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ABSTRACT

Blended shared control is a method to continuously combine control inputs from traditional

automatic control systems and human operators for control of machines. An automatic control

system generates control input based on feedback of measured signals, whereas a human operator

generates control input based on experience, task knowledge, and awareness and sensing of the

environment in which the machine is operating. Such active blending of inputs from the automatic

control agent and the human agent to jointly control machines is expected to provide benefits in

terms of utilizing the unique features of both agents, i.e., better task execution performance of au-

tomatic control systems based on sensed signals and maintaining situation awareness by having the

human in the loop to handle safety concerns and environmental uncertainties. The shared control

approach in this sense provides an alternative to full autonomy. Many existing and future applica-

tions of such an approach include automobiles, underwater vehicles, ships, airplanes, construction

machines, space manipulators, surgery robots, and power wheelchairs, where machines are still

mostly operated by human operators for safety concerns. Developing machines for full autonomy

requires not only advances in machines but also the ability to sense the environment by placing

sensors in it; the latter could be a very difficult task for many such applications due to perceived

uncertainties and changing conditions. The notion of blended shared control, as a more practical

alternative to full autonomy, enables keeping the human operator in the loop to initiate machine

actions with real-time intelligent assistance provided by automatic control.

The problem of how to blend the two inputs and development of associated scientific tools to

formalize and achieve blended shared control is the focus of this work. Specifically, the follow-

ing essential aspects are investigated and studied. Task learning: modeling of a human-operated

robotic task from demonstration into subgoals such that execution patterns are captured in a simple

manner and provide reference for human intent prediction and automatic control generation. Intent

prediction: prediction of human operator’s intent in the framework of subgoal models such that
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it encodes the probability of a human operator seeking a particular subgoal. Input blending: gen-

erating automatic control input and dynamically combining it with human operator’s input based

on prediction probability; this will also account for situations where the human operator may take

unexpected actions to avoid danger by yielding full control authority to the human operator. Sub-

goal adjustment: adjusting the learned, nominal task model dynamically to adapt to task changes,

such as changes to target object, which will cause the nominal model learned from demonstration

to lose its effectiveness. This dissertation formalizes these notions and develops novel tools and

algorithms for enabling blended shared control. To evaluate the developed scientific tools and al-

gorithms, a scaled hydraulic excavator for a typical trenching and truck-loading task is employed

as a specific example. Experimental results are provided to corroborate the tools and methods.

To expand the developed methods and further explore shared control with different applica-

tions, this dissertation also studied the collaborative operation of robot manipulators. Specifically,

various operational interfaces are systematically designed, a hybrid force-motion controller is in-

tegrated with shared control in a mixed world-robot frame to facilitate human-robot collaboration,

and a method that utilizes vision-based feedback to predict the human operator’s intent and pro-

vides shared control assistance is proposed. These methods provide ways for human operators to

remotely control robotic manipulators effectively while receiving assistance by intelligent shared

control in different applications. Several robotic manipulation experiments were conducted to cor-

roborate the expanded shared control methods by utilizing different industrial robots.
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1. INTRODUCTION

1.1 General Concepts

Collaboration and cooperation among people in complex situations as a way to combine unique

features and strengths from multiple agents and completing tasks which otherwise are not possi-

ble has been a key aspect for the development of human society [1, 2, 3]. Automatic control,

traditionally considered as a powerful tool instead of a collaborator, is known to be able to ex-

ecute well-defined and repetitive tasks with high precision and efficiency. Human operators, on

the other hand, exhibit strong situational awareness for handling uncertainties in the environment

and for quickly adapting to changes during task execution. With rapid advances in the develop-

ment of scientific tools in robotics, artificial intelligence, machine learning, and automatic control,

researchers have reconsidered the role of automatic control as an active collaborator in many ap-

plications [4, 5, 6]. Because of the potential for achieving a higher level of safety and performance,

there has been a strong interest in the development of tools that address the challenges of collab-

oration between humans and robots [7, 8, 9]. Human-machine collaboration in the form of shared

control has been explored in many studies in robotics and human-machine interaction with a focus

on assisting human operators with intelligent robotics and control technologies during task exe-

cution. Results have shown that shared control architectures offer more situational awareness and

robustness over full autonomy, and could provide additional benefits in terms of performance im-

provement, difficulty reduction, capability extension, and safety enhancement than human manual

control alone [10, 11].

1.2 Classification and Applications of Shared Control

Shared control consists of methods which directly or indirectly combine human operator input

with automatic control input for the control of dynamic systems [12], i.e., the actions of the human

operator are closely integrated into the closed-loop control system. While collaborative robotics

for complex applications sometimes consist of many shared control methods, the methods from
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existing literature can be generally classified into the following distinguishable forms, each of

which has distinct characteristics and target applications: collaborative control, traded control,

indirect shared control, coordinated control, virtual constraint control, blended shared control.

The simplest forms of shared control are collaborative control and traded control. In collab-

orative control, a certain subset of control inputs is handled by a human operator, while the rest

of the inputs are processed by the machine. This is commonly observed in automotive applica-

tions, where for example, in the cruising mode, steering action is handled by a human and throttle

control is achieved by the closed-loop controller. With traded control, the control authority can be

transferred completely to either the operator or the automatic control algorithms. This has been

explored and applied to aircraft autopilot systems where the control authority is given to the com-

puter while cruising, whereas more complex situations such as taking-off and landing are handled

by human operators. In such applications, switching of the control authority is decided by the hu-

man operators. Recent studies [13, 14] have suggested ways to adaptively change control authority

between the human and the robot based on the confidence of the human operator’s intent.

Indirect shared control, typically in the form of providing sensory information to human opera-

tors, has also been widely used. Instead of providing control input directly to the robot, the system

offers feedback to the human operators to make adjustments or improvements. In [15], providing

operational instructions to operators through graphical user interfaces has resulted in improved ex-

ecution performance for excavator earth-moving tasks. Haptic feedback to human operators has

been used for quadrotor collision avoidance [16], vehicle blind spot warning [17], and highway

merging scenarios [18].

When controlling a multiple DOF robot, difficulties arise for the human operators when the

inverse kinematics is not intuitive or when there are too many DOF for the human to control

simultaneously. Coordinated control reduces such difficulty by handling the kinematics and having

humans to give commands in a lower dimensional space which is typically more intuitive. For

example, (1) in shared control of drones, human operators provide commands in the Cartesian

space and the control algorithm coordinates the four rotors to achieve the desired motion [19], and
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(2) in the control of robotic manipulators, human operators often specify the motion of the end-

effector while the coordination of the individual joint actuators is handled in software via robot

kinematics [20].

In virtual constraint control methods, assistance is provided to human operators by disabling

input commands leading to hazardous results. In [21], a large-scale manipulator with forwarder

machine is designed with shared control capabilities that allows a human operator to give inputs in

the Cartesian space. While executing the operator’s command, the underlying software provides

a protection mechanism such that the commands resulting in singularities or exceeding physical

limits are ignored. Researchers working on the development of smart wheelchairs have also em-

ployed virtual constraint control to protect such systems from colliding with their surroundings,

where inputs that may result in collisions are voided or handled by providing force feedback to the

user [22, 23, 24].

1.3 Blended Shared Control

Blended shared control is yet another form of shared control, where the human operator and

automatic control inputs are combined continuously to control a robot to collectively perform a

task. The BSC scheme is more seamless in the sense that the human operator always has access

to the control of the robot and that the actions are always initiated by the human operator; the

automatic control, by predicting the operator’s intent, keeps providing assistance in the form of

closed-loop control input and is dynamically combined with the human input in real-time to jointly

act on the robot. The BSC scheme is particularly relevant for applications where the environments

are dynamic, unstructured, and uncertain. In such environments, it is difficult to efficiently execute

tasks using full autonomy since comprehensive sensing of the environment could be impractical or

prohibitively expensive. Furthermore, when safety is of paramount importance, the quick decision-

making abilities and situational awareness of human operators provide a level of robustness that

is difficult to encode in mathematical models and automatic algorithms. However, by providing

some level of control assistance via BSC to the human operator, one can reduce the difficulty of

operating robots in such environments, improve task performance, and enhance safety during task
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execution.

Studies on blended shared control have shown promising results towards applying such tech-

niques to surgery robots, smart wheelchairs, construction excavators, etc. In [25, 26, 27], re-

searchers applied BSC methods on wheelchair navigation problems for collision avoidance where

the human and automatic control inputs were blended to drive the robots. The blending parame-

ters in these studies were designed by optimizing various cost functions relating human input to

obstacle collision or the probability distribution of velocity versus collision. In robotic surgery

applications, researchers have demonstrated that by utilizing BSC on some surgical tasks, it is pos-

sible to reduce the probability of tissue crush injury [28, 29] caused by over-application of grasping

force. In selecting the blending parameter, in one case, researchers related the parameter with a

model dynamically predicting tissue type, in another case, the blending parameter was assigned to

fixed values based on experiments.

1.4 Motivation and Problem Formulation

The motivation for studying BSC arises from the fact that many robotic tasks in dynamic envi-

ronments with uncertainties are still executed by human operators. There is a recognition, which

is is confirmed by several preliminary studies, that it is possible to provide a reasonable level of

automated and intelligent assistance to human operators through the application of BSC to improve

performance and reduce operational difficulty without compromising safety.

In this work, we first employ the operation of a hydraulic excavator for a trenching and truck-

loading task in the heavy construction industry as a particular example for providing a simple

formulation of BSC and the development of associated tools; this will be followed by more gen-

eral formulations of the problem and associated tools and solutions. In the heavy construction

industry, there are significant risks associated with operating heavy machinery in uncertain task en-

vironments without human involvement; thus, the consorted industry has always relied on human

operators for controlling the excavators. However, operating machines such as hydraulic excava-

tors efficiently requires a certain level of skill and experience. An operator of a simple excavator

typically controls the four excavator degrees of freedom independently and simultaneously by two
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joysticks with four motion axes as shown in Fig. 1.1. It is a representative case of human-operated

robots since similar joystick-based operational interfaces can be employed for the control of many

other robots.

Figure 1.1: Excavator Operation Interface via Joysticks

The growth of the construction industry in recent decades has resulted in the shortage of skilled

human operators, and the use of BSC scheme has the potential to overcome the skill-gap issue by

providing intelligent assistance to novice operators to improve their task execution performance.

Studies in [30, 31, 15, 32, 33] investigated some of these BSC solutions coupled with the concepts

of task learning and intent prediction, and some promising experimental results were presented.

In addition to the difficulty of operating robots with uncertainties in the task environment, another

feature of excavator earth-moving, which is also representative in many other robotic applications,

is that for completing a task, operations typically have similar patterns. They are often repeated

over many cycles, but lack well-organized repetition. Thus, for providing intelligent assistance

through BSC based on these features, one first needs to find an effective model to encode the task.

Such model should not only provide references for autonomous task execution, but also be used to

infer human operator’s intent. The concept of subgoals as discussed in [34, 31, 15, 32] has been

used for such interpretation in BSC, where specific tasks are learned through demonstration and

divided into subgoals. Then, by predicting the human operator’s intent for seeking a particular
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subgoal, automatic control is generated and blended to human operator’s input for shared action.

To investigate further and develop tools for BSC, we formulate the following key questions:

1. How does one learn the task and segment it into well-defined subgoals?

2. How does one ascertain and quantify the intent of the operator in terms of moving from one

subgoal to another?

3. How does one update the blending parameter (the parameter that decides the extent of shar-

ing between the human operator input and automatic control input in the total command

input) in real-time to facilitate operator intent and subgoal achievement?

4. How does one adjust nominal subgoals based on changes in target objects during operation

as detected by the human operator?

In this dissertation, novel strategies developed to answer these questions are described. Eval-

uation of the effectiveness of the proposed strategies is provided via experimental results on a

scaled hydraulic excavator platform performing a typical trenching-and-truck-loading task where

the human operator commands the robot with two joysticks as indicated in Fig. 1.1.

We have also extended the aforementioned strategies and methods to human-machine shared

control in the operation of robotic manipulators for object inspection/handling and surface tracking

applications where unknown geometry and uncertain environment present challenges for full au-

tonomy. In this regard, we designed intuitive interfaces which can reduce the difficulty of operating

a multiple DOF robotic manipulator, and integrated cameras into robotic end-effectors for facili-

tating sharing of the control authority between the human operator and a vision-based automatic

control based on human intent prediction. To corroborate the effectiveness of the shared control

methods developed for robotic manipulators, a number of experiments were conducted on two ad-

ditional robotic platforms. One physical platform consists of a Universal Robot (UR5, 6-DOF),

and a general-purpose joystick. A human operator is invited to execute a surface tracking task and

a object handling task. The other physical platform consists of an ABB robot (IRB-4600, 6-DOF),
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a custom-designed end-effector with cameras, and a general-purpose game controller. Another

human operator is invited to execute an object inspection and handling task by remotely controller

the robot with the assistance of intent prediction and vision-based automatic control assistance.

1.5 Dissertation Outline

Blended shared control studies for collaborative robotic tasks described earlier involve many

different aspects, which utilize ideas from various fields in order to formulate a framework for

developing and synthesizing solutions. As a result, each of the following chapters starts with a

specific literature review in the relevant fields, and then presents the development of the proposed

technical tools and algorithms. The rest of this dissertation is organized as follows. From Chapter 2

to 6, we focus on developing and corroborating blended shared control methods where the exca-

vator trenching-and-loading task is used as a specific example to motivate the developments which

can be adapted to other robotic tasks. Specifically, Chapter 2 presents two methods for learning

from demonstration with a focus on shared control tasks. Chapter 3 provides tools for predicting

the intent of the human operator based on subgoals as the result of the learning algorithms. In-

put blending with intent and conflict awareness, as a method for combining different inputs and

relating operator’s input magnitude with the automatic controller gain, is provided in Chapter 4.

During dynamic task execution, one needs to consider adjusting the nominal task model learned

from the initial demonstration since task execution may result in changes in the environment or

target object as perceived by the human operator. Chapter 5 is thus provided to address the prob-

lem of subgoal adjustment. The excavator hardware platform, experiment design and results are

presented in Chapter 6. Chapter 7 presents the development of shared control methods for the

collaborative operation of robotic manipulators, where two approaches each with a different focus

are developed. Experimental results to corroborate the effectiveness of the collaborative operation

methods of robotic manipulators are also provided in Chapter 7. A summary of this dissertation

and topics for future work are given in Chapter 8.
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2. TASK LEARNING

Learning from an operator’s demonstration is the first key element in the BSC framework.

Here we are looking for specific learning models which are not merely a description of a given

task for automated execution. The model has to provide a mechanism for predicting the operator’s

intent for BSC applications where the human is actively operating the robot whereas automatic

control provides assistance based on intent prediction. A survey of literature on learning from

demonstration and task characteristics of SC applications are presented in Sec. 2.1. Based on this

survey, subgoal based task model happens to be an appropriate model and is considered in this

work. This model encodes a complicated task into a number of subtasks, each associated with a

subgoal indicating the completion of a subtask. By completing subtasks in a specific order, the

overall task is accomplished. The learning of subgoals involves capturing distinguishable patterns

in operator’s command input which will lead to subgoal distributions. Section 2.2 provides two

methods developed for extracting the distributions of subgoals based on demonstration data and

quantification of operator’s behavior. In particular, one method was developed earlier based on a

threshold mechanism. Another method was proposed with a unified metric quantifying operator’s

behavior to overcome situations where the threshold method is difficult to apply. Based on the

extracted distributions of subgoals, Section 2.3 provides a method to identify the subgoals and

their execution sequence which will lead to task completion that can be used for BSC.

2.1 Task Characteristics and Subgoal Learning

The majority of Learning from Demonstration (LfD) methods are developed for full autonomy

as provided in several research surveys [35, 36]. Specifically, Inverse Reinforcement Learning

(IRL) is used to learn reward functions describing desired task execution behaviors and some sub-

sequent optimal policy which will lead to autonomous task completion [37, 38, 39, 40, 41, 42, 43].

