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ABSTRACT

We propose a family of filtering methods for deriving the filtering distribution in the context

of a high-dimensional state-space model. In the first chapter, we develop and describe in detail the

basic method, which can be used in a linear case with Gaussian data. In the second chapter, we

show how this method can be extended to incorporate non-Gaussian observations and non-linear

temporal evolution models. We discuss how two algorithms, the multi-resolution decomposition

and the incomplete Cholesky decomposition, can be used to quickly update the filtering distribution

at each time step of the filtering procedures.
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1. INTRODUCTION

Spatio-temporal datasets are rapidly growing in size. For example, environmental variables

are measured at ever-finer resolutions by increasing numbers of automated sensors mounted on

satellites and aircraft. Such data, which are typically noisy and incomplete, often become available

sequentially over time, as observations are made over consecutive hours or days. Under such

circumstances, one is typically interested in two inference tasks. The first is to obtain complete

maps of the spatio-temporal process, together with uncertainty quantification. Second, the process

of interest is frequently represented by a parametric model, and thus another task is to find the

distribution of these parameters conditional on the data.

While the phenomenon being studied is often continuous, for practical purposes it is typically

modeled on a spatial grid and at equidistant time points. This naturally gives rise to so-called

state-space models, where a vector represents the values of the process (state) at each grid point

at a certain moment in time, and an evolution function captures its temporal dynamics. If one

assumes an additive normal error, the observations are a linear function of the state with a normal

measurement error, and the temporal dynamics can be represented as a linear Markov process,

the standard tool used to accomplish the first inference task is the Kalman filter, while a Rao-

Blackwellized filter can be used for the second. In the presence of non-Gaussian data or non-linear

temporal evolution, other techniques can be utilized, such as particle filters, extended Kalman

filters or ensemble Kalman filters.

Unfortunately, all of these methods tend to scale poorly as the dimension of the state and

observation vectors increase. Particle filters are applicable only for moderate grid sizes, while

the other approaches generally require inverting the covariance matrix of the state vector, which

becomes prohibitively expensive for larger grids.

To address these challenges we develop a family of filters based on the multi-resolution approx-

imation (MRA Katzfuss, 2017) and the general Vecchia approximation (Katzfuss and Guinness,

2019). Our approach assumes that the latent state vector follows a normal distribution and that con-
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ditional on the state vector, observations follow a distribution belonging to an exponential family.

We then utilize the approximation methods developed for Gaussian process models to accelerate

inference by assuming certain conditional independence relationships. We show how they lead

to sparsity of the Cholesky factors of the posterior and covariance matrices of the state vector

and present a simple factorization algorithm that takes advantage of this sparsity and enables fast

computations.

The assumption that observations follow an exponential family-type distribution allows us to

apply our method to a multitude of environmental data sets, many of which contain highly non-

Gaussian data. Our proposed filters are able to both reconstruct the spatial field based on incom-

plete and noisy data, as well as infer the conditional distribution of parameters. They accomplish

both of these tasks in a sequential manner, and update their estimates as new data become available

over time.

To facilitate the adoption of our method, we also substantially extend an R package, called

GPvecchia, which implements the MRA and the general Vecchia approximation, in a way that

makes it a convenient building block in filtering algorithms.
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2. MULTI-RESOLUTION FILTERS FOR MASSIVE SPATIO-TEMPORAL DATA

2.1 Introduction

Massive spatio-temporal data have become ubiquitous in the environmental sciences, which is

largely due to Earth-observing satellites providing high-resolution measurements of environmental

variables on a continental or even global scale. Accounting for spatial and temporal dependence is

very important for satellite data, as atmospheric variables vary over space and time, and measure-

ments from different orbits are often complementary in their coverage.

When time and space are discretized, spatio-temporal data are typically modeled using a dy-

namical state-space model (SSM), which describes how the state (i.e., the spatial field evaluated

at a spatial grid) evolves over time and how the state is related to the observations. Dynamical

SSMs can include information from other sources and sophisticated temporal dynamics in terms

of partial differential equations; for example, the effect of wind on atmospheric variables can be

captured by an advection term. Such informative, physical evolution models are crucial for pro-

ducing meaningful forecasts.

We focus here on real-time or on-line filtering inference in linear Gaussian SSMs, which means

that at each time point t, we are interested in the posterior distribution of the spatial field at time t

given all data obtained up to time t. The filtering distributions in this setting are Gaussian and can

in principle be determined exactly by the Kalman filter (Kalman, 1960), but this technique is not

computationally feasible for large grids. Particle filter methods such as sequential importance (re-

)sampling (e.g., Gordon et al., 1993) are asymptotically exact as the number of particles increases,

but suffer from particle collapse for finite particle size in high dimensions (e.g., Snyder et al.,

2008).

In the geosciences, filtering inference in SSMs is referred to as data assimilation (see, e.g., Ny-

chka and Anderson, 2010, for a review), especially when the evolution is described by a complex

computer model. Data assimilation is typically carried out via variational methods (e.g., Talagrand
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and Courtier, 1987) or the ensemble Kalman filter (EnKF; e.g., Evensen, 1994, 2007; Katzfuss

et al., 2016; Houtekamer and Zhang, 2016). The EnKF represents distributions by an ensemble,

which is propagated using the temporal evolution model and updated via a linear shift based on

new observations. In practice, only small ensemble sizes are computationally feasible, resulting in

a low-dimensional representation and substantial sampling error.

In the statistics literature, computationally feasible filtering approaches for dynamical spatio-

temporal SSMs often rely on low-rank assumptions (e.g., Verlaan and Heemink, 1995; Pham et al.,

1998; Wikle and Cressie, 1999; Katzfuss and Cressie, 2011), but such approaches cannot fully

resolve fine-scale variation (Stein, 2014). Therefore, recent methods for large spatial-only data

have instead achieved fast computation through sparsity assumptions (e.g., Lindgren et al., 2011;

Nychka et al., 2015; Datta et al., 2016a; Katzfuss and Guinness, 2019), and idea that can also be

used in the context of retrospective, “off-line” spatio-temporal analysis, in which time is essentially

treated as an additional spatial dimension and the resulting spatio-temporal covariance function is

modeled or approximated (e.g., Zhang et al., 2015; Datta et al., 2016b). However, most sparsity-

based methods cannot be easily extended to the filtering perspective of interest here, because the

sparsity structure is lost when propagating forward in time.

Here, we propose a novel multi-resolution filter (MRF) for big streaming spatio-temporal data

based on linear Gaussian SSMs. The MRF is a highly scalable, fully probabilistic procedure that

results in joint posterior predictive distributions for the spatio-temporal field of interest. In contrast

to the EnKF, MRF computations are deterministic and do not suffer from sampling variability.

In contrast to low-rank approaches, the MRF does not rely on dimension reduction. Similar to

wavelet-based filtering methods (e.g. Chui, 1992; Cristi and Tummala, 2000; Renaud et al., 2005;

Beezley et al., 2011; Hickmann and Godinez, 2015), the MRF can be viewed as employing a

large number of basis functions at multiple levels of spatial resolution, which can capture spatial

structure from very fine to very large scales. However, as opposed to wavelets, the MRF basis

functions automatically adapt to approximate the covariance structure implied by the assumed

SSM. These features allowed the MRF to strongly outperform existing approaches in our numerical
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comparisons.

The MRF relies on a new approximate covariance-matrix decomposition, for which the result-

ing matrix factors exhibit a particular block-sparse multi-resolution structure. This decomposition

is based on the multi-resolution approximation (Katzfuss, 2017; Katzfuss and Gong, 2019) of spa-

tial processes, which performed very well in a recent comparison of different methods for large

spatial-only data (Heaton et al., 2019). Using advanced concepts from graph theory, we prove

the perhaps surprising property that the block-sparse structure of the MRF matrices can be main-

tained under filtering operations through time, which in turn is crucial for allowing us to show

that the MRF exhibits linear computational complexity for fixed tuning parameters. Note that this

is in contrast to other sparse-matrix approximations, as even matrices with simple sparsity pat-

terns (e.g., tridiagonal matrices) do not preserve sparsity under inversion. In fact, we suspect that

the multi-resolution decomposition and its special cases are unique in terms of preserving matrix

sparsity.

We also establish a close connection between our multi-resolution decomposition and hierar-

chical matrices. Despite being relatively unknown in statistics, hierarchical matrices (e.g., Hack-

busch, 2015) are a highly popular and widely studied class of matrix approximations in numerical

mathematics. We introduce this matrix class into the statistical literature, and describe how hi-

erarchical matrices can be applied to SSMs based on second-order partial differential equations,

including those describing advection and diffusion. This marks a major step forward with respect

to multiple previous hierarchical-matrix approaches for fast high-dimensional Kalman filtering

(e.g. Li et al., 2014; Saibaba et al., 2015; Ambikasaran et al., 2016), which were only applicable in

the simple case of a random walk.

Finally, we discuss extensions for inference on time-varying parameters that are not part of

the spatial field, using a Rao-Blackwellized particle filter, in which the integrated likelihood is

approximated using the MRF.

The remainder of this article is organized as follows. Section 2.2 describes the linear Gaussian

state-space model and reviews the Kalman filter. In Section 2.3, we present the MRF. Section 2.4

3



details key properties of the MRF, and Section 2.5 discusses connections to existing approaches.

Section 2.6 shows how the MRF can be extended when the model includes unknown parameters.

In Section 2.7, we present a numerical comparison of the MRF to existing methods. Section

2.8 demonstrates a practical application of the MRF to inferring sediment concentration in Lake

Michigan based on satellite data. We conclude in Section 2.9. Proofs are given in Appendix A.1.

A separate Supplementary Material document contains Sections C.1–C.8 with further proper-

ties, details, and proofs. At http://spatial.stat.tamu.edu, we provide additional illustrations. All

code will be provided upon publication.

2.2 Spatio-temporal state-space models (SSMs) and filtering inference

2.2.1 Spatio-temporal state-space model

Let xt be the nS-dimensional latent state vector of interest, representing a (mean-corrected)

spatio-temporal process xt(·) at time t evaluated at a fine grid S = {g1, . . . ,gnS} on a spatial

domain or region D. Further, let yt denote the observed nt-dimensional data vector at time t. We

assume a linear Gaussian spatio-temporal state-space model given by an observation equation and

an evolution equation,

yt = Htxt + vt, vt ∼ Nnt(0,Rt), (2.1)

xt = Etxt−1 +wt, wt ∼ NnS (0,Qt), (2.2)

respectively, for time t = 1, 2, . . .. The initial state also follows a Gaussian distribution: x0 ∼

NnS (µ0|0,Σ0|0). The noise covariance matrix Rt will be assumed to be diagonal or block-diagonal

here for simplicity (see Assumption 1 in Section 2.4.2.1). No computationally convenient structure

is assumed for the innovation covariance matrix Qt. The observation noise vt and the innovation

wt are mutually and serially independent, and independent of the state xt−1. We assume that

all matrices in (2.1)–(2.2) (and µ0|0 and Σ0|0) are known. The case of unknown parameters is

discussed in Section 2.6.

The observation matrix Ht relates the state to the observations. This enables combining obser-
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vations from different instruments or modeling areal observations given by averaging over certain

elements of the state vector. Here, we usually assume point-level measurements for simplicity,

although a block-diagonal form for Ht is possible (see Assumption 1).

The evolution matrix Et determines how the process evolves over time. It can be specified in

terms of a system of partial differential equations (PDEs), may depend on other variables, or —

in the absence of further information — could simply be a scaled identity operator indicating a

random walk over time. We assume that the evolution is local and Et is sparse (Assumption 2 in

Section 2.4.2.2).

Note that the SSM in (2.1)–(2.2), which is a latent Markov model of order 1, is very general and

can describe a broad class of systems. Higher-order Markov models can also be written in the form

(2.1)–(2.2) by expanding the state space. Non-Gaussian observations can often be transformed to

be approximately Gaussian. Other extensions are also straightforward, such as letting the grid S

vary over time.

2.2.2 Filtering inference using the Kalman filter (KF)

We are interested in filtering inference on the state xt. That is, at each time t, the goal is to

find the conditional distribution of xt given all observations up to and including time t, denoted by

xt|y1:t, where y1:t = (y′
1, . . . ,y

′
t)

′.

For the linear Gaussian SSM in (2.1)–(2.2), the filtering distributions are Gaussian. These

filtering distributions can be obtained recursively for t = 1, 2, . . . using the Kalman filter (Kalman,

1960), which consists of a forecast step and an update step at each time point. Denote the filtering

distribution at time t − 1 by xt−1|y1:t−1 ∼ Nn(µt−1|t−1,Σt−1|t−1). The forecast step obtains the

forecast or prior distribution of xt based on the previous filtering distribution and the evolution

model (2.2) as

xt|y1:t−1 ∼ NnS (µt|t−1,Σt|t−1), µt|t−1 := Etµt−1|t−1, Σt|t−1 := EtΣt−1|t−1E
′
t +Qt.

Then, the update step modifies this forecast distribution based on the observation vector yt and the
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observation equation (2.1), in order to obtain the filtering distribution of xt:

xt|y1:t ∼ NnS (µt|t,Σt|t), µt|t := µt|t−1+Kt(yt−Htµt|t−1), Σt|t := (InS −KtHt)Σt|t−1,

(2.3)

where Kt := Σt|t−1H
′
t(HtΣt|t−1H

′
t +Rt)

−1 is the nS × nt Kalman gain matrix.

While the Kalman filter provides the exact solution to our filtering problem, it requires com-

puting and propagating the nS × nS covariance matrix Σt|t and decomposing the nt × nt matrix

(HtΣt|t−1H
′
t+Rt) in Kt, and is thus computationally infeasible for large nS or large nt. Therefore,

approximations are required for large spatio-temporal data.

2.3 The multi-resolution filter (MRF)

2.3.1 Overview

We now propose a multi-resolution filter (MRF) for spatio-temporal SSMs of the form (2.1)–

(2.2) when the grid size nS or the data sizes nt are large, roughly between 104 and 109. The MRF

can be viewed as an approximation of the Kalman filter in Section 2.2.2.

The most important ingredient of the MRF is a novel multi-resolution decomposition (MRD).

Given a spatial covariance matrix Σ, the MRD computes B = MRD(Σ) such that Σ ≈ BB′. We

will describe the MRD in detail in Section 2.3.4. For now, we merely note that the MRD algorithm

is fast, and the resulting multi-resolution factor B is of the same dimensions as Σ but exhibits a

particular block-sparse structure (see Figure 2.2a).

The MRF algorithm proceeds as follows:

Algorithm 1: Multi-resolution filter (MRF)

At the initial time t = 0, compute B0|0 = MRD(Σ0|0). Then, for each t = 1, 2, . . ., do:

1. Forecast Step: Apply the evolution matrix Et to obtain µt|t−1 = Etµt−1|t−1 and BF
t|t−1 =

EtBt−1|t−1. Carry out a multi-resolution decomposition Bt|t−1 = MRD(ΣF
t|t−1), where

ΣF
t|t−1 = BF

t|t−1(B
F
t|t−1)

′ +Qt, to obtain xt|y1:t−1 ∼ NnS (µt|t−1,Σt|t−1) with Σt|t−1 =
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Bt|t−1B
′
t|t−1.

2. Update Step: Compute Bt|t := Bt|t−1(L
−1
t )′, where Lt is the lower Cholesky triangle of

Λt := InS + B′
t|t−1H

′
tR

−1
t HtBt|t−1, to obtain xt|y1:t ∼ NnS (µt|t,Σt|t) with Σt|t =

Bt|tB
′
t|t and µt|t = µt|t−1 +Bt|tB

′
t|tH

′
tR

−1
t (yt −Htµt|t−1).

The key to the scalability of this algorithm is that while Σt|t−1 and Σt|t are large and dense

matrices, they are never explicitly calculated and instead represented by the block-sparse matrices

Bt|t−1 and Bt|t, respectively. Also, as shown in Section 2.4.2, Bt|t has the same sparsity structure

as Bt|t−1, which allows the cycle to start over for the next time point t + 1. The forecast step and

update step will be discussed in more detail in Sections 2.3.2 and 2.3.3, respectively.

2.3.2 Details of the MRF forecast step

Assume that we have obtained the filtering distribution xt−1|y1:t−1 ∼ Nn(µt−1|t−1,Σt−1|t−1),

where Σt−1|t−1 = Bt−1|t−1B
′
t−1|t−1 and Bt−1|t−1 is a block-sparse matrix. Following the forecast

step of the standard Kalman filter, we want to obtain the prior distribution at time t, xt|y1:t−1 ∼

Nn(µt|t−1,Σt|t−1).

Because of the sparsity of Et (see Assumption 2 in Section 2.4.2.2), computing the forecast

mean µt|t−1 = Etµt−1|t−1 and the forecast basis matrix BF
t|t−1 = EtBt−1|t−1 is fast. Then, rather

than calculating the dense nS×nS forecast covariance matrix ΣF
t|t−1 = BF

t|t−1(B
F
t|t−1)

′+Qt explic-

itly, we obtain its multi-resolution decomposition Bt|t−1 = MRD(ΣF
t|t−1) as described in Section

2.3.4. This implies an approximation to the prior covariance matrix as Σt|t−1 = Bt|t−1B
′
t|t−1.

Again, Σt|t−1 does not need to be computed explicitly, because only Bt|t−1 is used in the update

step below.

2.3.3 Details of the MRF update step

The objective of the update step is to compute the posterior distribution xt|y1:t ∼ NnS (µt|t,Σt|t)

given the prior quantities µt|t−1 and Bt|t−1 (such that Σt|t−1 = Bt|t−1B
′
t|t−1) obtained in the fore-

cast step.
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Following the Kalman filter update in (2.3), we have

Σt|t = (InS −KtHt)Σt|t−1

= Bt|t−1

(
InS −B′

t|t−1H
′
t(HtBt|t−1B

′
t|t−1H

′
t +Rt)

−1HtBt|t−1

)
B′

t|t−1

= Bt|t−1

(
InS +B′

t|t−1H
′
tR

−1
t HtBt|t−1

)−1
B′

t|t−1

= Bt|t−1Λ
−1
t B′

t|t−1 = Bt|tB
′
t|t,

where Bt|t := Bt|t−1(L
−1
t )′, Lt is the lower Cholesky triangle of Λt := InS+B′

t|t−1H
′
tR

−1
t HtBt|t−1,

and we have applied the Sherman-Morrison-Woodbury formula (e.g., Henderson and Searle, 1981)

to Λt.

To obtain the filtering mean, we use the Searle set of identities (Searle, 1982, p. 151), to write

the Kalman gain as

Kt = Σt|t−1H
′
t(HtΣt|t−1H

′
t +Rt)

−1

= Bt|t−1B
′
t|t−1H

′
t(HtBt|t−1B

′
t|t−1H

′
t +Rt)

−1

= Bt|t−1(InS +B′
t|t−1H

′
tR

−1
t HtBt|t−1)

−1B′
t|t−1H

′
tR

−1
t

= Bt|t−1Λ
−1
t B′

t|t−1H
′
tR

−1 = Bt|tB
′
t|tH

′
tR

−1
t ,

and so we have

µt|t = µt|t−1 +Kt(yt −Htµt|t−1)

= µt|t−1 +Bt|tB
′
t|tH

′
tR

−1
t (yt −Htµt|t−1).

Thus, the MRF update step in Algorithm 1 is exact for given µt|t−1 and Σt|t−1 = Bt|t−1B
′
t|t−1.

Crucially, we will show in Proposition 3 that Bt|t has the same sparsity structure as Bt|t−1, and

hence it satisfies the block-sparsity assumption at the beginning of Section 2.3.2.
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Figure 2.1: Illustration of knot placement for a regular grid of nS = 80 points on a one-dimensional domain D (x-
axis). Recursively for m = 0, 1, . . . ,M (with M = 3 here), each region is split into J = 3 subregions (dashed lines),
with rm = 2 knots per region (maroon dots).

