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ABSTRACT 

The advent of autonomous vehicles presents both opportunities and challenges to 

planners who might see the potential of new technologies in supporting more compact 

cities but worry about the potential downsides of carbon-intensive development. 

However, cities struggle to anticipate and then plan for autonomous vehicles and the 

cities they will reshape. This is particularly true for smaller cities, which account for the 

majority of future population growth, but political power, technical knowledge, and 

planning capacity are often insufficient.  

This study engages with the concern through an exploration of the social and spatial 

implications of autonomous vehicles, with a focus on small and medium-sized 

metropolitan areas. Specifically, I ask three questions. First, how might commuters 

behave and respond to autonomous vehicles? Second, what are the implications of 

engagement in in-vehicle activities in autonomous vehicles for time use, and might these 

implications further exacerbate inequality? Finally, if autonomous vehicles had been 

introduced to cities, what spatial changes would prevail?  

This study addresses the research questions through a combination of analytical and 

research methods involving a large-scale stated experiment on the behavioral impacts of 

autonomous vehicles on commuters in small and medium-sized metropolitan areas and a 

counterfactual analysis to explore whether and to what extent the behavioral changes 

might lead to spatial changes of cities. 

I find that the potential impact of autonomous vehicles on the value of travel time is 

modest, socially differentiated, and location specific. Suburban commuters have the 
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largest reduction in perceived travel time costs, followed by their urban and rural 

counterparts. Also, it is not surprising to find that commuters envision themselves to 

engage in in-vehicle activities differently. Commuters who live in suburban areas with 

longer commuting trips are more likely to engage in in-vehicle activities, such as 

working and reading. This propensity does not differ by gender and, thus, I argue that 

while autonomous vehicles may improve overall activity participation, they will fail to 

close the gap in activity participation between men and women. The potential changes in 

travel behavior could ultimately lead to changes in urban spatial structure. I find that 

urban expansion rather than urban densification would have been the dominant effect if 

autonomous vehicles had been introduced to the cities.  

The findings of this study contribute to the ongoing debate concerning whether 

autonomous vehicles will aggravate urban sprawl by demonstrating that autonomous 

vehicles tend to create an enabling environment for suburban living and will most likely 

lead to greater urban expansion.  
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1. INTRODUCTION  

1.1. The Emerging Future of Autonomous Vehicles 

The advent of autonomous vehicles (AVs) might once again transform how people 

move and where people live. The feature that no driver is needed and the possibility of 

customized vehicle space will bring improvements of substantial magnitude in the 

comfort and productivity of commuting hours. Technological changes in urban mobility 

have strikingly improved how we transport goods, people, and ideas in the twentieth 

century. The potential disrupting effect of AVs on mobility and urban form presents a 

unique opportunity but also challenges to all levels of government to revisit the 

fundamental purposes of transportation and to refine urban development policy for better 

cities.  

Most car manufacturers, as well as tech companies like Waymo (formerly Google’s 

self-driving car project), are at various stages of research on and development of AVs to 

share the AV market.  Uber, a ridesharing service company, has already launched its AV 

fleet in Pittsburgh and San Francisco. Governments in Europe, the United States, and 

Asia have quickly followed, and they expect that AVs can bring enormous benefits 

before long.  

AVs are also known as “driverless,” “self-driving,” or “automated” vehicles. There 

are different levels of vehicle automation. Organizations such as SAE International and 

the National Highway Traffic Safety Administration (NHTSA) have categorized vehicle 

automation into different levels (see Figure 1.1 below). Fully automated vehicles 

operate without direct driver input to control steering, acceleration, and braking. With 
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AVs, drivers are not expected to constantly monitor the roadway. Various models of AV 

operation and deployment have been suggested, mainly two categories: (1) private 

autonomous vehicles (AVs), denoting private use with or without private ownership, and 

(2) shared autonomous vehicles (SAVs), denoting shared use with or without private 

ownership. SAVs include carsharing (such as Zipcar https://www.zipcar.com/), 

ridesharing (such as Zimride https://zimride.com/), and on-demand services (such as 

Uber https://www.uber.com/). This research focuses on AVs and SAVs with full 

automation. 

 
 

 
Figure 1.1 Automation levels of autonomous vehicles  
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Along with the development of AVs, other building blocks for improving and 

changing how services and infrastructure are provided include the sharing economy, the 

Internet of things, and artificial intelligence. The application of the new technologies 

goes far beyond the listed building blocks. The landscapes of future cities are expected 

to be dramatically different from how people, goods, information, and capital are 

connected and move today.  

The significance of technological changes in urban mobility is only likely to increase, 

as the world becomes increasingly urban and warmer.  The urgency of understanding 

technological changes in urban mobility is heightened by transportation and public 

health crises in cities, which are created by previously new transportation technologies 

and are presently haunting our quality of urban living. Planners now are better equipped 

to more critically assess the effect of new transportation technologies and no longer see 

technological changes as a silver bullet to address the urban issues, as AVs can be either 

a negative or positive disruption. AVs might support compact development, provide 

independent mobility, and allow more urban space for other purposes but can lead to 

more auto-dependent lifestyles, more sprawling cities, and declining public 

transportation systems. The indeterminate nature of the technologies characterizes the 

uncertainties of the autonomous futures.  

1.2.  A Focus on Smaller Communities 

Technological changes in urban mobility are a collective attempt to make the world the 

way one wishes it to be. Although technologies are shared phenomena, the effects, such 

as benefits of the technologies, are differently experienced. Technological advancements 
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can produce inequalities or exaggerate existing ones. Social and spatial changes driven 

by the introduction of autonomous vehicles will undoubtedly create winners and losers.  

Cities are struggling to anticipate and plan for the new mobility technologies that 

will reshape their transportation systems and the built environment (Guerra, 2015; 

Yigitcanlar et al., 2019). This challenge is particularly true for smaller cities. These 

communities account for the majority of population growth in the United States (Frey, 

2017), but their political power, technical knowledge, and planning capacity are 

generally less than what is available in larger urban areas. However, the smaller cities 

are largely “off the map” in urban studies and planning practices (Bell & Jayne, 2009); 

and autonomous vehicle studies are no exception.  

This research examines the potential effects of autonomous vehicles on travel and 

urban spatial structure, with a focus on small and medium-sized metropolitan areas in 

the United States. First, I examine how autonomous vehicles might affect commuters’ 

travel behavior. Second, instead of considering how to prepare for autonomous vehicles, 

I ask, can autonomous vehicles fulfill the purpose of reducing the gap of activity 

participation between men and women? Finally, if autonomous vehicles had been 

introduced to cities, what spatial changes would prevail? In answering these questions, I 

aim to examine the socially uneven and spatially differentiated effects of whom and 

where they might benefit and lose from the development of autonomous vehicles. 

Study I (Chapter 2) 

In Study I, I explore the potential effect of autonomous vehicles on commuters’ 

valuation of travel time. In particular, I focus on the effect on auto commuters in small 
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and medium-sized metropolitan areas, concerning the spatial variability across urban 

areas, suburbs, and rural areas. I design a stated choice experiment to elicit potential 

changes in auto commuters’ valuation of travel time in autonomous vehicles and apply a 

mixed logit model to quantify the changes in the value of travel time if taking 

autonomous vehicles. I find that suburban commuters who drove in the reference trip 

have the largest reduction in their value of travel time, followed by their urban 

counterparts and rural counterparts.  

Study II (Chapter 3) 

In Study II, I examine the equity implications of individuals’ potential in-vehicle 

activities in autonomous vehicles that might affect their daily activity participation, with 

a focus on gender. Drawing on space-time perspective and distributional justice theory, I 

first operationalize the ‘midfare’ concept to measure the extent that individuals can 

translate in-vehicle activity opportunities into welfare and utility. Using the in-vehicle 

activities data, I first examine the socio-economic determinants of potential engagement 

with in-vehicle activities. Next, I assess the equity effects of in-vehicle activities across 

different social groups. The results confirm that in-vehicle activities can provide more 

opportunities for daily activity participation, but the distribution of the benefits is 

inequitable, as the gap in activity participation between men and women appears to 

persist.  

Study III (Chapter 4) 

In Study III, I begin with a spatial dynamic analysis of spatial changes in U.S. 

metropolitan areas over the last three decades, examining the interdependent relationship 
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between transportation and urban expansion. Next, instead of predicting future urban 

expansion, I use counterfactual techniques to evaluate the effect of autonomous vehicles 

on urban expansion if they were introduced to cities in the past. I find the 

decentralization of employment and increased congestion have significantly encouraged 

urban expansion over the last three decades. Furthermore, I show that urban expansion 

rather than urban densification would be the dominant effect if autonomous vehicles had 

been introduced to the cities under all scenarios of reductions in transportation costs. I 

argue that autonomous vehicles are likely to have similar, or even larger, effects on 

future urban expansion than in the counterfactual past if they can be widely adopted. 



 

   

 

7 

2. WILL AUTONOMOUS VEHICLES CHANGE AUTO COMMUTERS’ VALUE OF 

TRAVEL TIME?* 

2.1. Introduction 

The advent of autonomous vehicles (AVs) has given rise to high expectations regarding 

how transportation systems and cities may look like in the near future (Hancock et al., 

2019; Kent et al., 2017). The feature that no driver is needed and the possibility of 

customized vehicle space may bring substantial improvements in the comfort and 

productivity of commuting time. As a consequence, such improvements may affect 

people’s perception of travel time cost, especially commuters who devote a substantial 

amount of their time to traveling on a regular basis, potentially resulting in broader 

impacts on cities and society.  

A widespread expectation is that a reduction in the value of travel time (VOT) by AV 

technologies will make travel time less onerous or more productive (e.g., Fagnant & 

Kockelman, 2015). This, in turn, may exacerbate car dependency and urban sprawl.  

Another possible change attributed to the deployment of AVs is the improved efficiency 

of the transportation system in cities, partially because of the reduced travel time cost and 

connected vehicle technology, making urban living more attractive (W. D. Larson & 

Zhao, 2017; Zakharenko, 2016; W. Zhang & Guhathakurta, 2018). Nonetheless, those 

expectations indicate the fundamental role of the value of travel time that not only affect 

 
*Parts of this chapter are reprinted with permission from “Will autonomous vehicles change auto 
commuters’ value of travel time?” by Haotian Zhong, Wei Li, Mark W Burris, Alireza Talebpour, Kumares 
C Sinha, 2020. Transportation Research Part D: Transport and Environment, 83, 102303, Copyright [2020] 
by Elsevier B.V. 
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travel behavior in the short term but also alter the urban spatial structure in the long 

term—by influencing location choices of households and firms.  

Transportation planners and city managers are eager to understand what role AV may 

play in influencing urban development. However, current regional land use-transportation 

plans have difficulty envisioning the future with AVs and incorporating long-range 

decisions due to considerable uncertainty associated with the scale, impacts, and timing 

of introduction of AVs (Guerra, 2015; Yigitcanlar et al., 2019). Furthermore, shaping the 

development of AVs is particularly challenging in small and medium-sized metropolitan 

areas (SMMAs). These communities account for the majority of population growth in the 

US (Frey, 2017), but their political power, technical knowledge, and planning capacity 

are generally less than what is available in larger urban areas. However, the smaller cities 

are largely "off the map" in urban studies and planning practices (Bell & Jayne, 2009); 

and autonomous vehicle studies are no exception.   

This chapter fills this gap by developing a stated choice experiment that focuses on 

commuters in SMMAs. In addition to capturing the unique commuting experience in 

SMMAs, this chapter also considers the spatial contexts that produce different 

commuting experiences for commuters but also are inhabited by different groups of 

people. Using a stated choice experiment, I collected responses regarding preferences and 

valuation of travel time associated with AVs from 2111 auto commuters who live in 

SMMAs in the US. I then analyze the impact of AVs on the value of travel time using 

mixed logit models that take into account the effects of individual characteristics and 

spatial contexts. The study’s results contribute the recent debate on the impact of 

automated driving on the VOT by revealing that such a VOT reduction effect is spatially 
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differentiated. Moreover, by taking into account respondents being a driver or passenger 

in their commuting trips, the results reveal that even though passenger respondents 

appear to prefer riding in AVs and SAVs compared to RVs, but automated driving have 

little impact on their VOT.  

Next, I review studies regarding the value of travel time and spatial contexts in 

Section 2, introduce the experimental design in Section 3, describe econometric strategies 

in Section 4, discuss models and results in Section 5, and conclude with research 

limitations and future research directions in Section 6. 

2.2. Related Literature 

Autonomous vehicles (AVs) are expected to decrease how onerous it is to drive and thus 

decrease a driver’s willingness to pay to reduce their travel time, or their value of time 

(VOT). The subjective value of travel time is how much the individual is willing to pay 

to reduce their travel time. Many theories of value of time have elaborated on the time 

allocation framework of Becker (1965), but the basic idea has remained consistent that an 

individual's labor supply constrained by the total time available, which is divided among 

work, leisure, and travel (Small, 2012). The hidden components behind the value of 

travel time measurement are the values of productive activities, leisure activities, and 

activities in general (Jara-Díaz, 2000). Moreover, many factors can influence the value of 

travel time. In general, the factors can be summarized as 1) level of service (e.g., travel 

time and travel costs), 2) socioeconomic characteristics of the traveler, 2) trip 

characteristics (e.g., trip purposes, distances, and schedule), and 3) social and spatial 

contexts (De Borger & Fosgerau, 2008; Devarasetty et al., 2012; Small, 2012).  
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Indeed, travel behavior is situated in the context of people’s surrounding technical, 

social, and spatial landscapes (Geels, 2012) and becomes a way of life (Sheller & Urry, 

2006). Earlier literature on the value of travel time mostly focused on the level of service 

and individuals’ socioeconomic characteristics. Later, researchers in geography and 

planning have demonstrated how travel experiences are influenced by different contexts 

across neighborhoods and cities (Calastri et al., 2017; Cervero, 2002; Ewing & Cervero, 

2010; Schwanen et al., 2004; M. Zhang & Zhang, 2018). By analyzing Twitter data, 

Horner and Richard (2016) found that public opinions and sentiments about AVs have a 

significant level of spatial variability. However, few studies examined the influence of 

spatial contexts on the value of travel time in AVs for commuting, which is important to 

the understanding of the impacts of AVs on future urban footprints. 

Spatial contexts within a metropolitan area, to a large extent, are related to other 

dimensions of contexts: social norm, class, lifestyle, and the built environment, given the 

high degree of spatial segregations in income, race and ethnicity, and housing types in the 

US (Crowell & Fossett, 2018; Owens, 2019; S. F. Reardon & Bischoff, 2011). Such 

spatial variations, de facto social/racial variations, not only capture in commuting trips 

(Preston & McLafferty, 2016; Zax, 1990) but also produce differentiated commuting 

(Bissell, 2018). For example, commuting experiences in urban areas are characterized by 

heavy traffic and complex driving circumstances, while commuting in rural areas faces 

higher risks of fatal crashes, particularly for older adults (Payyanadan et al., 2018; 

Zwerling et al., 2005). Further, people’s lifestyles and patterns of activities often coincide 

with different geographic areas, which are built differently. These lifestyles and built 

environments also contribute to how commuting time is valued (Paleti et al., 2015; 
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Schwanen et al., 2002). Therefore, it is reasonable to expect AVs to affect how people 

value commuting time differently across different geographic areas. 

Commuting experiences are, of course, different by metropolitan area. Often, the size 

and structure of a metropolitan area are interrelated, and the two together influence the 

mode, time, volume, safety of the travel (Ewing & Dumbaugh, 2009; Ewing et al., 2003; 

Ewing et al., 2018). Although I measure commuting experiences in economic terms, they 

are also personal and emotional, resulting from the social environment of the city. For 

example, Diana (2012) found that people have the highest levels of satisfaction with 

transit services in smaller towns and the lowest ones in large cities. Also, larger cities 

have witnessed substantial job growth in the tech and service sectors, which result in 

nontraditional work schedules and thus, different rush hours for commuting. For instance, 

the New York Metropolitan Transportation Authority had to reoptimize its system for its 

high ridership at all hours of the day (New York Metropolitan Transportation Authority, 

2013). However, the experience of particular metropolitan areas, often the larger ones, 

can be overrepresented and become stylized facts (Kanai et al., 2018).  Smaller cities in 

the US with distinctive social and physical environments might face unique challenges in 

the broader revolution of automated and networked vehicles. 

To date, there is only a small number of studies that examine the effects of AVs on the 

value of travel time (i.e., de Almeida Correia et al., 2019; Kolarova et al., 2019; Krueger 

et al., 2016; Steck et al., 2018; Yap et al., 2016). On the other hand, studies questioned 

the effect of AVs on VOT may be not as significant as researchers expect due to various 

reasons (Singleton, 2018), such as limited productivity impacts (Cyganski et al., 2015; 

Milakis et al., 2017; Schoettle & Sivak, 2014), motion sickness in the vehicle (Diels & 
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Bos, 2016), more discomfort for car passengers at lower acceleration levels compared to 

car drivers (Le Vine et al., 2015), limited multi-taskability due to vehicle interior design 

(Sivak & Schoettle, 2016), and the pleasure of driving (Anable & Gatersleben, 2005; 

Mokhtarian et al., 2015; Steg, 2005).  

The review of the literature serves to illustrate that the potential effects of AV 

technologies on the value of travel time may be spatially differentiated across different 

locations within and between metropolitan areas. This study focuses on personal vehicle 

commuters in SMMAs in the US with a focus on their spatial contexts across urban, 

suburban and rural areas. It examines how these commuters might value their in-vehicle 

time differently while in autonomous vehicles. More specifically, this study contributes 

to the literature by addressing the following two questions.  

1. How much would AVs change the value of in-vehicle time compared to taking 

regular vehicles (RVs)?   

2. How would the change to the value of in-vehicle time vary by the spatial 

contexts of the commuter? 

2.3. Development of the Discrete Choice Experiment 

2.3.1. Overview of the Experiment 

Stated preference data from a discrete choice experiment (DCE) are used to evaluate 

commuters' valuation of commuting time in RVs, AVs, and SAVs. DCEs are a stated 

preference approach of producing behavioral data and widely used in program evaluation 

and new product forecasting (Hensher, 1994; McFadden & Train, 2017). The current 

nonexistence of AVs poses a challenge for participants to envision what it would be like 

to ride AVs/SAVs for commuting. Variation in their envisioning might influence their 
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answers and thus outcomes in VOT. To tackle this challenge, I design the DCE based on 

respondents’ commuting trips and include instructions and questions that help them 

envision the use of AVs. The following sections describe the development of attributes 

and levels, construction of experimental choice designs, design of reference-dependent 

choice tasks, and recruitment. 

