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ABSTRACT 

 

In recent years, there has been a rising interest in the field of highly-porous 

materials. Porous materials come in a large variety of subtypes, allowing for very high 

levels of versatility and tunability. Porous materials can include both organic and 

inorganic materials, such as polymers, mesoporous silica, zeolites, covalent organic 

frameworks (COFs) and metal-organic frameworks (MOFs). These materials often have 

varying pore sizes, beginning at the nano-scale and extending to visually discernable pore 

openings.  

While a sizable portion of scientific research has focused on the development of 

novel porous materials with increasingly favorable properties, a significant portion of 

these porous materials have yet to find niche applications outside the laboratory. While 

many scientifically exciting discoveries perform admirably on the lab scale, going to bulk 

scale often comes with many challenges that do not present significant issues at smaller 

scales.  Additionally, the syntheses of many porous materials, such as COFs and MOFs, 

are subject to very specific conditions, with minor changes in these procedures leading to 

an absence of product formation. As such, the work in this dissertation primarily focuses 

on materials with existing bulk production procedures, specifically discussing the 

modification of such materials to provide favorable properties that can then be applied to 

large scale production.  
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CHAPTER I  

INTRODUCTION 

1.1 An Introduction to Porous Materials 

There are many examples of porous materials observed in nature, one such example is a 

sponge. A sponge, like many porous materials, has clearly defined channels which allow 

for the flow of fluids through the bulk material. This concept serves as the basis for the 

analysis of porous materials. 

While possessing a multitude of various properties, porous materials are, first and 

foremost, defined by their porosity, a characteristic that makes them a unique material 

class. Recently, MOFs have gained significant traction due to the properties that can be 

introduced with metal atoms1, as well as their connecting organic ligands. Of the many 

existing porous materials, there are specific subclasses that have attracted a significant 

amount of attention, due to their chemical and physical properties. These include zeolites,2 

porous carbons,3 mesoporous silicas,1 metal-organic frameworks (MOFs),4,5 covalent 

organic frameworks (COFs),6 porous polymer networks (PPNs),7,8 and gels.9,10 In this 

dissertation, we will be focused on two main classes of porous materials, namely MOFs 

and PPNs. 

 

When discussing porous materials, there are a few factors that need to be considered. 

These include their porosity, adsorption capability, durability, and ease of synthesis.4,5 

Additionally, the tailorability of porous materials and their properties has been a key factor 

in accelerating the research in this field. As there are many factors that culminate to give 
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the composition of porous materials, adjustments to each parameter allows for minor 

changes in both physical and chemical properties, resulting in an abundance of variations, 

each with unique applications.  

 

1.2 Metal-Organic Frameworks (MOFs) 

MOFs are currently at the forefront of materials research due to their unique compositions 

that allow for the generation of highly tuned structures with variable functionality, 

resulting in an expansive library of MOFs. While there are many other classes of porous 

materials that are being investigated by the scientific community, such as polymers, 

zeolites, and hydrogels, MOFs have proven to be some of the most versatile, with their 

wide tunability meaning that they can be engineered for a spectrum of applications.5 MOFs 

are a hybrid porous material, composed of metal clusters, connected by organic linkers. 

They are often host to guest molecules, which occupy the pore voids within the 

framework. Some MOFs are unable to retain their structure when the guest molecules are 

evacuated, leading to structural collapse and the subsequent loss in porosity.  

While MOFs offer a breakthrough in materials engineering, there are still challenges 

associated with MOF development, including low chemical and physical stabilities, 

complicated syntheses and difficulty in achieving commercial scale synthesis.4,11 Over the 

years, many strategies have been developed to facilitate the tailoring of MOFs, which has 

resulted in the plethora of applications that can be found in the literature.  
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1.3 Porous Polymer Networks (PPNs) 

PPNs are a class of organic material, synthesized through the formation of covalent bonds 

between monomers. The monomers used in the synthesis of these materials are often rigid 

in nature, forming an open structure, resulting in the material’s defining features; high 

surface area and inherent porosity. However, PPNs can range significantly in crystallinity, 

from highly ordered crystalline materials (COFs), to materials that are mostly amorphous, 

with many varied states existing between these two extremes. As PPNs are synthesized 

via the formation of covalent bonds between organic linkers, they often have good 

physical and thermal stabilities, especially compared to MOFs, which often have labile 

metal-organic connections. As with most polymeric materials, the degree of 

polymerization can be controlled, and materials with varied properties can be synthesized 

using different synthetic conditions, resulting in a difference in physical properties. While 

polymeric materials have been intensively studied as a material class, the subclass of PPNs 

is still being explored. As more studies have been done to investigate the synthesis and 

properties of PPNs, there has been an accompanying resurgence in interest in porous 

polymer materials, focusing on rational, directed synthesis and design.  

 

1.4 Characterizing Porous Materials 

While porous materials do share many characteristics, when it comes to characterization, 

they can be separated into two main classes: crystalline and amorphous.  

The defining feature of porous materials, porosity, can be measured through multiple 

methods. One of the most commonly used methods of determining porosity is the 
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application of Brunauer-Emmett-Teller (BET) theory. This theory aims to explain the 

mode of gas molecule adsorption onto solid surfaces and allows for the determination of 

a material’s surface area. BET theory is an extension of Langmuir theory, which is applied 

to monolayer adsorption, whereas BET theory allows for the formation of multilayers. In 

BET analysis, one of the main features studied is the N2 adsorption profile of a porous 

material.  

 

As defined by IUPAC, there are six observed isotherm types.12 The most commonly 

observed isotherms are the Type I and Type IV isotherms. Type I isotherms often 

demonstrate a rapid increase at low relative pressures, followed by a plateau, and are 

indicative of a microporous material, where the primary absorption occurs on the surface, 

as the small pore size limits the access to the internal porosity. Type IV isotherms possess 

Figure 1. Isotherm Types as defined by 

IUPAC.12 
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a characteristic hysteresis loop, which is indicative of capillary condensation, an artefact 

that is observed in the presence of mesopores. These isotherms also indicate the presence 

of multilayer absorption, occurring after the point B, indicated in Figure 1. Within the 

other isotherm types, Type II indicates a non-porous or microporous sorbent, Type III and 

V both indicate a material that experiences a stronger adsorbate-adsorbate interaction 

compared to adsorbate-adsorbent, with Type III often indicating non-porous materials and 

Type V indicating porous sorbents. Lastly, Type VI isotherms are observed in materials 

with multistep adsorption, with each step in the isotherm corresponding to a new phase of 

monolayer absorption.  

While BET analysis is useful for the determination of surface area and pore size 

distribution, there are other methods of characterization that can provide us with more 

information regarding the material. In crystalline materials, we often look to X-ray 

diffraction to determine the exact structural arrangement of the atoms within the structure. 

Single crystal and powder X-ray diffraction (SCXRD and PXRD) are utilized in the 

characterization of crystalline porous materials, providing a wealth of information 

regarding the pore size, repeating unit, connectivity, and the structure of the secondary 

building unit. ‘ 

 

1.5 Applications of Existing Porous Materials 

Given the usefulness of porous materials, there has been a significant surge in the 

development of new porous materials. Yet, upon closer inspection of commercial 

processes, it is clear that many of these innovative discoveries have yet to make the jump 
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from bench scale to commercial applications, demonstrating a need to bridge the gap, 

which can be achieved by further study of established, well-studied materials. The work 

in this dissertation focuses on taking existing porous materials that have been extensively 

studied and characterized and finding simple, low-cost modifications that can be applied 

to commercially available porous materials, providing a novel material that exhibits 

advantages over current state-of-the-art systems. 
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CHAPTER II  

MODIFICATION OF PCN-250* 

2.1 Methane Storage Using PCN-250 

Natural gas, the principal ingredient of which is methane, can either be directly used as a 

fuel or processed into other energy resources.13 Many energy-intensive solutions have 

been proposed to capture, store, and transport natural gas into the US energy 

infrastructure.14 For example, natural gas can be successfully compressed to higher 

pressures up to 250 bar (3,600 psi), which is commonly referred to as compressed natural 

gas (CNG). It can also be liquefied at the temperatures less than @160°C, producing 

liquefied natural gas (LNG). These century-old technologies are known to improve the 

energy density of natural gas, to 9.2 MJL-1 for CNG or 22.2 MJL-1 for LNG respectively, 

but they are subsequently downgraded by about 30% volumetrically to account for their 

real cylindrical containment requirements.15 In addition, both applications have intensive 

energy demands, creating critical cost issues. These issues have resulted in failure to fully 

utilize America’s natural gas reserves. 

Adsorbed natural gas (ANG) is an increasingly important method of improving natural 

gas storage.16,17 In the past few decades, a variety of candidate absorbents, containing high 

surface areas, controlled pore diameters, and moderate binding energies, have been 

 

*
Part of the data in this chapter is reprinted and adapted with permission from “Incorporating Heavy Alkanes 

in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity” by Fang, Y.; Banerjee, S.; 

Joseph, E. A.; Day, G. S.; Bosch, M.; Li, J.; Wang, Q.; Drake, H.; Ozdemir, O. K.; Ornstein, J. M.; Wang, 

Y.; Lu, T.-B.; Zhou, H.-C., 2018. Chemistry A European Journal, 24, 16977-16982, Copyright WILEY 

2018.    
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developed for research.18 As a precisely tunable porous material, metal–organic 

frameworks (MOFs) have attracted great interest recently with their potential to boost 

ANG technologies.19 Theoretical works suggested a conceptual MOF, IRMOF-993, could 

have a volumetric methane storage capacity well above activated carbon.20 However, the 

MOFs in the study suffers from low chemical stability, especially in the presence of trace 

natural gas pollutants like hydrogen sulfide or water vapor.21,22 Alternatively, an iron 

cluster-based MOF, PCN-250, is a radical departure from previously reported ANG MOFs 

due to its considerably higher stability. It is stable in boiling water as well as a wide range 

of pH conditions, maintaining its crystal structure and surface area. Moreover, PCN-250 

exhibits a total reported methane storage capacity of 180 v(STP)/v, exhibiting a flat heat 

of adsorption curve, while also being capable of low-cost production.23 

 

Here, we utilized a post-synthetic treatment of PCN-250 to obtain an enhanced, 

regenerable methane storage absorbent. The addition of a small portion of high boiling 

point alkanes into natural gas to increase the compression and/or refrigeration storage have 

been used for CNG and LNG for many years.24,25 The alkanes not only increased the 

boiling point of the liquefied methane but also dissolved the hydrophobic methane through 

hydrophobic interactions.26 Inspired by this idea, we incorporated C10 and C14 

hydrocarbons into the pores of PCN-250 as a method of improving the ANG concept. We 

have dubbed the combination of methane absorption in high alkanes at high pressures, and 

its adsorption on the surface/pores of a porous material, HAANG (High Alkane Adsorbed 

Natural Gas).27 The doped system allows for a higher volume of methane to be stored as 
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compared to the unmodified adsorbent at a given pressure. Most of the high alkane is also 

retained in and on the adsorbent through many working cycles of adsorption and 

desorption. This two-phase process, containing both liquid and vapor, can be achieved at 

suitable pressures (30–100 bar) and temperatures (260–323 K) for ANG technology.  

