one frame at a time, convolving five consecutive frames. 

 

In this work, we replace the character-embedding layer with a PPG-embedding 

network (PPG PreNet; same model building block as Figure 4.3 (a)), which contains two 

fully connected hidden layers with the ReLU nonlinearity. This PPG-embedding network 

is similar to the PreNet in Tacotron 2 and transforms the original high-dimensional input 

PPGs into lower dimensional bottleneck features. This step is essential for the model to 

converge. The PPG-to-Mel conversion model is illustrated in Figure 4.4. 
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Figure 4.4: PPG-to-Mel conversion model. 

The original Tacotron 2 was designed to accept character sequences as input, 

which are significantly shorter than our PPG sequences. For example, each sentence in 

our speech corpus [106] contains an average of 41 characters, whereas the PPG sequence 

has a few hundred frames. Therefore, the original Tacotron 2 attention mechanism would 

be confused by such long input sequences and cause misalignment between the PPG and 
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acoustic sequences, as pointed out in [25]. As a result, the inference would be ill-condi-

tioned and would generate non-intelligible speech. One solution to this issue is to train the 

PPG-to-Mel model with shorter PPG sequences. For example, one could use word seg-

ments instead of sentences. However, this solution has several issues. First, to obtain ac-

curate word boundaries, we need to perform forced alignment on the training sentences, 

which requires access to the transcription. Second, and more importantly, training with 

short segments and performing inference with significant longer input sequences leads to 

model failure, as observed in [71]. 

We resolve this issue by adding a locality constraint to the attention mechanism. 

Speech signals have a strong temporal-continuity and progressive nature. To capture the 

phonetic context, we only need to look at the PPGs in a small local window. Inspired by 

this, at each decoding step during training we constrain the attention mechanism to look 

at a window in the hidden state sequence, instead of the full sequence. We formally define 

this constraint as follows. We suggest the audience to also refer to Figure 4.4 when reading 

the following paragraphs. 

Let 𝑑* be the output of the decoder LSTM at time step 𝑖, 𝑦* be the predicted acous-

tic features (output after applying a linear projection on 𝑑*), and ℎ = [ℎ1, … , ℎ7 ] be the 

full sequence of hidden states from the encoder. Applying the location-sensitive attention 

mechanism, we have, 

𝑑* = DecoderLSTM(𝑑*−1, 𝑠*, 𝑔*), (4.1) 

where 𝑠* is the hidden state of the attention LSTM at the 𝑖-th time step, 𝑔* is the attention 

context, 
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𝑠* = AttentionLSTM(𝑠*−1, 𝑔*−1, PreNet(𝑦*−1)), (4.2) 

𝑔* = ∑ 𝛼*
"ℎ"

7

"=1
, (4.3) 

and, 

𝛼* = Attend(𝑠*, 𝛼*−1, ℎ) = [𝛼*
1, … 𝛼*

7 ], (4.4) 

𝛼*
" =

exp(𝑒*")
∑ exp(𝑒*")"=1

, (4.5) 

are the attention weights. The attention scores 𝑒*" are computed as follows, 

𝑒*" = 𝑣7 tanh(𝑊𝑠* + 𝑉 ℎ" + 𝑈𝑓*
" + 𝑏) , (4.6) 

𝑓* = 𝐹 ∗ 𝛼*−1 = [𝑓*
1, … , 𝑓*

7 ], 𝐹 ∈ 𝑅-×>, (4.7) 

where 𝑣, 𝑊 , 𝑉 , 𝑈 , 𝑏 are learnable parameters of the attention module. 𝐹  contains 𝑘 1-D 

learnable kernels with 𝑟-dims, and 𝑓*
" ∈ 𝑅- is the result of convolving 𝛼*−1 at position 𝑗 

with 𝐹 . 

Now, to enforce the locality constraint, we only consider the hidden representation 

within a fixed window centered on the current frame, i.e., let, 

ℎ̃ = [0, … ,0, ℎ*−?, … , ℎ*+?, 0, … , 0], (4.8) 

where 𝑤 is the window size, and let, 

𝛼* = Attend(𝑠*, 𝛼*−1, ℎ̃). (4.9) 

The loss function for training the PPG-to-Mel model is, 

𝐿 = 𝛼‖𝐺%@A − 𝑃B@CDE@>‖2 + 𝛽‖𝐺%@A − 𝑃FDG9H@9‖2

+ 𝛾CE(𝐺G9D), 𝑃G9D)), (4.10)
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where 𝐺%@A is the ground-truth mel-spectrogram; 𝑃B@CDE@> and 𝑃FDG9H@9 are the predicted 

mel-spectrograms from the decoder (after linear projection) and PostNet, respectively; 

𝐺G9D) is the ground-truth stop token, and 𝑃G9D) is the predicted stop token value; CE(∙) is 

the cross-entropy loss; 𝛼, 𝛽, 𝛾 control the relative importance of each loss term. 

Figure 4.5: The WaveGlow vocoder. Random samples from a zero-mean spherical 
Gaussian (with variance 𝝈) are concatenated with the up-sampled (matching the 
speech sampling rate) mel-spectrogram to predict the audio samples. In the plot, we 
use a 2D normal distribution for visualization; in practice, the vocoder may generate 
more than two samples at a time, e.g., the implementation we use produces eight 
audio samples at each step. 

4.4.3. Mel-spectrogram to speech 

We use a WaveGlow vocoder (Figure 4.5) to convert the output of the speech syn-

thesizer back into a speech waveform. WaveGlow is a flow-based [131] network capable 
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of generating high-quality speech from mel-spectrograms (comparable to WaveNet). It 

takes samples from a zero-mean spherical Gaussian (with variance 𝜎) with the same num-

ber of dimensions as the desired output and passes those samples through a series of layers 

that transform the simple distribution to one that has the desired distribution. In the case 

of training a vocoder, we use WaveGlow to model the distribution of audio samples con-

ditioned on a mel-spectrogram. During inference, random samples from the zero-mean 

spherical Gaussian are concatenated with the up-sampled (matching the speech sampling 

rate) mel-spectrogram to predict the audio samples. WaveGlow can achieve real-time in-

ference speed using only a single neural network, whereas WaveNet takes a long time to 

synthesize an utterance due to its auto-regressive nature. For more details about the Wave-

Glow vocoder, we refer readers to [64]. 

4.5. Experimental setup 

We used the Librispeech corpus [104] to train the AM. It contains 960 hours of 

native English speech, most of which from North America. The AM has five hidden layers 

and an output layer with 5816 senones. We trained the PPG-to-Mel and WaveGlow mod-

els on two non-native speakers, YKWK (native male Korean speaker) and ZHAA (native 

female Arabic speaker) from the publicly-available L2-ARCTIC corpus [106]. We applied 

noise reduction on the original L2-ARCTIC recordings using Audacity [132] to remove 

ambient background noise. For the native reference speech, we used two North American 

speakers, BDL (M) and CLB (F) from the ARCTIC corpus [105]. Each speaker in L2-

ARCTIC and ARCTIC recorded the same set of 1132 sentences, or about an hour of 
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speech. For each L2-ARCTIC speaker, we used the first 1032 sentences for model train-

ing, the next 50 sentences for validation, and the remaining 50 sentences for testing. All 

audio signals were sampled at 16 kHz. We used 80 filter banks to extract mel-spectrograms 

with a 10ms shift and a 64ms window. The PPG was also extracted with a 10ms shift. 

Table 4.1: The model details of the PPG-to-Mel synthesizer. 

Module Parameters 

PPG PreNet 
Two fully connected (FC) layers; 600 ReLU units 
0.5 dropout rate [134] 

Conv. Layers 
Three 1-D convolution layers (kernel size 5) 
batch normalization [135] after each layer 

Encoder LSTM One-layer Bi-LSTM; 300 cells in each direction 
Decoder PreNet Two FC layers; 300 ReLU units; 0.5 dropout rate 
Attention LSTM One-layer LSTM; 300 cells; 0.1 dropout rate 

Attention 𝑣 in eq. (4.6) has 150 dims; eq. (4.7), 𝑘 = 32, 𝑟 = 31 
Decoder LSTM One-layer LSTM; 300 cells; 0.1 dropout rate 

PostNet Five 1-D conv. layers; 512 channels; kernel size 5 

The PPG-to-Mel model parameters are summarized in Table 4.1. We used a batch 

size of 6 and a learning rate of 1 × 10−4 . 𝛼, 𝛽, 𝛾  were empirically set to 1.0, 1.0, and 

0.005, respectively. The window size 𝑤 of the locality constraint of the attention mecha-

nism was set to 20. We trained the model until the validation loss reached a plateau (~8h). 

For the WaveGlow models, we set 𝜎 to 0.701 during training and 0.6 during testing, as 

suggested by [64]. The batch size was 3 and the learning rate was 1 × 10−4. The models 

were trained until convergence (~one day). All models were trained on a single Nvidia 
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GTX 1070 GPU. The AM was trained with Kaldi, and the other models were implemented 

in PyTorch and trained with the Adam optimizer [133]. For more details and audio sam-

ples, please refer to https://github.com/guanlongzhao/fac-via-ppg. 

We compared our proposed system against a baseline from [84] that worked as 

follows. First, we computed the PPG for each native and non-native frame. Then, we used 

the symmetric KL divergence in the PPG space to pair the closest native and non-native 

frames. In a final step, we extracted Mel-Cepstral Coefficients (MCEPs) from the frame 

pairs to train a joint-density GMM (JD-GMM) spectral conversion as described in [21]. 

We then converted the native MCEPs using the JD-GMM to match the non-native 

speaker’s voice quality. Finally, we used the STRAIGHT vocoder [112] to synthesize 

speech from the converted MCEPs combined with the native speaker’s aperiodicity (AP) 

and 𝐹0 (normalized to the non-native speaker’s pitch range). We used the same 1032-ut-

terance training set for the baseline system. The GMM contained 128 mixtures and full 

covariance matrices. We used 24-dim MCEPs (excluding MCEP0) and the Δ features. All 

features were extracted by STRAIGHT with a 10ms shift and 25ms window. For each 

system, we generated accent conversion for speaker pairs BDL-YKWK and CLB-ZHAA. 

4.6. Results 

We conducted three listening tests to compare the performance of the systems: a 

Mean Opinion Score (MOS) test of audio quality and naturalness, a voice similarity test, 

and an accentedness test. All experiments were conducted on Amazon Mechanical Turk, 

and all participants resided in the U.S. For each test, 25 utterances per speaker pair (50 in 
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total) from each system were randomly selected. The presentation order of the samples 

was randomized in all experiments. 

Table 4.2: MOS results with 95% confidence intervals. 
Conversion Rating Type Baseline Proposed 

BDL-YKWK 
Audio quality 3.23±0.11 3.48±0.12 
Naturalness 3.18±0.15 3.59±0.15 

CLB-ZHAA 
Audio quality 2.86±0.15 3.58±0.14 
Naturalness 2.66±0.13 3.32±0.20 

ALL PAIRS 
Audio quality 3.04±0.10 3.53±0.09 
Naturalness 2.92±0.12 3.46±0.13 

Table 4.3: MOS ratings for original recordings. 

Real speech Rating type Rating 

ARCTIC 
Audio quality 4.40±0.08 
Naturalness 3.54±0.11 

L2-ARCTIC 
Audio quality 3.98±0.09 
Naturalness 3.50±0.08 

The MOS test rated the audio quality and naturalness of audio samples on a five-

point scale (1-bad, 2-poor, 3-fair, 4-good, 5-excellent). Audio quality and naturalness 

MOS described how clear and human-like the speech was, respectively. The two measures 

were obtained from non-overlapping groups of listeners to avoid bias. Each audio sample 

received at least 17 ratings. Listeners also rated the same set of original ARCTIC and L2-

ARCTIC recordings as a reference. Results are summarized in Table 4.2 and Table 4.3. It 

should be noted that in [136], we established that the baseline system’s audio quality MOS 
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is around 0.4 higher than a conventional JD-GMM system that uses DTW for frame pair-

ing. Therefore, our baseline is a stronger system than the conventional JD-GMM. In all 

cases, our system outperformed the baseline significantly in both audio quality and natu-

ralness. Although the two systems have lower audio quality MOS than the original record-

ings, there is no significant difference between the proposed system and either the ARC-

TIC (𝑝 = 0.35) or L2-ARCTIC (𝑝 = 0.54) recordings on the naturalness MOS, using a 

two-tail two-sample t-test. 

In the voice similarity test, listeners were provided with three utterances, the orig-

inal non-native utterance and syntheses from the two systems, and were asked to choose 

which of the two syntheses sounded more like the non-native speaker. Participants were 

also asked to rate their confidence level on a 7-point scale (1-not at all confident, 7-ex-

tremely confident) when making a choice. Participants were instructed to ignore accent 

when performing the task. Presentation order of samples from the two systems was coun-

ter-balanced in each trial, and 17 participants rated the audio samples. Results are pre-

sented in Table 4.4. In 72.47% of the cases, listeners preferred the proposed system with 

a 3.4 confidence level (above “somewhat confident”), whereas in the remaining 27.53% 

of the cases, listeners chose the baseline with a much lower confidence level (1.05, or “not 

at all confident.”) 

Table 4.4: Voice similarity test results. 

Measure Baseline Proposed 
Preference 27.53±5.00% 72.47±5.00% 
Confidence 1.05±0.21 3.40±0.32 
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In the accentedness test, participants were asked to rate the degree of foreign accent 

in a nine-point scale (1-no foreign accent, 9-very strong foreign accent), which is com-

monly used in the pronunciation literature [4]. Each audio sample was rated by 18 indi-

viduals. Results are summarized in Table 4.5. Original utterances from ARCTIC speakers 

were rated as “no foreign accent” (1.20), whereas original utterances from the L2-ARC-

TIC speakers were rated as heavily accented (7.17). Both the baseline (2.94) and proposed 

(3.93) systems reduced the foreign accent significantly compared with the L2-ARCTIC 

speech but were rated more accented than the native speech. Surprisingly, speech gener-

ated from our system was rated as more accented than that of the baseline system; see the 

discussion section for a potential explanation of this result. 

Table 4.5: Accentedness ratings. 

Baseline Proposed ARCTIC L2-ARCTIC 
2.94±0.30 3.93±0.30 1.20±0.04 7.17±0.17 

4.7. Discussion and conclusion 

The proposed accent-conversion system produces speech with better quality than 

the baseline system because it uses a state-of-the-art sequence-to-sequence model (a mod-

ified Tacotron 2) to convert PPGs into mel-spectrograms, and then utilizes a neural vo-

coder to generate audio directly from the mel-spectrogram. This process takes advantage 

of the temporal-dependent nature of speech signals and avoids the use of conventional 

signal-processing based vocoders, which generally degrade the synthesis quality. We have 
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also proposed an easy-to-implement locality constraint on the attention mechanism to 

make the PPG-to-Mel model trainable on utterance-level samples. Note that our MOS 

ratings are lower than those in the original Tacotron 2 and WaveGlow paper, largely be-

cause their systems were trained with 24× more data. One future direction for improving 

the MOS ratings of the proposed system is training the PPG-to-Mel and WaveGlow mod-

els jointly. 

In contrast with the baseline, which borrows excitation information (𝐹0, AP) from 

the native speaker, our system generates the non-native speaker’s excitation directly from 

the synthesized mel-spectrogram. This prevents the voice quality of the native speaker 

from “leaking” into the synthesis, making it more similar to the voice quality of the non-

native speaker. 

Our system extracts native pronunciation patterns from the native PPG sequence, 

and therefore makes the synthesized speech significantly less accented than the non-native 

speech. The slight increase in accentedness rating compared to the baseline system could 

be the result of two factors. First, the AM inevitably produces recognition errors when 

extracting the PPG and these errors will be reflected as mispronunciations in the synthesis. 