These methods have been successfully applied to many autonomous robotics tasks. However, they

have some drawbacks when dealing with SC applications. First, they can be computationally in-
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efficient when dealing with robots with continuous states and actions. Second, the policy model

provides little guidance for predicting the operator’s intent when the human is actively participating

in task execution. When humans are executing a task, they typically do not associate each action

taken with some mathematically constructed rewards. Subgoal-based IRL methods were also de-

veloped further such that the learning results are in the form of a set of subgoals [44, 45, 34].

These methods are also computationally expensive due to reward calculation through iterative cal-

culation especially when dealing with robots that have many DOF, since calculation increases

exponentially with the number of robot DOF. However, the concept of subgoals inspired the de-

velopment of focused LfD methods for SC applications, and further assumptions are made based

on human behaviors to facilitate the learning and intent prediction formulation [15, 32]. Humans

are generally not good at multi-tasking and have the tendency of decomposing a given complicated

task into a sequence of subtasks; by completing one subtask and achieving its subgoal at a time, the

overall task is completed [46, 47, 48]. When generalized to robot operations, it can be interpreted

as having a similar command pattern in the process of finishing the subtask. Once the subgoal

is achieved, the operator then switches to the next subtask typically with a considerably different

command pattern. These subgoals can be reciprocally used as references for intent prediction in

that if an operator command is detected while knowing the robot states, it is possible to forecast

which subtask the operator is executing and which subgoal the operator is seeking [31, 32, 33].

Subgoals, in the context of human operated robot tasks, can be points in the robot joint space

which correspond to different robot configurations, or points in the Euclidean work space corre-

sponding to different end-effector positions or robot body locations. To illustrate the concept of

subgoals, consider the excavator shown in Fig. 2.1 performing a trenching-and-loading task. Seven

nominal subgoals, visualized by wire-frame, are shown; by repeating such subgoals in a correct

sequence, the operator can complete the task. Each subgoal in this case is a point in the joint space,

but can be instantiated by a robot configuration via forward kinematics, as 1, 4, and 7 are shown

on the right. Note that transitioning between subgoals is executable by either human operators

(easy for skilled operators, yet may still be hard for novice operators) or some straight forward
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closed-loop control algorithms.

Figure 2.1: Illustration of Subgoals in Joint Space

With the inspiration of subgoals and assumptions on human behavior, the concepts of operator

and action primitives were proposed in the SC-focused LfD methods to capture from demonstra-

tion significant changes in operator’s command patterns, indicating completion of one subtask and

start of another subtask. Thus, these command pattern changes can be employed to obtain dis-

tributions of subgoals. The primitive-based methods essentially set thresholds for the operator’s

input to each robot degree of freedom to classify input values into a number of broad categories.

When an input crosses a given threshold, i.e., the general command changes its pattern at that time

instance, the associated robot states and the corresponding configuration are recorded as a poten-

tial subgoal. Statistical inference tools are then employed to cluster the distributions as mixture

models and identify subgoals. These methods are more suitable for SC applications in that (1) the

learned model also provides reference for predicting the intent of the human operator and (2) they

are computationally more efficient since reasonable assumptions on human behavior are made to

10



simplify the learning process. However, they also have some limitations. Threshold methods are

generally sensitive to noise which could cause the measured values to cross the threshold. Further-

more, the operator’s input pattern in some applications can be quite complex such that it is hard to

decide on how many thresholds will lead to meaningful categorizations.

2.2 Extracting Distributions of Subgoals

2.2.1 Operator Primitives Segmentation

To discover from demonstration data the distributions of points which potentially encode the

subgoal-changing behavior, the concept of operator primitives is employed. It is a threshold mech-

anism and is similar to that of the action primitives [49, 15] in the sense that they both map the

operator’s joystick input into broader categories as depicted in Fig. 2.2. This is a reasonable gen-

eralization for human operated heavy construction machines since they typically have hydraulic

actuation with slow dynamics, and input resolution is usually not critical. The operators tend to

give commands in a broader sense, e.g., when we set N = 3 in Fig. 2.2, the categories could be

positive input, negative input, and zero or near-zero perturbation, indicating forward, backward,

and stop motions. The variable N hence controls the resolution of such a map.

With such generalization and considering that most construction machines are operated with

joysticks to command the velocity of individual joints, we formulate our definition of operator

primitives in the following manner. Let oj be the operator primitive variable for joint j, then

at any time, oj can take N values given by w ∈ {1, 2, · · · , N} which encodes the categories.

Thus, the primitive-categorized states of an m-DOF robot can be mathematically captured by the

concept of operator primitives; at any given time, the operative primitives vector is given by o =

Figure 2.2: Mapping Between Joystick Input and Primitives
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[o1, o2, · · · , om]. In our case, we set N = 3 and use the K-Means algorithm [50] to cluster the

data into three categories (forward, backward, near-zero). We initialize the cluster means µjw, w ∈

{1, 2, 3} for joint j by 
µj1 = max

t
xj(t)

µj2 = 1
2
{max

t
xj(t)−min

t
xj(t)}

µj3 = min
t
xj(t)

(2.1)

where xj(t) is the state of joint j at time t. We update the cluster assignment and the means by

Lloyd’s algorithm [51], i.e., finding the index w such that

argmin
w
||xj(t)− ujw||2. (2.2)

and updating ujw with the new cluster assignment by

µjw =
1

η

∑
t

{xj(t)1(w)} (2.3)

where 1(w) is the indicator function taking the value of 1 if xj(t) gets assigned to cluster w and 0

otherwise, and η is the total number of elements assigned to cluster w. We iterate on such process

until the means converge. The rest of the segmentation process is carried out in a similar manner

as described in details in [49, 15], i.e., we extract the data points where the the value of operator

primitives vector o is different from its previous value, indicating a change of operation patter. The

extracted data points, therefore, encode the potential distributions of subgoals. The implementation

of such encoding is provided in Algorithm 1.

The difference in formulation between the operator primitives and the action primitives as in

[49, 15] is that the action primitives are defined based on the robot joint velocities and operator

primitives are based on the operator’s joystick input. Hence, the operator primitives capture the

operator’s inputs directly from the joystick space. A significant advantage of the operator primi-

tives in heavy construction setting is that they are not affected by drastic changes in workload or
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Algorithm 1 Extraction of Subgoal Distributions via Operator Primitives Segmentation
Input: Robot states from demonstration
Output: Extracted subgoal distributions

1: for each robot joint do
2: Take velocity states as training set and apply K-means clustering algorithm
3: Assign labels for robot states at each sample time
4: end for
5: Augment robot states with operator primitive vector o consisting of cluster labels
6: for robot states augmented with operator primitive vectors do
7: if o(t) 6= o(t+ 1) then
8: Encode robot position states at time t and t+ 1 into the distributions of subgoals
9: end if

10: end for

contact force. For example, during a digging process, the operator may not change command input

combination, hence the joint velocities ideally should not change drastically. However, the work-

load or contact force may change dramatically before and after the end-effector touches a hard

surface, which will likely cause changes in robot joint velocities, thus, affecting the action primi-

tives. Therefore, operator primitives provide better encoding of operator’s behaviors and are less

sensitive to perturbations due to the environment. One can observe this from the experimental data

shown in Fig. 2.3, where the regions highlighted with yellow circles are the situations where the

joint velocity for the bucket was significantly affected by hard contact during the digging process.

But the operator’s intent, as reflected from the joystick input, does not change.

Figure 2.3: Operator Input overlapped with Joint Velocity of Excavator Bucket
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2.2.2 Limitations of Threshold Method and Motivation for a Unified Metric

For illustrating the problem of threshold-crossing caused by noise and other signal related

issues, consider the example shown in Fig. 2.4, where the ideal inputs and the real inputs of a two

DOF robot are provided to the left and right, respectively. Note that all inputs are normalized to

the range of [-1,1] with +1 indicating maximum forward speed, -1 indicating maximum backward

speed and 0 indicating stop. By setting two thresholds marked with dashed lines in the figure,

Figure 2.4: Illustration of Threshold-Crossing due to Noise

the method intends to characterize each input into three broad categories (forward, backward, near

stop command) and capture command pattern changes when any input crosses a threshold. Ideally,

only one set of robot states should be captured at the time when the input to DOF 1 crosses the

threshold. However, input one may cross the threshold many times due to the presence of noise

in the measured signal. The problem is more significant in that during the 1 s time interval, robot

DOF 2 is commanded to move at nearly its maximum backward speed, which causes the robot to

change its location or configuration rapidly. Thus, many recorded states where threshold-crossing

occurs may consist of very different robot configurations or locations which was not intended to
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be captured by the threshold method.

Figure 2.5: Illustration of Complex Overall Input

To illustrate another example of why the threshold method may not work when the overall

command pattern is complex, consider the example provided in Fig. 2.5. This figure shows veloc-

ities (linearly mapped from inputs) of a quadrotor going through a series of acrobatic flight moves

consisting of two translations (vx, vz) and one rotation (ωy) in a plane (3 DOF). As one can ob-

serve from the figure, the overall input is difficult to categorize because it does not follow a specific

pattern. Attempts of setting 2 and 4 thresholds are made and marked with dashed lines in differ-

ent subfigures. However, none of them seem to lead to meaningful categorizations. In chapter 6

the same quadrotor example will be used to illustrate the effectiveness of the Motion Command

Variance (MCV) method described in the following.

Since the overall goal is to capture robot states at times when there are significant changes in

command pattern, a better solution would be to have a unified metric characterizing the command

complexity for the entire demonstration. The expectation is that the metric will be insensitive

to small command/measurement perturbations and yet distinguish significant changes to reveal

subgoals.
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2.2.3 Quantification of Operator Command Pattern

In many industrial applications where the robot is operated by a human, the operator typically

controls the velocity of each DOF independently, i.e., operator’s inputs are mapped to velocities

of different robot DOF. Since the commands initiate motions, we refer to those as motion com-

mands [52]. To construct the unified metric for quantifying operational command complexity, we

formulate the motion command mathematically in the following manner.

At each sample time t, the motion command initiated by the human operator for an m-DOF

robot can be described by a vector of the form

o(t) =

[
o1, o2, · · · , om

]T
(2.4)

where oi, i ∈ 1, 2, · · · ,m denotes the operator’s input, or the velocity it gets mapped to, for each

robot DOF. For the time interval starting from t and containing n samples of motion command with

a sampling period of k, the motion commands initiated by the operator is given by the following

matrix:

O(t) =

[
O1,O2, · · · ,On

]T
, (2.5)

where Oi = o[t + (i − 1)k]T , i ∈ 1, 2, · · · , n. The covariance matrix of the motion commands

captured in such a time interval is then given by

Σ(t) =



Σ11 Σ12 · · · Σ1m

Σ21 Σ22 · · · Σ2m

...
... . . . ...

Σm1 Σm2 · · · Σmm


, (2.6)

where each entry can be computed by

Σij = E[(Oi − µi)(Oj − µj)], (2.7)
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where E denotes the expectation operator and µi = E[Oi]. The covariance matrix not only en-

codes the correlation of commands, but also contains information about subtask switching, hence

indication of subgoals. That is, during a given time interval, if the operator focuses on one subtask,

the commands should be similar; if the operator has just finished one subtask and switched to the

next, the commands initiated should be observably different.

We use the following metric to quantify such information which we refer to as Motion Com-

mand Variance,

M(t) =
m∑
i=1

Σii, (2.8)

where Σii, i ∈ 1, 2, · · · ,m are the diagonal elements of the covariance matrix. The MCV metric

M(t) is the summation of the principal components of the hyper-ellipsoid formed by samples

of operator’s command each considered as a point in an m-dimensional space. If the operator

initiated subtask switching with different command patterns during the time interval, geometrically

the hyper-ellipsoid must be stretched along one or more axes which corresponds to a large value

ofM(t) [53, 54]. We choose summation of principal components because although multiplication

directly relates to the volume of the hyper-ellipsoid, it does not provide the refined differentiation

in that if one principal component is close to zero, the overall result will be close to zero.

We introduce a design parameter γ ∈ [0, 1] which we refer to as the MCV ratio, and capture

the set of desired robot states from the demonstration data set χ that satisfies the following:

{x(t) ∈ χ |M(t) > γ ·max
τ∈Γ
M(τ)} (2.9)

where x(t) denotes the robot states at any sample time t, M(t) is the associated MCV, and Γ

is the set of all sampled times for the entire demonstration. The set of robot states in (2.9) thus

represents the subgoal distributions, i.e., the MCV at those points is large, thus, indicating that the

operator’s command changed significantly as a result of subtask-switching during the associated

time intervals.

The implementation of extracting distributions of subgoals via MCV is given in Algorithm 2,
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where χ is the demonstration data set with ν data points, and each data point has anm-dimensional

robot joint information associated with one dimensional time information. We assume that the total

number of samples, denoted byK ∈ N+, collected during the entire demonstration is much greater

than the number of samples n ∈ N+ that are utilized to calculate the MCV for a given time interval,

namely n� K, which implies that the operator’s command pattern changes for subtask-switching

occur in a short time interval relative to the time duration of the entire task demonstration. Note

that practical implementation requires appropriate scaling of the measurement data from different

robot DOF in that different types of robot joints (prismatic, revolute) may have measurement values

that belong to different ranges. In order to have the MCV weigh the input of each DOF uniformly,

we normalize each input or robot state to the range of [-1,1] if they are not already in the range.

Algorithm 2 Extracting Distributions of Subgoals via MCV

Input: Data set χ ∈ R(m+1)×ν , MCV ratio γ ∈ [0, 1], number of samples n ∈ N+ for the MCV
time interval

Output: Subgoal distributions in the form of a set of data points
1: for i in 1, 2, · · · , K − n do
2: Collect n samples starting from index i in time sequence each in the form of (2.4)
3: Construct matrix in (2.5) with the n collected samples
4: Compute MCV value using (2.6) and (2.8) and attach the result to each data point
5: end for
6: Store and output all the data points with MCV values satisfying (2.9)

2.3 Subgoal Identification with Execution Sequence

Subgoal distributions of a given shared control task can be captured with the methods developed

in Section 2.2. However, the number of subgoals, namely the number of clusters in the data set,

may vary significantly due to tasks with different complexity or the fact that different operators

may choose to divide the same task differently. Bayesian Non-Parametric Clustering (BNPC) is

an appropriate statistical model where the Chinese Restaurant Process (CRP) prior handles the

uncertain number of clusters by assuming a potential infinite number of clusters with only a finite
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number of them active. With the exchangeable property [55] of CRP, Gibbs sampler can be applied

as the inference tool [34, 56] which will converge to the true distributions after a sufficient number

of iterations.

Algorithm 3 BNPC/TO

Input: Data set χ ∈ R(m+1)×ν , concentration hyper parameter α ∈ R+, number of iterations
k ∈ N+

Output: Cluster assignment for each data point, mean (subgoal) and covariance for each cluster
1: Initialization Assign each point to a distinct cluster
2: while Number of iterations ≤ k do
3: Unassign observation from its original cluster
4: Calculate argmax {P (zi|z−i)P (xi|φj)} and assign new cluster label accordingly
5: end while
6: Finalization Sort clusters and re-assign labels increasingly according to τJ in (2.10)

Because of the dynamical nature of the SC tasks, subgoals have to be finished in a temporal

sequence in order to complete the overall task. To encode the temporal ordering to the mixture

model where each cluster represents a subgoal, we utilize the fact that data points are sampled with

time stamps, and we label clusters sequentially in increasing order according to the data point in

that cluster associated with the earliest time stamp denoted by τJ . We define τi as the time stamp

associated with the data point xi, then

τJ = min τi
i

, ∀zi = j (2.10)

where zi is the cluster assignment of data point i. The inference of zi is a result of the BNPC

formulation. Let P (zi = j|z−i, φj) be the probability of xi having label zi = j, then

P (zi = j|z−i, φj) ∝ P (zi|z−i)P (xi|φj) (2.11)

where z−i is the cluster assignments of all other data points except i, xi is the value of the data
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point, j is the assigned cluster label for xi, and φj is a parameter for the base distribution. The

CRP prior p(zi|z−i) in (2.11) is given by

P (zi = j|z−i) =


n

n−1+α
, from an existing cluster

α
n−1+α

, starting a new cluster
(2.12)

where n is the number of data points assigned to cluster j, α is the concentration hyper parameter

controlling the number of clusters that will be generated. Since all the measured values are nor-

malized to the range of [-1,1], we use the Gaussian distribution with zero mean and unit variance

[56] as the base distribution. The likelihood P (xi|φj) in (2.11) is then given by

P (xi|φj) =


N (xi,

nxj
n+1

, I) from an existing cluster

N (xi, 0, I), starting a new cluster
(2.13)

where xj is the mean of the cluster j and I is the identity covariance matrix. The implementation

of the BNPC/TO algorithm is provided in Algorithm 3.
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3. INTENT PREDICTION

Predicting a human operator’s intent based on the task model learned from demonstration is

another key element in the BSC framework. To assist human operators, one first needs to predict,

through measurement and probabilistic inference, which subgoal the operator is seeking to achieve.

