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ABSTRACT 

 

Developing models describing myocardial deformation have been central to 

understanding cardiac function, both normal and abnormal. However, the widely used 

Fung model is known to have high degeneracy and thus less unique solutions. Therefore, 

the goal of this work was to derive a strain energy function for the incompressible 

myocardium with less degeneracy and more uniqueness than the Fung model. The upper 

triangular (QR) decomposition theorem was leveraged to develop a model that achieved 

the stated goal. Furthermore, published biaxial data was utilized from studies that measure 

the stresses of slabs of myocardium to find the respective functional form for the strain 

energy function using the QR model as well as estimate the resulting material stiffness 

constants. The respective model was then compared with the strain energy function 

obtained from the Fung model. The outcome of this work was a model that improves on 

the Fung model in having fewer constraints and degeneracy that results in a reduction of 

the uncertainty and enhances the predictability for the mechanical behavior of the heart. 
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NOMENCLATURE 

 

Ai Deviatoric Basis Tensor 

C Right Cauchy-Green Stretch Tensor 

E Green Strain Tensor 

F Deformation Gradient Tensor 

f Upper Triangular Stretch Tensor 

I Identity Tensor 

J Jacobian 

L Deviatoric Kinematic Tensor 

p Pressure-like Lagrange Multiplier 

Q Pure Rotation Tensor 

Q Material Function of Stiffness 

R Rotation Tensor 

U Right Stretch Tensor 

V Left Stretch Tensor 

W Strain Energy Function 

i Strain Parameter (Attribute) 

i Stretch Mode of Deformation 

ij Shear Mode of Deformation 

 Cauchy (True) Stress 
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CHAPTER I  

INTRODUCTION  

 

1.1 Background 

Biomechanics is defined as the development, extension, and application of 

mechanics the study of force and motion to understanding biological systems 

(Humphrey 2003). The endeavor to understand the behavior of biological tissues through 

the lens of mechanics dated back to the 16th century, when Leonardo da Vinci studied the 

flight of birds in an attempt to replicate the process for humans (Humphrey 2003). Galileo 

then followed by studying the mechanical strength of bones to understand the role of the 

skeletal system in the stability of large mammals (Humphrey 2003). Furthermore, 

Malpighi, Borelli, and Descartes were key figures, who went on to establish the 

iatrophysical approach to medicine, which held that the mechanics rather than the 

chemistry was the key to understanding the function of the human body (Martin 1999). 

Hence, this work and others in the field of biomechanics are motivated either directly or 

indirectly by this notion, given how intertwined the mechanics is with the biological 

behavior of tissues. 

Biomechanics lies at the heart of formulating a solid foundation for understanding 

human medicine. Furthermore, mechanics is central to understanding the human body 

across all levels, from the behavior of quarks in atomic nuclei to full organ systems. The 

, is no 

exception; that is, large relative to conventional engineering materials such as metals, 
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alloys, concrete, and wood, which obey the classical linear theory of elasticity and fall 

(Fung 1967). Furthermore, the maximum 

strain a metal can undergo is 0.2% whereas soft tissues can undergo strains that far exceed 

that. To illustrate, Table 1 represents the extent of strain certain soft tissues can undergo 

(Fung 1967).  

 

Table 1. The extent of strain for various types of human soft tissue. Adapted from 
(Fung 1967) 

    Maximum Strain 

Papillary Muscles 5% 

Skin 10%  40% 

Blood Vessels 30%  70% 

Mesentery 100% 

Isolated Striated Muscle Fibers 140% 

 

As a result, the behavior exhibited by soft tissues

is nonlinear, heterogeneous, inelastic, and anisotropic. The behavior of 

the heart is no exception. 

 

1.2  

level of understanding that is sought after in this work. There are five main levels to 

mechanics, each level exploiting a different level of matter (Humphrey 2002). These levels 

can be illustrated through a simple thought experiment that involves a conventional tennis 
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ball contacting a racket during a serve. As the tennis ball collides with the strings of the 

racket, the shape of the tennis ball before and after the collision is spherical. Hence, if the 

analysis of interest pertains to the impact of the external forces (such as collision and air 

drag) on the behavior of the tennis ball as a whole, then assuming the tennis ball as a 

discrete particle at its center of mass is sufficient for conducting the analysis.  This first 

level is discrete mechanics, which describes the mechanics of objects as rigid bodies. 

However, if one were to consider the instant it collides with the strings of the tennis 

racket, the mechanics would differ. At that moment, because the hollow rubber core of the 

tennis ball is a compliant material and contains pressurized air, the tennis ball will deform 

momentarily. To understand the mechanics of the finite subregions within the tennis ball, 

a simple 

tennis ball that developed as a result of the deforming collision. Hence, this second level 

describing the impact of the forces within the material on the behavior of the material (i.e., 

how it depends on the deformation) is known as continuum mechanics. 

 L  the snapshot of the impacted tennis ball and magnify the site of 

contact between the ball and the strings sufficiently enough to see the cluster of atoms. 

What will be observed is the atoms vibrating in a jiggl , and due to the 

elasticity of the impacted strings, energy will be generated within the strings in the form 

of  increased strain potential energy partly converted to heat, that is thermal motion of the 

atoms and molecules. This forces the cluster to occupy a higher energy state. Hence, the 

impact will increase the entropy of the atoms of the strings   

comprising the strings to return to the lower energy state it once occupied. Therefore, 
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understanding how matter behaves on the scale of atomic clusters and observing the 

energy dispersion impacting the molecular degrees of freedom are described by statistical 

mechanics, the third level of mechanics.  

As this snapshot is magnified further to observe an individual atom, it will become 

apparent that the majority of this realm is empty space with a dense cluster of particles 

(i.e., nucleus) in its center and negatively charged particles that lie in a probability 

distribution around that dense cluster (i.e., electrons). Even so, it is rather difficult to quite 

determining their location in space a game of probability. This fourth level is known as 

quantum mechanics, which describes the behavior of matter on atomic and subatomic 

scales. 

The fifth and final level is a rather overarching level that impacts the previous four 

levels. If the interaction between the tennis ball and the racket took place on a spaceship 

rather than Earth, traveling at a speed that is a significant fraction of the speed of light, 

then new considerations must be factored in as the tennis ball will experience, as a result, 

profound effects such as a contraction in its length and dilation of its mass and time relative 

to an observer on Earth. Such effects are known as relativistic effects, which result from 

objects moving at high speeds (i.e., approaching that of the speed of light) or being within 

close proximity of a high gravitational source (such as orbiting a black hole) that create 

significant distortions in the space-time continuum. This level is known as relativistic 

mechanics. 
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Hence, it is crucial to determine the appropriate level of mechanics that provides a 

sound theoretical framework that is d  for the analysis of the 

mechanics of the heart. Furthermore, because the interest is in the behavior of the heart 

with the surface of the Earth as the global reference frame, no relativistic effects need be 

taken into consideration. Additionally, this works seeks to analyze the behavior of the 

heart on the scale of the myocardial tissue, particularly how the stress within depends on 

its deformation, where the finite subregions of the myocardium behave as the aggregate, 

the myocardium, behaves (Criscione 2011). Therefore, to observe such deformations, the 

external forces must be isolated, implying that the body needs to be static, rendering 

discrete mechanics insufficient. Additionally, the scale is relatively large for statistical and 

quantum mechanics to be the framework of choice, and neither the change in entropy nor 

energy is the primary focus of this work. Therefore, cardiac soft tissue mechanics is 

conducted within the framework of continuum mechanics, the overarching framework of 

this thesis. 

 

1.3 Constitutive Models 

With continuum mechanics established as the overarching theoretical framework 

of this thesis, there are various concepts essential to consider when solving problems in 

the field of continuum mechanics (Humphrey 2002). Such concepts are the concept of 

kinematics, the concept of force, balance equations, and constitutive models (Humphrey 

2002). While the former three are quite established, the latter fourth is always in need of 

improvement, especially for that of the heart, the focus of this thesis. Constitutive relations 
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can be defined as the descriptions of the response of a material to applied loads (which 

depends on the internal constitution of the material) under the conditions of interest 

(Humphrey 2002)

capabilities that facilitate modeling diseases and innovating sounder therapeutic 

interventions. Furthermore, such models allow for a sounder understanding of the 

behavior of the myocardium and the associated parameters that control such behavior.  

Developing a constitutive model for the heart (or any soft tissue for that matter) is 

no trivial task. It should, furthermore, be understood that heart is a 

things are ananalytical  with exact solutions. 

However, with a certain degree of uncertainty, certain approximations can be made to 

accepted degree of uncertainty and 

. There are two methods to obtain 

and the experimental approach known as numerical methods, which is semi-empirical. 

The widely used method in the field of cardiac mechanics is finding the numerical solution 

from experiments. Hence, the numerical approach will be the method adopted in this 

thesis. 

 

1.4 Cardiac Deformation and Its Centrality to Its Function 

 To gain a better grasp of how essential deformation is for the physiology of the 

heart, one must first define what deformation is and then relate it to the function of the 

heart. Deformation can be simply defined as a process of dilatation and distortion of a 
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material. Furthermore, dilatation is defined as a change in size whereas distortion is 

defined as a change in shape. There are two types of distortion that are relevant to cardiac 

deformation, which are pure shear (i.e., stretching the faces) and simple shear (i.e., 

stretching along the diagonals) as demonstrated in the following figures (Figures 1, 2).  

 

 

Figure 1. Pure shear of a two-dimensional plane along the horizontal axis 
 

       

Figure 2. Simple shear of a two-dimensional plane along the horizontal axis 
 

 To put these concepts in a mechanical perspective, dilatation is measured as 

stretch, which is found from dividing the current length of an object to its initial length; in 

addition, distortion can be quantified from shear. Both dilatation and distortion are modes 

of motion for a deformable body in addition to that of the rigid bodies, which are 

translation, and rotation. Therefore, the mechanical motion of the heart can be quantified 

from the stretch and shear of its fibers in various directions. 
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 Because the ultimate function of the heart is for delivery to 

the cells of the body by generating a sufficient pressure gradient, such a function can only 

be conducted through the deformation, the collective dilatation and distortion, of the 

cardiac muscle. Hence, normal motion of the cardiac muscle is crucial for its normal 

function, and any alteration in its motion could prove harmful for the heart. Various 

pathologies of the heart often arise from such abnormal motions.  

