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ABSTRACT

For centuries researchers have been pushing the boundaries of their respective technical

domains, but it is only a few decades ago that research started taking its dig on system

design theory. A system design theory encapsulates all individual components design and their

simultaneous optimization, i.e., it provides a complete framework to design the structure. The

approach behind this research is to make small steps in structure design, dynamic models,

information architecture, and control design with some free parameters and then finally optimize

those free parameters in a wholesome design approach to meet some specified performance. The

author uses tensegrity design models to integrate structure and control design due to the various

advantages mentioned further. This dissertation first makes three contributions to the study of

tensegrity structures and then provides a system design theory to integrate structure and control

design using the tensegrity paradigm.

The first part of the dissertation provides a detailed study of the minimum mass tensegrity

structures designed to take compressive loads, namely, D-bar and T-bar structures. These design

studies consider both local and global failures in designing the optimal configuration (optimal

complexity, angle, and cross-sectional area) for both D-bar and T-bar structures. The formulation

developed here provides a general methodology to avoid global buckling failures for any class-k

tensegrity structures. The proposed research provides different approaches to design a structure

based on optimizing mass, stiffness, or mechanical energy stored in a tensegrity structure.

The second part of this research work provides accurate dynamic models of axially loaded

members forming any general tensegrity structure. The formulation develops a second-order

matrix differential equation to perform dynamic simulation of tensegrity structures with massive

strings and rigid bars. The dynamics models for novel gyroscopic tensegrity systems are also

developed, which adds an extra degree of freedom to the control of the structure. A Matlab based

tensegrity dynamics simulator is another outcome of this research.
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The third section of the dissertation discusses a model-based approach to control the shape of

any general tensegrity structure. A reduced-order model of tensegrity dynamics is used to design

non-linear output feedback regulation, which derives error in position, velocity, and acceleration

to zero yielding a linear programming problem as the final equation to solve. The shape control

of gyroscopic tensegrity system is also discussed to show the increase in reachable 3-dimensional

space. A Linear Matrix Inequality (LMI) framework is further used to calculate control gains to

bound errors for five different types of control problems for given disturbance profile. All the

examples for this part are performed on a TnD1 tensegrity robotic arm.

The last fragment of the dissertation starts with the derivation of the minimal-order linear

model by linearizing the system about an equilibrium point and removing the modes which

causes the length of the bars to change. The liner control theory is further applied to reject the

disturbances using H∞, generalized H2 and covariance bound controller. The chapter further

provides a methodology to integrate structure and control design where some parameter of the

structure in the linearized dynamic model, control law and the information about the system

architecture (actuator/sensor) is simultaneously optimized to achieve some desired performance for

a covariance control problem. The developed Linear Matrix Inequality (LMI) framework is general

enough for any linear model with linear structure parameters to bound the output covariance for

given disturbance intensity. The force density in the strings (prestress) is used as the optimization

variable for the structure, which appears affinely in the system matrices of the linearized tensegrity

dynamics. The sub-optimal solution of this non-convex system design problem is found by

iterating over an approximated convex problem through the use of a convexifying potential

function, which enables convergence to a local minimum.
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1. INTRODUCTION

1.1 Literature Review

Tensegrity is a name coined by Buckminister Fuller [3]. The word is conjugated from “tension”

and “integrity”, and was originally used for art and architectural applications by Ioganson (1921)

and Kenneth Snelson [4]. Tensegrity is a network of compressive and tensile members, where the

compressive members (bars, struts) are connected together by tension members (strings, cables,

tendons) forming a stable system [5]. These structures are also described as a structurally stable

network of axially loaded pre-stressable members [6]. Skelton describes “Class-1" tensegrity when

no compressive members touch each other, and a “Class-k" when k compressive members join at a

node [6]. For class-k structures, bars are connected by frictionless ball joints, or their mathematical

equivalents, to constraint all members to be “axially loaded" only. For both class of structures, as

all the strings are connected to the node center of the bars, there would be no torque along the axis

of the bar and, therefore, no rotation along the bar axis.

Tensegrity allows for the development of structures with optimal properties or responses by

methodically arranging networks of one-dimensional elements [6, 7, 8]. Since tensegrity structures

are comprised exclusively of axially loaded members, elegant and accurate structural models and

design approaches have been developed to respectively simulate and optimize their responses; see,

for example [9, 10, 11]. Reviews of models and analyses of stability, statics, and dynamics of

tensegrity structures are found in [12, 13, 14, 15, 16]. Tensegrity provides a unique method in

which shape change can be achieved without a change in stiffness of the structure, and stiffness

can also be changed without changing the shape of the structure. This is achievable as structure

morphs from one equilibrium configuration to another on the control surface [6, 17] as shown

in figure 1.1. This morphing from one equilibrium position to another equilibrium position also

results in minimal control energy requirement for shape change [18]. In addition to the accurate

dynamic models, tensegrity structures of several topologies have been mathematically proven to
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optimally (i.e., with minimum mass) sustain different loads when compared to their continuum

counterparts.

Figure 1.1: Multiple equilibrium paths that can be optimized for desired performance/weight/shape
a lower cost of control energy. Reprinted with permission from [6]: "Tensegrity Systems", by
Robert E. Skelton, Mauricio C. de Oliveira, 2009, Springer Nature, Boston, MA. Coyright [2009]
Springer-Verlag US.

Tensegrity structures have been shown to provide a minimal mass solution to five different

kinds of problems in engineering mechanics: 1. Tensile loading, 2. Compressive loading, 3.

Cantilever loading, 4. Simple-supported loading, and 5. Torsional loading [6, 19, 20]. The minimal

mass solution to compressive loading is provided by a T-bar structure assuming no global buckling

[6] (a 3D T-bar structure is installed outside Frick Chemistry Lab in Princeton). Tensegrity D-bar

structure has also been shown to require less mass than a simple continuum bar to take the same

load. Moreover, the tensegrity D-bar structure has also shown significant potential in robotics due

to its minimum mass and easy deployability, which also makes them suitable for space applications

[21, 18]. Research has also shown D-bar structures to be efficient as sensors/actuators and impact

landers [21, 22]. Michell truss is proven to provide the minimum mass solution for cantilevered
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bending loads [6].

Figure 1.2: Active Deployable Tensegrity Footbridge System (EPFL 2012-2018). Reprinted with
permission from [1].

Researchers are using tensegrity approaches to provide minimum mass solutions to many static

structural problems such as civil engineering bridges [23, 24] and composite membrane design

[25, 26]. “Tensegrity Ball" has been extensively studied for its use as a lander [2, 27], and various

impact structures [21]. All the above-mentioned properties of tensegrity structures have found their

use in various applications ranging from deployable bridges (see Fig. 1.2) [23, 28] to compliant

soft robotics applications [29, 30, 31], to Light-weight and deployable space structure [32],

tunable meta-materials [33], and artificial gravity space habitats [34, 35] in aerospace engineering.

These applications can be attributed to the fact that several fundamental problems in engineering

mechanics are solved by various structural topologies of tensegrity structures. Various tensegrity

architecture also appears in many biological systems, ranging from bone and muscle networks to

fibrous structural components in living cells [36] and to the molecular structure of spider fiber.
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See also tensegrity models for the Bio-mechanics of the animal skeletal [37, 38] (see Fig. 1.3).

Tensegrity structures can also be used in the design of human prosthetics or as augmentative

devices (orthotics) due to their lightweight and efficient control energy requirements [39]. Multiple

redundant control strings make the system robust avoiding failure in case of any string loss.

Figure 1.3: Muscular activation shown for a cat during normal walking. Reprinted with permission
from [6]: "Tensegrity Systems", by Robert E. Skelton, Mauricio C. de Oliveira, 2009, Springer
Nature, Boston, MA. Coyright [2009] Springer-Verlag US.

1.2 Motivation

The idea of system design theory has received a lot of attention in the last few decades.

A system design theory encapsulates all individual components design and their simultaneous

optimization to provide a complete framework to design the structure. The system design

theory provides all the information about structure (mass, stiffness, dimensions, material,

etc.), information architecture (which actuator/sensor, actuator/sensor location, actuator/sensor

precision, etc.), control law (linear, non-linear, state feedback, output feedback), and most

importantly which model to use (order or complexity of model). Moreover, these design choices
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are not separate and should be optimized together, not individually. A systematic study of system

design approach is much needed for solving various engineering problems ranging from basic

sciences (maths, physics, chemistry) to basic engineering (mechanical, aerospace, civil) fields.

The philosophy behind this research is to make small steps in structure design, dynamic model

and its order, information architecture, and control design with some free parameters and then

finally optimize those free parameters in a wholesome design approach to meet some specified

performance.

The author believes that tensegrity structures are best suited to integrate structure and control

design due to its very accurate models of axially loaded members [6]. An accurate model of the

system dynamics will yield precise control. Moreover, as tensegrity provides good efficiency for

both structural and control avenue, it would be an ideal choice for various adaptive structures where

structure and control parameters should be optimized simultaneously [6]. All the above-mentioned

advantages make tensegrity systems an obvious choice to showcase this idea of system thinking.

Some elementary results are provided to guide the way toward the choice of elementary building

blocks to build more complex structures.
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2. DESIGN OF TENSEGRITY BASED MASS-EFFICIENT ENERGY ABSORPTION

ELEMENTS∗

1 This chapter studies tensegrity structures known as “D-bar" systems for applications as

lightweight components for mechanical energy absorption. A D-bar system of complexity 1 (a

D-bar unit) is generated by replacing a compressive structural member with 2p bars emanating

from its end-points towards the vertices of a centered p-sided polygon formed by strings (p = 3

in Fig. 1(b) in the manuscript). Aerospace structures such as planetary landers, designed to

absorb energy from large impact loads while requiring minimal mass, would benefit from such

components. Previous studies showed that D-bar systems support compressive loads with minimal

mass compared to continuum options such as single columns. In this work, analytical equations for

the mechanical (elastic) energy stored in D-bar systems of any complexity (a quantity proportional

to the number of strings/bars in the system) are derived. The energy stored in D-bar systems is

compared with that of bent buckled beams used in “flexible-bar tensegrity" concepts, which were

proposed in the literature as energy absorption components for planetary landers. Comparisons

are made between D-bar systems and bent buckled beams as isolated components subject to a

compressive load and as part of a larger tensegrity planetary landers. In all comparisons, the results

show that D-bar systems of low complexity allow for higher energy storage and lower mass than

bent buckled beams. Thus, it is concluded that D-bar systems can enhance the design of planetary

landers and other applications that need lightweight mechanical energy absorption components.

2.1 Introduction

Objectives: This work presents a study on lightweight components for mechanical energy

absorption based on a special tensegrity topology known as D-bar system [6]. The study was

motivated by aerospace structures such as planetary landers that need lightweight components

1∗Portions of this section are reprinted or adapted from [21] : Raman Goyal, Edwin A. Peraza Hernandez, and
Robert E. Skelton, "Analytical Study of Tensegrity Lattices for Mass-Efficient Mechanical Energy Absorption",
International Journal of Space Structures, 34(2), 3-21, 2019, DOI: 10.1177/0956059919845330. Copyright c© 2019,
c© SAGE Publications. Reproduced with permission.
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to absorb energy from large impact loads (to protect their interior systems and payload) while

requiring low mass. Recent examples of planetary lander designs include those proposed by

SunSpiral and coworkers [2], who developed ball-like tensegrity robots for planetary exploration

and landing that can safely absorb impact loads. Rimoli [27] extended the approach of [2] by

proposing bent buckled beams used in “flexible-bar tensegrity" concepts for energy absorption

components in planetary landers. Here, conversely, the proposed approach is to store energy from

external loads as mechanical (elastic) energy in the strings and bars of D-bar systems without

triggering local structural instabilities such as buckling and thereby allowing for more reliable

structures. In this chapter, the analytical equations for the mechanical energy stored in D-bar

systems of any complexity are derived for the first time. The energy stored in D-bar systems is

compared with that of bent buckled beams (Fig. 2.1(a)) used in flexible-bar tensegrity concepts,

which have been proposed in the literature as energy absorption components for planetary

landers [27]. Comparisons between the energy stored in D-bar systems and bent beams at the

single component level and as parts of a tensegrity lander structure are presented.

Tensegrity systems are structurally stable networks of axially loaded one-dimensional

members [6, 7, 8, 40, 13]. The one-dimensional elements are defined to be loaded and deformed

only along their longitudinal direction. As illustrated in Fig. 2.1, a D-bar system of complexity 1

(a D-bar unit) is generated by replacing a compressive structural member with 2p bars emanating

from its end-points towards the vertices of a centered p-sided polygon formed by strings (p = 3 in

Fig. 2.1(b)). A D-bar system of complexity q is generated by replacing each bar in a D-bar system

of complexity q − 1 with a D-bar unit. It is worth mentioning that increasing the complexity of

a D-bar system results in a higher number of joints and members which increases manufacturing

costs and makes scalability more difficult. Therefore, D-bar systems of low complexity are more

convenient for practical applications.

Previous studies showed that D-bar systems can support compressive loads with minimal mass

considering buckling and material yielding constraints as compared to single columns [6]; however,

their mechanical energy storage properties have not been explored so far. It should be noted that

7



the conventional D-bar structures studied in [6] include strings connecting the end-points of each

D-bar unit in the D-bar systems, which are not present in this work (see Fig. 2.1(b)). These

strings are necessary only to ensure self-equilibrium in the absence of an external compressive

force or to actuate/deploy the D-bar systems. Such strings are omitted in this work as the D-bar

systems considered herein are strictly designed to be in the presence of a compressive load, and

our focus is solely on the compressive load-bearing and energy storage functionalities of D-bar

systems. For applications of D-bar systems where external compressive loads are absent or

actuation/deployment is needed, the strings connecting the end points of each D-bar unit must be

included. These applications of D-bar tensegrity systems include its use as sensors and actuators

[22] and as lightweight energy absorption components in advanced materials formed by tensegrity

lattices [41, 42, 23].

The remainder of the chapter is organized as follows: Section 2.2 summarizes the assumptions

made in the analytical derivations, Section 2.3 presents the analysis of the energy stored and

minimal mass of bent buckled beams subject to compressive loads, Section 2.4 addresses the

analysis of the energy stored and minimal mass of D-bar systems, and Section 2.5 presents the

comparisons in energy stored and minimal mass between D-bar systems and bent buckled beams.

Concluding remarks are provided in Section 2.6.

2.2 Summary of Assumptions

The assumptions made in the analysis of bent buckled beams (Section 2.3) are as follows:

• Deflections are small and thus captured by Euler-Bernoulli beam theory

• The beam is long and slender such that Euler theory of buckling applies

• The beam is subject to a single axial compressive load applied at its end-points (no moments

or transverse loads are applied)

• The beam has uniform circular full cross-section and is comprised of a homogeneous and

isotropic linear elastic material
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(a)

Strings Bars

(b)

Figure 2.1: (a) A buckled beam subject to a compressive force of magnitude f . (b) D-bar systems
of different complexity q subject to a compressive force of magnitude f .

• The beam is in a post-buckled state under the applied force. Therefore, failure occurs when

stress reaches the material yield stress at any point in the beam during post-buckling

• The maximum energy stored in the beam is that exhibited at the onset of failure (yielding at

any point of the beam) during post-buckling

The assumptions made in the analysis of D-bar systems (Section 2.4) are as follows:

• The D-bar system is subject to a single axial compressive load applied at its end points
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• The studied D-bar topology is stable only under compressive loading since strings

connecting the end-points of each D-bar unit in the D-bar systems are not present in this

work

• The strings and bars are connected through frictionless ball joints such that no moments are

transmitted among them

• The strings and bars are subject only to tensile and compressive axial loads, respectively.

Hence, strings can be replaced by bars.

• The strings and bars have uniform circular full cross-sections and are comprised of

homogeneous and isotropic linear elastic materials

• All the strings are comprised of the same material. All the bars are comprised of the same

material

• Mass of the joints is neglected

• Failure at any string occurs when the stress reaches its material yield stress

• Failure at any bar occurs when the compressive force reaches its critical buckling force

• Linearized (small) strain assumptions are used for the strings and bars as the strain is

expected to remain within the small deformation domain

• The minimal mass of the D-bar system is determined by finding the minimum radii of strings

and bars, which corresponds to the radii for which all the members are at the onset of failure

under the applied force

• The maximum energy stored in the D-bar system is that exhibited at the onset of failure in

the strings and bars

The assumptions made in the analysis of planetary landers with bent buckled beams and D-bar

systems (Section 2.5.2) are as follows:
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• The bent buckled beams and D-bar systems in the lander follow the aforesaid assumptions

made in Sections 2.3 and 2.4

• The geometry of the tensegrity lander developed in [2] is assumed

• The static loads for the analysis are assumed to be the maximum (peak) load on the structure

during the landing operation

• The total force F on top three nodes of the lander is assumed to be equally distributed and

the force is assumed to be F = 15000N

2.3 Bent Beam Analysis

The goal in this section is to derive analytical formulas for the mechanical (elastic) energy

stored (VB) and the minimal mass (mB) of a bent buckled beam subjected to an axial compressive

force of magnitude f ; refer to Fig. 2.1(a). Such an axial compressive force is assumed in

order to simulate impact loading conditions. The results presented in this section are based on

Euler-Bernoulli beam theory and Euler theory of buckling [43, 44]. Since the beam is subjected

to a single axial compressive load, it is assumed that the beam is in a post-buckled state. It is

assumed that the beam is subjected to an axial force. Moreover, the beam is assumed to be in a

state of controlled buckling with no exceedance of the yield stress in the most bent section.

The beam has length l and is initially aligned with the x-axis. It is subject only to a compressive

force of magnitude f applied at its end points and aligned with the x-axis as indicated in Fig. 2.2.

It is assumed that the beam is composed of a homogeneous and isotropic material with Young’s

modulus Eb, yield stress σb, and mass density ρb. The beam has a uniform cross-section with

minimum area moment of inertia I . It is assumed that the beam has a circular full cross-section of

radius r.

To determine the mechanical energy stored and minimal mass of the bent beam in a

post-buckled state, the formulas for its deflection w and magnitude of the critical buckling load

f must be first provided. It is a known result from Euler theory of buckling [43, 44] that the critical

buckling load of a beam of full circular section is given as:
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Figure 2.2: Geometry of a buckled beam subject to an axial compressive load f . The deflection w
along the y-axis is indicated.

f =
n2π3Ebr

4

4l2
, n = 1, 2, 3, . . . , (2.1)

where n indicates the buckling mode. Furthermore, the deflection w in its buckled configuration is

given as:

w = wmax sin
(
nπx
l

)
, (2.2)

where wmax is the maximum deflection of the beam and 0 ≤ x ≤ l.

To calculate the highest mechanical energy stored in the bent beam, it is assumed that the beam

is loaded up to the onset of failure. In the post-buckled state of the beam studied here, failure occurs

when the stress anywhere in the bent beam reaches the material yield stress. Using the expression

for deflection field w in Eq. (2.2), formulas for wmax at material yield and the associated axial

strain field are derived.

Lemma 2.3.1. Consider a beam of length l and deflection field w given by Eq. (2.2). Suppose

that the beam is composed of a homogeneous and isotropic material with Young’s modulus Eb and

yield stress σb and has a uniform circular cross-section of radius r. Then, the maximum allowable

deflection of the beam wmax that occurs at the onset of material yield is given by:

wmax =
σb
rEb

(
l

nπ

)2

, (2.3)
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and the axial strain of the beam at such a maximum deflection (i.e., the maximum allowable axial

strain) is given as:

ε = y
σb
rEb

sin
(
nπx
l

)
, (2.4)

where 0 ≤ x ≤ l and −r ≤ y ≤ r.

The proof is given in Appendix C.1.

The mechanical energy stored in the bent beam VB at post-buckling is obtained by integrating

the strain energy density 1
2
σε over the entire volume of the beam:

VB =

∫
vol

1

2
σε dv. (2.5)

The following theorem provides the final expressions for VB and the minimal mass mb of the

bent beam.

Theorem 2.3.1. Consider a beam of length l subject to a compressive force of magnitude f .

Suppose that the beam is composed of a homogeneous and isotropic material having Young’s

modulus Eb, yield stress σb, and mass density ρb. Furthermore, the maximum allowable strain of

the beam at the onset of material yield is given by Eq. (2.4). Then, the mechanical energy stored

in the bent beam VB is given as:

VB =
l2σ2

b

8

(
f

πE3
b

) 1
2

, (2.6)

and the associated mass of the beam mB for a given beam length l, in terms of the applied

compressive force f , is given as:

mB = 2l2ρb

(
f

πEb

) 1
2

. (2.7)

Proof. For a material with Young’s modulus Eb, the stress σ is given by σ = Ebε. Substituting

this into Eq. (2.5), the following is obtained:
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VB =

∫
vol

1

2
Ebε

2 dv. (2.8)

The highest energy stored in the buckled beam VB is determined by substituting the maximum

allowable strain from Eq. (2.4) into Eq. (2.8):

VB =

∫
vol

1

2
y2 σ2

b

r2Eb
sin2

(
nπx
l

)
dv. (2.9)

The previous volume integral is evaluated as an integral over the length of the beam along the

x-axis and an integral over the cross-section area of the beam:

VB =
1

2

σ2
b

r2Eb

∫ l

0

∫
area

y2 sin2
(
nπx
l

)
da dx =

lIσ2
b

4r2Eb
, (2.10)

where I is the area moment of inertia. For a beam having a circular cross-section, I = πr4

4
:

VB =
πlr2σ2

b

16Eb
. (2.11)

To determine an expression of VB as a function of the magnitude of the compressive force f , a

formula for r as a function of f from Eq. (2.1) is first determined:

r =

(
4l2f

n2π3Eb

) 1
4

, (2.12)

and then it is substituted into Eq. (2.11):

VB =
l2σ2

b

8n

(
f

πE3
b

) 1
2

. (2.13)

From Eq. (2.13), it is clear that the first beam buckling mode (n = 1) results in the highest

stored mechanical energy VB in comparison to higher buckling modes (n > 1). Therefore, the

first buckling mode is assumed for all subsequent calculations and the energy stored in the beam is

given by Eq. (2.6). The mass of the beam mB is obtained by multiplying ρb by its total volume:
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mB = ρbπlr
2. (2.14)

The expression for the radius r as a function of f from Eq. (2.12) is substituted into Eq. (2.14)

to obtain the formula for the minimal mass of the beam mB in terms of f stated in Eq. (2.7).

2.4 D-bar Tensegrity System Analysis

The goal in this section is to derive analytical formulas for the mechanical (elastic) energy

stored (VD) and minimal mass (mD) of a D-bar system subject to an axial compressive force; refer

to Fig. 2.1(b). The boundary condition assumed for the D-bar system is identical to that assumed

for the bent beam in Section 2.3, where a single compressive force of magnitude f is applied

at the end points of the D-bar. The strings and the bars of the D-bar system are composed of

homogeneous, isotropic, linear elastic materials. The geometry of D-bar systems of complexity

q = 1, 2 is illustrated in Fig. 2.3. The total length of the D-bar system is denoted by l. The

angle between the line connecting the end points of each D-bar unit and the line along any of

its associated bars is denoted by α. The number of strings in each D-bar unit is denoted as p,

where p ≥ 3. Figure 2.4 shows D-bar tensegrity systems of complexities q = 1, 2 with parameter

p = 3, 4, 5.

The length of all the bars in a D-bar system of complexity q is denoted by lq. The number of

bars in a D-bar system is denoted by nb. It can be verified that:

lq =
l

(2 cos(α))q
, (2.15)

nb = (2p)q. (2.16)

The length of the strings introduced in each self-similar iteration is denoted as lsi, i = 1, . . . , q.

The number of strings introduced in each self-similar iteration is denoted as nsi, i = 1, . . . , q. It

can be shown that:
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Figure 2.3: Geometric parameters of D-bar tensegrity systems of complexities q = 1, 2.
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Figure 2.4: D-bar tensegrity systems of complexities q = 1, 2 with parameter p = 3, 4, 5.
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lsi = 2li sin
(
π
p

)
sin(α) i = 1, . . . , q, (2.17)

nsi = p(2p)i−1 = 2i−1pi i = 1, . . . , q. (2.18)

The formula for lq from Eq. (2.15) is then substituted into Eq. (2.17) to obtain an expression

for lsi in terms of l and α:

lsi =
2l sin

(
π
p

)
sin(α)

(2 cos(α))i
=

l sin
(
π
p

)
tan(α)

2i−1 cosi−1(α)
i = 1, . . . , q. (2.19)

The total number of strings, denoted by ns, is given as follows:

ns =

q∑
i=1

nsi =

q∑
i=1

2i−1pi. (2.20)

It is shown in Chapter 3 of [6] that the magnitude of the compressive force in all the bars of the

D-bar system, denoted by fq, is given as follows:

fq =
f

(p cos(α))q
, (2.21)

and the magnitude of the tensile force in the strings introduced in each self-similar iteration,

denoted by ti, i = 1, . . . , q, is given as:

ti =
f tan(α)

pi sin
(
π
p

)
cosi−1(α)

i = 1, . . . , q. (2.22)

After presenting the geometry and force distribution of D-bar systems with arbitrary

complexity, we then determine their energy stored and minimal mass under material yield and

buckling constraints. To determine the highest energy stored in the D-bar system, we assume that

all the strings and bars are loaded up to the onset of failure corresponding to reaching the material

yield stress of the strings and the critical buckling force of the bars. Given these assumptions, the
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strain in the strings and bars is expected to remain within the small deformation domain. Therefore,

linearized strain assumptions, such as those used in the beam calculations of Section 2.3, are also

assumed here.

The aforesaid assumption that all the strings and bars are loaded up to the onset of failure

is critical in this study. It allows us to determine the values for the mininum radii, and thereby

the minimum mass, of the strings and bars2. The validity of such an assumption is enforced by

calculating and employing the radii of the strings and bars corresponding to those for which the

members are loaded exactly to the onset of failure (yield for strings and buckling for bars) under

their calculated forces from Eqs. (2.22) and (2.21). Sizing the minimum radii of the strings and

bars with respect to their member force is a feasible procedure in this study as the member forces

in Eqs. (2.22) and (2.21) are independent from their cross-sectional area. Once the minimum radii

of the strings and bars are determined (in terms of the applied force f , D-bar geometric parameters

l, α, q and p, and material properties), the minimal mass and the energy stored of the D-bar system

can be analytically assessed.

Theorem 2.4.1. Consider a D-bar system of complexity q, angle parameter α, length l, and p

strings per D-bar unit subject to a compressive force of magnitude f . Suppose that all the strings

and bars are loaded up to the onset of failure corresponding to reaching the critical buckling force

of the bars and the material yield stress of the strings. The material comprising the strings has

Young’s modulusEs and yield stress σs, and the material comprising the bars has Young’s modulus

Eb. Then, the total mechanical energy stored in the D-bar system VD is given as:

VD =
2q−2

p
q
2 cos

3q
2 (α)

(
πf 3

Eb

) 1
2

+
lfσs(sec2q(α)− 1)

2Es
. (2.23)

Proof. We start by determining the total mechanical energy stored in the bars. The magnitude of

the compressive force fq of each bar in a D-bar system of complexity q provided in Eq. (2.21) can

also be expressed in terms of their extensional stiffness kq, current length lq, and rest length lq0:
2Using the radii for which the members are l to the onset of failure corresponds in practice to using a factor of

safety of one, which is the case when structures are designed for minimum mass (minimum resources). A larger factor
of safety can be readily introduced in the calculations based on specific application requirements.

18



fq = kq(lq − lq0), (2.24)

where kq is given as:

kq =
EbAq
lq

, (2.25)

andAq is the cross-sectional area of the bars. Assuming failure by buckling at the bars of the D-bar

system, the maximum value of force allowed for each bar corresponds to the critical buckling force,

obtained from Euler theory of buckling [43, 44] (cf. Eq. (2.1)):

fq =
π3Ebr

4
q

4l2q
=

πEbA
2
q

4l2q
. (2.26)

where rq is the radius of each bar (assumed to have circular cross-sections). Equation (2.26) is

solved for Aq:

Aq = 2lq

(
fq
πEb

) 1
2

, (2.27)

and the previous expression for Aq is substituted in Eq. (2.25) to obtain an expression for kq in

terms of the compressive force fq:

kq = 2

(
fqEb
π

) 1
2

. (2.28)

The elastic energy stored in each bar of a D-bar system of complexity q is denoted as Vq and is

given as follows:

Vq =
1

2
kq(lq − lq0)2. (2.29)

We now proceed to determine an expression for Vq in terms of f , q, p, α, and material

parameters. First, Eq. (2.24) is substituted into Eq. (2.29) and the following expression for Vq
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is determined:

Vq =
f 2
q

2kq
. (2.30)

The expression for kq from Eq. (2.28) is substituted into Eq. (2.30):

Vq =
1

4

(
πf 3

q

Eb

) 1
2

. (2.31)

The expression for fq from Eq. (2.21) is substituted into Eq. (2.31) to obtain the mechanical

energy stored of each bar in terms of f , q, p, α, and material parameters:

Vq =
1

4

(
πf 3

Eb(p cos(α))3q

) 1
2

=
1

4p
3q
2

(
πf 3

Eb cos3q(α)

) 1
2

. (2.32)

The total mechanical energy in the bars of the D-bar system is obtained by adding the energy

stored in each bar:

Vb = nbVq =
2q−2

p
q
2

(
πf 3

Eb cos3q(α)

) 1
2

. (2.33)

After determining the total mechanical energy in the bars of the D-bar system, we continue by

determining the total mechanical energy stored in the strings. First, the magnitude of the tensile

force ti of every elastic string introduced in each self-similar iteration provided in Eq. (2.22) can

also be expressed in terms of their extensional stiffness ksi, current length lsi, and rest length lsi0:

ti = ksi(lsi − lsi0) i = 1, . . . , q, (2.34)

where ksi is given as:

ksi =
EsAsi
lsi

i = 1, . . . , q, (2.35)

and Asi is the cross-sectional area of the strings. Assuming that failure occurs by material yielding
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at the strings and that the tensile force of the strings reaches the onset of yielding,Asi is determined

as follows:

ti = σsAsi → Asi =
ti
σs
. (2.36)

where σs is the yield stress of the material comprising the strings. Substituting the expression for

Asi from Eq. (2.36) into Eq. (2.35), the following is obtained:

ksi =
Esti
σslsi

. (2.37)

The expressions for ti and lsi from Eqs. (2.22) and (2.19), respectively, are substituted into

Eq. (2.37) and the following is obtained:

ksi =
Es
σs

f tan(α)

pi sin
(
π
p

)
cosi−1(α)

2i−1 cosi−1(α)

l sin
(
π
p

)
tan(α)

=
2i−1fEs

pi sin2
(
π
p

)
lσs

. (2.38)

The elastic energy stored in each string introduced at every self-similar iteration is denoted as

Vsi and is given as follows:

Vsi =
1

2
ksi(lsi − lsi0)2 i = 1, . . . , q. (2.39)

We now proceed to determine an expression for Vsi in terms of f , l, p, α, and material

parameters. First, Eq. (2.34) is substituted into Eq. (2.39) and the following expression for Vsi

is determined:

Vsi =
t2i

2ksi
i = 1, . . . , q, (2.40)

and the expression for ksi from Eq. (2.38) is substituted into Eq. (2.40) to obtain the following:

Vsi =
pi sin2

(
π
p

)
lσst

2
i

2ifEs
i = 1, . . . , q. (2.41)
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By substitution of the expression for ti from Eq. (2.22) into Eq. (2.41), the following expression

for Vsi in terms of f , l, p, α, and material parameters is obtained:

Vsi =
lfσs tan2(α)

(2p)iEs cos2i−2(α)
i = 1, . . . , q. (2.42)

The total mechanical energy stored in the strings of a D-bar system of complexity q, denoted

as Vs, is determined as the sum of the energy stored in each of its strings as follows:

Vs =

q∑
i=1

nsiVsi. (2.43)

Substituting Eqs. (2.18) and (2.42) into the previous equation, the following is obtained:

Vs =

q∑
i=1

pi2i−1 lfσs tan2(α)

(2p)iEs cos2i−2(α)
=

lfσs tan2(α)

2Es

q∑
i=1

1

cos2i−2(α)
. (2.44)

To simplify the formula for the energy stored in a D-bar system in Eq. (2.44), we consider the

following trigonometric identity that can be verified by the reader:

tan2(α)

q∑
i=1

1

cos2i−2(α)
= sec2q(α)− 1. (2.45)

Substituting the previous identity into Eq. (2.44), we obtain the following formula for the

mechanical energy stored in the strings of the D-bar system:

Vs =
lfσs(sec2q(α)− 1)

2Es
. (2.46)

The total mechanical energy in the D-bar system, denoted as VD, is obtained by adding the

energy stored in the bars Vb and the energy stored in the strings Vs:

VD = Vb + Vs. (2.47)

By substitution of Vb from Eq. (2.33) and Vs from Eq. (2.46) into Eq. (2.47), the final expression
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for VD stated in Eq. (2.23) is obtained.

We now proceed to provide a formula for the minimal mass mD of the D-bar system in terms

of the magnitude of the applied compressive force f .

Theorem 2.4.2. Consider a D-bar system of length l, complexity q, angle parameter α, and p

strings per D-bar unit subject to a compressive force of magnitude f . Suppose that the material

comprising the bars has Young’s modulus Eb and mass density ρb while the material comprising

the strings has yield stress σs and mass density ρs. Then, the mass associated with the D-bar

system, mD is given as:

mD =
p
q
2ρbl

2

2q−1 cos
5q
2 (α)

(
f

πEb

) 1
2

+
lfρs(sec2q(α)− 1)

σs
. (2.48)

The proof is given in Appendix C.2. Chapter 3 of [6] has a formula for mass mD that includes

additional strings connecting the end nodes of each D-bar unit, which are not required in a minimal

mass design for a D-bar. From Eqs. (2.23) and (2.48), it is clear that a D-bar system stores more

energy and requires less mass for lower values of the number of strings in each D-bar unit (p).

Therefore, the minimum value of p, corresponding to 3, is assumed for the remainder of the chapter.

