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 ABSTRACT 

 

Sea walls play a major role in protecting the coastal regions from the raging waves 

and floods that can commonly occur due to storms and hurricanes. The rising sea levels 

and the increased number of storm events demand to re-examine the performance of the 

sea walls during their lifetime under future scenarios. The uncertainty is pervasive in this 

process stemming from stochastic nature and time variability of coastal forcing, as well as 

the various uncertain future scenarios of extreme climate events and sea-level rise (SLR). 

The objective of this research is to conduct an improved reliability-based assessment of 

coastal sea walls with the risk of overtopping as its primary failure mode. In our reliability 

analysis, we consider the uncertainty due to the stochastic nature of waves acting on the 

structure as well as the sea-level rise. The risk of overtopping failure is evaluated while 

incorporating the joint probabilistic description of the seawater level, significant wave 

height, and wave period under future hydraulic conditions. USACE (United States Army 

Corps of Engineers) SLR scenarios and USGS (United States Geological Survey) wave 

projections are used to account for the future hydraulic conditions. The uncertainty in the 

time-evolution of future sea level is quantified and systematically incorporated by 

constructing a stochastic model based on the inverse Gaussian process using the data from 

the USACE SLR projection scenarios. A time-dependent reliability-based framework is 

formulated to propagate different sources of uncertainty into the quantification of the 

probability of failure of sea walls. Specifically, we used the Galveston sea wall, which is 

a reinforced concrete curved seawall, as the case study. We explored the sensitivity of the 
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probability of overtopping to different sources of uncertainty. It is identified that wave 

height plays a crucial role in causing overtopping failure than all the other parameters. The 

outcome of this research will lead to knowledge and improved modeling framework that 

helps policymakers and infrastructure operators to characterize the risk of failure and 

resilience of coastal defense structures under various uncertain future scenarios and 

identify the adaptation or mitigation strategies that result in maximum resilience gain in 

the system. 
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SLR Sea Level Rise 

USGS United States Geological Survey 

USACE United States Army Corps of Engineers 

NOAA National Oceanic and Atmospheric Administration 

IG                                Inverse Gaussian 

U.S.                             United States 

RCP                             Representative Concentration Pathway 

EM                              Expectation Maximization 

RSLR                          Relative Sea Level Rise 

CDF                            Cumulative Distribution Function 

PDF                             Probability Density Function 
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1. INTRODUCTION  

 

1.1. Motivation 

In today’s world, climate change is inevitable and rising sea levels and increased 

sea storminess are its most significant outcomes. Due to exacerbated environmental 

conditions and sea-level rise, coastal structures like seawalls which act as the first lines of 

defense from coastal hazards are subjected to high risk. This risk on the seawalls includes 

an increased rate of occurrence of overtopping and a high magnitude of hydrodynamic 

forces acting on the structure. Given that a large percentage of the population lives in the 

coastal regions, threats like flooding, shoreline erosion, and hazards from storms are 

getting amplified. Waves of high significant wave height can easily cause overtopping 

failure and due to their stochastic nature, it is important to accurately incorporate this 

variable in the risk analysis of seawalls. Figure 1 is plotted with wave height data from 

Erikson et al. (2016) for the year 1987 from the Gulf of Mexico region on the y-axis and 

time in hours on the x-axis, and it represents the stochastic nature of wave height data. The 

rising sea levels have the potential to easily imply the flooding impact of a less probable 

high-intensity storm event to a high probable low-intensity storm event. This makes the 

sea level rise another important variable when assessing the risk of coastal structures. This 

motivated our study on risk assessment of seawalls. Especially we have taken into 

consideration the Galveston seawall due to the high relative sea-level rise in the region. 

It is inferred from the studies that along the upper Texas coast the sea levels are rising 

more rapidly than worldwide because some coastal lands are sinking. As sea level  
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Figure 1 Graphical representation of wave height data for the year 1987 from the 

Gulf of Mexico region obtained from the USGS data source 
 

rises, coastal areas become more vulnerable to storms and related floods. For example, 

a 0.91-m rise in sea level would enable a 15-year storm to flood many areas that today 

are only flooded by a 100-year storm. Land subsidence is a very significant problem 

along the Texas coast specifically in Galveston bay. Due to this land subsidence, 

Galveston bay is subjected to relative sea-level change. When the local level of the 

ocean relative to land is changing due to ocean rise or land subsidence, such a change 

is called relative sea-level change. This will become a pressing problem in this region 

given to the rate of sea-level rise. This has driven the study performed by Yoskowitz 

et al. (2009) who have modeled two scenarios of relative sea-level rise for the 

Galveston region and its surrounding counties for 100 years period. These regions are 
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well populated and significantly large. They have considered a 0.69 m rise and 1.5 m 

rise as the two scenarios. Their main objective is to estimate the impact of the two 

sea-level rise scenarios on the number of households. They have also estimated the 

expected number of buildings damaged, economic loss due to infrastructure damage, 

the effect on solid waste and industrial sites, and the impact on water treatment plants. 

They have concluded that under the 0.69 m rise the Galveston County alone will have 

78% of its total households displaced. In the case of a 1.5 m rise, 93% of households 

will be displaced. It is also estimated that in the case of 1.5 m rise there is a possibility 

that more than 98 thousand households will be displaced, and 75 thousand buildings 

will get damaged. A total of 12.5 billion economic losses are calculated for the 

Galveston region. The effect of sea-level rise on the socio-economic level is profound. 

Similarly, the effect on public facilities, industrial sites, and waste management sites 

is highly significant. According to their study, it is calculated that around 23 sites will 

be impacted when there is 0.69 m rise and around 33 sites would be impacted under 

the case of 1.5m rise. In 2008 Texas has seen a powerful hurricane called Ike. So, in 

this study, they have calculated the economic damage if the same hurricane comes 

when there is a 0.69 m sea-level rise. They calculated that there would an additional 

1.7 billion in damages for the total damages already caused.  These results show us the 

expected impact of relative sea-level rise in the Galveston region under two different cases 

and show us the importance of studying the long-term impacts of climate change and sea-

level rise in Texas.  
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 Given the uncertainties and the risks involved in climate change, stochastic waves, 

and sea-level rise scenarios: probabilistic, risk analysis, and reliability methods give much 

leverage in solving problems surrounding these issues. So, in this study, the risk of 

overtopping failure was calculated by analyzing the joint probability of seawater level, 

significant wave height, and wave period also under future hydraulic conditions due to 

climate change. A reliability-based framework was formulated to address these 

uncertainties and to find out the probability of failure of the seawall.  