2.2 Set Up for Testing Gravimetric Methane Uptake 

 

 

To realize the HAANG process, an apparatus was designed and constructed for direct 

volumetric measurement of methane uptake and delivery, as shown in Figure 2a. The 

Figure 2a. Scheme of real-time gas adsorption/desorption 

monitoring station. (1: Test gas; 2: Pressure regulator; 3: Needle 

valve; 4: 3-way valve; 5: Test canister; 6: 3-way valve; 7: Ball valve; 

8: Sorbent column; 9 :Ejector/Injector; T/V: Thermocouple; P/T: 

Pressure Transmitter; GC: Gas Chromatograph; FID: Flame 

Ionization Detector). b. A detailed demonstration of the charger unit 

(8: sample cell; 4, 6, 7: connections) monitoring station system. 98 

(a

(b
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methane gas was first transported from the gas tank (Figure 2a, 1) to the charger unit 

(Figure 2a, 5). Then, the PCN-250 adsorbent (1 gram) was loaded into a test cell (Figure 

2a, 8). By controlling the valves (Figure 2a, 4, 6 and 7), methane gas can be transported 

to the test cell and adsorbed by PCN-250. Due to the presence of a pressure transducer 

(Figure 2a, P/T) on the bottom of the charging unit, the final pressure (Pfin) can also be 

recorded. The initial pressure subjected to the methane supply inlet was assigned as Pini 

(960 psi). By comparing the Pini and Pfin, the adsorbed gas volume can be measured by the 

DP (Pini - Pfin). Furthermore, the adsorbed gas in the test cell was discharged from the 

system and released into an airbag (1 L). A flow of atmospheric air was then injected into 

the airbag until it was full (1 L) to dilute the methane gas. A gas syringe was then used to 

inject 10 mL of the gas mixture into a gas chromatography-flame ionized detector (Figure 

3a, GC-FID). Due to the deliverable methane being different for every experiment and the 

total volume of the airbag is a constant (1 L), the 10 mL in the syringe contains different 

amounts of methane. The injected methane gas was quantified by the integration area of 

the GC data. The integration area can represent the different ratio of deliverable methane 

in the air bag, thus the variation of deliverable methane can be analyzed. By using this 

system, it was found that PCN-250 can absorb and deliver an almost equal amount of 

methane gas repeatedly. 

 

The methane uptake capacity of the alkane-doped PCN-250 samples (defined as 

Decane@PCN-250) were also measured with their methane uptake properties according 

to the above procedure. A sample of 1 gram of PCN-250 was filled in the test cell and 
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fully activated under vacuum at 160°C. Then the test cell was taken into an inert 

atmosphere (glove box) and 60 mL of n-decane was injected. After standing for 20 min,  

the test cell was sealed with 2 mm VCR gasket for the following gas test. Methane gas at 

960 psi (66.2 bar) pressure was stored in the charger unit and then injected into the test 

cell.  

 

 

The pressure drop DP for the PCN-250 sample was 275 psi, which could be translated into 

adsorbed methane. Surprisingly, when PCN-250 was doped with n-decane, we found there 

was a dramatic increase of 21.8% for the DP (335 vs. 275 psi, Figure 3a). This suggests 

(a) 

(b) 

Figure 3a. Real-time monitoring of pressure drop of PCN-250 and 

PCN-250 doped with n-decane b. The GC-FID chromatogram showing 

the deliverable methane from PCN-250 and PCN-250 doped with n-

decane. 98 
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that n-decane-doped PCN-250 has a storage capacity 21.8% greater than that of pristine 

PCN-250. Figure 3b shows a GC chromatogram comparing deliverable methane from 

PCN-250 at atmospheric pressure in the presence and absence of the doping agent (n-

decane). Similarly, when PCN-250 was doped with n-decane, an 18.0% increase in the 

integrated area of the methane peak was observed. The pressure drop and GC results 

demonstrated an increase in total volumetric methane uptake of about 18% alongside the 

full desorption of methane, with the n-decane remaining in the PCN-250 adsorbent (not 

detectable by GC). It should be noted that the n-alkane loading was quite low (60 mL per 

1 gram of adsorbent), accounting for 4.4 wt% of the MOF. When switched to a larger test 

tube filled with 20 grams of absorbent, a similar increase in methane uptake was observed. 

Not only PCN-250 but also other microporous and mesoporous MOFs were found to have 

similar increase in methane uptake when doped with different amounts and species of 

hydrocarbons (Figure 4-Figure 5Figure 6). 
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Figure 5 GC spectrum of methane adsorption observed in different 

MOF species with and without n-alkane doping. 98 

Figure 4. GC spectrum of methane adsorption observed in PCN-250 

with and without n-decane doping. 98 
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In addition, increasing the loading of n-decane with the MOF tended to result in decreasing 

methane storage capacity (Figure 6). Our hypothesis was that a large excess of n-decane 

would block the entrance of methane, thus inducing a decrease of methane uptake. As 

such, a method of developing larger pores in the structure was desired. Further screening 

of doping agents and engineering of the MOF–dopant interactions are needed to 

understand the system and demonstrate it as a proof-of-concept.  

 

 

Figure 6a. Methane absorption capacity of PCN-250 at different alkane 

dopant levels b. Percent change in methane uptake with increasing 

alkane dopant. 98 
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2.3 Introducing Mesoporosity in PCN-250 

In order to improve the hydrocarbon loading in PCN-250, the generation of larger, 

mesoporous cavities was desired. In contrast with well-established methods of mesopore 

generation in MOFs, this method allows for pre-synthesized PCN-250 to be further treated 

to generate mesopores. Previously reported methods of mesopore generation have 

employed the use of MOFs that have inherent instability to specific conditions, such as 

hydrolysis. Herein, a well-known, microporous framework PCN-250, which comprises of 

an Fe-µ3-oxo cluster and azobenzenetetracarboxylic acid (ABTC), and is also known as 

MIL-127 was used,28,29 and the post-synthetic treatment resulted in the generation of 

mesopores within a primarily microporous structure. It is important to note that the key 

benefit of this methodology is that established MOF syntheses can be employed with no 

need for modification as the synthesis step does not affect the mesopore generation in the 

framework.  

Traditionally, mesoporous MOFs are generated through extension of existing organic 

linkers, which results in a larger pore window. However, the synthesis of MOFs via this 

method has its limitations. Previous work by Yaghi et. Al. with the IRMOF series has 

demonstrated that the increase in linker length in an isoreticular series can be effective in 

growing new MOFs with larger pore windows.30 However, longer linker lengths have also 

been shown to result in the growth of interpenetrated MOF networks. In interpenetrated 

MOF structures, the accessible surface area and pore volume are significantly decreased 

as the pore window is obstructed by the linkers of the interpenetrating species. 

Additionally, MOFs that are synthesized with longer linkers are often less robust due to 
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the increased flexibility of the linkers, with the decrease in rigidity often resulting in pore 

collapse upon the removal of guest molecules, significantly reducing the MOF’s 

effectiveness.31 Lastly, synthesis of large rigid linkers is often complex and requires a 

significant amount of time, money, or an extensive synthetic pathway, making it an 

impractical option at a large scale.  

While large pore sizes and robustness are highly desired characteristics of MOFs, it is rare 

that these co-exist in the same framework as there is an inverse correlation between linker 

length and overall framework stability. Thus, it is essential that we develop a method of 

obtaining MOFs with good structural stability that can be used for the incorporation of 

large guest molecules. 

While many frameworks are synthesized with inherent defects, there have also been many 

methods of generating desired defects in specific frameworks. Due to the drawbacks 

associated with isoreticular expansion, new pathways have been developed to synthesize 

MOFs with favorable pore sizes while retaining high structural integrity.  Recent work 

done by Jiang and Cai demonstrated the use of a monocarboxylic acid as a modulator to 

generate hierarchically porous MOFs (HP-MOFs).32 In this study, inherently microporous 

MOFs, such as UiO-66, were synthesized in the presence of fatty acids modulators. This 

resulted in metal clusters forming with fatty acids at the nodes, with the framework 

growing around these nodes. The steric bulk of these acids restricted the growth of the 

framework in this area. Following synthesis, the MOF was treated to remove the 

modulators, resulting in a mostly microporous framework with incorporated meso- or 

macropores. Further testing demonstrated that the HP-UiO-66 performed similarly to 
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unmodified UiO-66 when subjected to acidic and basic conditions, showing that tit 

maintained the stability of the microporous network, even with the presence of larger 

pores. Another recently reported work by Kim et al. demonstrated the hydrolytic 

generation of mesopores in a microporous framework.33 Using a MOF that possesses poor 

water stability, large pores were generated by the partial removal of substituents in the 

framework through hydrolysis, with the structure going from a material with 2 sizes of 

micropores to one with 2 sizes of mesopores. While this method is simple and does not 

require specialty chemicals to execute, the method relies heavily on the framework’s 

inherent instability to aqueous conditions. As such, while useful, this method is strictly 

limited to MOFs with water sensitive linkers.  

Herein, we will discuss a novel methodology developed for introducing mesoporosity in 

a known microporous MOF, Additionally, PCN-250 can be commercially obtained 

through framergy™ and STREM chemicals, as AYRSORB™ F250.  

 

2.4 Treatment of PCN-250 Material  

Commercially available Fe-PCN-250, which was obtained from framergy™ was used as 

the standard test MOF due to the high availability of the material. PCN-250, also known 

as MIL-127, is a framework comprised of a trimeric metal cluster, formed by three Fe(III) 

octahedra sharing a central µ3-oxo, which is then linked by 6 ABTC ligands (ABTC = 3, 

3‘, 5, 5‘-azobenzenetetracarboxylate) to form a soc net.23 PCN-250 is known to possess 

good chemical and thermal stability, resisting degradation under temperatures up to 250°C 

in air, as well as being robust enough to withstand treatment in a wide range of aqueous 
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conditions. Previously established solvent exchange procedures involve the washing of 

PCN-250 with methanol, a highly volatile solvent, to remove the guest molecules that 

reside in the pore voids. Multiple solvent exchanges are required for the complete 

exchange of N,N-dimethylformamide (DMF) for methanol. This is typically conducted by 

drying the resultant MOF, followed by incubation with methanol in a sealed container in 

an 80 °C oven. Using this method, the microporosity of the MOF is retained, while the 

pores can be fully activated through high temperature vacuum activation with the removal 

of methanol. Initially, Soxhlet extraction was proposed as an alternative to multiple 

solvent exchanges, as the system allows for the continuous washing of the MOF with 

distilled solvent. However, upon further analysis, it was noted that the utilization of the 

Soxhlet methodology resulted in the consistent generation of a larger pore aperture.  

 

Soxhlet washing was run on the material and the Brunauer-Emmett-Teller (BET) data was 

analyzed. It was noted that the N2 uptake isotherms indicated that the two samples 

exhibited different pore character (Figure 7).  