Second, the proposed model does not explicitly model stress and intonation patterns; as 

such, we find that some of the synthesis results have unexpected intonations. Therefore, 

in future work we plan to incorporate intonation information into the modeling process; 

one possible solution is to condition the PPG sequence on a normalized 𝐹0 contour when 

training and testing the PPG-to-Mel model. 
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Currently, the PPG-to-Mel and WaveGlow models need at least one hour of speech 

from the non-native speaker. This requirement may be relaxed by following the transfer-

learning paradigm from multi-speaker TTS [137]. The ultimate goal of accent conversion 

is to eliminate the need for a reference utterance at synthesis time, i.e., to take a non-native 

utterance and automatically reduce its accent. This may be accomplished by learning a 

sequence-to-sequence mapping from the non-native speaker’s PPG sequence to a native 

PPG sequence, and then driving the PPG-to-Mel synthesizer with this accent-reduced PPG 

sequence.
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5. REFERENCE-FREE FOREIGN ACCENT CONVERSION*

5.1. Overview 

Foreign accent conversion (FAC) is the problem of generating a synthetic voice 

that has the voice identity of a second-language (L2) learner and the pronunciation patterns 

(or accent) of a native (L1) speaker. This synthetic voice has been referred to as a “golden 

speaker” in the pronunciation-training literature. FAC is generally achieved by building a 

voice-conversion model that maps utterances from a source (L1) speaker onto the target 

(L2) speaker. As such, FAC requires that a reference utterance from the L1 speaker be 

available at synthesis time. This greatly restricts its application scope since the model can 

only transform utterances that were prerecorded by the L1 speaker. In this work, we pro-

pose a “reference-free” FAC system that eliminates the need for reference L1 utterances 

at synthesis time, and transforms L2 utterances directly. The system is trained in two steps. 

In a first step, a conventional FAC procedure is used to create a golden speaker using 

utterances from a reference L1 speaker (which are then discarded) and the L2 speaker. In 

a second step, a pronunciation-correction model is trained to convert L2 utterances to the 

golden-speaker utterances obtained in the first step. At synthesis time, the system is pre-

sented with a novel L2 utterance, and directly transforms it into its golden-speaker coun-

terpart. Our results show that the system reduces the foreign accent in novel L2 utterances, 

achieving a 9% (absolute) reduction in word-error-rate of an American English automatic 

* This chapter is being submitted to the IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing.
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speech recognizer and a 19% (relative) reduction in perceptual ratings of non-native ac-

centedness obtained through listening tests. Over 73% of the listeners also rated golden-

speaker utterances and the original L2 utterances as having the same voice identity. 

5.2. Introduction 

Foreign accent conversion (FAC) [12] aims to create a synthetic voice that has the 

voice identity (or timbre) of a non-native speaker but the pronunciation patterns (or accent) 

of a native speaker. In the context of computer-assisted pronunciation training [10, 12, 

138, 139], this synthetic voice is often referred to as a “golden speaker” for the non-native 

speaker –a second-language (L2) learner. The rationale is that the golden speaker is a bet-

ter target for the L2 learner to imitate than an arbitrary native speaker, because the only 

difference between the golden speaker and the L2 learner’s own speech is the accent, 

which makes mispronunciations more salient. In addition to pronunciation training, FAC 

finds applications in movie dubbing [140], personalized Text-To-Speech (TTS) synthesis 

[127, 141], and improving speech recognition performance [142]. 

The main challenge in FAC is that one does not have ground-truth data for the 

desired golden speaker, since, in general, the L2 learner is unable to produce speech with 

a native accent. Therefore, it is not feasible to apply conventional voice-conversion tech-

niques to the FAC problem. Previous solutions work around this issue by requiring a ref-

erence utterance from a native (L1) speaker at synthesis time. But this limits the types of 

pronunciation practice that FAC techniques can provide, e.g., the L2 learner can only prac-

tice sentences that have already been prerecorded by the reference L1 speaker. 



85 

Figure 5.1: Overall workflow of the proposed system. L1: native; L2: non-native; 
GS: golden speaker; SI: speaker independent. In steps 1, we use a conventional FAC 
procedure to generate a set of golden-speaker utterances (L1-GS), which serve as 
targets for step 2. In step 2, we train a pronunciation-correction model that converts 
L2 utterances into the L1-GS utterances obtained earlier. In the testing stage, a new 
L2 utterance is processed by the pronunciation-correction model to create its “ac-
cent-free” counterpart (L2-GS). 

To address this issue, we propose a new FAC system that does not require a refer-

ence L1 utterance at inference time. We refer to this type of FAC system as reference-

free. The proposed system is illustrated in Figure 5.1. Assume that we have a training set 

of parallel utterances from the L1 and L2 speaker. The training pipeline consists of two 
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steps. In step one, we build a sequence-to-sequence (seq2seq) speech synthesizer [74] that 

converts speech embeddings from the L2 utterances into their corresponding mel-spectro-

grams. The speech embeddings are extracted using an acoustic model trained on a large 

corpus of native speech, so they are speaker-independent and contain only linguistic in-

formation [83, 136]. We then extract speech embeddings from the L1 utterances, and use 

them to drive the L2 synthesizer. This results in a set of golden-speaker utterances that 

have the voice identity of the L2 speaker (since they are generated from the L2 synthe-

sizer) and the pronunciation patterns of the L1 speaker (since the input is an L1 utterance). 

We refer to these golden-speaker utterances as L1-GS utterances, since they are obtained 

using L1 utterances as a reference. The L1 utterances can be discarded at this point. In the 

second (and key) step, we train a seq2seq pronunciation-correction model that maps the 

L2 utterances into the L1-GS utterances obtained in the first step. During inference time, 

we feed a new L2 utterance to the pronunciation-correction model, which then modifies it 

to generate its “accent free” counterpart; we refer to the latter as an L2-GS utterance since 

it is generated directly from the L2 utterance (i.e., in a reference-free fashion). 

The pronunciation-correction model is based on a state-of-the-art seq2seq voice 

conversion framework proposed by Zhang et al. [129], which we use as a baseline. Their 

system consists of an encoder to extract hidden representations of the input features (e.g., 

mel-spectra), an attention mechanism to learn the alignment between the input and output 

sequences, a decoder to predict the output mel-spectrograms, and multi-task phoneme 

classifiers to help stabilize the training process. During our internal evaluation of the base-

line system, we found that it had difficulty converting between an L2 and an L1 speaker 
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because L2 utterances tend to have a significant amount of disfluency and hesitations, 

which makes it hard for the attention mechanism to properly align input and output se-

quences. To address this issue, our system includes a forward-and-backward decoding 

technique [143, 144] in the pronunciation-correction model to help the attention mecha-

nism and decoder to fully utilize the information in the input data. The rationale is that, by 

forcing the decoder to compute the attention alignments from both the forward and back-

ward directions during training, we can make the decoder incorporate useful contextual 

information from both the past and future when producing the alignment. Throughout this 

study, we use a high-quality WaveGlow [64] real-time neural vocoder to convert mel-

spectrograms to speech waveform. 

The chapter is organized as follows. Section 5.3 reviews prior approaches on for-

eign accent conversion as well as related work in seq2seq voice conversion. Section 5.4 

describes the proposed reference-free accent conversion system. Sections 5.5 and 5.6 pre-

sents the objective and subjective evaluation results and an in-depth discussion of these 

results. Lastly, we summarize the findings of this work in Section 5.7 and point out future 

research directions. We include two Appendices that provide additional technical details 

on model implementation. 

5.3. Related work 

FAC is related to the more general problem of voice conversion (VC) [88]. In VC, 

one seeks to transform a source speaker’s speech into that of a (known) target speaker. 

The conversion aims to match the voice characteristics of the target speaker, which include 

vocal tract configurations, glottal characteristics, pitch range, pronunciation, and speaking 
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rate; ideally, the only information retained from the source speech is its linguistic content, 

i.e., the words that were uttered. In contrast with VC, FAC seeks to combine the linguistic

content and pronunciation characteristics of the source speaker with the voice identity of 

the target speaker. This is a more challenging problem than VC for two reasons. First, 

FAC lacks ground-truth since there are no recordings of the L2 speaker producing speech 

with the desired native target accent. But, more importantly, FAC requires decomposing 

the speech into voice identity and accent, whereas VC does not. Several techniques have 

been proposed to perform this decomposition, which can be grouped into articulatory and 

acoustic methods. The basic strategy in articulatory methods is to build an articulatory 

synthesizer for the L2 speaker, that is, a mapping from the speaker’s articulatory trajecto-

ries (e.g., tongue and lip movements) to his or her acoustics features (e.g., Mel Cepstra.) 

Once complete, the L2 speaker’s articulatory synthesizer is driven by articulatory trajec-

tories from an L1 speaker to produce “accent-free” speech16. A number of techniques can 

be used to build the articulatory synthesizer, including unit-selection [82], GMMs [17], 

and DNNs [87].  

Decoupling voice identity from accent in the articulatory domain is intuitive, but 

impractical in most cases since collecting articulatory data is expensive and requires 

specialized equipment17. In contrast, decoupling voice identity from accent in the acoustic 

domain is more practical since it only requires recording speech with a microphone, but is 

16 This process can be likened to “voice puppetry” [145], where the puppet is the articulatory synthesizer 
and the strings are the native speaker’s articulations. 
17 Articulatory measurements can be performed via electromagnetic articulography [82], ultrasound imag-
ing [146], palatography [147], and more recently, real-time MRI [148]. 
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more challenging from a speech-processing standpoint. The conventional approach used 

in VC (pairing source and target frames via dynamic time warping; DTW) cannot be used 

in FAC, since it would result in a model that maps native-accented source into non-native-

accented target speech. Instead, source and target frames have to be paired based on their 

linguistic similarity. In early work, Aryal and Gutierrez-Osuna [16] replaced DTW with a 

technique that matched source (L1) and target (L2) frames based on their MFCC similarity 

after performing vocal tract length (VTL) normalization. Then, they trained a GMM with 

those frame pairs to map source L1 utterances to have the target L2 speaker’s identity, 

while retaining the native pronunciations. More recently, Zhao et al. [84] used a speaker-

independent acoustic model (i.e., from an ASR system) to estimate the posterior probabil-

ity that each frame belonged to a set of pre-defined phonetic units –a phonetic posterior-

gram (PPG) [24]. Once a PPG had been computed for each source and target frame in the 

corpus, the two were paired in a many-to-many fashion based on the similarity between 

their respective PPGs [84, 136]. In their study, matching source and target frames based 

on their PPG similarity achieved better ratings on accentedness and acoustic quality than 

matching them based on the VTL-normalized MFCC similarity of Aryal and Gutierrez-

Osuna [16].  

More recently, Zhao et al. [149] have used sequence-to-sequence (seq2seq) models 

to perform FAC. In their approach, a seq2seq speech synthesizer is trained to convert PPGs 

to Mel-spectra using recordings from the L2 speaker. Then, golden-speaker utterances are 

generated by driving the seq2seq synthesizer with PPGs extracted from an L1 utterance, a 

process that reminisces articulatory-based methods (i.e., if PPGs are viewed as articulatory 
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information). Their method produced speech that was significantly less accented than the 

original L2 speech. Seq2seq models have also garnered much attention in the VC literature 

since, unlike prior frame-by-frame VC models [21, 77, 94, 95, 128, 150], they can convert 

segmental and prosody features simultaneously, leading to better conversion performance. 

Miyoshi et al. [26] built a seq2seq model that mapped source context posterior probabili-

ties to the target’s; they obtained better speech individuality ratings (but worse audio qual-

ity) than a baseline without the context posterior mapping process. Zhang et al. [25] con-

catenated bottleneck features and mel-spectrograms from a source speaker, used a seq2seq 

model to convert the concatenated source features into the target mel-spectrogram, and 

finally recovered the speech waveform with a WaveNet [62] vocoder. This model outper-

formed the best-performing system from the 2018 Voice Conversion Challenge [120]. 

Zhang et al. then applied text supervision [129] on top of [25] to resolve some of the 

mispronunciations and artifacts in the converted speech. More recently, they extended 

their framework to the non-parallel condition [151] with trainable linguistic and speaker 

embeddings. Other notable sequence-to-sequence VC works include [152], which pro-

posed a novel loss term that enforced attention weight diagonalness to stabilize the 

seq2seq training; the Parrotron [142] system, which uses large-scale corpora and seq2seq 

models to normalize arbitrary speaker voices to a synthetic TTS voice; and [153], which 

used a fully convolutional seq2seq model instead of conventional recurrent neural net-

works (RNNs, e.g., LSTM) because RNNs are costly to train and difficult to optimize for 

parallel computing. 
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To the best of our knowledge, the only prior work on reference-free FAC is a re-

cent study by Liu et al. [154]. Their system used a speaker encoder, a multi-speaker TTS 

model, and an ASR encoder. The speaker encoder and the TTS model are trained with L1 

speech only, and the ASR encoder is trained on speech data from L1 speakers and the 

target L2 speaker. During testing, they use the speaker encoder and ASR encoder to extract 

speaker embeddings and linguistic representations from the input L2 testing utterance, 

respectively. Then, they concatenate the two and feed them to the multi-speaker TTS 

model, which then generates the accent-converted utterance. Their evaluations suggested 

that the converted speech had a near-native accent, but did not capture the voice identity 

of the target L2 speaker because it had to be interpolated by their multi-speaker TTS. Our 

proposed method avoids this problem since our pronunciation-correction module is trained 

on golden-speaker utterances that have been pre-generated for the L2 speaker using a con-

ventional foreign-accent conversion framework. 

5.4. Method 

Our proposed approach to reference-free FAC is illustrated in Figure 5.1. The sys-

tem requires a parallel corpus of utterances from the L2 speaker and a reference L1 

speaker. The training process consists of two steps. In a first step, we build a speech syn-

thesizer for the L2 speaker that converts speech embeddings into mel-spectrograms, which 

are then converted to speech waveforms with a WaveGlow neural vocoder18. We then 

drive the L2 synthesizer with a set of utterances from the reference L1 speaker, to produce 

18 We train speaker-dependent WaveGlow neural vocoders for L2 speakers using the official implementa-
tion provided by Prenger et al. [64]. 
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a set of golden-speaker utterances (i.e., L2 voice identity with L1 pronunciation patterns). 

We refer to these as L1 golden-speaker (L1-GS) utterances, since they are obtained using 

L1 utterances as a reference. The L1 utterances can be discarded at this point. In a second 

step, we build a pronunciation-correction model that directly maps L2 utterances into their 

corresponding L1-GS utterances obtained in the previous step, that is, without the need 

for the L1 reference. Critical in this process is the generation of the speaker embeddings, 

which we describe first. 

5.4.1. Extracting speaker-independent speech embeddings  

We use an acoustic model (AM) to generate a speaker-independent (SI) speech 

embedding for an input (L1 or L2) utterance. Our AM is a Factorized Time Delayed Neu-

ral Network (TDNN-F) [155, 156], a feedforward neural network that utilizes time-de-

layed input in its hidden layers to model long term temporal dependencies. TDNN-F can 

achieve performance on Large Vocabulary Continuous Speech Recognition (LVCSR) 

tasks that is comparable to that of AMs based on recurrent structures (e.g., Bi-LSTMs), 

but is more efficient during training and inference due to its feedforward nature [155]. To 

produce an SI speech embedding, we concatenate each acoustic feature vector (40-dim 

MFCC) with an i-vector (100-dim) of the corresponding speaker [46] and use them as 
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inputs to the AM, which we then train on a large corpus from a few thousand native speak-

ers (Librispeech [104])19. As part of this study, we evaluated three different speech em-

beddings: 

• Senone phonetic posteriorgram (Senone-PPG): The output from the final soft-

max layer of the AM, which is high dimensional (6,024 senones) and contains fine-

grained information about the pronunciation pattern in the input utterance.

• Bottleneck feature (BNF): The output of the layer prior to the final softmax layer

of the AM. The BNF contains rich classifiable information for a phoneme recog-

nition task, but lower dimensionality (256).

• Monophone phonetic posteriorgram (Mono-PPG): The phonetic posteriorgram

for monophones obtained by collapsing the senones into monophone symbols (346

monophones with work positions, e.g., word-initials, work-finals).

5.4.2. Step 1: Generating a reference-based golden-speaker (L1-GS) 

In the first step, we build a speech synthesizer for the L2 speaker that converts 

speech embeddings into mel-spectrograms, which are then converted to speech waveforms 

with a WaveGlow neural vocoder. See Figure 5.2 (a) for an illustration. We then drive the 

L2 synthesizer with a set of utterances from the reference L1 speaker, to produce a set of 

L1 golden-speaker (L1-GS) utterances, as shown in Figure 5.2 (b). We use the resulting 

L1-GS utterances as training data in the next step (pronunciation-correction). This process 

19 The AM is trained following the Kaldi [157] “tdnn_1d” configuration of the TDNN-F model. We use 
the full training set (960 hours) in the Librispeech corpus for acoustic modeling. A subset (200 hours) of 
the training set is used to train the i-vector extractor. 
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mitigates the lack of ground truth data issue that previously blocked the development of 

reference-free systems for accent conversion. 