2.3.4 The multi-resolution decomposition

We now propose an approximate multi-resolution decomposition (MRD) of a generic spa-

tial covariance matrix Σ, which is used in the forecast step of the MRF in Algorithm 2.3.4.2.

Specifically, we consider a vector x =
(
x(g1), . . . , x(gnS )

)′ ∼ NnS (0,Σ), evaluated at a grid

S = {g1, . . . ,gnS} over the spatial domain D. The MRD is based on a multi-resolution approxi-

mation of Gaussian processes (Katzfuss, 2017) — see Section 2.5.2 for more details.

2.3.4.1 Partitioning and knots

The MRD requires a domain partitioning and selection of knots at M resolutions. Consider

a recursive partitioning of D into J regions, D1, . . . ,DJ , each of which is again divided into J

smaller subregions (e.g., D2 is split into subregions D21, . . . ,D2J ), and so forth, up to resolution

M . We write this as

Dj1,...,jm = ∪̇Jjm+1=1Dj1,...,jm+1 , (j1, . . . , jm) ∈ {1, . . . , J}m, m = 0, . . . ,M − 1.

Let Sj1,...,jm = S ∩ Dj1,...,jm be the grid points that lie in region Dj1,...,jm , and let Ij1,...,jm = {i :

gi ∈ Dj1,...,jm} be the corresponding indices, and so I = {1, . . . , nS}.

Further, we require a hierarchy of “knot” indices, such that Kj1,...,jm is a small set of rm indices

chosen from Ij1,...,jm . It is assumed that for each resolution m, the number of knots is roughly the

same in each subregion (i.e., |Kj1,...,jm| = rm), while it may change across resolutions. We use
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Km =
⋃

j1,...,jm
Kj1,...,jm to denote the set of all knots at resolution m, and define K0:m =

⋃m
l=0Kl

as the set of all knots at resolutions 0 through m. To ensure that {Kj1,...,jm : (j1, . . . , jm) ∈

{1, . . . , J}m;m = 0, 1, . . . ,M} is a partition of {1, . . . , nS}, we sequentially choose Kj1,...,jm ⊂

(Ij1,...,jm \ K0:m−1) for m = 0, 1, . . . ,M .

In practice, we often choose J = 2 or J = 4. Each rm−1 should be sufficiently large to capture

the dependence between the Dj1,...,jm that is not already captured at lower resolutions, which often

means that rm can decrease as a function of m. Each set of knots Kj1,...,jm could be chosen as a

roughly uniform grid over the subregionDj1,...,jm . The partitioning and knot selection is illustrated

in a toy example in Figure 2.1.

Note that because S is assumed constant over time here, we only need to do this partitioning

and selection of knots once (not at each time point). We also assume that the elements in xt are

ordered such that if (j1, . . . , jM) ≻L (i1, . . . iM), where≻L stands for lexicographic ordering, then

min (Ij1,...,jM ) > max (Ii1,...,iM ).

2.3.4.2 The MRD algorithm

For index sets J1 and J2, denote by Σ[J1,J2] the submatrix of Σ obtained by selecting the

J1 rows and J2 columns, and Σ[J1, : ] is the submatrix of the J1 rows and all columns. Based

on grid indices {Ij1,...,jm} and knot indices {Kj1,...,jm} selected as described in Section 2.3.4.1, the

multi-resolution decomposition of a spatial covariance matrix Σ proceeds as follows:

Algorithm 2: Multi-resolution decomposition of Σ

For m = 0, 1, . . . ,M and (j1, . . . , jm) ∈ {1, . . . , J}m:

• For ℓ = 0, . . . ,m, compute

Wℓ
j1,...,jm

= Σ[Ij1,...,jm ,Kj1,...,jℓ ]−
∑ℓ−1

k=0W
k
j1,...,jm

(Vk
j1,...,jk

)−1(Vk
j1,...,jℓ

)′ (2.4)

Vℓ
j1,...,jm

= Σ[Kj1,...,jm ,Kj1,...,jℓ ]−
∑ℓ−1

k=0 V
k
j1,...,jm

(Vk
j1,...,jk

)−1(Vk
j1,...,jℓ

)′.

• Set Bj1,...,jm = Wm
j1,...,jm

(Vm
j1,...,jm

)−1/2.
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(a) B = MRD(Σ) (b) B′B (c) L = chol(B′B) and L−1

Figure 2.2: Sparsity patterns for nS = 80, M = 3, J = 3, and rm = 2 for m = 0, . . . , 3. Rows and columns
correspond to hierarchically arranged elements of the grid G in Figure 2.1 from resolution m = 3 down to m = 0.
Blocks corresponding to different resolutions are separated by dashed lines.

Return B = MRD(Σ), where B =
(
BM ,BM−1, . . . ,B0

)
with Bm = blockdiag({Bj1,...,jm :

(j1, . . . , jm) ∈ {1, . . . , J}m}).

The resulting matrix B is of the same size as Σ but has a block-sparse structure, which is

illustrated in Figure 2.2a.

2.4 Properties of the multi-resolution filter

2.4.1 Approximation accuracy

The only difference between the MRF (Algorithm 1 and the exact Kalman filter (Section 2.2.2)

is the MRD approximation of the forecast covariance matrix at each time point; that is, instead

of taking Σt|t−1 = ΣF
t|t−1, the MRF assumes Σt|t−1 = Bt|t−1B

′
t|t−1 with Bt|t−1 = MRD(ΣF

t|t−1).

Hence, the MRF is exact when the MRD at each time point is exact.

However, the MRD is only exact in certain special cases. One trivial example is given by

M = 0 and r0 = nS (see Section C.1). Thus, the MRF converges to the exact Kalman filter

as r0 → nS , but computational feasibility for large nS relies on r0 ≪ nS . Another instance of

exactness is when ΣF
t|t−1 is based on an exponential covariance function on a one-dimensional

domain, D ⊂ R, and we place a total of rm = J − 1 knots, one at each subregion boundary

(Katzfuss and Gong, 2019, Prop. 6). Figure 2.1 provides an example of such knot placement.
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Finally, approximation error can also be avoided when Et = ctInS with ct ∈ R+ and Qt = 0. In

this case we can set Bt|t−1 :=
√
ct Bt−1|t−1, rather than employing the MRD in the forecast step.

In data assimilation, the assumption Qt = 0 is quite common, when model error is incorporated

through multiplicative inflation of the forecast covariance matrix.

Aside from these special cases, the MRD and hence the MRF are approximate. However,

the MRA, which is the technique underlying the MRD (see Section 2.5.2), can provide excellent

accuracy, as has been shown, for example, by Katzfuss (2017), Katzfuss and Gong (2019) and in a

recent comparison of different methods for large spatial data (Heaton et al., 2019). In applications

where accuracy is crucial, one could successively increase the number of knots rm used at low

resolutions until the inference “converges.” We demonstrate the MRF’s accuracy numerically in

Sections 2.7 and 2.8. In practice, the SSM in (2.1)–(2.2) will usually be an approximation to the

true system, and we expect the MRD approximation error to often be negligible relative to the error

due to model misspecification.

2.4.2 Computational complexity

We now determine the memory and time complexity of the MRF algorithm under the assump-

tion that n = O(nS) = O(nt) for all t = 1, 2, . . .. We also define N :=
∑

m rm.

2.4.2.1 Sparsity and memory requirements

As can be seen in Algorithm 2.3.4.2, a multi-resolution factor is composed of block-diagonal

submatrices by construction. The following proposition quantifies the number of its nonzero ele-

ments.

PROPOSITION 1. For a covariance matrix Σ, each row of B = MRD(Σ) has N nonzero elements.

Thus, if rm = r for m = 0, . . . ,M , then each row of B has exactly (M+1)r nonzero elements.

Figure 2.2a illustrates this case for M = 3, J = 3 and r = 2. The MRD results in a convenient

structure of the inner product of the multi-resolution factor. The following statement describes the

sparsity pattern of this inner product (see Figure 2.2b), while Proposition 3 shows its usefulness in

applications to filtering problems.

12



PROPOSITION 2. Let B = MRD(Σ) for some covariance matrix Σ. Then B′B is a block matrix

with M + 1 row blocks and M + 1 column blocks. For k, l = 0, . . . ,M with k ≥ l, the (M + 1−

k,M +1− l)-th block is of dimension |Kk| × |Kl| and is itself block-diagonal with blocks that are

rl columns wide.

The following technical assumption ensures that both Ht and Rt are block-diagonal with

blocks corresponding to indices Ij1,...,jM within each of the finest subregions:

ASSUMPTION 1. Let i ∈ Ii1,...,iM and j ∈ Ij1,...,jM . Assume Rt[i, j] = 0, unless (i1, . . . , iM) =

(j1, . . . , jM). Further, if Ht[i, j] ̸= 0, then Ht[i, k] = 0 for all k /∈ Ij1,...,jM . Finally, if i1, i2 ∈

Ij1,...,jM and i1 < i2, then for all i3 with i1 < i3 < i2, we have i3 ∈ Ij1,...,jM .

This assumption guarantees the key property of the MRF: The sparsity pattern of the multi-

resolution factor is preserved in the update step; that is, Bt|t ∈ S(Bt−1|t−1), where S(G) de-

notes the set of matrices whose set of structural zeros is the same or a superset of the struc-

tural zeros in some matrix G. We also use GL to denote the lower triangle of G, meaning that

GL[i, j] = G[i, j] if i ≥ j, and GL[i, j] = 0 otherwise.

PROPOSITION 3. Let Bt|t−1,Bt|t,≺t,Lt be defined as in Algorithm 1. Under Assumption 1, we

have:

1. ≺t∈ S(B′
t|t−1Bt|t−1);

2. Lt ∈ S(≺L
t ) and L−1

t ∈ S(≺L
t );

3. Bt|t ∈ S(Bt|t−1).

We state one more proposition that proves useful in determining the computational complexity:

PROPOSITION 4. If Lt is the lower Cholesky factor of ≺t, then each column of Lt has at most

O(N) nonzero elements.

Figure 2.2c illustrates the structure of L.

The results above show that all matrices computed in the MRF Algorithm 1 are very sparse,

with onlyO(nN) nonzero entries. The update step preserves the sparsity, so that Bt|t ∈ S(Bt|t−1).
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Due to the Markov structure of order 1 implied by our state-space model, there is no need to store

matrices from previous time points, and so the memory complexity of the entire MRF algorithm is

O(nN).

2.4.2.2 Computation time

For determining the time complexity of the MRF, we assume that the number of knots within

each subregion is constant across resolutions (i.e. rm = r for m = 0, . . . ,M ) and so N = (M +

1)r. While the efficacy of our method does not depend on this assumption, it greatly simplifies the

complexity calculations and helps to develop an intuition regarding its computational benefits.

PROPOSITION 5. Given a covariance matrix Σ, B = MRD(Σ) can be computed inO(nN2) time

using Algorithm 2.3.4.2.

We further assume that the evolution is local, in the sense that the nonzero elements in any

given row of Et only correspond to grid points in a small number of regions at the finest resolution

of the domain partitioning:

ASSUMPTION 2. Assume that the evolution matrix Et is sparse with at most O(r) nonzero ele-

ments per row, which must only correspond to a small, constant number of subregions,

|{Ij1,...,jM : ∃j ∈ Ij1,...,jM such that Et[i, j] ̸= 0}| ≤ c, i = 1, . . . , n.

For example, for local evolution in two-dimensional space, we have c ≤ 4.

PROPOSITION 6. Under Assumptions 1 and 2, the MRF in Algorithm 1 requires O(nN2) opera-

tions at each time step t.

In practice, N = (M + 1)r is chosen by the user depending on the required approximation

accuracy and the available computational resources. For fixed N , the time and memory complexity

of Algorithm 1 are linear in n. If M increases as M = O(log n) for increasing n (e.g., Katzfuss,

2017) and r is held constant, the resulting complexity is quasilinear.
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2.4.3 Distributed computation

For truly massive dimensions (i.e., nS = O(107) or more), memory limitations will typically

require distributing the analysis across several computational nodes. The MRF is well suited for

such a distributed environment, as information pertaining to different subregions of the domain

can be stored and processed in separate nodes, with limited communication overhead required

between nodes. We plan to leverage these properties of the MRF by designing an implementation

of Algorithm 1 that can be deployed in a high-performance-computation environment. We include

further details in Section C.2.

2.4.4 Forecasting and smoothing

Forecasting is straightforward using the MRF. Given the filtering distribution xT |y1:T as ob-

tained by Algorithm 1, we can compute the k-step-ahead forecast xT+k|y1:T by simply carrying

out the forecast step in Algorithm 1 k times, while skipping the update step. More precisely, we

carry out Algorithm 1 for t = T + 1, . . . , T + k, but at each time point t, we replace Step 2 by

simply setting µt|t = µt|t−1 and Bt|t = Bt|t−1. The accuracy of such forecasts will depend heavily

on the quality of the evolution matrices At, and so a physics-informed evolution can result in much

better forecasts than simple models such as random walks.

In some applications, one might also be interested in obtaining retrospective smoothing dis-

tributions xt|y1:T for t < T . These can be computed exactly by carrying out the Kalman filter

up to time T , and then carrying out recursive backward smoothing (e.g., Rauch et al., 1965), but

this is not feasible for large grids. It is challenging to extend the MRF by deterministic backward-

smoothing operations that preserve sparsity, but it may be possible to devise a scalable MRF-based

forward-filter-backward-sampler algorithm. We intend to investigate this modification in future

work.

2.5 Connections to existing methods

In this section, we discuss in some detail the connections between our MRF and hierarchical

matrix decompositions and basis-function approximations. Further, in Section C.3, we discuss
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connections to multi-resolution autoregressive models, which demonstrate that the MRF can also

be interpreted as a nested Kalman filter that proceeds over resolutions within each outer filtering

step over time.

2.5.1 MRD as hierarchical low-rank decomposition

Hierarchical off-diagonal low-rank (HODLR) matrices are a popular tool in numerical analysis,

and they have recently also been applied to Gaussian processes (e.g. Ambikasaran and Darve, 2013;

Ambikasaran et al., 2016). In HODLR matrices, the off-diagonal blocks are recursively specified or

approximated as low-rank matrices. In this section, we show the connection between the HODLR

format and the MRD when J = 2.

DEFINITION 1. (Ambikasaran et al., 2016) A matrix K ∈ RN×N is termed a 1–level hierarchical

off-diagonal low-rank (HODLR) matrix of rank p, if it can be written as

K =

 K
(1)
1 U

(1)
1 (V

(1)
1 )′

U
(1)
2 (V

(1)
2 )′ K

(1)
2

 ,

where K
(1)
i ∈ RN/2×N/2, and U

(1)
i ,V

(1)
i ∈ RN/2×p. We call K an m–level HODLR matrix of rank

p if both diagonal blocks are (m− 1)–level HODLR matrices of rank p.

If we use Hp
m to denote the set of all m-level HODLR matrices of rank p, then it follows that

Hp
m ⊂ Hp

m−1. The optimal low-rank representation is obtained by specifying the matrices U(j)
i and

V
(j)
i as the first p singular vectors of the corresponding off-diagonal submatrix (Hogben, 2006,

Item 5.6.13), but this is prohibitively expensive. Ambikasaran et al. (2016) discuss multiple ways

of approximating this low-rank representation.

We now show that the outer product of an MRD factor is a HODLR matrix, specifically one in

which the low-rank approximations are obtained as skeleton factorizations.

PROPOSITION 7. Let B = MRD(Σ), where the decomposition is based on a partitioning scheme

with J = 2 and rm = r for m = 0, . . . ,M . Then, BB′ ∈ Hr
M .

The proof is given in Appendix A.1. It can easily be extended to rm varying by resolution.
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Thus, the MRF approximation of the prior covariance matrix, Σt|t−1 = Bt|t−1B
′
t|t−1, is a HODLR

matrix (Ambikasaran et al., 2016). In contrast to previous approaches using HODLR matrices for

spatio-temporal models (e.g. Li et al., 2014; Saibaba et al., 2015), the block-sparse MRD matrices

allow the MRF to handle non-diagonal evolution matrices Et and full-rank model-error matrices

Qt.

2.5.2 MRD as basis-function approximation

The MRD is related to the multi-resolution approximation (MRA; Katzfuss, 2017) of a Gaus-

sian process as a weighted sum of increasingly compactly supported basis functions at M resolu-

tions. While the MRD adapts the MRA to an approximate decomposition of a covariance matrix

evaluated at a spatial grid, Σ = BB′, we can similarly interpret each column of B as a basis vector

over the grid. In other words, the spatial field x ∼ N (0,Σ) is approximated as x ≈ Bη, where

η ∼ N (0, I) is the vector of independent standard normal weights. By interpolating the values of

the basis vectors between grid points, we can visualize the columns of B as basis functions, which

is illustrated in Figure 2.3.

The basis functions obtained in this way exhibit interesting properties. Their support is in-

creasingly compact as the resolution increases, and basis functions at low resolution capture the

large-scale structure. There are strong connections between the MRD and stochastic wavelets,

with the major difference that the shape of the basis functions in the MRD adapts to the covariance

structure in Σ. This adaptation is especially useful in the spatio-temporal context here, which re-

quires approximation of the forecast covariance matrix ΣF
t|t−1 that depends on the data at previous

time points and is hence highly nonstationary. The compact support stems from the assumption of

a block-sparse structure at each resolution in the MRD, which is equivalent to assuming that the

remainder at each resolution is conditionally independent between subregions at that resolution,

given the terms at lower resolutions. In general, this assumption is not satisfied and thus produces

an approximation error, although the MRD is exact in some special cases (see Section 2.4.1).
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Figure 2.3: Basis functions obtained by interpolating the entries in each column of B = MRD(Σ) in Figure 2.2a using
the grid from Figure 2.1, with Σ based on an exponential covariance with range 0.3. Each basis function’s support is
restricted to one of the subregions (dashed lines) at each resolution.

2.6 Parameter inference

If there are random, time-varying parameters θt in any of the matrices in (2.1)–(2.2), that are

distinct from the Gaussian state xt, we can make inference on these parameters using an approxi-

mate Rao-Blackwellized particle filter (Doucet et al., 2000), in which we use the MRF algorithm

to approximately integrate out the high-dimensional state xt at each time point. An alternative

approach, based on including the unknown parameters in the state vector, otherwise known as data

augmentation, tends to work poorly for certain parameters and thus is less general (e.g., DelSole

and Yang, 2010; Katzfuss et al., 2019).

To derive our filter, note that we have

p(y1:T |θ1:T ) =
T∏
t=1

p(yt|y1:t−1,θ1:t) =:
T∏
t=1

Lt(θ1:t),

where, after integrating out xt, we have yt|y1:t−1,θ1:t ∼ Nnt(Htµt|t−1,HtΣt|t−1H
′
t + Rt) with

Σt|t−1 = Bt|t−1B
′
t|t−1. By applying a matrix determinant lemma (e.g., Harville, 1997, Thm. 18.1.1)

to the determinant and the Sherman-Morrison-Woodbury formula to the quadratic form in the

multivariate normal density, it is straightforward to show that the integrated filtering likelihood at

time t can be written, up to a constant, as

−2 logLt(θ1:t) = 2 log |Lt|+ log |Rt|+ (yt −Htµt|t−1)
′R−1

t (yt −Htµt|t−1)− ỹ′
tỹt, (2.5)
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where ỹt := B′
t|tH

′
tR

−1
t (yt −Htµt|t−1), and we have omitted dependence on the parameters θ1:t

for the terms on the right-hand side.

Assuming that the priors for the θt are given by p0(θ0) for t = 0, and recursively by pt(θt|θt−1)

for t = 1, 2, . . ., the particle MRF proceeds as follows:

Algorithm 3: Particle MRF

At time t = 0, for i = 1, . . . , Np, draw θ
(i)
0 ∼ p0(θ0) with equal weights w

(i)
0 = 1/Np, and

compute µ
(i)
0|0 = µ0|0(θ

(i)) and B
(i)
0|0 = MRD(Σ0|0(θ

(i)
0 )). Then, for each t = 1, 2, . . ., do:

• For i = 1, . . . , Np:

– Sample θ
(i)
t from a proposal distribution qt(θt|θ(i)

t−1).