1.2. Objectives 

Based on the motivation to address the risks associated with seawalls, this work 

aims to conduct an improved reliability-based assessment of coastal sea walls with the risk 

of overtopping as its primary failure mode. Performance evaluation of seawalls under 

future scenarios had become critical given to the imminent effects of rising sea levels and 

the increased number of storm events. The proposed time-dependent reliability assessment 

model can quantify the uncertainties stemming from stochastic nature and time variability 

of coastal forcing, as well as the various uncertain future scenarios of extreme climate 

events and sea-level rise (SLR). The outcome of this research will create knowledge 

through improved modeling framework that informs policymakers and infrastructure 

operators to characterize the risk of failure and resilience of coastal defense structures 

under various uncertain future scenarios. This knowledge can support the decision in 

identifying adaptation or mitigation strategies that result in maximum resilience gain in 

the system. 
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 The specific objectives are as follows: 

1. Explore and integrate different data sources such as NOAA, USGS, and USACE 

for improved quantification of uncertainty in parameters and functions describing 

the reliability of sea walls.  

2. Construct stochastic descriptions of future wave characteristics and rising sea 

levels to propagate the associated uncertainty into limit state functions  

3. Use this development to study the time-dependent reliability of the Galveston sea 

wall under uncertainty in future hydraulic conditions and different sea-level rise 

scenarios. 

1.3.  Literature Review 

The coastal structures are subjected to uncertain conditions like stochastic waves 

and rising sea levels. This makes the coastal structures vulnerable and prone to high risk. 

Reinforced concrete seawalls, in general, are under high risk of overtopping failure and 

structural deterioration failure. This led to many research studies on risk assessment of 

coastal structures subjected to uncertain conditions. Below are some relevant research 

studies on risk assessment of coastal structures.  

Mehrabani et al. (2015) have presented a method for calculating the probability of 

failure of coastal defense structures due to overtopping. They have identified that a lot of 

research is done for risk assessment of coastal structures, but the uncertainties associated 

with sea-level rise and significant wave height are not incorporated into the study. So, in 

this study, they have considered the joint probabilistic nature of hydraulic variables like 

seawater level and significant wave height. To predict the future probability of failure they 
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have used the UKCP09 climate projection scenarios to incorporate the future hydraulic 

variables in the model. Identifying the time-dependent nature of hydraulic variables, they 

have used time-dependent reliability analysis to find the probability of failure of coastal 

defense structures. The main causes of overtopping failure are a combination of sea-level 

rise and waves with high significant wave heights. It is stated that sometimes waves with 

extreme significant wave height can alone cause overtopping failure. This emphasizes the 

importance of considering joint exceedance of significant wave height and seawater level 

as an important factor in designing coastal defense structures. They used Generalized 

Pareto Distribution (GPD) and Generalized Extreme Value (GEV) distributions to fit the 

data and analyze the results for a better understanding of the model. They have applied 

this model as a case study on a sea wall in North Wales. They have analyzed the 

overtopping failure of the seawall over time by utilizing the future projections data. They 

have clearly shown the impact of sea-level rise by plotting the rate of occurrence of 

overtopping failure with time with and without sea-level rise. The frequency of 

overtopping is high in the case where sea level rise is considered. They concluded that 

sea-level rise and significant wave height play an important role in assessing the risks of 

coastal structures. 

Burcharth et al. (2015) presented the design, construction, and performance of the 

main breakwater of the new outer port at punto Langosteira, La Coruna, Spain. In the 

design of a coastal structure like a breakwater, initially, model testing was performed and 

then the design is finalized based on the reliability analysis. Detailed reliability analysis 

was performed to identify the safety levels of the various parts of the structure as a basis 
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for a more detailed design. The reliability analyses demanded that the uncertainties and 

scatter in the model test results were considered. For this reason, the model tests were 

repeated several times to obtain reliable expectation values and coefficients of variation 

of the parameters. And then a reliability analysis of the completed cross-section was 

performed. They have used the Monte Carlo simulation technique to obtain the failure 

probabilities for the failure modes Sliding, Slip failure, Main armor damage initiation, 

Main armor failure, Toe berm damage initiation, and Toe berm failure. They have assumed 

that the occurrence of the storms follows a Poisson distribution. From Monte Carlo 

simulations using 10,000 randomly chosen wave height values the failure probabilities 

within 50-year service life were obtained. No damage has been observed to any part of the 

structure even though it faced some severe storms. In the outer low- crested part of the 

breakwater, some settlements of cubes due to compaction of the front slope armor occur 

leaving openings in the transition between the single-layer and the double layer of cubes. 

Chen and Mehrabani (2019) proposed a time-dependent reliability model to assess 

the risk faced by coastal defense structures. They emphasized the impact of climate change 

on sea level and significant wave height. Using this model, they can predict the future 

performance characteristics of coastal defense structures. Earth sea dikes are taken into 

consideration for this model. Overtopping and soil piping are identified as important 

failure modes for earth sea dikes. As these depend and vary with time, modeling them as 

a time-dependent reliability problem is adopted in this paper. The piping of soil, in turn, 

increases the frequency of overtopping as the structure loses its crest freeboard. They have 

modeled this as a time-dependent Markov process. The reliability model gives the results 
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concerning the probability of failure due to risks like overtopping and soil seepage. They 

are utilizing the results from the time-dependent reliability model as a base to arrive at 

optimum maintenance strategies. A multi-objective optimization method is used to make 

strategic maintenance plans by establishing an optimum maintenance solution space. In 

this, different samples are presented, and each solution has its deterioration rate, risk unit, 

the cost for maintenance, and the time interval between maintenance schedules. A solution 

from the sample space can be selected based on the conditions of the coastal defense 

structure. Properly scheduled maintenance and inspection plans help to reduce the risks 

faced by coastal defense structures and increase their performance in the long run. Earth 

sea dike at Thames estuary is chosen as a case study to apply this model. From the results, 

they have concluded that the effect of water levels and wave height on the failure of coastal 

structures is significant in the future given to sea level rise and climate change. The 

probability of failure of the coastal defense structures increases in the future due to the 

combined effect of overtopping and soil piping. The optimum maintenance strategy helps 

maintenance workers to utilize the resources properly and reduce the risks faced by coastal 

defense structures. 

Li et al. (2005) presented a method to assess the serviceability of corrosion affected 

concrete structures. They point out that cracking and deflection causes the structure to lose 

its serviceability and can lead to the ultimate failure mode eventually, so they proposed 

this method to assess such risk. They proposed a performance-based methodology and 

used time-dependent reliability methods to evaluate the probability of failure.  In this 

paper, they have used the theory of mechanics and experimental data to develop the 
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models of structural response. For structural response, they have used models like crack 

width and deflection. They introduced a deterioration function to account for an increase 

in deflection even under constant load. They have concentrated on corrosion-induced 

cracking and deflection and applied it to flexural members as an example. Using this 

method, they can determine the time for a structure to become unserviceable and it will in 

turn help to determine the time for maintenance scheduling. It is concluded that cracking 

is dominantly affected by corrosion rate which in turn is measured by corrosion current 

density and a corrosion affected structure can become easily unserviceable due to cracking 

before excessive deflection can happen. They have identified that correlation exists 

between two points in time of deflection deterioration. They concluded that this model can 

serve as a tool for engineers and maintenance workers for cost-effective and better 

planning of maintenance works of corrosion affected structures. 