Figure 5.2 (a) Train the L2 speech synthesizer. The speech embedding extracted by 
the AM is converted to the mel-spectrogram, which is then synthesized to speech 
waveform through a WaveGlow neural vocoder. (b) Create an L1-GS that corre-
sponds to the L2 speaker by driving the L2 speech synthesizer with training utter-
ances from an L1 reference speaker. 
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Figure 5.3: Speech embedding to mel-spectrogram synthesizer. The flowchart on the 
top-left highlights the overall dataflow of the model; the remainder of the figure pro-
vides model details. The speech embeddings are sequentially processed by an input 
PreNet (optional, for Senone-PPGs only), convolutional layers, an encoder, a de-
coder, and a PostNet to generate their corresponding mel-spectra. We omitted the 
stop token predictions in the figure for better visualization. 

 

The synthesizer is based on a modified Tacotron2 architecture20 [74], and is illus-

trated in Figure 5.3. The model follows a general encoder-decoder (or seq2seq) paradigm 

with an attention mechanism. Conceptually, an encoder-decoder architecture uses an en-

coder (usually a recurrent neural network; RNN) to “consume” input sequences and gen-

 

20 To facilitate the method description and maintain consistency with prior literature, we adopt the follow-
ing terminologies from Tacotron2: PreNet: Two fully connected layers with a ReLU nonlinearity; PostNet: 
Five stacked 1-D convolutional layers; LinearProjection: One fully connected layer. For illustrations of the 
PreNet and PostNet, please refer to Figure 4.3. 
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erate a high-level hidden representation sequence. Then, a decoder (an RNN with an at-

tention mechanism) processes the hidden representation sequence. The attention mecha-

nism allows the decoder to decide which parts of the hidden representation sequence con-

tain useful information to make the predictions. At each output time step, the attention 

mechanism computes an attention context vector (a weighted sum of the hidden represen-

tation sequence) to summarize the contextual information. The decoder RNN reads the 

attention context vectors and predicts the output sequence in an autoregressive manner. 

Our speech synthesizer takes the speech embeddings as input. Then, if the input 

speech embeddings have high dimensionality (e.g., Senone-PPGs), we reduce their dimen-

sions through a learnable input PreNet. This step is essential for the model to converge 

when using high-dimensional speech embeddings as input. For speech embeddings with 

lower dimensionality, such as Mono-PPGs and BNFs, we skip the input PreNet. The 

speech embeddings are then passed through multiple 1-D convolutional layers, which 

model longer-term context. Next, an encoder (one Bi-LSTM) converts the convolutions 

into a hidden linguistic representation sequence. Finally, we pass the hidden linguistic 

representation sequence to the decoder, which consists of a location-sensitive attention 

mechanism [71] and a decoder LSTM, to predict the raw mel-spectrogram. 

Formally, let [𝑎; 𝑏] represent the operation of concatenating vectors 𝑎 and 𝑏, ℎ =

[ℎ1, … , ℎ7 ] be the full sequence of hidden linguistic representation from the encoder and 

(∙)7  denote the matrix transpose. At the 𝑖-th decoding time step, applying the location-

sensitive attention mechanism, the attention context vector 𝑐* is the weighted sum of ℎ, 

𝑐* = 𝛼* ⋅ ℎ7 . (5.1) 
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𝛼* = AttentionLayers(𝑞*, 𝛼*−1, ℎ) = [𝛼*
1, … 𝛼*

7 ], (5.2) 

𝑞* = AttentionLSTM(𝑞*−1, [𝑐*−1;  DecoderPreNet(𝑦*̂−1
%@A)]), (5.3) 

𝛼*
" =

exp(𝑒*")
∑ exp(𝑒*")"=1

, (5.4) 

𝑒*" = 𝑣7 tanh(𝑊𝑞* + 𝑉 ℎ" + 𝑈𝑓*
" + 𝑏) , (5.5) 

𝑓* = 𝐹 ∗ 𝛼*−1 = [𝑓*
1, … , 𝑓*

7 ], 𝐹 ∈ 𝑅-×>. (5.6) 

𝛼* = [𝛼*
1, … 𝛼*

7 ] are the attention weights. 𝑞* is the output of the attention LSTM, 

and 𝑦*̂−1
%@A is the predicted raw mel-spectrum from the previous time step. 𝑣, 𝑊 , 𝑉 , 𝑈 , 𝑏, 𝐹  

are learnable parameters of the attention layers. 𝐹  contains 𝑘 1-D learnable kernels with 

kernel size 𝑟, and 𝑓*
" ∈ 𝑅- is the result of convolving 𝛼*−1 at position 𝑗 with 𝐹 . 

Next, let 𝑑* be the output of the decoder LSTM at decoding time step 𝑖, and 𝑦*̂
%@A 

be the new raw mel-spectrum prediction, we have, 

𝑑* = DecoderLSTM(𝑑*−1, [𝑞*; 𝑐*]), (5.7) 

𝑦*̂
%@A = LinearProjectionmel([𝑑*; 𝑐*]). (5.8) 

At each time step, to determine if the decoder prediction reaches the end of an 

utterance, we compute a stop token using a separate trainable fully connected layer, 

𝑦*̂
G9D) = {

1 (stop) Sigmoid (LinearProjectionstop([𝑑*; 𝑐*])) ≥ 0.5

0 (continue) Sigmoid (LinearProjectionstop([𝑑*; 𝑐*])) < 0.5
. (5.9) 

The original Tacotron 2 was designed to accept character sequences as input, 

which are significantly shorter than our speech embedding sequences. For example, each 

sentence in our corpus contains 41 characters on average, whereas the corresponding 
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speech embedding sequence has a few hundred frames. Therefore, the vanilla location-

sensitive attention mechanism might fail, as pointed out in [25]. As a result, the inference 

would be ill-conditioned and would generate non-intelligible speech. Following a prelim-

inary study [149] of this work, we add locality constraint to the attention mechanism. 

Speech signals have a strong temporal-continuity and progressive nature. To capture the 

phonetic context, we only need to look at the speech embeddings in a small local window. 

Inspired by this, at each decoding step during training, we constrain the attention mecha-

nism to only consider the hidden linguistic representation within a fixed window centered 

on the current frame, i.e., let, 

ℎ̃ = [0, … ,0, ℎ*−?, … , ℎ*, … , ℎ*+?, 0, … , 0], (5.10) 

where 𝑤 is the window size. Consequentially, we replace eq. (5.2) with eq. (5.11), 

𝛼* = AttentionLayers(𝑞*, 𝛼*−1, ℎ̃). (5.11) 

Finally, to further improve the synthesis quality, the speech synthesizer appends a 

PostNet after the decoder to predict residual spectral details from the raw mel-spectrum 

prediction, and then adds the spectral residuals to the raw mel-spectrum, 

𝑦*̂
FDG9H@9 = 𝑦*̂

%@A + PostNet(𝑦*̂
%@A). (5.12) 

The loss function for training this speech synthesizer is, 

𝐿 = 𝑤1(∥𝑌%@A − 𝑌%̂@A
B@CDE@>∥2 + ∥𝑌%@A − 𝑌%̂@A

FDG9H@9∥2) + 𝑤2CE(𝑌G9D), 𝑌Ĝ9D)), (5.13) 

where 𝑌%@A is the ground-truth mel-spectrogram; 𝑌%̂@A
B@CDE@> and 𝑌%̂@A

FDG9H@9are the predicted 

mel-spectrograms from the decoder and PostNet, respectively; 𝑌G9D)  and 𝑌Ĝ9D) are the 
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ground-truth and predicted stop token sequences; CE(∙) is the cross-entropy loss; 𝑤1 and 

𝑤2 control the relative importance of each loss term. 

The predicted mel-spectrograms are converted back to audio waveforms using a 

WaveGlow neural vocoder trained on the L2 utterances. We then drive the L2 synthesizer 

with a set of utterances from the reference L1 speaker, to produce the L1-GS utterances. 

5.4.3. Step 2: Generating the reference-free golden speaker (L2-GS) via pronuncia-

tion-correction 

In the second step, we train a pronunciation-correction model that converts L2 ut-

terances to match the pronunciations (accents) of the L1-GS utterances generated in step 

1. In the testing stage, a new L2 utterance is processed by the pronunciation-correction

model to create its “accent-free” counterpart, to which we refer as an L2-GS utterance, 

since it is driven by an L2 utterance at the input. As in the previous step, we use speaker-

dependent WaveGlow neural vocoder to generate audio waveform from the mel-spectro-

gram. 

Our pronunciation-correction model is based on a state-of-the-art seq2seq VC sys-

tem proposed by Zhang et al. [129]. We chose this system as a baseline since it outper-

formed the best system in the Voice Conversion Challenge 2018 [120]. The rationale be-

hind using a VC system as the pronunciation-correction model is that VC can convert both 

the voice identity and accent to match the target speaker. In our application scenario, we 

treat the L2 speaker and the L1-GS as the source and target speakers in a VC task, respec-

tively. Since the two speakers already share the same voice identity, the VC model only 
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needs to match the accent of the target speaker (i.e., the golden speaker). During the infer-

ence stage, we can directly input L2 speech into the pronunciation-correction model, and 

the output will share similar pronunciation patterns as the GS. The difficulty of this pro-

cedure is that L2 speakers tend to have disfluencies, hesitations, and inconsistent pronun-

ciations, making the conversion much harder than converting between two native speak-

ers, as discussed in prior literature [136]. To overcome this difficulty, we propose to use a 

variation of the forward-and-backward decoding technique [143, 144], in addition to the 

baseline pronunciation model, to achieve better pronunciation-correction performance. 

We first formally introduce the baseline system, and then describe the proposed improve-

ment. 

The baseline system is also based on an encoder-decoder paradigm with an atten-

tion mechanism. Figure 5.4 shows an overview of the baseline system. Unlike conven-

tional parallel VC systems (e.g., GMM, feedforward neural networks), which need time-

alignment between the source and target speakers to generate the training frame pairs, 

seq2seq systems use an attention mechanism to produce learnable alignments between the 

input and output sequences. Therefore, they can also adjust for prosodic differences (e.g., 

pitch, duration, and stressing) between the input and output sequences. In our application, 

this is crucial since prosody errors also contribute to foreign accentedness. 
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Figure 5.4: Training pipeline of the baseline pronunciation-correction model. The 
input feature sequence (concatenation of bottleneck features [BNFs] and mel-spec-
tra) from the L2 speaker is converted to the L1-GS mel-spectrogram. The phoneme 
classifications are only applied to stabilize the model training and are discarded dur-
ing testing. The encoder is constructed with a two-layer Pyramid-Bi-LSTM. The de-
coder has the same neural network structure as the one in Figure 5.3. 

 

Specifically, the input 𝑋 = [𝑥1, … , 𝑥7#$
] to the conversion system is the concat-

enation of the bottleneck features21 (i.e., BNFs, cf. Section 5.4.1) and mel-spectrogram 

computed from the L2 utterance. Let 𝑥* be the 𝑖-th feature vector in the sequence. The 

output sequence is denoted by 𝑌%@A = [𝑦1
%@A, … , 𝑦7%&'

%@A ] where 𝑦*
%@A is the 𝑖-th mel-spec-

trum of the L1-GS utterance. A two-layer Pyramid-Bi-LSTM encoder [72] with a down-

sampling rate of two consumes the input sequence and produces the encoder hidden em-

beddings ℎ = [ℎ1, … , ℎ⌊#
2⌋, … , ℎ⌊)#$

2 ⌋], where ℎ⌊#
2⌋ is one encoder hidden embedding vec-

tor, and ⌊∙⌋ is the floor-rounding operator. 

 

21 Zhang et al. [129] use BNFs in their implementation, and we follow this design choice to replicate their 
system. 
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The first Bi-LSTM layer does the recurrent computations on 𝑋  and outputs 

ℎAU;@>1 = [ℎAU;@>1
1 , … , ℎAU;@>1

7#$ ]. We then concatenate each two of the consecutive frames

in ℎAU;@>1 to form [[ℎAU;@>1
1 ; ℎAU;@>1

2 ], … , [ℎAU;@>1
* ; ℎAU;@>1

*+1 ], … , [ℎAU;@>1
7#$−1 ; ℎAU;@>1

7#$ ]]. Finally,

we feed the concatenated vectors to the second Bi-LSTM layer to produce ℎ. In the case 

that we have an odd number of frames in the input sequence, we drop the last frame, which 

is generally a silent frame. The down-sampling effectively reduces the sequence length of 

the input, which speeds up the encoder computation by a factor of two and makes it easier 

for the attention mechanism to learn a meaningful alignment between the input and output 

sequences. 

The decoder in this model has a similar neural-network structure as the speech 

synthesizer decoder in Section 5.4.2 (Figure 5.3), with only two differences: (1) to repli-

cate Zhang et al. [129], we use the forward-attention technique [158] instead of eq. (5.4) 

to normalize the attention weights; (2) the locality constraint defined in equations (5.10) 

and (5.11) is discarded. The decoder predicts the output raw mel-spectrogram sequence 

𝑌%̂@A
B@CDE@> = [𝑦1̂

%@A, … , 𝑦7̂%&'
%@A ] and the stop token sequence 𝑌Ĝ9D) = [𝑦1̂

G9D), … , 𝑦7̂%&'

G9D) ] fol-

lowing equations (5.8) and (5.9), respectively. 𝑌%̂@A
B@CDE@> is also processed through a Post-

Net to generate a residual-compensated mel spectrogram 𝑌%̂@A
FDG9H@9, following eq. (5.12). 

In addition, the baseline system uses multi-task learning to make the synthesized 

pronunciations more stable. Two independent phoneme classifiers, each containing one 

fully-connected layer and a softmax operation, are added to predict the input and output 
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phoneme sequences 𝑌V̂WF = [𝑦1̂
*WF , … , 𝑦7̂#$

*WF ]  and 𝑌X̂Y9F = [𝑦1̂
DY9F , … , 𝑦7̂%&'

DY9F ] , respec-

tively. These phoneme classifiers are only used during training and are discarded in infer-

ence. 

𝑦*̂
*WF = PhonemeClassifierin(ℎ*) (5.14) 

𝑦*̂
DY9F = PhonemeClassifierout([𝑞*; 𝑐*]) (5.15) 

The final loss function of the baseline system becomes, 

𝐿]UG@A*W@ = 𝑤1(∥𝑌%@A − 𝑌%̂@A
B@CDE@>∥2 + ∥𝑌%@A − 𝑌%̂@A

FDG9H@9∥2) 
+ 𝑤2CE(𝑌G9D), 𝑌Ĝ9D))

+ 𝑤3 (CE(𝑌*WF , 𝑌*̂WF ) + CE(𝑌DY9F , 𝑌D̂Y9F )) , (5.16)
 

where 𝑌*WF , 𝑌DY9F  are the ground input and output phoneme sequence, respectively. 

To improve predictive performance, we propose a modification to the baseline 

system that applies forward-and-backward decoding during the training process. The for-

ward-and-backward decoding technique maintains two separate decoders, i.e., the forward 

and backward decoders. The forward decoder processes the encoder outputs in the forward 

direction, whereas the backward decoder reads the encoder outputs reversely. Different 

variations of this technique have been applied to TTS [144] and ASR [143]. Figure 5.5 

shows an overview of this procedure. During training, we add a backward decoder to the 

baseline model. The backward decoder has the same structure as the existing decoder (de-

noted as the forward decoder) but with a different set of weights. The backward decoder 

functions the same as the forward decoder except that it processes the encoder’s output in 

reverse order and predicts the output mel-spectrogram 𝑌%̂@A
]?E reversely as well. The back-

ward decoder, like its forward counterpart, also predicts its own set of stop tokens 𝑌Ĝ9D)
]?E, 
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output phoneme labels 𝑌D̂Y9F
]?E , and uses the shared PostNet to predict a refined mel-spec-

trogram 𝑌%̂@A−FDG9H@9
]?E . 

 

 

Figure 5.5: Proposed forward-and-backward decoding model for pronunciation-cor-
rection. The existing decoder in the baseline model is denoted as the forward decoder 
here. We omitted the other common components it shares with the baseline model. 
The PostNet of the two decoders shares the same set of weights. This forward-and-
backward decoding procedure is only activated during training. 