 

1.5 Assumptions Made for the Heart with Mathematical Implications 

 While the mechanical behavior of heart is undoubtedly ananalytical, certain 

assumptions can be made that allow it to be relatively analytical with an acceptable degree 

of uncertainty given the interest of this work in modeling passive behavior, the stepping 

stone for modeling active myocardial behavior.  In general, the exhibited behavior of the 

heart is non-linear, heterogeneous, inelastic, and anisotropic. However, for the purposes 

of this work, the elasticity of the heart will be assumed to be in the hyperelastic limit, 

which implies that the mechanical work done is stored as strain energy. The strain energy 

can then be used to deduce the constitutive model. Additionally, the focus of this work 

does not encompass quantifying residual stresses, so the heterogeneity assumption will 

not be as relevant. Instead, homogeneity can be assumed, which would allow for the use 

of a small section of myocardium to derive a model, and then allowing that model to be 

generalized for the whole heart, assuming the level of uncertainty is acceptable. Finally, 

because there are three orthogonal directions along which the mechanical behavior 

primarily varies, the myocardium can be assumed to be orthotropic. Therefore, such 
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assumptions deem modeling the mechanical behavior of the heart possible to be expressed 

in an analytical form. 

 

1.6 Choice of Coordinate System 

 In order to quantify the behavior of the heart, the analysis must be conducted in an 

appropriate coordinate system. Experiments, namely mechanical testing of soft tissues, 

are usually done within lab coordinates (made up of bases in the longitudinal, 

circumferential, and radial directions) which are Cartesian in nature (e1, e2, e3). However, 

for such measurements to be physically relevant for the heart, material coordinates, or 

namely cardiac coordinates, shall be implemented. Furthermore, the basis vectors for this 

coordinate system (ef, es, en) are determined relative to the fibers of the heart, as 

demonstrated in Figure 3 (Li et al. 2020). The basis vectors are made from three 

orthogonal directions: the fiber direction, which is parallel to the orientation of the fibers 

of the heart; the cross-fiber (i.e., sheet) direction, which is in the same plane as fiber as 

well as orthogonal to it; and the normal direction, which is orthogonal to both.  Because 

myocardial deformation is the focus of this work, cardiac coordinates shall be 

implemented as the coordinate system of choice. 
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Figure 3. Cardiac coordinates basis directions for the myocardium. Reprinted from 
(Li et al, 2020) 
 

1.7 Polar Decomposition Theorem 

As the heart enters and progresses through the cardiac cycle, its fibers shorten and 

elongate as it contracts and relaxes, respectively. Additionally, the fibers deform via 

undergoing shear and rotation or collectively twist. Given that various diseases interfere 

with the normal harmony of the aforementioned modes of motion, decoupling these 

motions mathematically is of utmost importance as it allows the assessment of each mode 

of motion in isolation from the other modes, the stretches from the rotations in particular. 

Traditionally, that is achieved by the polar decomposition theorem, demonstrated by 

Equation 1.  

   (Eq. 1) 
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where F is the deformation gradient tensor, R is the rotation tensor, U is the right stretch 

tensor, and V is the left stretch tensor.  

 

1.8 QR Decomposition Theorem 

While the polar decomposition theorem proves to be a valuable tool to decouple 

the deformation gradient tensor into rotation and stretch, it is computationally 

inconvenient due to (1) its requirement of an eigenvalue decomposition for the right 

Cauchy-Green tensor C followed by a matrix inversion to find the rotation tensor R; (2) 

the invariants do not possess a direct physical meaning for the modes of cardiac 

deformation experimentally (Srinivasa 2012). 

Therefore, Srinivasa proposed an improved theorem that utilizes an upper 

triangular matrix to decouple deformation into stretch and pure rotation, known as the QR 

decomposition, expressed in Equation 2 (Srinivasa 2012). This theorem improves on its 

predecessor in Equation 1 by (1) eigenvalues or eigenvectors are not required to express 

rotation; (2) the upper triangular matrix R is related to the right Cauchy-Green tensor C 

through a Cholesky factorization; (3) the six components of the upper triangular matrix R, 

the shear and orthogonal stretches, have direct physical meaning that is experimentally 

measurable; (4) it provides a relatively more inclusive and unified method to study the 

deformation of the major crystal classes, including soft tissues. (Srinivasa 2012).   

   (Eq. 2) 

where F is the deformation gradient tensor, Q is the pure rotation tensor, and R is the 

right upper triangular matrix, consisting of the orthogonal and shear stretches. 
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The motion of the heart occurs as a result of the forces generated within it. To 

obtain the deformation gradient which describes the motion, finding the stresses and 

relating them to the strains are also crucial to understanding and analyzing the behavior of 

the heart. Such equations relating the stresses to the strains are known as constitutive 

relations, and for the heart, the constitutive relation (Equation 3) is as follows (Costa et 

al. 1999):  

 (Eq. 3) 

where  is the Cauchy stress tensor, J is the Jacobian which is the determinant of F in this 

case [J = det(F)], F is the deformation gradient tensor, W is the strain energy function, C 

is the right Cauchy-Green deformation tensor, FT is the transpose of the deformation 

gradient tensor, p is the pressure which is one-third of the trace of the Cauchy stress [p = 

 tr( )], and I is the identity tensor.  

 

1.9 Cardiac Modes of Deformation Resulting from QR Decomposition 

As a consequence of QR decomposition, Criscione et al. defined six strain 

parameters i) which quantify the modes of deformation for the heart as an alternative to 

the Green strains required in the Fung model (Criscione et al. 2002). Each strain parameter 

characterizes the deformation of the heart in a specific mode of motion. These parameters 

are: 

                                                   (Eq. 4a) 
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                                                   (Eq. 4b) 

                                                   (Eq. 4c) 

                                                   (Eq. 4d) 

                                                   (Eq. 4e) 

                                                   (Eq. 4f) 

where 1, 2, and 3 represent normal strains, namely the volume strain, distortiona

strain, and the laminar thickening strain, respectively (Criscione et al. 2002). In addition, 

4, 5, and 6 represent shear strains, which are the motions of the material planes along 

their orthogonal axes (Criscione et al. 2002). Furthermore, 4 represents the motion of the 

fiber plane along the sheet axis; 5 represents motion of the fiber plane along the normal 

axis; and 6 represents motion of the sheet plane along the normal axis (Figure 4).  
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Figure 4. The modes of motion of the heart quantified by the strain attributes that 
result from QR decompositions. 1 is not shown because it is equal to zero for 
incompressibility.  
 

 Such modes are relatively more representative of the physical deformation of the 

heart, and they decrease the degeneracy of the strain energy function (W) as fewer 

variables are required to generate the best fit. In other words, finding a W(Eff, Ess, Enn) that 

fits biaxial data will require solving a system of two equations with three unknowns, which 

implies an infinity of solutions. However, finding a W( 2 3) that fits biaxial data will 

require solving a system of two equations with two unknowns, which results in a unique 

solution compared with the former W. 
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1.10 The Strain Energy Function 

As a consequence of the hyperelastic limit, the strain energy function is a function 

that relates the Green strains to potential energy. It describes the energy stored or released 

within the soft tissue upon deformation due to changes in the strains. Y.C. Fung, the father 

of modern biomechanics, developed an equation that describes the strain energy function 

for a soft tissue (Equation 5) (Fung 1967, 1973, 1983, 1990, 1993, 1995): 

 
    (Eq. 5) 

where W is the strain energy function, c is a material constant, and Q is the material 

stiffness function, which is a function of the Green strains that varies based on the 

deformation profile of the soft tissue. For an incompressible, orthotropic heart, the 

function Q is:  

 (Eq. 6) 

where  Eff, Ess, Enn, Efs, Esn, and Efn are components of the Green Strain tensor in cardiac 

coordinates, and bff, bss, bnn, bfs, bsn, and bfn are material stiffness constants whose 

respective values depend on the deformation profile of the soft tissue within the 

experiment. Due to the symmetry of the Green Strain Tensor, Efs = Esf, Esn = Ens, and Efn 

= Enf. As shown in Equation 6, six strains are required to obtain the strain energy function, 

which indicate high degeneracy for the strain energy function. 
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1.11 A Gap in the Field 

While the current model for myocardial stress with the assumptions of 

incompressibility and orthotropy, provided in Equation 3, is a powerful technique to 

calculate the different stresses, it is not devoid of limitations. First, because the 

relationship between the stresses and strains in the heart is indirect, finding the stresses is 

computationally exhausting. Second, the strain energy function in Equation 3 is a function 

of high degeneracy due its dependency on six strains, which inherently makes stress 

transitively a function of high degeneracy as well; furthermore, in biaxial testing, there are 

three unknowns ( , , ) yet two equations, resulting in an infinite number of 

solutions.  Third, given the deformation gradient is conventionally decoupled by the polar 

decomposition theorem, the resulting stretches do not have a direct physical meaning.  

In an attempt to address these limitations, Criscione et al. proposed a modified 

constitutive theory that defines the stress in terms of more physically and experimentally 

tractable (Criscione et al. 2002). This model for incompressible and 

orthotropic behavior is expressed below in Equation 7 (Criscione et al. 2002): 

     (Eq. 7) 

where  is the Cauchy stress tensor, J is the Jacobian which is the determinant of F in this 

case [J = det(F)], W is the strain energy function, i is the strain parameter, Ai is the 

deviatoric tensor, p is the pressure which is one-third of the trace of the Cauchy stress [p 

=  tr( )], and I is the identity tensor.  



 

17 

 

Furthermore, Criscione et al. found a general solution for W that satisfies Equation 

7 above and takes into consideration the parameters possible for incompressible, 

orthotropic behavior in the following equation (Criscione et al. 2002).  

(Eq. 8) 

where q2 and q3 are the residual stresses, g22, g33, g44, g55, and g66 are the scalar moduli, 

and 2 3) and H are functions which denote higher order behavior. 

However, while W in Equation 8 does indeed take into consideration all the 

possible orders of behavior, it does not display an explicit form for higher order behavior, 

a characteristic of soft tissues behavior. Also, to go beyond data fitting, particularly one-

to-one mapping between the material coefficients and material function (linking it to the 

multiscale structure of the myocardium), the degeneracy would have to be minimized as 

it would require uniqueness for the material parameters, so that the resulting solution is 

closer to the true model of the heart.  Therefore, this is a gap that must be addressed. 

 

1.12 Significance 

Because the strain energy 

myocardial strains to their respective stresses (Equation 3), the work in this thesis is 

fundamental in developing constitutive models describing myocardial deformation with 

low degeneracy. The relationship between the strain and the stress for the heart mediates 

the physiological functions of the heart, and changes in such a relationship may also 



 

18 

 

explain some pathophysiological phenomena that lead to motion abnormalities within the 

myocardium. Such a relationship lies at the heart of understanding the underlying 

mechanics and behavior of the myocardium.  