Based on the prediction, automatic control input can be generated where the predicted subgoal can

serve as its reference. Such automatic control input can then be blended with the operator’s input

to jointly control the robot and facilitate task execution.

Literature review of various methods for intent prediction in different research fields and their

applications are presented in Sec. 3.1. Inspired by the existing work, Sec. 3.2 provides a specific

framework for intent prediction based on subgoal models. A novel method considering both the

past (empirical knowledge) and present (operator’s command in real-time) information to formu-

late the final intent prediction algorithm is described in Sec. 3.3 and 3.4. To further improve the

intent prediction, we developed another method in 3.5 to dynamically updates the subgoal transi-

tion probabilities based on observed transitions executed by the human operator.

3.1 Review of Human Intent Prediction in Various Research Fields

Interpreting human behaviors and predicting operator’s intent have been studied in many re-

search fields related to human-robot interactions. In particular, these are important topics in many

fields, such as advanced driver assistance systems in vehicles, aviation flight traffic control, brain-

machine interface, gaze-based interaction, intelligent power wheelchairs, etc.

In the field of intelligent driver assistance systems, some surveys on motion prediction and

intent inference can be found in [57, 58]. The prediction targets (estimated maneuvers) typically

include acceleration, stop, brake, turning, lane keeping/changing, passing, following, etc., [59, 60].

To collect dynamic information from the driver, vehicle, and surrounding environment, researchers

employ sensors to measure vehicle parameters, GPS location, presence of surrounding objects, ori-

entation, state of nearby traffic light, distance to intersections, driver motions and inputs to the ve-
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hicle, etc., [61, 62]. Mathematical tools for processing data acquired generally involves clustering

(support vector machine, logistic regression, etc.) [60, 63] and Bayesian inference (Markov chain,

hidden Markov model, etc.) [64, 65]. While most methods relate current states of the vehicle,

human, and surroundings, some research suggests short term state memory with recurrent neural

network for driver intent prediction [66].

In the aviation industry, the notion of a free flight system is a promising direction of develop-

ment since it has many advantages over the traditional fixed-path routing system. Technological

advancements in aircraft manufacturing has led to aircraft being more versatile and cheaper to

produce, which is also spurring the need of a free flight system. A safe free flight system will

inevitably involve understanding and predicting interactions between the human operator (pilot)

and the airplane, and also between airplanes. Such studies can be found in many research papers,

such as [67, 68, 69, 70, 71]. In the literature, some methods consider the actions taken by the pilot

and encode them as sets of discrete values, and others consider the continuous motion of an aircraft

measured by sensors. Operator function models take a set of discrete actions from the pilot and

infer its intent through some hierarchical network representing different inter-related control func-

tions. Plan detection and comparison mechanism observes pilot’s discrete actions and performs

intent prediction by comparing the pilot’s admissible actions with some database relating actions

to goals. Continuous motion inference includes methods that take aircraft states as input, and train

some machine learning networks to perform classification such that different sets of states can be

recognized as maneuvers with different intent. Whereas conformance monitoring systems build

fault-detection mechanisms to test if the continuous motion of an aircraft matches any high-level

flight plans.

Research in the areas of gaze-based interaction, brain-machine interface and intelligent power

wheelchairs shares the similarity, in many cases, that they are all looking for enhancing human ca-

pabilities through understanding and predicting human behavior via the measurement of biological

signals, and then providing assistance through various devices accordingly. The results have been

applied to facilitate the control of different types of machines. Gaze-based interaction researchers
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attempt to discover and explain connections between eye movement and human intent. It has ap-

plications including monitoring distraction for driver assistance, facilitating hands-free reading on

mobile devices, and operation in virtual reality environment. Pupil responses, eye movement fix-

ation and saccade duration have been used with machine learning classification models to predict

mental workload, physical effort, task types such as searching and reading [72, 73, 74, 75, 76].

In the domain of rehabilitation and restoration, brain-machine interface has been studied to help

people with disability and enhance the capabilities of people without disability. Electroencephalo-

gram, electrooculogram, and many other subtle electrical signals generated by the human body,

together with the orientation and motion of human body, have been utilized to better control pros-

thetic limbs, exo-skeletons, and power wheelchairs [77, 78, 79, 80]. Researchers typically study

the patterns of these signals by applying physical laws, kinematics, or machine learning to relate

the meaning of different signals and to control various devices [81, 82, 83].

3.2 Intent Prediction based on Subgoal Model

The previous chapter on task learning provided a review of different methods developed for

learning from demonstration, and developed the subgoal model that will be used for the develop-

ment of shared control in this work. The subgoal approach was selected because subgoals are a

compact description of a given task and they can provide references for predicting human operator

intent and generating automatic control input. Although there are no existing methods that can

directly relate the prediction of human operator intent to task subgoals, some work does provide

clues for such a development. Drawing inspiration from the existing work and our own prior work

in this area, we provide a novel method to predict intent based on the subgoal model approach.

Based on the set of learned subgoals, the action of the human operator can be used to predict

which subgoal is sought. In predicting the intent of the operator’s input to seek a particular subgoal,

we want to incorporate both the empirical knowledge of the task process and the operator’s input

in real-time. In order to encode such information, we construct a factor graph representing their

dependencies as shown in Fig. 3.1(a), where L denotes the last visited subgoal, X is the current

joint position, V denotes the current joint velocity, G is the predicted next subgoal that the operator
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Figure 3.1: Factor Graph and Markov Chain for Prediction

wishes to reach, Φ1 denotes the function encoding the dependency between the last visited and the

predicted subgoal, and Φ2,λ denotes the dependency between the current position, velocity and the

predicted subgoal. The parameter λ contains information of all the subgoals which is known. Let

P (G|X, V, L) denote the probability of going to subgoal G given current position X , velocity V ,

and last visited subgoal L. Φ1(G|L) be the probability of going to subgoal G given last visited

subgoal L and Φ2,λ(G|X, V ) be the probability of going to subgoal G given current position X

and velocity V . Then,

P (G|X, V, L) ∝ Φ1(G,L) Φ2,λ(G,X, V ). (3.1)

In the following we describe a method to compute Φ1(G|L) and Φ2,λ(G|X, V ) by employing

the empirical stochastic transition matrix (ESTM) and the dynamic angle difference exponential

(DADE), respectively.

3.3 Encoding Empirical Knowledge

In order to encode the empirical knowledge of subgoal transitions, we construct a Markov

Chain indicated in Fig. 3.1(b). It shows the transitions happening at state i in the Markov Chain,

where q ∈ [0, 1] denotes the probability that the task will be completed in the ordered sequence.

It depicts that, at any given state (each subgoal λi is a state in terms of the Markov Chain), the

probability of going to the next subgoal is given by q ∈ [0, 1] which reflects the confidence level

that one has that the task will be completed in the ordered sequence. While jumping to any other
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subgoal or staying in the same subgoal all have the same probability of 1−q
n−1

for n-state Markov

Chain. Based on such construction, to encode the information we define ESTM as

T =



1−q
n−1

q 1−q
n−1

· · · 1−q
n−1

1−q
n−1

1−q
n−1

q · · · 1−q
n−1

... . . . . . . . . . ...

1−q
n−1

1−q
n−1

. . . . . . q

q 1−q
n−1

· · · · · · 1−q
n−1


. (3.2)

Let Tij denote the element in the i-th row and j-th column of T . Then, the probability of going to

subgoal j, namely G, given the last visited subgoal i, namely L, is given by

Φ1(G,L) ∝ P (G|L) ∝ Tij. (3.3)

3.4 Integrating Dynamic Prediction

To incorporate into our prediction the dynamic measurements and operator input in real-time,

we introduce the idea of dynamic angle difference. Figure 3.2 shows the angles between current

action, which is the velocity commanded by the operator in real-time, and closed-loop actions

of going to each of the subgoals. In Fig. 3.2(a), λ1, λ2, · · · , λn denote the positions of subgoal

Figure 3.2: Dynamic Angle Difference
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1, 2, · · · , n in joint space, respectively; a denotes the operator’s current action; aCL1, aCL2, · · · , aCLn

denote the closed-loop actions of a proportional controller for going to subgoal 1, 2, · · · , n, respec-

tively; θ1, θ2, · · · , θn ∈ [0, π] denote the angles between current action and closed-loop subgoal-

tracking actions. We say that the dynamic probability of operator’s action a of going to subgoal j,

is inversely proportional to the dynamic angle difference θj . In other words, the subgoal with the

smallest angle between closed-loop action and operator’s current action is our predicted target. We

can construct such a probability is by defining

Φ2,λ(G,X, V ) ∝ P (G|X, V ) ∝ 1

θj
. (3.4)

However, such a construction has two drawbacks. It approaches singularity when θj is close to

zero. The output of such a function also would overweight the probability from the stochastic

matrix when the angle is small. To overcome these issues we propose the dynamic probability in

such context as given by the following dynamic angle difference exponential:

P (G|X, V ) ∝ e−θj (3.5)

where

θj = arccos(
a · aCLj

||a|| · ||aCLj||
) (3.6)

Therefore, DADE solves the problem of singularity and normalizes its output such that the proba-

bilities of ESTM and DADE are in the same scale.

The net equation for subgoal prediction is then given by

P (G|X, V, L) ∝ Tij · e−θj (3.7)

and the predicted subgoal is the one with the maximum probability among all possible scenarios,
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and is given by

argmax
j
{Tij · e−θj} (3.8)

where i is the index of the last visited subgoal, which is known, j is the index of a possible target

subgoal in the set of all possible subgoals λ. To get a valid probability for the subgoal predictions,

we normalize (3.7) by

P (G = ι|P, V, L) =
Tιk · e−θι∑
j,λ

Tij · e−θj
(3.9)

where ι = 1, 2, · · · , n; this renders P (G = ι|P, V, L) ∈ [0, 1] such that the predictions made by

(3.9) sum to 1. The implementation of such prediction is given in Algorithm 4.

Algorithm 4 Prediction of Target Subgoal
Input: Set of all subgoals, design parameter q for ESTM, Operator’s action in real-time
Output: Predicted subgoal and its probability

1: Construct ESTM by (3.2)
2: for each subgoal do
3: Compute its probability using (3.9)
4: end for
5: Compare subgoal prediction probabilities using (3.8)
6: Output the the index of the maximum as prediction result, and its value as the probability

3.5 Learning Subgoal Transition Probabilities

In some applications, the subgoal transition probabilities from empirical experience may not

be objective, or the change of task environment may require the operator to execute the subgoals

in an order that is different from its nominal order. For these situations, instead of assigning fixed

transition probabilities based on task-specific knowledge, we propose a procedure to continuously

update the transition probabilities of the Markov Chain based on observed subgoal transitions

during task execution. In the following, we discuss the details of the procedure. To start with, we
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initialize the stochastic transition matrix as

T =



1/n 1/n · · · 1/n

1/n 1/n · · · 1/n

...
... . . . ...

1/n 1/n · · · 1/n


. (3.10)

This initialization indicates that there is no prior knowledge or observed evidence of subgoal tran-

sitions, i.e., all subgoal transitions are equally likely. Without loss of generality, we assume that

the operator is at the ith subgoal to begin with.

If the operator takes an action A, the prediction model will generate a predicted subgoal with

index J given by (3.8) and normalized probability P given by (3.9). We denote such an action,

prediction and probability by the triplet A = (A, J, P ). Assuming the index of the last visited

subgoal is i, and the operator takes a sequence of actions generating

Ax = (Ax, Jx, Px) (3.11)

where x ∈ {1, 2, · · · ,m}; if the robot ends up in subgoal j and Jx = j for a set of Ax’s before the

robot getting to the subgoal, we say that one transition update cycle is observed and completed.

In other words, if the robot visited a subgoal which happens to be the result of intent prediction

based on a set of actions taken by the human operator, it is an observed and correctly predicted

transition. Once such a cycle is observed and completed, we update the ith row, encoding transition

probabilities from subgoal i, of the stochastic matrix

Ti =

[
Ti1 Ti2 · · · Tij · · · Tin

]
(3.12)

according to the following rules.

Let theK th update (K = 1, 2, 3, . . .) of the transition matrix element Tij be given by Tij,K ; note

that Tij is the transition probability from subgoal i to j. We consider the following update law for
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making adjustment to Tij at the K th update cycle:

Tij,K = Tij,K−1 + βK(Q− Tij,K−1) (3.13)

where βK ∈ (0, 1] is the update gain or rate at the K th cycle and Q ∈ ( 1
n
, 1) is a design parameter

indicating the upper bound to which Tij is expected to converge if repeatedly the human operator

chooses to visit subgoal j given that the last visited subgoal is i. Intuitively, one could choose

the update rate βK to be a constant in the range of (0, 1]. The inference is that once a transition

from subgoal i to j is observed, the corresponding term Tij in the stochastic matrix is increased

towards its specified upper bound Q by the difference between Q and its current value multiplied

by a constant. However, we would like to relate βK dynamically with the prediction probability.

Specifically, if a transition is predicted and observed, we increase Tij by the difference between Q

and its current value multiplied with the prediction probability which is given by

βK =
e−θjTij,K−1∑
j

e−θjTij,K−1

(3.14)

where e−θj is the result of DADE generated by the first action in the set of Ax’s of (3.11) within

the K th transition update cycle. One could interpret the selection of βK in this manner as follows:

If a subgoal transition is observed and predicted, instead of increasing by a fixed amount towards

its upper bound, we increase it by the amount reflecting our confidence. In other words, the tran-

sition probability changes by a larger amount towards the specified upper bound Q if the observed

transition is associated with a higher prediction probability and vice versa.

The remainder n− 1 entries in (3.12) are updated as follows:

Tik,K = Tik,K−1 −
Tim,K−1∑

m 6=j
Tim,K−1

βK(Q− Tij,K−1) (3.15)

where k 6= j, k = 1, 2, . . . , n. Note that the update laws, (3.13) and (3.15), guarantee that after
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each transition update cycle, T is still a valid stochastic transition matrix since for k 6= j

∑
k 6=j

Tik,K−1∑
k 6=j

Tik,K−1

βK(Q− Tij,K−1) = βK(Q− Tij,K−1).

Following these update laws for the elements of the stochastic transition matrix, if the operator

visits subgoal j a number of times consecutively after visiting subgoal i, the ith row will evolve

into the following form

Ti =

[
Ti1 Ti2 · · · Tij = Q · · · Tin

]
(3.16)

where the j th entry converges to Q. The remainder of the elements in that row are proportional to

the number of times the corresponding subgoals are visited until Tij converges toQ given that iwas

the previous visited subgoal. We refer to this property resulting from the update of the transition

matrix in this fashion as subgoal-visit memory. The following theorem formalizes this notion of

subgoal-visit memory and provides the convergence of the update laws. The convergence of the

transition probability Tij to Q with repeated continuous transitions from subgoal i to j is clear

when βK ∈ (0, 1] since the update law resembles a stable first-order linear filter. However, the

following theorem shows even with a dynamically changing β given in (3.14), which renders the

evolution equation for the transition probability Tij non-linear, Tij still converges to Q.

