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ABSTRACT

Analytic methods to solve conformal field theories (CFT) have yielded a lot of mileage in

recent years. This dissertation builds up on these analytical techniques (lightcone methods and

inversion formulas) and extends them to new avenues including defect CFTs and double-twist an-

alytics. First, we use embedding formalism to construct correlators for d-dimensional CFT in the

presence of q co-dimensional defect. All possible invariants appearing in correlators of arbitrary

representation of operators are constructed for the first time in a defect setting. This allows con-

straining the defect CFT by studying crossing relations of operators in arbitrary representations.

Second, inversion formula is utilized to compute anomalous dimensions and three-point coeffi-

cient corrections for double-twist operators in arbitrary dimensions. We develop a new technique

in Mellin space to compute closed form expression of these corrections which are valid at any finite

value of conformal spin. Finally, a new connection is established between conformal correlator ex-

pansion and perturbative diagrammatic expansion in Wilson-Fisher theory in 4− ε dimensions. To

derive this connection we develop novel techniques for representing scalar and twist contributions

to correlators using Mellin space. Our techniques generalize to other theories with ε-expansion as

well.
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1. INTRODUCTION

In this chapter we review the basics and the current status of conformal field theories leading

up to the research projects described in this dissertation.

1.1 Basics

Conformal field theory (CFT) play a central role in many areas of theoretical physics from con-

densed matter to quantum gravity. CFTs are quantum field theories (QFTs) that (in d dimensions)

are invariant under the global conformal group SO(d+1, 1) instead of Poincaré group SO(d−1, 1).

A study of CFT is essential for a better understanding of various phenomena that involve phase

transitions, critical points, AdS/CFT duality etc. CFTs are also important from the point of view

of renormalization flow. This flow is the evolution of coupling constants (beta function) from Ul-

traviolet (UV) to Infrared (IR) region. At certain points in this trajectory (“fixed points") the beta

function vanishes and the theory becomes scale invariant and conformal. A remarkable fact about

this process is that very different UV theories can flow to the same IR fixed point making CFT a

universal IR behaviour of these UV theories. This “universality" unifies application of CFTs to

multiple areas of physics and makes study of CFT important.

The Poincaré group consists of Lorentz (rotation) and translational symmetries. Conformal

group is the extension of this to SO(d + 1, 1). This added symmetry reduces the number of free

parameters and makes CFT relatively easy to solve1. A nice analogy for the QFT/CFT relation is

the relation between ideal gas (simplistic, CFT) and Van der Waals gas (real world, complicated,

QFT).

The added symmetries in a CFT are 1) scale invariance and 2) special conformal invariance.

Poincaré transformations are transformations of the form,

xµ → Λµ
νx

ν + aµ , (1.1)

1“solve" refers to computation of observables.
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where Λµ
ν is the Lorentz tensor. Scaling symmetry is a scaling transformation on both the position

and time coordinates. In relativistic quantum field theories, it scales (by λ) all the coordinates with

the same amount.

xµ → λxµ . (1.2)

Special conformal transformation is a complicated non-linear transformation whose effect is the

following,

x′µ =
xµ − (x · x)bµ

1− 2(b · x) + (b · b)(x · x)
. (1.3)

These additional symmetries give rise to interesting CFT properties which we will review in the

upcoming sections.

1.1.1 Conformal Algebra

The underlying group of a d-dimensional CFT is SO(d + 1, 1)2, which has (d + 1)(d + 2)/2

generators. The details of the algebra have been worked out in many excellent reviews and articles

[1, 2, 3]. In this section we will briefly go over the conformal algebra. We list down the algebra of

the generators below,

[D,Pµ] = iPµ ,

[D,Kµ] = −iKµ ,

[Kµ, Pν ] = 2i (ηµνD − Lµν) ,

[Kρ, Lµν ] = i (ηρµKν − ηρνKµ) ,

[Pρ, Lµν ] = i (ηρµPν − ηρνPµ) ,

[Lµν , Lρσ] = i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) .

(1.4)

D and Kµ are the scaling and special conformal generator respectively. All other commutators

vanish. The Lorentz algebra remains intact. In coordinate representation the generators have the

2We have considered euclidean conformal group here. The unitary representations of Lorentzian conformal group
can be analytically continued to euclidean signature.
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following form in terms of x (position) and its derivatives,

Pµ = −i∂µ ,

Lµν = −i (xµ∂ν − xν∂µ) ,

D = −ixµ∂µ ,

Kµ = 2xµ (xρ∂ρ)− x2∂µ .

(1.5)

General conformal transformations act on the metric in the following manner,

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν . (1.6)

As is evident from the equation above, conformal transformation leave the metric invariant up-to

an overall scale, λ(x). If λ = 1, we recover Poincaré transformations. Physically the action of

conformal transformations is to leave angle between rays invariant (instead of leaving distance

invariant). The infinitesimal action of the generators on the coordinates is given by,

x′µ = xµ + cµ, Translations

x′µ = xµ + λxµ, Dilatations

x′µ = xµ + wµνx
ν , Lorentz

x′µ = xµ + 2 (bσx
σ)xµ − x2bµ, SCT (parameter b)

(1.7)

The key objects of interest in a CFT are local operators O(x). We will discuss local operators in

detail in later sections. The action of conformal generators on the local operators are given as,

[Pµ,O(x)] = i∂µO(x), [D,O(x)] = i (∆ + xµ∂µ)O(x) ,

[Kµ,O(x)] = i
(
x2∂µ − 2xµx

ν∂ν − xµ∆
)
O(x) ,

[Lµν ,O(x)] = i (xµ∂ν − xν∂µ + Sµν)O(x) .

(1.8)
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Sµν is the representation of spin operator corresponding to O(x). ∆ is called the scaling dimen-

sion and is the eigenvalue of the state/operator under dilatation operator. In a CFT the dilatation

generator is used for space-slice evolution instead of Hamiltonian. This is the essence of radial

quantization which we discuss below.

1.1.2 Radial Quantization

In a QFT, correlators and scattering amplitudes are the primary observables. However in a CFT

due to scale invariance the particle description makes no sense3. This absence makes the S-matrix

and scattering amplitude description unfeasible. Thus the only observables in CFTs are correlators.

In this section we will inspect correlators from the point of view of Hilbert space and Quantum

mechanical evolution. Hilbert spaces are defined on space-like slices (foliation of space-time in

surfaces of equal time: Figure 1.1). Space-time is composed of union of infinite equal time slices.

Figure 1.1: Foliation of space-time.

In each time slice (t=constant), we can create an “in" state by inserting4 operators in the past

of the surface (Figure 1.2). Similarly we can create “out state" by inserting operators in the fu-

ture (Figure 1.3). Correlators are basically overlaps between “in" and “out" states = 〈ψout|ψin〉. If

the “in" and “out" state are at different times, then a time evolution needs to be performed. We

perform this evolution using U = eiH∆t where H is the Hamiltonian (the generator of time trans-

3Particles manifest themselves as delta functions in the spectral decomposition of two point function. The spectral
decomposition of CFT two-point function is a continuous function which implies that there are no localized distribu-
tions and hence no particles.

4Operators are inserted in the path integral. The path-integral is over field configuration from past infinity to current
time slice (for “in" state). The current time slice boundary condition is left unfixed to create the in-state.
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Figure 1.2: Construction of in-state.

Figure 1.3: Construction of out-state.

Figure 1.4: Evolution of states.

lation). Now the overlap looks like 〈ψout|U |ψin〉 (Figure 1.4). In a CFT due to added symmetry

we can foliate the space-time in spheres of increasing radius. A similar representation for "in" and

"out" states exists for radial quantization states (Figure 1.5). The evolution between the spheres is

Figure 1.5: Radial quantization.
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controlled by the Dilatation operator U = eiD∆τ where τ = log(r). Because evolution is generated

by dilatation, we will label the states by scaling dimensions (eigenvalues of dilatation operator) ∆.

1.1.3 State Operator Correspondence

State Operator Correspondence refers to the one-to-one relation between states and operators.

In CFT this relation is reversible (unlike QFT). Using dilatation operation the states on sphere can

be shrunk to a point (local operator) and vice-versa (Figure 1.6). As an example we will look at

Figure 1.6: State operator correspondence.

vacuum state which is a state with no insertion,

|0〉 → No Insertion, ∆ = 0, D|0〉 = 0 . (1.9)

The eigenvalue of vacuum under dilatation is 0. The vacuum is also annihilated by all other gener-

ators of conformal group. Now imagine if we insert an operator of weight ∆ at origin,

Φ∆|0〉 ≡ |∆〉 . (1.10)

Then simple operation of (1.8) gives us the following,

D|∆〉 = ∆|∆〉, Kµ|∆〉 = 0 . (1.11)
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We define the operators (states) that are annihilated by Kµ as primary operators. Acting on these

primary operators with Pµ one generates a tower of descendant operators,

PµPν · · ·Pσ|∆〉 ≡ PµPν · · ·PσO∆(x) = ∂µ∂ν · · · ∂σO∆(x) . (1.12)

With the correspondence in hand the objects of interest in CFT are local operators. We will study

properties of local operators and correlators of local operators.

1.1.4 OPE

Operator Product Expansion (OPE) is a special property of field theory where two operators

(close by) can be replaced by linear combination of operators. Formally it is represented as,

Oi(x)Oj(0)|0〉 =
∑
k

Cijk(x, P )Ok(0)|0〉 . (1.13)

The sum k runs over all primary operators and Cijk(x, P ) is a differential operator packaged to-

gether with the three point coefficient Cijk. The three-point coefficients are theory specific data5.

The differential operator serves to generate the family of descendants for a primary,

Cijk(x, ∂) = Cijkx
∆−2∆O

(
1 +

1

2
x · ∂ + αxµxν∂µ∂ν + βx2∂2 + . . .

)
, (1.14)

where,

α =
∆ + 2

8(∆ + 1)
, and β = − ∆

16
(
∆− d−2

2

)
(∆ + 1)

(1.15)

The coefficients and the terms in the expansion (1.14) are completely fixed by conformal algebra.

Mathematically OPE can be thought of as having two operators surrounded by a sphere (radial

quantization setting)6. Using path integral the state on the sphere is obtained and using scaling

symmetry the state on sphere can be shrunk to a point thus obtaining a series of local operators.

Typically in a QFT OPE is used only in the asymptotically short limit. In a CFT the OPE

5The analogous quantity in a QFT is the three-point coupling.
6It is essential that this ball should not contain any other operators.
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structure becomes much richer. An OPE in CFT gives a convergent series expansion at finite point

separation. OPE satisfy associativity and this gives rise to crossing symmetry of a CFT.

1.1.5 CFT Data

Operators are the building blocks of CFT. Primary operators are the only essential ingredients

since descendants can be generated from primaries. Primary operators are specified by their spin

(J) and their scaling dimensions (∆). This is all the data needed in a free CFT, however for

interacting CFT the information of interactions is also required. This is contained in three-point

coefficients (Cijk). Specifying the list of primary operators, their scaling dimensions and the three

point coefficient specifies a CFT completely.

The fact that CFTs can be specified by these quantities only is not very surprising as the ex-

tended symmetry of the conformal group compared to Poincaré group leads to fewer “degrees of

freedom". It turns out that the CFT data is not completely arbitrary but is tightly constraint. We

will discuss this further.

1.2 Correlators

Correlators are the principle observables in a CFT. We will look at all correlators upto 4-point

functions. One point functions are trivially zero (except for identity operator) since no Lorentz or

conformal invariant structure can be constructed out of one-point position. In this section our focus

is on scalar correlators as correlators for all other representations can be built from scalars [4].

1.2.1 Two-Point Correlators

Two-point correlators are simple as there is only one possible conformal structure that can

be present. We will work this out in detail. The most general conformal transformation has the

following effect on the two-point correlator,

〈φ1 (x1)φ2 (x2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣∆1/d

x=x1

∣∣∣∣∂x′∂x

∣∣∣∣∆2/d

x=x2

〈φ1 (x′1)φ2 (x′2)〉 (1.16)
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The restriction imposed by each generator is,

Poincare : 〈φ1 (x1)φ2 (x2)〉 = f (|x1 − x2|) ,

Dilation : 〈φ1 (x1)φ2 (x2)〉 = λ∆1+∆2 〈φ1 (λx1)φ2 (λx2)〉 ,

Special Conformal : ∆1 = ∆2 .

(1.17)

Compiling all of theses together we obtain the following expression for a two point function.

〈φ1 (x1)φ2 (x2)〉 =


1

|x1−x2|2∆1
if ∆1 = ∆2

0 if ∆1 6= ∆2

(1.18)

We have used the scaling freedom to scale operators to fix the coefficient of the two point correlator

to unity. Two-point correlator is only non-vanishing for identical operators. It is sufficient for the

representations and scaling dimension to be equal. CFTs in general do not have two operators

having identical scaling dimension.

1.2.2 Three-Point Correlators

Just as before, once we use all the generators to fix the form we obtain the following three point

function,

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆1+∆3−∆2
13

where xij = |x1− xj| (1.19)

The form of three-point correlator is fixed upto a constant. We cannot scale away the constant as

in the two-point function. This coefficient is the additional data once needs to specify a CFT and

is the same one that appeared in OPE expansion (3.3). These constants refer to interactions as they

are absent in a free theory.
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1.2.3 Four-Point Correlators

With four points one can define two conformal invariant combinations,

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

23x
2
14

x2
13x

2
24

. (1.20)

Applying the symmetries of conformal group we obtain the following form,

〈φ (x1)φ (x2)φ (x3)φ (x4)〉 =
g(u, v)

x
2∆φ

12 x
2∆φ

34

(1.21)

To simplify things further we will use conformal symmetry to fix the points in a similar manner

(Figure 1.7).

1. Use SCT to move x4 to∞

2. Use translation to move x1 to origin.

3. Using rotations and dilatation, we can move x3 to (1,0,..,0)

4. Using rotation that fix x3, we can move x2 to (z, z̄,0,..,0)

We have moved all points on a plane with points x1,x3 and x4 on a line and point x2 is free to move

on the plane with coordinates z, z̄ (1.22) where z = x+ iy.

Figure 1.7: Four points on a plane.
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In terms of z, z̄ the conformal invariants can be written as,

u = zz̄, v = (1− z)(1− z̄) . (1.22)

For a four-point scalar correlator we obtain the following final result,

〈φ (x1)φ (x2)φ (x3)φ (x4)〉 =
g(z, z̄)

x
2∆φ

12 x
2∆φ

34

(1.23)

The function g(z, z̄) is known as conformal partial wave and its functional form is completely

fixed (using conformal invariance) up-to theory specific data. The kinematic factors appearing in

the four-point function (1.23) correspond to s-channel.

1.2.4 Spinning Correlators

Till now the analysis has been limited to scalar correlators. Spinning correlators follow the

same basic principle, however the kinematic factors for spinning correlator are more complicated

due to multiple Lorentz indices. Embedding formalism [5, 4] is an efficient formalism to calcu-

late correlators in CFT. Dirac in [6], first pointed that conformal group of CFT in d dimension is

isomorphic to Lorentz algebra of d + 2 dimensions (SO(d + 1, 1)). Embedding formalism uti-

lizes this fact and defines the d-dimensional theory on a section of null cone in d + 2-dimensions

theory (X2 = 0). The utility of going to two higher dimensions is that we can replace non-linear

conformal transformations with linear Lorentz transformation of d+ 2-dimensions. This results in

simplification of calculations.

In embedding-formalism we uplift operators from d-dimension to d+ 2 dimensions,

φmuν···(x)⇐⇒ ΦMN ···(X) . (1.24)

The advantage of this uplift is that one only needs to consider Lorentz invariants to construct cor-

relators (instead of conformal invariants). However to get the actual physical degrees of freedom

out we need to impose certain constraints. We impose transversality constraint ( this constrains the
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operator to remain on the null cone),

XMΦMN ···(X) = 0 . (1.25)

We also need to impose homogeneity under scaling for the operators,

Φ···(λX) = λ−∆Φ···(X) . (1.26)

To return back to physical space we utilize the following “gauge" XM = (1, x2, xµ). The projec-

tion is done via the following equation,

φµν···(x) = ΦMN ···(X)
∂XM

∂xµ
∂XN

∂xν
· · · (1.27)

To see the advantage of embedding formalism, we will look at two point correlator of spin-1

operators. With spin-1 operators one can construct following Lorentz invariants,

〈φM(X)φN(Y )〉 =
ηMN

(XY )∆
+ α

YNXN
XY

(XY )∆
. (1.28)

We only obtain two Lorentz invariants for the two point correlator (of spin-1). This gives rise to an

unfixed coefficient α. Using the constrains (1.25) we obtain α = -1. Projecting the result down to

physical space gives,

〈φµ(x)φν(y)〉 =
δµν − 2(x−y)µ(x−y)ν

(x−y)2

(x− y)2∆
. (1.29)

1.3 Consistency

The associative nature of CFT gives rise to crossing relation. This self cosistency relation of

CFT can be used to constrain the CFT-date.
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1.3.1 Confromal Blocks

In (1.23) the form of 4-point correlator was fixed up-to a function g(z, z̄), the conformal partial

wave (CPW). CPW can be decomposed further into contributions from operators appearing in the

channel,

g(z, z̄) = 1 +
∑
O

C2
OgO(z, z̄) . (1.30)

In the above equation C2
O is the three-point coefficient and gO(z, z̄) is the conformal block. The

conformal block gO(z, z̄) contains contribution of operator-O and its descendants. A closed form

expression for conformal block was first computed by Dolan and Osborne [7, 8]. The form of

gO(z, z̄) is completely fixed by conformal symmetry, representation of O (intermediate operator)

and representation of φ (external operator). Let Lab be the generator of conformal algebra SO(d+

1, 1) with Casimir of the representation C = −1
2
LabL

ab. We first define Labi as the action of

differential operator Lab acting on φ(xi). The Casimir acting on the first two operators is,

D1,2 ≡ −
1

2

(
Lab1 + Lab2

)
(Lab,1 + Lab,2) . (1.31)

The action on the block is give as [7, 8],

Dg∆,`(u, v) = λ∆,`g∆,`(u, v) . (1.32)

The eigenvalues of the Casimir are λ∆,` = ∆(∆− d) + `(` + d− 2) and the differential operator

in z, z̄ coordinate is given as,

D = 2
(
z2(1− z)∂2

z − z2∂z
)

+ 2
(
z̄2(1− z̄)∂2

z̄ − z̄2∂z̄
)

+ 2(d− 2)
zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) . (1.33)

To solve the differential equation, asymptotic condition x12 → 0 in (1.14) is also required. Putting

everything together we obtain the following solution for conformal blocks in 4 dimensions,

g
(4d)
∆,` (u, v) =

zz̄

z − z̄
(k∆+`(z)k∆−`−2(z̄)− k∆−`−2(z)k∆+`(z̄)) , (1.34)
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where,

kβ(x) ≡ x
β/2
2 F1

(
β

2
,
β

2
, β, x

)
β = ∆ + ` . (1.35)

A closed form expression for conformal block only exist in even dimensions. For odd dimensions

one has to resort to series expansions.

1.3.2 Crossing Symmetry

OPE of local operators follow the associativity law. In the equation below the brackets refer to

OPE performed,

((φ1φ2)φ3) = (φ1(φ2φ3)) (1.36)

This associativity gives rise to two different ways of computing the four-point correlator. In s-

channel OPE of φ(x1), φ(x2) and φ(x3), φ(x4) is computed separately and in t-channel OPE of

φ(x1), φ(x4) and φ(x2), φ(x3) is computed separately. Since it is the same four-point correlator that

is computed, both the channels must be equal (Figure 1.8). This is known as crossing symmetry.

Figure 1.8: Crossing symmetry.
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Under crossing symmetry the configuration of operators changes in the following manner,

u←→ v . (1.37)

The four point correlator (of identical scalars) under the crossing symmetry is,

g(z, z̄)

x
2∆φ

12 x
2∆φ

34

=
g(1− z, 1− z̄)

x
2∆φ

14 x
2∆φ

23

. (1.38)

Henceforth we will stick to z, z̄ notation. The above equation simplifies to,

g(z, z̄) =
(zz̄)∆φ

((1− z)(1− z̄))∆φ
g(1− z, 1− z̄) (1.39)

This is the bootstrap equation. Since we are working with identical external scalars the interme-

diate operators appearing in the expansion of CPW on both channels are the same. Both sides of

(1.39) contain infinitely many terms in d ≥ 3 dimensions7. The bootstrap equation is highly non-

trivial to solve. Progress was made using numerical linear programming methods in the seminal

work of Rattazzi, Rychkov, Tonni and Vichi in [9] to bound scaling dimensions of scalars. Over

the last decade significant numerical work has been done in 3D Ising CFT, O(N) models and other

CFTs in various dimensions [10, 11, 12, 13, 14]. These numerical methods yield the most precise

calculation of critical exponents in 3d Ising Models [14]. In this work we aim to solve (1.39) using

analytic methods. The next few sections are dedicated to progress using analytic methods.

1.3.3 Unitarity Bounds

Bootstrap equation constrains the CFT-data and with that, the space of CFTs. It turns out that

unitarity imposes strict lower bounds on the scaling dimensions of operators. The bounds are,

∆ ≥


d−2

2
(` = 0)

`+ d− 2 (` > 0)
(1.40)

7This will be explained in the next section.
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The unit operator is the only operator that has scaling dimension 0. The unitarity bounds are

computed by calculating inner product of operators. Unitarity also imposes reality condition on

the three-point coefficients CφφO. This turns out to be very important and it is the main reason why

the whole machinery of bootstrap works.

1.4 Lightcone Bootstrap

To make progress towards solving (1.39) analytically it seems reasonable to takes certain limits

(arrangements of operators) to simplify the crossing equation. One such limit is lightcone (or

double lightcone) limit, which is u→ 0 limit of the crossing equation. Physically this implies that

one operator approaches the lightcone of the other. We expand the crossing equation in terms of

conformal blocks and three-point coefficients,

(zz̄)−∆φ

∑
O

C2
φφOg∆,`(z, z̄) = ((1− z)(1− z̄))−∆φ

∑
O

C2
φφOg∆,`(1− z, 1− z̄) . (1.41)

In the above equation φ is the external scalar in the 4-point correlator 〈φφφφ〉 and O is the inter-

mediate channel operator. We take the following limit z � 1− z̄ � 18. In this limit the operator

approaches two lightcones instead of one. Hence this should be called "double lightcone limit",

unfortunately in literature this is still referred to as lightcone limit. Following [15], we utilize the

following relabelling z̄ → 1 − z̄ to transform the lightcone limit as, z � z̄ � 1. The right hand

side of (1.41) can now be expanded in small z̄,

g∆,`(z̄, 1− z) = z̄hk2h̄(1− z) +O
(
z̄h+1

)
, (1.42)

where,

k2h(x) = xh2F1(h, h, 2h, x) , (1.43)

8This is the lightcone limit in z, z̄ coordinates.
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where h is notation for half twist and h̄ is conformal spin (we later denote this as β),

h ≡ ∆− `
2

=
τ

2
, h̄ ≡ ∆ + `

2
=
τ

2
+ ` . (1.44)

The left side of (1.41) simplifies to z−∆φ(1 +O(z̄)). The overall crossing equation becomes,

z−∆φ + . . . =
∑
O

C2
φφOz̄

h−∆φk2h̄(1− z) + . . . (1.45)

We still have to take the small z limit in the right hand side. In this limit the right side generates a

logarithmic singularity,

limz→0 k2h̄(1− z) ∼ − log(z) +O(z log(z)) (1.46)

We have encountered a puzzle, the RHS of (1.45) has a logarithmic singularity (in z → 0 limit) and

LHS has polynomial singularity. The way to resolve this puzzle is to have an infinite sum on the

right hand side (infinite operators). Summing over infinitely many terms enhances the logarithmic

singularity to polynomial. We explain this process using a toy example first.9

1.4.1 Toy Example

We consider the following series expansion,

lim
z→0

∞∑
n=0

ze−nz . (1.47)

Summing up the series and then taking the limit results in the following,

lim
z→0

ezz

ez − 1
= 1 . (1.48)

However, if the limit was taken first then each term in the series would vanish and the final result

would be 0. This discrepancy is due to the fact that the sum over infinitely many terms and the
9This example was demonstrated by David Simmons-Duffin during TASI school.
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limit do not commute. The exponent part of the above sum has the following behaviour,

∞∑
n=0

e−nz =
ez

ez − 1
. (1.49)

Each term on the left side is regular at z = 0, however the sum of all the terms gives rise to

divergence at z = 0. Summing over infinite terms “enhances" divergence.

1.4.2 Back to Blocks

Just as the toy example above, the discrepancy in (1.45) can be resolved by summing the right

hand side over infinitely many operators. The power law behaviour can only come to fruition if

the right hand side has operators having twist 2∆φ and having all infinite spins. These type of

operators are called double twist operators and they have the following schematic form,

[φ, φ]n,l = φ∂µ1 · · · ∂µt∂2nφ (1.50)

These can be thought of as being bound state of two operators φ. The behaviour of OPE coefficients

of the double twist operators was computed in [16] using AdS/CFT to be (in the large h̄ limit),

C2
φφ[φφ](h̄) ∼ 23−2h̄

√
π

Γ(∆φ)2
h̄−2∆φ− 3

2 . (1.51)

In small z and large h̄ (1.45) has the following form,

k2h̄(1− z) ≈ 22h̄

√
h̄

π
K0(2h̄

√
z) (h̄� 1, 2h̄

√
z fixed ) . (1.52)

We combine (1.51), (1.52) and perform the integral over h̄

∑
O∈[φφ]0

C2
φφOk2h̄(1− z) ≈ 1

2

∫
dh̄

8

Γ (∆φ)2 h̄
2∆ϕ−1K0(2h̄

√
z) = z−∆� . (1.53)
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The polynomial behaviour of (1.45) is reproduced by the double-twist operators. The scaling

dimension of the double twist operator is [φ, φ]n,` = 2∆φ + 2n + `. In a generalized free theory

(GFT is free theory, where correlators are simply wick contractions) the left side of 1.45 is exact

and there are no correction terms. In GFT the result derived above holds exactly [17, 18]. Arbitrary

interacting CFT in d ≥ 3 contains an infinite number of double twist operator of a similar form

discussed above but with a slight addition. The scaling dimensions are,

[φ, φ]n,` = 2∆φ + 2n+ `+ γ(n, `) . (1.54)

The addition, γ(n, `) is called the anomalous dimensions. It is present only in interacting theories

and it asymptotically goes to zero in the large spin limit. This is a universal behaviour in CFT.

1.5 Inversion Formula

In [19] a formula that inverts the partial-wave expansion of a four-point function was developed.

This formula provides access to anomalous dimension and OPE coefficients. In this section we

review the inversion formula. We start with the conformal partial wave and perform a spectral

decomposition following [20],

G(z, z̄) = 1 +
∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(J,∆)FJ,∆(z, z̄) (1.55)

The OPE functional c(J,∆) contains poles at the location of physical operators. We close the

contour to pick up these physical poles. The function FJ,∆(z, z̄) can be decomposed in terms of

physical (∆) and shadow (d−∆) conformal blocks,

FJ,∆(z, z̄) =
1

2

(
G∆,J(z, z̄) +

KJ,d−∆

KJ,∆

Gd−∆,J(z, z̄)

)
, (1.56)

where the coefficients are,

KJ,∆ =
Γ(∆− 1)

Γ
(
∆− d

2

)κJ+∆, κβ =
Γ
(
β
2
− a
)

Γ
(
β
2

+ a
)

Γ
(
β
2
− b
)

Γ
(
β
2

+ b
)

2π2Γ(β − 1)Γ(β)
. (1.57)
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FJ,∆(z, z̄) in (1.56) are orthogonal and can be used to invert the equation to get the OPE functional,

c(J,∆) = N (J,∆)

∫
d2zµ(z, z̄)F∆,J(z, z̄)G(z, z̄) , (1.58)

where the normalization and measure are given as,

N (J,∆) =
Γ
(
J + d−2

2

)
Γ
(
J + d

2

)
KJ,∆

2πΓ(J + 1)Γ(J + d− 2)KJ,d−∆

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
((1− z)(1− z̄))a+b

(zz̄)2
.

(1.59)

Simon Caron-Huot in [19] noted that when going from Euclidean to Lorentzian in (1.58) the

correlator develops branch cuts. By deforming the contour the discontinuities of the branch cuts

can be captured. To extract OPE data associated to the s-channel of four-point function the final

Lorentzian inversion formula is,

Ct(∆, J) =
κJ+∆

4

∫ 1

0

dzdz̄µ(z, z̄)GJ+d−1,∆+1−d(z, z̄) dDisc[G(z, z̄)] , (1.60)

where µ is the measure,

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
((1− z)(1− z̄))a+b

(zz̄)2
. (1.61)

dDisc is the double discontinuity around branch cuts andGJ+d−1,∆+1−d(z, z̄) is the inverting kernel

conformal block. The poles ofC(∆, J) encode the squared OPE coefficientsCO = − Res
∆=∆o

C (∆, JO).

The higher order poles of function C(∆, J) encode powers of anomalous dimensions.

c(∆, J) ∼
∑
Oj

−COj
∆− J − 2∆ϕ − γJ

+ · · · =
∞∑
p=0

∑
Oj

−COjγ
p
J

(∆− J − 2∆ϕ)p+1 + . . . (1.62)

We will use the inversion formula to compute anomalous dimensions in a later chapter.
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1.6 Contribution

In this section we will briefly list down our contributions in the field of CFT structure and

analytic. These three projects are described in their respective chapters.

1.6.1 Defect CFT Correlators

Till now our analysis has been almost solely focused on "pure" CFTs. However real world

systems are messy and have impurities associated to them. CFT theories with impurities are know

as defect CFTs. Conformal theories with defects have a range of applications from condensed-

matter physics to particle physics. Experimental systems inherently contain a boundary (a type of

defect) making the study of defects essential. The simplest example of a defect is a co-dimension

one defect, a boundary. Boundary defects (within the context of CFT) in 2 dimensions have been

thoroughly studied by Cardy. Boundary defects in general dimensions were first studied beginning

in [21] and an embedding formalism was set up for co-dimension one defects in [22]. The extension

to general co-dimension defects was studied in [23]. Defects in conformal setting can only be

hyperplane or spherical because of scale invariance.

A CFT with defects has both bulk operators and defect local operators (which reside on the

defect). The defect local operators transform under the broken conformal group SO(p + 1, 1) ×

SO(q) where p + q = d (q is the co-dimension of the defect). In addition to the CFT data of

the bulk sector, there is also the CFT data of the defect sector and the couplings between the two

sectors. In this work we will refer to the entire theory with both the sectors as a defect CFT. The

presence of a defect induces a rich structure in the bulk sector. For example, a bulk local operator

(O) near a defect can be expanded in terms of defect local operators (Ô),

O(xµ) ∼
∑
k

bOÔk
Ôk(x

a)

|xi|∆−∆̂
+ . . . , (1.63)

where xa and xi are coordinates parallel and perpendicular to the defect respectively. The decom-

position (1.63) leads to bulk local operators having non-zero vacuum expectation values. We can
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also expand two defect operators in terms of other defect operators (regular OPE),

Ô1(xa)Ô2(ya) ∼
∑
k

f̂12k
Ôk(y

a)

|xa − ya|∆1+∆2−∆̂k

+ . . . . (1.64)

The defect sector behaves like an ordinary p-dimensional CFT with SO(p+ 1, 1) as its conformal

group and an additional SO(q) global symmetry. Since the defect sector is exchanging energy with

the bulk there is no conserved stress-energy tensor for the theory living on the defect.