In addition, this work is critical in creating a model that can be used by the 

community of mathematicians, engineers, and physicists working in the area of cardiac 

biomechanics to be able to create simulations that accurately capture the function of the 

myocardium as well as establish lab experiments that are closer to accurate in mimicking 

myocardial deformation, such as cell culture, organ on a chip, and tissue engineering 

applications. Finally, these models are important in designing cardiac devices that are 

sounder solutions to various types of cardiovascular disease, the leading cause of death 

worldwide. 

 

1.13 Goal of This Work 

This work seeks to decrease the degeneracy of the Fung Strain Energy Function 

by proposing a modified function obtained by the QR decomposition that would yield the 

stresses using less strain parameters (five rather than six). Furthermore, such strain 

parameters are more experimentally relevant and physically meaningful for the heart. This 

work will utilize biaxial testing data conducted by Humphrey et al. to infer how 

myocardial strain energy is perturbed relative to each strain parameter and use that to 

derive a functional form (Humphrey et al. 1990). Subsequently, the functional form will 

then be used to predict the stresses from the given strains, and the predicted stresses will 

then be compared with the measured stresses for evaluation of the accuracy of the model. 
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CHAPTER II  

METHODS 

 

2.1 Introduction 

To compare data, published biaxial testing data of a myocardium specimen was 

used from Humphrey et al., and a constitutive model was developed to fit the data 

(Humphrey et al. 1990). The model was then compared with the widely used constitutive 

relation derived from the Fung strain energy function. Finally, the uncertainty in each 

model was calculated to determine the degree of certainty for the fit. To formulate the 

constitutive relation of interest, five basic steps were adopted in this work (Humphrey 

2002): 

i. delineation of the general characteristics of interest 

ii. establishing an appropriate theoretical framework for quantification 

iii. identification of specific functional forms of the constitutive relations 

iv. calculation of the values of the associated material parameters 

v. evaluation of the predictive capability of the final relation. 

 

2.2 Biaxial Testing Data 

Data were retrieved from biaxial testing of a thin slab of myocardium, where 

stretches were conducted along the principal directions of the stresses (Humphrey et al. 

1990) (Figure 5). Furthermore, because the myocardium is thin, stresses in the e3 direction 

are negligible. The specimen tethers were aligned with the fiber and cross-fiber direction, 
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which makes a coordinate transformation from laboratory coordinates (i.e., cartesian 

coordinates with e1, e2, and e3 as the bases) to material coordinates (i.e., cardiac 

coordinates with ef, es, and en as the bases) unnecessary as the fiber orientation angle (angle 

of fibers relative to Cartesian coordinates) can be thought of as zero degrees.  

 

 

Figure 5. Biaxial stretching apparatus in the reference configuration. Reprinted 
from (Criscione 1999) 
 

 For biaxial testing, stretching was conducted in two directions, the fiber and cross-

fiber directions. This led the apparatus to produce the loads, and as a result, the resulting 

Cauchy stresses were computed by Humphrey (Humphrey et al. 1990). Figures 6  11 

demonstrate both the fiber and cross-fiber (sheet) stretches, their respective Cauchy 
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stresses, and their stretch-stress relationship. There were two stretching protocols that 

were used to produce two sets of biaxial data. The first set was a result of setting the fiber 

f = 1.2) and varying the cross- s) (Figures 6  8). This data 

set was used to find a functional form for the strain energy function (W). The second data 

set, where both the fiber and cross-fiber stretch were varied, was used to then solve for the 

material stiffness constants of the model that best fits the data (Figures 9  11).  

 

 

Figure 6. The first set of fiber and cross-fiber stretches applied to the myocardium 
specimen; the blue circles represent fiber stretch, and the red triangles represent the 
cross-fiber (sheet) stretches. Reprinted from (Humphrey et al. 1990). 
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Figure 7. Fiber stresses (circles) and sheet stresses (triangles). Reprinted from 
(Humphrey et al. 1990) 
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Figure 8. The fiber and sheet stress-stretch relationships. Reprinted from 
(Humphrey et al. 1990) 
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Figure 9. The second set of fiber and sheet stretches applied to the myocardium 
specimen. Reprinted from (Humphrey et al. 1990) 
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Figure 10. The second set of fiber and sheet stresses. Reprinted from (Humphrey et 
al. 1990) 
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Figure 11. The second set of fiber and sheet stress-stretch relationships. Reprinted 
from (Humphrey et al. 1990) 
 

2.3 General Characteristics & Assumptions for the Myocardium 

In the introduction, it was established that the myocardium at the tissue level 

exhibits behavior that is characterized as being nonlinear, anisotropic, heterogeneous, and 

inelastic. However, for the purpose of this work, some of these assumptions were revised 

while maintaining an acceptable degree of uncertainty. First, the myocardium was 

assumed to be orthotropic, as there were three mutually orthogonal directions along which 

the mechanical properties vary (i.e., the fiber, cross-fiber, and normal directions), 

demonstrated in Figure 3. Additionally, while the myocardium is indeed anisotropic, a 
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constitutive relation will be derived and verified using data obtained from mechanical 

testing of a thin slab of myocardium extracted from within the wall of the heart (Humphrey 

et al. 1990). Hence, homogeneity can be assumed, allowing the constitutive relation to be 

generalized for the entire heart. Additionally, because the cardiomyocytes are mainly 

filled with water, which has a high bulk modulus, the myocardium can be assumed to be 

incompressible. Finally, rather than assuming the myocardium to be inelastic, the 

myocardial specimen has both solid-like and fluid-like properties, allowing the 

myocardium to be approximated as a viscoelastic material. However, given the mechanics 

of viscoelasticity is not currently well-established, the elasticity of the myocardium will 

be assumed to be hyperelastic, which is justified by the fact that the work done on the 

myocardium is stored as strain energy.  

 

2.4 Establishing an Appropriate Theoretical Framework 

 A drawn inspiration to extend the work of Criscione et al. and Srinivasa, the upper 

triangular matrix decomposition (i.e., QR decomposition) is utilized as the overarching 

framework for this work to derive a new strain energy function for the incompressible, 

orthotropic myocardium (Criscione et al. 2002; Srinivasa 2012).  Considering a typical 

section of the myocardium used for the experiments (Figure 5), the coordinate system 

utilized is the cardiac coordinate system with bases of ef, es, en for the fiber, cross-fiber, 

and normal direction, respectively. To quantify its deformation within an appropriate 

reference frame, there are two configurations referred in this work; the reference 

configuration, which is undeformed, and the current configuration, which is deformed. 



 

28 

 

The reference configuration represents the undeformed slab of myocardium (Figure 5), 

and the current configuration is the myocardium when it is stretched along either axis or 

both axes, represented by the fiber and the cross-fiber directions.   

 

2.5 The Kinematics of Biaxial Testing  

To map the current configuration of the myocardium specimen to its reference 

configuration, the following transformation equations were used (Humphrey, 1990): 

          (Eq. 9a) 

    (Eq. 9b) 

    (Eq. 9c) 

 where Xi and xi represent the coordinates of a point on the material in the reference and 

current configuration, respectively, and i and i are the stretch and the in-plane shear 

components of the deformation gradient tensor F, respectively (Humphrey et al. 1990). 

The bases of these coordinates are Cartesian.  Due to the assumption of homogeneity, it 

can be assumed that this mapping can be generalized to include every material point on 

the specimen (Humphrey et al. 1990).  

 To find the components of F, the material gradient of the position vector of the 

current configuration (i.e., ) was found. Furthermore, because there were no in-

plane shears, the shear components were zero (i.e., i = 0) (Humphrey, 1990). The radial 

stretch ( 3) can be found from the volume strain, det(F), which is equal to 1 due to the 
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incompressibility constraint. This results in 3 = ( 1 2)-1.  Hence, the final form of F is 

represented by: 

        (Eq. 10) 

 To find the right Cauchy-Green deformation tensor C, the transpose of F needs to 

first be found and then be operated on F (i.e., C = FTF). Therefore, in direct notation, C 

becomes: 

       (Eq. 11) 

Because the strain energy function in Equation 5 is expressed as an implicit function of 

the Green strains, it would prove useful to find the Green strain tensor E, given that it will 

also be used to calculate the Cauchy stress using Equation 3. Because , the 

expression for E becomes: 

  (Eq. 12) 

 To allow the computation of the stresses and the strains to be more relevant for the 

heart, a coordinate transformation must be applied. Furthermore, the previous equations 

(Equations 9  12) are in lab coordinates, which are Cartesian in nature. However, for 

such measurements to be physically relevant for the heart, cardiac coordinates (i.e., 

material coordinates) must be used. Additionally, a coordinate transformation will enable 

the use of the strain parameters that were derived from QR decomposition as they can only 

be computed from stretches in cardiac coordinates. Therefore, for thin slabs of 

myocardium excised in parallel to the epicardial or endocardial surfaces, the unit vector 

transformation from Cartesian into cardiac coordinates is: 
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    (Eq. 13) 

where 3) is the fiber orientation angle measured with respect to e1 (Humphrey and Yin 

1989).  However, because the stretches were conducted parallel with the fiber direction 

and perpendicular to it, i.e., in the fiber and cross-fiber directions,  = 0o. As a result, the 

stretches and the strains are comparable in both coordinate systems. 

 To calculate the strain parameters that result from QR decomposition, the upper 

triangular stretches must first be found. Due to the convention of R representing a rotation 

tensor in continuum mechanics, f will be used instead to denote the upper triangular matrix 

of stretches. Because C = fTf, E =  (fTf  I) (Srinivasa 2012). Hence, f can be calculated 

from E by the following equations:  

          (Eq. 14a) 

  
 

 
(Eq. 14b) 

  
 

 
(Eq. 14c) 

  
 

 
(Eq. 14d) 

  
 

 
(Eq. 14e) 

  
 

 
(Eq. 14f) 

Next, the kinematic variables from Criscione et al. were used to calculate the strain 

parameters (Criscione et al. 2002). These kinematic variables are: 
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          (Eq. 15a) 

   (Eq. 15b) 

   (Eq. 15c) 

   (Eq. 15d) 

   (Eq. 15e) 

   (Eq. 15f) 

Hence, using Equations 4a-f, the strain attributes can now be calculated. Because the 

experimental data is from biaxial testing in the fiber and cross-fiber directions, 4 = 5 = 

6 = 0. In addition, due to the incompressibility constraint, 1 is also 0 as J is defined to be 

equal to 1 (i.e., det(F) = 1). 