Pre-treated PCN-250 demonstrated a Type I isotherm, which is characteristic of 

microporous materials, while post-treated PCN-250 exhibited a noticeable step increase 

in adsorption at higher pressures, indicative of a Type IV isotherm. This Type IV isotherm 

is representative of a mesoporous material, as the large hysteresis is of a result of capillary 

condensation that occurs in the larger pore voids.  
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Additionally, analysis of the pore size within the MOFs has shown an appearance of pores 

at 38 Å after treatment with methanol using the Soxhlet apparatus. 

 

Figure 7 N2 isotherms for post-treated (green) and pre-treated (red) 

samples of PCN-250. 

Figure 8. BJH Pore Size Distribution of Soxhlet Treated Samples 

demonstrating a peak at 38 Angstroms 
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Our initial hypothesis was that the hot solvent was simply removing residual starting 

material or synthesis solvent from the pores and that the mesopores observed were a result 

of defects present in the framework and were not directly resultant from the Soxhlet 

process. To test this hypothesis, samples of PCN-250 were washed using the typical bench 

method of multiple solvent exchanges with methanol in an oven. Comparison of the two 

materials led us to conclude that the as-synthesized material was inherently microporous, 

exhibiting the typical micropore size ca. 8 Å, and the larger pores were not generated 

without the use of the Soxhlet method. Additionally, it was noted that extended treatment 

using this method did not result in significant creation of pores of a larger size, or the 

overall degradation of particle size. An extended treatment over 12 days showed a 

generation of the 38 Å pore within the first day of treatment. Further treatment resulted in 

an increased proportion of mesopores generated but the majority of the pores were still of 

38 Å in size. Additional testing was conducted with a larger scale set up, resulting in a 

similar generation of the 38 Å mesopore in the framework.  

 

2.5. Micro- vs. Meso-porous PCN-250 

Considering that n-decane (van der Waals diameter ~14 Å) is too large to be 

accommodated within the cavity of PCN-250 (pore size 8 Å), we hypothesized that it 

could be located within the mesoporous defects of the MOF. Thus, we introduced 

mesoporous defects into PCN-250 by Soxhlet treatment, to create mesoporous PCN-250 

samples. The PCN-250 sample prepared according to reported literature is defined as 
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Micro-PCN-250. The Soxhlet treated sample, Meso-PCN-250, maintained the same 

crystalline morphology as Micro-PCN-250 (Error! Reference source not found.). 

 

 

However, high-resolution scanning electron microscopy (SEM) imaging clearly revealed 

that the mesoporous defects (about 3–5 nm) were generated at the surface of Meso-PCN-

250 (Figure 10 b, d). The total N2 uptake capacity of Meso-PCN-250 (398 cm3g-1 STP) is 

largely similar to Micro-PCN-250 (405 cm3g-1 STP). Notably, the N2 adsorption-

desorption isotherm (Figure 10 e, f) at 77 K clearly displays a type-IV isotherm with 

hysteresis loops characteristic of large constricted mesopores for Meso-PCN-250, 

providing evidence for Soxhlet induced mesopores within the framework.  

Figure 9. PXRD patterns of simulated, pre- and post-treated 

PCN-250, with no evident loss in crystallinity. 98 

Simulated PCN-250 

Micro-PCN-250 

Meso-PCN-250 
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Figure 11. SEM image of a. Micro-PCN-250, b. Meso-PCN-250, scale bars for 

a-b: 1 micron, SEM image of indicated red area of c. Micro-PCN-250, d. Meso-

PCN-250, scale bars for c-d: 200nm, e-f. N2 isotherm of Micro- and Meso-PCN-

250. 98 

 

Figure 10. Pore size distributions a. Micro-PCN-250, DFT, b. Micro-PCN-250, 

BJH,  c. Meso-PCN-250, DFT, d. Meso-PCN-250, BJH. 98 
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The pore-size distribution (Figure 11d), as determined by the Barrett–Joyner–Halenda 

(BJH) desorption model, unambiguously shows that Meso-PCN-250 has ordered 3.8 nm 

mesopores, whereas Micro- PCN-250 does not (Figure 11b). By comparing the DFT-

calculated pore volumes of the two samples, it suggests that the micropore volume 

decreased from 0.285 to 0.186 cm3g-1 after mesopores were introduced to the PCN-250 

samples (Figure 11a, c).  

 

The high-pressure methane uptake of both PCN-250 adsorbents was measured at 298K 

using a Micromeritics HPVA-II (Figure 12). The Meso-PCN-250 has a methane uptake of 

142 cm3cm-3 at 65 bar, 11.8% lower than Micro-PCN-250 (161 cm3cm-3). It is well-known 

that mesoporous MOFs tend to have poor methane storage capabilities due to the large 

pore openings not being optimized for binding methane molecules.34,35 

 

 

 

Figure 12. Methane uptake for Micro- and Meso-PCN-250 (without 

dopants). 98 
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From the above characterization, we realized that Meso-PCN-250 maintains similar 

crystallinity and gas adsorption performance to Micro-PCN-250. However, Meso-PCN-

250 exhibited a distinct pore-size distribution. The ordered and uniform mesopores of 

Meso-PCN-250 make it a suitable candidate for the investigation of hydrocarbon loading 

in PCN-250. 

As the loaded alkanes investigated for the phenomenon tend to be in the gaseous or liquid 

phase and are easily desorbed, it is difficult to determine the actual loading within the 

MOF during tests. To prevent this ease of desorption, we opted to investigate fatty acid 

incorporation into MOFs. Considering that fatty acids are capable of coordinating with the 

metal cluster of the MOFs, which we hypothesized to have stronger binding to the MOF 

frameworks, as a result of the binding of the carboxylate groups to the metal clusters. 

Doped samples of n-decane and myristic acid, Decane@Meso-PCN-250 (4.4 wt% loaded) 

and Myristic@-Meso-PCN-250 (5.0 wt% loaded), were prepared accordingly. A PXRD 

of the doped absorbents showed a very similar pattern to that of as-synthesized PCN-250 

and the simulated pattern (Figure 13a). The IR (infrared) spectrum (Figure 13b) of 

Myristic@Meso-PCN-250 shows a representative peak for myristic acid at 2800–2900 

nm, indicative of successful binding of myristic acid to the MOF framework (Figure 14) 

.36,37 As seen in Figure 13c, the thermal stability of samples before and after doping was 

analyzed by thermogravimetric analysis (TGA).  
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The TGA curve of Meso-PCN-250 displays a mass loss of 5.6% below 100 °C, likely 

resulting from the removal of methanol from the framework. From 100–400 °C, the mass 

loss of Meso-PCN-250 is 17.0%, corresponding to the loss of residual guest DMF and 

other solvent molecules. The Decane@Meso-PCN-250 sample demonstrated a similar 

TGA curve, but with an additional weight loss step (12.1%) starting from 220 °C, which 

resulted from the loss of decane (boiling point of 174 °C). However, the TGA of 

Myristic@Meso-PCN-250 exhibited major differences when compared to the above two 

Figure 13a. Powder XRD pattern of Micro-, Meso-, Decane@Meso- and 

Myristic@Meso-PCN-250, b. FT-IR spectrum of Meso-, Myrstic@Meso-PCN-250, and 

Myristic Acid, c. TGA curve of Meso-, Decane@Meso- and Myristic@-Meso-PCN-250. 
98 

Figure 14. IR spectra of a. Myristic acid, b. Meso-PCN-250 and c. fatty acid doped Meso-

PCN-250. 98 
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samples in TGA. Below 150 °C, there is a significant mass loss of 19.2%, corresponding 

to the loss of methanol used in the loading of myristic acid (boiling point of 326 °C). In 

the range of 150–400 °C, the mass loss of Myristic@Meso-PCN-250 is only 7.3 %, which 

is the smallest of the three compared samples. This showcases the relatively slow 

desorption of myristic acid as compared to n-decane and DMF. There is also a slight shift 

in framework decomposition temperature in the Myristic@Meso- PCN-250, from 400 °C 

to 410 °C. This shift suggests that the incorporation of myristic acid into the MOF 

increases the thermal stability of the structure. After loading n-decane or myristic acid, the 

N2 uptake of Meso-PCN-250 was considerably decreased (Figure 10f, Figure 15). 

 

Figure 15. N2 uptake of a. Decane@Meso-PCN-250 and b. Myristic@Meso-PCN-250. 98 

 

After doping with n-decane and myristic acid, both PCN-250 adsorbents were measured 

for high-pressure methane uptake at 298 K using the HPVA-II from Micromeritics (Figure 

16). 
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The two doping reagents, n-decane, and myristic acid have minimal volumetric methane 

uptakes in the absence of the framework at 65 bar (10 cm3cm-3 v/v). When Micro-PCN-

250 was doped with n-decane and myristic acid, a decrease in methane uptake at 65 bar 

was observed (132 and 121 cm3cm-3 v/v, respectively). Our simulated data also expressed 

the same trend as the experimental data obtained (Figure 17a, b). 

 

Figure 16. Volumetric total methane uptake of Micro-PCN-250 and Meso-PCN-250 

doped with a. n-decane and b. myristic acid. 98 

Figure 17a. Excess methane uptake and, b. Total methane uptake of microporous PCN-

250 doped with hydrocarbons. 98 
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In contrast, when Meso-PCN-250 was doped with n-decane, the methane uptake at 65 bar 

improved from 142 to 203 cm3cm-3 v/v, which is a 43.0% increase compared to pristine 

Meso-PCN-250 (Figure 16a). When compared to the pristine Micro-PCN-250, the 

increased value is 26.1 %, which is comparable to the 18% increase for deliverable 

methane [characterized by GC-FID (Figure 3b)]. In addition, the working capacity (5–65 

bar) of Decane@Meso-PCN-250 was also elevated, reaching 159 compared to 110 cm3cm-

3 v/v for Micro-PCN-250. Myristic@Meso-PCN-250 can reach a total methane uptake 

capacity of 173 cm3cm-3 v/v at 65 bar (Figure 16b), and 192 cm3cm-3 v/v at 95 bar (Figure 

18).  

 

Figure 18. Total methane uptake of Myristic@Meso-

PCN250 and Meso-PCN-250 samples (1-100 Bar). 98 
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To the best of our knowledge, the 192–203 cm3cm-3  v/v values represent record-high 

methane uptake of mesoporous PCN-250 adsorbents reported thus far.23,38,39 It was also 

noted that the methane uptake increased faster for n-decane than that for myristic-acid-

doped samples with increasing pressure (Figure 19). This can likely be ascribed to the 

stronger interactions between methane and high alkanes such as n-decane.40,41 

 

 

2.6 Recyclability of PCN-250 as a Methane Storage Material 

 

Figure 19. Total methane uptake of Meso-PCN-250 doped with a. n-decane and, b. 

myristic acid at each pressure. 98 

Figure 20. Recyclability tests for a. Decane@Meso-PCN-250 and, b. 