Correlators in a defect CFT have been studied to a much lesser extend compared to regular CFT.

In our work described in the next chapter, we fill this gap and compute correlators for arbitrary

representation in defect CFT.

1.6.2 Analytics of Double Twist

As mentioned before, any CFT can be specified by giving its scaling dimensions and three-point

coefficient. Crossing symmetry imposes constraints on the CFT data and has been conjectured to

fix it completely. A general property of CFT is that in d > 2 they contain an infinite number of pri-

maries in the form of double twist operators which we discussed before. In interacting theories the

scaling dimension of double twist operators gets and additional contribution, γ∆,J , the anomalous

dimension. γ∆,J vanishes in the case of a free theory and is non-zero only in interacting theories.

Anomalous dimension of double twist operators has a universal behaviour in arbitrary conformal

field theories and we calculate γ∆,J for any d-dimensional CFT. On a technical note we have used

integral representation of conformal blocks (Mellin space) to obtain a closed form expression for

conformal blocks in (1.60) for identical scalar operators. We compute anomalous dimension due

to arbitrary spin-J exchange in a closed form expression. In addition to this we also compute

corrections to OPE coefficients for double twist operators for a general d dimension CFT. To our

knowledge the general result has never been computed before.

1.6.3 Relation to Diagrammatic Expansion

The traditional approach of solving Quantum field theories is using perturbative diagrammatic

expansion (Feynman diagrams). These techniques have been employed to CFTs like Wilson-
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Fischer theory as well. Since CFT can be solved via crossing symmetry (bootstrap) as well, we

set out to find relation between diagrammatic expansion and conformal correlator expansion for

Wilson-Fischer theory in [24].

Our goal is to show parity between diagrammatic expansion and conformal correlator expan-

sion. We evaluate the perturbative diagrams in position space (as conformal correlators are com-

puted in position space). To make calculations simple we have chosen the z → 0 limit of calcula-

tions. Wilson-Fisher [25, 26] theory consists of a single scalar and resides in d = 4−ε dimensions.

We first calculate tree and one loop diagram in this theory,

tree :

∫
d4x6

x2
16 x

2
46 x

2
36 x

2
26

= log(1− z̄)
log(z)− log(z̄)

z̄
≡ log(1− z̄)B0

1-loop :

∫
d4x5 d

4x6

x2
15 x

2
45 x

4
56 x

2
26 x

2
36

= log(1− z̄)
( log(z)− log(z̄)

4z̄

)
+ log2(1− z̄)

(ζ2 − Li2(1− z̄) + 2 log(z)− 2 log(z̄)

2z̄

)
≡ log(1− z̄)

(B0

4

)
+ log2(1− z̄)

(B1

4
+B0

)
(1.65)

B0, B1 are functions that repeat at each discontinuity log(1 − z̄). On expanding the conformal

correlator in small coupling we obtain exactly the same functions at double discontinuities. We

start with the conformal correlator 〈φφφφ〉 and expand it in small coupling-g. O(g) term is absent

but we get the following results for higher orders,

O
(
g2
)

: − log(1− z̄)2B0

4
, O

(
g3
)

: log(1− z̄)2B1

4
− log(1− z̄)3B0

24
(1.66)

We find similar functions appearing in conformal correlator expansion. We have repeated this

experment to higher order in both the perturbative and correlator expansion and again find similar

functions appearing in both the expansions. In addition to this we developed a novel method to

expand conformal correlators using the Mellin space representation. This allows one to expand

23



correlators in arbitrary space-time dimensions. This was not possible with previous methods of

computation.
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2. CORRELATORS OF MIXED SYMMETRY OPERATORS IN DEFECT CFT∗

Crossing symmetry relations constrain the data of a CFT. These equations can be solved nu-

merically (e.g. [9, 27]) or analytically (e.g. [17]). An ordinary CFT gives rise to a crossing relation

at the four-point correlator level. However a defect CFT gives rise to crossing relations starting at

the two-point correlator level. The knowledge of correlation functions (tensor structures) is essen-

tial in the study of crossing relations. In [23] tensor structures for symmetric traceless operators

were computed for two-point correlators. In this chapter we build upon those results and extend

it to n-point correlators of operators in arbitrary mixed symmetry representations. In particular,

we compute all possible invariants and tensor structures that could arise in a one-point, two-point

and three-point correlator of various bulk and defect operators. We also indicate the invariants that

could arise in an n-point correlator. One and two-point correlators for defects in arbitrary repre-

sentations of SO(q) are also computed. The knowledge of correlators is essential in initiating the

bootstrap program for defect CFTs. This chapter is based on [28] by the author and his collabora-

tor.The knowledge of correlators is essential in initiating the bootstrap program for defect CFTs.

This chapter is based on [28] by the author and his collaborator.

2.1 Formalism

2.1.1 Encoding Tensors as Polynomials

We present a very quick review of the process of encoding tensors as polynomials in this sec-

tion. For a detailed analysis the reader may refer to [29]. The encoding of tensors as polynomials

makes computation much easier to handle. Consider a generic mixed symmetry representation of

the SO(d+ 1, 1) group given by a Young diagram:

∗Reprinted with permission from “Correlators of Mixed Symmetry Operators in Defect CFTs” by S. Guha and B.
Nagaraj, 2018, JHEP 2018 : 10, Copyright [2018] by the authors.
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λ = . . .

. . .
...

...
...

.

The Young diagram can be parametrized in two ways. The first way is to provide the heights of

columns h ≡ (h(1), h(2), . . . , h(nC)), where h(i) is the height of the ith column and nC is the total

number of columns. The second way is to provide the lengths of rows l ≡ (l(1), l(2), . . . , l(n
R)),

where l(i) is the length of the ith row and nR is the total number of rows. Given these parametriza-

tions, the total number of boxes is given by,

|λ| =
nC∑
i=1

h(i) =

nR∑
i=1

l(i). (2.1)

A mixed symmetric tensor can be encoded as a polynomial by contracting its indices using one

of the two sets of auxiliary vectors θ = (θ(1), θ(2), . . . , θ(nC)) and z = (z(1), z(2), . . . , z(nR)). The

vectors θ are anti-commuting and encode the polynomial in an anti-symmetric basis, while the

vectors z are commuting and encode the polynomial in a symmetric basis. Across a row z vector

remains the same and down a column θ remains the same. As an example for both bases,

z1 z1 z1

z2 z2 z2

θ1 θ2 θ3

θ1 θ2 θ3

.

A given Young representation is symmetric along the rows and anti-symmetric along the columns.

Separate columns (rows) are symmetric (anti-symmetric) among themselves. The grassmanian

nature of θ-vectors is the following,

θ(i)
m θ

(j)
n = (−1)δijθ(j)

n θ(i)
m , (2.2)

where indices m and n label the components of the auxiliary vectors. This relation encodes the

anti-symmetry of θ-vectors only within the same column. We choose to do anti-symmetrization

first using θ-vectors and then impose symmetrization by the action of (z·∂θ) derivatives. Therefore,
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a mixed symmetry tensor can be encoded as:

f̃(z) =

nR∏
i=1

min(l(i),nC)∏
j=1

(
z(i) · ∂θ(j)

)
f(θ), (2.3)

where,

f(θ) = θ(1)
m1
. . . θ(1)

mh1
θ(2)
mh1+1

. . . θ(2)
mh1+h2

. . . θ(nC)
mh1+...+hnC−1+1

. . . θ(nC)
m|λ|

fm1...m|λ| . (2.4)

The tracelessness condition can be imposed by demanding that certain dot products vanish:

fm1...m|λ| traceless⇐⇒ f(θ)|θ(i).θ(j)=0

⇐⇒ f̃(z)|z(i).z(j)=0.

(2.5)

To explicitly see the procedure of encoding tensors as polynomials, we consider two examples

involving a symmetric two-tensor S(mn) and an anti-symmetric two-form B[mn]. The two repre-

sentations are,

A(mn) = θ(1) θ(2) B[mn] =
θ(1)

θ(1)
.

We first convert the tensors into polynomial by contracting them with appropriate θ-vectors,

Amn → A(θ) = Amnθ(1)
m θ(2)

n , Bmn → B(θ) = Bmnθ(1)
m θ(1)

n . (2.6)

Once the polynomials have been constructed in θ-basis, symmetrization can be applied (2.3),

(
z(1) · ∂θ(1)

) (
z(1) · ∂θ(2)

)
A(θ),

(
z(1) · ∂θ(1)

) (
z(2) · ∂θ(1)

)
B(θ). (2.7)

Evaluating them we obtain the following result,

Amnz(1)
m z(1)

n , Bmn(z(1)
m z(2)

n − z(1)
n z(2)

m ). (2.8)
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Both the symmetric and anti-symmetric properties of the tensors have been captured.

So far, we have encoded a mixed symmetric tensor in the d-dimensional physical space where

the CFT lives. In the next section, we will encode the tensor in a higher dimensional space-time

where the action of the conformal group becomes linear.

2.1.2 Embedding Formalism

We will briefly review the embedding space formalism and the procedure to encode mixed

symmetric operators as polynomials in this space. For a detailed description of embedding space

formalism, we refer the reader to [4, 29]. The conformal group of a d-dimensional Euclidean CFT

is SO(d+1, 1). This is also the Lorentz group in a (d+2)-dimensional Minkowski space. The (d+

2)-dimensional space-time which we refer to as embedding space is the natural space associated

with conformal transformations [6]. The non-linear action of a conformal transformation in d-

dimensional space becomes a linear Lorentz transformation in the embedding space. Let P denote

the coordinates of the embedding space. Points in the physical space are identified with null rays

in the embedding space,

P 2 = 0, P ∼ αP where α ∈ R+. (2.9)

The first relation implies that everything in the theory lives on the light cone. We adopt lightcone

coordinates to represent points on the cone. The second relation implies a gauge freedom in the

identification of P up to re-scaling. We can fix this gauge by setting P+ = 1. This slice of the null

cone is known as the Poincaré section. Physical points in x ∈ Rd are mapped to null points in this

Poincaré section:

x→ PM |x = (P+, P−, Pm) = (1, x2, xm). (2.10)

The metric of the embedding space is the Lorentzian metric of (d+ 1, 1) space-time,

P · P = ηMNP
MPN = −P+P− + δmnP

mP n. (2.11)
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Operators in the physical space can be lifted to the embedding space. Consider a mixed sym-

metry tensor fm1...m|λ|(x) of dimension ∆ in the physical space. This tensor can be uplifted to

FM1...M|λ|(P ) in the embedding space and satisfies the following conditions:

• Homogeneity: FM1...M|λ|(αP ) = α−∆FM1...M|λ|(P ),

• Transversality: PMiFM1...Mi...M|λ| = 0 .

Operators in embedding space can once again be encoded as polynomials. We will use the auxiliary

vectors Θ = (Θ(1),Θ(2), . . . ,Θ(nC)) to encode anti-symmetry and

Z = (Z(1), Z(2), . . . , Z(nR)) to encode symmetry of the indices. We choose to write polynomials

in the anti-symmetric basis (or Θ-basis) first and impose symmetrization via derivatives,

F̃ (P,Z) =

nR∏
i=1

min(l(i),nC)∏
j=1

(
Z(i).∂Θ(j)

)
F (P,Θ), (2.12)

where,

F (P,Θ) = Θ
(1)
M1
. . .Θ

(1)
Mh1

Θ
(2)
Mh1+1

. . .Θ
(2)
Mh1+h2

. . .Θ
(nC)
Mh1+...+h

nC−1
+1
. . .Θ

(nC)
M|λ|

FM1...M|λ|(P ).

(2.13)

Once again the tracelessness condition can be encoded by demanding that certain dot products

vanish:

FM1···M|λ|(P ) traceless/ transverse⇐⇒ F (Θ)|Θ(p)·Θ(q)=0,P ·Θ(p)=0

⇐⇒ F̃ (Z)|Z(p)·Z(q)=0,P.Z(p)=0.

(2.14)

The Θ and Z vectors satisfy the following properties,

Θ(i)
a ·Θ(j)

a = 0, Z(i)
a ·Θ(j)

a = 0, Z(i)
a · Z(j)

a = 0. (2.15)

The subscript refers to the operator the auxiliary vectors are associated with while the superscript

on the auxiliary vectors indicates the column(row) for the Θ(Z)-vectors. In a given Young rep-
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resentation, one Z-vector is used for contractions across a row while one Θ-vector is used for

contractions along a column. The transversality condition also means that any polynomial con-

structed out of Θ and Z-vectors should be invariant under the following shift,

Θ(i)
a → Θ(i)

a + α(i)Pa, Z(i)
a → Z(i)

a + Pa. (2.16)

Here α(i) carries the same Grassmanian signature as Θ(i). Any quantity constructed out of Θ andZ

must be invariant under this symmetry as well. In the rest of the paper we will construct invariant

objects out of Θ that satisfy the transversality and tracelessness condition. Transversality implies

that the product of the auxiliary vectors with their respective P also vanish:

Pa ·Θ(i)
a = 0, Pa · Z(i)

a = 0. (2.17)

It is convenient to build all the invariant structures using CMN (C-tensor) which is transverse by

construction,

C(i)MN
a = PM

a Θ(i)N − PN
a Θ(i)M . (2.18)

C(i)MN is also the smallest unit of Θ(i) that satisfies transversality. A similar C-tensor can be

constructed out of Z-vectors. All other invariant structures will be constructed by contractions of

C-tensor with various position vectors (Pa) and C-tensors. Contractions of more than two C(i)MN

can be written in terms of contractions of two C(i)MN ,

CMP
1 C2PRC

RN
3 = −1

2
(CPR

1 C2PR)CMN
1 . (2.19)

Therefore, we do not need to go beyond two C-tensor terms. To recover the uncontracted notation

of tensors from a polynomial, we act on them with the following Todorov differential operator,

DM =
d− 2

2

∂

∂ΘM
+ Θ · ∂

∂Θ

∂

∂ΘM
. (2.20)
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Todorov differential operator is constructed to recover traceless symmetric tensors from polyno-

mials [30]. To recover free-indices for a spin-l operator we apply the derivative l times

OM1···Ml
(P ) =

1

l!(d/2− 1)l
DM1 · · ·DMl

Ol(P,Θ1 · · ·Θl). (2.21)

Here (a)l is the Polchhammer symbol. As discussed earlier, while constructing polynomials we

first use an anti-symmetric basis and then apply derivatives to impose the symmetrizations. An

equally valid approach would be to first write everything in a symmetric basis and then apply the

anti-symmetrization via derivatives. We will commit to using the former approach for the rest of

the paper. Owing to its inherent anti-symmetry, the Θ basis usually has a lower number of tensor

structures compared to Z-basis. We reiterate that after taking the derivatives and projecting the

results back to d-dimensions, the final result is basis-independent.

To encode conserved operators we need an additional constraint. Conserved operators in phys-

ical space satisfy,

∂mS
mn··· = 0. (2.22)

To implement this in embedding space, first we need to free an index from the polynomial expres-

sion. This is implemented by acting with the Todorov derivative operator (2.20). Once an index

has been freed, it can be contracted with a regular partial derivative to impose the conservation.

Schematically it looks like:

∂MDMS(Θ) = 0. (2.23)

A detailed discussion of conserved tensors with its subtleties is given in [4].

2.2 Embedding Formalism with a Defect

2.2.1 Defect

A defect is an extended object (operator) living in an ambient space. A q co-dimension defect

breaks the full d-dimensional conformal group SO(d + 1, 1) into SO(p + 1, 1) × SO(q) where

p + q = d. Following [31, 23], such a defect is naturally identified in the embedding space as
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a q-dimensional time-like hyperplane intersecting the null cone. Projecting the intersection onto

the Poincaré section results in defect in the physical space. Orientation of a hyperplane in the

embedding space can be specified by providing a set of q vectors (Pα, α = 1, . . . , q) that are

orthogonal to it. The vectors Pα satisfy the following properties,

Pα ·X = 0, X ·X = 0, Pα · Pβ = δαβ, (2.24)

where X is a point on the null cone. The inner product between two vectors X and Y in the

embedding space naturally splits into two separate inner products of the SO(p + 1, 1) and SO(q)

group:

X · Y = (ηMN − PαMPαN)XMY N + PαMPαNX
MY N . (2.25)

It is convenient to split the coordinates into two sets: the first p+ 2 coordinates that are parallel to

the defect and the last q coordinates that are transverse to the defect. We will use letters A,B, ...

to label the former and I, J, ... to label the latter.

M = (A, I) A = 1, 2, . . . , p+ 2 I = 1, 2, . . . , q (2.26)

The inner product (2.25) can be denoted as,

X · Y = (ηMN − PαMPαN)XMY N + PαMPαNX
MY N ,

= X • Y +X ◦ Y,
(2.27)

where we have defined

X • Y ≡ (ηMN − PαMPαN)XMY N

X ◦ Y ≡ PαMPαNX
MY N .

(2.28)

32



The above definitions allow us to make contact with the split representation used in [23] to study

defects. In the physical space, X · Y −→ −(1/2)(x − y)2. Therefore equation (2.27) is merely

stating that the square of the distance between two points is equal to sum of the squares of parallel

and orthogonal distance to the flat defect. The perpendicular distance of a point (X) from a defect

is given by,

PαMPαNX
MXN = (Pα ·X)(Pα ·X) = X ◦X . (2.29)

Formally we denote a q co-dimension defect as Dq(Pα). Projecting the intersection of the hyper-

plane and the null cone onto the Poincaré section yields either a flat or a spherical defect depending

on the orientation of the hyperplane. We will briefly discuss the two types below.

2.2.1.1 Flat Defect

Figure 2.1: The intersection of a defect hyperplane with the Poincaré section.

A flat defect arises when the P+-axis lies on the defect hyperplane. The intersection of the hy-

perplane with the Poincaré section results in only one point of intersection (Figure 2.1). Examples

of flat defects include lines, planes and boundaries. Since P+-axis lies on the hyperplane, we can
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conveniently choose the Pα vectors to be:

Pα = (

p+2︷ ︸︸ ︷
0, . . . , 0, 0, ..., 1, ..., 0︸ ︷︷ ︸

1 at position α

) α = 1, 2, . . . , q. (2.30)

With the choice (2.30) for Pα vectors, we get

X • Y ≡ (ηMN − PαMPαN)XMY N = ηABX
AY B

X ◦ Y ≡ PαMPαNX
MY N = δIJX

IY J .

(2.31)

A bulk operator near a flat defect can be decomposed in terms of local operators living on the

defect. This expansion is known as a bulk-to-defect expansion and in the embedding space looks

like:

Φ(P )|D =
bΦ1

(P ◦ P )∆/2
+
∑
Ô

bΦÔÔ(P )|D
(P ◦ P )

∆−∆̂
2

+ descendants. (2.32)

Each defect local operator (Ô) in (2.32) appears with a coupling-strength bΦÔ. This expansion is

brought about by constructing a quantizing sphere centered on the defect and enclosing the bulk

operator. The state on the sphere can then be shrunk to the center using scaling transformation

resulting in defect local operators. Evaluating non-vanishing 〈ΦÔ〉 is essential for enumerating the

representations that occur in this expansion.

2.2.1.2 Spherical Defect

We obtain a spherical defect when the defect hyperplane does not contain the P+-axis (Figure

2.2). Spherical defects are characterized by their radius and center 1 [31]. In addition to the bulk-

to-defect expansion, there is an additional expansion channel known as the defect-to-bulk channel

[31]. A spherical defect can be written in terms of bulk primaries placed at the center of the defect.

This channel is defined by enclosing the defect, and any operators on it, by a quantizing sphere.

The projected state on this sphere can be shrunk down to a point (at the center of the defect) using

1Since all lengths are relative in a conformal theory, the point at infinity (which is normalized as Ω = (0, 1, 0)) acts
as a reference point for the calculation of radius of the defect.
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Figure 2.2: The intersection of a hyperplane (not containing P+−axis) with the Poincaré section.

scaling transformation. Schematically this is represented by,

Dq(Pα) =
∑

Φ

cΦ1Φ(C) + descendants. (2.33)

In [32], it was shown that in the limit where radius of the defect is very small (R→ 0),

Dq(Pα) =
∑

Φ

cΦ1R
∆Φ(C) +O(R2). (2.34)

Following a similar procedure, it can be shown that including a defect local operator Ô, sitting on

the defect, in the defect-to-bulk expansion gives a similar result with a different coefficient,

Ô(Y )Dq(Pα) =
∑

Φ

cΦÔR
∆Φ(C) +O(R2). (2.35)

If multiple defect local operators are present, then the OPE of defect local operators can be used

multiple times to reduce all of them in terms of a single defect operator.
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2.2.2 Formalism

Having seen how to incorporate a defect in embedding space, let us now concentrate on defining

operators and fields in presence of a defect. Throughout this work, our main focus will be on the flat

defect case. However the results we present in this section are equally applicable to the case with

spherical defects. The difference between the two defects arises when projecting the embedding

space result back to physical space. We now have to deal with two kinds of operators: bulk

operators and defect operators. Bulk operators transform under the complete group SO(d + 1, 1)

while the defect operators transform under the broken group SO(d− q+ 1, 1)×SO(q). The uplift

of a bulk operator to the (broken) embedding space will once again have to satisfy homogeneity,

transversality and tracelessness conditions defined in the previous section. All the inner products

split into two invariants (2.27). This implies,

Pa •Θ(i)
a = −Pa ◦Θ(i)

a , Θ(i)
a •Θ(j)

a = −Θ(i)
a ◦Θ(j)

a . (2.36)

Once again, we will use subscript in the embedding space vectors to identify different operators

that might be under consideration. A similar relation holds for the Z-vectors,

Z(i)
a • Z(i)

a = −Z(i)
a ◦ Z(i)

a . (2.37)

Owing to the grassmanian nature of the Θ-vectors, in the split representation both of the products

of Θ-vectors vanish individually for (i = j):

Θ(i)
a •Θ(i)

a = 0, Θ(i)
a ◦Θ(i)

a = 0. (2.38)

Since all the operators are on the null cone,

Pa • Pa = −Pa ◦ Pa. (2.39)
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The C-tensor CMN introduced in the previous section breaks into three units [23] - CAB, CAI and

CIJ . Fortunately not all of them are independent and these units follow the relation:

C
(i)
ABQ

ARB =
P •R
P ◦G

C
(i)
AIQ

AGI − P •Q
P ◦G

C
(i)
AIR

AGI ,

C
(i)
IJQ

IRJ =
P ◦Q
P •G

C
(i)
AIG

ARI − P ◦R
P •G

C
(i)
AIG

AQI .

(2.40)

The above relations imply that all invariant-structures can be built out of just C(i)
AI . To make a

polynomial in embedding space, we contract its indices with Θ-vectors.

Defect local operators transform under the broken group SO(p + 1, 1)× SO(q). This implies

that they carry separate quantum numbers corresponding to the parallel conformal group SO(p +

1, 1) and the orthogonal group SO(q). We will use auxiliary vectors {Θ(i)
â , Z

(i)
â } and {Φ(j)

â ,W
(i)
â }

corresponding to each broken group respectively. Position and auxiliary vectors associated with

a defect operator are represented with a hat symbol(e.g. Pâ). Enumerating all possible bulk and

defect position and auxiliary vectors:

Pa, Pâ,Θ
(i)
a ,Θ

(i)
â ,Φ

(i)
â , Z

(i)
â ,W

(i)
â . (2.41)

Since a defect local operator lies on the defect hyperplane, the vectors associated to it have the

following properties:

PâI = 0, Θ
(i)
âI = 0, Φ

(i)
âA = 0, Z

(i)
âI = 0, W

(i)
âA = 0. (2.42)

The independent C-tensors for defect local operators are CAB and CAI .

C
(i)AB
â = PA

â Θ
(i)B
â − PB

â Θ
(i)A
â

C
(i)AI
â = PA

â Φ
(i)B
â

(2.43)

There would be C-tensor for the Z-basis as well, however they only amount to replacing the

Θ-vectors with Z-vectors. In this work, we call transverse objects constructed out of C-tensors
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as invariants. Invariants will serve as building blocks for tensor structures, which are the final

structures appearing in correlators.

The number of independent invariants in Θ-basis can be obtained by considering all possible

contractions between the position and auxiliary vectors that are under consideration (e.g. Pa •Θ
(i)

b̂
)

minus the constraints imposed by demanding transversality of the auxiliary vector. Demanding

transversality imposes a constraint for each Θ-vector (bulk or defect) however Φ-vectors impose

no constraint as they are transverse by construction. If we ignore the fact that each auxiliary vector

also has an i index (labelling the column number for Θ vector), then given n1 bulk operators and

n2 defect operators, the number of independent invariants is:

3n2
1 − 2n1 + 2n2

2 − 3n2 + 5n1n2. (2.44)

We will provide another more rigorous derivation of the above relation in section (2.6) by listing

down all possible independent invariants. It is essential to keep in mind that this relation only

gives the number of independent invariants in the Θ-basis. The action of derivatives (to impose

symmetrization) will reduce this number.

Unless otherwise stated we will work with parity-even invariants and tensor structures. Finally,

we introduce a compact notation for position contractions involving bulk-bulk, bulk-defect and

defect-defect operators.

Pab = (Pa ◦ Pb) Pab̂ = (−2Pa • Pb̂) Pâb̂ = (−2Pâ • Pb̂). (2.45)

An additional benefit of using the Θ-basis is that the dependence on the co-dimension of the defect

is made manifest due to anti-symmetry. The maximum number of a given Θ(i) that can appear in

a tensor structure is limited by the co-dimension of the defect (q). This limits the height of the

Young representation.
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2.3 One-Point Correlators

A distinguishing feature of a defect CFT is the non-vanishing nature of one-point correlators

involving bulk local operators. Any bulk operator (near the defect) can be expanded in terms of

defect operators (1.63,2.32). Since a one-point correlator of identity operator is non-zero in a CFT,

(2.32) implies that a one-point correlator of a bulk operator is non-zero. Consider a bulk operator

in an arbitrary representation λ.

〈O∆,λ(P1,Θ1)〉 (2.46)

Only one invariant can be constructed with a single bulk operator,

H
(i,j)
1 =

C
(i)AI
1 C

(j)
1AI

(P1 ◦ P1)
where i 6= j. (2.47)

The parenthesis in (i, j) does not imply symmetrization. If the number of columns of the operator

representation is l, then taking into account the i-index in the above equation we find that there are

l(l − 1)/2 possible invariants. The tensor structures appearing in the correlation function must be

constructed out of H(i,j)
1 and should satisfy the homogeneity and transversality constraints:

〈O∆,λ(P1, β
(i)
1 Θ

(i)
1 )〉 = (β

(1)
1 )h

(1) · · · (β(l1)
1 )h

(l1)〈O∆,λ(P1,Θ1)〉, (2.48)

〈O∆,λ(αP1,Θ1)〉 = α−∆1〈O∆,λ(P1,Θ1)〉. (2.49)

The final form of a one-point correlator is obtained after taking appropriate derivatives (to impose

symmetrization),

〈O∆,λ(P1,Z1)〉 =
(
Zλ1

1 · ∂λ1
Θ1

) TB(Θ1)

(P1 ◦ P1)∆/2
. (2.50)

TB(Θ1) is an appropriate tensor structure satisfying homogeneity and transversality. Let us con-

sider some specific cases.

2.3.1 Symmetric Traceless

We begin by considering spin-l fields. The Young diagram for them is given as,
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Θ
(1)
1 Θ

(2)
1 · · · Θ

(l)
1

One-point correlator has to be constructed out of (2.47). For a spin-l operator we obtain,

〈O∆,l(P1, Z
(1)
1 )〉 =

(
Z

(1)
1 · ∂Θ

(1)
1

)
· · ·
(
Z

(1)
1 · ∂Θ

(l)
1

) TB(Θ1,Θ2, · · · ,Θl)

(P • P )∆/2
. (2.51)

TB is a function of H i,j
1 . As an example, TB for spin 2 field is,

TB(Θ1,Θ2) = H
(1,2)
1 . (2.52)

For an odd-spin operator, it is not possible to write down any function that has the right homogene-

ity. Owing to this fact, a one-point correlator of an odd-spin operator is zero. Upon the application

of the Z∂Θ-derivatives on (2.52), we obtain the following result,

〈O∆,l(P1, Z1)〉 =
(HZ1Z1)l/2

(P ◦ P )∆/2
. (2.53)

l is even in the above case and HZ1Z1 is (2.47) with Θ1 replaced by Z1. When q = 1 (boundary

defect) we observe thatHZ1Z1 = 0 and only the scalar operator has a non-zero one point correlator.

This has been pointed out in multiple references (e.g. [22]). The Z-derivatives are particularly

simple for the traceless symmetric case and they only amount to replacing all the Θ-vectors with a

single Z-vectors. We will utilize this trick in all the symmetric traceless cases that we encounter.

2.3.2 Forms

We find that the one-point correlator of any m-form vanishes when considering parity-even

invariants. However, this is not true if we consider parity-odd invariants. We will discuss parity-

odd cases later in section (2.7). With just one Θ, it is impossible to construct an invariant for a

m-form.

2.3.3 Two Column Operator

Finally, we consider mixed symmetric operators in a two-column representation.
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Θ
(1)
1 Θ

(2)
1

...
...

Θ
(1)
1 Θ

(2)
1

Both the columns have to be of equal height to obtain a non-zero correlator. For a two-column

operator of height h(1)
1 = h

(2)
1 = h we obtain the following tensor structure,

(H12
1 )h

(P ◦ P )∆/2
. (2.54)

The symmetrization will be imposed by the following derivative,

(
Z

(1)
1 · ∂Θ

(1)
1

)(
Z

(1)
1 · ∂Θ

(2)
1

)
· · ·
(
Z

(h)
1 · ∂Θ

(1)
1

)(
Z

(h)
1 · ∂Θ

(2)
1

)
. (2.55)

An operator with h = 2 (window operator) gives the following result after the action of sym-

metrization,

HZ1Z1HZ2Z2 −HZ1Z2HZ1Z2 . (2.56)

When q = 2, the above expression evaluates to zero. In general, for a q co-dimension defect

we get non-zero vacuum expectation value to a mixed symmetry operator of maximum height

min(q − 1, d− q + 1) 2. In [32], a duality between defects of different co-dimensions was pointed

out:

q ⇐⇒ d+ 2− q. (2.57)

We perform a check of this duality in terms of the height of an operator that can get a non-zero

correlator and note the results in the table below (Table 2.1).