2.5 Comparison of Energy Stored and Mass of a D-bar System and a Bent Beam

2.5.1 Single Component Assessment

To compare D-bar systems with bent buckled beams at the single component level, the ratio of

energy stored in a D-bar to that of a bent beam (VD/VB) and the ratio of the mass of a D-bar to

that of a bent beam (mD/mB) are determined. The compressive force f and length l of the bent

buckled beam and the D-bar system are assumed equal. The ratio VD/VB is determined by dividing

VD from Eq. (2.23) by VB from Eq. (2.6):

VD
VB

=
2q+1

3
q
2 cos

3q
2 (α)

(
πEb
σ2
b

)(
f

1
2

l

)2

+
4σs(sec2q(α)− 1)(πE3

b )
1
2

Esσ2
b

(
f

1
2

l

)
. (2.49)
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For given values of α, f , l, and material parameters, the ratio VD/VB in Eq. (2.49)

monotonically increases as q increases. Moreover, the limit of VD/VB as q approaches infinity

is infinity. Therefore, there always exist D-bar systems that store more energy than a buckled beam

(i.e., for which VD/VB > 1). The minimum value of q for such D-bar systems can be determined by

increasing q until the value of VD
VB

becomes greater than 1. In order to further comparatively assess

the feasibility of D-bar systems against buckled beams, their mass ratio must also be evaluated.

The ratio mD/mB is determined by dividing mD from Eq. (2.48) by mB from Eq. (2.7):

mD

mB

=
3
q
2

2q cos
5q
2 (α)

+
ρs(sec2q(α)− 1)(πEb)

1
2

2σsρb

(
f

1
2

l

)
. (2.50)

It is noted that the length l and applied force magnitude f appear only in the parameter f
1
2/l

in Eqs. (2.49) and (2.50). This parameter can be used as a scaling factor to evaluate D-bar energy

storage components across scales.

We now proceed to provide quantitative comparisons between D-bar systems and bent buckled

beams using the stored energy and mass ratios provided in Eqs. (2.49) and (2.50). Conventional

material parameters of aluminum are assumed for the beam, bars, and strings (Eb = Es = 60

GPa, σb = σs = 110 MPa, ρb = ρs = 2700 kg/m3). These values are used to generate the

contour plots of VD/VB shown in Fig. 2.5 for f
1
2/l = 100 N

1
2 /m, 150 N

1
2 /m, and 200 N

1
2 /m.

The axes of the contour plots correspond to the D-bar system complexity q and angle α (refer

to Fig. 2.3). As indicated in Fig. 2.5, as the value of f
1
2/l increases, there exist D-bar systems

of lower complexity q and lower α that store more energy than that of bent buckled beams (i.e.,

for which VD/VB > 1). D-bars of low q are desirable as they require fewer members/joints and

are easier to manufacture while D-bars of low α occupy smaller volumes. It is also noted that

even though the results show that increasing complexity would generate D-bar systems of higher

energy storing capabilities, manufacturing and scaling issues would prevent the synthesis of D-bar

systems of very high complexity.

Contours of the ratio for the mass of the D-bar system to the bent beam (mD/mB) are shown in

Fig. 2.6. The design space of D-bar systems that have lower mass than bent beams (i.e., for which
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Figure 2.5: Contours of ratio of mechanical energy stored for the D-bar system to the bent beam
(VD/VB). The shaded areas show the regions for which VD/VB > 1. Material parameters
of aluminum are assumed for the beam, bars, and strings. D-bar structures for the red dots
corresponding to complexities q = 1, 2, 3 and α = 7.5◦ are shown in Fig. 2.9.

mD/mB < 1) is shown in the shaded regions. It is observed that there are D-bar systems of any of

the shown complexities for which mD/mB < 1 provided that α is lower than approximately 17◦.

A favorable D-bar system stores more energy while requiring less mass to take the same

compressive load than a bent buckled beam. The design space of D-bar systems that meet such

requirements corresponds to the intersection of the regions where VD/VB > 1 and mD/mB < 1.

Based on Figs. 2.5 and 2.6, Fig. 2.7 shows the regions where D-bar systems are favorable in terms

of having lower mass and higher energy storage. The trends in Fig. 2.7 show that D-bar systems
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Figure 2.6: Contours of ratio of mass for the D-bar system to the bent beam (mD/mB). The shaded
areas show the regions for which mD/mB < 1. Material parameters of aluminum are assumed
for the beam, bars, and strings. D-bar structures for the red dots corresponding to complexities
q = 1, 2, 3 and α = 7.5◦ are shown in Fig. 2.9.

with lower values of q and α have better performance than bent beams for higher values of f
1
2/l,

which correspond to higher values of compressive force f and/or lower values of length l. This

is observed as the design region for which VD/VB > 1 and mD/mB < 1 expands towards lower

values of q and α as f
1
2/l is increased in Fig. 2.7. These trends indicate that D-bar systems are

more favorable as mass-efficient energy absorption components in systems subject to high impact

loads (large values of f ) and having limited volumes (low values of l).

A new parameter corresponding to the mechanical energy stored per unit mass for the bent

beam is given as:
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Figure 2.7: Regions showing the design space of D-bar systems for which VD/VB > 1 and
mD/mB < 1.

µB :=
VB
mB

=
σ2
b

16ρbEb
, (2.51)

which can be calculated by substituting for the mechanical energy stored in the bent beam VB,

given by Eq. (2.6) and the associated mass mB, given by Eq. (2.7). Notice that the ratio µB is

independent of the beam length l and applied force magnitude f .

The ratio of VD to mD, denoted as µD, corresponds to the mechanical energy stored per unit

mass for the D-bar system:
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Figure 2.8: Contours of ratio of VD/mD for the D-bar system to the bent beam VB/mB. The shaded
areas show the regions for which µD/µB > 1. Material parameters of aluminum are assumed
for the beam, bars, and strings. D-bar structures for the red dots corresponding to complexities
q = 1, 2, 3 and α = 7.5◦ are shown in Fig. 2.9.

µD :=
VD
mD

=
Vb + Vs
mb +ms

, (2.52)

which can also be written as:

µD =

2q−2

p
q
2 cos

3q
2 (α)

(
π

Eb

) 1
2

(
f

1
2

l

)
+
σs(sec2q(α)− 1)

2Es

p
q
2ρb

2q−1 cos
5q
2 (α)

(
1

πEb

) 1
2

(
f

1
2

l

)−1

+
ρs(sec2q(α)− 1)

σs

. (2.53)
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The previous expression for µD is determined by substitution of VD and mD from Eqs. (2.23)

and (2.48), respectively, into Eq. (2.52). Notice that D-bar length l and applied force magnitude f

again only appear in the parameter f
1
2/l in Eq. (2.53).

The shaded region in the Fig. 2.8 provides the design region for µD/µB > 1 for a single

component analysis. The shaded area corresponds to the design region where mechanical energy

stored per unit mass for the D-bar system is higher than the mechanical energy stored per unit mass

for the bent beam. Fig. 2.8 shows that D-bar system have better performance than bent beams for

higher values of f
1
2/l.

A single beam (in its initial configuration) and D-bar systems of complexities q = 1, 2, 3

indicated with red dots in Figs. 2.5–2.7 are illustrated in Fig. 2.9. The calculated radii of the beam

(Eq. (2.12)), bars (Eq. (C.13)), and strings (Eq. (C.18)) are considered in such figures. It is worth

noting that the radii of the bars of the D-bar system decrease by increasing the complexity q. Also

notice that q = 3 stores 25% more energy and saves 30% mass compared to a beam. This is a

good gain for space applications. No intersection between any bar and string was observed for all

complexities in Fig. 2.9.
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Figure 2.9: Schematics of a beam (initial configuration prior to buckling) and D-bars of different
complexities. The axes units are in meters. Values of α = 7.5◦, l = 0.5 m, f

1
2/l = 150 N

1
2 /m, and

material parameters of aluminum for the beam, bars, and strings are assumed. The calculated radii
of the beam, bars, and strings are considered in the schematics.
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2.5.2 Assembly-level Assessment

Having compared the energy stored and mass for single D-bar systems and bent beams, this

section considers an example of a planetary lander to compare D-bar systems and bent buckled

beams as part of a larger tensegrity structure. The geometry and boundary conditions of the

tensegrity lander are first described. Then, the equilibrium equations used to calculate the forces

in each member are provided. Finally, the energy stored and the total mass of a lander with bent

beams are compared against those of a lander with D-bar systems replacing the beams.

The geometry of the tensegrity lander developed in [2] for planetary exploration is considered

for this assessment. The lander has 6 compressive members of length L and 24 tensile members

of length (3/8)
1
2L. As illustrated in Fig. 2.10(a), vertical compressive forces are applied to the

top three nodes of the structure and the bottom three nodes are kept fixed to simulate the impact

conditions. The total force applied to the top surface is denoted as F .

To calculate the forces in each member, the equilibrium equations for tensegrity systems

developed in [16] are used. First, let ni ∈ R3 be the position vector of the ith node and N be

the matrix containing the node position vectors N = [n1 n2 · · · ]. Also, let wi ∈ R3 be the

vector of external forces applied at the ith node and W be the matrix containing such vectors

W = [w1 w2 · · · ]. The magnitude of the tensile force per unit length at the ith string is denoted

γi and the magnitude of the compressive force per unit length at the j th bar is denoted λj . Define

the vectors γ = [γ1 γ2 · · · ]> and λ = [λ1 λ2 · · · ]>. Denote γ̂ and λ̂ as the square matrices whose

diagonal components correspond to the elements of γ and λ. The equilibrium equations are then

written as follows [16]:

N(C>s γ̂Cs − C>b λ̂Cb) = W, (2.54)

where Cb and Cs are connectivity matrices for bars and strings, respectively [16]. The node

positions for the geometry shown in Fig. 2.10 are given by:
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(a) (b)

(c) (d)

Figure 2.10: (a) Geometry and boundary conditions of a tensegrity lander [2]. The strings are
shown in red and have length

(
3
8

) 1
2 L and the beams are shown in blue and have length L. The

yellow triangles indicate the nodes that are fixed. (b) Node labels (see Eq. (2.55)). (c) Tensegrity
lander obtained by replacing the beams with D-bar systems of complexity q = 1. (d) Tensegrity
lander obtained by replacing the beams with D-bar systems of complexity q = 2.
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and the external forces are given by:

w2 = w4 = w5 =
[
0 0 − F

3

]>
. (2.56)

The reaction forces w1, w3, and w8 at the fixed nodes can be calculated in a subsequent step

after determining the loading of each tensile and compressive member. Equation (2.54) can also

be written as:

[
(C>s ⊗ I3)Ŝ −(C>b ⊗ I3)B̂

]γ
λ

 = w, (2.57)

where [b1 b2 · · · ] = NC>b and [s1 s2 · · · ] = NC>s are respectively the vectors along the length of

each bar and each string, B̂ = b.d.(b1, b2, · · · ), Ŝ = b.d.(s1, s2, · · · ), w> = [w>1 w>2 · · · ], b.d. is

the block diagonal operator, and ⊗ is the Kronecker product.

The rows of Eq. (2.57) associated with the fixed nodes (nodes 1, 3, and 8 in this example)

are removed. Subsequently, such an equation is solved numerically to find γ and λ such that the

total sum of forces in all members is minimized with a constraint of γ and λ being positive, i.e.,

all the strings in the structure are in tension and all the bars are in compression. We calculate

the compressive forces in the bars and the tensile forces in the strings under different landing

configurations that correspond to different boundary conditions, i.e., as if the structure touched the

ground at nodes {1, 3, 8} (shown in Fig. 2.10), {3, 7, 10}, {2, 4, 5}, {2, 6, 11}, etc. Among different

boundary conditions, the maximum load in each bar and each string is employed to design each

individual element. From the symmetry of the structure, all the bars will have the same maximum

compressive load, denoted as f , and all the strings will have the same maximum tensile load,

denoted by t, among all the different landing configurations.

Proposition 2.5.1. Consider the tensegrity lander whose geometry is illustrated in Fig. 2.10. The

compressive members of the lander take a maximum load f and are comprised of a material with

Young’s modulus Eb, and mass density ρb. The strings take a maximum tensile load t and are
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comprised of a material with Young’s modulus Es, yield stress σs, and mass density ρs. In a

minimum mass design, if the compressive members of the lander are beams that undergo buckling,

its stored energy VSB and mass mSB are given as:

VSB = (24)

(
3

8

) 1
2 σsLt

2Es
+ (6)

L2σ2
b

8

(
f

πE3
b

) 1
2

, (2.58)

mSB = (24)

(
3

8

) 1
2 ρsLt

σs
+ (6)2L2ρb

(
f

πEb

) 1
2

. (2.59)

Furthermore, if the compressive members of the lander are D-bar systems, its stored energy

VSD and mass mSD are given as:

VSD = (24)
(

3
8

) 1
2
σsLt

2Es

+(6)

(
2q−2

3
q
2 cos

3q
2 (α)

(
πf 3

Eb

) 1
2

+
Lfσs(sec2q(α)− 1)

2Es

)
,

(2.60)

mSD = (24)
(

3
8

) 1
2
ρsLt

σs

+(6)

(
3
q
2ρbL

2

2q−1 cos
5q
2 (α)

(
f

πEb

) 1
2

+
Lfρs(sec2q(α)− 1)

σs

)
.

(2.61)

Proof. The energy stored in each of the strings is determined using the procedure followed in

Eqs. (2.34)–(2.41). This energy stored is denoted VS and is given as:

VS =

(
3

8

) 1
2 σsLt

2Es
. (2.62)

The mass of each string is denotedmS and is found using the approach described in Eqs. (C.15)

and (C.16). The expression for mS is given as follows:

mS =

(
3

8

) 1
2 ρsLt

σs
. (2.63)

If the compressive members are beams that undergo buckling, their energy stored (VB) and
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mass (mB) as functions of their length L and compressive force f are given by Eqs. (2.6) and

(2.7), respectively. Conversely, if the compressive members are D-bar systems, their energy stored

(VD) and mass (mD) as functions of L and f are given by Eqs. (2.23) and (2.48), respectively.

The energy stored (VSB) and mass (mSB) of a lander with beams that undergo buckling are

given as:

VSB = 24VS + 6VB, (2.64)

mSB = 24mS + 6mB. (2.65)

Substituting Eqs. (2.62) and (2.6) into Eq. (2.64), the expression for VSB of Eq. (2.58) is

obtained. Substituting Eqs. (2.63) and (2.7) into Eq. (2.65), the expression for mSB of Eq. (2.59)

is obtained.

Similarly, the energy stored (VSD) and mass (mSD) of a lander with D-bar systems as its

compressive members are given as:

VSD = 24VS + 6VD, (2.66)

mSD = 24mS + 6mD. (2.67)

Substituting Eqs. (2.62) and (2.23) into Eq. (2.66), the expression for VSD of Eq. (2.60) is

obtained. Substituting Eqs. (2.63) and (2.48) into Eq. (2.67), the expression for mSD of Eq. (2.61)

is obtained. This concludes the proof.

Having determined the mechanical energy stored and the total mass of tensegrity landers whose

compressive members are beams that undergo buckling or D-bar systems, the two designs are now

compared. Conventional material parameters of aluminum are assumed for the beams, bars, and

strings are assumed (Eb = Es = 60 GPa, σb = σs = 110 MPa, ρb = ρs = 2700 kg/m3). Values
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of F = 15000 N and L = 1 m are also assumed. These values of F and L resulted in maximum

member forces f = 22360 N and t = 9128 N. Contours for the ratios of mechanical energy

stored and total mass for the two designs are provided in Fig. 2.11. In the mSD/mSB contour, it

is observed that landers with D-bar systems have lower mass than landers with bent beams for the

entire studied domain of q, provided that α is below approximately 17◦.

The values of ratio are mSD/mSB = 0.92, mSD/mSB = 0.85, and mSD/mSB = 0.78 for

q = 1, 2, and 3, respectively. These values are corresponding to the three red circles in Fig. 2.11

for α = 10◦, showing a significant saving in the mass of the lander. The design region of landers

with D-bar systems that store more energy (VSD/VSB > 1) and require less mass (mSD/mSB < 1)

than landers with bent buckled beams is also shown in Fig. 2.11. The values corresponding to the

three red dots in Fig. 2.11 for VSD/VSB contour plots are: VSD/VSB = 0.96, VSD/VSB = 1.05,

and VSD/VSB = 1.11 for q = 1, 2, and 3, respectively. Fig. 2.11 also shows the contour plot

corresponding to µSD/µSB > 1. The values corresponding to the three red dots in Fig. 2.11 for

µSD/µSB contour plots are: µSD/µSB = 1.04, µSD/µSB = 1.23, and µSD/µSB = 1.42. Such a

design region spans the entire studied domain of q, with lower values of α feasible by increasing q.

At q = 3, any value of α below approximately 17◦ generates a favorable D-bar design in terms of

energy stored and mass. Overall, the results in Fig. 2.11 indicate that designs of tensegrity landers

can be significantly enhanced if beams that undergo buckling during vehicle impact are replaced

with D-bar systems of low complexities.

2.6 Conclusions

This chapter presented an analytical study of D-bar tensegrity systems for applications as

lightweight components for mechanical energy absorption. This work was motivated by aerospace

structures such as planetary landers that necessitate these lightweight components to absorb energy

from large impact loads (to protect their interior systems and payload) while requiring minimal

mass. Recent works proposed bent buckled beams used in “flexible-bar tensegrity" concepts as

energy absorption components in planetary landers. Here, conversely, the approach was to absorb

energy from external loads as mechanical (elastic) energy in the strings and bars of D-bar systems

36



Figure 2.11: Contours of ratios of mechanical energy stored (VSD/VSB) and total mass
(mSD/mSB) for tensegrity landers whose compressive members are D-bar systems or beams that
undergo buckling. The design region with VSD/VSB > 1 and mSD/mSB < 1 is shown in 2nd
row-2nd column plot. The shaded areas in 2nd row-1st column plot, show the regions for which
µSD/µSB > 1. Material parameters of aluminum are assumed for the beams, bars, and strings.

without triggering local instabilities such as buckling (thereby enabling more reliable structures).

Previous studies have demonstrated that D-bar systems support compressive loads with

minimal mass compared to continuum structures such as prismatic columns. This work adds to

the body of knowledge of tensegrity structures by developing analytical formulas to describe the

energy absorption properties of D-bar systems. The analytical equations are applicable to D-bar

systems of any complexity, number of strings in each D-bar unit, elastic material properties, system

length, and applied compressive force.
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The energy stored in D-bar systems was compared with that of bent buckled beams. The

comparisons were made between D-bar systems and bent buckled beams as isolated components

subject to a compressive load and as the components of tensegrity planetary landers. The following

was concluded from the comparative studies:

• For the component-level comparison, the results showed that D-bar system of low

complexity allow for higher energy storage and lower mass than bent buckled beams. For

q = 2 and α = 7.5◦, the mass saving was around 21% with 5% higher energy storage

(Fig. 2.9)

• For the comparison as a part of larger tensegrity system, the results followed the same trend.

For q = 2 and α = 10◦, the mass saving was around 15% with 4% higher energy storage

(Fig. 2.11)

• D-bar systems of lower complexities had better performance (in terms of energy stored and

mass) than bent beams for higher compressive force and lower system length. Notice the

increase in design region as the value of f
1
2/l increases in Fig. 2.5 or Fig. 2.7. These

trends indicate that D-bar systems are more favorable as mass-efficient energy absorption

components in structures subject to high impact loads and placed in small volumes (such as

aerospace systems)

Therefore, it is finally concluded that D-bar systems can enhance the design of planetary

landers and other applications that require lightweight mechanical energy absorption components.
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3. DESIGN OF MINIMUM MASS TENSEGRITY T-BAR STRUCTURE∗

1 This work centers on the design of tensegrity-based lattices, known as “T-bar" structures,

capable of supporting compressive loads with minimum mass. Previous mass studies of

load-bearing tensegrity structures based their calculations only on local failure of the truss

members without consideration of global buckling failure. In this work, analytical formulas for

the calculation of the mass of these structures under externally applied forces and pre-stress are

derived. These formulas account for local failure of the T-bar structures (material yielding and

buckling of its individual members). The formulation to determine the critical global buckling

loads and mode shapes of tensegrity structures with arbitrary shape and topology is used in

conjunction with local failure constraints (member material failure and member buckling) to

develop a holistic model for load-bearing tensegrity structures that accounts for both local and

global failure modes. A numerical approach is introduced to assess the global stability of the

structures under external forces and pre-stress and to account for global buckling in the design

process. The mass of the structure is minimized by adjusting its shape and topology while

global buckling is simultaneously prevented using two different design methods: i) optimizing the

pre-stress distribution in the structure, and ii) optimizing the cross-section areas of the tensegrity

members. Using either method, the results show that 2D and 3D T-bars possess a global minimum

mass design for a given externally applied force and length. The computed results also show that

designs obtained by optimizing the cross-section areas of the members have lower mass than those

obtained by optimizing the pre-stress distribution.

3.1 Introduction

Tensegrity structures with double-pyramid shape known as T-bars and D-bars have been

analytically shown to support compressive loads with minimum mass compared to continuum

1∗Portions of this section are reprinted or adapted from [45] : Raman Goyal, Robert E. Skelton, and Edwin A.
Peraza Hernandez, “Minimum Mass Tensegrity T-bar Structure with local and global stability”, Mechanics Research
Communications, 103 (103477), 2020, DOI: 10.1016/j.mechrescom.2020.103477. c© 2020 Elsevier Ltd. All rights
reserved. Reproduced with permission.
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compressive columns [6]. The mass calculations of the tensegrities in the aforementioned

studies are based on estimations of the minimal cross-section areas of their individual members

considering their local failure modes such as material yielding and/or buckling. To obtain more

accurate and reliable designs and assessments of the mass of load-bearing tensegrity structures,

their global stability under the applied loads must also be considered. A formulation for global

buckling specifically developed for two-dimensional T-bar compressive structures was derived

in [46, 47]. De Tommasi and coworkers provided an analytical condition for global instability

of two-dimensional T-bar tensegrity fractals based on the potential energy stored in the structures.

They also provide the optimal topology that minimizes structural mass considering both local

and global instabilities [48]. First, they define the tangent stiffness matrix to be Hessian of

potential energy, which can be very difficult to obtain for even a simple tensegrity structure.

Second, the generalized displacements required to calculate potential energy are chosen to be

symmetric and anti-symmetric, which simplifies the analysis of positiveness but loses the more

generalized displacements. In a later paper, De Tommasi and coworkers presented a morphological

optimization study on three-dimensional T-bar tensegrities considering local and global failure

modes using the same approach developed in their previous work [42].

The objective of this work is to design tensegrity lattices for the support of compressive loads

with minimal mass. The focus is on a tensegrity topology known as the T-bar structure, previously

studied and proposed for compressive constructions [47, 42]. Schematics of T-bar structures are

shown in Fig. 3.1. These structures have double-pyramid shape and compressive forces applied at

their end points. T-bars can be used as components of lightweight lattice materials as illustrated

in Fig 3.1. A T-bar of complexity q = 1 is formed by a single T-bar unit that has two bars

(compressive members) of equal length along the loading direction and p bars connecting the

intersection of the longitudinal bars to the vertices of a centered p-sided regular polygon. Figure 3.1

shows T-bars of p = 2 (2D T-bars) and p = 4 (T-bars with a centered square). Strings (tensile

members) form the sides of the central polygon and also connect the vertices of this polygon to

the end points of the T-bar unit. A T-bar of complexity q is formed by replacing the longitudinal
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bars of a T-bar of complexity q − 1 with T-bar units (this is denoted as a self-similar iteration),

as illustrated in Fig. 3.1 for T-bars of complexities q = 2 and q = 3. Previous studies have only

considered T-bars of complexity q = 1 [42] or are limited to 2D T-bars [47]. This work is the first

to consider 2D and 3D T-bars of arbitrary complexity in structural design of compressive lattices.

Local and global failure modes are also accounted for, and different methods to prevent global

buckling of the T-bars while preserving minimal mass are explored. This paper also discusses

the effects of changing pre-stress, area of the strings and area of all the members into the critical

buckling force and the minimum mass required for the structure.

f

f

f

ff

f

T-bar structures

T-bar-based lattices

Figure 3.1: 2D and 3D T-bar structures of different complexity q. These structures can be integrated
in larger assemblies to synthesize lattice compressive materials of minimal mass.

The contributions of this work are summarized as follows:

• This work is the first to provide a formulation to address structural design of compressive

lattices using 2D and 3D T-bars of arbitrary complexity. Previous studies of compressive

structures based on T-bar systems have only considered T-bars of complexity q = 1 [42] or

are limited to 2D T-bars [47].
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• Equations for the member loads in T-bar systems are extended from previous works [6, 47]

to account for arbitrary pre-stress loading scenarios.

• Local and global failure stability constraints are concurrently accounted for in the minimal

mass design of T-bar systems. A novel algorithm that allows for the design of minimum

mass 2D and 3D T-bars of any complexity is developed. Two approaches to prevent global

instabilities, one based on optimizing the pre-stress distribution and the other based on

optimizing the cross-section areas of the members, are implemented in the algorithm. The

algorithm hierarchically determines minimal mass designs of the T-bar units introduced at

each self-similar iteration and hence the final T-bar system is also of minimal mass.

The design of compressive T-bar members of minimal mass is relevant for the development

of any general tensegrity structure where lightweight properties are critical. This is because

monolithic compressive members (bars or struts) can be replaced with T-bars of optimal

complexity to minimize the overall structural mass. Examples of recent practical tensegrity

structures that would greatly benefit from the replacement of bars/struts by optimal T-bars include:

metamaterials based on pentamode lattices studied by Fraternali, Amendola, and coworkers [49,

50]; ball-like robots for planetary exploration investigated by Sunspiral and coworkers [51, 52];

and minimal mass tensegrity bridges researched by Fraternali, Skelton, and coworkers [23, 24].

This chapter is organized as follows: Section 3.2 provides the analytical formulas for the mass

of T-bar structures considering local failure criteria of the individual members. In Section 3.3, we

formulate the global stiffness matrix of tensegrity structures via linearization of the equations of

static equilibrium and provide the criteria for global stability of T-bar structures In Section 3.4,

methods for determining minimum mass designs of T-bar structures are detailed and an algorithm

for hierarchical design of minimal mass T-bar structures with arbitrary complexity is given.

Results and discussion are provided in Section 3.5 to demonstrate the implementation of the given

algorithm to design lightweight tensegrities under local and global failure constraints. Concluding

remarks are provided in Section 3.6.
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3.2 Minimum Mass under Local Failure Constraints

This section provides the analytical formulas for the mass of T-bar structures considering local

failure criteria of the individual members. Figure 3.2 shows a 3D T-bar structure subjected to a

compressive force f . The total length of the T-bar structure, is denoted by l. Each T-bar unit

forming a T-bar structure has two kinds of bars: longitudinal bars that are aligned with the applied

compressive force, and radial bars that connect the center of the unit to the vertices of the central

polygon. A T-bar unit also has two kinds of strings: planar strings that form the sides of the

central polygon and diagonal strings that connect the vertices of the central polygon to the end

points of the unit. In each T-bar unit, the angle between the longitudinal bars and the diagonal

strings is denoted as the aperture angle. The aperture angle of the T-bar units introduced at the ith

self-similar iteration is denoted by αi, where i = 1, 2, . . . , q (see Fig. 3.2).

q = 2

α2

f

f

f
α1

q = 1
l

f

Figure 3.2: Geometric parameters of 3D tensegrity T-bar systems for complexities q = 1, 2.

The material properties of the bars and strings are assumed given, and therefore the calculation

of the mass of the T-bar consists of finding the cross-section area (obtained through local failure

constraints) and the length of the members. The length of the longitudinal bars, radial bars,

diagonal strings, and planar strings are denoted by lL, lRi , lDi , and lPi , respectively. Also, the
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total number of longitudinal bars, radial bars, diagonal strings, and planar strings in the T-bar

structure are denoted by nL, nRi , nDi , and nPi , respectively, for i = 1, . . . , q. These parameters are

determined from geometry as follows:

nL = 2q, lL =
l

2q
. (3.1)

nRi = 2i−1(p), lRi =
l

2i
tan(αi), for i = 1, 2, . . . , q, (3.2)

nDi = 2i−1(2p), lDi =
l

2i cos(αi)
, for i = 1, 2, . . . , q, (3.3)

nPi = 2i−1(p), lPi =
2l sin (π

p
) sin(αi)

2i cos(αi)
, for i = 1, 2, . . . , q. (3.4)

The magnitude of compressive force in the radial bars introduced at each iteration is denoted

by fRi , i = 1, . . . , q, and the magnitude of the compressive force in the longitudinal bars is denoted

by fL. Using the static equilibrium condition that the sum of the member forces at each node is

zero, the magnitude of compressive forces in all the bar members can be uniquely calculated from

the given external force f and independent string pre-tensions tDi and tPi:

fL = f + p

q∑
i=1

tDi cos(αi), fRi = 2tDi sin(αi) + 2tPi sin
(
π
p

)
,

for i = 1, 2, . . . , q. (3.5)

The term 2tPi sin
(
π
p

)
in the formula for the compressive force of the radial bars fRi in Eq. (3.5)

can be intuitively observed by analyzing the force balance of the central p-sided polygon of a T-bar

unit. Examples for p = 3, p = 4, and any p are provided in Fig. 3.3. These schematics indicate that

the radial bars must balance a force of tPi cos
(
π
2
− π

p

)
for each of the two planar strings connected
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at every polygon vertex, making the total force contribution of these strings into the compressive

force of the radial bars 2tPi cos
(
π
2
− π

p

)
= 2tPi sin

(
π
p

)
.

For any p
…

Figure 3.3: Force balance diagram for planar strings and radial bars. These schematics illustrate
the central p-sided polygon of a T-bar unit.

Note that tDi and tPi are pre-tensions that can be arbitrarily selected to adjust the load

distribution in a T-bar. Equation (3.5) is valid for any p ≥ 2, q ≥ 1, and αi > 0. Using Euler

theory of buckling, the minimum mass of a compressive member of length l̂ subjected to a force f̂

that is designed to satisfy buckling constraints is given as [21]:

mbB = 2ρbl̂
2

(
f̂

πEb

) 1
2

, (3.6)

where ρb and Eb are the mass density and Young’s modulus of the bar material, respectively. The

minimum mass of a compressive member designed under yielding constraint is denoted by mbY

and the minimum mass of a tensile member also designed under yielding constraint is denoted by
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msY . These are given by:

mbY =
ρb
σb
l̂f̂ , msY =

ρs
σs
l̂f̂ , (3.7)

where σb is the yield stress of the bar material and ρs and σs are the mass density and yield stress

of the string material. The minimum mass of a compressive member is the maximum of the mass

required for either yielding or buckling constraints, while a tensile member is only subjected to

yield constraints. Accordingly, the mass of a string ms and the mass of a bar mb of a T-bar

structure are:

mb = max(mbB,mbY ), ms = msY . (3.8)

The minimum mass of the string and bar members in a T-bar structure are obtained by

substituting the force and length values from Eqs. (3.2)-(3.5) into Eqs. (3.6)-(3.8). Then, the

minimum total mass of a T-bar system subjected to a compressive force of magnitude f is obtained

as the addition of the mass of all the members in the system as:

mT = max (mLB,mLY ) +

q∑
i=1

max (mRBi ,mRYi) +

q∑
i=1

mPi +

q∑
i=1

mDi , (3.9)
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where the mass of the different kinds of members is:

mLB =
2ρbl

2

√
πEb

√
f + p

∑q
i=1 tDi cos(αi)

2q
, (3.10)

mLY =
ρb
σb
l

(
f + p

q∑
i=1

tDi cos(αi)

)
, (3.11)

mRBi =
2ρbl

2

√
πEb

p tan2(αi)
√

2tDi sin(αi) + 2tPi sin (π
p
)

2i+1
, (3.12)

mRYi =
ρb
σb
pl tan(αi)

(
tDi sin(αi) + tPi sin

(
π
p

))
, (3.13)

mPi =
pρsl sin(π

p
) sin(αi)

σs cos(αi)
tPi , mDi =

pρsl

σs cos(αi)
tDi . (3.14)

This section provided the minimum mass (Eq. (3.9)) for a T-bar structure for given pre-stress

in the strings tPi and tDi and externally applied compressive force f . Only local failure modes

of the individual members in the T-bar structure were considered. The next section provides the

formulation employed to assess the global buckling properties of T-bar tensegrity structures to also

account for such failure mode in the structural design.

3.3 Global Failure Criteria

As stated in the introduction, existing design studies of lightweight load-bearing tensegrity

structures consider only local failure criteria or they develop global failure criteria limited to

specific types of tensegrities. If a tensegrity structure is subjected to external compressive

loads and/or pre-stress, the entire structure can buckle as a whole if the load is large enough,

without necessarily reaching the member forces that would trigger local failure of its strings

and bars (see Fig. 3.2). To determine the critical buckling forces, the global stiffness matrix of

tensegrity structures is derived by linearizing the static equilibrium equation about a equilibrium

configuration. The equations of static equilibrium of tensegrity structures with arbitrary node

positions and member connectivity are written as follows [16]:
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NK = W where K = C>s γ̂Cs − C>b λ̂Cb, (3.15)

where Cs and Cb are the connectivity matrices for strings and bars, respectively and the vectors

γ = [γ1 γ2 · · · γτ ]> ∈ Rτ and λ = [λ1 λ2 · · · λβ]> ∈ Rβ contain the forces per unit length in the

strings and bars, respectively. The matrices containing the string and bar vectors (S ∈ R3×τ and

B ∈ R3×β , respectively) can then be determined as:

S = NC>s = [s1 s2 · · · sτ ],

B = NC>b = [b1 b2 · · · bβ].

(3.16)

The tensile force vector tsj ∈ R3 of the j th string is determined from γj and the compressive

force vector tbk ∈ R3 of the kth bar is written as:

[
ts1 ts2 · · · · · · tsτ

]
= Sγ̂ ∈ R3×τ ,[

tb1 tb2 · · · · · · tbβ

]
= Bλ̂ ∈ R3×β.

