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ABSTRACT 

 

In exploratory factor analysis (EFA), there are numerous methods to extract the 

optimal number of factors, and these methods can be generally divided into two 

categories, namely, the model-selection-based approaches and the eigenvalue-based 

approaches. The model-selection-based approaches exploit the commonly used model-fit 

indexes and selection criteria, including the Root Mean Square Error of Approximation 

(RMSEA), the Comparative Fit Index (CFI), the Tucker-Lewis index (TLI), the 

Standardized Root Mean square Residual (SRMR), the overall model-fit chi-squared 

test, the Akaike information criterion (AIC), the Bayesian information criterion (BIC), 

and the sample-size adjusted BIC (SBIC/SABIC). On the contrary, the eigenvalues-

based approaches rely on eigenvalues, including the “eigenvalues > 1” criterion, the 

scree plot test and parallel analysis (PA). 

The purpose of this dissertation is to examine the accuracy of these two 

approaches in identifying the number of factors in multilevel exploratory factor analysis 

(MEFA) through two studies, separately. In both studies, multilevel data were designed 

and simulated. 

In the first study, we used both the model-based and the design-based approaches 

for the analysis. The results of Study 1 disclosed: (a) as the model-based approach 

showed most of the commonly used fit indexes and selection criteria were effective at 

identifying the correct number of factors at the within level, except for level-specific 

SRMR and AIC, while most of them tended to extract fewer factors at the between level, 
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(b) as the design-based approach showed, most of them were able to identify the true 

model as the best solution, except for SRMR, AIC, and ∆AIC. 

In the second study, we used different eigenvalues extraction techniques for 

calculating eigenvalues, such as principal axis factoring (PAF), iterated principal axis 

factor (Iterated PAF), and maximum likelihood (ML). The results of Study 2 revealed: 

(a) the “eigenvalues > 1” criterion was not effective at searching for the optimal number 

of factors, (b) PA approach performed well in recovering the correct number of factors at 

the within level, while the performance of PA was related to sample size and ICC at the 

between level. In addition, PAF performed the best followed by Iterated PAF and then 

ML at both levels.  
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CHAPTER I  

INTRODUCTION  

 

Exploratory Factor analysis (EFA) is a commonly utilized statistical method for a 

substantial variety of research goals. In the enormous majority of multivariate studies, 

the potential underlying unobserved (or latent) structures of a set of measured variables 

are the primary interest of research and thus EFA is used for exploring these possible 

underlying factors without having an a priori hypothesis of a preconceived structure 

(Child, 1990; Conway & Huffcutt, 2003; D’Haenens, Van Damme, & Onghena, 2010; 

Thompson, 2004; Yang & Bozdogan, 2011; Yang & Xia, 2015). EFA is sometimes 

taken as a first step for developing a hypothesized model (Child, 1990; Burton, & 

Mazerolle, 2011; Hyman & Sierra, 2012). Researchers might not at first have a clear 

idea of what the underlying structure of a set of variables or a newly developed scale 

looks like (Conway & Huffcutt, 2003). For example, Hyman and Sierra (2012) firstly 

employed EFA as a tool to develop a potential hypothesized model and then applied the 

confirmatory factor analysis (CFA) to evaluate their hypothesized model with the use of 

a different and independent random sample. Chan and colleagues (1999) also applied 

EFA to check the unidimensionality of each subscale of an existing multiscale 

instrument before analyzing the same scale with the item response theory (IRT). 

Moreover, unlike a typical CFA, EFA allows retaining nonzero cross-loadings in the 

measurement model (Fabrigar, Wegener, MacCallum, & Strahan, 1999), which may be 

more realistic for an observed variable that can have nonzero loading(s) on more than 
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one non-targeted latent factor (Yang & Xia, 2015). Consequently, many researchers 

recommended conducting an EFA as a proper alternative when a CFA model shows a 

substantially inadequate fit to the data (Browne, 2001; Gorsuch, 1997; Muthén & 

Muthén, 2010; Schmitt, Sass, Chappelle, & Thompson, 2018). In only a very few 

studies, EFA has been used to reduce the complexity of a set of measured variables into 

a smaller number of dimensions that carried the same number of observed variables 

without any particular study’s interest of the underlying latent structure (Conway & 

Huffcutt, 2003; Yang & Bozdogan, 2011).  

One of the major challenges in the applications of EFA is to identify the optimal 

number of (latent or unobserved) factors. Since retaining incorrect number (i.e., too 

many or too few) of latent factors can lead to unstable factor pattern estimates and 

inaccurate factor solutions, selecting the optimal number of factors is the most important 

step in an EFA analysis (Preacher, Zhang, Kim, & Mels, 2013). Many studies (e.g., 

MacCallum, Widaman, Preacher, & Hong, 2001; Schmitt, 2011) have shown that under-

factoring (i.e., extracting fewer than the true number of factors) is more problematic than 

over-factoring (i.e., extracting more than the true number of factors) because the 

information from a missing factor is redistributed or confounded with other factors 

(Zwick & Velicer, 1986). Thus, the missing factor that due to under-factoring leads to 

some of the observed variables falsely loaded on the other factors, results in distorting 

the factor loadings (Hayton, Allen, & Scarpello, 2004). 

Currently, there are numerous methods for deciding how many necessary factors 

to retain in EFA analysis, and these methods can be generally divided into two 
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categories, namely, the model-selection-based approaches and the eigenvalue-based 

approaches.  

The model-selection-based approaches use the overall model fit statistics that 

originally developed under the CFA/structural equation modeling (SEM) framework. 

Preacher and colleagues (2013) proposed a model selection perspective that uses the 

commonly used fit statistics in SEM to choose the optimal number of factors in EFA. 

These commonly used fit statistics include the Root Mean Square Error of 

Approximation (RMSEA; Steiger, 1990), the Comparative Fit Index (CFI; Jöreskog, 

1993), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973), the Standardized Root 

Mean square Residual (SRMR; Hu & Bentler, 1999), the overall model-fit chi-squared 

test/Likelihood Ratio test (Browne & Arminger, 1995), the Akaike information criterion 

(AIC; Akaike, 1987), the Bayesian information criterion (BIC; Schwarz, 1978), and the 

sample-size adjusted BIC (SBIC/SABIC; Sclove, 1987) and can be used to determine the 

number of factors in EFA.  

On the contrary, the eigenvalues-based approaches rely on eigenvalues and 

include some of the traditional approaches such as the “eigenvalues > 1” criterion (a.k.a. 

the Kaiser Criterion) that determines the number of factors by the number of eigenvalues 

that larger than 1.0 (Kaiser, 1960). Another traditional approach is the scree plot test that 

identifies the number of factors based on the location of a severest drop off amongst the 

eigenvalues from the scree plot (Cattell, 1966). A third approach, parallel analysis (PA, 

Horn, 1965), compares two different sources of eigenvalues, one from the measured 
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correlation matrix based on the measured variables and the other from another matrix 

based on random normal-distributed variables. 

In recent decades, the traditional EFA has been extended to multilevel EFA 

(MEFA, Muthén, 1991, 1994) to account for the clustering effects in 

multilevel/hierarchical data which are very common in social and behavior sciences 

(Mayberry, Espelage, & Koenig, 2009; Moore et al., 2016; Reise, Ventura, Nuechterlein, 

& Kim, 2005) and educational studies (D'Haenens, Van Damme, & Onghena, 2010). 

Data are obtained through cluster sampling or collected on multiple levels, and the study 

interests are not limited to a particular data level but all the available levels and the 

corresponding variables (Muthén, 1991, 1994; Hsu, Lin, Kwok, Acosta, & Willson, 

2017; Zyphur, Kaplan, & Christian, 2008). For example, in the field of education, pupils 

are nested within classes, classes are nested within schools, and schools are further 

nested within school districts. Another example is that in the field of psychiatry, clients 

are nested within doctors, doctors are nested within clinical departments, and clinical 

departments are further nested within hospitals. Pupils/clients from the same 

classes/doctors are likely to be more homogenous than those pupils/clients from different 

classes/doctors, because of the influences of the same classes/doctors. Therefore, the 

effect of dependency/clustering needs to be considered for these examples even these 

studies were only focus on the individual level (Cheung, Leung, & Au, 2006). Ignoring 

the existence of multilevel data structures may produce improper parameter estimates 

and statistical inferences, such as biased parameter estimation, deflated standard errors, 

inflated Type I error and inaccurate overall model goodness-of-fit (Muthén & Satorra, 
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1995; Raudenbush & Bryk, 2002). Thus, it is important to adopt the multilevel methods 

that can properly analyze multilevel data and take the issue of non-independence or 

clustering effect into account during the analysis (Goldstein & McDonald, 1988).  

Currently MEFA has already had a range of practical applications. One example 

is that a study of psychiatric assessment with repeated measurement used MEFA to 

investigate the instrument structure through separating the within-individual and 

between-individual variances (Reise, Ventura, Nuechterlein, & Kim, 2005). Another 

example is a cross-cultural research with individual- and culture-level analyses, and the 

authors tested three different more-than-one-level models through MEFA in order to find 

out the number of factors in different levels (Cheung, Leung, & Au, 2006). Yet another 

example is an educational effectiveness study which has class-level and school-level 

process items, but it is impracticable to define a priori latent structure for the school-

level, so MEFA is applied to evaluate the school process variables which depended on 

teachers’ perceptions (D'Haenens, Van Damme, & Onghena, 2010). Finally, from the 

field of psychometric properties, researchers used MEFA to discover the factor structure 

of the Positive Values Scale as part of a school climate survey, and the results showed a 

model with 2 factor model in the within-level and 1 factor model in the between-level 

(Huang & Cornell, 2016).  

The reasons behind such extensive applications of MEFA are two leading 

advantages. First, the total variances/covariance(s) are decomposed into the pooled 

within-cluster and the between-cluster variances/covariance(s) and these two 

variances/covariance(s) are independent from each other (Zyphur, Kaplan, & Christian, 
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2008). Second, it allows distinctive factor structures across different levels that can truly 

show the natural features of data (Reise, Ventura, Nuechterlein, & Kim, 2005; Zyphur, 

Kaplan, & Christian, 2008), thus researchers can investigate the number of factors for 

the within-level and between-level separately (D'Haenens, Van Damme, & Onghena, 

2010; Huang & Cornell, 2016). Kim, Dedrick, Cao, & Ferron (2016) believed that there 

were three different or competing models at two-level MEFA: (a) the same number of 

factors at each cluster and equal loading across clusters, (b) the same number of factors 

at each cluster but different loadings across clusters, (c) different numbers of factors at 

two levels. 

MEFA is a valuable tool, but it has one big disadvantage that is the uncertainty 

about how many individuals per cluster and how many higher levels or clusters are 

needed to handle analysis for both the within and the between levels (Reise, Ventura, 

Nuechterlein, & Kim, 2005). So far, there are no clear or uniform requirements of how 

many cluster numbers and cluster sizes are needed in MEFA to investigate the between-

level variances. However, if there are many clusters, we can study the between-cluster 

differences in variable means and covariance structure separately (Ceulemans, 

Wilderjans, Kiers, & Timmerman, 2016). 

Similar to EFA, a crucial concern in the applications of MEFA is to finalize the 

ideal number of latent factors for both within-level and between-level underlying the 

observed variables. To the best of our knowledge, no research has been conducted to 

confirm whether the model-selection-based approaches or the eigenvalues-based 

approaches applied in single-level EFA also perform well in MFEA. Hence, the purpose 
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of this study was to examine the accuracy of these commonly used approaches in 

identifying the correct numbers of factors in MEFA within- and between-levels. 
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CHAPTER II  

MODEL-SELECTION-BASED APPROACHES TO IDENTIFYING THE OPTIMAL 

NUMBER OF FACTORS IN MULTILEVEL EXPLORATORY FACTOR ANALYSIS 

 

Introduction 

The key assumption behind exploratory factor analysis (EFA) is the existence of 

a true common factor model with an accurate number of latent factors that can explain 

the population factor structure (Preacher, Zhang, Kim, & Mels, 2013). The common 

factor model is often compared with the component model. While the former attempts to 

account for measurement error, the latter assumes no measurement error (Schmitt, 

2011). Nonetheless, many academics have argued for the true common factor model 

based on the following two points. First, researchers are not sure there is a true 

population model, and even if such a model exists, it may only capture limited 

information from the sample data (MacCallum, 2003; Meehl, 1990). Second, the 

relationships between observed items and latent factors are seldom truly linear, and the 

factor loadings are seldom consistently invariant across observations (MacCallum, 

Browne, & Cai, 2007). Consequently, searching for a true model is pointless, and using 

the terms correct or true with regard to the number of factors may also be meaningless. 

Nevertheless, Preacher et al. (2013) emphasized that detecting the optimal numbers of 

factors through EFA is still very valuable and functional, because this quasi-true model 

can approximate the objective truth and can be used in practice, serving some explicitly 

indicated scientific aims and assisting in realizing model descriptions and predictions. 
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According to these authors, therefore, the true motivation for using EFA is to obtain the 

ideal number of latent factors from observed sample data. 

Eigenvalues-based approaches, including the “eigenvalues > 1” criterion (a.k.a. 

the Kaiser Criterion; Kaiser, 1960), the scree plot test (Cattell, 1966), and the parallel 

analysis (PA, Horn, 1965) are common ways to extract the optimal number of factors. 

Besides, other approaches are mainly based on model-selection. As Preacher and 

colleagues (2013) pointed out, identifying the optimal number of factors in EFA is 

fundamentally a model-selection issue, and one can typically evaluate each model 

through several statistical tests and report some common fit statistics for specific 

interpretations. This model-selection-based procedure is typically carried out within a 

CFA or SEM framework (especially when testing factorial invariance) with the use of 

model chi-squared difference and delta fit indexes (the difference-of-fit indexes between 

nested models for comparison, ΔGFI). These indexes include RMSEA, CFI, TLI, and 

SRMR, and the overall model-fit chi-squared test. Meanwhile, models with different 

numbers of factors can also be compared with each other, and the best-fitting model can 

be selected based on other selection criteria; the commonly used fit criteria for model 

comparisons include AIC, BIC, and SBIC.  

RMSEA measures the discrepancy between the hypothesized model and the 

perfect model by taking model complexity into account, whereas both CFI and TLI 

assess incremental goodness-of-fit allowing for model complexity. Thus, both CFI and 

TLI measure the degree to which the hypothesized model is better than the “baseline” 

model in replicating the observed variance/covariance matrix. Finally, SRMR tests total 
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goodness-of-fit by calculating the standardized discrepancy between the 

variance/covariance matrix based on the hypothesized model and the observed 

variance/covariance matrix. The formulas for these indexes are presented below. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑅𝑅𝑀𝑀𝑀𝑀 �
𝜒𝜒2 − 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑(𝑁𝑁 − 1)

, 0� 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
𝑅𝑅𝑀𝑀𝑀𝑀[(𝜒𝜒𝐻𝐻2 − 𝑑𝑑𝑑𝑑𝐻𝐻),0]
𝑅𝑅𝑀𝑀𝑀𝑀[(𝜒𝜒𝐼𝐼2 − 𝑑𝑑𝑑𝑑𝐼𝐼),0]

  

𝑇𝑇𝑇𝑇𝐶𝐶 =
(𝜒𝜒𝐼𝐼2/𝑑𝑑𝑑𝑑𝐼𝐼) − (𝜒𝜒𝐻𝐻2/𝑑𝑑𝑑𝑑𝐻𝐻)

(𝜒𝜒𝐼𝐼2/𝑑𝑑𝑑𝑑𝐼𝐼) − 1
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝑅𝑅

𝑝𝑝(𝑝𝑝 − 1)/2
 

Where S is 

𝑅𝑅 = ���
𝑠𝑠𝑗𝑗𝑗𝑗

�𝑠𝑠𝑗𝑗𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗
,

𝜎𝜎𝑗𝑗𝑗𝑗
�𝜎𝜎𝑗𝑗𝑗𝑗𝜎𝜎𝑗𝑗𝑗𝑗

�
2𝑗𝑗−1

𝑗𝑗−1

𝑝𝑝

𝑗𝑗=1

 

Max indicates the maximum values of the values given in brackets. χ2 is the 

noncentral chi-square value, df is its degrees of freedom, N is the total sample size, 𝜒𝜒𝐻𝐻2  is 

the chi-square value of the hypothesized model, 𝑑𝑑𝑑𝑑𝐻𝐻 is its degrees of freedom,  𝜒𝜒𝐼𝐼2 is the 

chi-square value of the independent model, 𝑑𝑑𝑑𝑑𝐼𝐼 is its degrees of freedom, p is the number 

of variables in the model, sjk and σjk are the sample and the model-estimated covariance 

between the jth and kth variables. 