Theorem 1. Suppose the last visited subgoal is i. For the transition from subgoal i to subgoal

j, let the elements of the ith row of the transition matrix be updated according to the update laws

given by (3.13) and (3.15). Let the update rate be given by (3.14). If the j th subgoal is visited from

the ith subgoal consecutively for a large number of times, then the ij th element of the transition

matrix converges to Q and the sum of the remaining elements of the ith row converges to 1−Q.

Proof. To simplify the notation, we will denote Tij,K as TK . Thus, we can write (3.13) in the

following form:

TK = TK−1 + βK(Q− TK−1) (3.17)

30



Note that at the previous transition update cycle, one has

TK−1 = TK−2 + βK−1(Q− TK−2). (3.18)

Substitution of (3.18) into (3.17) and rearranging terms, we obtain

TK = TK−2 + βK1(Q− TK−2) (3.19)

where

βK1 = βK + βK−1 − βKβK−1

= 1− (1− βK)(1− βK−1) (3.20)

Applying the same reasoning further, one has

TK = TK−3 + βK2(Q− TK−3) (3.21)

where

βK2 = βK1 + βK−2 − βK1βK−2

= βK + βK−1 + βK−2

− βKβK−1 − βK−1βK−2 − βKβK−2

+ βKβK−1βK−2

= 1− (1− βK)(1− βK−1)(1− βK−2) (3.22)

Thus, given T0 as the initial value of Tij when the consecutive transitions from subgoal i to subgoal
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j was initiated, the K th update is given by

TK = T0 + βKK (Q− T0) (3.23)

where

βKK =
∑
i

βi −
∑
i 6=j

βiβj +
∑
i 6=j 6=k

βiβjβk − · · · (3.24)

where i, j, k ∈ {1, 2, · · · , K}. Note that (3.24) can also be written in the form

βKK = 1−
K∏
m=1

(1− βm) (3.25)

where βm, from (3.14), is given by

βm =
e−θjTij,m−1∑
j

e−θjTij,m−1

.

Since βm ∈ (0, 1], we have

lim
K→∞

K∏
m=1

(1− βm) = 0. (3.26)

Thus,

lim
K→∞

βKK = 1. (3.27)

In other words, the probability of the j th entry of the ith row of the stochastic transition matrix will

converge to the specified upper boundQ if the operator visits subgoal j enough times consecutively

after visiting subgoal i. Further, from (3.15), the sum of the remaining elements of the ith row

converges to 1−Q. This completes the proof.

Remark 1. The subgoal-visit memory property after Tij converges to Q may explained in the

following manner with (3.15). If the operator visited subgoal k for example at the K th update

cycle, it must lead to a higher probability from the dynamic prediction encoded in βK . This would
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result in a larger value of the term βK(Q− Tik,K−1) in (3.13). Also, observe that the term

Tik,K−1∑
k 6=j

Tik,K−1

in (3.15) is proportional to the probability of visiting subgoal k over the summation of all other

transition probabilities except Tij . This means that if the operator visited a subgoal more than

others before convergence, the resulting large probability will reduce, due to Tij converging to Q,

but remain greater than the rest.

Remark 2. The selection of the parameter Q ∈ ( 1
n
, 1) depends on various factors of the shared

control application. If the environmental uncertainties associated with the task are critical, then

this value must be chosen smaller than unity with a reasonable margin; that is, the value of (1−Q)

is distributed to all other n − 1 probabilities, and this by design should not be too small to allow

for non-nominal transitions to subgoals other than j.

Remark 3. The proposed update law for transition probabilities also has a distinct computational

advantage in the sense that the update is computed based only on current values without the need

to keep track of past transition probabilities which makes the implementation of the update law

straightforward.

Thus, this update method provides a way to dynamically adjust the subgoal transition proba-

bilities used in the ESTM.
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4. INPUT BLENDING

This chapter provides methods for blending of inputs from the human operator and the auto-

matic control system. A literature review on different blending schemes and parameter selections

is provided in Sec. 4.1. A method for blending inputs with intent and conflict awareness based

on subgoals is presented in Sec. 4.2. This method offers a mechanism to: (1) generate and blend

automatic control to assist the human operator if intent prediction indicates that the operator is

seeking a specific subgoal and (2) yield control authority to the human operator in situations when

the human operator may take unexpected actions to avoid danger instead of seeking any of the

subgoals. In practical implementation, human and automatic control inputs may have values in

very different ranges or have very different magnitude, they must be properly processed and scaled

accordingly before getting blended such that the blended input is an appropriate combination of

both. A method for such processing and scaling is provided in Sec. 4.3, which not only considers

normalization of control inputs, but also the changing of controller gain according to operator’s

input magnitude for a more responsive assistance.

4.1 Methods for Blending Inputs

Based on specific applications (smart wheelchairs, surgical robots, manufacturing and con-

struction machines, etc.) and various design concerns, researchers have developed different meth-

ods for selecting the blending parameter. For example, in research related to construction robots,

blending control inputs with a parameter optimizing various cost functions internal to the robot

are proposed in [12, 30]. Researchers in [31] suggested a blending parameter that depends on the

probability calculated from a finite state machine quantifying the subgoal transition probabilities

of a given construction task. The work in [49] proposed a method for choosing the blending pa-

rameter based on a function measuring the difference between automatic control and human input.

Researchers in [84] introduced a way to calculate and combine only the admissible inputs from

human and automatic system in the control of a simulated inverted pendulum.
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While most existing studies employ linear blending, such as in [85, 86, 87, 88, 89], where the

final control input u is given by

u = (1− α)uh + αua

where uh is the human input, ua is the input from automatic feedback control system, and a ∈ [0, 1]

is the blending parameter. Some researchers suggest that the linear blending method is not the opti-

mal option [90, 91, 92, 93]. Though the non-linear blending formulations, such as the one proposed

in [90, 91], are theoretically more comprehensive by modeling human intent and the environment

as various probability distributions and stochastic processes, there are complexities associated with

incorporating physical insights of the application as well as practical implementation.

4.2 Adaptive Blending with Conflict Awareness

Considering the advantages and disadvantages of different blending methods and the subgoal-

based learning and predicting framework, we propose a linear blending method where the blending

parameter dynamically is dynamically updated according to the prediction confidence, and also

provides a mechanism to yield control authority to the human operator when a conflict is detected

based on the human operator’s action. Based on DADE, we define a parameter called the De-

viation Threshold Angle (DTA) θd to encode such conflict awareness. We say that if θi > θd,

∀i ∈ 1, 2, · · · , n, then the blending scheme will yield control authority to the human operator,

that is, if all the angles from DADE are greater than the threshold value, we assume that the op-

erator is not seeking any of the learned subgoals and fully yield control authority to the operator.

Otherwise, we will share the control authority between the human operator and the closed-loop

subgoal-tracking action according to our prediction probability. This blending scheme thus en-

codes conflict-awareness by taking into consideration all subgoals from the entire joint space in

real-time, unlike the ones considered in [94] where only conflicts between a single pair of starting

and destination points are considered.

When blending control inputs according to the prediction probability using linear blending, one

has to normalize the prediction probability to be in the range of [0, 1]. We consider this problem

35



by defining the probability p∗ of the predicted subgoal to be

p∗ = P (G = k|P, V, L) =
Tik · e−θk∑
j,λ

Tij · e−θj
(4.1)

which renders P (G = k|P, V, L) ∈ [0, 1], and k is the index of our predicted next subgoal from the

previous section. Then, we linearly blend the operator’s input, denoted by uh, with the real-time

closed-loop subgoal tracking controller input, denoted by ue, through

u = (1− p∗)uh + p∗ua (4.2)

where u is the blended control input to the robot.

Taking into account the DTA-based conflict-awareness, we specify the total control input as

ub =


(1− p∗)uh + p∗ua, ∃θi < θd, i ∈ 1, 2, · · · , n

uh, otherwise
(4.3)

where ub is the final blended control input with conflict-awareness. The real-time implementation

of this BCS method is given in Algorithm 5.

Algorithm 5 Real-Time BSC/CA
Input: Operator control input uh, automatic control input ue, probability p∗ of predicted subgoal,

dynamic angle difference vector θ ∈ Rn, threshold parameter θd
Output: Blended control input ub

Initialization p = p∗

if min θ > θd then
3: p = 0

end if
Calculate ub = (1− p)uh + pua
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Figure 4.1: Parameter Selection vs. Dynamic Sigmoid Controller

4.3 Coordinating Controller Gain and Normalizing Different Inputs

There are two additional aspects one should consider. First, bringing the automatic control and

human inputs into the same scale to facilitate appropriate blending. Second, relating the controller

gain, namely the response speed, to the magnitude of operator’s input in some reasonable fashion

based on intent prediction. Hence, we propose the concepts of dynamic sigmoid controller (DSC)

and operator’s effective magnitude for seeking a particular subgoal.

The dynamic sigmoid controller is given by

ua =
2κ

1 + e−ξε
− κ (4.4)

where ε is the error between the current measured position and desired position based on predicted

subgoal, the parameter κ is related to the limits of control saturation, and the parameter ξ controls

the controller gain and is related to operator’s input magnitude. Fig. 4.1 provides some examples

of the mapping of DSC with different parameter selections. With the upper and lower saturation

limits imposed to the input from automatic control, it is then possible to scale the operator’s input

accordingly such that uh and ua in (4.3) are in the same scale before they are blended to provide

overall input.

To relate the magnitude of the operator’s input to the controller gain for tracking the predicted
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subgoal, we propose the concept of operator’s effective magnitude (OEM). It is defined as the

magnitude of the portion of the operator’s input effectively acting along the direction as the closed-

loop action for tracking the predicted subgoal. We use the following method based on vector

projection to quantify such OEM. Let φ be the effective magnitude which is given by

φ = a · aCLi
||aCLi||

= a cos θi (4.5)

where θi denotes the dynamic angle between operator’s action vector and the closed-loop action

vector aCLi for tracking the predicted subgoal, λi and a is the normalized operator’s action vec-

tor with each of its element normalized along the corresponding joystick axis. To illustrate this,

Fig. 4.2(a) provides the axis-wise normalization of the operator’s action input, where each joystick

axis is normalized to take a value in the interval [−1, 1]. Fig. 4.2(b) provides a two-dimensional

visual illustration for calculating the operator’s effective magnitude.

With such a formulation, it is then possible to relate the controller gain parameter ξ in (4.4) to

the operator’s input in a manner that the effective magnitude is proportional to the controller gain.

We propose that in (4.4), the parameter ξ to be

ξ = νφ (4.6)

where ν ∈ R+ is a design parameter that scales the proportionality between the effective magnitude

φ and controller gain parameter ξ.

Figure 4.2: Normalized Joystick Axes and Visualization of Effective Magnitude
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For a faster response, a larger value should be assigned to ν in (4.6). If the aim is to have

the controller gain to be very sensitive to the effective magnitude of operator’s input, then one

can assign ν to be of small value, such as in the case surgical robots where the systems have fast

dynamics and operational precision is critical. In the case of experiments with the excavator, we

selected a larger value for ν because the hydraulic dynamics of the excavator are slow [95]. The

DSC controller then effectively resembles a proportional controller with a large gain and saturates

very fast once the error term is provided. Also notice that the operator’s input along different axes

gets normalized to the range of [−1, 1] to facilitate the formulation of effective magnitude; thus, in

practice, it is suggested to set κ such that both inputs are in the range of [−1, 1] for blending. The

blended input then gets mapped to the required range of physical actuation signals, for example

PWM duty cycles or voltage levels, by a proper affine transformation.
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5. SUBGOAL ADJUSTMENT

A dynamic adjustment of the nominal subgoals learned from demonstration is necessary for

BSC to provide effective long-term assistance to human operators. One important reason is that

the environment in which the task is performed, or the target object may change significantly due

to repeated execution of the task. The nominal subgoals learned from the demonstration performed

in initial task condition have to be adjusted to adapt to such changes. This is a significant chal-

lenge for BSC and has not been addressed in the literature. This chapter addresses this challenge

by proposing a method to modify the nominal subgoals gradually during dynamic task execution.

Section 5.1 introduces the motivation for subgoal adjustment. The characteristics of operator be-

havior, which inspired the development of subgoal adjustment tools, are provided in Sec. 5.2. A

method for detecting the subgoal adjustment actions initiated by a human operator is provided in

Sec. 5.3, and a tool for incorporating such adjustment information into the nominal subgoal model

is presented in Sec. 5.4.

5.1 Necessity of Adjusting Nominal Subgoals

Figure 5.1: Gradual but Significant Accumulative Changes of Target Object

In collaborative robotics applications, operators are largely required to perform cyclic tasks
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where each cycle is similar but lacks well-organized repetition. Subgoals can change significantly

during the process of task execution. For example, Fig. 5.1 shows gradual but significant accumu-

lative change of the trenching area and depth in a construction task with excavators as execution

units. These changes typically can be adapted by making small adjustments in subgoals during

each task cycle while having the operational patterns remain largely the same. Execution of such

tasks will benefit significantly from the application of BSC. However, BSC methods which con-

sider only nominal subgoals without making any adjustments during the task operation will not be

able to provide effective assistance in off-nominal situations. If nominal subgoals are assumed all

the time, there could be gradual deterioration of automatic control assistance.

Human operators, with their unique sensory abilities, environmental awareness, and domain

knowledge, can generally make decisions and take actions to adapt to those changes. Predicting

those actions and including them a priori into a model is generally not feasible. Yet, meaningful in-

terpretations of such decisions or actions can be obtained in real-time via operator intent and can be

encoded into dynamic subgoal adjustment which will lead to improving the long-term performance

of blended shared control.

5.2 Characteristics of Operator Behavior

Based on observations of excavator operators during task execution, subgoal adjustments by

human operators are typically realized by making small modifications to the initial/nominal sub-

goals. Such observations are generally supported by studies and results from extensive research in

psychology [96, 97], i.e., complex human behavior is learned through the modification of simpler

behaviors, especially when environmental changes are gradual. For example, operators in exca-

vator trenching tasks usually make small adjustments to the subgoals each cycle to compensate

for the environmental changes, since it is an intuitively simple way to stay productive, such as

removing as much dirt as possible. With this viewpoint, we employ the following strategy for

the subgoal adjustment. If the operator commands a velocity for each robot joint, and if the op-

erator could make a correct adjustment to compensate for the subgoal changes, then the operator

knows the level of adjustment needed for each robot joint. It is assumed that such knowledge is
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instantiated in the operator’s actions taken for each robot joint near the subgoal which needs to be

adjusted. In the following, we will describe how to adjust the subgoals based on operator actions

by utilizing the notions of a hyper-rectangle (which embeds the subgoal with proper volume) and

a skill-weighted action integral (which accounts for the amount of adjustment needed).

Figure 5.2: Joint Space Ω and Adjustment Encoding Hyper-Rectangle ∆ in 2D

5.3 Detecting Subgoal Adjustment Actions

In order to detect operator’s subgoal adjustment information, with the assumption that such

behavior appears near the target subgoal, we define an Adjustment Encoding Hyper-Rectangle

(AEHR), denoted by ∆ to enclose the subgoal vicinity. It is a generalization of a rectangle to

higher dimensions and is dynamically created and centered at the predicted subgoal. The AEHR

also dynamically changes its center and edge length when the prediction updates the target subgoal.

The AEHR either lies within the m-dimensional robot joint space, denoted by Ω, or overlaps with

it. This process is illustrated in Fig. 5.2 with a two-dimensional visualization of the AEHR in the

robot joint space Ω. At time t, as shown in Fig. 5.2(a), the prediction result is λj according to

operator’s action vector a(t); hence, the AEHR is created and centered at λj . However, at time

t + δ, as shown in Fig. 5.2(b), the prediction updates the target to λn based on the new action

vector a(t + δ); thus, the AEHR changes its center and edge length accordingly. The AEHR thus

defines a dynamic region around the target subgoal whose size is dependent on the position of the
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last visited subgoal and predicted target subgoal. Once the robot enters into the subgoal vicinity,

until it leaves, the main focus is to collect the adjustment information instead of predicting.