(3.17)

3.3.1 Global Stiffness Matrix

The global stiffness matrix of the entire T-bar structure is determined from the contributions of

the stiffness matrices from all its individual members. The linearized global stiffness matrix can

be obtained by linearizing the static equilibrium equation of tensegrity structures given as [16]:

Sγ̂Cs −Bλ̂Cb = W, (3.18)

where S = [s1 s2 · · · sτ ] and B = [b1 b2 · · · bβ] are the matrices containing the vectors along

the lengths of the strings sj and bars bk, respectively. The total number of strings in the T-bar

is denoted by τ and the total number of bars is denoted by β. The force density (magnitude of
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the tensile force per unit length) in the j th string is denoted by γj ≥ 0 and the force density (the

magnitude of the compressive force per unit length) in the kth bar is denoted by λk ≥ 0. The string

connectivity matrix Cs and bar connectivity matrix Cb provide the information of the start and end

nodes of each string and each bar, respectively [16]. The diagonal matrices γ̂ and λ̂ are written by

arranging γj and λk in their diagonal elements, and the external force matrix W = [w1 w2 · · · wν ]

contains the vector of external forces wi applied to the ith node. The number of nodes in the system

is denoted by ν.

The non-linear static equilibrium Eq. (3.18) is linearized about an equilibrium configuration to

obtain:

KLdn = dw, (3.19)

where dn = [dn>1 dn>2 · · · dn>ν ]> is a vector containing small variations of the node positions

vectors, and dw = [dw>1 dw>2 · · · dw>ν ]> is a vector containing small variations of external forces

at all the nodes. The linearized global stiffness matrix KL from Eq. (3.19) can be obtained as:

KL = (C>s ⊗ I3)b.d.(· · · , Ksj , · · · )(Cs ⊗ I3)− (C>b ⊗ I3)b.d.(· · · , Kbk , · · · )(Cb ⊗ I3). (3.20)

The contributions of the j th string and the kth bar in the global stiffness matrix are denoted by

Ksj and Kbk , respectively:

Ksj , γjI3 + EsjAsj
sjs
>
j

l3sj
, Kbk , λkI3 − EbkAbk

bkb
>
k

l3bk
, (3.21)

whereEsj andAsj are the Young’s modulus and the cross-section area of the j th string, respectively.

Similarly, Ebk and Abk denote the Young’s modulus and the cross-section area of the kth bar

member.
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3.3.2 Criteria for Global Stability of T-bar structures

The string force density vector γ = [γ1 γ2 · · · γτ ]> and the bar force density vector λ =

[λ1 λ2 · · · λβ]> can be written as the sum of force densities due to pre-stress (γp, λp) and force

densities due to the external force (γw, λw) as:

γ = γp + γw, λ = λp + λw, (3.22)

where the force densities due to pre-stress (self-equilibrated under zero external force) are solved

using the static equilibrium equation (Eq. (3.18)) as:

(C>b ⊗ I3)B̂λp = (C>s ⊗ I3)Ŝγp, γp ≥ 0, λp ≥ 0, (3.23)

where I3 is the identity matrix of dimension 3 × 3 and Ŝ = b.d.(s1, s2, . . . , sτ ) and B̂ =

b.d.(b1, b2, . . . , bβ) are the body diagonal matrices formed by arranging the string vectors sj and

bar vectors bk along their body diagonals, respectively. Equation (3.23) gives a unique solution

for the force densities in the bars (λp) for given values of pre-stress in the strings (γp) because the

coefficient matrix (C>b ⊗ I3)B̂ is a full column rank matrix for any T-bar structure. This can also

be confirmed from the exact analytical solution given in Eq. (3.5).

The external force f on the T-bar structure only causes compressive loading in the longitudinal

bars. This can be verified from Fig. 3.2 and Eq. (3.5):

γw = 0, λwk =


2qf
l

; For longitudinal bars

0; Otherwise
. (3.24)

Using Eqs. (3.23) and (3.24), the linearized global stiffness matrix from Eq. (3.20) is updated
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with:

Ksj = γpjI3 + EsjAsj
sjs
>
j

l3sj
, (3.25)

Kbk = (λpk + λwk)I3 − EbkAbk
bkb
>
k

l3bk
. (3.26)

From Eq. (3.19), global instability is interpreted as non-trivial values of displacement in the

structure (dn 6= 0) under no changes in the values of the external forces (dw = 0):

KLdn = 0. (3.27)

Equation (3.27) has non-trivial solutions for dn, if and only if, the symmetric global stiffness

matrix KL is singular, or determinant of KL is zero. Thus, to minimize mass of the T-bar structure

under global instability constraints, the minimum values of pre-stress (γp) or cross-section areas of

the members such that the matrix KL reaches singularity (i.e., the onset of buckling failure) for the

given external force f must be determined.

As stated in Eq. (3.27), global stability of the tensegrity structures is assessed by means

of a linearized matrix, as in buckling analysis of beams and plates using the finite element

method [53, 54]. This matrix is obtained by linearizing the non-linear equations of static

equilibrium (Eq. (3.18)) about the current equilibrium configuration of the tensegrity structure.

Some inaccuracy is introduced in the process as here the nominal (initial) coordinate positions

of the nodes are employed instead of their deformed positions. However, such differences in

node positions between initial and deformed configurations are small as the strings and bars

are assumed to be comprised of a stiff material in this work (aluminum). Thus, changes in the

length of the strings and bars, and consequently differences in node positions between initial and

deformed configurations, are small compared to the dimensions of the tensegrity. Further research

quantifying the effect of this assumption and non-linear buckling analysis of tensegrity structures

are recommended for future studies.
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The mass minimization of the structure considering global buckling alone is a convex problem

(unique optimum solution) as all the design variables appear linearly in Eq. (3.27). However, the

combined problem of minimizing the mass of the structure considering both local and global failure

becomes a non-convex as the area of the bar members (Abk) is a non-linear function of the force

densities in the bar λk, for local buckling constraints (cf. Eq. (3.6)). The next section discusses two

design approaches to solve this non-convex problem.

3.4 Methods for Determining Minimum Mass Designs of T-bar Structures

This section describes two approaches to minimize the mass of T-bar structures based on the

local and global failure criteria developed in the previous sections.

3.4.1 Pre-stress Method: Optimum Pre-stress for a T-bar Unit

A T-bar unit (equivalent to a T-bar of q = 1) has p planar strings and 2p number of diagonal

strings that can be independently pre-stressed. The tension in these strings is scaled using two

independent pre-stress factors: γP ≥ 0 for planar strings and γD ≥ 0 for diagonal strings,

γp =

 γP [1 1 · · · 1]>p×1

γD [1 1 · · · 1]>2p×1

 . (3.28)

The force density in the bars due to pre-stress (λp) can be uniquely calculated as a function

of pre-stress factors γP and γD using Eq. (3.23). Equation (3.22) allows us to solve for the force

density in each member and Eqs. (3.6) and (3.7) are used to calculate the area of each member.

All the variables in Eq. (3.20) are now dependent on the pre-stress factors. The design problem to

minimize the mass of the T-bar unit then consists of finding the minimum values of the pre-stress

factors such that the stiffness matrix of the T-bar unit KL reaches singularity, which physically

represents the onset of global buckling.

3.4.2 Area Method: Optimum String Cross-section Areas for a T-bar Unit

Similar to the method discussed in Sect. 3.4.1, the cross-section areas of the planar strings and

diagonal strings can be independently scaled to prevent global buckling. Let us define ηP ≥ 1 and
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ηD ≥ 1 as the area factors that scale the cross-section areas of the planar strings AP and diagonal

strings AD, respectively. The areas of the strings are then scaled as follows:

AP → ηPAPb, AD → ηDADb, (3.29)

whereAPb andADb are the baseline member cross-section areas [6]. Pre-stress values of γp = λp =

0 are used in this method. The design problem for this method consists of finding the minimum

values of the area factors such that the stiffness matrix of the T-bar unit KL reaches singularity.

3.4.3 Hierarchical Design of T-bar Structures

For a T-bar structure of complexity q, there would be different T-bar units introduced at each

self-similar iteration that may be subjected to global buckling. The minimum mass design of a

T-bar is obtained when the T-bar units introduced at each self-similar iteration are designed such

that they reach the onset of buckling. Algorithm 1 outlines the hierarchical design approach for

minimal mass T-bar structures of arbitrary complexity, where the pre-stress or area factors of T-bar

units are optimized sequentially for each self-similar iteration i, from i = 1 to i = q.

Algorithm 1: Hierarchical design of minimal mass T-bar structures with arbitrary
complexity.

Step 1: Design a complexity q = 1 T-bar structure (equivalent to a T-bar unit) of length
l1 = l and external force f1 = f by determining the minimum values of pre-stress or area
factors for both planar and diagonal strings ([γP1 , γD1 ] or [ηP1 , ηD1 ]) such that the
stiffness matrix of the T-bar unit KL1 reaches singularity.

Step 2: Design the T-bar units of the subsequent self-similar iteration i+ 1 which have
length li+1 = l/2i and external force fi+1 = fi + p γDi lDi cos(αi) by calculating the
minimum pre-stress or area factors ([γPi+1

, γDi+1
] or [ηPi+1

, ηDi+1
]) such that the stiffness

matrix of the T-bar units KLi+1
reaches singularity.

Step 3: Repeat Step 2 for each self-similar iteration.
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3.5 Results and Discussion

Results of mass minimization for 2D and 3D T-bar structures using the approach developed in

the previous section are presented herein. The mass ratio µ is used to compare the mass of the

T-bar structures mT with that of a compressive column of solid circular cross-section, mcol, as:

µ =
mT

mcol

, where mcol = max

(
2ρbl

2
√
f√

πEb
,
ρblf

σb

)
. (3.30)

If µ < 1, the T-bar structure requires less mass than the compressive column to support a

compressive force f . Note that both yielding and buckling failure modes are accounted for in the

mass calculation of the solid column. The mass ratio is referred to as µ2D for 2D T-bars and µ3D

for 3D T-bars.

The increase in pre-stress and cross-section area required to prevent global buckling of a T-bar

system under compressive loading (obtained via the pre-stress and area methods, respectively) add

mass to the structure. To quantify this additional mass, a parameter φ defined as the ratio of the

mass of the T-bar designed considering global buckling mT and the mass of the T-bar designed

without considering global buckling mTlocal is introduced:

φ =
mT

mTlocal

, (3.31)

where mTlocal is calculated using Eq. (3.9) with tDi = tPi = 0 to consider only local failure

constraints. This parameter is referred to as φ2D for 2D T-bars and φ3D for 3D T-bars.

Material properties of aluminum are used for both string and bar members (Es = Eb = 60

GPa, σs = σb = 110 MPa, and ρs = ρb = 2700 kg/m3) and the analogous compressive column.

For simplicity, it is assumed that the aperture angles of the T-bar units are equal among all the

self-similar iterations: α1 = α2 = · · · = αq = α.
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Figure 3.4 shows the initial configuration of a T-bar structure of length l = 2 m, complexity

q = 1, and aperture angle α = 5◦. The first critical global buckling force and the corresponding

two mode shapes for this first buckling mode are also shown in the figure. The critical buckling

force for this structure f = 20656.3 N is larger than the externally applied force f0 = 10000 N

and hence the structure would not undergo global instability. A T-bar structure with q = 2, l = 2

m, and α = 5◦ is shown in Fig. 3.5. The first buckling eigenvalue and its corresponding four

eigenmodes are also shown in the figure. The critical buckling force f = 10319.6 N is slightly

higher than the nominal external force f0 = 10000 N and thus global buckling would not occur.

The critical buckling force f for this structure is almost half than that of the q = 1 structure.

q = 1

α = 5°

Initial 

configuration

First mode: f = 20656.3 N

Figure 3.4: Eigenmodes for the first critical buckling force of a T-bar structure with parameters
l = 2 m, f0 = 10000 N, q = 1, and α = 5◦.

3.5.1 2D T-bar Structures

For 2D T-bar structures (p = 2), there are no planar strings and thus the only optimization

variables are the pre-stress factor (γD) and the area factor (ηD). Figure 3.6(a) provides the

contour plots of the mass ratio µ2D for a 2D T-bar structure for pre-stress factor γD obtained

using Algorithm 1. The lighter shaded area in the contour plot corresponds to the region where

the mass of the T-bar structure is lower than the mass of a compressive column designed for

buckling mT < mcol. As observed in the figure, T-bar structures provide lower mass solutions for
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q = 2

α = 5°

Initial 

configuration

First mode: f = 10319.6 N

Figure 3.5: Eigenmodes for the first critical buckling force of a T-bar structure with parameters
l = 2 m, f0 = 10000 N, q = 2, and α = 5◦.

compressive loads for a large range of aperture angles and throughout the entire studied complexity

range (q = 1, . . . , 5). The darker shaded region in the contour plot represents the complexity and

angle set (q, α) where global buckling cannot be prevented for any value of pre-stress in the strings.

This can be explained as T-bar structures of low aperture angles have a large “length-to-width" ratio

and thus have low critical buckling forces. Figure 3.6(a) also shows that there is a global optimum

design for the given force f and length l, which was found to be µ2D = 0.2246 for q = 3 and

α = 24◦ (marked with an ‘×’ in the contour plot). Figure 3.6(b) shows the optimum configuration

of the T-bar structure displaying the calculated member cross-sections.

The contour plots of mass ratio µ2D for optimized area factor ηD are shown in Fig. 3.7(a)

and the global optimum configuration (q = 3, α = 31◦, µ2D = 0.2068) is shown in Fig. 3.7(b).

Notice that the method of optimizing area factor (ηD) provides a solution with lower mass than that

obtained by optimizing the pre-stress factor (γD). The same trend is observed for different values

of f and l as shown in Table 3.1.

Table 3.1 also provides optimum complexity q and angle α for different combinations of force

f and length l. The first column in the table represents a force per unit area parameter f/l2. For a

small value of this parameter, the compressive column is more prone to buckling failure and thus
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(a)

(b)

Figure 3.6: (a) Contour plot of mass ratio µ2D for 2D T-bar structures with optimized pre-stress
factor (γD). (b) Minimal mass configuration of the T-bar structure (marked with the ‘×’ in the
contour) displaying calculated member cross-sections.

the mass ratio µ2D is small (more mass savings by replacing the column with a T-bar). The value

of the mass ratio increases with the increased value of the parameter f/l2 and for f/l2 = 250000

the mass ratio is greater than 1 (µ2D(γD) = 1.0157 > 1, µ2D(ηD) = 1.0015 > 1) for both methods

indicating that the single column is the minimum mass structure.

Notice that for f/l2 = 1000000 N/m2, the single column is designed to avoid yielding failure

and thus the mass of T-bar designed to avoid only local failures would be equal to the mass of the

single column,mTlocal = mcol. Thus, the reason for the mass ratios µ2D = 1.52 (pre-stress method)

and µ2D = 1.51 (area method) to be above 1 is entirely based on global stability to the structure,

hence µ2D = φ2D = 1.52 (pre-stress method) and µ2D = φ2D = 1.51 (area method).

By comparing the results between the pre-stress method and the area method in Figs. 3.6
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(a)

(b)

Figure 3.7: (a) Contour plots of mass ratio µ2D for the 2D T-bar structure with optimized area
factor (ηD). (b) Optimum configuration of the T-bar structure (marked with the ‘×’ in the contour)
displaying calculated member cross-sections.

Table 3.1: Mass ratio µ2D optimized with two different methods for different values of force f and
length l. Units: f (N), l (m), and α (deg).

f

l2
f l

Pre-stress method Area method
q α µ2D φ2D q α µ2D φ2D

1000 1000 1 4 20 0.08 1.28 4 26 0.07 1.12
2500 2500 1 4 22 0.12 1.81 4 29 0.10 1.51

10000 10000 1 3 24 0.22 1.66 3 31 0.21 1.58
100000 1000 0.1 1 28 0.65 1.30 1 33 0.63 1.26
250000 2500 0.1 1 31 1.01 1.53 1 33 1.00 1.51
1000000 10000 0.1 1 35 1.52 1.52 1 33 1.51 1.51
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and 3.7, and Table 3.1, one observes that the two methods provide different minimal mass designs

under the same loading and length requirements. Cross-section area Asj and member force

tsj = γj‖sj‖ are linearly related for tensile string members under yielding failure constraints

through the equation σsAsj = tsj . For compressive bars under buckling failure constraints,

the cross-section area Abk and member force fbk = λk‖bk‖ are non-linearly related through the

Euler buckling formula (πEbA
2
bk

)/(4‖bk‖2) = fbk . In a T-bar structure, increasing tension in the

strings increases the compressive forces in the bars and thus the area/mass of the bar members

is non-linearly increased. Because of this, increasing the pre-stress in the T-bar structure (which

increases the areas of strings and bars accordingly) in the pre-stress method; and only increasing

the cross-section areas of the strings (without adding pre-stress) in the area method, provide

different minimal mass results to prevent global buckling.

3.5.2 3D T-bar Structures

For 3D T-bar structures, we have to simultaneously consider the two pre-stress factors γP and

γD for the pre-stress method and the two area factors ηP and ηD for the area method. It was found

that the pre-stress of the planar strings γP is not a critical parameter to prevent global buckling

and to minimize the mass of the structure. As such, this pre-stress value is kept at γP = 10 for

the reminder of these examples. A contour plot of mass ratio µ3D for optimized pre-stress factor

(γD) as shown in Fig. 3.9(a). The global optimum configuration (marked with an ‘×’) was found

to be q = 3 and α = 25◦ with a mass ratio of µ3D = 0.2500. The darker shaded area in the

figure corresponds to the region where no solution for γD was found to prevent global buckling.

Figure 3.9(b) shows the optimum configuration of the T-bar structure.

It can also be inferred from Fig. 3.8 that the mass ratio µ3D for the structure obtains a minimum

value for a small value of pre-stress factor in planar strings. The lighter shaded area in the figure

represents the region where mass ratio value is less than one (µ3D < 1).

It was also observed for the area method that the cross-section areas of the planar strings

do not play a critical role in preventing global buckling. This can be confirmed from Fig. 3.10

as for any particular value of angle α the mass monotonically increases by increasing the area
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Figure 3.8: Contour plots of mass ratio µ3D for the 3D T-bar structure for optimized pre-stress
factor in diagonal strings (γD). The optimum solution is marked with ‘×’ in the contour plot.

factor ηP (y-axis). Therefore, a small value of ηP = 10−4 is used in the presented examples.

Figure 3.11(a)shows the contour levels of mass ratio µ3D plotted for different values of angle α and

complexity q. It shows a global minimum achieved at q = 3 and α = 31◦. This optimum solution

of µ3D = 0.2159 obtained from Fig. 3.11(a) has lower mass than that obtained by optimizing the

pre-stress factor γD. The optimum configuration of the T-bar structure drawn to the scale is shown

in Fig. 3.11(b).

Table 3.2 provides the optimum α and q for different combinations of force f and length l. It is

observed from the table that for all combinations of f and l, the method of optimizing area factor ηD

provides lower mass solutions than those obtained by optimizing the pre-stress factor γD. Similar

to the results observed in Table 3.1, the value of mass ratio µ3D increases by increasing the value of

f/l2 and the mass ratio becomes greater than 1 (µ3D(γD) = 1.0429 > 1, µ3D(ηD) = 1.0163 > 1)

for f/l2 = 250000 where the single column is the optimal mass solution.

Similar to Table 3.1, for f/l2 = 1000000 N/m2, the single column is designed to avoid yielding

failure and thus the mass of T-bar designed to avoid only local failures would be equal to mass of

the single column, mTlocal = mcol. Thus, the reason for the mass ratios µ3D = 1.56 (pre-stress
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(a)

(b)

Figure 3.9: (a) Contour plots of mass ratio µ3D for a fixed pre-stress factor in the planar
strings (γP = 10) and optimized pre-stress factor in diagonal strings (γD). (b) Optimum
configuration of the T-bar structure (marked with the ‘×’ in the contour) displaying calculated
member cross-sections.

method) and µ2D = 1.54 (area method) to be above 1 is entirely based on providing global stability

to the structure, hence µ3D = φ3D = 1.56 (pre-stress method) and µ3D = φ3D = 1.54 (area

method).

3.6 Conclusions

This chapter presented a novel approach to design minimum mass tensegrity T-bar lattices,

which can be integrated into lightweight load-bearing architectured materials. The topology and

shape of the T-bar-based lattices are optimized to prevent global buckling of the T-bars while

minimizing their mass. The methodology developed in this chapter allows for the determination

of the complexity q, aperture angle α, and pre-stress distribution or member cross-sections areas
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Figure 3.10: Contour plots of mass ratio µ3D for the 3D T-bar structure for optimized diagonal area
factor (ηD). The optimum solution is marked with ‘×’.

Table 3.2: Mass ratio µ3D optimized with two different approaches for different values of force f
and length l. Units: f (N), l (m), and α (deg).

f

l2
f l

Pre-stress method Area method
q α µ3D φ3D q α µ3D φ3D

1000 1000 1 4 19 0.10 1.60 4 27 0.07 1.12
2500 2500 1 4 22 0.14 2.12 4 29 0.11 1.66

10000 10000 1 3 25 0.25 1.89 3 31 0.21 1.58
100000 1000 0.1 1 28 0.66 1.32 1 33 0.64 1.28
250000 2500 0.1 1 31 1.04 1.57 1 33 1.01 1.53
1000000 10000 0.1 1 36 1.56 1.56 1 33 1.54 1.54

of 2D or 3D T-bar structures with minimal mass for given compressive force f and T-bar length l.

In earlier work of designing minimum mass T-bar structures, only 2D T-bar structures, or T-bars

limited to complexity 1, were considered. This chapter extended the work on minimum mass

design of tensegrity T-bar structures by Skelton [6] where only 2-dimensional T-bar structures

were considered for both local and global failures.

The chapter first provided an analytical solution for the mass of a T-bar structure of arbitrary

shape, topology, and pre-stress distribution considering local failure modes. The pre-stress
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(a)

(b)

Figure 3.11: (a) Contour plots of mass ratio µ3D for a fixed area factor in the planar strings (ηP =
10−4) and optimized area factor in diagonal strings (ηD) with different complexities q. (b) Optimum
configuration of the T-bar structure (marked with the ‘×’ in the contour) displaying calculated
member cross-sections.

distribution or string cross-section areas are then designed such that global buckling is also

prevented with minimum mass. The utilized approach to minimize the mass of complexity

q > 1 T-bar structures was developed by sequentially designing the T-bar units introduced at

each self-similar formative iteration. Finally, the chapter developed a general methodology to

minimize the mass of both 2D and 3D T-bar structures for given force f and length l in terms of

optimization variables: complexity q, angle α, pre-stress γp, and cross-section area of each member

in the structure. The examples considered for both 2D and 3D structures provided a global minimal

mass T-bar design for given force f and length l. For 3D structures, it was observed that planar

strings are not critical in preventing global buckling of the structure and hence a small value of
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pre-stress factor γP and area factor ηP was used in designing the structure. The obtained results

showed that the method of optimizing the cross-section area of the strings provides lower mass

designs than those obtained by optimizing the pre-stress distribution for both 2D and 3D structures.

The developed model can be used to design tensegrities for components of lightweight composite

structures and architectured materials with load-bearing capabilities and structural integrity.
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4. DESIGN OF MINIMUM MASS TENSEGRITY D-BAR STRUCTURE

This chapter details the design of tensegrity D-bar structures, which have been shown to serve

basic units in the design of lightweight compressive structures. This research work provides the

analytical formulas to obtain the optimal complexity and minimum mass of the structure for given

compressive force and given length of the structure. It is an important result that there exists a

unique value of complexity which optimizes the mass of the structure. All the members in the

structure are designed for local failures as D-bar structures are not subject to global buckling

for a feasible engineering design structure. This work extends the previous work on D-bar

structures where only buckling constraints were considered to design the compressive members by

considering both yielding and buckling failures. The normalized mass of D-bar structures is then

compared to the normalized mass of well-known T-bar structures for a set of given compressive

force and length where normalization is done with the mass of continuum compressive columns.

4.1 Introduction

Minimum mass design of tensegrity structures have been studied in detail for different types

of loading conditions [6, 19, 23]. Tensegrity T-bar and D-bar structures have been shown to

provide optimum (minimum mass) designs to sustain given compressive load for a given length

of the structure [6]. In the previous work by Skelton [6], only buckling failure was considered

in calculating the minimum cross-section areas of bar (compressive) members and only yielding

failure was considered in designing string (tensile) members with minimum cross-sectional areas.

Recent work on T-bar structures provided the comprehensive methodology to design the structure

with both local and global failure criteria [45].

This article would focus on the minimum mass design of D-bar structures for compressive

loading with both yielding and buckling constraints in designing each member of the structure

to obtain reliable results. Previous research on D-bar structure includes its use as actuators and

sensors where actuators/sensors gain were analytically calculated for different complexities and
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different angles of the D-bar structure[22]. D-bar systems were also studied as mass-efficient

mechanical energy absorption systems for its use in high impact loading conditions such as lander

and shock absorption structures [21]. In the mentioned work, it was shown that there always exists

a set of complexity q and angle α such that the D-bar system stores more energy than a continuum

compressive column until its failure [21]. A case study was also done on the design of tensegrity

lander along with a detailed comparative study of classic six strut tensegrity lander [27, 2]. The

design methodology to tune the ratio of the stress in the overall D-bar systems to that of their

members were recently discussed [55]. The paper also discusses the inclusion of shape memory

alloy-based strings to introduce energy dissipation capabilities [55].

A complexity 1 (q = 1) D-bar structure has 4 bars and 1 string as shown in Fig. 4.1(a). A

complexity 2 (q = 2) D-bar structure is formed by replacing every bar member with another D-bar

structure of complexity 1 (D-bar fractal) as shown in Fig. 4.1(b). Similarly, higher complexities

structures can be formed by replacing every bar with a D-bar fractal using this concept of

self-similar iterations. For a given length of D-bar structure, the variables needed to define a

D-bar structure are: complexity q and angle parameters αi for i = 1, 2, · · · , q for each self-similar

iteration i, that goes up to complexity q. Let us define p as the number of strings in each D-bar unit,

where p = 2 will result in a 2-dimensional D-bar system (shown in Fig. 4.1) and p ≥ 3 will result

in 3-dimensional structures (shown in Fig. 4.2). The 3-dimensional D-bar structure with p = 3 and

complexities q = 1 and q = 2 are shown in Fig. 4.2.

The complexity of a D-bar system can be arbitrarily increased to a very large number. Figure

4.3 shows D-bar structure of complexity q = 8 and p = 2 for different values of angle α. The entire

space gets filled up for such high complexity q and high value of angle α as shown in Fig. 4.3. Such

high complexity D-bar systems guide the path for designing tensegrity based meta-materials where

the topology and alignment of the material fiber can be optimized to increase mass-efficiency.

4.2 Tensegrity D-bar System Analysis

The analytical formulas to calculate the optimal complexity and minimum mass for a D-bar

tensegrity system subject to both yielding and buckling constraints are derived in this section. First,
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Figure 4.1: 2D Parameterization of tensegrity D-bar systems for complexities q = 1, 2 and p = 2.

Figure 4.2: 3D Parameterization of tensegrity D-bar systems for complexities q = 1, 2 and p = 3.

we briefly go over the details of a D-bar system for the sake of completion and then derive the final

result. The strings and the bars of the D-bar system are composed of homogeneous, isotropic,

linear elastic materials. Fig. 4.2 shows D-bar system subject to an axial compressive force, f ,

applied at the endpoints of the D-bar for complexity q = 1, 2. The total length of the D-bar system

is denoted by l, and α is the angle between the line connecting the endpoints of each D-bar unit

and the line along any of its associated bars. In general, the set of D-bar units introduced at each

iteration i = 1, . . . , q, may have a different value for α [6]. The same value of α is assumed for

all the D-bar units in the D-bar systems studied here for the sake of simplicity. For a more detailed

discussion on this, please refer to [21].
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Figure 4.3: 2-Dimensional D-bar tensegrity structure of complexity q = 8 for different values of
angle α.

Let us define the number of bars in a D-bar system as nb and length of all the bars in a D-bar

system of complexity q as lq.

nb = (2p)q, lq =
l

(2 cos(α))q
. (4.1)

Also, the number of strings and length of the strings introduced in each self-similar iteration is

denoted as nsi and lsi, respectively.

nsi = 2i−1pi, lsi =
l sin

(
π
p

)
tan(α)

2i−1 cosi−1(α)
for i = 1, . . . , q. (4.2)

The magnitude of the compressive force in the bars of the D-bar system, denoted by fq, and
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the magnitude of the tensile force in the strings introduced in each self-similar iteration, denoted

by ti, can easily be calculated as [6]:

fq =
f

(p cos(α))q
, ti =

f tan(α)

pi sin
(
π
p

)
cosi−1(α)

for i = 1, . . . , q. (4.3)

After presenting the geometry and force distribution of D-bar systems with arbitrary

complexity, we now present the minimal mass of a D-bar system under buckling constraints as

the next Lemma.

Lemma 4.2.1. Consider a D-bar system of length l, complexity q, angle parameter α, and p

strings per D-bar unit subject to a compressive force of magnitude f . Suppose that the material

comprising the bars has Young’s modulusEb, yield stress σb, and mass density ρb while the material

comprising the strings has yield stress σs and mass density ρs. Then, the mass associated with the

D-bar system considering buckling failure, mDB is given as:

mDB =
p
q
2ρbl

2

2q−1 cos
5q
2 (α)

(
f

πEb

) 1
2

+
lfρs(sec2q(α)− 1)

σs
, (4.4)

and, the mass associated with the D-bar system considering yielding failure, mDY is given as:

mDY =
ρb
σb

fl

cos2q(α)
+
lfρs(sec2q(α)− 1)

σs
. (4.5)

Proof: The derivation for Eq. (4.4) is given in [21]. To calculate the mass of the bars designed

to fail under yielding constraint, we first calculate the minimum area required for each bar as:

Aq =
fq
σb

=
f

σb(p cos(α))q
. (4.6)

The mass of each bar can now be calculated as:

mq = ρbAqlq =
ρbfl

σb(2p cos2(α))q
, (4.7)
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which can be multiplied with the total number of bars in the system to get the total mass of the

bars as:

mb = nbmq =
ρb
σb

fl

cos2q(α)
. (4.8)

Similar approach can be followed to calculate the mass of the stringsms (also given in the appendix

3 of [21]). Finally, the total mass associated with the D-bar system under yielding can be calculated

as mDY = mb +ms.

4.3 Optimal Complexity and Minimum Mass of the D-bar Structure

In this section, we provide the formulation to calculate the optimal complexity of the D-bar

structure to minimize the mass. The analytical formulas to design minimum mass D-bar structures

considering both yielding and buckling failures are derived, and it is shown that designing structure

by only considering buckling failure of bars and yielding failure for strings may not yield the

optimal solution.

4.3.1 Optimal Complexity Considering Local Failures

The mass of the D-bar system considering yielding failure, mDY , is a monotonically increasing

function and the mass considering buckling failure, mDB, first goes down with increasing

complexity and then goes up as the mass of the strings overcomes the savings in the bars, which is

shown in Fig. 4.4(a). Moreover, the shaded region in Fig. 4.4(a) shows the feasible design region

as the mass of the D-bar system has to be greater of mass calculated considering one of the failure

criteria. Therefore, the minimum mass that can be achieved is mD = min[max(mDY ,mDB)] and

the optimal complexity can be found at the intersection of the buckling and yielding failure.

Let us define q∗ as a real-valued number at which, the two plots corresponding to the mass

associated with the D-bar system considering buckling failure (mDB) and yielding failure (mDY )
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q q

Figure 4.4: Shaded region in the plots represents the achievable minimum mass considering both
buckling and yielding.

intersect as shown in Fig. 4.4(a). Then q∗ can be calculated by equating mDB and mDY as:

mDY = mDB, (4.9)

ρb
σb

fl

cos2q(α)
=

p
q
2ρbl

2

2q−1 cos
5q
2 (α)

(
f

πEb

) 1
2

, (4.10)

which can be further simplified to obtain:

(
4 cos(α)

p

) q∗
2

=
2lσb√
πEbf

, (4.11)

and taking natural log on both sides gives the solution for optimal complexity to minimize the mass

of D-bar tensegrity system.

q∗ = 2 ln

(
2lσb√
πEbf

)
/ ln

(
4 cos(α)

p

)
. (4.12)

Note that the solution of the Eq. (4.12) may not be an integer value. So to find the physically

realizable complexity of the D-bar structure, we calculate mD = min[max(mDY ,mDB)] and

corresponding complexity qopt for complexities q = bq∗c and q = bq∗c + 1, where b·c represents

the greatest integer function.

Important Note: If q∗ ≤ 0, then the optimal complexity is qopt = 0 which corresponds to
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a single column bar. It means that the mass considering yielding failure is more than the mass

considering buckling failure (mDY > mDB) for complexity q = 0.

Lemma 4.3.1. The minimum mass for a compressive structure has a tightest lower bound of

mY =
ρb
σb
fl. (4.13)

Proof: As the mass corresponding to yielding failure is a monotonically increasing

function with complexity q, and the optimum mass for a D-bar system would follow mD =

min[max(mDY ,mDB)] over all complexities, the lowest possible mass that can be obtained for

any compressive structure is mDY for complexity (q = 0), i.e. mY = ρb
σb
fl.

4.3.2 Optimal Complexity Considering only Buckling Failure

The aim of this subsection is to show that the optimal complexity calculated in the previous

section gives the optimal solution under some given conditions and there is no need to check for

the optimal complexity considering buckling failure criteria only (infeasibility of Fig. 4.4(b)). To

show that, let us write the mass of a single column considering buckling failure as:

mB = 2l2ρb

(
f

πEb

) 1
2

. (4.14)

Let us define a non-dimensional quantity µDB = mDB/mB which can be written using Eqs.

(4.4) and (4.14) as:

µDB =
p
q
2

2q cos
5q
2 (α)

+
ρs(sec2q(α)− 1)(πEb)

1
2

2σsρb

(
f

1
2

l

)
, (4.15)

which can be simplified by the introduction of a variable ε as:

µDB =

(√
p

2
sec

5
2 (α)

)q
+ ε sec2q(α)− ε, (4.16)
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with

ε =
ρs(πEbf)

1
2

2σsρbl
. (4.17)

We define qb∗ as the complexity which minimizes the D-bar mass under buckling constraint.