For the purpose of obtaining the ideal number of factors, RMSEA, CFI, TLI, 

SRMR, and the overall model-fit chi-squared test are usually compared to the commonly 

recommended cutoff values by the fit indexes; that is, RMSEA ≤ .05 (Jöreskog, 1993); 
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CFI ≥ .95 (Bentler, 1990; Hu & Bentler, 1999); TLI ≥ .95 (Hu & Bentler, 1999; Tucker 

& Lewis, 1973); SRMR ≤ .05 (Jöreskog, 1993); and for the overall model-fit chi-squared 

test p value ≥ .05 (Jöreskog, 1993). Chen (2007) proposed a change/difference of 

goodness-of-fit indexes (ΔGFI) between nested models, so that when ΔGFI between the 

models is small (e.g., smaller than .015 for RMSEA, .01 for CFI, and .01 for SRMR), 

one can stop the comparison and select the parsimonious model with fewer parameters, 

given that a small ΔGFI indicates no substantial differences between the compared 

models in terms of overall model fit. In the present study, we examined the effectiveness 

of ΔGFI along with other fit indexes in choosing the optimal number. 

In addition to model-fit statistics, information criteria (IC) are also commonly 

used for model comparison. AIC, BIC, and SBIC/SABIC are all maximum likelihood-

based information criteria that take model complexity (number of unknown parameters) 

into account (Chen, Luo, Palardy, Glaman, & McEnturff, 2017; Tein, Coxe, & Cham, 

2013). Moreover, AIC and BIC are the commonly used ICs for model selection (Tein et 

al., 2013). The formulas for these ICs are presented below.  

𝑅𝑅𝐶𝐶𝐶𝐶 = −2𝑇𝑇𝑇𝑇 + 2𝑘𝑘 

𝐵𝐵𝐶𝐶𝐶𝐶 = −2𝑇𝑇𝑇𝑇 + 𝑘𝑘 ∗ ln (𝑛𝑛) 

𝑅𝑅𝐵𝐵𝐶𝐶𝐶𝐶 = −2𝑇𝑇𝑇𝑇 + 𝑘𝑘 ∗ ln (
𝑛𝑛 + 2

24
) 

LL is the log likelihood of the fitted model, k is the number of estimated 

parameters in the model, and n is the sample size. The main difference across these three 

ICs is found in the penalty terms that can lead to quite different solutions (Chen et al., 

2017). The general guideline is to select models with a smaller IC value. Based on the 
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above formulas, when a model contains fewer parameters (meaning the model is less 

complex) based on a large sample size, the likelihood value will increase and the -2LL 

will decrease (Chen et al., 2017). Thus, smaller values of AIC, BIC, and SBIC/SABIC 

indicate better model fit among models (Preacher et al., 2013). Cutoff values for the 

difference in AIC and BIC between two models have been proposed. To be more 

specific, a model with a smaller AIC value is sufficiently better than others when ∆AIC 

is larger than 4 (Burnham & Anderson, 1998), or when ∆BIC is larger than 2 (Raftery, 

1995). The IC family has been widely used for model selection purposes in other SEM-

based analyses such as mixture models. Meanwhile, Preacher and colleagues (2013) 

believed that these ICs can be adopted when searching for the optimal number of latent 

factors from a mode-selection perspective. 

Performance of the Model-Selection-Based Approaches in EFA 

These previous indexes are generally reported within a CFA/SEM framework, 

and their performance can be specific to the nature of the parameters (loadings vs. 

covariance). Hu and Bentler (1998, 1999) noted that RMSEA, CFI, and TLI are quite 

sensitive to detecting models with misspecified factor loadings, and SRMR is the most 

sensitive to detecting models with misspecified latent structure or factor covariance. Hu 

and Bentler (1999) suggested combining two indexes to evaluate model goodness-of-fit 

when the sample size is large, and noted that the results from combining CFI/TLI and 

SRMR or RMSEA and SRMR provide the lowest Type I and Type II error rate (Hu & 

Bentler, 1998). However, some authors have claimed that SRMR is not the most 

sensitive to misspecified factor covariance and that CFI, TLI, and RMSEA are not more 
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sensitive to misspecified factor loadings (Fan & Sivo, 2005; Fan, Thompson, & Wang, 

1999). Other methodologists furthermore have pointed out that even when models have 

quite low factor loadings (equal to or less than .5), RMSEA and SRMR can still perform 

better than CFI and TLI (Mahler, 2011; Sharma, Mukherjee, Kumar, & Dillon, 2005).  

Many methodologists have further examined the performance of these fit indexes 

in EFA and found that RMSEA performs better than others when the sample size is 

larger than 250 (Clark & Bowles, 2018; Hu & Bentler, 1999) or when the target is to 

minimize the discrepancy of an approximation (representing verisimilitude) (Preacher et 

al., 2013), given that RMSEA is usually considered the degree of sample discrepancy 

from population (Cudeck & Henly, 2003; Garrido et al., 2016; MacCallum, 2003). 

However, when the sample size is large, SRMR is less accurate due to the tendency to 

choose fewer latent factors (Barendse, Oort, & Timmerman, 2015). Performing an EFA 

simulation study for ordered categorical data, Yang and Xia (2015) uncovered that CFI 

performed worse than RMSEA because the average of CFI is still greater than .95 when 

the number of factors is smaller than the true number. Garrido and colleagues (2016) 

examined these indexes’ precision with categorical data via Monte Carlo simulation. 

Their results indicated that the accuracy of SRMR was lower than that of RMSEA, and 

that CFI and TFI showed the highest performance. The authors also investigated the 

performance of the change/difference of CFI/TLI, RMSEA, and SRMR, and discovered 

that the change/difference can significantly improve the latent number estimation 

(Garrido et al., 2016). Clark and Bowles (2018) studied the ability of common model-fit 

indexes through Monte Carlo simulation for continuous data; their results showed that 
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the chi-squared test, RMSEA, and CFI/TLI can all reject under-factor models when 

choosing right threshold values (such as p < .05, RMSEA < .08, or CFI/TLI > .90), and 

these indexes often accept over-factor models even when choosing restricted thresholds 

(such as p < .01, RMSEA < .05, or CFI/TLI > .95).  

Other studies also have demonstrated that the overall model-fit chi-squared test is 

good at rejecting the underspecified models, but bad at refusing the over-specified 

models, both for continuous and ordered categorical observed data (Hayashi, Bentler, & 

Yuan, 2007; Yang & Xia, 2015). What is more, the chi-squared test has been criticized 

for a long time, since it is likely to reject reasonable models because of (1) trivial 

misspecification in big samples, and (2) its inability to reject the wrong models with 

important misspecifications in small samples (Gerbing & Anderson, 1992). In summary, 

most of the fit indexes are less likely to pick the under-factor solution and more likely to 

select the over-factor solution. 

Meanwhile, the IC family performs well when the goal is to choose a 

hypothesized model that minimizes overall discrepancy while representing 

generalizability (Preacher et al., 2013). When the sample size is large, AIC performs 

better in choosing the true number of factors than BIC (Song & Belin, 2008), and BIC 

usually prefers simpler models than AIC (Bozdogan, 2000). However, when the sample 

size is small, BIC and SBIC perform better in extracting the correct number of factors 

than AIC (Lopes & West, 2004; Tein et al., 2013).  

In sum, many researchers have examined the effectiveness of different model fit 

indexes (the selection of either the largest or the smallest values) and information criteria 
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for retaining the optimal number of factors in traditional EFA. However, most of these 

studies showed that relying solely on either the information criteria or model-fit indexes 

likely results in over-extraction (i.e., over-fitting the model with too many factors) when 

choosing restricted thresholds. Thus, one should not select the factor model solely based 

on the fit indexes or information criteria. An ideal EFA model would have a balance of 

goodness-of-fit and parsimony (Preacher et al., 2013). 

The Model-Selection-Based Approaches for MEFA 

Model selection using fit indexes becomes a more complex issue in multilevel 

SEM given that it involves more than one model (with multiple models at different 

levels).  There are several disadvantages when only using the overall test statistics for 

detecting the entire model fit (i.e., estimating the within-cluster and the between-cluster 

variances/covariance(s) simultaneously). First, the goodness-of-fit of the between-

cluster/high-level model might not be as sensitive as the within-cluster/low-level model 

due to the calculation based on the dissimilar gap weights from the within- and between- 

sample sizes, and the traditional methods are especially limited in detecting the 

goodness-of-fit for high-level models (Hsu, Kwok, Lin, & Acosta, 2015; Ryu & West, 

2009; Yuan & Bentler, 2007).  Second, when the traditional indexes (RMSEA, CFI, TLI, 

SRMR, and the chi-squared test) show a model has inadequate fit, it is difficult to tell 

whether the between-cluster model or the within-cluster model is incorrect, or whether 

both of them are misspecified (Yuan & Bentler, 2007). Third, misspecification at a 

single level is likely to influence the parameter estimations at the other levels; that is, 
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even when the misspecification is tiny at the single level, the indexes can still reveal that 

the model fits the data poorly (Yuan & Bentler, 2007).  

Level-specific SRMR, CFI and RMSEA have been proposed to resolve the 

above-mentioned problems and provide more details about the model goodness-of-fit at 

a specific level (Ryu & West, 2009; Yuan & Bentler, 2007). Level-specific SRMR, CFI, 

and RMSEA are obtained based on a partially saturated model. For example, a saturated 

between-cluster model is specified to measure the goodness-of-fit of a within-cluster 

model, and vice versa. In the previous simulation studies, the level-specific methods 

were found to have a greater ability to detect misspecification for between-cluster 

models than the single-level standard methods (Hsu, Lin, Kwok, Acosta, & Willson, 

2017; Yuan & Bentler, 2007). 

There is no research on the evaluating the effectiveness of these fit indexes and 

selection criteria in MEFA, so the purpose of this study was to examine the effectiveness 

of the traditional model-selection-based approaches and level-specific SRMR, CFI and 

RMSEA on extracting the optimal number of latent factors in MEFA. To that end, the 

study used Monte Carlo simulations for data generation. 

Methods 

Data Generation 

In this study, Monte Carlo simulations were conducted using Mplus version 8 

(Muthén, & Muthén, 2017). Two-level data with eight items (y1-y8) were generated 

based on two scenarios through Mplus. These eight items were all the standard normal 
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distribution with mean = 0 and standard deviation (SD) = 1. Thus, multivariate normality 

was assumed for both scenarios, and all factor loadings were the standardized loadings. 

Scenario 1 

In this scenario (see Figure 1), Level-1 and Level-2 had different factor structures 

with two factors in Level-1 and one factor in Level-2. Specifically, in Level-1, y1-y4 

were under Factor 1 and y5-y8 were under Factor 2. Within each factor, the first three 

items were good (main factor loadings = .6 and cross-loadings = .1), and the fourth item 

was a poor item (main factor loadings and cross-loadings were all .25). The correlation 

between the two within factors was .5. In Level-2, y1-y8 were all under one factor with 

the first six items being good items (factor loadings = .6) and the last two items being 

poor items (factor loadings = .25).  

Scenario 2 

In this scenario (see Figure 2), Level-1 and Level-2 had the same two-factor 

structures. Specifically, the Level-1 and Level-2 factor structures and factor loadings 

were the same as Level-1 in Scenario 1. The correlations between the two factors (within 

and between) were both .5. Because previous reviews have shown that when the 

correlation between factors is high (r ≥ .5), the model fit statistics commonly extract 

fewer than the true latent factors. We wanted to find the best way of identifying the 

optimal number of factors when the correlation is high. 
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Figure 1 Scenario 1: Level-1 and Level-2 have different structures. 
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Figure 2 Scenario 2: Level-1 and Level-2 have the same structure.  
 

Design Factors 

The data generation also involved different sample size and intraclass correlation 

coefficient (ICC) conditions. ICC conditions are commonly a consideration in MSEM 

simulation studies; for example, Hsu et al. (2017) considered the generalization of their 

findings and simulated six different ICC conditions (.1, .2, .3, .4, .5, and 1.00). In the 

present study, the design factors included cluster numbers (CN = 100, 200, and 500), 

cluster sizes (CS = 10, 20, and 50), and ICCs (.1, .2). Meanwhile, 500 replications were 

produced for each combination of design factors in the two scenarios. As a result, a total 

of 2 (scenarios) × 3 (cluster numbers) × 3 (cluster sizes) × 2 (ICC) × 500 = 36 

(Conditions) × 500 = 18,000 replications were generated. 
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Data Analysis  

After each dataset was generated, Mplus was used to analyze data with its 

commands. Mplus provides two approaches to MEFA: the model-based approach and 

the design-based approach. In the first approach, a level-specific model is specified for 

each level (Wu & Kwok, 2012). In Mplus, the syntax is TYPE = TWOLEVEL EFA. 

When estimating the Level-1 factor structure, the Level-2 model is saturated and vice 

versa. On the other hand, the design-based approach assumes factorial invariance across 

levels and accounts for the multilevel structure by correcting the standard errors 

according to the sampling design (Wu & Kwok, 2012). In Mplus, the syntax is TYPE = 

COMPLEX EFA.  

Compared to the model-based approach, the design-based approach is relatively 

simpler, as it only analyzes one global model and estimates parameters based on this 

model, which means it assumes the same structure across different levels; but sometimes 

this assumption may be wrong (Wu & Kwok, 2012). Both approaches select a default 

maximum likelihood estimator and a robust standard error estimator. Thus, in Scenario 

1, we only used the model-based approach because the assumption of factorial 

invariance across levels was violated and different levels were assumed to have different 

factor, while in Scenario 2, we applied both the model-based and the design-based 

approaches for the data analysis.  

Model Selection  

When comparing different models with different numbers of factors, we used the 

model-selection-based approaches, including RMSEA (overall vs. level-specific), CFI 
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(overall vs. level-specific), TLI, SRMR (overall vs. level-specific), ΔRMSEA, ΔCFI, 

ΔSRMR, AIC, BIC, SBIC, ∆AIC, and ∆BIC. Table 1 illustrates the specific values or 

principles of the acceptable models for these indexes and the criteria used in this study. 

In addition, as a rule of thumb, we chose the simple model once the indexes reached the 

criteria and cutoff values. For example, if RMSEAs of the one-factor and two-factor 

models were all less than or equal to .05, we chose the simpler model (one-factor model) 

as the final model only based on RMSEA. 

 

 
Table 1 The Specific Values or Principles of Indexes and Criteria for the 
Acceptable Model Using the Model-Selection-Based Approaches. 