Myristic@Meso-PCN-250. 98 
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Although n-decane doping has better methane adsorption performance than myristic acid 

doping, the recyclability follows the reverse trend (Figure 20). After three cycles, the 

performance of n-decane-doped samples was reduced to 50% of the initial cycle. Due to 

the lack of strong interactions between n-decane and the MOF, it is difficult to prevent the 

n-decane from leaching from the framework during the regeneration process, which 

included vacuum-assisted heating at 180 °C. After three cycles, the subsequent two cycles 

maintained a performance that was 45% that of the original. In contrast, myristic-acid-

doped Meso-PCN-250 showed consistent performance even after three cycles. As 

expected, the carboxylic acid moieties of the fatty acid can bind to the metal cluster of the 

MOF adsorbent, reducing the loss of dopant during the desorption process.42 The weight 

of myristic acid doped Meso-PCN-250 for each cycle was also measured, and no weight 

loss was found. This strongly indicated the retention of fatty acid within the framework 

throughout the gas storage cycle. 

 

 

Figure 21. Illustration of myristic acid doped Mesoporous PCN-250 for methane uptake. 
98 
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According to the results obtained above, the proposed mechanism of the enhanced 

methane uptake by long chain hydrocarbon doped PCN-250 is illustrated in Figure 21. 

Through Soxhlet treatment, defects were created in the microporous PCN-250, yielding 

mesoporous PCN-250. Considering that mesopores have no significant interactions with 

small molecules, such as methane, methane uptake of undoped mesoporous PCN-250 was 

lower than that of undoped microporous PCN-250. In contrast, myristic acid strongly 

binds to the open metal sites of PCN-250, with long alkane chains located in the 

mesopores. By taking advantage of hydrophobic interactions and efficient space partition, 

methane molecules were packed into the mesopores, resulting in enhanced uptake 

capability. Although there are several pre- or post-synthetic methods to introduce 

mesoporous defects in MOFs, it is very rare that a MOF shows increased methane uptake 

after the treatment.32,43–47 Furthermore, compared to conventional methods previously 

reported, the HAANG method can produce enhanced methane storage and is more 

straightforward and more highly recyclable. 

 

2.7 Conclusion 

In conclusion, we applied a post-synthetic treatment method, termed HAANG, to MOF 

adsorbents and obtained MOF-hydrocarbon composites with improved methane uptake 

performance and excellent recyclability. By applying two forms of the same MOF, 

microporous and mesoporous PCN-250, we observed that doping reagents only improve 

the methane uptake performance for Meso-PCN-250 and reduce the performance for 

Micro-PCN-250. This result indicates that the doping reagents are presumably located 
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within the mesopores or at defect sites in the adsorbent, utilizing the void space and 

dissolving additional methane molecules. Through doping weakly (n-decane) and strongly 

(myristic acid) binding agents, the Meso-PCN-250 can produce a robust reusable 

adsorbent composite with increased methane uptake performance. Our findings shed light 

on the potential for post-synthetic treatment of MOF absorbents to obtain high performing 

and sustainable natural gas resources. 

 

2.8 Experimental 

Powder X-ray diffraction (PXRD) was carried out with a Bruker D8-Focus Bragg-

Brentano Xray Powder Diffractometer equipped with a Cu sealed tube (λ = 1.54178 Å) 

at 40 kV and 40 mA. N2 sorption measurements were conducted using a Micromeritics 

ASAP 2020 and 2420 system. All BET samples were activated at 185 °C for 12 hrs. 

2.8.1 Micro-PCN 250 Synthesis 

Fe(NO3)3·9H2O (5.4 g), ABTC (1.8 g), Acetic Acid (3 L) and DMF (6 L) were added 

into a jacketed 10 L Pyrex high pressure reaction vessel. The vessel was then heated to 

150 ºC for 12 h. The resulting reaction slurry was then removed and used without further 

purification.  

2.8.2 Washing Procedure for PCN-250 

PCN-250 and methanol were added to a vial in an approximate 1:3 volume ratio. The 

mixture was incubated in an 80C oven overnight. The material was cooled and filtered. 

This was repeated three times to allow for complete solvent exchange and removal of 

residual contaminants. 
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2.8.3 Initial Slow Drip Test 

PCN-250 was washed in a Soxhlet setup with refluxing methanol. 0.5g samples of PCN-

250 were packed into individual filter paper pockets as demonstrated in Figure X. 8 total 

samples were placed into the Soxhlet apparatus at the same height. Methanol was added 

to the solvent reservoir and heated to reflux, with an approximate drip rate of 12 

drops/min. Samples were then removed from the set up at regular intervals. BET N2 

sorption analysis and PXRD were run.  

2.8.4 Initial Fast Drip Test 

PCN-250 was washed in a Soxhlet setup with refluxing methanol. 0.5g samples of PCN-

250 were packed into individual filter paper pockets as demonstrated in Figure X. 10 

total samples were placed into the Soxhlet apparatus at the same height. Methanol was 

added to the solvent reservoir and heated to reflux, with an approximate drip rate of 170 

drops/min. Samples were then removed from the set up at regular intervals. BET N2 

sorption analysis and PXRD were run.  

2.8.5 Bulk Fast Drip Time Test 

PCN-250 was washed in a Soxhlet setup with refluxing methanol. 5.00g of PCN-250 

was packed into a cellulose sleeve for Soxhlet extraction. Methanol was added to the 

solvent reservoir and heated to reflux, with an approximate drip rate of 170 drops/min. 

The sample was left to run for 6 days. BET N2 sorption analysis and PXRD were run.  

2.8.6 Bulk Fast Drip Time Test 2 

PCN-250 was washed in a home-built Soxhlet setup with refluxing methanol. 

Approximately 30.00g of PCN-250 was placed into a fine fritted tube for Soxhlet 
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extraction. Methanol was added to the solvent reservoir and heated to reflux. The 

samples were taken at 5, 8 and 11 days. BET N2 sorption analysis and PXRD were run.  

2.8.7 Fatty Acid Loading of PCN-250 

A series of fatty acids (C6 to C14) were loaded into PCN-250 using the following 

procedure. 1.00g of mesoporous PCN-250 was added to a vial. 0.2 mass equivalence, 

200mg, of fatty acid was weighed into the same vial, followed by 10ml of methanol. The 

resulting mixture was incubated in a 75 °C oven overnight. The material was filtered and 

allowed to dry in a 75 °C oven overnight. Samples of C12 and C14 were prepared with 

varying weights due to sample limitations, but the mass ratio and solvent volume ratios 

were maintained.  

2.8.8 Myristic Acid Loading Screen 

Myristic acid was added to a vial containing 1.00g of untreated PCN-250 at various 

loadings 0.05, 0.1, 0.25, 0.5 and 0.75 mass equivalence. 10 ml of methanol was added to 

each sample vial. The vials were sealed and incubated in an 80 °C oven for 3 days. An 

identical test was set up with samples of mesoporous PCN-250. 
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CHAPTER III  

PPN-150: A MELAMINE-FORMALDEHYDE POLYMER NETWORK 

3.1 Carbon Capture in the United States 

Global warming has become an imminent environmental threat, with climate change being 

considered a contributing factor for the increase in frequency and severity of inclement 

weather,48 potentially resulting in negative health effects through preventing access to 

health services,49 as well as hurting the global economy through expensive weather 

remediation50. One of the main gases of concern, CO2, is mainly sourced through the 

burning of fossil fuels and has experienced an exponential increase in atmospheric 

concentration since the 1800s.51 In particular, fossil fuels account for 63% of the energy 

generated in the United States.52 With fossil fuel reserves expected to last well past 2050,53 

finding new methods of CO2 remediation is of the utmost importance to mitigate the 

effects of global warming. 

 

Many approaches to CO2 capture have focused on post-combustion capture or capture 

directly downstream from fossil fuel power generation. Post-combustion flue gas is 

typically comprised of ~12–15% CO2 and 74–80% N2, with the remainder consisting of 

ppm levels of SOx, NOx, particulate matter, H2O, and O2. Currently, mature post-

 

 Parts of this chapter are reprinted and adapted with permission from “Day, G. S., Drake, H. F., Joseph, E. 

A., Bosch, M., Tan, K., Willman, J. A., Carretier, V., Perry, Z., Burtner, W., Banerjee, S., Ozdemir, O. K., 

Zhou, H.‐C., Improving Alkylamine Incorporation in Porous Polymer Networks through Dopant 

Incorporation. Advanced Sustainable Systems, 2019, 3, 1900051.” Copyright WILEY 2019 
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combustion CO2 capture processes utilize amine solutions, most notably 30% aqueous 

monoethanolamine (MEA) .54 However, aqueous MEA solutions tend to have regenerative 

energy demands of up to 185 kJ mol−1 CO2. Recovering the CO2 and regenerating the 

sorbent can cause a drastic increase in the parasitic load of the system, oftentimes upward 

of 70%.55 

 

3.2 Materials for Carbon Capture 

In order to reduce the energy demand of these solution-based systems, there has been a 

renewed effort toward the development of solid sorbents for CO2 capture. Solid sorbents 

are advantageous as they capture CO2 through physisorption, which does not entail the 

generation of full sorbent–amine bonds such as in the chemisorption-based capture of 

aqueous amine solutions. A number of different classes of solid sorbent have been 

investigated, such as metal–organic frameworks (MOFs) ,56,57 mesoporous silicas, 

58,59zeolites,60,61 and porous polymers.62,63 Solid sorbents demonstrate a number of 

advantages over their amine solution counterparts. The typical heats of adsorption for 

amine solutions range from 80 to 185 kJ mol−1 CO2,
55,64 whereas solid sorbents can have 

both broader and lower ranges for heats of adsorption from 30 to 90 kJ mol−1 CO2. This 

variability depends on the available functional groups within the structure.56,61,65  

Purely physisorptive materials are often inadequate for CO2 capture due to their low gas 

selectivity. As a result, there has been a push toward improving these solid sorbents 

through the incorporation of chemisorption functionalities. Typically, these improvements 

in capture capabilities directly result from the introduction of amine functionality within 



 

37 

 

the porous materials. This incorporation can be through post-synthetic covalent 

tethering,56,57,66 physical incorporation,59,67 or direct incorporation into the porous 

framework scaffold.62,63,68 

Physical incorporation of amines within porous materials remains one of the more feasible 

methods of improving their CO2 affinity. The low cost associated with physical 

incorporation-based procedures typically requires little more than the short-term contact 

between the porous material and a suitable amine. However, the weak physisorptive 

tethering of the amine to the surface of the porous material limits the conditions under 

which the material can be used. The amine leaching that can occur during sorbent 

regeneration results in a loss of CO2 uptake performance capacity and leads to concerns 

over equipment corrosion and environmental exposure to toxic chemicals. 