The complexity qb∗ can be calculated by taking partial derivative of mDB or µDB w.r.t q as:

∂mDB

∂q
=
∂µDB
∂q

= 0, (4.18)

which after substitution from Eq. (4.15) gives:

(√
p

2
sec

5
2 (α)

)qb∗
ln

(√
p

2
sec

5
2 (α)

)
+ ε sec2qb∗(α) ln (sec2(α)) = 0, (4.19)

and can be further simplified to obtain:

(
4 cos(α)

p

)−qb∗/2
= ε

ln (cos2(α))

ln
(√

p

2
sec

5
2 (α)

) . (4.20)

Taking natural log on both sides of the above equation, we get:

−qb∗
2

ln

(
4 cos(α)

p

)
= ln ε+ ln

 ln (cos2(α))

ln
(√

p

2
sec

5
2 (α)

)
, (4.21)

which after substitution for ε from Eq. (4.17) and some rearrangement gives:

qb∗ ln

(
4 cos(α)

p

)
= 2 ln

(
2σsρbl

ρs(πEbf)
1
2

)
+ 2 ln

 ln
(√

p

2
sec

5
2 (α)

)
ln (cos2(α))

, (4.22)
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which again can be rearranged as:

qb∗ ln

(
4 cos(α)

p

)
= 2 ln

(
2lσb

(πEbf)
1
2

)
+ 2 ln

(
σsρb
σbρs

)
+ 2 ln

 ln
(√

p

2
sec

5
2 (α)

)
ln (cos2(α))

. (4.23)

Here we break the above equation as the sum of two parts as:

qb∗ = 2

ln

(
2lσb

(πEbf)
1
2

)
ln
(

4 cos(α)
p

) + 2
ln
(
σsρb
σbρs

)
ln
(

4 cos(α)
p

) + 2 ln

 ln
(√

p

2
sec

5
2 (α)

)
ln (cos2(α))

/ ln

(
4 cos(α)

p

)
. (4.24)

Please notice that the above equation provides the optimal complexity of the D-bar structure to

minimize the mass considering buckling failure for bars and yielding failure for strings. To show

the infeasibility of Fig. 4.4(b), we show that optimal complexity obtained considering buckling

failure (qb∗) is larger than the optimal complexity (q∗) obtained by the intersection of the yielding

(mDY ) and buckling (mDB) curves. This can be done by examining and substituting the first term

in Eq. (4.24) as:

qb∗ = q∗ + 2
ln
(
σsρb
σbρs

)
ln
(

4 cos(α)
p

) + 2 ln

 ln
(√

p

2
sec

5
2 (α)

)
ln (cos2(α))

/ ln

(
4 cos(α)

p

)
, (4.25)

where q∗ (from Eq. (4.12)) represents the optimal complexity calculated considering the

intersection of the curves corresponding to yielding and buckling failure.

Note that the value of the second term goes to zero if the material of the bars and strings is

same and the value is greater than zero if the material used for strings has higher specific strength

than the bars, which is usually the case with tensegrity structures. Also, notice that the third term

in the equation only depends on p and angle α, and the value of the third term is always greater

than zero for angle α < 23o for p = 2 and angle α < 15o for p = 3.

The above results show that the optimal complexity calculated considering only buckling is

higher than the optimal complexity calculated at the intersection of two curves for given range

74



(angle α < 23o for p = 2 and angle α < 15o for p = 3) which is usually the range to provide

minimum mass using D-bar systems.

4.4 Results and Discussion

This section provides the results detailing the minimum mass design of 2D and 3D D-bar

structures using the approach developed in the previous section. The minimum mass is obtained

by first calculating the optimal complexity of the structure for a given compressive force f and

length l. The mass ratio µ is used to compare the mass of the D-bar structures mD with that of a

compressive column of solid circular cross-section, mcol, as:

µ =
mD

mcol

, where mcol = max

(
2ρbl

2
√
f√

πEb
,
ρblf

σb

)
, (4.26)

where both yielding and buckling failure criteria are considered in the calculation of the mass of the

solid column. In the following subsections, µ2D will be used for the mass ratio of 2D D-bars and

µ3D will be used for the mass ratio of 3D D-bars. A smaller value of mass ratio µ < 1 represents

more mass saving than a compressive column designed to take the same force for the same length.

Material properties of aluminum are used for all bar members, string members and the compressive

column (Es = Eb = 60 GPa, σs = σb = 110 MPa, and ρs = ρb = 2700 kg/m3).

4.4.1 2-Dimensional D-bar Structure

The 2-D D-bar structures are planar structures with p = 2 making them susceptible

to out-of-plane global buckling. In these results, the global buckling for 2-D structures is

not considered as the results are more for the theoretical understanding of minimal mass

meta-materials.

Let us start by plotting the mass ratio µ2D with angle α for different values of force f and

length l, as shown in Fig. 4.5. It is observed that the mass ratio increases with the increased value

of parameter
f

l2
. Also notice that mass ratio monotonically increases with D-bar angle α, showing

that a minimum mass D-bar structure is obtained for smallest value of angle which is possible
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with current manufacturing capabilities. For f = 2500N, l = 0.1m, the mass ratio is less than 1

(µ2D < 1) for 0o < α ≤ 4o and becomes µ2D = 1 for α > 4o, however for f = 10000N, l = 0.1m,

the mass ratio is 1 for the entire range of D-bar angle. This can be understood as for such large

value of
f

l2
= 106, the compressive column fails by yielding and thus one can not design a D-bar

structure with less required mass.

Figure 4.5: Plots of mass ratio µ2D vs. D-bar Angle-α (deg) for the 2D D-bar structure with
optimized complexity (q∗) for different set of values of force f and length l.

A similar trend is observed for the plots of optimal complexity q∗ with angle α as shown in

Fig. 4.6. The optimal complexity consistently decreases with increased value of the parameter
f

l2

and stays constant for change in angle α, except for the case of f = 2500N, l = 0.1m, where

it is q∗ = 1 for 0o < α ≤ 4o and q∗ = 0 otherwise. For f = 10000N, l = 0.1m, the optimal

complexity q∗ = 0 for the entire range of angle stating the optimal mass solution to be a single

compressive column.

Table 4.1 also provides optimum complexity q∗ and angle α for different combinations of force

f and length l. For a small value of the parameter
f

l2
(first column), the compressive column

is more prone to buckling failure and thus more mass savings (mass ratio µ2D is small) can be

obtained by replacing the column with a D-bar system. The value of the mass ratio increases with
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Figure 4.6: Plots of optimized complexity (q∗) vs. D-bar Angle-α (deg) for the 2D D-bar structure
for different set of values of force f and length l.

the increased value of the parameter
f

l2
for both D-bar angles α = 5o and α = 10o and for last two

values of
f

l2
= 250000 and

f

l2
= 1000000, the mass ratio becomes 1 (µ2D = 1) with an optimal

complexity of q∗ = 0) indicating that the single column is the minimum mass structure. The table

also provides a comparison of mass ratio µT2D optimized with two different methods for 2D T-bar

structure and the mass ratio µ2D for 2D D-bar structure [45]. It is observed that very similar values

of the mass ratio are obtained with the area method design of T-bar structure with relatively low

complexity and 5 ∗ o D-bar structure with relatively high complexities.

Figure 4.7 shows a scaled design of 2D D-bar structures where calculated member

cross-sections areas are used to provide better insight. The figure depicts the design of a single

compressive column and the optimal configuration (q∗ = 1) of 2D D-bar structures for two

different values of angle α = 5o and α = 10o optimized for f = 1500N, l = 0.1m. The

mass value for the column mcol = 0.0048Kg and for D-bar structures mD = 0.0037 Kg (α = 5o)

and mD = 0.0039 Kg (α = 10o) are also shown in the figure.
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Table 4.1: Comparison of mass ratio µT2D optimized with two different methods for 2D T-bar
structure (refer to Table 3.1) and mass ratio µ2D for 2D D-bar structure for two values of angle α
for different values of force f and length l. Units: f (N), l (m), and α (deg).

f

l2
f l

T-bar D-bar
Pre-stress method Area method α = 5o α = 10o

q α µT2D q α µT2D q∗ µ2D q∗ µ2D

1000 1000 1 4 20 0.08 4 26 0.07 9 0.07 9 0.10
2500 2500 1 4 22 0.12 4 29 0.10 7 0.11 7 0.15

10000 10000 1 3 24 0.22 3 31 0.21 5 0.21 5 0.26
100000 1000 0.1 1 28 0.65 1 33 0.63 2 0.64 2 0.70
250000 2500 0.1 1 31 1.01 1 33 1.00 0 1.00 0 1.00
1000000 10000 0.1 1 35 1.52 1 33 1.51 0 1.00 0 1.00

(c) mD = 0.0039 Kg (μ2D = 0. 8118) for α = 10o

(a) mcol = 0.0048 Kg 

(b) mD = 0.0037 Kg (μ2D = 0.7760) for α = 5o

f = 1500 N, l = 0.1m 

Figure 4.7: Optimum configuration of the 2D D-bar structure for two different values of angle α
for a chosen values of force f and length l displaying calculated member cross-sections.
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4.4.2 3-Dimensional D-bar Structure

The 3-D D-bar structures are not prone to global buckling for a feasible D-bar angle (α ≥

2o). Thus only local failures are considered in the design of 3D D-bar structures, where bars are

designed for both yielding, and buckling failure and strings are designed for only yielding failures.

Similar to the last subsection, Fig. 4.8 provides the plots for mass ratio µ3D and angle α with

monotonically increasing value of mass ratio µ3D for all sets of force f and length l. For higher

values of
f

l2
= 1000000, the mass ratio becomes one showing no mass saving with the D-bar

structure design approach.

Figure 4.8: Plots of mass ratio µ3D vs. D-bar Angle-α (deg) for the 3D D-bar structure with
optimized complexity (q∗) for different set of values of force f and length l.

For first three values of
f

l2
= 1000,

f

l2
= 2500, and

f

l2
= 10000, Fig. 4.9 shows constant

values of optimal complexity (q∗) over the range of angle α. The optimal complexity decreases

with increased value of parameter
f

l2
and finally becomes zero for

f

l2
= 1000000. The interesting

variation is observed for
f

l2
= 100000 and

f

l2
= 250000, where the line for optimal complexity

stays constant for some value of angle α and then get decreased by 1. This can be explained as for

such large values of the parameter
f

l2
, higher values of angles can considerably increase the force
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in the bars which restricts one more iteration of the D-bar structure.

Figure 4.9: Plots of optimized complexity (q∗) vs. D-bar Angle-α (deg) for the 3D D-bar structure
for different set of values of force f and length l.

Table 4.2 provides the optimum complexity q∗ and angle α for the 3D D-bar structures. Similar

to the previous table, for both D-bar angles, the value of the mass ratio increases with the increased

value of the parameter
f

l2
. Moreover, the mass ratio reaches 1 (µ3D = 1) for last two values of

f

l2
= 250000 and

f

l2
= 1000000. The table also provides comparison of the mass ratio µ3D for 3D

D-bar structure and the mass ratio µT3D optimized with two different methods for 3D T-bar structure

[45]. Similar observations and trends were observed for both the 3D and 2D D-bar structure as

discussed for Table 4.1.

The cross-sections areas of all the members are calculated in plotting the scaled design of

optimized 3D D-bar structure as shown in Fig. 4.10. The figure shows the optimal configuration

of two 3D D-bar structures for angle values α = 5o and α = 10o and optimal complexity (q∗ = 2).

The minimum mass configuration of a single compressive column designed for f = 1500N, l =

0.1mwithmcol = 0.0048Kg is also given (same as Fig. 4.7). The mass ratio for 3D D-bar structures

µ3D = 0.7878 for α = 5o and µ3D = 0.8608 for α = 10o are also given in the figure.

80



Table 4.2: Comparison of mass ratio µT3D optimized with two different methods for 3D T-bar
structure (refer to Table 3.2) and mass ratio µ3D for 3D D-bar structure for two values of angle α
for different values of force f and length l. Units: f (N), l (m), and α (deg).

f

l2
f l

T-bar D-bar
Pre-stress method Area method α = 5o α = 10o

q α µT3D q α µT3D q∗ µ3D q∗ µ3D

1000 1000 1 4 19 0.10 4 27 0.07 20 0.08 20 0.17
2500 2500 1 4 22 0.14 4 29 0.11 17 0.12 17 0.23

10000 10000 1 3 25 0.25 3 31 0.21 12 0.23 12 0.37
100000 1000 0.1 1 28 0.66 1 33 0.64 4 0.66 4 0.79
250000 2500 0.1 1 31 1.04 1 33 1.01 0 1.00 0 1.00
1000000 10000 0.1 1 36 1.56 1 33 1.54 0 1.00 0 1.00

(c) mD = 0.0041 Kg (μ2D = 0. 8608) for α = 10o

(a) mcol = 0.0048 Kg 

(b) mD = 0.0038 Kg (μ2D = 0.7878) for α = 5o

f = 1500 N, l = 0.1m 

Figure 4.10: Optimum configuration of the 3D D-bar structure for two different values of angle α
for a chosen values of force f and length l displaying calculated member cross-sections.
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4.5 Conclusions

This chapter derived the analytical formulas to obtain the optimal complexity for the 2D and

3D D-bar structures. It is shown that the optimal complexity q∗ depends on the D-bar angle α,

compressive force f , length of the structure l, and the material properties of the bar members. It is

interesting to note that the optimal complexity is independent of the string material. The minimum

mass configuration of the D-bar systems, which considered both yielding and buckling failure for

compressive members and yielding failures for tensile members, can be easily designed from the

uniquely calculated optimal complexity of the structure. The chapter also derives an important

relation between the optimal complexity calculated considering only buckling failures (qb∗) and

optimal complexity calculated considering only both local failures (q∗). Finally, the results section

provided a comparative study of the minimum mass design of T-bar and D-bar tensegrity structures

for different sets of given compressive force and length.
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5. DYNAMICS OF TENSEGRITY SYSTEMS∗

1 This chapter provides a single matrix-second-order nonlinear differential equation to simulate

the dynamics of tensegrity systems with rigid bars and massive strings. The chapter allows

to distribute the string mass into any specified number of point masses along the string while

preserving the exact rigid bar dynamics. This formulation also allows modeling of skins and

surfaces as a finite set of strings in the tensegrity dynamics. To reduce the complexity of the

model, non-minimal coordinates (6 DOF for each bar instead of 5) were chosen. This is the key to

give more accurate results in computer simulations since the mathematical structure of the model

is simplified and exploited during numerical computations. A bar length correction algorithm is

also provided for both class-1 and class-k tensegrity systems to correct the erroneous change in bar

length because of computational errors during numerical integration. We characterize the control

variable as the force density in each string. This allows control laws to be developed independently

of the material chosen for the structural elements. A nonlinear transformation back to the physical

control variables involves the material properties.

5.1 Introduction

The field of Multi-Body Dynamics includes rigid and elastic bodies connected in arbitrary

ways. Most approaches use a minimal coordinate representation, eliminating redundant variables

as the body connections are exploited one at a time until all the bodies are included into the system.

One disadvantage of such methods is topology constraints, such as limiting the configuration of

the rigid body connections to a topological tree. (See the TREETOPS software developed by

company DYNACS [56]). Another computational disadvantage of these approaches is the reliance

on transcendental functions to describe the positions of elements. Tensegrity systems [6] dynamics

is a subset of the class of Multi-body dynamics which does not treat (thus far) rigid bodies of

1∗Portions of this section are reprinted or adapted from [16] : Raman Goyal and Robert E. Skelton, “Tensegrity
System Dynamics with Rigid Bars and Massive strings”, Multibody System Dynamics, 46:203–228, 2019, DOI:
10.1007/s11044-019-09666-4. Copyright c© 2019, Springer Nature. Reproduced with permission.
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arbitrary shape and inertia, but they allow any stabilizable topology of members.

The dynamics of the tensegrity structures has been explored in the past by various researchers.

Murakami[57] developed the equations of motion for tensegrity structures using the Eulerian and

Lagrangian approach which basically represent spatial and material formulations. These equations

were then linearized about a reference configuration to perform the modal analysis. In part two of

that paper, quasi-static analyses were performed which concluded that pre-stress and infinitesimal

mechanism modes characterize the dynamics and statics of tensegrity structures. The linearized

dynamics models for the different class of tensegrity structures were developed by Sultan et al.[58]

and these models were further used by Masic and Skelton [59] to select the prestress for optimal

dynamic/control performance. Ali and Smith [28] also wrote a linearized dynamic model around

an equilibrium configuration to study the dynamic behavior of an active tensegrity structure. These

linearized models are approximations and do not capture the correct dynamics of the structure. Tan

and Pellegrino [60] studied the non-linear vibration of cable-stiffened pantographic deployable

structures and showed that cable prestress is correlated with the natural frequencies of the system.

Skelton and Nagase [61, 62] developed the non-linear tensegrity dynamics in vector form for a

network of rods and strings neglecting the masses in the strings. Recently, Joono and Skelton [14]

developed a second order matrix differential equation to describe the non-linear dynamics of any

tensegrity structure. They used nonminimal coordinates and assumed the compressive elements

to have no inertia about the longitudinal axis. The masses in the tension elements (strings) were

also neglected in the formulation. In the present study, each compressive member can be a bar of

certain radius i.e. can have some inertia about its longitudinal axis and masses in the strings is also

incorporated.

At a fundamental level, the dynamics of these structures is straightforward since it relies

simply on the dynamics of rigid bars and elastic models for strings. However, a rigorous and

scalable approach to describing these structures is highly desirable. The nonlinear dynamic model

developed here captures both the translational motion of the mass center of each bar and each cable,

and the rotational dynamics of each bar, using Newton’s second law. Therefore, the model allows
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for the simulation of any tensegrity network with elastic massive string members and rigid bars.

Certainly, there are many applications such as cable-stayed bridges in which the mass of the cables

is as important as the mass of the bars. Furthermore, applications exist in which a membrane

covering the surface of the structure is required. This dynamic model assumed the bars to be

rigid and the length constraints are incorporated at the second derivative level in the formulation.

This can lead to violations in length constraint during the numerical integration procedure. In

the appendix, we provide an algorithm to correct the bar and time derivative of the bar vector

to satisfy the length constraints (appendix A). The author believes that the other benefits of this

formulation outweigh this shortcoming of the formulation. Finally, this chapter makes following

contributions to the theory and mathematical modeling of tensegrity systems: i) It adds mass to

tensile elements, ii) It adds string-to-string nodes, iii) It maintains a matrix-second-order nonlinear

differential equation without any transcendental functions. iv) It provides a novel algorithm

to correct the violations in bar length due to computational errors. Moreover, the absence of

trigonometric functions leads to improved efficiency and accuracy of the dynamics simulation and

control design. These equations are suitable for the design of control algorithms to control shape

or other requirements of the system as the control variables (force density in each string) are linear

in the dynamics formulation. These force densities can easily be converted into a physical quantity

(tensions or rest-lengths of tensile elements) using a non-linear transformation.

5.2 Notation

5.2.1 Vector Notation

We distinguish a three-dimensional object that has magnitude and direction by bold letters.

These are called Gibbs vectors in honor of the inventor of vector concepts in three-dimensional

space [63]. In linear algebra, an n × 1 matrix is called an n-dimensional vector, and obviously a

3× 1 matrix would be called a 3-dimensional vector. But these are not Gibbs vectors and will not

be bold here. For example, a vector v can be expressed in any specified frame of reference. Let the

components of vector v in a specified set of coordinates be described by the 3 × 1 matrix v. The
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components of the Gibbs vector v can be written simply as v, without bold. Scalars are also not

bold, so the distinction between scalars and three by one matrices are made clear by the context.

Define a right-handed dextral set of unit vectors by these dot and cross product properties:

a) ei · ej = δij

b) ei × ej = ek if (i,j,k) = (1,2,3) or (3,1,2) or (2,3,1)

Then define a Vectrix E [64] by:

c) E =

[
e1 e2 e3

]
, ET =


e1

e2

e3


d) ET · E = I (due to (a) and (c))

Hence for two vectors expressed in the same frame (b = EbE and a = EaE), it follows that:

e) a · b = (EaE)T · (EbE) = aE
T
(ET · E)bE = aE

T
bE

f) a× b = (EaE)× (EbE) = E ãEbE , ãE =


0 −aE3 aE2

aE3 0 −aE1
−aE2 aE1 0



where ãE is a skew-symmetric matrix composed of the 3 elements of aE , the vector a = (EaE).

5.2.2 Kinematics

Consider a vector v described in two different reference frames. Let the Vectrix E =[
e1 e2 e3

]
denote the dextral set of unit vectors ei that are inertially fixed. Let the Vectrix

B =

[
b1 b2 b3

]
be the body-fixed dextral set of bi fixed in the coordinates of the rigid body.
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Then, the unitary coordinate transformation B = EΘ and ΘTΘ = I leads to:

B = EΘ, ΘTΘ = I → ΘTΘ̇ = ω̃B = skew-symmetric, (5.1)

v = EvE , (5.2)

= BvB, vE = ΘvB, (5.3)

where Θ represents the Direction Cosine Matrix (always unitary) and vE , vB represent the

components of the vector v as viewed, respectively, in coordinate frame E and B. Then v and

v̇ are simply:

v = BvB, (5.4)

v̇ = ḂvB + Bv̇B = B[ω̃BvB + v̇B], (5.5)

where from Equation 5.1:

Ḃ = EΘ̇ = BΘTΘ̇ = Bω̃B, (5.6)

and the angular velocity of frame B relative to frame E is:

ω = EωE = BωB, ωB =


ωB1

ωB2

ωB3

 . (5.7)

5.3 Dynamics of a Single Rod

5.3.1 Rotational Dynamics

Consider a vector r locating the center of mass of the rod of length l = ‖b‖, where b is the

vector along the rod. Let the Vectrix E denote the dextral set of unit vectors ei that are inertially

fixed. Let the Vectrix B be the body-fixed dextral set of unit vectors bi fixed in the body of the rod,
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with b3 pointing along the rod.

𝒇𝟐

𝒇𝟏

𝒃
𝒓

Figure 5.1: Tensegrity rod member vector nomenclature

The rod vector b of length l, described in body coordinates B is:

b = BbB, bB =

[
0 0 l

]T
, (5.8)

and the time rate of change of the vector b is:

ḃ = ḂbB + BḃB = ḂbB = Bω̃BbB. (5.9)

It is useful to compute b× ḃ as:

b× ḃ = (BbB)× (ḂbB) = (BbB)× (Bω̃BbB), (5.10)

= Bb̃Bω̃BbB = −Bb̃Bb̃BωB = −B(b̃B)2ωB. (5.11)

Now, using the identity:

(b̃B)2 = −(bB
T

bBI − bBbBT), (5.12)

Equation 5.11 becomes:
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b× ḃ = B(‖bB‖2I − bBbBT)ωB. (5.13)

For our case, bB =

[
0 0 l

]T
. Therefore:

b× ḃ = B

l2I −


0 0 0

0 0 0

0 0 l2


ωB, (5.14)

= B

I2 0

0 0

 l2ωB = Bl2


ωB1

ωB2

0

 = l2ωb. (5.15)

Hence, the relationship between ωb, the angular velocity of rod b, and vectors b and ḃ is:

ωb =
b× ḃ
‖b‖2

. (5.16)

Using Equation 5.16, the angular momentum of rod b about its mass center is:

hb = Ibωb, (5.17)

=

(
mbl

2

12
+
mbr

2
b

4

)(
b× ḃ
l2

)
, (5.18)

h = hb =

(
mb

12
+
mbr

2
b

4l2

)
b× ḃ = Jb× ḃ, (5.19)

where J = mb
12

+
mbr

2
b

4l2
. The derivative with respect to time of the angular momentum of a rod

member can then be formulated in terms of b and ḃ as follows:
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ḣ = J ḃ× ḃ+ Jb× b̈, (5.20)

= Jb× b̈. (5.21)

The time rate of change of the angular momentum vector h is equal to the sum of torques τ

acting on the rod member about its center of mass. The forces acting on the two opposite ends of

the rod member are f1 and f2 as illustrated in Figure 5.1. The resulting torques are described here

in terms of b as:

ḣ = τ , (5.22)

ḣ =
1

2
b× (f2 − f1). (5.23)

Equations 5.21 and 5.23 yield:

Jb× b̈ =
1

2
b× (f2 − f1). (5.24)

Equation 5.24 can be written in any coordinates, but we choose inertial coordinates for simpler

forms of final equations. To simplify notation hereafter we define b = bE where b = BbB = EbE .

Writing Equation 5.24 in inertial coordinates yields:

Jb̃b̈ =
1

2
b̃(f2 − f1). (5.25)

An additional constraint must be added here to ensure that the rod vector b remains constant

with length l. This constraint is described as follows:

bTb = l2, (5.26)

Differentiating the constant length constraint of Equation 5.26, a length constraint in terms of b̈ is
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obtained:

ḃTb+ bTḃ = 0 = 2bTḃ, (5.27)

ḃTḃ+ bTb̈ = 0, (5.28)

bTb̈ = −ḃTḃ. (5.29)

The length constraint (Equation 5.29) and rotational dynamics (Equation 5.25), both in terms

of b̈ can be re-expressed in matrix form as:

 b̃
bT

 b̈ =

 1
2J
b̃(f2 − f1)

−ḃTḃ

 . (5.30)

This is a simple linear algebra equality that can be solved for b̈. One can easily verify the

existence condition for the solution and the full column rank of the matrix multiplying b̈. Therefore,

denoting a matrix pseudo inverse by the superscript "+", the unique solution for b̈ is:

b̈ =

 b̃
bT


+  1

2J
b̃(f2 − f1)

−ḃTḃ

 , (5.31)

=
1

l2

[
−b̃ b

] 1
2J
b̃(f2 − f1)

−ḃTḃ

 , (5.32)

=
1

l2
[− 1

2J
b̃b̃(f2 − f1)− bḃTḃ], (5.33)

= − 1

2Jl2
(−l2I + bbT)(f2 − f1)− 1

l2
bḃTḃ. (5.34)

Since, b̃b̃ = −l2I+bbT. Rearranging Equation 5.34 gives the final form of the vector equations

for rotational dynamics:

Jb̈ =
1

2
(f2 − f1)− 1

2l2
bbT(f2 − f1)− J

l2
bḃTḃ. (5.35)
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The final equation represents the rod rotational dynamics including influences from the length

constraint. Now we must address the translational dynamics.

5.3.2 Translational Dynamics

For a single rod in a tensegrity structure such as that illustrated in the free-body diagram of

Figure 5.1, the inertial position of the rod center of mass is described by r, the vector along the

rod member is described by the vector b, and the sum of the internal forces from the strings and

the external forces, acting on the two ends of the rod, is described by f1 and f2, where r = ErE ,

fi = EfEi . For simplification, we write r = rE and fi = fEi .

mbr̈ = f1 + f2, (5.36)

which can be written in inertial coordinates as:

mbr̈ = f1 + f2. (5.37)

5.4 Matrix Formulation of Tensegrity Dynamics

Equations 5.35 and 5.37 can be used to describe the dynamics of any given rod member in

a tensegrity structure. Describing a full tensegrity structure would consequently yield 2β vector

equations for a system containing β rod members. However, we will assemble these equations in

a matrix form to simplify the structure of the final equations.

Connectivity matrices are now introduced to relate the matrix of nodes, N , to the matrix of

string vectors, S, and the matrix of rod vectors B. The ith column of matrices N , S, and B are,

respectively the inertial components of the vectors, ni, si, and bi. We write these as ni, si, and

bi. Define the string connectivity matrix by CT
s , and the rod connectivity matrix by CT

b . Then by

inspection of the network, labeled with rod and string vectors, one can immediately write matrices

(with entries of 0, 1, −1) to satisfy the definitions S = NCT
s and B = NCT

b .

By convention, we choose to name the nodes at the base of rod vectors as N1 =
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[
n1 n2 · · · nβ

]
and we choose to name the terminal ends of the rod vectors as N2 =[

n1+β n2+β · · · n2β

]
. Defining each rod end point as a node, a tensegrity consisting of n = 2β

nodes leads to a 3× n node matrix, N =

[
N1 N2

]
, in which each column is the inertial position

of a node. Also, for a network of β rods, define the 3× β matrix B =

[
b1 b2 · · · bβ

]
.

𝒃𝒊

𝒓𝒊

𝒘𝒊
𝒏𝒊

𝒏𝒊+𝜷 𝒘𝒊+𝜷

Figure 5.2: Tensegrity rod member numbering convention

The convention mentioned above yields Cb =

[
−Iβ Iβ

]
. In general, Cb is a β × n matrix in

which each row describes the node connectivity of a rod member. That is, the row of Cb for a rod

member connecting ni to nj will consist of a “ + 1” at the jth column, a “− 1” at the ith column,

and zeros elsewhere. Now, vectors locating the mass centers of the rods is defined as (ri is the ith

column of matrix R):

R = N1 +
1

2
B, (5.38)

= N1 +
1

2
(N2 −N1), (5.39)

= N
1

2

Iβ
Iβ

 = NCT
r . (5.40)

For any n-dimensional column vector, we define the “hat" operator over a vector to form a

93



diagonal matrix from the elements of the vector. Then, the dynamic equations of the ith rod bi

from Equation 5.35 are placed in the the ith column of the matrix B̈Ĵ :

B̈Ĵ =

[
b̈1 b̈2 · · · b̈β

]


J1 0 · · · 0

0 J2 · · · 0

...
... . . . ...

0 0 · · · Jβ


=

[
J1b̈1 J2b̈2 · · · Jβ b̈β

]
. (5.41)

This process can be performed for the remaining three terms in Equation 5.35, as summarized

below. Forces acting on the end points of each rod are described with the force matrix F , whose ith

column is the total force vector acting on the ith node ni from both internal (string and rod forces)

and external sources. Hence, for the ith rod, first and second terms give:

1

2
(f2i − f1i) =

1

2
[FCT

b ]i, (5.42)

− 1

2l2
bib

T
i (f2i − f1i) = −1

2
[Bl̂−2bBTFCT

b c]i, (5.43)

where we introduce the b◦c operator, which sets every off-diagonal element of the square matrix

operand to zero. Now, the last term can be written as:

− Ji
l2i
biḃi

T
ḃi = −[BĴl̂−2bḂTḂc]i. (5.44)

Combining the four matrix expressions for the four original terms in Equation 5.35 gives a full

matrix expression for B̈. This describes the rotational motion of every rod member in the system

while including a constant length constraint.

B̈Ĵ =
1

2
FCT

b −
1

2
Bl̂−2bBTFCT

b c −BĴl̂−2bḂTḂc. (5.45)
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This expression can be simplified with the following definition of λ̂:

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBTFCT

b c, (5.46)

B̈Ĵ =
1

2
FCT

b +Bλ̂. (5.47)

Following the same process as that of the rotational dynamics, the translational dynamics must

similarly be converted into a matrix expression. In this case, R is a 3 × β matrix in which the ith

column describes the inertial position of center of mass of the ith rod member. Using Equation

5.40:

mbi r̈i = f1i + f2i = [R̈m̂b]i = 2[FCT
r ]i, (5.48)

R̈m̂b = 2FCT
r . (5.49)

The matrix expressions for the rotational and translational dynamics of the full tensegrity

system can be re-expressed as follows:

[
B̈ R̈

]Ĵ 0

0 m̂b

+

[
B R

]−λ̂ 0

0 0

 = F

[
1
2
CT
b 2CT

r

]
. (5.50)

Recognizing that
[

1
2
CT
b 2CT

r

]−1

=

[
CT
b CT

r

]T
[14], Equation 5.50 is rewritten as follows:

[
B̈ R̈

]Ĵ 0

0 m̂b


Cb
Cr

+

[
B R

]−λ̂ 0

0 0


Cb
Cr

 = F, (5.51)

[
B̈ R̈

] ĴCb
m̂bCr

+

[
B R

]−λ̂Cb
0

 = F. (5.52)

The definitions of the rod and center of mass connectivity matrices,B = NCT
b , andR = NCT

r ,
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can be re-expressed in matrix form and substituted into Equation 5.52:

[
B R

]
= N

[
CT
b CT

r

]
, (5.53)

N̈

[
CT
b CT

r

] ĴCb
m̂bCr

+N

[
CT
b CT

r

]−λ̂Cb
0

 = F. (5.54)

Expanding this gives:

N̈(CT
b ĴCb + CT

r m̂bCr)−N(CT
b λ̂Cb) = F. (5.55)

The force matrix F has been described as containing the sum of forces acting on each node in

the system. This can be subdivided into two elements: external forces and internal forces. Let wi

be the ith column of the matrix W , where wi is the external force acting on the node ni. Internal

forces, caused by tension in the string members, require knowledge of string member connectivity.

The string connectivity matrix Cs is defined as S = NCT
s , where S is the string member matrix.

For a tensegrity system consisting of α string members, S is of dimension 3 × α, and Cs is of

dimension α×n. The internal node forces caused by string tensions T can be described with TCs.

In this work, string tension is described in terms of a “force density” γ. The tension vector

in a string can be found as ti = siγi where si is the string vector or the ith column of matrix

S (Modeling of elastic string is given in appendix 5.9.1). Then, the matrix of string tensions T

equals Sγ̂, which equals NCT
s γ̂. Based on this, the internal forces acting on nodes caused by

string tensions is NCT
s γ̂Cs. The full force matrix expression can then be written and substituted

into Equation 5.55:

F = W −NCT
s γ̂Cs, (5.56)

N̈(CT
b ĴCb + CT

r m̂bCr) +N(CT
s γ̂Cs − CT

b λ̂Cb) = W. (5.57)

By defining matrices M , K, and W , a compact matrix form for the full nonlinear translational
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and rotational dynamics of a full tensegrity system is written as:

N̈M +NK = W, (5.58)

M = CT
b ĴCb + CT

r m̂Cr, (5.59)

K = CT
s γ̂Cs − CT

b λ̂Cb. (5.60)

5.5 String-to-string Point Mass Nodes

The model derived in Section 4 assumes massless strings. It is important to develop a method

that includes string masses. This is achieved by dividing the string in several small strings and

connecting them with point masses. The added point mass node will connect only to strings and

no rods (string-to-string nodes). Using this approach, a string member is modeled by subdividing

the original string into n connected string members with n − 1 connection point masses. The

positions of the point masses along the string can be chosen based on the respective length of the

connected strings which in turn can be chosen to match the extensional stiffness of the original

string.

We describe the process of modeling string masses by denoting two types of nodes: rod nodes,

which are the end points of rods, and string nodes, which are the locations of string-to-string

connections that have a point mass associated with them. The full node matrix can consequently

be split as N =

[
Nb Ns

]
. Here, Nb is a 3 × 2β matrix in which each column is the position of

a rod node nb, and Ns is a 3 × σ matrix in which each column is the position of a string node ns.