Name Explanation Specific values or principles 
Indexes 
RMSEA The overall RMSEA ≤ .05 
∆RMSEA The difference of two overall RMSEAs ≥ .015 
RMSEAPS_W The within-level specific RMSEA when the between-level model is saturated ≤ .05 
∆RMSEAPS_W The difference of two within-level specific RMSEAs ≥ .015 
RMSEAPS_B The between-level specific RMSEA when the within-level model is saturated ≤ .05 
∆RMSEAPS_B The difference of two between-level specific RMSEAs ≥ .015 
CFI The overall CFI ≥ .95 
∆CFI The difference of two overall CFIs ≥ .01 
CFIPS_W The within-level specific CFI when the between-level model is saturated ≥ .95 
∆CFIPS_W The difference of two within-level specific CFIs ≥ .01 
CFIPS_B The between-level specific CFI when the within-level model is saturated ≥ .95 
∆CFIPS_B The difference of two between-level specific CFIs ≥ .01 
TLI The overall TLI ≥ .95 
SRMR The overall SRMR ≤ .05 
SRMRPS_W The within-level specific SRMR when the between-level model is saturated ≤ .05 
∆SRMRPS_W The difference of two within-level specific SRMRs ≥ .01 
SRMRPS_B The between-level specific SRMR when the within-level model is saturated ≤ .05 
∆SRMRPS_B The difference of two between-level specific SRMRs ≥ .01 
p value The overall model-fit chi-squared test p value ≥ .05 
   
Criteria 
AIC - Smaller value 
BIC - Smaller value 
SBIC - Smaller value 
∆AIC The difference of two AICs ≥ 4 
∆BIC The difference of two BICs ≥ 2 
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Results 

The Model-Based Approach 

Level-1 Factor Extraction 

Table 2 shows the percentages of iterations that retained one, two, and three 

factors, respectively, based on the various model-fit indexes and criteria. The results 

were aggregated over the two scenarios and the different sample size conditions because 

there was no difference in the Level-1 factor structure between the two scenarios. Also, 

little variation was found in the percentages across sample sizes. 

Table 2 Level-1 Factor Extraction Results Using the Model-Based Approach. 
Index or Criteria ICC = 0.1 ICC = 0.2 

N* Percentage N* Percentage 
1-factor 2-factor 3-factor 1-factor 2-factor 3-factor

Scenario 1 
RMSEA 500.0 0.3% 99.7% 0.0% 500.0 1.6% 98.4% 0.0% 

RMSEAPS_W 500.0 0.2% 99.8% 0.0% 500.0 1.2% 98.8% 0.0% 
CFI 500.0 5.3% 94.7% 0.0% 500.0 57.3% 42.7% 0.0% 

CFIPS_W 500.0 3.0% 97.0% 0.0% 500.0 41.5% 58.5% 0.0% 
TLI 500.0 0.0% 100.0% 0.0% 500.0 0.0% 99.9% 0.0% 

SRMRPS_W 500.0 99.8% 0.2% 0.0% 500.0 100.0% 0.0% 0.0% 
p value 492.0 0.0% 96.8% 3.2% 492.2 0.0% 96.8% 3.2% 

AIC 500.0 0.0% 89.1% 10.9% 500.0 0.0% 88.4% 11.6% 
BIC 500.0 0.0% 100.0% 0.0% 500.0 0.2% 99.8% 0.0% 

SBIC 500.0 0.0% 100.0% 0.0% 500.0 0.0% 99.9% 0.0% 
∆RMSEA 455.8 0.0% 97.3% 2.7% 465.2 0.0% 96.7% 3.3% 

∆RMSEAPS_W 455.8 0.0% 98.7% 1.3% 464.7 0.0% 98.4% 1.6% 
∆CFI 462.2 0.0% 100.0% 0.0% 487.3 0.0% 99.9% 0.0% 

∆CFIPS_W 459.2 0.0% 100.0% 0.0% 482.1 0.0% 99.9% 0.1% 
∆SRMRPS_W 500.0 0.0% 99.9% 0.1% 500.0 0.0% 99.8% 0.2% 

∆AIC 500.0 0.0% 97.3% 2.7% 500.0 0.0% 97.0% 3.0% 
∆BIC 500.0 0.0% 100.0% 0.0% 500.0 0.3% 99.7% 0.0% 
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Table 2 Continued. 
Index or Criteria ICC = 0.1 ICC = 0.2 

N* Percentage N* Percentage 
1-factor 2-factor 3-factor 1-factor 2-factor 3-factor

Scenario 2 

RMSEA 500.0 0.1% 99.9% 0.0% 500.0 1.6% 98.3% 0.0% 
RMSEAPS_W 500.0 0.1% 99.9% 0.0% 500.0 1.3% 98.7% 0.0% 

CFI 500.0 6.0% 94.0% 0.0% 500.0 56.7% 43.3% 0.0% 
CFIPS_W 500.0 3.0% 97.0% 0.0% 500.0 40.5% 59.5% 0.0% 

TLI 500.0 0.0% 99.9% 0.0% 500.0 0.0% 99.9% 0.0% 
SRMRPS_W 500.0 99.6% 0.4% 0.0% 500.0 100.0% 0.0% 0.0% 

p value 492.4 0.0% 96.7% 3.3% 493.1 0.0% 97.1% 2.9% 
AIC 499.8 0.0% 88.3% 11.7% 500.0 0.0% 89.0% 11.0% 
BIC 500.0 0.0% 100.0% 0.0% 500.0 0.2% 99.8% 0.0% 

SBIC 500.0 0.0% 99.9% 0.1% 500.0 0.0% 99.9% 0.1% 
∆RMSEA 456.1 0.0% 96.2% 3.8% 464.2 0.0% 96.6% 3.4% 

∆RMSEAPS_W 456.1 0.0% 98.2% 1.8% 463.7 0.0% 98.4% 1.6% 
∆CFI 464.8 0.0% 99.9% 0.1% 486.6 0.0% 99.9% 0.0% 

∆CFIPS_W 460.4 0.0% 99.9% 0.1% 481.0 0.0% 99.9% 0.1% 
∆SRMRPS_W 499.1 0.0% 99.8% 0.2% 500.0 0.0% 99.7% 0.3% 

∆AIC 500.0 0.0% 96.8% 3.2% 500.0 0.0% 96.8% 3.2% 
∆BIC 500.0 0.0% 100.0% 0.0% 500.0 0.3% 99.7% 0.0% 

* N is the average of replications among nine sample size (3 cluster numbers × 3 cluster
sizes), some of N were not equal to 500 due to convergency problems.

In general, most of the fit indexes had more than a 95% chance of correctly 

identifying the two-factor model as the best solution. Specifically, the AIC index 

performed slightly worse, with around a 90% chance of finding the two-factor solution. 

The SRMRPS_W was the worst index, as it missed the two-factor solution and chose the 

one-factor model as the best solution more than 99% of the time. Interestingly, the 

performance of CFI and CFIPS_W was good when ICC was .1, but deteriorated sharply 

when ICC increased to .2. On the other hand, when changes in the fit indexes were 
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considered, such as ∆CFI, ∆CFIPS_W, ∆SRMRPS_W, and ∆AIC, their performance 

significantly improved to over 95%. 

Level-2 Factor Extraction 

Table 3 shows the percentages of iterations that retained one, two, and three 

factors, respectively, at the between-level under Scenario 1.  

Table 3 Level-2 Factor Extraction Results Under Scenario 1 Using the Model-Based 
Approach. 

Index or Criteria ICC = 0.1 ICC = 0.2 
N* Percentage N* Percentage 

1-factor 2-factor 3-factor 1-factor 2-factor 3-factor
RMSEA 499.8 100.0% 0.0% 0.0% 500.0 100.0% 0.0% 0.0% 

RMSEAPS_B 474.4 93.0% 6.6% 0.4% 479.6 94.1% 5.7% 0.2% 
CFI 499.8 100.0% 0.0% 0.0% 500.0 100.0% 0.0% 0.0% 

CFIPS_B 435.9 82.4% 16.1% 1.5% 465.9 90.4% 9.3% 0.3% 
TLI 499.8 100.0% 0.0% 0.0% 500.0 100.0% 0.0% 0.0% 

SRMRPS_B 348.4 45.5% 37.2% 17.2% 416.8 64.5% 31.1% 4.4% 
p value 488.6 96.0% 3.8% 0.1% 491.6 97.0% 2.9% 0.1% 

AIC 398.7 81.3% 16.9% 1.9% 427.9 84.6% 14.6% 0.8% 
BIC 398.7 100.0% 0.0% 0.0% 427.9 100.0% 0.0% 0.0% 

SBIC 398.7 100.0% 0.0% 0.0% 427.9 100.0% 0.0% 0.0% 
∆RMSEA 398.7 96.5% 2.2% 1.3% 427.9 96.8% 1.9% 1.3% 

∆RMSEAPS_B 374.0 66.0% 25.8% 8.1% 408.3 68.5% 24.5% 7.0% 
∆CFI 398.7 99.8% 0.0% 0.2% 427.9 99.9% 0.1% 0.0% 

∆CFIPS_B 335.4 70.3% 24.6% 5.1% 397.4 72.6% 21.9% 5.6% 
∆SRMRPS_B 252.2 3.4% 22.2% 74.4% 345.0 6.9% 26.3% 66.8% 

∆AIC 398.7 94.3% 5.1% 0.6% 427.9 95.7% 4.2% 0.1% 
∆BIC 398.7 100.0% 0.0% 0.0% 427.9 100.0% 0.0% 0.0% 

* N is the average of replications among nine sample size (3 cluster numbers × 3 cluster
sizes), some of N were not equal to 500 due to convergency problems.

In this scenario, where there was only one Level-2 factor in the data generation, 

most of commonly used fit indexes (RMSEA, CFI, TLI, p value, BIC, SBIC, ∆RMSEA, 
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∆CFI, ∆AIC, and ∆BIC) could correctly identify the one-factor model as the best 

solution (near or above 95% of the iterations), except for AIC, whose percentage for 

identifying the correct number of factors was around 80%. However, level-specific 

indexes such as CFIPS_B, SRMRPS_B, ∆RMSEAPS_B, and ∆CFIPS_B performed 

significantly worse than the overall version of these indexes, except for RMSEAPS_B, 

which performed adequately. Similar to its performance in Level-1 factor extraction, 

level-specific SRMR and ∆SRMR were found to be of little use. 

Table 4 shows the percentages of iterations that retained one, two, and three 

factors, respectively, at the between-level under Scenario 2. In this scenario, in which 

there were two Level-2 factors, none of the fit indexes demonstrated high accuracy in 

identifying the two-factor model as the best solution. However, a few indexes were 

promising (over 80% of the iterations) when ICC was relatively large (i.e., .2), including 

RMSEAps_B, CFIps_B, SRMRPS_B, AIC, and ∆AIC.  

Table 3 and 4 show higher ICC can help to increase the chance of identifying the 

correct number of factors at the between-level. Furthermore, this study discovered that 

higher cluster numbers or more cluster sizes have a similar influence on these indexes 

and criteria, especially for SRMRPS_B, AIC, and ∆AIC, that is, the Pearson correlations 

between the correct chance of identifying the factors from them and the sample size are 

statistically significant (p < .05). 
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Table 4 Level-2 Factor Extraction Results Under Scenario 2 Using the Model-Based 
Approach. 

Index or Criteria ICC = 0.1 ICC = 0.2 
N* Percentage N* Percentage 

1-factor 2-factor 3-factor 1-factor 2-factor 3-factor
RMSEA 499.4 100.0% 0.0% 0.0% 500.0 100.0% 0.0% 0.0% 

RMSEAPS_B 475.0 64.2% 35.1% 0.7% 476.6 15.0% 83.2% 1.8% 
CFI 499.4 100.0% 0.0% 0.0% 500.0 100.0% 0.0% 0.0% 

CFIPS_B 444.7 39.7% 57.9% 2.4% 463.8 9.0% 86.7% 4.2% 
TLI 499.4 100.0% 0.0% 0.0% 499.8 99.8% 0.2% 0.0% 

SRMRPS_B 386.4 20.7% 61.1% 18.2% 446.0 1.5% 88.1% 10.4% 
p value 483.2 61.0% 38.3% 0.8% 483.4 23.1% 75.0% 1.9% 

AIC 447.0 35.7% 58.8% 5.5% 483.2 9.0% 82.1% 9.0% 
BIC 447.0 99.9% 0.1% 0.0% 483.2 79.0% 21.0% 0.0% 

SBIC 447.0 95.0% 5.0% 0.0% 483.2 54.4% 45.6% 0.0% 
∆RMSEA 447.0 92.3% 4.9% 2.9% 483.2 51.4% 39.1% 9.5% 

∆RMSEAPS_B 379.6 26.8% 60.7% 12.6% 362.3 6.9% 72.4% 20.7% 
∆CFI 447.0 99.7% 0.2% 0.1% 483.2 95.7% 3.6% 0.8% 

∆CFIPS_B 320.6 29.9% 59.3% 10.8% 338.8 7.8% 75.1% 17.1% 
∆SRMRPS_B 252.8 0.1% 23.2% 76.7% 305.1 0.0% 28.6% 71.4% 

∆AIC 447.0 54.4% 44.1% 1.4% 483.2 17.5% 80.5% 2.0% 
∆BIC 447.0 99.9% 0.1% 0.0% 483.2 80.3% 19.7% 0.0% 

* N is the average of replications among nine sample size (3 cluster numbers × 3 cluster
sizes), some of N were not equal to 500 due to convergency problems.

The Design-Based Approach 

Under Scenario 2, in which the factor structure was invariant across levels, the 

design-based approach was used. As shown in Table 5, most of the fit indexes were able 

to identify the two-factor model as the best solution, except for SRMR, AIC, and ∆AIC. 

Interestingly, when ICC changed from .1 to .2, the accuracy of RMSEA dropped from 

99.7% to 61.1%. 
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Table 5 Factor Extraction Results Under Scenario 2 Using the Design-Based 
Approach. 

Index or Criteria ICC = 0.1 ICC = 0.2 
N* Percentage N* Percentage 

1-factor 2-factor 3-factor 1-factor 2-factor 3-factor
RMSEA 500.0 0.3% 99.7% 0.0% 500.0 38.9% 61.1% 0.0% 

CFI 500.0 2.7% 97.3% 0.0% 500.0 4.3% 95.7% 0.0% 
TLI 500.0 0.0% 100.0% 0.0% 500.0 0.3% 99.7% 0.0% 

SRMR 500.0 100.0% 0.0% 0.0% 500.0 99.8% 0.2% 0.0% 
p value 483.4 0.0% 97.8% 2.2% 483.0 0.0% 96.8% 3.2% 

AIC 500.0 9.8% 70.9% 19.4% 500.0 0.0% 59.5% 40.5% 
BIC 500.0 0.0% 100.0% 0.0% 500.0 0.0% 99.8% 0.2% 

SBIC 500.0 0.0% 99.9% 0.1% 500.0 0.0% 96.3% 3.7% 
∆RMSEA 312.4 0.0% 96.6% 3.4% 381.7 0.0% 96.5% 3.5% 

∆CFI 320.4 0.0% 100.0% 0.0% 317.8 0.0% 99.6% 0.4% 
∆SRMR 500.0 0.0% 99.9% 0.1% 499.8 0.0% 99.7% 0.3% 

∆AIC 500.0 0.0% 91.6% 8.4% 500.0 0.0% 71.7% 28.3% 
∆BIC 500.0 0.0% 100.0% 0.0% 500.0 0.0% 99.8% 0.2% 

* N is the average of replications among nine sample size (3 cluster numbers × 3 cluster
sizes), some of N were not equal to 500 due to convergency problems.

Discussion 

This study is the first to examine the accuracy of commonly used model-fit 

indexes and selection criteria in identifying the correct number of factors in MEFA 

through simulation methods. Furthermore, the study combined two commonly used 

approaches (the model-based approach and the design-based approach) for the MEFA 

model. 