 

2.6 The Functional Form of the Strain Energy Function (W) 

 To find the functional form of the strain energy function 2 3), the functional 

form of the perturbation of W with respect to each strain parameter relevant to biaxial 

testing (i.e., the partial derivatives of W) was estimated from the first set of data in Figures 

6  8. Furthermore, the data set in Figures 6 shows little to no change in 2, yet there is 

change in 3. To find the partial derivatives, the measured stresses from the first data set 

(Equation 16) were used utilizing the following equations from Criscione et al: 

  (Eq. 16) 

 
 (Eq. 17) 
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 (Eq. 18) 

where Lf and L  are deviatoric kinematic tensors (i.e., their trace is zero), which are 

mathematically expressed as (Criscione et al. 2002) 

 
 (Eq. 19) 

 
 

(Eq. 20) 

Hence, using the solution of Criscione et al. for W in Equation 8 to find its partial 

derivatives in Equation 17 and 18, and contracting Equation 19 and 20 with Equation 

16, Equation 17 and 18 can be re-expressed, respectively, as follows:  

 
 (Eq. 21) 

 
 

(Eq. 22) 

Therefore, Equations 21 and 22 were used to derive the functional form of W( 2, 3) from 

the first set of biaxial data by finding a function that best fits the data using the curve 

fitting tool in MATLAB. 

 

2.7 Calculation of the Material Parameters 

 Upon finding the functional form of W( 2, 3) from the first data set, the second 

data set (Figures 9  11) was used to solve for the unknown material constants (i.e., 

material parameters) that uniquely characterized the myocardium specimen used in the 

experiment, and by homogeneity, the entire myocardium to a certain acceptable degree of 
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uncertainty. A code was written in MATLAB using the previous equations to find the 

numerical solution for the material constants that best fit the functional form of W( 2, 3) 

using a Marquardt-Levenberg nonlinear regression that minimizes the sum of the squares 

of errors between the experimentally measured and theoretically predicted partial 

derivatives of the strain energy function W( 2, 3), shown in Equation 23. 

 (Eq. 23) 

where MSEQRW is the minimized squares of errors of the strain energy function W derived 

from the QR model (Appendix A). 

 

2.8 Evaluation of the Predictive Capability of the New Model 

 To evaluate the predictive capability of the new functional form of W( 2, 3), the 

Cauchy stress was found using W( 2, 3) and the material constants from Equation 23 

and plugging them into Equation 7, which yielded Equation 26 (Criscione et al. 2002). 

The deviatoric basis tensors A2 and A3 in Equation 7 were used as defined in Criscione 

et al. as follows (Criscione et al. 2002): 

 
 (Eq. 24) 

  (Eq. 25) 

Hence, this yielded 

 
 (Eq. 26) 
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To compare it with the Fung model, the Cauchy stress was calculated using the Fung strain 

energy function W(Eff, Ess, Enn) and plugging it into Equation 3, yielding Equations 27a 

and 27b.  

  (Eq. 27a) 

  (Eq. 27b) 

where Uff, Uss, and Unn are the diagonal components of the stretch tensor U which is found 

from U = C1/2. In this experiment, they are equal to 1, 2, and 3, respectively.   

It is worth noting that for the Cauchy stress for both models, the pressure was 

found from the boundary condition of the experiment, nn = 0. Thus, the mathematical 

form of nn for each model was subtracted from both ff and ss to satisfy the boundary 

conditions. In addition, the same algorithm that was used to calculate the material 

constants for W( 2, 3) was used to find the material constants c, bff, bss, and bnn of the 

Cauchy stresses of the Fung model by minimizing the squared sum of errors between the 

experimentally measured and theoretically predicted Fung stresses, shown in Equation 

28. 

 (Eq. 28) 

where MSEFung is the minimized squares of errors of the Cauchy stresses derived from the 

Fung strain energy function (Appendix A). 

 To compare the predictive capability of both models, the uncertainty was 

calculated by summing the squares of errors  between the experimental and predicted 

Cauchy stresses for each model using Equation 29.  
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 (Eq. 29) 

where i represents ff and ss for each model, and  represents the squared magnitude 

of the experimentally measured Cauchy stress tensor, which is found by contracting the 

measured Cauchy stress tensor with itself and then subsequently squaring it.  
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CHAPTER III  

RESULTS & DISCUSSION 

 

3.1 Functional Form of W( 2, 3) 

Looking at the dataset in Figures 6  8, the change in stretch only occurs in the 

cross-fiber direction (Uss) as the specimen is held constant in the fiber direction at a fixed 

stretch. As a result, 2 does not change due to its sole dependency on fiber stretch. Thus, 

to conclude a functional form of the strain energy function for the data, the relationship 

between 3 and 2 as well as 3 were plotted for loading path only (Figure 12).  

 

 

Figure 12. The perturbation of  as result of perturbing 3; the blue dots 
represent 2 whereas the red dots represent 3. 
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From Figure 12, it can be observed that there is almost no trend between 3 and 

2. It is, therefore, inferred that there is almost no dependency of 2 on 3 when 

2 is constant, and due to the absence of change in 2 in this experiment, it was inferred 

that 2 is a constant function of 2. However, considering how 3 changes as a 

function of 3, there is a clear trend between both variables. Furthermore, the curve fitting 

tool revealed the relationship to be exponential, with an r-square value of 0.993 (Appendix 

B). Thus, an exponential fit was the best fit for 3. In addition, due to the clear 

independency of 2 of 3, this implied that 2 is a sole function of 2. Hence, an 

exponential fit with a similar functional form for 3 (using the second dataset) 

r-square value of 0.996 (Appendix B). Hence, both partial 

derivatives yielded an exponential function as the best fit for the data. These functional 

forms are thus:  

 
 (Eq. 30) 

 
 

(Eq. 31) 

where f and f are fiber material constants, and x and x are cross-fiber material constants, 

and c0 accounts for adjusting for different slack lengths, which is due to the fact that after 

pre-conditioning, the zero-stress state is shifted to a new reference. Hence, after 

integrating each partial derivative, the new form of the strain energy function becomes 

  (Eq. 32) 
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The data interestingly revealed that the strain energy function is separable in two variables, 

which improves on the Fung model in that its partial derivatives are a function of one 

variable, minimizing the codependency between both partials. However, in the Fung 

model, due to the dependency of Q in Equation 6 on Eff, Ess, and Enn, the partial derivatives 

of W(Eff, Ess, Enn) with respect to each of these Green strains will still contain all the Green 

strains in the functional forms, which implies more codependency between the individual 

partials, which may result in a non-ideal fit and a magnified propagation of error 

(Criscione 2003). 

 

3.2 Material Constants for the New Model 

The second dataset (Figures 9  11) was used to solve for the material constants 

in Equations 30  32. Using Equations 30 and 31, the material constants that best fit the 

data and minimizes Equation 23 are displayed in the following table (Table 2): 

 

Table 2. Material constants for the fitted W( 2, 3) 
f f x x c0 

5.2 5.7 8.9 0.89  10 

 

The material constants in Table 2 demonstrate the amount of energy contributed by each 

mode of deformation as 2 and 3 are perturbed. Furthermore, the values for these 

constants are consistent with the normal behavior of the heart; the fiber material constants 

suggest that the increase in strain energy as a result of a perturbation in the fiber stretch 

( 2)  is greater (roughly by 4-folds) than that of a perturbation in the cross-fiber direction. 



 

39 

 

This is somewhat consistent with the Frank-Starling mechanism of the heart, which 

implies that due to a greater increase in the strain energy in the fiber direction, the fibers 

of the myocardium tend to be relatively more liable to return back to the lower energy 

state, the resting stretch of the fibers, than if they were stretched in cross-fiber direction. 

This is also consistent with the fact that during growth adaptations of the heart in response 

to overcoming greater loads on the heart, the wall of the heart thickens as a result of 

collective laminar thickening of the fibers, due to stretching in the cross-fiber direction; 

thus, the heart is able to maintain the state of a thickened wall longer than it would a fiber-

stretched state, which perhaps may be due to a higher increase in the strain energy from 

fiber strains than that of cross-fiber strains. Hence, the material constants in Table 2 

support the physiological observation that myocardial tissue is softer and more compliant 

in the cross-fiber direction but stiffer in the fiber direction. 

 

3.3 Assessment of the Predictability of the Fung and QR Models 

Using the material constants in Table 2, the Cauchy stresses predicted by the new 

model were calculated using Equation 26 and the strain energy function from Equation 

32. On the other hand, to calculate the Cauchy stresses predicted by the Fung model, the 

material constants were first found by finding the best fit that minimizes Equation 28. 

The resulting constants are displayed in Table 3. These constants were then plugged in 

Equations 27a, b to find the stresses predicted by the Fung model.  
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Table 3. Material constants for the fitted Fung model 
c bff bss bnn 

7.4 5.9 2.7 3.8 

 

The plots for the stresses and stress-stretch curves predicted from both models were added 

to the experimental data plots from Figures 10 and 11 and were then reproduced in the 

following figures (Figures 13  16). The loading path data were used in all the plots. 

 

 

Figure 13. The experimentally measured fiber Cauchy stresses of the loading path 
(black circles); the predicted stresses from the Fung model (blue line); and the 
predicted stresses from the QR model (red line) 
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Figure 14. The experimentally measured cross-fiber Cauchy stresses of the loading 
path (black circles); the predicted stresses from the Fung model (blue line); and the 
predicted stresses from the QR model (red line) 
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Figure 15. The experimentally measured fiber Cauchy stress-stretch curve of the 
loading path (black circles); the predicted stress-stretch curve from the Fung model 
(blue line); and the predicted stress-stretch from the QR model (red line) 
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Figure 16. The experimentally measured cross-fiber Cauchy stress-stretch curve of 
the loading path (black circles); the predicted stress-stretch curve from the Fung 
model (blue line); and the predicted stress-stretch from the QR model (red line) 

 

3.4 Quantifying the Uncertainty for the Fung and QR Models 

Using the predicted stresses obtained from Equations 26 and 27a, b, the error was 

calculated from Equation 29 to compare with the experimentally measured loading 

stresses in the second dataset in Figures 9  11.  Figure 17 shows the plotted uncertainty 

associated with both models.   
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Figure 17. The uncertainty of the Fung model for each data point in the loading path 
(blue); and the uncertainty of the QR Model for each data point in the loading path 
(red) 
 

Figure 17 demonstrates a clear reduction in error in the stresses predicted by the 

QR model compared to that of the Fung model, which indicates the QR model resulted in 

a better fit for the data. This is due to the fact that the QR model resulted in a strain energy 

function that is separable in 2 and 3 with no codependency between the partial 

derivatives. However, there was significant codependency between the ii terms of 

the Fung model as result of the presence of the exponent Q, a function of (Eff, Ess, Enn), in 

the mathematical expression for each individual term.  Additionally, when fitting biaxial 
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data, the two equations (Equation 30 and 31) were controlled by two variables whereas 

the two equations (Equations 27a, b) from the Fung model were controlled by three 

variables (Eff, Ess, Enn) which results in a greater degeneracy of the possible solutions that 

the fit that 

uniquely characterizes the mechanical behavior of the myocardium and accurately predicts 

its mechanics.  