– Forecast step: Compute µ
(i)
t|t−1 = Et(θ

(i)
t )µ

(i)
t−1|t−1, BF

t|t−1
(i) = Et(θ

(i)
t )B

(i)
t−1|t−1,

and B
(i)
t|t−1 = MRD(Σ

(i)
t|t−1), where BF

t|t−1
(i)(BF

t|t−1
(i))′ +Qt(θ

(i)
t )).

– Update step: Compute Λ(i)
t = InS +B

(i)
t|t−1

′Ht(θ
(i)
t )′Rt(θ

(i)
t )−1Ht(θ

(i)
t )B

(i)
t|t−1, L

(i)
t

as the lower Cholesky triangle of Λ(i)
t , B(i)

t|t = B
(i)
t|t−1((L

(i)
t )−1)′, and µ

(i)
t|t = µ

(i)
t|t−1+

B
(i)
t|tB

(i)
t|t

′Ht(θ
(i)
t )′Rt(θ

(i)
t )−1(yt −Ht(θ

(i)
t )µ

(i)
t|t−1).

– Using the quantities just computed for θ(i)
t , calculateLt(θ

(i)
1:t) as in (2.5), and update

the particle weight w(i)
t ∝ w

(i)
t−1Lt(θ

(i)
1:t)pt(θ

(i)
t |θ

(i)
t−1)/qt(θ

(i)
t |θ

(i)
t−1).

• The filtering distribution is p(θt,xt|y1:t) =
∑Np

i=1w
(i)
t δ

θ
(i)
t
(θt)NnS (xt|µ(i)

t|t ,B
(i)
t|tB

(i)
t|t

′).

• If desired, resample the triplets {(θ(i)
t ,µ

(i)
t|t ,B

(i)
t|t ) : i = 1, . . . , Np} with weights

w
(1)
t , . . . , w

(Np)
t , respectively, to obtain an equally weighted sample (see, e.g., Douc et al.,

2005, for a comparison of resampling schemes).

Section C.5 presents numerical experiments demonstrating the accuracy of Algorithm 2.6 and

its advantage over a low-rank particle filter.
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2.7 Simulation study

We used simulated data to compare the performance of the MRF with several filtering methods:

KF: The Kalman filter (see Section 2.2.2) provides the exact filtering distributions, but hasO(n3)

time complexity at each time point.

MRF: The multi-resolution filter proposed here in Section 2.3, with O(nN2) time complexity,

where N =
∑M

m=0 rm.

EnKF: An ensemble Kalman filter with stochastic updates (e.g., Katzfuss et al., 2016, Sect. 3.1).

We set the ensemble size to N and use Kanter’s function (Kanter, 1997) for tapering such

that the resulting matrix has N nonzero entries per row. This results roughly in O(nN2)

time complexity (e.g., Tippett et al., 2003).

LRF: A low-rank-plus-diagonal filter that can be viewed as a spatio-temporal extension of the

modified predictive process (Finley et al., 2009) and as a special case of a fixed-rank filter

(Cressie et al., 2010). Moreover, it can be viewed as a special case of the MRF (hence

allowing for ease of comparison) with M = 1 resolutions and N knots at resolution 0,

where each grid point is in its own partition at resolution 1, resulting in a time complexity of

O(nN2).

MRA: The MRA (Katzfuss, 2017) is a spatial-only method. It can essentially be viewed as a

special case of the MRF, for which the filtering distribution at each time t is obtained by

assuming that only yt and no data at previous time points are available. It has the same

O(nN2) complexity as the MRF.

While the KF provides the exact filtering distributions, it is only computationally feasible due to

the deliberately small problem size chosen here. All other methods attempt to approximate the

exact KF solution, but have the advantage of being scalable to much larger grid sizes. For a fair

comparison, all approximate methods used the same N , which trades off approximation accuracy

and computational complexity. Further, we acknowledge that the EnKF was designed for nonlinear

evolution in operational data assimilation, and it is thus more widely applicable than the other
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nt/nS ν λ σ2
w σ2

v

baseline 0.3 0.5 0.1 0.5 0.05
smooth 0.3 1.5 0.1 0.5 0.05

dense obs. 0.8 0.5 0.1 0.5 0.05
low noise 0.3 0.5 0.1 0.5 0.01

Table 2.1: Settings used in the 1D simulation. Bold values indicate changes with respect to the baseline.

methods.

We used two criteria to compare the performance of the approximate filters: the Kullback-

Leibler (KL) divergence between the true and approximated filtering distribution of the state vec-

tor (i.e., the joint distribution for the entire spatial field), and the ratio of the root mean squared

prediction error (RMSPE) achieved by each approximate method relative to the RMSPE of the KF.

Detailed definitions of the criteria can be found in Section C.4.1. Lower is better for both criteria,

with optimal values of 0 for the KL divergence and 1 for the RMSPE ratio. In addition, Section

C.4.4 examines the performance of all methods in terms of the confidence-interval coverage. All

quantities were averaged over 50 simulated datasets.

2.7.1 One-dimensional circular domain

In our first simulation scenario, we considered a diffusion-advection model on a one-dimensional

domain consisting of a circle with a unit circumference. After discretizing both the spatial and

the temporal dimensions using nS = 80 and T = 20 regularly spaced points, respectively,

we obtained a linear model as in (2.1)–(2.2), where Et was a tri-diagonal matrix and Qt =

σ2
w [Mν,λ(si, sj)]i,j=1,...nS

was based on a Matérn correlation functionMν,λ(·, ·) with smoothness

ν and range λ. At each time point, we randomly selected nt observed locations, so that Ht is a

subset of the identity, and we set Rt = σ2
vInt . A detailed description of the simulation, including

examples of process realizations, is given in Section C.4.2.

Because of the many possible choices of parameters, we first established baseline settings that

we considered relevant for practical applications, and then examined the effects of changing them

one by one. The resulting simulation scenarios are detailed in Table 2.1. For the MRD, we set
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Figure 2.5: Filter scores for different parameter settings; one-dimensional domain. Note that we used different scales
on the vertical axis for each plot, with a logarithmic scale for the KL divergence.

M = 3, J = 3, and rm = 2 for all m, and so we used N = (3 + 1)2 = 8 for EnKF, LRF, and

MRA.

As shown in Figure 2.5, the MRF performed best in all four scenarios, both in terms of the KL

divergence and the RMSPE ratio.

2.7.2 Two-dimensional domain

We also considered a diffusion-advection model on a unit square, and we discretized it on a

regular grid of size nS = 34 × 34 = 1,156. As before, we used T = 20 evenly spaced time
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nt/nS ν λ σ2
w σ2

v

baseline 0.1 0.5 0.15 0.5 0.25
smooth 0.1 1.5 0.15 0.5 0.25

dense obs. 0.3 0.5 0.15 0.5 0.25
low noise 0.1 0.5 0.15 0.5 0.1

Table 2.2: Settings used in the 2D simulation. Bold values indicate changes with respect to the baseline.

points. Writing the model in the linear form (2.1)-(2.2), Et was a sparse matrix with nonzero

entries corresponding to interactions between neighboring grid points to the right, left, top and

bottom. A detailed description of the simulation, including examples of process realizations, is

given in Section C.4.3.

Similar to the 1D case, we first considered baseline parameter settings and then we changed

some of them, one at a time. The multi-resolution decomposition used M = 4 and, similar to

Katzfuss (2017) we changed Jm across resolutions m: (J1, . . . , J4) = (2, 4, 4, 4). We also varied

the numbers of knots rm used at each resolution: (r0, . . . , r4) = (16, 8, 6, 6, 6). Thus, to achieve a

fair comparison, we used N = 42 for EnKF, LRF, and MRA. As shown in Figure 2.6, MRF again

performed best in all four scenarios.

2.8 Sediment movements in Lake Michigan

We also considered filtering inference on sediment concentration in Lake Michigan over a pe-

riod of one month, March 1998, based on satellite data. Such inference can be used by hydrologists

to increase their understanding of sediment transport mechanisms and fine-tune existing domain-

specific models. We closely followed an earlier study of this problem done by Stroud et al. (2010)

in the context of spatio-temporal smoothing. Unless specified otherwise, we used the same model

and parameter estimates. We briefly summarize the general framework below and indicate the few

modifications we introduced.

The lake area was divided into nS = 14,558 grid cells of size 2km × 2km each. We use xt to

denote the sediment concentrations at the nS cells at time t. The time dimension was discretized

into 409 intervals. The sediment transport model was assumed to be xt = Etxt−1 + ρt + wt,
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Figure 2.6: Filter scores for different parameter settings; two-dimensional domain. Note that we used different scales
on the vertical axis for each plot, with a logarithmic scale for the KL divergence.

where Et describes the temporal evolution based on a hydrological PDE model, ρt is a vector with

external inputs representing the influence of water velocity and bottom sheer stress, and the model

error wt is assumed to follow aN (0,Qt) distribution with covariance matrix Qt = (σ2
ωΩtΩ

′
t)◦T,

where ◦ denotes element-wise multiplication. All matrices Ωt have dimensions nS × 5 and reflect

the spatial structure of the error in the original study, while T is taken to be a tapering matrix based

on a Kanter covariance function with a tapering radius that leaves about 200 nonzero elements in

each row.

The data comprise 10 satellite measurements of remote-sensing reflectance (RSR) at the fre-
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MRF EnKF LRF MRA
RASD 0.08 0.22 0.42 0.72

Table 2.3: Root average squared difference (RASD) between approximate and exact filtering means for sediment
concentration.

quency of 555 nm taken over the southern basin of Lake Michigan, modified in a way that accounts

for the effects of the cloud cover. The observed value at each grid point was assumed to be the

first-order Taylor expansion of h(c) = θ0 + θ1 log(1 + θ2(c + θ3)) taken around the initial mean

of the sediment concentration at time t = 0. Using yt to denote the vector of observations at time

t after removing a time-varying instrument bias and accounting for constant terms in the Taylor

expansion, we assumed yt = Htxt + vt as in (2.1), where Ht had only one nonzero element in

each row, vt ∼ N (0,Rt), and Rt was diagonal.

Because of the moderate size of the spatial grid, we were able to compute the exact Kalman

filter solution. We set M = 5, J = 4, and (r0, . . . , r5) = (16, 8, 8, 8, 4, 4) for the MRF, which

implied that N =
∑

m rm = 48 for the other approximation methods in Section 2.7. The tapering

range used in EnKF was selected such that the tapering matrix had only 5 nonzero elements per

row, which corresponds to the setting used by Stroud et al. (2010). While this is inconsistent with

the comparison principles outlined in Section 2.7, it made the EnKF perform better in this case.

As the true concentrations were unknown, we compared the approximate filtering means to the

exact means obtained by the Kalman filter, using the root average squared difference
(∑

t

∑
i(µ̂t[i]−

µKF
t [i])2

)1/2 between the approximate filtering means µ̂t[i] and the KF means µKF
t [i], averaged

over all times t and grid points i. The results, reported in Table 2.3, show the MRF outperforming

all other approximate methods. To visually verify these results, we also present satellite data and

sediment concentration estimates for three selected time points in Figure 2.7. A video with all time

points can be found at http://spatial.stat.tamu.edu.

For a grid of the size nS considered here, a single step of the MRF took roughly 5% of the

time required by the exact Kalman filter (on a laptop with 8GB of memory and Intel(R) Core(TM)

i7-3630QM CPU @ 2.40GHz). More importantly, the MRF scales well to even larger grid sizes
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(a) t = 2 (b) t= 267 (c) t=409

Figure 2.7: Satellite data (in log RSR) and exact Kalman filtering means of sediment concentrations (in mg/L), along
with differences of approximate filtering means to the Kalman filter. We display the results for the southern basin of
the lake only, where differences between the methods are most pronounced.
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(see Section 2.4.2), while exact calculations will quickly become infeasible due to memory 

con-straints. Exact computation times and memory limitations will, of course, depend heavily 

on the computational environment.

2.9 Conclusions and future work

We introduced the multi-resolution filter (MRF), a new filtering method for linear Gaussian 

spatio-temporal state-space models, which relies on a block-sparse multi-resolution matrix de-

composition. We proved that the sparsity can be preserved under filtering through time, ensuring 

scalability of the MRF to very large spatial grids. In our comparisons, the MRF substantially 

outperformed existing methods that can be used to approximate the Kalman filter. We also suc-

cessfully applied the MRF to inferring sediment concentration in Lake Michigan.

Spatio-temporal processes typically exhibit highly complicated structures that make exact in-

ference intractable, especially in high dimensions. We believe that it is often better to conduct 

approximate inference for a realistic, intractable model, rather than carrying out “exact” inference 

for a crude simplification (e.g., a low-rank version) of the model. While it might be challenging to 

precisely quantify the approximation accuracy in the former case (e.g., for the MRF), 

approximate inference can give better results than exact inference in a simplified model, which 

often completely ignores the error incurred by simplifying the model.

While we have focused on spatio-temporal data here, our methods are also applicable to 

general SSMs of the form (2.1)–(2.2) that do not correspond to physical space and time, as long 

as some distance between the elements of each state vector can be specified.

Potential future work includes extensions to non-Gaussian data, nonlinear evolution, and 

smooth-ing inference. We are also developing a user-friendly implementation of the MRF 

with sensible default settings for the number of knots and domain partitioning.
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3. HIERARCHICAL SPARSE CHOLESKY DECOMPOSITION WITH APPLICATIONS TO

HIGH-DIMENSIONAL SPATIO-TEMPORAL FILTERING

3.1 Introduction

Symmetric positive-definite matrices arise in spatial statistics, Gaussian-process inference, and

spatio-temporal filtering, with a wealth of application areas, including geoscience (e.g., Cressie,

1993; Banerjee et al., 2004), machine learning (e.g., Rasmussen and Williams, 2006), data assim-

ilation (e.g., Nychka and Anderson, 2010; Katzfuss et al., 2016), and the analysis of computer

experiments (e.g., Sacks et al., 1989; Kennedy and O’Hagan, 2001). Inference in these areas typ-

ically relies on Cholesky decomposition of the positive-definite matrices. However, this operation

scales cubically in the dimension of the matrix, and it is thus computationally infeasible for many

modern problems and applications, which are increasingly high-dimensional.

Countless approaches have been proposed to address these computational challenges. Heaton

et al. (2019) provide a recent review from a spatial-statistics perspective, and Liu et al. (2018)

review approaches in machine learning. In high-dimensional filtering, proposed solutions include

low-dimensional approximations (e.g., Verlaan and Heemink, 1995; Pham et al., 1998; Wikle and

Cressie, 1999; Katzfuss and Cressie, 2011), spectral methods (e.g. Wikle and Cressie, 1999; Sigrist

et al., 2015), and hierarchical approaches (e.g., Johannesson et al., 2003; Li et al., 2014; Saibaba

et al., 2015; Jurek and Katzfuss, 2018). Operational data assimilation often relies on ensemble

Kalman filters (e.g., Evensen, 1994; Burgers et al., 1998; Anderson, 2001; Evensen, 2007; Katzfuss

et al., 2016, 2019), which represent distributions by samples or ensembles.

Maybe the most promising approximations for spatial data and Gaussian processes implicitly

or explicitly rely on sparse Cholesky factors. The assumption of ordered conditional indepen-

dence in the popular Vecchia approximation (Vecchia, 1988) and its extensions (e.g., Stein et al.,

2004; Datta et al., 2016a; Guinness, 2018; Katzfuss and Guinness, 2019; Katzfuss et al., 2018,

2020; Schäfer et al., 2020) implies sparsity in the Cholesky factor of the precision matrix. Schäfer
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et al. (2017) uses an incomplete Cholesky decomposition (IC0) to quickly construct a sparse ap-

proximate Cholesky factor of the covariance matrix. However, these methods are not generally

applicable to spatio-temporal filtering, because the assumed sparsity is not preserved under filter-

ing operations.

Here, we relate the sparsity of the Cholesky factors of the covariance matrix and the precision

matrix to specific assumptions regarding ordered conditional independence. We show that these

assumptions are simultaneously satisfied for a particular Gaussian-process approximation that we

call hierarchical Vecchia (HV), which is a special case of the general Vecchia approximation (Katz-

fuss and Guinness, 2019) based on hierarchical domain partitioning (e.g., Katzfuss, 2017; Katzfuss

and Gong, 2019). We show that the HV approximation can be computed using a simple and fast

incomplete Cholesky decomposition (IC0).

Due to its remarkable property of implying a sparse Cholesky factor whose inverse has equiv-

alent sparsity structure, HV is well suited for extensions to spatio-temporal filtering; this is in

contrast to other Vecchia approximations and other spatial approximations relying on sparsity. We

provide a scalable HV-based filter for linear Gaussian spatio-temporal state-space models, which is

related to the multi-resolution filter of Jurek and Katzfuss (2018). Further, by combining HV with

a Laplace approximation (cf. Zilber and Katzfuss, 2019), our method can be used for the analysis

of non-Gaussian data. Finally, by combining the methods with the extended Kalman filter (e.g.,

Grewal and Andrews, 1993, Ch. 5), we obtain fast filters for high-dimensional, non-linear, and

non-Gaussian spatio-temporal models. For a given formulation of HV, the computational cost of

all of our algorithms scales linearly in the state dimension, assuming sufficiently sparse temporal

evolution.

The remainder of this document is organized as follows. In Section 3.2, we specify the relation-

ship between ordered conditional independence and sparse (inverse) Cholesky factors. Then, we

build up increasingly complex and general methods, culminating in non-linear and non-Gaussian

spatio-temporal filters: in Section 3.3, we introduce hierarchical Vecchia for a linear Gaussian

spatial field at a single time point; in Section 3.4, we extend this to non-Gaussian data; and in

29



Section 3.5, we consider the general spatio-temporal filtering case, including nonlinear evolu-

tion and parameter inference on unknown parameters in the model. Section 3.6 contains numer-

ical comparisons to existing approaches. Section 3.7 concludes. Appendices B.1–B.2 contain

proofs and further details. Code used for simulations is available at https://github.com/

katzfuss-group/vecchiaFilter.

3.2 Sparsity of Cholesky factors

We begin by specifying the connections between ordered conditional independence and spar-

sity of the Cholesky factor of the covariance and precision matrix.

CLAIM 1. Let w be a normal random vector with variance-covariance matrix K.

1. Let L = chol(K) be the lower-triangular Cholesky factor of the covariance matrix K. For

i > j:

Li,j = 0 ⇐⇒ wi ⊥ wj |w1:j−1

2. Let U = rchol(K−1) = P chol(PK−1P)P be the Cholesky factor of the precision matrix

under reverse ordering, where P is the reverse-ordering permutation matrix. Then U is

upper-triangular, and for i > j:

Uj,i = 0 ⇐⇒ wi ⊥ wj |w1:j−1,wj+1:i−1

The connection between ordered conditional independence and the Cholesky factor of the pre-

cision matrix is well known (e.g., Rue and Held, 2010); Part 2 of our claim states this connection

under reverse ordering (e.g., Katzfuss and Guinness, 2019, Prop. 3.3). In Part 1, we consider the

lesser-known relationship between ordered conditional independence and sparsity of the Cholesky

factor of the covariance matrix, which was recently discussed in Schäfer et al. (2017, Sect. 1.4.2).

For completeness, we provide a proof of Claim 1 in Appendix B.2.

Claim 1 is crucial for our later developments and proofs. We will specify a hierarchical Vecchia

approximation of Gaussian processes that satisfies both types of conditional independence in Claim
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1; the resulting sparsity of the Cholesky factor and its inverse allows extensions to spatio-temporal

filtering in Section 3.5.

3.3 Hierarchical Vecchia for large Gaussian spatial data

Consider a latent realization x = (x1, . . . , xn)
⊤ of a Gaussian process on a spatial grid S =

{s1, . . . , sn} in a spatial domain D ∈ Rd, in the sense that xi = x(si) and si ∈ D, i = 1, . . . , n.