Based on the model-based approach, most of the commonly used fit indexes were 

effective at identifying the correct number of factors at the lower level, except for 

SRMRPS_W and AIC. In addition, sample size had little effect on accuracy. The SRMR 

finding was consistent with those of previous studies. Thus, Barendse and colleagues 
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(2015) proposed that SRMR was less correct and had a tendency to choose fewer latent 

factors for EFA. Similarly, Garrido et al. (2016) suggested that the performance of 

SRMR was worse than RMSEA and that CFI and TFI showed the greatest accuracy for 

categorical Monte Carlo simulation data. Other studies have pointed out that the 

performance of the IC family is related to sample size (Bozdogan, 2000; Lopes & West, 

2004; Song & Belin, 2008). However, the present study revealed that BIC and SBIC 

performed better in extracting low-level numbers of factors than AIC and that they were 

not influenced by sample size. Moreover, when ICC increased from .1 to .2, the 

performance of both overall CFI and CFIPS_W was no longer reliable for the lower-level 

factor extraction.  

Alternatively, still based on the model-based approach, when extracting higher-

level factors, most of the fit indexes and information criteria tended to extract fewer 

factors. That is, when there was only one Level-2 factor, most of the fit indexes 

performed well, but when there were two Level-2 factors, none of the fit indexes 

performed adequately. Furthermore, although the performance of the examined fit 

indexes and criteria was not satisfactory at the high level, when ICC was higher, the 

performance of most of them improved, except for RMSEA, CFI, and TLI.  This is due 

to the fact that the between-model was easier to identify when ICC was higher. On the 

other hand, when the factor structure was invariant across levels and the design-based 

approach was adopted, most of the fit indexes were effective, except for SRMR, AIC, 

and ∆AIC. However, the assumption of invariant factor structure may not always be 

tenable in practice. Thus, application of this approach will face a challenge. 
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In general, the results of this study suggest that the model-selection-based 

approaches have the ability to identify the number of factors for the within-level. 

However, these approaches were not acceptable for the between-level, and they were 

directly related to ICC. 

Overall, when a researcher has multilevel data without having an a priori 

hypothesis of a preconceived structure, MEFA is advised to apply over the subsequent 

steps. First, ICC requires to be calculated to decide whether the clustering effect should 

be considered or not. Second, researcher should apply the model-based approach to 

conduct the EFA at different levels and obtain the corresponding model indexes and IC 

values. Third, most of model indexes and IC values (except for SRMRPS_W, AIC, CFI, 

and CFIPS_W) work well for deciding the number of factors in the within-level. On the 

other hand, most of the fit indexes and information criteria tended to extract fewer 

factors at the between-level. 

Despite these promising findings, there are still some limitations of the study. 

First, we considered very few numbers of factors for both levels, whereas the latent 

factors were likely to exceed more than two. The study revealed that most of the fit 

indexes and criteria tended to underestimate the number of factors for the between level. 

Thus, when a study has a complicated between-level structure, it is hard to extract the 

true factors. Second, the performance of the indexes and criteria for the between-level 

was related to the ICC value, which made the results uncertain, so future studies are 

needed to address that. Third, sample sizes of generation data in this study were large, 

while in practical studies, sample sizes are not as large as the generation data. In 
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addition, the cluster sizes were balanced, also in practice, they are often unbalanced and 

unequal from different clusters.  Fourth, in addition to these general model-comparison 

methods, eigenvalue >1 and parallel analysis are also commonly used techniques in EFA 

(Ledesma & Valero-Mora, 2007; Yang & Xia, 2015). Thus, in future studies, we would 

like to use the eigenvalue-based approach to determine the number of factors in MEFA. 
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CHAPTER III  

EIGENVALUES-BASED APPROACHES TO IDENTIFY THE OPTIMAL NUMBER 

OF FACTORS IN MULTILEVEL EXPLORATORY FACTOR ANALYSIS 

Use of the Eigenvalues-Based Approaches in Exploratory Factor Analysis 

The eigenvalue-based approaches are commonly used in selecting the optimal 

number of factors in traditional exploratory factor analysis (EFA). They include the 

following three criteria: (a) Kaiser (1960) recommended retaining the number of factors 

that is equal to the number when eigenvalues > 1; (b) Cattell (1966) proposed use of 

scree plot test to extract the quantity; more specifically, to find out the harshest fall-off 

among the eigenvalues’ scree plot; finally (c) Horn (1965) proposed use of parallel 

analysis (PA), which compares two distinctive sources of eigenvalues, one from the 

observed correlation matrix and the other from an uncorrelated normally distributed 

variables matrix. 

“Eigenvalues > 1” Criterion 

It is well documented that the “eigenvalues > 1” criterion can result in 

overestimation of the number of factors when sample size is small or moderate; thus, this 

criterion is neither reliable nor accurate (Conway & Huffcutt, 2003; Crawford et al., 

2010; Ford, MacCallum, & Tait, 1986; Gorsuch, 1997; Henson & Roberts, 2006; Horn, 

1965; Schmitt, 2011; Zwick & Velicer, 1986). Additionally, when sample size is large 

and very close to the population level, the “eigenvalues > 0” criterion is more accurate 

than the “eigenvalues > 1” criterion in extracting factors because eigenvalues are 
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obtained from a correlation matrix with squared multiple correlations (SMCs) between 

each variable and all other variables substituting the 1s along the diagonal (Crawford et 

al., 2010; Guttman, 1954). Overestimation of factors is due to the fact that the Kaiser 

criterion is based on an assumed population correlation matrix, while when we apply the 

“eigenvalues > 1” to a sample, sampling error influences the extraction results (Hayton, 

Allen, & Scarpello, 2004).  

Despite these shortcomings, the Kaiser criterion remains a popular technique, 

and is still the default method of deciding the number of factors in many statistical 

software and packages (Henson & Roberts, 2006). Two papers have reviewed the 

percentage of studies using the “eigenvalues > 1” criterion to determine the factor 

number in the field of organizational research. Results showed that its use decreased 

from 21.7% in 1986 (Ford et al., 1986) to 15.4% in 2003 (Conway & Huffcutt, 2003). 

Another research article (Henson & Roberts, 2006) evaluating 60 published papers 

across four psychological journals found that 56.7% of the papers still adopted the 

Kaiser criterion for identifying the factor number. Further, examining the application of 

EFA in second-language research, Plonsky and Gonulal (2015) discovered that the 

“eigenvalues > 1” was the most common method (31.4%) of deciding the number of 

factors. Similarly, Sakaluk and Short (2017) summarized that 51.4% of sexuality 

research articles extracted their factors though the Kaiser criterion. 

Scree Plot 

The scree plot is a two-dimensional chart consisting of an x-axis and a y-axis, the 

former representing the components and the latter, the eigenvalues. Researchers try to 
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determine the point at which the curve changes significantly, which, in turn, indicates 

the maximum number of factors to retain (Ledesma, Valero-Mora, & Macbeth, 2015). 

The scree plot is also a widely applied eigenvalues-based criterion. For example, 

Henson and Roberts (2006) revealed that 35.0% of psychological papers used this test to 

decide factor numbers. Similarly, Sakaluk and Short (2017) noted that 32.9% of 

sexuality research articles chose the scree plot method for factor extraction. However, 

this plot test is a visual test; thus, its nature is subjective and ambiguous, especially when 

there is (a) no certain breaks or (b) more than one break (Hayton et al., 2004; Yang & 

Bozdogan, 2011; Zwick & Velicer, 1982). To illustrate, Ledesma, Valero-Mora, and 

Macbeth (2015) executed a test among six knowledgeable experts, who were given the 

same scree plot for telling the factor number, and found that the experts offered varying 

answers changing from one to four factors. Thus, the scree plot has low inter-rater 

reliability values (Crawford, & Koopman, 1979). Yet it has been demonstrated to be 

much more precise than the “eigenvalues > 1” criterion; in addition, it has a tendency to 

retain surplus factors (Henson & Roberts, 2006; Zwick & Velicer, 1986). 

Parallel Analysis 

Among these three criteria of the eigenvalues-based approaches, and even 

compared with the model-selection-based approaches, PA is the most recommended 

criterion when deciding the quantity of latent factors for both continuous and categorical 

data (Cho, Li, & Bandalos, 2009; Dinno, 2009; Glorfeld, 1995; Henson & Roberts, 

2006; Ledesma & Valero-Mora, 2007; Schmitt, 2011; Weng & Cheng, 2005; Yang & 

Xia, 2015). PA is a sample-based modification of the population-based “eigenvalues > 
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1” criterion, because eigenvalues of the correlation matrix of uncorrelated variables are 

all 1.0 at the population level (Horn, 1965).  

The assumption underlying PA is that nontrivial factors from measured data with 

a valid factor structure have bigger eigenvalues than parallel factors from random data 

with the same number of variables and sample size (Hayton et al., 2004; Lautenschlager, 

1989). To be more specific, PA generates a series of random datasets that have the same 

sample size and the same number of variables as the measured data set, and PA variables 

are uncorrelated to each other (Horn, 1965). If the nontrivial factors exist, then 

eigenvalues of the measured data should be larger than the randomly generated 

eigenvalues (Schmitt, 2011). Thus, PA combines the “eigenvalues > 1” criterion with the 

effect of sample size (Zwick & Velicer, 1986). Of special importance, PA is not 

sensitive to distributional form when data are under the assumptions of independent and 

identical distribution and is robust to non-normal distributions of a random sample 

(Dinno, 2009; Glorfeld, 1995). Moreover, many scholars have recommended the use of 

the Polychoric correlation instead of the Pearson correlation in PA when items are 

ordinal/noncontinuous data (Cho et al., 2009; Timmerman & Lorenzo-Seva, 2011). 

However, PA has a tendency to overestimate the numbers (Glorfeld, 1995; Zwick & 

Velicer, 1986), but when the latent factors are highly correlated (correlation ≥ .5), it 

tends to under-extract the latent numbers (Yang & Xia, 2015). Meanwhile, PA can be 

used to improve the scree plot test through adding PA results to the scree plot (Ledesma 

et al., 2015). Although PA has been recommended for a long time, unfortunately, it is 

rarely employed in published papers, with only 6.7% applications in psychological 
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research (Henson & Roberts, 2006) and 5.1% in sexuality research (Sakaluk & Short, 

2017).  

In recent years, multilevel research studies have become more popular in many 

areas, such as the social and behavioral sciences, including educational studies 

(Mayberry, Espelage, & Koenig, 2009; Moore et al., 2016; Reise, Ventura, Nuechterlein, 

& Kim, 2005; D’Haenens, Van Damme, & Onghena, 2010). This seems fitting because, 

for instance, students are nested within classes, classes are nested within schools, and 

schools are further nested within school districts. In order to get accurate statistical 

results, we need to consider the structure of the multilevel data and the impact of 

clustering. After reviewing previous papers, we found that simulation studies of the 

eigenvalues-based approaches comparison have been developed in single-level EFA. 

Thus, the target of this study was to extend the eigenvalues-based approaches to 

multilevel EFA (MEFA) and compare the abilities of several eigenvalues’ 

computation/extraction techniques. As the crucial step in the eigenvalues-based 

approaches, eigenvalue calculation contains many extraction techniques, such as 

Principal Component Analysis (PCA), Principal Axis Factoring (PAF), Maximum 

Likelihood (ML), and Unweighted Least Squares (ULS) (Costello & Osborne, 2005). 

This paper first reviewed the eigenvalues extraction/calculation techniques and 

then explained the use of Monte Carlo simulation for MEFA data. It then provided the 

results of applying the eigenvalues-based approaches (i.e., the “eigenvalues > 1” 

criterion and PA method) to retaining the factor number for MEFA data. 
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Eigenvalues Extraction Techniques 

The key issue in the eigenvalues-based approaches is to calculate eigenvalues. 

Many common statistical software applications, such as SPSS, STATA, and SAS, 

provide several extraction techniques for eigenvalues computation, including principal 

component analysis (PCA), principal axis factoring (PAF), iterated principal axis factor 

(Iterated PAF), alpha factoring, maximum likelihood (ML), unweighted least squares 

(ULS), generalized least squares (GLS), image factoring, and Harris extraction (Costello 

& Osborne, 2005; Osborne & Banjanovic, 2016). Of these, PCA, PAF, and ML are the 

most commonly used (De Winter & Dodou, 2012; Osborne & Banjanovic, 2016; 

Schmitt, 2011). 

PCA 

Strictly speaking, PCA is not a latent-variable method of computing eigenvalues 

for deciding the optimal number of factors (Howard, 2016; Keith, Caemmerer, & 

Reynolds, 2016; Widaman, 2007). Thus, the purpose of PCA is merely to decrease the 

number of variables by generating linear combinations that extract as many of the 

original observed variances as possible, which is different from the purpose of the latent-

variable method, which is to detect the latent factors that explain relationships among 

overserved variables  (Conway & Huffcutt, 2003). The latent-variable method separates 

common variance and unique variance within observed variables, but PCA does not 

distinguish between these two forms of variances and only utilizes components to 

represent these two variances (Howard, 2016). Thus, PCA is a component model, not a 

common factor model. Nevertheless, it is one of the most commonly used factor-
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extraction techniques for EFA (Schmitt, 2011), and is the default factor-extraction 

techniques in many statistical software packages, such as SPSS (Costello & Osborne, 

2005). 

PAF 

Many previous research studies have used PA based on PCA (Crawford et al., 

2010; Keith, Caemmerer, & Reynolds, 2016; Timmerman & Lorenzo-Seva, 2011). One 

study noted that PA-PCA was not the “gold standard” approach for choosing the optimal 

factor numbers for the intelligence data (Keith, Caemmerer, & Reynolds, 2016). Yet 

another simulation study claimed that PA based on PCA can perform as well as or better 

than PAF for models with one factor or multiple minimally correlated (r < .7) factors 

(Crawford et al., 2010).  

The other extraction techniques (PAF, Iterated PAF, ML, ULS, GLS, Image 

Factoring, and Harris Extraction) are all based on a common factor model, whose aim is 

to understand the latent factors that explain the relationships among measured variables 

(Conway & Huffcutt, 2003). As a variation of PCA, PAF substitutes the diagonal 

elements of the correlation or covariance matrix with the initial communality estimates, 

or initial estimates of the shared variances (Osborne & Banjanovic, 2016). PAF uses 

least-squares (Unweighted Least Squares [ULS] or Ordinary Least Squares [OLS]) to 

estimate the common factor model (De Winter & Dodou, 2012). Since the detailed 

mathematics involved are automated in modern statistical programs (Howard, 2016), the 

present study does not elaborate on that.  
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Empirical researchers believe that PA based on PAF can over-extract the latent 

factors (Buja & Eyuboglu, 1992; Steger, 2006), which has also been proven in a 

simulation study (Timmerman & Lorenzo-Seva, 2011). However, other simulation 

studies found that PAF yielded more accurate information about the number of factors 

than PCA (Crawford et al., 2010; Green, Levy, Thompson, Lu, & Lo, 2012; Keith et al., 

2010).  

Iterated PAF is similar to PAF, except that an iterative assessment procedure is 

utilized, which means individual sequential estimation of the communality is used to 

replace the diagonal of the matrix of associations (Costello & Osborne, 2005). The 

iterative process continues until the communality estimates become stable or their 

variations are less than a preset threshold (Keith et al., 2010). 

ML 

ML attempts to infer from a sample of individuals to an entire population 

because it is an asymptotically efficient estimator (De Winter & Dodou, 2012). Thus, it 

seeks to extract factors and estimate parameters that optimally produce the population 

correlation (or variance-covariance) matrix (Costello & Osborne, 2005). Additionally, 

ML determines which factor loading and unique variance estimations are most likely to 

replicate the observed data (De Winter & Dodou, 2012).  

Two approaches based on ML may be used to calculate eigenvalues: the model-

based approach (i.e., a level-specific model is specified for each level) and the design-

based approach (i.e., it assumes factorial invariance across levels and considers the 

multilevel structure by correcting the standard errors taking the sampling design into 
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account) (Wu & Kwok, 2012). (More details about these two approaches will be 

presented under Methods below.)  