Lounis and Amleh (2004) proposed a reliability-based method to predict the 

chloride ingress and reinforcement corrosion of aging concrete bridge decks. It is 

identified that chloride-induced reinforcement corrosion is a pressing problem for 

reinforced concrete structures. Due to this corrosion, the strength of the structure is 

reduced and therefore leading to a reduction in its safety and serviceability. So, in this 

paper, they have presented probabilistic approaches for predicting the service life of 

concrete structures with an emphasis on predicting the chloride concentration at the steel 

and the corrosion initiation time and propagation time. They have considered the 

uncertainties that might arise in the corrosion process and physical modeling along with 

statistical and decision uncertainties. They have applied this model on the Dickson bridge 
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in Canada to observe its results. This approach helps in assessing the safety and 

serviceability of deteriorating concrete structures to ensure that the probability of failure 

is kept at an acceptable level. They conclude that a reliability-based prediction of the 

service life of deteriorating concrete structures provides an adequate decision support tool 

at both the initial design stage and during the operation and maintenance stage. The 

implementation of such an approach allows control of the safety and serviceability of the 

structure throughout its service life and results in a low life cycle cost. 

           Li and Zhao (2010) proposed a time-dependent risk assessment method for 

quantifying the risk faced by coastal defense structures. They have considered a reinforced 

concrete sea wall for applying this model. The two main types of failures for a reinforced 

concrete sea wall are overtopping failure and structural deterioration failure. Structural 

deterioration is a specific problem in reinforced concrete coastal defense structures due to 

reinforcement corrosion. Reinforcement corrosion leads to a decrease in structural 

capacity and thereby making the structure susceptible to damage due to aggressive waves 

acting upon the structure. They have identified that due to sea-level rise and unfavorable 

environmental conditions the risk on coastal defense structures is increasing with time. 

So, they have proposed a time-dependent reliability model to assess the risk. For the 

overtopping failure mode, they have considered that Poisson renewal is best suited to 

model the stochastic high-intensity waves. A limit state function is established to evaluate 

the overtopping probability of failure. It contains permissible discharge volume as the 

acceptable limit of the load and discharge volume is the actual load. They have introduced 

a deterioration model to account for sea water-induced steel reinforcement corrosion. The 
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limit state function established to evaluate the probability of failure due to structural 

deterioration contains the flexural capacity of the seawall as the acceptable limit of the 

load and the overturning moment on the structure caused by wave action as the actual 

load. The failure of the structure can happen even if either of overtopping failure or 

structural deterioration failure happens so the series system from the system reliability 

concept is adopted in this paper to find out the total probability of failure of the structure. 

They have considered a reinforced concrete vertical sea wall as a case study to apply this 

model. They have concluded that significant wave height, seawater level, acceptable 

discharge volume, and height of seawall are important factors when assessing the risk of 

coastal defense structures. The unfavorable environmental conditions and the sea level 

rise is increasing the risk faced by coastal defense structures. They have also identified 

that the risk of structural failures increases faster than the risk of wave overtopping in 

reinforced concrete vertical seawalls.  

Ye and Chen (2014) investigated the use of the inverse Gaussian process as a 

degradation model. They state that the gamma process and wiener process are not 

sufficient to describe or fit all the degradation data. The inverse gaussian process has 

monotone paths similar to the gamma process. Random effects and explanatory variables 

can be included in the inverse gaussian process. Random effects are used to incorporate 

the heterogeneities that commonly occur in degradation problems. The authors have 

identified that the less usage of the inverse gaussian process is due to its unclear 

understanding. So, they have clearly emphasized on the physical meaning of the process 

and proved the convergence of the inverse gaussian process to compound Poisson process, 
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this provides a strong proof that inverse gaussian process can be used as a degradation 

model. The different inverse gaussian random effect models they have explained in this 

paper are random drifts model, random volatility model, and random drift volatility model. 

In this paper, they have also explained the statistical inference of parameters for the 

random-effects model and also how to choose among the different models. They have 

applied this model on an example problem to show the effectiveness of the inverse 

gaussian process and concluded that the inverse gaussian process is similar to the gamma 

process, but it is much more adaptable. 

Liu et al. (2014) developed a reliability model for systems with multiple 

degradation processes using inverse gaussian process and copulas. Continuous 

degradation processes are usually modeled by stochastic processes. In general wiener and 

gamma processes are used for modeling degradation processes. It is identified that when 

using wiener process the degradation paths are necessarily not monotonic. It is recognized 

that only two, wiener, and gamma processes are not sufficient to describe all kinds of 

degradation processes.   In this paper, they have modeled the monotonic degradation 

process using the inverse gaussian process. They have considered the inverse gaussian 

process with time scale transformation and random drift to incorporate heterogeneous 

degradation rates that arise in the product population. To systematically characterize the 

joint distribution of multiple degradation processes they have used copulas. To estimate 

the unknown parameters involved in the inverse gaussian process and copulas they have 

used the EM algorithm with a two-stage procedure. After estimating the parameters, they 

have performed a simulation study to determine the quality of the estimators. They used 
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the example of a crack growth problem to demonstrate their model in which they have 

considered two cracks as crack A and crack B representing multiple degradation 

processes. They have compared the results obtained from their model with a numerical 

example and concluded that their model is fitting when the degradation path is nonlinear. 

They concluded that their model is helpful in analyses involving multivariate degradation 

data. Their model is better than the common multivariate distribution model because in 

the multivariate distribution model there is a limitation of the same marginal distribution 

and it can only describe linear correlation. 

Mehrabani and Chen (2016) performed Markov chain modelling for the life cycle 

performance assessment of coastal defense structures. They state that it is important to 

evaluate the condition of coastal defense structures given the effects of global warming 

and with the aging of coastal defense structures it is important to make strategic 

maintenance plans to protect them from structural deterioration and sea-level rise. So, in 

this paper, they have proposed a model to assess the performance of coastal defense 

structures in the future. They have considered overtopping, settlement, and deterioration 

of coastal defense structures for assessing their performance over time. They have used 

the Markov chain to assess coastal defense structures. For Markov chain modeling they 

have developed transition probabilities basing on condition grades of coastal defense 

structures which are established through visual inspection. They have considered the case 

of different condition grades at a time and modeled stochastic deterioration of the structure 

transitioning between different condition grades. They have applied their model on an 

earth sea dike to observe the results. From the results, it is identified that the performance 
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of coastal defense structures can be established from condition grades basing on the 

proposed method. This will help in making efficient maintenance plans and also fragility 

curves can be generated which will help in making risk cost maintenance decisions. 