The next challenge is to properly construct the volume of the AEHR, i.e., a reasonable small

region centered at the subgoal in which adjustment action will potentially take place. We want the

size of AEHR to be large enough to accumulate and encode sufficient adjustment information from

the operator and small enough such that the prediction is updated for active assistance as much as

possible. The solution we propose for this problem is to employ a Hyperbolic Slope Transition

Function. It is defined to be the ratio of the edge length of the AEHR and the distance of the

predicted subgoal along the direction of that edge length. Further, we set an upper limit on this

ratio to ensure that the AEHR is not too large when the distance between the last visited subgoal

and predicted subgoal is large.

We construct the HSTF function as a single function that is smooth and easy to implement in

practice. When the subgoals are close, we define

δr = dr (5.1)

where δr, r ∈ 1, 2, · · · ,m, denotes the edge lengths of ∆ and dr denotes the normalized distance

between subgoals along the r-th coordinate of the m-dimensional joint space Ω. The normalized

distance dr ∈ [0, 1] is given by

dr =
|λir − λjr|

max
p,q
|sp − sq|

(5.2)

where λir and λjr denote the distance of subgoals i and j along the r-th coordinate of the m-

dimensional joint space, and sp and sq denote two arbitrary points along the same coordinate.

When the subgoals are far from each other, we set a constant limit for each δr by

δr = µ (5.3)

where µ ∈ [0, 1] is the constant upper limit. We then connect δr = dr and δr = µ together smoothly
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by constructing the HSTF given by

δr = Γµκ,ξ(dr) = ξdr +
1 + tanh[κ(ξdr − µ)]

2
(µ− ξdr) (5.4)

where κ ∈ R+ and ξ ∈ (0, 1) are design parameters; κ controls by how much (5.4) resembles the

combination of δr = dr and δr = µ, and ξ is selected based on κ to ensure that the maximum slope

of (5.4) is less than δr = dr.

5.4 Encoding Adjustment Information

To encode operator adjustment actions within the AEHR, we define a method for interpreting

and encoding such information via a Skill-Weighted Action Integral (SWAI) ρ, which is given by

ρ = β

∫
a(t)1(Ω ∩∆|X 6= G) dt (5.5)

where β ∈ R+ is a design scaling parameter (controls how much the designer wants to scale the

integration results based on knowledge of the skill level of the operator), ρ ∈ Rm is the vector

denoting the adjustment for the m-dimensional target subgoal, and the action vector is given by

a(t) = [a1(t) a2(t) · · · am(t)]T ∈ Rm (5.6)

which are the operator inputs, where a1, a2, · · · , am denote operator command for each robot joint.

The indicator function 1(Ω ∩∆|X 6= G) is given by

1(Ω ∩∆|X 6= G) =


1, X ∈ (Ω ∩∆) given X 6= G

0, otherwise
(5.7)

The indicator function provides a way for SWAI to encode subgoal adjustment information only

when the robot is within the intersection of Ω and ∆ and when it has not reached the target subgoal.

Figure 5.3 provides an illustration of such conditions. Figure 5.3(a) illustrates this concept by
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showing that in ∆, the robot trajectory τ is perturbed by the operator’s subgoal adjustment actions

a(t), a(t+δ). The closed-loop tracking actions for target subgoalG are denoted by aCL(t), aCL(t+

δ), aCL(t + 2δ), the positions of the robot are denoted by X(t), X(t + δ), X(t + 2δ). Notice that

at the time t+ 2δ, the operator may be satisfied with the adjustment and take no additional action,

thus, a(t + 2δ) = 0 is not shown in the figure. Figure 5.3(b) illustrates another scenario where

the SWAI finishes encoding adjustment information since the robot has left the AEHR without

reaching the target subgoal.

Figure 5.3: Skill Weighted Action Integration in the Target Subgoal Vicinity

Once the robot either reaches the subgoal or leaves the AEHR as shown in Fig. 5.3, we update

the last visited subgoal L to the previous prediction result G which is the subgoal λk in subgoal set

λ. Then, adjustment to this subgoal is made in the m-dimensional robot joint space by

λ+
k = λ−k + ρ (5.8)

where λ+
k denotes the adjusted position, λ−k denotes its previous position.

One additional aspect is that once the robot enters ∆, we stop the prediction updates and keep

the last predicted subgoal as the target subgoal, and we fix the blending parameter to a constant

such that human operator’s blending weight is always higher than that of the automatic control

45



input for tracking the target subgoal. We also stop updating the operator’s effective magnitude and

fix it with its last computed value. Therefore the shared control assistance is still providing active

assistance but the operator can always override the assistance to make arbitrary adjustments.
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6. BLENDED SHARED CONTROL EXPERIMENTS AND RESULTS

This chapter presents the hardware platforms, design of experiments, and results that corrobo-

rate the methods developed in the previous chapters. It starts by introducing the physical platforms

with their hardware and software in Sec. 6.1. Since the methods developed for learning can work

independently and yield meaningful results for both full autonomy and shared control tasks, the

rest of the chapter is organized as follows. First, we illustrate the tasks being demonstrated to

the algorithms and present the learning results by themselves in Sec. 6.2. Then, the integrated

results on performance improvement for BSC with learning, prediction, and subgoal adjustment

are provided in Sec. 6.3 and 6.4, respectively. Lastly, we another experiment to corroborate the

effectiveness of the subgoal transition learning method and the corresponding results are presented

in Sec. 6.5.

Figure 6.1: Hardware Platforms
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6.1 Physical Platforms

To corroborate the developed methods, two physical platforms are employed for experiments.

One is an excavator for a trenching-and-truck-loading task and the other is a quadrotor with a

sequence of acrobatic flight motions. The hardware setups are provided in Fig. 6.1; the upper

right corner has the quadrotor and the rest of the items are a 1/12th scaled hydraulic excavator, its

controller, a container with sand and an empty container simulating the trench and a truck into

which the sand picked up by the excavator bucket is dumped.

Figure 6.2: Excavator Operation

A detailed diagram of the hydraulic and mechatronic systems of the excavator is shown in

Fig. 6.2. In this setup, we placed 4 sensors to track the displacement of the three cylinders (for
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boom, stick, bucket), and rotation of motor (swing motion); thus, the excavator is considered with

4 DOF. The computer system consists of a laptop with Intel Core i7-6600U CPU@2.60GHz for

heavy-duty computation, a Logitech F710 wireless controller with 2 standard joysticks interfacing

with the operator, a Beaglebone Black with AM335x 1GHz ARM Cortex-A8 processor and GPIO

pins for collecting sensor data and outputting actuation signals, a custom designed PCB board

for breaking out signal connectors, and a WiFi router for communication. A coordinate frame

assignment based on DH convention is shown in Fig. 6.3.

Figure 6.3: Coordinate Frame Assignment

The system software is implemented in Robot Operating System (ROS) [98] with different ROS

nodes. A detailed ROS software network structure and control flow is provided in Fig. 6.4; this is

the overall structure for supporting all the functions needed for the entire shared control process,

including learning, prediction, blending, and adjusting. The nodes running on the laptop-side

include joy reader (registering joystick input), reference generator, controller, blender, classifier,

and predictor. On the Beaglebone-side, a state reader node and a driver node are employed for low-

level sensing and actuation for the excavator. ROS topics, through which information are published
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and subscribed, are programmed to pass on computed information. Note that we have considered

a simple Proportional-Integral (PI) controller for each excavator actuator to generate the automatic

control subgoal tracking inputs.

Figure 6.4: ROS-based Software Structure and Control Flow

In the quadrotor setup, sensors are employed to measure the rotation and translation of the

quadrotor in a plane. A similar ROS software structure is employed to support different needs of

the experiments including data recording and learning. We consider the quadrotor with 3 DOF

since demonstration and sensing is designed to be carried out in a planar space.

6.2 Illustration of Task Demonstration and Learning Results

Two experiments are designed to test the developed algorithms for learning and prediction. The

hydraulic excavator experiment is designed with an skilled operator demonstrating the trenching

and truck-loading task for three cycles. The quadrotor flight demonstration consisting of having

an operator hand-holding the quadrotor to fly through a diamond trajectory with flip motions.

A visual illustration of such quadrotor demonstration process is provided in Fig. 6.5, where the

human operator holds the quadrotor roughly going through the points marked with 1, 2, 3, 4 and

back to 1 with a flip between 2 and 3, and an inverted flip between 3 and 4.
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Figure 6.5: Illustration of Quadrotor Demonstration

Visualization of the distribution extraction and subgoal learning results for the excavator demon-

stration based on MCV method are shown in Fig. 6.6, where each four-line-combination represents

a configuration of the 4 DOF excavator at a sample time. Subplot (a) provides the configuration

Figure 6.6: MCV Learning Process and Results of Excavator Demonstration

trajectory that excavator swept through during the entire demonstration, (b) provides the subgoal

distributions after the data set is processed via the MCV method, and the learning results in the

form of subgoals (each realized by a robot configuration) are provided in (c). To illustrate the ad-

vantage of MCV method on noise-sensitivity issues, the same demonstration data set is used with
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the threshold-based method in [15, 32]. Subgoal distributions extracted and learned subgoals are

provided in Fig. 6.7 (a) and (b), respectively. One can observe that although the subgoals can still

be learned properly, the subgoal distributions, i.e., data clusters in the mixture model, are not as

tight as the ones resulting from the MCV method. Such discrepancy is likely a result of threshold

crossing caused by noise, which would introduce statistical difficulties for BNPC inference in that

(1) it would take more iterations for Gibbs sampler to converge and (2) the clustering would be

more sensitive to the concentration hyper parameter of the CRP and, thus, error-prone.

Figure 6.7: Learning Results via Primitives-based Methods

In the excavator demonstration, we have access to robot states as well as joystick input values.

However, in some other engineering platforms, one may not have direct access to operator’s com-

mand input values. The learning data set thus has to be collected via measuring the robot velocities

that the operator’s commands get mapped to, and the proposed MCV method is able to generalize

to such scenarios. The quadrotor demonstration is one such case, where we only have access to

robot states since the demonstration is executed with the operator hand-holding the quadrotor. The

learning process and the results of the quadrotor demonstration are provided in Fig. 6.8, where (a)

provides the complete trajectory of the robot, (b) provides the extracted subgoal distributions via

MCV method, and (c) provides the final learned subgoals. As one can observe from the figure, the

MCV method effectively captures the subgoal distributions for statistical inference leading to sub-
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Figure 6.8: Learning Results from Quadrotor Flight Demonstration

goals which can serve as references for prediction and control assistance for SC purposes. Fig. 6.9

provides the quadrotor velocities (same data set was used in Sec. 2.2.2) along with the MCV val-

ues over time. The figure reveals the advantage of MCV method over threshold-based method on

handling the command patterns that are hard to categorize through simple thresholds. In situations

where setting thresholds does not lead to meaningful categorizations, the peak of M(t) at time

zero and the following four peaks in the MCV curve provide intuitive indications of distinguish-

able command patterns occurring at the subgoals; this can be observed in Fig. 6.9 corresponding

to points 1, 2, 3, 4 and back to 1 in Fig. 6.5. The extracted distributions also lead to proper subgoal

learning results.
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Figure 6.9: Quadrotor Velocities and MCV Value

6.3 Integrated Results on Performance Improvement with BSC

Since the overall purpose of developing the BSC algorithms is to improve the performance for

collaborative robotic tasks, an integrated BSC experiment is designed in the following manner.

We invited 8 novice operators and 1 skilled operator to participate the excavator trenching and

truck-loading task. The novice operators first familiarize themselves with the excavator operation

with an operational instruction guide (which is always available to novice operators during the

entire experiment). We call this stage the preparation stage (PSt). After this initial training and

notification of getting ready for the task, novice operators are asked to execute the task. We call

this stage the manual stage (MSt). Each task cycle is timed and the amount of sand each operator

loaded to the truck is weighed. Then the skilled operator performs the same task as demonstration

to the machine. The machine will learn from the skilled operator’s demonstration and run the

learning algorithms for task quantification as the foundation for providing intelligent assistance to

the novice operators. We call this stage the demonstration stage (DSt). Lastly, the novice operators

are asked again to execute the same task three cycles under the same condition, except for this

time, there is assistance from our BSC algorithms. The process is timed and the amount of sand

collected is weighed for each operator again. We call this the blended stage (BSt).

To illustrate the improvement with and without assistance, in Fig. 6.10, we present 3 sets of

data which show normalized joint states of the excavator for the same task from a novice oper-

54



Figure 6.10: Excavator States from Different Operation Trials

ator without intelligent assistance (a), a skilled operator (b), and the same novice operator with

intelligent control (c). Each trial is a repetition of the same task for the same duration of 120 s.

From the figure, one can observe that the novice operator’s improvement in performance with BSC

assistance is more consistent between cycles and closely matches the states of the skilled operator.

Figure 6.11 shows the improvement in performance of the 8 novice operators due to assistance

in terms of the average cycle time and the amount of sand moved per minute. On average, the cycle

time improved from 63.17 s to 32.84 s and the sand moved per minute increased from 1.25 lb to

3.91 lb. This constitutes an improvement in cycle time of 52% and weight per minute improvement

of 213%.
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Figure 6.11: Box Plots of Productivity and Efficiency Improvement

6.4 Integrated Results on Subgoal Adjustment BSC

In order to test whether the subgoal adjustment algorithms are able to provide more flexibil-

ity to the BSC scheme and offer sustainable performance improvement, another series of experi-

ments were designed in a similar manner with modifications. Based on a similar typical excavator

trenching and truck-loading task, 10 Novice Operators (NO), 1 Skilled Operator (SO) were asked

to participated in the experiments. The experiments were divided into various stages: preparation

stage (PSt), manual stage (MSt), demonstration stage (DSt), BSC stage (BSC-St), and BSC with

subgoal adjustment stage (BSC/SA-St).

In PSt, the basics of excavator operation and trenching and truck loading task are explained to

the NOs. We provide them with excavator operational instruction guide (which is always available

to novice operators), and have our NOs familiarize themselves with the excavator operations. After

the notification from NOs of getting ready for the task, we move to MSt and ask the NO’s to

start executing the task for 3 cycles (each cycle consists of picking up a bucket of sand, moving

the actuator to the location of the container and dumping into the container) without algorithm

assistance. The process is timed and the amount of sand loaded to the truck is weighed. We then

transition into DSt where we have the SO demonstrate the task, record the excavator states, and

run the learning algorithm to learn the subgoals from the SO’s demonstration. With the learned

subgoals, we start the BSC-St and activate the BSC algorithm with intent prediction to provide

active assistance. The NO’s are asked to execute the same task for 9 cycles. The time and weight
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data are collected and analyzed for each of the 3 cycles. Finally in the BSC/SA-St, we repeat the

process of BSC-St but provide active assistance with the the proposed subgoal adjustment BSC

algorithm. The data are collected and analyzed in the same manner as in BSC-St.

Figure 6.12: Performance Comparison for each 3 out of 9 Task Cycles

Figure 6.12 provides a comparison of the operator performance for each of the 3 task cycles.