We assume the following model:

yi |x
ind∼ N (xi, τ

2
i ), i ∈ I (3.1)

x ∼ Nn(µ,Σ), (3.2)

where y is the data vector consisting of observations {yi : i ∈ I}, and I ⊂ {1, . . . , n} contains

the observation indices. Note that we can equivalently express (3.1) using matrix notation as

y |x ∼ N (Hx,R), where H is obtained by selecting only the rows with indices i ∈ I from an

identity matrix, and R is a diagonal matrix with entries {τ 2i : i ∈ I}.

Our interest is in computing the posterior distribution of x given y, which requires inverting or

decomposing an n× n matrix at a cost of O(n3) if |I| = O(n). This is computationally infeasible

for large n.

3.3.1 The hierarchical Vecchia approximation

We now describe a hierarchical Vecchia approximation with unique sparsity and computational

properties, which enable fast computation for spatial models as in (3.1)–(3.2) and also allow ex-

tensions to spatio-temporal filtering as explained later.

Assume that the elements of the vector x are hierarchically partitioned into a set X 0:M =⋃M
m=0Xm, where Xm =

⋃m
k=1

⋃Jk
jk=1Xj1,...,jm , and Xj1,...,jm is a set consisting of |Xj1,...,jm| ele-

ments of x, such that there is no overlap between any two sets Xj1,...,jm ∩ Xi1,...,il = ∅. We assume

that x is ordered according to X 0:M , in the sense that if i > j, then xi ∈ Xm1 and xj ∈ Xm2

with m1 ≥ m2. As a toy example with n = 6, the vector x = (x1, . . . , x6) might be partitioned
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with M = 1, J1 = 2 as X 0:1 = X 0 ∪ X 1, X 0 = X = {x1, x2}, and X 1 = X1,1 ∪ X1,2, where

X1,1 = {x3, x4}, and X1,2 = {x5, x6}. Another toy example is illustrated in Figure 3.1.

The exact distribution of x ∼ Nn(µ,Σ) can be written as

p(x) =
∏M

m=0

∏
j1,...,jm

p(Xj1,...,jm|X 0:m−1,Xj1,...,jm−1,1:jm−1),

where the conditioning set of Xj1,...,jm consists of all sets X 0:m−1 at lower resolution, plus those at

the same resolution that are previous in lexicographic ordering. The idea of Vecchia (1988) was to

remove many of these variables in the conditioning set, which for geostatistical applications often

incurs only small approximation error due to the so-called screening effect (e.g., Stein, 2002).

Here we consider a hierarchical Vecchia approximation of the form

p̂(x) =
∏M

m=0

∏
j1,...,jm

p(Xj1,...,jm|Aj1,...,jm), (3.3)

where Aj1,...,jm = X ∪ Xj1 ∪ . . . ∪ Xj1,...,jm−1 is the set of ancestors of Xj1,...,jm . For example, the

set of ancestors of X2,1,2 is A2,1,2 = X ∪X2 ∪ X2,1. Thus, Aj1,...,jm = Aj1,...,jm−1 ∪ Xj1,...,jm−1 , and

the ancestor sets are nested: Aj1,...,jm−1 ⊂ Aj1,...,jm . We can equivalently write (3.3) in terms of

individual variables as

p̂(x) =
∏n

i=1 p(xi|Ci), (3.4)

where Ci = Aj1,...,jm ∪ {xk ∈ Xj1,...,jm : k < i} for xi ∈ Xj1,...,jm .

Vecchia approximations and their conditional-independence assumptions are closely connected

to directed acyclic graphs (DAGs; Datta et al., 2016a; Katzfuss and Guinness, 2019). Summarizing

briefly, as illustrated in Figure 3.1b, we associate a vertex with each set Xj1,...,jm , and we draw an

arrow from the vertex corresponding to Xi1,...,il to the vertex corresponding to Xj1,...,jm if and only

if Xi1,...,il is in the conditioning set of Xj1,...,jm (i.e., Xi1,...,il ⊂ Aj1,...,jm). DAGs corresponding to

hierarchical Vecchia approximations always have a tree structure, due to the nested ancestor sets.

Necessary terminology and notation from graph theory is reviewed in Appendix B.1.
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(a) Iterative domain partitioning for n = 35 locations

(b) Directed acyclic graph (DAG)

(c) Sparsity pattern of the U matrix

Figure 3.1: Toy example with n = 35 of the hierarchical Vecchia approximation in (3.3) with M = 2 and J1 = J2 = 2;
the color of each set Xj1,...,jm is consistent across (a)–(c). (a) For resolution m = 0, 1, 2, locations of X 0:m (•) and
locations of points at higher resolution (◦). (b) DAG illustrating the conditional-dependence structure, with thicker
lines for connections between vertices at neighboring levels of the hierarchy, to emphasize the tree structure. (c)
Corresponding sparsity pattern of U (see Proposition 8), with groups of columns/rows corresponding to different
resolutions separated by pink lines, and groups of columns/rows corresponding to different Xj1,...,jm at the same
resolution separated by blue lines.

In practice, as illustrated in Figure 3.1a, we partition the spatial field x into the hierarchical

set X 0:M based on a recursive partitioning of the spatial domain D into J1 regions D1, . . . ,DJ1 ,

each of which is again split into J2 regions, and so forth, up to resolution M (Katzfuss, 2017):

Dj1,...,jm−1 =
⋃Jm

jm=1Dj1,...,jm , m = 1, . . . ,M . We then set each Xj1,...,jm to be a subset of the

variables in x whose location is in Dj1,...,jm: Xj1,...,jm ⊂ {xi : si ∈ Dj1,...,jm}. This implies that

the ancestors Aj1,...,jm of each set Xj1,...,jm consist of the variables associated with regions at lower

resolutions m = 0, . . . ,m− 1 that contain Dj1,...,jm .
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The hierarchical Vecchia approximation (3.3) is closely related to the multi-resolution approx-

imation (Katzfuss, 2017; Katzfuss and Gong, 2019), as noted in Katzfuss and Guinness (2019, 

Sec. 2.5), which in turn is closely related to hierarchical off-diagonal low-rank (HODLR) matri-

ces (e.g. Hackbusch, 2015; Ambikasaran et al., 2016; Saibaba et al., 2015; Geoga et al., 2018), 

as noted in Jurek and Katzfuss (2018). However, the definition, exposition, and details provided 

here facilitate our later proofs, simple incomplete-Cholesky-based computation, and extensions to 

non-Gaussian data and to nonlinear space-time filtering.

3.3.2 Sparsity of the hierarchical Vecchia approximation

For all Vecchia approximations, the assumed conditional independence implies a sparse Cholesky 

factor of the precision matrix (e.g., Datta et al., 2016a; Katzfuss and Guinness, 2019, Prop. 3.3). 

The conditional-independence assumption made in our hierarchical Vecchia approximation also 

implies a sparse Cholesky factor of the covariance matrix, which is in contrast to many other for-

mulations of the Vecchia approximation:

PROPOSITION 8. For the hierarchical Vecchia approximation in (3.3), we have p̂(x) = N (x|µ, Σ̂).

Define L = chol(Σ̂) and U = rchol(Σ̂−1).

1. For i ̸= j:

(a) Li,j = 0 unless xj ∈ Ci

(b) Uj,i = 0 unless xj ∈ Ci

2. U = L−⊤

The proof relies on Claim 1. All proofs can be found in Appendix B.2. Proposition 8 says

that the Cholesky factors of the covariance and precision matrix implied by a hierarchical Vecchia

approximation are both sparse, and U has the same sparsity pattern as L⊤. An example of this

pattern is shown in Figure 3.1c. Furthermore, because L = U−⊤, we can quickly compute one of

these factors given the other, as described in Section 3.3.3 below.
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For other Vecchia approximations, the sparsity of the prior Cholesky factor U does not neces-

sarily imply the same sparsity for the Cholesky factor of the posterior precision matrix, and in fact

there can be substantial in-fill (Katzfuss and Guinness, 2019). However, this is not the case for the

particular case of hierarchical Vecchia, for which the posterior sparsity is exactly the same as the

prior sparsity:

PROPOSITION 9. Assume that x has the distribution p̂(x) given by the hierarchical Vecchia ap-

proximation in (3.3). Let Σ̃ = Var(x|y) be the posterior covariance matrix of x given data

yi |x
ind∼ N (xi, τ

2
i ), i ∈ I ⊂ {1, . . . , n} as in (3.1). Then:

1. Ũ = rchol(Σ̃−1) has the same sparsity pattern as U = rchol(Σ̂−1).

2. L̃ = chol(Σ̃) has the same sparsity pattern as L = chol(Σ̂).

3.3.3 Fast computation using incomplete Cholesky factorization

For notational and computational convenience, we assume now that each conditioning set Ci 

consists of at most N elements of x. For example, this can be achieved by setting |Xj1,...,jm | ≤ r 

with r = N/(M + 1). The matrix U can be computed using general expressions for the Vecchia 

approximation in O(nN3) time (e.g., Katzfuss and Guinness, 2019). Alternatively, inference can 

be carried out using multi-resolution decompositions (Katzfuss, 2017; Katzfuss and Gong, 2019; 

Jurek and Katzfuss, 2018) in O(nN2), but these algorithms are fairly involved.

Instead, we show here how hierarchical Vecchia inference can be carried out in O(nN2) time 

using standard sparse-matrix algorithms, including the incomplete Cholesky factorization, based 

on at most nN entries of Σ. Our algorithm, which is based on ideas in Schäfer et al. (2017), is 

much simpler than multi-resolution decompositions.

The incomplete Cholesky factorization (e.g., Golub and Van Loan, 2012), denoted by ichol(A, S) 

and given in Algorithm 1, is identical to the standard Cholesky factorization of the matrix A, ex-

cept that we skip all operations that involve elements that are not in the sparsity pattern represented 

by the zero-one matrix S. It is important to note that to compute L = ichol(A, S) for a large dense
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Algorithm 1: Incomplete Cholesky decomposition: ichol(A,S)

Input: positive-definite matrix A ∈ Rn×n, sparsity matrix S ∈ {0, 1}n×n

Result: lower-triangular n× n matrix L
1: for i = 1 to n do
2: for j = 1 to i− 1 do
3: if Si,j = 1 then
4: Li,j =

1
Lj,j

(
Ai,j −

∑j−1
k=1 Li,kLj,k

)
5: end if
6: end for
7: Li,i =

√
Ai,i −

∑i−1
k=1 Lk,k

8: end for

matrix A, we do not actually need to form the entire A; instead, to reduce memory usage and com-

putational cost, we simply compute L = ichol(A ◦ S,S) based on the sparse matrix A ◦ S, where

◦ denotes element-wise multiplication. Thus, while we write expressions like L = ichol(A,S) for

notational simplicity below, this should always be read as L = ichol(A ◦ S,S).

For our hierarchical Vecchia approximation in (3.3), we set S to be a sparse lower-triangular

matrix with Si,j = 1 if xj ∈ Ci, and 0 otherwise. Thus, the sparsity pattern of S is the same as that

of L, and its transpose is that of U shown in Figure 3.1c.

PROPOSITION 10. Assuming (3.3), denote Var(x) = Σ̂ and L = chol(Σ̂). Then, L = ichol(Σ,S).

Hence, the Cholesky factor of the covariance matrix implied by the hierarchical Vecchia ap-

proximation can be computed using the incomplete Cholesky algorithm based on the (at most) nN

entries of the exact covariance Σ indicated by S. Using this result, we propose Algorithm 2 for

posterior inference on x given y.

The combination of the incomplete Cholesky factorization and the results in Propositions 8 and

9 that all Cholesky factors are sparse, allow us to perform posterior inference very quickly.

PROPOSITION 11. Algorithm 2 can be carried out in O(nN2) time and O(nN) space, assuming

that |Ci| ≤ N for all i = 1, . . . , n.
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Algorithm 2: Posterior inference using hierarchical Vecchia: HV(y,S,µ,Σ,H,R)

Input: data y; sparsity S; µ,Σ s.t. x ∼ Nn(µ,Σ); obs. matrix H, noise variances R
Result: µ̃ and L̃ such that p̂(x|y) = Nn(x|µ̃, L̃L̃⊤)

1: L = ichol(Σ,S), using Algorithm 1
2: U = L−⊤

3: Λ = UU⊤ +H⊤R−1H
4: Ũ = P (chol(PΛP))P, where P is the order-reversing permutation matrix
5: L̃ = Ũ−⊤

6: µ̃ = µ+ L̃L̃⊤H⊤R−1 (y −Hµ)

3.4 Extensions to non-Gaussian spatial data using the Laplace approximation

Now consider the model

yi |x
ind∼ gi(yi|xi), i ∈ I, (3.5)

x ∼ Nn(µ,Σ), (3.6)

where gi is a distribution from an exponential family. Using the hierarchical Vecchia approximation

in (3.3)–(3.4) for x, the implied posterior can be written as:

p̂(x|y) = p(y|x)p̂(x)∫
p(y|x)p̂(x)dx

=
(
∏

i∈I gi(yi|xi))p̂(x)∫
(
∏

i∈I gi(yi|xi))p̂(x)dx
. (3.7)

Unlike in the Gaussian case as in (3.1), the integral in the denominator cannot generally be eval-

uated in closed form, and Markov Chain Monte Carlo methods are often used to numerically

approximate the posterior. Instead, Zilber and Katzfuss (2019) proposed a much faster method

that combines a general Vecchia approximation with the Laplace approximation (e.g. Tierney and

Kadane, 1986; Rasmussen and Williams, 2006, Sect. 3.4). The Laplace approximation is equiva-

lent to a Gaussian approximation of the posterior, obtained by carrying out a second-order Taylor

expansion of the posterior log-density around its mode. Although the mode cannot generally be

obtained in closed form, it can be computed straightforwardly using a Newton-Raphson procedure,
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because log p̂(x|y) = log p(y|x) + log p̂(x) + c is a sum of two concave functions and hence also

concave (as a function of x, under appropriate parametrization of the gi).

While each Newton-Raphson update requires the computation and decomposition of the n×n

Hessian matrix, the update can be carried out quickly by making use of the sparsity implied by the

Vecchia approximation. To do so, we follow Zilber and Katzfuss (2019) in exploiting the fact that

the Newton-Raphson update is equivalent to computing the conditional mean of x given pseudo-

data. Specifically, at the ℓ-th iteration of the algorithm, given the current state value x(ℓ), let us

define

u(ℓ) =
[
u
(ℓ)
i

]
i∈I , where u

(ℓ)
i = ∂

∂x
log gi(yi|x)

∣∣
x=x

(ℓ)
i
, (3.8)

and

D(ℓ) = diag
(
{d(ℓ)i : i ∈ I}

)
, where d

(ℓ)
i = −

(
∂2

∂x2 log gi(yi|x)
)−1∣∣

x=x
(ℓ)
i
. (3.9)

Then, we compute the next iteration’s state value x(ℓ+1) = E(x|t(ℓ)) as the conditional mean

of x given pseudo-data t(ℓ) = x(ℓ) + D(ℓ)u(ℓ) assuming Gaussian noise, t(ℓ)i |x
ind.∼ N (xi, d

(ℓ)
i ),

i ∈ I. Zilber and Katzfuss (2019) recommend computing the conditional mean E(x|t(ℓ)) based

on a general-Vecchia-prediction approach proposed in Katzfuss et al. (2018). Here, we instead

compute the posterior mean using Algorithm 2 based on the hierarchical Vecchia method described

in Section 3.3, due to its sparsity-preserving properties. In contrast to the approach recommended

in Zilber and Katzfuss (2019), our algorithm is guaranteed to converge, because it is equivalent to

Newton-Raphson optimization of the log of the posterior density in (3.7), which is concave. Once

the algorithm converges to the posterior mode µ̃, the HV-Laplace approximation of the posterior

is given by

p̂L(x|y) = Nn(x|µ̃, L̃L̃⊤),

where L̃ is the Cholesky factor of the negative Hessian of the log-posterior at µ̃. Our approach

is described in Algorithm 3. The main computational expense for each iteration of the for loop is

carrying out Algorithm 2, and so each iteration requires only O(nN2) time.
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Algorithm 3: Hierarchical-Vecchia-Laplace inference: HVL(y,S,µ,Σ, {gi})
Input: data y; sparsity S; µ,Σ such that x ∼ Nn(µ,Σ); likelihoods {gi : i ∈ I}
Result: µ̃ and L̃ such that p̂L(x|y) = Nn(x|µ̃, L̃L̃⊤)

1: Initialize x(0) = µ
2: Set H = II,: as the rows I of the n× n identity matrix I
3: for ℓ = 0, 1, 2, . . . do
4: Calculate u(ℓ) as in (3.8), D(ℓ) as in (3.9), and t(ℓ) = x(ℓ) +D(ℓ)u(ℓ)

5: Calculate [x(ℓ+1), L̃] = HV(t(ℓ),S,µ,Σ,H,D(ℓ)) using Algorithm 2
6: if ∥x(ℓ+1) − x(ℓ)∥/∥x(ℓ)∥ < ϵ then
7: break
8: end if
9: end for

10: return µ̃ = x(ℓ+1) and L̃

It can be shown using straightforward calculations that in the Gaussian case, when gi(yi|xi) =

N (yi|aixi, τ
2
i ) for some ai ∈ R, the pseudo-data ti = yi/ai and pseudo-variances di = τ 2i do not

depend on x, and so Algorithm 3 converges in a single iteration (cf. Zilber and Katzfuss, 2019). If

ai = 1, (3.5) becomes equivalent to (3.1), and Algorithm 3 simplifies to Algorithm 2.

3.5 Fast filters for spatio-temporal models

3.5.1 Linear evolution

We now turn to a spatio-temporal state-space model, which adds a temporal evolution model

to the spatial model (3.5) considered in Section 3.4. For now, assume that the evolution is lin-

ear. Starting with an initial distribution x0 ∼ Nn(µ0|0,Σ0|0), we consider the following SSM for

discrete time t = 1, 2, . . .:

yti |xt
ind∼ gti(yti|xti), i ∈ It (3.10)

xt |xt−1 ∼ Nn(Etxt−1,Qt), (3.11)

where yt is the data vector consisting of observations {yti : i ∈ It}, It ⊂ {1, . . . , n} contains

the nt ≤ n observation indices at time t, gti is a distribution from the exponential family, xt =

(x1, . . . , xn)
⊤ is the latent spatial field of interest at time t observed at a spatial grid S, and Et is a
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sparse n× n evolution matrix.

At time t, our goal is to obtain or approximate the filtering distribution p(xt|y1:t) of xt given

data y1:t up to the current time t. This task, also referred to as data assimilation or on-line inference,

is a very common task across many fields of science, to quantify uncertainty in the state and to

obtain forecasts into the future. If the observation equations gti are all Gaussian, the filtering

distribution can be derived using the Kalman filter (Kalman, 1960) for small to moderate n. At

each time t, the Kalman filter consist of a forecast step that computes p(xt|y1:t−1), and an update

step which then obtains p(xt|y1:t). For linear Gaussian SSMs, both of these distributions are

multivariate normal.

Our Kalman-Vecchia-Laplace (KVL) filter extends the Kalman filter to high-dimensional SSMs

(i.e., large n) with non-Gaussian data, as in (3.10)–(3.11). Its update step is very similar to the in-

ference problem in Section 3.4, and hence it essentially consists of the HVL in Algorithm 3. We

complement this update with a forecast step, in which the estimates of the mean and variance are

propagated forward using the temporal evolution model. This results in our KVL filter given in

Algorithm 4.