2.4 Two-Point Correlators

Two and three-point correlators capture all the data of a defect CFT. In a defect CFT cross-

ratios start appearing at the two-point (bulk) correlator level. This is the reason why bootstrap

methods can be applied at this level. In this section we will list down two-point correlators.
2We thank Marco Meineri [33] for pointing this out.
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Dimension Codimension Height h
d+ 2− q q min(q − 1, d− q + 1)

q d+ 2− q min(d− q + 1, q − 1)

Table 2.1: Non vanishing criteria for two column operator.

2.4.1 Bulk-Defect

We will first consider two-point correlators involving a bulk operator and a defect operator.

These correlators are important as they contain information about the bulk and defect couplings.

The defect operators that can appear in the bulk-to-defect expansion of a bulk operator (1.63) can

be identified by considering all non-zero bulk-defect two-point correlators. In fact, all possible

operators appearing in the defect channel expansion can be found using the procedure given here.

Consider the two point correlator,

〈O∆1,λ1(P1,Θ1)Ô∆̂,λ2,λ̂2
(P2,Θ2,Φ2)〉. (2.58)

The defect local operator has two representations corresponding to the two groups (parallel λ and

transverse λ̄). For the defect operator, its vectors obey the following constraints:

P I
2̂

= 0 Θ
(i)I

2̂
= 0 Φ

(i)A

2̂
= 0.

We obtain the number of invariants to be 5 from (2.44). One of them was already present at one-

point correlator level,

H(i,j)
a i 6= j. (2.59)
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We encounter 4 additional invariants,

H
(i,j)
aâ =

C
(i)AB
a C

(j)
âAB

Pa • Pâ
, G

(i)
aâ =

Pa ◦ Φ
(i)
â

(Pa ◦ Pa)1/2
,

G̃
(i,j)
aâ =

C
(i)AI
a PaAΦ

(j)
âI

(Pa ◦ Pa)
, K

(i)
aâ =

C
(i)AI
a PâAPaI

(Pa ◦ Pa)1/2(Pa • Pâ)
.

(2.60)

Putting everything together we get the following invariants:

H
(i,j)

12̂
H

(i,j)
1 G

(i)

12̂
G̃

(i,j)

12̂
K

(i)

12̂
. (2.61)

With one bulk and one defect operator it is impossible to construct a cross-ratio. The final form of

the correlator is,

(Zλ1
1 · ∂λ1

Θ1
)(Z

λ2̂
2 · ∂

λ2̂
Θ2

)(W
λ̄3̂
2 · ∂

λ̄3̂
Φ2

)
T aBDba

(−2P1 • P2)∆̂(P1 ◦ P1)(∆−∆̂)/2
, (2.62)

where,

T aBD =
(
H

(i,j)

12̂

)aij(H i,j
1

)bij(Gi
12̂

)ci(G̃(i,j)

12̂

)dij(Ki
12̂

)ei . (2.63)

T aBD refers to tensor structures and ba are the coefficients (bulk-to-defect) associated with each

tensor structure. The derivatives are present to impose symmetrization on the tensor structures.

Each invariant has a power associated with it,

H
(i,j)

12̂
→ aij, H i,j

1 → bij, G
(i)

12̂
→ ci, G̃

(i,j)

12̂
→ dij, K

(i)

12̂
→ ei. (2.64)

We will set up some quick notations,

nC1 = number of columns of O h
(i)
1 = length of i-th column of O

nC
2̂

= number of columns of Ô (parallel) h
(i)

2̂
= length of i-th column of Ô (parallel)

n̄C
2̂

= number of columns of Ô (transverse) h̄
(i)

2̂
= length of i-th column of Ô (transverse).

(2.65)
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The powers are subject to following conditions :

h
(i)
1 =

nC
2̂∑
j

aij +

nC1∑
j

bij +

n̄C
2̂∑
j

dij + ei,

h
(i)

2̂
=

nC1∑
j

aji,

h̄
(i)

2̂
= ci +

nC1∑
j

dji.

(2.66)

These equations have been determined by matching homogeneity of the invariants with that of the

operators in the correlator. The solution for each variable has to be a non-negative integer and can

be worked out easily. Mathematica has a Reduce command which solves for integer solutions. We

list down the relevant systems of equations for other correlators in the appendix. The system of

equations can have multiple solutions. Each solution corresponds to a different tensor structure

which can appear with a different coefficient. Once the tensor structures have been computed, they

need to be acted on by the appropriate symmetrization derivatives.

Let us consider a concrete example:

〈O∆1,λ1(P1,Θ1)Ô∆̂,λ2,λ̂2
(P2,Φ2)〉. (2.67)

We consider a two-point correlator between a bulk vector and a defect operator with spin-1 orthog-

onal to the defect,

λ1 = λ2̂ = • λ̄2̂ = .

Plugging h(1)
1 = 1, h(1)

2̂
= 0 and h̄(1)

2̂
= 1 in (2.66) we obtain two tensor structures,

〈Oλ1(P1,Θ1)Ôλ2̂,λ̄2̂
(P2̂,Φ2̂)〉 =

b1G̃12̂ + b2K12̂G12̂

(−2P1 • P2̂)∆̂(P1 ◦ P1)(∆−∆̂)/2
. (2.68)

We can further demand that the bulk operator is a conserved spin-1 current with dimension ∆1 =
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d− 1. Conservation condition implies,

∂MDM〈Oλ1(P1,Θ1)Ôλ2̂,λ̄2̂
(P2̂,Φ2̂)〉 = 0. (2.69)

This results in a relation between the coefficients b1 and b2:

b1(q − 1) + b2(q − d+ ∆̂) = 0. (2.70)

We will now list down the representations that can occur in the decomposition of different bulk

operators.

2.4.1.1 Scalar Bulk Operator

We consider all possible two-point correlators with a bulk scalar. The correlator is non-zero in

the following case only,

〈O∆(P1)Ô∆̂,0,s(P2,W2)〉. (2.71)

where s is a symmetric traceless quantum number of the SO(q) representation. This indicates

that a bulk scalar decomposes into defect local operators transforming as symmetric traceless ten-

sors under SO(q) while being scalars under the SO(p + 1, 1) group. Schematically this can be

represented as,

O ∼ Ô + Ôi + Ô(ij) + . . . (2.72)

2.4.1.2 Spin-` Bulk Operator

The defect decomposition of a spin-` bulk operator yields defect operators in the following

representations. Spin-J represents the spin of the bulk operator, spin-j represents the spin of the

defect operator parallel to the defect and last column represents the maximum height of the SO(q)

representation of the defect operator. For a spin-` bulk primary, we find that the defect operators

appearing in the defect expansion are spinning fields under the SO(p + 1, 1) group while the

maximum height of the representation under SO(q) is restricted by ` (Table 2.2). The height of
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Spin-J Spin-j Height of λ̄2̂

Spin-`
Spin-` 1

Spin `-1 `
... `
0 `

Table 2.2: Spin-J bulk operator decomposition into defect operators.

the SO(q) representation is also limited by the co-dimension of the defect. It can have a maximum

height of q (irrespective of `). If the co-dimension of the defect is 1, then the only operators

occurring would transform in the traceless symmetric representation of SO(q).

2.4.2 Bulk-Bulk

We will now consider bulk-bulk two-point correlators. The conformal symmetry does not

completely fix the position dependence of the correlator. The following two conformal cross-ratios

[23] can be constructed:

ξ1 =
2P1 • P2

(P1 ◦ P1)1/2(P2 ◦ P2)1/2
, ξ2 =

2P1 ◦ P2

(P1 ◦ P1)1/2(P2 ◦ P2)1/2
. (2.73)

With these two cross-ratios, the bulk-bulk two-point correlator can be written as:

〈O∆1,λ1(P1,Θ1)O∆2,λ2(P2,Θ2)〉 =
∑
n

T
(n)
BBfn(ξ1, ξ2)

(P1 ◦ P1)∆1/2(P2 ◦ P2)∆2/2
, (2.74)

where T (n)
BB are the different tensor structures compatible with the representation of the operators

and the functions fn(ξ1, ξ2) can be expanded in terms of bulk-channel conformal blocks. In case
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of only bulk operators in a correlation function, the invariants that can appear are of the form:

H(i,j)
a =

C
(i)AI
a C

(j)
aAI

(Pa ◦ Pa)
,

S
(i,j)
ab =

C
(i)AI
a C

(j)BI
b PaAPbB

(Pa ◦ Pa)(Pb ◦ Pb)
, S̄

(i,j)
ab =

C
(i)AI
a C

(j)AJ
b PaIPbJ

(Pa ◦ Pa)(Pb ◦ Pb)
,

K
(i)
ab =

C
(i)AI
a PaAPbI

(Pa ◦ Pa)(Pb ◦ Pb)1/2
, K̄

(i)
ab =

C
(i)AI
a PbAPbI

(Pa ◦ Pa)1/2(Pb ◦ Pb)
,

(2.75)

with a 6= b in all the above invariants. The above invariants have the following properties:

H(i,j)
a = H(j,i)

a ,

S
(i,j)
(ab) = S

(j,i)
(ba) ,

S̄
(i,j)
(ab) = S̄

(j,i)
(ba) .

(2.76)

It is also possible to construct additional invariants like,

C
(i)AI
a PbAPcI

(Pa ◦ Pa)1/2(Pb ◦ Pb)1/2(Pc ◦ Pc)1/2
where (a 6= b 6= c) . (2.77)

However, the above invariant can be shown to be a linear combination of the invariants already

defined in (2.75) using identities listed in (A.3). The list of independent invariants is:

H
(i,j)
1 , H

(i,j)
2 , S

(i,j)
12 , S̄

(i,j)
12 , K

(i)
12 , K

(i)
21 , K̄

(i)
12 , K̄

(i)
21 . (2.78)

Depending on the representation of bulk operators (including the i-index in the above equation),

the total number of invariants is (we refer the reader to (A.1) for notations),

1

2
(l

(1)
1 + l

(1)
2 )(l

(1)
1 + l

(1)
2 + 3) + l

(1)
1 l

(1)
2 . (2.79)

The two-point correlator is non-zero only for identical operators in an ordinary CFT. This is no

longer true in a defect CFT and two-point correlators between arbitrary operators can be non-zero.
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We will discuss two examples for the bulk-bulk two-point correlators. The system of equations to

evaluate the tensor structures for a given two-point correlator is listed in the appendix (A.4.1). We

first consider a two-point correlator between a two-form and a vector.

λ1 = λ2 =

Using the invariants (2.75), and applying the equations of (A.4.1) with h(1)
1 = 2 and h(1)

2̂
= 1 we

get the following tensor structures:

∑
n

T
(n)
BBfn(ξ1, ξ2) =K

(1)
12 K̄

(1)
12 K

(1)
21 f1(ξ1, ξ2) +K

(1)
12 K̄

(1)
12 K̄

(1)
21 f2(ξ1, ξ2) + S

(1,1)
12 K

(1)
12 f3(ξ1, ξ2)

+ S
(1,1)
12 K̄

(1)
12 f4(ξ1, ξ2) + S̄

(1,1)
12 K

(1)
12 f5(ξ1, ξ2) + S̄

(1,1)
12 K̄

(1)
12 f6(ξ1, ξ2).

(2.80)

The next step is to apply derivatives to complete the symmetrization,

(
Z

(1)
1 .∂

Θ
(1)
1

)(
Z

(2)
1 .∂

Θ
(1)
1

)∑
n

T
(n)
BBfn(ξ1, ξ2) =

(
K

(2Z)
12 K̄

(1Z)
12 K

(1)
21 −K

(1Z)
12 K̄

(2Z)
12 K

(1)
21

)
f1(ξ1, ξ2)

+
(
K

(2Z)
12 K̄

(1Z)
12 K̄

(1)
21 −K

(1Z)
12 K̄

(2Z)
12 K̄

(1)
21

)
f2(ξ1, ξ2)

+
(
S

(2Z ,1)
12 K

(1Z)
12 − S(1Z ,1)

12 K
(2Z)
12

)
f3(ξ1, ξ2)

+
(
S

(2Z ,1)
12 K̄

(1Z)
12 − S(1Z ,1)

12 K̄
(2Z)
12

)
f4(ξ1, ξ2)

+
(
S̄

(2Z ,1)
12 K

(1Z)
12 − S̄(1Z ,1)

12 K
(2Z)
12

)
f5(ξ1, ξ2)

+
(
S̄

(2Z ,1)
12 K̄

(1Z)
12 − S̄(1Z ,1)

12 K̄
(2Z)
12

)
f6(ξ1, ξ2).

(2.81)

The application of derivatives results in a lot of terms. Although this is correct, it is not required as

the operators under consideration are not symmetric in their indices. When operators do not have

symmetry (anti-symmetry), the result in Θ-basis (Z-basis) is sufficient.

Let us look at another example involving a hook and a scalar operator.
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λ1 = λ2 = •

We again use (A.4.1) with h(1)
1 = 2, h(2)

1 = 1 and h(1)

2̂
= 0 to find the tensor structures,

∑
n

T
(n)
BBfn(ξ1, ξ2) = H

(1,2)
1 K

(1)
12 f1(ξ1, ξ2) +H

(1,2)
1 K̄

(1)
12 f2(ξ1, ξ2)

+K
(1)
12 K̄

(1)
12 K

(2)
12 f3(ξ1, ξ2) +K

(1)
12 K̄

(1)
12 K̄

(2)
12 f4(ξ1, ξ2).

(2.82)

We apply the derivatives to symmetrize the tensor structures,

(
Z

(2)
1 .∂

Θ
(1)
1

)(
Z

(1)
1 .∂

Θ
(1)
1

)(
Z

(1)
1 .∂

Θ
(2)
1

)∑
n

T
(n)
BBfn(ξ1, ξ2)

=
(
H

(1Z ,1Z)
1 K

(2Z)
12 −H(2Z ,1Z)

1 K
(1Z)
12

)
f1(ξ1, ξ2)

+
(
H

(1Z ,1Z)
1 K̄

(2Z)
12 −H(2Z ,1Z)

1 K̄
(1Z)
12

)
f2(ξ1, ξ2)

+
(
K

(1Z)
12 K̄

(2Z)
12 K

(1Z)
12 −K(2Z)

12 K̄
(1Z)
12 K

(1Z)
12

)
f3(ξ1, ξ2)

+
(
K

(1Z)
12 K̄

(2Z)
12 K̄

(1Z)
12 −K(2Z)

12 K̄
(1Z)
12 K̄

(1Z)
12

)
f4(ξ1, ξ2).

(2.83)

This is the final result for a two-point correlator involving a hook and a scalar operator. All the

symmetries and anti-symmetries of the hook operator are made explicit after the action of deriva-

tive.

2.4.3 Defect-Defect

We finally study two-point correlators of defect local operators,

〈Ôλ1,λ̂1
(P1̂,Θ1,Φ1)Ôλ2,λ̂2

(P2̂,Θ2,Φ2)〉. (2.84)
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We find new invariants constructed by the contraction of Θ and Φ among themselves:

H
(i,j)

âb̂
=
C

(i)AB
â C

(j)AB

b̂

Pâ • Pb̂
,

H̃
(i,j)

âb̂
= Φ

(i)
â ◦ Φ

(j)

b̂
.

(2.85)

Since we are considering defect operators, the condition â 6= b̂ is automatically implied. The

possible invariants are H(i,j)

1̂2̂
and H̃(i,j)

1̂2̂
and this implies that the defect operators should have the

same representation for both sectors.

λ1̂ = λ2̂, λ̄1̂ = λ̄2̂. (2.86)

This has to be true since defect local operators behave like operators of an ordinary CFT. There is

no cross-ratio in this case as the conformal symmetry completely fixes the form of the correlator.

2.5 Three-Point Correlators

Crossing equations involving three-point correlators constrain the data-set of a defect CFT.

These are analogous to four-point crossings in an ordinary CFT.

2.5.1 Bulk-Bulk-Bulk

No additional invariants appear for bulk three-point correlators and the ones listed in (2.75) are

sufficient. The total number of invariants in this case is 21 from (2.44) and we list them below:

H
(i,j)
1 , H

(i,j)
2 , H

(i,j)
3 ,

S
(i,j)
12 , S

(i,j)
23 , S

(i,j)
31 ,

S̄
(i,j)
12 , S̄

(i,j)
23 , S̄

(i,j)
31 ,

K
(i)
12 , K

(i)
21 , K

(i)
23 , K

(i)
32 , K

(i)
31 , K

(i)
13 ,

K̄
(i)
12 , K̄

(i)
21 , K̄

(i)
23 , K̄

(i)
32 , K̄

(i)
31 , K̄

(i)
13 .

(2.87)
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Depending on the representation of the bulk operators we determine the number of invariants

(taking into account i-index) to be:

1

2
(l

(1)
1 + l

(1)
2 + l

(1)
3 )(l

(1)
1 + l

(1)
2 + l

(1)
3 + 7) + l

(1)
1 l

(1)
2 + l

(1)
2 l

(1)
3 + l

(1)
3 l

(1)
1 . (2.88)

Consider a three-point correlator,

〈Oλ1(P1,Θ1)Oλ2(P2,Θ2)Oλ3(P3,Θ3)〉 =
∑
n

f
(n)
123T

(n)
BBBfn(ξ1, ..., ξ6)

(P11)∆1/2(P22)∆2/2(P33)∆3/2
. (2.89)

Here T (n)
BBB are three-point tensor structures and functions fn(ξ1, ..., ξ6) can be expanded in terms

of three-point conformal blocks. The conformal blocks are functions of the cross-ratios. Six cross-

ratios can be constructed out of three bulk operators:

ξ1 =
2P1 • P2

(P11)1/2(P22)1/2
, ξ2 =

2P1 ◦ P2

(P11)1/2(P22)1/2

ξ3 =
2P2 • P3

(P22)1/2(P33)1/2
, ξ4 =

2P2 ◦ P3

(P22)1/2(P33)1/2

ξ5 =
2P3 • P1

(P33)1/2(P11)1/2
, ξ6 =

2P3 ◦ P1

(P33)1/2(P11)1/2
.

(2.90)

As an example, let us consider three-point correlator of a 2-form and two scalars.

λ1 = λ2 = • λ3 = •

We use the system of equations (obtained from homogeneity constraints) in (A.4.2) with h(1)
1 = 2

and h(1)
2 = h

(1)
3 = 0 to obtain the tensor structures,

∑
n

f
(n)
123T

(n)
BBBfn(ξ) =f

(1)
123K12K13f1(ξ) + f

(2)
123K12K̄12f2(ξ) + f

(3)
123K12K̄13f3(ξ)

+ f
(4)
123K13K̄12f4(ξ) + f

(5)
123K13K̄13f5(ξ) + f

(6)
123K̄12K̄13f6(ξ).

(2.91)

f
(n)
123 are three-point coefficients associated to each tensor structure.
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2.5.2 Bulk-Bulk-Defect

Three-point correlators involving two bulk and one defect operators are important for bootstrap

as pointed out in [34]. We encounter one new invariant in this case,

N
(i)
ĉ,1b =

C
(i)AB
ĉ P1APbB

(Pĉ • P1)1/2(P1 • Pb)1/2(Pb • Pĉ)1/2
(1 6= b). (2.92)

We determine the number of invariants to be 17 by plugging in (n1 = 2 and n2 = 1) in (2.44). We

list them below,

G
(i)

13̂
, G

(i)

23̂
,

H
(i,j)
1 , H

(i,j)
2 ,

K̄
(i)
12 , K

(i)
12 , K̄

(i)
21 , K

(i)
21 ,

G̃
(i,j)

13̂
, G̃

(i,j)

23̂
, H

(i,j)

13̂
, H

(i,j)

23̂
,

S
(i,j)
12 , S̄

(i,j)
12 ,

K
(i)

13̂
, K

(i)

23̂
,

N
(i)

3̂,12
.

(2.93)

There are three independent cross-ratios in this case. The two bulk operators yield two cross-ratios

which we already encountered before ξ1 and ξ2. Including the defect operator yields an additional

cross-ratio,

χ =
(P3̂ • P1)(P2 • P2)1/2

(P3̂ • P2)(P1 • P1)1/2
. (2.94)

A three-point correlator involving two bulk and one defect operator has the following structure:

〈O1O2Ô3〉 =
∑
n

T
(n)
BBDfn(ξ1, ξ2, χ)

(P12)
∆1+∆2−∆3

2 (P13̂)
∆1+∆̂3−∆2

2 (P23̂)
∆2+∆̂3−∆1

2

. (2.95)
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As an example, let us consider a three-point correlator involving a vector, a scalar and a defect

operator which is a 2-form along the defect and a scalar orthogonal to the defect.

λ1 = λ2 = • λ3̂ = λ̄3̂ = •

Using the system of equations listed in (A.4.3) and taking h(1)
1 = 1, h(1)

2 = 0, h(1)

3̂
= 2 and h̄(1)

3̂
= 0,

we obtain only one possible tensor structure:

〈O1(P1,Θ1)O2(P2)Ô3(P3̂,Θ3)〉 =
H11

13̂
N1

3̂,12
f1(ξ1, ξ2, χ)

(P12)
∆1+∆2−∆3

2 (P13̂)
∆1+∆̂3−∆2

2 (P23̂)
∆2+∆̂3−∆1

2

. (2.96)

2.5.3 Defect-Defect-Bulk

The three-point correlator involving two defect and one bulk operator is not interesting by itself

as it does not yield a crossing relation. However, we encounter an additional invariant in this case,

Ñ
(i)
âa =

CiAB
â P(â+1)APaB

(Paâ)1/2(Pâ(â+1))1/2(Pa(â+1))1/2
. (2.97)

Combining this new invariant with the previously known ones we obtain the following list of

invariants:

H
(i,j)
3 ,

H
(i,j)

31̂
, H

(i,j)

32̂
,

G
(i,j)

31̂
, G

(i,j)

32̂
, G̃

(i,j)

31̂
, G̃

(i,j)

32̂
,

H
(i,j)

1̂2̂
, H̃

(i,j)

1̂2̂
,

Ki
31̂
, Ki

32̂
,

Ñ
(i)

1̂3
, Ñ

(i)

2̂3
.

(2.98)
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Only one cross-ratio can be constructed out of two defect and one bulk operators,

ζ =
(P1̂ • P2̂)(P3 • P3)

(P1̂ • P3)(P2̂ • P3)
. (2.99)

2.5.4 Defect-Defect-Defect

The last ingredients for implementing three-point bootstrap are three-point correlators of defect

local operators. For three defect operators it is impossible to construct a cross-ratio. In addition to

invariants appearing in (2.85), an additional invariant can be constructed,

K̃
(i)

âb̂
=

C
(i)AB
â Pâ+1,APb̂B

(Pâ(â+1))1/2(P(â+1)b̂)
1/2(Pâb̂)

1/2
b̂ 6= â, â+ 1. (2.100)

Using n2 = 3 in (2.44), we determine the total number of invariants to be 9:

H
(i,j)

1̂2̂
, H

(i,j)

2̂3̂
, H

(i,j)

3̂1̂
, H̃

(i,j)

1̂2̂
, H̃

(i,j)

2̂3̂
, H̃

(i,j)

3̂1̂
, K̃

(i)

1̂3̂
, K̃

(i)

2̂1̂
, K̃

(i)

3̂2̂
. (2.101)

We will consider an example of a three-point correlator with a 2-form, a vector, and a scalar.

λ1̂ = λ2̂ = λ3̂ = •

When all the quantum numbers of the defect operators are parallel to the defect, it acts like a

correlator in an ordinary CFT. We list the result below,

〈Ô∆̂1
(P1̂,Θ1)Ô∆̂2

(P2̂,Θ2)Ô∆̂3
(P3̂)〉 = f̂Ô1Ô2Ô3

H
(1,1)

1̂2̂
K̃

(1)

1̂3̂

P
∆̂1+∆̂2−∆̂3

2

1̂2̂
P

∆̂2+∆̂3−∆̂1
2

2̂3̂
P

∆̂3+∆̂1−∆̂2
2

3̂1̂

. (2.102)

We can impose symmetrization by applying Z∂Θ derivatives (2.12) to the above expression. How-

ever, it is redundant in this case as there is no symmetry in any of the operator representations

and Θ-basis serves us fine. Since parallel quantum numbers behave as a regular CFT, our result

matches with that of [29]. If all the spins and forms are in the direction orthogonal to the defect,

only one invariant is possible: H̃(i,j)

1̂2̂
. However with just this invariant it is impossible to construct
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a tensor structure for the given operators.

〈Ô∆̂1
(P1̂,Φ1)Ô∆̂2

(P2̂,Φ2)Ô∆̂3
(P3̂)〉 = 0 (2.103)

We obtain different results depending on whether the spin and forms are aligned parallel or or-

thogonal to the defects. Mixed symmetric correlator between operators carrying both (parallel and

orthogonal) quantum numbers can be computed in a similar manner.

2.6 n-Point Correlators

In this section, we will briefly comment on n-point (n = n1 + n2) correlators involving n1

bulk and n2 defect operators. The three-point correlators exhausted all possible invariants. No

additional invariant can appear for higher point correlators and all the tensor structures have to be

constructed out of the previously known invariants. We list all the invariants down together with

their number,

H(i,j)
a → n1 where i 6= j || H

(i,j)
aâ → n1n2

G
(i)
aâ → n1n2 || G̃

(i,j)
aâ → n1n2 || Ki

aâ → n1n2

S
(i,j)
ab →

n1(n1 − 1)

2
where a 6= b and S(i,j)

(ab) = S
(j,i)
(ba)

S̄
(i,j)
ab →

n1(n1 − 1)

2
where a 6= b and S̄(i,j)

(ab) = S̄
(j,i)
(ba)

K
(i)
ab → n2

1 − n1 where a 6= b || K̄
(i)
ab → n2

1 − n1 where a 6= b

H
(i,j)

âb̂
→ n2(n2 − 1)

2
where â 6= b̂ || H̃

(i,j)

âb̂
→ n2(n2 − 1)

2
where â 6= b̂

N
(i)

k̂,1b
→ n2(n1 − 1) where b 6= 1

K̃
(i)

âb̂
→ n2(n2 − 2) where b̂ 6= â, â+ 1

Ñ
(i)
âa → n1n2.

(2.104)

Tensor structures for n-point correlators have to be constructed out of these invariants while re-

specting the homogeneity constraints. There is a slight subtlety involved with the last three in-

variants. Nĉ1b, Ñâa and K̃âb̂ are all independent at the three-point level. However, they are not all
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independent for a higher-point correlator as Nĉ1b can be generated from Ñâa (A.3). Depending on

n1 and n2, the independence of Nĉ1b, Ñâa and K̃âb̂ varies. We list down the different cases and the

independent invariants associated to those cases:

n1 ≥ 2 & n2 = 1 → Nĉab

n1 ≥ 1 & n2 = 2 → Ñâa

n1 = 0 & n2 ≥ 3 → K̃âb̂

n1 ≥ 1 & n2 ≥ 3 → Ñâa, K̃âb̂.

(2.105)

In all other cases, Nĉab, Ñâa and K̃âb̂ do not appear. We quote the equation for the total number of

invariants (2.44) again for convenience,

3n2
1 − 2n1 + 2n2

2 − 3n2 + 5n1n2. (2.106)

Taking into account (2.105), the sum of all invariants listed in (2.104) becomes,

n1 ≥ 2 & n2 = 1 → 3n2
1 − 2n1 + n2

2 − 2n2 + 5n1n2

n1 ≥ 1 & n2 = 2 → 3n2
1 − 2n1 + n2

2 − n2 + 5n1n2

n1 = 0 & n2 ≥ 3 → 3n2
1 − 2n1 + 2n2

2 − 3n2 + 4n1n2

n1 ≥ 1 & n2 ≥ 3 → 3n2
1 − 2n1 + 2n2

2 − 3n2 + 5n1n2.

(2.107)

Except for the last case, this result does not seem to match with (2.106). The deviation from (2.106)

can be calculated by subtracting our result from (2.106),

n1 ≥ 2 & n2 = 1 → n2
2 − n2 = 0 =⇒ n2 = 1

n1 ≥ 1 & n2 = 2 → n2
2 − 2n2 = 0 =⇒ n2 = 2, 0

n1 = 0 & n2 ≥ 3 → n1n2 = 0 =⇒ n1 = 0

n1 ≥ 1 & n2 ≥ 3 → 0.

(2.108)
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We see that all the polynomials in (2.107) yield the same result as (2.106) as they are various limits

of the same equation (2.106) at different n1 and n2.

The number of independent cross-ratios for n1 bulk and n2 defect operators were calculated in

[35] and the number is,

n1(n1 + 1) + n2(n1 + 1) +
n2(n2 + 1)

2
. (2.109)

For the purpose of bootstrap in a defect CFT, higher (greater than three)-point correlators provide

no new information. All of the defect CFT data is already accounted at three-point crossing level.

For a purely bulk n-point correlator, tensor structures can be constructed out of the invariants in

(2.75). When we count the total number of independent invariants keeping in mind each invariant

has i, j, ... indices labelling the columns of Young representation as well, we get

1

2

( n∑
a

l(1)
a

)( n∑
a

l(1)
a + 2n− 3

2

)
+
∑
a>b

l(1)
a l

(1)
b . (2.110)

2.7 Parity Analysis

In our analysis so far, we have restricted to parity-even structures. In this section, we will

consider parity-odd tensor structures. Parity entails a flip in one of the spatial directions. This

implies that any Lorentz contraction would always be parity invariant. The Levi-Civita tensor

ε is required to construct a tensor structure that is parity-odd. The ε-tensor with all its indices

contracted gives a contribution from each direction. Hence, the structures made out of ε are always

parity odd. For the bulk operators which transforms under O(d + 1, 1) representation, the epsilon

tensor is the full d + 2 dimensional one. Let us consider a spin-1 operator in the presence of a

co-dimension 2 defect:

〈O∆(P,Z)〉 = aO
ε01···p+2IJP

IZJ

(P ◦ P )
∆+1

2

. (2.111)

The spin-1 correlator was zero in the parity-even case while it is non-zero here with parity-odd

structure. In a similar manner, one-point correlators of completely anti-symmetric tensors (or

forms) which were previously vanishing are non-zero using parity-odd structures. The following
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one-point correlators are possible for forms in the presence of a q co-dimension defect:

〈O(q−1)-form(P,Θ)〉 =
ε01···p+2I1···IqP

I1ΘI2 · · ·ΘIq

(P ◦ P )
∆+1

2

, (2.112)

〈O(p+1)-form(P,Θ)〉 =
εA1···Ap+212···qP

A1ΘA2 · · ·ΘAp+2

(P ◦ P )
∆+1

2

, (2.113)

〈Oq-form(P,Θ)〉 =

(P ◦ P )(ε01···p+2I1···IqΘ
I1 · · ·ΘIq)− q(P ◦Θ)(ε01···p+2I1···IqP

I1ΘI2 · · ·ΘIq)

(P ◦ P )(∆+2)/2

(2.114)

〈O(p+2)-form(P,Θ)〉 =

(P • P )(εA1···Ap+212···qΘ
A1 · · ·ΘAp+2)− (p+ 2)(P •Θ)(εA1···Ap+212···qP

A1ΘA2 · · ·ΘAp+2)

(P ◦ P )(∆+2)/2
.