An important assumption behind ML is that variables are multivariate normal 

with linear interrelationships, whereas PCA or PAF does not need to have this 

assumption (De Winter & Dodou, 2012; Howard, 2016). ML is affected by sample size; 

that is, the accuracy of ML increases when sample size increases (Fabrigar, Wegener, 

MacCallum, & Strahan, 1999). When ML is used to decide the number of factors for 

EFA, PA with ML procedures tend to overestimate the factor number (Humphreys & 

Montanelli, 1975). However, De Winter and Dodou (2012) suggested that through 

simulation and empirical studies, ML performs better than PAF when unequal loadings 

exist in factors and for under-extraction of latent factors, because compared with PAF, 

ML is less able to extract the weaker factors because it puts less weight on the weaker 

correlations. 

Alpha Extraction, ULS, Image Factoring, and Harris Extraction 

Alpha Extraction attempts to maximize Cronbach’s alpha assessment of the 

reliability of the latent factors (Costello & Osborne, 2005). ULS, in turn, does not make 

any requirements about normality and seeks to minimize the measurement errors and 

operationalizes as the sum of squared residuals. Finally, Image Factoring and Harris 

Extraction are derived from the image factor model, as opposed to the common factor 

model or the component model (Cattell & Vogelmann, 1977).  

Discussions of the relative advantages and disadvantages of these eigenvalues’ 

extraction techniques are rare based on multilevel data. Thus, the present study evaluated 
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four different commonly used factor-extraction techniques (PCA, PAF, Iterated PAF, 

and ML) for deciding the number of factors in MEFA. 

Combination of Criteria 

In addition to the above, the present study also considered a combination of three 

eigenvalues-based criteria (eigenvalues > 1, scree plot test, and PA) and four eigenvalues 

extraction techniques (PCA, PAF, Iterated PAF, and ML). In order to simplify the results 

and make the conclusions more practical, the study first excluded the scree plot test, 

since its results are naturally subjective and uncertain, and have a low inter-rater 

reliability (Crawford & Koopman, 1979). Next, because the performance of the 

eigenvalues > 1 criterion is not satisfactory in EFA (Crawford et al., 2010; Henson & 

Roberts, 2006), the study only examined the commonly used ML and PCA extraction 

techniques under this criterion for MEFA. Finally, the study mainly focused on the PA 

criterion. Although a previous study showed that PA based on PCA performed well for 

EFA (Crawford et al., 2010), the present study also excluded PA because PCA is not a 

latent method (Howard, 2016). Consequently, this study presents the results of PAF, 

Iterated PAF, and ML extraction techniques under PA for MEFA. 

Methods 

In this study, I used the same simulation design as Study 1 and the details of the 

data generation and design factors are restated here. 

Multilevel Data Generation 

In this study, Monte Carlo simulations were conducted using Mplus version 8 

(Muthén, & Muthén, 2017). Two-level data with eight items (y1-y8) were generated 
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based on two scenarios through Mplus. These eight items were all the standard normal 

distribution with mean = 0 and standard deviation (SD) = 1. Thus, multivariate normality 

was assumed for both scenarios, and all factor loadings were the standardized loadings. 

Scenario 1 

In this scenario (see Figure 1), Level-1 and Level-2 had different factor 

structures, with two factors in Level-1 and one factor in Level-2. Specifically, in Level-

1, y1-y4 were under Factor 1 and y5-y8 were under Factor 2. Within each factor, the first 

three items were good (main factor loadings = .6 and cross-loadings = .1), and the fourth 

item was a poor item (main factor loadings and cross-loadings were all .25). The 

correlation between the two within factors was .5. In Level-2, y1-y8 were all under one 

factor with the first six items being good items (factor loadings = .6) and the last two 

items being poor items (factor loadings = .25).  

Scenario 2 

In this scenario (see Figure 2), Level-1 and Level-2 had the same two-factor 

structures. Specifically, the Level-1 and Level-2 factor structures and factor loadings 

were the same as Level-1 in Scenario 1. The correlations between the two factors (within 

and between) were both .5. Because previous reviews have shown that when the 

correlation between factors is high (r ≥ .5), the model fit statistics commonly extract 

fewer than the true latent factors. We wanted to find the best way of identifying the 

optimal number of factors when the correlation is high. 
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Design Factors 

 The data generation also involved different sample size and intraclass correlation 

coefficient (ICC) conditions. ICC conditions are commonly a consideration in multilevel 

structural equation modeling (MSEM) simulation studies. For example, Hsu, Lin, Kwok, 

Acosta, and Willson (2017) considered the generalization of study finding and simulated 

six different ICC conditions (.1, .2, .3, .4, .5, and 1.00). Specifically, in the present study, 

the design factors included cluster numbers (CN = 100, 200, and 500), cluster sizes (CS 

=10, 20, and 50), and ICCs (.1, .2). Meanwhile, 500 replications were produced for each 

combination of design factors in the two scenarios. As a result, a total of 2 (scenarios) × 

3 (cluster numbers) × 3 (cluster sizes) × 2 (ICC) × 500 = 36 (Conditions) × 500 = 18,000 

replications were generated. 

Parallel Analysis Random Data Generation 

Mplus (Muthén & Muthén, 2017) was also used to generate PA random datasets 

of standard normal variables for each condition with 1,000 replications, for a total of 36 

(conditions) × 1000 = 36,000 replications. For each condition, 1,000 PA random datasets 

were generated based on the specific sample sizes and ICCs, y1-y8 are uncorrelated 

normally distributed variables for within- and between-levels. Thus, PA random datasets 

had the same three cluster numbers (CN = 100, 200, and 500), three cluster sizes (CS 

=10, 20, and 50), and two ICCs (.1, .2) as previous generated multilevel datasets. The 

within-level PA datasets were used to identify the number of factors in the within-level, 

while the between-level PA datasets were utilized to identify in the between-level. 
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Eigenvalues Calculation 

Mplus and SAS 9.4 (SAS Institute Inc., 2002) were used to analyze the data and 

calculate eigenvalues for different eigenvalues-based criteria.  

First, the study examined the eigenvalue > 1 criterion in Mplus. There are two 

approaches to calculate eigenvalues based on ML extraction technique for MEFA 

analysis: the model-based approach and the design-based approach. In the former, a 

level-specific model is specified for each level (Wu & Kwok, 2012). In Mplus, the 

syntax is TYPE = TWOLEVEL. When estimating the Level-1 factor structure, the 

Level-2 model is saturated and vice versa. In addition, the default setting for the 

estimators in Mplus was ML (maximum likelihood parameter estimates with 

conventional standard errors and chi-square test statistic), and for the rotation it was 

GEOMIN oblique rotation (Muthén & Muthén, 2017).  

On the other hand, the design-based approach assumes factorial invariance across 

levels and accounts for the multilevel structure by correcting the standard errors 

according to the sampling design (Wu & Kwok, 2012). In Mplus, the syntax is TYPE = 

COMPLEX. Other settings were also the default; the estimator was MLR (maximum 

likelihood parameter estimates with robust standard errors and a chi-square test statistic, 

MLR is robust to nonnormality and nonindependence of observations), and the rotation 

was GEOMIN oblique rotation (Muthén & Muthén, 2010). MLR was used because 

MLR standard errors are calculated using a sandwich estimator. In addition, the MLR 

chi-square test statistic is asymptotically equivalent to T2*test statistic proposed by 

Yuan and Bentler (2000). Compared to the model-based approach, the design-based 
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approach is relatively simple. That is, it only analyzes one global model and estimates 

parameters based on that model, which means it assumes the same structure across 

different levels; however, sometimes this assumption is wrong (Wu & Kwok, 2012). 

Thus, in Scenario 1, we only used the model-based approach because the assumption of 

factorial invariance across levels was violated. In Scenario 2, we applied both the model-

based and the design-based approaches for the data analysis. In terms of the results of 

these two approaches, the model-based approach (Mplus using ML) provided 

eigenvalues of between- and within- correlation matrices for sample separately, whereas 

the design-based approach (Mplus using MLR) only offered eigenvalues of one 

combined matrix for both levels. The study used these above extracted eigenvalues to 

evaluate the “eigenvalues > 1” criterion for multilevel exploratory analysis.  

In the following steps, the study changed analysis software from Mplus to SAS 

in order to compute eigenvalues using different extraction techniques, because SAS 

provides all of the above-mentioned eigenvalues extraction techniques (PCA, PAF, 

Iterated PAF, ML, etc.; Osborne & Banjanovic, 2016). Mplus cannot provide all of 

them. However, because SAS does not provide a direct syntax to analyze MEFA, Mplus 

was first applied to obtain the within- and between-correlation matrices separately for 

the multilevel datasets. Again, the syntax in Mplus is TYPE = TWOLEVEL, and other 

settings also served as the default. After getting these matrices, SAS was manipulated to 

analyze and calculate eigenvalues through different extraction techniques (PCA, PAF, 

Iterated PAF, and ML). In SAS, the default critical eigenvalue is 1, so under PROC 

FACTOR, SAS retains and rotates any component whose eigenvalue is 1 or larger. In 
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addition, ML estimation in Mplus and SAS provides similar eigenvalues, making it 

possible to compare the results of these two packages. 

Parallel Analysis 

The study first obtained the within- and between-correlation matrices separately 

for two levels through Mplus from generated PA random data, and then used PAF, 

Iterated PAF, and ML extraction techniques through SAS to calculate PA eigenvalues. 

In each condition of the PA random data, we then calculated average values of 

eigenvalues of the 1,000 replications for each factor. Thus, under different extraction 

techniques, this study compared each factor’s eigenvalues from both measured and 

random data at different levels; specifically, the first factor’s eigenvalue from simulated 

observed data was compared with the first factor’s average eigenvalue from random 

data; 0 was retained if the latter value was larger; otherwise, 1 was retained. We did a 

similar comparison and retained the number for the remaining seven factors until the 

latter value was larger, and thus finally found the factor numbers at both the within- and 

between-levels. 

Results 

“Eigenvalues > 1” Criterion 

“Eigenvalues > 1” Criterion Based on the ML/MLR Extraction Technique 

Model-based approach (Level-1 factor extraction). Table 6 shows the 

percentages of 500 iterations that retained the factor number for the Level-1 model of the 

model-based approach using the “eigenvalues > 1” criterion based on ML extraction 

technique. The true model was a two-factor model at the within-level for the two 
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scenarios. In general, the “eigenvalues > 1” criterion based on ML extracted a one-factor 

model at Level-1, and the chances of erroneously extracting underestimated factor 

number (only one factor) were more than 80%. Furthermore, there was a tendency for 

the under-factor situation to become worse when ICC was .2 compared to .1, holding 

other settings the same. Another finding, as shown in Table 6, was that the consequences 

were very similar for both scenarios when holding the ICC and sample size equal. 

Table 6 Level-1 Factor Extraction Results for the Model-Based Approach Using the 
“Eigenvalues > 1” Criterion Based on the ML Extraction Technique. 

ICC Sample Size* Percentage 
Scenario 1 Scenario 2 

1-factor 2-factor 1-factor 2-factor
0.1 100(10) 83.0% 17.0% 81.6% 18.4% 
0.2 100(10) 98.2% 1.8% 98.2% 1.8% 
0.1 100(20) 94.4% 5.6% 94.4% 5.6% 
0.2 100(20) 100.0% 0.0% 100.0% 0.0% 
0.1 100(50) 99.4% 0.6% 99.8% 0.2% 
0.2 100(50) 100.0% 0.0% 100.0% 0.0% 
0.1 200(10) 93.8% 6.2% 95.0% 5.0% 
0.2 200(10) 100.0% 0.0% 100.0% 0.0% 
0.1 200(20) 98.6% 1.4% 99.6% 0.4% 
0.2 200(20) 100.0% 0.0% 100.0% 0.0% 
0.1 200(50) 100.0% 0.0% 100.0% 0.0% 
0.2 200(50) 100.0% 0.0% 100.0% 0.0% 
0.1 500(10) 99.8% 0.2% 100.0% 0.0% 
0.2 500(10) 100.0% 0.0% 100.0% 0.0% 
0.1 500(20) 99.8% 0.2% 100.0% 0.0% 
0.2 500(20) 100.0% 0.0% 100.0% 0.0% 
0.1 500(50) 100.0% 0.0% 100.0% 0.0% 
0.2 500(50) 100.0% 0.0% 100.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Model-based approach (Level-2 factor extraction). Tables 7 and 8 present the 

percentages of 500 iterations that retained different factors for the Level-2 model for the 

model-based approach in Scenario 1 and Scenario 2, respectively, using the “eigenvalues 

> 1” criterion based on the ML extraction technique. The true factor numbers in the

between-level for the two scenarios were different; that is, it was a one-factor model in 

Scenario 1 and a two-factor model in Scenario 2.  

Table 7 Level-2 Factor Extraction Results for the Model-Based Approach in  
Scenario 1 Using the “Eigenvalues > 1” Criterion Based on the ML Extraction 
Technique. 

ICC Sample Size* Percentage 
1-factor 2-factor 3-factor 4-factor 5-factor

0.1 100(10) 0.8% 31.6% 59.8% 7.6% 0.2% 
0.2 100(10) 3.2% 50.8% 43.4% 2.6% 0.0% 
0.1 100(20) 2.0% 51.4% 43.6% 3.0% 0.0% 
0.2 100(20) 5.4% 61.2% 33.2% 0.2% 0.0% 
0.1 100(50) 4.8% 65.4% 29.4% 0.4% 0.0% 
0.2 100(50) 7.8% 72.4% 19.6% 0.2% 0.0% 
0.1 200(10) 2.2% 58.8% 37.2% 1.8% 0.0% 
0.2 200(10) 9.0% 76.2% 14.8% 0.0% 0.0% 
0.1 200(20) 7.0% 72.4% 20.6% 0.0% 0.0% 
0.2 200(20) 14.4% 78.0% 7.6% 0.0% 0.0% 
0.1 200(50) 15.4% 80.0% 4.6% 0.0% 0.0% 
0.2 200(50) 21.6% 75.4% 3.0% 0.0% 0.0% 
0.1 500(10) 14.0% 76.2% 9.8% 0.0% 0.0% 
0.2 500(10) 35.0% 64.2% 0.8% 0.0% 0.0% 
0.1 500(20) 31.4% 66.2% 2.4% 0.0% 0.0% 
0.2 500(20) 51.8% 48.0% 0.2% 0.0% 0.0% 
0.1 500(50) 51.0% 48.8% 0.2% 0.0% 0.0% 
0.2 500(50) 61.2% 38.8% 0.0% 0.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.



48 

In Scenario 1 (see Table 7), under most simulation conditions, the Kaiser 

criterion based on ML was not able to identify the correct latent factor numbers. 

Moreover, this criterion had a large probability (over 75%) of overestimating the 

between-level factor number except under three simulation conditions: one condition 

with cluster number = 500, cluster size = 20, and ICC = .2, and two conditions with 

cluster number = 500 and cluster size = 50. When sample sizes were the same, the larger 

ICC helped to increase the chance of extracting the true latent numbers.  

In Scenario 2 (see Table 8), in the majority of cases, the “eigenvalues > 1” based 

on ML had a probability of more than 50% of extracting the correct factor numbers 

except for three cases, two cases with cluster number = 100 and cluster size = 10, and 

one case with cluster number = 500, cluster size = 10, and ICC = .1. The results were 

similar to Scenario 1 in that the larger ICC can help to increase the chance of identifying 

the correct numbers at the between-level. 

In general, the “eigenvalues > 1” criterion based on the ML extraction technique 

performed better in detecting the factor numbers at the between-level than at the within-

level. Higher cluster numbers or more cluster size or larger ICC can help to increase the 

chance of identifying the correct factor numbers at the between-level. 
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Table 8 Level-2 Factor Extraction Results for the Model-Based Approach in 
Scenario 2 Using the “Eigenvalues > 1” Criterion Based on the ML Extraction 
Technique. 