Algorithm 4: Kalman-Vecchia-Laplace (KVL) filter
Input: S, µ0|0, Σ0|0, {(yt,Et,Qt, {gt,i}) : t = 1, 2, . . .}
Result: µt|t,Lt|t, such that p̂(xt|y1:t) = Nn(xt|µt|t,Lt|tL

⊤
t|t)

1: Compute U0|0 = ichol(Σ0|0,S) and L0|0 = U−⊤
0|0

2: for t = 1, 2, . . . do
3: Forecast: µt|t−1 = Etµt−1|t−1 and Lt|t−1 = EtLt−1|t−1

4: For all (i, j) with Si,j = 1: Σt|t−1;i,j = Lt|t−1;i,:L
⊤
t|t−1;j,: +Qt;i,j

5: Update: [µt,Lt|t] = HVL(yt,S,µt|t−1,Σt|t−1, {gt,i}) using Algorithm 3
6: return µt|t,Lt|t
7: end for

In Line 4, Lt|t−1;i,: denotes the ith row of Lt|t−1. The KVL filter scales well with the state

dimension n. The evolution matrix Et, which is often derived using a forward-finite-difference
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scheme and thus has only a few nonzero elements in each row, can be quickly multiplied with

Lt−1|t−1 in Line 3, as the latter is sparse (see Section 3.3.3). TheO(nN) necessary entries of Σt|t−1

in Line 4 can also be calculated quickly due to the sparsity of Lt|t−1;i,:. The low computational

cost of the HVL algorithm has already been discussed in Section 3.4. Thus, assuming sufficiently

sparse Et, the KVL filter scales approximately as O(nN2) per iteration. In the case of Gaussian

data (i.e., all gti in (3.10) are Gaussian), our KVL filter will produce essentially equivalent filtering

distributions as the multi-resolution filter of Jurek and Katzfuss (2018).

3.5.2 An extended MRF for nonlinear evolution

Finally, we consider a nonlinear and non-Gaussian model, which extends (3.10)–(3.11) by

allowing nonlinear evolution operators, Et : Rn → Rn. This results in the model

yti |xt
ind∼ gti(yti|xti), i ∈ It (3.12)

xt |xt−1 ∼ Nn(Et(xt−1),Qt). (3.13)

Due to the nonlinearity of the evolution operator Et, the KVL filter in Algorithm 4 is not di-

rectly applicable anymore. However, similar inference is still possible as long as the evolution is

not too far from linear. Approximating the evolution as linear is generally reasonable if the time

steps are short, or if the measurements are highly informative. In this case, we propose the ex-

tended Kalman-Vecchia-Laplace filter (EKVL) in Algorithm 5, which approximates the extended

Kalman filter (e.g., Grewal and Andrews, 1993, Ch. 5) and extends it to non-Gaussian data us-

ing the Vecchia-Laplace aproach. For the forecast step, EKVL computes the forecast mean as

µt|t−1 = Et(µt−1|t−1). The forecast covariance matrix Σt|t−1 is obtained as before, after approx-

imating the evolution using the Jacobian as Et = ∂Et(yt−1)
∂yt−1

∣∣
yt−1=µt−1|t−1

. Errors in the forecast

covariance matrix due to this linear approximation can be captured in the innovation covariance,

Qt. If the Jacobian matrix cannot be computed, it is sometimes possible to build a statistical

emulator (e.g. Kaufman et al., 2011) instead, which approximates the true evolution operator.

Once µt|t−1 and Σt|t−1 have been obtained, the update step of the EKVL proceeds exactly as
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in the KVL filter by approximating the forecast distribution as Gaussian.

Algorithm 5: Extended Kalman-Vecchia-Laplace (EKVL) filter
Input: S, µ0|0, Σ0|0, {(yt, Et,Qt, {gt,i}) : t = 1, 2, . . .}
Result: µt|t,Lt|t, such that p̂(xt|y1:t) = Nn(xt|µt|t,Lt|tL

⊤
t|t)

1: Compute U0|0 = ichol(Σ0|0,S) and L0|0 = U−⊤
0|0

2: for t = 1, 2, . . . do
3: Calculate Et =

∂Et(xt−1)
∂xt−1

∣∣
xt−1=µt−1|t−1

4: Forecast: µt|t−1 = Et(µt−1|t−1) and Lt|t−1 = EtLt−1|t−1

5: For all (i, j) with Si,j = 1: Σt|t−1;i,j = Lt|t−1;i,:L
⊤
t|t−1;j,: +Qt;i,j

6: Update: [µt,Lt|t] = HVL(yt,S,µt|t−1,Σt|t−1, {gt,i}) using Algorithm 3
7: return µt|t,Lt|t
8: end for

Similarly to Algorithm 4, EKVL scales very well with the dimension of x, the only difference

being the additional operation of calculating the Jacobian in Line 3, whose cost is problem depen-

dent. Only those entries of Et need to be calculated that are multiplied with non-zero entries of

Lt−1|t−1, whose sparsity structure is known ahead of time.

3.5.3 A particle-EVKL filter in case of unknown parameters

The distributions and matrices in model (3.12)–(3.13) may depend on parameters θt at each

time t, which we have implicitly assumed to be known thus far. We now discuss the case of a

(small) number of unknown parameters θt. Specifically, µ0|0 and Σ0|0 may depend on θ0, and the

quantities {gt,i}, Et, and Qt at each time t may depend on θt. There are two main approaches

to simultaneous filtering for the state xt and the parameters θt: state augmentation and Rao-

Blackwellized filters (Doucet and Johansen, 2009). The main idea behind the former is to include

θt in the state vector xt and to modify the evolution and the model error matrices accordingly, but

this approach is known to work poorly in certain cases (e.g., DelSole and Yang, 2010; Katzfuss

et al., 2019). Thus, following Jurek and Katzfuss (2018), we now present a Rao-Blackwellized

filter in which integration over xt is performed based on our HVL approximation.
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Writing θ0:t = (θ0, . . . ,θt), the integrated likelihood at time t is given by

p(y1:t|θ0:t) = p(y1|θ0:1)
∏t

k=2 p(yk|y1:k−1,θ0:k).

It is well known that

p(yt|y1:t−1,θ0:t) =
p(yt,xt|y1:t−1,θ0:t)

p(xt|y1:t,θ0:t)
=

p(yt|xt,θt)p(xt|y1:t−1,θ0:t)

p(xt|y1:t,θ0:t)
,

where p(yt|xt,θt) is available in closed form from (3.12), and the forecast and filtering distribu-

tions can be approximated using the EKVL, to obtain

Lt(θ0:t) := p̂(yt|y1:t−1,θ0:t) =
p(yt|xt,θt)N (µt|t−1,Σt|t−1)

N (µt|t,Σt|t)
. (3.14)

The normal densities can be quickly evaluated for given parameter values θ0:t, because Algorithm

5 calculates sparse Cholesky factors of their precision matrices. For t = 1, the term L1(θ0:1) :=

p̂(y1|θ0:1) can be approximated in a similar way using µ0|0 and Σ0|0.

The particle-EVKL filter is given by Algorithm 6, assuming that the parameter priors are given

by f0(θ0) and then recursively by ft(θt|θt−1).

3.6 Numerical comparison

3.6.1 Methods and criteria

We considered and compared the following methods:

Hierarchical Vecchia (HV): Our methods as described in this paper.

Low rank (LR): A special case of out methods with M = 1, in which the diagonal and the

first N columns of S are nonzero, and all other entries are zero. This results in a matrix

approximation Σ̂ that is of rank N plus diagonal, which is known as the modified predictive

process (Banerjee et al., 2008; Finley et al., 2009) in spatial statistics. LR has the same

computational complexity as HV.
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Algorithm 6: Particle-EKVL filter
Input: S, µ0|0, Σ0|0, {(yt, Et,Qt, {gt,i}) : t = 1, 2, . . .}, priors {ft}, proposal

distributions {qt}, desired number of particles Np

Result: {(θ(l)
t , w

(l)
t ,µ

(l)
t|t ,L

(l)
t|t) : l = 1, . . . , Np}, such that

p̂(θt,xt|y1:t) =
∑Np

l=1 w
(l)
t δ

θ
(l)
t
(θt)Nn(xt|µ(l)

t|t ,L
(l)
t|tL

(l)
t|t

⊤)

1: for l = 1, 2, . . . , Np do
2: Draw θ

(l)
0 ∼ f0(θ0) and set weight w(l)

0 = 1/Np

3: Compute L0|0(θ
(l)
0 ) = ichol(Σ0|0(θ

(l)
0 ),S)

4: Compute µ
(l)
0|0(θ

(l)
0 ) and U0|0(θ

(l)
0 ) = L−⊤

0|0 (θ
(l)
0 )

5: end for
6: for t = 1, 2, . . . do
7: for l = 1, 2, . . . , Np do
8: Draw θ

(l)
t ∼ qt(θ

(l)
t |θ

(l)
t−1)

9: Calculate E
(l)
t =

∂Et(yt−1,θ
(l)
t )

∂yt−1

∣∣
yt−1=µt−1|t−1(θ

(l)
t−1)

10: Forecast: µ(l)
t|t−1 = Et(µt−1|t−1,θ

(l)
t−1) and L

(l)
t|t−1 = E

(l)
t L

(l)
t−1|t−1

11: For (i, j) s.t. Si,j = 1: Σ(l)
t|t−1;i,j = L

(l)
t|t−1;i,:(L

(l)
t|t−1;j,:)

⊤ +Qt;i,j(θ
(l)
t )

12: Update: [µ(l)
t ,L

(l)
t|t ] = HVL(yt,S,µ

(l)
t|t−1,Σ

(l)
t|t−1, {gt,i(θ

(l)
t )})

13: Calculate Lt(θ
(l)
0:t) as in (3.14)

14: Update particle weight w(l)
t ∝ w

(l)
t−1Lt(θ

(l)
0:t)ft(θ

(l)
t |θ

(l)
t−1)/qt(θ

(l)
t |θ

(l)
t−1)

15: return µ
(l)
t|t ,L

(l)
t|t ,θ

(l)
t , w

(l)
t

16: end for
17: Resample {(θ(l)

t ,µ
(l)
t|t ,L

(l)
t|t)}

Np

l=1 with weights {w(l)
t }

Np

l=1 to obtain equally weighted particles
(e.g., Douc et al., 2005)

18: end for

Dense Laplace (DL): A further special case of HV with M = 0, in which S is a fully dense

matrix of ones. Thus, there is no error due to the Vecchia approximation, and so in the

non-Gaussian spatial-only setting, this is equivalent to a Laplace approximation. DL will

generally be more accurate than HV and low-rank, but it scales as O(n3) and is thus not

feasible for high dimension n.

For each scenario below, we simulated observations using (3.12), taking gt,i to be each of

four exponential-family distributions (Gaussian, logistic, Poisson and gamma), assuming a shape

parameter α = 2 for the gamma case. For most scenarios, we assumed a moderate state dimension
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n, so that DL remained feasible; a large n was considered in Section 3.6.4.

The main metric to compare HV and LR was the difference in KL divergence between their

posterior or filtering distributions and those generated by DL; as the exact distributions were not

known here, we approximated this metric by the average difference in log scores (dLS; e.g., Gneit-

ing and Katzfuss, 2014) over several simulations. We also calculated the relative root mean square

prediction error (RRMSPE), defined as the root mean square prediction error of HV and LR, re-

spectively, divided by the root mean square prediction error of DL. For each of the two criteria,

lower values are better.

3.6.2 Spatial-only data

In our first scenario, we considered spatial-only data according to (3.5)–(3.6) on a grid S of

size n = 34 × 34 = 1,156 on the unit square, D = [0, 1]2. We set µ = 0 and Σi,j = exp(−∥si −

sj∥/0.15). For the Gaussian likelihood, we assumed variance τ 2 = 0.2.

The comparison scores averaged over 100 simulations for the posteriors obtained using Algo-

rithm 3 are shown as a function of N in Figure 3.2. HV was much more accurate than LR for each

value of N .

3.6.3 Linear evolution

Next, we considered a linear spatio-temporal advection-diffusion process with diffusion pa-

rameter α = 4 × 10−5 and advection parameter β = 10−2 as in Jurek and Katzfuss (2018). The

spatial domain D = [0, 1]2 was discretized on a grid of size n = 34 × 34 = 1,156 using the cen-

tered finite difference method, and we considered discrete time points t = 1, . . . , T with T = 20.

After this discretization, our model was of the form (3.10)–(3.11), where Σ0|0 = Q1 = . . . = QT

with (i, j)th entry exp(−∥si − sj∥/0.15), and Et was a sparse matrix with nonzero entries corre-

sponding to interactions between neighboring grid points to the right, left, top and bottom. See the

supplementary material of Jurek and Katzfuss (2018) for details.

At each time t, we generate nt = 0.1n observations with indices It sampled randomly from

{1, . . . , n}. For the Gaussian case, we assume variance τ 2 = 0.25. We used conditioning sets of
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Figure 3.2: Approximation accuracy for the posterior distribution x|y for spatial data (see Section 3.6.2)

size at most N = 41 for both HV and LR; specifically, for HV, we used J = 2 partitions at M = 7

resolutions, with set sizes |Xj1,...,jm| of 5, 5, 5, 5, 6, 6, 6 respectively for m = 0, 1, . . . ,M − 1 and

|Xj1,...,jm | < 4.

Figure 3.3 compares the scores for the filtering distributions xt|y1:t obtained using Algorithm

4, averaged over 80 simulations. Again, HV was much more accurate than LR. Importantly, while

the accuracy of HV was relatively stable over time, LR became less accurate over time, with the

approximation error accumulating.

3.6.4 Simulations using a very large n

We repeated the advection-diffusion experiment from Section 3.6.3 on a very fine grid of size

n = 300 × 300 = 90,000 and we assumed that we have nt = 9,000 corresponding to 10% of

the grid points. In order to avoid numerical artifacts related to the finite differencing scheme, we
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Figure 3.3: Accuracy of filtering distributions xt|y1:t for the advection-diffusion model in Section 3.6.3

reduced the advection and diffusion coefficients to α = 10−7 and β = 10−3, respectively. We set

N = 44, M = 14, J = 2, and |Xj1,...,jm| = 3 for all m = 0, 1, . . . ,M − 1, and |Xj1,...,jM | ≤ 3. DL

was too computationally expensive due to the high dimension n, and so we simply compared HV

and LR based on the root mean square prediction error (RMSPE) between the true state and their

respective filtering means, averaged over 10 iterarions.

As shown in Figure 3.4, HV was again much more accurate than LR. Comparing to Figure 3.3,

we see that the relative improvement of HV to LR increased even further; taking the Gaussian case

as an example, the ratio of the RMSPE for HV and LR was around 1.2 in the small-n setting, and

greater than 2 in the large-n setting.
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Figure 3.4: Root mean square prediction error (RMSPE) for the filtering mean in the high-dimensional advection-
diffusion model with n = 90,000 in Section 3.6.4

3.6.5 Nonlinear evolution with non-Gaussian data

In the final set of our simulations, we discuss the most general form of (3.12)-(3.13) when Et is

a nonlinear function. Following the model introduced by Lorenz (2005), Section 3, we consider a

stochastic process x defined on n = 960 points {s1, s2, . . . , sn} evenly distributed on a circle with

circumference equal to 1. If we define Xi := x(si)/b to be the value of the process at the n-th

point scaled by b, its dynamics are described by the following equation:

∂Xi

∂t
= [X]K,i −Xi + F

where K is an even number and

[X]K,i =
1

K2

K
2∑

l=−K
2

K
2∑

j=−K
2

−Xi−2K−lXi−K−j +Xi−K+j−lXi+K+j

For our simulation we take K = 32, b = 0.2. As explained in detail in Lorenz (2005), the model

is able to replicate some features of atmospheric variables along a given latitude band. Aiming at

representing the model in the form (3.13) we solve it using a 4-th order Runge-Kutta scheme and a

time step of dt = 0.005 to derive the evolution Et operator at each t. We also calculate the analytic
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expression for its derivative∇Et which is necessary for Algorithm 5.

Next we run the model for 20000 time steps starting from a standard normal distribution. We

then use the state of the model at time t = 20000 and run it for another 1, 000, 000 time steps. We

take every 40-th time step and calculate the sample mean and covariance which we use as moments

of the initial distribution x0 ∼ N (µ0|0,Σ0|0).

We then simulate xt using (3.13) and T = 100 time steps and Qt derived from an exponential

covariance function with range 0.15 and marginal variance 0.2. Next, for each t we generate a

vector of observations yt = (yti)i∈It as in (3.12). For each i ∈ It we take gti(yti|xti) = hti(yti|xti)

where hti is the density of one of the four exponential family distributions listed in Section 3.6.1.

We set It to be a random subset of locations s1, . . . , sn such that #It = 0.1n = 96.

For each data set obtained in this way we apply the three filtering methods described in Section

3.6.1. We use N=39 and for the HV filter we set J = 2, M = 7 and |Xj1,...,jm| equal to 5, 5, 5, 5,

6, 6, 6 respectively for m = 0, 1, . . . ,M − 1 and |Xj1,...,jM | < 2. We repeat the whole process 40

times and report in Figure 3.5 the average scores at the 20 time points when data was available.

The results show that our method (HV) compares favorably to the low-rank filter and provides

excellent approximation accuracy as evidenced by very low RRMSPE and dLS scores.

3.7 Conclusions

After specifying the relationship between ordered conditional independence and sparse (in-

verse) Cholesky factors, we described a hierarchical Vecchia approximation, which exhibits sparse

Cholesky factors on the covariance and on the precision scale. Due to this remarkable sparsity

property, the approximation is suitable for high-dimensional spatio-temporal filtering. The hierar-

chical Vecchia approximation can be computed using a simple and fast sparse Cholesky decompo-

sition (IC0). Further, by combining the approach with a Laplace approximation and the extended

Kalman filter, we obtained scalable filters for non-Gaussian and non-linear spatio-temporal state-

space models.

Our methods can be directly applied to spatio-temporal point patterns modeled using log-

Gaussian Cox processes, which can be viewed as Poisson data after discretization of the spatial
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Figure 3.5: Accuracy of filtering distribution xt|y1:t for the Lorenz model in Section 3.6.5

domain, resulting in accurate Vecchia-Laplace-type approximations (Zilber and Katzfuss, 2019).

We plan on investigating an extension of our methods to retrospective smoothing over a fixed time

period. Another interesting extension would be to combine our methodology with the unscented

Kalman filter (Julier and Uhlmann, 1997) for strongly nonlinear evolution. Finally, while we fo-

cused our attention on spatio-temporal data, our work can be extended to other applications, as

long as a sensible hierarchical partitioning of the state vector can be obtained as in Section 3.3.1.
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4. CONCLUSION

In conclusion, this thesis presents a family of new filtering methods based on the Vecchia

approximation for latent Gaussian state-space models. Thanks to the versatility of the approxi-

mation, our algorithm can be used in the presence of non-Gaussian data. We also show how to

address the case of non-linear temporal evolution. Our approach scales well to high dimensions

while maintaining accuracy and being able to resolve fine-scale features of the filtering distribution.

As indicated in the preceding chapters, we envision extending our algorithm to enable smoothing

inference. We also plan to improve the accuracy in highly non-linear models using an approach

based on the unscented Kalman filter. Finally, we also provide an implementation of our method,

which can be found at https://github.com/katzfuss-group/vecchiaFilter.
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APPENDIX A

PROOFS OF RESULTS FROM CHAPTER 2

A.1 Proofs

We now provide proofs for the propositions stated throughout the article. We simplify notation

by dropping most time subscripts; to avoid confusion, we denote Bt|t−1 by B, and Bt|t by B̃.

In Section C.8, we provide lemmas with proofs that are used in the proof of Proposition 3 here.

Sections C.6-C.7 contain additional technical concepts used in the lemmas, including a review of

basic ideas from graph theory, hierarchical-matrix theory, and some illustrative figures. Finally,

throughout this appendix, if G is a square matrix, we use GL and GU to denote its lower and

upper triangles, respectively.

Proof of Proposition 1. Recall that B =
(
BM ,BM−1, . . . ,B0

)
. This lets us write the i-th row

of B as B[i, :] =
(
BM [i, :],BM−1[i, :], . . . ,B0[i, :]

)
. By construction, each block Bm is block-

diagonal and such that for m ≤M , each segment Bm[i, :] has only rm nonzero elements. Because

each row of B is composed of M + 1 blocks Bm[i, :] for m = 0, . . . ,M , this ends the proof.