(2.115)

We find that (q − 1), (q), (p + 1) and (p)-forms can have a non-zero one-point correlator in the

presence of a q co-dimension defect. Once again we get a check of the defect duality (2.57). A

defect of co-dimension d + 2 − q gives a non-zero value to the same forms as a q co-dimension

defect. The structure of the above one-point correlators imply,

∂MDM〈On-form(P,Θ)〉 = 0, (2.116)

trivially. We do not obtain any constraints on the scaling dimension of the bulk operator from the

above equation. The case for a non-zero expectation value of (q − 1)-form and (p+ 1)-form has a

clear physical picture. A defect CFT could have a p-form gauge potential Ap sitting on the defect:

SCFT = S ′ +

∫
Mp

Ap. (2.117)

Here S ′ refers to other terms in the CFT action and the gauge potential Ap is integrated over the

entire defect. In such cases, the (p + 1)-form field strength dAp can have a non-zero expectation
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value. The Hodge dual of the field strength ∗dAp is a (m − 1)-form and it would also have a

non-zero expectation value. Equation (2.116) can be explained by the fact that d2Ap and d ∗ dAp

vanish trivially.

Similarly, it is possible to construct parity-odd tensor structures for defect local operators.

Defect operators have two quantum numbers, one for the parallel group and one for the transverse.

This implies the defect operators can be parity-odd with respect to either. This is implemented by

considering two separate ε-tensors.

εAB···p+2 and εIJ ···q (2.118)

Tensor structures constructed out of these two ε-tensors will be parity-odd.

2.8 Components

Embedding space also simplifies the computation of conformal blocks. We would like to be

able to carry out the conformal bootstrap program for defects directly in embedding space follow-

ing the program initiated in [36, 37]. For completeness, we briefly mention the strategy to project

down to physical space (d-dimensions) the results of previous sections. Only projections in the

presence of flat defects are considered in this section. For a detailed review of component calcula-

tions for both spherical and flat cases we point the reader to [23]. To recover indices from a poly-

nomial expression, the expression needs to be acted on by component derivatives. These deriva-

tives are constructed to remove the auxiliary vectors while maintaining the required symmetry or

anti-symmetry. It is important to note that the form of these derivatives is operator-representation
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dependent. The derivatives listed below only work with symmetric traceless operators and forms.

Da
z = (

p− 2

2
+ zb

∂

∂zb
)
∂

∂za
− 1

2
za

∂2

∂zb∂zb
,

Di
w = (

q − 2

2
+ wj

∂

∂wj
)
∂

∂wi
− 1

2
wi

∂2

∂wj∂wj
,

Da
θ =

p− 2

2

∂

∂θa
+ θb

∂

∂θb
∂

∂θa
,

Di
φ =

q − 2

2

∂

∂φi
+ φj

∂

∂φj
∂

∂φi
.

(2.119)

We have used (a, i) to label physical space directions parallel and orthogonal to the defect. Projec-

tions to the Poincaré section for bulk operator in the presence of a flat defect are:

ZA(i)|x = (0, 2xmz(i)
m , x

a), ZI(i)|x = z(i)i,

ΘA(i)|x = (0, 2xmθ(i)
m , x

a), ΘI(i)|x = θ(i)i,

PA|x = (1, xmxm, x
a), P I |x = xi.

(2.120)

While the projections to Poincaré section for a defect operator are:

ZA(i)|x = (0, 2xaz(i)
a , x

a), ZI |x = 0, WA|x = 0, W I(i)|x = w(i)i,

ΘA(i)|x = (0, 2xaθ(i)
a , x

a), ΘI |x = 0, ΦA|x = 0, ΦI(i)|x = φ(i)i,

PA|x = (1, xaxa, x
a) and P I |x = 0.

(2.121)

Using these results, we can project the contractions between different vectors in physical space:

Z
(i)
1 • Z

(j)
2 → z

(i)a
1 z

(j)b
2 ηab, Pm • Z(j)

n = xamnz
a(j)
n − xinzi(j)n

− 2Pm • Pn = |xamn|2 + |xim|2 + |xin|2,

Θ
(i)
1 •Θ

(j)
2 → θ

(i)a
1 θ

(j)b
2 ηab, Pm •Θ(j)

n = xamnθ
a(j)
n − xinθi(j)n ,

(2.122)

where xmn = xm − xn. We are now in a position to list down the steps to implement component

calculation:
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1. For a correlator in embedding space, all the coordinates must be projected to the Poincaré

patch and dot products evaluated via (2.122).

2. Depending on the correlator required component derivatives (2.119) must be acted accord-

ingly.

As an example, we will obtain the physical space result for a bulk two-point correlator involving a

2-form and a vector. Our goal is to compute 〈O[ab]
1 (x1)Oc

2(x2)〉 from (2.80). We will directly work

in θ-basis for components as there is no symmetry in the correlator indices. To obtain the correct

correlator, the terms in (2.80) containing θa1θ
b
1θ
c
2 are required. Only one tensor structure contains

the required terms.

S̄
(1,1)
12 K̄

(1)
12 = −(Θ1 •Θ2)(P1 ◦ P1)(P1 ◦ P2)(P2 ◦ P2)(P2 •Θ1)

(P1 ◦ P1)3/2(P2 ◦ P2)2
(2.123)

Projecting down to d-dimensions we obtain,

S̄
(1,1)
12 K̄

(1)
12 | =

(θe1θ
f
2ηef )(x

g
21θ

h
1ηgh − θi1xi2)(xi1x

i
2)

|xi1||xi2|2
. (2.124)

The structure of the required correlator suggests the form of the derivatives to be Dc
θ2
Db
θ1
Da
θ1

. The

antisymmetry in the indices a, b is manifest due to anti-commutation among θ1s.

Dc
θ2
Db
θ1
Da
θ1

(θe1θ
f
2ηef )(x

g
21θ

h
1ηgh)

xi1x
i
2

|xi1||xi2|2

= (α3 − α2)(ηacxb21 − ηbcxa21)
xi1x

i
2

|xi1||xi2|2
where α = (

p− 2

2
)

(2.125)

This result has the desired antisymmetry in a and b. The full correlator in physical space is,

〈O[ab]
1 (x1)Oc

2(x2)〉 = (α3 − α2)
(ηacxb21 − ηbcxa21)(xi1x

i
2)

|xi1|∆1|xi2|2+∆2
f6(ξ1, ξ2). (2.126)

Even though this procedure for obtaining components is universal and works for arbitrary rep-

resentations, the form of the derivative operators (2.119) is quite complicated for representations
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involving multiple Zs or Θs per operator. In those complicated cases, the procedure for calculating

components has been given in [38]. Our goal is to work in embedding space itself so we will not

follow this path.

2.9 Defects in Arbitrary Representation of SO(q)

In previous sections, we had considered defects transforming as singlets under the global

SO(q) group. In this section, we will consider correlators of operators in the presence of a defect

transforming in arbitrary representations of SO(q). The defect will also have indices (symmet-

ric, anti-symmetric, or mixed symmetric). We will contract defect indices with a Θ-basis anti-

symmetric auxiliary vector χI while demanding that χI is transverse. Schematically this looks

like:

Dq(Pα)I1···Inχ
I1 · · ·χIn . (2.127)

We have defined χs to be transverse by construction. χs have the following property,

χ(i) ◦ χ(j) = 0. (2.128)

For defects indices we use Y as a Z-basis vector of the orthogonal group. We will only consider

parity-even tensor structures of one and two-point correlators. We give an analogous formula

(2.44) to count the number of invariants (ignoring the i− index of defect and operators):

3n2
1 + 2n2

2 − 2n2 + 5n1n2. (2.129)

Dipole moments can be considered as vector-defects in a quantum field theory. In a conformal the-

ory, defect in arbitrary representations under SO(q) can be constructed by integrating an operator

in the same representation of SO(q) over the entire hyperplane of the defect. Schematically this

looks like:

Dq(Pα, χ) =

∫
Y

O(Y,Φ)|Y dqY, (2.130)
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where O(Y,Φ) has support only on the hyperplane.

2.9.1 One-Point Correlator

The new invariants that can appear in a one-point correlator of a bulk operator are the following,

P(i)
a =

Pa ◦ χ(i)

(Paa)1/2
,

R(i,j)
a =

C
AI(i)
a PA

a χ
(j)

(Paa)
.

(2.131)

We obtain the following invariants (including the previously known invariants),

H
(i,j)
1 ,R(i,j)

1 ,P(i)
1 . (2.132)

The singlet defect case had only one invariant (2.47), whereas now there are three. As an example,

let us consider a vector in the presence of a one-form (or vector) defect. Only one tensor structure

can be constructed,

〈O(Θ)〉D(χ) =
R11

1

(X ◦X)∆/2
. (2.133)

It is interesting to find that the vector operator has a non-zero one-point correlator. In the singlet

defect case the one-point correlator of the vector vanishes.

2.9.2 Two-Point Correlators

2.9.2.1 Bulk-Bulk

In addition to the invariants listed in (2.75) and (2.131), it might also be possible to construct

the following invariant:

T (i,j,k)
ab =

C
(i)AI
a C

(j)AJ
b PaIχ

(k)
J

Paa(Pbb)1/2
. (2.134)

However this is not independent and it can be related to previously known invariants:

(P1◦P1)(P2◦P2)1/2(P1•P2)T12 = (CAI
2 PA

1 χ
I)(CAI

1 PA
2 P

I
1 )+

CAB
1 C2AB

2
(P1◦P1)(P2◦χ). (2.135)
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Combining all the invariants together, any tensor structure has to be constructed out of the follow-

ing invariants:

H
(i,j)
1 , H

(i,j)
2 , S

(i,j)
12 ,

S̄
(i,j)
12 , K

(i)
12 , K

(i)
21 , K̄

(i)
12 , K̄

(i)
21 ,

P(i)
1 ,P(i)

2 ,

R(i,j)
1 ,R(i,j)

2 .

(2.136)

For a defect in symmetric traceless representation, we can again use the trick of replacing

all χi-vector with a single Y -auxiliary vector. Tensor structures can be constructed out of these

invariants for two-point correlators by equating homogeneity of the bulk operators with that of the

product of invariants.

2.9.2.2 Defect-Defect

Only one new invariant appears in this case,

R̄(i,j)
â = Φ

(i)
â ◦ χ

(j). (2.137)

Including the previously known invariants, the list of invariants in this case is:

H
(i,j)

1̂2̂
, H̃

(i,j)

1̂2̂
, R̄(i,j)

1 , R̄(i,j)
2 . (2.138)

If the defect operators only carry parallel quantum numbers, all correlators vanish. This is because

the defect index is in the orthogonal direction and it needs another orthogonal index to contract

with. The defect CFT becomes trivial in this case. It is necessary for defect local operators to carry

orthogonal quantum numbers to have non-zero correlation functions in the case of defects with

spin.
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2.9.2.3 Bulk-Defect

No new invariants can be constructed at this level. The possible invariants for a two-point

correlator involving a bulk operators and a defect operator are,

R(i,j)
1 ,P i1, R̄

(i,j)

2̂

H
(i,j)

12̂
, H i,j

1 , Gi
12̂
, G̃

(i,j)

12̂
, Ki

12̂
.

(2.139)

As an example, we would like to know the bulk scalar decomposition in the presence of a de-

fect transforming as a m-form under SO(q). In this case the only invariants that we can use are

P i1, Gi
12̂
, R̄i

2̂
. We find that only defect operators whose representation (under SO(q)) has a height

less or equal to m+ 1 appear in the decomposition. When the m-form defect is a 0-form (singlet)

the maximum height of defect operator-representation is one, the same as shown in (2.72).
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3. RESUMMATION AT FINITE CONFORMAL SPIN∗

In this chapter we follow up on the computation of anomalous dimensions and OPE corrections

for double-twist operators from the inversion formula [19, 39] initiated in [40] by including all the

sub-leading residues. This results in an analytically continued closed form expression valid at any

value of the conformal spin and in arbitrary dimension. This chapter is based on [41] by the author

and his collaborators.

3.1 Introduction

The lightcone limit of crossing equation for four-point function provides us with a particular

amenable analytical region that contains important physical information. This limit is controlled

by large spin operators which allows one to develop a systematic perturbative expansion of the

crossing relation in terms of inverse spin [42, 43, 44, 45, 46].

The inversion formula developed in [19, 39] (and reviewed in the Introduction) can be used to

re-sum the expansion in large spin, providing access to anomalous dimension and OPE coefficients

at finite values of the conformal spin, as has been done recently in four dimensions [40, 47, 48].

Previously, an analogous expansion for the large spin was computed in the series of works [49]

and applied to holographic CFTs in four dimensions, large N−theories in three dimensions and

for N = 4 SYM. Some expressions in arbitrary dimensions were also given in [40], which even

though resumming the large sum expansion, are only valid asymptotically. The reason is that in

[40] the contribution coming from the residues in Mellin space which were subleading in large β

(conformal spin) were neglected.

We will consider the correlation function of four conformal primary scalar operators given by

conformal invariance as,

〈O4(x4) · · · O1(x1)〉 =
1

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
G(z, z̄) , (3.1)

∗Reprinted with permission from “Resummation at finite conformal spin” by C. Cardona, S. Guha, S. K. Kanumlli
and K. Sen, 2018, JHEP 2019 : 01, Copyright [2019] by the authors.
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where a = 1
2
(∆2 −∆1), b = 1

2
(∆3 −∆4), and z, z̄ are conformal cross-ratios given by,

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

23x
2
14

x2
13x

2
24

. (3.2)

Henceforth, we will be using (z, z̄) coordinates instead of (u, v). The function G(z, z̄) has the

following s-channel conformal block expansion representation,

G(z, z̄) =
∑
J,∆

f12Of43OG∆,J(z, z̄) , (3.3)

where the sum runs over the exchanged primary operators with spin J and dimension ∆. G∆,J

are the conformal blocks eigenfunctions of the quadratic and quartic Casimir invariants of the con-

formal group and which can be conveniently represented by the following spectral representation

[50],

G(z, z̄) = 1 +
∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆

2πi
c(J,∆) f∆,J(z, z̄) . (3.4)

The function fJ,∆ is given in terms of a linear combination of conformal blocks plus its shadow

respectively as,

f∆,J(u, v) =
1

kd−∆,J

γλ1,a

γλ̄1,b

G∆,J(u, v) +
1

k∆,J

γλ̄1,a

γλ1,a

Gd−∆,J(u, v) , (3.5)

with coefficients defined in appendix B.1. The appropriate normalization for the integral represen-

tation, to match with the physical conformal block is given in (B.10) of appendix B.11. For each

operator exchange, labelled by (∆, J), the contour integral representation of f∆,J(u, v) given in

(B.1), picks up the physical and shadow poles to give the linear combination on the rhs of (3.5).

Our main tool in this work is the Lorentzian OPE inversion formula [19, 39], which allows us

1Note that γa,b used in the normalization is different from the γJ,∆12 used for the notation of the anomalous dimen-
sion. We have used the notations of [51].
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to extract C(J,∆) from the discontinuities of the four-point function.

Ct(J,∆) =
κJ+∆

4

∫ 1

0

dzdz̄ µ(z, z̄)GJ+d−1,∆+1−d(z, z̄) dDisc
[
G(z, z̄)

]
, (3.6)

where the conformal invariant measure is given by,

µ(z, z̄) =

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
(
(1− z)(1− z̄)

)a+b

(zz̄)2
. (3.7)

The partial wave coefficient is given as,

C(J,∆) = Ct(J,∆) + (−1)JCu(J,∆) . (3.8)

The u-channel contribution Cu is computed from the same integral (3.6) but with 1 and 2 inter-

changed and the integration ranging from −∞ to 0 and the double discontinuity taken around

z = ∞. In practice, the OPE coefficients can be extracted from the z̄ integration as a power

expansion in small z. At leading order in small z (3.6) is approximated by,

Ct(J,∆) =

∫ 1

0

dz

2z
z
τ
2 Ct(z, β) , (3.9)

where the following “generating function” has been defined,

Ct(z, β) ≡
∫ 1

z

dz̄ (1− z̄)a+b

z̄2
κβ kβ(z̄)dDisc[G(z, z̄)] , (3.10)

with

k2h(z) = zh2F1

[
h, h

2h
; z

]
. (3.11)

The usual conformal twist and spin are respectively τ = ∆− J and β = ∆ + J . We are interested

in studying the contributions to (3.10) coming from a single exchange, so by using the t−channel
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block decomposition of the four-point point function G(z, z̄) we can compute the contribution:

Ct(z, β)|J,∆ = f14(J,∆)f23(J,∆)κβ

∫ 1

z

dz̄
(1− z̄)a+b

z̄2
kβ(z̄)dDisc

[
(zz̄)

∆3+∆4
2 G∆,J(1− z, 1− z̄)

[(1− z)(1− z̄)]
∆2+∆3

2

]
,

(3.12)

where fi j(J,∆) corresponds to the OPE structure constant between the external scalars i and j and

the exchanged operator.

At small z the generating function (4.43) can be written as a power expansion in z, whose

contribution at the leading term from a single exchange will be given by

Ct(z, β)|J,∆ ∼ C(β)z
τ
2

+ 1
2
γ12(β) , (3.13)

where C(β) and γ12(β) corresponds to the square OPE coefficient and anomalous dimension of the

double twist operator having τ = −(∆1 + ∆2). If the anomalous dimension γ12(β) and correction

to OPE coefficients δP∆,J(β) are small, we can write

C(β) = C0(β)[1 + δP∆,J(β)] , (3.14)

so that,

Ct(z, β)|J,∆ ∼ z
τ
2C0(β)

(
δP∆,J(β) +

1

2
γ12(β) log(z)

)
. (3.15)

We similarly need to expand the RHS of (4.43) at small z, where the conformal blocks develop log-

terms and regular terms, as reviewed in the Appendix. Therefore we can see that the anomalous

dimension will be related to the log terms, whereas the OPE coefficients will be given by the

regular terms. In this paper we will restrict to the four point function of identical scalars φ (∆1 =

∆2 = ∆3 = ∆4 = ∆φ). We focus on the anomalous dimensions and corrections to the OPE

coefficients for double twist operators of the form [φφ]J = φ∂µ1 . . . ∂µJφ.
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3.2 Warming Up

In four and two dimensions the conformal blocks can be represented by combinations of Gauss

hypergeometric functions through (3.11). Respectively we have,

G∆,J(z, z̄) =
k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄)

1 + δJ,0
, 2D (3.16)

G∆,J(z, z̄) =
zz̄

z̄ − z
[
k∆−J−2(z)k∆+J(z̄)− k∆+J(z)k∆−J−2(z̄)

]
, 4D . (3.17)

Hence in the small−z limit, the building-block integral we need to perform is of the form,

J0 ≡
∫ 1

0

dz

z2

( z

1− z
)p
kh(z)kg(1− z). (3.18)

This integral is a special case of a Jacobi transform, which has been studied in detail recently in

the context of one dimensional Conformal Field Theories in [52]2. (3.18) computes the crossing

kernel in the lightcone limit even in higher dimensions, because of the factorization property of the

blocks as we see from (3.16). This type of integrals are hard to perform in position space, but as

we are going to see, they are straightforward in Mellin space. We will evaluate this simple example

in detail as it captures all the conceptual details involved in the more complicated integrals dealt

later in the text.

We follow the same strategy as in [52]. First we will expand both kh(z) functions in the more

convenient variable z
1−z , by using the following identity of the hypergeometric functions,

2F1(h, h, 2h, z) = (1− z)h2F1(h, h, 2h,
z

z − 1
). (3.19)

Then representing the hypergeometrics using the Mellin-Barnes representation we will be able to

2In the lightcone limit, the conformal blocks factorise and the kernel for the inversion formula can be written in
terms of one dimensional integrals as in (3.18).
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perform the z integral first. The Mellin-Barnes form of hypergeometric is given by,

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∫ i∞

−i∞

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s ds. (3.20)

Using 3.44 and 3.20 , the integral 3.18 becomes,

J0 =
Γ(2h)Γ(2g)

Γ(h)2Γ(g)2

∫
C
ds

∫
C
dt

∫ 1

0

dz
zp+s−t+h−g−2

(1− z)p+s−t+h−g
Γ(−s)Γ(h+ s)2Γ(−t)Γ(t+ g)2

Γ(2h+ s)Γ(2g + t)
(3.21)

C refers to the contour going from −i∞ to +i∞ and encircling the right half of the plane. The

contribution of the semi-circular arc at∞ vanishes. The z-integral is log-divergent, so we need to

regularize it. To perform it we follow the prescription of [52] and deform one of the hypergeomet-

rics in the following way,

kh(z) = zhzε2F1

[
h, h

2h+ ε
; z

]
. (3.22)

Now the z-integral becomes a simple beta function and the Mellin integration over s can be per-

formed by means of the Barnes’ second lemma:

∫ i∞

−i∞

Γ(a+ s)Γ(b+ s)Γ(c+ s)Γ(1− d− s)Γ(−s)
Γ(e+ s)

ds =

Γ(a)Γ(b)Γ(c)Γ(1− d+ a)Γ(1− d+ b)Γ(1− d+ c)

Γ(e− a)Γ(e− b)Γ(e− c)
, (3.23)

where we should take,

a = h b = h c = −1 + p− t+ h− g + ε d = p− t+ h− g e = 2h+ ε . (3.24)

This gives us the following result:

Γ(2h+ ε)Γ(2g)

Γ(g)2

∫ i∞

−i∞
dt

Γ(−1 + p− t+ h− g + ε)Γ(1− p+ t+ g)Γ(1− p+ t+ g)Γ(−t)Γ(g + t)2

Γ(h+ ε)2Γ(2h+ 1− p+ t− h+ g)Γ(2g + t)
.

(3.25)

Notice that the divergence in 1/ε automatically cancels and now we can safely take the ε → 0
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limit. What remains is doing the contour over the t-variable. By closing the contour to the right,

there are two sets of poles for the t-variable,

t ∈ N t ∈ −1 + p+ h− g + N (3.26)

Summing up these two series of residues, we get the following result,

J0 =
Γ(2h)Γ(1 + g − p)2Γ(−1 + h− g + p)

Γ(h)2Γ(1 + h+ g − p) 4F3

[
g, g, 1 + g − p, 1 + g − p

2g, 2− h+ g − p, 1 + h+ g − p
; 1

]
+

Γ(2g)Γ(1− h+ g − p)Γ(−1 + h+ p)2

Γ(g)2Γ(−1 + h+ g + p)
4F3

[
h, h, − 1 + h+ p, − 1 + h+ p

2h, h− g + p, − 1 + h+ g + p
; 1

]
(3.27)

An observation from this example which we will apply to the remaining cases considered below

is in order. Naively, we could have started by trying to compute the integral (3.18) by using the

usual series expansion of the hypergeometric function. However, since this is only convergent in

the region |z| < 1, this will produce an asymptotic expansion valid only for large values of h,

as that is the regime controlled by the small z region. Continuing to finite h involves re-suming

additional contributions from the lower limit of the z integral3. The Mellin-Barnes form in (3.20),

makes these additional contributions explicit, in terms of the second pair of poles in (3.26).

3.3 Anomalous Dimension

In this section we calculate the contribution to anomalous dimension of a double-twist operator

from a single block exchange of a four-point correlation function of identical operators, by using

the integral representation of conformal block. So for our case τ = −(∆1 + ∆2) = −2∆φ and the

conformal spin β = ∆+J defined for the double twist operators in the s−channel. The anomalous

dimensions γJ,∆12 (β) are the corrections to the dimensions of operators [φφ]J ≡ φ∂µ1 . . . ∂µJφ, given

by,

∆[φφ]J = 2∆φ + J + 1/2γJ,∆12 , (3.28)

3The lower limit of the z integral is not convergent and gives rise to additional contributions discussed in [47].
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due to exchange of operators of dimension ∆ and spin J in the crossed (t) channel. We restrict

ourselves to corrections to the double twist operators ∼ z
∆1+∆2

2 log z which comes only from the

leading log z term i.e the leading twist contributions in the crossed (t) channel. Please note that

we refer to τ for the double twist operators and not the twist of the t−channel exchanges. Also for

clarification, we move back and forth between the notations d/2 and h = d/2 in what follows.

3.3.1 Scalar Exchange

When the anomalous dimension is small, contribution from the exchange can be computed as

[19]:

γ0,∆
12 (β) =

1

C0(β)

∫ 1

0

dz̄

z̄2
κβkβ(z̄)dDisc

[(
1− z̄
z̄

) τ
2

Gt
∆,0|log

]
. (3.29)

In the above equation, Gt
∆,0|log stands for the log term in the z → 0 expansion of t-channel con-

formal block. First contribution to the OPE coefficient comes from unity block and is given by

[53, 54, 55],

C0(β) =
Γ
(
β
2

)2
Γ
(

1
2
(β − τ − 2)

)
Γ(β − 1)Γ

(
− τ

2

)2
Γ
(

1
2
(β + τ + 2)

) . (3.30)

In the second part we will be dealing with the corrections to these coefficients from conformal

bock exchanges. The constant κβ is,

κβ =
Γ
(
β
2

)4

2π2Γ(β − 1)Γ(β)
. (3.31)

Our starting point will be the Mellin transform integral representation for the scalar conformal

block in the t-channel detailed in the Appendix B.1,

Gt
∆,0|log = − Γ(∆)Γ(−h+ ∆ + 1)

Γ
(

∆
2

)3
Γ
(
−h+ ∆

2
+ 1
) ∫
C
ds

(
1− z̄
z̄

)∆
2

+s

Γ(−s)
Γ(s+ ∆

2
)Γ(1− h+ s+ ∆

2
)

Γ(1− h+ ∆ + s)
,

(3.32)

where and we have included the global factor from the crossing equation. We can immediately

check that by picking up s = n poles for the s-integral and summing over residues, we get the well
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known log-term for the scalar block [56, 51],

− (1− z̄)
∆
2

+τ/2

z̄
∆
2

+τ/2

Γ(∆)

Γ(∆
2

)2 2F1(1− d

2
+

∆

2
,
∆

2
, 1− d

2
+ ∆,

z̄ − 1

z̄
) , (3.33)

thus confirming that (3.32) is the correct representation to be used.

Taking the double discontinuity over expression (3.32) produces the following additional phase

2 sin2
[
π
(
λ2 +

τ

2
+ s
)]

. (3.34)

Note however that in the inversion formula (3.10), we are considering the discontinuities of indi-

vidual physical blocks in t−channel. These physical blocks are reproduced by the s = n poles in

(3.32) for n ∈ I≥0 respectively. Hence the phase factor corresponding to the entire block simply

multiplies the whole integral by sin2
[
π
(
λ2 + τ

2

)]
. Considering this phase and plugging in the

representation (3.33) into (3.29), the contribution to the anomalous dimension coming from the

scalar exchange is then given by,

γ0,∆ =− 4 sin2

[
π

(
∆ + τ

2

)]
κβ

C0(β)

Γ(β)Γ(∆)Γ(−h+ ∆ + 1)

Γ
(
β
2

)2
Γ
(

∆
2

)3
Γ
(
−h+ ∆

2
+ 1
)

∫
C
ds dt

∫ 1

0

dz̄

z̄2

(
z̄

1− z̄

)β−∆−τ
2
−s+t

Γ(−t)
Γ
(
β
2

+ t
)2

Γ (β + t)
Γ(−s)

Γ(s+ ∆
2

)Γ(1− h+ s+ ∆
2

)

Γ(1− h+ ∆ + s)
.

(3.35)

This is essentially the same integral (3.21) that we have dealt with in section 3.2 and hence the
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same steps follows, leading us to,

γ0,∆ = −4
κβ Γ(∆) sin2

(
∆+τ

2 π
)

π2Γ
(

∆
2

)3
C0(β)

×

(
Γ(β)Γ

(
∆
2

)
Γ
(

∆+τ+2
2

)2
Γ
(
β−∆−τ−2

2

)
Γ
(
β
2

)2

Γ
(
β+∆+τ+2

2

) 4F3

[
1− h+ ∆

2 ,
∆
2 ,

∆+τ
2 + 1, ∆+τ

2 + 1

1− h+ ∆, 2− β−∆−τ
2 , β+∆+τ

2 + 1
; 1

]

+
Γ
(
β−τ−2

2

)
Γ(−h+ ∆ + 1)Γ

(
−β+∆+τ+2

2

)
Γ
(
−2h+β−τ

2

)
Γ
(−2h+∆+2

2

)
Γ
(
−2h+β+∆−τ

2

) 4F3

[ β
2 ,

β
2 ,

β−τ
2 − 1, β−τ2 − h

β, β−∆−τ
2 ,−h+ β+∆−τ

2

; 1

])
.

(3.36)

The first Hypergeometric comes from summing over residues at s = n pole series and second

from those at s = β−∆−τ
2
− 1 + n. In four dimensions (i.e. h = 2), this expression matches with

(3.56) of [47]. Following [52], we can write (3.36) in terms of more compact Wilson function φα

[57] as,

γ0,∆ = −4
κβ

C0(β)

sin2
(
(∆+τ

2
)π
)

Γ
(

∆
2

)2 Γ(β)Γ(∆)Γ(1− h+ ∆)Γ

(
β − τ

2
− 1

)
×Γ

(
β − τ

2
− h
)

Γ

(
1 +

∆ + τ

2

)2

φα (β; a, b, c, d) , (3.37)

where

a =
∆

2
+

1

2
+
τ

4
, b =

1

2
+

∆

2
− τ

4
− h , c =

β

2
+
τ

4
+

1

2
,

d =
β

2
− τ

4
− 1

2
, α =

h

2
+
τ

4
, β =

1

2
+
τ

4
.

(3.38)

We can rewrite the scalar contribution to the anomalous dimension as a 7F6 hypergeometric:

γ0,∆ = −4
κβ

C0(β)

sin2
[
(∆+τ

2 )π
]

Γ(∆)Γ
(
β−τ

2 − 1
)

Γ (β) Γ
(
β−τ

2 − h
)

Γ
(
1 + ∆+τ

2

)2
Γ
(
−h+ β

2 + ∆ + 1
)

Γ(β2 )Γ
(

∆
2

)2
Γ
(
β+∆

2

)
Γ
(
β+∆+τ

2 + 1
)

Γ
(

1− h+ β+∆
2

)
Γ
(
β+∆−τ

2 − h
)

7F6

[ β
2 , 1− h+ ∆

2 , 1−
h
2 + β

4 + ∆
2 ,

∆
2 ,−h+ β

2 + ∆,−h+ ∆−τ
2 , 1 + ∆+τ

2

−h2 + β
4 + ∆

2 ,
β+∆

2 , 1− h+ β+∆
2 , 1− h+ ∆,−h+ β+∆−τ

2 , 1 + β+∆+τ
2

; 1

]
. (3.39)

The same kind of 7F6 function also appears in the context of the ε−expansion, which is recently
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discussed in [58].