Variables β and σ represent the number of rods and number of string nodes respectively. Note that

the rod and string nodes can be extracted from the node matrix N with the definition of two new

connectivity matrices, Cnb and Cns:

Nb = N

I2β

0

 = NCT
nb, (5.61)
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Ns = N

 0

Iσ

 = NCT
ns, (5.62)

where I2β and Iσ are identity matrices of size 2β and σ respectively. The matrix representing the

positions of center of mass, R, can similarly be broken into two components: Rb, which describes

the center of mass locations for each rod member, and Rs, which describes the location of each

string point mass:

Rb = NbC
T
r = NCT

nbC
T
r , (5.63)

Rs = Ns = NCT
ns. (5.64)

Similarly, the expression for the rod member matrix B can be rewritten as:

B = NbC
T
b = NCT

nbC
T
b . (5.65)

Note that the rod connectivity matrix remains unchanged from its original definition preceding

Equation 5.42. The original string connectivity matrixCs must be redefined as new string members

are being added to the model. Here, Cs is divided into two parts: the first, Csb, describing

rod-to-string joints and the second, Css, describing string-to-string joints:

S = NCT
s =

[
Nb Ns

]CT
sb

CT
ss

 , (5.66)

The force matrix F is augmented to include both the sum of forces acting on rod nodes, Fb, as

well as string nodes, Fs:

F =

[
Fb Fs

]
= W −NCT

s γ̂Cs, (5.67)

Now, we need to write the translational dynamics of the newly defined string nodes which are

modeled as point masses. We define msi as the mass of the ith string node, rsi as the position of
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that node and fsi as the total force acting on that node. Their translational dynamics in both vector

and matrix form can simply be written as:

msi r̈si = fsi = [R̈sm̂s]i = Fsi , (5.68)

R̈sm̂s = Fs. (5.69)

The dynamics of the rod members (Equations 5.46, 5.47 and 5.49) must be slightly modified

to incorporate the subdivision of the force matrix F as F =

[
Fb Fs

]
.

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBTFbC

T
b c, (5.70)

B̈Ĵ =
1

2
FbC

T
b +Bλ̂, (5.71)

R̈bm̂b = 2FbC
T
r . (5.72)

Equations 5.69, 5.71, and 5.72 can be written in a matrix form as follows:

[
B̈ R̈b R̈s

]
Ĵ 0 0

0 m̂b 0

0 0 m̂s

+

[
B Rb Rs

]
−λ̂ 0 0

0 0 0

0 0 0

 =

[
1
2
FbC

T
b 2FbC

T
r Fs

]
. (5.73)

Because the force matrix F has been defined as F =

[
Fb Fs

]
, the force term is rewritten in

terms of F as:

[
B̈ R̈b R̈s

]
Ĵ 0 0

0 m̂b 0

0 0 m̂s

+

[
B Rb Rs

]
−λ̂ 0 0

0 0 0

0 0 0

 = F

1
2
CT
b 2CT

r 0

0 0 I

 . (5.74)

Using
[

1
2
CT
b 2CT

r

]−1

=

[
CT
b CT

r

]T
, it can also be shown that:
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1
2
CT
b 2CT

r 0

0 0 I


−1

=


Cb 0

Cr 0

0 I

 . (5.75)

The previous expression allows us to rewrite Equation 5.74 as follows:

[
B̈ R̈b R̈s

]
Ĵ 0 0

0 m̂b 0

0 0 m̂s



Cb 0

Cr 0

0 I

+

[
B Rb Rs

]
−λ̂ 0 0

0 0 0

0 0 0



Cb 0

Cr 0

0 I

 = F. (5.76)

Having previously defined B, Rb, and Rs in terms of N and connectivity matrices, the

following expression can be substituted into the matrix expression for the full system dynamics:

[
B Rb Rs

]
= N

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
. (5.77)

N̈

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
Ĵ 0 0

0 m̂b 0

0 0 m̂s



Cb 0

Cr 0

0 I



+N

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
−λ̂ 0 0

0 0 0

0 0 0



Cb 0

Cr 0

0 I

 = F. (5.78)

Multiplying this out, substituting Equation 5.67 for F , and rearranging yields the following

expression for the full system dynamics:

N̈

[
CT
nbC

T
b ĴCb + CT

nbC
T
r m̂bCr CT

nsm̂s

]
+N

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
= W. (5.79)
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Following the example set in Equation 5.58, a compact matrix form for the full system

dynamics including string masses can be obtained with the following definitions of Ms and Ks.

N̈Ms +NKs = W, (5.80)

Ms =

[
CT
nb(C

T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]
, (5.81)

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
, (5.82)

where substituting the value of Fb in Equation 5.70 gives λ̂ as:

λ̂ =− Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W − Sγ̂Cs)CT

nbC
T
b c. (5.83)

5.6 Equilibrium Calculations

The dynamics equations developed above can be used to solve for values of force densities in

strings(γ) and bars(λ) by putting the acceleration term equal to zero (N̈ = 0).

NKs = W, (5.84)

N

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
= W, (5.85)

N(

[
CT
s γ̂Csb CT

s γ̂Css

]
−
[
CT
nbC

T
b λ̂Cb 0

]
) = W, (5.86)

N(CT
s γ̂[Csb Css]−

[
CT
nbC

T
b λ̂Cb 0

]
) = W, (5.87)

N(CT
s γ̂Cs − CT

nbC
T
b λ̂Cb

[
I 0

]
) = W, (5.88)

N(CT
s γ̂Cs − CT

nbC
T
b λ̂CbCnb) = W, (5.89)

Sγ̂Cs −Bλ̂CbCnb = W. (5.90)
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From equation 5.89, Ks can also be written as Ks = CT
s γ̂Cs − CT

nbC
T
b λ̂CbCnb. Now, let’s take the

ith column of the above equation as

Sγ̂Csei −Bλ̂CbCnbei = Wei, (5.91)

Using the identity x̂y = ŷx for x and y being column vectors.

S

∧

(Csei)γ −B

∧

(CbCnbei)λ = Wei, (5.92)

[S

∧

(Csei) −B

∧

(CbCnbei)]

γ
λ

 = Wei. (5.93)

Stacking all the columns till nth column, we get



S

∧

(Cse1) −B

∧

(CbCnbe1)

S

∧

(Cse2) −B

∧

(CbCnbe2)

...
...

S

∧

(Csen) −B

∧

(CbCnben)



γ
λ

 =



We1

We2

...

Wen


, (5.94)
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which can be simply written as

A

γ
λ

 = Wvec, γ ≥ 0. (5.95)

5.7 Class k Tensegrity Systems

A simple modification of the derived dynamics allows for handling of Class k tensegrity

structures (k rods connected to a node through a ball joint). Here, “Class" denotes the maximum

number of rod members present at a given node in the definition of the structure topology. If there

are no rod-to-rod joints, the structure is said to be of Class 1. If there is at least one node in which

two rods are connected, it is said to be of Class 2, and so on.

In this model, Class k structures (where k > 1) are handled by converting each Class k joint

into k Class 1 nodes constrained to coincide at all times with a constraint matrix and Lagrange

multipliers.

The linear constraint equation is written as:

NP = D, (5.96)

where P is a n×c andD is a 3×cmatrix specified such that constrained nodes are set equal to one

another where c is the number of constraints required. For example, if nodes 1 and 2 must coincide

at all times, a column of P and D would be specified such that NP = D gives n1 − n2 = 0.

Adding this linear constraint will introduce some constraint forces written as ΩPT and will lead to

the new dynamics:

N̈Ms +NKs = W + ΩPT, (5.97)

where

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
, (5.98)
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λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b c, (5.99)

and Ω is the 3 × c matrix of Lagrange multipliers satisfying the dynamics and constraints at all

time-steps. The Lagrange multipliers required to maintain these constraints can be thought of as

contact forces at the Class k nodes [14].

5.7.1 Reduced-order dynamics

Adding the linear constraints into the dynamics will restrict the motion in certain dimensions,

thus reducing the order of the dynamics to a span a smaller space. The dynamics Equation 5.97

can be reduced into a smaller dimensional equation by augmenting it with the constraint Equation

5.96. To this end, we use the singular value decomposition (SVD) of matrix P as:

P = UΣV T =

[
U1 U2

]Σ1

0

[V T

]
, (5.100)

where U ∈ Rn×n and V ∈ Rc×c are both unitary matrices, U1 ∈ Rn×c and U2 ∈ Rn×(n−c) are

submatrices of U , and Σ1 ∈ Rc×c is a diagonal matrix of positive singular values. By defining

η = [η1 η2] , NU = [NU1 NU2], (5.101)

the constraint Equation 5.96 can be modified as:

NP = NUΣV T = [η1 η2]

Σ1

0

[V T

]
= D, (5.102)

which implies:

η1 = DV Σ−1
1 , η̇1 = 0, η̈1 = 0. (5.103)
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Here, η1 represents the no-motion space in transformed coordinates. Moreover, η2 will evolve

according to the constrained dynamics in new coordinate system. Using Equations 5.100-5.103,

the dynamics equation 5.97 can be rewritten as:

N̈UUTMs +NUUTKs = W + ΩV ΣTUT, (5.104)

⇒ η̈2U
T
2 Ms + η1U

T
1 Ks + η2U

T
2 Ks = W + ΩV ΣT

1U
T
1 . (5.105)

Post-multiplying the above equation by a non-singular matrix [U2 M−1
s U1] will yield two parts,

where first part gives the second order differential equation for the reduced dynamics:

η̈2U
T
2 MsU2 + η2U

T
2 KsU2 = WU2 − η1U

T
1 KsU2, (5.106)

⇒ η̈2M2 + η2K2 = W̃ . (5.107)

with M2 = UT
2 MsU2 and K2 = UT

2 KsU2, and the second part gives an algebraic equation that is

used to solve for the Lagrange multiplier:

η̈2U
T
2 MsM

−1
s U1 + η1U

T
1 KsM

−1
s U1 + η2U

T
2 KsM

−1
s U1 = WM−1

s U1 + ΩV ΣT
1U

T
1 M

−1
s U1,

(5.108)

⇒ NKsM
−1
s U1 − ΩPTM−1

s U1 = WM−1
s U1. (5.109)

Notice thatKs is also a function of Ω from Equations 5.98-5.99, making it a linear algebra problem.

The analytical expression to solve the Lagrange Multiplier (Ω) is given in section B.1.
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5.8 Energy Calculation

The kinetic energy stored in the structure is:

KE = 1/2

β∑
i=1

(mbiṙ
T
biṙbi + Jiḃi

T
ḃi +msiṙ

T
siṙsi), (5.110)

= 1/2 Tr(Ṙbm̂bṘ
T
b + ḂĴḂT + Ṙsm̂sṘ

T
s ), (5.111)

= 1/2 Tr
(
Ṅ [CT

nb(C
T
b ĴCb + CT

r m̂bCr) CT
nsm̂s]Ṅ

T
)
, (5.112)

= 1/2 Tr
(
ṄMsṄ

T
)
. (5.113)

For class-K, this can be written as:

KE = 1/2 Tr
(
η̇2M2η̇

T
2

)
. (5.114)

Now, the potential energy can be written as:

PE = 1/2
α∑
i=1

(
1

ki
tTi ti), (5.115)

= 1/2 Tr(T k̂−1TT), (5.116)

= 1/2 Tr(Sγ̂k̂−1γ̂ST), (5.117)

and the work done on the system can be written as:

WD =

∫ Tf

Ti

Tr (WṄT)dt, (5.118)

Therefore, the total energy at any time can be written as:

TE(Tf ) = KE(Ti) + PE(Ti) +WD, (5.119)

= 1/2 Tr
(
ṄiMsṄ

T
i

)
+ 1/2 Tr(Siγ̂ik̂

−1γ̂iS
T
i ) +

∫ Tf

Ti

Tr(WṄT)dt. (5.120)
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From principal of conservation of energy:

KE(Tf ) + PE(Tf ) = KE(Ti) + PE(Ti) +WD, (5.121)

Tr
(
ṄfMsṄ

T
f

)
+ Tr(Sf γ̂f k̂

−1γ̂fS
T
f )

= Tr
(
ṄiMsṄ

T
i

)
+ Tr(Siγ̂ik̂

−1γ̂iS
T
i ) + 2

∫ Tf

Ti

Tr(WṄT)dt. (5.122)

5.9 Stiffness and Damping in String

5.9.1 Open-loop Simulations

Tension in the strings is produced by stretching them beyond their rest length. Let the rest

length of the ith string be denoted by ρi, extensional stiffness by ki, damping constant by ci, and

string vector by si. Assuming that strings follow Hooke’s law and viscous friction damping model,

the tension in a string is written as:

‖ti‖ = ki(‖si‖ − ρi) + ci
sTi ṡi
‖si‖

, (5.123)

γi =
‖ti‖
‖si‖

= ki

(
1− ρi
‖si‖

)
+ ci

sTi ṡi
‖si‖2

. (5.124)

Note that if ρi > ‖si‖, although above equation gives a negative value, tension in the string should

be substituted to zero as a string can never push along its length. Similarly, the final value of

the tension ti or force density γi can also never be negative for any string. Now, we write these

equations in matrix form as:

γ̂ =
(
I − bSTSc− 1

2 ρ̂
)
k̂ + bSTṠcbSTSc−1ĉ, (5.125)

T = Sγ̂ = S
(
I − bSTSc− 1

2 ρ̂
)
k̂ + SbSTṠcbSTSc−1ĉ, (5.126)
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where ith column in matrix T represents the vector of string tension in the ith string. This equation

can again be written as

T = Sγ̂ = (S − S0)k̂ + SbSTṠcbSTSc−1ĉ, (5.127)

where S0 = SbSTSc− 1
2 ρ̂ represents the matrix containing the rest length vectors. Therefore,

Equations 5.124-5.126 provide the required tension model for elastic strings used in the dynamic

simulation of tensegrity systems.

5.9.2 Closed-loop Control

For the closed-loop control of the system, one can change the rest lengths of the strings

according to the following formula:

γ̂k̂−1 − bSTṠcbSTSc−1ĉk̂−1 = I − bSTSc− 1
2 ρ̂, (5.128)

ρ̂ = bSTSc 12
{
I + bSTṠcbSTSc−1ĉk̂−1 − γ̂k̂−1

}
, (5.129)

⇒ρ̂ = bSTSc 12 (I − γ̂k̂−1) + bSTṠcbSTSc− 1
2 ĉk̂−1. (5.130)

While solving the control algorithm, we put a constraint that γ should always be greater than or

equal to zero.

5.10 Examples of the Implemented Model

All the dynamic simulations are performed using a Matlab based software developed using this

formulation. The numerical integration package used in this software is fourth-order Runge-Kutta.

Bar length correction was used only for class-k structure simulation. There was no significant

violation (around machine precision 10−16) in bar length constraint during simulations of other

examples. Therefore, the bar length correction algorithm was not used for those examples. It is

also advisable to use the bar length correction algorithm only if necessary (appendix A).
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5.10.1 Influence of String Subdivision on Tensegrity Prism Dynamics

First, the dynamic simulation of a Class-1 triangular tensegrity prism with massive strings is

shown in Figure 5.3. To demonstrate the modeling of flexible string members with mass, each

string member in the prism is subdivided into 5 members by inserting 4 string-to-string nodes

(point masses) along the original string member. Initial conditions are specified to simulate the

dynamics. In the absence of external forces, tensegrity prism has a known equilibrium solution of

γv =
√

3γt =
√

3γb, where γv, γt and γb represent the force density in vertical, top and bottom

string respectively [6].

For demonstration purposes, bar masses are specified as mb = 1 kg, and point masses are

specified as ms = 0.01 kg. Bar lengths, based on specified initial node positions, are lb = 1.4142

m long and all string members are given stiffness values of k = 100 N/m. Initial force density

values are deliberately specified as γt = γb = γv = 30 N/m to induce motion.

0
-0.5

0
0.2

x

0.5

y

00.4

z

0.6
0.8

1

0.5

(a) t = 0 sec

-0.5
0

0
0.2

xy

0

0.5z

0.4
0.6

0.5

1

(b) t = 0.5 sec

-0.4

0

0
-0.20.2

xy

00.4

0.5

0.2

z

0.6
0.40.8

1

(c) t = 1 sec

Figure 5.3: Simulation time-lapse of prism structure using string-to-string connections to model
string mass. (Bars are shown in blue and strings are shown in red)

Second, we demonstrate that when modeling string mass, the systems dynamics converge as

the number of segments used in modeling the string members increases. In this case, the string

members of the prism structure are modeled with 1 to 10 string segments. Figure 5.4 shows the
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prism structure string segments modeled with 1, 5, and 10 “child” string segments.
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Figure 5.4: Prism structure string members modeled with varying number of string segments.

The case in which each string member is modeled with a single string segment represents

the case in which string mass is neglected. For the remaining cases, the stiffness values of

the original 9 “parent” string members are converted into equivalent stiffness values for their

“children” string segments. Similarly, a specified parent string mass is specified and distributed

across the generated child point mass nodes. The same initial condition is applied to each case

to allow direct comparison of the resulting dynamical response. Figure 5.5 shows the node 1

y-coordinate time histories for a number of these simulation cases. It is evident here that as the

number of string segments used increases, the dynamical response converges.

To get better insight, one can compare all cases with the final simulation case, which uses 10

string segments as per the original string member. Computing the spatial distance between node

1 in each case vs node 1 in the final case at each time step gives a time-history representing the

discrepancy between the given and final cases. The square sum of this spatial discrepancy over

the simulation time-span i.e. the L2 norm of the spatial distance between the node 1 position with

respect to the node 1 position in the final case, can then be used to quantify the total error between

the given and final cases. The difference in the dynamic response decreases rapidly as the number

of string segments is increased. For this example, the error was found to be less than 0.5% for the
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Figure 5.5: Node coordinate dynamical response convergence.

last 9th to 10th division.

5.10.2 Dynamics of a D-bar structure with one node inertially fixed

This example will demonstrate the dynamics of a Class-k structure. The structure we simulate

here is a D-bar structure. A complexity-1 D-bar structure consists of 4 compressive members

connected in a diamond shape with 2 tensile members along the diagonal [6]. As the maximum

number of bars connected at any node is 2, it is a “Class 2" structure.
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Figure 5.6: Simulation time-lapse of a D-bar structure.

Here, we simulate the dynamics of the structure with one node (shown in black) fixed to the

ground i.e. inertial position of the node remains constant. For demonstration purposes, each bar
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Figure 5.7: Results for Constraint D-bar structure.

is lb = 1m long and has a mass of mb = 1kg. Both string members are given a stiffness value

of k = 100 N/m and different prestress (force density) to induce motion. Figure 5.6 shows three

time-lapse images of the simulation. Simulation results show that both, fixed position constraint

and pin joint constraints (bar to bar connection) are satisfied all the time (up to machine precision)

as shown in Figure 5.7b. Figure 5.7a shows that the length of all the bars also remains constant

throughout the simulation verifying the efficacy of the results.

5.10.3 Dynamics of a flexible membrane having only tensile members

In this example, we demonstrate the dynamics of a “Class 0" structure consisting solely of

string members – a cylindrical string mesh membrane. The configuration of the strings in this

membrane has been chosen to be derived from a Double Helix Tensegrity (DHT) structure with

all the bars removed. Figure 5.8a shows the typical structure of this configuration. We define the

complexity of the structure by p and q where p is defined as the number of nodes on the circular ring

and q is the number of circular rings in longitudinal direction[25]. It can be better approximated to

a continuous membrane by increasing the complexity of the structure as shown in Figure 5.8b.

To demonstrate the dynamics of this membrane, we start from the equilibrium position of the
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Figure 5.8: DHT structure without bars (R = 20m and L = 40m).
(End caps are not shown but included in the maths)

structure with 1 atmospheric pressure difference from inside to the outside of the cylinder. The

stiffness in the string was calculated such that the length ratio (unstretched string length to current

string length) is 0.975 at the equilibrium position. The mass of individual string has been used from

the minimum mass calculation, required to take 1 atmospheric pressure. The material properties

used for this simulation are of UHMWPE (spectra). Damping is also added in the strings to get

the η (Damping Coefficient) value of 0.1. The appendix shows the formulation to add damping

in the strings 5.9.1. Figure 5.9a and 5.9b show the radial motion of the center nodes (shown as

blue dots) of two membranes (Low and High complexity) in presence of 5% instantaneous change

in pressure. Notice the attenuation in the vibration response along the radial direction, depicting

the effect of damping included in the dynamics. No motion in the vertical direction was observed

as the membrane will elongate equally in the upward and downward direction with respect to the

center node.

5.10.4 Dynamic simulation of a six bars Tensegrity ball as Planetary Lander

The example demonstrates the capability of the formulation to perform the dynamic simulation

with inputs from the external environment. A dynamic simulation result was shown when a
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Figure 5.9: Time history of motion of the center nodes (shown as blue dots) (R = 20 m and L = 40
m)

tensegrity lander [2] with 6 bars and 24 strings was dropped from a height of 3.5 meters. For

this simulation, the ground was modelled as a spring-damper system of stiffness kg = 104 N/m

and damping cg = 10 N-s/m. An initial prestress value of γ = 1000 N/m was used for all the

strings which result in self-equilibrium for the structure. The mass of each bar was assumed to be

mb = 1 Kg and string mass was assumed to be ms = 0.1 Kg. The stiffness value of each string

was assumed to be k = 5000N/m with a damping coefficient value c = 10 N-s/m.

(a) t = 0.825 sec (b) t = 0.850 sec (c) t = 0.875 sec

Figure 5.10: Simulation time-lapse of a Tensegrity Lander.
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Figure 5.10 shows the time-lapse images of the lander as it hits the ground. Figure 5.11a shows

the vertical distance of the center of mass of the lander from the ground. Notice that as we model

both ground and strings with some damping, the vertical distance keeps decreasing. Figure 5.11b

shows the error in the bar length of one of the bars during the simulation.
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(b) Error violation in the one of the bar length.

Figure 5.11: Results for Tensegrity Lander.

5.10.5 Tensegrity prism with elastic skin

This example demonstrates how an elastic skin membrane can be modeled as a mesh of

string-to-string joints, and how the addition of skin membranes to a given structure can increase

its stiffness. The developed dynamical model, by including string-to-string connections, allows

generation of interconnected elastic string meshes that can be attached to bar members. An elastic

skin membrane can be modeled as a mesh of interconnected string members with any number

of topologies. Figure 5.12 shows a prism structure with skin added using one example topology

generation method that allows parameterizable complexity. In this case, a node is placed at the

center of each external polygon of the structure, and string members are generated that connect the

node to the vertices of its parent panel. This can be done recursively for n iterations.

115



−0.4
−0.2

0
0.2

0.4

−0.2
0

0.2
0.4

0

0.2

0.4

0.6

0.8

1

x
y

z

−0.4
−0.2

0
0.2

0.4

−0.2
0

0.2
0.4

0

0.2

0.4

0.6

0.8

1

x
y

z

−0.4
−0.2

0
0.2

0.4

−0.2
0

0.2
0.4

0

0.2

0.4

0.6

0.8

1

x
y

z

Figure 5.12: Prism structure with elastic skin modeled with varying complexity.

To illustrate how the inclusion of skin affects the dynamical response of a structure, skin

panels are added to the top and bottom surfaces of a prism structure (illustrated in Figure 5.13).

Simulations are performed for the structure with and without the skin panels with identical

initial conditions for the original string members to allow comparison. Comparing the node 1

z-coordinate time histories for the structure with and without the skin membranes shows that

displacement is reduced with the inclusion of the skin.
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Figure 5.13: Prism structure with elastic skin added to top and bottom panels. Complexity n = 2
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Figure 5.14: Stiffness comparison of prism structure with and without skin panels shown in Figure
5.13

.

5.11 Software Description

A software with the name: Modeling of Tensegrity Structures (MOTES) also came out as the

result of this thesis which was published in The Journal of Open Source Software [65]. MOTES

provided two categories for the analysis of any tensegrity structure. First, the static analysis

provides the minimum mass of the tensegrity structure by optimizing for the tensile force in the

strings and compressive force in the bars for no external force (self-equilibrium state) and in the

presence of a given external force. The optimization problem is written as a Linear Programming

to solve for the minimum mass required under yielding constraints. The software also allows

to solve for the minimum mass under buckling and yielding failure criteria through a non-linear

optimization solver. Second, the dynamic analysis uses a second-order matrix differential equation

to simulate the dynamics of any complexity of tensegrity structure [16]. This dynamic model

assumes the bars to be rigid and strings to show elastic behaviour (Hookean). The software

runs a self-developed modified Runge-Kutta integration package to solve the nonlinear differential

equations. A bar length correction scheme is used to correct the dynamics response that might incur

random errors because of computational limitations. This analytical correction step also restricts

the errors in connection constraints for class-k structures. The class-k, bar-to-bar connections (ball
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joints) are formulated as linear constraints. These constraints in the motion space give rise to

constraint forces in the structure. An analytical solution is provided to solve for the constraint

forces, and a reduced order model is developed to simulate the dynamics in the restricted motion

space. The mass in the strings is also included in the dynamics by discretizing the string into

several point masses along the length of the string. This complete mathematical model for the

tensegrity dynamics is developed in our recent dynamics paper [16].

The software is being used to develop various tensegrity structures like Tensegrity robotic

arm, Tensegrity antenna, Tensegrity lander, and Space Habitat, where we integrate structure and

control design to get the required performance. The software was also used as a part of the class

curriculum for the course ‘AERO-489/689 Design Elective: Advanced Statics and Dynamics of

Flexible Structures: Tensegrity Systems’ which was offered in spring 2019.

5.12 Conclusions

This chapter develops the nonlinear dynamic models of any multibody system composed of

a network of bars in compression and cables in tension. This is accomplished by having any

connection between bars or strings that behave mathematically as frictionless ball joints. The

capability to have string-to-string connections allow the approximations of membranes or nets.

Such surfaces allow a mathematical treatment to integrate advantages of tensegrity and origami

structures. The capability to have bar-to-bar connections removes previous criticism of tensegrity

as “only soft structures". The approach to Class-k tensegrity (bar-to-bar connections) is to add

Lagrange multipliers to accommodate the constraint forces due to bar-to-bar connections, and then

reduce the dynamic model by using the constraint equation. The Lagrange multipliers appear

linearly and are computed from a linear algebra problem. Writing the dynamics in non-minimal

coordinates avoids the use of transcendental functions, providing a very simple second order matrix

differential equation. The non-linear dynamics is linear in control variables (force densities in the

strings), which allows control laws to be written independently of the material properties of the

strings. A bar length correction algorithm is also provided to satisfy the bar length constraints at

both zero and first-order derivative. The algorithm should be used only if necessary.
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A number of conclusions can be made based on the presented work. First, the ability to include

string-to-string joints in the developed dynamical model allows for modeling and simulation of

massive string members, elastic skin membranes, and Class 0 string meshes. Modeling and

simulation results for each of these cases have been presented. Second, it is evident that accounting

for string mass in simulation changes the dynamical response of a given structure. Simulation

results show that even structures with low total string mass relative to bar mass exhibit this

discrepancy. Third, when modeling string mass, the dynamical response of the structure converges

as the number of string segments used increases. Finally, it has been shown that the inclusion of

elastic skin membranes on a structure can increase the stiffness of the structure.
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6. GYROSCOPIC DYNAMICS OF TENSEGRITY SYSTEMS∗

1 Mechanics and control of innovative gyroscopic structural systems are detailed in this chapter.

By adding controllable spinning wheels to a network of controllable, axially loaded strings and

bars, it is shown that the mobility and manipulation of the structural system are enhanced.

Using principles of mechanics, a nonlinear dynamic model is presented to modulate the torque

produced by the network of spatially distributed gyroscopes. Equations of motion, formulated

as a second-order matrix differential equation, provide a trajectory for the nodal displacement of

the bars, along with the wheel’s spin degree of freedom. While the gyroscopic robotics concept

is scalable to an arbitrarily large network, this research aims to identify elemental modules to

override fundamental design principles of the innovative structural systems. Dynamic simulation

and experimental verification on a planar D-bar tensegrity structure are used to demonstrate the

utility of one such fundamental building block of the gyroscopic robotic system.

6.1 Introduction

Tensegrity structures are defined as a stable configuration of pre-stressable structures composed

of compressive (bars/struts) and tensile members (strings/cables). Researchers show that tensegrity

structures provide a minimal mass solution to structures designed for compressive loading [6] and

tensile loading under stiffness constraints [20]. These structures also provide the capability to

change the stiffness without changing the shape of the structure. This can help in achieving a

high range of compliance in soft robotics applications [18]. Harvard biologist Don Ingber called

tensegrity architecture as ‘architecture of life’ [36], which is evident by examining the human

body where the tensions in the tendons actuate bones of the skeleton. A large number of redundant

control inputs (tension in the strings) makes the system robust, which is crucial for next-generation

robots.
1∗Portions of this section are reprinted or adapted from [66] : Raman Goyal, Muhao Chen, Manoranjan Majji and

Robert E Skelton, "Gyroscopic Tensegrity System Dynamics", Robotics and Automation Letters, 5(2), 1239 – 1246,
2020, DOI: 10.1109/LRA.2020.2967288. Copyright c© 2020, IEEE. Reproduced with permission.
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An extra degree of control can be added to these systems by attaching gyroscopic wheels

to some of the bar members. This chapter discusses this new class of mechanical systems

formed by adding gyroscopes to tensegrity structures. Spacecraft attitude and orientation control

are typically accomplished using momentum wheels or control moment gyroscopes [67, 64].

Gyroscopes have been used to minimize the sensitivity of the end-effector location in the presence

of disturbance forces [68]. In large space structures such as the international space station, massive

monolithic wheels are arranged on steerable gimbals, to generate gyroscopic torques in order to

accomplish attitude control [69, 70]. Motivated by the expense of large masses in space, we ask

the fundamental question as to what would be an optimal arrangement of mass distribution of the

rotational kinetic energy, so as to maximize the efficacy of the gyroscopic torques generated by the

system. While this is an open question, the tensegrity paradigm provides a framework to provide

a systematic answer to this question. The ability to harness a gyroscopic torque by executing

translational pivoting motion of the bars, equipped with rotating wheels, provides a new modality

of structural system mobility and manipulation. While space structures such as the habitats

are positively impacted, a variety of terrestrial applications are also affected by a systematic

development of tools for mechanics and control of gyroscopic systems [34]. Building on these

foundations, the optimal utilization of the control redundancy introduced by the spatial distribution

of the gyroscopes will be possible. A typical actuator redundancy present in traditional tensegrity

systems along with the added control of gyroscopic forces will allow for the accommodation

of a wide variety of disturbance forces encountered in practical robotic applications making the

system more robust. In order to affect moment transfer, it is necessary that the tensegrity structures

be of class 2 or greater, so as to efficiently transfer the reaction moments to the subsystem of

interest. This chapter formulates a matrix-second-order nonlinear differential equation without any

transcendental functions to simulate the dynamics of a general tensegrity system with or without

gyroscopes. The advantages of the formulation and the contributions of this work are summarized

as follows:

• There are no topological constraints (rigid body connections to form a topological tree) as
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non-minimal representation is used in the formulation.

• The absence of transcendental functions results in improved efficiency and accuracy of the

dynamics simulation and control design.

• This work systematically derived the dynamics of a general gyroscopic tensegrity system,

which provides an extra degree of freedom to control the shape and attitude of the structure.

• These equations are suitable for the design of control law to control the shape and attitude of

the structure as the control variables (force density in each string) are linear in the dynamics

formulation.

The chapter is structured as follows: Section 6.2 develops the equations for rotational and

translational motion of a rigid bar with an attached wheel. Section 6.3 provides the complete

dynamics formulation for any gyroscopic tensegrity structure in a compact second-order matrix

differential equation along with a vector differential equation to capture the angular position of the

wheel. In section 6.4, the reduced-order dynamic model for class-k tensegrity system is developed

by projecting the constrained space to a smaller subspace. A physical model of planar D-bar

structure [6] with gyros attached to each member is first described, and then an experiment is

run to show the application of the proposed work in controlling the attitude of the structure by

changing the shape (by controlling the length of the strings). Section 6.5 also provides the results

developed from the dynamic simulation validating the experiment. Finally, the conclusions and

brief discussion for the chapter are given in the end.

6.2 Dynamics of a Bar with Wheel

In this section, we develop the dynamics of a rigid bar with an attached wheel. The rigid bar is

defined as an axisymmetric body with no inertia about the longitudinal axis. It is also assumed that

the bar is subjected to external forces only at its two ends. We use the notations and kinematics

developed in our recent paper [16] to formulate the dynamics. Let us define b as a vector along

the bar and vector r representing the position vector of the center of mass of the bar, as shown in

Fig. 6.1.
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Figure 6.1: Tensegrity bar member vector nomenclature.

The bar vector b is described in body coordinates B as:

b = BbB, bB =

[
0 0 l

]T
, (6.1)

where l is the length of the rigid bar and the inertial derivative of the vector b is calculated as:

ḃ = ḂbB + BḃB = ḂbB = Bω̃BbB. (6.2)

Using the above two equations, the angular velocity of barωb can be written as (shown in [16]):

ωb =
b× ḃ
l2

, ωb = B


ωB1

ωB2

0

 = BωBb . (6.3)

123



and the angular momentum of bar b about its mass center can be written as:

hb = Jbωb, Jb =
mbl

2

12
, (6.4)

hb =
mb

12
b× ḃ. (6.5)

The angular momentum of the wheel of radius rw, thickness lw, the wheel spin speed ωB3 , and

the wheel angular velocity vector ωw are related by:

hw = BJBwωB, (6.6)

where

ωw = B


ωB1

ωB2

ωB3

 , JBw =


J1 0 0

0 J1 0

0 0 J3

 , (6.7)

J1 = J2 =
mw

12
(3r2

w + l2w), J3 =
1

2
mwr

2
w. (6.8)

Using Eqs. (6.5) and (6.6), the total angular momentum vector of the joint member can be

written in terms of b and ḃ as:

h = hb + hw, (6.9)

h =
mb

12
b× ḃ+ BJBwωB, (6.10)

h =

(
mbl

2

12
+ J1

)
b× ḃ
l2

+ ωB3 J3
b

l
, (6.11)

h = Jtb× ḃ+ Jalω
B
3 b, (6.12)

where Jt = mb
12

+ J1
l2

, Ja = J3
l2

.