Proof of Proposition 2. Direct calculation shows that B′B is a block matrix consisting of (M +

1)× (M +1) blocks with (M−k+1,M− l+1)-th block (Bk)′Bl. Since for each j the matrix Bj

has dimensions nS × |Kj| it follows that (Bk)′Bl is of size |Kk| × |Kl|. Note that Bk and Bl are

block-diagonal with blocks of size |Ij1,...,jk |× rk and |Ij1,...jl |× rl, respectively. Assuming without

loss of generality that k ≤ l, we have that

Ij1,...,jk =
⋃J

jk+1=1 · · ·
⋃J

jl=1 Ij1,...,jℓ , =⇒ |Ij1,...,jk | =
∑J

jk+1=1 · · ·
∑J

jl=1 |Ij1,...,jℓ |.

Thus Bl can be viewed as a block-diagonal matrix with blocks of height |Ij1,...,jk |. We can also

determine their width to be wj1,...,jk =
∑J

jk+1=1 · · ·
∑J

jl=1 |Kj1,...,jk,jk+1,...jl |. This means (Bk)′Bl is
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the product of two block-diagonal matrices with matching block sizes. Therefore the product will

be also block-diagonal with blocks of dimensions wj1,...,jk × rk.

Proof of Proposition 3.

1. Observe that under Assumption 1, R−1 and H are block-diagonal with blocks of matching

dimensions. Since R−1 has square blocks, we conclude that H′R−1 ∈ S(H′). Thus, if

R̃−1 := H′R−1H, then R̃−1 ∈ S(H′H). The latter is a block-diagonal matrix with square

blocks of size |Ij1,...,jM |.

Next, we demonstrate that B′R̃−1B ∈ S(B′B). First, as R̃−1 is block-diagonal, the (M +

1− k,M + 1− l)-th block of B′R̃−1B is given by (Bk)′R̃−1Bl.

Now, for each 0 ≤ k ≤ M , Bk is a block-diagonal matrix with blocks of size |Ij1,...,jk | ×

rk, but R̃−1 has blocks of size |Ij1,...,jM | × |Ij1,...,jM |. However, recalling (A.1), blocks

of R̃−1 can also be viewed as having dimensions |Ij1,...,jk | × rk. Because this implies that

(Bk)′R̃−1 ∈ S(Bk)′, we have (Bk)′R̃−1Bl ∈ S((Bk)′Bl) and hence (B)′R̃−1B ∈ S(B′B).

Finally, we conclude that≺∈ S(B′B), because≺= InS+B′R̃−1B and all diagonal elements

of B′B are nonzero.

2. According to Khare and Rajaratnam (2012, Thm. 1), for any positive definite matrix S, the

sparsity pattern in the Cholesky factor and its inverse are the same as that of the lower triangle

of S, if (a) the pattern of zeros in S corresponds to a homogeneous graph, and (b) the order of

the vertices of the graph implied by the order of the rows is a Hasse-tree-based elimination

scheme. Lemmas 1 and 2 in Section C.8 show that these two conditions are met for B′B.

These lemmas, together with Part 1 above, imply that L ∈ S(≺L) and L−1 ∈ S(≺L).

3. Observe that ≺−1= (LL′)−1 = (L−1)′L−1. Thus (L−1)′ is the Cholesky factor of ≺−1.
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Moreover, by Part 2, (L−1)′ ∈ S((B′B)U). This allows us to define blocks L̃m,k such that

(L−1)′ =



L̃M,M . . . L̃M,1 L̃M,0

... . . . ...
...

0 . . . L̃1,1 L̃1,0

0 . . . 0 L̃0,0


=

[
L̃m,k

]
m,k=M,...,0

,

where each L̃m,k ∈ S((Bm)′Bk) for m ≥ k and is zero when m < k. This means that for

each m, k with m ≥ k, we can consider the sparsity of Bm(Bm)′Bk instead of BmL̃m,k.

Recall that Bk is block-diagonal with blocks of size |Ij1,...,jk |×rk. Similarly, Bm has blocks

that are |Ij1,...,jm| × rm. However, since k ≤ m, using (A.1)

we can also see Bm as a block-diagonal matrix whose blocks have dimensions |Ij1,...,jk |× rk

(cf. proof of Proposition 2). This implies that Bm(Bm)′ ∈ S(Bk(Bk)′), which means that

Bm(Bm)′Bk ∈ S(Bk) and hence BmL̃m,k ∈ S(Bk).

Finally, we observe that

B · (L−1)′ =
[
BM BM−1 . . . B0

]
·



L̃M,M . . . L̃M,1 L̃M,0

... . . . ...
...

0 . . . L̃1,1 L̃1,0

0 . . . 0 L̃0,0


=

[
B̃M B̃M−1 . . . B̃0

]
,

where B̃k =
∑M

m=k B
mL̃m,k. Since we showed that BmL̃m,k ∈ S(Bk), this means that

B̃k ∈ S(Bk).

Proof of Proposition 4. By Proposition 3, Parts 1 and 2, L ∈ S((B′B)L). Therefore, it suffices

to show that cj = (B′B)L[:, j], the j-th column of (B′B)L, has O(N) nonzero elements for each

j. Notice that cj = (0, . . . , 0, ck,kj , . . . cM,k
j )′ where ck,lj = ((Bk)′Bl)[:, j], the j-th column of

62



(Bk)′Bl. Because l ≥ k, each of the Bk(Bl)′ matrices is block-diagonal with blocks of height

|Kj1,...,jk |. The vector ck,lj intersects exactly one of such diagonal blocks, and so the total number

of nonzero elements in c is at most N =
∑

m rm.

Proof of Proposition 5. Observe that it is enough to consider only the complexity of operations in

(2.4) because Vl
j1,...,jm

can be obtained by selecting appropriate rows from Wl
j1,...,jm

. Given matrix

Σ, we only need to calculate the second term in (2.4). First, note that calculating Wl
j1,...,jm

for all

(j1, . . . , jm) is the same as computing Wl
j1,...,jℓ

for all l, and then, for each (j1, . . . , jm), selecting

the rows corresponding to Ij1,...,jm . Thus we show the complexity of calculating all Wl
j1,...,jℓ

.

Assume that all Wk
j1,...,jℓ

for k < l are already given and consider the summation term. Each

of its components takes O(|Ij1,...,jℓ |r2 + r3 + r3 + r3) = O(|Ij1,...,jℓ|r2) to compute. Because

for any given l, there are at most M terms under the summation, their joint computation time is

O(M · |Ij1,...,jℓ |r2). For a given l, these calculations have to be performed for each set of indices

Ij1,...,jℓ . Thus, obtaining all Wl
j1,...,jℓ

requiresO(M ·
∑

j1,...,jℓ
|Ij1,...,jℓ |r2) = O(M ·nr2) time. Now

notice that Ij1,...,jm ⊂ Ij1,...,jℓ . Therefore, once we have Wl
j1,...,jℓ

, we obtain Wl
j1,...,jm

by selecting

appropriate rows from Wl
j1,...,jℓ

. Finally, iterating over l = 0, . . . ,M means that the total cost of

Algorithm 2 is O(M2nr2) = O(nN2).

Proof of Proposition 6. The forecast step requires calculating µt|t−1 = Etµt−1|t−1 and BF
t|t−1 =

EtBt−1|t−1, which can be obtained in O(nr) and O(nrN) time, respectively, due to the sparsity

structures of Bt−1|t−1 (see Proposition 1) and Et (Assumption 2).

By Proposition 5, the MRD of a given covariance matrix Σ requiresO(nN2) operations. Here,

Σ = Σt|t−1 is not given, but each (i, j) element must be computed as

Σt|t−1[i, j] = (BF
t|t−1[i, : ])(B

F
t|t−1[j, : ])

′ +Qt[i, j].

This does not increase the complexity of the MRD, because the MRD requires only O(nN) el-

ements of Σt|t−1, each of which can be computed in O(N) time due to the sparsity structure of

BF
t|t−1. Thus, the entire forecast step can be performed in O(nN2) time.
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In the update step, we must compute Λ̃, L−1 = Λ̃−1/2, and Bt|t = Bt|t−1(L
−1)′. Under

Assumption 1, H and R are block-diagonal matrices with at most JM blocks of size O(r × r)

each. Thus, calculating R̃ := H′R−1H requires O(JMr3) = O(nr2) operations. The resulting

matrix is block-diagonal with blocks of size O(r × r), conformable with the blocks of Bt|t−1.

Given R̃, the cost of calculating Λ̃ is dominated by multiplying Bt|t−1 by R̃. By Proposition 1,

each row of Bt|t−1 has N nonzero elements, so in view of the structure of R̃ determined above, it

takes O(nN2) operations to obtain the product Bt|t−1R̃ and, consequently, to calculate Λ̃.

The complexity of computing a Cholesky factor is on the order of the sum of the squared num-

ber of nonzero elements per column (e.g., Toledo, 2007, Thm. 2.2). Thus, computing L requires

O(nN2) time, because L hasO(N) elements in each of its n columns (Proposition 3). Computing

L−1 can be accomplished by solving a triangular system of equations for each column of L−1.

Using Proposition 4, we conclude that each of these systems will have only O(N) equations and

thus can be solved in O(N2) time (Kincaid and Cheney, 2002, Ch. 4.2). As we need to compute n

columns, the total effort required for obtaining L−1 is O(nN2).

Finally, recall that both Bt|t−1 and L−1 have O(N) elements in each row and that, by Proposi-

tion 3, their product, Bt|t, has only O(nN) nonzero elements. Because each of these elements can

be computed in O(N) time, the total computation cost of this step is O(nN2).

To summarize, all three matrices necessary in the update step can be obtained in O(nN2)

time. Thus, we showed that both steps of Algorithm 1 require O(nN2) time, which completes the

proof.

Proof of Proposition 7. For m = 1, . . . ,M , define B0:m = (Bm, . . . ,B0) as the submatrix of B

consisting of the column blocks corresponding to resolutions 0, . . . ,m. To show that BB′ ∈ Hr
M ,

we prove by induction over m = 1, . . . ,M that (B0:mB0:m)′ ∈ Hr
m. For m = 1, we have B0:1 =
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 B1 0 B01

0 B2 B02

, where B01 and B02 are each r columns wide. Thus,

B0:1(B0:1)′ =

 B01B
′
01 +B1B

′
1 B01B

′
02

B02B
′
01 B02B

′
02 +B2B

′
2

 .

and so B0:1(B0:1)′ ∈ Hr
1 .

Now, assume that B0:m−1(B0:m−1)′ ∈ Hr
m−1. We have

B0:m(B0:m)′ =
∑m

j=0 B
j(Bj)′ =

∑m−1
j=0 Bj(Bj)′ +Bm(Bm)′ = B0:m−1(B0:m−1)′ +Bm(Bm)′.

Next observe that for any k, the matrix Bk is block-diagonal, which means that Bk(Bk)′ is also

block-diagonal with dense blocks Bk(Bk)′[Ij1,...,jk , Ij1,...,jk ]. However, recursive partitioning of

the domain means that Ij1,...,jk−1
⊃ Ij1,...,jk . Therefore, if k > j, then blocks of Bk(Bk)′ are nested

within the blocks of Bj(Bj)′. Since this holds also for k = m − 1 and j = m, it means that

B1:m(B1:m)′ ∈ Hr
m.
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APPENDIX B

PROOFS OF RESULTS FROM CHAPTER 3

B.1 Glossary of graph theory terms

We briefly review here some graph terminology necessary for our exposition and proofs, fol-

lowing Lauritzen (1996).

If a→ b then we say that a is a parent of b and, conversely, that b is a child of a. Moreover, if

there is a sequence of distinct vertices h1, . . . , hk such that hi → hi+1 or hi ← hi+1 for all i < k,

then we say that h1, . . . , hk is a path. If all arrows point to the right, we say that hk is a descendant

of hi for i < k, while each hi is an ancestor of hk.

A moral graph is an undirected graph obtained from a DAG by first finding the pairs of parents

of a common child that are not connected, adding an edge between them, and then by removing

the directionality of all edges. If no edges need to be added to a DAG to make it moral, we call it

a perfect graph.

Let G = (V,E) be a directed graph with vertices V and edges E. If V1 is a subset of V , then

the ancestral set of V1, denoted An(V1), is the smallest subset of V that contains V1 and such that

for each v ∈ An(V1) all ancestors of v are also in An(V1).

Finally, consider three disjoint sets of vertices A,B,C in an undirected graph. We say that C

separates A and B if for every pair of vertices a ∈ A and b ∈ B the every path connecting a and b

passes through C.

B.2 Proofs

Proof of Claim 1.

1. This proof is based on ideas in Schäfer et al. (2017). Split w = (w1, . . . , wn)
⊤ into two
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vectors, u = w1:j−1 and v = wj:n. Then,

L = K
1
2 = chol

 Kuu Kuv

Kvu Kvv


= chol


 I 0

KvuK
−1
uu I


 Kuu 0

0 Kvv −KvuK
−1
uuKuv


 I K−1

uuKuv

0 I




=

 K
1
2
uu 0

KvuK
− 1

2
uu (Kvv −KvuK

−1
uuKvu)

1
2

 .

Note that Li,j is the (i − j + 1)-th element in the first column of (Kvv −KvuK
−1
uuKvu)

1
2 ,

which is the Cholesky factor of Var(v|u) = Kvv −KvuK
−1
uuKvu. Careful examination of

the Cholesky factorization of a generic matrix A, which is described in Algorithm 1 when

setting si,j = 0 for all (i, j), shows that the computations applied to the first column of A

are fairly simple. In particular, this implies that

Li,j =
(
chol(Var(v|u))

)
i−j+1,1

=
Cov(wi, wj|w1:j−1)√

Var(wj|w1:j−1)
,

because wj = v1 and wi = vi−j+1. Thus, Li,j = 0 ⇐⇒ Cov(wi, wj|w1:j−1) = 0 ⇐⇒

wi ⊥ wj |w1:j−1 because w was assumed to be jointly normal.

2. Thm. 12.5 in Rue and Held (2010) implies that for a Cholesky factor Ŭ of a precision

matrix PK−1P of a normal random vector w̆ = Pw, we have Ŭi,j = 0 ⇐⇒ w̆i ⊥

w̆j | {w̆j+1:i−1, w̆i+1:n}. Equivalently, because U = PŬP, we conclude that Uj,i = 0 ⇐⇒

wi ⊥ wj | {w1:j−1,wj+1:i}.

Proof of Proposition 8. The fact that p̂(x) is jointly normal holds for any Vecchia approximation

(e.g., Datta et al., 2016a; Katzfuss et al., 2017, Prop. 1).
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1. First, note that L and U are lower- and upper-triangular matrices, respectively. Hence, we

assume in the following that j < i but xj ̸∈ Ci, and then show the appropriate conditional-

independence results.

(a) By Claim 1, we only need to show that xi ⊥ xj|x1:j−1. Let G be the graph correspond-

ing to factorization (3.3) and denote by Gm
An(A) the moral graph of the ancestral set of

A. By Corollary 3.23 in Lauritzen (1996), it is enough to show that {x1, . . . , xj−1}

separates xi and xj in Gm
An({x1,...,xj ,xi}). In the rest of the proof we label each vertex by

its index, to simplify notation.

We make three observations which can be easily verified. [1] An ({1, . . . , j, i}) ⊂

{1, . . . , i}; [2] Given the ordering of variables described in Section 3.3.1, if k → l then

k < l; [3] G is a perfect graph, so Gm
An({1,...,j,i}) is a subgraph of G after all edges are

turned into undirected ones.

We now prove Proposition 8.1.a by contradiction. Assume that {x1, . . . , xj−1} does not

separate xi and xj , which means that there exists a path (h1, . . . , hk) in {x1, . . . , xi}

connecting xi and xj such that hk ∈ An({1, . . . , j, i}) and j + 1 ≤ hk ≤ i− 1.

There are four cases we need to consider and we show that each one of them leads to

a contradiction. First, assume that the last edge in the path is hk → j. This violates

observation [2]. Second, assume that the first edge is i ← h1. But because of [1]

we know that h1 < i, and by [2] we get a contradiction again. Third, let the path

be of the form i → h1 ← · · · ← hk ← j (i.e., all edges are of the form hr ←

hr+1). However, this would mean that Xj1,...,jℓ ⊂ Ai1,...,im , for xi ∈ Xi1,...,im and

xj ∈ Xj1,...,jℓ . This implies that j ∈ Ci, which in turn contradicts the assumption

of the proposition. Finally, the only possibility we have not excluded yet is a path

such that i ← h1 . . . hk ← j with some edges of the form hr → hr+1. Consider the

largest r for which this is true. Then by [3] there has to exist an edge hr ← hp where

hp ∈ {hr+2, . . . , hk, j}. But this means that j is an ancestor of hr so the path can be

reduced to i → h1, . . . hr → j. We continue in this way for each edge "←" which
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reduces this path to case 3 and leads to a contradiction.

Thus we showed that all paths in Gm
An({1,...,j,i}) connecting i and j necessarily have be

contained in {1, . . . , j − 1}, which proves Proposition 8.1.a.

(b) Like in part (a), we note that by Claim 1 it it enough to show that xi ⊥ xj|x1:j−1,j+1:i−1.

Therefore, proceeding in a way similar to the previous case, we need to show that

{1, . . . , j−1, j+1, . . . , i} separates i and j in Gm
An({1,...,i}). However, notice that it can

be easily verified that An({1, . . . , i}) ⊂ {1, . . . , i}), which means that An({1, . . . , i}) =

{1, . . . , i}). Moreover, observe that the subgraph of G generated by An({1, . . . , i}) is

already moral, which means that if two vertices did not have a connecting edge in the

original DAG, they also do not share an edge in Gm
1,...,i. Thus i and j are separated by

{1, . . . , j− 1, j+1, . . . , i− 1} in Gm
1,...,i, which by Corollary 3.23 in (Lauritzen, 1996)

proves part (b).

2. Let P be the reverse-ordering permutation matrix. Let B = chol(PΣ̂−1P). Then U =

PBP. By the definition of B, we know that BB⊤ = PΣ̂−1P, and consequently PBB⊤P =

Σ̂−1. Therefore, Σ̂ = (PBB′P)−1. However, we have PP = I and P = P⊤, and

hence Σ̂ =
(
(PBP)(PB⊤P)

)−1. So we conclude that Σ̂ = (UU⊤)−1 = (U⊤)−1U−1 =

(U−1)⊤U−1 and (U−1)⊤ = L, or alternatively L−⊤ = U.

Proof of Proposition 9.

1. We observe that hierarchical Vecchia satisfies the sparse general Vecchia requirement spec-

ified in Katzfuss and Guinness (2019, Sect. 4), because the nested ancestor sets imply that

Cj ⊂ Ci for all j < i with i, j ∈ Ck. Hence, reasoning presented in Katzfuss and Guinness

(2019, proof of Prop. 6) allow us to conclude that Ũj,i = 0 if Uj,i = 0.
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2. As the observations in y are conditionally independent given x, we have

p̂(x|y) ∝ p̂(x)p(y|x) =
(∏n

i=1 p(xi|Ci)
)(∏

i∈I p(yi|xi)
)
, (B.1)

Let G be the graph representing factorization (3.3), and let G̃ be the DAG corresponding to

(B.1). We order vertices in G̃ such that vertices corresponding to y have numbers n+1, n+

2, . . . , n+ |I|. For easier notation we also define Ĩ = {i+n : i ∈ I}. Similar to the proof of

Proposition 8.1, we suppress the names of variables and use the numbers of vertices instead

(i.e., we refer to the vertex xk as k and yj as n + j). Using this notation, and following the

proof of Proposition 1, it is enough to show that {1, . . . , j − 1} ∪ Ĩ separate i and j in G̃m,

where G̃ := GAn({1,...,j,i}∪Ĩ).