ICC Sample Size* Percentage 
1-factor 2-factor 3-factor 4-factor

0.1 100(10) 1.8% 41.0% 50.0% 7.2% 
0.2 100(10) 1.4% 45.2% 50.2% 3.2% 
0.1 100(20) 6.6% 61.6% 30.6% 1.2% 
0.2 100(20) 1.2% 61.2% 35.8% 1.8% 
0.1 100(50) 14.4% 71.2% 14.4% 0.0% 
0.2 100(50) 2.4% 71.6% 25.8% 0.2% 
0.1 200(10) 9.6% 61.4% 28.6% 0.4% 
0.2 200(10) 2.6% 71.8% 25.2% 0.4% 
0.1 200(20) 19.2% 70.4% 10.4% 0.0% 
0.2 200(20) 1.2% 85.8% 13.0% 0.0% 
0.1 200(50) 32.8% 65.0% 2.2% 0.0% 
0.2 200(50) 1.4% 91.4% 7.2% 0.0% 
0.1 500(10) 31.0% 65.0% 4.0% 0.0% 
0.2 500(10) 0.8% 96.8% 2.4% 0.0% 
0.1 500(20) 47.8% 51.8% 0.4% 0.0% 
0.2 500(20) 0.4% 99.0% 0.6% 0.0% 
0.1 500(50) 63.4% 36.6% 0.0% 0.0% 
0.2 500(50) 0.0% 99.6% 0.4% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Design-based approach (Scenario 2). Table 9 exhibits the percentages of 500 

iterations that retained different factors for the design-based approach in Scenario 2 

using the “eigenvalues > 1” criterion based on the MLR extraction technique. The true 

model was a two-factor model for both levels. In general, the Kaiser criterion had a great 

chance (more than 75%) to underestimate the factor number for the multilevel data. It 

was not appropriate for identifying the true factor number when using the design-based 

approach through the “eigenvalues > 1” criterion based on the MLR extraction 

technique. 
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Table 9 Factor Extraction Results for the Design-Based Approach in Scenario 2 
Using the “Eigenvalues > 1” Criterion Based on the MLR Extraction Technique. 

ICC Sample Size* Percentage 
1-factor 2-factor

0.1 100(10) 83.4% 16.6% 
0.2 100(10) 76.4% 23.6% 
0.1 100(20) 93.6% 6.4% 
0.2 100(20) 86.0% 14.0% 
0.1 100(50) 98.8% 1.2% 
0.2 100(50) 91.0% 9.0% 
0.1 200(10) 94.2% 5.8% 
0.2 200(10) 88.4% 11.6% 
0.1 200(20) 98.4% 1.6% 
0.2 200(20) 94.6% 5.4% 
0.1 200(50) 99.8% 0.2% 
0.2 200(50) 97.2% 2.8% 
0.1 500(10) 99.6% 0.4% 
0.2 500(10) 98.4% 1.6% 
0.1 500(20) 100.0% 0.0% 
0.2 500(20) 99.4% 0.6% 
0.1 500(50) 100.0% 0.0% 
0.2 500(50) 99.8% 0.2% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Altogether, the “eigenvalues > 1” criterion based on the ML/MLR eigenvalues 

extraction technique was not accurate in retaining the latent factor number for multilevel 

exploratory factor analysis. This criterion resulted in an underestimation of the factor 

numbers at the within-level, regardless of whether the model-based approach or the 

design-based approach was used. Although this criterion can extract the true factor 

numbers at the between-level in some conditions, we need to avoid using it, because in 

practical studies, determining the Level-1 factor numbers is usually the first vital step; 

hence, inaccurate low-level factor numbers can lead to poor models and further incorrect 

interpretation even if the higher levels have the correct factor numbers. 
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In sum, this study demonstrated that the “eigenvalues > 1” criterion based on the 

ML/MLR eigenvalues extraction technique cannot be used to retain the factor numbers 

for multilevel data. In addition, under the model-based approach, ICC had different 

influences on this criterion; that is, a larger ICC had a negative effect on determining the 

true numbers at the within-level but a positive effect at the between-level, while larger 

sample sizes always had a positive influence in the Level-2 model for this criterion. 

“Eigenvalues > 1” Criterion Based on the PCA Extraction Technique 

PCA (Level-1 factor extraction). Table 10 shows the percentages of 500 

iterations that retained the factor number for the Level-1 model using the “eigenvalues > 

1” criterion based on the PCA extraction technique. The results were similar to the 

findings shown in Table 6, which also used the “eigenvalues > 1” criterion to extract the 

within-level factor. In general, the “eigenvalues > 1” criterion based on PCA also 

underestimated the within-level factor numbers, and higher ICC led to worse results. 
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Table 10 Level-1 Factor Extraction Results Using the “Eigenvalues > 1” Criterion 
Based on the PCA Extraction Technique. 

ICC Sample Size* Percentage 
Scenario 1 Scenario 2 

1-factor 2-factor 1-factor 2-factor
0.1 100(10) 83.8% 16.2% 82.4% 17.6% 
0.2 100(10) 98.4% 1.6% 98.4% 1.6% 
0.1 100(20) 94.4% 5.6% 94.8% 5.2% 
0.2 100(20) 100.0% 0.0% 100.0% 0.0% 
0.1 100(50) 99.6% 0.4% 99.8% 0.2% 
0.2 100(50) 100.0% 0.0% 100.0% 0.0% 
0.1 200(10) 93.8% 6.2% 95.0% 5.0% 
0.2 200(10) 100.0% 0.0% 100.0% 0.0% 
0.1 200(20) 98.8% 1.2% 99.6% 0.4% 
0.2 200(20) 100.0% 0.0% 100.0% 0.0% 
0.1 200(50) 100.0% 0.0% 100.0% 0.0% 
0.2 200(50) 100.0% 0.0% 100.0% 0.0% 
0.1 500(10) 99.8% 0.2% 100.0% 0.0% 
0.2 500(10) 100.0% 0.0% 100.0% 0.0% 
0.1 500(20) 99.8% 0.2% 100.0% 0.0% 
0.2 500(20) 100.0% 0.0% 100.0% 0.0% 
0.1 500(50) 100.0% 0.0% 100.0% 0.0% 
0.2 500(50) 100.0% 0.0% 100.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

PCA (Level-2 factor extraction). Tables 11 and 12 present the percentages of 

500 iterations that retained the different factors for the Level-2 model in Scenario 1 and 

Scenario 2, respectively, through the “eigenvalues > 1” criterion based on the PCA 

extraction technique. Results shown in these two tables are analogous to those shown in 

Tables 7 and 8, respectively. Briefly, the “eigenvalues > 1” criterion based on PCA 

behaved better in identifying the latent factor in Level-2 than in Level-1. In addition, a 

larger sample size or greater ICC can help to increase the likelihood of identifying the 

correct latent factor(s) in Level-2. 
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Table 11 Level-2 Factor Extraction Results in Scenario 1 Using the “Eigenvalues > 
1” Criterion Based on the PCA Extraction Technique. 

ICC Sample Size* Percentage 

1-factor 2-factor 3-factor 4-factor 5-factor

0.1 100(10) 0.6% 31.6% 60.0% 7.6% 0.2% 

0.2 100(10) 3.2% 50.4% 43.8% 2.6% 0.0% 

0.1 100(20) 1.8% 52.0% 43.2% 3.0% 0.0% 

0.2 100(20) 5.4% 61.6% 32.8% 0.2% 0.0% 

0.1 100(50) 4.6% 65.4% 29.6% 0.4% 0.0% 

0.2 100(50) 7.8% 73.4% 18.6% 0.2% 0.0% 

0.1 200(10) 2.4% 59.2% 36.8% 1.6% 0.0% 

0.2 200(10) 9.6% 76.0% 14.4% 0.0% 0.0% 

0.1 200(20) 7.2% 72.4% 20.4% 0.0% 0.0% 

0.2 200(20) 14.8% 77.6% 7.6% 0.0% 0.0% 

0.1 200(50) 15.0% 80.8% 4.2% 0.0% 0.0% 

0.2 200(50) 21.8% 75.0% 3.2% 0.0% 0.0% 

0.1 500(10) 13.6% 77.0% 9.4% 0.0% 0.0% 

0.2 500(10) 36.0% 63.0% 1.0% 0.0% 0.0% 

0.1 500(20) 32.2% 65.4% 2.4% 0.0% 0.0% 

0.2 500(20) 52.2% 47.8% 0.0% 0.0% 0.0% 

0.1 500(50) 51.8% 48.0% 0.2% 0.0% 0.0% 

0.2 500(50) 62.2% 37.8% 0.0% 0.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 12 Level-2 Factor Extraction Results in Scenario 2 Using the “Eigenvalues > 
1” Criterion Based on the PCA Extraction Technique. 

ICC Sample Size* Percentage 
1-factor 2-factor 3-factor 4-factor

0.1 100(10) 1.8% 40.8% 50.8% 6.6% 
0.2 100(10) 1.4% 45.0% 50.8% 2.8% 
0.1 100(20) 6.6% 61.6% 30.6% 1.2% 
0.2 100(20) 1.2% 60.8% 36.2% 1.8% 
0.1 100(50) 14.2% 71.0% 14.8% 0.0% 
0.2 100(50) 2.4% 72.0% 25.4% 0.2% 
0.1 200(10) 9.0% 62.0% 28.6% 0.4% 
0.2 200(10) 2.2% 72.6% 24.8% 0.4% 
0.1 200(20) 19.2% 70.0% 10.8% 0.0% 
0.2 200(20) 1.2% 86.2% 12.6% 0.0% 
0.1 200(50) 33.4% 64.8% 1.8% 0.0% 
0.2 200(50) 1.4% 91.8% 6.8% 0.0% 
0.1 500(10) 31.2% 65.0% 3.8% 0.0% 
0.2 500(10) 0.8% 96.8% 2.4% 0.0% 
0.1 500(20) 48.4% 51.2% 0.4% 0.0% 
0.2 500(20) 0.4% 99.0% 0.6% 0.0% 
0.1 500(50) 64.6% 35.4% 0.0% 0.0% 
0.2 500(50) 0.0% 99.6% 0.4% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Overall, the “eigenvalues > 1” criterion using the ML or PCA eigenvalues 

extraction technique did not correctly extract the latent factors for MEFA. 

Parallel Analysis 

Parallel Analysis Based on the PAF Extraction Technique 

PA based on PAF (Level-1 factor extraction). Table 13 displays the percentages 

of 500 iterations that retained the latent factors for the Level-1 model through PA based 

on the PAF extraction technique. As mentioned previously, the true Level-1 factor 

number was two, regardless of the scenario. PA based on the PAF method extracted the 
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true factor model in Level-1; that is, there was more than a 98% chance of accurately 

extracting within-level factor numbers. 

Table 13 Level-1 Factor Extraction Results Using PA Based on the PAF Extraction 
Technique. 

ICC Sample Size* Percentage 
Scenario 1 Scenario 2 

1-factor 2-factor 3-factor 1-factor 2-factor 3-factor
0.1 100(10) 0.0% 99.6% 0.4% 0.2% 98.2% 1.6% 
0.2 100(10) 0.2% 98.2% 1.6% 0.2% 98.4% 1.4% 
0.1 100(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 100(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 100(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 100(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 200(10) 0.0% 100.0% 0.0% 0.0% 99.8% 0.2% 
0.2 200(10) 0.0% 100.0% 0.0% 0.0% 99.4% 0.6% 
0.1 200(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 200(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 200(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 200(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 500(10) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 500(10) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 500(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 500(20) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.1 500(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 
0.2 500(50) 0.0% 100.0% 0.0% 0.0% 100.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

PA based on PAF (Level-2 factor extraction). Table 14 presents the percentages 

of 500 iterations that retained different factors for the Level-2 model in Scenario 1 using 

PA based on the PAF eigenvalues extraction method. As mentioned previously, the true 

Level-2 factor number was one for this scenario. PA based on the PAF method identified 

the accurate between-level factor model in Level-2 with more than a 65% probability in 
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every simulation condition for this study. Larger ICC or greater cluster number or bigger 

cluster size helped to increase the probability of extracting the correct latent numbers for 

Level-2 when controlling for other conditions. 

Table 14 Level-2 Factor Extraction Results in Scenario 1 Using PA Based on the 
PAF Extraction Technique. 

ICC Sample 
Size* 

Percentage 
 

0-
factor 

1-
factor 

2-
factor 

3-
factor 

4-
factor 

5-
factor 

6-
factor 

7-
factor 

8-
factor 

0.1 100(10) 0.8% 65.2% 12.6% 4.0% 3.4% 1.2% 0.6% 0.0% 12.2% 
0.2 100(10) 0.0% 73.2% 14.8% 5.8% 2.8% 2.0% 0.2% 0.2% 1.0% 
0.1 100(20) 0.0% 67.0% 19.2% 7.4% 2.6% 1.0% 1.0% 0.6% 1.2% 
0.2 100(20) 0.0% 76.8% 16.6% 4.0% 1.4% 0.8% 0.2% 0.2% 0.0% 
0.1 100(50) 0.0% 73.0% 18.8% 5.4% 1.4% 0.6% 0.6% 0.2% 0.0% 
0.2 100(50) 0.0% 80.4% 16.4% 2.6% 0.2% 0.4% 0.0% 0.0% 0.0% 
0.1 200(10) 0.0% 70.4% 17.8% 6.0% 1.4% 1.6% 0.2% 1.0% 1.6% 
0.2 200(10) 0.0% 81.4% 13.6% 3.8% 1.2% 0.0% 0.0% 0.0% 0.0% 
0.1 200(20) 0.0% 76.2% 17.2% 4.8% 1.4% 0.2% 0.2% 0.0% 0.0% 
0.2 200(20) 0.0% 87.8% 10.8% 1.2% 0.2% 0.0% 0.0% 0.0% 0.0% 
0.1 200(50) 0.0% 82.8% 15.2% 1.8% 0.2% 0.0% 0.0% 0.0% 0.0% 
0.2 200(50) 0.0% 85.2% 13.0% 1.6% 0.2% 0.0% 0.0% 0.0% 0.0% 
0.1 500(10) 0.0% 80.6% 16.0% 2.4% 0.8% 0.2% 0.0% 0.0% 0.0% 
0.2 500(10) 0.0% 90.4% 9.2% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.1 500(20) 0.0% 88.2% 10.8% 0.8% 0.2% 0.0% 0.0% 0.0% 0.0% 
0.2 500(20) 0.0% 92.2% 7.6% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.1 500(50) 0.0% 91.8% 8.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.2 500(50) 0.0% 93.8% 6.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Table 15 presents the percentages of 500 iterations that retained different factors 

for the Level-2 model in Scenario 2 using PA based on the PAF eigenvalues extraction 

method. Under this scenario, the true between-level model was a two-factor model. 

However, this time it performed worse than in Scenario 1. That is, although PA based on 
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PAF still had the capability to extract the correct factor number in most simulation 

conditions, the possibility was lower than 65% when the cluster number =100. 

Moreover, it was similar to previous results, in that larger ICC or greater cluster numbers 

or bigger cluster size improved performance.  

In general, the performance of the PA criterion based on the PAF extraction 

technique was almost perfect at detecting the between-level factors. If the structure 

became complicated, as going from one factor in Scenario 1 to two factors in Scenario 2, 

more cluster numbers were needed to extract the correct latent number. Under Scenario 

2, if the sample size was large enough (cluster number = 500), the performance was 

acceptable (the percentage of correctly identifying the number was large than 75%). In 

other words, bigger cluster numbers or cluster sizes or larger ICC can help to increase 

the chance of identifying the correct factor numbers in the between-level through PA 

based on the PAF eigenvalues extraction method. 
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Table 15 Level-2 Factor Extraction Results in Scenario 2 Using PA Based on the 
PAF Extraction Technique.   