Now, the inertial derivative of the angular momentum vector h is equal to the total torque about

the mass center of the body. The resulting torque can be written as the sum of pure torques τ and
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the torque due to the forces acting on the two ends of the bar:

ḣ = τ +
1

2
b× (f2 − f1), (6.13)

Jtb× b̈+ Jalω̇
B
3 b+ Jalω

B
3 ḃ = τ +

1

2
b× (f2 − f1). (6.14)

Now, we write the above equation in inertial coordinates with b = bE and ωw = ωB3 as:

Jtb̃b̈+ Jalω̇wb+ Jalωwḃ = τ +
1

2
b̃(f2 − f1). (6.15)

Similar to [16], a rigid bar length constraint of the following form is added:

bTb = l2, bTḃ = 0, bTb̈ = −ḃTḃ. (6.16)

The length constraint appended with rotational dynamics (Eq. (6.15)) can be expressed in

matrix form as:  b̃
bT

 b̈ =

 1
Jt

(
τ + 1

2
b̃(f2 − f1)− Jalω̇wb− Jalωwḃ

)
−ḃTḃ

 . (6.17)

The above linear algebra problem (Eq. (6.17)) has solution for b̈ if and only if the vector on the

right hand side lies in the range space of the coefficient matrix:

I − 1

l2

 b̃
bT

[−b̃ bT
]×

 1
Jt

(τ + 1
2
b̃(f2 − f1)− Jalω̇wb− Jalωwḃ)

−ḃTḃ

 = 0, (6.18)

where I is the identity matrix of the appropriate dimension. The above equation after further

simplification reduces to:

bbTτ

l2
− Jalω̇wb−

Jalωwbb
Tḃ

l2
= 0, (6.19)
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which after using bar length constraint (bTḃ = 0) becomes:

bTτ = Jal
3ω̇w. (6.20)

Writing τ = τ‖ + τ⊥, where τ‖ is the component along the bar and τ⊥ is perpendicular to the

bar, we get:

bTτ‖ = Jal
3ω̇w. (6.21)

Also, since the coefficient matrix of b̈ in Eq. (6.17) has full column rank, there is a unique

solution for b̈, which is given as:

Jtb̈ =
(l2I − bbT)

2l2
(f2 − f1)− b̃τ

l2
+
Jaωwb̃ḃ

l
− Jtbḃ

Tḃ

l2
. (6.22)

Again using τ = τ‖ + τ⊥, we get the two final equations for rotational dynamics as:

Jtb̈ =
(l2I − bbT)

2l2
(f2 − f1)− b̃τ⊥

l2
+
Jaωwb̃ḃ

l
− Jtbḃ

Tḃ

l2
, (6.23)

bTτ‖ = Jal
3ω̇w. (6.24)

The above equations represent the bar-wheel system rotational dynamics along with the bar length

constraint.

Finally, the translational dynamics of the bar-wheel system can be written in inertial

coordinates from Fig. 6.1 as:

(mb +mw)r̈ = f1 + f2, (6.25)

where mb and mw are the mass of the bar and mass of the wheel, respectively. The translational

dynamics (Eq. (6.25)) together with rotational dynamics (Eqs. (6.23-6.24)), fully describes the

motion of the bar-gyro member.
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The mass in the strings can be modelled by dividing the mass of the string into several point

masses. This is achieved by adding string-to-string nodes that have the associated mass of the

string. String-to-string nodes only have string-end connections and thus no bar-end is present at

string-to-string node, e.g.: node n7 in Fig. 6.2. The dynamics for such nodes can be written as:

msr̈s = fs, (6.26)

where ms is the mass of the point node and rs is the position vector of the node.

6.3 Matrix Form of the System Dynamics

𝑏1

Figure 6.2: General tensegrity system representation with nodal matrices N1 = [n1 n2 n3], N2 =
[n4 n5 n6], and Ns = [n7]. Bar matrix B = [b1 b2 b3] and string matrix S = [s1 s2 · · · s9] are also
shown.

The aim of this section is to write the system dynamics in a compact matrix form for assumed β

number of bar-wheel member. Let us denote the node position vector: ni = [nix niy niz]
T ∈ R3×1

and the matrix containing the position of the nodes at the base of a bar vector as N1 =[
n1 n2 · · · nβ

]
∈ R3×β , the position of the nodes at the terminal ends of the bar vectors as
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N2 =

[
n1+β n2+β · · · n2β

]
∈ R3×β , and the string-to-string nodes to be stacked similarly

in Ns ∈ R3×σ, as shown in Fig. 6.2. So the full node matrix can consequently be split as

N =

[
N1 N2 Ns

]
∈ R3×(2β+σ) where σ is the number of string-to-string nodes. Let us also

define matrix B =

[
b1 b2 · · · bβ

]
∈ R3×β , where each column represents the bar vector bi. This

convention yields B = NCT
b with Cb =

[
−Iβ Iβ 0

]
∈ Rβ×(2β+σ) as a bar connectivity matrix

describing which two nodes form a particular bar and Iβ ∈ Rβ×β is the identity matrix. Similarly,

we define R = NCT
r ∈ R3×β with Cr = 1/2

[
Iβ Iβ 0

]
∈ Rβ×(2β+σ) and each vector in R

represents the center position vector ri.

To write the dynamics in a compact matrix form, we take each term in Eq. (6.23) and arrange

them as a vector in a matrix, e.g. Jt =

[
Jt,1 Jt,2 · · · Jt,β

]T
∈ Rβ×1. Then, the left side of

Eq. (6.23) is the ith column of the matrix B̈Ĵt:

B̈Ĵt =

[
Jt,1b̈1 Jt,2b̈2 · · · Jt,β b̈β

]
, (6.27)

where the “hat" operator over a vector forms a diagonal matrix from the elements of the vector.

This process can similarly be performed for the remaining terms in Eq. (6.23), as summarized

below. Similar to N , we can define F ∈ R3×(2β+σ) containing its columns as the total force vector

acting on the ith node ni. Converting the 1
2
(f2 − f1) term into a matrix form, we get:

1

2
(f2 − f1) −→ 1

2
FCT

b , (6.28)

− 1

2l2
bbT(f2 − f1) −→ −B 1

2
l̂−2bBTFCT

b c, (6.29)

where we introduce the b◦c operator, which sets every off-diagonal element of the square matrix
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operand to zero. Similarly, the other terms can be written as:

Ja
l
ωwb̃ḃ −→ B̃ ˆ̇BĴaω̂w l̂

−1, (6.30)

with B̃ ,
[
b̃1 b̃2 · · · b̃β

]
∈ R3×3β , where b̃i is a skew-symmetric matrix formed using the

elements of the vector bi, and

− b̃τ⊥
l2
−→− B̃T̂ l̂−2, (6.31)

−Jt
l2
bḃTḃ −→−BĴtl̂−2bḂTḂc. (6.32)

Substituting for matrix expressions from Eqs. (6.27-6.32) in Eq. (6.23), the following full

matrix expression for B̈ is obtained as:

B̈Ĵt =
1

2
FCT

b −
1

2
Bl̂−2bBTFCT

b c − B̃T̂ l̂−2 + B̃ ˆ̇BĴaω̂w l̂
−1 − BĴtl̂

−2bḂTḂc, (6.33)

which can be further simplified with the following definition of λ̂ ∈ Rβ×β as:

λ̂ = −Ĵtl̂−2bḂTḂc − 1

2
l̂−2bBTFCT

b c, (6.34)

B̈Ĵt =
1

2
FCT

b +Bλ̂− B̃T̂ l̂−2 + B̃ ˆ̇BĴaω̂w l̂
−1. (6.35)

Finally, writing Eq. (6.24) into a matrix form, with τ‖ = b
l
τb, where τb is scalar representing

the torque along the bar, we get:

τb = Jal
2ω̇w −→ τB = Ĵal̂

2ω̇W , (6.36)

where τB = [τb1 τb2 · · · τbβ]T ∈ Rβ×1 and ω̇W = [ω̇w1 ω̇w2 · · · ω̇wβ]T ∈ Rβ×1.
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The translational dynamics must similarly be converted into a matrix expression as:

(mb +mw)r̈ = f1 + f2 −→ R̈m̂t = 2FCT
r . (6.37)

Similarly, the dynamics of the string-to-string node can be put into a matrix form as:

msr̈s = fs −→ R̈sm̂s = Fs. (6.38)

Note that the bar and string nodes can be extracted from the node matrix N with two new

definitions of matrix Nb ∈ R3×2β and matrix Ns ∈ R3×σ as:

Nb =

[
N1 N2

]
= N

I2β

0

 = NCT
nb, (6.39)

Ns = N

 0

Iσ

 = NCT
ns. (6.40)

Similar to bar connectivity matrix, we now define string connectivity matrix Cs ∈ Rα×(2β+σ),

where α is the number of strings. The matrix Cs can be separated into two parts: Csb ∈ Rα×2β , for

bar-to-string joints, and Css ∈ Rα×σ, for string-to-string joints:

S = NCT
s =

[
Nb Ns

]CT
sb

CT
ss

 ∈ R3×α. (6.41)

The original expression for the force matrix F remains unchanged, though it is now describing

the sum of forces acting on bar nodes, Fb, and forces on string nodes, Fs.

F =

[
Fb Fs

]
(6.42)
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After formulating matrix forms in Eqs. (6.35-6.38), we combine them together as:

[
B̈ R̈b R̈s

]
Ĵt 0 0

0 m̂t 0

0 0 m̂s

+

[
B Rb Rs

]
−λ̂ 0 0

0 0 0

0 0 0


= F

1
2
CT
b 2CT

r 0

0 0 I

+

[
B̃ ˆ̇BĴaω̂w l̂

−1 − B̃T̂ l̂−2 0 0

]
. (6.43)

The following identity:

1
2
CT
b 2CT

r 0

0 0 I


−1

=


Cb 0

Cr 0

0 I

 , (6.44)

can be used in Eq. (6.43) to get:

[
B̈ R̈b R̈s

]
Ĵt 0 0

0 m̂t 0

0 0 m̂s



Cb 0

Cr 0

0 I

+

[
B Rb Rs

]
−λ̂ 0 0

0 0 0

0 0 0



Cb 0

Cr 0

0 I



= F +

[
B̃ ˆ̇BĴaω̂w l̂

−1 − B̃T̂ l̂−2 0 0

]
Cb 0

Cr 0

0 I

 , (6.45)

and after using the previously defined expressions:

[
B Rb Rs

]
= N

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
, (6.46)
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we get:

N̈

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
Ĵt 0 0

0 m̂t 0

0 0 m̂s



Cb 0

Cr 0

0 I



+N

[
CT
nbC

T
b CT

nbC
T
r CT

ns

]
−λ̂ 0 0

0 0 0

0 0 0



Cb 0

Cr 0

0 I



= F +

[
B̃ ˆ̇BĴaω̂w l̂

−1 − B̃T̂ l̂−2 0 0

]
Cb 0

Cr 0

0 I

 . (6.47)

Now, let us define “force density” γi as the tension per unit length in the ith string si. The

tension vector in the string can be now be written as ti = siγi. Combining the tension vectors, the

matrix of string tensions T ∈ R3×α is written as:

T = [t1 t2 · · · tα] = Sγ̂ = NCT
s γ̂, (6.48)

and the internal forces acting on nodes caused by string tensions are calculated as NCT
s γ̂Cs. Let

us also define wi as the ith column of the matrix W ∈ R3×(2β+σ), where wi is the external force

acting on the node ni. The full force matrix expression can then be written as:

F =

[
Fb Fs

]
= W −NCT

s γ̂Cs. (6.49)

Substituting Eq. (6.49) for F , and rearranging yields the following expression for the full
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system dynamics:

N̈

[
CT
nbC

T
b ĴtCb + CT

nbC
T
r m̂tCr CT

nsm̂s

]
+N

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
= W +

[
(B̃ ˆ̇BĴaω̂w l̂

−1 − B̃T̂ l̂−2)Cb 0

]
, (6.50)

which can be written in compact matrix form with the following definitions of Ms, Ks, and WT as:

N̈Ms +NKs = WT , (6.51)

τB = Ĵal̂
2ω̇W , (6.52)

where

Ms =

[
CT
nb(C

T
b ĴtCb + CT

r m̂tCr) CT
nsm̂s

]
, (6.53)

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
, (6.54)

λ̂ = −Ĵtl̂−2bḂTḂc − 1

2
l̂−2bBT(W −NCT

s γ̂Cs)C
T
b c, (6.55)

WT = W +

[
(B̃ ˆ̇BĴaω̂w l̂

−1 − B̃T̂ l̂−2)Cb 0

]
, (6.56)

τB = [τb1 τb2 · · · τbβ]T and ω̇W = [ω̇w1 ω̇w2 · · · ω̇wβ]T.

6.4 Class-K Tensegrity Systems

In class-k tensegrity systems, multiple bars are connected (ball joint) at a node such that there

is no torque/moment transfer from one bar member to any other bar member. The structure is

said to be of class-1 if the maximum number of bars present at any nodes is one and class-k if

the maximum number of bars present at any node is k [6]. The dynamics of class-k tensegrity

structures (for k > 1) can be easily extended from the formulation developed in the previous

section. Each class-k joint can be handled by creating k− 1 virtual nodes which are constrained to
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coincide at all times with the use of Lagrange constraint forces. These constraints are written as:

NP = D, (6.57)

where P ∈ R(2β+σ)×c and D ∈ R3×c are specified such that constrained nodes coincide at all

times and the number of added constraints is denoted as c. Adding the linear constraints introduce

Lagrange constraint forces (ΩPT) resulting in the new dynamics:

N̈Ms +NKs = WT + ΩPT, (6.58)

where Ω ∈ R3×c is a matrix of Lagrange multipliers satisfying the dynamics constraints at all

time-steps and the force density in the bars changes according to the following equation:

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b c. (6.59)

The Lagrange multipliers required to maintain these constraints can be thought of as contact forces

at the Class k nodes [14].

6.4.1 Reduced-order dynamics

The added constraints reduced the order of the system dynamics to a smaller dimension

manifold. Here, we use the same procedure developed in [16] by starting with the constraint

equation:

NP = NUΣV T = [η1 η2]

Σ1

0

[V T

]
= D, (6.60)

where the matrices U , Σ, and V are numerically generated by performing the Singular Value

Decomposition (SVD) of the full column rank matrix P as P = UΣV T = [U1 U2]

Σ1

0

[V T

]
,
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and [η1 η2] , NU , to get:

η1 = DV Σ−1
1 , η̇1 = 0, η̈1 = 0. (6.61)

The constant value of variable η1 represents the constraint space (no-motion space) and η2

represents the reduced space in the new coordinate system. The dynamics equation (Eq. (6.58))

can now be rewritten as:

N̈UUTMs +NUUTKs = WT + ΩV ΣTUT, (6.62)

η̈2U
T
2 Ms + η1U

T
1 Ks + η2U

T
2 Ks = WT + ΩV ΣT

1U
T
1 . (6.63)

Post-multiplying the above equation by a non-singular matrix [M−1
s U1 U2] will result in two parts,

where the first part gives an algebraic equation that is used to solve for the Lagrange multiplier:

NKsM
−1
s U1 − ΩPTM−1

s U1 = WTM
−1
s U1, (6.64)

Notice thatKs is also a function of Ω, making it a linear algebra problem. The analytical expression

to solve the Lagrange Multiplier (Ω) is given in appendix B.2.

The second part gives a second-order matrix differential equation for the reduced order

dynamics:

η̈2U
T
2 MsU2 + η2U

T
2 KsU2 = WTU2 − η1U

T
1 KsU2. (6.65)

6.5 Simulation and Experimental Setup

The experimental setup shown in Fig. 6.3 is a planar D-bar tensegrity structure [6] with gimbal

motors (T-MOTOR GB54-1) attached to each of the four 12 inch wooden bars (shown in black).

Each bar in the system is connected to two other bars through a hinge joint which is allowed to

slide along the vertical and horizontal straight lines. The shape (D-bar angle) and orientation of
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the D-bar structure is controlled by the strings, as shown in Fig. 6.3. The IMU sensor (BWT61CL

Bluetooth MPU6050) is used to measure the angular rotation of the structure. The material used

for the strings is spectra (UHMWPE). The strings are passed through 3D printed pulleys (green)

to reduce the amount of friction. Both the horizontal strings are independently controlled by two

MX-12W DYNAMIXEL servo motors attached to the pulleys. ARDUINO MEGA2560 was used

to communicate and control the gyro motors by a C++ script, and dynamixel servos were controlled

by its embedded driver through a python script.

Figure 6.3: Experimental setup for gyroscopic tensegrity D-bar structure.

Figure 6.4 shows the same setup to perform a dynamic simulation with the initial configuration

in XY-plane. The initial configuration is an equilibrium configuration with no prestress in the

horizontal strings and gyro wheels rotating at a constant speed of 715 rpm. The angular momentum

vector for each bar-wheel system is also shown in Fig. 6.4 to give the sense of direction of wheel

rotation.

The dynamic simulation on gyroscopic D-bar tensegrity structure was performed by reducing
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Figure 6.4: Simulation setup for gyroscopic tensegrity D-bar structure.
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Figure 6.5: Dynamic simulation time-lapse of gyroscopic tensegrity D-bar structure with rotating
wheel.

the distance between node-1 and node-3 to 1/3 of the initial distance. The three time-lapse images

of the dynamic simulation for time t = 0 sec, t = 1.5 sec, and t = 3 sec are shown in Fig. 6.5.
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These configurations are shown by looking at YZ-plane to distinctly show the change in orientation

of the plane containing the D-bar structure. The rotation of the plane by changing the length of

the strings (hence, the direction of the angular momentum vector) can also be understood by the

conservation of the angular momentum of the system. A similar change in the orientation of the

plane was observed in the experiment performed by reducing the length of the horizontal strings.

Three time-lapse images of the experiment are shown in Fig. 6.6, which agrees with the proposed

approach to control the attitude and derived dynamics of the gyroscopic tensegrity structures.

t = 0 sec t = 1.5 sec t = 3 sec 

Figure 6.6: Experimental setup time-lapse of gyroscopic tensegrity D-bar structure with rotating
wheel.

Figure 6.7 shows the time history of variation in x,y, and z coordinates of all the four

nodes performed using dynamic simulation. As the length of the horizontal string is reduced,

x-coordinate of nodes n1 and n3 varies (closer) while nodes n2 and n4 moves (away) in y-direction.

Due to the presence of gyroscopic forces in Fig. 6.7(a), a significant motion was observed in

the z-direction. Nodes n1 and n3 were observed to have a displacement of ≈2cm in z-direction,

which qualitatively matches the experimental results from Fig. 6.6. No motion was observed in
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z-direction for the case of zero gyroscopic wheels spin speed as shown in Fig. 6.7(b).

(b) Without Wheel Spin Speed(a) With Wheel Spin Speed

Figure 6.7: Simulation result with variation in x,y, and z coordinates of all the four nodes with
time.

Figure 6.8(a) plots the variation in z-coordinate of all the four nodes obtained from the

experimental results with the specified wheel spin speed. Figure 6.8(a) shows substantial motion

in z-direction for nodes n1 and n3, which was calculated from the angular measurement data

obtained from the onboard IMU. The motion of the nodes in the z-direction follows the same

trend, but a smaller displacement is observed due to the added (unaccounted) inertia of the entire

setup. Figure 6.8(b) plots the variation in z-coordinate with zero wheel spin speed. No significant

motion (rotation) was observed in the absence of gyroscopic forces. This validates our approach

to construct the experimental setup and shows a good match with the simulation and experimental

results.

Figure 6.9 provides the plot for error in satisfying bar length constraints with the time-steps of

the simulation. The error in constraint violation is of the order 10−15 representing the accuracy of

the formulated dynamics that avoids transcendental functions.
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(a) With Wheel Spin Speed (b) Without Wheel Spin Speed

Figure 6.8: Experimental result with variation in x,y, and z coordinates of all the four nodes with
time.

Figure 6.9: Plot for error in bar length constraint for all time-steps.

In this article, we have provided an overview of the modeling of tensegrity structures that can

be used as the mechanism for enabling very high DOF robots, in particular, tensegrity robots. We

have also studied model-based and data-based approaches

6.6 Conclusions

This chapter provided a systematic approach to derive the dynamics of any tensegrity system

with gyroscopic wheels attached to its bars. The second-order matrix differential equation

along with a second-order vector differential equation describes the equations of motion in the

presence of external forces and torques on the bars. The matrix differential equation provides the

140



information on position and orientation of the bar, and the vector differential equation provides

the information on the angular position of the wheels. A reduced-order model is also developed

for the class-k tensegrity structures to increase the accuracy and computational efficiency of

the formulation. Finally, it was shown that the orientation of the structure could be controlled

by controlling the shape, i.e., by controlling the length of the stings. This chapter formulates

the mechanics of gyroscopic tensegrity systems and paves the path to form control principles

associated with the design, development, and control of such structures.

141



7. CONTROL OF TENSEGRITY SYSTEMS∗

1 This chapter proposes a model-based approach to control the shape of the structure or the

position of the end effector for a soft-robotic application. In this approach, the nonlinear dynamics

of the tensegrity system is used to regulate position, velocity, and acceleration to the specified

reference trajectory. The formulation uses state feedback to obtain the solution for the control

(tension in the strings) as a linear programming problem. The shape control for the gyroscopic

tensegrity systems was also discussed and it was observed that these systems increase the reachable

space for the structure by providing the orientation control (rotation about the arm axis) due to

gyroscopic forces. The control approach for disturbance rejection of the tensegrity system is further

studied in the chapter. In this approach, the vectorized formulation for nonlinear dynamics of

the tensegrity system is developed and used in conjunction with a second-order output regulator

to reject the disturbance. Moreover, the formulation to calculate the control gains to bound the

errors for five different types of problems is also provided. The formulation uses the Linear Matrix

Inequalities (LMIs) approach to get the desired performance bounds on error, e.g. H∞, generalized

H2, LQR and covariance control problem.

7.1 Introduction

The design of high DOF soft robotic systems has attracted increasing interest in recent years

[72, 73]. In this regard, tensegrity structures offer a tantalizing prospect for the principled

design of such soft robotic systems. The minimal mass architecture along with the variable

stiffness characteristic makes it suitable for civil-engineering structures [74, 75], for soft

robotic applications like planetary landers [29], flexible robots [76, 18], and deployable space

structures [32]. Some of the researchers used a model-based approach [76, 18] and some used

learning/evolutionary algorithm based approach [29, 31, 77] to control the tensegrity structures

1∗Portions of this section are reprinted or adapted from [71] : R. Wang, R. Goyal, S. Chakravorty, and R. Skelton,
"Model and Data Based Approaches to the Control of Tensegrity Robots," in IEEE Robotics and Automation Letters.
DOI: 10.1109/LRA.2020.2979891. Copyright c© 2020, IEEE. Reproduced with permission.

142



but no discussion has been given in the past to compare the two methods. The Central Pattern

Generator(CPG) controller mimicking our biological neural circuits [78, 79] and Model Predictive

Control (MPC) approaches have been used recently to control tensegrity structures but only for

smaller systems [76]. Robotic path planning and manipulators were also recently developed using

tensegrity structures [80, 81].

The control of tensegrity systems amounts to the design of a nonlinear stochastic controller

for a very high DOF complex nonlinear system. Controlling an unknown dynamical system

adaptively has a rich history in control literature [82, 83]. This classical literature provides a

rigorous analysis of the asymptotic performance and stability of the closed-loop system, mostly

for linear systems or finite-state and control space systems. The optimal control of a possibly

unknown nonlinear dynamical system with continuous state and action space is a significantly

more challenging problem. Even with a known model, computing an optimal control law requires

solving a dynamic programming problem. The ‘curse of dimensionality’ associated with dynamic

programming makes solving such problems computationally intractable, except under special

structural assumptions on the underlying system. Learning to control problems where the model

of the system is unknown or is too large or complex for a tractable control synthesis, also suffers

from this computational complexity issues. For the model-based methods, the computational time

is often negligible if the analytical model is known. We exploit this advantage of the tensegrity

structures as very precise dynamic models are available due to the 1-dimensional deformation

motion of each member [16, 84]. The optimal control problems can further be solved posing them

as feasibility problems by providing different kinds of bounds on the performance [85].

The contributions of the chapter are as follows: we first provide the full-order models and

reduced-order models for controlling the shape of high DOF class-k tensegrity design. A tensegrity

T2D1 robotic arm example is used to show the extension from a stowed configuration, and then the

end effector of the arm is shown to reach a desired given position in 3-dimensional space. Then,

the shape control formulation for the gyroscopic tensegrity system was derived, and it was shown

that this allows to rotate the arm about its axis, which was not possible with the standard tensegrity
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model. In the last part, the vectorized formulation for nonlinear tensegrity dynamics in the presence

of some given disturbance is provided. The vector form allows us to find the control gains to bound

different kinds of errors for full and reduced-order controllers. The LMI formulation was used to

solve for the control gains to bound the errors for different kinds of disturbances.

7.2 Shape Control for Class K Tensegrity Systems

One of the important steps in writing the control of this nonlinear dynamic system into a linear

programming problem is to be able to write the force densities in the bar λ = [λ1 λ2 · · · λβ]T in

terms of the linear function of force densities in the strings γ = [γ1 γ2 · · · γα]T. This is required

in order to write down control only as a function of force densities in the strings. Let us start by

writing λ from equation 5.99 as:

λ̂ = −Ĵ l̂−2bḂTḂc − 1

2
l̂−2bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b c. (7.1)

The ith diagonal element of the above matrix can be extracted by multiplying the above

equation from the left by eTi and from the right by ei as:

λi = −Jil−2
i eTi bḂTḂcei −

1

2
l−2
i eTi bBT(W + ΩPT − Sγ̂Cs)CT

nbC
T
b cei, (7.2)

which again after using the definition of the operator b◦c can be written as:

λi = −Jil−2
i ||ḃi||2 −

1

2
l−2
i bTi (W + ΩPT)CT

nbC
T
b ei +

1

2
l−2
i bTi Sγ̂CsC

T
nbC

T
b ei. (7.3)

Using the identity x̂y = ŷx on the last term for x and y being the column vectors, we get:

λi = −Jil−2
i ||ḃi||2 −

1

2
l−2
i bTi (W + ΩPT)CT

nbC
T
b ei +

1

2
l−2
i bTi S

∧

(CsC
T
nbC

T
b ei)γ. (7.4)
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Now, stacking all these scalars into a column gives:

λ = Λγ + τ, (7.5)

where Λ =

[
ΛT

1 ΛT
2 · · · ΛT

β

]T
, τ =

[
τT1 τT2 · · · τTβ

]T
, Λi = 1

2
l−2
i bTi S

∧

(CsC
T
nbC

T
b ei), and

τi = −Jil−2
i ||ḃi||2 − 1

2
l−2
i bTi (W + ΩPT)CT

nbC
T
b ei, for i = 1, 2 · · · β.

7.2.1 Controller for Full-Order Dynamics Model

In this section, we write down the control algorithm to control the position of certain nodes in

the structure. Let us define the position of those nodes by Y = LNR, where L ∈ Rnl×3 is a matrix

that defines the x, y or z coordinates of the node and R ∈ Rn×nr matrix defines which nodes to

be controlled. Ȳ defines the final desired location of the nodes that we want to go from Y to Ȳ .

Therefore, the error in the positions at any time can be written as:

E = Y − Ȳ , (7.6)

E = LNR− Ȳ , (7.7)

and its first and second derivatives with respect to time can be written as:

Ė = LṄR, (7.8)

Ë = LN̈R. (7.9)

Now, let us write the non-linear dynamics of tensegrity systems in a general form as:

ẋ = f(x) + g(x)u→ N̈ = f(N, Ṅ) + g(N) ˆ(u)h(N, Ṅ), (7.10)

where ˆ(u) is the diagonal matrix made from the control input and we want to derive the states to
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some position Y (t)→ Ȳ (t). Let us define the lyapunov function V (N, Ṅ) as:

V =
1

2
tr(ETΘE + ĖTĖ) > 0 ∀ [E, Ė] 6= 0, (7.11)

where tr(·) is the trace and the matrix Θ > 0 is positive definite, which can be used to change the

weights between error and error velocity. Let us write the first derivative w.r.t. time as:

V̇ = tr(ĖTΘE + ĖTË), (7.12)

where the goal is to get the time derivative to be:

V̇ = − tr(ĖTΨĖ) < 0, Φ > 0. (7.13)

Substituting the above equation to previous equation, we get:

− tr(ĖTΨĖ) = tr(ĖTΘE + ĖTË), (7.14)

tr(ĖTË + ĖTΨĖ + ĖTΘE) = 0, (7.15)

which after using the properties of trace operator, gives the final equation as:

Ë + ĖΨ + EΘ = 0. (7.16)

Notice that this gives a second-order differential equation in the error dynamics to derive the

error to zero. The idea is to move the nodes from the current position to the desired position by

aptly choosing the control gain parameters matrices Ψ and Θ. Now, we derive the final equations

for the lyapunov controller mentioned earlier to generate the solution for the control as the linear

programming problem. Let us start by substituting for E, Ė and Ë in Eq. (7.16) to obtain:

LN̈R + LṄRΨ + (LNR− Ȳ )Θ = 0. (7.17)
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Further substituting for N̈ from equation 5.97, we get:

L(W + ΩPT −NKs)M
−1
s R + LṄRΨ + (LNR− Ȳ )Θ = 0, (7.18)

LNKsM
−1
s R = L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ. (7.19)

Taking the ith column of the matrices from the above equation gives:

LNKsM
−1
s Rei =

(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei. (7.20)

Taking the left hand side and substitute Ks which can also be written as Ks = CT
s γ̂Cs −

CT
nbC

T
b λ̂CbCnb, we get:

LNKsM
−1
s Rei = LN(CT

s γ̂Cs − CT
nbC

T
b λ̂CbCnb)M

−1
s Rei, (7.21)

LNKsM
−1
s Rei = LNCT

s γ̂CsM
−1
s Rei − LNCT

nbC
T
b λ̂CbCnbM

−1
s Rei, (7.22)

and using the identity x̂y = ŷx for the right-hand side terms gives:

LNKsM
−1
s Rei = LNCT

s

∧

(CsM
−1
s Rei)γ − LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)λ. (7.23)

Substituting for λ in terms of γ from equation 7.5 gives:

LNKsM
−1
s Rei = LNCT

s

∧

(CsM
−1
s Rei)γ − LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)(Λγ + τ), (7.24)
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which again can be written by combining the terms together as:

LNKsM
−1
s Rei =

(
LNCT

s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ

)
γ

− LNCT
nbC

T
b

∧

(CbCnbM
−1
s Rei)τ. (7.25)

Substituting the above expression back for the left-hand side in equation 7.20, we get:

(
LNCT

s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ

)
γ =

(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei + LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)τ. (7.26)

Finally, stacking up all the matrices on the left and vectors on the right, we get:



Γ1

Γ2

...

Γnr


γ =



µ1

µ2

...

µnr


, (7.27)
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where

Γi = LNCT
s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ (7.28)

µi =
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei + LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)τ

(7.29)

i = 1, 2 ... nr (7.30)

7.2.2 Controller for Reduced-Order Dynamics Model

In the previous subsection, the control algorithm was designed for the full-order dynamics

model. In this section, we use the reduced-order dynamics model to control the structure. The

error in the position at any time can be written as:

E = LNR− Ȳ , (7.31)

E = L[η1 η2]UTR− Ȳ , (7.32)

E = L(η1U
T
1 + η2U

T
2 )R− Ȳ . (7.33)

Notice that now the error is written in terms of reduced-order constant state matrix η1 and

time-varying state matrix η2. Similar to the previous section, we use a second-order differential

equation in error dynamics to derive the error to zero.

Ë + ĖΨ + EΘ = 0, (7.34)

Lη̈2U
T
2 R+Lη̇2U

T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ = 0, (7.35)
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where η̇1 = η̈1 = 0 was used from the dynamics model formulation. Further substituting for η̈2

from equation 5.107, we get:

L(W̃ − η2K2)M−1
2 UT

2 R + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ = 0, (7.36)

which again can be written after substituting for W̃ from dynamics formulation as:

L(WU2 − η1U
T
1 KsU2 − η2U

T
2 KsU2)M−1

2 UT
2 R + Lη̇2U

T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ = 0.

(7.37)

Rearranging the above equation to collect all the known and unknown terms together, we get:

LWU2M
−1
2 UT

2 R + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ

= L(η1U
T
1 KsU2 + η2U

T
2 KsU2)M−1

2 UT
2 R. (7.38)

Notice that everything on the left side of the equation is known. Let us define it as:

C , LWU2M
−1
2 UT

2 R + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ, (7.39)

and write the right hand side of the equation (7.38) as:

L(η1U
T
1 KsU2 + η2U

T
2 KsU2)M−1

2 UT
2 R = LNKs U2M

−1
2 UT

2︸ ︷︷ ︸
Msn

R. (7.40)

We now take the ith column of the above matrix and follow the procedure used in the previous

Full-order controller design:

LNKsMsnRei = LN(CT
s γ̂Cs − CT

nbC
T
b λ̂CbCnb)MsnRei, (7.41)

LNKsMsnRei = LNCT
s γ̂CsMsnRei − LNCT

nbC
T
b λ̂CbCnbMsnRei, (7.42)
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and using the identity x̂y = ŷx for the right-hand side terms gives:

LNKsMsnRei = LNCT
s

∧

(CsMsnRei)γ − LNCT
nbC

T
b

∧

(CbCnbMsnRei)λ. (7.43)

Substituting for λ in terms of γ from equation 7.5 gives:

LNKsMsnRei = LNCT
s

∧

(CsMsnRei)γ − LNCT
nbC

T
b

∧

(CbCnbMsnRei)(Λγ + τ), (7.44)

which again can be written by combining the terms together as:

LNKsMsnRei =
(
LNCT

s

∧

(CsMsnRei)− LNCT
nbC

T
b

∧

(CbCnbMsnRei)Λ
)
γ

− LNCT
nbC

T
b

∧

(CbCnbMsnRei)τ. (7.45)

Let us write the vector form of equation (7.38) as:

LNKsMsnRei = Cei. (7.46)
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Now, substituting it back to the vector equation of equation (7.38), we get:

(
LNCT

s

∧

(CsMsnRei)− LNCT
nbC

T
b

∧

(CbCnbMsnRei)Λ
)
γ − LNCT

nbC
T
b

∧

(CbCnbMsnRei)τ = Cei,

(7.47)

(
LNCT

s

∧

(CsMsnRei)− LNCT
nbC

T
b

∧

(CbCnbMsnRei)Λ
)
γ = Cei + LNCT

nbC
T
b

∧

(CbCnbMsnRei)τ.