We observe that for the first 3-cycles when there is no significant shape change of the target ob-

ject, the two BSC algorithms are all able to improve the operator performance from the manual

operation without significant quality difference. On average, the cycle time improved from 45.53

s (MSt) to 31.10 s (BSC-St) and 31.13 s (BSC/SA-St), and the sand moved per 3 cycles improved

from 3.78 lb (MSt) to 4.25 lb (BSC-St) and 4.55 lb (BSC/SA-St). For the last two 3-cycles, we

observed that the time improvement from the two BSC schemes, with respect to manual opera-

tion, stays very similar to the first 3 cycles. However, the performance in terms of the amount of

sand moved per 3-cycles is different for the two BSC schemes. For the intent prediction BSC, the

amount of sand moved on average goes down from 4.25 lb (cycle 1-3) to 2.28 lb (cycle 4-6) and

2.56 lb (cycle 7-9), because of target object shape change versus nominal subgoals. However, for

the subgoal adjustment BSC, the weight performance on average changes from 4.55 lb (cycle 1-3)

to 3.75 lb (cycle 4-6) and 4.65 lb (cycle 7-9). The subgoal adjustment BSC maintains its assistance
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Figure 6.13: Shape Change of the Target Object after 9 Task Cycles

quality almost throughout in the presence of gradual but significant shape change of the target

object as shown in Fig. 6.13. Furthermore, the recorded performance in the later cycles is still

Figure 6.14: Visualization of Subgoal Adjustments and Initial Shape

better than manual operation for the first 3-cycles when the task operation is relatively easier. In

addition, we observed that although the weight per 3-cycles data from the BSC/SA-St shows sus-

tainable performance improvement, the data spread is relatively wide. One possible reason could
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be the fact that in our implementation, we fixed the value of the skill level parameter of SWAI

since it is hard to evaluate one’s skill level and operation style in our case. However, for industry

applications, that problem could be solved by designing a standardized test to rate the skill level of

operators and relate that to the selection of skill level parameter.

To illustrate the effectiveness of our algorithm from other perspectives, we present in Fig. 6.14

a visualization of subgoal adjustments made by the SO. In the visualization, each subgoal is re-

alized by converting its position in robot joint space to its configuration space of the excavator

through forward kinematics. In Fig. 6.14, (a) shows the original learned subgoals and the initial

target shape, and the initial target shape is shown again along with the adjusted subgoals in (b) to

emphasize the amount of adjustment.

6.5 Subgoal Transition Probability Learning Results

To corroborate the effectiveness of the subgoal transition probability learning method, another

experiment is conducted. We first ask a skilled operator to demonstrate the same task again, due to

a different operational style, 6 subgoals are learned as indicated by Fig. 6.15.

Figure 6.15: Six Learned Subgoals from a Different Demonstration

We then ask the operator to execute the task many cycles again. However, instead of asking the
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operator to execute the task only by going through the subgoals in their nominal sequence 1 through

6 repetitively, we also asked the operator sometimes to go back to subgoal 2 after visiting subgoal

3 and continue the nominal sequence. This is to simulate the following realistic situation seen very

often in excavator trenching practice. Going from subgoal 2 to subgoal 3 is the typical subtask for

scooping a bucket of dirt, however, due to the stiffness of the dirt in the trench, an operator often

uses this scooping motion to loosen the dirt first, and then repeat the scooping motion again to pick

up a full bucket of dirt to improve productivity. So, the operator in some cycles of task execution

goes through subgoals in the nominal order of 1→2→3→4→5→6, some other cycles (less often)

goes through them in the order of 1→2→3→2→3→4→5→6. Since there are six subgoals, we

initialize the stochastic transition matrix T with a 6 × 6 matrix where every entry is equal to 1/6,

the convergence limit Q = 0.5, and we record the evolution T to corroborate the effectiveness of

our method.

Figure 6.16: Evolution of the First Row of the Stochastic Matrix

The first five update cycles of the first row is provided in Fig. 6.16 from top to bottom, where the

probabilities of each entry is given and the correlation between probabilities and colors is shown

on the right for better visual interpretation. From Fig. 6.16, we observe that the second entry gets

closer to Q = 0.5 each cycle and eventually converges, where the others decrease uniformly since

the operator always visit subgoal 2 after visiting subgoal 1. The first nine update cycles of the third

row is provided in Fig. 6.17 in the same fashion where we observe the following facts. At the 2nd
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Figure 6.17: Evolution of the Third Row of the Stochastic Matrix

and 5th cycles, the operator visited subgoal 2 after 3, each resulting in an increase to the 2nd entry

and a decrease to the 4th entry; for the rest of the cycles, the operator visited subgoal 3 and 4 in

the nominal sequence. Eventually, the 4th entry converges to Q = 0.5 and the 2nd entry is left with

a significant larger probability due to the fact that the evidence shows that subgoal transition from

3 to 2 happened a few times in addition to subgoal transition from 3 to 4. The final form of the

6 × 6 stochastic transition matrix is provided in Fig. 6.18 where each element of the 6 × 6 grid is

the corresponding entry of the final stochastic transition matrix. From Fig. 6.18, one observes that

for subgoal 1, 2, 4, 5, and 6, they all have a 0.5 probability of transitioning to the next subgoal.

However, for subgoal 3, in additional to a 0.5 transition probability toward the next subgoal, it also

has a 0.281 probability of transition to the previous subgoal. These results are expected from the

proposed method, namely, it effectively updates the model towards convergence based on observed

transitions with subgoal-visiting memory.

To illustrate the effectiveness of the intent prediction method from another perspective, the im-

provement in terms of probability increase over update cycles for the correctly predicted subgoals

based on operator’s action is provided in Fig. 6.19. Figure 6.19(a) provides the prediction proba-

bility samples of visiting subgoal 2 in situations when the last visited subgoal was subgoal 1, and
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Figure 6.18: Final Form of the Stochastic Matrix

the operator takes actions intended for visiting subgoal 2. Figure 6.19(b) provides the prediction

Figure 6.19: Prediction Probability Improvement over Update Cycles

probability samples of visiting subgoals 2 and 4, in red and blue, respectively, in situations when

the last visited subgoal was 3, and the operator takes actions intended for visiting subgoals 2 and

4, respectively. In the provided scenarios, one observes that the probabilities of correct predictions

increase and tend to stabilize around higher values with observed evidence and the corresponding

model update. One can also verify the values corresponding to the first few update cycles from

Fig. 6.19 with the evolution of the 1st and 3rd rows of matrix T provided in Fig. 6.16 and Fig. 6.17

and the update law given in Sec. 3.5.

62



7. COLLABORATIVE OPERATION OF ROBOTIC MANIPULATORS

Robot manipulators have been successfully employed in automating tasks in well-defined fac-

tory environments. However, in many circumstances, it is difficult for robot manipulators to ex-

ecute tasks autonomously due to environmental uncertainties and sensing limitations. Providing

human operators efficient and intuitive ways to operate robotic manipulators has the potential to

help achieve tasks that are (1) dangerous and taxing for humans to carry out manually by them-

selves and (2) challenging for full robotic automation due to sensing limitations and environmental

uncertainties.

Surface finishing operations, for example, are typically performed at the end of a product man-

ufacturing cycle and are critical for the quality of many mechanical products. Many of these oper-

ations, such as sanding/grinding of aerospace structures and chamfering/deburring of cast and ma-

chined parts, are labor intensive and can expose human operators to hazardous conditions. These

operations, however, have been performed mostly by human operators manually using handheld

motorized tools due to cost, uncertainty handling, and sensing limitations for automation using

robots [99, 100, 101]. Furthermore, surface finishing of free-form curved surfaces is difficult to

automate because of irregular geometry with uncertainties as well as the problem of registering the

part in the robot workspace.

In agriculture, timely inspection and sampling of crops is essential to detect and isolate plants

with disease. Take cotton plants example, roughly 90% of the production is determined during

the bloom and flowering stage. The inspection and sampling operations of cotton plants are cur-

rently performed by human crop consultants (HCCs). Executing these tasks in large farms is time-

consuming and labor-intensive. It often takes HCCs weeks to inspect and sample only a small

portion of a large farm for disease detection. It is envisioned that manipulators with cameras and

grippers can be mounted on mobile platforms and HCCs can remotely command the robot arm to

perform necessary operations for disease detection with active assistance provided by shared con-

trol. Many other applications (underwater construction, dangerous material handling in disaster
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response, etc.) also require similar object inspection and handling operations, and are still mostly

done by humans. These tasks typically require observing a target object from different angles, then

deciding an appropriate angle to take pictures, approach and collect samples for evaluation.

7.1 Existing Methods and Key Challenges

As mentioned earlier, employing remotely controlled robotic manipulators with human-machine

shared control has the potential to deal with challenges that are often difficult to solve by employing

methods that rely only on full autonomy. However, to design an effective robot manipulator system

with human-machine shared control, one has to overcome several key challenges. How does one

decompose and map the six degrees-of-freedom (DOF) motion of the end-effector into the input

device such as a joystick or a general-purpose game controller? When holding a joystick-like de-

vice, the tendency of the human operator is to provide input (such as up, down, left, and right) with

respect to a fixed reference that is associated with the image. How does one design the operational

interface such that the sense of up, down, left, and right of the human input can be mapped to the

robot end-effector motion, which does not require the human to think about a change of reference?

Further, how should one design the operational interface such that the human operator’s input can

be quantitatively compared with the automatic control input for a certain action which will form

the basis for human intent prediction and shared control?

Various joystick devices have been employed to facilitate human-controlled manipulator opera-

tions [102, 103], which allow operators to command end-effector motions in the robot base frame.

This can be convenient for certain applications; however, it is challenging when a task requires

moving/orienting a robot along some trajectory with respect to a target object. Touch-screen de-

vices [104], motion capture systems [105], and master-slave mechanisms [106, 107] have also been

employed to control robot manipulators. The obvious benefit is that they allow the human operator

to intuitively specify the robot end-effector pose using body gestures or slave devices. However,

fast and precise registration of operator’s input via touch-screens or motion capture systems is

difficult.

In the following, we first present two methods for the collaborative operation of a robotic
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manipulator. The first method requires the human operator to observe the robot and task ob-

ject/environment from a third-person view while controlling the robot. It uses a mixed world and

robot frame and employs a hybrid motion and force control to realize coordinated shared con-

trol. The second method requires the human operator to observe the object/environment from a

first-person view through a camera mounted on the robot end-effector. It uses computer vision to

detect objects and predict the human operator’s intent, and shares the control authority between

the human and vision-based closed-loop control to provide intelligent assistance. These methods

can be applied to different applications and each of them has its own advantages. Different exper-

iments are designed for each method and results are presented to corroborate the effectiveness of

the methods.

7.2 Third-Person View Collaborative Operation with Hybrid Control

7.2.1 Operating Frame Construction and Joystick Interface Design

To extract features and frames from typical manual operations that can be applied to robot

manipulators, we consider common characteristics in different applications that are visually illus-

trated in Fig. 7.1 (all figures in this chapter are provided at the end of the chapter). The frames

{Xs, Ys, Zs}, {Xb, Yb, Zb}, and {XN , YN , ZN} denote the world/space frame, end-effector/body

frame, and normal frame (to the surface), respectively. We will use the notation {s}, {b}, and {N}

to denote these three frames for simplicity.

If one were to pick up the object shown on the inclined surface in Fig. 7.1 by the robot, a

simple procedure for achieving this task consists of the following elements. Orienting the robot

end-effector such that the frame {b} is aligned with the frame {N}, whose orientation is easy to

specify using frame {s} as reference from a human’s perspective, then moving the end-effector

in its own frame {b} to adjust and approach. Another example is the motion on a curved surface

shown in Fig. 7.1: if part of a surface finishing operation requires the end-effector to travel along

the surface trajectory (highlighted in orange color) with a desired contact force, an effective and

intuitive way can be described as follows. First, orienting the end-effector according to frame {N}
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on the left, aligning Zb with ZN , and moving along Zb until a desired contact force is achieved.

Then, while maintaining contact, to travel along the trajectory, one simply needs to move along the

Yb while, at the each instantaneous moment, orienting frame {b} such that Zb is always normal to

the surface and Yb is pointing to the travel direction.

Because of the aforementioned features of this approach, we refer to it as the Instantaneous

Surface Normal Approach (ISNA). To apply it in the context of robot manipulator operations, one

can consider the following elements. Assuming that the human operator has a desired trajectory

based on domain knowledge, then the following aspects are easy to observe and specify from the

operator’s perspective: the orientation of frame {b} in frame {s} which is the reference frame,

and the translation direction in frame {b}. From the perspective of a robot manipulator, if a refer-

ence contact force is desired along one of its {b} frame axes, then tracking this reference force is

straightforward with a closed-loop controller. Next, we consider the interface design of a general

purpose joystick such that these instructions can be delivered to a robot manipulator effectively by

a human operator.

Among the commercially available general purpose joysticks, most of them provide the fol-

lowing common features which are employed in our design to encode manipulator operation com-

mands. A 3-axis stick which provides 3 continuous states; employed to encode reference orien-

tation of {b} in {s}. A 2-axis navigator button where each axis provides 3 discrete states such

as forward/backward/stop; employed to command translation on the Xb-Yb plane. A slider which

provides a continuous state; employed to encode the magnitude of translation velocity. A trigger

and a few programming buttons with each providing one discrete on/off state; can be employed to

trigger force control on Zb-axis or command end-effector to move along Zb-axis and grip. Some

examples of commercial joysticks are provided in Fig. 7.2, including models by PXN, Thrustmas-

ter, Logitech from left to right. We also denote the frame of the 3D-stick with {Xj, Yj, Zj}, or {j}

for simplicity.

Such a design would allow a human operator to command a robot end-effector to travel along

any trajectory on a curved surface or execute similar operations with a general purpose joystick

66



effectively and intuitively. The effectiveness comes from the fact that human operator’s joystick

motions are closely mapped to the motions of robot end-effector from a geometric perspective.

The process, with human-machine collaboration in the form of coordinated shared control, occurs

in the following manner. Human operator, based on visual observation of robot and target object,

provides: (1) desired orientation via the stick in {s} frame, (2) translation direction via navigator

and its velocity via slider in {b} frame, and (3) indication of making contact with desired force

or moving/gripping via trigger or on/off buttons in {b} frame. The human signals are combined

with the measured robot states and contact force to generate error terms for automatic control. The

automatic control, then, coordinates the motion of individual robot joints to achieve end-effector

motion specified by the human operator using the intuitive ISNA.

7.2.2 Design and Implementation of a Hybrid Control Law in the Mixed Frame

To realize the command provided by human operator described in Section 7.2.1, we require a

hybrid control law capable of tracking mixed reference input consisting of orientation (position) in

frame {s} and translation (velocity) and force in frame {b}. In formulating such a hybrid control

law, we employ the concepts of screw-axis and robot kinematics based on the Product of Expo-

nential (PoE) formulas [108, 109]. The main reason for this selection is that these tools provide

easy access to space and body Jacobians, in contrast to the traditional analytical Jacobian, which

are needed in operating the robot using ISNA. We also design the control law based on the as-

sumption that the robot allows users to command the velocity of each joint independently which is

guaranteed by its low-level controllers. In the following we will describe, from the perspectives of

generating the control input, the following aspects: (1) orientation error calculation, (2) construc-

tion of constant end-effector velocity, and (3) integration of force with orientation and velocity to

formulate a single hybrid control law.

7.2.2.1 Orientation Error

Since the 3-axis stick has three rotation axes, as introduced in Sec. 7.2.1, we use these three

rotation angles to provide orientation reference for the end-effector. We denote the three rotation
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angles provided by the operator as ψ, θ, φ for the joystick axes Zj, Yj, Xj provided in Fig. 7.2.