The stated choice experiment was completed on-line using the LimeSurvey platform 

(LimeSurvey, 2018). LimeSurvey is an open-source survey platform that allows the 

design of algorithms to assign choice sets based on respondents’ reference trip 

information. The survey had five groups of questions. Group 1 collected information on a 

reference trip made by respondents. Respondents were asked to provide the travel 

monetary cost and time cost of their most recent trip to work or school made by personal 

vehicles. Group 2 evaluated respondents’ awareness of and attitudes towards 

transportation technologies (e.g., ridesharing, connected vehicle, AV, and how much do 

they enjoy driving). Group 3 introduced AV and SAV technologies and asked how likely 

they would engage in various activities when riding an AV or an SAV. Group 4 presented 

four choice tasks with travel cost and travel time based on the reference trip provided in 

Group 1. The respondents were asked to select their preferred choice. Finally, Group 5 

collected respondents’ socioeconomic characteristics.  

2.3.2. Development of Attributes and Levels 

The study includes two attributes, travel cost and travel time since I focus on the 

valuation of in-vehicle time. The attribute levels are calculated based on the respondent-

provided reference trip and various public data. I categorize the reported reference trips 

into five segments based on (Polzin & Pisarski, 2013): short trip (travel time < 20 min), 
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lower medium trip (20 min < travel time < 40 min), higher medium trip (40 min < travel 

time < 60 min), long trip (60 min < travel time < 90 min), and extremely long trip (travel 

time > 90 min). I gather cost per mile and average commuting speed information from the 

Bureau of Transportation Statistics publications and National Household Travel Survey 

publications.  

We set cost per mile $0.2 and average speed 30 miles/h for short trips, 40 miles/h for 

medium trips, and 50 miles/h for long and extremely long trips. The cost per mile 

includes fuel cost and other unobserved costs perceived by respondents without including 

vehicle depreciation, as suggested by Hang et al. (2016). The time and cost attributes of 

AV and SAV are pivoted around the travel time and cost of the calculated reference trip 

in each trip segment.  

Table 2.1 summarizes all the attributes and their levels. A few rules are followed 

when pivoting around the reference trip attributes. SAV has a higher time and lower cost 

than AV and RV.  AV has a higher cost but can have lower, same, and higher time 

compared to RV. AV is more expensive and faster than SAV.  

2.3.3. Experimental Design 

Ngene software (ChoiceMetrics) was used to generate a pivot design optimized for the 

panel mixed logit model. The pivot design process can generate a design with a reference 

alternative based on the proportions of various segments. As illustrated in Table 1, I 

designed different pivoting levels and assigned different weights to the 5 segments. The 

weight is the average trip length share in SMMAs. I firstly optimize the design for a 

multinomial logistic model using Bayesian priors and then evaluate the design for a panel 

mixed logit model, as recommended by Bliemer and Rose (2011). The Bayesian priors 
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for travel time and travel cost are based on recent studies using a similar experimental 

design (Bliemer & Rose, 2013; Devarasetty et al., 2012). The resulting design has a D-

error of 0.1303, indicating good overall efficiency and statistical power of the design. 

More importantly, I have intensively tested the choice sets with general individuals with 

no relevant education background to ensure they are realistic, familiar, and not too 

complex. 

 
 
Table 2.1 Overview of Attributes, Levels, and Assignment Rules 

Segment Travel Time Travel Cost Assignment Rule 
 Ref. Level Pivot Level Ref. Level Pivot level  

Short<20 15 min (3, 5, 7) $2 (1.5, 1, 0.5) Assign, if travel time <20 

20<Medium 1<40 30 min (8, 12, 16) $4 (5, 3, 2) Assign, if 20≤travel time <40 

40<Medium 2<60 50 min (8, 12, 16) $7 (5, 3, 2) Assign, if 40≤ travel time <60 

60<Long<90 70 min (15, 20, 25) $12 (3, 5, 7) Assign, if 60≤travel time <90 

Extreme>90 100 min (15, 25, 35) $17 (5, 7, 10) Assign, if travel time ≥90 

Short<20 15 min (-5, 0, 5) $2 (5, 3, 2) Assign, if travel time <20 

20<Medium 1<40 30 min (-5, 0, 5) $4 (11, 8, 6) Assign, if 20≤ travel time <40 

40<Medium 2<60 50 min (-7, 0, 7) $7 (11, 8, 6) Assign, if 40≤ travel time <60 

60<Long<90 70 min (-10, 0, 10) $12 (14, 12, 9) Assign, if 60≤travel time <90 

Extreme>90 100 min (-10, 0, 10) $17 (18, 15, 12) Assign, if travel time ≥90 

Note: Attribute levels of SAVs and AVs are calculated by the reference level plus pivot level 
Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will autonomous 
vehicles change auto commuters’ value of travel time? Transportation Research Part D: Transport and 
Environment, 83, 102303. 
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Figure 2.1 Introduction of autonomous vehicles and the possible range of in-vehicle 
activities 
Note: Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will 
autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303. 
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Figure 2.2 An example of a choice set  
Note: Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will 
autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303. 
 
 
 
2.3.4. Choice Task 

Each choice set presents three alternatives: a regular vehicle, a shared driverless vehicle, 

and a driverless vehicle (i.e., RVs, SAVs, and AVs). All alternatives are described in 

terms of travel time and travel costs. The regular vehicle (or your current vehicle) 

alternative is important because it increases the realism of the survey and serves the 
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purpose to compare RVs with AVs. The respondents are asked to choose the most 

preferred option from the three alternatives, and between carpooling and riding alone in a 

driverless vehicle. As noted above, 12 choice sets are generated for each trip segment. 

Each respondent is randomly assigned with four choice sets from the 12 choice sets in 

each trip segment. The respondent is asked to choose the most preferred option from the 

three alternatives, and between sharing and riding alone in a driverless vehicle. Figure 

2.1 illustrates how I introduce AV technologies, including automated driving, safety 

benefits, and a wide range of in-vehicle activities. Figure 2.2 illustrates a choice set 

example faced by the respondents.  

2.3.5. Recruitment and Data Collection  

The target population of the stated choice experiment is auto commuters living in 

SMMAs (see Figure 2.3). The SMMAs in this study are those with a population between 

200,000 and 450,000, whose populations are growing and mostly dependent on 

automobiles for mobility (Frey, 2017). For example, Boulder (CO), Memphis (MI), and 

Charlotte (VA) are included in the sampling framework. 

 



 

   

 

19 

 
Figure 2.3 Metropolitan areas in the sampling framework 
Note: Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will 
autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303. 
 

 
 
A market research company—LightSpeed Research LLC, implemented the survey.  

LightSpeed Research has over 5.5 million people in 40 plus countries that have opted to 

be on their panel of potential survey participants. A subset of these people was alerted to 

the survey and allowed to participate in the survey.  Specifically, individuals aged 18 or 

above, currently commuting to work or school by private passenger vehicles and living in 

SMMAs in the US, were eligible to participate. The potential survey participants will 

receive basic information about the survey, and then they can choose to participate or not. 

I distributed the online survey from November 3 to 8, 2017. 

In total, 4,625 participants responded to the survey. 2,111 of them were eligible and 

completed the survey. Of those who completed responses, 230 participants were excluded 

because of their extremely short answering time (< 3 minutes), leaving 1,881 valid 
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responses as the final sample. The survey takes at least 5 minutes for researchers in this 

study. I decide to use 3 minutes as the threshold in case of any fast readers. Table 2.2 

compares the demographics of the sample with those of SMMAs in the US using the 

2017 National Household Travel Survey (NHTS). The sample appears to slightly under-

represent individuals that are younger (age 18 to 54), male, and wealthy (household 

income $200,000 and more), but over-represent individuals that are older (age 55 and 

more), and have a Bachelor’s degree and above. The difference between the sample and 

the 2017 NHTS data may lead to smaller estimates of the VOTs than the true value, 

because VOT is positively associated with income and negatively associated with 

disposable time based on previous literature (Small, 2012). 

 
 
Table 2.2 Summary Statistics about Survey Respondents 

  Sample 
 

2017 NHTS 
(Auto 

Commuters) 

  

Variable Mean  S.D. Mean S.D. 

Average Household Size 2.383 1.24 3.060 0.25 

  Percentage   Percentage   

Male 41.9%  52.3%  
With a Bachelor's Degree and Above 47.0%  39.0%  
Age 18-24 6.5%  13.4%  
Age 25-34 11.0%  22.7%  
Age 35-44 14.9%  20.3%  
Age 45-54 18.4%  20.0%  
Age 55-64 27.5%  18.1%  
Age 65 and more 21.7%  5.4%  
Household Income Less than $24,999 12.7%  0.9%  
Household Income Between $25,000 and $49,999 26.1%  13.2%  
Household Income Between $50,000 and $74,999 23.0%  23.9%  
Household Income Between $75,000 and $99,999 17.1%  20.7%  
Household Income Between $100,000 and $199,999 17.7%  14.2%  
Household Income $200,000 or more 3.4%  23.2%  
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Table 2.2 Continued 
  Sample 

 
2017 NHTS 

(Auto 
Commuters) 

  

Variable Mean  S.D. Mean S.D. 

Household Income No Answer 4.6%  3.9%  

Short Trip < 20 min 44.8%  48.0%  

20=<Medium Trip < 40 min 35.5%  38.9%  
40=<Medium Trip < 60 min 9.3%  8.6%  
60=<Long Trip < 90 min 5.7%  2.7%  
Extreme Long Trip >= 90 min 4.7%   1.8%   
Note: Population descriptive statistics are based on weighted sample characteristics of auto 
commuters in Metropolitan Statistical Areas with populations greater than 25,000 and less than 
499,999 in the 2017 National Household Travel Survey (NHTS). Reprinted from Zhong, H., Li, W., 
Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will autonomous vehicles change auto 
commuters’ value of travel time? Transportation Research Part D: Transport and Environment, 83, 
102303. 
 

 

2.4. Econometric Analysis  

2.4.1. Modeling Framework 

In most transportation models, the underlying assumption is that people trade off money 

and time, and are willing to pay monetarily to reduce their travel time. My analysis of the 

choice data relies on the random utility model framework (McFadden, 1973). The model 

based on the assumption that a rational individual selects the alternative that maximizes 

the derived utility. The utilities “U” are assumed to be a function of observed variables 

relating to decision-maker, n, and alternative, j.  Thus, in a choice experiment, the utility 

respondent n derives from choosing alternative j in choice scenario s is given by 

 
!!"# = #$!"# +	'!"# , ) = 1,… ,,, - = 1,… , ., / = 1,… , 0																																										(1) 

 
where the $!"# is a  3 × 1 vector of observed variables relating to alternative j and the 

respondent; # is a vector of coefficients that are fixed over respondents and alternatives. 

The standard multinomial logit model assumes the idiosyncratic error term '!"# is 
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independent of irrelevant alternatives (IIA) and is identically distributed as a Gumbel 

distribution. That is to say, for a given set of choices, the IIA assumption could be 

violated due to omitted variables from the model that are correlated with the choices. The 

simplistic and restrictive assumptions are not realistic in the study context since one 

might expect the SAVs to draw disproportionately more from people who carpool.  This 

issue is analogous to the statistical independence of the errors in the linear regression 

model, as described by McFadden et al. (1977). See Cheng and Long (2007) for a Monte 

Carlo simulation testing for IIA property. In light of this concern, I use one widely used 

extension of the standard multinomial logit model, a mixed logit model, in order to 

account for the dependence between alternatives. 

2.4.2. The Mixed Logit Model 

The mixed logit model extends the standard multinomial logit model by allowing flexible 

substitution patterns and, thus, relaxes the restrictive IIA assumption (McFadden & Train, 

2000). The resulting choice probability that respondent n choose alternative j in choice 

scenario s can be written as: 

5!"# =
6789#$!"# + [;<!"# +	'!"#]>

∑ 6789#$!"# + [;<!"# +	'!"#]>
$
#%&

, ) = 1,… ,,, - = 1,… , ., / = 1,… , 0										(4) 

 
Where the ; is a random vector with zero mean; the <# 	is a vector of observed variables 

relating to alternative j; and the '# is independent and identically distributed (Brownstone 

& Train, 1998). The parameters are continuously distributed across respondents, which 

would allow us to derive willingness to pay distributions. 

The utility function associated with each alternative as chosen by respondent n in 

situations s is given by:  
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!'()!" = 	#!AA'()!" + BAC'()!" 	+ ''()!"																																																																										(5) 

!()!" 	= E0C() + (#! + #('*E0C())AA()!" + BAC()!" 	+ '()!"																																			(6) 

!+)!" 	= E0C+) + (#! + #('*E0C+))AA+)!" + BAC+)!" + '+)!"																																			(7) 

where	E0C# 	is the alternative specific constant for alternative mode j; TT and TC are the 

travel time and travel cost of each alternative; B is the fixed coefficient vector of travel 

cost for each alternative; '#!"	is not observed by the analyst and are considered as 

stochastic factors; 	#! is the random coefficient vector of travel time;	#('*  is an 

alternative-specific coefficient of travel time. The subjective value of travel time is not 

only determined by individual characteristics (e.g., income) but also affected by the 

spatial contexts where trips are realized.  Therefore, 	#! may vary across population 

segments ($!) and spatial contexts (!!).	#! in choice situation s for alternative j can be 

defined as: 

	##!"AA#!" = (##!"
� + H#!"$#!" + 	I#-")AA#!"	     (8) 

where 	H#!" denotes the heterogeneity of preferences for the travel time across socio-

economic levels or travel time ranges; 	I#-" modifies the mean of the distribution of the 

travel time parameter, which varies across the place of living (i.e., urban, suburban, and 

rural area). I#-"	(neighborhood level) is a function of associated contextual characteristics 

and can be written as: 

I#-" = 	J-. +	 	J-/K-/ + L-!        (9) 

where 	J-/ is the pth category of residence location (0 is the intercept); K-/ is the 

associated contextual variables in pth place; L-!is a random term associated with 	##!". 
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When no contextual variables are collected, Equation (8) collapses to  I#-" = 	J-/ + L-!. 

Combine (7) and (8), Equation (3) can be rewritten as: 

!!"#

=
#$% &'()# + (#012'()# + +#!"

� + ,#!"-#!")//#!" + 0	2$% + 3$!4//#!" ++5/)#!" + 6#!"							7

∑ #$% &'()# + (#012'()# + +#!"
� + ,#!"-#!")//#!" + 0	2$% + 3$!4//#!" ++5/)#!" + 6#!"7&

#'(

, 

	) = 1,… ,,, - = 1,… , ., / = 1,… , 0, M = 1,… , 3										(10) 

The utility equations account for both observed and unobserved heterogeneity by scaling 

the random parameter time by individual-specific (,#!"-#!"), alternative-specific 

(#('*'())), and contextual characteristics (	2$% + 3$!).  

2.5. Results  

2.5.1. Model Results 

In the estimated models, I set the travel time and alternative-specific constants as random 

parameters and travel cost as a fixed variable scaled by travel time when computing 

willingness to pay, as Hensher and Button (2007) recommended. The random parameter 

travel time draws from triangular distribution, which has relatively better model 

performance by comparing the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC), in the final models. I also test different functional forms of 

the random parameters, including normal distribution, lognormal distribution, and 

triangular distribution. Most of the distributions produce consistent estimates. The 

alternative-specific constants draw from a normal distribution. I also estimated separate 

models for different subgroups, which are defined by driver/passenger and place of 

living. To account for the observed heterogeneity in preferences, I also specified travel 
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time to have alternative-specific, individual-specific, and context-specific parameter 

estimates in the two extended models for both drivers and passengers. All models are 

estimated using the “gmnl” package in R Statistical Software (Sarrias & Daziano, 2017). 

 
 

Table 2.3 Model Specifications and Performance of Estimated Models 
  Model 1 Model 2 Model 3 Model 4 Model 5 

Travel cost as a fixed variable Yes Yes Yes Yes Yes 
Travel time as a random 
variable 

Yes Yes Yes Yes Yes 

Alternative-specific travel 
time 

Yes Yes Yes Yes Yes 

Random ACSs Yes Yes Yes Yes Yes 
Include socioeconomic 
variables 

No No No Yes No 

Include trip characteristics No No No Yes No 

Include place of living No No No Yes No 

Distribution of travel time Triangular Triangular Triangular Triangular Triangular 

Distribution of ACSs Normal Normal Normal Normal Normal 

Sample 
Urban 
drivers 

Suburban 
drivers 

Rural 
drivers 

All drivers 
All 

passengers 
Draws 1000 1000 1000 1000 1000 

Log-likelihood -1053 -1491.8 -435.53 -2896.6 -360.62 
BIC 2174.195 3057.671 935.370 6093.53 779.555 

AIC 2123.932 3001.668 889.063 5861.133 739.234 
Note: Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will 
autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303. 
 

 
 
Table 2.3 reports the specifications and model fits of the presented models. Models 1- 

3 only include alternative-specific information and random effects for estimation and 

estimate respondents who drive in the reference trips and live in urban areas, suburbs, and 

rural areas, respectively. Model 4 pools drivers together and adds further information 

about their socioeconomic characteristics, trip conditions, and place of living. Model 5 
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estimates the preferences of respondents who are passengers in the reference trips.  

Although the fully-specified model does not increase the model fit, it provides insights 

into the heterogeneity in preferences. Therefore, I discuss estimated coefficients across 

all models and rely on Models 1 – 3 to derive the values of commuting time (VOT) for 

RVs, SAVs, and AVs. 

Table 2.4 reports the estimated results of the mixed logit models. It should be noted 

that all the results are based on stated preferences as no trips were made. Across models, 

alternative attribute coefficients are statistically significantly different from zero with 

expected signs, indicating preferences over different travel modes exist. The large and 

positive coefficient of ASC RV indicates that the majority of respondents prefer their 

current RVs over SAVs and AVs. On average, respondents prefer RVs over SAVs and 

prefer SAVs over AVs. Such preferences also present significant heterogeneity over the 

sample, as the random effect components enter significantly and are large relative to the 

means.  

Further, it is not surprising that the estimates are different between respondents who 

drive (hereafter termed drivers) and those who are passengers (hereafter termed 

passengers) in the reference trips. For those drivers, the attribute coefficients have the 

expected sign: on average, drivers prefer shorter travel time and lower travel costs.  

Based on Model 1 – 4, a few noteworthy effects on drivers are behaviorally meaningful. 

First, compared to taking SAVs, drivers prefer their time in AVs but not in RVs, as 

indicated by the signs of the coefficients. 

Second, interacting with travel time, having children at home have a negative 

coefficient, as expected. This is consistent with the time allocation theory that those 
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respondents have to spend more time on family-related activities other than commute 

would more value commuting time savings, given the total time constraint.  

Third, short trips have a positive coefficient; it is slightly larger than that of AVs (AV 

x Time). The positive utility on the travel time of short trip may be as explained by 

Redmond and Mokhtarian (2001) that people value the transition time between work and 

home if the travel time is within an acceptable range. Also, on a short trip (less than 20 

minutes), it is unlikely to save a significant amount of time that can put into other uses 

that can substantially reduce the disutility of travel. This has an implication for planning 

for accessibility.  