Therefore, it is concluded from the data that a strain energy function that is 

separable in its variables yields a better fit and a greater reduction in error than a strain 

energy function that is not. Furthermore, the QR model yields a strain energy function 

with less degeneracy and thus a greater probability of uniqueness. Finally, the QR strain 

energy function carries direct physical meaning regarding cardiac deformation compared 

to the that of the Fung model.  
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CHAPTER IV  

FUTURE WORK: FINDING THE FULL FORM OF W FROM 

TRIAXIAL TESTING 

 

4.1 Introduction 

While QR decomposition provided the foundation for deriving a new strain energy 

function from biaxial data, biaxial testing is limited in the information it provides about 

the mechanics of the heart. Biaxial data allowed the strain energy function to be quantified 

with respect to two modes of deformation ( 2 and 3); however, a true survey of the 

mechanics of the heart with the assumption of incompressibility would also include the 

three other modes of deformation, namely the modes representing simple shear, which are  

4, 5, and 6. Therefore, it is of interest to investigate triaxial data, such as that published 

by Li et al. (Li et al. 2020).  Such an investigation will result into a full quantification of 

the strain energy function and a thorough comparison between the Fung model (Equation 

33) and the QR model (Equation 34) in their full forms.  

  (Eq. 33) 

  (Eq. 34) 

 

4.2 Optimal Triaxial Testing Data 

 Optimal triaxial data was obtained and published from multi-axial testing of a 

cubic specimen of myocardium with dimensions 1cm × 1cm × 1cm (Avazmohammadi et 
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al. 2018; Li et al. 2020). Furthermore, Avazmohammadi et al. developed a triaxial 

apparatus that can determine the optimal combination of possible loading paths (i.e., the 

optimal experimental design (OED)) that minimizes the uncertainty in the material 

parameters estimated from the constitutive model (Avazmohammadi et al. 2018).  

The specimen used in Li et al. was a cubic specimen whose edges aligned with the 

anatomical directions of the left ventricle: longitudinal (from base to apex), 

circumferential, and radial (from endocardium to epicardium). The set of loading paths 

that minimizes the covariance between the material parameters and optimizes their 

estimation through maximizing the information potentially obtained from these 

parameters is a combination of one-axis simple shear and two-axis pure shear 

deformations (Li et al. 2020). Hence, these optimal loading paths were determined based 

on the constitutive model utilized by Li et al., which is an invariant-based constitutive 

form proposed by Holzapfel and Ogden (Holzapfel and Ogden 2009). The following 

figures (Figures 18 & 19) demonstrate the mechanical testing apparatus and the optimal 

loading path used for the myocardial specimen. 

 

 

Figure 18. (a) Tissue specimen alignment with respect to the anatomical directions of 
the heart. (b) Triaxial mechanical testing device (c) Myocardium specimen mounted 
with anatomical directions aligned to the device axes. Reprinted from (Li et al. 2020) 
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Figure 19. loading paths applied to a cuboidal myocardium 
specimen with edges aligned to the anatomical directions of the heart with the 
reference configuration shown by the black outline. Reprinted from (Li et al. 2020). 
 

 Figure 19 shows the six modes of deformation and the possible stretch directions 

encoded in the six components of the upper triangular tensor (Equation 14), where the 

first three deformations (SSRL, SSLC, and SSCR) represent simple shear of the radial 

plane along the longitudinal axis, simple shear of the longitudinal plane along the 

circumferential axis, and simple shear of the circumferential plane along the radial axis, 

respectively. These simple shear deformations correspond to 4, 5, and 6, respectively, 

after applying a coordinate transformation from lab coordinates to material coordinates. 

Furthermore, the latter three deformations (PSLC, PSLR, and PSCR) represent pure shear 

(i.e., stretch) along the longitudinal axis and shortening along the circumferential axis, 

pure shear in the longitudinal axis and shortening along the radial axis, and pure shear 

along the circumferential axis with shortening along the radial axis, respectively. These 

pure shear deformations are encoded in 2 and 3, allowing the full form of the strain 

energy function W( 2, 3, 4, 5, 6) to be derived by using the triaxial data to find 

functional forms for 2, 3, 4, 5, and 6 using their respective 

equations in Criscione et al. (Criscione et al. 2002). 
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4.3 Limitations 

 The limitations in this study mainly stem from the fact that the multiaxial testing 

is conducted on a myocardial cube. While that does allow for decoding the behavior with 

more modes of deformation than that allowed by biaxial testing, the heterogeneity of the 

cube makes finding the material constants that truly characterizes the cube less unique. 

Furthermore, the cube can be thought of as a sum of slabs stacked upon each other, with 

each slab having a unique fiber direction, so the behavior would have to be averaged across 

the slabs to enable finding the material constants that represents this average behavior. 

Such a limitation should, thus, be kept in mind while analyzing the triaxial data. 

 

4.4 Conclusion 

The aforementioned published optimal triaxial data of a myocardial cuboid can be 

used to derive the full functional form and material constant estimation for Equation 33 

(Li et al. 2020). The resulting function can then be compared with the Fung model using 

the same theoretical framework in the thesis, which can be extended for triaxial testing. 

 



 

 

CHAPTER V  

CONCLUDING REMARKS & CHALLENGES OF MODELING 

CARDIAC MECHANICS 

 

5.1 Conclusion 

Published biaxial data for a slab specimen of myocardium  was utilized to find a 

strain energy function from QR decomposition (Humphrey et al. 1990). The goal of this 

work was to improve on the Fung model by deriving a strain energy function that yielded  

better stress-stretch fits (thus greater predictive capabilities), and utilizes strain parameters 

that relate more physically with the deformation of the heart. Indeed, the proposed strain 

energy function in Equation 32 achieves just that, and it also has less codependency 

amongst its partial derivatives, reducing the propagated error. Hence, this minimizes the 

degeneracy of the model and improves significantly on the Fung model for the strain 

energy function, which allows linking the new model to the multiscale structure of the 

heart more achievable.  

 

5.2 The Path That Lies Ahead 

While the fruits of this work might be considered a great step forward in improving 

the mathematical models of the heart, it is but one step. There is, therefore, ample room 

for improvement, and modeling the heart in of itself is a field that is inherent with many 

complexities, stemming from the fact that is both a mechanical and biological system. 

Regarding its mechanics, due to its nature described in 1.5, a better model for its elasticity 
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would be a viscoelastic model compared to the framework of hyperelasticity assumed in 

this work. Unfortunately, the mechanics of viscoelasticity is currently not well-

established. Furthermore, due to the heterogeneity of the heart, a better model is that 

factors cardiac anisotropy given that different regions of the heart behave in different 

manners. Also, while this work was done for the passive myocardium, which corresponds 

to a non-contractile heart, a more realistic model for the heart would be that which is 

active, opening the door for far more variables to be included.  

Another possible avenue for improvement concerns the methods that generate the 

constitutive relations by fitting the data . Furthermore, the solution found is often 

data but are clearly not representative of the natural phenomenon. To illustrate, prior to 

), it might have been easy to assume a 

geocentric model for the universe, by obser

 around Earth, it does not 

capture the reality of nature

restrictions put by how much the Sun can accelerate relative to Earth due to its great mass. 

This implies that Earth must accelerate relatively greater as its mass is lower, so that the 

forces of gravitational attraction between the Sun and the Earth are equal and opposite, as 

predicted by . Another example is that of a chariot model pulling on 

the Moon along its orbit

the Earth. While the true model is the gravitationally distorted space-time with
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vicinity that yields the force pulling on the Moon towards its center, the chariot model was 

just  by 90 degrees.  

These examples demonstrate why deriving models with low degeneracy is an 

endeavor that is of utmost importance in the field of cardiac mechanics, to ensure a higher 

probability of yielding the true model as opposed a model that merely , 

it is possible that numerical methods may not be the best framework to yields such models, 

and it is possible that other methods, such as perturbation theory or even other methods 

that have yet to be invented, would be more ideal to model the heart. 

Finally, the true complexity of modeling the mechanics of the hearts lie in that it 

is a biological system that harbors life, and thus varies with age, medical history, size, 

such a complexity may have yet to be encountered by other fields of mechanics. For 

instance, all of the models and equations describing the Universe are based on experiments 

and observations of one Universe, the universe where Earth resides. For the sake of 

argument, while it has not been experimentally proven yet, let us assume that the 

multiverse is indeed the true model of nature. According to string theory, the multiverse 

would be comprised of 10500 universes, yet let us assume that it is made up of seven billion 

universes, as an example. T   in 

universe 1, it could be represented completely differently, such as  

in universe 2. Universe 3 would have a different expression, and so forth. As a result, there 

would be seven billion different expressions for force. If there were to be an overarching 

expression that encompasses and unifies all seven billion expressions, such a unification 
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will most likely require a highly advanced level of mathematics, or possibly another tool, 

that has not been developed and would thus encompass multiple layers of complexity. 

While this dilemma is not yet present in astrophysics, it is for cardiac mechanics. 

Furthermore, there are indeed roughly seven billion human hearts on Earth, each one 

beating differently than the other with great biological variability. Even within the same 

overarching model for the heart poses a great challenge, yet it is not out of reach.    

Nevertheless, a unique aspect of cardiac mechanics modeling is that it involves a 

structure that humans use every day and would want preserved for as long as possible. 

Hence, another aspect of modeling for the heart that must be kept in mind is not just the 

 

That question can be answered by considering the application for which the model will be 

used. For instance, while a flat earth is an ill-

gravitational field, it is quite a sufficient model for constructing street maps. Likewise, an 

to be a sphere 

is sufficient for 

gravitation, to an acceptable degree of certainty. 
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APPENDIX A 

ANNOTATED MATLAB CODES 

 

The algorithms in the following sections were all written in MATLAB R2018a.  