ICC Sample 
Size* 

Percentage 
 

0-
factor 

1-
factor 

2-
factor 

3-
factor 

4-
factor 

5-
factor 

6-
factor 

7-
factor 

8-
factor 

0.1 100(10) 0.6% 63.2% 16.4% 5.6% 3.2% 1.4% 0.2% 0.0% 9.4% 
0.2 100(10) 0.0% 27.2% 47.0% 13.6% 6.6% 3.0% 1.4% 1.2% 0.0% 
0.1 100(20) 0.0% 58.0% 27.2% 7.0% 3.4% 2.6% 0.6% 0.2% 1.0% 
0.2 100(20) 0.0% 16.6% 56.6% 17.0% 7.2% 2.2% 0.2% 0.2% 0.0% 
0.1 100(50) 0.0% 52.2% 33.8% 11.6% 1.4% 1.0% 0.0% 0.0% 0.0% 
0.2 100(50) 0.0% 12.4% 64.2% 17.4% 4.4% 1.6% 0.0% 0.0% 0.0% 
0.1 200(10) 0.0% 57.4% 28.6% 10.2% 2.8% 0.2% 0.2% 0.0% 0.6% 
0.2 200(10) 0.0% 7.6% 66.0% 19.2% 5.4% 1.4% 0.2% 0.2% 0.0% 
0.1 200(20) 0.0% 44.0% 44.6% 8.6% 1.6% 0.6% 0.4% 0.2% 0.0% 
0.2 200(20) 0.0% 2.4% 76.0% 19.2% 2.2% 0.2% 0.0% 0.0% 0.0% 
0.1 200(50) 0.0% 32.0% 55.6% 10.8% 1.4% 0.2% 0.0% 0.0% 0.0% 
0.2 200(50) 0.0% 0.8% 83.8% 14.8% 0.6% 0.0% 0.0% 0.0% 0.0% 
0.1 500(10) 0.0% 30.4% 56.0% 11.6% 2.0% 0.0% 0.0% 0.0% 0.0% 
0.2 500(10) 0.0% 0.0% 87.4% 11.8% 0.8% 0.0% 0.0% 0.0% 0.0% 
0.1 500(20) 0.0% 12.8% 77.8% 8.8% 0.6% 0.0% 0.0% 0.0% 0.0% 
0.2 500(20) 0.0% 0.0% 91.0% 9.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.1 500(50) 0.0% 4.0% 89.8% 6.0% 0.2% 0.0% 0.0% 0.0% 0.0% 
0.2 500(50) 0.0% 0.0% 94.0% 6.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Parallel Analysis Based on the Iterated PAF Extraction Technique 

PA based on Iterated PAF (Level-1 factor extraction). Table 16 displays the 

percentages of 500 iterations that retained different factors for the Level-1 model using 

PA based on the Iterated PAF extraction technique. PA based on Iterated PAF extracted 

the true factor model at Level-1 with a more than 85% chance under different simulation 

conditions. Compared with PA based on PAF, PA based on Iterated PAF performed 

worse in every simulation condition. 



59 

Table 16 Level-1 Factor Extraction Results Using PA Based on the Iterated PAF 
Extraction Technique. 

ICC Sample Size* Percentage 
Scenario 1 Scenario 2 

2-factor 3-factor 2-factor 3-factor
0.1 100(10) 91.0% 9.0% 88.2% 11.8% 
0.2 100(10) 87.0% 13.0% 87.6% 12.4% 
0.1 100(20) 95.2% 4.8% 92.6% 7.4% 
0.2 100(20) 93.4% 6.6% 92.2% 7.8% 
0.1 100(50) 94.0% 6.0% 94.0% 6.0% 
0.2 100(50) 94.6% 5.4% 94.2% 5.8% 
0.1 200(10) 94.6% 5.4% 91.8% 8.2% 
0.2 200(10) 91.2% 8.8% 91.8% 8.2% 
0.1 200(20) 95.8% 4.2% 95.6% 4.4% 
0.2 200(20) 95.8% 4.2% 95.8% 4.2% 
0.1 200(50) 95.4% 4.6% 94.2% 5.8% 
0.2 200(50) 95.8% 4.2% 95.8% 4.2% 
0.1 500(10) 95.2% 4.8% 95.0% 5.0% 
0.2 500(10) 94.0% 6.0% 96.6% 3.4% 
0.1 500(20) 94.2% 5.8% 95.6% 4.4% 
0.2 500(20) 95.8% 4.2% 95.8% 4.2% 
0.1 500(50) 91.6% 8.4% 90.4% 9.6% 
0.2 500(50) 93.0% 7.0% 93.4% 6.6% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

PA based on Iterated PAF (Level-2 factor extraction). Tables 17-18 show the 

percentages of 500 iterations that retained different factors for the Level-2 model in 

Scenario 1 and Scenario 2, respectively, using PA based on the Iterated PAF extraction 

technique. When using PA based on Iterated PAF for the simulated Level-2 data, this 

study faced a convergence problem, which showed as an “ERROR: Communality 

greater than 1.0” in the SAS log. Although SAS support provided a syntax = 

HEYWOOD to the PROC FACTOR statement to help model convergence or a syntax = 

ULTRAHEYWOOD to avoid communality greater than 1.0, the results were inaccurate 
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or misleading under the above modifications (Steinberg, 2010). Therefore, this study did 

not apply these modification syntaxes and reports the convergence rate for Tables 17-19. 

Table 17 offers the percentages of 500 iterations that retained different factors for 

the Level-2 model in Scenario 1 using the PA criterion based on the Iterated PAF 

extraction technique. In Scenario 1, when ICC was higher, the performance of PA based 

on Iterated PAF became poorer at identifying the between-level factor in most 

simulation situations controlling for other settings. When ICC = .2, the lowest 

probability of extracting the correct factors using PA based on Iterated PAF was 22.4%, 

whereas when ICC = .1, the lowest chance was 67.3%. 

Table 18 presents the percentages of 500 iterations that retained different factors 

for the Level-2 model in Scenario 2 using the PA criterion based on the Iterated PAF 

extraction technique. In Scenario 2, when ICC was higher, the performance was better at 

identifying the Level-2 factor in most simulation circumstances controlling for other 

settings. When ICC = .1, the lowest probability of obtaining the correct latent factors 

using PA based on Iterated PAF was 10.7%, whereas when ICC =.2, the lowest 

probability was 35.8%. 
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Table 17 Level-2 Factor Extraction Results in Scenario 1 Using the PA Criterion 
Based on the Iterated PAF Extraction Technique. 

ICC Sample 
Size* 

Convergence 
Rate 

Percentage 
0-

factor 
1-

factor 
2-

factor 
3-

factor 
4-

factor 
5-

factor 
6-

factor 
7-

factor 
8-

factor 
0.1 100(10) 35.0% 0.6% 72.0% 12.6% 6.9% 3.4% 1.7% 0.6% 0.0% 2.3% 
0.2 100(10) 80.6% 0.0% 68.5% 20.8% 5.0% 2.2% 0.5% 0.2% 0.2% 2.5% 
0.1 100(20) 80.2% 0.0% 69.8% 21.4% 4.5% 4.2% 0.0% 0.0% 0.0% 0.0% 
0.2 100(20) 95.2% 0.0% 75.0% 16.4% 5.3% 2.5% 0.4% 0.2% 0.2% 0.0% 
0.1 100(50) 93.8% 0.0% 70.6% 18.3% 6.6% 4.5% 0.0% 0.0% 0.0% 0.0% 
0.2 100(50) 98.4% 0.0% 88.6% 5.7% 3.0% 1.0% 1.6% 0.0% 0.0% 0.0% 
0.1 200(10) 83.8% 0.0% 67.3% 24.3% 3.8% 1.9% 0.2% 0.2% 0.2% 1.9% 
0.2 200(10) 99.6% 0.0% 93.2% 1.6% 2.4% 0.8% 0.6% 0.8% 0.6% 0.0% 
0.1 200(20) 98.8% 0.0% 85.8% 4.3% 4.3% 2.0% 2.2% 0.4% 1.0% 0.0% 
0.2 200(20) 100.0% 0.0% 97.6% 1.8% 0.4% 0.0% 0.2% 0.0% 0.0% 0.0% 
0.1 200(50) 100.0% 0.0% 95.0% 3.8% 0.8% 0.4% 0.0% 0.0% 0.0% 0.0% 
0.2 200(50) 100.0% 0.0% 89.8% 8.6% 1.2% 0.4% 0.0% 0.0% 0.0% 0.0% 
0.1 500(10) 100.0% 0.0% 98.2% 1.0% 0.0% 0.2% 0.2% 0.0% 0.4% 0.0% 
0.2 500(10) 100.0% 0.0% 82.6% 13.4% 3.2% 0.6% 0.2% 0.0% 0.0% 0.0% 
0.1 500(20) 100.0% 0.0% 80.2% 15.6% 2.6% 1.0% 0.6% 0.0% 0.0% 0.0% 
0.2 500(20) 100.0% 0.0% 77.6% 18.2% 3.0% 1.0% 0.2% 0.0% 0.0% 0.0% 
0.1 500(50) 100.0% 0.0% 76.2% 17.4% 3.4% 2.6% 0.2% 0.2% 0.0% 0.0% 
0.2 500(50) 100.0% 0.0% 76.6% 17.4% 4.6% 0.6% 0.2% 0.4% 0.2% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 18 Level-2 Factor Extraction Results in Scenario 2 Using the PA Criterion 
Based on the Iterated PAF Extraction Technique. 

ICC Sample 
Size* 

Convergence 
Rate 

Percentage 
0-

factor 
1-

factor 
2-

factor 
3-

factor 
4-

factor 
5-

factor 
6-

factor 
7-

factor 
8-

factor 
0.1 100(10) 33.6% 0.6% 72.0% 10.7% 7.7% 3.6% 0.6% 0.0% 0.6% 4.2% 
0.2 100(10) 83.2% 0.0% 30.0% 51.9% 11.3% 2.2% 1.0% 0.5% 0.7% 2.4% 
0.1 100(20) 82.8% 0.0% 61.6% 29.5% 3.4% 2.2% 0.2% 0.0% 0.5% 2.7% 
0.2 100(20) 95.6% 0.0% 22.2% 46.4% 18.8% 7.7% 3.8% 0.8% 0.2% 0.0% 
0.1 100(50) 95.2% 0.0% 57.4% 25.8% 13.0% 2.5% 0.2% 0.6% 0.4% 0.0% 
0.2 100(50) 99.4% 0.0% 28.0% 37.8% 21.3% 6.6% 3.6% 1.8% 0.6% 0.2% 
0.1 200(10) 84.8% 0.0% 58.3% 30.0% 7.1% 1.9% 0.7% 0.2% 0.2% 1.7% 
0.2 200(10) 97.8% 0.0% 27.4% 35.8% 17.2% 9.2% 7.0% 1.6% 1.0% 0.8% 
0.1 200(20) 98.0% 0.0% 67.8% 15.5% 10.4% 3.3% 2.0% 0.6% 0.4% 0.0% 
0.2 200(20) 100.0% 0.0% 6.2% 58.8% 19.2% 5.4% 2.2% 1.8% 1.8% 4.6% 
0.1 200(50) 100.0% 0.0% 43.6% 44.8% 9.4% 0.6% 0.4% 0.0% 0.2% 1.0% 
0.2 200(50) 100.0% 0.0% 0.8% 73.0% 12.6% 2.4% 1.6% 0.2% 1.4% 8.0% 
0.1 500(10) 100.0% 0.0% 51.4% 36.6% 6.0% 1.6% 0.4% 1.2% 1.8% 1.0% 
0.2 500(10) 100.0% 0.0% 0.0% 80.4% 14.0% 1.4% 0.4% 0.6% 1.0% 2.2% 
0.1 500(20) 100.0% 0.0% 3.6% 78.4% 16.4% 1.4% 0.2% 0.0% 0.0% 0.0% 
0.2 500(20) 100.0% 0.0% 0.0% 84.2% 14.8% 0.8% 0.0% 0.0% 0.0% 0.2% 
0.1 500(50) 100.0% 0.0% 0.2% 84.4% 13.8% 1.6% 0.0% 0.0% 0.0% 0.0% 
0.2 500(50) 100.0% 0.0% 0.0% 86.0% 12.8% 0.0% 0.2% 0.2% 0.2% 0.6% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 19 Convergence Rate of 1,000 Replications in a Level-2 Model for Random 
Data Using the PA Criterion Based on the Iterated PAF Extraction Technique. 

ICC Sample Size* Convergence Rate 
Scenario 1 Scenario 2 

0.1 100(10) 27.7% 26.7% 
0.2 100(10) 15.6% 74.2% 
0.1 100(20) 71.2% 71.8% 
0.2 100(20) 23.4% 92.8% 
0.1 100(50) 92.6% 91.8% 
0.2 100(50) 33.6% 96.5% 
0.1 200(10) 73.7% 73.6% 
0.2 200(10) 35.5% 97.5% 
0.1 200(20) 96.2% 95.7% 
0.2 200(20) 47.8% 99.9% 
0.1 200(50) 99.7% 99.7% 
0.2 200(50) 53.8% 100.0% 
0.1 500(10) 100.0% 99.1% 
0.2 500(10) 57.8% 100.0% 
0.1 500(20) 100.0% 99.9% 
0.2 500(20) 58.4% 100.0% 
0.1 500(50) 100.0% 82.3% 
0.2 500(50) 62.6% 100.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

In general, PA based on Iterated PAF performed worse than PA based on PAF 

for Level-2 factor extraction in these two scenarios, especially when ICC was higher. 

Parallel Analysis Based on the ML Extraction Technique 

PA based on ML (Level-1 factor extraction). Table 20 presents the percentages 

of 500 iterations that obtained latent factors for the Level-1 model using the PA based on 

the ML eigenvalues extraction approach. PA based on ML also worked well to identify 

the true factor in the Level-1 model in most of simulation conditions; however, the 

probability was the lowest in every simulation situation compared to PA based on PAF 
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or Iterated PAF. In addition, the simulation random data also had a convergence 

problem, even for the Level-1 model, as illustrated in Table 21. 

Table 20 Level-1 Factor Extraction Results Using PA Based on the ML Extraction 
Technique. 

ICC Sample Size* Percentage 
Scenario 1 Scenario 2 

2-factor 3-factor 4-factor 2-factor 3-factor 4-factor
0.1 100(10) 69.0% 28.6% 2.4% 66.2% 33.0% 0.8% 
0.2 100(10) 61.2% 36.2% 2.6% 62.2% 35.2% 2.6% 
0.1 100(20) 81.8% 17.6% 0.6% 74.0% 25.6% 0.4% 
0.2 100(20) 74.6% 24.6% 0.8% 72.8% 26.4% 0.8% 
0.1 100(50) 82.8% 17.2% 0.0% 82.4% 17.6% 0.0% 
0.2 100(50) 82.8% 17.2% 0.0% 82.6% 17.4% 0.0% 
0.1 200(10) 77.0% 22.2% 0.8% 75.0% 24.6% 0.4% 
0.2 200(10) 73.2% 26.2% 0.6% 75.6% 23.8% 0.6% 
0.1 200(20) 84.0% 16.0% 0.0% 85.2% 14.8% 0.0% 
0.2 200(20) 83.0% 17.0% 0.0% 84.4% 15.4% 0.2% 
0.1 200(50) 85.2% 14.8% 0.0% 83.4% 16.6% 0.0% 
0.2 200(50) 84.6% 15.4% 0.0% 85.6% 14.4% 0.0% 
0.1 500(10) 84.4% 15.6% 0.0% 84.0% 16.0% 0.0% 
0.2 500(10) 81.6% 18.4% 0.0% 84.6% 15.4% 0.0% 
0.1 500(20) 86.2% 13.8% 0.0% 85.4% 14.6% 0.0% 
0.2 500(20) 85.4% 14.6% 0.0% 87.8% 12.2% 0.0% 
0.1 500(50) 78.8% 21.2% 0.0% 76.4% 23.6% 0.0% 
0.2 500(50) 78.8% 21.2% 0.0% 82.6% 17.4% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 21 Convergence Rate of 1,000 Replications in a Level-1 Model for Parallel 
Random Data Using PA Based on the ML Extraction Technique. 