Note that when the joystick is in its neutral position, its frame {Xj, Yj, Zj} is aligned with robot

space frame {Xs, Ys, Zs} and one can represent the orientation of {Xj, Yj, Zj} with respect to

{Xs, Ys, Zs} by

Rd = RZ(ψ)︸ ︷︷ ︸
Yaw

×RY (θ)︸ ︷︷ ︸
Pitch

×RX(φ)︸ ︷︷ ︸
Roll

=


cψcθ cψsθsφ − cφsψ sψsφ + cψcφsθ

cθsψ cψcφ + sψsθsφ cφsψsθ − cψsφ

−sθ cθsφ cθcφ


(7.1)

where Rd ∈ SO(3) is the rotation matrix which contains the desired orientation and cq, sq denote

cos q, sin q, respectively, for q = ψ, θ, φ, . The measured orientation of the robot end-effector

R ∈ SO(3) with respect to its space frame can be extracted from

T (q) =

R L

0 1

 (7.2)

where q ∈ Rn is a vector of joint angles qi ∈ R for i = 1, 2, · · · , n of an n-DOF robot, and

L ∈ R3 is the position of end-effector in the space frame. T (q) ∈ SE(3) is the homogeneous

transformation of robot forward kinematics which can be computed based on the PoE method by

T = Me[β1]q1···[βn]qn (7.3)

where [βi] ∈ se(3) is the matrix representation of the ith screw axis βi ∈ R6 expressed in the

body frame. M ∈ SE(3) encodes the end-effector configuration in the space frame when all qi’s

are zero. Realizations of M , [βi], βi are given in (7.17), (7.18), and (7.19), respectively, with a

particular robot used for the experiments.
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The orientation error vector Ωe ∈ R3, then, can be calculated using

Ωe = F [log(RTRd)] (7.4)

where log(RTRd) ∈ so(3) is the matrix logarithm of the matrix representation of orientation error,

and F(·) : so(3) 7→ R3 is a mapping which takes a 3 × 3 skew-symmetric matrix to its vector

form. Note that the orientation error Ωe is generated by (1) human operator providing reference

orientation Rd and (2) robot providing measured end-effector orientation R. This will be used in

the hybrid control law to make R follow Rd.

7.2.2.2 Constant Translation Velocity with Adjustable Magnitude

When moving the robot end-effector, a constant translation velocity is desired. For example,

in surface finishing operations, the time a finishing tool stays on a surface is proportional to the

material it removes while a constant contact force is maintained. Note that the operator’s input

for translation is provided by the 2-axis navigator which provides two discrete signals that can be

encoded into a vector v = [x, y] where x, y ∈ {−1, 0, 1}. Then, to generate a constant translation

velocity Vc ∈ R2 with its direction indicated by [x, y], one can normalize the input vector v using

Vc = α

[
x

||v||
,
y

||v||

]T
(7.5)

where the magnitude of Vc is specified by relating the scaling parameter α ∈ R+ with the joystick

slider.

To find the corresponding robot joint velocities for accomplishing Vc, the following kinematics

mapping exists:

q̇ = Jb(q)†
[
0 0 0 V T

c 0

]T
(7.6)

where Jb(q)† ∈ Rn×6 is the pseudo-inverse of the body Jacobian (a key element for the hybrid

control law, instead of space or analytical Jacobians) for an n-joint robot represented in the {b}
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frame. Following the PoE formulation, the body Jacobian Jb(q) can be obtained by

Jb(q) =

[
Jb1 Jb2 · · · Jbn

]
(7.7)

where Jbi for i = 1, 2, · · · , n are columns of the matrix Jb(q) and are given by

Jbi = Ade−[βn]qne−[βn−1]qn−1 ···e−[βi+1]qi+1 (βi) (7.8)

for i = n − 1, n− 2, · · · , 1 with Jbn = βn, where e(·) : se(3) 7→ SE(3) is the matrix exponential

function and Ad(·) : SE(3) 7→ R6×6 is the adjoint operator of a homogeneous transformation.

Taking T (q) in (7.2) as an operand, the result of the adjoint mapping is simply

AdT (q) =

 R 0

LR R

 (7.9)

7.2.2.3 Hybrid Control Law

With a robot capable of measuring the contact force F along the Zb-axis, and the desired

reference force Fd for a specific application, we can define the force error as

Fe = Fd − F (7.10)

Note that Fe ∈ R from (7.10) is represented in the Zb-axis and Vc ∈ R2 from (7.5) is represented

in Xb and Yb axes. Note also that they, along with Ωe ∈ R3 from (7.4), are decoupled in the {b}

frame. Therefore, at any given time t ∈ R+, one can construct a control input term He(t) ∈ R6 by

combining those decoupled elements in the form of

He(t) =

[
Ωe Vc Fe

]T
(7.11)
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The hybrid control law allowing the robot to follow human operator’s command input using ISNA

is then given by

q̇ = Jb(q)†
[
KPHe(t) +KI

∫ t

0

He(t)dt

]
(7.12)

where q̇ ∈ R6 is the final output to the robot in the form of individual joint velocities.

To ensure that the hybrid control law would result in the end-effector following the command

provided by the human operator via joystick in the fashion discussed in Section 7.2.1. The control

parameters in (7.12) are designed as follows. KP ∈ R6×6 is given by

KP = diag(pφ, pθ, pψ, 1, 1, pf ) (7.13)

and KI ∈ R6×6 is given by

KI = diag(iφ, iθ, iψ, 0, 0, if ) (7.14)

where scalars pφ, pθ, pψ, pf and iφ, iθ, iψ, if are proportional and integral gains for orientation and

force terms, respectively.

The hybrid control law in (7.12) with gains provided in (7.13) and (7.14) will result in end-

effector orientation and contact force converging to their references given in frame {s} and the

instantaneous {b} frame along Zb-axis, respectively, while moving along the reference direction

with a constant speed in theXb-Yb-plane of the instantaneous {b} frame. The speed of convergence

will depend upon individual parameters selection and robot physical capabilities. However, the

effectiveness of the hybrid control law in (7.12) can be understood by observing that the design of

matrices KP and KI which essentially combines into one equation decoupled entries from: (1) the

velocity kinematics

q̇ = Jb(q)
†Vb (7.15)

for end-effector translation motion with velocity Vb ∈ R6 in the {b} frame; and (2) the task-space

motion control law

q̇ = Jb(q)
†
[
KPXe(t) +KI

∫ t

0

Xe(t)dt

]
(7.16)
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for end-effector position control with Xe ∈ R6 encoding the difference between desired and mea-

sured orientation and position. The effectiveness and analysis of (7.15) and (7.16) can be found in

any PoE-based robotics references such as [108, 109]. The crucial observation is that both (7.15)

and (7.16) use the body Jacobian to map end-effector motion to joint velocities. The construc-

tion of (7.11) essentially decouples space frame orientation, body frame translation and force and

makes the combined term applicable to (7.12) while maintaining the relationships in (7.15) and

(7.16) by the design of (7.13) and (7.14).

7.2.2.4 Kinematics Setup for the Proposed Joystick Interface

We employ a UR5 robot, a 6-DOF robot with 6 revolute joints, as an example to illustrate a

kinematics setup which will facilitate intuitive human operation and the hybrid control law im-

plementation. However, the procedure is applicable to any open-chain robots. The same robot is

also used later for conducting experiments. The UR5 robot is provided in Fig. 7.3 with all joints

at their zero configuration. In addition to the same notation used in frames {s} and {b}, we use

s1, s2, · · · , s6 ∈ R3 to denote the joint rotation axes and H1, H2,W1,W2 ∈ R+ to denote lengths.

The necessary geometric information for calculating the robot kinematics is summarized in

Table 7.1 where the expression of each joint axis si and a selected point ai on the axis are provided

as vectors in the robot body frame. Thus, the M matrix in (7.3) is given by

M =



1 0 0 −(L1 + L2)

0 0 1 −(W1 +W2)

0 −1 0 H1 −H2

0 0 0 1


(7.17)

and the ith body screw axis in its matrix form can be computed by

[βi] =

F−1(si) −si × ai

0 0

 (7.18)
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where F−1(·) is the inverse mapping of F(·) in (7.4). The corresponding vector form of the same

screw axis as in (7.18) is then given by

βi =

 si

−si × ai

 (7.19)

Table 7.1: Robot Geometry

Joint axis si in {Xb, Yb, Zb} Selected point ai on si in {Xb, Yb, Zb}
s1 (0,−1, 0) a1 (L1 + L2, 0,W1 +W2)
s2 (0, 0,−1) a2 (L1 + L2,−H2, 0)
s3 (0, 0,−1) a3 (L2,−H2, 0)
s4 (0, 0,−1) a4 (0,−H2, 0)
s5 (0, 1, 0) a5 (0, 0,W2)
s6 (0, 0,−1) a6 (0, 0, 0)

7.2.3 Experiments and Results

To test the effectiveness of the developed method, two experiments are conducted simulating

surface tracking and pick-and-place type applications. A physical platform is employed for both

experiments which includes a 6-DOF UR5 robot, a Logitech Freedom 2.4 GHz wireless joystick,

an ATI AXIS-80 force/torque sensor, experiment-specific end-effectors and operation platforms.

The UR5 allows a user to command its joint velocities independently, and provides feedback mea-

surements of its joint angles and velocities in real-time. The ATI force/torque sensor provides force

and torque measurements along its x, y, z axes.

7.2.3.1 Surface Tracking Experiments

The setup for the first experiment is shown in Figure 7.4. A 3D printed end-effector equipped

with a marker is attached to the robot. The experiment requires a human operator commanding the

robot end-effector to draw an L-shaped line inside the constrained area indicated by the black tapes
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on the curved surface shown in Fig. 7.5(a). A detailed illustration of the end-effector is provided

in Fig. 7.5(b), where we have designed sharp tips for the fixture (as shown) as an indication of x-y

translation directions to the human operator.

During the line-drawing operation, we also require the human operator to keep the marker

normal to the curved surface by properly orienting the end-effector via joystick. We record the

operational process, specifically, the force measured by the ATI sensor along the z-direction of the

robot body frame and the configuration of the robot during the process. Note that the geometry of

the curved surface is unknown to the robot and is not measured by any sensor except through the

observation of human operator which the operator uses to orient the end-effector via the joystick.

Sampled robot configurations, in temporal order indicated by numbers, during the operation

are presented in Fig. 7.6. From the figure, one observes that the robot end-effector gets aligned

perpendicular to the curved surface which corresponds to the orientation commanded by the human

operator via joystick. Fig. 7.7(a) provides a plot of the force measurement along the end-effector

z-axis versus time, where the desired force level is set to 10 N. Results from the force plot indicate

that the contact force is regulated to within ±1 N range, indicated by red and green dashed lines.

The L-shaped line drawn by the robot is shown in Fig. 7.7(b).

7.2.3.2 Material Handling Experiments

The setup for the second experiment is shown in Fig. 7.8 where the end-effector is equipped

with a block, and there are two 3D printed structures with the corresponding cavities to fit the

block. This experiment requires the human operator to command the robot to move the block

from one platform to another. The cavities are designed such that the block can only fit when it is

correctly oriented with respect to the opening space. Similar to the previous experiment, there are

no additional sensors except human observation.

Sampled robot configurations, in temporal order indicated sequentially by numbers, during the

operation are presented in Fig. 7.9. The robot is shown to be picking up the block from the left

platform and dropping the block in the right platform. Again, one observes that the orientation

of the end-effector effectively follows the operator’s input via joystick as shown in the lower-left
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of Fig. 7.9. Figure 7.10 provides a wire-frame diagram of robot configurations during the whole

process: subplot (a) shows the picking up process where the robot picks up the object from the left

platform and moves to a neutral position; subplot (b) shows the placing process where the robot

moves from the neutral position and places the block in the right platform. The wire-frame color

in each of Fig. 7.10 (a) and (b) is shaded from light to dark to highlight passage of time as the

operation progresses.

We also recorded the controller performance by tracking end-effector orientation with respect

to the reference input provided by the joystick. Fig. 7.11 shows the plots of robot performance

against roll, pitch and yaw reference inputs provided via the joystick. We can observe that the

end-effector tracks the desired inputs effectively.

7.3 First-Person View Collaborative Operation with Vision and Intent Prediction

There are certain applications where the previous method may not work well, or the human

operator may find it difficult to operate. We illustrate these additional challenges and propose

method to address them in this section.

7.3.1 Robot System and Operational Interface

To illustrate challenges of remote robot operation for some other applications where the pre-

vious method may not work well, consider another example task shown in Figure 7.12 of a robot

end-effector inspecting an object (a trophy in this case) around its Xo axis and in its Yo-Zo plane,

and grabbing it along its Zo axis. We first discuss human operation based on the fixed world

camera followed by the camera mounted on the end-effector. If the operator looks through the

world camera and provides commands in the robot base frame {Xs, Ys, Zs}, the end-effector mo-

tion directions are relatively straightforward to specify; however, executing an end-effector motion

trajectory around the trophy is difficult because the object frame {Xo, Yo, Zo} is not aligned with

the robot base frame. One can also consider the operator looking through the world camera and

providing commands in the end-effector frame {Xb, Yb, Zb}, where the joystick left-right and up-

down axes correspond to end-effector Xb and Yb motions, respectively. This also creates a problem
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because the human operator tends to have a fixed reference for up-down-left-right with respect to

the input device as shown in Fig. 7.13(a), the corresponding Xb, Yb motions are not fixed in the

world camera’s view and are difficult to identify.

To overcome the above issues of employing a fixed world camera, we propose an operational

interface designed with a robot camera (also shown in Fig. 7.12) mounted at the end-effector center,

where the horizontal and vertical directions of the camera’s video images are aligned with the

end-effector Xb, Yb axes, respectively. We employ a general purpose game controller with two

joysticks (each with two DOF) and several command buttons as shown in Fig. 7.14, and map

the 6-DOF end-effector motions as provided in Table 7.2. This allows for intuitive mapping of left

and right joystick up-down-left-right to translating and rotating the end-effector up-down-left-right

with respect to an object of reference provided by the camera images. This task can be simplified

into the following steps. (1) Rotate along the Xb axis such that the Xo-Yo plane is parallel with

the Xb, Yb plane as shown in Fig. 7.13(b). (2) Move along the Xb, Yb axes to center the object as

shown in Fig. 7.13(c). (3) Rotate along the Zb axis to correct the object orientation in the video

as shown in Fig. 7.13(d). Lastly, (4) rotate along Yb axis to inspect and/or grab the object. This

interface design also helps develop an orientation control law, provided in Sec. 7.3.2, that requires

minimum vision feedback, i.e., without the object’s depth or orientation. One can then compare

human operator input with the orientation control input to formulate human intent prediction and

human-machine shared control as provided in Sec. 7.3.3.

Table 7.2: Game Controller Keys versus Robot Motion

End-Effector Motion Key Name Signal Type Range
±Xb,±Yb Translation L-Joystick Continuous (2-DOF) [−1, 1]
±Xb,±Yb Rotation R-Joystick Continuous (2-DOF) [−1, 1]
−Zb Translation RB Discrete {0, 1}
+Zb Translation LB Discrete {0, 1}
−Zb Rotation RT Discrete {0, 1}
+Zb Rotation LT Discrete {0, 1}
Gripper Open A Discrete {0, 1}
Gripper Close B Discrete {0, 1}
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To realize the robot motion in the end-effector Xb, Yb, Zb frame mapped from the game con-

troller, one can employ the body Jacobian in [110] to compute the required joint velocities q̇ ∈ Rn

given by

q̇ = Jb(q)†uh (7.20)

where q ∈ Rn is the robot joint positions, Jb(q)† is the pseudo-inverse of the body Jacobian

Jb(q) ∈ R6×n for an n-DOF robot, and uh is the human input given by

uh = Σ

[
ωx ωy ωz vx vy vz

]T
(7.21)

where ωi ∈ R and vi ∈ R, i = x, y, z, respectively, are the angular and translational velocities, and

Σ = diag(σ1, σ2, σ3, σ4, σ5, σ6) where σi ∈ R+, i = 1, 2, · · · , 6 are design parameters that allow

the designer to scale the corresponding velocities. We assume that the robot is in velocity-mode,

i.e., joint velocities can be specified as inputs; most industrial robots provide an option for one or

more command modes, i.e., position, velocity or torque modes, and we can similarly design the

commanded input in other modes.

7.3.2 Orientation Control via Computer Vision

With the operational interface proposed in Section 7.3.1, one can still find that, in many situ-

ations, simultaneous coordination of translation and orientation to be challenging. We can utilize

the camera and provide vision feedback to automate the Xb, Yb orientation control such that the

end-effector would keep pointing at the target object; while the human operator shares the control

authority by focusing only on the control of rotation around Zb and translation along Xb, Yb, Zb.