(7.48)

Finally, stacking up all these matrices on left and vectors on right, we get:



Γ1

Γ2

...

Γnr


γ =



µ1

µ2

...

µnr


, (7.49)

where

Γi = LNCT
s

∧

(CsMsnRei)− LNCT
nbC

T
b

∧

(CbCnbMsnRei)Λ (7.50)

µi = Cei + LNCT
nbC

T
b

∧

(CbCnbMsnRei)τ (7.51)

C = LWMsnR + Lη̇2U
T
2 RΨ + [L(η1U

T
1 + η2U

T
2 )R− Ȳ ]Θ (7.52)

Msn = U2M
−1
2 UT

2 for i = 1, 2 · · · nr (7.53)
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7.2.3 Controlling the Velocity and Acceleration

For controlling the node positions, we write the error in position as Ep = LpNRp − Ȳp where

subscript p is used for the position. Next, we use a second-order differential equation to derive the

error to zero, which results in a linear equation for the force densities in the string (refer equation

7.49). The same equation can again be written in a compact form as:

Γpγ = µp, γ ≥ 0. (7.54)

For controlling the velocity, we write the error in the velocity of certain nodes as:

Ev = LvṄRv − ¯̇Yv, (7.55)

Ev = Lvη̇2U
T
2 Rv − ¯̇Yv, (7.56)

Ėv + EvΨv = 0, (7.57)

and use a first-order differential equation to derive the error in velocity to zero. Only first derivative

of error Ev is required as the control variable, force density γ in the strings come out at the same

level of differential. Following the same derivation as used in the previous subsections, we can

write the linear equation to control the nodal velocities as:



Γv1

Γv2

...

Γvnr


γ =



µv1

µv2

...

µvnr


, γ ≥ 0, (7.58)
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where

Γvi = LvNC
T
s

∧

(CsMsnRvei)− LvNCT
nbC

T
b

∧

(CbCnbMsnRvei)Λ (7.59)

µvi = LvWMsnRvei + (Lvη̇2U
T
2 Rv − ¯̇Yv)Ψvei + LvNC

T
nbC

T
b

∧

(CbCnbMsnRvei)τ (7.60)

Msn = U2M
−1
2 UT

2 for i = 1, 2 · · · vnr (7.61)

which again can be written in the compact form as:

Γvγ = µv, γ ≥ 0. (7.62)

To control the acceleration of the nodes, the error can be written as:

Ea = LaN̈Ra − ¯̈Ya (7.63)

Ea = Laη̈2U
T
2 Ra − ¯̈Ya, (7.64)

which can be directly converted to a linear equation in control variable by equating it to zero as

Ea = 0. Following the same procedure, we get the linear algebra equation to solve for control

variable as:



Γa1

Γa2

...

Γanr


γ =



µa1

µa2

...

µanr


, γ ≥ 0, (7.65)
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where

Γai = LaNC
T
s

∧

(CsMsnRaei)− LaNCT
nbC

T
b

∧

(CbCnbMsnRaei)Λ (7.66)

µai = (LaWMsnRa − ¯̈Ya)ei + LaNC
T
nbC

T
b

∧

(CbCnbMsnRaei)τ (7.67)

Msn = U2M
−1
2 UT

2 for i = 1, 2 · · · anr (7.68)

which again can be written in the compact form as:

Γaγ = µa, γ ≥ 0. (7.69)

Finally, combining the equations 7.54, 7.62, and 7.69 allows to simultaneously control the

position, velocity and acceleration of different nodes in the structure.


Γp

Γv

Γa

 γ =


µp

µv

µa

 , γ ≥ 0. (7.70)

7.3 Control of Gyroscopic Class K Tensegrity Systems

The gyroscopic forces in this new system allow us to control the shape of the structure in a plane

where even strings are not present. In other words, this new system increases the controllability

of the structure and allows for a larger controllable space. We use the similar concept discussed

above and use a second-order differential equation in the error dynamics to derive the error to zero
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with control gain parameters matrices Ψ and Θ:

Ë + ĖΨ + EΘ = 0, (7.71)

LN̈R + LṄRΨ + (LNR− Ȳ )Θ = 0. (7.72)

Further substituting for N̈ from equation 6.51, we get:

L(WT + ΩPT −NKs)M
−1
s R + LṄRΨ + (LNR− Ȳ )Θ = 0, (7.73)

LNKsM
−1
s R = L(WT + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ. (7.74)

Taking the ith column of the matrices from the above equation gives:

LNKsM
−1
s Rei =(

L

(
W +

[
(B̃ ˆ̇BĴal̂

−1ω̂w)Cb 0

]
+ ΩPT

)
M−1

s R + LṄRΨ + (LNR− Ȳ )Θ

)
ei. (7.75)

Taking the left hand side and substitute Ks which can also be written as Ks = CT
s γ̂Cs −

CT
nbC

T
b λ̂CbCnb, we get:

LNKsM
−1
s Rei = LNCT

s γ̂CsM
−1
s Rei − LNCT

nbC
T
b λ̂CbCnbM

−1
s Rei, (7.76)

which by following the procedure described earlier can be written as:
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LNKsM
−1
s Rei =

(
LNCT

s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ

)
γ

− LNCT
nbC

T
b

∧

(CbCnbM
−1
s Rei)τ. (7.77)

Taking the left-hand side and taking out the angular speed of the wheels ωw:

(
L

(
W +

[
(B̃ ˆ̇BĴal̂

−1ω̂w)Cb 0

]
+ ΩPT

)
M−1

s R + LṄRΨ + (LNR− Ȳ )Θ

)
ei

= L

[
(B̃ ˆ̇BĴal̂

−1ω̂w)Cb 0

]
M−1

s Rei +
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei

(7.78)

L

[
(B̃ ˆ̇BĴal̂

−1ω̂w)Cb 0

]
M−1

s Rei +
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei

= L

[
B̃ ˆ̇BĴal̂

−1ω̂wCb 0

]M−1
sb

M−1
ss

Rei +
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei

= LB̃ ˆ̇BĴal̂
−1ω̂wCbM

−1
sb Rei +

(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei. (7.79)
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Now, using the identity x̂y = ŷx for the first term gives:

L

[
(B̃ ˆ̇BĴal̂

−1ω̂w)Cb 0

]
M−1

s Rei +
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei

= LB̃ ˆ̇BĴal̂
−1

∧

(CbM
−1
sb Rei)ωw +

(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei. (7.80)

Substituting the above expression back for the left-hand side in equation 7.75, we get:

(
LNCT

s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ

)
γ − LB̃ ˆ̇BĴal̂

−1

∧

(CbM
−1
sb Rei)ωw =

(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei + LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)τ. (7.81)

Finally, stacking up all the matrices on the left and vectors on the right, we get:



Γ1

Γ2

...

Γnr


γ =



µ1

µ2

...

µnr


+



Υ1

Υ2

...

Υnr


ωw, (7.82)
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where

Γi = LNCT
s

∧

(CsM
−1
s Rei)− LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)Λ

µi =
(
L(W + ΩPT)M−1

s R + LṄRΨ + (LNR− Ȳ )Θ
)
ei + LNCT

nbC
T
b

∧

(CbCnbM
−1
s Rei)τ,

Υi = LB̃ ˆ̇BĴal̂
−1

∧

(CbM
−1
sb Rei), i = 1, 2 ... nr.

7.4 Simulation Results for the Tensegrity Robotic Arm

To define our design of the tensegrity robotic arm, we use the concept of fractals or self-similar

iterations. The structure is made from a T-bar of complexity qT = n where at the last stage

horizontal compressive members are replaced with a D-bar structure of complexity qD = 1

to yield a TnD1 Tensegrity structure. In this section, simulation results are given to show the

extension of the robotic arm from a stowed configuration to an extended configuration and its

movement (angular motion) to reach any particular point in a given 3-dimensional hemisphere.

All the dynamic simulations are performed using a Matlab based software developed using this

formulation. The numerical integration package used in this software is fourth-order Runge-Kutta.

7.4.1 Extension from a Stowed Configuration

In this subsection, we extend the T2D1 tensegrity structure from a stowed configuration to an

extended configuration. This can be understood as controlling the shape of the structure from some

initial configuration, shown in Fig. 7.1, to a final configuration which is shown in Fig. 7.2.

We use the control algorithm developed in the previous section to control the shape of the

structure, which drives the errors to zero by carefully designing a trajectory based on the control
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Figure 7.1: Initial configuration of tensegrity T2D1 structure.

gains. Figure 7.3a shows the trajectory for the errors in the node position for nodes n1, n2 and

n3. Notice that the error goes to zero and stays there after roughly 2 sec. Similar plots for nodes

(n11, n12 and n13) and nodes (n21, n22 and n23) are shown in Fig. 7.3b and Fig. 7.3c, respectively.

Notice the small error in y and z directions as the arm extends along its length which lies along the

x axis as shown in Fig.7.2.

The following plots show the node position trajectories for different nodes during the extension

of the tensegrity arm. Figure 7.4a shows the node position trajectories for nodes n1, n2 and n3.

Notice that as the arm extends, the x coordinates for the nodes increases and settle for the desired

value, and as the length of the bars are constant, the z coordinates of the nodes decrease and finally

reaches the steady-state position. This can also be understood as the arm extends in length; the

thickness of the arm decreases. The similar node position plots for nodes (n11, n12 and n13) and

nodes (n21, n22 and n25) are shown in Fig. 7.4b and Fig. 7.4c, respectively.

Finally, Fig. 7.5 shows the control inputs required to extend the tensegrity T2D1 arm structure.

The control inputs in these systems are assumed to be the force density in the strings, which can

be uniquely converted to the rest length of the strings. The figure shows trajectories only for nine
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Figure 7.2: Final configuration of tensegrity T2D1 structure.

strings in the structure as due to the symmetry of the structure, other strings will follow the same

trend and can easily be recognized. Notice that the control values reach a steady-state value after 2

seconds, but small changes in the strings can still be expected as tensegrity structures have multiple

equilibrium solutions for a given configuration of the structure.

7.4.2 Tip movement in 3-dimensional hemisphere

The previous subsection extended the tensegrity arm to the desired location, and in this

subsection, we control the shape of the structure (angular motion) for the tip of the arm to reach any

particular point in given 3-dimensional hemisphere. The reduced-order dynamic model was used

in controlling the shape of the structure. Figure 7.6 shows the initial configuration of the structure

with the tip of the arm pointing along the length of the arm. In this example, we aim to move the

tip to the arm to the desired location corresponding to the configuration shown in Fig. 7.7.
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(a) Nodes - (n1, n2 and n3)

Error in position

(b) Nodes - (n11, n12 and n13)

Error in position

(c) Nodes - (n21, n22 and n23)

Figure 7.3: Plot for error in node-positions for the extension of tensegrity T2D1 structure.

It is relatively difficult to reach the desired position for the tip of the arm without specifying

the position of the other nodes in the structure. Therefore, to perform this simulation, the node

positions of the final configuration was first calculated based on the kinematic analysis. Figure 7.8a

shows the plots for the n1, n2 and n3. Notice that for this simulation, both the x coordinate and

y coordinate change (refer Fig. 7.7) and reach a steady state value in around 5 seconds. Small

disturbances are observed in z direction also as the arm moves to the desired position. Fig. 7.8b

and Fig. 7.8c show the similar plots depicting the errors in the node position for nodes errors in the
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(a) Nodes - (n1, n2 and n3) (b) Nodes - (n11, n12 and n13)

(c) Nodes - (n21, n22 and n25)

Figure 7.4: Node-position trajectories for the extension of tensegrity T2D1 structure.

node position for nodes (n11, n12 and n13) and nodes (n21, n22 and n23), respectively.

The following plots show the node position trajectories for different nodes during the

movement of the tip of the robotic arm to reach a given desired position in the 3-dimensional

space. The node position trajectories for nodes n1, n2 and n3 are shown in Fig. 7.9a. Notice the

change in position of all the three coordinates to meet the requirement of reaching the desired

configuration. The similar changes in the node position plots for nodes (n11, n12 and n13) and

nodes (n21, n22 and n25) are shown in Fig. 7.9b and Fig. 7.9c, respectively.
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Figure 7.5: Trajectories for force-densities in the strings for the extension of tensegrity T2D1

structure.

Figure 7.6: Initial configuration of tensegrity T2D1 structure for angular rotation.
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Figure 7.7: Final configuration of tensegrity T2D1 structure for angular rotation.

Finally, Fig. 7.10 shows the control inputs required to move the tip of the tensegrity robotic

T2D1 arm structure. The real physical control for the tensegrity structure is the rest length of the

strings. However, the control algorithm developed in this chapter calculates the force density in

the strings. The figure shows the trajectories for some of the strings in the process. The rest of the

strings follow the same trend due to the symmetry of the structure.
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(a) Nodes - (n1, n2 and n3) (b) Nodes - (n11, n12 and n13)

(c) Nodes - (n21, n22 and n23)

Figure 7.8: Plot for error in node-position for the angular rotation of tensegrity T2D1 structure.

7.4.3 Rotation of the Arm using Gyroscopic System

With the normal tensegrity systems, we cannot rotate the robotic arm around its axis (along the

length of the arm). In other words, the last section of the robotic arm which is a D-bar, cannot

be rotated about its axis (the line connecting two ends) by simply controlling the rest lengths of

the string. However, we can achieve this rotation using gyroscopic tensegrity systems, which is

needed in order to hold something to the right orientation for an arm. The gyroscopic wheels in

this robotic system are needed only for the last D-bar section of the arm. In this simulation result,
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(a) Nodes - (n1, n2 and n3) (b) Nodes - (n11, n12 and n13)

(c) Nodes - (n21, n22 and n23)

Figure 7.9: Node-position trajectories for the angular rotation of tensegrity T2D1 structure.

the rotation for a D-bar structure is shown to achieve the desired orientation. The objective here

is to rotate the D-bar structure from the initial configuration to the final configuration, as shown in

Fig. 7.11. Notice the nodes n3, n4, and n5 in both configurations to see the different orientation of

the D-bar section of the robotic arm.

Figure 7.12 shows the plots for error in node-position in the orientation control of the

gyroscopic tensegrity D-bar structure. The error in the figure reaches a steady-state value of zero

in around 2.5 seconds for all the three axes. Notice that the x axis is shown to have no initial and
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Figure 7.10: Trajectories for force-densities in the strings for the angular rotation of tensegrity
T2D1 structure.

Final Configuration

Initial Configuration

Figure 7.11: Initial and final configuration of the gyroscopic tensegrity D-bar structure.

final error, it is because the matrix L in the formulation was chosen to control only y and z axis:

L =

0 1 0

0 0 1

 . (7.83)
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Figure 7.12: Plot for error in node-position in the orientation control of gyroscopic tensegrity D-bar
structure.

Figure. 7.13a shows the node position trajectories in controlling the orientation of the

gyroscopic tensegrity D-bar structure. The plots corresponding to y and z axis show the movement

for the rotation as the values change from the initial configuration to the final configuration. The

node velocity trajectories in the orientation control of gyroscopic D-bar are shown in Fig. 7.13b.

The velocity for all the nodes reaches the steady-state value of zero depicting that the structure has

reached the desired final configuration and will stay there.

The control inputs (force densities in the string) required to rotate the gyroscopic D-bar are

shown in Fig. 7.14. The force densities for the first three strings (S1, S2, and S3) which are part

of the D-bar triangle, follow the same trend due to the symmetry of the structure and reach a

steady-state value along with the last string S4. Notice that only these four strings are needed in

rotating the entire tensegrity T2D1 robotic arm about its axis as the last D-bar is connected by a

ball joint structure.
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(a) Position trajectories (b) Velocity trajectories

Figure 7.13: Trajectories in controlling the orientation of gyroscopic tensegrity D-bar structure.

Figure 7.14: Trajectories for force-densities in the strings in the orientation control of gyroscopic
tensegrity D-bar structure.

7.5 Vectorized Equations for Tensegrity Dynamics

Let us write the second-order matrix differential equation describing dynamics of any tensegrity

structure in the presence of some disturbance w as:

N̈Ms +NKs = WT + w, (7.84)
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where matrices M and K are defined as:

Ms =

[
CT
nb(C

T
b ĴCb + CT

r m̂bCr) CT
nsm̂s

]
, (7.85)

Ks =

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
. (7.86)

Taking the ith row of Eq. (7.84):

eTi N̈Ms + eTi NKs = eTi WT + eTi w for i = 1, 2, 3 , (7.87)

and writing the equation for i = 1, we get:

ẍTMs + xTKs = eT1WT + eT1w, (7.88)

which after taking the transpose becomes:

Msẍ+Ksx = WT
T e1 + wTe1, (7.89)

and after stacking all the three equations gives:


Ms 0 0

0 Ms 0

0 0 Ms

 n̈+


Ks 0 0

0 Ks 0

0 0 Ks

n =


WT
T e1

WT
T e2

WT
T e3

+


wTe1

wTe2

wTe3

 , (7.90)

where n = [n1x n2x · · ·nNx n1y n2y · · ·nNy n1z n2z · · ·nNz]T. This can also be written using the

kronecker product (⊗) as:

(I3 ⊗Ms)n̈+ (I3 ⊗Ks)n =W + wvec, (7.91)
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and can finally be written in the second-order vector differential equation as:

Mn̈+Kn =W + wvec, (7.92)

whereW = [eT1W eT2W eT3W ]T,M = (I3 ⊗M) and K = (I3 ⊗K).

The above equation is in vector form and we add linear constraints of the form:

An = d (7.93)

where A ∈ RNc×3n andNc represents the number of constraints. The linear constraints will restrict

the motion in certain directions and will add some constraint forces in the dynamics. Let us define

the constraints forces as fc which satisfies fT
c δn = 0 for any arbitrary displacement (δn) because

of no virtual work condition.

fT
c δn = 0 (7.94)

Aδn = 0 (7.95)fT
c

A

 δn = 0 (7.96)

The above equation should be satisfied for arbitrary displacement (δn). This will be true if the

coefficient matrix will have rank deficiency. Hence, we can write

fc = ATω (7.97)

where ω ∈ RNc×1 represents the vector containing Lagrange multipliers. Adding this constraint

force to our dynamics, we get

Mn̈+Kn =W + wvec + ATω. (7.98)
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We divide A = [A1 A2 A3], where A1, A2, A3 ∈ RNc×n then

λ̂ = −Ĵ l̂−2bḂTḂc−1

2
l̂−2bBT(WT + [AT

1ω A
T
2ω A

T
3ω]T − Sγ̂Cs)CT

nbC
T
b c, (7.99)

7.5.1 Reduced-order dynamics

Adding the linear constraints into the dynamics will restrict the motion in certain dimensions,

thus reducing the order of the dynamics to a span a smaller space. To this end, we use the singular

value decomposition (SVD) of matrix A as:

A = UΣV T = U

[
Σ1 0

]V T
1

V T
2

 (7.100)

where U ∈ RNc×Nc and V ∈ R3n×3n are both unitary matrices, V1 ∈ R3n×Nc and V2 ∈ R3n×(3n−Nc)

are submatrices of U , and Σ1 ∈ RNc×Nc is a diagonal matrix of positive singular values. By

defining

η =

η1

η2

 , V Tn =

V T
1 n

V T
2 n

 (7.101)

the constraint Equation (7.93) can be modified as:

An = UΣV Tn = U

[
Σ1 0

]η1

η2

 = d, (7.102)

which implies:

η1 = Σ−1
1 UTd, η̇1 = 0, η̈1 = 0. (7.103)

Here, η1 represents the no-motion space in transformed coordinates. Moreover, η2 will evolve

according to the constrained dynamics in new coordinate system. Using Equations (7.100-7.103),
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the dynamics equation (7.98) can be rewritten as:

MV V Tn̈+KV V Tn =W + wvec + ATω (7.104)

MV2η̈2 +KV1η1 +KV2η2 =W + wvec + V1Σ1U
Tω (7.105)

Pre-multiplying the above equation by a non-singular matrix [V2 M−1V1]T will yield two parts,

where first part gives the second order differential equation for the reduced dynamics:

V T
2 MV2η̈2 + V T

2 KV2η2 = V T
2 W + V T

2 wvec − V T
2 KV1η1 (7.106)

⇒M2η̈2 +K2η2 = W̃ + w̃vec. (7.107)

withM2 = V T
2 MV2 and K2 = V T

2 KV2, and the second part gives an algebraic equation that is

used to solve for the Lagrange multiplier:

V T
1 M−1MV2η̈2 + V T

1 M−1KV1η1 + V T
1 M−1KV2η2

= V T
1 M−1(W + wvec) + V T

1 M−1V1Σ1U
Tω (7.108)

V T
1 M−1KV1η1 + V T

1 M−1KV2η2 − V T
1 M−1V1Σ1U

Tω = V T
1 M−1(W + wvec) (7.109)

⇒ V T
1 M−1Kn− V T

1 M−1ATω = V T
1 M−1(W + wvec). (7.110)

Notice that K is also a function of ω, making it a linear algebra problem, the solution for which is

given in Appendix B.3.

7.5.2 Controller for Full-Order Dynamics Model

The error in the position of the nodes which is desired to be zero is defined as:

e = Ln− n̄. (7.111)
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The second-order output equation can be written as:

ë+ Ψė+ Θe = B1w, (7.112)

which can be written in state-space form as:

ė
ë

 =

 0 I

−Θ −Ψ


︸ ︷︷ ︸

Acl

e
ė

+

 0

B1


︸ ︷︷ ︸
Bcl

w. (7.113)

We need to find the controller gain parameters Ψ and Θ, which we write in controller gain

matrix G as:

G =

[
−Θ −Ψ

]
, (7.114)

and decompose the matrix Acl as:

 0 I

−Θ −Ψ

 =

0 I

0 0


︸ ︷︷ ︸

Ap

+

0

I


︸︷︷︸
Bp

[
−Θ −Ψ

]
, (7.115)

which allows us to write the closed-loop dynamics as:

ẋ = (Ap +BpG)x+Bclw, y = Cx. (7.116)

Now, Eq. (7.112) is written after substitution from Eq. (7.111) as:

Ln̈+ ΨLṅ+ Θ(Ln− n̄) = B1w, (7.117)

which after multiplying Eq. (7.98) from left hand side byM−1 (M−1× Eq. (7.98)) and substitution
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gives:

LM−1(W + ATω + wvec −Kn) + ΨLṅ+ Θ(Ln− n̄) = B1wvec, (7.118)

Let us choose B1 = LM−1 (without loss of generality) to write:

LM−1(W + ATω −Kn) + ΨLṅ+ Θ(Ln− n̄) = 0, (7.119)

Let us substitute for K from Eq. 7.92 to obtain:

LM−1
[(
I3 ⊗ (CT

s γ̂Cs)
)
−
(
I3 ⊗ (CT

nbC
T
b λ̂CbCnb)

)]
n

= LM−1(W + ATω) + ΨLṅ+ Θ(Ln− n̄)︸ ︷︷ ︸
C

, (7.120)

and using the properties of kronecker product, we can further write it as:

LM−1(I3 ⊗ CT
s )(I3 ⊗ γ̂)(I3 ⊗ Cs)n = LM−1(I3 ⊗ CT

nbC
T
b )(I3 ⊗ λ̂)(I3 ⊗ CbCnb)n + C.

(7.121)

Now, recognizing that the term (I3⊗Cs)n is a vector and (I3⊗ γ̂) is a diagonal matrix, we use

the property x̂y = xŷ to get:

LM−1(I3 ⊗ CT
s )

∧

((I3 ⊗ Cs)n)(1 ⊗ γ̂) = LM−1(I3 ⊗ CT
nbC

T
b )

∧

((I3 ⊗ CbCnb)n)(1 ⊗ λ̂) + C,

(7.122)
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where 1 , [1 1 1]T and can again be written as:

LM−1(I3 ⊗ CT
s )

∧

((I3 ⊗ Cs)n)(1⊗ Iα)


︸ ︷︷ ︸

A

γ

=

LM−1(I3 ⊗ CT
nbC

T
b )

∧

((I3 ⊗ CbCnb)n)(1⊗ Iβ)


︸ ︷︷ ︸

B

λ+ C. (7.123)

Let us use Eq. (7.5) to write the above mentioned equation as:

Aγ = B(Λγ + τ) + C, (7.124)

which can be re-written after combining terms for force density γ to generate a linear equation as:

(A−BΛ)γ = Bτ + C. (7.125)

7.5.3 Controller for Reduced-Order Dynamics Model

The error in the position of the nodes which is desired to be zero is defined as:

e = Ln− n̄ = L(V1η1 + V2η2)− n̄. (7.126)

The second-order output equation can be written as:

ë+ Ψė+ Θe = B1w, (7.127)
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which is written after substitution from Eq. (7.126) as:

LV2η̈2 + ΨLV2η̇2 + Θ(LV1η1 + LV2η2 − n̄) = B1w, (7.128)

where η̇1 = η̈1 = 0 was used from the dynamics model formulation and which after multiplying

Eq. (7.107) from left hand side byM−1
2 (M−1

2 × Eq. (7.107)) and substitution gives:

LV2M−1
2 (W̃ + w̃vec −K2η2) + ΨLV2η̇2 + Θ(LV1η1 + LV2η2 − n̄) = B1wvec, (7.129)

Let us choose B1 = LV2M−1
2 V T

2 (without loss of generality) to write:

LV2M−1
2 (W̃ − K2η2) + ΨLV2η̇2 + Θ(LV1η1 + LV2η2 − n̄) = 0, (7.130)

LV2M−1
2 (V T

2 W − V T
2 KV1η1 −K2η2) + ΨLV2η̇2 + Θ(LV1η1 + LV2η2 − n̄) = 0, (7.131)

Let us substitute for K2 from Eq. 7.107 to obtain:

LV2M−1
2 V T

2︸ ︷︷ ︸
Msn

[(
I3 ⊗ (CT

s γ̂Cs)
)
−
(
I3 ⊗ (CT

nbC
T
b λ̂CbCnb)

)]
(V2η2 + V1η1) =

LV2M−1
2 V T

2 W + ΨLV2η̇2 + Θ(LV1η1 + LV2η2 − n̄)︸ ︷︷ ︸
C

, (7.132)

and using the properties of kronecker product, we can further write it as:

LMsn(I3 ⊗ CT
s )(I3 ⊗ γ̂)(I3 ⊗ Cs)n = LMsn(I3 ⊗ CT

nbC
T
b )(I3 ⊗ λ̂)(I3 ⊗ CbCnb)n + C.

(7.133)

Now, recognizing that the term (I3⊗Cs)n is a vector and (I3⊗ γ̂) is a diagonal matrix, we use
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the property x̂y = xŷ to get:

LMsn(I3 ⊗ CT
s )

∧

((I3 ⊗ Cs)n)(1 ⊗ γ̂) = LMsn(I3 ⊗ CT
nbC

T
b )

∧

((I3 ⊗ CbCnb)n)(1 ⊗ λ̂) + C,

(7.134)

and similar procedure can be followed as:

LMsn(I3 ⊗ CT
s )

∧

((I3 ⊗ Cs)n)(1⊗ Iα)


︸ ︷︷ ︸

A

γ

=

LMsn(I3 ⊗ CT
nbC

T
b )

∧

((I3 ⊗ CbCnb)n)(1⊗ Iβ)


︸ ︷︷ ︸

B

λ+ C. (7.135)

Let us use Eq. (7.5) to write the above mentioned equation as:

Aγ = B(Λγ + τ) + C, (7.136)

which can be re-written after combining terms for force density γ to generate a linear equation as:

(A−BΛ)γ = Bτ + C. (7.137)

7.6 Different bounds on errors

In the previous sections, the gains for the second-order differential equations were chosen to

stabilize the output differential equation i.e. to derive the errors to zero. However, no performance
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criteria was discussed in calculating the gains Θ and Ψ. This section solves this issue by

formulating five different problems for bounding errors using the LMI framework. The gains for

these five different problems are calculated using the semi-definite convex programming problem.

A MatLab based CVX toolbox is used for numerical implementation.

The example for all the different bounds will have the simulation results discussed on the same

tensegrity T1D1 robotic arm with the initial configuration shown in Fig. 7.15.

Figure 7.15: Initial configuration of the tensegrity T1D1 robotic arm.

7.6.1 Bound on L∞ norm of error or GeneralizedH2 Problem

The peak value of a variable in the time domain is defined as L∞ norm of the variable,

i.e. ‖y‖2
L∞ = sup[y(t)Ty(t)]. The following result provides a bound on peak value such that

‖y‖L∞ < ε, meaning that the peak value of [y(t)Ty(t)] is less than ε2 in the presence of finite energy

disturbance [86]. This problem can be solved as a Energy to peak gain - Γep [85] or generalized
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H2 problem [87].

Γep , sup
‖w‖L2≤1

‖y‖L∞ , (7.138)

Γep = inf
Q
‖CQCT‖1/2 :AclQ+QAT

cl +BclB
T
cl < 0, Q > 0. (7.139)

Lemma 7.6.1. The controller gain matrix G (c.f. Eq. (7.114)) for system given in Eq. (7.116),

which provides a L∞ bound on the error in the desired position can be solved as:

min ε,

 εI CQ

QCT Q

 > 0, (7.140)

sym(ApQ+BpR) Bcl

BT
cl −I

 < 0, (7.141)

where G = RQ−1.

Proof: The gain matrix G can calculated using Eq. (7.139) which can substituted with Eq. (7.116)

to give:

min ε, εI − CQCT > 0, (Ap +BpG)Q+Q(Ap +BpG)T +BclB
T
cl < 0, (7.142)

which can be written as the following after using the Schur’s complement with Q > 0 as:

min ε,

 εI CQ

QCT Q

 > 0,

sym(ApQ+BpGQ) Bcl

BT
cl −I

 < 0, (7.143)

which can be substituted as R = GQ to obtain:

sym(ApQ+BpR) Bcl

BT
cl −I

 < 0. (7.144)
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The first plot from Fig. 7.16 shows the norm of position error for the open-loop simulation for a

finite energy force disturbance given at all node locations. The plot shows a periodic motion for the

position error from the initial nominal configuration. The second plot in Fig. 7.16 shows the norm

in position error for the closed-loop system with gains value Θ = 30I and Ψ = 20I . The chosen

stable gains derive the system to zero but with a large value of peak value of error. The last plot in

Fig. 7.16 shows the closed-loop performance with the gains calculated using the boundedL∞ norm

or generalized H2 problem for the depicted robotic arm. Notice that the peak value of the error

has been brought down considerably using the LMI formulation described earlier. The theoretical

value of the gain by solving the LMIs in Lemma 7.6.1 was calculated to be Γep = 1.00 × 10−4

and the gain calculated using the simulation results was observed to be Γep = 6.82× 10−7, which

satisfies the requirement. Moreover, the value from the simulation results was considerably smaller

as the disturbance values of the output will only match the theoretical results for the worst-case

disturbance. Figure 7.17 shows the trajectories for error in node positions for nodes (n1, n2, n3 and

n4) for all the three cases mentioned earlier.

Figure 7.16: Plots of norm in position error for open-loop, closed loop with Θ = 30I and Ψ = 20I ,
and gains calculated using the bounded L∞ norm or GeneralizedH2 Problem for the T1D1 robotic
arm.
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Figure 7.17: Trajectories of node positions (n1, n2, n3 and n4) for open-loop, closed loop with
Θ = 30I and Ψ = 20I , and gains calculated using the bounded L∞ norm or Generalized H2

Problem for the T1D1 robotic arm.

7.6.2 Bounded Γee orH∞ Problem

This subsection provides the result to bound the peak value of the frequency response of the

transfer function T (s) , C(sI − Acl)−1Bcl. TheH∞ Problem is defined as [88, 89]:

‖T‖H∞ , sup
w
‖T (jw)‖ < ε (7.145)

which can also be understood in time domain analysis as the energy-to-energy gain problem [85]:

Γee , sup
‖w‖L2≤1

‖y‖L2 < ε. (7.146)

Lemma 7.6.2. The controller gain matrix G (c.f. Eq. (7.114)) for system given in Eq. (7.116),

which provides aH∞ bound on the error in the desired position can be solved as:


sym(ApY +BpL) Bcl Y CT

BT
cl −R 0

CY 0 −I

 < 0, Y > 0, R = ε2I,G = LY −1. (7.147)

Proof: The H∞ problem with given ε and for a positive definite matrix P > 0 can be solved with
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the following matrix inequality [87, 90]:

PAcl + AT
clP + PBclR

−1(PBcl)
T + CTC < 0, P > 0, R = ε2I > 0, (7.148)

which can be written as:

AclY + Y AT
cl +BclR

−1BT
cl + Y CTCY < 0, Y = P−1 > 0, R = ε2I > 0, (7.149)

which can substituted with Eq. (7.116) to give:

(ApY +BpGY ) + (·)T +

[
Bcl Y CT

]R−1

I


BT

cl

CY

 < 0, Y > 0, (7.150)

and after using the Schur’s complement with R > 0 and L = GY can be written as:


sym(ApY +BpL) Bcl Y CT

BT
cl −R 0

CY 0 −I

 < 0, Y > 0. (7.151)

The following simulation results are generated using the same energy bounded disturbance used

in the analysis of bounded L∞ norm. The first two plots of Fig. 7.18 (same as Fig. 7.16) shows

the norm of position error for the open-loop simulation for the closed loop system with gains value

Θ = 30I and Ψ = 20I . The last plot in Fig. 7.18 shows the closed-loop performance with the gains

calculated using the bounded Γee or H∞ problem. The theoretical value of the energy-to-energy

gain was obtained to be Γee = 1.27 × 10−5 by solving the LMIs in Lemma 7.6.2 and the gain in

energy from disturbance to error for the simulation was observed to be Γee = 5.14× 10−9, which

satisfies the requirement. Just as in the previous case, there would be some worst-case disturbance

for this nonlinear system that would cause the error due to disturbance to meet the theoretical value.
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The similar trend can be observed from Fig. 7.19, which shows the trajectories for error in node

positions (n1, n2, n3 and n4) for all the three cases mentioned earlier.

Figure 7.18: Plots of norm in position error for open-loop, closed loop with Θ = 30I and Ψ = 20I ,
and gains calculated using the bounded Γee orH∞ problem for the T1D1 robotic arm.