As an organic species, PPNs are ideally suited for functionalization, taking advantage of 

multiple organic synthetic pathways,66 while still being producible at low cost.69,70 PPNs 

incorporated with basic moieties, such as amines, can produce high CO2 selectivities, 

necessary to separate CO2 from flue gas.66,69,70 The incorporation of amines into a PPN 

system is typically achieved through either post-synthetic modification of an existing 

porous polymer,66 or the incorporation of basic moieties into the polymer backbone.62,63,68 

Previous results from our lab have shown high uptake capacities using both PPN-6 and 

PPN-125,66,69 both being porous networks post-synthetically modified with covalent 

diethylenetriamine tethering. However, in both systems the addition of covalently tethered 

amine adds two steps to the sorbent synthesis. With processing adding additional days to 

the total sorbent reaction time and adding to the amount of required solvents and reagents, 
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this increases the total cost of the synthetic process. The preparation of PPNs with basic 

moieties incorporated directly into the polymer backbone shows CO2 uptakes greater than 

10%wt only when adsorption is conducted at sub-ambient conditions. This limitation 

reduces the usefulness of these sorbents for industrial scale capture. 

To combat these issues, we have introduced dopant materials: functionalized small 

molecules that can be added during PPN formation. The dopants utilize hydrogen bonding 

and strong dipole–dipole interactions to act as noncovalent anchoring sites for the post-

synthetically loaded alkylamines. This dopant system represents a distinct advantage over 

other physisorptive systems as it can achieve the high CO2 cycling capacity necessary for 

an industrially relevant sorbent, while maintaining a high degree of cyclability. 

 

3.3 Results and Analysis 

The mPMF backbone of PPN-150 was chosen as a scaffold due to its ability to form a 

highly porous framework using commercially available materials (melamine and 

formaldehyde). However, melamine-formaldehyde resins are not inherently porous, and 

therefore must be made porous through the precise control of the synthetic procedure. The 

production of PPN-150 proceeded through a condensation polymerization of melamine 

and formaldehyde (in the form of paraformaldehyde) at high temperatures (150–170 °C) 

in dimethyl sulfoxide (DMSO) solution without stirring. Upon sitting for ~1 hour, an 

initial polymer gel formed. This gel is a soft pliable material that collapses in the absence 

of solvent. Upon being left in the sealed container under an atmosphere of formaldehyde 

gas for 3 to 7 days, the gel slowly solidified into the thermoset melamine-formaldehyde 
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resin. The resulting polymer monolith was then crushed into useable sized pieces and 

washed with acetone, tetrahydrofuran, dichloromethane, and methanol successively. The 

three main parameters that affected the porosity in PPN-150 were: the fill volume of the 

container used for synthesis, the solvent used for synthesis, and the reaction time.  

 

Table 1. Reactor Headspace Optimization (PPN-150) 

Reactor fill volume (%) BET Surface Area (m2g-1) Pore volume (cm3g-1) 

18.3 857 0.685 

50.0 838 0.886 

88.4 722 0.802 

 

There is a mild correlation between the first two parameters as it appears that the 

concentration of formaldehyde gas in the reaction solution versus in the headspace of the 

material can result in a change in the surface area and pore volume of the resultant sample. 

As a result, both the vapor pressure of the formaldehyde and the solvent play an important 

role in determining the degree of micro and mesoporosity as well as the surface area of 

the material. The results of the synthetic tests (Table 1) show that container fill volume, 

defined as the volume of the container filled by the reaction solution, does have a minor 

effect on the overall porosity of the samples. Reaction vessels that had a higher percentage 

of their volume filled resulted in polymer with lower Brunauer–Emmett–Teller (BET) 

surface areas. The reaction vessel that was only 18.3% full results in a PPN that had an 

18.7% higher surface area compared to a sample that was produced in an 88.4% filled 

vessel. 
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Table 2. Solvent System Optimization Data for PPN-150 

Solvent System BET Surface Area (m2g-1) Pore volume (cm3g-1) 

Dimethyl Sulfoxide 854 1.11 

Ethylene Glycol 356 0.761 

Ethylene Glycol/Ethanol 251 0.542 

Dimethyl Sulfoxide/Water 113 0.135 

Ethylene Glycol/Water 298 0.653 

Ethylene Glycol/ Methanol 279 0.597 

Dimethyl Sulfoxide/Methanol 518 0.508 

 

Solvent comparisons were conducted in an attempt to produce PPN-150 using greener, 

more environmentally friendly solvents. These solvent choices were compared to DMSO, 

the solvent commonly used in the literature for mPMFs.70 Unfortunately, no other solvent 

or solvent pairs came close to the high surface area or porosity of the DMSO synthesized 

sample (Table 2).  

Table 3. Time Optimization for PPN-150 

Synthesis Time 

(Days) 

BET Surface 

Area (m2g-1) 

Pore Volume 

(cm3g-1) 

TGA CO2 Uptake  

(wt% DETA loaded) 

3 730 0.296 9.6 

5 640 0.281 9.2 

7 1014 1.042 5.3 
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Reaction time analysis shows a distinct change in sample porosity as the reaction 

continues (Table 3). In general, there appears to be an increase in overall porosity as the 

reaction progresses. However, changes in the pore size distribution (Figure 22) suggest 

that the increased porosity is mainly generated in the higher mesoporous range. 

Unfortunately, the mesoporous range is less relevant when investigating CO2 capture after 

alkylamine loading (Table 3). 

 

 

 

 

 

  

Figure 22. Pore size distribution change for time optimization 

study of PPN-150. 99 
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Table 4. Elemental Analysis of PPN-150 Series Samples 

Element C H N S 

Theoretical Mass% for 

PPN-150 

34.00 2.00 45.00 0.00 

Experimental PPN-150 35.26 4.83 40.89 5.81 

Experimental PPN-151 35.23 5.28 39.45 5.88 

Experimental PPN-152 36.81 4.91 40.56 5.80 

Experimental PPN-153 36.68 5.33 36.47 7.21 

Experimental PPN-154 34.75 5.27 35.92 7.13 

Experimental PPN-155 36.07 5.45 37.99 5.06 

Experimental PPN-156 33.84 5.37 41.12 3.78 

 

DMSO is known for having both a high boiling point and for decomposing near its boiling 

point into dimethyl sulfide, which could potentially interfere with the PPN reaction. 

Elemental analysis of the processed PPN-150 shows that the material is still 5.81% sulfur 

by mass ( 
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Table 4), suggesting that DMSO lingers in the sample, even after processing. However, 

heating the starting materials of the PPN in the absence of formaldehyde in DMSO shows 

no observable reaction. 

 

CO2 uptake testing of lab-scale PPN-150 samples was conducted using thermogravimetric 

analysis (TGA) and showed an uptake of 2.8 wt% under simulated flue gas conditions 

(0.15 bar CO2, 0.85 bar N2). Alkylamines were then incorporated into the polymer pores, 

taking advantage of the basic moieties in the alkylamines to engage in a weak 

chemisorptive interaction with CO2. Loaded tests were performed using PPN-150 samples 

with a high surface area, produced in an 18.3% filled reactor using DMSO as a solvent, 

with a series of alkylamines. The alkylamines were doped into the polymer by mixing the 

solid PPN in a solvent, typically hexane, cyclohexane, or methanol, and adding the neat 

alkylamine to the solution. The alkylamine was allowed to penetrate the PPN with the aid 

of a sonication bath at 50 °C over the course of 3 h. The PPN was then filtered, washed 

with a polar solvent (THF, methanol) in an attempt to remove surface alkylamines, and 

then dried in a vacuum oven at 85 °C for 1 h. The resulting white powder samples were 

then tested for CO2 uptake under TGA conditions and run for five cycles (Figure 23).  



 

44 

 

 

Figure 23. Testing of different amines loaded into PPN-150 over 5 cycles. 99 

 

Based on the data gathered, the two highest performing alkylamines were 

diethylenetriamine (DETA) and tetraethylenepentamine (TEPA). However, in an effort to 

keep synthesis costs down, and due to the uptake values of the two materials being 

relatively close (both achieved >8% on a typical CO2 capture experiment), we decided to 

focus our research efforts on the DETA loaded PPN. 

 

During TGA cycling, it was observed that there was still a loss of uptake performance 

over the five cycle experiment. This was attributed to the loss of amine due to thermal 

regeneration. This loss is likely due to the main nitrogen component of the PPN, the 

triazine ring, only being weakly basic. This could be corroborated by the loss of sorbent 

mass between cycles. In order to alter the structure of the PPN, we opted to try dopant 
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incorporation, adding functional molecules during the polymerization reaction, as a 

method of either altering the structure through templating and changing the porosity, or 

by adding secondary sites for amine tethering to occur. Further work by another researcher 

was conducted regarding templating using other moieties was conducted separately, 

investigating the six dopants as shown in Figure 24. The six dopants were added to the 

polymer before the initial gel formation, with the dopants added as a DMSO solution to a 

hot melamine solution prior to the addition of paraformaldehyde. The reaction temperature 

and conditions used were the same as for the base polymer, PPN-150. 

 

 

Figure 25a. N2 absorption isotherms, b. BJH pore size distributions, and c. TGA 

decomposition curves, for the PPN 15X series. 99 

 

Figure 24 Procedure for the synthesis of doped PPN-150 series polymers. Dopants (1-6) 

were added to the initial reaction mixture and homogenized prior to polymerization. 99 



 

46 

 

The 6 doped PPNs all show a mix of both micro and mesoporosity, with a broad range of 

fairly large micropores, around 1.2–1.5 nm (Figure 25a, b). The surface areas are typically 

consistent with that of the undoped PPN-150, except for PPN-153. The phosphonitrilic 

chloride trimer dopant partially collapses the porous structure. This was most likely due 

to the reactivity of the labile P-Cl bonds interfering with the desired polymer synthesis. 

The surface areas of all the doped materials except PPN-151 were lower than that of the 

undoped material. As the doping occurs during the polymer synthesis as opposed to post-

synthetic modification, the loss in surface area was likely due to the increased mass of 

material added to the synthesis. However, among the doped samples, there appears to be 

a general trend of improved surface areas and total uptakes for the materials upon 

incorporation of acidic functionalities in the dopants. Cyanuric acid, an acidic 

functionality, had the highest surface area of all the PPNs. The phloroglucinol (slightly 

acidic) doped PPN and ethylene glycol (hydroxyl containing) doped PPN had the second 

and third highest surface areas, respectively. The trisodium trimetaphosphimate (charged 

species) doped sample had a surface area comparable to that of the ethylene glycol doped 

PPN. The hexamethylenetetramine (basic) doped PPN showed the lowest surface area of 

the nonreactive dopants. Condensation reactions, such as the one used to form PPN-150 

can be catalyzed by acidic conditions.71 This suggests that one of the main effects the 

dopants may have on the porosity of the sample is through catalyzing or impeding the 

condensation reaction. 
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TGA decomposition analysis of the seven PPN samples shows that final decomposition 

for each material typically occurs around 350–375 °C (Figure 25c). PPN-151 appears to 

have the highest decomposition temperature, around 390 °C. This high decomposition 

temperature can be attributed to the stabilizing effects of the cyanuric acid–melamine 

interaction. This interaction is known to generate a highly stable melamine-cyanurate 

hydrogen bonding network.72 Melamine-cyanurate has a significantly improved thermal 

stability compared to both melamine and cyanuric acid, decomposing at 400 °C, as 

opposed to the 300 °C decomposition temperature of isolated melamine or cyanuric acid 

(Figure 24a). It should also be noted that the same TGA curve type cannot be generated 

by physically mixing PPN-150 with melamine cyanurate or cyanuric acid, suggesting that 

this change in decomposition behavior is due to a new material phase generated during the 

polymerization reaction in the presence of cyanuric acid (Figure 27b).  
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IR spectroscopy was performed on the PPN series (Figure 28). Each of the PPN samples 

showed no noticeable difference from the baseline PPN-150. In order to probe whether 

the dopant molecules could be observed in the material, higher loadings of the dopants in 

Figure 27. IR Spectra of PPN-15X series of polymers. 99 

Figure 26. TGA decomposition curves of a. Melamine-Cyanurate and its 

components, b. PPN-150 blended with melamine-cyanurate components against 

PPN-151. 99 
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the PPN samples were tested: a 50 mol% cyanuric acid was reacted for 1, 2, and 3 d. Only 

the 1 d reaction appeared to show any presence of cyanuric acid in the IR spectrum of the 

resulting processed PPN (Figure 29a). However, all three samples showed broadly similar 

porosities (Figure 29b). 