Finally, drivers living in urban areas place higher utility value on travel time than 

those living in suburban areas, possibly due to the driving in urban areas that are onerous 

with the traffic conditions and conflicts in high-density areas. 

Based on Model 5, passengers seem to be less sensitive to travel time and costs but 

still have a negative coefficient on riding in RVs, compared to riding in SAVs. It is 

unexpected, as being a passenger in different vehicles is expected to matter little in the 

changes in the valuation of travel time. This is possibly due to hailing SAVs and AVs 

presents a sense of control than being driven by someone else, which has positive effects 

on commuting stress. Another explanation could be that passengers may prefer being 

driven by robotics over strangers if their current commutes are not driven by people they 

know. Although the coefficient of the interaction with AV is not significant, it has a 

positive sign, weakly indicating a preference of not sharing the ride.  
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Table 2.4 Estimated Mixed Logit Models 
Model 1: 

Urban Drivers 
Model 2: 

Suburban Drivers 
Model 3: 

Rural Drivers 
Model 4: 

All Drivers 
Model 5: 

All passengers 
Est. SE Est. SE Est. SE Est. SE Est. SE 

Alternative-specific constants 
Reference Level: ASC SAV 

ASC AV -3.596 0.769 *** -4.245 0.755 *** 
-

2.523 1.222 *
-

4.743 0.605 *** 
-

3.208 1.148 ** 
ASC RV 3.740 0.441 *** 5.755 0.519 *** 5.646 0.873 *** 4.565 0.373 *** 3.838 0.762 *** 
Alternative-specific attribute 

Cost -0.091 0.052 . -0.302 0.052 *** 
-

0.792 0.184 *** 
-

0.467 0.050 *** 
-

0.012 0.037 

Time -0.139 0.043 ** -0.195 0.040 *** 
-

0.203 0.073 ** 
-

0.149 0.078 . 
-

0.055 0.042 
Time x AV 0.026 0.014 . 0.055 0.013 *** 0.037 0.020 . 0.062 0.010 *** 0.008 0.016 

Time x RV -0.033 0.011 ** -0.044 0.012 *** 
-

0.028 0.017 
-

0.027 0.008 ** 
-

0.035 0.015 * 
Random Effect  
Time 0.137 0.054 * 0.212 0.052 *** 0.178 0.091 * 0.194 0.038 *** 0.109 0.103 
ASC AV 4.057 0.540 *** 3.935 0.507 *** 3.437 0.856 *** 4.441 0.389 *** 3.400 0.778 *** 
ASC RV 3.558 0.334 *** 4.272 0.338 *** 4.047 0.612 *** 3.992 0.230 *** 3.470 0.539 *** 
Individual-specific effect 
Reference Level: Age (45- 54) 
    Time x Age (18-24) 0.014 0.054 
    Time x Age (25-34) 0.019 0.052 

    Time x Age (35-44) 
-

0.048 0.050 
 Time x Age (55-64) 0.010 0.047 

    Time x Age (65 and more) ` 0.035 0.054 
Reference Level: (Less than $24999) 
    Time x Household Income ($25,000 to 49,999) 0.017 0.045 

    Time x Household Income ($50,000 to 74,999) 
-

0.020 0.049 

    Time x Household Income ($75,000 to 99,999) 
-

0.003 0.050 
    Time x Household Income ($100,000 to 199,999) 0.005 0.055 

    Time x Household Income (More than $200,000) 
-

0.024 0.093 
Reference Level: Part-time worker 
    Time x Fulltime Worker 0.031 0.051 
    Time x Retired 0.115 0.055 *
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   Time x Student 0.102 0.055 

Time x Male 
-

0.030 0.055 

Time x Have a Bachelor's Degree 
-

0.056 0.052 

Time x Household Size 
-

0.055 0.039 

Time x Have Children 
-

0.100 0.049 * 
Trip context effect 

Time x Peak Hour 
-

0.018 0.030 
Reference Level: 40 min < Trip < 60 min 
    Time x Trip < 20 min 0.077 0.030 ** 

    Time x 20 min ≤ Trip < 40 min 
-

0.012 0.036 

    Time x 60 min ≤ Trip < 90 min 
-

0.052 0.052 

    Time x Trip ≥ 90 min 
-

0.134 0.086 
Spatial context effect 
Reference Level: Urban Area 

    Time x Living in City Center 
-

0.048 0.015 ** 
    Time x Living in Suburb 0.158 0.041 *** 
    Time x Living in Rural Area 0.004 0.029 
N (# of choice scenarios) 1968 3742  1268 6872 652 
Note: 1. Statistically Significant level codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1. 2. Cost is in US dollar; Time is in minutes. 2. ASC denotes alternative specific constant.  
Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303.  

Table 2.4 Continued 
Model 1: 

Urban Drivers 
Model 2: 

Suburban Drivers 
Model 3: 

Rural Drivers 
Model 4: 

All Drivers 
Model 5: 

All passengers 
Est. SE Est. SE Est. SE Est. SE Est. SE 



2.5.2. Value of Travel Time 

To offer more behavioral insights, I make use of the model estimates to derive the value 

of travel time (i.e., the willingness to pay for travel time savings) for drivers by location. 

The model for passengers is not used due to its insignificance in travel time and cost not 

being significant in the model. Although the insignificance does not mean there are no 

preferences, it just does not allow us to know the accuracy of the values since the 

confidence interval would be large for passengers’ derived value of travel time. The 

value of travel time (VOT) is calculated as unconditional willingness to pay by: 

!"# = 60	()*+ ×	(.!"#$ + ∑ &!"#$%&'('())
* + |1|#)/.)+,-	    (11)�

where n indicates each individual; N is the sample size; 1 is the random effect of travel 

time follows triangular distribution #. In light of the nature of random parameter, I 

generate a distribution of individual VOT by drawing randomly from the triangular 

distribution with the mean ..	and the standard deviation 1. I report the mean, first 

quantile, and third quantile of the distribution of individual VOT. 

Table 2.5 reports the VOT directly addresses the two key research questions raised 

in the Literature Review section.  

1. How much would AVs change the value of in-vehicle time compared to

taking regular vehicles (RVs)?

Riding AVs reduces the value of in-vehicle time ranging from 8% to 32% compared to 

driving RVs, depending on vehicle types and place of living. AVs present larger 

reductions in VOT (18% - 32%) than those presented by SAVs (8% - 14%). Passengers 
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appear to have reductions in VOT when taking AVs and SAVs, but an accurate VOT 

cannot be derived. 

2. How would the change to the value of in-vehicle time vary by the spatial 

contexts of the commuter?” 

With respect to spatial contexts, drivers who live in suburbs have the most substantial 

reduction in VOT by AV technologies (AVs: 32% and SAVs: 14%), followed by their 

urban counterparts (AVs: 24% and SAVs: 13%) and then the rural counterparts (AVs: 

18% and SAVs: 8%). I use Kolmogorov-Smirnov test to determine whether the 

distributions of VOTs differ significantly between different places of living. 

Kolmogorov-Smirnov test is a nonparametric method that is more reliable when the 

samples are not normally distributions (Massey Jr, 1951). The results of the test all 

suggest to reject the null hypothesis that the two distributions are the same, as I present 

in the lower part of Table 5. Moreover, there are no containment or inclusion 

relationships between the VOTs of each place of living as revealed by the values at 1st 

quantile and 3rd quantile, which indicates the existence of spatial differences in VOT. 

My estimates are in agreement with the findings from Steck et al. (2018) and de Almeida 

Correia et al. (2019), where reduction rates are 31% to 41% for AVs and around 10% for 

SAVs. Except that, I demonstrate that the spatial variations of the changes in in-vehicle 

VOT are nonnegligible. 
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Table 2.5 Values of travel time by vehicle types and place of living 

    Regular 
Vehicle Autonomous Vehicle Shared Autonomous 

Vehicle 
    VOT VOT 

VOT Reduction 
Rate 

VOT 
VOT Reduction 

Rate 

 1st 
quantile 

$40.61  $27.69   $33.30   

Urban/City 
Center 

Mean $53.71  $40.89  23.88% $46.53  13.38% 

 3rd 
quantile 

$66.90  $53.82   $59.74   

 1st 
quantile 

$14.36  $7.83   $11.39   

Suburban Mean $20.54  $13.98  31.95% $17.58  14.43% 

 3rd 
quantile 

$26.67  $20.18   $23.69   

 1st 
quantile 

$7.38  $5.73   $6.66   

Rural Mean $9.36  $7.71  17.59% $8.64  7.69% 

 3rd 
quantile 

$11.33  $9.68   $10.62   

Kolmogorov-Smirnov test on the differences 
between the VOTs    

AV D 
statistics 

 
    

Urban vs. 
Suburban 

0.69 *** 
    

Urban vs. Rural 0.92 ***     
Suburban vs. 
Rural 

0.53 *** 
    

SAV   
    

Urban vs. 
Suburban 

0.72 *** 
    

Urban vs. Rural 0.95 ***     
Suburban vs. 
Rural 

0.64 ***         
Note: *** denotes statistical significance of 0.01.  
Reprinted from Zhong, H., Li, W., Burris, M. W., Talebpour, A., & Sinha, K. C. (2020). Will 
autonomous vehicles change auto commuters’ value of travel time? Transportation Research Part D: 
Transport and Environment, 83, 102303. 
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2.5.3. Predicted Mode Choices 

I predict the mode shares of AVs by different places of living, assuming that travel 

monetary costs by AV and SAV are reduced by 87.5%. The parameter of 87.5% is based 

on the cost structure analysis of autonomous mobility service by Bösch et al. (2017). The 

predicted results by place of living demonstrate a potential landscape of future AV 

market segments and travel demand changes. Figure 2.4 presents the predicted 

commuting mode choices of AV, SAV, and RV of the study sample. The baseline mode 

share is the current probability under the cost and time scenarios in my stated choice 

experiment. The predicted results demonstrate that regular vehicles will still dominate 

the market, even with such a dramatic cost reduction in S/AV technology. Urban areas 

have the highest share of AV and SAV that could account for almost 40 percent of the 

market, followed by urban centers. The most substantial increase of AV and SAV shares 

are found in rural areas, while AV share increases almost half in suburban areas. 
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Figure 2.4 Predicted mode choices in the study sample 
Notes: 1. These are the probabilities that each vehicle type is chosen. 2. Baseline scenario refers to the 
case when all of the attributes for each type of vehicle remain the same as the original data. 3. Predicted 
scenario refers to the case when the travel cost reduced by 7/8. 4. The numerical labels of each bar indicate 
the market share. 
 
 
 
2.6. Discussion and Conclusion 

In this study, I investigated how current auto commuters, if taking AVs and SAVs, might 

value their travel time differently, by conducting discrete choice experiments for 

commuters in SMMAs and applying mixed logit models. I have several conclusions 

from this study. First, my results support the assumption that AVs and SAVs can 

potentially reduce the VOT for commuting trips compared to RVs. Yet the results also 

highlight that the impact on passengers is less significant than driver; this might be due 
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to the fact that passengers are already able to access some of the in-vehicle opportunities 

I presented in the study. In-vehicle activity opportunities are valued by commuters and 

may be translated into utility in monetary values.  

Second, this study also finds that even though AVs reduce drivers’ valuation of travel 

time, its impact on the VOT appears to be spatially differentiated across urban, suburban 

and rural areas. On one hand, reduction in VOT for urban drivers would make traffic 

congestion more tolerable and thus urban living might become more attractive. On the 

other hand, suburban drivers enjoy a larger reduction in VOT than their urban 

counterparts. When their overall transportation cost is reduced, living in suburban areas 

also becomes more attractive. These two competing forces (urban densification vs 

sprawl) may be settled differently in different regions. However, in SMMAs, urban 

amenities are scarce and congestion cost is perceived to be much less than large 

metropolitan areas. These might create a condition that nurtures sprawl more than urban 

densification.   

However, changes in urban spatial structure are also influenced by other complex 

factors besides transportation cost. One of them might be the self-selection effect, as 

populations living in urban, suburban, and rural areas might have different preferences 

and socio-demographic characters. Unfortunately, I am unable to control for this effect 

due to the cross-sectional design of this study.  

This study is subject to three limitations that necessitate future research. First, I only 

focus on the in-vehicle time of commuting trips. Commuting trips are central in 
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determining urban form changes, but account for a small portion of total trips. It is 

crucial to understand how AVs could affect other types of trips, such as grocery 

shopping, healthcare, and recreational trips. Moreover, out-of-vehicle time is not 

considered in the choice experiment, as I focus on the changes in the value of in-vehicle 

time. For mode choice decisions, particularly non-commuting trips, out-of-vehicle time 

can play a role in travelers’ decision making. Second, the results and implications above 

are for the short term as the values and norms can change when AVs are adopted widely 

in the future. Also, even though urban, suburban and rural areas are examined in my 

models, it is important to note that each of the spatial categories is diverse by itself in 

terms of social and physical structures. Future research should conduct more detailed 

analysis on how AVs may affect individuals across different socio-demographic 

spectrums. Third, I presented a hypothetical setting of commuting in AVs/SAVs, the 

specific vehicle designs might influence commuting experience. 
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3. WHO BENEFITS FROM IN-VEHICLE ACTIVITIES IN AUTONOMOUS 

VEHICLES? 

3.1. Introduction 

The potential opportunity of in-vehicle activities in autonomous vehicles might further 

expand what has come to be known as “travel-based multitasking” (Kenyon & Lyons, 

2007). It suggests a gap between the assumptions about wasted travel time and people 

undertaking meaningful activities while on the move (see e.g., Laurier, 2004; Lyons & 

Urry, 2005). A central implication of travel-based multitasking is that transportation 

modes become a moving space for various activities, which produce travel time (Bissell, 

2018; Sheller & Urry, 2006). These activities can include work, leisure, or doing nothing, 

which can, in turn, affect people’s travel experience (Ettema & Verschuren, 2007; 

Singleton, 2018). Particularly significant is that autonomous vehicles could be 

customized with a much wider range of amenities than other transportation options such 

as trains and airplanes.  

However, the development of autonomous vehicles also faces concerns over the 

distribution of benefits across social groups. Historically, inequalities driven by 

transportation improvements attribute to two factors: 1) unequal access to and 2) 

differentiated use of the technologies (Chesley, 2005; DiMaggio et al., 2004; Neutens et 

al., 2011; Schwanen & Kwan, 2008; Warschauer, 2004). Of particular interest to us, 

engagement in in-vehicle activities in autonomous vehicles could change the capacities 

for working, relaxing, and saving time for other activities beyond in-vehicle, but it may 

vary depending on the individual. Such differentiated engagement in in-vehicle activities 



 

 

 

 

38 

is likely not only a matter of personal preference but also of personal constraints (Van 

Wee & Geurs, 2011). By implication, I argue that a thorough understanding of the social 

effects of autonomous vehicles requires examining how people would use this 

technology. 

In this study, I investigate how might the development of autonomous vehicles reflect 

the desired activity participation of specific groups of people in their everyday life? I 

focus on commuters who spend a substantial amount of time on travel on a daily basis. 

Specifically, I aim to answer the following questions: 

First, what would commuters do while riding in autonomous vehicles with various 

factors affecting activity participation?  

Second, to what extent does the engagement in in-vehicle activities vary for different 

groups of commuters, particularly women?   

Throughout the chapter, I analyze the data with a focus on women, who bear a 

disproportionate burden of household responsibility and face more time-related 

constraints in daily activity participation. On average, women who are employed full time 

spend 30 minutes more than their men counterparts on household activities every day 

(see Figure 3.1). Such a gap prevents women from participating in activities that can 

improve personal well-being (e.g., leisure and sports) and promote productivity (e.g., 

work), which has been a widely documented inequality between men and women in 

activity participation (Beebeejaun, 2017; Scheiner & Holz-Rau, 2017; Srinivasan & Bhat, 

2005). For example, an employed mother with children tends to be excluded from 

opportunities due to time constraints and juggling demands between work, childcare, and 
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household responsibilities. In contrast, income-related or transportation-related 

constraints are not the main barriers (Kwan, 1999a, 1999b). 

  

 
 

Source: 2019 American Time Use Survey, U.S. Bureau of Labor Statistics 
Figure 3.1 Average hours per day spent on selected activities on weekdays: full-time 
employed men vs. full-time employed women 
 
 

 
In the ongoing development of autonomous vehicle systems, it is more likely that 

women may continue to be marginalized in the process, as the relevant fields, such as 

vehicle technologies, transportation planning, and automation engineering, are male-

dominated (Bissell et al., 2018). By comparing how men and women would potentially 

engage in in-vehicle activities in autonomous vehicles, this study can provide insights on 
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whether and to what extent the development of autonomous vehicles reflects women’s 

preferences and needs, given the temporal dimension of inequalities. 

This chapter proceeds as follows. Next, I explain the conceptual frameworks used to 

assess the equity implications of in-vehicle activities in autonomous vehicles in Section 

2; describe data collection, measurement, and analytic approach in Section 3; present 

results in Section 4; discuss equity implications in Section 5; and conclude with study 

limitations and future research directions in Section 6. 

3.2. Conceptual Frameworks 

I draw on space-time perspective and midfare perspective that are not only two sides of 

the coin but also intertwined in understanding the distributional effects of autonomous 

vehicles on everyday activity participation. 

3.2.1. Conceptual Frameworks: Space-Time Perspective 

The first conceptual framework that I draw on is the time-space conceptualization of 

activity participation (Hägerstrand, 1970), which captures a person’s activity 

participation in space and time within a given set of constraints (e.g., individual, land use 

and transportation-related constraints). Over the last three decades, travel-based 

multitasking has been increasingly enabled by the Internet and communications 

technologies (ICT) that are lighter, faster, more portable, and more connected. One 

important strand of time geography literature related to this study focuses on the 

implications of ICTs on space-time autonomy. This line of research has explored how 

ICTs relaxed the space-time constraints and expanded the conceptualization of 

accessibility to encompass both the physical and the digital worlds. For example, online 
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shopping makes tradable goods and services accessible to national, even global customers 

(Glaeser & Kohlhase, 2004). Furthermore, ICTs enable people to multitask during travel 

time, such as calling or searching for information while traveling, making the travel time 

not so wasteful (Jain & Lyons, 2008). 

Likewise, autonomous vehicles might boost the possibility of participating in activities 

in the constrained space and time by not only using ICTs while on the move (e.g., 

Kenyon & Lyons, 2007; Lyons & Urry, 2005) but also offering a customized space for 

various activities beyond the digital space. Such disruptive changes require a 

reconceptualization of activity participation in a hybrid (digital/physical/temporal) space, 

contrasting the conventional practices that assume a strict separation between travel trips 

and activity participation at a location. Indeed, such improvements in transportation 

technologies appear to represent a variety of Marx’s phrase “the annihilation of space by 

time” that annihilate time through in-vehicle space, as noted by Smith (2010, p. 281, note 

46). But as much as autonomous vehicles annihilate time (i.e., time costs), so too do they 

produce time (i.e., disposable time), transforming otherwise wasted travel time to time 

that can be used for work and leisure activities. Thus, autonomous vehicles become a 

moving space more than a means to overcome the friction of distance. 