3.3.2 Spin Exchange

The computation of the contribution to the anomalous dimension from a scalar can be straight-

forwardly upgraded to the spinning exchange, which is the topic of this section. We start with the

integral representation of the log term for the conformal block, as discussed in the Appendix B.1,

G∆,J(1− z, 1− z̄) =− Γ(2λ1)

Γ(λ1)2(d− 2)J
log z

J∑
m=0

(−1)m
Am(J,∆)

(λ1 −m)2
m

×
∫
C
ds

(
1− z̄
z̄

)s+λ1−m

Γ(−s) (λ1 −m)s(1− λ̄2)s
(1 + λ2 − λ̄2)s+J−m

.

(3.40)

Using the spin block (3.40) instead of the scalar block in (3.29) and evaluating the sum over

residues at the poles s = n and s = β−∆−J−τ
2

+m− 1 + n we get

γJ,∆ = 4
κβ

C0(β)

J∑
m=0

(−1)m+1

(d− 2)J

Am(J,∆)

(λ1 −m)2
m

Γ(−h+ ∆ + 1)Γ(2λ1)

Γ (λ1)
2

Γ (λ1 −m)
sin2

(
1

2
π(∆ + J + τ)

)
(

Γ(β)Γ (λ1 −m) Γ
(
τ+2

2 + λ1 −m
)2

Γ
(
β−τ−2

2 − λ1 +m
)

Γ
(
β
2

)2

Γ(−h−m+ 2λ1 + 1)Γ
(
β+τ+2

2 + λ1 −m
)

×4 F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ2 + λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2 + λ1 −m+ 2, β+τ

2 + λ1 −m+ 1
; 1

]

+
Γ
(
β−τ−2

2

)
Γ
(
−2h+2m+β−τ

2

)
Γ
(

2−β+τ
2 + λ1 −m

)
Γ
(−2h+2

2 + λ1

)
Γ
(
β−2h−τ

2 + λ1

) 4F3

[ β
2 ,

β
2 ,

β−τ
2 − 1, β−τ2 − h+m

β, β−τ2 − λ1 +m,−h+ β−τ
2 + λ1

; 1

])
.

(3.41)

Which as in the scalar case can be written more compactly in terms of a Wilson function as,
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γJ,∆ = 4
κβ

C0(β)

J∑
m=0

(−1)m+1

(d− 2)J

Am(J,∆)

(λ1 −m)2
m

Γ(β)Γ(2λ1)Γ
(
β−τ

2 − 1
)

Γ
(
β−τ

2 − h+m
)

Γ
(
τ
2 + λ1 −m+ 1

)2
Γ
(
β
2

)
Γ (λ1)

2
Γ
(
β
2 + λ1 + 1− h

)
Γ
(
β
2 + λ1 −m

)
sin2

(
π
(
τ
2 + λ1 −m

))
Γ
(
−h+ 2λ1 −m+ β

2 + 1
)

Γ(−h+ ∆ + 1)

Γ
(
β−τ

2 − h+ λ1)
)

Γ
(
β+τ

2 + λ1 −m+ 1)
)

Γ(−h−m+ 2λ1 + 1)

7F6

[ β
2 , λ1 − h+ 1, λ1 −m, β4 + λ1 − h+m

2 + 1, β2 + 2λ1 − h−m,λ1 − h− τ
2 , λ1 −m+ τ

2 + 1

β
4 + λ1 − h+m

2 , β2 + λ1 − h+ 1, β2 + λ1 −m, 2λ1 − h−m+ 1, β−τ2 + λ1 − h, β+τ
2 + λ1 −m+ 1

; 1

]
.

(3.42)

3.4 Corrections to OPE Coefficients

Similarly as the contribution to the anomalous dimension at leading order in the light-cone limit

is given by the log(z) factors, the OPE coefficient corrections corresponding to the given exchanges

can be computed by performing the same exercise on the remaining non-log terms coming from

the double poles at t = 0 in the integral representation of the conformal blocks. In the following

we shall compute such contributions. Corrections to the OPE have the following form,

δP∆,J =
1

C0(β)

∫ 1

0

dz̄

z̄2
κβkβ(z̄)dDisc

[(
1− z̄
z̄

) τ
2

Gt
∆,J |reg

]
. (3.43)

We will consider a general spin-J exchange case. Our starting point would be the integral repre-

sentation of the regular terms of the conformal block calculated in (B.24). For both the anomalous

dimension (3.29) and OPE correction (3.43), there are three sets of integrals : a) the z̄ integral, b)

kernel integral in Mellin Barnes, and c) the integral coming from the t-channel conformal block

representation (B.23,B.24).To maintain uniformity we will transform the kernel in z̄−1
z̄

variable

using,

2F1(h, h, 2h, z) = (1− z)h2F1

[
h, h, 2h,

z

z − 1

]
. (3.44)

After this transformation we will write the kernel hypergeometric as a Mellin-Barnes integral

(3.20) in the t-variable. Now we are ready to perform the entire z̄ integral involving spins. Col-
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lecting all powers of z̄ from the kernel and the conformal block the z̄ integral becomes,

∫ 1

0

dz̄

z̄2
z̄ε
(

z̄

1− z̄

)β−∆−J−τ
2

+m−s+t

=
Γ(α + ε+ t)Γ(−α− t)

Γ(ε)
, (3.45)

with α = β−τ
2
− λ1 + m − 1 − s. The gamma functions contain terms that are mixed in s and t

integral variables. The t-integral can be performed using the second Barnes’ lemma (3.23). Just

like before the t-integral generates a Γ(ε), which cancels the one generated by the z̄-integral above.

Now that the divergences have canceled, we can smoothly take the ε → 0 limit. Applying this to

the OPE correction case (3.43), we will split the contribution into two parts (one coming from

Mack polynomial term and one from Mack derivative term). The final expression involves the

remaining integral in s,

δP
(1)
∆,J =αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)

×
∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ
2
− λ1 +m− 1− s)Γ( τ

2
+ λ1 −m+ 1 + s)2

Γ(β+τ
2

+ λ1 −m+ 1 + s)

× [(Hs+λ1−m−1 − π cotπ(s+ λ1 −m)−Hs−λ̄2
+H−λ2−J+m +H−λ̄2

)] .

(3.46)

The Mack derivative term is,

δP
(2)
∆,J =

αJ
(d−∆− 1)J

J∑
m=0

J−m∑
n=0

(−1)m+n+1

(λ1 −m− n)2
m+n

Bm,n(J,∆)

×
∫
C
dsΓ(−s) (λ1 −m− n)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m−n

Γ(β−τ2 − λ1 +m+ n− 1− s)Γ( τ2 + λ1 −m− n+ 1 + s)2

Γ(β+τ
2 + λ1 −m− n+ 1 + s)

.

(3.47)

In the above equations we have defined αJ as,

αJ = 2 sin2
[(τ

2
+ λ2

)
π
] κβ
C0(β)

Γ(2λ1)Γ(β)

Γ(λ1)2Γ(β
2
)2

1

(d− 2)J
. (3.48)

The 2 sin2
[(

τ
2

+ λ2

)
π
]

term comes from the double-discontinuity of the conformal block and its
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pre-factor:
(

1−z̄
z̄

) τ
2 Gt

∆,J |reg. Now we will proceed with the s-integral.

3.4.1 Terms with Mack Polynomial

For simplicity of calculation we will split (3.46) into three parts. I1 contains the integral with

Harmonic numbers that depend on s,

I1 = αJ

J∑
m=0

(−1)m+1 Am(J,∆)

(λ1 −m)2
m

∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ
2
− λ1 +m− 1− s)

Γ(β+τ
2

+ λ1 −m+ 1 + s)

× Γ(
τ

2
+ λ1 −m+ 1 + s)2 [Hs+λ1−m−1 −Hs−λ̄2

] .

(3.49)

I2 is an integral involving the Cotangent term,

I2 =αJπ
J∑

m=0

(−1)m

(λ1 −m)2
m

Am(J,∆)∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ
2
− λ1 +m− 1− s)Γ( τ

2
+ λ1 −m+ 1 + s)2

Γ(β+τ
2

+ λ1 −m+ 1 + s)

× cot π(s+ λ1 −m) .

(3.50)

I3 is the integral involving the remaining pieces,

I3 =αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆) [H−λ2−J+m +H−λ̄2
]

×
∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ
2
− λ1 +m− 1− s)Γ( τ

2
+ λ1 −m+ 1 + s)2

Γ(β+τ
2

+ λ1 −m+ 1 + s)
.

(3.51)

We will perform these integrals separately and then add the contributions up together. Closing the

contour to the right half plane gives rise to two series of poles in s,

s ∈ N s ∈ β − τ
2
− λ1 +m− 1 + N (3.52)
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These two infinite sum over residues again give rise to two 4F3 hypergeometrics. The integral in

I1 involves Harmonic numbers therefore the sum over residues would involve Harmonic numbers

in sum as well. To perform this sum we will employ the trick given in appendix (B.2). The final

result is,

I1 =αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)[
Cm(J,∆)

(
4F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ

2
+ λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2

+ λ1 −m+ 2, β+τ
2

+ λ1 −m+ 1
; 1

]

(HJ+∆
2
−m−1 −H−h+J+∆

2
)− G1

)

+Dm(J,∆)

(
4F3

[ β
2
, β

2
, β−τ

2
− 1, β−τ

2
− h+m

β, β−τ
2
− λ1 +m,−h+ β−τ

2
+ λ1

; 1

]
(Hβ−τ

2
−2 −Hβ−τ

2
−h+m−1) + G2

)]
,

(3.53)

where we have defined,

Cm(J,∆) =
Γ (λ1 − h+ 1) Γ (λ1 −m) Γ

(
τ
2

+ λ1 + 1−m
)2

Γ
(
m− 1 + β−τ

2
− λ1

)
Γ(−h−m+ 2λ1 + 1)Γ

(
β+τ

2
+ λ1 −m+ 1

) ,

Dm(J,∆) =
Γ
(
β
2

)2
Γ
(
β−τ

2
− 1
)

Γ
(
−h+m+ β−τ

2
)
)

Γ
(
τ−β

2
+ λ1 −m+ 1

)
Γ(β)Γ

(
β−τ

2
+ λ1 − h

) ,

(3.54)

to make these expressions more compact. The functions G1 and G2 are the Kampé de Fériet-like

functions defined in (B.39).
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For the remaining terms, performing the integral is straightforward and we obtain,

I2 =παJ

J∑
m=0

(−1)m

(λ1 −m)2
m

Am(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)

(
Cm(J,∆) cot [π (λ1 −m)]

×4 F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ

2
+ λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2

+ λ1 −m+ 2, β+τ
2

+ λ1 −m+ 1
; 1

]

+Dm(J,∆) cot

[
π

(
β − τ

2

)]
4F3

[ β
2
, β

2
, β−τ

2
− 1, β−τ

2
− h+m

β, β−τ
2
− λ1 +m,−h+ β−τ

2
+ λ1

; 1

])
,

(3.55)

and,

I3 =αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)
[H−λ2−J+m +H−λ̄2

]

[
Cm(J,∆) 4F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ

2
+ λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2

+ λ1 −m+ 2, β+τ
2

+ λ1 −m+ 1
; 1

]

+Dm(J,∆) 4F3

[ β
2
, β

2
, β−τ

2
− 1, β−τ

2
− h+m

β, β−τ
2
− λ1 +m,−h+ β−τ

2
+ λ1

; 1

]]
.

(3.56)

3.4.2 Terms with Derivative of Mack Polynomial

Performing the s-integral in (3.47) results in the following piece of the correction,

δP
(2)
∆,J =

αJ
(d−∆− 1)J

∑
m+n≤J

(−1)m+n+1

(λ1 −m− n)2
m+n

Bm,n(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m− n)Γ(1− λ̄2)

×

(
Cm+n(J,∆) 4F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ

2
+ λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2

+ λ1 −m+ 2, β+τ
2

+ λ1 −m+ 1
; 1

]

+Dm+n(J,∆) 4F3

[ β
2
, β

2
, β−τ

2
− 1, β−τ

2
− h+m

β, β−τ
2
− λ1 +m,−h+ β−τ

2
+ λ1

; 1

])
.

(3.57)
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This term has a double sum in m and n variables with the constraint that m+ n < J .

3.4.3 Total Correction to OPE Coefficients

The net contribution to the OPE correction for a general spin-J exchange is the sum of all the

above terms,

δP∆,J = δP
(1)
∆,J + δP

(2)
∆,J

= I1 + I2 + I3 + δP
(2)
∆,J (3.58)

We can recover the scalar exchange OPE correction by setting m = J = 0 in the above equation.

From (3.53) we obtain,

I1 = −α0
Γ(1− h+ ∆)

Γ(1− h+ ∆
2

)Γ(∆
2

)

(
C0(0,∆)

[
4F3

[
∆
2
, 1− h+ ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

1− h+ ∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

]

× (H∆
2
−1 −H−h+ ∆

2
)− G1

]
+D0(0,∆)

×
[

4F3

[
β
2
, β

2
, − 1 + β+τ

2
, − h+ β+τ

2

β, β−τ−∆
2

, − h+ β+∆−τ
2

; 1

]
(Hβ−τ

2
−2 −Hβ−τ

2
−h−1) + G2

]) (3.59)

In the above equation G1 and G2 are (B.39) with m = J = 0. The result for the cotangent

contribution is,

I2 =πα0
Γ(1− h+ ∆)

Γ(1− h+ ∆
2

)Γ(∆
2

)

(
D0(0,∆) cot

(
π(β − τ)

2

)
4F3

[
β
2
, β

2
, − 1 + β+τ

2
, − h+ β+τ

2

β, β−τ−∆
2

, − h+ β+∆−τ
2

; 1

]

+ C0(0,∆) cot

(
π∆

2

)
4F3

[
∆
2
, 1− h+ ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

1− h+ ∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

])
.

(3.60)

The constant terms are,
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I3 =− α0
Γ(1− h+ ∆)

Γ(1− h+ ∆
2

)Γ(∆
2

)

(
D0(0,∆) 4F3

[
β
2
, β

2
, − 1 + β+τ

2
, − h+ β+τ

2

β, β−τ−∆
2

, − h+ β+∆−τ
2

; 1

]

+ C0(0,∆)4F3

[
∆
2
, 1− h+ ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

1− h+ ∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

])

× (H−∆
2

+H∆
2
−h) .

(3.61)

Putting all the pieces together we obtain the total correction to the OPE coefficient to be,

δP t
∆,0 = I1 + I2 + I3. (3.62)

There is no Mack derivative term δP
(2)
∆,0 for the scalar exchange case. Thus for the scalar the

correction to the OPE coefficient essentially comes from the finite part (excluding the log term) of

the measure. For spin case, the additional contribution comes from δP
(2)
∆,J part.

3.4.4 Special Cases

The expression for OPE coefficients undergo simplifications in even dimensions. The terms

involving Kampé de Fériet-like double sums reduce to 4F3 Hypergeometrics. Since those terms

are generated by the I1 integral, their reduction can be easily seen from the integral representation

of I1,

I1 = αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−∆−J−τ
2 +m− 1− s)Γ(∆+J+τ

2 −m+ 1 + s)2

Γ(β+∆+J+τ
2 −m+ 1 + s)

×Am(J,∆) [Hs+λ1−m−1 −Hs−λ̄2
] .

(3.63)

The double sums were generated by the derivatives of 4F3 hypergeometric with respect to their

parameters. In even dimensions the Harmonic number parameters are integer separated,

Hs+λ1−m−1 −Hs−λ̄2
→ Hs+ ∆+J

2
−m−1 −Hs+ ∆+J

2
−h , (3.64)

83



In the above equation m is an integer while h is an integer in even dimensions. In this case, the

difference of Harmonic numbers reduces to a simple functions of s using the Harmonic number

recursion relations. For simplicity we will consider the case of scalars where (m = J = 0). The

difference (3.64) vanishes in two dimensions and in four dimensions it simplifies to,

Hs+ ∆
2
−1 −Hs+ ∆

2
−2 =

1

s+ ∆
2
− 1

. (3.65)

3.4.4.1 Two Dimensions

Since h=1 the integral for I1 vanishes in two dimensions,

I2d
1 = 0 (3.66)

For the other integrals (I2 and I3) we can directly take the final result for the scalar case from (3.60)

and (3.61) and substitute the values of h. Let us first define the following functions:

f1(h) =
Γ(1− h+ ∆)

Γ(1− h+ ∆
2

)Γ(∆
2

)
C0(0,∆) =

Γ
(

∆+τ+2
2

)2
Γ
(
β−∆−τ−2

2

)
Γ
(
β+∆+τ+2

2

) , (3.67)

f2(h) =D0(0,∆)
Γ(1− h+ ∆)

Γ(1− h+ ∆
2

)Γ(∆
2

)

=
Γ
(
β
2

)2
Γ(−h+ ∆ + 1)Γ

(−β+∆+τ+2
2

)
Γ
(

+β−τ−2
2

)
Γ
(−2h+β−τ

2

)
Γ(β)Γ

(
∆
2

)
Γ
(−2h+∆+2

2

)
Γ
(−2h+β+∆−τ

2

) .

(3.68)

The correction to OPE coefficient for a scalar in two dimension becomes,
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δP 2d
∆,0 =α0

(
f2(1)4F3

[
β
2
, β

2
, − 1 + β+τ

2
, − 1 + β+τ

2

β, β−τ−∆
2

, − 1 + β+∆−τ
2

; 1

]
(π cot(π∆/2)−H−∆

2
−H∆

2
−1)

+ f1(1)4F3

[
∆
2
, ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

]
(π cot(π(β − τ)/2)−H−∆

2
−H∆

2
−1)
)
,

(3.69)

3.4.4.2 Four Dimensions

For four dimensions, the I1 integral simplifies to,

I4d
1 = −α0

∫
C
dsΓ(−s) (λ1)s(1− λ̄2)s

(1 + λ2 − λ̄2)s

Γ(β−∆−τ
2
− 1− s)Γ(∆+τ

2
+ 1 + s)2

Γ(β+∆+τ
2

+ 1 + s)

1

s+ ∆
2
− 1

. (3.70)

This integral can be easily evaluated and results in two 4F3 hypergeometric functions only and no

Kampé de Fériet-like double sums.

δP 4d
∆,0 =α0

(
f1(2)4F3

[
∆
2
, − 1 + ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

−1 + ∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

]
(π cot(π∆/2)−H−∆

2
−H∆

2
−1)

− f1(2)4F3

[
−1 + ∆

2
, − 1 + ∆

2
, 1 + ∆+τ

2
, 1 + ∆+τ

2

−1 + ∆, 2− β−∆−τ
2

, 1 + β+∆+τ
2

; 1

]
(

2

∆− 2
)

+ f2(2)4F3

[
β
2
, β

2
, − 1 + β+τ

2
, − 2 + β+τ

2

β, β−τ−∆
2

, − 2 + β+∆−τ
2

; 1

]
(π cot(π(β − τ)/2)−H−∆

2
−H∆

2
−1)

− f2(2)4F3

[
β
2
, β

2
, − 2 + β+τ

2
, − 2 + β+τ

2

β, β−τ−∆
2

, − 2 + β+∆−τ
2

; 1

]
(

2

β − τ − 4
)
)
.

(3.71)

The extra 4F3 hypergeometrics in the four dimensions case compared to two dimensions are gen-

erated from the I1 integral (which vanished in 2d).
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4. CONFORMAL CORRELATOR AND DIAGRAMMATIC EXPANSION

In this chapter, we aim to understand whether (and to what extent) there exists a connection

between the basis of functions fi,j(z, z̄) and the functions appearing in diagrammatic perturbation

theory of massless φ4 theories. To sum up, we recast the expansion of dDiscGt(z, z̄) in terms of

functions inspired from the integrals found in diagrammatic massless φ4 theory.

4.1 Introduction

The ε-expansion technique of Wilson and Kogut [25, 26] and innumerable followups demon-

strated an effective way to compute the corrections to dynamical quantities (dimensions, coupling

etc.) along the RG flow. Recently, [59, 60] developed tools to compute the same quantities from

the bootstrap program. Equivalently, using the inversion formula of [19] in the light-cone limit

(1− z̄ � z � 1),

C(β) =

∫
d2z µ(z, z̄) kβ(z̄) dDisc

[
Gt(z, z̄)

]
LC + (t→ u) , (4.1)

[24, 61, 62] demonstrated that the tower of large spin double twist operators in the direct chan-

nel (β = τ` + 2`), is controlled by the perturbative expansion of the crossed channel correlator

around a Wilson-Fisher fixed point in d = 4 − ε dimensions1. The quantity of specific interest is

dDisc (Gt(z, z̄)) expanded around the WF fixed point,

dDisc
[
Gt(z, z̄)

]
LC = dDisc

[
(zz̄)∆φ

(1− z̄)∆φ

∑
O

CφφOG∆O,`(1− z, 1− z̄)

]
LC

, (4.2)

where O is the traceless symmetric exchange in the OPE of φ × φ around the perturbative fixed

point and G∆O,` is the conformal block. We have the following perturbative expansion for the

1See also [63, 49, 64, 65] for useful applications related to large spin expansion and inversion formula.
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scaling dimensions and three-point coefficients,

∆φ = ∆0
φ + g2γφ + . . . ,

∆O = 2∆φ + `+


gγO , ` = 0

g2γO , ` > 0

+ . . . ,

CφφO = C0
φφO + gC1

φφO + . . . ,

(4.3)

where we treat g and ε to be independent for now. We represent the double-discontinuity as,

dDisc
[
Gt(z, z̄)

]
LC = dDisc

[
(1− z̄)γ/2

] ∑
i+j=n

giεjfi,j(z, z̄) , n ≥ 0 , (4.4)

where γ is the anomalous dimension given in (4.3). This is either O(g) or O(g2) depending on

scalar and higher spin exchanges respectively. Due to the perturbative expansion leading (τ = 2)

scalar contributes to lowest orders upto O(g3) while O(g4) onwards scalars mix with other higher

spin operators.

4.2 Scalar Block Expansion

To expand the conformal block we first start with the integral representation of the block with

scalar exchange[56, 51, 66]. We expand it in the z → 0 limit and obtain (see -C.2 for details),

G∆,0(1− z, 1− z̄)

=
(1− z̄)∆/2

z̄

Γ(1 + ∆− h)Γ(∆)

Γ(∆
2

)3Γ(∆
2
− h+ 2)

[
(∆/2− (h− 1−∆/2)z̄)

×
∫ 1

0

dx I∆,h
1 (x, 0, 1− z̄)

(
2H∆/2−1 + log

zz̄

(1− x(1− z̄))2

)
+ (1− z̄)

∫ 1

0

dx I∆,h
2 (x, 0, 1− z̄)

(
2 + (h− 2−∆/2)(2H∆/2−1 + log

zz̄

(1− x(1− z̄))2
)

)]
.

(4.5)
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In this expansion we plug in the parameters,

d = 4− ε , ∆φ = (d− 2)/2 + γφ(g) , ∆ = 2∆φ + γ∆(g) = d− 2 + γ(g) , (4.6)

where γ = 2γφ + γ∆ and h = d/2. γ∆ and γφ are respectively,

γ∆(g) = g , γφ(g) =
g2

12
− g3

8
+

11

144
g2ε+ . . . . (4.7)

Even though g = f(ε), 2for now we will consider these two parameters as being independent.

Using (4.6), we expand (4.5) to get,

G∆,0(1− z, 1− z̄) =

(
zz̄

1− z̄

)∆φ

G∆,0(1− z, 1− z̄)

= (zz̄)∆φ
(1− z̄)g/2

z̄

Γ(2− ε+ γ(g))Γ(1− ε/2 + γ(g))

Γ(1 + γ(g)−ε
2

)3Γ(1 + γ(g)/2)

[
(1− z̄)

∫ 1

0

dxIγ(g),ε
2 (x, 1− z̄)

+ (1 + (γ(g)− ε)/2 + γ(g)/2 z̄)

∫ 1

0

dxIγ(g),ε
1 (x, 1− z̄)

]
.

(4.8)

where,

Iγ(g),ε
1 (x, 1− z̄) =

x
γ(g)−ε

2 (1− x)γ(g)/2

(1− x(1− z̄))1+
γ(g)−ε

2

[
2H γ(g)−ε

2

+ log
zz̄

(1− x(1− z̄))2

]
,

Iγ(g),ε
2 (x, 1− z̄) =

x1+
γ(g)−ε

2 (1− x)γ(g)/2

(1− x(1− z̄))1+
γ(g)−ε

2

[
2− (1 + γ(g)/2)

(
2H γ(g)−ε

2

+ log
zz̄

(1− x(1− z̄))2

)]
.

(4.9)

We utilize the following identity of harmonic numbers,

H γ(g)−ε
2

=
∞∑
n=1

(−1)n−1ζn+1

(
γ(g)− ε

2

)n
, (4.10)

2Obtained by setting the β−function to zero order by order in usual perturbative QFT.
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and,

x
γ(g)−ε

2 (1− x)γ(g)/2

(1− x(1− z̄))
γ(g)−ε

2

=
∞∑

m,n=0

(γ(g)
2

)m( ε
2
)n

m!n!
logm

x(1− x)

1− x(1− z̄)
logn

1− x(1− z̄)

x
. (4.11)

Using the expansion of anomalous dimension [67],

γ(g) = g + α1g
2 + α2g

3 + α3g
2ε+ . . . , α1 =

1

6
, α2 = −1

4
, α3 =

11

72
, (4.12)

we rewrite (4.8) in terms of the known integrals [68],

Iχ1(χ2, χ3, χ4, 1− z̄) =

∫ 1

0

xχ1 logχ2 x logχ3(1− x) logχ4(1− x(1− z̄))

1− x(1− z̄)
, (4.13)

where, for our purposes χ1 = 0, 1. Finally we obtain,

dDisc[G∆,0(1− z, 1− z̄)] = (zz̄)∆cl
φ

( ∞∑
n=2

gn

2nn!
logn(1− z̄)

) ∞∑
α=0

∑
i+j=α

giεjfi,j(z, z̄) . (4.14)

The dDisc starts from n ≥ 2. The details of fi,j(z, z̄) are given in appendix C.2.3 and we intend to

put these functions in a basis. In the following section, we perform the same analysis for twist−2

higher spin (` ≥ 2) operators.

4.3 Twist−2 Operators

In the z → 0 limit, the twist-2 block is given by (refer to (C.29) of C.2),

G2(z, z̄) =(zz̄)∆φ [(1− z̄)(1− z)]λ2−∆φ

∫ 1

0

dx
(x(1− x))d/2−2

(z + x(1− z))d/2−1(z̄ + x(1− z̄))d/2−1

× Γ(d− 3)

Γ(d/2− 1)2

∞∑
`=2

(d− 3 + 2`)

`2(`+ 1)2
C

(d−3)/2
` (1− 2x) .

(4.15)

For the order we are interested in, Γ(d − 3)/Γ(d/2 − 1)2 = 1. For twist−2 operators the scaling

dimensions are ∆ = 2∆φ+ `+g2γ` and hence λ2 = (∆− `)/2 = ∆φ+g2/2γ` and ∆φ = 1− ε/2.
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To perform the sum over spin we consider a generalization of the form,

∞∑
`=2

(2λ+ 2`)

(J2
λ)m

Cλ
` (x) = Fm,λ(x) , (4.16)

where for twist-2 operators J2
λ = (`+λ+ 1/2)(`+λ− 1/2), λ = (d− 3)/2 and d = 4− ε. Using

the differential equation [49] for Cλ
` (x),

Dλ ≡ (1− x2)d2
x − (2λ+ 1)xdx − (λ2 − 1/4) , DλC

λ
` (x) = −J2

λC
λ
` (x) , dx ≡ d/dx , (4.17)

we can write,

DλFm,λ(x) = −Fm−1,λ(x) , ∀m ≥ 1 , (4.18)

as the generalization of the leading contribution. First we determine F0,λ(x) and obtain the bound-

ary conditions for F1,λ and F2,λ and plug the lower order solutions in the rhs to determine the

m+ 1-th terms. Regarding the boundary conditions one can show that,

F ′m,λ(x = 0) = 0 . (4.19)

Using the integral representation of Cλ
` (x),

Cλ
` (x) =

∮
dz(1− 2xz + z2)−λz−1−` ,

F0,λ(x) =
∞∑
`=2

(2λ+ 2`)Cλ
` (x) = −2λ .

(4.20)

Solving for the first order we find,

F1,λ(x) = a0,0−
1

2
log(1−x2)+

ε

8
(8a0,1+2(a0,0+1) log(1−x2)−log2(1−x)−log2(1+x)) , (4.21)

where,

F1,λ(0) = a0,0 + ε a0,1 , (4.22)
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and the constrants a0,0 and a0,1 can be determined from solving (4.20) at x = 0 and expanding in

λ = (1 − ε)/2. For m = 2 a direct evaluation as a function of λ can be challenging, hence we

separate,

F2,λ(x) = g(x) + ε h(x) , (4.23)

where,

g(x) =b0,0 +
1 + a0,0

2
log(1− x2)− 1

2
log(1− x) log(1 + x) ,

h(x) =
1

24

[
6 tanh−1 x

(
ζ2 − 2Li2

x− 1

x+ 1

)
− 3 log2(1− x) log(1 + x)− log3(1 + x)

− 12Li3
x− 1

x+ 1
+ 3 log2(1− x2)(1 + a0,0) + 6 log(1− x2)(2a0,1 + b0,0) + 24b0,1 − 9ζ3

]
.

(4.24)

We also have,

F2,λ(0) = b0,0 + ε b0,1 . (4.25)

Here b0,0 and b0,1 are constants to be detemined by plugging in (4.18) in (4.20) and expanding at

x = 0 around λ = (1− ε)/2. We will use the representation,

tanh−1 x =
1

2
log

1 + x

1− x
. (4.26)

In terms of these decompostions, we can write (C.29) in the form (putting d = 4− ε),

G2(z, z̄) =(zz̄)∆φ((1− z̄)(1− z))g
2/2

∫ 1

0

dx

(z + x(1− z))(z̄ + x(1− z̄))

×
(

1 +
ε

2
log

(z + x(1− z))(z̄ + x(1− z̄))

x(1− x)

)
[g(1− 2x) + εh(1− 2x)] ,

=(zz̄)∆cl
φ((1− z̄)(1− z))g

2/2(F0(z, z̄) + εF1(z, z̄)) .

(4.27)
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The individual parts are,

F0(z, z̄) =

∫ 1

0

dx
g(1− 2x)

(z + x(1− z))(z̄ + x(1− z̄))
,

F1(z, z̄) =

∫ 1

0

dx

(z + x(1− z))(z̄ + x(1− z̄))

(
h(1− 2x) +

g(1− 2x)

2
log

(z + x(1− z))(z̄ + x(1− z̄))
zz̄[x(1− x)]

)
.