 

 

Upon loading the doped PPNs with DETA, there was a marked drop in surface area, as 

the loaded amine pooled within the pores of the framework, limiting surface access to the 

N2 during gas adsorption measurements (Figure 30). However, there was significant 

Figure 28a. IR spectra, and b. N2 adsorption isotherms, of 50 mol% cyanuric acid PPN-

151 at different reaction times. 99 

Figure 29a. N2 isotherms of DETA loaded PPN series, b. BJH pore size distribution of 

DETA loaded PPN series. 99 
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variation in the surface area drop among the different PPNs. Some PPNs (150, 152, 153) 

showed a drop in surface area upwards of 50%, while others show an approximate 50% 

drop (151, 154, 155, 156) (Figure 31a). The PPNs with dopants that showed higher uptakes 

typically had dopants that contained hydrogen bond donors or acceptors as functional 

groups (OH, ONa). The PPNs with dopants that showed lower uptakes mainly appeared 

in systems that had less donating functionalities (tertiary amines, P-Cl bonds). IR 

spectroscopy of the DETA loaded samples did not show any significant differences 

between each sample (Figure 31b). 

 

From these results, it was hypothesized that the samples with higher surface areas after 

DETA loading would be better CO2 capture materials, due to the higher availability of 

physisorption surfaces. In addition, there was interest in determining the effects of dopant 

inclusion on the cycling performance, namely, the loss in uptake between subsequent CO2 

adsorption runs. 

 

 

Figure 30a. BET surface area of PPN series with and without DETA loading, b. IR 

spectra of DETA loaded PPN. 99 
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The doped PPNs were investigated via a five-cycle TGA experiment utilizing a 10 min 

thermal activation at 85 °C between individual cycles, while adsorption was conducted 

at 40 °C for 40 min using a 15% CO2:85% N2 gas mixture (Figure 32a). In general, there 

was a high degree of variation between synthesized batches, resulting in large standard 

deviations. Of the six doped materials, four of them showed lower CO2 uptakes than the 

undoped PPN-150-DETA, with only PPN-151-DETA and PPN-154-DETA showing 

higher average uptakes over five cycles. Generally, the initial cycle of loading experiments 

demonstrated a higher uptake than subsequent cycles. For example, PPN-156-DETA gave 

an average cycle 1 uptake of 9.02%, whereas the average for cycle 2 was 6.66%. For this 

material, cycles 3 and 4 showed only a minor loss in uptake performance as compared to 

cycle 2. The loss of uptake from cycle 1 to cycle 2 was attributed to the incomplete 

regeneration of the sample after CO2 adsorption, not the desorption of DETA. This was 

corroborated by an increase in sample mass after cycle 1, implying that it was unlikely 

Figure 31a. Five cycle TGA run data using a 15% CO2, 85% N2 gas mixture for PPN-

150 series polymers, b. Comparison of the top 3 performing sorbents, PPN-150, 151 and 

152. 99 
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that material was being lost as a result of the heat cycling. In one iteration of PPN-156-

DETA, the baseline mass started at 14.99 mg. After cycle 1, the baseline mass increased 

to 15.69 mg, which was an increase of 4.7% (Figure 33). 

 

Due to the low loss of cycling performance and high total uptake, further investigation of 

the long-term cycling of PPN-151-DETA was conducted via extension of the experiment 

to 30 cycles. For comparison, PPN-150-DETA and PPN-152-DETA were also tested for 

long-term stability, due to PPN-150-DETA being the baseline material and PPN-152-

DETA being a typical material that did not show marked improvement during short-term 

cycling tests (Figure 32b). Long-term cycling of PPN-150-DETA as well as PPN-152-

DETA show a consistent loss in uptake with the progression of the cycles. The loss in 

performance averaged 14 and 18%, respectively, for PPN-150-DETA and PPN-152-

DETA. Additionally, PPN-152-DETA showed an overall lower level of CO2 uptake as 

Figure 32. 5 cycle experiment with 85 °C for PPN-156-

DETA. 99 
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compared to the undoped PPN-150-DETA. This was likely a result of the lowered surface 

area and porosity of PPN-152 in comparison with the base material. 

 

The average uptake of PPN-151-DETA remained high relative to the other samples, 

averaging 9.46%. In addition, the material showed remarkably improved cycling 

performance over the baseline PPN, only losing 3.6% of its total performance over 30 

cycles. This improved cycling performance, in conjunction with the DETA loaded surface 

areas, suggests that in PPN-151-DETA, CO2 engages in a slightly different sorption 

interaction as compared to the other PPNs. This was corroborated by the variable 

temperature single-component CO2 isotherms and the calculated heat of adsorption values 

for PPN-151-DETA which are ≈10 kJ mol−1 higher than that of PPN-150-DETA at similar 

CO2 loadings (Figure 33). 

 

Figure 33. CO2 isotherms for a. PPN-150-DETA, b. PPN-151-DETA, Clausius-

Clapeyron relationship data for c. PPN-150-DETA, d. PPN-151-DETA, and e. Heat of 

Adsorption as a function of coverage. 99 
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As another method of probing the effect of cyanuric acid on the nature of CO2 adsorption 

in PPN-151-DETA, in situ IR testing during gas loading was performed. The data for 

PPN-150-DETA showed a mix of physisorptively (peak at 2334 cm−1) and 

chemisorptively (broad shoulder at 1700 cm−1) bound CO2 in the form of carbamate 

(Figure 32a). In contrast, the PPN-151-DETA results showed the dominant form of CO2 

in the sample was chemisorptively bound CO2 (Figure 35b). These results demonstrate 

that PPN-151-DETA may have a more efficient binding process for CO2. This was 

correlated to the heat of adsorption data showing a much stronger initial binding of CO2 

to PPN-151-DETA as compared to PPN-150-DETA. 

 

 

 

 

 

 

Figure 34. IR spectra of adsorbed CO2 in a. PPN-150-DETA and, b. PPN-151-DETA after 

loading CO2 at 150 Torr and 40 ºC for ~5 min and subsequent evacuation of gas phase 

CO2.
 99 
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As PPN-151-DETA was the most promising material, larger scale fixed-bed adsorption 

testing was conducted using a Quantachrome DynaSorb BT in a breakthrough 

experiment.73 In addition, PPN-150-DETA and PPN-152-DETA were also studied to 

determine if there were any changes in adsorption behavior between TGA and 

breakthrough analysis (Figure 36). Additionally, the DynaSorb BT allowed for 

investigations of the cycling behavior under wet gas conditions. In this study, simulated 

flue gas containing 15% CO2, 2% H2O, and 83% N2 was used to conduct these tests. 

During breakthrough testing, the sample was placed in an adsorber column and the gas 

mixture was allowed to flow through the material. This flow through setup allowed for a 

more efficient and accurate adsorption and desorption as compared to the TGA cycling 

flow over setup. In the breakthrough experiment, a greater surface area of the material was 

available for both the adsorption gas stream and the regeneration gas stream. 

 

Figure 35. Breakthrough experiment for PPN-150-DETA, PPN-151-DETA, 

and PPN-152-DETA using a 15% CO2, 2% H2O, and 83% N2 gas mixture. 

Tests were performed using a 5 mL column containing ≈1 g of loosely packed 

material. 99 
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Overall, the CO2 uptake of the three samples increases under humid conditions compared 

to the dry gas adsorption tests. It is believed this occurred due to the improvements in the 

stoichiometry, where the amine:CO2 ratio changes from 2:1 to 1:1, in the presence of 

moisture.74 However, while this change in the material binding stoichiometry would 

suggest that the material’s uptake capacity should double, this does not take into account 

the actual working conditions of the breakthrough and TGA experiments. Specifically, 

they both operate under kinetically controlled, non-equilibrium conditions. As such, the 

material’s real uptake capacity is limited by the ability of CO2 to diffuse through the 

material. In particular, the presence of pools of DETA, a viscous liquid, could prevent CO2 

diffusion through the pores located deep within the material. As mentioned before, the 

BET surface area of the loaded PPNs tends to be significantly lowered compared to the 

unloaded PPNs. This reduction in surface area is likely the result of the DETA creating 

pools within the pores of the material. Under the N2 sorption surface area measurement 

conditions (77 K), these pools create a solid layer of DETA, blocking N2 access to the 

entirety of the internal surface area. Even under working conditions, 40 °C, the viscosity 

of these DETA pools is likely preventing CO2 access under simple kinetic gas flow 

conditions. 

 

PPN-151-DETA showed a massive improvement in performance under wet gas cycling 

conditions, achieving >20%wt CO2 as compared to 9.46%wt under dry conditions. Under 

ideal conditions, the maximum achievable improvement in cycling performance should 

be 2×. The fact that the experiment resulted in a >2× increase was indicative of either 
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some improvement in the material efficiency going from TGA to breakthrough 

experimentation or an improvement in the number of available CO2 binding sites. One 

possibility is that some portion of the DETA molecules cannot engage in CO2 capture 

under dry conditions as they lack a second equivalent of DETA to act as a proton acceptor. 

This is corroborated by the heat of adsorption values for PPN-151-DETA, which were 

calculated from the pure CO2 isotherms. There was a 22 kJ mol−1 (33.9%) reduction in 

heat of adsorption, going from 64.8 kJ mol−1 at 20 cm3 g−1 to 42.8 kJ mol−1 at 26.6 cm3 

g−1, which would suggest that there is a significantly lowered affinity toward CO2 once 

the initial gas loading has occurred (Figure 33e). For comparison, PPN-150-DETA at a 

broader range of coverage, 17.0–29.4 cm3 g−1, only saw a reduction in heat of adsorption 

of 7.6 kJ mol−1. However, the overall heats of adsorption for PPN-150-DETA are 

significantly lower, 28.9 and 21.3 kJ mol−1, respectively, which corresponds to a 26.3% 

reduction in heat of adsorption. 