 

A.1 Biaxial Data Plotter Program 

close all; clear all; clc 
% Plotting the Data from Humphrey et. al (1990) 
  
% First Data Set 
  
% [x,U_ff] = DataThief('STRETCH.JPG',[0 1.4],[0 1],[50 0]); 
% [x,U_ss] = DataThief('STRETCH.JPG',[0 1.4],[0 1],[50 0]); 
% [x,sigma_ff] = DataThief('STRESS.JPG',[0 100],[0 0],[50 0]); 
% [x,sigma_ss] = DataThief('STRESS.JPG',[0 100],[0 0],[50 0]); 
  
% Stretch (Constant Fiber Stretch & Varying Cross-fiber Stretch) 
U_ff1 = [1.2010    1.1986    1.1981    1.1981    1.1986    1.2006    

1.2010    1.2006    1.2006    1.2006    1.1998    1.1998    
1.1998    1.2006    1.2006    1.1998    1.2010    1.1998... 
1.2006    1.2006    1.2006    1.2006    1.2006    1.2006    
1.2006    1.2006    1.2019    1.2010    1.2010    1.2010    
1.2010    1.2010    1.2010    1.2010    1.2010    1.2010... 
1.1998    1.2006    1.2006    1.2006    1.1998    1.2006    
1.1998    1.2006    1.2010    1.2010    1.2031    1.2035    
1.2035    1.1986]; 
  

U_ss1 = [1.0735    1.0731    1.0780    1.0883    1.1011    1.1106    
1.1181    1.1321    1.1465    1.1602    1.1692    1.1841    
1.1990    1.2089    1.2213    1.2349    1.2448    1.2535... 
1.2650    1.2762    1.2927    1.3009    1.3121    1.3183    
1.3183    1.3187    1.3030    1.2939    1.2815    1.2704    
1.2605    1.2535    1.2411    1.2312    1.2213    1.2138... 
1.1977    1.1891    1.1792    1.1692    1.1593    1.1544    
1.1391    1.1255    1.1218    1.1102    1.1011    1.0970    
1.0888    1.0743]; 

  
% Cauchy Stress 
sigma_ff1 = [22.9941   23.6791   24.2661   25.4403   26.5166   

27.9843   28.7671   30.5284   31.0176   31.7025   33.4638   
34.8337   36.1057   37.1820   37.6712   40.1174   42.1722   
43.6399... 
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45.3033   45.8904   46.8689   49.1194   49.8043   50.0978   
50.0978   48.0431   43.6399   42.4658   41.8787   40.0196   
39.5303   37.7691   37.9648   36.3992   35.4207   33.3659... 
31.1155   30.6262   30.5284   29.8434   29.7456   29.7456   
28.1800   26.8102   26.7123   26.9080   26.9080   26.2231   
24.5597   22.6027]; 
  

sigma_ss1 = [4.7945    5.6751    8.0235    8.0235    9.0998   
10.3718   10.3718   12.9159   14.0900   16.4384   17.9061   
19.0802   21.8200   24.4618   25.7339   28.3757   31.2133... 
34.1487   36.6928   40.9980   42.6614   46.7710   50.8806   
51.1742   50.9785   48.6301   40.6067   36.3014   33.4638   
30.8219   26.9080   26.6145   23.7769   21.0372... 
18.6888   18.5910   16.0470   13.4051   13.4051   13.3072   
12.1331   10.9589    9.7847    9.7847    9.4912    8.5127    
7.0450    7.0450    5.9687    4.9902]; 

  
% Plotting Loading Data from the First Data Set 
    U_ff1 = U_ff1(1:25); 
    U_ss1 = U_ss1(1:25); 
    sigma_ff1 = sigma_ff1(1:25); 
    sigma_ss1 = sigma_ss1(1:25); 
  
% Humphrey Plots 
  
figure (1)  % STRETCH 

plot(U_ff1,'o'); hold on; plot(U_ss1,'r^'); axis([0 50 1 
1.4]); 
title('(A) Measured Fiber and Cross-fiber Stretches 
\bf{U_{ff}, U_{ss}}'); 
xlabel('DATA POINT','fontweight','bold'); 
ylabel('STRETCH','fontweight','bold'); 
legend('U_{ff}','U_{ss}') 

     
figure (2)  % STRESS 

plot(sigma_ff1,'o'); hold on; plot(sigma_ss1,'r^'); axis([0 50 
0 100]); 
title('(B) Measured Fiber and Cross-fiber Stretches 
\bf{\sigma_{ff}, \sigma_{ss}}'); 
xlabel('DATA POINT','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

    legend('\sigma_{ff}','\sigma_{ss}') 
  
figure(3)  % STRETCH-STRESS 

plot(U_ff1,sigma_ff1,'o'); hold on; plot(U_ss1,sigma_ss1,'r^'); 
axis([1 1.4 0 100 ]); 
title('(C) Biaxial Fiber and Cross-fiber Stress-Stretch Data'); 
xlabel('STRETCH','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

    legend('fiber','cross-fiber')   
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% Second Data Set 
  
% [x,U_ff] = DataThief('STRETCH2.JPG',[0 1.4],[0 1],[50 0]); 
% [x,U_ss] = DataThief('STRETCH2.JPG',[0 1.4],[0 1],[50 0]); 
% [x,sigma_ff] = DataThief('STRESS2.JPG',[0 100],[0 0],[50 0]); 
% [x,sigma_ss] = DataThief('STRESS2.JPG',[0 100],[0 0],[50 0]); 
  
% Stretch (Varying Fiber Stretch & Varying Cross-fiber Stretch) 
U_ff2 = [1.0685    1.0806    1.0981    1.1144    1.1228    1.1294    

1.1382    1.1495    1.1608    1.1741    1.1795    1.1908    
1.2021    1.2096    1.2171    1.2271    1.2367    1.2505... 
1.2585    1.2676    1.2747    1.2898    1.2994    1.3123    
1.3211    1.3219    1.3219    1.3119    1.2973    1.2881    
1.2756    1.2635    1.2518    1.2468    1.2347    1.2271... 
1.2121    1.2046    1.1933    1.1808    1.1695    1.1595    
1.1541    1.1445    1.1353    1.1232    1.1106    1.1044    
1.0944    1.0739]; 

  
U_ss2 = [1.3219    1.3152    1.3015    1.2923    1.2877    1.2823    

1.2752    1.2647    1.2605    1.2501    1.2455    1.2355    
1.2205    1.2184    1.2046    1.1996    1.1891... 
1.1745    1.1666    1.1570    1.1432    1.1365    1.1244    
1.1111    1.0965    1.0860    1.0856    1.0864    1.0931    
1.1061    1.1190    1.1357    1.1520    1.1645... 
1.1758    1.1883    1.2017    1.2129    1.2259    1.2317    
1.2480    1.2555    1.2605    1.2651    1.2781    1.2843    
1.2952    1.3027    1.3111    1.3278]; 

  
  
% Cauchy Stress 
sigma_ff2 = [8.4906   11.5304   13.8365   15.9329   17.0860   

17.7149   20.2306   22.5367   24.4235   26.7296   28.9308   
31.2369   34.3816   37.2117   38.7841   43.0818   47.5891   
51.2579... 
55.7652   63.1027   69.1824   76.9392   81.6562   89.4130   
90.8805   90.8805   81.9706   66.1426   54.8218   49.1614   
43.1866   37.8407   35.3249   33.6478   31.5514   29.0356... 
25.9958   24.5283   21.5933   20.1258   18.6583   18.5535   
16.6667   16.0377   14.3606   12.7883   12.1593   11.3208   
10.2725    8.1761]; 

  
sigma_ss2 = [28.9308   28.6164   28.4067   27.9874   26.9392   

27.6730   26.4151   26.2055   26.1006   26.1006   25.6813   
25.3669   25.1572   24.9476   23.5849   23.3753   23.1656... 
21.9078   21.5933   21.4885   21.3836   20.2306   20.2306   
18.5535   17.1908   16.2474   14.9895   14.8847   14.8847   
14.9895   15.1992   16.6667   17.8197   19.2872... 
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20.6499   21.0692   22.4319   22.8512   23.6897   24.2138   
24.3187   25.6813   25.7862   25.7862   26.2055   28.0922   
27.8826   29.2453   29.2453   30.9224]; 

  
% Plotting Loading Data from the Second Data Set 
    U_ff2 = U_ff2(1:25); 
    U_ss2 = U_ss2(1:25); 
    sigma_ff2 = sigma_ff2(1:25); 
    sigma_ss2 = sigma_ss2(1:25); 
  
% Humphrey Plots 
  
figure (4)  % STRETCH 

plot(U_ff2,'o'); hold on; plot(U_ss2,'r^'); axis([0 50 1 1.4]); 
title('(D) Measured Fiber and Cross-fiber Stretches \bf{U_{ff}, 
U_{ss}}'); 
xlabel('DATA POINT','fontweight','bold'); 
ylabel('STRETCH','fontweight','bold'); 

    legend('U_{ff}','U_{ss}') 
     
figure (5)  % STRESS 

plot(sigma_ff2,'o'); hold on; plot(sigma_ss2,'r^'); axis([0 50 
0 100]); 
title('(E) Measured Fiber and Cross-fiber Stretches 
\bf{\sigma_{ff}, \sigma_{ss}}'); 
xlabel('DATA POINT','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

    legend('\sigma_{ff}','\sigma_{ss}') 
  
figure(6)  % STRETCH-STRESS 

plot(U_ff2,sigma_ff2,'o'); hold on; plot(U_ss2,sigma_ss2,'r^'); 
axis([1 1.4 0 100 ]); 
title('(F) Biaxial Fiber and Cross-fiber Stress-Stretch Data'); 
xlabel('STRETCH','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

    legend('fiber','cross-fiber')  
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A.2 Computation of the Kinematics 

% Enforcing the Incompressibility Constraint 
    for i = 1:length(U_ff1) 
        U_nn1(i) = 1/(U_ff1(i)*U_ss1(i)); 
        U_nn2(i) = 1/(U_ff2(i)*U_ss2(i)); 
    end 
     
% Finding the Green Strains 
    for i = 1:length(U_ff1) 