(4.28)

We see from (4.27) that the double discontinuities start from O(g4). F0 appears at O(g4) and F1

appears at O(g4ε). We can put F1 in the following format,

h(1− 2x) +
g(1− 2x)

2
log

(z + x(1− z))(z̄ + x(1− z̄))
zz̄[x(1− x)]

=
1

24

[
C0 + 3(C1 + 2ζ2 − 4) log x(1− x) + 3ζ2 log

1− x
x

+ 6(2− ζ2) log((z + x(1− z))(z̄ + x(1− z̄)))

− 6 log x log(1− x) log((z + x(1− z))(z̄ + x(1− z̄)))− log3(1− x)− 3 log(1− x) log2 x

+ 6 log x log(1− x) log x(1− x)− 6

(
log

1− x
x

Li2

(
x

x− 1

)
+ 2Li3

(
x

x− 1

))]
− log zz̄

2
g(1− 2x) ,

(4.29)

and the constants,

C0 = 24b0,1 + 24a0,1 log 2 + 6 log 2(2− ζ2) + 2 log3 2− 9ζ3 ,

C1 = 4a0,1 − ζ2 + 2 + log2 2 .

(4.30)

Most of the integrals above can be split into a general form as discussed in appendix C.2.4, where

we provide a list of such integrals. For the O(1) contribution, we know a0,0 = log 2 − 1 and

b0,0 = 1− ζ2/2− log2 2/2, so that g(x) in (4.23) becomes,

g(1− 2x) = 1− ζ2

2
− log x log(1− x)

2
. (4.31)

In terms of the integrals we thus have,

F0(z, z̄) =

(
1− ζ2

2

)
I0,0,0(z, z̄)− 1

2
I1,1,0(z, z̄) , (4.32)
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while for O(g4ε), we can write,

F1(z, z̄) =
1

24
(C0I0,0,0 + 3(C1 + 2ζ2 − 4)(I1,0,0 + I0,1,0) + 3ζ2(I0,1,0 − I1,0,0)− I0,3,0

+ 3I2,1,0 + 6I1,2,0 + 6((2− ζ2)J1 + J2 − J3))− log zz̄

2
F0(z, z̄) .

(4.33)

We will eventually take the z → 0 limit so that,

lim
z→0

F0(z, z̄) = − 1

2z̄

(
(ζ2−2) log z+2 log z̄+

1

6
log3 z̄+Li3(1− z̄)−Li3

(
z̄ − 1

z̄

)
−ζ3

)
. (4.34)

which matches with B.1 of [24] modulo overall factors. For the first sub-leading term (including

the first order expansion of z̄∆φF0(z, z̄)),

lim
z→0

F1(z, z̄) =
1

24z̄

[
3(8− log2 z̄)Li2(1− z̄)− 3Li2(1− z̄)2 + 6 log z̄Li3

(
z̄ − 1

z̄

)
+ 3(ζ2 − 2)(log2 z + 4 log z log z̄ − 6 log2 z̄)− 6 log2 z̄ − 12ζ2Li2(1− z̄)

− log4 z̄ + 9ζ4 − 6S2,2(1− z̄)

]
+ C0

log z̄ − log z

24z̄

+
C1 + 2ζ2 − 4

4z̄
(ζ2 − Li2(1− z̄)) + (4− ζ2 − C1)

log2 z̄ − log2 z

16z̄
.

(4.35)

The above two equations are the main results of this section. (4.34) is the twist-2 contribution at

O(g4) and (4.35) is the contribution of twist-2 at O(g4ε).

4.4 Generating Function

A large portion (if not all) of the functional basis for the conformal block expansion can be

generated by a “generating function" of the form,

I(g1,g2,g3)(z, z̄) = Disc

[∫
d4x6

x2+2g1δ
16 x2+2g2δ

26 x2+2g3δ
36 x

2−2(g1+g2+g3)δ
46

]
z→0

, (4.36)
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where zz̄ = (x2
12x

2
34)/(x2

13x
2
24) , (1 − z)(1 − z̄) = (x2

14x
2
23)/(x2

13x
2
24). We expand the generating

function in δ (using HypExp MATHEMATICA package) and at each order we can consider,

In(g1,g2,g3)(z, z̄) = ∂nδ Ig1,g2,g3(z, z̄)

∣∣∣∣
δ=0

. (4.37)

For example, I0
0,0,0 = log z − log z̄ = B0 which is the basis function at the zeroth order. As we

will demonstrate, both the diagrammatic perturbation and the conformal correlator expansion can

be written in terms of the functions derived from I(g1,g2,g3). The set {gi}, provides considerable

freedom for construction. However for our purposes,

I) g1 = g3 & g1 = −g2 , II) g1 = −g2 & g3 = (2−
√

3)g1 . (4.38)

covers most of the expense. For n ≥ 1, we denote the two classes as3,

In(1,−1,1) = Bn In
(1,−1,2−

√
3)

= Hn . (4.39)

The evaluation of the integral (4.36) is listed in appendix-(C.3.1). We will write the results of this

till first order,

= log(1− z̄)

(
log(z)− log(z̄)

z̄

)
(

log(1− z̄)(
Li2(1− z̄)− ζ2

z̄
) + log(1− z̄)2(

log(z̄)− log(z)

2z̄
)
)
δ .

(4.40)

At each δn, the power of log(1− z̄) goes from unity to n+ 1. However at each n, the new addition

to the basis comes from the functional coefficient accompanying log(1− z̄). All the higher powers

of log(1 − z̄) are accompanied by functions which already appeared at lower order in n. Thus,

we will construct our basis from the lowest order discontinuity. For class I), we find to few lowest

3We would like to stress that while the choice is not unique, it suffices our purpose.
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orders,

B0 = log(z)− log(z̄) , B1 = Li2(1− z̄)− ζ2 ,

B2 = −6ζ3 + 6Li3(1− z̄)− 6Li3

(
z̄ − 1

z̄

)
+ 3Li2(1− z̄) log(zz̄) + 9ζ2(log(z)− log(z̄)) + log3(z̄) ,

B3 = 21ζ4 − 24Li4(1− z̄)− 6Li3(1− z̄)(log(z)− log(z̄)) + 12S2,2(1− z̄) + 6ζ3(log(z)− log(z̄))

− 12ζ2(Li2(1− z̄)− ζ2) ,

(4.41)

while for class II),

H0 = B0 , H1 = B1 ,

H2 = 12ζ3 + 3Li2(1− z̄) log(zz̄)− 12Li3(1− z̄)− 6Li3

(
z̄ − 1

z̄

)
+ 3ζ2(log(z)− log(z̄)) + log3(z̄) .

(4.42)

Now we will try to argue why the generating function (4.43) seems a plausible choice.

4.4.1 Connection to Loop Integrals

The generating function we advocate is inspired by the class of integrals used to represent loop

diagrams [69, 70, 71] A particular class of integrals can be used to represent a large subset of loop

diagrams (rings, sunsets etc. see appendix C.3)4. This class of integrals are,

even-loop: IL = lim
δ→0

(
x2

23

x2
14

)δ/2f(δ)L/2f(−δ)L/2
∫

d4x6

x2−δ
16 x2−δ

46 x2+δ
26 x2+δ

36

,

odd-loop: IL = lim
δ→0

(
x2

23

x2
14

)δ/2f(δ)(L+1)/2f(−δ)(L−1)/2

∫
d4x6

x2−δ
16 x2−δ

46 x2+δ
26 x2+δ

36

,

(4.43)

where,

f(δ) =
Γ(δ)Γ(1− δ

2
)2

Γ(1 + δ
2
)2Γ(2− δ)

. (4.44)

Apart from the pre-factors, the final integral that needs to be done is the same. For δ → 0, the

finite piece is obtained by expanding the integral in δ which cancels the poles (in δ) coming from

4There are other class of integrals for ladder diagrams and convolutions of these integrals therein.
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the prefactor.

As a check of the generating function we can rewrite the loop integrals in appendix C.3 using

the basis above. For tree level and one-loop we find,

tree = log(1− z̄)
B0

4
, 1-loop = log2(1− z̄)

(
B0

4

)
+ log(1− z̄)

(
B0 −

B1

2

)
. (4.45)

For two-loop ring,

2-loop = log3(1− z̄)

(
−B0

24

)
+ log2(1− z̄)

(
B1

4

)
− log(1− z̄)

(
B2

12
+ (1− ζ2

2
)B0

)
.

(4.46)

To conclude the section, note that (4.36) is a generalization of the class of integrals in (4.43), where

we extended the notion of expansion to multiple parameters {gi} to allow for considerable free-

dom to construct a basis. The correspondence between loop expansion and conformal correlator

expansion suggests that the dDisc at O(L+ 2) from the correlator expansion associates with Disc

atO(L)− diagrams. For example, the leading dDisc atO(g2) term of the CFT correlator associates

with O(g) term in the tree level, O(g3) connects with 1−loop and so on.

4.5 Conformal Correlator Expansion

In this section we show that the conformal correlator expansion (4.14) can be cast in terms of

the basis obtained in the previous section. We will split the contributions into three types - pure

g terms, g2εn terms and everything else. Pure g terms corresponds to expansion at fixed d = 4

and we find that these can be obtained from ring-diagrams evaluated at d = 4. In the comparisons

we will always ignore the overall z̄ factor. In particular for all order-4 terms (O(g4),O(g3ε) and

O(g2ε2)) in the conformal correlator expansion the generating function (4.43) should be sufficient

as we will see in the next section. We further refine our statement by saying that all the basis can

be generated by very small number of generating functions for any given order. In fact we see that

till O(4) (4.36) suffices while an additional generating function is required at the next order5.

5The additional generating function is associated with the ladder diagrams.
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4.5.1 Pure g

We first list down the pure g contributions of the correlator,

O(g2) : − log(1− z̄)2

(
log(z)− log(z̄)

4z̄

)
,

O(g3) : log(1− z̄)2 Li2(1− z̄)− ζ2
4z̄

− log(1− z̄)3

(
log(z)− log(z̄)

24z̄

)
,

O(g4) : log(1− z̄)2

(
6ζ3 − 6Li3(1− z̄) + 6Li3

(
z̄−1
z̄

)
− 3Li2(1− z̄) log(zz̄) + 3ζ2(log(z̄)− log(z))− log3(z̄)

48z̄

+
−ζ2 + Li2(1− z̄)

24z̄
− 1

48z̄
log(zz̄)(log(z)− log(z̄)) +

22 log(z)− 22 log(z̄)

48z̄

)
+ log(1− z̄)3(

Li2(1− z̄)− ζ2
24z̄

)− log(1− z̄)4(
log(z)− log(z̄)

192z̄
) .

(4.47)

With the correlator expansion in hand we can now cast then in the basis constructed in (4.41),

O(g2) : − log(1− z̄)2B0

4
, O(g3) : log(1− z̄)2B1

4
− log(1− z̄)3B0

24
,

O(g4) : log(1− z̄)2

(
− 1

48
B2 +

1

24
B1 +

(11 + 3ζ2)

24
B0 −

1

48
log(zz̄)B0

)
+ log(1− z̄)3B1

24
− log(1− z̄)4 B0

192
,

O(g5) : log(1− z̄)2

(
3

288
B3 −

1

144
B2 −

(25 + 6ζ2)

48
B1 + (− 1

16
− 3

4
ζ3 +

1

24
ζ2)B0 + log(zz̄)(

1

48
B1 +

1

32
B0)

)
+ log(1− z̄)3

(
− 1

288
B2 +

1

144
B1 +

(11 + 3ζ2)

144
B0 −

1

288
log(zz̄)B0

)
+ log(1− z̄)4 B1

192
− log(1− z̄)5 B0

1920
.

(4.48)

We notice that in all the comparisons we were able to write the conformal block expansion com-

pletely in terms of B-terms. The coefficients were just constants or ζ functions and the log(zz̄)

term is an artifact of the kinematic factor. We also observe an interesting pattern, the discontinu-

ities at a given order gn appear as higher-discontinuities at order gn+1 upto overall coefficients.

The new information at every order is always contained in its lowest discontinuity (or the coeffi-

cient of log(1− z̄)2). The results obtained above are similar to loop diagram results in (4.45,4.46).

More specifically we notice that functions that appear at loop-L are the same one that appear in

conformal correlator at O(L+ 2).
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4.5.1.1 Prediction for O(g6)

With the observation noted in the previous section we can make a prediction for next order in

g,

O(g6) : ε log(1− z̄)6B0 + δ log(1− z̄)5B1 + γ log(1− z̄)4

(
B1 −

1

2
B2 +

22 + 6ζ2 − log zz̄

2
B0

)
+ β log(1− z̄)3

(
B3

96
− B2

144
− (25 + 6ζ2 − log zz̄)

48
B1 +

4ζ2 − 72ζ3 + 3 log zz̄ − 6

96
B0

)
+ α log(1− z̄)2

(
B4 · · ·

)
,

(4.49)

where (α, β, γ, δ, ε) are unfixed numerical coefficients. Only the lowest order discontinuity is un-

known, however we do know that it is composed of a combination of B4 and lower order Bis.

4.5.1.2 Twist-2 Matching

We will also try to put the twist-2 contribution (4.34) at O(g4) in terms of our basis. The O(g4)

contribution is,

T2 = log2(1− z)

(
log z (ζ2 − 2) + 2 log z +

1

6
log3 z + Li3(1− z)− Li3

(
z − 1

z

)
− ζ3

)
.

(4.50)

In terms of our basis we can cast this as,

T2 =

(
B2

6
− (2 + ζ2)B0 −

1

2
log(zz̄)B1

)
log2(1− z) . (4.51)

4.5.2 O(g2εn)

Here we will report an interesting observation regarding terms of type g2εn. Since these terms

have g2 they only contain a log2(1 − z̄) discontinuity. In our perturbative diagram computations

we have worked in d = 4 dimensions instead of d = 4 − ε. Working in d = 4 − ε would have

given us ε corrections to our basis and we believe that this would be the honest way to generate a
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basis for O(g2εn) terms. However, we can still get away with it because we notice nice pattern in

the terms of this type. Since these contributions are simple enough we can cast them in their own

basis,

O(g2ε) : log2(1− z̄)

(
B0

4
+
ζ2

4
+ log(z)

B0

8

)
,

O(g2ε2) : log2(1− z̄)

((
B0ζ2

16
+
ζ2

4
− ζ3

8

)
+

(
B0

8
+
ζ2

8

)
log(z) +

1

32
B0 log2(z)

)
,

O(g2ε3) : log2(1− z̄)
[
− ζ3

8
+

7ζ4

32
−B0

(
ζ3

16
− ζ2

16

)
−
(
B0ζ2

32
+

1

2

(
ζ2

4
− ζ3

8

))
log(z)

− 1

192
B0 log3(z) +

1

32
(B0 + ζ2) log2(z)

]
.

(4.52)

We noticed a similar pattern appearing as the pure g terms. At each order g2εn there are terms with

increasing power of log(z) which becomes terms of higher powers of log(z) in the next order. We

make a final comment that the basis comprises of terms of form,

≡ {B0, logn(z)}+ {ζ(n+ 1), · · · , ζ(2)}|n≥1 . (4.53)

4.5.3 Remaining Terms

At fourth order there are 3 possible contributions to the conformal block expansion -O(g4), O(g3ε)

and O(g2ε2). We have already cast O(g4) and O(g2ε2) in a basis and are left with O(g3ε) term

whose contribution is,

O(g3ε) : log3(1− z̄)

(
2ζ2 + (log(z) + 2)(log(z)− log(z̄))

48z̄

)
− log2(1− z̄)

48z̄

(
12ζ3 + 6Li2(1− z̄) log(z) + 12Li2(1− z̄)− 12Li3(1− z̄)− 6Li3

(
z̄ − 1

z̄

)
+ 6Li2(1− z̄) log(z̄)− 6ζ2(2 log(z)− log(z̄) + 2) + 12 log(z) + log3(z̄)− 12 log(z̄)

)
.

(4.54)
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At this point we remind ourself of the second choice of regularization which resulted in an addi-

tional basis H2 (4.42). We have already encountered the log3(1− z̄) piece before. So here we will

focus on only the log2(1− z̄) term. It can be cast into a basis as follows,

O(g3ε)|log2(1−z̄) :
1

48
H2 + log(zz̄)

B1

16
− ζ2

B0

4
+
B1 +B0

4
. (4.55)

With this result in hand we have been able to show our basis covers the expansion till O(4). This

implies that our one generating function (4.43) is sufficient for all terms upto O(4). At the next

order we have terms O(g5), O(g4ε), O(g3ε2) and O(g2ε3). While the first and last of the above

term already fit in our basis,O(g4ε) and O(g3ε2) (in C.33) has additional Li22(1 − z̄) contribution.

A similar issue arises for the O(g4ε) piece of twist−2 block as well. Note that the correspondence

we have drawn, suggests that O(5) in conformal block expansion should correspond to 3−loop

diagrams. At 3−loop level there exists an additional generating function (from ladder diagrams)

which accommodates O(g4ε) and O(g3ε2). We have not performed the computation explicitly, but

schematically show in Appendix(C.4), how the ladder diagram contributes a factor of Li22(1− z̄).
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5. SUMMARY

In this work we have made progress in understanding analytical and structural properties of

CFT and defect-CFT. We would like to conclude by summaries each chapter separately.

5.1 Correlators in Defect CFT

In the first chapter we constructed correlators of operators in arbitrary representation in the

presence of defects. This was done utilizing embedding formalism for defect CFT. We also identi-

fied all possible operators that can appear in the bulk-to-defect OPE of a bulk operator in arbitrary

representation. In the process of computing correlators we have computed all defect-conformal

invariants that can appear in n-point correlators. To conclude we also discuss one and two-point

correlators for spinning-defects.

With these results in hand it would be possible to constrain the defect CFT by studying crossing

relation of operators in arbitrary representations. A defect CFT (dCFT) has two sets of CFT data

in addition to couplings between the bulk and the defect sector. The total data-set of a dCFT is:

{∆, ∆̂, fijk, f̂ijk, bij}. (5.1)

The four-point crossing equation for the theory living on the defect (in principle) fixes all

the data of the defect sector. The remaining information about the bulk and the bulk-to-defect

couplings are captured by crossing equations of the 〈O1O2〉 and 〈O1O2Ô3〉 correlators. As an

example let us consider a two-point correlator of two bulk scalars. The bulk two point function

has two expansion channels (Figure 5.1), U and Y 1 . They yield a crossing equation in terms of

{bij, fijk},

∑
Ô

b2
ΦÔ
F (∆̂Ô, η) =

∑
O

fΦΦObO1F̃ (∆O, η). (5.2)

1We thank Daniel Robbins for the terminology.
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Figure 5.1: Two defect channels: a) U-Channel b) Y-Channel.

F and F̃ are conformal blocks which are functions of scaling dimensions and relevant cross ratios.

Their explicit form was calculated in [23, 21]. The crossing equation has been studied both ana-

lytically [23, 72] and numerically [34, 22]. This problem is challenging to solve numerically as

the right-side (5.2) does not have positive coefficients. This crossing relation does not provide us

with the complete information of the dCFT data as we are missing f̂ijk. To constrain the remaining

data we need crossing arising from three-point correlator involving two bulk and one defect local

operator. A three-point crossing involving scalars has the following schematic form:

∑
Ô1

∑
Ô2

bΦ1Ô1
bΦ2Ô2

f̂Ô1Ô2Ô3
G̃(η, ∆̂1, ∆̂2) =

∑
Φ̃

fΦ1Φ2Φ̃bΦ̃Ô3
G(∆Φ̃, η). (5.3)

∆ and ∆̂ stand for scaling dimensions of operators appearing in the intermediate channels. Ĝ and

G̃ are the conformal blocks, which are functions of cross-ratios. These functions can be determined

by acting with the Casimir operator as was done in [23]. These blocks were recently calculated

in [73] for the boundary case. We hope that calculations performed in this chapter would come in

handy for three-point bootstrap.

5.2 Resummation at Finite Conformal Spin

In this chapter we have considered the single block contributions to the anomalous dimensions

and OPE coefficients of operators [OO]∆,J . In order to achieve that, we have used the integral
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(Mellin) representation of the blocks which make the analysis and results fairly general. On the

one hand it is democratic with respect to space time dimensions, thus making the computation

uniform both in even and odd dimensions, specially where the closed form of the conformal blocks

is not available. Further, the Mellin integral makes the additional contributions (coming from the

lower limit of the z integral) explicit, making it possible to re-sum correctly for any finite β.

The anomalous dimensions and the corrections to the OPE coefficients can be written as an

exact function of the conformal spin (β) in terms of Wilson polynomials for each exchange contri-

bution in the t−channel. These Wilson polynomials are the generalizations of the residues of the

6j−symbols recently discussed in [47].

The closed form expressions create a possibility for numerical exploration along with a proper

handling of the associated error estimates. The computation for operators [O1(∂2)nO2]∆,J with

∆ = ∆1 + ∆2 + J + 2n can be handled in the exact same fashion as for the n = 0 case. In

this case, one needs to consider the descendant contributions from the Mellin representation of the

blocks we neglected in this work2. Along with the descendant contributions from the block, one

also needs to expand the kernel in the inversion formula (3.6). For our case, we considered,

lim
z→0

GJ+d−1,∆+1−d(z, z̄) ∼ z
J−∆

2 kβ(z̄) + . . . , (5.4)

where . . . terms become relevant in the subleading orders (i.e. for n > 0 cases). As a result,

there is a mixing problem involved at the subleading orders. For example zi term coming from the

kernel and zj term can combine to zn where n = i + j. This can be interpreted in the following

way. At any subleading order, we have contributions from the primary [O1(∂2)nO2]∆,J and the

m−th descendant of the primary [O1(∂2)n−mO2]∆,J . It would be interesting to see how these

contributions can be disentangled3.

2We focused on the t = 0 poles. For the descendants, we need to take into account t = n poles in (B.1)
3We thank Aninda Sinha for discussion on this point.
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5.3 Conformal Correlators and Diagrammatic Expansion

In the final chapter we tried to find relation between the two methods of computing observables

in a CFT, perturbative diagrams and conformal correlator expansion.

We explore the possibility that the basis of functions can be derived from a simple generating

function systematically. The generating function works well for pure g terms and mixed terms in

the expansion upto O(g4). FromO(g5) onwards a new class of generating functions is additionally

required, albeit the number of such class of functions should be finite.

The motivation of the generating function comes from diagrammatic perturbation theory for

massless φ4 theory. (4.36) is a generalization of the master integrals for a large subset of loop

Feynman diagrams. Further, (4.36) can be deployed to rewrite both the expansion of the conformal

correlator and the loop Feynman diagrams in terms of the same basis of functions4.

Our technique can also be applied to other situations with ε-expansion like boundary CFTs

[74]. The boundary CFT case is much simpler from the conformal correlator expansion since two-

point functions are non-trivial [75, 76] and have conformal blocks associated to them. In addition

the crossing equation can be satisfied in boundary CFT with finite number of terms at lower orders

in ε-expansion.

4For the diagrammatic computation, the regularization scheme does not alter the structural properties we are con-
cerned with. Hence, the same building blocks used to rewrite these diagrams.
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APPENDIX A

SECTION 2

A.1 Notations

We will summarize the notation used throughout the paper in this section. Notations for direc-

tions are,

M,N, · · · → Directions of the embedding space.

A,B, · · · → Directions parallel to the defect in the embedding space.

I, J, · · · → Directions orthogonal to the defect in the embedding space.

m,n, · · · → Directions in physical space.

a, b, · · · → Direction parallel to defect in physical space.

i, j, · · · → Directions othogonal to the defect in physical space.

(A.1)

Notation for position and auxiliary vectors:

Pa → Position of bulk local operator a.

Pâ → Position of defect local operator â.

Θ(i)
a /Z

(i)
a → Auxiliary vector associated with i-th column/row of bulk operator.

Θ
(i)
â /Z

(i)
â → Auxiliary vector associated with i-th column/row of defect operator (SO(p+ 1, 1))).

Θ̄
(i)
â /Z̄

(i)
â → Auxiliary vector associated with i-th column/row of defect operator (SO(q)).

(A.2)
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Notation for representation:

nC/Ra → Number of columns/rows in bulk-operator a.

n
C/R
â → Number of columns/rows in defect-operator â.

n
C/R
â → Number of columns/rows in defect-operator â.

λa → Representation of a bulk operator under SO(d+ 1, 1).

λâ → Representation of a defect operator under SO(1 + p, 1).

λ̄â → Representation of a defect operator under SO(q).

l(i)a /h
(i)
a → Length/height of i-th row/column of bulk operator.

l
(i)
â /h

(i)
â → Length/height of i-th row/column of defect operator under SO(p+ 1, 1).

l̄
(i)
â /h̄

(i)
â → Length/height of i-th row/column of defect operator under SO(q).

(A.3)

Notation of operators and couplings:

O → Bulk operator.

Ô → Defect operator.

bOÔ → Bulk-to-defect coupling between bulk O and defect Ô.

fOOO → Three-point coupling of Bulk sector.

f̂ÔÔÔThree-point coupling of defect sector.

∆→ Scaling dimension of bulk operator.

∆̂→ Scaling dimension of defect operator.

(A.4)

A.2 Invariants

We will list down all invariants schematically (and suppressing the i-indices) beginning with

no C-tensor case. Hats on vectors means that they are associated with defect local operators. We
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consider both SO(1 + p, 1) and SO(q) contractions together:

PΦ→ Gaâ,

ΦΦ→ H̃âb̂.

(A.5)

Moving on to single C-tensor case:

CPP → Kab, K̄ab,

CP P̂ → Kaâ,

CP̂ P̂ → can be reduced using Kaâ,

CPΦ→ G̃aâ, CP̂Φ→ can be reduced using G̃aâ and Kaâ ,

ĈPP → Nk̂ab,

ĈP P̂ → Ñâa,

ĈP̂ P̂ → K̃âb̂,

ĈPΦ→ not possible, CP̂Φ→ not possible.

(A.6)

Moving on to two bulk C-tensor contractions:

CC → Ha,

CCPP → Sab, S̄ab,

CCPP̂ → can be reduced using Sab, S̄ab,

CCP̂ P̂ → can be reduced using Sab, S̄ab,

CCPΦ→ can be reduced using CPΦ and Hab, CCP̂Φ→ can be reduced.

(A.7)
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Two defect C-tensor contractions:

ĈĈ → Hâb̂,

ĈĈPP → can be reduced using Hâb̂,

ĈĈP P̂ → can be reduced,

ĈĈP̂ P̂ → can be reduced,

ĈĈPΦ→ not possible, ĈĈP̂Φ→ not possible.

(A.8)

Lastly we consider one defect C-tensor and one bulk C-tensor contractions,

ĈC → Haâ,

ĈCPP → can be reduced using Haâ,

ĈCP P̂ → can be reduced,

ĈCP̂ P̂ → can be reduced,

ĈCPΦ→ can be reduced, ĈCP̂Φ→ can be reduced.

(A.9)

A.3 Useful Identities

In this section we will list down some important identities involving C-tensors. We will first

begin with single C-tensor case:

(P1 ◦ P2)CAI
2 P1AP2I = (P1 • P2)CAI

2 P2AP1I + (P2 ◦ P2)CAI
2 P1AP1I , (A.10)

CAI
1 P2AP3I =

(P1 • P2)

(P1 • P1)
CAI

1 P1AP3I +
(P1 ◦ P3)

(P1 ◦ P2)
CAI

1 P2AP2I

− (P1 ◦ P3)(P1 • P2)

(P1 ◦ P2)(P1 • P1)
CAI

1 P1AP2I .

(A.11)

Moving on to two C-tensor identities,

(P1 ◦ P1)CAI
1 CAJ

2 P3IΦJ = (P1 ◦ P3)CAI
1 CAJ

2 P1IΦJ − (CAI
2 P1AΦJ)(CAI

1 P1AP3I), (A.12)
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CAI1 CAJ2 P2IP1J =
(P1 ◦ P2)2

(P1 ◦ P1)(P2 ◦ P2)
CAI1 CAJ2 P1IP2J −

(P1 • P2)

(P1 ◦ P1)(P2 ◦ P2)
CAI1 P1AP2IC

BJ
2 P2BP1J

− 1

(P1 ◦ P1)
CAI1 P1AP2IC

BJ
2 P1BP1J −

1

(P2 ◦ P2)
CAI1 P2AP2IC

BJ
2 P2BP1J ,

(A.13)

(P2 • P2)CAI
1 CBI

2 P1IP3J = (P2 • P3)CAI
1 CBI

2 P1AP2B + (CAI
1 P1AP2I)(C

AB
2 P3AP2B). (A.14)

A.4 Equation for Tensor Structures

In this section we will list down the non-negative integer equations for different correlators.

A.4.1 〈OO〉

We list down the powers of different invariants in a tensor structure,

H
(i,j)
1 → aij, H

(i,j)
2 → bij, S

(i,j)
12 → cij, S̄

(i,j)
12 → dij, K

(i)
12 → ei,

K
(i)
21 → fi, K̄

(i)
12 → gi, K̄

(i)
21 → hi.

(A.15)

Using a similar notation listed in (2.66) we have:

h
(i)
1 =

nC1∑
j

aij +

nC2∑
j

cij +

nC2∑
j

dij + ei + gi

h
(i)
2 =

nC1∑
j

bij +

nC1∑
j

cji +

nC1∑
j

dji + fi + hi

(A.16)

A.4.2 〈OOO〉

Powers of each invarinat are denoted as,

H
(i,j)
1 → aij, H

(i,j)
2 → bij, H

(i,j)
3 → cij,

S
(i,j)
12 → dij, S

(i,j)
23 → eij, S

(i,j)
31 → fij,

S̄
(i,j)
12 → gij, S̄

(i,j)
23 → hij, S̄

(i,j)
31 → iij,

K
(i)
12 → ji, K

(i)
21 → ki, K

(i)
23 → li, K

(i)
32 → mi, K

(i)
31 → ni, K

(i)
13 → oi,

K̄
(i)
12 → pi, K̄

(i)
21 → qi, K̄

(i)
23 → ri, K̄

(i)
32 → si, K̄

(i)
31 → ti, K̄

(i)
13 → ui.

(A.17)
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We get the following system of equation:

h
(i)
1 =

nC1∑
j

aij +

nC2∑
j

dij +

nC3∑
j

fji +

nC2∑
j

gij +

nC3∑
j

iji + ji + oi + pi + ui,

h
(i)
2 =

nC2∑
j

bij +

nC1∑
j

dji +

nC3∑
j

eij +

nC1∑
j

gji +

nC3∑
j

hij + ki + li + qi + ri,

h
(i)
3 =

nC3∑
j

cij +

nC2∑
j

eji +

nC1∑
j

fij +

nC2∑
j

hji +

nC1∑
j

iij +mi + ni + si + ti.

(A.18)

A.4.3 〈OOÔ〉

Let us denote the power of each invariant by the following symbols,

G
(i)

13̂
→ ai, G

(i)

23̂
→ bi, H

(i,j)
1 → cij, H

(i,j)
2 → dij, K̃

(i)
12 → ei, K

(i)
12 → fi

K̃
(i)
21 → gi, K

(i)
21 → hi, G̃

(i,j)

13̂
→ iij, G̃

(i,j)

23̂
→ jij, H

(i,j)

13̂
→ kij, H

(i,j)

23̂
→ lij,

S
(i,j)
12 → mij, S̄

(i,j)
12 → nij, K

(i)

13̂
→ oi, K

(i)

23̂
→ pi, N

(i)

3̂,12
→ qi.