The production of in-vehicle space and time represents a social practice of travel, as 

the different possibilities for in-vehicle activities are situated in the context of people’s 

personal, social, and economic circumstances. If space and time are social phenomenon, 

then they are perceived and experienced differently by different social groups (Lefebvre, 

1991). For example, the time produced by in-vehicle space may not be able to lift the 
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time constraint of the employed mother discussed in the previous section if the inequality 

of household responsibilities between wives and husbands persists. Instead, autonomous 

vehicles might help inequality in time use extends its grip on everyday life. Empirical 

evidence on the effects of ICTs suggests that the existing gender inequality associated 

with household responsibilities may be reinforced by the use and adoption of ICTs 

(Chesley, 2005; Schwanen & Kwan, 2008). Moreover, the complex circumstances of 

people create different needs and desires, which further complicate the potential benefits 

wrought by autonomous vehicles. For autonomous vehicles to enhance activity 

participation, they must provide desired activities or fill the gap of people’s daily needs 

due to spatial-temporal constraints. If people were not interested in in-vehicle activities, 

then the feature of in-vehicle activities might not be able to enhance activity participation. 

To conclude, space-time perspective points to the role of in-vehicle activities that 

might increase the possibility of multitasking and thus relax individuals’ space-time 

constraints. In light of the potential differentiated in-vehicle activity participation, I 

introduce the framework I rely on for equity evaluations. 

3.2.2. Conceptual Frameworks: Midfare Perspective 

To evaluate the distributional effect of in-vehicle activity benefits, I rely on a midfare 

perspective, which represents the opportunity for improved welfare or increases in utility. 

According to G. A. Cohen (1990, p. 368): 

“Midfare is constituted of states of the person produced by goods, states in virtue of 

which utility levels take the values they do. It is ‘posterior’ to ‘having goods’ and 

‘prior’ to ‘having utility.’” 
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The midfare, therefore, focuses on what goods do to (or for) people rather than on the 

amount of goods that people possess, as Resourcists do, or, as Welfarists do, on the 

amount of utility that people derive from the goods. Using an example of a person’s well-

being, Cohen emphasized the distinct dimensions of midfare from that of welfare and 

goods. He clarified that, for example, we should examine the person’s nutrition level, not 

just the person’s food supply (Resourcists’ view) or the derived utility from eating food 

(Welfarists’ view). There are two motivations for developing the midfare perspective: (1) 

it is necessary to attend to the states that a person can attain, in addition to the actual 

state; and (2) it is necessary not to reduce the evaluation of the actual state either to a 

resource-oriented examination or to a utility-focused assessment.  

The question “equality of what” is seriously disputed in political philosophy and has 

recently been considered in transportation research(Hananel & Berechman, 2016; 

Martens & Golub, 2012). That is, what is the appropriate entity to be equalized? Justice 

considerations in transportation decision-making was once dominated by maximizing 

welfare/utility (e.g., the value of travel time and travel satisfaction) and increasing access 

to infrastructure and destinations (e.g., cumulative accessibility). Although none of the 

perspectives have been perfectly justified as superior to the others, Martens and Golub 

(2012) argued that the midfare perspective is the most suitable one for transportation 

equity analysis. They define midfare in transportation as the extent to which a person is 

able to translate transportation resources into the possibility of participating in activities.  
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Table 3.1  Focus of Different Egalitarian or Equity Approaches and Application to 
Transportation 

Author 
The Entity to 
Be Equalized Application Limitations 

Rawls Goods 
Number of 
destinations within a 
given distance  

Does not fully capture the 
inequality due to being unlucky 
(Sen, 1980). 

Dworkin Resources 

Number of 
destinations within a 
given distance, 
corrected for mobility 
(physical disability or 
access to mobility 
options) 

Does not capture what a person 
can do with those resources (Sen, 
1980). 

Cohen Midfare 

Number of 
destinations within a 
given distance 
corresponds to the 
needs of person 

Often not practical to know 
individuals’ needs and wants 

Sen  Capability Activity participation 

Narrower than midfare. Some 
goods can provide welfare 
without any exercise of 
capability (G. A. Cohen, 1990). 

Bentham/Mill Welfare/Utility 
Satisfaction derived 
from driving a luxury 
car 

Welfare can be derived from 
making somebody else’s trip less 
appealing (offensive taste), and 
highest disutility needs the best 
services (expensive taste)(G. A. 
Cohen, 1989). Welfare can be 
influenced by expectation (Sen, 
1980). 

Note: This table extends Table 11.1 in Martens and Golub (2012) by adding limitations and applying to 
transportation.  
 
 
 

Table 3.1 illustrates focuses of different perspectives and their limitations. Applied to 

travel-based multitasking evaluation, midfare can be defined as the extent to which a 

person is able to translate the available in-vehicle activities into welfare or utility, given 
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personal characteristics and circumstance characteristics. 2 In this study, I choose midfare 

to evaluate the equity issues in in-vehicle activities for the following reasons. First, 

midfare measures the potential opportunities and activities, as travel behaviors rather than 

the actual travel behaviors are what matters in comparing individuals. Moreover, such 

potential travel behaviors are due to not only the available destinations via their 

transportation resources but also those destinations that match the person’s needs and 

desires. Relatedly, the midfare perspective focuses on not only the actual state but also 

what one can potentially achieve. Empirically, individuals may or may not engage in in-

vehicle activities during a single trip, which leads to what researchers call “unobservable” 

information (Angrist & Pischke, 2008). In this case, a stated preference approach may be 

more aligned with the midfare perspective than a revealed preference approach for 

capturing the extent to which people can translate in-vehicle activities into utility and 

welfare. In contrast, people’s stated choices, in general, can reveal how well the in-

vehicle activities match their needs and their willingness to engage in those activities 

while on the move, not limited to a few observed or reported trips.  

Second, midfare recognizes that utilitarian methods may, to a no small extent, capture 

the differences between socio-spatial groups rather than the impact of transportation 

improvements (similar to the endogeneity issue in the econometric literature). On the 

other hand, utility or subjective well-being derived from travel can be very different even 

 
2 Practically, it is not feasible to comprehensively know personal tastes, desires, and needs in most cases. 
Therefore, we acknowledge that existing approaches may be more useful to evaluating equity in 
transportation and land-use research (e.g., tools examined in Levine et al. (2017) and Merlin et al. (2018) 
for project evaluations).  
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between people within the same population group, depending on the scales and reference 

points in their mind, as noted by Graham (2012).  

Third, midfare makes room for how individual preferences play a role in equity 

analysis. Being better off in activity participation is not only a question of access to 

transportation infrastructure and destinations but also a matter of the fit between the 

resources and the needs and desires of individuals (Neutens et al., 2011). For example, 

the number of available meat markets at a given distance threshold provides meaningless 

information about accessibility of shopping for vegetarians. The fit issue, in turn, 

highlights the importance of examining the inequalities associated with the potential 

differentiated engagement of in-vehicle activities in autonomous vehicles, a gap I address 

in this study. 

To summarize, the midfare perspective leads us to focus on the extent to which 

different groups or individuals can translate in-vehicle activities into welfare or utility, 

which could indicate those engaged activities either fit their personal preferences or 

complement their daily needs. Given that both time geography theory and midfare 

perspective emphasize the possibilities to enact certain activities and personal 

circumstances, the case of engagement of in-vehicle activities in autonomous vehicles is 

ideal for an equity analysis that can address both frameworks.  

3.3. Data, Measures, and Methods 

3.3.1. Data 

The stated choices data about in-vehicle activities were collected in an online survey 

conducted in 2017. The target population of the survey is auto commuters living in small 
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and medium-sized metropolitan areas (SMMAs) whose populations are between 200,000 

and 450,000 (see Figure 3.2). I focus on SMMAs because the majority of the US 

populations live in these areas and cars are their primary travel modes. A market research 

company—LightSpeed Research LLC—implemented the survey via their panel of 

potential survey participants. Individuals aged 18 or above, currently commuting to work 

or school by private passenger vehicles, and living in SMMAs in the United States, were 

eligible to participate in the study. 

 
 

 
Figure 3.2 Metropolitan areas in the sampling framework 
 
 
 

A total of 2,111 eligible participants completed the survey. After excluding 230 

respondents whose answering time was too short (< 3 minutes), I had 1,881 valid 

responses as the final sample. I dropped respondents who identified themselves as other 

than male and female (0.25%) in the modeling procedures due to the small number of 
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observations. Still, I did check their in-vehicle activity choices, which do not deviate 

from the rest of the sample. Table 2 compares the sample demographics with those of 

small and medium metropolitan areas in the United States using the 2017 National 

Household Travel Survey data. The sample is generally representative of the population 

in small- and medium-sized metropolitan areas but appears to slightly under-represent 

young individuals (ages 18 to 24) and poor individuals (household income less than 

$24,999).  

The key outcome variables were generated from the following questions (see Figure 

3.3). The choice questions include a variety of in-vehicle activities that have been 

empirically examined while people use other travel modes (Berliner et al., 2015; Ettema 

& Verschuren, 2007; Singleton, 2018) or are expected activities by transportation experts 

and the public (Bansal et al., 2016; Fagnant & Kockelman, 2015; Schoettle & Sivak, 

2014). I define two types of travel modes: 1) riding privately owned autonomous vehicles 

alone (AVs) and 2) hiring shared autonomous vehicles (SAVs). Since SAVs can be 

operated in various ways, I broadly define the term by emphasizing the nature of sharing 

with others and may or may not pick up passengers during the trip. The difference 

between the two types of vehicles is that people can do household or personal activities in 

privately owned AVs but not in SAVs. 
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Table 3.2 Summary Statistics about Survey Respondents 

  
Sample  

2017 NHTS 
(Auto 

Commuters)   

Variable Mean  S.D. Mean S.D. 

Average Household Size 2.383 1.24 3.060 0.25 

  Percentage   Percentage   

Male 41.9%  52.3%  
With a Bachelor's Degree and Above 47.0%  39.0%  
Age 18-24 6.5%  13.4%  
Age 25-34 11.0%  22.7%  
Age 35-44 14.9%  20.3%  
Age 45-54 18.4%  20.0%  
Age 55-64 27.5%  18.1%  
Age 65 and more 21.7%  5.4%  
Household Income Less than $24,999 12.7%  0.9%  
Household Income Between $25,000 and $49,999 26.1%  13.2%  
Household Income Between $50,000 and $74,999 23.0%  23.9%  
Household Income Between $75,000 and $99,999 17.1%  20.7%  
Household Income Between $100,000 and $199,999 17.7%  14.2%  
Household Income $200,000 or more 3.4%  23.2%  
Household Income No Answer 4.6%  3.9%  

Short Trip < 20 min 44.8%  48.0%  
20=<Medium Trip < 40 min 35.5%  38.9%  
40=<Medium Trip < 60 min 9.3%  8.6%  
60=<Long Trip < 90 min 5.7%  2.7%  
Extreme Long Trip >= 90 min 4.7%   1.8%   
Note: Population descriptive statistics are based on weighted sample characteristics of auto 
commuters in Metropolitan Statistical Areas with populations greater than 25,000 and less than 
499,999 in the 2017 National Household Travel Survey (NHTS). 
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Figure 3.3 In-vehicle activity choice questions 
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3.3.2. Measuring Midfare  

The midfare perspective provides the basis for developing the measurement of midfare 

gains resulting from the potential engagement of in-vehicle activities in autonomous 

vehicles. I transform each individual’s likelihood level of each activity category into 

numbers, and the resulting numbers are added up to obtain the total score, which is: 

5" = ∑ 7"00
1        (1) 

where 5" is the midfare score that measures the potential engagement in in-vehicle 

activities of individual i, and 7"0 is the score of potential engagement of individual i in 

activity j. Based on the stated likelihood of in-vehicle activity engagement, 7 is assigned 

with a value of one if the choice of likelihood is “Likely,” and a value of two if it’s 

“Highly Likely.” The other choices are assigned a value of zero; they are considered as 

not contributing to the improvement of activity participation.  

Conceptually, 5" 	captures the benefits of a person riding in an autonomous vehicle on 

two dimensions: (1) it measures the extent of multitasking afforded by the vehicle that 

relaxes the separation between the trip and activity site (analog to utility levels or 

subjective wellbeing levels); and (2) it measures the desired activities and needs of a 

person during travel that often vary by individuals and between socio-demographic 

groups. Although the numbering scale is the same for all individuals, such a midfare 

score allows us to compare the differences among individuals and groups in a continuous 

spectrum. This leads to the practical advantage of this score that I can measure the overall 

benefit of in-vehicle activities rather than summing up probabilities predicted by a set of 
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models. Furthermore, 5" is more consistent with the concept of midfare that focuses on 

the extent to which a person translates in-vehicle activities into welfare (e.g., recreational 

activities that improve subjective well-being) or utility (e.g., productive activities), 

compared to the number of available in-vehicle activities and the increased welfare/utility 

due to activity participation. Despite the theoretical advantage of the midfare perspective, 

midfare gains of different activities may not be perfectly additive as in Equation (1), a 

limitation I should address in the future. 

3.3.3. Analytic Approach 

My analytical work includes three steps. First, I summarize discrete responses of in-

vehicle activity engagement—namely, “Highly Unlikely,” “Unlikely,” “Neutral,” 

“Likely,” and “Highly Likely,” — by their frequencies and counts. Second, I estimate in-

vehicle activity choice models to understand how people’s socioeconomic characteristics, 

attitudes toward driving and transportation technologies, place of residence, and travel 

contexts affect their potential in-vehicle activities. Since the outcome variable is 

categorical and has a meaningful sequential order indicating the likelihood of activity 

participation, I follow previous studies (Long et al., 2006) and estimate the activity 

choice models through the ordered logit regressions. Third, I calculate midfare gains 

based on the measurement developed in Section 3.2. and run linear regressions on the 

midfare score 5" against the personal, social, and spatial characteristics of commuters. I 

use the results from the models to assess the disparities of potential engagement in in-

vehicle activities between groups. The above analyses were conducted using the 

statistical software package Stata version 14 (Stata, 2015). 
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3.4. Results 

I present the estimated results in three parts. First, I describe a general overview 

concerning the type and potential engagement level of in-vehicle activities. Next, I 

present the estimated results from ordered logit regressions exploring the influencing 

factors of engaging in in-vehicle activities. Finally, I calculate midfare gains and compare 

the disparities across different groups. 

In Table 3.3, I present the descriptive analysis of engagement in in-vehicle activities 

for commuters in AVs and SAVs.  The results highlight that activity participation 

patterns are similar between AVs and SAVs. Overall, I find in-vehicle activity 

engagement is not as high as we would expect; around 40% to 50% of people expressed 

they were likely or highly likely to engage in activities, except for work. People are least 

likely to engage in working activities (approximately 25%), including productive work, 

formal activities, and study. The most preferred activity is communication, including 

phone, email, and etc.  

I then checked whether people who are likely to engage in in-vehicle activities are 

systematically different from those who are not using an imbalance check measure (L1) 

developed by Iacus et al. (2012). This measure summarizes the difference between the 

multivariate empirical distributions of the covariates for people who engage in in-vehicle 

activities and people who do not. This measure provides information on how much the 

two distributions of the two groups overlap, not just, as most other measures do, simply 

compare differences in means. Using this method, I find a telling pattern, which is that 

between people who are likely to engage in at least one in-vehicle activity and those who 
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do not, they are systematically different, as the multivariate imbalance measure shows 

more than 99% of the distributions are not overlapped between the two groups of people.  

This means that concerning the observables of the two groups, they are from two 

different populations in terms of socioeconomic characteristics, attitudes, residential 

contexts, and commuting patterns. Specifically, people who will not engage in any in-

vehicle activity fall into one or more following categories such as more than 55 years old, 

have less than $49,999 household income, do not enjoy driving at all, commute less than 

20 minutes, and live in city centers or rural areas. These results indicate that people may 

engage in in-vehicle activities differently depending on their characteristics and 

circumstances. I then turn to examine how those factors influence people’s potential 

engagement of in-vehicle activities using ordered logit regressions.  

 
 
Table 3.3 Percentages of Commuters Engaging in Each In-Vehicle Activity 

 
Communication Entertainment Work Household Info 

Search Others 
Likelihood Percentage Percentage Percentage Percentage Percentage Percentage 
AV：             
Highly 
Unlikely 

13.4% 20.6% 26.0% 20.3% 18.9% 22.3% 

Unlikely 11.6% 18.7% 24.3% 20.0% 17.7% 11.5% 
Neutral 17.9% 18.4% 23.8% 20.2% 20.0% 45.7% 
Likely 37.2% 29.3% 18.9% 30.5% 31.1% 13.9% 
Highly 
Likely 

19.9% 13.1% 7.0% 9.1% 12.3% 6.6% 
       

SAV：       

Highly 
Unlikely 

13.1% 15.8% 25.7% NA 17.9% 21.4% 

Unlikely 12.8% 14.9% 24.2% NA 17.8% 11.6% 
Neutral 19.6% 18.3% 24.5% NA 21.7% 45.6% 
Likely 36.0% 36.7% 18.5% NA 31.4% 14.4% 
Highly 
Likely 

18.6% 14.5% 7.0% NA 11.2% 7.1% 
       

Observations 1791 1791 1791 1791 1791 1791 
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Figures 3.4 and 3.5 present the results of the ordered logit regressions explaining the 

determinants of in-vehicle activity participation in AVs and SAVs. The plots are 

generated using the Stata package “coefplot” written by Jann (2014). In the two figures, 

blue dots represent the estimated coefficients, and blue lines across the dots represent the 

95% confidence intervals; the x-axis includes the corresponding values and signs for the 

coefficients and confidence intervals. There are 11 regressions in total. These 

regressions’ R-square values are around 0.4.  

I found that generally, in both AVs and SAVs, people are more likely to engage in in-

vehicle activities if they are younger, more affluent, well educated, have children in their 

household, and have longer commutes. I found that the sole factor of being male does not 

increase the likelihood of engaging in-vehicle activities. To illustrate the potential 

engagement of in-vehicle activities for different individuals, I consider a few examples. 

1. A person with a Bachelor’s degree is more likely to engage in communication 

activities in the AV than in the SAV. 

2. A person who lives in the suburb and commutes more than 60 minutes to work is 

more likely to engage in work, information search, and other activities, while a similar 

person will be likely to only engage in household activities if the commuting time is 

between 20 to 40 minutes. 