We first show that 1, . . . , j − 1 separate i and j in G. Assume the opposite, that there exists

a path (h1, . . . , hk) in {j + 1, . . . , i − 1, i + 1, . . . , n} connecting xi and xj . Let us start

with two observations. First, note that the last arrow has to go toward j (i.e., hk → j),

because hk > j. Second, let p0 = max{p < k : hp → hp+1}, the index of the last vertex

with an arrow pointing toward j that is not hk. If p0 exists, then (h1, . . . , hp0) is also a path

connecting i and j. This is because hp0 and j are parents of hp0+1, and so hp0 → j, because

G is perfect and hp > j.

Now notice that a path (h1) (i.e., one consisting of a single vertex) cannot exist, because we

would either have i→ h1 → j or i← h1 ← j. The first case implies that i→ j, because in

G a node is a direct parent of all its descendants. Similarly in the second case, because G is

perfect and j < i, we also have that i← j. In either case the assumption j ̸∈ Ci is violated.

Now consider the general case of a path (h1, . . . , hk) and recall that by observation 1 also

hk ← j. But then the path (h1) also exists because by 3.3 all descendants are also direct

children of their ancestors. As shown in the previous paragraph, we thus have a contradic-

tion.

Finally, consider the remaining case such that p0 = max{p : hp → hp+1} exists. But
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then (h1, . . . , hp0) is also a path connecting i and j. If all arrows in this reduced paths

are to the left, we already showed it produces a contradiction. If not, we can again find

max{p : hp → hp+1} and continue the reduction until all arrows are in the same direction,

which leads to a contradiction again.

Thus we show that i and j are separated by {1, . . . , j − 1} in G. This implies that they

are separated by this set in every subgraph of G that contains vertices {1, . . . , j, i} and in

particular in G := GAn({1,...,j−1}∪{j}∪{i}∪Ĩ). Recall that we showed in Proposition 1 that G is

perfect, which means that G = Gm.

Next, for a directed graph F = (V,E) define the operation of adding a child as extending

F to F̃ = (V ∪ {w}, E ∪ {v → w}) where v ∈ V . In other words, we add one vertex and

one edge such that one of the old vertices is a parent and the new vertex is a child. Note

that a perfect graph with an added child is still perfect. Moreover, because the new vertex is

connected to only a single existing one, adding a child does not create any new connections

between the old vertices. It follows that if C separates A and B in F , then C ∪ {w} does so

in F̄ as well.

Finally, notice that G̃, the graph we are ultimately interested in, can be obtained from G using

a series of child additions. Because these operations preserve separation even after adding

the child to the separating set, we conclude that i and j are separated by {1, . . . , j−1}∪Ĩ in

G̃. Moreover, because G was perfect and because graph perfection is preserved under child

addition, we have that G̃ = G̃m.

CLAIM 2. Assuming the joint distribution p̂(x) as in (3.4), we have p̂(xi, xj) = p(xi, xj) if xj ∈ Ci;

that is, the marginal bivariate distribution of a pair of variables is exact if one of the variables is

in the conditioning set of the other.

Proof. First, consider the case where xi, xj ∈ Xj1,...,jm . Then note that p̂(Xj1,...,jm) =
∫
p̂(x)dx−Xj1,...,jm 

.

Furthermore, notice that given the decomposition (3.3) and combining appropriate terms we can
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write

p̂(x) = p (Xj1,...,jm|Aj1,...,jm) p (Aj1,...,jm) p
(
x−{Xj1,...,jm

∪Aj1,...,jm}
)
.

Using these two observations, we conclude that

p̂(Xj1,...,jm) =
∫
p̂(x)dx−Xj1,...,jm 

=
∫ ∏m

k=0
p(Xj1,...,jm|Aj1,...,jm)d(X , Xj1 , . . . , Xj1,...,jm−1) = p(Xj1,...,jm),

which proves that p̂(xi, xj) = p(xi, xj) if xi, xj ∈ Xj1,...,jm .

Now let xi ∈ Xj1,...,jm and xj ∈ Xj1,...,jℓ with ℓ < m, because xj ∈ Ci implies that j < i. Then,

p̂(Xj1,...,jm ,Xj1,...,jℓ) =
∫
p̂(x)dx−{Xj1,...,jm

∪Xj1,...,jℓ
} =

=
∫ ∏M

k=0

∏
j1,...,jk

p(Xj1,...,jk |Aj1,...,jk)dx−{Xj1,...,jm
∪Xj1,...,jℓ

}

=
∫ ∏m

k=0 p(Xj1,...,jk |Aj1,...,jk)d(Aj1,...,jℓ ∪ Xj1,...,jℓ+1
∪ · · · ∪ Xj1,...,jm−1).

The second equality uses (3.3), the definition of p̂; the last equation is obtained by integrating out

X 0:M \
⋃m

k=0Xj1,...,jk . Note thatAj1,...,jm = Aj1,...,jℓ ∪
⋃m−1

k=ℓ Xj1,...,jk . Therefore, by Bayes law, for

any k > ℓ:

p(Xj1,...,jk |Aj1,...,jk) = p (Xj1,...,jk |Aj1,...,jℓ ∪ (Aj1,...,jk \ Aj1,...,jℓ))

=
p(Aj1,...,jℓ

|Xj1,...,jk
∪(Aj1,...,jk

\Aj1,...,jℓ
))p(Xj1,...,jk

|Aj1,...,jk
\Aj1,...,jℓ

)

p(Aj1,...,jℓ
|Aj1,...,jk

\Aj1,...,jℓ
)

=
p(Aj1,...,jℓ

|Aj1,...,jk+1
\Aj1,...,jℓ

)p(Xj1,...,jk
|Aj1,...,jk

\Aj1,...,jℓ
)

p(Aj1,...,jℓ
|Aj1,...,jk

\Aj1,...,jℓ
)

= (∗)

The last equality holds because Xj1,...,jm ∪ Aj1,...,jm = Aj1,...,jm+1 . As a consequence

∏m
k=0 p(Xj1,...,jk |Aj1,...,jk) =

∏m
k=0 p(Xj1,...,jk |Aj1,...,jk \ Aj1,...,jℓ)p(Aj1,...,jℓ)

=
∏m

k=0 p(Xj1,...,jk |
⋃ℓ

s=k−1Xj1,...,js)p(Aj1,...,jℓ)
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and

(∗) =
∫ ∏m

k=0 p(Xj1,...,jm |Aj1,...,jm)p(Aj1,...,jℓ)d(Aj1,...,jℓ ∪ Xj1,...,jℓ+1
∪ . . . ,∪Xj1,...,jm−1)

=
∫
p(Xj1,...,jm ,Xj1,...,jm−1 , . . . ,Xj1,...,jℓ ,Aj1,...,jℓ)d(Aj1,...,jℓ ∪ Xj1,...,jℓ+1

∪ . . . ,∪Xj1,...,jm−1)

= p(Xj1,...,jm ,Xj1,...,jℓ)

This means that p̂(Xj1,...,jm ,Xj1,...,jℓ) = p(Xj1,...,jm ,Xj1,...,jℓ), or that the marginal distribution of

Xj1,...,jm and Xj1,...,jℓ in (3.3) is the same as in the true distribution p. Because p is Gaussian, it

follows that p̂(xi, xj) = p(xi, xj). This ends the proof.

Proof of Proposition 10. We use linc
i,j , li,j , σi,j , σ̂i,j to denote the (i, j)-th elements of Linc =

ichol(Σ,S), L = chol(Σ̂), Σ, Σ̂, respectively. It can be seen easily in Algorithm 1 that

chol(Σ) = ichol(Σ,S1), where S1
i,j = 1 for i ≥ j and 0 otherwise.

We prove that linc
i,j = li,j by induction over the elements of the Cholesky factor, following

the order in which they are computed. First, we observe that linc
1,1 = l1,1. Next, consider the

computation of the (i, j)-th entry, assuming that we have linc
k,q = lk,q for all previously computed

entries. According to Algorithm 1, we have

li,j =
1
lj,j

(
σ̂i,j −

∑j−1
k=1 li,klj,k

)
, linci,j =

si,j
lj,j

(
σi,j −

∑j−1
k=1 li,klj,k

)
.

Now, if si,j = 1 ⇐⇒ xj ∈ Ci, then Claim 2 tells us that σi,j = σ̂i,j , and hence li,j = linc
i,j . If

si,j = 0 ⇐⇒ xj ̸∈ Ci, then linc
i,j = 0, and also li,j = 0 by Proposition 8.1(a). This completes the

proof via induction.

CLAIM 3. Let x have density p̂(x) as in (3.3), and let each conditioning set Ci have size at most

N . Then Λ, the precision matrix of x, has O(nN) nonzero elements. Moreover, the columns of

U = rchol(Λ) and the rows of L = chol(Λ−1) each have at most N nonzero elements.

Proof. Because the precision matrix is symmetric, it is enough to show that there are only O(nN)
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nonzero elements Λi,j in the upper triangle (i.e., with i < j). Let xi ̸∈ Cj . This means that xi ̸→ xj

and because by (3.3) all edges go from a lower index to a higher index, xi and xj are not connected.

Moreover becauseAj1,...,jm ⊃ Aj1,...,jm−1 there is also no xk with k > max(i, j) such that xi → xk

and xj → xk. Thus, using Proposition 3.2 in Katzfuss and Guinness (2019) we conclude that

Λi,j = 0 for xi ̸∈ Cj . This means that each row i has at most |Ci| ≤ N nonzero elements, and the

entire lower triangle has O(nN) nonzero values.

Proposition 8 implies that the i-th column of U has at most as many nonzero entries as there

elements in the conditioning set Ci, which we assumed to be of size at most N . Similarly, the i-th

row of L has at most as many nonzero entries as the number of elements in the conditioning set

Ci.

CLAIM 4. Let A be an n×n lower triangular matrix with at most N < n nonzero elements in each

row at known locations. Letting aij and ãij be the (i, j)-th element of A and A−1, respectively,

assume that ãi,j = 0 if ai,j = 0. Then, the cost of calculating A−1 from A is O(nN2).

Proof. Notice that calculating ãk, the kth column of A−1, is equivalent to solving a linear system

of the form 

a11 0 0 . . . 0

a21 a22 0 . . . 0

a31 a32 a33 . . . 0

...
...

... . . . ...

an1 an2 an3 . . . ann





ã1k

ã2k

ã3k
...

ãnk


= ek,

where eik = 1 if k = i and 0 otherwise. Using forward substitution, the i-th element of ãk can be

calculated as ãik = 1
akk

(
eik −

∑i−1
j=1 aij ãjk

)
. This requires O(N) time, because our assumptions

imply that there are at most N nonzero terms under the summation. Moreover, we also assumed

that ãk has at most N nonzero elements at known locations, and so we only need to calculate those.

Thus computing ãk hasO(N2) time complexity. As there are n columns to calculate, this ends the

proof.

74



Proof of Proposition 11. Starting with the ichol() procedure in Line 1, obtaining each nonzero

element li,j requires calculating the outer product of previously computed segments of rows i and

j. Because Claim 3 implies that each row of L has at most N nonzero elements, obtaining li,j is

O(N). Claim 3 also shows that for each i, there are at most N nonzero elements si,j = 1, which

implies that each row of the incomplete Cholesky factor can be calculated in O(N2). Finally,

because the matrix to be decomposed has n rows, the overall cost of the algorithm is O(nN2).

In Line 2, because L−1 = U⊤, Proposition 8 tells us exactly which elements of L−1 need to

be calculated (i.e., are non-zero), and that there are only N of them (Claim 3). Using Claim 4,

this means that computing L−1 can be accomplished in O(nN2) time. Analogous reasoning and

Proposition 2 allow us to conclude that computing L̃ in Line 5 has the same complexity. The cost

of Line 3 is dominated by taking the outer product of U, because H and R are assumed to have

only one non-zero element in each row. However, UU⊤ is by definition equal to the precision

matrix of x under (3.3). Therefore, by Claim 3 there are at most O(nN) elements to calculate and

each requires multiplication of two rows with at most N nonzero elements. This means that this

step can be accomplished in O(nN2) time. The most expensive operation in Line 4 is taking the

Cholesky factor. However, its cost proportional to the square of the number of nonzero elements

in each column (e.g., Toledo, 2007, Thm. 2.2), which by Claim 3 we know to be N . As there are

n columns, this step requires O(nN2) time. Finally, the most expensive operation in Line 6 is

the multiplication of a vector by matrix L̃. By Proposition 9, L̃ has the same number of nonzero

elements per row as L, which is at most N by Claim 3. Thus, multiplication of L̃ and any dense

vector can be performed in O(nN) time. To conclude, each line of Algorithm 2 can be computed

in at most O(nN2) time, and so the total time complexity of the algorithm is also O(nN2).

Regarding memory complexity, notice that by Claims 3 and 8, matrices L, U, L̃, Ũ, and Λ

have O(nN) nonzero elements, and (3.1) implies that matrices H and R have at most n entries.

Further, the incomplete Cholesky decomposition in Line 1 requires only those elements of Σ that

correspond to the nonzero elements of S. Because S has at most N non-zero elements in each row

by construction, each of the matrices that are decomposed can be stored using O(nN) memory,
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and so the memory requirement for Algorithm 2 is O(nN).
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APPENDIX C

SUPPLEMENTARY MATERIAL

C.1 Proof of the exactness of MRF when r0 = nS

In this section, we discuss one of the settings mentioned in Section 2.4.1 under which Algo-

rithm 2.3.4.2 (MRD) is exact. Because the only approximation made in Algorithm 1 is

Σt|t−1 ≈ BB′ (C.1)

where B = MRD(ΣF
t|t−1), the MRF is exact whenever (C.1) holds with equality. As stated in

Section 2.4.1, this is the case when M = 0 and r0 = nS . Then Algorithm 2.3.4.2 reduces to

computing W = ΣF
t|t−1 and V = ΣF

t|t−1. Hence, we have

B = B0 = WV− 1
2

and

Σt|t−1 = BB′ = WV− 1
2V− 1

2W′ = ΣF
t|t−1.

C.2 More on distributed computation

As discussed briefly in Section 2.4.3, the MRF algorithm is well suited to distributed com-

putations. This can be achieved by extending the approach in Katzfuss (2017, Sect. 3.5), as

outlined here. Let us consider a set up in which node Nj1,...,jm only stores the submatrix

Bt|t[Ij1,...,jm ,Kj1,...,jm ] and the mean vector µt|t[Ij1,...,jm ]. In order to execute the forecast step,

we need to multiply Bt−1|t−1 and µt−1|t−1 by Et[ : , Ij1,...,jm ]. In general, information from other

computational nodes might be needed for this operation, but in our case only a small amount of

data is required, because we assumed Et to be local (see Assumption 2). Similarly, the MRD de-

composition can largely be performed locally as its main computational burden is in calculating
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the Wl
j1,...,jm

matrices.

In the update step, computing µt|t is accomplished by a series of matrix-vector multiplications.

Under Assumption 1, calculating H′
tR

−1
t (yt−Htµt|t−1) can be executed separately on each node,

provided the corresponding blocks of the Ht and Rt matrices are sent to same node. In order to

obtain the Bt|t matrix, we need the Cholesky factor of ≺ and its product with Bt|t−1. Computation

of elements Lt[Kj1,...,jm ,Kj1,...,jk ], m < k, can be mostly handled by node Nj1,...,jm . Moreover,

since it already holds the Bt|t−1[Ij1,...,jm ,Kj1,...,jm ] block, which it acquired in the forecast step,

it can also be tasked with calculating the Bt|t[Ij1,...,jm ,Kj1,...,jm ] block, since that requires little

communication with other nodes.

C.3 Connections to multi-resolution autoregressive models

The idea of the multi-resolution analysis of spatial stochastic processes has been explored in

great depth (e.g., Chou et al., 1994a,b; Willsky, 2002; Frakt and Willsky, 2001; Ferreira and Lee,

2007; Choi et al., 2010), and gave rise to many fast algorithms in the field of signal processing (e.g.,

Chou et al., 1994a; Luettgen and Willsky, 1995). The general focus of this strand of literature was

on scale-recursive state-space models on trees and using Kalman-filter-like inference to derive the

distribution of variables corresponding to the nodes of the tree. Building on these developments

for purely spatial domains, several authors (e.g., Huang et al., 2002; Johannesson et al., 2003;

Tzeng et al., 2005) applied the multi-resolution paradigm in modelling spatio-temporal stochastic

processes. These approaches can be expressed using a random-effects process with spatial basis

functions that are either constant or step-wise.

In this section we show how the MRA, which powers the multi-resolution filter (see Section

2.5.2), can be described in these terms.

DEFINITION 2. (Frakt and Willsky, 2001) Let S(V , E) be a directed acyclic graph. For a given

node v, let γ(v) denote the parent node of v and let x(v) be a random vector associated with v.
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Then x(·) is a zero-mean multi-resolution autoregressive process (MAR) if

x(v) = A(v)x(γ(v)) + w(v),

where w(v) is white, uncorrelated with x(w) for any w ∈ V and has autocovariance Q(v).

To show that the MRA is a MAR, we start with the observation that if Σ ≈ BB′ and we take

η ∼ N (0, I), then for x := Bη we have x ∼ N (0,BB′). Now let us partition the vector x into

segments whose sizes correspond to those of blocks B1, . . .BM . We can then write

x = Bη = B0η0 +B1η1 + · · ·+BMηM

and define the level-m approximation as

xm = B0η0 + · · ·+Bmηm.

In order to represent x in the MAR form, we also need to define the graph F = (V , E) that will

provide indexing for the elements of x. Let

V = {v0} ∪ {v1, . . . , vJ} ∪ {v11, v12, . . . , vJJ} ∪ . . .

be the set of vertices. We associate each vertex with some subdomain in the hierarchy described

in Section 2.3.4.1. For example, v0 and vj1,...,jm would correspond to D and Dj1,...,jm , respectively.

Next, we define the set of edges E in a way that represents the domain partitioning hierarchy:

E = {v0 → vj|j = 1, . . . J} ∪
J⋃

j=1

{vj → vjk|k = 1, . . . , J} ∪ . . .

Figure C.1 illustrates what this graph might look like.

We can now associate vertex vj1,...,jm with the m-th level approximation of the elements of
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Figure C.1: Graph F for M = 3, J = 2

vector x corresponding to grid points in Dj1,...,jm . More precisely, using the notation of Definition

2, we can express it as

x(vj1,...,jm) = B0η0+B1[Ij1,...,jm ,Kj1 ]η
1+B1[Ij1,...,jm ,Kj1,j2 ]η

2+· · ·+Bm[Ij1,...,jm ,Kj1,...,jm ]η
m.

This implies that the scale-recursive equations analogous to (2) can then be written as

x(vj1,...,jm) = I · x(vj1,...,jm−1) + w(vj1,...,jm),

where w(vj1,...,jm) = Bm[Ij1,...,jm ,Kj1,...,jm ]η
m. From the definition of η, it is clear that w are

uncorrelated (and thus independent) between scales.

To conclude, we showed that the MRA can be expressed as a multi-resolution autoregressive

model, which allows to use a Kalman smoother for inference (Ferreira and Lee, 2007, Ch. 8).

Therefore, one can view the MRF as a scale-recursive Kalman smoother nested within each step

of an outer Kalman filter, the latter proceeding along the time dimension.
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C.4 More details on the numerical simulations in Section 2.7

C.4.1 Definition of scores

Kullback-Leibler (KL) divergence

KL divergence is often used as a way of quantifying how different two distributions are. In the

context of the simulation study in Section 2.7, KL divergence measures how much the approximate

filtering distribution differs from the exact distribution calculated by the Kalman filter. Formally,

if f is the exact k-variate normal distribution with mean µf and covariance matrix Σf , and gj is

the normal distribution obtained using method j with mean µj and covariance Σj , then the KL

divergence can be expressed as

KL(f ||gj) =
1

2

(
tr
(
Σ−1

j Σf

)
+ (µj − µf )Σ

−1
j (µj − µf )− k + ln

(
detΣj

detΣf

))
.