From the studies, it is identified that due to the time-variant and stochastic nature 

of waves and sea-level rise, a time-dependent reliability method would be appropriate to 

address risk assessment of coastal structures. Sea level rise is an important factor in 

assessing the failure probability of coastal structures. Sea level rise projections in the 

future in most of the cases are presented as different scenarios. It is identified as a potential 

research objective to quantify the uncertainty that arises due to the presence of different 

sea-level rise scenarios.   It is also identified that most of the research is performed on 

sloped or vertical seawalls. Basing on the literature review, a curved seawall is chosen as 

a case study to perform improved time-dependent reliability assessment.  
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2. DATA COLLECTION AND ANALYSIS 

 

It is identified that for real-time risk analysis of a sea wall, parameters like seawater 

level, wave height, and wave period are important terms. It is essential to have the 

appropriate data sources and analyze this data so that it can be properly incorporated into 

the risk analysis model. One of the objectives of this research is to explore and integrate 

different data sources such as NOAA, USGS, and USACE for improved quantification of 

uncertainty in parameters and functions describing the reliability of sea walls.  

2.1. USGS Wave Projections 

Recognizing the requirement for wind and wave projections Erikson et al. (2016) 

performed a detailed study in which they have used wind data from four different global 

climate models to simulate historical and future wave parameters by using the wave watch 

III model and this is performed under the influence of two climate scenarios. The two 

climate scenarios they have taken into consideration are the Representative Concentration 

Pathways (RCP) 4.5 and RCP 8.5, the prior represents a medium emission scenario and 

the later represents a high emission scenario. Under these two climate scenarios, they have 

calculated the wind data using the four different global climate models and used this wind 

data as input for the wave watch III model to generate wave data. Through their study, 

they have made available time-series data of significant wave height, wave period, wave 

direction, wind speed, and wind direction for the periods 1976-2005, 2026-2045, and 

2081-2099/2100. They have considered various locations all along the U.S. coasts at 

which the data is made available. It is evident that water levels and wave parameters play 
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a crucial role in driving extreme weather conditions, so this data is highly useful in our 

study of risk analysis of a sea wall. In the web tool provided according to our requirement 

we can select different parameters, periods, climate scenarios to retrieve the data of a 

location. These data are available for download in both ASCII and NetCDF formats. If it 

is in the NetCDF format, data can be obtained using software like Panoply. (2020). 

2.2. USACE Sea Level Rise Scenarios 

Determining the importance of the rising sea levels USACE developed a web-

based tool called sea-level change curve calculator. This tool helps in viewing the USACE 

and some other reliable sea-level rise scenarios for any tide gauge station that is part of 

NOAA (Huber and White.(2017)). In this tool on the right side we can see the various 

stations all around the U.S. and on the left side we can see the various options available to 

make our selection. We can choose the location, output units, output datum, etc. according 

to our requirement and visualize the output sea level rise curves. 

2.3. NOAA Water Level Data 

National Oceanic and Atmospheric Administration (NOAA) provides water level 

data at various coastal stations all-around U.S. NOAA's Tides and Currents website, 

developed and supported by the Center for Operational Oceanographic Products and 

Services (CO-OPS), provides the water level data. Through this, we can access both 

historical and current data on an hourly or 6-minute interval basis according to the options 

we choose. We can choose various options according to our requirement to access the 

water level data from (NOAA). We can choose the period during which we require the 

data, datum, units, interval, and also the time zone to obtain the data.  
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2.4. Data Analysis 

USGS, NOAA, USACE provide excellent data sources for wave heights, wave 

periods, water levels, wind speed and directions for many U.S. coastal locations. After 

careful selection of the data, the next step is to analyze the data to determine its 

characteristics. This step is required for improved quantification of uncertainty in 

parameters. In this study, it is important to understand the probability distribution of the 

data. Basing on the original data we can assume different probability distributions and can 

conclude a distribution through the goodness of fit tests. Some goodness of fit tests are the 

K-S test, A-D test, etc. Probability plots can also be used to identify the distribution of the 

data. Another property of data that can be checked is the correlation between different 

parameters. Understanding the correlation between parameters is useful as it helps in 

predicting the value of one variable by using the other variable. When we are dealing with 

time-series data stationarity is an important property to check. When the statistical 

properties of data do not vary with time then it is defined to be stationary. Identifying 

properties like probability distributions, correlation, stationarity will be immensely helpful 

in making an accurate risk analysis. We used parametric distributions to find out the 

probability distributions of the data. It can be observed in Figures 2 and 4 that significant 

wave heights and wave periods follow Weibull distribution. From figure 3 we can see that 

seawater levels follow the normal distribution. The motivation for considering Weibull 

distribution for wave height is also strongly supported through (Muraleedharan et al., 

(1993), Muraleedharan et al., (1998)).  

 

https://www.sciencedirect.com/science/article/pii/S0378383907000452?via%3Dihub#bib14
https://www.sciencedirect.com/science/article/pii/S0378383907000452?via%3Dihub#bib14
https://www.sciencedirect.com/science/article/pii/S0378383907000452?via%3Dihub#bib15
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Figure 2 Distribution fitting for wave height data for the year 1987 
 

 
Figure 3 Distribution fitting for water level data for the year 1987 
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Figure 4 Distribution fitting for wave period data for the year 1998 

 

A good amount of correlation is also observed between seawater level, significant 

wave height, and wave period which is represented in figure 5. It is also observed that the 

wave significant height, period, and water levels over time are stationary which can be 

seen in figures 6, 7, 8 which are plotted using the software Origin (Pro). (2020). 
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Figure 5 Correlation matrix of wave height(H), water level(h) and wave period(T) 

data 
 

 

 
Figure 6 Stationarity of wave periods 
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Figure 7 Stationarity of water levels 

 

 
Figure 8 Stationarity of wave height 
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2.5. Copulas for Joint Probabilistic Description of Correlated Data 

Copulas are useful when we want to stimulate correlated data. Abe Sklar 

introduced the concept of copulas and it is after him the Sklar’s theorem is named. 

According to this theorem, if Z is a joint distribution function with continuous margins 

H1, H2... Hn, then there exists a unique copula C such that, for all x1, x2..., xn in R,  

𝑍𝑍�𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3,….𝑥𝑥𝑛𝑛� = 𝐶𝐶(𝐻𝐻1(𝑥𝑥1),𝐻𝐻2(𝑥𝑥2), … . .𝐻𝐻𝑛𝑛(𝑥𝑥𝑛𝑛)) 

A copula can be defined as a multivariate cumulative distribution function which is used 

to describe the dependence between random variables. In our study, we have used a 

gaussian copula for incorporating the joint probabilistic description of the significant wave 

height, water level, and wave period, also under future hydraulic conditions. The gaussian 

copula is an elliptical copula and it can be easily generalized to a higher number of 

dimensions. The main advantage of copulas is that we can generate data from multivariate 

distributions when there are complicated relationships among the variables, or when the 

individual variables are from different distributions. Copulas can be used when the 

marginal distributions are either parametric distributions or nonparametric distributions. 