(A.19)

Let the number of Θ-rows of the bulk operators be nC1 and nC1 . For the defect operator we have

two quantum number whose Θ and Φ rows are nC
3̂

and n̄C
3̂

,

h
(i)
1 =

nC1∑
j

cij + ei + fi +

n̄C
3̂∑
j

iij +

nC
3̂∑
j

kij +

nC2∑
j

mij +

nC2∑
j

nij + oi,

h
(i)
2 =

nC2∑
j

dij + gi + hi +

n̄C
3̂∑
j

jij +

nC
3̂∑
j

lij +

nC1∑
j

mji +

nC1∑
j

nji + pi,

h
(i)

3̂
=

nC1∑
j

kji +

nC2∑
j

lji + qi,

h̄
(i)

3̂
= ai + bi +

nC1∑
j

iji +

nC2∑
j

jji.

(A.20)
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APPENDIX B

SECTION 3

B.1 Integral Representation

We will start with the integral representation of the conformal blocks following [77, 56, 51].

The integral representation for the four point function 〈O1O2O3O4〉 in the OPE decomposition

O1 ×O2 and O3 ×O4 due to the exchange of an operator OJ,∆, is given by,

f∆,J(u, v) =
1

γλ1,aγλ̄1,b

∫
C
dsdt Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)Γ(−t− a− b)

× Γ(s+ t+ a)Γ(s+ t+ b)P∆,J(s, t, a, b)usvt ,

(B.1)

where we have stripped off the overall kinematical factors. The contour C extends from γ − i∞ to

γ + i∞ where following [56, 51],

Re(s) < λ2, λ̄2 , Re(t) < 0,−a− b , Re(c) < a, b , (B.2)

and for the t integral, −a− s,−b− s < γ < 0,−a− b. In general,

f∆,J(u, v) =
1

kd−∆,J

γλ1,a

γλ̄1,b

G∆,J(u, v) +
1

k∆,J

γλ̄1,a

γλ1,a

Gd−∆,J(u, v) , (B.3)

is a linear combination of the physical block and the shadow respectively from the s = λ2 + n and

s = λ̄2 + n poles. We have also used the definitions,

λ1 =
∆ + J

2
, λ̄1 =

d−∆ + J

2
, (B.4)

λ2 =
∆− J

2
, λ̄2 =

d−∆− J
2

. (B.5)
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a = ∆21

2
and b = ∆34

2
where ∆ij = ∆i −∆j , and,

k∆,J =
1

(∆− 1)J

Γ(d−∆ + J)

Γ(∆− h)
, γx,y = Γ(x+ y)Γ(x− y) , and h = d/2 . (B.6)

d is the space-time dimension. P∆,J(s, t, a, b) is the Mack polynomial given by,

P∆,J(s, t, a, b) =
1

(d− 2)J

∑
m+n+p+q=J

J !

m!n!p!q!
(−1)p+n(2λ̄2 + J − 1)J−q(2λ2 + J − 1)n(λ̄1 + a− q)q

× (λ̄1 + b− q)q(λ1 + a−m)m(λ1 + b−m)m(d− 2 + J + n− q)q(h− 1)J−q

× (h− 1 + n+ a+ b)p(λ2 − s)p+q(−t)n .

(B.7)

The Mack polynomial and it’s derivative for a = b = 0 are,

P∆,J(s, 0) =
(d−∆− 1)J

(d− 2)J

J∑
m=0

Am(J,∆)(λ2 − s)J−m ,

P ′∆,J(s, 0) =
(d−∆− 1)J

(d− 2)J

∑
1≤m+n≤J

Bm,n(J,∆)(λ2 − s)J−m−n ,
(B.8)

with

Am(J,∆) =
(1 + J −m)m(h− 1)m(λ1 −m)2

m(λ̄2 +m)2
J−m(2h− 2 +m)J−m(2λ̄2 − 1 + J)m

Γ(m+ 1)(d−∆− 1)J

× 4F3

[
h− 1, h+m− 1,m− J, 2λ̄2 + J − 1 +m

2h− 2 +m, λ̄1 − J +m, λ̄1 − J +m
; 1

]
,

Bm,n(J,∆) =
(−1)n+1(1− δ0,n)(∆− 1)n

n
(λ1 −m)2

m(1 + J −m− n)m+n

×
(h− 1)m+n(h+m+ n− λ1)2

J−m−nΓ(2h+m+ 2n− 2)J−m−n(2λ̄2 − 1 + J)m+n

Γ(m+ 1)(d−∆− 1)J

× 4F3

[−1 + h+ n,−1 + h+m+ n,−J +m+ n,−1 + 2h+m+ n−∆

−2 + 2h+m+ 2n, h+m+ n− λ1, h+m+ n− λ1

; 1

]
.

(B.9)

In what follows, we will select a scheme to write down the integral representation corresponding to

the physical block itself in d dimensions. We consider the integral representation of the conformal
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blocks for a general spin exchange, given by,

G∆,J(1−z, 1−z̄) =
kd−∆,J

γ2
λ1

∫
C
dsdt Γ(λ2−s)Γ(λ̄2−s)Γ(−t)2Γ(s+t)2P∆,J(s, t)(zz̄)t[(1−z)(1−z̄)]s .

(B.10)

By closing the contour on the rhs of the complex s−plane, one finds there are two sets of poles at

s = λ2 + n and s = λ̄2 + n characterizing the physical and the shadow blocks respectively. The

idea is to remove the contribution of the shadow block completely. This is achieved by multiplying

the integral representation by a phase,

p(s) =
sin π(λ̄2 − s)
sin π(λ2 − λ̄2)

sinπs

sin πλ1

, (B.11)

such that the shadow poles are now completely removed. The phase satisfies the shift symmetry

property such that for s→ s± k, p(s± k) = p(s). We then write the modified integral definition

for the physical block as,

G∆,J(1− z, 1− z̄) =
kd−∆,J

γ2
λ1

∫
C
dsdt Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)2Γ(s+ t)2p(s)

× P∆,J(s, t)(zz̄)t[(1− z)(1− z̄)]s .

(B.12)

We will be mainly interested in the z → 0 limit of the block for the leading corrections to the

dimension and the OPE coefficients discussed in the paper. Notice that for this limit, only the

contribution from the t = 0 pole suffices. Moreover, we can rewrite z̄s+t as,

z̄s+t =
∞∑
k=0

(−1)k

k!
(s+ t)k

(
1− z̄
z̄

)k
, (B.13)
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Thus, after taking the t = 0 pole,

lim
z→0

G∆,J(1− z, 1− z̄) =
kd−∆,J

γ2
λ1

∫
C
ds Γ(λ2 − s)Γ(λ̄2 − s)Γ(s)p(s)

×
∞∑
k=0

(−1)k

k!
Γ(s+ k)

(
1− z̄
z̄

)s+k[
P∆,J(s, 0)(log z +Hs−k−1 +Hs−1)

+ P ′∆,J(s, 0)] ,

(B.14)

whereHn is the Harmonic numberH(n). Before separating out the contributions to the anomalous

dimensions and the OPE coefficients, we will perform a succession of shifts in the s−variable

(mainly for the convenience of the computations to be followed). First we shift s → s − k, such

that,

lim
z→0

G∆,J(1− z, 1− z̄) =
kd−∆,J

γ2
λ1

∫
C
ds Γ(s)p(s)

(
1− z̄
z̄

)s
×
∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)

[
P∆,J(s− k, 0)

× (log z +Hs−k−1 +Hs−1) + P ′∆,J(s− k, 0)] .

(B.15)

The forms of the Mack polynomial and its derivative is given in (B.8) along with the coefficients

in (B.9). Plugging in those simplifications, we find,

lim
z→0

G∆,J(1− z, 1− z̄) =
Γ(∆ + J)

Γ(∆+J
2 )4Γ(h−∆)(d− 2)J

∫
C
ds Γ(s)p(s)

(
1− z̄
z̄

)s
×
∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)

[ J∑
m=0

Am(J,∆)(λ2 − s+ k)J−m

× (log z +Hs−k−1 +Hs−1) +
∑

1≤m+n≤J

Bm,n(J,∆)(λ2 − s+ k)J−m−n

]
.

(B.16)
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Based on the above separation, we can identify the coefficients of the log and regular terms as,

lim
z→0

G∆,J(1− z, 1− z̄)
∣∣∣∣
log z

=
Γ(∆ + J)

Γ(∆+J
2 )4Γ(h−∆)(d− 2)J

J∑
m=0

Am(J,∆)

∫
C
ds Γ(s)p(s)

(
1− z̄
z̄

)s
×
∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)(λ2 − s+ k)J−m ,

lim
z→0

G∆,J(1− z, 1− z̄)
∣∣∣∣

reg
=

Γ(∆ + J)

Γ(∆+J
2 )4Γ(h−∆)(d− 2)J

∫
C
ds Γ(s)p(s)

(
1− z̄
z̄

)s
×
∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)

[ J∑
m=0

Am(J,∆)(λ2 − s+ k)J−m

× (Hs−k−1 +Hs−1) +
∑

1≤m+n≤J

Bm,n(J,∆)(λ2 − s+ k)J−m−n

]
.

(B.17)

This separation will form the starting point of discussion in the main text. However, as it stands

(B.17) is still not ready in its final form to proceed with calculations. To put this in its final form,

we will have to perform the k−sum now. As it stands,

∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)(λ2 − s+ k)J−m

=
π

sin πs

Γ(λ1 −m− s)Γ(1− J +m+ s− λ2 − λ̄2)Γ(λ̄2 − s)
Γ(1− λ1 +m)Γ(1− λ̄2)

,

(B.18)

within the chosen domain of the s−contour. Similarly,

∞∑
k=0

(−1)k

k!
Γ(λ2 − s+ k)Γ(λ̄2 − s+ k)Γ(s− k)(λ2 − s+ k)J−m(Hs−k−1 +Hs−1)

=
π

sin πs

Γ(λ1 −m− s)Γ(1− J +m+ s− λ2 − λ̄2)Γ(λ̄2 − s)
Γ(1− λ1 +m)Γ(1− λ̄2)

(Hs−1 − π cot πs+Hm−λ1

−Hs−λ1+m−λ̄2
+H−λ̄2

) ,

(B.19)

We will now proceed with each of these terms separately.
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B.1.1 Log Term

Consider the integral representation of the log z term. After the k−summation, we get,

lim
z→0

G∆,J(1− z, 1− z̄)

∣∣∣∣
log z

=
Γ(∆ + J)

Γ(∆+J
2

)4Γ(h−∆)(d− 2)J

J∑
m=0

Am(J,∆)

∫
C
ds Γ(s)p(s)

(
1− z̄
z̄

)s
× π

sin πs

Γ(λ1 −m− s)Γ(1− J +m+ s− λ2 − λ̄2)Γ(λ̄2 − s)
Γ(1− λ1 +m)Γ(1− λ̄2)

,

(B.20)

The choice of the phase factor now becomes more transparent. We can write,

p(s)
π

sin πs

Γ(λ̄2 − s)
Γ(h−∆)

=
−π

sinπλ1

Γ(1 + ∆− h)

Γ(1 + s− λ̄2)
, (B.21)

from which,

= lim
z→0

G∆,J(1− z, 1− z̄)

∣∣∣∣
log z

=− Γ(2λ1)Γ(1 + ∆− h)

Γ(λ1)4(d− 2)J

J∑
m=0

Am(J,∆)

∫
C
ds Γ(s)

(
1− z̄
z̄

)s
× π

sin πλ1

Γ(λ1 −m− s)Γ(1 +m+ s− λ1 − λ̄2)

Γ(1− λ1 +m)Γ(1 + s− λ̄2)Γ(1− λ̄2)
,

(B.22)

Finally we shift s→ s+ λ1 −m so that,

Gt
∆,J |log = lim

z→0
G∆,J(1− z, 1− z̄)

∣∣∣∣
log z

=− Γ(2λ1)

Γ(λ1)2(d− 2)J

J∑
m=0

(−1)m
Am(J,∆)

(λ1 −m)2
m

∫
C
ds

(
1− z̄
z̄

)λ1−m+s
Γ(−s)(λ1 −m)s(1− λ̄2)s

(1 + ∆− h)s+J−m
,

(B.23)

The s = n poles (closing the contour along C) reproduces the physical block.
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B.1.2 Regular Terms

Similar to the log, term we can evaluate the regular term (the correction to the OPE coeffi-

cients) by following the exact same steps as above. Starting with the second term in (B.17), and

performing the k−sum,

lim
z→0

G∆,J(1− z, 1− z̄)

∣∣∣∣
reg

=− Γ(2λ1)Γ(1 + ∆− h)

Γ(λ1)4(d− 2)J

π

sin πλ1

∫
C
ds

Γ(s)

Γ(1 + s− λ̄2)Γ(1− λ̄2)

(
1− z̄
z̄

)s
×
[ J∑
m=0

Am(J,∆)
Γ(λ1 −m− s)Γ(1 +m+ s− λ1 − λ̄2)

Γ(1− λ1 +m)
(Hs−1 − π cot πs+Hm−λ1

−Hs−λ1+m−λ̄2
+H−λ̄2

) +
∑

1≤m+n≤J

Bm,n(J,∆)
Γ(λ1 −m− n− s)Γ(1 +m+ n+ s− λ1 − λ̄2)

Γ(1− λ1 +m+ n)

]
,

(B.24)

To get the final form we can shift the variables s → s + λ1 − m. However, in order to keep

coherence with the expressions used in the main text, we will treat the integrals separately, by

writing,

lim
z→0

G∆,J(1− z, 1− z̄)
∣∣∣∣

reg

=− Γ(2λ1)Γ(1 + ∆− h)

Γ(λ1)4(d− 2)J

π

sinπλ1

[ J∑
m=0

Am(J,∆)

×
∫
C
ds

Γ(s)Γ(λ1 −m− s)Γ(1 +m+ s− λ1 − λ̄2)

Γ(1 + s− λ̄2)Γ(1− λ̄2)Γ(1− λ1 +m)

(
1− z̄
z̄

)s
(Hs−1 − π cotπs+Hm−λ1

−Hs−λ1+m−λ̄2

+H−λ̄2
) +

∑
1≤m+n≤J

Bm,n(J,∆)

∫
C
ds

Γ(s)Γ(λ1 −m− n− s)Γ(1 +m+ n+ s− λ1 − λ̄2)

Γ(1 + s− λ̄2)Γ(1− λ̄2)Γ(1− λ1 +m+ n)

(
1− z̄
z̄

)s]
.

(B.25)

Note that the general contour C works for both the integrals since we are choosing the contour in

a way such that apart from the poles s = λ1−m+ k for the first integral and s = λ1−m− n+ k

for the second integral, there are no new poles. For any general m,n, k values the minimal pole in

both the integrals is at s = λ2 (for maximal m and m + n values and k = 0). The contour C is

chosen such that s = λ2 + n poles are always allowed. Now we shift s→ s + λ1 −m in the first
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integral and s→ s+ λ1 −m− n in the second integral, so that,

Gt∆,J |reg = lim
z→0

G∆,J(1− z, 1− z̄)
∣∣∣∣

reg

=− Γ(2λ1)

Γ(λ1)2(d− 2)J

[ J∑
m=0

(−1)m
Am(J,∆)

(λ1 −m)2
m

∫
C
ds

Γ(−s)(λ1 −m)s(1− λ̄2)s
(1 + λ2 − λ̄2)s+J−m

(
1− z̄
z̄

)s+λ1−m

(Hs+λ1−m−1

− π cotπ(s+ λ1) +Hm−λ1
−Hs−λ̄2

+H−λ̄2
)

+
∑

1≤m+n≤J

(−1)m+n Bm,n(J,∆)

(λ1 −m− n)2
m+n

∫
C
ds

Γ(−s)(λ1 −m− n)s(1− λ̄2)s
(1 + λ2 − λ̄2)s+J−m−n

(
1− z̄
z̄

)s+λ1−m−n]
,

(B.26)

which is the starting point for (3.46) and (3.47) in section 3.4.

B.2 Integrals with Harmonic Number

In this appendix we will show in detail the steps required to evaluate the integral I1 in (3.49).

The difficulty in integrating it is that the expression contains a Harmonic number. Harmonic num-

bers are difficult to sum over once summing over residues. The equation (3.49) has the following

functional form, ∫
C
ds f(s, a, b, · · · )Γ(s+ k)Hs+k−1. (B.27)

We will solve this issue by generating this expression by differentiating one of the Gamma func-

tions. We begin with the I1 integral,

I1 = αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ2 − λ1 +m− 1− s)Γ( τ2 −m+ λ1 + 1 + s)2

Γ(β+τ
2 −m+ 1 + s+ λ1)

×Am(J,∆)(Hs+λ1−m−1 −Hs−λ̄2
) .

(B.28)

To perform the integral we first take the integrand without the Harmonic numbers. We then

shift the Gamma functions whose argument corresponds to the Harmonic numbers and shift them
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by an arbitrary variable ε and then perform the integral. In a functional form (B.27) this looks like,

∫
C
ds f(n, a, · · · )Γ(n+ k + ε) = g(k, a, ε, · · · ) . (B.29)

Performing the shift and the integral gives rise to the following result for I1,

αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)

∫
C
dsΓ(−s)Γ(s+ λ1 −m+ ε)Γ(s+ 1− λ̄2 − ε)

Γ(1 + λ2 − λ̄2 + s+ J −m)

Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)

Γ(β−∆−J−τ
2

+m− 1− s)Γ(∆+J+τ
2
−m+ 1 + s)2

Γ(β+∆+J+τ
2

−m+ 1 + s)

=αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)

×

(
Γ (λ1 − h+ 1− ε) Γ (λ1 −m+ ε) Γ

(
τ
2

+ λ1 −m+ 1
)2

Γ
(
m− 1 + β−τ

2
− λ1

)
Γ(−h+ 2λ1 −m+ +1)Γ

(
β+τ

2
+ λ1 −m+ 1

)
×4 F3

[
1− h+ λ1 − ε, λ1 −m+ ε, τ

2
+ λ1 −m+ 1, τ

2
+ λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2

+ λ1 −m+ 2, β+τ
2

+ λ1 −m+ 1
; 1

]

+
Γ
(
β
2

)2
Γ
(
β−τ

2
− 1 + ε

)
Γ
(
−h+m+ β−τ

2
− ε)

)
Γ
(−β+τ

2
+ λ1 −m+ 1

)
Γ(β)Γ

(
β−τ

2
+ λ1 − h

)
×4 F3

[β
2
, β

2
, β−τ

2
− 1 + ε, β−τ

2
− h+m− ε

β, β−τ
2
− λ1 +m,−h+ β−τ

2
+ λ1

; 1

])
.

(B.30)

Now we can take derivatives of both sides with respect to ε 1 and set ε to 0. The left side becomes

exactly the integral we wanted (B.28) as derivative of Gamma functions generate Polygamma

functions,
d

dε
Γ(a+ ε) = Γ(a+ ε)ψ(0)(a+ ε) = Γ(a+ ε)(Ha+ε−1 − γ) . (B.31)

In the above equation γ is the Euler-Mascheroni constant. The right side (B.30) result would

involve derivative of 4F3 with respect to its parameters. We will first discuss the expressions for

derivative of hypergeometric functions in terms of Kampé de Fériet-like functions. We begin with

1This procedure is well defined if the infinite sum is convergent.
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the expression of a generalized hypergeometric function 23,

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
=
∞∑
n=0

An
zn

n!
. (B.32)

The parameters of each row of a hypergeometric are symmetric so we can just consider derivative

of hypergeometric with respect to the first parameter a1,

Ga1 =
d (pFq[(a1, · · · , ap); (b1, · · · , bq); 1])

da1

. (B.33)

Before proceeding further let us introduce some notations for Kampé de Fériet-like double sum

functions,

pΘq

[
α1, α2 | a1, a2, · · · , ap

γ | b1, b2, · · · , bq
| x, y

]
(B.34)

=
∞∑
m=0

∞∑
n=0

(α1)m(α2)n(a1)m
(γ)m

(a2)m+n(· · · )(ap)m+n

(b1)m+n(b2)m+n(· · · )(bq)m+n

xmyn

m!n!
. (B.35)

In this paper we only encounter the derivatives of 4F3 with argument 1. Specializing the above

equation to our case we obtain,

d(4F3(1))

da1

= Ga1(1) =
1

a1

A1 4Θ3

[
1, 1 | a1, a1 + 1, a2 + 1, a3 + 1, a4 + 1

a1 + 1 | 2, b1 + 1, b2 + 1, b3 + 1
| 1, 1

]
. (B.36)

The hypergeometric and its derivatives have argument 1 and A1 is defined in (B.32). For conve-

nience we provide the expanded expression for the double sum below,

4Θ3

[
1, 1 | a1, a1 + 1, a2 + 1, a3 + 1, a4 + 1

a1 + 1 | 2, b1, b2, b3

| 1, 1

]
(B.37)

=
∞∑
m=0

∞∑
n=0

(a1)m
(a1)m+1

(a1 + 1)m+n(a2 + 1)m+n(a3 + 1)m+n(a4 + 1)m+n

(2)m+n(b1)m+n(b2)m+n(b3)m+n

.

(B.38)

2We follow the conventions and notations of [78].
3We will refer to z as the argument of the hypergeometric.

127



We will further define two notations which will be used in the maintext,

G1 =
A1

a1
4Θ3

[
1, 1 | a1, a1 + 1, a2 + 1, a3 + 1, a4 + 1

a1 + 1 | 2, b1 + 1, b2 + 1, b3 + 1
| 1, 1

]
− (a1 ↔ a2) ,

G2 =
C1

c1
4Θ3

[
1, 1 | c1, c1 + 1, c2 + 1, c3 + 1, c4 + 1

c1 + 1 | 2, d1 + 1, d2 + 1, d3 + 1
| 1, 1

]
− (c1 ↔ c2) , (B.39)

with ,

a1 = 1− h+ λ1, a2 = λ1 −m, a3 = a4 =
τ

2
+ λ1 −m+ 1,

b2 =
τ − β

2
+ λ1 −m+ 2, b1 = 1− h+ J −m, b3 =

τ − β
2

+ λ1 −m+ 1,

c1 =
β − τ

2
− 1, c2 =

β − τ
2
− h+m, c3 = c4 =

β

2
,

d2 =
β − τ

2
− λ1 +m, d1 = β, d3 =

β − τ
2

+ λ1 − h,

A1 =

∏4
i=1 ai∏3
i=1 bi

, C1 =

∏4
i=1 ci∏3
i=1 di

.

(B.40)

Returning to (B.30), on taking the derivative of the right side with ε and using the expression for

double sums we obtain,

αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

∫
C
dsΓ(−s) (λ1 −m)s(1− λ̄2)s

(1 + λ2 − λ̄2)s+J−m

Γ(β−τ2 − λ1 +m− 1− s)Γ( τ2 −m+ λ1 + 1 + s)2

Γ(β+τ
2 −m+ 1 + s+ λ1)

×Am(J,∆) (Hs+λ1−m−1 −Hs−λ̄2
)

=αJ

J∑
m=0

(−1)m+1

(λ1 −m)2
m

Am(J,∆)
Γ(1 + λ2 − λ̄2)

Γ(λ1 −m)Γ(1− λ̄2)[
Cm(J,∆)

(
4F3

[
1− h+ λ1, λ1 −m, τ2 + λ1 −m+ 1, τ2 + λ1 −m+ 1

−h+ 2λ1 −m+ 1, −β+τ
2 + λ1 −m+ 2, β+τ

2 + λ1 −m+ 1
; 1

]

(Hλ1−m−1 −H−h+λ1
)− G1

)

+Dm(J,∆)

(
4F3

[ β
2 ,

β
2 ,

β−τ
2 − 1, β−τ2 − h+m

β, β−τ2 − λ1 +m,−h+ β−τ
2 + λ1

; 1

]
(H β−τ

2 −2 −H β−τ
2 −h+m−1) + G2

)]
.

(B.41)

This completes our derivation of (3.53).
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B.3 Wilson Function

We now describe the procedure to write the two 4F3s as a single 7F6. Following the conventions

of [52], Wilson function can be written as a linear combination of two balanced 4F3(1) as,

φα(β; a, b, c, d) =
Γ(d− a)

Γ(a+ b)Γ(a+ c)Γ(d± β)Γ(d̃± α)
4F3

[
a+ β, a− β, ã+ α, ã− α

a+ b, a+ c, 1 + a− d
; 1

]

+(a↔ d), (B.42)

where,

ã =
1

2
(a+ b+ c− d), d̃ =

1

2
(−a+ b+ c+ d),

b̃ =
1

2
(a+ b− c+ d), c̃ =

1

2
(a− b+ c+ d),

Γ(a± b) = Γ(a+ b)Γ(a− b).

(B.43)

Wilson function can also be written [57]4 as,

φα(β; a.b.c.d) =
Γ(ã+ b̃+ c̃− α)

Γ(a+ b)Γ(a+ c)Γ(a+ d)Γ(d̃− α)Γ(b̃+ c− α− β)Γ(b̃+ c− α + β)

×W (ã+ b̃+ c̃− 1− α; a− β, a+ β, ã− α, b̃− α, c̃− α), (B.44)

where the W -function above can be written as a 7F6,

W (a; b, c, d, e, f) = 7F6

[
a , a

2
+ 1 , b , c , d , e , f

a
2
, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

; 1

]
. (B.45)

This procedure gives us same final result as the one given in [58].

4Our conventions are related to those of [57] as φα(β; a, b, c, d) = φi α(i β; a, b, c, 1− d).
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APPENDIX C

SECTION 4

C.1 Important Identities

We list down some important integrals that we will use throughout our calculations. We first

write down result of 3-external-point integral,

Ia,b,c(x1, x2, x3) =

∫
d4x

((x1 − x)2)a((x2 − x)2)b((x3 − x)2)c

=
Γ(a+b−c

2
)Γ(a+c−b

2
)Γ( b+c−a

2
)

Γ(a)Γ(b)Γ(c)
(x2

12)−
a+b−c

2 (x2
13)−

a+c−b
2 (x2

23)−
b+c−a

2 .

(C.1)

for a+ b+ c = d and the result for 4-external points (a1 + a2 + a3 + a4 = d) is,

I{ai}(xi) =

∫
d4x

4∏
i=1

1

((xi − x)2)ai

=
1∏

i Γ(ai)

(x2
12)

a3+a4−a1−a2
2 (x2

14)
a3+a2−a1−a4

2 (x2
24)

a1+a4−a3−a2
2

(x2
13)a3(x2

24)a4

×
∫
dsdt Γ(−s)Γ(−t)Γ(s+ t+ a3)Γ(s+ t+

a2 + a3 + a4 − a1

2
)Γ(

a1 + a2 − a3 − a4

2
− s)

× Γ(
a1 + a4 − a2 − a3

2
− t)usvt .

(C.2)

We also list down the conversion of an integral from a Mellin-type to an Euler type,

∮
dsΓ(a1 + s)Γ(a2 + s)Γ(b1 − s)Γ(b2 − s)z−s

=Γ(a1 + b1)Γ(a2 + b2)

∫ 1

0

dp

p(1− p)
pb2+a1(1− p)b1+a2 [1− p(1− z)]−b1−a1

(C.3)
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C.2 Conformal Blocks: Details

The details of the derivation of the conformal blocks (both scalar and spin exchanges) are given

here.

C.2.1 Scalar Conformal Block

We will explicitly compute the expansion of the conformal blocks in d = 4 − ε dimensions

as a specific expansion in both the coupling−g and ε. To start with, we will consider the specific

example of scalar conformal block in the t−channel, in the integral representation,

G∆,0(1− z, 1− z̄) =
kd−∆,0

γ2
λ1,0

∫
dsdt Γ(λ2 − s)Γ(λ̄2 − s)Γ(−t)2Γ(s+ t)2(zz̄)t((1− z)(1− z̄))s .

(C.4)

To explain the notation,

λ2 = ∆/2 = λ1 , λ̄2 = (d−∆)/2 , kd−∆,` =
1

(d−∆− 1)`

Γ(∆ + `)

Γ(h−∆)
, γx,y = Γ(x+ y)Γ(x− y) .

(C.5)

We have ∆ = 2∆φ+g, ∆φ = (d−2)/2 and d = 4− ε, we can immediately see how the expansion

should work. We start by projecting out the poles from the shadow part. For this, we multiply the

integral representation by a phase,

p(s) =
sinπ(λ̄2 − s)
sin π(λ̄2 − λ2)

eiπs , (C.6)

and performing the t−integral by keeping only the leading term in the z → 0 limit, we can write,

G∆,0(1− z, 1− z̄) = − Γ(∆)

Γ(∆
2

)4
Γ(1 + ∆− h)

∫
ds

Γ(∆/2− s)Γ(s)2

Γ(1 + s+ ∆/2− h)
(z̄ − 1)s(log zz̄ + 2Hs−1)

= Dα

[
− (zz̄)α/2

Γ(∆)

Γ(∆
2

)4
Γ(1 + ∆− h)

∫
ds

Γ(∆/2− s)Γ(s)Γ(s+ α)

Γ(1 + s+ ∆/2− h)
(z̄ − 1)s

]∣∣∣∣
α=0

,

(C.7)
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where Dα ≡ 2(γ + ∂α). Now we shift, s→ s+ ∆/2 so that,

G∆,0(1− z, 1− z̄) =(1− z̄)∆/2Dα

[
− (zz̄)α/2

Γ(∆)(∆/2)α

Γ(∆
2 )2

∫
ds

Γ(−s)(∆/2)s(∆/2 + α)s
(1 + ∆− h)s

(z̄ − 1)s
]∣∣∣∣
α=0

.

(C.8)

Notice that,

∫
ds

Γ(−s)(∆/2)s(∆/2 + α)s
(1 + ∆− h)s

(1− z̄)s = −2F1[∆/2,∆/2 + α, 1 + ∆− h, 1− z̄] . (C.9)

However the integrand inside the Euler-representation of the above is not convergent itself. We use

the following transformation,

2F1[A1, A2, B1, z] =
(2B1 − A1 − A2 + 1)z −B1

B1(z − 1)
2F1[A1, A2, B1 + 1, z]

− (B1 − A1 + 1)(B1 − A2 + 1)z

B1(B1 + 1)(z − 1)
2F1[A1, A2, B1 + 2, z] .

(C.10)

to write,

G∆,0(1− z, 1− z̄) = −(1− z̄)∆/2

z̄
Dα

[
(zz̄)α/2

Γ(1 + ∆− h)Γ(∆)(∆/2)α

Γ(∆
2

)3Γ(∆
2
− h+ 2)

×
∫ 1

0

dx
x∆/2−1(1− x)∆/2−h+1

(1− x(1− z̄))∆/2+α
((h− 1−∆/2)z̄ + x(z̄ − 1)(h+ α− 2−∆/2)−∆/2)

]
.

(C.11)

We define,

I∆,h
1 (x, α, 1− z̄) =

x∆/2−1(1− x)∆/2−h+1

(1− x(1− z̄))∆/2+α
,

I∆,h
2 (x, α, 1− z̄) =

x∆/2(1− x)∆/2−h+1

(1− x(1− z̄))∆/2+α
.