ICC Sample Size* Convergence Rate 
Scenario 1 Scenario 2 

0.1 100(10) 65.8% 64.9% 
0.2 100(10) 67.4% 66.0% 
0.1 100(20) 69.7% 66.6% 
0.2 100(20) 100.0% 70.0% 
0.1 100(50) 68.2% 68.6% 
0.2 100(50) 100.0% 67.5% 
0.1 200(10) 67.0% 65.5% 
0.2 200(10) 67.4% 66.4% 
0.1 200(20) 71.3% 70.8% 
0.2 200(20) 71.7% 70.4% 
0.1 200(50) 69.5% 69.7% 
0.2 200(50) 69.6% 70.8% 
0.1 500(10) 68.2% 66.5% 
0.2 500(10) 68.2% 68.0% 
0.1 500(20) 71.2% 71.6% 
0.2 500(20) 70.6% 71.3% 
0.1 500(50) 70.8% 70.8% 
0.2 500(50) 71.4% 73.6% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

PA based on ML (Level-2 factor extraction). Tables 22-23 present the 

percentages of 500 iterations that maintained different factors for the Level-2 model in 

Scenario 1 and Scenario 2, respectively, using PA based on the ML extraction technique. 

Most of the conditions had a less than 50% probability of identifying the true Level-2 

model in both scenarios. This performance of the PA based the ML was also the worst 

among the three PA methods for Level-2 data. Furthermore, as can be seen from Tables 

22-24, the PA based on the ML method had the lowest convergence rate for simulation

data. This situation might also lead to bad performance results. 
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Table 22 Level-2 Factor Extraction Results for Scenario 1 Using PA Based on the 
ML Extraction Technique. 

ICC Sample 
Size* 

Convergence 
Rate 

Percentage 
0-

factor 
1-

factor 
2-

factor 
3-

factor 
4-

factor 
5-

factor 
6-

factor 
7-

factor 
8-

factor 
0.1 100(10) 9.2% 76.1% 6.5% 17.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
0.2 100(10) 38.4% 44.3% 22.4% 3.6% 8.9% 8.9% 5.2% 6.3% 0.5% 0.0% 
0.1 100(20) 34.6% 85.5% 0.6% 2.3% 1.2% 6.4% 1.7% 1.7% 0.6% 0.0% 
0.2 100(20) 74.8% 11.2% 75.7% 0.3% 0.8% 4.8% 2.4% 2.9% 1.9% 0.0% 
0.1 100(50) 72.0% 40.0% 47.2% 0.6% 0.8% 1.7% 4.7% 3.9% 1.1% 0.0% 
0.2 100(50) 94.6% 1.1% 90.3% 3.0% 1.5% 1.3% 1.7% 1.1% 0.2% 0.0% 
0.1 200(10) 41.0% 79.5% 4.4% 1.0% 4.9% 2.0% 4.9% 2.0% 1.5% 0.0% 
0.2 200(10) 96.8% 53.3% 35.3% 3.1% 4.5% 2.5% 0.8% 0.2% 0.2% 0.0% 
0.1 200(20) 91.8% 1.1% 86.7% 3.3% 3.9% 1.1% 0.9% 2.4% 0.7% 0.0% 
0.2 200(20) 100.0% 0.0% 40.4% 17.4% 19.8% 14.0% 6.6% 1.8% 0.0% 0.0% 
0.1 200(50) 100.0% 10.4% 24.8% 19.6% 19.0% 15.0% 8.6% 2.4% 0.2% 0.0% 
0.2 200(50) 100.0% 0.0% 32.0% 22.2% 16.8% 18.6% 9.2% 1.2% 0.0% 0.0% 
0.1 500(10) 99.4% 33.4% 27.8% 10.7% 14.3% 8.5% 4.2% 1.2% 0.0% 0.0% 
0.2 500(10) 100.0% 0.0% 28.0% 22.2% 18.8% 19.0% 8.8% 3.2% 0.0% 0.0% 
0.1 500(20) 100.0% 0.0% 19.0% 21.8% 22.0% 22.8% 11.0% 3.2% 0.2% 0.0% 
0.2 500(20) 100.0% 0.0% 24.0% 26.0% 22.8% 14.4% 10.6% 2.2% 0.0% 0.0% 
0.1 500(50) 100.0% 0.0% 20.6% 27.4% 20.2% 18.6% 10.4% 2.6% 0.2% 0.0% 
0.2 500(50) 100.0% 0.0% 23.4% 22.0% 22.0% 18.4% 11.8% 2.0% 0.4% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 23 Level-2 Factor Extraction Results for Scenario 2 Using PA Based on the 
ML Extraction Technique. 

ICC Sample 
Size* 

Convergence 
Rate 

Percentage 
0-

factor 
1-

factor 
2-

factor 
3-

factor 
4-

factor 
5-

factor 
6-

factor 
7-

factor 
8-

factor 
0.1 100(10) 10.2% 31.4% 5.9% 43.1% 5.9% 0.0% 2.0% 3.9% 3.9% 3.9% 
0.2 100(10) 49.8% 39.0% 2.8% 4.8% 11.6% 19.7% 11.2% 9.6% 1.2% 0.0% 
0.1 100(20) 44.2% 17.2% 20.8% 15.4% 6.8% 16.7% 15.4% 7.2% 0.5% 0.0% 
0.2 100(20) 74.6% 71.8% 0.8% 1.9% 2.9% 6.4% 9.4% 4.6% 2.1% 0.0% 
0.1 100(50) 79.0% 63.8% 7.1% 1.0% 2.3% 5.3% 10.1% 8.1% 2.3% 0.0% 
0.2 100(50) 86.8% 99.3% 0.0% 0.0% 0.0% 0.2% 0.2% 0.2% 0.0% 0.0% 
0.1 200(10) 51.2% 62.1% 4.7% 2.0% 7.0% 7.4% 7.4% 7.4% 2.0% 0.0% 
0.2 200(10) 90.0% 62.4% 0.2% 2.9% 3.3% 6.0% 9.8% 8.0% 6.4% 0.9% 
0.1 200(20) 91.0% 0.7% 53.8% 15.2% 8.4% 4.6% 5.5% 7.5% 3.5% 0.9% 
0.2 200(20) 98.2% 0.0% 0.0% 30.3% 27.1% 10.6% 9.6% 12.8% 5.9% 3.7% 
0.1 200(50) 99.6% 0.0% 2.0% 36.1% 38.8% 15.7% 4.4% 1.6% 1.2% 0.2% 
0.2 200(50) 99.6% 10.8% 0.0% 38.2% 23.1% 6.4% 4.8% 6.6% 5.2% 4.8% 
0.1 500(10) 98.0% 0.0% 2.4% 35.9% 32.9% 17.8% 4.7% 3.7% 2.0% 0.6% 
0.2 500(10) 100.0% 0.0% 0.0% 57.6% 32.4% 4.6% 2.8% 1.0% 1.2% 0.4% 
0.1 500(20) 100.0% 0.0% 0.0% 47.6% 37.2% 12.8% 2.2% 0.0% 0.2% 0.0% 
0.2 500(20) 100.0% 0.0% 0.0% 61.2% 33.0% 5.0% 0.0% 0.2% 0.6% 0.0% 
0.1 500(50) 100.0% 0.0% 0.0% 52.8% 37.8% 9.0% 0.4% 0.0% 0.0% 0.0% 
0.2 500(50) 100.0% 0.0% 0.0% 69.0% 28.4% 1.0% 0.2% 1.0% 0.4% 0.0% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.
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Table 24 Convergence Rate of 1,000 Replications in a Level-2 Model for Parallel 
Random Data Using PA Based on the ML Extraction Technique. 

ICC Sample Size* Convergence Rate 
Scenario 1 Scenario 2 

0.1 100(10) 4.7% 4.6% 
0.2 100(10) 15.6% 17.3% 
0.1 100(20) 13.6% 14.2% 
0.2 100(20) 23.4% 26.8% 
0.1 100(50) 27.0% 27.3% 
0.2 100(50) 33.6% 31.1% 
0.1 200(10) 12.3% 13.7% 
0.2 200(10) 35.5% 34.3% 
0.1 200(20) 32.0% 32.7% 
0.2 200(20) 47.8% 47.9% 
0.1 200(50) 51.9% 49.7% 
0.2 200(50) 53.8% 58.3% 
0.1 500(10) 39.3% 42.3% 
0.2 500(10) 57.8% 57.1% 
0.1 500(20) 53.7% 56.2% 
0.2 500(20) 58.4% 60.6% 
0.1 500(50) 62.3% 62.3% 
0.2 500(50) 62.6% 60.4% 

*Sample size combined cluster number and cluster size; thus, 100(10) means the cluster
number is 100 and the cluster size is 10.

Discussion 

This study applied two different eigenvalues-based criteria (the “eigenvalues > 

1” and PA criterion) to identify the numbers of factors for multilevel exploratory 

analysis. In general, the “eigenvalues > 1” criterion using the ML/MLR-based 

eigenvalues extraction and the “eigenvalues > 1” criterion using the PCA eigenvalue 

were not reliable or sufficiently accurate at estimating the numbers of factor for MEFA; 

specifically, the “eigenvalues > 1” criterion was likely to underestimate the factor 

numbers for the within-level model and overestimate the number for the between-level 

model, resulting in a bad model and wrong interpretations. Even though this criterion 
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performed better at detecting the factor numbers at the between-level than the within-

level, it serves no practical purpose to apply the “eigenvalues > 1” criterion, because the 

first essential phase of MEFA in practical studies is to correctly identify the lower level 

latent factors. Thus, the results of the “eigenvalues > 1” criterion in this study were 

consistent with those of previous studies (Crawford et al., 2010; Schmitt, 2011; Zwick & 

Velicer, 1986), showing that this criterion was not reliable. In addition, the present study 

extended this finding to multilevel data.  

This study also focused on the PA criterion based on different extraction 

techniques (PAF, Iterated PAF, and ML). Overall, the PA approach performed well in 

extracting the Level-1 model factor number, and the correct rate of identifying the two-

factor model was more than 60% for PA based on ML, more than 85% for PA based on 

Iterated PAF, and more than 95% for PA based on PAF. Many previous researchers have 

already approved PA as the most suggested standard for choosing the number of latent 

factors (Cho et al., 2009; Henson & Roberts, 2006; Ledesma & Valero-Mora, 2007; 

Yang & Xia, 2015). For this study, we treated the Level-1 model as a traditional one-

level EFA model, so the results are consistent with that. 

However, when the PA approach was used to identify the Level-2 model factor 

number, results were not as good as at Level-1. This is not surprising as the sample size 

was less when investigating the Level-2 model than the Level-1 model. In addition, 

higher cluster numbers or more cluster size or larger ICC can help to increase the chance 

of identifying the correct factor number at the between-level. The Level-2 factor 
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extraction became complicated and was influenced by ICC, sample size, and the true 

model itself.  

This study demonstrated that PA based on the PAF extraction technique 

performed best among the three extraction techniques examined. However, in some 

conditions, the correct rate of the PA based on PAF can be lower than 50% when the 

sample size is small. Thus, the accuracy of the high-level factor numbers using the PA 

criterion is still uncertain when the cluster number or cluster size is not large enough. In 

addition, PA based on Iterated PAF or ML both had convergence issues. Therefore, in a 

practical application, a study would fail to get the correct number of factors due to the 

convergence issues.  

As a result, we strongly recommend the use of PA based on the PAF extraction 

technique to identify the factor numbers in MEFA. A simulation study asserted that the 

PA based on PAF can perform as well in EFA models (Crawford et al., 2010). However, 

evaluation articles regarding PA based on Iterated PAF or ML for EFA have not been 

found so far, not to mention for MEFA. In addition, MEFA needs a large sample size for 

both cluster number and cluster size. 

Despite these important findings, this study suffers from several limitations. 

First, the simulation data were normally distributed whereas many practical studies have 

non-normal or categorical data. Second, the structures of the simulated multilevel data 

were simple; that is, only two factors at the within-level and one or two factors at the 

between-level and only two-level EFA were analyzed. Results from the PA criterion 

revealed that higher cluster numbers or cluster size were needed to identify higher levels 
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when structures became complicated. Third, sample sizes of generation data in this study 

was large, while in practical study the sample size is often smaller. In addition, the 

cluster sizes were balanced in this study, also in practice, they are often unbalanced and 

unequal from different clusters. Fourth, the study only had two ICC situations; higher 

ICC can help to extract the correct number for the Level-2 data; thus, in the future, we 

can study more situations of higher ICC, which may help decide the latent factors even 

with small sample sizes. Fifth, there still are other unstudied methods that determine the 

number of factors in single-level EFA, such as minimum average partial (MAP, Velicer, 

1976). 
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CHAPTER IV  

CONCLUSIONS 

Multilevel data are common in social sciences and exploratory factor analysis 

(EFA) is an important tool that allows researchers to explore the underlying factor 

structure of the variables in which they are interested without any presumable structure. 

Nevertheless, determining the number of the underlying factors is the first and most 

important step of EFA. This dissertation was the first one to explore the accuracy of two 

commonly applied approaches (i.e., the model-selection-based approaches and the 

eigenvalues-based approaches) in detecting the appropriate number of factors in 

Multilevel EFA through simulation data. This study also considered and examined the 

impact of several potential factors including sample size (i.e. cluster number and cluster 

size), ICC, and model specification.  

Study 1 evaluated the performance of commonly used model-fit indexes and 

selection criteria, including RMSEA, CFI, TLI, SRMR, the overall model-fit chi-squared 

test, AIC, BIC, and SBIC. The results showed that most of the commonly applied fit 

indexes and selection criteria were successful in discovering the correct number of 

factors from the within level except for SRMRPS_W and AIC through the model-based 

approach. Meanwhile, the performance of CFI and CFIPS_W became doubtful when ICC 

is equal to .2, and the performance of these fit indexes and criteria became unsatisfactory 

at the between-level through the model-based approach.  
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Study 2 revealed that, similar to the previous findings based on the single level 

data, the “eigenvalues > 1” criterion was not effective at searching for the optimal 

number of factors regardless of the data level. On the other hand, parallel analysis (PA) 

approach performed well in recovering the correct number of factors at the within level. 

When PA was used along with PAF to identify a between-level model, the correct rates 

were still acceptable in Scenario 1, while in Scenario 2, the performance of PA based on 

PAF was related to sample size and ICC. In addition, PAF performed the best followed 

by Iterated PAF and then ML 

In both studies, larger number of clusters, larger cluster size, and larger ICC 

generally led to great chances of obtaining the correct number of factors at the between-

level. In addition, if the number of Level-1 sample size was fixed, more cluster sizes 

would have larger chances of deciding the right number of factors at the level-2. 

There are some limitations for the current studies, and future research can extend 

this line of studies by considering the following factors. First, more complicated model 

structures for both within- and between-level should be considered for data generation, 

such as more numbers of factors in each level, non-linear factor-loadings, and different 

correlation between factors. Second, different level of ICC can be simulated and studied 

how it influences the performance of difference approaches in identifying the between-

level factors. Third, simulation data can extend from normal distribution to non-normal 

distribution, from numerical type to categorical type. 

In sum, when a researcher has multilevel data without having an a priori 

hypothesis of a preconceived structure, MEFA is recommended to use through the 
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following steps. First, ICC needs to be computed to determine whether the clustering 

effect should be considered. Second, the model-based approach should be used to 

conduct the EFA at different levels and get the corresponding model indexes, IC values 

and other related information. Third, the model-selection-based approaches (except for 

SRMRPS_W, AIC, CFI, and CFIPS_W) and PA can work well for finalizing the number of 

factors in the within-level. On the other hand, only PA based on PAF is recommended to 

extract the factors at the between-level. 
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