To simulate correlated data, we have used gaussian copula. An n-dimensional gaussian 

copula according to Greene, et al. (2011) is defined by  

 

 

Where C indicates the gaussian copula, Ф−1 is the one-dimensional inverse standard 

normal CDF, Ф𝑃𝑃′ is the joint normal n- variate CDF, 𝑢𝑢𝑖𝑖 is a uniform random variable on 

[0,1] and is equal to 𝐻𝐻𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖), an arbitrary marginal CDF of the random variable 𝑋𝑋𝑖𝑖 and 𝑃𝑃′ 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2, … .𝑢𝑢𝑛𝑛|𝑃𝑃′) =  Ф𝑃𝑃′[Ф−1(𝑢𝑢1),Ф−1(𝑢𝑢2), … . ,Ф−1(𝑢𝑢𝑛𝑛)|𝑃𝑃′] 

(2.1) 

(2.2) 
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is the reduced correlation matrix of 𝜉𝜉𝑖𝑖, 𝑖𝑖 = 1,2,3, …𝑛𝑛 standard normal variables are given 

by  

 

  

Ф𝑃𝑃′ is solved by integrating the joint normal PDF 𝜙𝜙𝑃𝑃′  which is defined as follows 

 

 

Where 𝜇𝜇 is the mean vector, |.| indicates the matrix determinant and the joint CDF can be 

obtained by the following equation 

 

 

which is a well-known joint normal CDF. To be able to use arbitrary marginal 

distributions, a Gaussian copula can be constructed by transforming relating arbitrary 

marginal variables to standard uniform variables. Therefore, the gaussian copula with 

reduced covariance 𝑃𝑃′ now becomes 

 

 

There is no analytical solution to solve this integral equation. Numerical methods are 

available through various resources in open source and commercial software. In this work, 

MATLAB (2020) is used to perform the calibration and resampling of random variables 

from a multivariate Gaussian copula. Figure 9 is a scatter plot of observed wave height, 

wave period, and water level. Figure 10 shows the scatter plot of the simulated data using 

𝜉𝜉𝑖𝑖 = Ф−1(𝐻𝐻𝑥𝑥𝑖𝑖(𝑥𝑥𝑖𝑖)) 

𝜙𝜙𝑃𝑃′(𝑥𝑥) =
1

(2П)𝑛𝑛/2|𝑃𝑃′|1/2 𝑒𝑒
[−12(𝑥𝑥−𝜇𝜇)𝑇𝑇𝑃𝑃′−1(𝑥𝑥−𝜇𝜇)] 

Ф𝑝𝑝(𝑥𝑥) = � … . … .
𝑥𝑥𝑛𝑛

−∞
� 𝜙𝜙𝑃𝑃(𝑥𝑥′)𝑑𝑑𝑥𝑥′, … ,𝑑𝑑𝑥𝑥′𝑛𝑛
𝑥𝑥1

−∞
 

𝐶𝐶(𝑢𝑢|𝑃𝑃′) = � … . .� 𝜙𝜙𝑝𝑝′(𝑢𝑢′)𝑑𝑑𝑢𝑢′1 … … .𝑑𝑑𝑢𝑢′𝑛𝑛
Ф−1(𝑢𝑢1)

−∞

Ф−1(𝑢𝑢𝑛𝑛)

−∞
 

(2.4) 

(2.5) 

(2.6) 

(2.3) 
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gaussian copula. In figure 11 both the observed and simulated data are plotted together, 

and it shows the accuracy of the model in generating the correlated data.    

 

 
Figure 9 Scatter plot of observed water level, wave height, and period data 
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Figure 10 Scatter plot of simulated water level, wave height, and period data 

 

 
Figure 11 Combined scatter plot of observed and simulated water level, wave 

height and wave period data 
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2.6. Usage of Nonparametric Distributions 

Initially, we have performed a distribution fitting analysis using parametric 

distributions. It is identified that among parametric distributions Weibull distribution acts 

as a good fit for wave height and wave period data distribution. Normal serves as a good 

parametric distribution fit for water level data. But it is identified that the wave height and 

wave period sometimes can be multimodal. To capture this property of the data we have 

used nonparametric distribution to fit the parameters wave height, wave period, and water 

level. According to Dubey, and Noshadravan, (2020). we used the kernel density 

estimations to define individual marginal distributions of the parameters wave height, 

wave period, and water level. Figure 12 shows the comparison of the nonparametric 

distribution and parametric distribution with observed data of wave height for the year 

1997. It can be noted that through the nonparametric distributions the multimodal nature 

of the data is better captured than parametric distributions. Figures 13 and 14 show the 

comparison of parametric and nonparametric distributions with observed data of wave 

period and water level in which it is also evident that nonparametric distributions fit the 

data better than parametric distributions. Even with nonparametric distributions, copula 

can be used to generate the data and capture its correlation. Figure 15 represents the 

correlation matrix of generated and observed wave height, wave period, and water level 

parameters. The symmetry of the top and the bottom rectangle represents that the 

correlation between generated wave height, wave period and water level is similar to the 

correlation between those original parameters.   
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Figure 12 Comparison of nonparametric and parametric distribution fitting to 

wave height data 
 

 
Figure 13 Comparison of nonparametric and parametric distribution fitting to 

wave period data 
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Figure 14 Comparison of nonparametric and parametric distribution fitting to 

water level data 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15 Correlation matrix of generated (gen) and observed (obs) wave 
height(H), water level(h) and wave period(T) data 

Hgen Tgen hgen 
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3. UNCERTAINTY QUANTIFICATION OF SEA LEVEL RISE SCENARIOS 

 

The future sea-level rise is predicted in terms of scenarios. Due to this, uncertainty 

arises when we want to incorporate future sea-level rise scenarios in our model. Our 

approach to quantifying this uncertainty is to model the sea level rise scenarios as a 

stochastic process. In this study, we have chosen the Inverse Gaussian (IG) process due to 

its advantages in incorporating random effects and its ability to model monotonic paths.   

3.1. Inverse Gaussian Process 

The Inverse Gaussian process is proposed by Wasan (1968). and is used as a 

degradation model in few studies like Wang, and Xu, (2010) and Liu et al. (2014). Ye, 

and Chen, (2014) have proposed three different methods to incorporate random effects; 

they are random drifts model, random volatility model, and random drifts- volatility 

model. 

The inverse Gaussian process {Z(t), t>=0} is defined as the stochastic process satisfying 

the following.  

1. Z(t) has independent increments, that is, Z (t2) − Z (t1) and Z (s2) − Z (s1) are 

independent ∀t2 > t1 ≥ s2 > s1. 

2. Z (t)−Z (s)follows an IG distribution with IG (𝜇𝜇(𝜏𝜏(𝑡𝑡) − 𝜏𝜏(𝑠𝑠)), 𝜎𝜎(𝜏𝜏(𝑡𝑡) − 𝜏𝜏(𝑠𝑠))2), 

∀ t>s ≥ 0, 

Where  

𝜇𝜇 = drift parameter,  

𝜎𝜎 = diffusion parameter.  
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Thus Z(𝑡𝑡) follows IG (𝜇𝜇𝜇𝜇(𝑡𝑡), 𝜎𝜎𝜎𝜎2 (𝑡𝑡)) with mean 𝜇𝜇𝜇𝜇(𝑡𝑡) and variance 𝜇𝜇3 𝜏𝜏(𝑡𝑡)/𝜎𝜎. 