Paradoxically, people who more enjoy driving also are more likely to want to conduct 

in-vehicle activities and vice versa. This may be because the increasing features of 

automobile technology are powerful means of keeping people attached to their cars 

(Bijsterveld, 2010; Wells & Xenias, 2015). Therefore, it is reasonable to expect people 
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who enjoy driving will also enjoy improved in-vehicle space. With respect to differences 

between AV and SAV, AVs are more likely to meet the entertainment demands of men 

and provide opportunities for household activities during peak hours than SAVs, ceteris 

paribus.  
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Figure 3.4 Coefficients plot for estimated ordered logit regressions of in-vehicle activities: privately owned autonomous 
vehicles.  
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Figure 3.5 Coefficients plot for estimated ordered logit regressions of in-vehicle activities: shared autonomous vehicle
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To uncover possible complex patterns underlying the regression coefficients, I 

predicted midfare gains (!!) using a series of linear regressions for more granular 

population groups.  Midfare gains were calculated based on equation (1). Figure 3.6 

illustrates the midfare gains (!!) by participants of various groups with a focus on gender 

because the U.S. Bureau of Labor Statistics (2019) reveals that women face more time 

constraints in their daily lives. One unit increase in the predicted midfare gains indicates 

that people have a considerable increase in their likelihood (e.g., highly unlikely/unlikely 

/neutral to likely, or likely to highly likely) to engage in in-vehicle activities that can 

result in utility or welfare gains.   
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Panel A: Predicted midfare gains for in-vehicle activities in privately owned autonomous vehicles  
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Panel B: Predicted midfare gains for in-vehicle activities in shared autonomous vehicles

 
Figure 3.6 Predicted midfare gains in AVs (Panel A) and SAVs (Panel B) 
 
 
 

The midfare gains in AVs by engaging in in-vehicle activities decline as age increases, 

and the trend does not differ by gender, which is consistent with what I found from the 

ordered logit regressions. In those households with children, male commuters appear to 

have higher midfare gains, but the difference is not statistically significant. Both male 

and female commuters have larger midfare gains when they have longer commuting trips. 

In terms of spatial patterns, midfare gains tend to increase as residential locations move 

from urban areas to suburban areas and to rural areas, but only commuters in suburban 

areas present more statistically significant gains. The midfare gains in SAVs have similar 

trends with in AVs, but the maximum value is smaller partly because household activities 
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were not included as an option in the choice question for SAV. One difference is that 

female commuters have the largest midfare gains in SAVs if their trips are between 41 to 

60 minutes, in contrast to AVs trips lasting more than 60 minutes.  

Overall, I do not find substantial disparities in midfare gains between male and female, 

as I observed from the ordered logit regressions, but the marginal predictions reveal a 

noteworthy pattern that the midfare gains are not equally distributed within each gender 

group, depending on income levels, commuting times, and residential locations.  

3.5. Discussion and Conclusion  

In this study, I investigated how autonomous vehicles might transform what people do 

while on the move and how the changes might reflect the preferences and needs of 

specific groups of people. I have several conclusions from this study. First, I find that 

younger, more educated, and more affluent commuters are more likely to use and benefit 

from the in-vehicle activities. This finding supports the possibility that autonomous 

vehicles could improve people’s activity participation by providing in-vehicle activity 

opportunities. Among those people who engage in in-vehicle activities, most of them do 

not conduct productive activities that can generate monetary value, implying the changes 

in willingness to pay for travel time savings in autonomous vehicles may not be the more 

productive use of travel time. 

My second conclusion is that although autonomous vehicles can improve activity 

participation that was previously constrained by space and time, the effects vary between 

and within-population segments such as gender, age, education level, income level, 

commuting trip, and residential location. This finding supports the previous argument 
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that not only unequal access to new technologies but also the differentiated use of these 

technologies are linked to social inequality (DiMaggio et al., 2004). One noteworthy 

pattern that requires some discussion is that older respondents show less interest in 

engaging in in-vehicle activities. There might be two explanations. One is that older 

adults are more interested in independent mobility provided by autonomous vehicles 

rather than the capability of in-vehicle activities.3 The other explanation is that the elderly 

might find it difficult to envision participating in in-vehicle activity if they feel the 

development of autonomous vehicles is out of their control. I believe this explanation has 

important implications. In many cases, older adults may be the first adopters to new 

technologies (Peine et al., 2017); involving older populations in the development of 

autonomous vehicles could facilitate the coevolution of diffusion and innovation. Under 

the midfare perspective and space-time framework, I also argue that the differentiated use 

of in-vehicle activities can be personal preferences as well as socially produced 

constraints, which may be the reason why the disparities exist both between and within 

population groups.  

I conducted the analysis with the awareness that women generally face more time 

constraints than men, mostly attributing to committing more time to household 

responsibilities even if they are full-time workers (U.S. Bureau of Labor Statistics, 2019). 

Overall, there is no substantial difference in the midfare gains between men and women, 

but variations exist within gender groups. According to the Difference Principle (Rawls, 

 
3 This explanation is based on conversations with older adults during a few conference presentations. The 
authors did not find any evidence from the literature.  
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1971), such equal gains fail to address the inequity in activity participation between men 

and women, as the group that needs the most (i.e., women) fails to receive the most of the 

gains and thus the existing gap remains. The more challenging question is, then, whether 

engaging in in-vehicle activities would reinforce or exaggerate the current existing 

inequality in household responsibility, both of which have been observed in the effects of 

digital development on inequality (Wajcman, 2007). It is more likely that the existing gap 

will be reconfigured than alleviated if the development and design of the vehicles remain 

gender-neutral. 

This study makes two methodological contributions. I showcase the usefulness of 

combining the midfare perspective and space-time framework to measure the social 

effects of new transportation technologies. This unified framework allows us to capture 

dimensions of activity participation beyond accessibility to destinations, namely the fit of 

activities and capacity/willingness to take advantage of the transportation improvements. 

In addition, I demonstrate how the complexity of who benefits can be further explored 

using marginal predictions by different combinations of factors. These predictions allow 

us to examine the intertwined impacts of different socioeconomic factors that may be 

masked by overall effects (i.e., the Simpson’s paradox in statistical terms and the 

intersectionality in sociological terms). I recommend both of these methods as ways to 

acquire a more thorough understanding of transportation inequality underlying the 

development of new mobility options. 

Taken together, my findings demonstrate that autonomous vehicles have the potential 

to improve activity participation for the population as a whole, but such benefits are 
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neither equally distributed nor help to reduce the existing inequality with respect to 

activity participation and social inclusion. I suggest that policymakers explore the 

possibility of involving disadvantaged populations in terms of income level, age, and 

health status, and develop understandings of the quantity and quality of activity 

participation for those groups. This would not only inform the development of the future 

driverless system, but it could also help disadvantaged groups gain the technical 

knowledge necessary to access and use the new mobility technologies. 

3.6. Limitations and Future Research 

This study has limitations that should be considered when interpreting my findings for 

future research. First, I assume ubiquitous access to autonomous vehicles in a variety of 

ways, such as leasing, owning, and hiring. That is, the potential unequal access to 

autonomous vehicles is not considered in this study. Second, race and ethnicity are likely 

to play a role in the access and the use of new technology; the data do not account for 

this. Also, my analysis is based on a heteronormative understanding of households. It is 

not clear how autonomous vehicles might affect the power relationships in households 

with two male partners and two female partners. Future research should examine how the 

access and use of autonomous vehicles may vary in a more disperse context of social, 

racial, and economic groups. Third, my sample consists only of travelers in small and 

medium-sized metropolitan areas who go to work or school, and the activities take place 

during the commute. The analysis does show direct evidence on how autonomous 

vehicles affect overall activity participation. Future research should link the overall 

activities participation with the potential engagement in in-vehicle activities. 
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My efforts in developing the midfare measure were an initial attempt to define and 

operationalize an equity measure of transportation improvements. At this point, I 

acknowledge two limitations of this formula. First, I assume that the intervals between 

“Highly Likely,” “Likely,” and the other choices are equal, which may deflate or inflate 

the actual magnitudes of disparities but will not change the trend of the distributions 

across groups. There is virtually no theoretical or empirical guidance on how to measure 

midfare (Martens & Golub, 2012). I am not attempting to suggest that the measure used 

in this study can be applied to other studies. Second, although stated preference 

approaches may better assess people’s needs and desires, people are guessing what they 

can do in the autonomous vehicles in this study due to no real experience in the vehicle. 

Future studies might build upon what I have discussed on the convergence of the midfare 

perspective and space-time framework to develop further measures that reflect the 

meaning of accessibility to opportunities and activities as midfare. 
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4. HOW WOULD THE SPATIAL STRUCTURE OF CITIES CHANGE IF 

AUTONOMOUS VEHICLES WERE IN TOWN? 

4.1. Introduction 

The emergence of “the Age of Artificial Intelligence” is accompanied by expectations 

that automated/connected transportation technologies will once again alter urban space, 

where people ride hands-free along interconnected roadways into futuristic cities. Fully 

automated vehicles (AVs) may be years, if not decades, away, but they are among the 

most visible examples of the transition toward smart and connected urban systems. But 

the development of AVs led to hype, then skepticism, which spread across transportation 

researchers and urban planners.  

There is substantial evidence that transportation and communication technologies 

change the spatial structure of cities by reducing the costs of the movement of goods, 

people, and information (Baum-Snow, 2007; Baum-Snow et al., 2017; Ferrell, 2005; 

Ioannides et al., 2008; Mokhtarian et al., 2004). The disruption of autonomous vehicles 

has significant implications since many cities around the world have declining public 

transportation systems, follow a car-oriented development pattern, and suffer from traffic 

congestion. A distinctive theme is that ––aside from reducing travel costs that induce 

suburbanization––AVs may also reduce congestion costs that attract people moving into 

cities. These two opposite effects on the spatial development of cities make the effects of 

AVs on cities ambiguous.  

What are the implications of AVs for the urban spatial structure? What factors affected 

the spatial expansions in U.S. cities? And how, and what, policies may effectively ensure 
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more sustainable urban development in an era of rapidly advancing transportation 

technologies? Recent work on autonomous vehicles and urban spatial structure illustrates 

the uncertainty of potential futures. For instance, Zakharenko (2016) developed a model 

with endogenous locations of residence and work and found that increased AV 

availability increases worker welfare, commuting distance, and the size of cities. The 

effect of AVs on cities with mass transit will depend on how AVs compete with or 

complement mass transit. W. Larson and Zhao (2019) also predicted that the introduction 

of AVs coupled with ridesharing services increases welfare but may either lead to sprawl 

or increase density in different model settings. By considering cities across the United 

States, Rappaport (2016) predicted that autonomous vehicles may put upward pressure on 

the large cities and downward pressure on the small cities, as they increase the 

responsiveness of population to total factor productivity (TFP) through reducing driving 

burden and improving commuting efficiency. Rappaport concluded that traffic congestion 

proves to be the most critical force reducing the responsiveness of population to TFP. 

While their findings indicate autonomous vehicles will change the structure of cities, the 

changes vary by different sizes of cities and different parts in a city, largely depending on 

how the technology will be implemented.  

There are uncertainties indeed, and it also reminds us that the development of AVs is 

not yet settled (Stilgoe, 2018). As spatial economics theories predict, the spatial structure 

of the economy is determined by the balance between the advantage of population and 

economic activity density (agglomeration force) and the congestion or competition for 

resources (dispersion force) (Barkley et al., 1996; Henderson, 1974; Redding & Rossi-
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Hansberg, 2017). Such tension between the two forces depends on a range of factors, 

including production methods, institutional contexts, urban amenities, and transportation 

costs. Autonomous vehicles are likely to alter the parameters of these factors in multiple 

ways. Autonomous vehicles can make congestion more tolerable in central areas (Steck 

et al., 2018), reduce the level of congestion (van den Berg & Verhoef, 2016), and enable 

allocating more urban space for uses other than roads and parking (W. Zhang et al., 

2015), thus increasing the agglomeration. On the other hand, autonomous vehicles can 

increase vehicle miles traveled (VMT) (W. Zhang et al., 2018), exaggerate congestion 

(van den Berg & Verhoef, 2016), and compete with public transportation systems 

(Krueger et al., 2016), thus increasing the dispersion force.  

To move the debate forward, this study anticipates the future by looking back to the 

past. I estimate the effect of reductions in congestion costs and distance costs. My results 

suggest that autonomous vehicles may have induced greater urban expansion if they had 

been introduced to cities. 

I begin with a theoretical argument of how AVs will affect the balance between 

agglomeration and dispersion forces, with an emphasis on demystifying the effect of 

congestion on cities. Section 3 presents empirical strategies informed by the theories. 

Section 4 presents descriptive facts. Section 5 examines the spatial dynamics of 

metropolitan areas in the United States over the past decades by estimating the effects of 

shocks in the agglomeration and dispersion forces. As the future is full of uncertainty, 

Section 5 extends the analysis to examine the potential effect of autonomous vehicles if 
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they had been previously introduced to cities. Section 6 concludes and highlights a 

number of policy implications. 

4.2. Theoretical Development 

This section lays the groundwork for the empirical analysis and policy simulations and 

shows the theories and evidence of which changes in urban spatial structure should be 

modeled in a dynamic and interdependent setting. The theoretical framework, whose 

structure is presented in Figure 1, is related to a large body of theoretical literature on 

urban economics that stresses the tradeoffs between transportation costs and land rents, 

and to a broader literature on economic geography that explains that mechanisms for 

agglomerations. The synthesis of the mechanisms provides a fundamental theoretical 

explanation of the dynamic spatial structures of cities and highlights the interdependent 

relationship between transportation costs, public policies, agglomeration, and urban 

spatial structure.  

4.2.1. Agglomeration and Dispersion Forces 

In the process of urbanization, human settlement has been highly unevenly distributed 

over space in the form of cities and urban centers within cities. The spatial structure of 

city and cities themselves are determined by the relative strengths of the agglomeration 

forces (i.e., production and residential externalities) and dispersion forces (i.e., an 

inelastic supply of land and commuting costs) that underlie the uneven distribution of 

economic activities (Fujita & Ogawa, 1982; Lucas & Rossi–Hansberg, 2002). The two 

sets of forces are both with externalities—improved productivity due to spillover in 

production and better urban amenities for households producing the agglomerative 
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tendencies, and congestion or nuisance externalities due to higher density, in turn, 

limiting the size and density of the agglomerations. Since the land supply is inelastic, 

excessive congestion costs within the existing urban development may cause 

decentralization of firms and households to the urban periphery to pursue reductions in 

congestion and land costs, while facing lower productivity and fewer urban amenities 

(see Figure 4). An example of this is the two processes of population movements: the 

urbanization between 1870 and 1920 in the United States—that is, a striking increase of 

urban population lured by improved productivity in cities—and the ongoing 

decentralization since the 1950s—that is, people moving out from central districts to 

outlying areas to escape problems resulting from overcrowding.  

 
 

 
Figure 4.1 The theoretical model of the interdependent relationship between 
agglomeration forces, dispersion forces, and internal structure of the city
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Agglomeration and dispersion forces are both related to the surrounding density of 

workers and residents. Agglomeration forces take the form of production spillover and 

amenities, in addition to other fundamentals such as access to natural features. For 

example, empirical evidence by Schiff (2014) found that population size and population 

density have a substantial effect on consumption amenities, which is the amount of 

restaurant and cuisine variety in this case, in a city.4 In turn, driving by the agglomeration 

forces, the city’s population will grow until eventually exhausting scale economies from 

the concentrated population and employment.5 At the same time, dispersion forces (e.g., 

congestion costs) are also a function of surrounding density, technology level, and policy. 

The two forces and the interplay between them illustrate the basic insight that the urban 

spatial structure is determined by a trade-off between agglomeration effects and 

congestion costs.  

Several well-known debates on ideal urban form perfectly illustrate that excessive 

density can result in undesirable outcomes, depending on technology level and policy 

effectiveness.6  While the benefits of density are well documented Ewing (1997) and 

Ewing and Cervero (2017), a recent study compiles evidence on the costs of density 

related to congestion, health, and well-being and points out the importance of 

 
4 This research is related to theoretical work by Brueckner et al. (1999), Glaeser et al. (2001), and Ng 
(2008). The related empirical research has examined the demand for consumption amenity (Couture, 2013; 
Rappaport, 2008), historical amenity(Koster et al., 2014), natural amenity(Lee & Lin, 2017), and 
mobility(Couture et al., 2018), and its impact on urban spatial structure. 
5 See Anas (1988) and Anas (1992) for the explanation of the distribution of activity evolves over time. 
6 See the debates between Gordon and Richardson (1997) and Ewing (1997), and between Ewing and 
Cervero (2017) and Stevens (2017). Recently, Ewing et al. (2018)found empirical evidence that neighther 
support the idea of sprawl nor compact development as the pancena to traffic congestion. Also, Hall (1997) 
and Anas et al. (1998) provided a good review of related theories, empirical evidence, and discussions. 
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accompanying policy and technology intervention to minimize the costs associated with 

higher density (G. Ahlfeldt et al., 2018). As Hall (1997) suggested, the idea of 

compactness has “a small element of truth and a much larger element of myth,” therefore, 

understanding the relative strength of the agglomeration and dispersion forces underlying 

these debates is central to a range of planning questions. (Kasraian et al., 2016) 

Recent developments in quantitative spatial economics by Redding and Rossi-

Hansberg (2017) perhaps mark a huge leap in analyzing the two forces and undertaking 

counterfactual exercises. Along with this line of research, G. M. Ahlfeldt et al. (2015) 

explicitly estimated the agglomeration and dispersion forces and their effects on city 

structure changes by taking advantage of the division and reunification of Berlin as a 

natural experiment. Later, Brinkman (2016) developed a similar model but added 

congestion as a separate component to the transportation cost. The comparative statics 

from Brinkman’s study found that the positive effect on congestion costs of congestion 

pricing is offset by the loss of productivity due to the dispersion of employment. Before 

that, only a few studies concerned the simultaneity of the two forces. Among them, Anas 

and Kim (1996) first developed an equilibrium model with tradeoffs between 

agglomeration and accessibility. Combining discrete choice models and agent-based 

simulations, Waddell (2006) built the bidirectional influence of individual choices and 

neighborhood dynamics into the modeling process. 

4.2.2. Congestion and Urban Spatial Structure 

Transportation cost is a key delivery mechanism of infrastructure and mobility 

technology will affect the structure of cities. It consists of two components: a distance 
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cost and a congestion cost, taking the form of both money and time. Holding the spatial 

distribution of employment fixed, a reduction in distance cost reduces the relative value 

of living closer to the employment concentrations (i.e., induce decentralization), while a 

reduction in congestion costs increases the relative value of locating nearer the 

employment centers (i.e., induce densification).  

The literature on the effect of congestion presents mixed findings (e.g., Boarnet, 1997; 

Marshall & Dumbaugh, 2018; Sweet, 2011). For instance, Jin and Rafferty (2017) found 

that congestion is negatively associated with income growth and economic growth, but 

Sweet (2014) suggested that job growth is expected to be negatively affected only if at 

very high levels of congestion. This is not a surprise. Instead, the mixed findings 

demonstrate the nature of the congestion. It results from economic growth and inefficient 

infrastructure, and it tends to maintain equilibrium (Duranton & Turner, 2011). 