 

Breakthrough testing of PPN-150-DETA still shows a consistent loss in uptake capacity 

over many cycles. This was especially noticeable during the first six cycles, where PPN-

150-DETA decreases from a 16.0%wt uptake to a 9.2%wt uptake. For comparisons, PPN-

151-DETA showed an uptake capacity of 21%wt at both cycle 1 and cycle 6. PPN-152-

DETA had a highly variable uptake, going from 18.8%wt in cycle 1 down to 11.0%wt in 

cycle 6. Part of the issue with PPN-152-DETA was that the slow decomposition of 

hexamethylenetetramine (HMTA) under aqueous conditions resulted in a release of 
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ammonia. The free ammonia could both act as an additional CO2 chemisorptive species, 

and cause false positive results for CO2 binding in the DyanSorb BT Instrument TCD. 

 

3.4 Scale Up of Viable Sorbent: PPN-151-DETA 

In order to establish the industrial feasibility of PPN-151-DETA, we attempted to produce 

the material beyond the bench scale. In order to prevent precipitation of melamine 

cyanurate before the initial polymer gel formation, the cyanuric acid-DMSO solution had 

to be heated to the reaction temperature (150 °C for the bench scale tests) and was added 

after the paraformaldehyde had dissolved. Failure to properly heat the cyanuric acid 

solution or ensure complete dissolution of the paraformaldehyde resulted in a loss of 

porosity in the final PPN. It should be noted that the larger scale syntheses generally 

required longer reaction times. For a reaction batch at the 250 g scale, the highest PPN 

performance was produced after 6 d of reaction time (Figure 37). These results demonstrate 

that PPN-151-DETA can be utilized as a cost-efficient alternative for industrial post-

combustion CO2 capture. 

Figure 36. N2 isotherms of Lab scale vs. 250g scale, with 

surface areas of 853 and 798 cm3/g respectively. 99 
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3.5 Conclusion 

Reported herein is a formulation for a family of post-combustion CO2 capture materials, 

the PPN-150-DETA family. Each member of the PPN-150-DETA family is differentiated 

by the incorporation of a different dopant molecule within the PPN during the 

polymerization reaction. One dopant in particular, cyanuric acid (PPN-151), demonstrated 

remarkable improvements in performance for PPN-151 as compared to the baseline PPN-

150. The improvements for PPN-151 were a higher CO2 heat of adsorption, improved 

cyclability, improved performance under wet gas conditions, and improved thermal 

stability. The post-synthetic amine incorporated polymer, PPN-151-DETA, proved to be 

a promising commercially viable sorbent for post-combustion CO2 capture. 

 

3.6 Experimental 

All chemicals used in this study were used as received without future purification. The 

breakthrough measurements were performed on a Quantachrome Breakthrough 

Instrument with activation temperature of 85 °C and deadtime of 7.3 seconds. The TGA 

measurements were performed on a Mettler-Toledo TGA/DSC 1. All N2 adsorption 

measurements were performed on a Micromeritics BET 2420 instrument at 77K. 

Variable Temperature CO2 adsorption isotherms were performed on a Micromeritics 

BET 2020 instrument using an ice water bath (for 0 °C) or a Micromeritics Iso 

Controller (25 °C and 40 °C). Heat of Adsorption values were collected using the 

Clausius-Capeyron equation and CO2 adsorption data collected at 0 °C, 25 °C, and 40 

°C. 
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FTIR data was collected using a Shimadzu IRAffinity-1. SEM images were collected 

using a JEOL-JSM-7500F. Density measurements for both skeletal and bulk PPN-150-

DETA were performed by Micromeretics Analytical Services. The in-situ IR 

spectroscopic data were obtained using a Nicolet 6700 Fourier transform IR 

spectrometer (Thermo Scientific Inc, US) equipped with a liquid N2-cooled mercury 

cadmium telluride MCT-A detector. A pressure cell (SpecacLtd, UK-product number 

P/N 5850c) was placed in the sample compartment of the IR spectrometer with the 

sample at the focal point of the beam. Elemental Analysis was performed by Atlantic 

Microlabs. 

3.6.1 Laboratory Scale PPN-150 

4 mL of DMSO was added to a 20 mL vial and heated to 120 °C, to this was added 

melamine (377 mg, 2.99 mmol), which was allowed to fully dissolve. Paraformaldehyde 

(202 mg, 6.73 mmol, 2.25 eq) was then added as a powder to the vial. The 

paraformaldehyde was allowed to dissolve and the vial was sealed and placed in an oven 

at 150 °C or 170 °C for 3 days. The vial was then removed from the oven and allowed to 

cool to room temperature. The resulting monolith was then ground up via mortar and 

pestel and the powder washed three times with 5 mL of acetone, three times with 5 mL 

of tetrahydrofuran, three times with 5 mL of dichloromethane, and three times with 5 

mL of methanol. The solid was then dried under vacuum at 120 °C overnight, yielding 

440 mg of a white solid. 

3.6.2 Alkylamine loading procedure 
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100 mg of PPN-150 series polymer was loaded into a 4 mL vial. To this was added 1.5 

mL of a solvent (cyclohexane or hexane) and 300 μL of DETA. The vial was then placed 

in a sonicator bath set at 55 °C for 3 hours. Upon completion, the solid was filtered, 

washed with tetrahydrofuran, and dried at 85 °C for 30 min to give 100 mg of white 

solid. 

3.6.3 250 g PPN-151 Synthesis 

1.88 L of DMSO was heated to 120 °C in a 3 L beaker while at the same time a 10 L 

jacketed glass reactor connected to a circulating oil heater is heated to 120 °C. Once the 

beaker of DMSO has reached 120 °C melamine (201.6 g 1.598 mol) was added slowly 

and allowed to completely dissolve. The melamine solution was then added to the 

reactor and the reactor was heated up to 150 °C. 200 mL of DMSO is heated to 120°C in 

a 500 mL beaker, to this was added cyanuric acid (15.5 g, 0.120 mol, 0.075 eq). Once 

the reactor reached 150 °C, paraformaldehyde (108.0 g, 3.596 mol, 2.25 eq) was added 

as a fine powder and allowed to dissolve completely in the DMSO/melamine solution. 

To this was added the DMSO/cyanuric acid solution. The reactor was sealed and 

wrapped in insulation and allowed to sit at 150 °C for 6 days. Upon cooling to room 

temperature, the solid monolith was removed from the reactor, ground up in a mortar 

and pestel, and washed three times with 1.3 L of acetone, three times with 1.3 L of 

tetrahydrofuran, three times with 1.3 L of dichloromethane, and three times with 1.3 L of 

methanol. The solid was then placed in a sealed reactor with a suspended stirrer and 

allowed to soak in methanol at 60 °C for 24 hours before filtration. This solvent 

exchange was conducted twice. The solid was then allowed to air dry in a hood 
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overnight before being placed in a vacuum oven 120 °C for two days, producing 275 g 

of white solid. 
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CHAPTER IV  

APPLICATIONS OF COMPOSITE MATERIALS 

4.1 Metal-Organic Frameworks – Potential Applications 

While there exists a wealth of information in the literature concerning metal-organic 

frameworks (MOFs), it is rare to see them being employed in industrial or commercial 

processes. Although no longer in its infancy, MOF chemistry still has many hidden depths 

that have yet to be discovered. One of the biggest challenges faced by MOF chemists is 

the scale of MOF synthesis. At present, there are few MOFs that can be synthesized at a 

large enough scale, that are also economically feasible. Many MOF syntheses produce 

these materials at a milligram scale and cannot be effectively scaled to produce materials 

on the gram or kilogram scale. While there are over hundreds of existing MOF variations, 

a key player in chemical sales, Millipore-Sigma, only lists 5 variations of MOFs,75 

commercially listed as Basolites®, that are available for purchase. In addition to that, there 

are other specialized companies that fill the niche of providing commercial MOFs. 

Additionally, many MOFs do not retain structural stability outside of solution, with the 

solvent evacuation causing pore collapse, and the subsequent loss in porosity. It is of 

interest to develop methods to utilize MOFs in the solid state, while maintaining their 

functionality, without the reliance on solvent. As such, this chapter will discuss the 

synthesis of MOF-composite materials, focusing primarily on MOFs that are 

commercially available.  
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4.2 Polymer-MOF Composites for Flame Retardancy 

Flame retardants are materials that are produced during combustion, that help to reduce 

the spread of flames, should the object catch fire. Early flame retardants, such as 

polychlorinated biphenyls (PCBs), while effective at the time, proved to have toxic side 

effects on humans.76–78 Since then, we have seen a rise in demand for alternative flame 

retardants. While brominated flame retardants initially replaced PCBs, these were also 

found to have significant side effects,79–82 either from the gradual release of the compound 

into the surrounding areas, or release of the compounds when the materials are subject to 

higher temperatures or flames, and are slowly being phased out. The current frontrunners 

for alternative flame retardants are organophosphates,83,84 and polymeric materials,85,86 

which have been targeted as a replacement for existing brominated flame retardants. 

However, an area that might have been overlooked is the use of certain transition metals 

in flame retardants.87 There have been a few literature works that have combined MOFs 

with polymers for enhanced flame retardance, that have focused on introducing 

phosphorous species into the MOF ligand, in order to take advantage of the flame retardant 

properties of the organophosphate compounds.88,89 In this study, we will investigate the 

effect of various functional groups within MOFs that have previously demonstrated flame 

retardant properties, to determine the effect they have on the combustion of polymeric 

materials. 
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4.3 Initial MOF Selection 

Preliminary testing was conducted with 2 species of MOF, UiO-66,30,90,91 and PCN-250,23 

which can both be reliably produced at the gram scales needed for polymer impregnation 

for cone calorimetry testing. In collaboration with Dr. Wang’s lab in the Department of 

Chemical Engineering at Texas A&M University, hypothesized that the inclusion of 

MOFs into established polymers, such as polymethylmethacrylate (PMMA), would allow 

for the incorporation of desired functionality into the polymer for flame retardancy, 

without the need for modification of the polymeric backbone, eliminating the time that 

would have been required to develop and optimize a new monomer and polymer synthesis. 

Additionally, MOFs can consistently be synthesized at the nano scale, and failing that, can 

be mechanically reduced to smaller particles for ease of suspension in the polymer matrix, 

without having to worry about phase separation. 

While the tested materials, UiO-66 and PCN-250, do not possess all the ideal qualities for 

flame retardancy, both species can be used in the dispersion testing for MOF in PMMA 

while testing the efficacy of their inherent flame retardant effects.  

UiO-66 is a zirconium based MOF, with a 12 coordinated Zr6 cluster and benzene 

dicarboxylate (BDC) organic linker. The Zr6O4(OH)4 nodes possess six Zr4+ ions in 

octahedral geometry and four oxygen atoms or hydroxyls at the centers of each of the 

octahedral faces, forming a fcu topology. UiO-66 is well known for its good thermal 

stability and ability to withstand a variety of solvents with minimal degradation. This is 

ideal for our purpose as polymer processing often requires high temperatures for curing 

and often is dependent on a specific solvent. The stability of UiO-66 means that it can be 
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incorporated in a variety of polymers without significant physical or chemical changes. 