This automatic orientation control will be activated based on human intent prediction and inte-

grated into a human-machine shared control approach developed in Sec. 7.3.3. In the following we

will first discuss general orientation control methods that require either depth and/or orientation

of the object, which typically cannot be provided by low-cost cameras. This is in contrast to the

method that we subsequently describe which does not require depth and orientation of the object.

A general control approach for moving the end-effector to a desired orientation is through the
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following joint velocity control action: q̇ = Jb(q)†ue(eΩ) with ue as a function of the orientation

error eΩ = [Ωe, 0, 0, 0]T where Ωe = F [log(RTRd)] and R,Rd ∈ SO(3) are rotation matrices

that encode the current and desired orientation in the robot base frame, log(RTRd) is the matrix

logarithm ofRTRd, and F [·] : so(3) 7→ R3 maps a 3×3 skew-symmetric matrix to its vector form.

One can choose any control action ue(eΩ); for example, a PID controller. The current end-effector

orientation R can be found via robot forward kinematics. The desired orientation Rd is typically

computed by one of the following two methods.

The first method is to specify the three Euler angles, roll φ, pitch θ, and yaw ψ, and then

compute Rd = RZ(ψ)RY (θ)RX(φ), where RI(j) for i ∈ {X, Y, Y } and j ∈ {φ, θ, ψ} denotes

a rotation matrix encoding rotation along axis i by angle j. However, obtaining the Euler angles

requires the computer vision algorithms to detect the orientation information in addition to the ob-

ject’s relative location in the camera’s frame. The second method is to construct a coordinate frame

that encodes the desired end-effector orientation and express it as a rotation matrix. For example,

to align the end-effector to the normal direction of a surface, one can find, through measurement,

two vectors xm, ym ∈ R3 (and xm ⊥ ym) that are tangent to a point on the surface. Then, by con-

structing a third vector from the point satisfying xm ⊥ ym, ym ⊥ zm, zm ⊥ xm, one can express

the desired orientation by a rotation matrix asRd = [x̂m, ŷm, ẑm], where x̂m, ŷm, ẑm are xm, ym, zm

normalized, respectively. Obtaining the vectors to which the end-effector gets aligned generally

requires spatial location of the object computed from precise depth information. Additionally, to

construct Ωe, one has to compute the end-effector current orientation R via forward kinematics

that can require significant computation.

We propose the following method for orientation control that does not require object’s depth or

orientation information. We consider a camera placed at the origin of the end-effector frame with

the camera image axes aligned with the end-effector Xb, Yb axes; this allows us to use orientation

control around these axes to bring the object to the center of the image, as illustrated in Fig. 7.15(a).

From the images, we can obtain the values of xo and yo which can be utilized to do orientation
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control. We define the Xb, Yb orientation error to bring the object to the image center as

eo =

[
+yo −xo 0 0 0 0

]T
. (7.22)

We can form a control action ua(eo), which is a function of the orientation error, and consider the

following joint velocity control:

q̇ = Jb(q)†ua(eo). (7.23)

One simple example control action is proportional control given by ua(eo) = KP eo. This con-

trol law generates angular velocities to rotate the end-effector up and right until yo and xo are

zero, respectively, and it does not require the depth information or computation of current rotation

matrix.

7.3.3 Human Intent Prediction and Shared Control

In this section, we will first describe the method to predict the target object based on human

intent that will facilitate generation of automatic orientation control input. Then, we will describe

the shared control approach that blends the automatic orientation control input (rotation around

Xb, Yb axes) to bring the target to the center of the image, and human input to control translations

along Xb, Yb, Zb axes and rotation around Zb axis.

Assuming there are m objects detected from the image as illustrated in Fig. 7.15(b), show-

ing three here for visual simplicity, we would get their location information (xoi, yoi) for i =

1, 2, · · · ,m. An automatic Xb, Yb orientation control input to center object i in the image is given

by uai = KPeoi where eoi = [+yoi,−xoi]T . If it is observed that the human input as given by

(7.21), then the Xb, Yb orientation components can be utilized to obtain the intent of the human to

center a specific object, which can be utilized to activate the automatic orientation control input

towards that target object. Denote the vector ah = [ωx, ωy]
T containing the Xb, Yb orientation com-

ponents of the human input. Now, we compare the ah human action vector with all the directional

vectors uai for i = 1, 2, · · · ,m and choose the object that closely aligns with ah as the predicted

target. We quantify this prediction as to which of the objects the human is intended to center by
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constructing a dynamic angle given by

θi = arccos

(
ah · uai
||ah|| ||uai||

)
. (7.24)

Then, the index of the most likely target is given by

k = argmin
i

θi (7.25)

for i = 1, 2, · · · ,m, and the smallest angle is θk.

Then, to provide intelligent assistance to the human operator where the Xb, Yb orientation is

assisted by the automatic control, we propose the following shared control law:

q̇ = Jb(q)†ub (7.26)

where ub is a shared control input term. To facilitate the expression of ub, we first re-write the

human input in (7.21) as

uh =

[
uTh1 uTh2

]T
(7.27)

where uh1 ∈ R2 and uh2 ∈ R4 are the first two and last four components of uh. Then, the shared

control input term can be written as

ub =


[0T uTh2]T + ua, θk < θ∗

uh, otherwise
(7.28)

where θ∗ is a design parameter for a prediction confidence threshold. It means that the Xb, Yb

orientation control is delegated to automatic control if there is a predicted target, and we do so only

when we are confident about the human intent by checking if θk < θ∗. The realtime implementation

for this shared control law is provided in Algorithm 6.

Remark 4. Unlike conducting path-planning before moving a robot where the target location is
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Algorithm 6 Realtime Shared Control

Input: Objects location (xoi, yoi) ∈ R2 for i = 1, 2, · · · ,m, human operator input uh ∈ R6,
prediction confidence threshold parameter θ∗ ∈ R+

Output: Required robot joint velocity vector q̇ ∈ Rn

Initialization 1 Start with manual control given by (7.20), set a global variable K to store the
predicted object index

2: while (robot is not shutdown) do
if (no object is detected) then

4: Use manual control law given by (7.20)
else

6: if (uh1 6= 0) then
for (object index i = 1, 2, · · · ,m) do

8: Compute uai, i.e., set ah = uh1

Compute θi given by (7.24)
10: end for

Compute the predicted object index k given by (7.25)
12: Update global variable K = k

else
14: Preserve the previous value for global variable K

end if
16: Use shared control law given by (7.26)

end if
18: end while

known and fixed in the environment, achieving end-effector motion via robot Jacobians such as in

(7.26) may sometimes encounter robot configurations that are close to being singular. We provide

the following heuristic solution to address this issue and process the output joint velocities of

Algorithm 6 before sending them to the robot. Assuming that the robot joint velocities are limited

by motors as

− q̇max ≤ q̇i ≤ q̇max (7.29)

for i = 1, 2, · · · , n, where q̇max ∈ R+ is the magnitude of the limiting speed. Then, we process the

required joint velocity vector q̇ by

q̇∗ =


q̇max

q̇j
q̇, q̇j ≥ q̇max

q̇, otherwise

(7.30)
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where q̇j = max (q̇1, q̇2, · · · , q̇n) is the maximum among all the joint velocities computed in (7.26),

and q̇∗ is the final joint velocity sent to the robot. The result of such processing is a velocity

reduction (when approaching physical limits or singularities) without affecting the intended motion

direction by maintaining the proportionality among the elements of q̇.

Remark 5. Note that (a) singularities often affect some, not all, DOF, (b) joint velocity scaling

in (7.30) would make it increasingly slow for the robot to actually reach singularities, and (c)

the human operator can always sense a significant reduction of speed when the input magnitude

from the game controller stays the same. Thus, this approach of scaling joint velocities allows the

human operator to choose a different path before the computer fails to compute Jb(q)†.

7.3.4 Experiments and Results

To corroborate the proposed methods, we employed the robot system provided in Fig. 7.16 for

an object inspection and handling task. In this setup, we integrated a six DOF ABB robot with a

gripper (the development can be adapted to any general articulated robots). The gripper consists

of a Beaglebone controller, two servo motors connected with two fingers, a center camera and a

side camera. When the object and the gripper fingers are aligned at the center of the image, it

is difficult for the human operator to ascertain the distance from the fingertips to the object for

accurate gripping. The side camera is employed to resolve this problem by providing the human

operator another view from a different angle. The Beaglebone controller controls the motion of

the motors. The cameras can provide images and use computer vision algorithms to detect the

X-Y locations of objects with features specified by the user. The task requires a human operator

controlling the robot to inspect a tennis ball along a desired trajectory shown in Fig. 7.17 while (1)

keeping the object at the center of the images, and (2) keeping the trajectory line at the center of

the object. After reaching the end point of the trajectory, the human operator is to approach and

grab the object with the gripper. During this process, the human operator is only allowed to look

at the video provided by the gripper camera on a computer.

The real-time control with the proposed method is implemented in the Robotic Operating Sys-

tem with a wireless network connecting a computer and the Beaglebone Controller. An illustration
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of the software operation is provided in Fig. 7.18, where ABB Externally Guided Motion (ABB

EGM) library allows the user to specify robot joint velocities via the computer; the Beaglebone

Controller commands the finger motors via Pulse Width Modulation (PWM) signals.

Sampled robot configurations are provided in Fig. 7.19, and their temporal order is indicated

by numbers from 1 to 9 with 1 as the initial configuration. The tennis ball was not aligned with the

end-effector center at the initial configuration, whereas at configurations 2 through 9, the tennis

ball was centered with respect to the end-effector. Figure 7.20 provides sampled images from the

human operator’s perspective with their temporal order indicated by Roman numerals from i to vi.

One can observe that the tennis ball was centered to the images and the marked trajectory was at

the center of the object as required. Note that sampled robot configurations and images from the

human’s perspective are obtained while the end-effector is moved to follow the arrow trajectory

indicated on the tennis ball.

Figure 7.21 provides the object’s coordinates detected by the vision algorithm, human opera-

tor’s input, and the dynamic prediction angle evolution during the entire process. Note that all the

inputs and measurements are normalized to the range of [−1, 1]. The confidence threshold angle

in (7.28) was set to θ∗ = 10◦ for the experiment. There are four stages of the process as indicated

in Fig. 7.21(b) and (c). Initially, the object was off-center in the image. During the 1st stage, the

human operator issued command which includes orientation components. One can observe that

in the meantime, the dynamic angle in Figure 7.21(d) gradually decreases and drops below the

threshold; the automatic orientation control gets activated, and the robot starts to center the object

as reflected in Fig. 7.21(a). During the 2nd and the 3rd stages, the human only controls the Xb and

Yb translation of the end-effector, respectively, before and after hitting the turning point provided

in Fig. 7.17; while the automatic control keeps the object at the center of the image. During the

4th stage, the robot has reached the end point and the human operator slightly adjusted the Xb

and Yb translation for some final calibration, then approached and grabbed the object as shown in

configuration 9 of Fig. 7.19.

One can observe that the dynamic angle at Stages 2, 3, and 4 stays at the same value even when
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the Xb, Yb components of human orientation input are zero. This is because in the implementation

of Algorithm 6, we preserve the last predicted object index and the dynamic angle if the Xb, Yb

components of human orientation input go back to zero (before detecting the firstXb, Yb orientation

components from human input, there is no dynamic angle computed). This makes it easier for

the human operator because once the operator realizes that the automatic orientation control is

activated correctly, the operator can just focus on making theXb, Yb, Zb translation and Zb rotation,

without having to worry about the Xb, Yb orientation.

Figure 7.1: Extraction of Operating Frames and Procedure

Figure 7.2: General Purpose Joysticks and Common Features
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Figure 7.3: UR5 Frames and Axes Definitions

Figure 7.4: Setup for Surface Tracking Experiment

Figure 7.5: Curved Surface with Constrained Area and End-effector
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Figure 7.6: Sampled Robot Configurations during Surface Tracking Experiment

Figure 7.7: Contact Force and Finished Surface
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Figure 7.8: Setup for Material Handling Experiment

Figure 7.9: Sampled Robot Configurations during Material Handling Experiment
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Figure 7.10: Robot Configurations Wire-frame Diagram during Operation
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Figure 7.11: End-Effector Orientation Tracking with Joystick Input

Figure 7.12: Example of Using a Robot to Inspect/Handle an Object with World or End-Effector
Camera via Remote Human Operation
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Figure 7.13: Steps to Realize Object Inspection and Handling

Figure 7.14: Operational Interface with a General-Purpose Game Controller

Figure 7.15: Object in Camera’s View and Human Intent Prediction Concept
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Figure 7.16: Realization of the Proposed Robot System with a Gripper

Figure 7.17: Target Object with Marked Inspection Trajectory and Directions

Figure 7.18: Software Operation with Robotic Operating System
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Figure 7.19: Sampled Robot Configurations during Task Execution

Figure 7.20: Sampled Images from Human’s View on the Computer Screen
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Figure 7.21: Object Location from Camera feedback, Human Orientation Input, Human Transla-
tion Input, and Dynamic Angle for Intent Prediction

93



8. SUMMARY AND FUTURE WORK

In this dissertation, we have presented general concepts and developed novel methods for

human-machine shared control for collaborative robotics applications. Among the proposed meth-

ods, we have introduced new concepts in task learning by employing the notions of operator prim-

itive based segmentation, motion command variance, and Bayesian non-parametric clustering with

temporal ordering. With regard to predicting the intent of the human operator for transition from

one subgoal to another, we have modeled the intent prediction as a Markov chain, employed the

notions of empirical stochastic transition matrix to encode prior knowledge of a task and subgoals,

and proposed dynamic angle difference exponential to quantify in real-time the operator’s intent

for seeking a particular subgoal. We also introduced a method to dynamically learn and update

the ESTM based on observed subgoal transitions instead of relying on empirical knowledge to

set fixed values for the stochastic transition matrix. In terms of adjusting nominal subgoals of a

given task, adjustment encoding hyper-rectangle, hyperbolic slope transition function, and skill-

weighted action integral were proposed. A technique for blending automatic controller input and

human operator input with conflict awareness was also provided. Experimental results on a scaled

excavator platform corroborated the effectiveness and performance enhancement of the proposed

BSC tools.

In addition to the BSC methods developed and corroborated with the excavator as an example,

we also proposed SC methods for the collaborative operation of robotic manipulators. We devel-

oped two novel operational interfaces for a human operator to effectively control the motion of a

robot end-effector, each with a different set of applicable tasks. We integrated vision/force/motion

hybrid control to realize the intended motion of the end-effector based on human input and sensor

feedback. We also proposed an human intent prediction methods for manipulator operation by

comparing the orientation input from the human operator and the closed-loop orientation control

input based on vision feedback. Based on the intent prediction, we proposed a method to share

control authority between the human operator and vision-based controller. We implemented our
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methods for a UR5 robot and an ABB IRB-4600 robot and showed the effectiveness of the methods

with experimental results.

However, there are still many open questions in human-machine shared control. For exam-

ple, one can consider the following topics for further research. (1) How to formulate and evalu-

ate closed-loop system stability when the human operator is in-the-loop and how to utilize more

advanced control algorithms to provide automatic control assistance? (2) The input blending for-

mulation presented in this work, as well as in existing studies, assume that the human is directly

controlling the actuators. In many collaborative robotics applications, the human may be provid-

ing input in the form of the Cartesian trajectory reference for the end-effector. In these situations,

one has to investigate the problem of mapping the joystick input to a task reference frame and

translating it to the end-effector reference frame. Subsequently, one has to address the question of

whether to blend the inputs at the trajectory level or at the actuator input level? (3) How does one

augment the capability of human operators, hence the performance of shared control, by introduc-

ing sensory information such as haptic feedback? With advances in haptic feedback devices and

their accessibility, researchers having been applying haptic feedback in many applications with

promising results. Haptic feedback has the potential to help a human operator to gain more in-

sight of the robot and its environment such as getting close to singularity, approaching limits of

workspace, having significant contact force or workload. It might also help novice operators to

learn the operation of robots more quickly by providing resistance to the joysticks along directions

irrelevant to the training tasks, etc.
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