The process of reaching the equilibrium shapes the structure of cities (Barkley et al., 

1996; Proost & Thisse, 2019; Redding & Rossi-Hansberg, 2017). For example, Baum-

Snow et al. (2017) and Baum-Snow (2007) found that transportation infrastructure causes 

decreases in the central city population and employment in both the United States and 

China, while Duranton and Turner (2012) found a 10% increase in interstate highways 

causes about a 1.5%  increase in employment in U.S. metropolitan areas between 1984 

and 2004. The combined findings from the two sets of studies illustrate the agglomeration 

dynamics are linked together to give rise to decentralization and growth at different 

spatial levels, which may, in turn, induce secondary agglomerations (Garcia-López et al., 

2017; Helsley & Sullivan, 1991). Therefore, instead of focusing on one side of the 
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transportation and urban structure feedback cycle, researchers pointed out the need for 

bidirectional studies (Kasraian et al., 2016). 

While the spatial dynamics are well-informed by the theories, there remain some 

disconnections with the empirical studies. One factor contributing to the disconnections is 

that there are no good measures for the decomposed transportation costs: distance costs 

and congestion costs. In a study on urban expansion, Paulsen (2012) pointed out that 

congestion data provided by Texas A&M Transportation Institute (TTI) are admittedly 

poor proxies for distance costs, and per-mile distance costs should not differ across 

metropolitan areas, except for differences in gasoline prices. Using the congestion data 

from TTI, Spivey (2008) found a negative relationship between congestion and urban 

spatial sizes in a cross-sectional setting. However, in a longitudinal setting, congestion is 

expected to increase the urban spatial sizes, if transportation costs can be properly 

decomposed.  

To summarize, theories and empirical evidence discussed in the preceding paragraphs 

have the following implications. First, urban spatial expansion is the cause and 

consequence of the interactions between agglomeration and dispersion forces. Second, 

empirically, population and employment density can represent agglomeration forces; and 

dispersion forces can be represented by congestion costs and an inelastic supply of land. 

Third, autonomous vehicles can affect the balance between these agglomeration and 

dispersion forces through its effects on distance costs and congestion costs.  
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4.3. Empirical Strategies 

This section introduces my empirical strategies based on the theoretical framework. I 

begin with a spatial dynamic analysis examining the interdependent mechanisms between 

agglomeration forces, congestion, and urban land area underlying the urban spatial 

expansion process. Then, I decompose the contribution of each factor to spatial changes 

over time. Finally, I perform a counterfactual analysis to assess the effects of autonomous 

vehicles on urban expansion, answering the question of what would have happened if 

autonomous vehicles had previously been introduced to cities.  

4.3.1. Panel Vector Autoregressive Model 

The theoretical framework highlights the bidirectional dynamic nature of the distribution 

of economic activities. In particular, the reviewed theories and evidence imply that 

autonomous vehicles can affect agglomeration and dispersion forces by reducing distance 

cost and congestion cost and therefore influence urban spatial expansion. My approach to 

deal with the simultaneity of centripetal and centrifugal effects is borrowed from macro-

econometric literature that faces similar econometric problems. In this literature, the 

panel version of vector autoregressive (PVAR) models has been widely used in monetary 

policy and investment behavior (Assenmacher & Gerlach, 2008), supply of development 

aid (Gravier-Rymaszewska, 2012), and security economics (Drakos & Konstantinou, 

2014). Not until recently, the VAR models have been introduced to transportation 

analyses, especially with respect to transportation investment and economic and 

behavioral outcomes (G. M. Ahlfeldt et al., 2014; Melo et al., 2012; Pereira & Andraz, 

2012). A PVAR model consists of a system of equations that are estimated 
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simultaneously. Each variable in this system is explained by its own lags and lagged 

values of the other variables. The general form is given by: 

 

"!" =	%#&!," + %%"!,"&% +⋯+ %'"!,"&' + )*!," + +!," + ,!,"																																															(1) 

 

where "!"	is a (1×k) vector of urban spatial extent for city i in year t; *!,"	is a (1×l) vector 

of exogenous covariates; +!,"	and ,!,"	are (l×k) vectors of dependent variable-specific 

fixed-effects and idiosyncratic errors, respectively. The (k×k) matrices, %%	 … %', and 

the (l×k) matrix ) are parameters to be estimated, p denotes the number of lags and &!,"	is 

a vector of deterministic terms (linear trend, dummy or a constant) with the associated 

parameter matrix %#.  

Specifically, I estimated a system of equations to empirically approximate the multi-

lateral relationship between congestion(C), population (P), employment (E), and urban 

land supply (U). All variables are log transformed and identified over time using constant 

geographies (2010 MSA boundaries). As the geographical boundaries are constant, 

population and employment changes essentially capture their changes in density.  

 

1!," = 2% + &%%1!,"&% + &%(3!,"&% + &%)4!,"&% + &%*5!,"&% + +%!," + ,%!,"																										(2)                        

3!," = 2( + &(%1!,"&% + &((3!,"&% + &()4!,"&% + &(*5!,"&% + +(!," + ,(!,"																									(3)               

4!," = 2) + &)%1!,"&% + &)(3!,"&% + &))4!,"&% + &)*5!,"&% + +)!," + ,)!,"																									(4) 

5!," = 2* + &*%1!,"&% + &*(3!,"&% + &*)4!,"&% + &**5!,"&% + +*!," + ,*!,"																									(5) 
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The lagged values of agglomeration and dispersion forces (i.e., employment density, 

population density, and congestion) are included to capture the direct impact of their 

changes on urban extent, and the lagged values of urban extent are included to control the 

normal dynamics of urban growth. In theory, the three fundamental factors, employment 

density, population density, and congestion, can capture a significant degree of the 

socioeconomic variations (G. M. Ahlfeldt et al., 2015; Redding & Rossi-Hansberg, 

2017). 

The implementation of the PVAR follows Love and Zicchino (2006). PVAR 

estimation requires stationary variables. I used first difference for controlling the time-

invariant factors at the MSA level. The panel unit root tests developed by Im et al. (2003) 

were used to test the null hypothesis of all variables having a unit root. I suppose that the 

spatial changes, relocation of population and employment, and congestion do not respond 

to any contemporaneous shocks, only to lagged variables. This is because population 

migration and real estate markets take time to absorb and adjust to shocks (G. M. 

Ahlfeldt et al., 2014; Love & Zicchino, 2006).  To account for the time-to-build effects, I 

used the first to fifth lags of all variables as instruments, as the housing market takes 

around five years to adjust to regional shocks (Jean & Katz, 1992). Equations 2 to 5 were 

then estimated using a generalized method of moments (GMM) framework (Arellano & 

Bover, 1995). 

Next, I computed the impulse response functions to evaluate the reaction of one 

variable to the changes in another variable in the system, keeping all other variables 
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constant. For the identifying restriction, I adopted the following recursive ordering of 

causality: congestion (C), population (P), employment (E), and urban expansion (U). The 

identifying assumption is that the earlier the variables appear in the system, the more 

exogenous they are.  This is the usual convention to isolate shocks in the system, known 

as Choleski decomposition (see Hamilton, 1994, for details on impulse response 

functions). Also, I estimated forecast-error variance decompositions to evaluate how 

much the variation in one variable is explained by the shock to another variable, 

accumulated over time.   

A potential shortcoming of the PVAR analysis is that it assumes time-invariant causal 

mechanisms throughout the estimation period (Lucas, 1976). We would argue that the 

estimated causal structure is theoretically informed and the resulting findings should be 

interpreted under the theoretical framework. Also, my data only date back to the 1990s; 

since then, U.S. cities have continued auto-oriented development, implying that there 

have been no substantial changes in the urban growth mechanisms.  

4.3.2. Counterfactual Analysis 

With the understanding of the underlying mechanisms of the spatial dynamics, I seek to 

infer the counterfactual distribution of urban expansion that would prevail if autonomous 

vehicles had been introduced.  I use a counterfactual distributions approach developed by 

Chernozhukov et al. (2013) to answer this question. This approach generates 

counterfactual covariates by transforming observed covariates. It then integrates the 

conditional distributions estimated from the observed covariates over the counterfactual 

covariates to get the effect of a change in agglomeration and dispersion forces on the 
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marginal distribution of urban expansion. With this it can predict counterfactual marginal 

distributions such as the distribution of urban expansion in the past decade, given that 

congestion costs have had been reduced by the introduction of autonomous vehicles. The 

urban expansion can be described by the following function: 

:+!|-!(;|=)      (6) 

where ; is urban expansion conditional on dispersion and agglomeration forces =. The 

notation m denotes that outcomes and covariates are observed. Then counterfactual 

distribution can be obtained by changing the observed covariate distribution =.: 

*/ = >/(*.),					@ℎ,B,				>/:	=. →	=/ 		   (7) 

The counterfactual effect (CE) of changing the observed covariate distribution is then 

calculated as  :+!|-!(;|=) −	:+"|-"(;|=). Informed by the PVAR results, urban 

expansion (U) is estimated as a function of the past congestion (C), VMT (V), 

employment (E), and population (P). The state gas price (G) is also included to control 

cross-sectional variations, as the data in this exercise is not a panel structure. The 

function can be written as: 

5. = F'3.,"&% + F04.,"&% + F11.,"&% + F2G.,"&% + F3H.,"&%	 (8) 

The main counterfactual of interest is the distribution if congestion costs were affected 

by the introduction of autonomous vehicles.  The CE can have a causal interpretation as 

the changes in the covariate distribution is exogenous due to technological innovation 

(i.e., autonomous vehicles), under the assumption that autonomous vehicles do not affect 
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the underlying mechanisms of urban expansion. The CE can be computed at each 

quantile	I as  

∆(I) = 5.(I) − 5/(I)           (9) 

where the counterfactual population is obtained by sampling the observed population and 

setting the observed congestion levels to the value that it would take under different 

scenarios of autonomous vehicle deployment. 

4.4. Data and Summary Statistics  

4.4.1. Measuring Urban Spatial Changes 

Nighttime lights data and NLCD data are used to derive urban spatial structure using 

Google Earth Engine. As people light the places where they live and work, a growing 

number of economists have used the data to measure urban growth and decentralization 

(Baum-Snow et al., 2017; Gonzalez-Navarro & Turner, 2018; Henderson et al., 2012; 

Storeygard, 2016). Since the data were collected by different satellites over the years, I 

used an inter-calibrated version of the data by Q. Zhang et al. (2016) that allow 

longitudinal comparison. Each of these nighttime lights images is a composite of 30 arc 

cells and the value for each cell measures average light intensity ranging from 0-62 with 

63 used as a top-code. I measured urbanized area (light intensity > 31) within 2010 each 

MSA boundary from 1992 to 2012.7 The calculations were performed on Google Earth 

Engine. 

 
7 Dingel et al. (2019) measure urbanized area using a light intensity value of 30 and find that nighttime 
light areas are 80% consistent with MSAs in terms of land area. This is expected, as there are undeveloped 
land parcels within MSAs, and confirms that my selection of light intensity is robust to capture urban 
expansion within MSAs. 
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Using NLCD data to measure urban spatial chances is more straightforward. The data 

are classified into difference classes and include four levels of developed land: open 

space, low intensity, medium intensity, and high intensity. I calculate the total developed 

land by adding up the four levels of development within each MSA boundary for 2001, 

2006, 2011, and 2016. The calculations were performed on Google Earth Engine. 

4.4.2. Data 

My primary data are computed from two products of satellite imagery using Google 

Earth Engine, a cloud-based computing platform for geospatial analysis. The first product 

of satellite imagery is DMSP-OLS Nighttime Lights Time Series, which captures light 

intensities at night time on Earth and spans 1992 to 2013. The nighttime light data are 30 

arc second grids, which may not allow researchers to conduct research at a neighborhood 

level but only above city level. To exploit the decades-long nighttime light data, I use it 

to conduct urban spatial dynamic analysis from 1992 to 2013. The second product of 

satellite imagery National Land Cover Database (NLCD), which is based on Landsat 

satellite imagery and provides comparable data for 2001, 2004, 2006, 2008, 2011, 2013, 

and 2016. The resolution of the NLCD data is at 30-meter, which is a more accurate 

measure for urban expansion than nighttime lights. With the range and accuracy of the 

NLCD data, I use it to perform decomposition analyses of urban spatial changes from 

2001 to 2016 and construct counterfactuals of whether autonomous vehicles had been 

introduced at the beginning of 2000s.  

I also use the 2019 Mobility Scorecard Report produced by Texas A&M 

Transportation Institute (Schrank et al., 2019), to obtain congestion costs and populations 
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in each urban area from 1990 to 2016. The report contains a number of frequently cited 

indexes of traffic congestions for urbanized areas in the United States, which are widely 

used by researchers for transportation and urban studies (e.g., Sarzynski et al., 2006; 

Spivey, 2008). The data are available for 100 selected urbanized areas from 1982 to 2017 

and for all urban areas from 2014 to 2017. I also used other data describe natural 

amenities and socioeconomic characteristics of each MSA, which are obtained from 

Bureau of Labor Statistics, National Historical Geographic Information System, and Lee 

and Lin (2017), to test the robustness of the model. 

The units of analysis in this study are metropolitan statistical areas (MSAs) in the 

United States. The US Census Bureau defines an MSA as consisting of one or more 

urban centers with a high degree of social economic integration with adjacent 

communities (US Census Bureau, 2013). The MSA is the statistical analog to the 

theoretical model of urban expansion. The urban expansion, resulted from the interaction 

between agglomeration and dispersion forces in core urban areas, mainly occurs in the 

hinterland. The hinterland is the remaining parts of the MSA that are not in the core 

urban area.8 By linking urbanized areas (UAs) with metropolitan statistical areas (MSAs), 

I construct urban core (where agglomeration and dispersion forces interact) information 

in the MSAs (i.e., include both core area and hinterland). The 2010 MSA boundaries are 

used to in my data curation.  

 
8 This conceptual category for my model building follows the definitions used for analyzing intra-urban 
changes by Fenton (2013).  
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I select delayed hour per capita as the measurement for congestion costs and 

population density as the measurement for agglomeration forces. Since I keep the spatial 

boundaries consistent over the years, population size changes, in fact, measure the 

population density changes. 

4.5. Results 

4.5.1. Spatial Dynamics 

Table 4.1 presents the reduced form results of the PVAR model, including area lit, 

congestion, employment, and population. Overall, the results are in line with the 

interdependent relationship between agglomeration forces (population and employment) 

and dispersion force (land supply and congestion) as expected theoretically. Higher 

employment predicts smaller lit areas, while congestion, resulting from the tension 

between employment/population and land supply, predicts urban expansion. The negative 

coefficient of L.Area Lit indicates that metropolitan areas with larger areas lit tend to 

have smaller marginal growth. Also, employment and population were found to be co-

developing, mutually attracting each other. 
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Table 4.1 Estimated PVAR model for urban extent, congestion, population and 
employment 

(1) (2) (3) (4) 
VARIABLES Area Lit (log) Congestion (log) Population (log) Employment (log) 

L. Area Lit (log) -0.147*** -0.0166* -0.00409 -0.0991***
(0.0402) (0.00862) (0.00291) (0.0149)

L. Congestion (log) 0.530*** 0.624*** 0.0526*** 0.206***
(0.0742) (0.0335) (0.00850) (0.0386)

L. Population (log) 0.118 0.325*** 0.856*** 0.707***
(0.147) (0.0477) (0.0229) (0.0897)

L. Employment
(log) -0.138** 0.0404*** 0.00698* 0.272***

(0.0686) (0.0131) (0.00405) (0.0460)

Observations 1,900 1,900 1,900 1,900 
Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

The IRF displayed in Figure 4.2 allow a structural interpretation of the reduced form 

results of the PVAR model, as I note in the methodology section. Compared with the 

PVAR estimates above, the IRF allow for additional insights into the dynamic effects for 

shocks (one standard deviation increase) in a certain variable on the other variable. 

Translated into the research question, this becomes: What is the effect on the urban 

expansion of a surprise increase in the congestion, population, and employment for 

central areas of cities? 

The urban expansion response to congestion shocks (Panel A (1)) is significantly 

positive in the first few periods but eventually fade to almost no effect after the fifth 

period. As the urban area expands (Panel B (1)), congestion decreases in the first five 

periods but returns to nearly no effect after the fifth period. It is expected that expanded 
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infrastructure and land supply will induce congestion and return to equilibrium (Duranton 

& Turner, 2011). At the same time, the population responds negatively to congestion 

shock (Panel D (1)) in the first a few periods but eventually fade to almost no effect after 

the fifth period, while employment has a positive spike as a response to congestion shock 

(Panel C(1)) and remains positive with a small magnitude after the initial spike. The 

results agree with Osman et al. (2019) that congestion is a sign of economic vibrancy and 

increases the competition for commercial land use, thus displacing population to 

periphery locations.   

The urban expansion response to population shocks (Panel A (2)) is positive but not 

significant as the confidence intervals include zero. It turns significantly in the third 

period, indicating regional population growth along with the population growth in urban 

cores. On the contrary, the urban expansion response to employment shocks (Panel A (3)) 

is negative and moderately significant. Echoing the observations in Panel A, urban 

expansion shocks (Panel D (3)) have decreasingly positive effects on population in urban 

core areas and eventually turns to no effect. On the other hand, urban expansion shocks 

(Panel C (3)) have a strong negative effect on employment in central areas in the first 

period and the impact remains small and negative after the third period. Taken together, I 

conclude that employment plays a stronger role than population in influencing the spatial 

structures of cities over the study period.9  

 
9 Population can be more influencing in a different time period. For example, urban expansion started with 
the suburbanization of population. In this study, economic factors are considered at a macro dimension. 
However, in the early time, social factors such as racial discrimination and exclusionary financing and 
housing policies played an important role in suburbanization in the mid 1900s. 
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Panel A 

   
(1)                                                                    (2)                                                                    (3) 

Panel B 

  
(1)                                                                    (2)                                                                    (3) 

Panel C 
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(1)                                                                    (2)                                                                    (3) 

Panel D 

  
(1)                                                                    (2)                                                                    (3) 

Figure 4.2 Impulse responses.  IRF illustrate the effect of one standard deviation shock in log on the response variable in log
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4.5.2. Counterfactual Analysis 

In this section, I examine how autonomous vehicles might influence the spatial changes 

of cities if they had been introduced in the 2000s. Recall that transportation technologies 

and infrastructures affect the cost of commuting over an uncongested distance (i.e., 

distance costs) and also affect the cost due to the level of congestion.  