 

The loss terms contributed by adding this backward decoder are, 

𝐿]?E = 𝑤1(∥𝑌%@A − 𝑌%̂@A
]?E∥2 + ∥𝑌%@A − 𝑌%̂@A−FDG9H@9

]?E ∥2) + 𝑤2CE(𝑌G9D), 𝑌Ĝ9D)
]?E)

+𝑤3CE(𝑌DY9F , 𝑌D̂Y9F
]?E ). (5.17)

 

Additionally, to force the two decoders to learn complementary information from 

each other, we train the two decoders to produce the same attention weights by including 

the following loss term, 

𝐿U99 = 𝑤4∥𝛼_?E − 𝛼]?E∥2, (5.18) 
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where 𝛼_?E and 𝛼]?E are the attention weights of the forward and backward decoder, re-

spectively. 

The final loss term of the proposed system is, 

𝐿)>D)DG@E = 𝐿]UG@A*W@ + 𝐿]?E + 𝐿U99. (5.19) 

The rationale behind the forward-and-backward decoding is that RNNs are gener-

ally more accurate at the initial decoding time steps, but performance decreases as the 

predicted sequence becomes longer because the prediction errors accumulate due to the 

autoregression. By including two decoders that model the input data in two different di-

rections, and by constraining them to produce similar attention weights, we force the two 

decoders to incorporate information from both the past and future, thus improving their 

modeling power. Note that we only use both decoders during training. During inference 

time, we keep either the forward or backward decoder and discard the other. Therefore, 

the model size is exactly the same as the baseline model. 

5.5. Results 

We conducted two experiments to evaluate the proposed FAC system on a thor-

ough set of objective measures (e.g., word error rates, Mel Cepstral distortion) and sub-

jective measures (degree of foreign accent, audio quality, and voice similarity.)  In exper-

iment 1, we evaluated the reference-based golden speaker (L1-GS) generated by the 

speech synthesizer (Section 5.4.2). Then, in experiment 2, we evaluate the reference-free 

golden speaker (L2-GS) produced by the pronunciation-correction system (Section 5.4.3). 

We start with introducing the speech corpora and common experimental settings first. 
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5.5.1. Data and common settings 

For the FAC task (training the speech synthesizers, WaveGlow neural vocoders, 

and pronunciation-correction models), we used one native speaker (BDL; American ac-

cent) from CMU-ARCTIC corpus [105] and two non-native speakers (YKWK, Korean; 

TXHC, Chinese) from the L2-ARCTIC corpus22 [106]. We split the data from all speakers 

into non-overlapping training (1032 utterances), validation (50 utterances), and testing (50 

utterances) sets. Recordings from BDL were sampled at 16 kHz. Recordings in the L2-

ARCTIC corpus were resampled from 44.1 kHz to 16 kHz to match BDL’s sampling rate 

and were pre-processed with Audacity [132] to remove any ambient background noise. In 

all FAC tasks, we extracted 80-dim mel-spectrogram with a 10ms shift and 64ms window 

size. All neural network models were implemented in PyTorch [159] and trained with an 

NVIDIA Tesla P100 GPU. 

5.5.2. Experiment 1: Evaluating the reference-based golden speaker (L1-GS) 

We constructed the following three systems and compared their performance in 

generating L1-GS utterances. The objectives of this experiment were to determine the op-

timal speech embedding, and more importantly, to establish that L1-GS utterances cap-

tured the native accent and the L2 speaker identity, which is critical since they would be 

used as targets for the reference-free FAC task. Details of the model configurations and 

training are summarized in Appendix E. 

• Senone-PPG: use the senone-PPG as the input (6,024 dimensions).

22 https://psi.engr.tamu.edu/l2-arctic-corpus 
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• Mono-PPG: use the monophone PPG as the input (346 dimensions).

• BNF: use the bottleneck feature as the input (256 dimensions).

To generate the L1-GS utterances for testing, we extracted the three speech em-

beddings from speaker BDL’s test set and drove the systems with their respective input. 

The output mel-spectrograms were then converted to speech through the WaveGlow vo-

coders. 

5.5.2.1. Objective evaluation 

In a first experiment, we computed the word error rate (WER) of L1-GS utterances 

synthesized using each of the three speaker embeddings. In our case, the speech recognizer 

consisted of the TDNN-F acoustic model combined with an unpruned 3-gram language 

model trained on the Librispeech transcripts. As a reference, we also computed WERs on 

test utterances from the L1 speaker (BDL) and the two L2 speakers (YKWK, TXHC). 

Results are summarized in Table 5.1. L1-GS utterances from the three systems achieve 

lower WERs than the corresponding utterances from the L2 speakers. Since the acoustic 

model had been trained on American English speech, a reduction in lower WERs can be 

interpreted as a reduction in the foreign-accentedness. The BNF system performs mark-

edly better than the other two systems, achieving WERs that are close to those on L1 

utterances. The Senone-PPG system performed the worst, despite the fact that it contains 

the most fine-grained triphone-level phonetic information. We offer an explanation in the 

discussion. 
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Table 5.1: Word error rates (%) on test utterances and the original speech. 

Senone-PPG Mono-PPG BNF Original speech 
YKWK 37.56 23.30 9.50 45.82 
TXHC 28.05 23.53 7.47 44.57 

Average 32.81 23.42 8.49 45.20 
BDL N/A 4.98 

5.5.2.2. Subjective evaluation 

To further evaluate the three L1-GS systems, we conducted formal listening tests 

to rate three perceptual attributes of the synthesized speech: accentedness, acoustic qual-

ity, and voice similarity. All listening tests were conducted through the Amazon Mechan-

ical Turk platform23. Instructions were given in each test to help the participants focus on 

the target speech attribute. All tests included five calibration samples to detect cheating 

behaviors, as suggested by Buchholz and Latorre [113]; responses from participants who 

were deemed to have cheated were excluded. Ratings for the calibration samples were 

excluded, too. All participants received monetary compensation. All samples were ran-

domly selected from the test set, and the presentation order of samples in every listening 

test was randomized and counter-balanced. All participants resided in the United States at 

the time of the recruitment and passed a qualification test where they identified several 

regional dialects in the United States. All participants were self-reported native English 

speakers. 

23 https://www.mturk.com 
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Accentedness test. Listeners were asked to rate the foreign accentedness of an ut-

terance on a nine-point Likert-scale (1: no foreign accent; 9: heavily accented), which is 

widely used in the pronunciation training community [4]. Listeners were told that the na-

tive accent in this task was General American. Participants (N=20) rated 20 randomly 

selected utterances per system per L2 speaker. The utterances shared the same linguistic 

content in all conditions to ensure a fair comparison. As a reference, listeners also rated 

the same set of sentences for the L1 and L2 speakers. The results are summarized in the 

first row of Table 5.2. L1-GS utterances from the three systems were rated significantly 

(𝑝 ≪ 0.001) more native-like than the original L2 speech, though not as much as the orig-

inal L1 speech. Among the three systems, the BNF system significantly outperformed 

Mono-PPG, while Mono-PPG was rated significantly more native-like than Senone-PPG, 

all with 𝑝 ≪ 0.001. 

Table 5.2: Accentedness (the lower, the better) and MOS ratings (the higher, the bet-
ter) of the golden, native, and non-native speakers; the error ranges show the 95% 
confidence intervals; the same convention applies to the rest of the results. 

Senone-PPG Mono-PPG BNF Original L2 Original L1 
Accentedness 6.01 ± 0.26 5.48 ± 0.19 4.30 ± 0.16 6.77 ± 0.20 1.04 ± 0.04 

MOS 3.43 ± 0.13 3.54 ± 0.09 3.78 ± 0.05 3.70 ± 0.06 4.63 ± 0.06 

Acoustic quality. Listeners were asked to rate the acoustic quality of an utterance 

using a standard five-point (1: poor; 2: bad; 3: fair; 4: good; 5: excellent) Mean Opinion 

Score (MOS). Participants (N=20) listened to 20 randomly-selected sentences per L2 
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speaker per system. As in the accentedness test, listeners also rated the original utterances 

from the L1 and L2 speakers. The results are summarized in the second row of Table 5.2. 

As expected, the original native speech received the highest MOS. Among the three 

golden speaker voices, BNF achieved the highest MOS compared with the other two sys-

tems (𝑝 ≪ 0.001 ). The Mono-PPG system obtained better acoustic quality than the 

Senone-PPG system (𝑝 = 0.045). Interestingly, L1-GS utterances from the BNF system 

received higher MOS than the original L2 speech (3.78 vs. 3.70, 𝑝 = 0.02); we offer a 

possible explanation in Section 5.6. 

Voice similarity test. Listeners were presented with a pair of speech samples, an 

L1-GS synthesis, and the original utterance from the corresponding L2 speaker. In the test, 

listeners first had to decide if the two samples were from the same speaker, and then rate 

their confidence level on a seven-point scale (1: not confident at all; 3: somewhat confi-

dent; 5: quite a bit confident; 7: extremely confident). To minimize the influence of accent, 

the two utterances had different linguistic contents and were played in reverse, following 

[12]. For each system, participants (N=20) rated 10 utterance pairs per speaker (20 utter-

ance pairs for each system). Results are summarized in Table 5.3. Across the three sys-

tems, more than 70% of the listeners were “quite a bit” confident (4.82-4.93 out of 7) that 

the L1-GS utterance and the original L2 utterance had the same voice identity. Signifi-

cance tests showed that there was no statistically significant difference between the pref-

erence percentages for the three systems. 
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Table 5.3: Voice similarity ratings. The first row shows the percentage of the raters 
that believed the synthesis and the reference audio clip were produced by the same 
speaker; the second row is the average rating of these raters’ confidence level when 
they made the choice. 

Senone-PPG Mono-PPG BNF 
Prefer “same speaker” 70.00 ± 9.12% 71.25 ± 6.38% 73.75 ± 6.46% 

Average rater confidence 4.82 4.89 4.93 

These results show that the BNF system outperforms the other two systems signif-

icantly in both objective and subjective measures. Therefore, for the remainder of this 

manuscript, we focus our evaluation on the BNF system, i.e., target L1-GS utterances for 

the reference-free (pronunciation-correction) FAC system are those from the BNF system. 

5.5.3. Experiment 2: Evaluating the reference-free golden speaker (L2-GS) 

In the second experiment, we directly converted L2 test utterances with the pro-

posed pronunciation-correction model and compared it against the baseline system. De-

tailed model architecture configurations and training setups are included in Appendix F. 

• Baseline: the system of Zhang et al. [129], a state-of-the-art VC system capable of

modifying segmental and prosodic attributes between different speakers.

• Proposed: the baseline system with the forward-and-backward decoding, which

added a backward decoder that has the same structure as the forward decoder dur-

ing training. We performed the proposed accent conversion using the backward

decoder during testing since it produced significantly better-quality speech com-

pared to the forward decoder on the validation set.
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5.5.3.1. Objective evaluations 

For objective evaluations, we computed three measures, as suggested by [129], 

plus WER as a fourth: 

• MCD: the Mel-Cepstral Distortion [21] between the L2-GS (actual output) and

L1-GS speech (desired output). It was computed on time-aligned (Dynamic Time

Warping) mel-cepstra between the L2-GS and the L1-GS audio. Lower MCD cor-

relates with better spectral predictions. We used SPTK [160] and the WORLD

vocoder [57] to extract the Mel-cepstra with a shift size of 10ms.

• 𝑭`  RMSE: the 𝐹0  RMSE between the L2-GS and L1-GS speech on voiced

frames. Lower 𝐹0 RMSE represents better pitch conversion performance. The 𝐹0

and voicing features were extracted by the WORLD vocoder with the Harvest pitch

tracker [161].

• DDUR: the absolute difference in duration between the L2-GS and L1-GS speech.

Lower DDUR implies better duration conversion performance.

• WER: the word error rate for the L2-GS speech. Ideally, the L2-GS speech should

have a lower WER than the original non-native speech, implying that the conver-

sion reduced the foreign accent.

Results are summarized in Table 5.4. For all measures, we also computed the

scores between the original L2 speech and the L1-GS speech as a reference. The proposed 

method obtained better WER, MCD, and DDUR scores, while the baseline method per-

formed slightly better on the 𝐹0 RMSE. More importantly, both systems were able to re-

duce the WER of the input L2 utterance. The proposed method reduced the WER of the 
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non-native speech by 9.26% (absolute) on average, which was significantly higher than 

the WER reduction of the baseline system (2.71% absolute). 

Table 5.4: Objective evaluation results of the reference-free FAC system, i.e., the 
pronunciation correction. The first row in each block shows the scores between the 
original L2 utterances and the L1-GS utterances. The last block shows the average 
values of the first two blocks. For all measurements, a lower value suggests better 
performance. 

L2 speaker System WER (%) MCD (dB) 𝑭` RMSE (Hz) DDUR (sec) 

YKWK 
Original 45.82 8.07 23.38 1.15 
Baseline 41.31 6.26 18.43 0.18 
Proposed 34.54 6.10 20.78 0.15 

TXHC 
Original 44.57 8.00 25.73 1.29 
Baseline 43.67 6.32 19.40 0.17 
Proposed 37.33 6.29 21.37 0.15 

Average 
Original 45.20 8.04 24.56 1.22 
Baseline 42.49 6.29 18.92 0.18 
Proposed 35.94 6.20 21.08 0.15 

5.5.3.2. Subjective evaluation 

Following the same protocol described in section 5.5.2.2, we asked participants to 

rate the accentedness, acoustic quality, and voice similarity of synthesized L2-GS utter-

ances. 

Accentedness test. Participants (N=20) rated 20 random samples per speaker per 

system, as well as the corresponding original audio. Results are compiled in the first row 

of Table 5.5. Both systems obtained significantly more native-like ratings than the original 
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L2 utterances (𝑝 ≪ 0.001). More specifically, the baseline system reduced the accented-

ness rating by 15.5% (relative), while the proposed system achieved a 19.0% relative re-

duction. Further, the proposed system had a statistically-significant lower rating of foreign 

accentedness than the baseline (𝑝 = 0.04). As expected, the original L1 speech was rated 

less accented than all other systems. 

Table 5.5: Accentedness (the lower, the better) and MOS (the higher, the better) rat-
ings of the reference-free accent conversion systems and original L1 and L2 utter-
ances. 

Baseline Proposed Original L2 Original L1 
Accentedness 5.56 ± 0.23 5.33 ± 0.28 6.58 ± 0.26 1.07 ± 0.04 

MOS 2.95 ± 0.12 3.22 ± 0.10 3.68 ± 0.10 4.80 ± 0.06 

MOS test. Participants (N=20) rated 20 audio samples per speaker per system. We 

used the same MOS test as in experiment 1 to measure the acoustic quality of the synthesis. 

Results are shown in the second row of Table 5.5. The proposed system achieved signifi-

cantly better audio quality than the baseline model (9.15% relative improvement; 𝑝 ≪

0.001). 

Voice similarity test. Participants (N=20) rated 10 utterance pairs per speaker per 

system (i.e., 20 utterance pairs for each system). This last experiment verified that the 

accent conversion retained the voice identity of the L2 speakers. The results are shown in 

Table 5.6. The majority of the participants thought the synthesis and the reference speech 

were from the same speaker, and they were “quite a bit confident” (5.00-5.12 out of 7) 
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about their ratings. Although the proposed system obtained higher ratings than the baseline 

system in terms of voice identity, the difference between the preference percentages was 

not statistically significant (𝑝 = 0.12), which was expected. The reason is that the input 

and output speech had different accents, but very similar voice identity. Therefore, both 

systems were not trained to modify the voice identity of the input audio. As a result, both 

the baseline system and the proposed system were able to keep the voice identity unaltered 

during the conversion process. 

Table 5.6: Voice similarity ratings of the reference-free accent conversion task. 

Baseline Proposed 
Prefer “same speaker” 69.25 ± 11.08% 73.00 ± 7.55% 

Average confidence rating 5.00 5.12 

Aside from the objective and subjective scores, we provide an example of the at-

tention weights produced by both systems on a test utterance in Figure 5.6. Qualitatively, 

we can observe that the attention weights of the baseline system contained an abnormal 

jump towards the end of the synthesis, while the proposed system produced smooth align-

ments at the same time steps. Additionally, the proposed method appears to have used a 

broader window to compute the attention context compared with the baseline, as reflected 

by the width of the attention alignment path. Therefore, the proposed system utilized more 

contextual information during the decoding process. 
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Figure 5.6: A qualitative comparison of the attention weights generated by the base-
line and the proposed pronunciation-correction systems on one testing utterance. 