Where IG (𝜇𝜇𝜇𝜇(𝑡𝑡), 𝜎𝜎𝜎𝜎2 (𝑡𝑡)) denotes the IG distribution with probability density function 

(PDF): 

                               𝑓𝑓(𝑥𝑥) =  √(
�𝜎𝜎𝜏𝜏2(𝑡𝑡��

2П𝑥𝑥3
) × 𝑒𝑒𝑒𝑒 𝑝𝑝( − 𝜎𝜎�𝑥𝑥−𝜇𝜇𝜇𝜇(𝑡𝑡)�2

2𝜇𝜇2𝑥𝑥
) 

        

In our study, the uncertainty in the time-evolution of future sea-level rise was quantified 

and systematically incorporated by constructing a stochastic model based on the inverse 

Gaussian process using the data from the USACE SLR projection scenarios. Inverse 

Gaussian process can also be extended to include unobservable factors. Unobservable 

factors, their effects are often represented by incorporating a random effect. Random 

effects models are often needed to account for unexplained heterogeneous rates within a 

process. In the case of SLR projections, the different scenarios (USACE high, USACE 

intermediate, USACE low) can be considered as heterogeneous rates within the process. 

Hence Inverse Gaussian process with the random-effects model makes an appropriate 

stochastic process for uncertainty quantification of future sea-level rise scenarios. 

3.2. Application on SLR Scenarios 

In figure 16 we have generated the realizations using the inverse gaussian process 

with random drift and compared the 5th, 50th, and 95th percentiles with the original SLR 

curves. In figure 17 based on the SLR, we have generated water level data for some 

historic years and compared their probability densities with the original data. It can be 

observed that the simulated and observed data are not much varying. 

 

(3.1) 
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Figure 16 Realizations of RSLR scenarios generated using the inverse gaussian 

process 
 

 
Figure 17 Comparing IG generated water level data with observed water level data 

for different years in the past 

RSLR Projections 
USACE Projections 
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4. OVERTOPPING FAILURE ANALYSIS 

 

Some of the failure modes of seawalls include overtopping failure, structural 

deterioration failure (due to reinforcement corrosion), teredo damage, and settlement of 

seawall. These failure modes depend on various factors like environmental conditions, 

land subsidence, materials used for the construction of the seawall, etc. Overtopping 

failure is considered as the most common failure mode for seawalls. Overtopping occurs 

when waves meet a structure lower than their approximate wave height and it is considered 

as the attainment of serviceability limit state. In this study overtopping failure mode is 

considered for risk assessment of seawall.  Numerous laboratory experiments were 

conducted for overtopping failure study but most of them are for smooth, impermeable 

sloped walls. Through our study, it is identified that a significant amount of research is 

done on sloped and vertical sea walls, but curved sea walls are not studied extensively.  

So, in our analysis, we have taken a curved sea wall as a case study. USACE shore 

protection manual volume 2 provides ample guidance for formulating rate of overtopping 

for curved sea walls and it is based on some experimental evidence. It is inferred from the 

studies conducted by Saville (1955, 1956) on laboratory-scale models that the many 

factors on which the rate of overtopping discharge depends are the seawall height, shape, 

water depth at the toe of the seawall, slope, and whether the slope face is smooth, stepped, 

or rip-rapped. Small scale laboratory model tests are performed on structures of various 

forms by Saville and Caldwell (1953) and Saville (1955) to investigate the overtopping 
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rates and run-up heights. After that, a reanalysis of Saville's data helped in deriving or 

formulating the overtopping rate per unit length of structure which is expressed as:  

𝑄𝑄 = (𝑔𝑔𝑄𝑄°𝐻𝐻3)1/2𝑒𝑒𝑒𝑒𝑒𝑒 (−�
0.217
𝛼𝛼

� 𝑡𝑡𝑡𝑡𝑡𝑡ℎ −1(
ℎ − 𝑑𝑑𝑑𝑑
𝑅𝑅

)) 

 

Or equivalently by  

𝑄𝑄 = (𝑔𝑔𝑄𝑄°𝐻𝐻3)1/2𝑒𝑒𝑒𝑒𝑒𝑒 (−�
0.1085
𝛼𝛼

� 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒(
𝑅𝑅 + ℎ − 𝑑𝑑𝑑𝑑
𝑅𝑅 − ℎ + 𝑑𝑑𝑑𝑑

)) 

 

In which  

0 ≤
ℎ − 𝑑𝑑𝑑𝑑
𝑅𝑅

< 1.0 

 

Where  

Q = overtopping rate per unit structure length (m3/s-m)  

g = gravitational acceleration (m/s2),  

H = equivalent deep-water wave height (meters),  

h = height of the structure crest above the toe of the structure (meters (m)),  

ds = water depth at the structure toe (meters),  

R = run-up on the structure (meters), 

α and Qo are empirically determined coefficients that depend on incident wave 

characteristics and structure geometry. Approximate values of α and Qo as functions of 

wave steepness H/gT2 and relative height ds /H for various slopes and structure types are 

given in USACE shore protection manual volume 2 (Shore Protection Manual (Vol 1 &2), 

(4.1) 

(4.2) 
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(1984)). This manual also contains guidance to account for the scale effects. In figure 18 

we can visualize the parameters runup (R), water depth at the structure toe (ds), height of 

the structure (h), and equivalent deep water wave height (H).   

 

 
 
 
 
 

 

 

 

 

 
 

 
Figure 18 Galveston seawall model 

 

By using equations 4.1 or 4.2 the overtopping rate can be calculated. To assess the risk 

due to overtopping first a limit state equation should be established. This limit state 

function as shown in equation (4.3) acts as a performance criterion.  

𝐹𝐹(𝐿𝐿, 𝑆𝑆, 𝑡𝑡) = 𝐿𝐿(𝑡𝑡) − 𝑆𝑆(𝑡𝑡) 

 

where  

S(t)=action (load) or its effect.  

(4.3) 
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L(t)=acceptable limit for the action or its effect; and t=time.  

In the case of overtopping the term S(t) action or load is taken as the calculated 

overtopping rate and the term acceptable limit for the action or load is taken as the 

permissible overtopping rate. Usually, the permissible overtopping rate is prescribed in 

design codes and standards. The value of permissible discharge volume varies according 

to the location, geometry of the sea wall, proximity of the sea wall to the waves, and 

environmental conditions. The USACE coastal engineering manual part 06 contains 

specifications for overtopping discharge. It is based upon various studies, according to 

coastal engineering manual part 06 these values are considered as rough estimates and 

local conditions of the sea wall play an important role in deciding the permissible 

discharge volume. Monte Carlo methods are often employed to estimate the failure 

probability (Melchers, (1999)). After establishing the limit state function the probability 

of failure due to overtopping can be calculated by using Monte Carlo simulations. Monte 

Carlo is a sampling procedure and it is often used to calculate the probability of failure. 