In an abstract way, changes in congestion costs and distance costs can represent the 

introduction of autonomous vehicles, analogous to the role of transportation parameters 

in Brinkman (2016). Without a doubt, autonomous vehicles can affect urban structure 

differently because of differences in mode choice, adoption rate, vehicle miles traveled, 

parking space, market share, and ownership (Faisal et al., 2019; Hawkins & Nurul 

Habib, 2019; Soteropoulos et al., 2019). However, from the perspective of spatial 

economics, those factors ultimately modify the parameters of the efficiency of the 

transportation system, namely, the congestion cost and the distance cost. As noted in 

Section 4.2, these two types of transportation costs have opposite effects on urban spatial 

structure (as shown in Figure 4.3). Based on Chapter 2 and Chapter 3 of this 

dissertation, we could expect that autonomous vehicles can reduce travel costs by 

providing in-vehicle activities and reducing driving demand. In Scenario 1, such 

reductions in travel costs naturally allow longer travel and thereby potentially encourage 

urban expansion. On the other hand, in Scenario 2, congestion, one key feature of urban 

living, might become less onerous due to the usage of autonomous vehicles. Thus, 

central areas of cities may expect a higher density. In reality, these two chained changes 
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coincide. Whether the net effect on people is to move farther away or choose to live in 

denser areas largely depends on individual preferences and the surrounded socio-

technical system. This ambiguity makes it difficult to predict the effect of autonomous 

vehicles on the urban structure under various autonomous vehicle deployment scenarios. 

Moreover, the future is not static. The existing simulation studies on the impact of 

autonomous vehicles on land use are likely to subject to the Lucas Critique that it is 

naïve to predict future changes based on estimated parameters from the past. Therefore, 

this counterfactual analysis has the advantage of just focusing on examining which of the 

two opposite effects could have dominated, given the historical context.  

 
 

 
Figure 4.3 Three hypothetical all-AV scenarios 

 
 
 
In this study, transportation parameters are assumed to not be affected by autonomous 

vehicles. That is, autonomous vehicles do not change how individuals and economies 

respond to transportation costs, but they can change the level of costs. I examine the 
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influence of autonomous vehicles on the spatial structure of cities in different scenarios 

by adjusting the congestion costs and distance costs, holding other variables constant. 

Three scenarios examined are described as follows: 

Scenario 1: Autonomous vehicles make per-mile distance cost less costly, thus 

induce more VMT, which is set to be 50% more VMT than the observed value. 

Employment, population, and congestion remain the same. 

Scenario 2:  Autonomous vehicles make congestion more tolerable in central 

areas, thus higher congestion level at equilibrium. Employment, population, and 

VMT remain the same. The counterfactual congestion level is set to be 50% 

more than the observed value. 

Scenario 3: Autonomous vehicles make congestion more tolerable and induce 

more VMT. Employment and population remain the same. The VMT and 

congestion level increase (i.e., reductions in per-mile/hour costs) at the same rate 

from 10% to 100%. 

In the three scenarios, employment and population are always kept constant. Therefore, 

the tradeoff between agglomeration and dispersion forces are manifested through the 

interaction of congestion costs (delayed hours), distance costs (VMT), and developed 

urban areas (built up land).   

Figure 4.4 presents the distribution of counterfactual changes of each scenario. The 

x-axis denotes the distribution of spatial size of metropolitan areas; the y-axis denotes 

the counterfactual changes (the difference between counterfactual urban expansion and 
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observed urban expansion). The results are fairly intuitive and theoretically expected in 

Scenario 1 and Scenario 2. The effects also appear to be monotonic with respect to the 

different sizes of cities. In Scenario 1, reduced per-mile distance costs lead to increased 

VMT. This represents the scenario in which agglomeration and productivity remain the 

same and competitive in the central areas. In this case, people are still willing to travel to 

central areas for higher productivity but also are able to live farther away for larger 

lower land prices, leading to urban expansion. This follows the fact that declining 

transportation costs have led to population suburbanization and employment 

decentralization in the last two centuries. On the other hand, in Scenario 2, reduced per-

hour congestion costs allow a higher level of congestion without a loss in productivity 

for the economy. Therefore, each unit of employment or population demands fewer land 

resources, reducing developed land areas for the city. That is, each unit of transportation 

infrastructures in the city can support higher density. 
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Figure 4.4 Spatial effects of reductions in transportation costs. Scenario 1: 
reduction in distance costs. Scenario 2: reduction in congestion costs.   
 
 
 

In the real world, the centrifugal effect in Scenario 1 and the centripetal effect in 

Scenario 2 most likely will occur at the same time. The relative extent of the two 

scenarios will determine the net effect of autonomous vehicles on spatial structure. To 

understand how the two effects might change the structure of the city, Scenario 3 tests 

the effect of reducing both distance and congestion costs. The results in Figure 4.5 

shows that the net effects are positive and around 0.15%. The positive net effects suggest 

that induced urban expansion would be the dominant effect if autonomous vehicles were 

introduced to the cities in the last two decades. 
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Figure 4.5 Spatial effects of simultaneous reductions in distance costs and 
congestion costs  
 
 
 

In Panel A of Figure 4.6, I show the net effect in Scenario 3 for given incremental 

changes in distance costs and congestion costs. At each level of reductions in the types 

of transportation costs, the net effect of the two forces is positive and significant, except 

that cities at the 10th and 20th quantiles are not significant. Smaller cities are expected to 

be less responsive to changes in transportation costs, as congestion is less prevalent in 

those areas. Such a net effect also increases as the reduction becomes larger. Overall, 

these results suggest that urban expansion would be the dominant effect if autonomous 

vehicles were introduced to the cities in the last two decades. 

In Panel B of Figure 4.6, the positive net effect is confirmed by using nighttime 

lights data, although with a larger magnitude. I do not expect the net effect to be very 

similar between using nighttime lights data and land cover data, as one measures the 
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spatial distribution of economic activities and the other measures physical structures of 

cities. Nighttime lights data are of interest as a check on the results from land cover data. 

The counterfactual effects using nighttime lights data confirm the positive effect of 

autonomous vehicles on urban expansion. The inconsistency between using nighttime 

lights data and land cover data lies in the lower quantiles. Nighttime lights are more 

responsive in smaller cities than land cover changes, which might because smaller cities 

have less capital to build new development or simply the less accuracy of nighttime 

lights data. I focus on results using land cover data which are the most reliable satellite 

data product. 
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(A) 

 
(B) 

Figure 4.6 Sensitivity tests for Scenario 3   
Note: (A) Counterfactual Effects of reductions in distance costs and congestion costs for 
given incremental changes; (B) Counterfactual analysis in Scenario 3 using nighttime 
lights data
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4.6. Conclusion 

Autonomous vehicles have emerged as one of the most anticipated technological 

developments over the last decade, which could reshape the structure of cities. In this 

chapter, I present the dynamics of urban spatial structure over the last three decades, 

resulting from the tension between agglomeration and dispersion forces. I also show that 

autonomous vehicles most likely would have induced more urban expansion (around 

0.15%) if they had been introduced to cities.  

What is the implication of a net effect of 0.15% on urban expansion? Urban 

expansion rate in the US is about 0.33% since 1973 (Melillo et al., 2014). The 

cumulative impact of this expansion rate is significant and the resulted urban expansion 

is roughly equivalent to total land area of California and Oregon (Loveland et al., 2012). 

And the net effect of 0.15% indicate that the introduction of autonomous vehicles could 

accelerate the expansion rate by 50%. Thus, the net effect of 0.15% is environmentally 

significant, as urban areas only occupy 5% of the land but generate 80% of human-

caused greenhouse gas emissions (Reidmiller et al., 2017).  

It is important to note that this study only considers the changes in transportation 

technologies. No structural changes in policies, economy, and social norms are taken 

into consideration, but these factors may substantially affect the prediction of the net 

effects of autonomous vehicles in the future. For example, younger generations may be 

more adaptable to urban living, sharing vehicles and rides, and taking public 

transportation in the future, which will amplify the centrifugal effect of reduced 
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congestion costs.  In addition, changes in transportation costs may have a different 

magnitude of effect on VMT than congestion, which is not differentiated here. Most 

likely, people will be more responsive to changes in congestion costs than distance costs. 

Because congestion costs are associated with many perceived conditions, such as sense 

of control (Schaeffer et al., 1988) and predictability of the trip (Kluger, 1998), which 

would largely determine people’s commuting behavior and residential location choices.  

By constructing the counterfactual scenarios of the past, I am able to characterize the 

effects of the changes in transportation technologies, as the broader context of social, 

economic, and political structures has settled. My data (2001–2016) reflect a period of a 

growing trend toward moving back to central cities for the first time since the 1950s 

(Couture & Handbury, 2015).  Most alarming, perhaps, is that significant urban 

expansions are found in almost all levels of changes in transportation costs in Scenario 3 

during this time period. This finding should warn us that autonomous vehicles will most 

likely lead to greater urban expansion if we taking a laissez-faire approach toward this 

new technology. On this front, we may find it difficult to know how to act in a situation 

of great and many uncertainties (T. Cohen & Cavoli, 2019), as we do not know how 

individual preferences and values, regulations, and economies will shift. But the 

advantage of looking back to the historical trend is that we do know urban development 

still favored automobility and suburbanization, resulting from individual preferences as 

well as the broader socioeconomic context. 
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The development of transportation technologies has played an important role in the 

spatial development of cities over the past two centuries. It reshapes, and is shaped by, 

the locational choices and movement of people, economic activities, and information. 

This chapter contributes to the debate whether autonomous vehicles will lead to urban 

sprawl or increase the capacity of cities for compact development by examining the 

spatial dynamics and counterfactual scenarios of the past urban development. Future 

scenarios studies can build upon this study and examine the potential consequences of 

structural changes to provide policy tools to guide the development of autonomous 

vehicles. 
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5. CONCLUSIONS  

5.1. Recap 

Recall the questions motivating this research, will autonomous vehicles change 

commuters’ value of travel time? Can autonomous vehicles fulfill the purpose of 

reducing the gap in activity participation between men and women? Will autonomous 

vehicles induce more urban expansion?  

I started my inquiry into these questions with a stated choice experiment, eliciting 

how commuters will trade off time and money differently with the availability of 

autonomous vehicles. In a choice experiment, the time and monetary costs are included 

as attributes in the experimental design. Choice tasks are also defined by whether 

respondents need to share the ride and whether they can engage in in-vehicle activities. 

In Chapter 2, the results of the choice experiment suggest that autonomous vehicles 

reduce the perceived travel time costs to no small extent (around 20%). But who benefits 

more? The reductions also exhibit spatial heterogeneity, where suburban commuters 

appear to have the greatest benefits of reduced travel time costs, followed by their urban 

and suburban counterparts. However, only a small portion of the commuters prefer 

autonomous vehicles for their trips, which could temper the broader effects of 

autonomous vehicles on transportation systems. 

Despite the significance of understanding the spatial heterogeneity in behavioral 

effects, it is not surprising that AVs can reduce the perceived travel time costs. The more 

salient question regarding this technology is whether it helps to fulfill our visions of 

what cities should be. Therefore, in Chapter 3, drawing on distributive justice theories, I 
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explored the equity implications of AVs for time use and activity participation. 

Specifically, I examined whether in-vehicle activities in autonomous vehicles reduce the 

daily activity participation gap between men and women ─ a distributional injustice. By 

enabling more possibilities of in-vehicle activities than what people can do in existing 

transportation options, autonomous vehicles become a space for daily activities on the 

move, thus producing disposable time beyond the trip. Yet, the production of disposable 

time could be experienced differently, as daily needs vary across different groups of 

people. Using a concept of “midfare,” which captures the extent to which people can 

translate opportunities (i.e., in-vehicle activities) into welfare, I estimated a choice model 

examining the likelihood of potential engagement of in-vehicle activities, conditioning 

on individuals’ characteristics and contexts associated with their trips and residential 

locations. I found that people are generally willing to conduct in-vehicle activities when 

riding in autonomous vehicles, especially commuters who live in suburban areas and 

have longer trips. Unfortunately, male and female commuters do not differ in the 

potential engagement of in-vehicle activities; thus, the gap of daily activity participation 

persists, given that female workers face disproportionally more time poverty in society 

(Beebeejaun, 2017).    

As planners and researchers debate and investigate the effect on urban structures in 

the future, many uncertainties associated with the predictions simply cannot be 

addressed by better data and more advanced methods. Instead, in Chapter 4, I looked 

back into the spatial changes over the last three decades in the United States. Then, I 

constructed counterfactual scenarios in which autonomous vehicles had been introduced 
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into our cities. By doing so, structural changes (the Lucas Critique) are less of a threat 

for the analysis, as the broad social, economic, and political contexts in the past are 

known to researchers. The results of the study empirically demonstrate how urban 

expansion has resulted from the tension between agglomeration and congestion. More 

importantly, the counterfactual analysis suggests that autonomous vehicles would have 

induced more urban expansion in all scenarios, in which re-urbanization in central cities 

was a prevalent trend. Yet, one caveat is that: the impact on urban structures might not 

be substantial if the future market share of autonomous vehicles is small.  

5.2. Technology, Planning, and Future Research 

Technological advances and planning are both ongoing attempts to bring the world to the 

way one wishes it to be. Indeed, over the last two centuries, when humans started to 

urbanize themselves after the Industrial Revolution, technologies have been successful at 

raising the standard of urban living and improving individuals’ prosperity. In most 

developed countries, people now can live longer, move faster, access better food, and 

achieve more goals. To be sure, there are millions of people still struggle along on the 

verge of famine, epidemics, and other lagged conditions, partially as a result of uneven 

access to technologies. 

On the other hand, people could be living in a better world. A wave of obesity and 

chronic diseases, traffic congestion and crashes, and extreme events caused by climate 

change is sweeping across cities globally. These issues are new and did not emerge or 

explode in prevalence until the 1800s when technologies became the primary mode of 

production.   
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Planning has then emerged as a response to the externalities of technological 

advances and urbanization. At this time, AVs could clearly lead to various effects on 

people and cities, but not all effects are positive. From the urban planning perspective, I 

discuss implications of this research for the full introduction of AVs to the market and 

consider how policy and technological changes can improve the quality of urban living 

and ensure a transition toward equitable, sustainable, and healthy mobility systems and 

cities in the future. 

Improving Rural Mobility 

One of the promising benefits of AVs is to serve rural communities. As discussed in 

Chapter 2, rural commuters show the highest interest in adopting AVs. Different from 

large urban areas that proved to be better served by public transportation systems, rural 

areas, due to their small population and slim capital, are struggling to provide public 

transportation services to their residents. Moreover, rural areas lack sidewalks and have 

longer trip distances to destinations, making it challenging to choose walking and biking 

as travel options (Glasgow & Blakely, 2000). Thus, access to cars is essential for 

mobility in rural areas. AVs have the potential to provide the same level of service as 

private cars in rural areas and be more environmentally friendly if being operated as 

shared autonomous buses. There are several benefits to this type of AV service. First, it 

can fulfill a large portion of unmet travel needs, especially for older people and children 

who cannot drive (Luiu et al., 2017). Second, it can provide a space for social interaction 

and combat isolation, particularly in a rural context where people tend to know each 

other (Glasgow & Blakely, 2000; Shergold et al., 2012). Third, it is cheaper for local 
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governments to provide such services, as the labor costs are eliminated. The discourse 

revolved around AVs has been largely focusing on metropolitan areas (Freemark et al., 

2019; Guerra, 2015). I argue that scholars and planners need to pay more attention to 

what unmet travel needs AVs can fulfill in rural areas and how to deliver the services. 

Just Transitioning 

Changes driven by technological advances produce inequalities or exaggerate existing 

ones. As I discussed the distributional effect of in-vehicle activities in Chapter 3, AVs 

fail to level the playing ground for women, who suffer more time constraints than men. 

On the contrary, commuting time in AVs might extend women’s unpaid household labor 

if the structural gender inequality persists.  

The distributive injustice of in-vehicle activity benefits is also closely related to both 

recognitional and procedural injustice. Technological development is a collective 

process of humans, but not everyone is equally involved in the process. For example, as 

the technology industries are male-dominated (Bærenholdt, 2013; Misa, 2010; Wajcman, 

2002), women have been long marginalized in the process of technological development, 

resulting in their values and preferences not being recognized, and vice versa. As such, 

the ongoing development of autonomous vehicles might continue to marginalize not 

only women but also other disadvantaged groups such as older adults, disabled people, 

and children. 

Planners do not have a loud voice in designing and developing technologies, 

compared to global technology and car companies with significantly more financial and 

intellectual resources. However, planners are in a unique position of power, with citizen 
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engagement approaches, planning regulations, and pricing schemes in their toolbox. 

Planners need to enable AVs to serve the public interest and ensure the benefits of AVs 

to be equitably distributed. In light of the wicked problem nature of AV development, 

engaging diverse groups of the population is critical to identify what would be the public 

interest and the distribution of effects at each stage of AV development (Hopkins & 

Schwanen, 2018; L. Reardon, 2018). The within-group difference of women in Chapter 

3 also highlights the importance of recognizing the intersections of various 

characteristics of people when engaging people of diverse backgrounds. The 

intersections pose seemingly infeasible actions but, in turn, necessitate citizen 

engagement in technological development. 

Apart from the marginalized groups in technological development, I also contend that 

the capitalist system might be the root cause of inequalities. The capitalist system 

constructs and translates individuals’ wants, needs, and desires into consumer demands 

(choices) that realize the profit-making process (Harvey, 2017).  The resulting social and 

spatial inequalities have been well documented, for example, in digital development 

(Parayil, 2005; Pfohl, 2005), car development (Lutz, 2014), and suburban living (Wei, 

2015).  I see the development of AVs as a means for capitalists to once again construct 

individual desires for capital accumulation, continuing and perhaps even amplifying the 

trend of an auto-dominated culture that is high in carbon and high in cost. The future 

world will require more cars. However, more people are being excluded from the 

transportation system, as the system becomes more mobile (Kenyon, 2003). Without 

radical transformations of the capitalist system, there will be only remedial measures. 
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Responding to Climate Change 

Urban expansion is inevitable. It affects climate processes at all geographical levels and 

influence cities’ vulnerability to the effects of climate change. There is a pressing need 

to ensure urban areas to expand sustainably, as the world becomes increasingly warmer 

and urban. In Chapter 4, the counterfactual analysis shows that AVs would induce more 

urban expansion under most of the scenarios if they had been introduced to our cities. 

Although AVs may increase the efficiency of the economy, such as supporting a higher 

level of agglomeration, the benefits are most likely at the cost of environmental losses if 

cities continue expanding at the historical rate. For example, urban expansion has been 

the primary reason for the loss of forests in the Northeast and Southwest over the past 

few decades within the United States (Melillo et al., 2014).  

Do we have to choose between economic growth and natural preservation during the 

ongoing technological development? If yes, I would argue that we should preserve 

nature for generations. However, it is not necessarily a binary choice. First of all, climate 

change and economic growth are interconnected. Climate-related extreme events disrupt 

the economy, damage infrastructure, and reduce labor productivity. Without mitigation 

and adaption efforts, the climate-related economic losses are expected to be more than 

the current gross domestic product of many US states (Reidmiller et al., 2017). Second, 

AVs can be used to curb urban expansion by reducing congestion and charging VMTs. I 

show that the reason why AVs induce more urban expansion is because of the dominant 

effect of reduction in distance costs. As such, AVs can have the flexibility of pricing 

vehicle usage by distance, which is one of the features of mobility as a service. With the 
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increased distance costs and reduced congestion costs in cities, we can expect a smaller 

scale of urban expansion, and the amount of expansion can support more population than 

without intervention efforts. Also, the development of AVs may promote the adoption of 

cleaner energy, as they are expected to be fully electric. Taken together, AVs offer an 

opportunity to transform our cities to be more efficient and sustainable, if coupled with a 

package of interventions on congestion, private car ownership, and VMTs. 