Additionally, zirconium has a demonstrated ability to enhance the formation of a char 

layer in polymers upon combustion through polymer dehydrogenation. Given this 

information, it was determined that UiO-66 was a good candidate for initial testing of the 

polymer-MOF composites. 

 

PCN-250, also known as MIL-127, is a framework comprised of a trimeric metal cluster, 

formed by three Fe(III) octahedra sharing a central µ3-oxo, which is then linked by 6 

ABTC ligands (ABTC = 3, 3‘, 5, 5‘-azobenzenetetracarboxylate) to form a soc net. Upon 

heating at high temperatures, the ABTC ligand decomposes, liberating N2,
92 an inert gas, 

which can aid in the muffling of flames, by reducing the oxygen availability at the 

combustion site. Additionally, previous collaboration with framergy™ resulted in the 

development of a procedure for bulk generation of PCN-250, allowing us to easily obtain 

the amounts needed for testing.  

 

4.4 Results and Analysis 

In this study, we investigated the effect that incorporation of MOFs had on the flame 

retardance on a polymer, PMMA. PMMA is a transparent and rigid thermoplastic material 

widely used as a shatterproof replacement for glass. PMMA is often used as a model fuel 

in flame tests as the combustion is clean and does not produce char layer. Its thermal 

decomposition mechanism has been well documented in the literature and it reliably 

decomposes in the temperature range of 315-400°C.93–95 
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Previous work by our collaborators, Wang et. Al. also utilized PMMA as a medium for 

testing the flame retardant capabilities of a PMMA-silica nanocomposites.96 Results of 

this study, that tested the doping of PMMA with 1-4% silica, indicated that the composite 

demonstrated a lower ignition temperature, a phenomenon commonly seen in polymer 

nanocomposites. Although the ignition temperature was lowered, it is not a key factor in 

determining the flame retardancy. Using the heat release rate, total heat release and the 

mass loss rate, it was determined that the inclusion of silica in the PMMA samples 

improved the flame retardancy performance, with non-crosslinked samples performing 

slightly better, and the flame retardancy increasing with the mass% of silica in the sample. 

This was a result of the formation of a nanosilica-rich layer upon combustion, which forms 

a protective outer layer, preventing further thermal degradation of the polymer. While 

effective, this method does result in lowered ignition temperature and increased soot 

formation, which can lead to other negative effects.  

In this study, samples of PMMA (100mm x 100mm x 5mm) were prepared and subjected 

to cone calorimeter analysis.  A series of UiO-66/PMMA samples were produced, 0.5, 1.0 

and 1.5 wt% UiO-66 respectively, with a sample of neat PMMA as a control. Samples 

were tested under an irradiance heat flux of 50kW m-2 in order to simulate the conditions 

of a developing fire (to the standard of ASTM E 1354).97  

One of the factors studied in this experiment is the heat release rate, a critical fire response 

property. The heat release rate of a compound is the primary driving force of fire spread 

and is a determining factor of other reactions, such as the production of CO, CO2 and the 
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rate of decomposition. Of this, the peak heat release rate is of significance as it is an 

indicator of the maximum flame temperature and the rate of flame spreading.  

 

The heat release rate profiles for the 4 samples (Figure 38) indicate a change in heat release 

profile of the PMMA upon addition of UiO-66. From the graph, we note the increase in 

time to ignition with an increase in UiO-66 loading. In contrast with the previous studies 

with silica, where the introduction of additives lowered the ignition temperature, the MOF-

polymer composite has a longer time before ignition, indicating a better resistance to 

combustion. As previously mentioned, the flame retardation of a material is not directly 

dependent on the ignition, but the maximum heat release rate and flame spread. In this 

case, we note that the composites have a lower heat profile than neat PMMA, and a lower 

maximum heat release rate, with a drop in the maximum from 0.5% to 1.0%, with the 

Figure 37. Heat release rate profiles of the UiO-66/PMMA composites 
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1.5% sample having a similar release profile to the 1.0% sample. This decrease in peak 

heat release indicates that the composites have a lower combustion intensity than the neat 

polymer. Thus, we can conclude that the addition of UiO-66 to PMMA results in an 

increase in flame retardant properties.   

 

 

In addition to studying the heat release profiles, we also observe the visual effect of 

combustion testing on the material. In the control, neat PMMA (Figure 39a), the 

combustion test results in a relatively clean looking sample, with little to no combustion 

residue. For the composite samples, a layer of white solids remains after combustion. This 

layer was formed during combustion, accumulating on the PMMA surface, reducing the 

heat transfer to the bulk polymer beneath, suppressing the release of solid fuel for 

combustion. Additionally, a black char layer was also observed for these samples, which 

also aids in flame retardation, as it forms another protective layer.  

 

Figure 38. Combustion residues after cone calorimeter tests under an irradiance 

heat flux of 50 kW/m2 of a. neat PMMA, b. UiO-66/PMMA 0.5 wt.%, c. UiO-

66/PMMA 1.0 wt.%, and d. UiO-66/PMMA 1.5 wt.%. 
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Attempts at forming a MOF composite using the PMMA and PCN-250 were inconsistent 

when employing the same reaction conditions. Further optimization of this process must 

be conducted.  

 

4.4 Methodology 

4.4.1. Synthesis of UiO-66 

UiO-66 was prepared using a modified literature synthesis.90 BDC (0.6 mmol) and acetic 

acid (0.36mol) were added to a 250mL round bottom flask containing 140mL DMF at 

room temperature. The solution was heated to 120 °C in an oil bath and a solution of 10ml 

DMF and ZrCl4 (0.6 mmol) was added while stirring. The solution was left to react at this 

temperature for 6 hours without stirring. After the solution was collected, the product was 

Figure 39a. Unsuccessful, and b. successful attempts 

to produce a PMMA/PCN-250 composite under the 

same conditions 
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subjected to 3 washes with DMF, followed by 3 washes with methanol and dried in a 60 

°C oven.  

4.4.2 Synthesis of PCN-250 

PCN-250 was obtained from framergy™, using the synthesis reported by Feng et al.23  

4.4.3 Synthesis of PMMA composites 

PMMA composites were prepared as reported by Shen et al..96 MMA monomer was 

placed in a glass reaction vial sealed with a silicone septum. MOF particles were added to 

the monomer under magnetic stirring at various loadings (0.5, 1.0 and 1.5 mass%). 

Reaction was left to stir for 30 minutes, followed by sonication for 30 minutes, which 

allowed for the degasification of dissolved oxygen. The initiator, 1,1′-

Azobis(cyclohexanecarbonitrile) (ABCN), was added to the mixture at 0.2 mass% with 

respect to MMA. Nitrogen gas was bubbled through the solution for 10 minutes under 

continuous stirring. The polymer-MOF mixture was poured into a glass mold, which was 

then clamped together and placed in a large oil bath for 24 hours at 70 °C. Upon 

completion of the curing process, the composite was released from the mold and cut to 

100mm x 100mm x 5mm in preparation for cone calorimetry testing. 

4.4.4. Cone Calorimeter Testing 

All samples were tested according to ASTM E 1354 using a cone calorimeter from Fire 

Testing Technology Limited (FTT). Samples were directly exposed to a heater with the 

heat flux of 50 kW m-2 and evaluated in the horizontal orientation. The unexposed surfaces 

of these samples were wrapped in aluminum foil prior to testing. The samples were placed 

in retainer frame with a thin wire cross on the exposed surface to prevent bucking before 
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burning. The ambient temperature was in a range of 20.2 to 20.9 °C, ambient pressure in 

the range of 97.994 to 98.148 kPa, and the relative humidity was in the range of 27–28%. 

 

 

 

 

 



 

 

CHAPTER V  

CONCLUSIONS 

In this dissertation, we explored the modification of various porous materials for three 

applications: methane storage, carbon capture, and flame retardants. The research 

presented above demonstrates the diversity and adaptability of porous materials, focusing 

on fully utilizing existing, well studied materials and modifying them to suit our needs. 

With many of these hybrid porous materials, the foray into commercial applications is still 

in its infancy. While the discovery of novel materials is both exciting and educational, 

utilizing well studied materials provides the benefit of existing literature, known methods 

of characterization, as well as a benchmark for the performance of adapted materials, 

effectively minimizing the time required to take these materials to commercial 

applications. Given the wealth of existing materials available for our perusal, the 

possibilities are endless.  

 

5.1 Methane Storage  

The aim of this project was to develop a stable, scalable, cost effective material for use in 

methane capture. Within this project, we discovered a method for inducing mesoporosity 

in an existing microporous MOF, PCN-250. This method allowed for the simple, post-

synthetic treatment of the material, which resulted in a hierarchical structure, with 

micropores (ca 8 Å) and mesopores (ca 38 Å). This was then combined with existing 

methods for improving the energy density and uptake of methane, resulting in the 

development of HAANG, High-Alkane Adsorbed Natural Gas. Comparison of MOF pore 
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size and alkane van der Waals’ radii indicated a size mismatch with the pristine MOF, 

with improved performance when mesopores were induced in the material. While doping 

the alkane into the framework resulted in improved methane capacity, it was noted that 

desorption of the alkane occurred over time, with longer chains experiencing better 

retention. As a result, alternative molecules that also possessed long chain alkanes were 

tested with the material, to determine if tethering would improve the recycling 

performance of the material, with fatty acids proving to have a similar function, with the 

added benefit of tethering to the metal nodes within the structure. Most importantly, it was 

determined that the production of the best performing material was scalable, without any 

major changes to the process.  

 

5.2 Carbon Capture  

In this section, we explored a solid sorbent for carbon capture, aiming at developing a low 

cost material, with low regenerative energy, to provide an alternative to existing state-of-

the-art carbon capture from flue gas, monoethanolamine (MEA) solutions. An existing 

polymer, melamine-formaldehyde, was studied for this purpose. Introduction of a cyanuric 

acid dopant into the framework resulted in improved carbon dioxide uptake. Analysis of 

the base polymer, PPN-150, and the modified polymer, PPN-151, indicated that they 

participated in two mechanisms of carbon dioxide capture, physisorption and 

chemisorption. Analysis of the materials indicated that while PPN-150 utilized both 

pathways, PPN-151 experienced minimal physisorption, instead forming a carbamate. 

While heats of adsorption for chemisorption are often high, with MEA solutions ranging 
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from 80 -185 kJ mol-1, PPN-151 had a surprisingly low heat of adsorption, from 43 – 65 

kJ mol-1, combining the benefits of solid sorbents and chemisorption. Additionally, the 

material could be synthesized at a 250g scale while retaining a high carbon capture 

performance. Most importantly, the materials required to synthesize the polymer are low 

cost, with most of the production costs stemming from the synthesis solvent, DMSO.  

 

5.3 Flame Retardant 

The study of flame retardant polymer-MOF composites is in early stages, with much more 

testing needed to be done. At present, only 2 MOFs have been tested as additives, 

demonstrating the formation of composites and the varying effect that different MOFs 

have on the flame retardant performance of the polymer. As such, at low loading levels, 

incorporation of UiO-66, a zirconium based MOF, has shown to improve the flame 

retardance of PMMA. Given the wealth of options available for MOF species, there is 

much more to be explored in this area. 
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