(C.12)
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With all these results we get,

G∆,0(1− z, 1− z̄) =
(1− z̄)∆/2

z̄
Dα

[
(zz̄)α/2

Γ(1 + ∆− h)Γ(∆)(∆/2)α

Γ(∆
2

)3Γ(∆
2
− h+ 2)

×
(

(∆/2− (h− 1−∆/2)z̄)

∫ 1

0

dx I∆,h
1 (x, α, 1− z̄)

+ (1− z̄)(h+ α− 2−∆/2)

∫ 1

0

dx I∆,h
2 (x, α, 1− z̄)

)]
.

(C.13)

Finally taking the derivative wrt α, we can write,

G∆,0(1− z, 1− z̄)

=
(1− z̄)∆/2

z̄

Γ(1 + ∆− h)Γ(∆)

Γ(∆
2

)3Γ(∆
2
− h+ 2)

[
(∆/2− (h− 1−∆/2)z̄)

×
∫ 1

0

dx I∆,h
1 (x, 0, 1− z̄)

(
2H∆/2−1 + log

zz̄

(1− x(1− z̄))2

)
+ (1− z̄)

∫ 1

0

dx I∆,h
2 (x, 0, 1− z̄)

(
2 + (h− 2−∆/2)(2H∆/2−1 + log

zz̄

(1− x(1− z̄))2
)

)]
.

(C.14)

C.2.2 τ = 2, ` ≥ 2 Conformal Blocks

We will mimic the calculation of the previous section directly from the integral representation

of the conformal blocks. We start with,

G∆,`(z, z̄) =
kd−∆,`

γ2
λ1,0

vλ2

∫
dsdt

Γ(−s)
Γ(1 + s+ λ2 − λ̄2)

Γ(−t)2Γ(s+ λ2 + t)2α`(s, t)(−v)sut ,

(C.15)

where u = zz̄, v = (1 − z)(1 − z̄), we have first removed the effect of the shadow poles by

introducing a suitable phase and further shifted s → s + λ2 so that now we can only consider the
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poles at s = n to retrieve the phsyical conformal block. α`(s, t) is the Mack polynomial, given by,

α`(s, t) =
1

(d− 2)`

∑
m+n+p+q=`

(−1)p+n`!

m!n!p!q!
(2λ̄2 + `− 1)`−q(2λ2 + `− 1)n(λ̄1 − q)2

q(λ1 −m)2
m

× (d− 2 + `+ n− q)q(d/2− 1)`−q(d/2− 1 + n)p(−s)p+q(−t)n .

(C.16)

For our purposes, ∆ = 2∆φ + `+ g2γ` and d = 4− ε and ∆φ = (d− 2)/2 + g2γφ. Hence,

λ2 = ∆φ +
g2

2
γ` , λ̄2 =

d

2
−∆φ − `−

g2

2
γ` , (C.17)

λ1 = ∆φ + `+
g2

2
γ` , λ̄1 =

d

2
−∆φ −

g2

2
γ` . (C.18)

Since the double discontinuity will only come from the outside factor (1 − z̄)λ2 and we are only

interested in the leading and next to leading order in the computation, it suffices to ignore theO(g2)

terms in (C.17). Thus to the desired order of computation, we can always write,

λ2 = 1− ε

2
, λ̄2 = 1− ` , λ1 = 1− ε

2
+ ` , λ̄1 = 1 , (C.19)

where we have neglected O(g2) contributions both from ∆φ and ∆`. The overall factors associated

with the normalization of the conformal block is given by,

kd−∆,` =
Γ(∆ + 1− d/2)Γ(∆ + `)

(d−∆− 1)`
, γx,0 = Γ(x)2 . (C.20)

With the values of λ1,2 given in (C.19), it is not difficult to see that (C.16) undergoes fair amount

of simplifications. Firstly, the amount of sum reduces since the only term that survives is q = 0.
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Then,

α`(s, t) =
(d/2− 1)`
(d− 2)`

∑
m+n+p=`

(−1)p+n`!

m!n!p!
(1− `)`(2λ2 + `− 1)n(λ1 −m)2

m(d/2− 1 + n)p(−s)p(−t)n

=
(d/2− 1)`Γ(λ1)2

(d− 2)`Γ(1− `)
∑
n+p≤`

(−1)p+n`!(2λ2 + `− 1)n(−s)p(−t)n
(`− n− p)!n!p!Γ(d/2− 1 + n+ p)Γ(d/2− 1 + n)

=
(d/2− 1)`Γ(λ1)2

(d− 2)`Γ(1− `)
Γ(d/2− 1 + `+ s)

Γ(d/2− 1 + `)

∑
n≤`

(−1)n`!(d+ `− 3)n(−t)n
n!(`− n)!Γ(d/2− 1 + n)Γ(d/2− 1 + n+ s)

=
(d/2− 1 + s)`Γ(λ1)2

Γ(d/2− 1)2Γ(1− `)(d− 2)`
3F2

[ −`, `+ d− 3,−t

d/2− 1, d/2− 1 + s
; 1

]
.

(C.21)

Finally, performing the n−sum, we can write, upto the desired order, a closed form expression,

given by,

kd−∆,`

γ2
λ1

α`(s, t) =
(d/2− 1 + s)`Γ(d− 2 + 2`)

(d− 2)`Γ(d/2− 1)2Γ(d/2− 1 + `)
3F2

 −`, `+ d− 3,−t

d/2− 1, d/2− 1 + s
; 1

 . (C.22)

Thus the conformal block for each spin can be written as (upto O(ε5))1,

G∆,`(z, z̄) =
Γ(d− 2 + 2`)vλ2

Γ(d/2− 1)Γ(d/2− 1 + `)2

∫
dsdt

Γ(−s)Γ(−t)2Γ(d/2− 1 + s+ t)2

Γ(d/2− 1 + s)
(−v)sut

× 3F2

 −`, `+ d− 3,−t

d/2− 1, d/2− 1 + s
; 1

 .

(C.23)

1We have included the overall factor (d − 2)`/(d/2 − 1)` in the definition so that it coincides with the usual
conformal block.
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To proceed, we decompose 3F2 into its integral representation,

3F2

 −`, `+ d− 3,−t

d/2− 1, d/2− 1 + s
; 1


=

Γ(d/2− 1 + s)

Γ(−t)Γ(d/2− 1 + s+ t)

∫ 1

0

dxx−t−1(1− x)d/2−2+s+tΓ(1 + `)Γ(d− 3)

Γ(`+ d− 3)
C

(d−3)/2
` (1− 2x) ,

(C.24)

where Cλ
` (x) is the Gegenbauer polynomial. Plugging this back in (C.24), we can write,

G∆,`(z, z̄) =
Γ(d− 2 + 2`)vλ2

Γ(d/2− 1)Γ(d/2− 1 + `)2

∫
dsdt Γ(−s)Γ(−t)Γ(d/2− 1 + s+ t)(−v)sut

×
∫ 1

0

dxx−t−1(1− x)d/2−2+s+tΓ(1 + `)Γ(d− 3)

Γ(`+ d− 3)
C

(d−3)/2
` (1− 2x) .

(C.25)

Now, notice that for twist−2 higher spin conformal blocks, ∆ = 2∆φ + `+ g2γ`, where,

γ` = −
12γ

(2)
φ

`(`+ 1)
, a` =

Γ(d/2− 1 + `)2Γ(`+ d− 3)

`!Γ(d/2− 1)2Γ(d− 3 + 2`)
, (C.26)

upto the order of expansion we are interested in. Thus, we define the twist−2 (sum over) higher

spin blocks as,

G2(z, z̄) =
(u
v

)∆φ
∞∑
`=2

γ2
` a`Gτ+`,`(z, z̄)

= u∆φvλ2−∆φ

∫ 1

0

dxx−t−1(1− x)d/2−2+s+t

∫
dsdt Γ(−s)Γ(−t)Γ(d/2− 1 + s+ t)

× (−v)sut
Γ(d− 3)

Γ(d/2− 1)3

∞∑
`=2

(d− 3 + 2`)

`2(`+ 1)2
C

(d−3)/2
` (1− 2x) .

(C.27)
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The s, t integral can be done exactly, and with the substitution u = zz̄ , v = (1− z)(1− z̄),

∫
dsdt Γ(−s)Γ(−t)Γ(d/2− 1 + s+ t)ut

(
1− x
x

)t
(1− x)s(−v)s

= Γ(d/2− 1)
xd/2−1

(z + x(1− z))d/2−1(z̄ + x(1− z̄))d/2−1
.

(C.28)

Substituting this in (C.27), we can write,

G2(z, z̄) =(zz̄)∆φ [(1− z̄)(1− z)]λ2−∆φ

∫ 1

0

dx
(x(1− x))d/2−2

(z + x(1− z))d/2−1(z̄ + x(1− z̄))d/2−1

× Γ(d− 3)

Γ(d/2− 1)2

∞∑
`=2

(d− 3 + 2`)

`2(`+ 1)2
C

(d−3)/2
` (1− 2x) .

(C.29)

Starting from this we will extend the analysis of the scalar conformal blocks to the twist−2 higher

spin blocks in the main text.

C.2.3 Functions in (4.14)

We will write down the basis functions at each order in α starting from the leading term for

α = 0. For α = 0, i.e. the leading order, we have,

f0,0 =
log z̄ − log z

z̄
, (C.30)

while for α = 1,

f1,0 =
log z̄ − log z + Li2(1− z̄)− ζ2

z̄
, f0,1 =

(log z − log z̄)(log z + 2) + 2ζ2

2z̄
, (C.31)
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For the higher i + j = α ≥ 2, we get more basis elements which can be obtained systematically

from the HypExp package. For α = 2,

f2,0 =
1

12z̄

[
6Li3

(
z̄ − 1

z̄

)
− 6Li3(1− z̄)− log3 z̄ + 6ζ3 + 14(Li2(1− z̄)− ζ2)− 3 log zz̄Li2(1− z̄)

+ 3(log z̄ − log z)ζ2 − (log z − log z̄)(2 + log zz̄)

]
,

f1,1 = − 1

12z̄

[
log3 z̄ − 12Li3(1− z̄)− 6Li3

(
z̄ − 1

z̄

)
+ 12ζ3 + 12(Li2(1− z̄)− 2ζ2) + 6 log zz̄Li2(1− z̄)

+ 6 log z(log z̄ − log z)− 6ζ2(2 log z − log z̄)

]
,

f0,2 =
1

8z̄

[
4ζ3 + 2ζ2(log z̄ − 3 log z − 4) + log z(4 + log z)(log z̄ − log z)

]
.

(C.32)

For the next order α = 3,

f3,0 =
1

72z̄

[
3(log z − log z̄)(6 + log zz̄)− 8 log3 z̄ + 6(1− 3 log zz̄)Li2(1− z̄) + 18(log z − log z̄)(Li3(1− z̄) + ζ3)

− 48Li3(1− z̄) + 48Li3

(
z̄ − 1

z̄

)
+ 48ζ3 + 72Li4(1− z̄)− 6(1 + 5 log z − 3 log z̄)ζ2 − 63ζ4 − 36S2,2(1− z̄)

]
,

f2,1 =
1

144z̄

[
2(11− 6 log z)(log z̄ − log z)− (1 + 6 log z)(log z̄ − log z)(log z̄ + log z) + log3 z̄(−2 + 9 log z + 6 log z̄)

− 2(1 + 24 log zz̄ − 9 log2 zz̄)Li2(1− z̄)− 18Li2(1− z̄)2 + 12(20 + 3 log z)Li3(1− z̄)

+ 6(2− 9 log zz̄)Li3

(
z̄ − 1

z̄

)
− 216Li4(1− z̄)− 72Li4

(
z̄ − 1

z̄

)
+ 2ζ2(13 + 108 log z + 9 log z(log z − log z̄)

− 54 log z̄ − 18Li2(1− z̄)) + 378ζ4 − 240ζ3 + 36ζ3(3 log z̄ − 4 log z) + 108S2,2(1− z̄)
]
,

f1,2 =
1

96z̄

[
12 log2 z(log z̄ − log z) + 8 log3 z̄ + 4 log z log3 z̄ + 3 log4 z̄ + 12Li2(1− z̄)2 − 48(2 + log z)Li3(1− z̄)

− 24(2 + log zz̄)Li3

(
z̄ − 1

z̄

)
− 24Li4

(
z̄ − 1

z̄

)
− 12ζ2 log z(14 + 3 log z) + 24ζ2(3 + log z) log z̄

+ 12Li2(1− z̄)(log zz̄(4 + log zz̄) + 2ζ2) + 24ζ3(6 + 5 log z − 3 log z̄)− 252ζ4

]
,

f0,3 =
1

48z̄

[
42ζ4 − 12ζ3(2 + 2 log z − log z̄) + 6ζ2(2 log z(3 + log z)− (2 + log z) log z̄)

+ log2 z(6 + log z)(log z − log z̄)

]
.

(C.33)
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C.2.4 List of Integrals

The basic list of integrals contain the following kinds,

Im,n,p(u) = u

∫ 1

0

dx
logm x logn(1− x) logp(1− ux)

(1− ux)
, (C.34)

The above form entail most of the integrals to be performed for the twist−2 integrals. The general

form of the integral introduced in section 4.3,

Im,n,p(z, z̄) =

∫ 1

0

dx
f(x)

(z + x(1− z))(z̄ + x(1− z̄))
=

1

z̄ − z

[
uz̄Im,n,p(uz̄)− uzIm,n,p(uz)

]
,

(C.35)

for ux = (x− 1)/x and f(x) has the general form,

f(x) = logm x logn(1− x) logp(1− ux) , (C.36)

Using this, some of the integrals used in the main text are,

I0,0,0(z, z̄) =
log(z̄/z)

z − z̄
, I0,1,0(z, z̄) =

Li2(1− z̄)− Li2(1− z)

z − z̄
, (C.37)

I1,0,0(z, z̄) =
2Li2(1− z̄) + log2 z̄ − 2Li2(1− z)− log2 z

2(z − z̄)
, (C.38)

I1,1,0(z, z̄) =
log(1− z) log2 z − log(1− z̄) log2 z̄ + 4Li3(1− z) + 2Li3(z)− 4Li3(1− z̄)− 2Li3(z̄)

2(z − z̄)
,

(C.39)

I0,3,0(z, z̄) =
6(Li4(1− z̄)− Li4(1− z))

z − z̄
. (C.40)
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The other two integrals are (we only give their expressions for z → 0),

lim
z→0
I2,1,0(z, z̄) =

1

12z̄

[
log4 z̄ + 24 log z̄(Li3(1− z̄)− ζ3) + 12ζ2(2Li2(1− z̄) + log2 z̄)

+ 24

(
ζ4 + S2,2(1− z̄) + Li4

(
z̄ − 1

z̄

)
− 2Li4(1− z̄)

)]
,

lim
z→0
I1,2,0(z, z̄) =

1

2z̄

[
4ζ2Li2(1− z̄) + 4 log z̄(Li3(1− z̄)− ζ3) + 4(S2,2(1− z̄)

− 3Li4(1− z̄)) + ζ4

]
.

(C.41)

The additional integrals are,

lim
z→0
J1 = lim

z→0

∫ 1

0

dx
log((z + x(1− z))(z̄ + x(1− z̄)))

(z + x(1− z))(z̄ + x(1− z̄))

=
4Li2(1− z̄) + (log z̄ − log z)(log z + 3 log z̄)

2z̄
.

(C.42)

Two additional integrals we require, are

J2 =

∫ 1

0

dx
log x log(1− x) log((z + x(1− z))(z̄ + x(1− z̄)))

(z + x(1− z))(z̄ + x(1− z̄))
,

J3 =

∫ 1

0

dx
log 1−x

x
Li2( x

x−1
) + 2Li3( x

x−1
)

(z + x(1− z))(z̄ + x(1− z̄))

(C.43)

where ux = (x− 1)/x. In a similar fashin we will evaluate the final forms of the integrals J2 and

J3 after the z → 0 limit. To evaluate J2 and J3, we use the PolyLogTools Mathematica package

([79])2. The result of J3 integral is,

lim
z→0
J3 =

1

24z̄

[
− 72Li4(1− z̄)− 72Li4

(
z̄ − 1

z̄

)
+ 12Li2(1− z̄) log2 z̄ + 24Li3(1− z̄) log z̄

− 48Li3

(
z̄ − 1

z̄

)
log z̄ + 72S2,2(1− z̄)− 24ζ3 log z̄ + 5 log4 z̄ − 72ζ4

]
.

(C.44)

2We thank Claude Duhr for helping us out with the integrals.
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This result has no discontinuities. The final result for the J2 integral is,

lim
z→0
J2 =− 1

6z̄

(
3Li2(1− z̄)2 + 18ζ2Li2(1− z̄)− 24Li4(1− z̄) + 24Li4

(
z̄ − 1

z̄

)
+ 18Li3(1− z̄) log z̄ + 6S2,2(1− z̄)− 18ζ3 log z̄ + log4 z̄ + 12ζ2 log2 z̄ + 12ζ4

)
.

(C.45)

This integral was performed using PolyLogTools and simplification was made using the rules listed

in[80]. Again we find that there are no discontinuities in the final result.

C.3 Perturbative Diagrams

We will calculate perturbative diagrams up-to 3-loops in this section. Our focus is only the ring

diagrams, which correspond to pure g terms in the conformal block expansion.

C.3.1 Master Integral

Before we begin computing loop integrals we will calculate a master integral. This is important

because this will appear in each loop calculation. The integral is given as (in t-channel form),

∫
d4x6

x2+2g1δ
16 x2+2g2δ

26 x2+2g3δ
36 x

2−2(g1+g2+g3)δ
46

. (C.46)

We evaluate this integral using (C.2) to obtain,

∫
d4x6

x2+2g1δ
16 x2+2g2δ

26 x2+2g3δ
36 x

2−2(g1+g2+g3)δ
46

=∫ 1

0

dp
pδg3Γ((−g1 − g2)δ)((1− p)p)δ(g1+g2)(1− pz̄)δ(−g2)−1(1− p)δ(−g1−g2−g3)(zz̄)δ(g1+g2)

Γ(g3δ + 1)Γ(1− (g1 + g2 + g3)δ)

+

∫ 1

0

dp
Γ(1− g1δ)Γ(1− g2δ)p

δg3Γ((g1 + g2)δ)(1− p)δ(−g1−g2−g3)(1− pz̄)δ(g1+g2)+δ(−g2)−1

Γ(g1δ + 1)Γ(g2δ + 1)Γ(g3δ + 1)Γ(1− (g1 + g2 + g3)δ)
.

(C.47)

It is quite cumbersome to carry around all these factors and hence we will just stick to a particular

regularization scheme, g1 = g3 and g1 = −g2. This is the same scheme used in the main text to
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obtain pure g terms. With this choice of regularization the master integral becomes,

∫
d4x6

x2−δ
16 x2−δ

46 x2+δ
26 x2+δ

36

, (C.48)

and (C.47) becomes,

1

Γ2(1 + δ/2)Γ2(1− δ/2)

(
x2

14

x2
24

)δ
1

(x2
13)1+δ/2(x2

24)1−δ/2

×
∫
dsdtΓ2(−s)Γ(−t)Γ(−t− δ)Γ2(s+ t+ 1 + δ/2)(zz̄)s(1− z̄)t .

(C.49)

We need to evaluate the integral in z → 0 limit. The s = 0 residue will give us the leading z

piece. Just like the conformal block case, we will write the s = 0 residue in this form,

(x2
14)δ

x2+δ
13 x2+δ

24

Dα
∫

dt
(1− z̄)tΓ(−t)Γ(−t− δ)Γ

(
t+ δ

2
+ 1
)

(zz̄)α/2Γ
(
t+ α + δ

2
+ 1
)

Γ
(
1− δ

2

)2
Γ
(
δ
2

+ 1
)2 , (C.50)

where,

Dα = (2γ + 2∂α)|α=0 . (C.51)

The remaining t-integral can be performed using (C.3), which is then acted on by the Dα operator

yields the final result,

∫
d4x6

x2−δ
16 x2−δ

46 x2+δ
26 x2+δ

36

=

(x2
14)δ

x2+δ
13 x2+δ

24

∫ 1

0

dp
(1− p)δ/2p−δ/2(1− pz̄)

δ
2
−1
(
2ψ(0)

(
δ
2

+ 1
)

+ 2 log(p) + log(zz̄) + 2γ
)

Γ
(
1− δ

2

)
Γ
(
δ
2

+ 1
) .

(C.52)

C.3.2 Regularization Prescription

The perturbative diagrams come with multiple divergences. The maximum divergence corre-

sponds to the number of loops eg a 2-loop diagram would have a quadratic divergence. We notice a

similarity between the finite contribution of these diagrams and the conformal correlator expansion.
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With this in mind we will ignore the divergent contribution. Since finite pieces are regularization

dependent we need to fix a scheme for regularization in position space. The similarity of finite

piece with conformal correlator expansion prompted us to consider them as basis elements. As an

example we will take the one-loop diagram whose integral form is,

I1L =

∫
d4x5 d

4x6

x2
15 x

2
45 x

4
56 x

2
26 x

2
36

. (C.53)

The integral is divergent so we first regularize the terms with the following rules,

1. Dress the propagator terms of each integrand variable with δ such that the sum of δs is zero.

The sum of δs should vanish for each integrand to keep the integral conformal.

2. Multiply the integral with a pre-factor to cancel the δ-dependence of the external points. The

whole dressed-integral is now scale-invariant.

With the above rules we obtain the following normalization,

I1L = (x14x23)δ
∫

d4x5 d
4x6

x2+δ
15 x2+δ

45 x4−2δ
56 x2+δ

26 x2+δ
36

. (C.54)

In the above expression we will first perform the x5 integral . The sum of δ vanishes for x5 and

x6-integrals. Once we perform the x5-integral it is still required that the x6− δ sum vanishes. With

this regularization one can perform the integral using (C.1) and (C.2) and then expand in δ. We

will neglect the divergent piece in 1
δ

and keep only the finite piece. As expected we will find that

divergent pieces at higher order contain finite piece result of lower orders. Schematically we can

write the three-loop results as,

=
1

δ3
(tree) +

1

δ2
(1-loop) +

1

δ
(2-loop) + finite (C.55)
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Figure C.1: Tree diagram and one-loop diagram.

C.3.2.1 Generic Regularization

Let us briefly mention what happens when we take generic regularizations. Let us again con-

sider the 1-loop integral,

I1L =

∫
d4x5 d

4x6

x2+aδ
15 x2+bδ

45 x4+cδ
56 x2+dδ

26 x2+eδ
36

. (C.56)

Now with the first condition on our regularization procedure we obtain two equations,

a+ b+ c = 0 c+ d+ e = 0 . (C.57)

Starting with 5 unknowns we have reduced our search space to 3 unknown. For rings diagrams

we always have 3 unknown parameters for any loop. The was the motivation for us to construct

a generating function (4.43) with three parameters. Starting from 3-loop we encounter additional

generating function which has more parameters. With the regularization procedure under control

we can start computing the loops.
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Figure C.2: Two loop ring.

Figure C.3: Three loop ladder.

C.3.3 Tree Level Integral

As we can see from the figure (Figure C.1), the tree level integral is just (C.48) with δ = 0.

I0L =

∫
d4x6

x2
16 x

2
46 x

2
36 x

2
26

. (C.58)

So now we plug in (C.52) δ = 0 and obtain,

∫ 1

0

dp
2 log(p) + log(zz̄)

1− pz̄
. (C.59)

This integrates to ,

6Li2(1− z̄)− 3 log(z) log(1− z̄) + 3 log(z̄) log(1− z̄)− π2

3z̄
. (C.60)
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Writing only the discontinuity we obtain,

log(1− z̄)
log(z)− log(z̄)

z̄
. (C.61)

C.3.4 One Loop Ring Diagram

The one loop diagram integral is,

I1L =

∫
d4x5 d

4x6

x2
15 x

2
45 x

4
56 x

2
26 x

2
36

. (C.62)

We will use the follow normalization prescription,

I1L = (x14x23)δ
∫

d4x5 d
4x6

x2+δ
15 x2+δ

45 x4−2δ
56 x2+δ

26 x2+δ
36

. (C.63)

The justification to the prescription has already been given in (C.3.2).

We first perform the x5-integral (ignoring the prefactors for a moment) using (C.1) to obtain,

I1L =
Γ
(
1− δ

2

)2
Γ(δ)

Γ(2− δ)Γ
(
δ
2

+ 1
)2

1

x2δ
14

∫
d4x6

x2−δ
16 x2−δ

46 x2+δ
26 x2+δ

46

. (C.64)

The final integral is of the form of master integral and we find,

I1L =
1

x2
13x

2
24

Γ
(
1− δ

2

)2
Γ(δ)

Γ(2− δ)Γ
(
δ
2

+ 1
)2

1

xδ13x
δ
24

×
∫ 1

0

dp
(1− p)δ/2p−δ/2(1− pz̄)

δ
2
−1
(
2ψ(0)

(
δ
2

+ 1
)

+ 2 log(p) + log(zz̄) + 2γ
)

Γ
(
1− δ

2

)
Γ
(
δ
2

+ 1
) (C.65)

Now we expand each term in δ and perform the integral. The divergent contribution is,

1

δ

∫ 1

0

dp
2 log(p) + log(zz̄)

(pz̄ − 1)
=

1

δ

(
log(z̄)− log(z)

z̄

)
. (C.66)
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The finite contribution is,

∫ 1

0

dp
(−2 log(1− pz̄)− 2 log(1− p) + 2 log(p) + log(1− z̄)− 4)(2 log(p) + log(zz̄))− 4ζ2

4pz̄ − 4

= log(1− z̄)
( log(z)− log(z̄)

4z̄

)
+ log2(1− z̄)

(ζ2 − Li2(1− z̄) + 2 log(z)− 2 log(z̄)

2z̄

)
.

(C.67)

C.3.5 Two and Three Loop Ring

We will write down the final results of both 2-loop and 3-loop ring diagrams (Figure C.2) here.

The 2-loop integral is given by,

Ir2L =

∫
d4x5d

4x6d
4x7

(x2
15)(x2

45)(x2
56)2(x2

67)2(x2
27)(x2

37)
. (C.68)

While the three loop integral is,

Ir3L =

∫
d4x5d

4x6d
4x7d

4x8

(x2
15)(x2

45)(x2
56)2(x2

67)2(x2
78)2(x2

28)(x2
38)
. (C.69)

On evaluating the integral we obtain the following finite piece for 2-loop ring diagram,

log(1− z̄)3

(
log(z̄)− log(z)

24z̄

)
+ log(1− z̄)2

(
Li2(1− z̄)− ζ2

4z̄

)
− log(1− z̄)

(−6ζ3 + 3Li2(1− z̄) log(z) + 6Li3(1− z̄)− 6Li3
(
z̄−1
z̄

)
+ 3Li2(1− z̄) log(z̄)

12z̄

+3ζ2(log(z)− log(z̄)) + 12 log(z) + log3(z̄)− 12 log(z̄)

12z̄

)
,

(C.70)
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and for 3- loop diagram,

log4(1− z̄)
( log(z)− log(z̄)

24z̄

)
+ log3(1− z̄)

(ζ2 − Li2(1− z̄)− log(z) + log(z̄)

6z̄

)
+ log2(1− z̄)

(−6ζ3 + 12Li(1− z̄) + 3Li2(1− z̄) log(z) + 6Li3(1− z̄)− 6Li3
(
z̄−1
z̄

)
+ 3Li2(1− z̄) log(z̄)

12z̄

+
3ζ2(log(z)− log(z̄)) + 24 log(z) + log3(z̄)− 24 log(z̄)− 12ζ2

24z̄

)
− log(1− z̄)

24z̄

(
− 21ζ4 + 24Li4(1− z̄)− 6Li3(1− z̄) log(z̄)− 12S2,2(1− z̄) + 18ζ3 log(z̄)

− 12ζ3 + 12Li3(1− z̄)− 12Li3

(
z̄ − 1

z̄

)
+ 6Li2(1− z̄) log(z̄)− 6ζ2 log(z̄) + 2 log3(z̄)

+ 48Li2(1− z̄)− 48ζ2

+ log(z)
(
6ζ2 − 18ζ3 + 6Li2(1− z̄) + 6Li3(1− z̄)

)
+ 48 log(z)− 48 log(z̄)

)
.

(C.71)

Let us close this appendix with a few observations. The highest order discontinuity is always

the tree level result. The lower order discontinuities at a given loop can be written in terms of

discontinuities appearing in a lower loop diagram. The terms which appear in the discontinuities

are similar to one that occur in conformal correlator expansion.

C.4 Li2(1− z̄)2 Origin

In this section we will demonstrate the origin of Li22(1 − z̄) from a new generating function.

We encountered these terms in the conformal block expansion at 5th order. This corresponds to

three loop in the diagrammatic expansion. At three loops we encounter diagrams which contribute

to an additional generating function. Ladder diagram shown in the figure above (Figure C.3) is the

one that generates such a term. We will report its integral,

I =

∫
d4x5d

4x6d
4x7d

4x8

(x2
15)(x2

47)(x2
26)(x2

38)(x2
56)2(x2

78)2(x2
57)(x2

68)
. (C.72)

Proceeding along the lines of (C.3.2.1) we see that the most general regularization of the above

integral has 8 parameters and we have 4 equations. This tells us that there would be 4 independent
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parameters and this would be our new generating function. We will regularize the integral as,

I ∼
∫

d4x5d
4x6d

4x7d
4x8

(x2
15)1−δ/2(x2

47)1+3δ/2(x2
26)1−3δ/2(x2

38)1+δ/2(x2
56)2+δ(x2

78)2−δ(x2
57)1−δ/2(x2

68)1+δ/2
. (C.73)

Performing the x5 and x6 integral one obtains,

I ∼ Γ(δ)Γ(−δ)
∫

d4x6d
4x7

(x17)−δ(x36)δ(x76)2(x47)1+3δ/2(x26)1−3δ/2(x37)1− δ
2 (x16)1+ δ

2

(C.74)

Our goal here is to schematically show the piece we want and so we will use a small trick to obtain

the term of interest. For the lower loop calculations we first performed the integral and then took

the δ → 0 limit. However this process should commute. In that spirit we will take δ → 0 limit

right now and focus on a particular term. The term that we want to focus on is the above equation

with (x17)−δ set to 1. This is a genuine term which will appear when one takes the δ → 0 limit.

Focusing on this terms is sufficient to generate the discontinuity we want.

I ∼ Γ(δ)Γ(−δ)
∫

d4x6d
4x7

(x36)δ(x76)2(x47)1+3δ/2(x26)1−3δ/2(x37)1− δ
2 (x16)1+ δ

2

. (C.75)

We can now perform the x7 integral which gives rise to,

I ∼ Γ(δ)2Γ(−δ)2

∫ 1

0

dp
(1− p)−δ/2p3δ/2(1− pz̄)−

δ
2

1− pz̄
. (C.76)

The integrand needs to be expanded to a maximum of fourth order in δ to perform the integral. It

turns out that the fourth order term gives rise to Li2(1− z̄)2
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