 

5.6. Discussion 

We have presented a system that can transform utterances from an L2 speaker to 

make them sound more native-like. Training the system requires two steps.  In a first step, 

we train an accent-conversion system to transform utterances from a reference L1 speaker, 

so they have the voice identity of the L2 speaker.  We refer to these transformed utterances 

as L1-GS utterances.  In a second step, we train a pronunciation-correction system that 

can transform utterances from an L2 speaker to match the L1-GS utterances obtained in 

the first step.  We refer to these transformed utterances as L2-GS utterances. We conducted 

two series of experiments to evaluate both steps of the process. In experiment 1, we tested 

three versions of the L1-GS system that used different speech embeddings at the input: 
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senone-PPG, monophone-PPG, and bottleneck feature (BNF). Both objective and subjec-

tive tests suggested that the BNF system was better than the senone- and monophone-PPG 

systems, both in terms of audio quality and accentedness. Since one of the major objectives 

of FAC is to capture the native accent as much as possible, the better accentedness rating 

of the BNF system suggests that it is more advantageous for the FAC task. It is also worth 

noting that the WER evaluation yielded similar WERs on BNF L1-GS utterances and on 

the original utterances from the L1 speaker, which further indicates that the accent reduc-

tion was successful. The majority of the human raters (73.75%) had high confidence that 

the BNF L1-GS shared the same voice identity as the target L2 speaker, which many prior 

FAC systems struggled to achieve. It was surprising to observe that the BNF L1-GS utter-

ances were rated to have better audio quality than the original natural speech from the L2 

speaker. Although this result indicates that the BNF L1-GS speech had high acoustic-

quality, prior literature has established that native listeners can have negative bias [6, 7, 9] 

towards accented speech. Therefore, it is reasonable to argue that the native listeners rated 

the L2 speech not just based on the acoustic quality, but also based on implicit biases 

towards foreign accents. The discussion of native listeners’ bias towards foreign accents 

is beyond the scope of this work, but we acknowledge that this negative bias does exist, 

and the majority of our listeners are monolingual. Native listeners might be able to reduce 

their bias with more exposure to foreign accents. At the same time, carefully designed 

listening test protocol (e.g., playing the utterances reversely as in the voice similarity tests) 

would also help control these factors when we use native listeners as test subjects. 
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Two probable factors explain why BNF outperformed the other two speech em-

beddings. First, we observed that during the training process, the BNF system converged 

to a better terminal validation loss, which suggested that the speech synthesizer could 

model the mel-spectrograms more accurately given BNF as the input, compared with the 

other speech embeddings. As a result, the BNF speech synthesizer produced speech syn-

theses with better quality. Second, although the BNF and PPGs contain a comparable 

amount of linguistic information, the process that converted the BNF to PPGs was a pho-

neme classification task. Therefore, it introduced recognition errors, which propagated to 

the speech synthesizer as mispronunciations and speech artifacts. One possible explana-

tion for differences between the two PPGs is dimensionality reduction strategies; the 

monophone-PPG system used an empirical rule (reducing senones to monophones) to 

summarize the high-dimensional senone-PPG, while the senone-PPG system constructed 

a learnable transformation. Although it is possible for data-driven transforms to outper-

form empirical rules given enough data, the limited amount of data (~one hour of speech 

per speaker) available for the FAC task was not enough to produce a good transformation 

for senone-PPG. 

In experiment 2, we achieved reference-free FAC by constructing a pronunciation-

correction model that mapped speech directly from the L2 speaker to L1-GS. The results 

were promising; both the baseline model of Zhang et al. [129] and the proposed system 

were able to reduce the foreign accentedness of the input speech significantly, while re-

taining the voice identity of the L2 speaker. It was interesting to see that the baseline 
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system had difficulty converting an L2 speaker to the BNF L1-GS24. The major difficulty 

arises from the fact that L2 speakers generally have a large number of disfluencies (e.g., 

hesitations, pauses) in their speech, and their pronunciations are not always consistent due 

to their unfamiliarity with the second language. Although the seq2seq conversion model 

does not require explicit time-alignment between the source and target speakers, the at-

tention mechanism and the decoder implicitly learn the alignment. The disfluencies and 

inconsistent pronunciations made it difficult for the attention and decoder to produce the 

proper alignment. The proposed method, on the other hand, computed the alignment be-

tween each pair of input and output sequences from two directions at training time, once 

in the forward and once in the backward direction. Both directions provided useful and 

complementary information about what a better alignment should be. By forcing the for-

ward and the backward decoders to produce similar alignment weights at training time, 

we make the decoders incorporate information from both the past and future when gener-

ating the alignment. During inference time, only one decoder is needed to perform the 

reference-free accent conversion; therefore, the proposed system consumes exactly the 

same amount of inference recourses as the baseline system. The better accentedness and 

audio quality ratings can largely be attributed to the better alignments provided by the 

forward-and-backward decoding training technique, as illustrated in Figure 5.6. 

24 Since Zhang et al. [129] did not open-source their system, we replicated it following the recipe pre-
scribed in their manuscript. When converting between two native American English speakers (speakers 
RMS and SLT from the CMU ARCTIC corpus), our pilot study (not shown here) verified that our imple-
mentation could produce speech with high audio quality and proper pronunciations.  
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The L2-GS generated by the reference-free FAC was rated as significantly less 

accented than the L2 speaker, though it still had a noticeable foreign accent. One possible 

explanation is that the pronunciation-correction model was not able to fully eliminate the 

foreign accent in heavily mispronounced or disfluent speech segments, and therefore some 

foreign accent cues from the input were carried over to the output speech. Furthermore, 

the current reference-free FAC model can only correct phone substitution errors. Neither 

removing phone insertion errors nor filling in phone deletion errors is possible without 

knowing the canonical phonetic transcription. The MOS ratings of the pronunciation-cor-

rection models were lower than the BNF L1-GS, which was expected since the output 

speech of the pronunciation-correction model was the re-synthesis of the L1-GS. 

5.7. Conclusion 

In this work, we propose a new reference-free FAC system that directly reduces 

the foreign accent in the input L2 utterances, in contrast to the majority of the existing 

methods, which require native reference utterances at inference time. The proposed system 

first constructs a parallel golden speaker corpus from L2 training utterances. Our experi-

ments showed that bottleneck features produced the optimal golden speaker with the best 

audio quality and native accent. Then, we construct a pronunciation-correction model that 

adjusts the L2 speech to sound like the golden speaker. Our evaluations indicate that the 

reference-free FAC system can significantly reduce the foreign accentedness in L2 speech 

while retaining the voice identity. One possible future direction of this work is to use 

transfer learning [137] to reduce the amount of training data needed for the golden speaker 
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generation process. Another interesting research direction is to train a pronunciation-cor-

rection model that takes the canonical (correct) phonetic transcriptions as a supplementary 

input signal, in addition to the acoustic sequence from the L2 speaker. This may allow the 

system to correct not only the phone substitution errors, but also the insertion and deletion 

errors, thus improving the accentedness ratings. The source code and audio samples from 

this work can be found at https://guanlongzhao.github.io/demo/reference-free-ac. 
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6. L2-ARCTIC: A NON-NATIVE ENGLISH SPEECH CORPUS*

6.1. Overview 

In this chapter, we introduce L2-ARCTIC, a speech corpus of non-native English 

that is intended for research in voice conversion, accent conversion, and mispronunciation 

detection. The current version (v5.0) includes recordings from 24 non-native speakers of 

English whose first languages (L1s) are Hindi, Korean, Mandarin, Spanish, Vietnamese, 

and Arabic, each L1 containing recordings from two male and two female speakers. Each 

speaker recorded approximately one hour of read speech from the Carnegie Mellon Uni-

versity ARCTIC prompts, from which we generated orthographic and forced-aligned pho-

netic transcriptions. In addition, we manually annotated 150 utterances per speaker to 

identify three types of mispronunciation errors: substitutions, deletions, and additions, 

making it a valuable resource not only for research in voice conversion and accent con-

version but also in computer-assisted pronunciation training. The corpus is publicly ac-

cessible at https://psi.engr.tamu.edu/l2-arctic-corpus/. 

6.2. Introduction 

Voice conversion (VC) [88] aims to transform utterances from a source speaker to 

make them sound as if a target speaker had uttered them. The closely related problem of 

accent conversion (AC) [16] goes a step further, mixing the source speech’s linguistic 

* © 2018 ISCA. Reprinted, with permission, from G. Zhao et al., "L2-ARCTIC: A non-native English
speech corpus," in Interspeech, 2018, pp. 2783-2787. DOI: 10.21437/Interspeech.2018-1110. This reprint
contains modifications to reflect the current development of the corpus.
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content and accent with the target speaker’s voice quality to create utterances with the 

target’s voice but the content and pronunciation of the source speaker. When teaching a 

second language (L2), accent conversion can be used to create a “golden speaker,” a syn-

thesized voice that has the learner’s voice quality but with a native speaker’s accent (e.g., 

prosody, intonation, pronunciation) [12]. Several studies [10, 11] have suggested that hav-

ing such a “golden speaker” to imitate can be beneficial in pronunciation training. Fur-

thermore, in addition to providing language learners with a suitable voice to mimic, de-

tecting mispronunciations is also a critical component for providing useful feedback to the 

learners in computer-assisted pronunciation training [162]. 

To train and evaluate voice and accent conversion systems designed for non-native 

speakers, one needs high-quality parallel recordings from the source and target speakers. 

Likewise, to develop and benchmark mispronunciation detection algorithms, detailed pho-

neme level annotations on pronunciation errors (e.g., phone substitution, additions, and 

deletions) are required. However, existing non-native English corpora (e.g., Speech Ac-

cent Archive [163] and IDEA [164]) do not fulfill these requirements (refer to Section 6.3 

for a detailed discussion.) 

To fill this gap, we have built a non-native English speech corpus that contains 

twenty-four (24) non-native speakers from six different native languages: Hindi, Korean, 

Mandarin, Spanish, Vietnamese, and Arabic. For each speaker, the corpus contains the 

following data: 

• Speech recordings: over one hour of prompted recordings of phonetically-balanced

short sentences
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• Word level transcriptions: orthographic transcription and forced-aligned word

boundaries for each sentence

• Phoneme level transcriptions: forced-aligned phoneme transcription for each sen-

tence

• Manual annotations: a selected subset of utterances (~150), including 100 sen-

tences produced by all speakers and 50 sentences that include phonemes likely to

be difficult according to each speaker’s L1, all annotated with corrected word and

phone boundaries; phone substitution, deletion, and addition errors are also tagged

The dataset is hosted on an online archive and is freely available to the research

community for non-commercial use. To the best of our knowledge, L2-ARCTIC is the 

first openly available corpus of its kind. 

6.3. The need for a new L2 English corpus 

A number of voice conversion studies [21, 92, 95, 165] have relied on the Carnegie 

Mellon University (CMU) ARCTIC speech corpus [105] and, more recently, the Voice 

Conversion Challenge (VCC) dataset [166]. However, little attention has been paid to 

voice conversion between non-native speakers of English, in part due to the lack of high-

quality speech recordings from those speakers, despite 80% of the English speakers in the 

world being non-native [167]. For example, CMU ARCTIC only has a few accented Eng-

lish speakers25, either native speakers of different English dialects or highly proficient 

non-native speakers, whereas the VCC dataset was recorded solely by professional voice 

25 JMK: Canadian accent; AWB: Scottish accent; KSP: Indian accent 
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talents who are native English speakers. Therefore, these standard corpora are not suitable 

for either voice conversion between non-native speakers or accent conversion tasks. 

Among the non-native English corpora, the Speech Accent Archive [163] and 

IDEA [164] cover a wide range of native languages and speakers. However, each speaker 

only recorded a short paragraph (Speech Accent Archive) or a short free speech task 

(IDEA), and most of the recordings have strong background noise, making them ill-suited 

for voice/accent conversion. The Wildcat [168], LDC2007S08 [169], and NUFAESD 

[170] datasets have a limited number of recordings for each non-native speaker, and have

restricted access –LDC2007S08 requires a fee, while Wildcat and NUFAESD are limited 

to designated research groups. 

As for corpora for mispronunciation detection, the CU-CHLOE [171] and College 

Learners’ Spoken English Corpus (COLSEC) [172] only contain speech and error tags 

from Chinese learners of English, and CU-CHLOE is (to our knowledge) not publicly 

available. The ISLE Speech Corpus [173] contains mispronunciation tags and is open for 

academic access, but it only focuses on a limited group of English learners (German and 

Italian). SingaKids-Mandarin [174] has a rich set of speech data, but it only focuses on 

mispronunciation patterns in Singapore children’s Mandarin speech. In fact, most existing 

mispronunciation detection systems use their private datasets, which makes it difficult to 

compare experimental results across different publications [171, 175-177]. 

To overcome the insufficiencies outlined above, we constructed (and are now re-

leasing) L2-ARCTIC to provide an open corpus for voice conversion between accented 



126 

speakers, accent conversion, and mispronunciation detection. Zhao et al. [84] have per-

formed a preliminary evaluation on voice/accent conversion tasks using a subset of the 

speakers in L2-ARCTIC. Using a joint-density GMM with MLPG and global variance 

compensation [21] (128 mixtures, ~5 min of parallel training data) as the voice conversion 

system, they obtained 3.0 Mean Opinion Score (MOS) on the converted speech, which 

was also rated as similar to the target voice. Furthermore, an accent-conversion algorithm 

based on frame-alignment using posteriorgrams was able to generate speech that was per-

ceived as similar to a non-native target voice but markedly less accented (98% preference 

compared to non-native speech). This manuscript presents preliminary results on a new 

task: mispronunciation detection. 

6.4. Corpus curation procedure 

The current L2-ARCTIC contains English speech of speakers from six different 

first languages: Hindi26 [178], Korean, Mandarin, Spanish, Vietnamese, and Arabic. We 

chose these L1s because each one has a distinct foreign/non-native accent in English and 

provides unique challenges. Indian speakers of English typically have native-like English 

fluency but use segmental and suprasegmental features in ways that are distinct from 

American English. Thus, Indian speakers have both advantages in approaching pronunci-

ation changes (e.g., familiarity and comfort with English) and disadvantages (comfort with 

26 Hindi is an Indo-Aryan language that is both an L1 and a language of wider communication. Thus, Hindi 
speakers in the corpus may use Hindi as an L2, speaking another Indian language as an L1. Educated In-
dian English is a stable contact variety of English. 
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their English variety makes it particularly difficult to adjust their speech to salient differ-

ences with American English.) Korean learners of English have a large number of high 

functional load consonant and vowel difficulties (errors with many minimal pairs). Pro-

sodically, Korean and English employ suprasegmental systems that have little overlap 

[179, 180]. Mandarin (Chinese/Putonghua) learners of English have difficulty with a 

range of consonant and vowel sounds and in producing correct English stress, intonation, 

and juncture [181-183].  Spanish learners of English may have difficulties distinguishing 

a number of high functional load contrasts in English [184, 185]. Spanish is also a five-

vowel language, and Spanish learners find the more complex English vowel system espe-

cially challenging. Like English, Spanish uses both word stress and nuclear stress for em-

phasis but, because it does not use the unstressed vowel schwa, realizes stress differently. 

Vietnamese learners of English encounter great difficulties in learning English pronunci-

ation for multiple reasons. Like learners from other L1s, the English phonology system 

has a few sounds that are foreign to Vietnamese speakers. Also, Vietnamese speakers pro-

nounce the ending sounds completely differently from native English speakers, making it 

difficult for them to achieve appropriate English pronunciation [186-188]. Arabic has sig-

nificantly fewer vowels than English, and while Arabic has word stress, it does not use 

stress in the same way that English does [189, 190]. In the future, we may also include 

speakers from other L1s if we find them to be useful to the research community. 
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6.4.1. Participants 

For the most current data release (v5.0), we recruited four speakers (two male and 

two female) for each of the L1s, for a total of 24 speakers27. Speakers were recruited from 

Iowa State University’s student/faculty/staff body; their age range was from 22 to 43 

years, with an average of 31 years (std: 6.2.) Their age of English onset ranged from 3 to 

17 years with an average of 10.2 years (std: 4.3.) Detailed demographic information of the 

speakers is summarized in Table 6.1. The proficiency level of English was measured using 

TOEFL internet-Based Test (iBT) scores [109]. 

Table 6.1: Demographic information of the speakers. A few speakers did not report 
any English test score (denoted by “N/A”). Speaker ABA and THV reported their 
IELTS scores, and we converted them to a TOEFL iBT score following [108]. 