The probability of failure is calculated from the number of failures generated (Chen, and 

Alani, (2012)). By calculating the probability of failure, we can assess the risk faced by 

seawalls due to overtopping. 
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5. IMPLEMENTATION AND RESULTS 

 

 The proposed methodology to perform time-dependent reliability assessment of 

seawalls exposed to stochastic waves and the rising seawater level is as follows: 

5.1 Implementation 

 The primary and the most common mode of failure for a seawall is the overtopping 

failure.  The main objective here is to revisit the risk faced by the seawalls over their 

lifetime by taking into consideration all the uncertainties involved in the process like sea-

level rise and stochastic waves. To achieve this objective, we need to find the probability 

of overtopping failure. The important parameters in this process are wave height, wave 

period, and water level. Basing on sections 2 and 3 we have all the data available to 

perform the probability of failure analysis of overtopping. To find this probability of 

failure we need to formulate the limit state function. The limit state function acts as a 

performance criterion in assessing the risk of failure modes. For example, in the case of 

overtopping, permissible discharge volume (acceptable limit of action (Load))) and the 

magnitude of actual discharge volume (action (Load)) are taken as the two quantities of 

the limit state function. The calculation of actual discharge volume is based on the 

reanalysis of the laboratory experiments conducted by Saville as discussed in section 4. 

From the data analysis it is identified that correlation exists between significant wave 

height, period, and water levels, gaussian copulas are used for incorporating the joint 

probabilistic description of the seawater level and significant wave height also under the 

future hydraulic conditions. USACE (United States Army Corps of Engineers) SLR 
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scenarios and USGS (United States Geological Survey) wave projections are used to 

account for the future hydraulic conditions as discussed in section2 and 3. The uncertainty 

in the time-evolution of future sea level is quantified and systematically incorporated by 

constructing a stochastic model based on the inverse Gaussian process using the data from 

the USACE SLR projection scenarios as discussed in section 3. The inverse gaussian 

process with a random drift model is used for stochastically generating the sea level rise 

scenarios.  Random effects can be incorporated into the inverse gaussian process through 

these random-effects models like random drift model, random volatility model, and 

random drift volatility model. These models help to incorporate heterogeneous rates into 

the model.  EM algorithm is used for statistical inference of the parameters of the IG 

process Ye and Chen (2014) .  By using Monte Carlo simulations, the failure probability 

of the sea wall is calculated as shown in equation 5.1.  In which J=1 to N is the number of 

simulations, Z is the limit state function, I represents the indicator function which takes 

the values of unity or zero, L(t) and S(t) represent the acceptable limit for the load and the 

actual applied load on the structure. In the case of overtopping as discussed above it would 

be permissible discharge volume and calculated discharge volume or overtopping rate of 

the structure. 

 

 

A schematic representation of the methodology is shown in figure 19.  

 

 

𝑝𝑝𝑓𝑓(t) ≈  1
𝑁𝑁
∑ 𝐼𝐼{𝑍𝑍[𝑁𝑁
𝐽𝐽=1 𝐿𝐿(t),S(t)]≤ 0} (5.1) 
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Figure 19 Schematic representation of the methodology 
 

We have selected the Galveston seawall for our case study to apply our model. An 

overview of the Galveston seawall is described in the next section. 

5.2 Overview of Galveston Sea Wall 

 The city of Galveston was hit by the most devastating hurricane in 1900 with 

storm tides as high as 15 ft. The damage caused by this hurricane is prolific and 
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according to Davis Jr, (1951). there was Property damage of $25000000 and loss of 

more than 6000 lives. The city responded after the storm and appointed the Robert 

Board to protect the city from such sea storminess. The Robert board proposed 

construction of the sea wall, rising of city grade and construction of an embankment 

200 ft behind the sea wall and 18 ft (actual 16.6ft) above mean low water. In 1904 

the sea wall construction was completed according to the proposed design. The 

construction details of the sea wall are as follows according to Baker, (1986): 

Wooden pilings were used as a foundation for the seawall. As wood is susceptible 

to damage due to seawater, sheet pilings were used for shielding from the water. 

Stone riprap was placed in the front to further protect from the damage due to 

moisture exposure and it is 3 feet thick and 27 feet wide in dimensions. For the 

construction of the concrete portions of the seawall first, a concrete substructure 16 

feet wide and 3 feet thick was poured to provide a base for the section to be situated 

above it. The top portions of the seawall were constructed in 50-foot interlocking 

sections. For the reinforcement of the seawall, they adopted 1-1/4-inch steel rods. 

 The sea wall was subjected to its first test during the 1909 storm. The height 

of the tide was 6.6 ft and a considerable amount of water was thrown over the sea 

wall. The damage that occurred was that of the scouring of the slope of the sand 

embankment behind the sea wall and the riprap was lowered. Repair work was done 

by raising the embankment to 18 ft and toe of the sea wall was repaired by placing 

the riprap. In 1915 the city saw another severe storm which is as severe as the 1900 

storm. But the sea wall stood strong for its purpose and saved the city from a lot of 
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damage compared to the 1900 storm. The Property damage was $4500000 and the 

loss of 12 lives. During this storm, there are tides of 14 ft above mean low water and 

the wave crests of about 21 ft. Damage also occurred along the foot of the sea wall 

due to scouring and the riprap was undermined in many locations exposing it to 

teredo damage. The most extensive damage was the erosion of the embankment at 

the back of the sea wall by a great quantity of water that was thrown over the sea 

wall. There was extensive damage to the embankment road and sidewalk behind the 

sea wall. Repair works were done by Paving on top of the embankment. The next 

storm occurred in 1919. During this, there was a tide 9 foot above mean low tide. 

The volume of water thrown over the seawall is not large and there was little damage 

behind the sea wall. The sea wall was subjected to extensions many times and after 

all the extensions the total length of the sea wall is 10.04 miles. In 1961 Hurricane 

Carla struck the city. The tide was 10.7 ft above mean low tide. There was partial 

flooding on the unprotected bayside, but the sea wall protected the city from storm 

wave damage. No homes were damaged, and no lives lost due to storm surge.  The 

sea wall was also subjected to settlement and it ranges from 0.1 ft to 1.45 feet. This 

is an overview of the Galveston seawall and some of the storms it faced so far. 