However, we must not treat technological changes as a silver bullet for addressing 

climate change. Equally important is that it requires a critical mass for AV technologies 

to have an impact. In Chapter 2, I show that a fairly small percentage of people would 

choose AVs for commuting. If such a low adoption rate remains for a long time, the 

effects of AVs will be subtle, and investments in technological development and 

infrastructure for AVs are not cost-effective. As we have witnessed, many of the 

expected effects of information and communication technology do not come true, 

because they made simplistic assumptions about the technology and ignored the social 

effects, such as cultural changes, alternative technological futures, co-evolution of 

technology and society, social needs, and technical barriers (Geels & Smit, 2000). These 

neglected aspects can all apply to the imaginations of autonomous futures, which may 

never come true. Nonetheless, telecommunications still substitute and complement 

physical travels to a large extent, augmenting the communicating capacity of our society. 

There is no doubt that AVs can play a role in future cities the way telecommunications 

do today. 
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Apart from providing technological solutions, AVs also inspire us to rethink our 

transportation systems and cities. Many of the anticipated transformations in the 

transportation system, such as sharing cars/rides and moving to denser areas, are not 

necessarily technology-focused. Instead, the transformations are changes in our 

mentalities and lifestyles rather than in technologies. Recently, Creutzig et al. (2016) 

highlighted this type of change as demand-side solutions, which include behavioral 

(norms and habits) and infrastructural changes (the built environment). The demand-side 

solutions challenge us to ask: What communities do we value and plan for? Planners do 

not plan for AVs nor prepare for AVs. We must define and shape the development of 

AVs to meet our planning goals. Planners can determine whether and how AVs can play 

a role in the transformations. For them to be effective, these transformations may 

manifest across social, environmental, mental, and technological ecologies (Bissell, 

2018; Guattari, 2015). Thus, a transdisciplinary approach and citizen engagement are 

critical to identifying the role of AVs for them to be optimally used, as planners cannot 

create communities alone. 

Future Research 

Overall, the analyses presented in this dissertation inform us that the effect of 

autonomous vehicles on travel choices is modest, socially differentiated, and location-

specific. Even so, my counterfactual analysis demonstrates that AVs can aggravate urban 

expansion if there are no proactive policies in place.  There are a few directions that 

future research can take to engage the future and to proactively design policies. 
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Future research should build an interdisciplinary framework to tackle analytical and 

methodological problems pertaining to emerging technologies and cities. It links the 

planning research to other relevant realms of inquiry, such as political economy. In 

doing so, it builds data collection and data analysis that can capture the multilevel and 

cross-classified nature of the impact presented by new technologies. For example, in 

Chapter 2, the analysis is a neoclassical study that builds on the assumption of utility 

maximization in microeconomics. In addition to theories that challenge the assumption 

of utility maximization, travel choices are natural but naturalized by the capitalist system 

(Obeng-Odoom, 2016). Consequently, a utility-based analysis of travel choices ignores 

the broader structures beyond the local built, social, and political environment where 

individuals reside. Ignoring that auto-dependent behavior and development are 

naturalized by the broader structures and not natural, we might neglect the possibilities 

of structural changes. This is by no means to diminish the value of microeconomic 

analysis, but future research should incorporate the political economy of travel behaviors 

into their inquiry when it is feasible or necessary. 

In this research, I minimize the so-called ‘Lucas critique’ of economic analysis in 

Chapter 4 by examining counterfactual scenarios of the past. Lucas’s point is that 

empirical relationships can change and thus make predicting models useless. By looking 

back into history, my simulated introduction of AVs will not alter the underlying 

structure of data that my model was based on, so the counterfactual results are relatively 

robust. However, when predicting the future, the anticipation of AVs is very likely to 

alter the underlying mechanisms of travel behaviors and urban development. Specific 
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examples of the alteration can be changes in collective habits and different urban 

policies. As the empirical equations change, static models based on empirical data 

significantly lose their predicting power. In this case, the increasing emphasis on big 

data and machine learning techniques simply do improve our capability of managing 

future uncertainties. On the contrary, the explosion of data and technologies may make 

the models and theories derived from the past even less relevant to present and future—a 

wicked problem. 

Future research should endeavor to develop planning frameworks that can effectively 

engage the future. First, these frameworks should accommodate two types of 

uncertainties: epistemological uncertainty and ontological uncertainty (Derbyshire, 

2019). Epistemological uncertainty describes unknown and bounded knowledge, reality, 

and future possibilities; it can be addressed through better data and modeling techniques. 

In contrast, ontological uncertainty focuses on unknown unknowns, which make data 

and methods less useful in policymaking. Derbyshire (2019) pointed out that the 

ontological uncertainties may be a source of social transformation, rather than just 

analysis barriers. This argument echoes Bissell (2018) that we should not ignore the 

creativity of humans and the potential new forms of everyday life, where 

transformational changes could take place. Derbyshire recommends an approach that can 

link computational methods to scenario planning to assist in framing the future by 

presenting a manageable range of potential futures after a process of variation and 

elimination. Such an approach helps in governing the disruption of emerging 
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technologies through scenario building and demonstrates how the so-called wicked 

problem can, to some extent, be addressed in planning. 
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APPENDIX A 

SURVEY QUESTIONNAIRE 

A. Recent Trip Information 
 

Please tell us about your most recent one-way Commuting (to or from work or school) trip by 
personal vehicles (car/ SUV/ pick-up truck/ motorcycle).  

 
1. What time of day was this trip __________?  

  
 
2. Were you the driver or a passenger on this trip? 

¨ Driver 
¨ Passenger 

 
  

3. How long was the trip (in miles)? 
__________________ miles 
 

4. How long was the trip (time spent in the vehicle including the stops – in minutes)? 
 
__________________ minutes 

 

B. Awareness 

5. Are you familiar with ride-sharing services, such as Uber, Lyft? 
¨ No         

¨ Yes 

 

6. Are you familiar with car-renting services, such as ZipCar, Car2Go? 
¨ No         

¨ Yes 

 
 

7. Do you use a smartphone? 
¨ No         

¨ Yes 
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8. Do you enjoy driving? 

¨ Yes, a 
lot 

¨ Yes, a 
little 

¨ Neutral ¨ No, not 
really 

¨ No, I 
really 
dislike 
driving 

 
9. Have you heard of the following?  
Type of vehicles  YES NO 
Connected vehicles o o 
Driverless / Autonomous / Self-driving vehicles o o 

 
 

C. Choice Tasks 

For this section, we will ask you to choose between different travel options.  Travel options will 
vary by travel time, cost, and mode. Travel time is the time one spends in the vehicle. Cost 
includes gasoline cost, parking fees, tolls, and bus or taxi fares (if any).  

 

 

 

10. For the recent trip you made (described in the early part of survey), imagine you 
are driving a vehicle that is receiving traffic information from other vehicles on the 
road.  What would you do if: 
A) You see no congestion on the road but your vehicle warns that there is congestion ahead 

in 2 miles. It estimates a XX minute trip if you stay on your current road, or a XX 
minute trip on a different road. 

 
How likely would you be to switch to the new road? 
¨ I would take the new road  

¨ I would likely take the new road 

¨ I am unsure 

¨ I would probably not take the new road 

¨ I would definitely not take the new road 

 
 

C.1 Travel by Connected Vehicle: A connected vehicle is a car that can communicate with other 
connected vehicles.  It can provide the driver instant information about traffic conditions and possible 
road blockages.   
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B) You see some congestion on the road ahead and your vehicle warns that there is 
congestion ahead.  It estimates a XX minute trip if you stay on your current road, or a XX 
minute trip on a different road.  

Now that you can see some congestion, how likely would you be to switch to the 
new road? 
¨ I would take the new road  

¨ I would likely take the new road 

¨ I am unsure 

¨ I would probably not take the new road 

¨ I would definitely not take the new road 

 

 

 

 
 
 
 

11. Suppose you are traveling in a driverless vehicle, would you do following activities?  
Not 
Likely 

Less 
Likely 

Neutral Moderate 
likely 

Very 
likely 

Communicating: with others in vehicle, by 
phone, email, etc. 

1 2 3 4 5 

Entertainment/recreation: resting, reading, 
hobbies, TV, exercise, etc.  

1 2 3 4 5 

Formal: paid work, education, religious 
activity, etc. 

1 2 3 4 5 

Household/personal: eating/drinking, 
prepare meal, personal care, etc. 

1 2 3 4 5 

Information search: online shopping, 
Journey information, employment 
information, etc. 

1 2 3 4 5 

Other/personal 1 2 3 4 5 
 

C.2 Travel by Driverless Vehicles You will now be asked about traveling in a driverless (or automated) 
vehicle. In a driverless vehicle, all driving tasks are completely automated and you only need to tell the 
vehicle where to go. Theoretically, driverless vehicles do not crash.  You can do things like sleep, read, 
watch TV, maybe even exercise while the vehicle takes you to your destination.  You can either own a 
driverless vehicle or request a shared driverless vehicle (like Uber) that may pick up other passengers 
during the trip (waiting time for a shared driverless vehicle is not counted here).  
 
 



 

 

 

128 

12. You described your most recent trip to or from work or school in the early part of this 
survey. Imagine you are conducting a similar trip with your most recent trip to or from 
work or school.  Please compare the following three travel options, and then make your 
choices. 
 

Game One 
Regular 

Vehicle (your 
current 
vehicle) 

Driverless 
Vehicle You 

Own 

Shared Driverless 
Vehicle You 

Request (like Uber) 

Travel time (minutes) X X X 
Travel cost $X $X $X 

Which option would you choose? ݗ� �ݗ �ݗ
If you could only choose between the two new options, 
which option would you choose?   ݗ� �ݗ

 

Game Two 

Regular 
Vehicle (your 

current 
vehicle) 

Driverless 
Vehicle You 

Own 

Shared Driverless 
Vehicle You Request 

(like Uber) 

Travel time (minutes) X X X 
Travel cost $X $X $X 

Which option would you choose? ݗ� �ݗ �ݗ
If you could only choose between the two new options, 
which option would you choose? �� �ݗ �ݗ

 

Game Three 

Regular 
Vehicle (your 

current 
vehicle) 

Driverless 
Vehicle You 

Own 

Shared Driverless 
Vehicle You Request 

(like Uber) 

Travel time (minutes) X X X 
Travel cost $X $X $X 

Which option would you choose? ݗ� �ݗ �ݗ

If you could only choose between the two new options, 
which option would you choose? �� �ݗ �ݗ

 

Game Four 
Regular 

Vehicle (your 
current 
vehicle) 

Driverless 
Vehicle You 

Own 

Shared Driverless 
Vehicle You Request 

(like Uber) 

Travel time (minutes) X X X 
Travel cost $X $X $X 

Which option would you choose? ݗ� �ݗ �ݗ
If you could only choose between the two new options, 
which option would you choose? �� �ݗ �ݗ

 

13. If there are driverless vehicles in the traffic, how comfortable would you feel about 
driving your own regular car? 
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¨ Very comfortable 
¨ Moderately comfortable 
¨ Neutral 
¨ A little uncomfortable  
¨ Not comfortable at all 

 
14. If the annual cost of ownership and use of a driverless vehicle is same as that of a 

regular car, would you be willing to buy a driverless car? 
¨ Yes  
¨ No 
 

15. If you need a vehicle for making daily trips and the cost of a driverless vehicle is the 
same as the cost of a regular vehicle, which would you prefer? 
¨ Owning a regular vehicle 
¨ Owning a driverless vehicle 
¨ Renting a driverless vehicle (for as little as 1 trip, or for weeks) 
¨ Using a SHARED driverless vehicle service with other passengers (like Uber or Lyft) 

 
 

D. Socioeconomic Characteristics 

16. What is your gender? 
¨ Male    
¨ Female 
¨ Prefer not to answer   

 
17. What is your current level of employment? Please select choices that best describe you. 

¨ Employed full-time 
¨ Employed part-time 
¨ Not currently employed 
¨ Retired 
¨ Student 
 

18. If you are employed, where is your primary work location? 
¨ At home 

¨ NOT at home 

¨ N/A (e.g. retired; not currently employed; student) 

 
19. What is your age?    

¨ Between 18 and 24 years old 

¨ Between 25 and 34 years old 

¨ Between 35 and 44 years old 
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¨ Between 45 and 54 years old 

¨ Between 55 and 64 years old 

¨ More than 65 years old 

 
 
20. Including yourself, how many people live in your household? 

¨ 1 person 
¨ 2 persons 
¨ 3 persons 
¨ 4 persons 
¨ More than 4 persons (please specify the number)____________________ 
 

21. How many household members are less than 16 years old?  
¨ 0 people 
¨ 1 person 
¨ 2 people 
¨ 3 people 
¨ More than 3 people (please specify the number)____________________ 

 
22. What is the highest level of education that you have completed?  

¨ Less than high school ¨ High School Graduate (includes 
equivalency) 

¨ Some college ¨ Bachelor's degree 
¨ Master's degree ¨ Professional school degree 
¨ Doctorate degree  

 
23. Which of the following ranges define the total annual income of your household in 

2016? 
¨ Less than $24,999 

¨ Between $25,000 and $49,999 

¨ Between $50,000 and $74,999 

¨ Between $75,000 and $99,999 

¨ Between $100,000 and $199,999 

¨ $200,000 or more 

 
24. How do you describe your place of living? 

¨ Central city  
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¨ Urban area outside the central city 

¨ Suburb 

¨ Rural 
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APPENDIX B 

GENERATING EFFICIENT EXPERIMENTAL DESIGN IN NGENE 

Design 
;alts(small)= nv,sav,av 
;alts(medium) = nv, sav, av 
;alts(large) = nv, sav, av 
;alts(xlarge) = nv, sav, av 
 
;rows = 12 
;eff = fish(mnl,d) 
;rdraws=gauss(3) 
;bdraws=gauss(3) 
;rep = 1000 
 
;fisher(fish) = design1(small[0.60], medium[0.35], large[0.03], xlarge[0.02]) 
 
;model(small): 
U(nv) = c0[-1.5] +b1[n, (n, -0.2,0.1),(u,0.1,0.3)] * A.ref[1.5] + b2[n,(n,-
0.045,0.3),(u,0.1,0.3)]  * B.ref[16]          / 
U(sav) = c1[-0.76] +b1 * A.piv[1.5,1,0.5]  + b2 * B.piv[3,5,7] / 
U(av) =          b1 * A.piv[5,3,2]+ b2* B.piv[-2,0,2]  
 
 
 
;model(medium): 
U(nv) = c 0[-1.5] +b1[n, (n, -0.2,0.1), (u,0.1,0.3)] * A.ref[5]  + b2[n,(n,-
0.04,0.3),(u,0.1,0.3)] * B.ref[30]         / 
U(sav) = c1[-0.76] +b1 * A.piv[5,3,2] + b2 * B.piv[8,12,16] / 
U(av) =           b1 * A.piv[11,8,6]+ b2 * B.piv[-5,0,5] 
 
 
 
;model(large): 
U(nv) = c0[-1.5] + b1[n, (n,-0.2,0.1),(u,0.1,0.3)] * A.ref[12]  + b2[n,(n,-
0.035,0.3),(u,0.1,0.3)]  * B.ref[70]         / 
U(sav) = c1[-0.76] + b1 * A.piv [7,5,3]   + b2 * B.piv[15,20,25] / 
U(av) =           b1 * A.piv[14,12,9]   + b2 * B.piv[-10,0,10] 
 
 
 
;model(xlarge): 
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U(nv) = c0[-1.5] + b1[n, (n, -0.2,0.1), (u,0.1,0.3)] * A.ref[17]   + b2[n,(n,-
0.02,0.3),(u,0.1,0.3)]   * B.ref[100]         / 
U(sav) = c1[-0.76] + b1 * A.piv [10,7,5]   + b2 * B.piv[15,25,35] / 
U(av) =           b1 * A.piv[18,15,12]  + b2 * B.piv[-10,0,10]  $ 
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APPENDIX C 

RELIABILITY TEST OF SURVEY QUESTIONS 

I computed Cronbach’s alpha to evaluate the reliability of the questions asking 

respondents’ likelihood to conduct various in-vehicle activities in AV and SAV. The in-

vehicle activities serve two purposes, inform respondent the possibility of multi-tasking 

and understand the impact of in-vehicle activities on mode choices in latter modeling 

process. Table C1 presents the reliability test.  The acceptable values of alpha range 

from 0.70 to 0.95(Bland & Altman, 1997; DeVellis, 2016; Nunnally & Bernstein, 1994). 

Streiner (2003) recommended that 0.90 as a maximum alpha value. The overall alpha 

values for in-vehicle activities in AV and SAV are 0.892 and 0.891 respectively. It leads 

to a smaller value when we delete any of the items, indicating the item is not redundant. 

The data appear have high internal consistency.  
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Table C1. Reliability test of in-vehicle activities questions 
Item Obs Mean S.D. Alpha, if 

item deleted 
Question: Suppose you are traveling in a driverless vehicle you own, how 
likely are you to do following activities?     
Likert scale: Highly Unlikely (1) to Highly Likely (5)     
Communicating: by phone, email, etc. 1881 3.36 1.30 0.872 
Entertainment/recreation: resting, reading, hobbies, TV, exercise, etc. 1881 2.94 1.36 0.868 
Formal: paid work, education, religious activity, etc. 1881 2.55 1.25 0.878 
Household/personal: eating/drinking, prepare meal, personal care, etc. 1881 2.86 1.29 0.882 
Information search: online shopping, journey information, employment 
information, etc. 1881 2.97 1.32 0.859 
Other Activities 1881 2.69 1.15 0.877 
Test scale    0.892 

     
Question: Suppose you are traveling in a shared driverless vehicle 
(carpooling), how likely are you to do following activities?     
Likert scale: Highly Unlikely (1) to Highly Likely (5)     
Communicating: by phone, email, etc. 1881 3.32 1.29 0.871 
Entertainment/recreation: resting, reading, hobbies, TV, exercise, etc. 1881 3.17 1.30 0.861 
Formal: paid work, education, religious activity, etc. 1881 2.56 1.24 0.881 
Information search: online shopping, journey information, employment 
information, etc. 1881 2.98 1.29 0.849 
Other Activities 1881 2.73 1.15 0.875 
Test scale       0.891 
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APPENDIX D 

HUMAN SUBJECTS RESEARCH STATEMENT 

The HRPP determined on 08/09/2017 that this research meets the criteria for Exemption 

in accordance with 45 CFR 46.101(b) under Category 2.   
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