Speaker L1 Gender TOEFL iBT Score 
HKK Korean M 114 

YDCK Korean F 110 
YKWK Korean M N/A 

HJK Korean F 115 
BWC Mandarin M 80 
LXC Mandarin F 86 

TXHC Mandarin M 108 
NCC Mandarin F 102 

YBAA Arabic M 100 
SKA Arabic F 79 
ABA Arabic M 94-101

ZHAA Arabic F N/A 
EBVS Spanish M 70 

27 The speech data from the 24 speakers was released in three batches. The first release was made in the 
Spring of 2018, which consisted of 10 speakers from five of the six L1s. The second batch was released in 
Fall 2018 that included an extra ten speakers for the first five L1s. The third release (Spring 2019) added 
four Vietnamese speakers. 



129 

Table 6.1: Continued. 

Speaker L1 Gender TOEFL iBT Score 
NJS Spanish F 110 

ERMS Spanish M 104 
MBMPS Spanish F N/A 

RRBI Hindi M 91 
TNI Hindi F 99 
ASI Hindi M 101 

SVBI Hindi F N/A 
HQTV Vietnamese M 81 
PNV Vietnamese F N/A 
TLV Vietnamese M 79 
THV Vietnamese F 79-93

6.4.2. Recording the corpus 

To create the corpus, we used the 1,132 sentences in the CMU ARCTIC prompts. 

There were multiple reasons to choose these sentences. First, the ARCTIC prompts are 

phonetically balanced (100%, 79.6%, and 13.7% coverage for phonemes, diphones, and 

triphones, respectively), are open source, and can produce around one hour of edited 

speech. Second, the ARCTIC corpus itself has proven to work well with speech synthesis 

[52] and voice conversion tasks [21, 92, 95, 191]. Finally, the ARCTIC prompts are chal-

lenging for non-native English speakers so they can elicit potential pronunciation prob-

lems.  

The speech was recorded in a quiet room at Iowa State University (ISU). We used 

a Samson C03U microphone and Earamble studio microphone pop filter for recordings; 

the microphone was placed 20 cm from the speaker to avoid air puffing. During each 
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recording session, a linguist guided the L2 speaker through the process, asking the speaker 

to re-record a sentence if the production contained significant disfluency or deviated from 

the prompt. All speakers were instructed to speak in a natural manner. The speech was 

sampled at 44.1 kHz and saved as a WAV file. 

Once the recording was finished, we removed repetitions and false starts, per-

formed amplitude normalization, and segmented the utterances into individual WAV files. 

All of the above were done in Audacity [132]. The utterances were carefully manually 

trimmed to remove the leading and trailing silence and non-speech sounds such as lip 

smacks. 

6.4.3. Corpus annotations 

Our corpus provides orthographic transcriptions at the word level. We used the 

Montreal forced-aligner [192] to produce phonetic transcriptions in PRAAT’s TextGrid 

format [193], which contains word and phone boundaries (Figure 6.1). Further, we per-

formed manual annotations on a selected subset of sentences for each speaker. For all the 

speakers, we annotated a common set of 100 sentences. In addition, we annotated 50 sen-

tences that included phoneme difficulties that were L1-dependent. In the end, the corpus 

contains up to 150 curated phonetic transcriptions per speaker. Those transcriptions con-

tain manually-adjusted word and phone boundaries, correct phoneme labels, mispronun-

ciation error tags (phone additions, deletions, and substitutions), and comments from the 

annotators. To facilitate computer processing, we used the ARPAbet phoneme set for the 

phonetic transcriptions as well as the error tags. In the comment part of the transcriptions, 

however, annotators were allowed to use IPA symbols. Please refer to Appendix D for the 
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mapping between ARPAbet and IPA symbols. To ensure high-quality annotations, we 

developed automated scripts to check the annotation consistency and then asked human 

annotators to fix problems. The annotators (N=4) were Ph.D. students or postdoctoral fel-

lows in the Applied Linguistics and Technology program at Iowa State University. They 

were experienced in transcribing speech samples of native or non-native English speakers. 

Figure 6.1: A TextGrid with manual annotations. Top to bottom: speech waveform, 
spectrogram, words, phonemes and error tags, comments from the annotator 

6.5. Corpus statistics 

In total, the dataset contains 26,867 utterances, with most speakers recording the 

full ARCTIC set (1,132 utterances.)28 The total duration of the corpus is 27.1 hours, with 

28 Some speakers did not read all sentences, and a few sentences were removed for some speakers since 
those recordings did not have the required quality. 
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an average of 67.7 minutes (std: 8.6 minutes) of speech per L2 speaker. On average, each 

utterance is 3.6 seconds in duration. The pause before and after each utterance is generally 

no longer than 100 ms. Using the forced alignment results, we estimate a speech to silence 

ratio of 7:1 across the whole dataset. The dataset contains over 238,702 word segments, 

giving an average of around nine words per utterance, and over 851,830 phone segments 

(excluding silence). The phoneme distribution is shown in Figure 6.2. 

 

 

Figure 6.2: Phoneme distribution of the corpus 
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Figure 6.3: L1-dependent phone substitution error distributions and the aggregated 
results. Errors with low frequencies were omitted; all the values are the percentages 
with respect to the total number of each error type (i.e., normalized universally); 
Notations such as “R*” means it’s a deviation from the canonical phoneme’s pro-
nunciation. In the example, it represents a deviated “R” sound. 

 

Human annotators manually examined 3,599 utterances, annotating 14,098 phone 

substitutions, 3,420 phone deletions, and 1,092 phone additions. Figure 6.3 shows the top-
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errors were “Z→S,” (voicing) “DH→D,” (fricative to stop) “IH→IY,” “R→R*” (use of a 

deviated R sound for the American rhoticity), “ER→AH” (use of an open-mid back un-

rounded vowel instead of an r-colored vowel), and “OW→AO” (use of a tense vowel for 

lax, and vice versa.) Each contains English phoneme distinctions that lead to common 

substitution errors for varied American English learners. 

 

 

Figure 6.4: L1-dependent phone deletion and addition error distributions and the 
aggregated results. (a) Deletions. (b) Insertions. “ERR” means an erroneous pronun-
ciation that is not in the ARPAbet phoneme set. 
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Figure 6.4 (a) shows the phone deletion errors in the annotations. In our sample 

group, the most frequent phoneme deletions were “D,” “T,” and “R,” almost always in 

non-initial position. Many non-native speakers of English do not pronounce the American 

English phoneme “R” in postvocalic position (e.g., in car and farm.) “T” and “D” often 

occur as word endings and in consonant clusters both within and across words, where they 

were often omitted. Figure 6.4 (b) shows the phone addition errors in the annotations. The 

ones that stood out were “AH,” “AX (schwa),” “IH,” “EH,” “R,” “G,” and “S.” The vowel 

additions simplify complex syllable structures with consonant clusters and so may serve 

to make the word more pronounceable. 

Table 6.2 provides a breakdown of pronunciation errors by L1s. Although others 

have used L1 to predict L2 pronunciation errors [184, 185, 194], such predictions are often 

inaccurate when applied to individual learners. Thus, this list is meant to start a discussion 

of the types of errors that actually occur in L2-ARCTIC. For any interested readers, a 

detailed analysis of the pronunciation patterns of the Arabic speakers in L2-ARCTIC can 

be found in [195]. 

Table 6.2: Most frequent errors by native language; the top-5 error occurrences are 
listed in descending order. 

L1 Substitutions Additions Deletions 

Arabic 
R→R*, Z→S, P→B 
OW→AO, DH→Z 

G, AH, K, IH, AX T, D, R, AH, N 

Chinese 
Z→S, DH→D, IH→IY 

N→NG, L→W 
AH, AX, IH, N, R R, D, T, L, N 

Hindi 
DH→D, Z→S, T→T* 

R→R*, EY→EH 
R, Y, AH, K, G R, D, T, HH, V 
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Table 6.2: Continued. 

6.6. Mispronunciation detection evaluation 

This section provides reference results on mispronunciation detection using the 24 

speakers that we have currently released. Our implementation of the mispronunciation 

detection system is based on the conventional Goodness of Pronunciation (GOP) method, 

as defined in [196]. The GOP method assigns a score for each phone segment and then 

uses thresholding (either phoneme-independent or phoneme-dependent thresholds) to de-

termine the pronunciation errors. Since DNN-based acoustic models have shown to gen-

erate better GOP scores [175], we computed the GOP scores using a DNN acoustic model 

following the formulas proposed in [175], 

GOP(𝑝, 𝒐) ≈ log 𝑝(𝑝|𝒐; 𝑡G, 𝑡@)
max
a∈b

𝑝(𝑞|𝒐; 𝑡G, 𝑡@)
, (6.1) 

log 𝑝(𝑝|𝒐; 𝑡G, 𝑡@) ≈ 1
𝑡@ − 𝑡G + 1 ∑ log 𝑝(𝑝|𝑜9)

9*

9=9+

, (6.2) 

𝑝(𝑝|𝑜9) = ∑ 𝑝(𝑠|𝑜9)
G∈)

, (6.3) 

L1 Substitutions Additions Deletions 

Korean 
DH→D, Z→S, IH→IY 

OW→AO, EH→AE 
AX, IH, AH, D, S T, R, D, HH, K 

Spanish 
Z→S, IH→IY, DH→D 

AE→AA, N→NG 
EH, AH, EH*, AX, IH D, T, AH, IH, N 

Vietnamese 
DH→D, ER→AH, IH→IY 

Z→S, L→W 
S, AH, D, IH, R D, R, T, L, Z 
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where 𝑝 is the canonical phoneme label of the given phone segment, 𝑄 is the predefined 

phoneme set of the language, and 𝑠 is a senone that belongs to the phoneme 𝑝; 𝒐 is the 

acoustic observation (acoustic feature frames) of the segment, and 𝑜9 is an acoustic feature 

frame at timestep 𝑡; 𝑡G and 𝑡@ are the start and end frame indices of the segment, respec-

tively; 𝑝(𝑠|𝑜9) is produced by the output layer of the acoustic model. 

The acoustic model we used was a 𝑝-norm DNN model, as defined by Kaldi’s 

Librispeech [157] training script29. It is a DNN trained with 960 hours of native English 

speech [104] and contains 5,816 output senones. The Word Error Rate (WER) of this 

acoustic model was around 5.5% on clean speech when combined with a 4-gram language 

model in decoding. 

We used the phone-independent thresholding variation of the GOP method to 

make the classification decisions, i.e., if the GOP score of a phone segment was higher 

than a threshold 𝑷 , then it was accepted as correct pronunciation; otherwise, it was re-

jected as an error. As a preliminary result, we only focused on substitution errors since the 

GOP is not suited for detecting additions and deletions. 

We tested the DNN-GOP method on the whole L2-ARCTIC set, i.e., 3,599 utter-

ances. In the testing data, excluding the additions and deletion tags as well as the silences, 

there are 112,311 phone samples in total, where 14,098 (12.6%) were tagged as substitu-

tion errors. We set the log GOP threshold between -36 and 0 and made the step size 0.05. 

For each experiment condition, we computed the detection precision rate as 𝑁7H/𝑁  and 

29 https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/nnet2/run_7a_960.sh 



 

 138 

the recall rate as 𝑁7H/𝑁@>>D>G, where 𝑁7H  is the number of correctly predicted substitu-

tion errors, 𝑁  is the total number of segments predicted as substitution errors, and 𝑁@>>D>G 

is the total number of substitution errors in the testing set. The Precision-Recall curve is 

shown in Figure 6.5. When we set the threshold to -2.5 (in log scale), the precision equals 

recall (32%). From this result, we can see that the dataset is quite challenging for the mis-

pronunciation detection task because it contains speech data from different L1 back-

grounds and recorded by speakers with a wide range of pronunciation challenges. This 

GOP implementation is open source and is available online30. 

 

 

Figure 6.5: Precision-Recall curve of a phoneme-independent GOP system to demo 
mispronunciation detection on L2-ARCTIC 

 

30 https://github.com/guanlongzhao/kaldi-dnn-ali-gop 
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6.7. Suitcase corpus 

On March 12, 2020, we released an additional “suitcase corpus” and included it in 

L2-ARCTIC. This portion of the L2-ARCTIC corpus involves spontaneous speech. We 

include recordings and annotations from 22 of the 24 speakers who recorded the L2-ARC-

TIC sentences. Speakers SKA and ASI did not participate in this task. Each speaker retold 

a story from a picture narrative used in applied linguistics research on comprehensibility, 

accentedness, and intelligibility. The pictures are generally known as the suitcase story31. 

Each retelling of the narrative was done after looking over the story and asking the re-

searchers questions about what was happening. Few participants had questions regarding 

the pictures. The annotations of the suitcase corpus followed the same procedure, conven-

tions, and standards that were applied to the scripted speech in L2-ARCTIC. The annota-

tions were carried out by two research assistants trained in phonetic transcription. Each 

transcribed half of the recordings and then checked the half transcribed by the other re-

search assistant. Finally, all transcriptions were checked by John Levis at Iowa State Uni-

versity, a co-PI for the project. 

The total duration of the suitcase corpus is 26.1 minutes, with an average of 1.2 

minutes (std: 41.5 seconds) per speaker. Using the manual annotation results, we estimate 

a speech-to-silence ratio of 2.3:1 across the whole dataset. The dataset contains around 

3,083 word segments, giving an average of 140 words per recording, and around 9,458 

31 https://www.iris-database.org/iris/app/home/detail?id=york:822279 
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phone segments (excluding silence). The manual annotations include 1,673 phone substi-

tutions, 456 phone deletions, and 90 phone additions. 

6.8. Conclusion 

This chapter has presented L2-ARCTIC, a new non-native English speech corpus 

designed for voice conversion, accent conversion, and mispronunciation detection tasks. 

Each speaker in L2-ARCTIC produced sufficient speech data to capture their voice iden-

tity and accent characteristics. Detailed annotations on mispronunciation errors are also 

included. Thus, it is possible to use this corpus to develop and evaluate mispronunciation 

detection algorithms. To the best of our knowledge, L2-ARCTIC is the first of its own 

kind, and we believe it fills gaps in both voice/accent conversion and pronunciation train-

ing. The corpus is released under the CC BY-NC 4.0 license [197] and is available at 

https://psi.engr.tamu.edu/l2-arctic-corpus/. Future work will be focusing on adding more 

speakers to the corpus. 
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7. CONCLUSION

7.1. Summary 

In this dissertation, I develop three novel foreign accent conversion (FAC) systems 

to address the issues faced by previous systems. The first system trains a GMM that maps 

a native reference utterance to match the non-native speaker’s voice identity while retain-

ing the native accent. The GMM is trained with acoustic frame pairs between the two 

speakers that are aligned according to their phonetic similarity, which is measured by their 

symmetric KL-divergence in the PPG space. Compared with a previous accent conversion 

algorithm [16], which uses acoustic similarity in the MFCC space to produce the frame 

pairing, the new phonetic similarity frame pairing method achieves superior performance 

in terms of acoustic quality and nativeness. Also, I verify that the phonetic similarity frame 

pairing can operate on non-parallel speech corpora, and there is no statistically significant 

performance degradation when switching from parallel to non-parallel corpora. This find-

ing is particularly interesting since, in real-world applications, it is difficult to assume that 

the accent conversion system has access to parallel corpora. 

The second work builds a sequence-to-sequence speech synthesizer that can map 

PPGs to raw audio signals directly. By driving such a synthesizer trained on the non-native 

speech with PPGs extracted from native utterances, one can obtain accent conversion that 

can accurately capture the non-native speaker’s voice identity. Experiments prove that this 

method can obtain significantly better voice identity and acoustic quality than the system 

proposed in the first work, while still being able to achieve a significantly lower foreign 
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accentedness rating than the non-native speech. Human listeners even rated the output 

accent conversion to be as natural as original unmodified natural speech, which is ex-

tremely promising. Another advantage of the system is that it does not require any data 

from the native reference speaker during training, and one can use any reference speaker 

to drive the speech synthesizer, making it possible to generate speech with different speak-

ing styles. 

In the third work, I construct a proof-of-concept FAC system that does not need a 

native reference utterance at synthesis time. It is one of the first few systems that are ca-

pable of performing reference-free accent conversion. Utilizing the powerful speech syn-

thesizer proposed in the second work, I create a synthetic golden speaker using a dataset 

of training utterances from the non-native speaker and a native speaker. The reference-

free accent conversion model is then constructed by training a sequence-to-sequence pro-

nunciation correction model that maps the speech from the non-native speaker to the 

golden speaker, correcting the prosodic and segmental pronunciation errors. In this work, 

I first investigate different speech embeddings as the input features to construct the speech 

synthesizer and find that using bottleneck features can outperform the PPGs significantly 

in acoustic quality and accentedness ratings. I then verify that the pronunciation correction 

model can generate intelligible speech with a significantly less foreign accent than the 

input non-native speech while retaining the voice identity. 