Identifying the uncertainty that arises in the safety of the seawall due to future scenarios 

of extreme climate events and SLR we have performed a time-dependent reliability 

assessment to find out the impact of stochastic waves and sea-level rise on the sea wall. 
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5.3 Results 

 We have selected the Galveston sea wall model, which is a reinforced concrete 

curved seawall, for the case study and application of this model. A representation of 

Galveston seawall can be seen in figure 18. The historical and future projections of 

significant wave heights, periods, and water levels specifically for the Galveston region 

can be obtained from the USGS wave and wind projections along the US coast, NOAA, 

and sea level calculator of the USACE. Statistical analysis is performed on the data to 

characterize its distributions and other inherent properties like correlation and stationarity. 

Then the overtopping rate and probability of failure are calculated according to chapter 4. 

In figure 20 the probability of failure due to overtopping for the period 1987-2004 is 

plotted and it is plotted for a different number of Monte Carlo simulations. It can be 

observed that for a higher number of Monte Carlo runs the probability values are 

converging. Another inference which we can make is that the probability of failure does 

not follow a linear trend and there are peaks and depressions in particular years. We 

concluded that these peaks are due to higher wave heights occurring in those years. In 

figures 21,28,29 we can see the mean wave height, wave period, and water level with 

respect to time. Figure 22 is used to visualize the wave height data in the form of box 

plots. From figures 21,22 it is noted that the years with high mean wave heights had a high 

probability of failure. This represents the importance of wave heights when assessing the 

risk due to overtopping.  
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Figure 20 Probability of overtopping failure for the period 1987-2004 

 

 
Figure 21 Mean of wave height vs time in years for the period 1987- 2004 
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Figure 22 Boxplot for wave height data 

 

In figure 23 the probability of failure due to overtopping is plotted with data that is 

generated with correlation and without correlation. It can be observed that in the 

uncorrelated case the probability of failure values is very much underrepresented than the 

original. It is observed that the simulated probability of failure using correlated data even 

though better than the uncorrelated result is still lower than the observed probability of 

failure. Investigating the reason for this discrepancy, it is identified that some of the 

extreme values that are present in the original data are not captured when the wave height 

is fitted to a simple Weibull distribution. It can be observed in figures 30, 31, 32 where 

the probability density of wave height, period, and water levels are compared with the 

original data that especially at the tail region the multimodal nature of the original data is 
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not completely captured through parametric distributions. To substantiate this in figures 

33,34,35 boxplots are created comparing the original data and the generated data using 

parametric distributions which supports the same reason.   

 

 
Figure 23 Probability of overtopping failure with correlated and uncorrelated data 
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Figure 24 Comparison of overtopping probability of failure with observed data and 

simulated data generated by using parametric and nonparametric distributions 
 

In figure 24 we have used nonparametric distributions to calculate the probability of 

failure. As discussed in section 2.6 nonparametric distributions gives a better result when 

compared to parametric distributions and closer to the original result. Using the data from 

USGS wave projections and the USACE sea-level scenarios the probability of failure for 

the period 2026-2038 and the period 2082-2100 are plotted and the results can be seen in 

figures 25 and 26. It is observed that during the period 2081-2100 the probability of failure 

is around 16 to 34 percent which is higher than both the periods that are the historical 

period and the midcentury period that is 2026-2038 period. We have plotted the 

probability of failure for different values of permissible discharge volume in figure 27. It 

is observed that the probability of failure is high when permissible discharge volume is 

low representing that the chance of high overtopping rate is lower. 
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Figure 25 Probability of overtopping failure for the period 2026-2038 

 

 
Figure 26 Probability of overtopping failure for the period 2082-2100 



 

47 

 

 
Figure 27 Probability of overtopping failure for different values of permissible 

discharge volume 
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6. CONCLUSION 

 

In this research, we developed a risk analysis framework that uses a reliability-

based approach to address the risk faced by coastal structures like seawalls especially due 

to overtopping. These structures are constantly subjected to stochastic waves and sea-level 

rise which eventually increases the coastal forcing on the structure with time. The 

uncertainty is unavoidable in this process originating from the stochastic nature of coastal 

forcing, as well as the various uncertain future scenarios of extreme climate events and 

sea-level rise (SLR). In our reliability analysis, we consider the uncertainty due to the 

stochastic nature of waves acting on the structure as well as the sea-level rise. The risk of 

overtopping failure is evaluated while incorporating the joint probabilistic description of 

the seawater level, significant wave height, and wave period, also under future hydraulic 

conditions. Copula is used to capture the correlation between the variables wave height, 

wave period, and water levels. We have integrated different data sources such as NOAA, 

USGS, and USACE leading to improved uncertainty quantification. The inverse gaussian 

process captured the uncertainty that arises due to the presence of different sea-level rise 

scenarios. A curved sea wall is selected as a case study to apply our model which is similar 

to the Galveston sea wall. The results suggest that extreme wave heights can increase the 

rate of overtopping. The years with high mean wave height resulted in having a high 

probability of failure due to overtopping representing that the effect of wave height is 

dominant on the probability of overtopping failure. The results when generated without 

correlation appeared to occur far less accurately than the original probability of failure, 
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signifying the importance of correlation as included in our model. The slight discrepancy 

that arises between the original probability of failure and the calculated probability of 

failure using parametric distributions is identified to be due to the inability of the 

parametric model to capture some of the extreme wave events. By using nonparametric 

distributions for the input parameters, we are able to obtain a better result compared to 

parametric distributions. We are able to predict the probability of failure due to 

overtopping for the mid-century (2026-2038) and the end of the century (2081-2100). The 

results suggest that the probability of failure for the end of the century is very high 

compared to the mid-century and the historical period. Defining the permissible discharge 

volume is an important factor in assessing the probability of failure as can be seen from 

our results that an increase in permissible discharge volume causes a decrease in the 

probability of failure.  

In this study, we were able to quantify the risk due to overtopping failure. A 

seawall might be subjected to different types of failures depending on the type, location, 

and material of the sea wall. The other failure modes of seawall include teredo damage 

which is the deterioration of wooden piles exposed to seawater, settlement of seawall and 

structural deterioration due to reinforcement corrosion. So, a comprehensive study of all 

possible failure modes of a seawall over its lifetime and finding its total probability of 

failure as a function of system reliability can be a scope for future research work. It is also 

identified that understanding the bathymetry of the location and consideration of the 

effects of winds and wave height attenuation might lead to more accurate results in the 

estimation of the probability of overtopping failure. 
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APPENDIX A 

ADDITIONAL GRAPHS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 28 Mean of water levels vs time in years for the period 1987- 2004 

 

 
Figure 29 Mean of wave period vs time in years for the period 1987- 2004 
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Figure 30 Comparing observed water level data and water level data simulated 

using parametric distribution (normal) 
 

 
Figure 31 Comparing observed wave period data and wave period data simulated 

using parametric distribution (weibull) 
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Figure 32 Comparing observed wave height data and wave height data simulated 

using parametric distribution (weibull) 
 

 

 
Figure 33 Box plot for water level data comparing simulated and observed data  
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Figure 34 Box plot for wave height data comparing simulated and observed data 

 

 
Figure 35 Box plot for wave period data comparing simulated and observed data 
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