E_ff1(i) = 0.5*(U_ff1(i)^2 - 1);  
E_ss1(i) = 0.5*(U_ss1(i)^2 - 1);  
E_nn1(i) = 0.5*(U_nn1(i)^2 - 1); 
E_ff2(i) = 0.5*(U_ff2(i)^2 - 1);  
E_ss2(i) = 0.5*(U_ss2(i)^2 - 1);  
E_nn2(i) = 0.5*(U_nn2(i)^2 - 1); 

    end 
  
E_fs1 = zeros(1,50); E_fn1 = zeros(1,50); E_sn1 = zeros(1,50); 
E_fs2 = zeros(1,50); E_fn2 = zeros(1,50); E_sn2 = zeros(1,50); 
  
% Components of the f Tensor (1) 
    for i = 1:length(E_ff1) 
        f_ff1(i) = sqrt(2*E_ff1(i)+1);           
        f_fs1(i) = (2*E_fs1(i))/f_ff1(i);        
        f_fn1(i) = (2*E_fn1(i))/f_ff1(i);        
        f_ss1(i) = sqrt(2*E_ss1(i) - f_fs1(i)^2 + 1);        
        f_sn1(i) = (2*E_sn1(i) - f_fs1(i)*f_fn1(i))/f_ss1(i);        
        f_nn1(i) = sqrt(2*E_nn1(i) - (f_fn1(i)^2 + f_fs1(i)^2)+ 1);         

f1(:,:,i) = [f_ff1(i) f_fs1(i) f_fn1(i); 0 f_ss1(i) 
f_sn1(i); 0 0 f_nn1(i)];  

        f_trans1(:,:,i) = f1(:,:,i).';  
    end 
  
% Components of the f Tensor (2) 
    for i = 1:length(E_ff1) 
        f_ff2(i) = sqrt(2*E_ff2(i)+1); 
        f_fs2(i) = (2*E_fs2(i))/f_ff2(i); 
        f_fn2(i) = (2*E_fn2(i))/f_ff2(i); 
        f_ss2(i) = sqrt(2*E_ss2(i) - f_fs2(i)^2 + 1); 
        f_sn2(i) = (2*E_sn2(i) - f_fs2(i)*f_fn2(i))/f_ss2(i); 
        f_nn2(i) = sqrt(2*E_nn2(i) - (f_fn2(i)^2 + f_fs2(i)^2)+ 1);  

f2(:,:,i) = [f_ff2(i) f_fs2(i) f_fn2(i); 0 f_ss2(i) 
f_sn2(i); 0 0 f_nn2(i)]; 

        f_trans2(:,:,i) = f2(:,:,i).'; 
    end 
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% Kinematic Variables (1) 
  
    for i=1:length(E_ff1) 
        lambda_f1(i) = f_ff1(i); 
        zeta1(i) = ((lambda_f1(i))^0.5)*f_nn1(i); 
        phi_fs1(i) = ((lambda_f1(i))^-1)*f_fs1(i); 
        phi_fn1(i) = ((lambda_f1(i))^-1)*f_fn1(i); 
        phi_sn1(i) = ((lambda_f1(i))^0.5)*zeta1(i)*f_sn1(i); 
    end 
  
% Kinematic Variables (2) 
  
    for i=1:length(E_ff1) 
        lambda_f2(i) = f_ff2(i); 
        zeta2(i) = ((lambda_f2(i))^0.5)*f_nn2(i); 
        phi_fs2(i) = ((lambda_f2(i))^-1)*f_fs2(i); 
        phi_fn2(i) = ((lambda_f2(i))^-1)*f_fn2(i); 
        phi_sn2(i) = ((lambda_f2(i))^0.5)*zeta2(i)*f_sn2(i); 
    end 
  
% Strain parameters (1) 
  
    for i=1:length(E_ff1) 
        a2_1(i) = 1.5*log(lambda_f1(i)); 
        a3_1(i) = 2*log(zeta1(i)); 
        a4_1(i) = phi_fs1(i); 
        a5_1(i) = phi_fn1(i); 
        a6_1(i) = phi_sn1(i); 
    end 
  
% Strain parameters (2) 
  
    for i=1:length(E_ff1) 
        a2_2(i) = 1.5*log(lambda_f2(i)); 
        a3_2(i) = 2*log(zeta2(i)); 
        a4_2(i) = phi_fs2(i); 
        a5_2(i) = phi_fn2(i); 
        a6_2(i) = phi_sn2(i); 
    end 
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A.3 Parameter Estimation for Both Models 

%% FUNG MODEL 
  
% Fung Cauchy Stress (Sigma) 
  
    U_1 = [U_ff1;U_ss1;U_nn1;E_ff1;E_ss1;E_nn1];  
    U_2 = [U_ff2;U_ss2;U_nn2;E_ff2;E_ss2;E_nn2]; 
    U = [U_1;U_2]; 
  
% (1) 
  

tff_Fung1 = @(b,U)0.5.*b(1).*exp(b(2).*E_ff1.^2 + 
b(3).*E_ss1.^2 + 
b(4).*E_nn1.^2).*(b(2).*U_ff1.^2.*(U_ff1.^2 - 1) - 
b(4).*U_nn1.^2.*(U_nn1.^2-1)); 

 
tss_Fung1 = @(b,U)0.5.*b(1).*exp(b(2).*E_ff1.^2 + 

b(3).*E_ss1.^2 + 
b(4).*E_nn1.^2).*(b(3).*U_ss1.^2.*(U_ss1.^2 - 1) - 
b(4).*U_nn1.^2.*(U_nn1.^2-1)); 

  
% (2) 

  
tff_Fung2 = @(b,U)0.5.*b(1).*exp(b(2).*E_ff2.^2 + 

b(3).*E_ss2.^2 + 
b(4).*E_nn2.^2).*(b(2).*U_ff2.^2.*(U_ff2.^2 - 1) - 
b(4).*U_nn2.^2.*(U_nn2.^2-1)); 

 
tss_Fung2 = @(b,U)0.5.*b(1).*exp(b(2).*E_ff2.^2 + 

b(3).*E_ss2.^2 + 
b(4).*E_nn2.^2).*(b(3).*U_ss2.^2.*(U_ss2.^2 - 1) - 
b(4).*U_nn2.^2.*(U_nn2.^2-1)); 

  
% Parameter Estimation  
  

MSE_Fung = @(b,U)(tff_Fung2(b,U) - sigma_ff2).^2 + 
(tss_Fung2(b,U) - sigma_ss2).^2; 
b0 = [1;1;1;1]; 
b = lsqcurvefit(MSE_Fung,b0,U,zeros(size(sigma_ff1))); 
C = b(1); b_ff = b(2); b_ss = b(3); b_nn = b(4); 

  
%% JCC-TMH Model  
  
% Estimation of the Strain Energy Function from QR 
  
    for i = 1:length(U_ff1) 
        dW_da2_1(i) = (2/3)*sigma_ff1(i) - (1/3)*sigma_ss1(i); 
        dW_da3_1(i) = -0.5*sigma_ss1(i); 
  
        dW_da2_2(i) = (2/3)*sigma_ff2(i) - (1/3)*sigma_ss2(i); 
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        dW_da3_2(i) = -0.5*sigma_ss2(i); 
    end 
  
% Parameter Estimation from dW/da 
  
    a = [a2_1;a3_1;a2_2;a3_2]; 

% dW_da2 (1) 
    Eq1_1 = @(g,a)2*g(1)*g(2).*a2_1.*exp(g(2).*a2_1.^2) + g(5); 
 

% dW_da3 (1) 
    Eq2_1 = @(g,a)2*g(3)*g(4).*a3_1.*exp(g(4).*a3_1.^2);  
 

% dW_da2 (2) 
    Eq1_2 = @(g,a)2*g(1)*g(2).*a2_2.*exp(g(2).*a2_2.^2) + g(5); 
 

% dW_da3 (2)     
    Eq2_2 = @(g,a)2*g(3)*g(4).*a3_2.*exp(g(4).*a3_2.^2);  
 

MSE_TMH = @(g,a) (Eq1_2(g,a) - dW_da2_2).^2 + (Eq2_2(g,a) - 
dW_da3_2).^2; 

    g0 = [5.209;5.737;8.8862;0.8877;-10.16]; 
    g = lsqcurvefit(MSE_TMH,g0,a,zeros(size(sigma_ff1))); 
    af_hat = g(1); bf_hat = g(2); as_hat = g(3); bs_hat = g(4); 

c=g(5); %d=g(6); 
  
% Predicting the Cauchy Stresses using QR (JCC-TMH) 
  
% (1) 
  
    tff_TMH1 = 1.5.*Eq1_1(g,a) - Eq2_1(g,a); 
    tss_TMH1 = -2.*Eq2_1(g,a); 
  
% (2) 
  
    tff_TMH2 = 1.5.*Eq1_2(g,a) - Eq2_2(g,a); 
    tss_TMH2 = -2.*Eq2_2(g,a); 
  
% Plotting the Fits of dW/da (1) 
  
figure (7) 

plot(dW_da2_1,'ko'); hold on; plot(Eq1_1(g,a)); axis([0 50 0 
40]); 
title('(A1) Predicted $\frac{\partial{W}}{\partial{a}_{2}}$ 
from QR Model of JCC-TMH','Interpreter','latex','fontsize',12);  
xlabel('DATA POINT','fontweight','bold'); 
ylabel('$\frac{\partial{W}}{\partial{a}_{2}}$','Interpreter','l
atex','fontsize',14,'fontweight','bold'); 

    legend('Measured','Fit') 
  
figure(8) 
    plot(dW_da3_1,'ko'); hold on; plot(Eq2_1(g,a)); 
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title('(B1) Predicted $\frac{\partial{W}}{\partial{a}_{3}}$ 
from QR Model of JCC-TMH','Interpreter','latex','fontsize',12);  
xlabel('DATA POINT','fontweight','bold'); 
ylabel('$\frac{\partial{W}}{\partial{a}_{3}}$','Interpreter','l
atex','fontsize',14,'fontweight','bold'); 

    legend('Measured','Fit') 
     
figure(9) 

plot(a3_1,dW_da2_1,'ko'); hold on; plot(a3_1,Eq1_1(g,a),'b-'); 
plot(a3_1,dW_da3_1,'k^'); hold on; plot(a3_1,Eq2_1(g,a),'r-'); 
title('(C1) Dependency of $\frac{\partial{W}}{\partial{a}_{2}}$ 
and $\frac{\partial{W}}{\partial{a}_{3}}$ on 
$\bf\alpha_{3}$','Interpreter','latex','fontsize',12); 
xlabel('\alpha_{3}','fontweight','bold'); 
ylabel('$\frac{\partial{W}}{\partial{a}_{i}}$','Interpreter','l
atex','fontweight','bold'); 
set(legend('Measured 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$', 'Measured 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$'),'Interpreter','lat
ex')     
  