In Section 2.7, we have k = nS = 1,156. For the KL divergence to be small, we need both the

mean and the covariance matrix to be accurate (i.e., µj ≈ µf and Σj ≈ Σf ).

Root mean squared prediction error (RMSPE)

MSPE captures how much, on average, the predicted values differ from the true values. In our

case, if µj[i] denotes the value predicted by method j (i.e., the filtering mean) of process x at grid

point i, and if x[i] is the true value at this point, RMSPE is calculated as follows:

RMSPE =

√√√√ 1

nS

nS∑
i=1

(µj[i]− x[i])2,

where nS is the number of grid points.
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C.4.2 Circular domain

Consider a diffusion-advection model with an initial state drawn from a Gaussian process:


∂
∂t
x(s, t) = α ∂

∂s
x(s, t) + β ∂2

∂s2
x(s, t) + ζ(s, t)

x(s, 0) ∼ GP (0, K1d(·, ·))
. (C.2)

We assume that x : S × [0, T ] → R is the quantity of interest between t = 0 and t = T , over

a one-dimensional sphere with unit circumference, ζ is a zero-mean stationary Gaussian process

with an isotropic spatial covariance function σ2
wC(·, ·) and independent increments over time, and

K1d is the spatial covariance function of the process x at time t = 0, defined as K1d(s1, s2) =

Mν,λ (|s1 − s2| mod 1).

We discretize both the spatial and the temporal domains using nS = 80 and T = 20 regu-

larly spaced points, respectively. Applying first-order forward differences in time and centered

differences in space as in Xu and Wikle (2007), we can approximate the derivatives in (C.2) with

∂
∂t
x(s, t) ≈ (x(s, t+∆t)− x(s, t)) 1

∆t
,

∂
∂s
x(s, t) ≈ (x(s+∆s, t)− x(s−∆s, t)) 1

2∆s

∂2

∂s2
x(s, t) ≈ (x(s+∆s, t)− 2x(s, t) + x(s−∆s, t)) 1

∆2s
.

Then, taking ∆t = 1 and ∆s = 1
nS

, the first equation in (C.2) can be expressed as

x(s, t) = c1 · x(s, t− 1) + c2 · x(s+ 1
nS
, t− 1) + c3 · x(s− 1

nS
, t− 1)

with c1 = 1 − 2βn2
S , c2 = 0.5αnS + βn2

S and c3 = −0.5αnS + βn2
S . Following Xu and Wikle

(2007), we use α = 0.5/nS , β = 0.35/n2
S , which correspond to c1 = 0.3, c2 = 0.6, c3 = 0.1.

These parameters also ensure the stability of the scheme.
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The discretization allows us to express the original model (C.2) as


xt = Etxt−1 +wt,

x0 ∼ N (0,Σ) ,

where xt is a vector with values of x(·, t) at the spatial grid points, the evolution matrix

Et =



c1 c2 c3

c3 c1 c2

c3 c1 c2

. . .

c3 c1 c2

c3 c1 c2

c2 c3 c1


is tri-diagonal with two non-zero elements in the bottom-left and top-right corners, the covariance

matrix

Σ = [Mν,λ (|si − sj| mod 2π)]i,j=1,...nS

is obtained by evaluating K1d at all spatial grid points si, and wt ∼ N (0, σ2
w Q) with Q =

[C(si, sj)]i,j=1,...nS
. We see that (C.4.2) has the same form as (3.13) in Section 2.2.1.

We also assume that at every time point t, we have nt < nS noisy observations in the vector

yt, each corresponding to a grid point in S . We represent this assumption using (2.1), where the

matrix Ht is built by removing those rows from InS that correspond to grid points for which no

data are available. Thus Ht is nt × nS . Examples of realizations are shown in Figure C.2.
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t=1 t=10 t=20

Figure C.2: Sample realizations simulated from the model described in Sections 2.7.1 and C.4.2. The rows correspond
to the scenarios in Table 2.1, from top to bottom: baseline, smooth, dense obs., and low noise.

C.4.3 Square domain

In the second set of simulations, we consider a rectangular domain, which is common for

spatial data sets. We generalize the model (C.2) as


∂
∂t
x(s, t) = α1

∂
∂s1

x(s, t) + α2
∂

∂s2
x(s, t) + β ∂2

∂s21
x(s, t) + ∂2

∂s22
x(s, t)) + ζ(s, t)

x(s, 0) = GP (0, K2d(·, ·))
. (C.3)

We assume that x(s, t) : [0, 1]2 × [0, T ] → R, that ζ(s, t) is a two dimensional zero-mean station-

ary Gaussian process with an isotropic spatial covariance function σ2
wC(·, ·) and independent over

time, and we define K2d(si, sj) =Mν,λ(∥si − sj∥2). We set the diffusion coefficient β = 0.0004

and we use α1 = α2 = 0.01. Similar to the 1D case, we discretize (C.3) using a regular spatial
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grid with nx = ny = 34 points along each dimension and 20 equidistant time points. We approx-

imate the time derivative as in Section C.4.2 and use the following approximations for the spatial

derivatives:

∂
∂s1

x(s, t) ≈
(
x(s, t)− x(s− [∆s1, 0]

T , t)
)

1
∆s1

,

∂
∂s2

x(s, t) ≈
(
x(s, t)− x(s− [0,∆s2, ]

T , t)
)

1
∆s2

,

∂2

∂s21
x(s, t) ≈

(
x(s− [∆s1, 0]

T , t)− 2x(s) + x(s+ [∆s1, 0]
T , t)

)
1

∆2s1
,

∂2

∂s22
x(s, t) ≈

(
x(s− [0,∆s2]

T , t)− 2x(s) + x(s+ [∆s2, 0]
T , t)

)
1

∆2s2
.

We set ∆s1 = ∆s2 = 1/(nx + 1) = 0.029 and ∆t = 1. Similar to the 1D case, we then represent

the model (C.3) as a linear state-space model:


xt = Etxt−1 +wt,

x0 ∼ N (0,Σ) ,

with the evolution matrix having 5 diagonal nonzero bands. If we use ck and c−k to denote the

values on the k-th diagonal above and below the main diagonal, respectively, then all nonzero

entries of Et are given by:

c−nx = −β∆2s2 + α2 ·∆s2

c−1 = −β∆2s1 + α1 ·∆s1

c0 = 1 + 2β(∆2s1 +∆2s2)− α1∆s1 − α2∆s2

c1 = −β∆2s1

cnx = −β∆2s2.

We also take wt ∼ N (0, σ2
wQ) with Q = [C(si, sj]i,j=1,...nS and Σ = [K2d(si, sj)]i,j=1,...nS .

We model the observations in the same way as described in the 1D case. Examples of realizations
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t=1 t=7 t=15 t=20

Figure C.3: Sample realizations simulated from the model described in Sections 2.7.2 and C.4.3. The rows correspond
to the first three scenarios in Table 2.2, from top to bottom: baseline, smooth, and dense obs. Red dots denote
observation locations.

are given in Figure C.3.

C.4.4 Interval coverage

Comparing the frequentist coverage of intervals to their nominal level is a quick way of assess-

ing the calibration of predictive distributions.

Figure C.5 presents interval coverage for filtering methods described in Section 2.7 and using

parameter settings discussed there. At each time t, we calculate 95% filtering intervals (i.e., with

endpoints consisting of the 2.5 and 97.5 percentiles of the filtering distribution) for each grid point

and report the proportion of intervals that cover the true value. On average, 95% of exact confi-
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dence intervals (i.e., those generated using the Kalman filter) should cover the corresponding true

values.

Figure C.5: Interval coverage for different filtering methods. Straight dashed horizontal line indicates the nominal
coverage (95%).

The interval coverage is similar to the nominal coverage under all parameter settings for

Kalman filter, EnKF, and MRF. The filtering distributions of the remaining two methods seem

to be poorly calibrated: low-rank filter generates intervals that are too narrow, while the ones
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Figure C.6: Summary of particle distributions over time. The solid line is the mean and the dashed lines are the 10th
and 90th percentiles, respectively, of the filtering distributions. The solid grey line indicates the true value of the
parameter.

produced by MRA start as too wide and become too narrow as time progresses.

C.5 Numerical experiments using the particle MRF

In order to illustrate the performance of the particle MRF described in Section 2.6, we sim-

ulated data from the two-dimensional model with baseline parameter settings (see Sections 2.7

and C.4.3), and used Algorithm 2.6 to infer the filtering distribution of a λ, the range parameter

of the innovation covariance matrix. We assumed the prior distribution to be such that log λt ∼

N(log(0.15), 0.252). The proposal distribution was taken to be log λt|λt−1 ∼ N(log λt−1, 0.5
2),

while the initial values were drawn from log λ0 ∼ N(log(0.15), 0.252). Figure C.6 shows the per-

formance of the MRF and the exact Rao-Blackwellized (Doucet et al., 2000) particle filters, both

using 1,000 particles. The particle MRF produced similar distributions as the exact filter.

We also compared the accuracy of parameter inference using the MRF to that using the LRF,

which can be viewed as a special case of the MRF as described in Section 2.7. We simulated 50

datasets at a single time point t = 1, assuming the 2D baseline settings, except that x0 and Σ0|0

were initialized as zero. For each dataset and each method, we numerically found the λ value that

maximized the integrated likelihood Lt from (2.5) at time t = 1. The distributions of the resulting

50 parameter estimates are summarized in Figure C.7, while Table C.1 contains the root mean
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0.12 0.14 0.16 0.18 0.20 0.22 0.24
range

exact

MRF

low-rank

Figure C.7: Boxplots of MLEs of the range parameter λ, as implied by three different integrated likelihoods. The true
value λ = 0.15 is indicated by the vertical dashed line.

exact MRF LRF
RMSE 0.057 0.066 0.076

Table C.1: Root mean squared error of MLEs of the range parameter λ, as implied by three different integrated
likelihoods

squared error of the MLEs for each of the methods.

While both approximate methods produced acceptable results, the estimates obtained by the

MRF were considerably more accurate than those produced by the LRF, both at the same compu-

tational complexity.

C.6 Review of some graph theoretical results

In this section we define several terms commonly used in graph theory that will be needed in

Section C.8. These definitions follow the terminology used in Lauritzen (1996) and Khare and

Rajaratnam (2012). We denote by G(V,E) a graph with vertices V and edges E.

DEFINITION 3. We call G′ a subgraph induced by A ⊆ V if G′ = (A,E ∩ (A× A)).

In other words, a subgraph is a graph formed by taking a subset A of vertices and all the edges

whose endpoints are in A.

DEFINITION 4. A path is a sequence of vertices v1, . . . , vn ⊂ V such that for i =

1, . . . , n, (vi, vi−1) ∈ E. A cycle is a path such that vn = v1.
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DEFINITION 5. Consider a cycle (v1, . . . , vn). A chord is an edge e ∈ E which connects two

non-consecutive vertices within the cycle. Graph G is chordal if every cycle of length greater than

4 has a chord.

Chordal graphs are also called triangulated graphs or decomposable graphs.

DEFINITION 6. A graph is homogeneous if it is chordal and if it does not contain the graph A4,

defined as
1• − 2• − 3• − 4•, as an induced subgraph.

Following Khare and Rajaratnam (2012), we write that v → w when

{u : u = w ∨ (u,w) ∈ E} ⊆ {u : u = v ∨ (u, v) ∈ E}.

In other words, when v → w, then the neighborhood (all direct neighbors) of w is contained within

the neighborhood of v. Within the context of of our graph G, we can make the symbol → more

intuitive by thinking of if it as saying that “w is downstream from v.” In principle, it is possible

that two vertices have the exact same neighborhoods. To capture it formally, we could define an

equivalence relation ≡ as

u ≡ v ⇐⇒ u→ v ∧ v → u.

We denote by v̄ the equivalence class under ≡ containing v.

DEFINITION 7. For a homogeneous graph G = (V,E), an ordering σ is called a Hasse tree-based

elimination scheme for G, if for u, v ∈ V

u→ v, ū ̸= v̄ =⇒ σ(u) > σ(v),

which we adopt after Khare and Rajaratnam (2012).

DEFINITION 8. A tree is a directed graph with no cycles, such that each vertex has degree one

(i.e., for a vertex u, there is only one edge that ends at u).

DEFINITION 9. Let T = (V,E) be a tree and let (i, j) ∈ E. Then i is called a parent of j, while j
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is called a child of i.

C.7 Hierarchical matrices

This section introduces basic concepts of hierarchical matrix theory. They come in useful in

the proof of Lemma 1 in Section C.8.

If t is a vertex of a tree T , let c(t) denote the set of children of t. Formally, c(t) := {s ∈ T :

s is a child of t}. Similarly, if s ∈ c(t) (i.e., t is a parent of s), we write t = p(s).

DEFINITION 10. (Hackbusch, 1999) Let I be an index set. A tree T is called anH-tree (based on

I) if the following conditions hold:

1. All vertices t ∈ T are subsets of I;

2. I ∈ T ;

3. |c(t)| ̸= 1 ∀t ∈ T .

It can be concluded that I is the root of T , the only vertex without a parent element.

DEFINITION 11. The depth of a vertex t is a function d(·) defined as

d(t) =


0 if t is the root

d(p(t) + 1) otherwise
.

Our notation will often be more readable if we write t ↘ s whenever d(t) > d(s), and t ↗ s if

d(t) < d(s).

We use A(t) to label the set of all ancestors of the vertex t, that is

A(s) =


∅ if t is the root

A(p(s)) ∪ {p(s)} otherwise
.

Throughout Section C.8 and Appendix A.1, we assume for simplicity that r = 1. If this is

not true, we can consider an equivalence relation ≡m such that for two columns c1, c2 in Bm
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(a) An H-tree over grid I (b) B matrix (c) B′B matrix

Figure C.8: Mapping τ used in Section C.8 goes from b) to a), while mapping π goes from b) to c).

c1 ≡m c2 ⇐⇒ c1, c2 both contain elements of the same block Bj1,...,jm . Verification that ≡m is

indeed an equivalence relation is elementary. The assumption that r = 1 means that each of the

blocks Bj1,...,jm has dimensions |Ij1,...,jm | × 1.

Now notice that the partitioning scheme defined in Section 2.3.4.1 is an H-tree based on I.

Indeed: (1) all elements Ij1,...,jm are subsets of I, (2) I is the root node and (3) |c(Ij1,...,jm)| = J >

1. We will refer to thisH-tree as TI . From this perspective, each Ij1,...,jm is a vertex of TI . Figure

C.8a illustrates TI for the case M = 3 and J = 2.

C.8 Lemmas used in the proof of Proposition 3

LEMMA 1. The pattern of zeros in B′B corresponds to a homogeneous graph.

Proof. We start by observing that there is a 1 − 1 mapping τ : I → TI between the indices

of columns of B and the vertices of TI . Specifically, each index j ∈ I of some column cj can

be identified with the vertex that has the same index as the Bj1,...,jm block that cj contains. For

example, by construction, c1, the first column in BM , contains elements B1,...,1, so τ(1) = I1,...,1.

Also notice that if ci contains Bj1,...,jm and cj contains Bj1,...,jm−1 , then τ(j) ∈ A(τ(i)) (see Figure

C.8 for illustration).

Next, take two columns ci, cj of B and τ(i), τ(j), the corresponding vertices in TI . For the rest

of the proof, we assume without loss of generality that i < j. Then there are two cases to consider.

92



(a) A path corresponding to case 1 (b) A path corresponding to case 2

(c) A path corresponding to case 3 (d) A path corresponding to case 4

Figure C.9: Different paths of length 3 in graph G considered in the proof of Lemma 1. For clarity, dashed lines were
used to indicate edges that connect vertices whose depths differ by more than 1. Elements of the path are marked in
blue. A red line indicates a chord.

1. d(τ(i)) = d(τ(j)):

In this situation c′icj = 0 because ci, cj are columns of the same block diagonal matrix Bm

and each diagonal block is only one column wide.

2. d(τ(i)) > d(τ(j)):

We examine two subcases:

(a) τ(j) ̸∈ A(τ(i)); this implies that c′icj = 0;

(b) τ(j) ∈ A(τ(i)); then, in general, c′icj ̸= 0.

Let us now look at B′B as an adjacency matrix of graph G = (I, E) where

E = {(i, j) : B′Bij ̸= 0}.

Define π as a mapping that assigns a vertex in G to each column of B, i.e. π(cj) = j for each
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j ∈ I. Defining ρ := τ ◦ π−1 gives us a 1 − 1 correspondence between the vertices of graph G

and TI (Figure C.8). We can thus define d, A, c and p for the vertices of the undirected graph G

by referring to the corresponding definitions on TI . For example, if u is some vertex of G, then

A(u) := A(ρ(u)).

Using this new notation, the fact that B′Bij = c′icj , as well as the previous observations, we

have

(i, j) ∈ E ⇐⇒ i ∈ A(j).

In particular, if d(i) = d(j) then (i, j) ̸∈ E.

Next, let (v1, v2, v3, v4) be some path in G. We will show that each such path contains a chord,

which means that either (v1, v3) ∈ E or (v2, v4) ∈ E. There are four cases we need to consider to

demonstrate this (see Figure C.9):

1. v1 ↗ v2 ↗ v3:

This means that v3 ∈ A(v1), and so (v3, v1) ∈ E is a chord.

2. v1 ↘ v2 ↘ v3:

In this case v1 ∈ A(v3), and so (v3, v1) ∈ E is a chord.

3. v1 ↘ v2 ↗ v3:

Let d(v3) < d(v1). Then v3 has to be a descendant of v1, and so (v3, v1) ∈ E is a chord.

If d(v3) > d(v1), then v1 is a descendant of v3. It is not possible that d(v1) = d(v3) and

v3 ̸= v1, because every node has only one parent.

4. v1 ↗ v2 ↘ v3:

We need to consider two subcases here:

(a) v3 ↘ v4; this means that v2 ↘ v3 ↘ v4, which reduces to case 2;

(b) v3 ↗ v4; this means that v2 ↘ v3 ↗ v4, which reduces to case 3.
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The reasoning above shows that A4 is not a subgraph of G and that G is decomposable. Therefore

we conclude that G is homogeneous.

LEMMA 2. Let G = (I, E) be the graph described by the pattern of zeros in our B′B matrix. Let

σ be an ordering of the vertices of G such that

σ(i) = i.

Then σ is a Hasse tree based elimination scheme for G.

Proof. Let N(u) = {v ∈ G : (v, u) ∈ E} ∪ {u}.

We begin by showing that

N(v) ⊊ N(u) ⇐⇒ u ∈ A(v).

First, let us assume that u ∈ A(v), and take some w such that u ∈ A(w) and w ∈ A(v). Because

u is not a leaf, Definition 10 implies |S(u)| > 1. Therefore, there exists a w′ ̸= w ∈ S(u). Since

w′ /∈ A(v), by (C.8) w′ is not a neighbor of v, but it is a neighbor of u. Now observe that

N(v) = A(v) ∪ {v} ∪ {w : v ∈ A(w)}.

Let w ∈ {v} ∪ {w : v ∈ A(w)}, then we have v ∈ A(w). Thus w ∈ N(v). Now take w ∈ A(v).

We have three cases here:

• if d(w) < d(v), then v ∈ A(w) and so w ∈ N(v);

• if d(w) = d(v), then w = v and so w ∈ N(v);

• if d(w) > d(v), then w ∈ A(v) and so w ∈ N(v).

Thus we showed that N(v) ⊂ N(u) but N(v) ̸= N(u).
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Second, assuming N(v) ⊊ N(u) implies that (v, u) ∈ E , so either v ∈ A(u) or u ∈ A(v). But

if the former was to hold, it would contradict what we have shown above. Therefore, we conclude

that u ∈ A(v).

The equivalence we have just demonstrated means that the lemma is proved once we show that

u ∈ A(v) =⇒ σ(u) > σ(v).

But we already established in (C.8) that


i < j

(i, j) ∈ E

⇐⇒ i ∈ A(j).

This means that if we order the vertices in V according to the order of the rows of B′B to which

they correspond, this ordering will be a Hasse tree-based elimination scheme.
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