In the fourth work, I curate a first-of-its-kind speech corpus for the accent conver-

sion task. This corpus includes speakers from a wide range of native languages and con-

tains sufficient speech data from each speaker (~one hour of speech from each speaker) to 
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allow the development of modern data-driven approaches for accent conversion. More 

importantly, the corpus also provides detailed phoneme-level mispronunciation annota-

tions. Those annotations can benefit other research on accent conversion since the anno-

tations provide information on where the foreign accents occur. Most of all, we release 

this corpus to the public free of charge for research purposes, and we have already seen 

people using this corpus in research projects or as instructional materials in the classroom. 

7.2. Contributions 

The major contributions of this dissertation are, 

• Developed a new phonetic similarity frame pairing method that reduced the for-

eign accentedness introduced by previous frame pairing methods

• Verified that the phonetic similarity frame pairing worked equally well on parallel

and non-parallel corpora

• Constructed a sequence-to-sequence speech synthesizer for accent conversion that

resolved the “third speaker” issue faced by a large portion of the existing methods,

while delivering speech signals with close-to-human audio quality

• Showed that using the bottleneck feature as the speech embedding outperformed

PPGs in constructing the sequence-to-sequence speech synthesizer

• Showed that it is possible to perform foreign accent conversion directly on the non-

native input speech without the help of a native reference utterance, and

• Collected and released the first open-source foreign accent conversion corpus
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7.3. Future work 

7.3.1. Improvements on the first work 

In the first work, I tested the frame-pairing method on a GMM-based spectral con-

version model. However, the frame pairing is independent of the spectral conversion 

method since the output of the frame pairing algorithm is simply a lookup table between 

speech frames. Therefore, an interesting future work would be testing the phonetic simi-

larity frame pairing with spectral conversion models that can produce better-quality 

speech, such as DNNs [150] and direct waveform modification [77]. Another worth noting 

future work is to compare different speech embeddings and distance metrics for measuring 

the phonetic similarity. Currently, I use the symmetric KL-divergence between the 

senone-PPGs as the distance measurement, and this has two potential issues. First, the 

senone-PPGs generally have high dimensionality; therefore, computing pair-wise pho-

netic similarity between a large number of speech frames is expensive even with the cur-

rent optimized parallel implementation I used. Using speech embeddings with lower di-

mensionality would lead to significantly faster processing speed. Second, although sym-

metric KL-divergence is widely used to compute the distance between distributions, and 

computing the symmetric KL-divergence between two PPG vectors is mathematically cor-

rect, the underlying meaning of the dimensions in PPG is categorical (i.e., phonetic units) 

rather than numerical. Therefore, the symmetric KL-divergence may not measure the pho-

netic similarity accurately. For example, imagine we are computing the symmetric KL-

divergence between PPG vector 𝑎 = [1, 0, 0] and two other vectors 𝑏 = [0, 1, 0] and 𝑐 =

[0, 0, 1], where the three dimensions correspond to phoneme /ʌ/ (vowel; as in “hut”), /ɔ/ 
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(vowel; as in “ought”), and /t/ (consonant; as in “tea”). Numerically, the symmetric KL-

divergence between 𝑎 and 𝑏 is the same as that between 𝑎 and 𝑐, which is +∞. However, 

phonetically, 𝑎 is closer to 𝑏 than 𝑐 because 𝑎 and 𝑏 are closely sounding vowels while 𝑐 

is a stop consonant. Therefore, more meaningful distance metrics that consider categorical 

differences [198] would likely lead to more accurate frame pairing and better accent con-

version performance. 

7.3.2. Improvements on the second work 

The currently proposed method uses around one hour of speech per speaker to train 

the speaker-dependent speech synthesizer and neural vocoder. In future works, I would 

like to relax this requirement and allow training the model with fewer data from the non-

native speaker. One promising research direction is to train a multi-speaker speech syn-

thesizer [137] with the help of speaker embeddings. Speaker embeddings are high-level 

representations of speaker identity and are widely used in speaker recognition and verifi-

cation [199, 200]. Common speaker embeddings include the i-vector [46], d-vector [201], 

and x-vector [202]. A multi-speaker speech synthesizer takes the speech embedding as the 

input and conditions its acoustic feature predictions on the speaker embedding of the given 

speaker. If the multi-speaker speech synthesizer is trained with a large number of speakers, 

e.g., using the VoxCeleb corpus [203], the synthesizer would be able to statistically inter-

polate the voice identity of the output speech given a new speaker embedding. In this case, 

one only needs a few utterances from the non-native speaker to extract the speaker em-

bedding and generate the accent conversion. 
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Based on my preliminary examinations, a WaveGlow neural vocoder trained on a 

single speaker’s data can generalize well to speakers from the same gender. Prior research 

[68, 204] studied training a WaveNet neural vocoder with limited data as well as support-

ing multi-speaker synthesis. One possible future direction is to extend these training tech-

niques to the WaveGlow vocoder. 

7.3.3. Improvements on the third work 

Future works will focus on improving the audio quality and nativeness of the pro-

nunciation correction model. Since the output of the pronunciation correction model can 

be considered as a re-synthesis of the synthetic golden speaker, the audio quality of the 

synthetic golden speaker speech can be treated as the upper bond for that of the accent 

conversions. There are two potential ways to improve the audio quality of the accent con-

versions. The first research direction is to improve the audio quality of the synthetic golden 

speaker itself. This might be possible with the multi-speaker speech synthesizer described 

in the previous section. The rationale is that prior research on sequence-to-sequence 

speech synthesizers [64, 74] has shown that when the corpus contains enough data (~24 

hours of speech), the synthesized speech and original natural speech are indistinguishable 

to the human ear. The second research direction is applying a better pronunciation correc-

tion model to reduce the audio quality gap between the accent conversions and the syn-

thetic golden speaker utterances. One possible improvement in the conversion model is to 

use a data augmentation technique proposed in [129] to stabilize the training. The data 

augmentation technique first uses forced alignment to segment original utterances into 

short fragments; it then pairs utterance fragments from the non-native and golden speakers 
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that contain the same linguistic content; finally, the utterance fragment pairs are added to 

the existing training corpus to serve as additional training data. Also, in preliminary in-

vestigations, I have found that the scheduled sampling technique [205] might have a pos-

itive effect on the generalization of the model. The scheduled sampling technique forces 

the model to predict the output acoustic frames in a true autoregressive fashion (i.e., using 

previously predicted outputs to generate the next one) that matches the inference process, 

contrary to the currently common practice that uses teacher enforcing (i.e., use the ground-

truth data in the autoregression process to predict the next output frame) during training. 

7.3.4. Use cross-lingual data for model training 

It is generally challenging to collect speech data in a person’s second language. 

For example, it could take more than five hours to record one hour of high-quality speech 

for the L2-ARCTIC speakers with the guidance of a phonetician, because it is hard for 

language learners to speak fluently in their second language. In contrast, it takes much less 

effort to collect a speech corpus in a person’s native language. Therefore, it would be 

beneficial if we could train the accent conversion models using data collected in an L2 

speaker’s native tongue. Recently, a few works have used PPGs to perform cross-lingual 

voice conversion [130, 206] and TTS [127]. Speech embeddings such as PPGs model the 

underlying phonetic information of the acoustic signal. If we use a multilingual acoustic 

model [207, 208] to extract the speech embeddings, the resulting speech embeddings 

would be able to represent phonetic information for multiple languages and thus can be 

used for cross-lingual accent conversion. In a preliminary study conducted with the first 

proposed work of this dissertation, I applied the phonetic similarity frame pairing between 
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Portuguese and English. Initial results were promising and generated intelligible accent 

converted speech. Future work needs to verify this preliminary experiment formally. The 

second proposed work can also be extended to use cross-lingual data by using the speech 

embeddings extracted with a multilingual acoustic model to train the speech synthesizer. 

7.3.5. Use the proposed accent conversion systems in pronunciation training 

A major motivation for foreign accent conversion is that this technique might be 

useful for computer-assisted pronunciation training. Ding et al. [138] built a web applica-

tion named Golden Speaker Builder that encapsulated a sparse-coding based accent con-

version algorithm and applied the web application to a pronunciation training experiment. 

They found that using accent converted speech as the training material in a three-week 

pronunciation training study, a group of advanced Korean learners of English made sig-

nificant improvements in speech comprehensibility and fluency. However, their accent 

conversion algorithm generated synthetic speech with artifacts and low audio quality. 

Thus, there remains room for improvements that might give the learners better training 

outcomes. During this dissertation research, I developed a new version of the Golden 

Speaker Builder (see Appendix B for more details), where I replaced the previous accent 

conversion algorithm with the one proposed in the first work. Future work will focus on 

testing the new version of the Golden Speaker Builder in the field, which consists of re-

cruiting L2 learners and using the speech syntheses from accent conversion as the training 

materials. This research will provide an understanding of the pedagogical values of accent 

conversion and shed light on future research directions within accent conversion. 
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7.3.6. Use L2-ARCTIC in other tasks 

Future works will also investigate other applications that can take advantage of the 

L2-ARCTIC corpus. First, since L2-ARCTIC contains a diverse range of non-native ac-

cents, researchers can use it to develop speech recognizers for accented speech [209]. Sec-

ond, the detailed phoneme-level mispronunciation labels can be used to develop and eval-

uate new mispronunciation detection algorithms [175, 210]. Third, each speaker in the L2-

ARCTIC corpus provides a relatively large amount of data suitable for developing modern 

TTS systems. Therefore, future research can use L2-ARCTIC data to investigate accented 

text-to-speech synthesis [117]. 
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APPENDIX B 

GOLDEN SPEAKER BUILDER BACKEND SYSTEM 

During this dissertation study, I helped develop a web application called Golden 

Speaker Builder (GSB) to allow a naïve user to build a golden speaker of their own. The 

web application is hosted on https://goldenspeaker.engl.iastate.edu/speech/. 

The web application was implemented in the Django framework. It has a user in-

terfacing frontend and a signal processing backend. The frontend was written in HTML5 

and JavaScript, and decorated with Bootstrap and CSS. The frontend handles the follow-

ing functionalities: login, record sentences, edit recordings, build “Golden Speaker,” and 

practice with “Golden Speaker.” The web application was hosted through Nginx. For more 

information about the frontend part of the web application, please refer to [138]. Shaojin 

Ding developed the frontend. 

The signal processing backend is an implementation of the algorithm proposed in 

Chapter 3. The backend can be further split into the training and inference part. The train-

ing part takes in a set of recordings from the native reference speaker (the teacher) and the 

non-native speaker (the student), producing an accent conversion model. The inference 

part takes an utterance from the teacher and passes it through the accent conversion model 

and generates the accent conversion synthesis. 

The entire backend codebase lives on https://github.com/guanlongzhao/ppg-gmm. 

The backend runs on a Linux server and invokes Matlab and Kaldi [157] for most of the 
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operations. The backend uses Matlab as the primary interface since most of the depend-

encies were written in Matlab. All source code files contain detailed documentation. 

B.1. Step 1: Installation

To install the backend system, simply clone the entire codebase from GitHub to 

the host machine, and then follow the most current installation instructions included in the 

README file. Please consult script/demo.m for a thorough end-to-end walkthrough 

of the main functionalities of this software package. 

B.2. Step 2: Feature extraction

This step calls function dataPrep to pre-cache the necessary data files for model 

training. The input to this step is a list of audio files and their corresponding orthographic 

transcriptions. Please read the API documentation in the dataPrep function to learn 

about its syntax and other input parameters. The output of this step is a list of cache files 

that contain all the necessary features for the corresponding audio files. The function will 

first resample all input audio files into 16 kHz (for compatibility reasons) and normalize 

all the transcriptions, then produce the following features, 

• PPG: 5816-dim phonetic posteriorgram produced by calling Kaldi’s binary tools

• Forced-alignment: frame-level phoneme labels produced by calling the Montreal

Forced Aligner [192]

• Acoustic features: produced by the WORLD vocoder [57]. The features include:

513-dim spectral envelope; 2-dim band-aperiodicity; 1-dim fundamental fre-

quency (𝐹0); 1-dim binary voicing indicator (vuv); and 25-dim mel-cepstrum (ex-

tracted from the spectral envelope using SPTK [160]) 
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The output cache files are then stored on the Linux file system, and the dataPrep 

function returns their paths. We perform this feature extraction step for both the teacher 

and student utterances. 

B.3. Step 3: Train the accent conversion model

This step takes pre-processed training data from the teacher and the student to pro-

duce the accent conversion model, which consists of a spectral conversion sub-model and 

a pitch conversion sub-model. Please read the documentation in the referenced functions 

for their input and output parameters. 

B.3.1. Train the spectral conversion module

This step calls buildGMMmodelGSB. We first use framePairingPPG to cre-

ate the frame pairing outlines in equations (3.3) -(3.5). The implementation of the frame 

pairing uses a highly optimized pairwise symmetric KL-divergency routine (KLDiv5), 

which benefits from vectorized computations. The routine has a concise implementation 

as follows, 

% In MATLAB syntax 
% x: d * m matrix, each column is an input vector 
% y: d * n matrix, each column is an input vector 
% D: m * n matrix, D(i, j) = KL(x(:, i), y(:, j)) 

function D = KLDiv5(x, y) 
    logx = log(x + eps); 
    logy = log(y + eps); 
    D = bsxfun(@plus, dot(y, logy, 1), dot(x, logx, 1)')... 

- x' * logy - logx' * y;
end 

We then train a joint GMM model on the resulting frame pairs. The outputs of this 

step are the GMM model parameters saved in a Matlab object. 
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B.3.2. Train the pitch conversion module

This step calls buildPitchModelGSB, which supports building the pitch 

model in two different modes. The first one is the standard mean-and-variance normaliza-

tion method introduced in Section 3.4.2.4. The second (and default) mode is the histogram 

equalization method proposed by Wu et al. [211], which works better than the mean-and-

variance normalization approach. 

B.3. Step 3: Inference

This step calls voiceConversionInterfaceGSB. The function changes the 

input teacher utterance’s voice identity to match the learner’s using the pre-trained spectral 

and pitch conversion models. 
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APPENDIX C 

PRACTICAL MODEL-BUILDING STRATEGIES 

In the process of building machine learning models, many tricks and conventions 

are generally not included in the paper descriptions, yet they may affect the quality of the 

models significantly. In this appendix, I introduce some practical (and sometimes empiri-

cal) model-building strategies that I learned through trial-and-error and extensive litera-

ture-survey/tutorial-reading during this dissertation research. Some of the strategies are 

generic for any type of machine learning models, and some are specific to the models used 

in this work. There is no one-size-fits-all solution for all machine learning problems. Thus, 

the audience should be mindful of the tips introduced in this appendix, since they may be 

beneficial only under certain conditions, and sometime, they may even hurt your model 

performance. This appendix first introduces the basics of building your hardware and soft-

ware environment. Then, it describes some essential guidelines for speech data pre-pro-

cessing. Lastly, it offers model training tips for the FAC systems introduced in this work. 

C.1. Build a stable development environment

Maintaining a stable and reconfigurable development environment, which in-

volves both the hardware and software, is crucial to generate reproducible results and 

makes it easier to iterate through research ideas quickly. Software and hardware platforms 

iterate rapidly. Therefore, the recommendations in this section might only apply to the 

services available at the time of this writing (June 16, 2020). Any future readers should 

also consult the most up-to-date documentation of their hardware and software packages. 
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C.1.1. Hardware platform

For most modern machine learning problems, we generally need high-end com-

puter hardware to accelerate the computations. A common practice is to maintain a local 

development machine, which contains the minimum hardware to debug the code and run 

basic experiments, and a remote server that runs formal experiments. For example, in this 

dissertation work, I use a desktop computer that has an NVIDIA 1070 graphic computing 

unit (GPU) for development, and then upload the codes to an Amazon Web Service (AWS) 

cloud GPU instance to finish the model training. 

The choice of the cloud GPU instance type greatly affects the model training speed. 