% Plotting the Fits of dW/da (2) 
  
figure (10) 

plot(dW_da2_2,'ko'); hold on; plot(Eq1_2(g,a)); axis([0 50 0 
60]); 
title('(A2) Predicted $\frac{\partial{W}}{\partial{a}_{2}}$ 
from QR Model of JCC-TMH','Interpreter','latex','fontsize',12);  
xlabel('DATA POINTS','fontweight','bold'); 
ylabel('$\frac{\partial{W}}{\partial{a}_{2}}$','Interpreter','l
atex','fontweight','bold'); 

    legend('Measured','Fit') 
  
figure(11) 
    plot(dW_da3_2,'ko'); hold on; plot(Eq2_2(g,a)); 

title('(B2) Predicted $\frac{\partial{W}}{\partial{a}_{3}}$ 
from QR Model of JCC-TMH','Interpreter','latex','fontsize',12); 
xlabel('DATA POINTS','fontweight','bold'); 
ylabel('$\frac{\partial{W}}{\partial{a}_{3}}$','Interpreter','l
atex','fontsize',14,'fontweight','bold'); 

    legend('Measured','Fit') 
  
figure(12) 

plot(a2_2,dW_da2_2,'ko'); hold on; plot(a2_2,Eq1_2(g,a),'b-'); 
plot(a2_2,dW_da3_2,'k^'); hold on; plot(a2_2,Eq2_2(g,a),'r-'); 
title('(C2) Dependency of $\frac{\partial{W}}{\partial{a}_{2}}$ 
and $\frac{\partial{W}}{\partial{a}_{3}}$ on 
$\bf\alpha_{2}$','Interpreter','latex','fontsize',14);  
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xlabel('\alpha_{2}','fontweight','bold'); 
ylabel('\bf{dW/d\alpha}','fontweight','bold'); 
set(legend('Measured 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$', 'Measured 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$'),'Interpreter','lat
ex', 'Location', 'northwest')     

  
figure(13) 

plot(a3_2,dW_da2_2,'ko'); hold on; plot(a3_2,Eq1_2(g,a),'b-'); 
plot(a3_2,dW_da3_2,'k^'); hold on; plot(a3_2,Eq2_2(g,a),'r-'); 
title('(C2) Dependency of $\frac{\partial{W}}{\partial{a}_{2}}$ 
and $\frac{\partial{W}}{\partial{a}_{3}}$ on 
$\bf\alpha_{3}$','Interpreter','latex','fontsize',14);  
xlabel('\alpha_{3}','fontweight','bold'); 
ylabel('\bf{dW/d\alpha}','fontweight','bold'); 
set(legend('Measured 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{2}}}$', 'Measured 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$','Fitted 
$\frac{\partial{W}}{\partial{\alpha_{3}}}$'),'Interpreter','lat
ex','Location', 'northwest')      
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A.4 Quantifying the Uncertainty of Both Models 

%% CALCULATING THE SQUARED ERROR FOR THE STRESSES FROM EACH MODEL 
  
% Error (1) 
  

Err_num_Fung1 = (tff_Fung1(b,U) - sigma_ff1).^2 + 
(tss_Fung1(b,U) - sigma_ss1).^2; 
Err_num_TMH1 = (tff_TMH1 - sigma_ff1).^2 + (tss_TMH1 - 
sigma_ss1).^2; 

    for i = 1:length(U_ff1) 
sigma1(:,:,i) = [sigma_ff1(i) 0 0; 0 sigma_ss1(i) 0; 0 0 0]; 

        Err_den1 = sum(dot(sigma1(:,:,i),sigma1(:,:,i))); 
    end 

Err_Fung1 = Err_num_Fung1/Err_den1; Err_TMH1 = 
Err_num_TMH1/Err_den1; 

  
% Error (2) 
  

Err_num_Fung2 = (tff_Fung2(b,U) - sigma_ff2).^2 + 
(tss_Fung2(b,U) - sigma_ss2).^2; 
Err_num_TMH2 = (tff_TMH2 - sigma_ff2).^2 + (tss_TMH2 - 
sigma_ss2).^2; 

    for i = 1:length(U_ff1) 
sigma2(:,:,i) = [sigma_ff2(i) 0 0; 0 sigma_ss2(i) 0; 0 0 0]; 

        Err_den2 = sum(dot(sigma2(:,:,i),sigma2(:,:,i))); 
    end 

Err_Fung2 = Err_num_Fung2/Err_den2; Err_TMH2 = 
Err_num_TMH2/Err_den2; 
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A.5 Plotting the Predicted Stresses from Both Models   

%% PLOTS OF THE PREDICTED STRESSES FROM FUNG & JCC-TMH MODELS 
  
% Plotting each of the Stresses (JCC-TMH vs Fung) and the Error in 
the Total Stress 
  
% (1) 
  
% t_ff 
figure (14) 

plot(sigma_ff1,'ko');hold on; plot(tff_Fung1(b,U),'b-'); hold 
on; plot(tff_TMH1,'r-'); hold off 
title('(A1) Predicted Fiber Cauchy Stresses (\bf\sigma_{ff})'); 
xlabel('DATA POINT','fontweight','bold'); 
ylabel('\bf\sigma_{ff}','fontweight','bold');legend('Data','\si
gma_{ff} (Fung)','\sigma_{ff} (JCC-TMH)') 

  
% t_ss 
figure (15) 

plot(sigma_ss1,'k^');hold on; plot(tss_Fung1(b,U),'b-'); hold 
on; plot(tss_TMH1,'r-'); hold off 
title('(B1) Predicted Cross-fiber Cauchy Stresses 
(\bf\sigma_{ss})');  
xlabel('DATA POINT','fontweight','bold');   
ylabel('\bf\sigma_{ss}','fontweight','bold');legend('Data','\si
gma_{ss} (Fung)','\sigma_{ss} (JCC-TMH)') 

  
% Fiber Stress-Stretch Curve 
figure (16) 

plot(U_ff1,sigma_ff1,'ko',U_ff1,tff_Fung1(b,U),'b-
',U_ff1,tff_TMH1,'r-'); axis([0 2 0 55]) 
legend('Data','Fung Model','JCC-TMH Model'); title('(C1) 
Biaxial Fiber Stress-Stretch Data and Fitted Curves'); 
xlabel('STRETCH','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

  
% Cross-fiber Stress-Stretch Curve     
figure (17) 

plot(U_ss1,sigma_ss1,'k^',U_ss1,tss_Fung1(b,U),'b-
',U_ss1,tss_TMH1,'r-') 
legend('Data','Fung Model','JCC-TMH QR Model'); title('(D1) 
Biaxial Cross-fiber Stress-Stretch Data and Fitted Curves'); 
xlabel('STRETCH','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 
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% (2) 
  
% t_ff 
figure (18) 

plot(sigma_ff2,'ko');hold on; plot(tff_Fung2(b,U),'b-'); hold 
on; plot(tff_TMH2,'r-'); axis([0 25 0 110]); hold off 
title('(A2) Predicted Fiber Cauchy Stresses (\bf\sigma_{ff})'); 
xlabel('DATA POINT','fontweight','bold'); 
ylabel('\bf\sigma_{ff} 
(g/cm^{2})','fontweight','bold');legend('Data','\sigma_{ff} 
(Fung)','\sigma_{ff} (JCC-TMH)') 

  
% t_ss 
figure (19) 

plot(sigma_ss2,'k^');hold on; plot(tss_Fung2(b,U),'b-'); hold 
on; plot(tss_TMH2,'r-'); hold off 
title('(B2) Predicted Cross-fiber Cauchy Stresses 
(\bf\sigma_{ss})');  
xlabel('DATA POINT','fontweight','bold'); 
ylabel('\bf\sigma_{ss} (g/cm^{2})','fontweight','bold'); 
legend('Data','\sigma_{ss} (Fung)','\sigma_{ss} (JCC-TMH)') 

  
% Fiber Stress-Stretch Curve 
figure (20) 

plot(U_ff2,sigma_ff2,'ko',U_ff2,tff_Fung2(b,U),'b-
',U_ff2,tff_TMH2,'r-') 
legend('Data','Fung Model','JCC-TMH Model'); title('(C2) 
Biaxial Fiber Stress-Stretch Data and Fitted Curves'); 
xlabel('STRETCH','fontweight','bold'); ylabel('STRESS 
(g/cm^{2})','fontweight','bold'); 

  
% Cross-fiber Stress-Stretch Curve     
figure (21) 

plot(U_ss2,sigma_ss2,'k^',U_ss2,tss_Fung2(b,U),'b-
',U_ss2,tss_TMH2,'r-') 
legend('Data','Fung Model','JCC-TMH Model'); title('(D2) 
Biaxial Cross-fiber Stress-Stretch Data and Fitted Curves'); 
xlabel('STRETCH','fontweight','bold');  
ylabel('STRESS (g/cm^{2})','fontweight','bold');  

  
%% PLOTTING THE SQUARED ERROR OF EACH MODEL 
     
% t_error (2) 
figure (22) 
    plot(Err_Fung2,'b-'); hold on; plot(Err_TMH2,'r-') 

title('(E2) The Uncertainty in \bf{\sigma_{Fung}} & 
\bf{\sigma_{JCC-TMH}}');  
xlabel('DATA POINT','fontweight','bold'); 
ylabel('\bf\sigma_{error}','fontweight','bold'); 
legend('Err(Fung)','Err(JCC-TMH)') 
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APPENDIX B 

MATLAB CURVE FITTING TOOL PLOTS 

 

Using the MATLAB curve fitting tool, the resulting material constants from the 

second data set were used to plot the functional forms of both 2 and 3, and the 

goodness of fit was evaluated using the statistical parameters shown in Table B-1. 

 

 

Figure B-1. Plotting 2 against , where the circles and triangles represent the 
experimental data of 2 and 3, respectively, and the blue curve and the 
red curve represent the fitted 2 and 3, respectively. 
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Figure B-2. Plotting 3 against , where the circles and triangles represent the 
experimental data of 2 and 3, respectively, and the blue curve and the 
red curve represent the fitted 2 and 3, respectively. 
 

Table B-1. Goodness of fit statistics for the fitted i with respect to 2 and 3 
 SSE R-square Adjusted R-square RMSE 

2 vs. 2 28.3 0.996 0.996 1.13 

3 vs. 3 10.1 0.993 0.993 0.664 

 

The statistical parameters shown in Table B-1 are the sum of squares due to error 

(SSE), r-square, adjusted r-square, and the root mean squared error (RMSE). 

 