Some key parameters to look for in a GPU are the number of CUDA cores (for general 

floating-point computations), the number of Tensor cores (for reduced precision compu-

tations, e.g., half-precision), and the maximum available amount of graphic memory 

(RAM). The AWS P3 instances are equipped with the NVIDIA Tesla V100 GPUs, and 

they are suitable for training large models with large datasets. The P2 instances have 

NVIDIA K80 GPUs, which are built on a relatively old GPU architecture. The G4 in-

stances contain NVIDIA T4 GPUs, which are geared towards training relatively small 

models and inference tasks because they have a relatively smaller number of CUDA cores 

compared with the V100 GPUs. However, since the T4 GPUs have Tensor cores and large 

RAM, if the code is optimized for half-precision training, the training speed can be fast. It 

is also preferable to perform parallel training if the code can be optimized to run on mul-

tiple GPUs simultaneously. Economically, the P3 instances are expensive (p3.2xlarge, 
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$3.06/h; one GPU/instance, same applies to the other examples), the P2 instances are out-

dated and relatively expensive (p2.xlarge, $0.9/h), while the G4 instances are more afford-

able (g4dn.xlarge, $0.526/h). Therefore, I use the G4 instances extensively in this work. 

There are multiple cloud computing services available on the market, for example, AWS, 

Microsoft Azure, and Google Cloud. Among these, AWS has the best customer support 

and the most mature ecosystem. 

A factor many people often overlook when they perform machine learning training 

jobs is the choice of CPU. Although generally, we do not use CPUs directly for training 

tasks, they handle data processing and data transfer between the RAM and GPU. If the 

CPU is slow, then the bottleneck of computation becomes the CPU rather than the GPU. 

In addition, it is preferable to store data and other model training artifacts on a fast Solid 

State Drive (SSD) instead of a traditional mechanical hard drive to reduce I/O overhead. 

When possible, one should preload all data into the main memory or create a RAM disk 

for data I/O. If the physical RAM could not accommodate the whole data repository, one 

handy solution is to create a virtual memory space (e.g., a swap partition on Linux), which 

can generally double the available RAM without a significant I/O performance loss. 

C.1.2 Software environment

Machine learning tasks often rely on existing third-party dependencies to extract 

features (e.g., SPTK, librosa), perform numeric computing (e.g., numpy, scipy), or 

modeling training (e.g., TensorFlow, PyTorch). It is crucial to maintain a manageable 
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and non-conflicting installation for all these dependencies. A good practice is to use pack-

age-managing toolchain like conda32 or Python venv33 to create a separate “sandbox” 

workspace for every new project. This also helps with the reproducibility of the project 

since other users can use the configurations of an existing workspace to duplicate the soft-

ware environment. The AWS cloud computing instances often come with a pre-configured 

software environment managed by conda, and one can replicate the same configuration 

on their local development machines. 

Another good practice is to use version control tools (e.g., git) to keep track of 

the project codes. This not only helps with versioning but also makes exploring many 

research ideas easier through branching. Well-maintained version history also provides a 

clear path for debugging and reduces implementation mistakes. More importantly, the ma-

jority of machine learning tasks involve fine-tuning a set of hyperparameters for the opti-

mal performance, and a good version control system can keep records on what has been 

tested, and what remains to explore. Along this line, it is important to decouple model 

hyperparameters from the model implementation through good software engineering. A 

common practice is to keep all the parameters in a single configuration file and never 

hardcode the hyperparameters. When possible, it is recommended to use the protocol 

buffer syntax34 (or other similar mechanisms) for the configuration file to allow flexible 

extensibility and backward compatibility. 

32 https://anaconda.org/ 
33 https://docs.python.org/3/tutorial/venv.html 
34 https://developers.google.com/protocol-buffers 
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C.2. Speech data pre-processing

• Background noise filtering: Ideally, the speech data should be recorded in a

quiet environment, and the speaker should speak with an appropriate volume.

If the recordings contain consistent background noise, it can generally be re-

moved through conventional signal processing methods like spectral subtrac-

tion before further processing. Popular recording software like Audacity also

has built-in noise filtering functions.

• Utterance duration: For models that operate on the frame-level or without re-

current structure, the utterance duration does not matter much. For models that

utilize recurrent structures like LSTM, the utterance duration should not be too

long (for example, greater than 10 seconds). A good practice is to segment

speech recordings into shorter sentences, either manually or through forced-

alignment time boundaries.

• Silent segments in speech: Leading and trailing silent segments generally do

not contain useful information and thus can generally be trimmed. Silent seg-

ments located within an utterance can be tagged by voice activity detection

(VAD) or forced-alignment, and they may contain prosodic information. These

utterance internal silence segments should be handled case-by-case. For exam-

ple, in a voice conversion task, the model only needs to convert the speech

segments and keep the silences unmodified. In speech recognition tasks, the

prior distribution of the silent segments is an important model parameter.
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• Sampling rate: Higher sampling rates provide better audio quality and fre-

quency resolution. However, high sampling rates generally require more com-

puting resources. In speech synthesis tasks, common sampling rates include 16

kHz, 22.05 kHz, and 44.1 kHz. Speech recognition tasks can use data with even

lower sampling rates, e.g., 8 kHz telecommunication speech. It is important to

keep the sampling rate consistent throughout the model building.

• Frame shift and window size: The frame shift size controls the frame rate,

which directly affects the processing speed. Generally, we can use 1ms, 5ms,

or 10ms. For speech synthesis tasks, a lower frame rate generally improves the

synthesis quality. The common window size can be 25ms, 50ms, or 80ms. The

exact value for the frame shift and window size may vary depending on the

application. A worth-noting implementation issue is that different toolkits may

process the last few frames in an utterance differently. Some tools (e.g., the

default mode in Kaldi) would omit the last few frames that do not fit in a

complete analysis window. Some other tools would keep the frames that are

computed on incomplete analysis windows. Generally, these trailing frames

are silent, and either omitting or retaining them would not lead to computa-

tional issues, but it is important to properly align the feature frames coming

from different toolkits. I generally truncate the feature sequences from differ-

ent data sources to the length of the shortest sequence, i.e., ignoring the last

few silent frames, if any.
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C.3. Model training

The models I introduce in this dissertation are all open-sourced online, 

• Chapter 3: https://github.com/guanlongzhao/ppg-gmm

• Chapter 4: https://github.com/guanlongzhao/fac-via-ppg

• Chapter 5: https://github.com/guanlongzhao/reference-free-ac

However, when applying the existing codes to new corpora, the choice of hyperpa-

rameters and model stopping criteria can greatly affect the model performance. In this 

section, I introduce some tips and empirical rules that may help future applications. 

C.3.1. Model in Chapter 3

This spectral conversion model introduced in Chapter 3 is a GMM, and we tested 

it with 128 mixtures and 96-dim dynamic spectral features. Generally, it should take less 

than 100 iterations for the GMM to converge during training, which takes less than half 

an hour, depending on the CPU specifications. I tested using 30, 40, 50, 100, and 1000 

utterances for training the GMM. Using 1000 utterances for training produces the best 

syntheses, but the model can produce intelligible speech even with as little as five minutes 

of training data. Sometimes, the training might diverge. If that happens, I would recom-

mend re-running the training multiple times. 

C.3.2. Tacotron speech synthesizer in chapters 4 and 5

• Training data: One hour of speech from one speaker would be sufficient

• The number of neurons in each layer: Please use the values included in the

open-source repositories as a reference starting point for customization.

Smaller training corpora should use a fewer number of neurons and vice versa.



192 

If the amount of data is sufficient, I generally prefer wider (more neurons per 

layer) over deeper (more layers) neural network structure, especially for recur-

rent layers like LSTMs, since deep LSTMs are unstable during training. 

• Learning rate: A learning rate between 1 × 10−4 and 1 × 10−3 should be able

to lead the model close to convergence. However, if the validation loss keeps

fluctuating by a large margin during the training stage, it means that the learn-

ing rate is too large.

• Batch size: The general rule of thumb is to use the largest batch size that can

fit in the GPU’s memory. This value may vary by corpora since the largest

batch size is determined by the longest sequence in the training data. Therefore,

if there are a few abnormally long utterances in the training data, it might be

beneficial to omit these utterances in exchange for larger batch sizes.

• Convergence: The model can be considered converged if the validation loss

reaches a plateau. More specifically, I generally train the models for 30k-60k

steps with a batch size of at least 6. The whole training process can take up to

24 hours on an AWS G4 single GPU instance.

• Speed up training: New models can be initialized with weights from a pre-

trained model. Performing model adaptation instead of training from random

initial weights can significantly reduce the iterations needed to reach conver-

gence.

C.3.3. WaveGlow vocoder

• Training data: One hour of speech from one speaker would be sufficient.
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• Neural network architecture: Please follow the default settings included in the

code repository.

• Learning rate: A learning rate of 1 × 10−4 is sufficient. Changing the learning

rate to a smaller value such as 1 × 10−5 after the validation loss stops changing

may lead to better convergence.

• Batch size: At least 3 or 4.

• Convergence: The model can start to generate intelligible speech after being

trained for 80k steps. Models trained for 200k-300k steps can generally pro-

duce high-quality sounds. The vocoder can be trained for up to 600k steps

without seeing overfitting, although the improvements passing beyond 300k

steps might be marginal. The total training time for 200k steps can be up to

three days on an AWS G4 single GPU instance.

• Speed up training: The WaveGlow vocoder training process can also be accel-

erated by initializing from a pre-trained model.

C.3.4. Pronunciation correction models in Chapter 5

• Training data: One hour of speech from one speaker might be sufficient. More

data that contains consistent mispronunciations can help the generalization of

the model.

• Neural network architecture: Please use the default settings included in the

code repository as a starting point for exploration.
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• Learning rate: Please use the learning rate scheduler described in Section 5.5.3.

You may need to modify the scheduler based on the number of training epochs

you set.

• Batch size: At least 12-16.

• Convergence: For the baseline method (Zhang et al. [129]), it starts to converge

at around 35k steps. For the proposed method (baseline + forward-and-back-

ward decoding), it starts to converge at around 20k steps. The total training

time can be up to one day on an AWS G4 single GPU instance. The proposed

method trains approximately 2x slower than the baseline method due to the

forward-and-backward decoding method. Besides the validation loss, the WER

and the MCD between the converted speech and the ground-truth data also

serve as useful indicators for model performance during the training process.

These measurements should be computed on the validation set. WER is a proxy

to the foreign accentedness of the syntheses, and MCD reflects the accuracy of

the spectral conversion.
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APPENDIX D 

MAPPING BETWEEN ARPABET AND IPA SYMBOLS 

Table D.1: The mapping between ARPABET and IPA symbols, with examples. 

Index ARPABET IPA Example Annotation Type 
1 AA ɑ odd AA D vowel 
2 AE æ at AE T vowel 
3 AH ʌ hut HH AH T vowel 
4 AO ɔ ought AO T vowel 
5 AW aʊ cow K AW vowel 
6 AX ə discus D IH S K AX S vowel 
7 AY aɪ hide HH AY D vowel 
8 B b be B IY stop 
9 CH tʃ cheese CH IY Z affricate 
10 D d dee D IY stop 
11 DH ð thee DH IY fricative 
12 EH ɛ Ed EH D vowel 
13 ER ɝ hurt HH ER T vowel 
14 EY eɪ ate EY T vowel 
15 F f fee F IY fricative 
16 G g green G R IY N stop 
17 HH h he HH IY aspirate 
18 IH ɪ it IH T vowel 
19 IY i eat IY T vowel 
20 JH dʒ gee JH IY affricate 
21 K k key K IY stop 
22 L ɫ lee L IY liquid 
23 M m me M IY nasal 
24 N n knee N IY nasal 
25 NG ŋ ping P IH NG nasal 
26 OW oʊ oat OW T vowel 
27 OY ɔɪ toy T OY vowel 
28 P p pee P IY stop 
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Table D.1: Continued. 

Index ARPABET IPA Example Annotation Type 
29 R ɹ read R IY D liquid 
30 S s sea S IY fricative 
31 SH ʃ she SH IY fricative 
32 T t tea T IY stop 
33 TH θ theta TH EY T AH fricative 
34 UH ʊ hood HH UH D vowel 
35 UW u two T UW vowel 
36 V v vee V IY fricative 
37 W w we W IY semivowel 
38 Y j yield Y IY L D semivowel 
39 Z z zee Z IY fricative 
40 ZH ʒ seizure S IY ZH ER fricative 
41 SIL N/A N/A SIL silence 
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APPENDIX E 

MODEL DETAILS OF THE SPEECH SYNTHESIZERS 

The table below summarizes the neural network architectures of the three speech 

synthesizers. It is worth noting that the input PreNet produced a 512-dim summarization 

from the senone-PPG, which is higher than the dimensionality of the monophone-PPG 

and BNF. We did experiment on a lower dimensionality (256) in the input PreNet, which 

lead to significant artifacts and mispronunciations. Therefore, we used the current setting 

for the Senone-PPG system in order to generate intelligible speech syntheses to compare 

with the other two systems. 

The models were trained using the Adam optimizer [133] with a constant learning 

rate of 1 × 10−4 until convergence, which was monitored by the validation loss. We ap-

plied a 1 × 10−6 weight decay [212] and a gradient clipping [213] of 1.0 during training. 

The batch size was set to 8 and the weight terms 𝑤1 and 𝑤2 in eq. (5.13) were set to 1.0 

and 0.005, based on preliminary experiments [149]. 
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Table E.1: Neural network architecture of the speech embedding to mel-spectrogram 
synthesizers. 

Component Parameters 
Input-dim 6024 (Senone-PPG) / 346 (Mono-PPG) / 256 (BNF) 

Input PreNet 
Optional: Senone-PPG only

Two fully connected (FC) layers, each has 512 ReLU units 
0.5 dropout [134] rate 
Output-dim: 512 

Convolutional layers 

Three 1-D convolution layers (kernel size 5) 
Batch normalization [135] after each layer 
Output-dim: 512 (Senone-PPG) / 346 (Mono-PPG) / 256 
(BNF) 

Encoder 
One-layer Bi-LSTM, 256 cells in each direction 
Output-dim: 512 

Decoder PreNet 
Two FC layers, each has 256 ReLU units 
0.5 dropout rate 
Output-dim: 256 

Attention LSTM 
One-layer LSTM, 0.1 dropout rate 
Output-dim: 512 

Attention layers 
𝑣 in eq. (5.5) has 256 dims 
Eq. (5.6), 𝑘 = 32, 𝑟 = 31 
Eq. (5.10), 𝑤 = 20 

Decoder LSTM 
One-layer LSTM, 0.1 dropout rate 
Output-dim: 512 

PostNet 

Five 1-D convolution layers (kernel size 5) 
0.5 dropout rate 
512 channels in first four layers 
80 channels in last layer 
Output-dim: 80 
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APPENDIX F 

MODEL DETAILS OF THE PRONUNCIATION CORRECTION MODELS 

The table below summarizes the model details of the baseline pronunciation cor-

rection model. On top of the baseline model, the proposed model adds a backward decoder 

that has the same structure (attention modules, decoder LSTM, and PreNet) as the baseline 

model’s decoder. The phoneme prediction ground-truth labels were per-frame phoneme 

labels (with word positions) that were produced by force-aligning the audio to its ortho-

graphic transcriptions. We note that the phoneme predictions were only required in train-

ing, not testing. For both models, the training was performed with the Adam optimizer 

with a weight decay of 1 × 10−6 and a gradient clip of 1.0. The initial learning rate was 

1 × 10−3 and was kept constant for the first 20 epochs, then exponentially decreased by a 

factor of 0.99 at each epoch for the next 280 epochs, and then kept constant at the terminal 

learning rate. The batch size was 16. The loss term weights 𝑤1, 𝑤2, 𝑤3, and 𝑤4 in equa-

tions (5.16) to (5.19) were empirically set to 1.0, 0.05, 0.5, and 100.0. 
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Table F.1: Neural network architecture of the baseline pronunciation correction 
model. 

Component Parameters 
Input layer 80-dim mel-spectrum + 256-dim BNF

Encoder 

Two-layer Pyramid Bi-LSTM 
256 cells / direction / layer 
Frame sub-sampling rate: 2 
With layer normalization [214] 
Output-dim: 512 

Decoder PreNet 
Two FC layers, each has 256 ReLU units 
0.5 dropout rate 
Output-dim: 256 

Attention mechanism 
One-layer LSTM 
Forward-attention technique [158] for attention weights 
Output-dim: 512 

Decoder LSTM 
One-layer LSTM 
Output-dim: 512 

PostNet 

Five 1-D convolution layers (kernel size 5), 0.5 dropout 
rate 
512 channels in first four layers and 80 channels in last 
layer 
Output-dim: 80 

Input Phoneme Classifier 
One FC layer + softmax 
Output-dim: 346 

Output Phoneme Classifier 
One FC layer + softmax 
Output-dim: 346 