Figure 7.19: Trajectories of node positions (n1, n2, n3 and n4) for open-loop, closed loop with
Θ = 30I and Ψ = 20I , and gains calculated using the bounded Γee or H∞ problem for the T1D1

robotic arm.

7.6.3 Bounded Γie or LQR Problem

We define the linear quadratic regulator (LQR) problem to provide a performance bound ε > 0

on the integral squared output such that ‖y‖L2 < ε for any vector w0 such that wT
0w0 ≤ 1, and

x0 = 0. The disturbance w is the impulsive disturbance w(t) = w0δ(t). This can also be defined

185



as the peak disturbance to energy gain (‖y‖L2) for the system [85].

Γie , sup
w0δ(t)≤1

‖y‖L2 , (7.152)

Γie = inf
P
‖BT

clPBcl‖1/2 :PAcl + AT
clP + CTC < 0, P > 0. (7.153)

Lemma 7.6.3. The controller gain matrix G (c.f. Eq. (7.114)) for system given in Eq. (7.116),

which provides a bound on the error Γie < ε from the desired position can be solved as:

min ε,

 εI BT
cl

Bcl Y

 > 0,

sym(ApY +BpR) Y CT

CY −I

 < 0, (7.154)

where G = RY −1.

Proof: The gain matrix G can calculated using Eq. (7.153) which can substituted with Eq. (7.116)

to give:

min ε, εI −BT
clPBcl > 0, P (Ap +BpG) + (Ap +BpG)TP + CTC < 0, (7.155)

and the last equation on both sides can be multiplied by P−1 > 0 to obtain:

min ε, εI −BT
clPBcl > 0, (Ap +BpG)P−1 + P−1(Ap +BpG)T + P−1CTCP−1 < 0,

(7.156)

which can be written as the following after using the Schur’s complement with Y = P−1 and

R = GY as:

min ε,

 εI BT
cl

Bcl Y

 > 0,

sym(ApY +BpR) Y CT

CY −I

 < 0. (7.157)
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The first plot from Fig. 7.20 shows the norm of position error for the open-loop simulation for

an impulsive disturbance given at all node locations in terms of force. A periodic motion for the

position error from the initial nominal configuration was observed for the open-loop system. The

second plot in Fig. 7.20 shows the result for the closed-loop system with gains value Θ = 30I

and Ψ = 20I . The chosen stable gains derive the system to zero but with large energy of the

error (‖y‖L2) as compared to the simulation obtained with the calculated gains using the Bounded

Γie solution. Notice the initial spike in error, but the total energy for the entire simulation is

substantially less than the other two simulations. The theoretical value of the impulse-to-energy

gain was obtained to be Γie = 1.98× 10−5 by solving the LMIs in Lemma 7.6.3 and the gain from

impulsive disturbance to error energy for the simulation was observed to be Γie = 1.04 × 10−10,

which satisfies the requirement. Figure 7.21 shows the trajectories for error in node positions (n1,

n2, n3 and n4) for all the three cases mentioned earlier. Notice that the values of the error in the

last plot are much smaller than the values corresponding to the first two plots.

Figure 7.20: Plots of norm in position error for open-loop, closed loop with Θ = 30I and Ψ = 20I ,
and gains calculated using the bounded impulse to energy problem (Γie) for the T1D1 robotic arm.

7.6.4 Bound on Covariance in position error

It is impossible to derive the error to precise zero in the presence of process noise; however,

one can control the statistics of the error given the statistics of the noise [85, 87]. This subsection

provides the required controller gain matrix to bound the covariance of the error in the position or
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Figure 7.21: Trajectories of node positions (n1, n2, n3 and n4) for open-loop, closed loop with
Θ = 30I and Ψ = 20I , and gains calculated using the bounded impulse to energy problem (Γie)
for the T1D1 robotic arm.

velocity of the nodes.

ẋ = (Ap +BpG)x+Bclw, y = Cx, (7.158)

E [yyT] = Y = CXCT < Ȳ . (7.159)

Lemma 7.6.4. The covariance bound on output (Y = CXCT < Ȳ ) can be achieved with the

following choices of controller gain matrix G (c.f. Eq. (7.114)) for system given in Eq. (7.116) for

the zero-mean white noise of intensity E [wwT] = W for X > 0:

 Ȳ CX

XCT X

 > 0,

sym(ApX +BpR) Bcl

BT
cl −W−1

 < 0, (7.160)

where G = RX−1.

Proof: The covariance matrix X for the linear system for a given system can be written as:

AclX +XAT
cl +BclWBT

cl < 0, (7.161)

which can be used to bound the output covariance and after substitution from Eq. (7.116) can be
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written as [85]:

CXCT < Ȳ , (Ap +BpG)X +X(Ap +BpG)T +BclWBT
cl < 0, (7.162)

which again can be written as:

 Ȳ CX

XCT X

 > 0,

sym(ApX +BpR) Bcl

BT
cl −W−1

 < 0, R = GX. (7.163)

Figure 7.22 shows the node position trajectories for nodes n1, n2, n3 and n4 for three different

simulations performed with a zero-mean white noise disturbance given to all the nodes. The noise

is characterized to be independent and identical (i.i.d) noise which appears as force disturbance.

The first simulation is performed with the open-loop system, and the others are performed as the

closed-loop system with full-state feedback. The second plots in Fig. 7.22 shows the results with

randomly chosen stable gains Θ = 30I and Ψ = 20I and the third plot shows the same simulation

with the gains calculated using the bounded covariance Y < Ȳ .

Figure 7.22: Trajectories of node positions (n1, n2, n3 and n4) for open-loop, closed loop with
Θ = 30I and Ψ = 20I , and gains calculated using the bounded covariance orH2 performance for
the T1D1 robotic arm.
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7.6.5 Stabilizing Control

A simple requirement to effectively control the shape of the tensegrity structure is to stabilize

the second-order output feedback differential equation (Eq. (7.112)). This can be achieved by

making the matrix (Ap + BpG) < 0 negative definite or AclX + XAT
cl < 0, X > 0, for the

following equation:

ẋ = (Ap +BpG)x+Bclw, y = Cx. (7.164)

Lemma 7.6.5. The controller gain matrix G (c.f. Eq. (7.114)) for system given in Eq. (7.116), that

will yield a stable controller can be solved as:

(ApX +BpR) + (ApX +BpR)T < 0, (7.165)

where G = RX−1.

7.7 Bound on Bar length Error

The idea here is to use extra information provided by these bar length constraints in calculating

the control gains to control the shape of the structure. The formulation provided here allows to

add some convex constraints to choose the control gains to bound the L∞ norm of the error in the

length of the bars. The LMI constraints can be added with other convex constraints discussed in the

previous section to reject different kinds of disturbances in the control of the tensegrity structure.

Let us start by writing a bar vector for the ith bar as:

bi = (Cbi ⊗ I)n = (Cbi ⊗ I)(e+ n̄) = Cbi(e+ n̄). (7.166)

Now, the desired performance to bound the error in bar length li for a particular compressive
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bar member (b̄i = Cbin̄) can be written as:

zi = ‖Cbi(e+ n̄)‖ − li, (7.167)

zi = ‖Cbie+ b̄i‖ − li, (7.168)

zi = eTCTbiCbie+ 2b̄Ti Cbie. (7.169)

Let us define yi , Cbie and let us write the peak value of the error in the bar-length can be

bound as:

‖zi‖L∞ < εbi , (7.170)

‖yTi yi + 2b̄Ti yi‖L∞ < εbi , (7.171)

where εbi is the maximum allowed value of the bar length error for the bar bi.

It is important to notice that the actual problem at hand is to bound the (yTi yi + 2b̄Ti yi) which

can be done by bounding the peak value of (yTi yi) using the formulation discussed further. Now,

the aim here is to bound the maximum value of the yi for all time as this is an easier problem to

tackle, known as generalizedH2 problem or energy to peak gain Γep problem.

Lemma 7.7.1. The S-Procedure or S-Lemma [91, 92]: Let A1 and A2 be symmetric matrices, b1

and b2 be vectors and c1 and c2 be real numbers. Assume that there is some x0 such that the strict

inequality xT0A1x0 + 2bT1 x0 + c1 < 0 holds. Then the implication

xTA1x+ 2bT1 x+ c1 ≤ 0 =⇒ xTA2x+ 2bT2 x+ c2 ≤ 0 (7.172)

holds if and only if there exists some nonnegative number λ such that

λ

A1 b1

bT1 c1

−
A2 b2

bT2 c2

 > 0. (7.173)
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Using the standard S-Procedure or S-Lemma [91, 92] given above, we can write the following for

our problem:

yTi yi < ε̄bi ⇒ yTi yi + 2b̄Ti yi < εbi (7.174)

m (7.175)

λ ≥ 0, λ

I 0

0 −ε̄bi

−
 I b̄i

b̄Ti −εbi

 ≥ 0, (7.176)

which can again be written as the following to minimize the maximum value of error in the bar

length:

min εbi , λ ≥ 0,

(λ− 1)I −b̄i
−b̄Ti εbi − λε̄bi

 ≥ 0. (7.177)

The above mentioned LMI for variables εbi and λ and given value of ε̄bi and b̄i can be solved along

with the LMIs mentioned earlier for bounding different kinds of errors. Another way to write this

equation is by defining κ = 1/λ and then writing the LMI as:

max ε̄bi , κ ≥ 0,

(1− κ)I −κb̄i
−κb̄Ti κεbi − ε̄bi

 ≥ 0. (7.178)

Notice that this LMI allows us to calculate the maximum value of bound to be put on (yTi yi < ε̄bi)

by defining the desired bound on the bar length error (yTi yi + 2b̄Ti yi < εbi).

7.8 Conclusions

In this chapter, we studied a model-based approach to control tensegrity structures that can be

used as the mechanism for enabling very high DOF robots. The chapter discussed both full-order

models and reduced-order models for controlling the shape, velocity, and acceleration of certain

nodes, for a high DOF class-k tensegrity designs. The shape control formulation for the gyroscopic
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tensegrity system was also derived, which allows for added orientation control of the structure. A

tensegrity T2D1 robotic arm example was used to show the efficacy of the formulation by allowing

the end effector to reach anywhere in a 3-dimensional hemisphere. In the last half, a generalized

vectorized tensegrity dynamics in the presence of some given disturbance is formulated for both

full and reduced order. A second-order output regulator was used whose gains were calculated

using the LMI framework to generate different kinds of performance bounds. The gains were

solved as convex semi-definite programming problems.
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8. INTEGRATING STRUCTURE, INFORMATION ARCHITECTURE AND CONTROL

DESIGN∗

1 In the first half of the chapter, the nonlinear dynamics is linearized about an equilibrium point

for both class-1 and class-k tensegrity systems, and then, the minimal-order system is calculated

by removing the modes which corresponds to the change in bar length. The linear control theory is

then used to reject the noises and disturbances. The formulation for different error bounds are used

to get the desired performance, e.g. H∞, generalized H2 and covariance control problem. The

information architecture theory is also applied to find the precision of the actuators and sensors

along with the controller for the covariance control problem. The main contribution of the chapter

is to develop a Linear Matrix Inequality (LMI) framework to jointly optimize structure parameters,

information architecture (actuator/sensor precision), and control law to get the required system

performance. The tensegrity paradigm is used to integrate these different yet interdependent

fields. A linearized tensegrity model as an affine function of initial prestress and force density

as the control input is used to find the free structure parameter (optimal initial prestress in the

strings), to satisfy performance and control energy upper bound. The precision of the sensors to

measure the position and velocity of the nodes and the precision of actuators required to control

the tension in the strings is also provided by the formulation. The complete problem is set as a

covariance control problem where feasibility is achieved by bounding the covariance of the output

as well as that of the control signals. The feedback loop is assumed to have a full-order dynamic

compensator with its characteristic matrices chosen as optimization variables. The state feedback

formulation is also provided with control gain as the optimization variable. The sub-optimal

solution of this non-convex system design problem is found by iterating over an approximated

convex problem through the use of a convexifying potential function which enables convergence

1∗Portions of this section are reprinted or adapted from [93] : Raman Goyal and Robert E. Skelton, "Joint
Optimization of Plant, Controller, and Sensor/Actuator Design", American Control Conference (ACC), 1507-1512,
Philadelphia, PA, USA, July 10-12, 2019. DOI: 10.23919/ACC.2019.8814671. Copyright c© 2020, IEEE. Reproduced
with permission.
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to a local minimum. This system-level optimization approach to design and control the tensegrity

structures also provides the control law for the system.

8.1 Introduction

Traditionally structure design and control design have been treated as two separate problems

where a structure is designed first, and then a control law is written to control the structure. It

is only recently that researchers have realized the need for integrating the two disciplines. The

idea is to design the structure and control algorithm to complement each other in achieving

the required performance. Similarly, controller design (control algorithm) and signal processing

(actuator and sensor precision) problems should be integrated to determine the required precision

of sensors and actuators to guarantee desired output covariance bound. Basically, a system-level

design approach is needed to make the best of all three disciplines where all components of

the system are cooperatively designed to yield a specified system performance. The work of

Li et al. [94] integrated control design and selection of information architecture (actuator and

sensor precision) to meet specified performance requirement (output covariance upper bound)

formulating the constraints in Linear Matrix Inequalities (LMIs) [85]. It is proven that integration

of information architecture and control design is a convex problem for a linear plant with full-state

feedback or full-order output feedback. Li et al. [94] also provides an ad hoc algorithm to reduce

the set of required sensors or actuators. This is accomplished by repeatedly deleting the sensors or

actuators with the least precision required until the design requirements cannot be met. Radhika et

al. [95] made advancements in the information architecture theory by adding model uncertainty.

More recently, various researchers have looked at the problem of finding a smaller set of sensors

from a larger admissible set if precision is given a priori [96, 97].

Some researchers provided a framework to solve the instrument and control design problem

[98] while others discussed the problem of integrated structure and control design assuming sensor

and actuator precisions are known [99, 100, 101]. Grigoriadis et al. [101] provided a two-step

solution to the simultaneous design problem of structure and control by iterating over two convex

sub-problems. First, the structure parameters were fixed and a controller was designed to satisfy
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the specified output covariance upper bound. In the second step, both the structure parameters and

the controller are optimized such that the state covariance from the previous step was preserved.

The algorithm iterates between these two steps to converge to a local minimum. Lu et al. [99]

considered the more general structure parameterization and used mixed H2/H∞ performance

criteria. However, this approach also constrained the closed-loop state covariance matrix to be

preserved in the second step. These approaches find a solution in reduced domain space, which

may not necessarily be an optimal solution to the combined problem. Another approach to solving

the integrated problem is by convexifying LMIs methods [102, 103]. In this approach, the authors

first formulate a nonlinear matrix inequality to satisfy the performance requirement and then add

another nonlinear matrix inequality to finally generate an LMI. There are some conditions on

the added nonlinear matrix inequality (convexifying potential function) which guarantees that the

solution will reach a stationary point. The contribution of this chapter is to add prestress in the

tensegrity structures as another dimension to this system design approach by integrating structure

parameters as an optimization variable along with information architecture and controller design.

The author believes that tensegrity structures are best suited to integrate structure and control

design due to its very accurate models of axially loaded members [16]. An accurate model of

the system dynamics will yield precise control. Moreover, as tensegrity provides good efficiency

for both structural and control avenue, it would be an ideal choice for various adaptive structures

where structure and control parameters should be optimized simultaneously [6]. In tensegrity, one

can change the stiffness of a tensegrity structure without changing the shape. Similarly, the shape

can also be changed without changing the stiffness. This property of tensegrity structures makes it

robust to various kinds of loading conditions.

The author also believes that this is the first time one integrated domain formulation is

developed to solve for all three decision variables i.e. control design, information architecture, and

structure design simultaneously. In this research work, we use the tensegrity paradigm to achieve

this by framing it as a covariance control problem. The formulation of this chapter is as follows:

First, an analytical formulation to linearize the nonlinear system about an equilibrium point is
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provided for both full-order and reduced-order models. Then, the robust control theory to reject

the disturbances with different error bounds for linear systems is applied on a tensegrity robotic

arm, which is discussed in the previous chapter. Second, we describe a linear system in descriptor

state-space form with plant matrices affine in structure parameters. We assume noisy actuators and

measurement sensors and define the inverse of noise to be the precision of the actuators and sensors,

respectively. The precision of the noisy actuators and sensors is considered as an optimization

variable, and the cost of actuators and sensors is assumed to be directly proportional to their

precision to add a budget constraint in the problem. Then, we write matrix inequalities to stabilize

the system and to satisfy output and control covariance constraints [85]. The simultaneous design

of a structure, information architecture, and controller results in nonlinear matrix inequalities even

for linear systems. As the domain set is nonlinear inequalities (not proven to be non-convex), a

convexifying LMI method is used to solve this system design problem by approximating it to a

convex problem [103]. The convexification is achieved by adding a nonlinear matrix inequality

with certain conditions. The iteration on the approximated convex sub-problem guarantees the

solution to reach a stationary point. For the tensegrity paradigm, the linearized tensegrity dynamics

model with initial prestress as linearly appearing free structure parameter is used with force density

in the strings to be the control input for the system. The performance is defined to bound the

displacement of some nodes while measuring the length of the strings or the position of the

nodes. The final output of the optimization problem would be the initial prestress (free structure

parameter), the precision of sensors/actuators, and the characteristics matrices for the dynamic

controller. A simple design example of a three-story building with disturbance as an earthquake

model is presented along with two tensegrity designs examples corresponding to a tensegrity lander

and a robotic arm to show the effectiveness of the framework.

8.2 Linearized Tensegrity Dynamics

The nonlinear dynamics of a tensegrity structure of any complexity is derived in Chapter 5

[16]. To apply the optimization formulation developed in Section 2, the nonlinear equations

are linearized and represented in the descriptor form such that prestress appears as a linear free
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variable.

8.2.1 Class-1 Linearized Dynamics

Lemma 8.2.1. The linearized dynamics of any class-1 tensegrity system in terms of linear variation

in nodal coordinates ñ can be written as:

M1
¨̃n+D1

˙̃n+K1ñ = P1w̃ + B1γ̃, (8.1)

where γ̃ is the linear variation in the force density, w̃ is the linear variation in external force, and

M1 , T TMbrT , D1 , T TDbrT , (8.2)

K1 , T TKbrT + P1 (CT
s ⊗ I) ̂(γ̄ ⊗ 1)(Cs ⊗ I), (8.3)

P1 , T TPbrT −T, B , −P1(CT
s ⊗ I)ˆ̄s, (8.4)

T ,



CbCnb

CrCnb

Cns

⊗ I
 , T −T =




1
2
CbCnb

2CrCnb

Cns

⊗ I
 , (8.5)

where 1 , [1 1 1]T with Cb, Cs, Cr and Cns being the connectivity matrices for

bars, strings, center of the bars and point masses, respectively. The matrices Cnb =

[I 0],Mbr , blkdiag(Mb,Mr,Mrs), Dbr , blkdiag(Db,0,0), Kbr , blkdiag(Kb,0,0),

and Pbr , blkdiag(Pb, I, I) are block diagonal matrices with Mb , diag(J1I, J2I, ...),

Mr , diag(m1I,m2I, ...), Mrs , diag(ms1I,ms2I, ...), Db , diag(Db1, Db2, ...), and Kb ,

diag(Kb1, Kb2, ...).

Db1 ,
2J1

l21
b̄1

˙̄bT1 , (8.6)

Kb1 ,

[
J1

l21

˙̄bT1
˙̄b1 +

1

2l21
b̄T1 (f̄2 − f̄1)

]
I +

1

2l21
b̄1(f̄2 − f̄1)T, (8.7)

Pb1 ,
1

2

(
I − b̄1b̄

T
1

l21

)
, (8.8)
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where Pb , diag(Pb1, Pb2, ...) with bar vector b̄1, string vector s̄1, bar velocity vector ˙̄b1, center of

mass vector r̄1, center of mass velocity vector ˙̄r1, point mass vector r̄s1 and force f̄ , represents the

vectors about which the dynamics is linearized.

Proof: The vector equations for rotational and translational dynamics of a bar are given as:

J1b̈1 +
J1

l21
b1ḃ1

T
ḃ1 =

1

2
(f2 − f1)− 1

2l21
b1b1

T(f2 − f1), (8.9)

m1r̈1 = f1 + f2, (8.10)

and the equation for a point mass (connecting string to string node) is given as:

ms1r̈s1 = fs1. (8.11)

Let us linearize these equations about some equilibrium bar vector b̄1, bar velocity vector ˙̄b1,

center of mass vector r̄1, center of mass velocity vector ˙̄r1, point mass vector r̄s1 and force f̄ such

that:

b̃1 = b1 − b̄1, r̃1 = r1 − r̄1, r̃s1 = rs1 − r̄s1, ˙̃b1 = ḃ1 − ˙̄b1, ˙̃r1 = ṙ1 − ˙̄r1, f̃ = f − f̄ . (8.12)

The linearized equations of motion for a bar and a point mass with b̃1, r̃1, r̃s1
˙̃b1, ˙̃r1, ˙̃rs1 being

the linear variation can be written as:

J1
¨̃b1 +

J1

l21

˙̄bT1
˙̄b1b̃1 +

2J1

l21
b̄1

˙̄bT1
˙̃b1 =

1

2
(f̃2 − f̃1)− 1

2l21
b̄T1 (f̄2 − f̄1)b̃1

− 1

2l21
b̄1(f̄2 − f̄1)Tb̃1 −

1

2l21
b̄1b̄

T
1 (f̃2 − f̃1), (8.13)
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m1
¨̃r1 = f̃1 + f̃2, (8.14)

ms1
¨̃rs1 = f̃s1. (8.15)

Collecting the terms with ¨̃b1,
˙̃b1, b̃1, f̃ , ¨̃r1 and ¨̃rs1, we get:

[J1I]︸︷︷︸
Mb1

¨̃b1 +

[
2J1

l21
b̄1

˙̄bT1

]
︸ ︷︷ ︸

Db1

˙̃b1 +

[[
J1

l21

˙̄bT1
˙̄b1 +

1

2l21
b̄T1 (f̄2 − f̄1)

]
I +

1

2l21
b̄1(f̄2 − f̄1)T

]
︸ ︷︷ ︸

Kb1

b̃1

=

−1

2

(
I − b̄1b̄

T
1

l21

)
1

2

(
I − b̄1b̄

T
1

l21

)
︸ ︷︷ ︸

Pb1


f̃1

f̃2

 , (8.16)

Mb1
¨̃b1 +Db1

˙̃b1 +Kb1b̃1 =
1

2
Pb1 [−I I]

f̃1

f̃2

 , (8.17)

[m1I]︸ ︷︷ ︸
Mr1

¨̃r1 = [I I]

f̃1

f̃2

 , (8.18)

[ms1I]︸ ︷︷ ︸
Mrs1

¨̃rs1 = f̃s1. (8.19)

Now, stacking the bar vectors in one column and center of mass vectors in another column, we
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get:


Mb1

Mb2

. . .




¨̃b1

¨̃b2

...

+


Db1

Db2

. . .




˙̃b1

˙̃b2

...

+


Kb1

Kb2

. . .



b̃1

b̃2

...



=


Pb1

Pb2

. . .


(
Cb
2
⊗ I
)
f̃b, (8.20)


Mr1

Mr2

. . .




¨̃r1

¨̃r2

...

 = (2Cr ⊗ I) f̃b, (8.21)


Mrs1

Mrs2

. . .




¨̃rs1

¨̃rs2
...

 = f̃s, (8.22)

which again can be simply written as:

Mb
¨̃b+Db

˙̃b+Kbb̃ = Pb

(
1

2
CbCnb ⊗ I

)
f̃ , (8.23)

Mr
¨̃r = (2CrCnb ⊗ I) f̃ , (8.24)

Mrs
¨̃rs = (Cns ⊗ I) f̃ . (8.25)
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Let us stack column of bar vectors on top of the column of the center of mass vectors as:


Mb

Mr

Mrs




¨̃b

¨̃r

¨̃rs

+


Db

0

0




˙̃b

˙̃r

˙̃rs

+


Kb

0

0



b̃

r̃

r̃s



=


Pb

I

I





1
2
CbCnb

2CrCnb

Cns

⊗ I
 f̃ , (8.26)

Using


b̃

r̃

r̃s

 =



CbCnb

CrCnb

Cns

⊗ I
 ñ and defining

T ,



CbCnb

CrCnb

Cns

⊗ I
 , (8.27)

we see that

T −T =




1
2
CbCnb

2CrCnb

Cns

⊗ I
 . (8.28)

Substituting the above two equations in equation (8.26), we get:

MbrT ¨̃n+DbrT ˙̃n+KbrT ñ = PbrT −Tf̃ . (8.29)
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Multiplying from the left-hand side by T T, we get:

T TMbrT ¨̃n+ T TDbrT ˙̃n+ T TKbrT ñ = T TPbrT −Tf̃ , (8.30)

which after defining new variables can be written as:

M¨̃n+D ˙̃n+Kñ = P f̃ . (8.31)

8.2.1.1 Force density γ as control variable

The above formulated linearized dynamics is only for bars in the presence of some external

force f . In order to include the forces due to tension in the strings, we can divide the force f into

two parts: one as external force w and other as internal forces due to strings tension as t (actually

formulated as γ). From the previous derivation, we know:

F = W − Sγ̂Cs, (8.32)

which can be written in vector form as:

f = w − (CT
s ⊗ I) ̂(γ ⊗ 1)s, (8.33)

where 1 = [1 1 1]T. Linearizing the above equation about γ̃ = γ − γ̄, s̃ = s − s̄, and ˙̃s = ṡ − ˙̄s,

we get:

f̃ = w̃ − (CT
s ⊗ I) ̂(γ̄ ⊗ 1)︸ ︷︷ ︸

Ks

s̃− (CT
s ⊗ I)ˆ̄s︸ ︷︷ ︸
Kγ

γ̃, (8.34)

f̃ = w̃ −Kss̃−Kγ γ̃, (8.35)
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Substituting the above equation in equation (8.31), we get:

M¨̃n+D ˙̃n+Kñ = Pw̃ − PKss̃− PKγ γ̃. (8.36)

Using s̃ = (Cs ⊗ I)ñ, the above equation can easily be converted to ñ coordinates as:

M¨̃n+D ˙̃n+ (K + PKs(Cs ⊗ I))ñ = Pw̃ − PKγ γ̃, (8.37)

M1
¨̃n+D1

˙̃n+K1ñ = P1w̃ + B1γ̃. (8.38)

Notice that we assumed γ̃ to be the control input. In reality, the control input would be the rest

length of the strings. This formulation is only applicable for closed loop control where we control

the force density γ.

8.2.1.2 String rest length ρ as the control variable - Linearizing force density γ

The above two subsections are formulated for closed-loop dynamics where γ is defined as

input control variable. In this subsection, we convert γ to rest length to run open-loop dynamics

simulations. Assuming that strings follow Hooke’s law and viscous friction damping model, the

tension in a string is written as:

‖ti‖ = ki(‖si‖ − ρi) + ci
sTi ṡi
‖si‖

, (8.39)

γi =
‖ti‖
‖si‖

= ki

(
1− ρi
‖si‖

)
+ ci

sTi ṡi
‖si‖2

, (8.40)

where ρi is rest length of the string and force density γi can also be written as:

γi = ki

(
1− ρi

(sTi si)
1/2

)
+ ci

sTi ṡi
sTi si

. (8.41)
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Linearizing the force density γ about equilibrium values (γ̃ = γ− γ̄, ρ̃ = ρ− ρ̄, s̃ = s− s̄, and

˙̃s = ṡ− ˙̄s), we get:

γ̃i =

[
kiρ̄is̄

T
i

(s̄iTs̄i)3/2
+
ci ˙̄s

T
i

s̄iTs̄i
− 2ci ˙̄s

T
i s̄is̄

T
i

(s̄iTs̄i)2

]
︸ ︷︷ ︸

ζ

s̃i +

[
cis̄

T
i

s̄iTs̄i

]
︸ ︷︷ ︸

κ

˙̃si −
ki

(s̄iTs̄i)1/2︸ ︷︷ ︸
ι

ρ̃i. (8.42)

Stacking the force densities for all the strings from the above equation will give:

γ̃ =


ζ1

ζ2

. . .

 s̃+


κ1

κ2

. . .

 ˙̃s−


ι1

ι2

. . .

 ρ̃, (8.43)

γ̃ = Kkss̃+Kcs
˙̃s−Kpsρ̃. (8.44)

The above equation can be substituted to final linearized equation (8.37) as:

M¨̃n+D ˙̃n+ (K + PKs(Cs ⊗ I))ñ = Pw̃ − PKγ(Kkss̃+Kcs
˙̃s−Kpsρ̃). (8.45)

Again using s̃ = (Cs ⊗ I)ñ, the above equation can easily be converted to ñ coordinates as:

M¨̃n+ (D + PKγKcs(Cs ⊗ I)) ˙̃n+ (K + PKs(Cs ⊗ I) + PKγKks(Cs ⊗ I))ñ

= Pw̃ + PKγKpsρ̃. (8.46)

The following equation can be obtained for the open-loop linearized dynamics by substituting

for the ρ̃ = 0:

M¨̃n+ (D + PKγKcs(Cs ⊗ I)) ˙̃n+ (K + PKs(Cs ⊗ I) + PKγKks(Cs ⊗ I))ñ = Pw̃. (8.47)
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8.2.2 Class-K Linearized Dynamics

The linearization of class-K dynamics is not that different from the class-1 dynamics. The only

addition to the previous formulation are linear constraints.

8.2.2.1 Full-order Linearized Dynamics

The linear constraints can be written as:

NP = D, (8.48)

which can be written in vector form as:

An̄ = d, Añ = 0, A = PT ⊗ I, d = vec(D). (8.49)

As the constraints are already linear, they can be easily incorporated in the linearized dynamics

as:

M¨̃n+D ˙̃n+Kñ = P f̃ + ATΩ, (8.50)

where Ω is the lagrange multiplier. The second time derivative of the constraints can be written as:

A¨̃n = 0. (8.51)

substituting the above equation in equation (8.50), we get:

AM−1D ˙̃n+ AM−1Kñ = AM−1P f̃ + AM−1ATΩ, (8.52)
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The above equation can be used to solve for Lagrange multiplier Ω as:

Ω = (AM−1AT)−1
[
AM−1D ˙̃n+ AM−1Kñ− AM−1P f̃

]
. (8.53)

Further substituting back the value of Ω in equation (8.50), we get:

M¨̃n+D ˙̃n+Kñ = P f̃ + AT(AM−1AT)−1
[
AM−1D ˙̃n+ AM−1Kñ− AM−1P f̃

]
. (8.54)

Collecting the terms, we get:

M¨̃n+
(
I − AT(AM−1AT)−1AM−1

)
D ˙̃n+

(
I − AT(AM−1AT)−1AM−1

)
Kñ

=
(
I − AT(AM−1AT)−1AM−1

)
P f̃ , (8.55)

Let us define L ,
(
I − AT(AM−1AT)−1AM−1

)
:

M¨̃n+ LD ˙̃n+ LKñ = LP f̃ . (8.56)

Let us substitute f̃ in terms of w̃ and γ̃ from equation (8.35) as:

M¨̃n+ LD ˙̃n+ LKñ = LPw̃ − LPKss̃− LPKγ γ̃. (8.57)

Using s̃ = (Cs ⊗ I)ñ, the above equation can easily be converted to ñ coordinates as:

M¨̃n+ LD ˙̃n+ L(K + PKs(Cs ⊗ I))ñ = LPw̃ − LPKγ γ̃. (8.58)

Now using γ̃ = Kkss̃+Kcs
˙̃s−Kpsρ̃, and again using s̃ = (Cs ⊗ I)ñ, the above equation can

easily be converted to ñ coordinates as:
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M¨̃n+ L(D + PKγKcs(Cs ⊗ I)) ˙̃n+ L(K + PKs(Cs ⊗ I) + PKγKks(Cs ⊗ I))ñ

= LPw̃ + LPKγKpsρ̃. (8.59)

The following equation can be obtained for the open-loop linearized dynamics by substituting

for the ρ̃ = 0:

M¨̃n+ L(D + PKγKcs(Cs ⊗ I)) ˙̃n+ L(K + PKs(Cs ⊗ I) + PKγKks(Cs ⊗ I))ñ = LPw̃.

(8.60)

8.2.2.2 Reduced-order Linearized Dynamics

Lemma 8.2.2. The reduced-order linearized dynamics of any class-k tensegrity system can be

written as:

Mk
¨̃η2 +Dk ˙̃η2 +Kkη̃2 = Pkw̃ + Bkγ̃, (8.61)

where Mk , V T
2 M1V2,Dk , V T

2 D1V2,Kk , V T
2 K1V2,Pk , V T

2 P1,Bk , V T
2 B1, with some

linear constraints of the form for class-k structure as:

Añ = 0, U

[
Σ1 0

]V T
1

V T
2

 ñ = U

[
Σ1 0

]η̃1

η̃2

 = 0,

implying η̃1 = ˙̃η1 = ¨̃η1 = 0.

Proof:
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Writing the equation (8.31) here again:

M¨̃n+D ˙̃n+Kñ = P f̃ . (8.62)

For Class-K structure we have some constraints of the form:

An̄ = d, Añ = 0. (8.63)

In the presence of these constraints, the new dynamics can be written as:

M¨̃n+D ˙̃n+Kñ = P f̃ + ATΩ. (8.64)

Adding the linear constraints into the dynamics will restrict the motion in certain dimensions,

thus reducing the order of the dynamics to a span a smaller space. To this end, we use the singular

value decomposition (SVD) of matrix A as:

A = UΣV T = U

[
Σ1 0

]V T
1

V T
2

 , (8.65)

where U ∈ RNc×Nc and V ∈ R3n×3n are both unitary matrices, V1 ∈ R3n×Nc and V2 ∈ R3n×(3n−Nc)

are submatrices of V , and Σ1 ∈ RNc×Nc is a diagonal matrix of positive singular values. By

defining

η =

η1

η2

 , V Tñ =

V T
1 ñ

V T
2 ñ

 , (8.66)
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the constraint Equation (8.63) can be modified as:

Añ = UΣV Tñ = U

[
Σ1 0

]η1

η2

 = 0, (8.67)

which implies:

η1 = 0, η̇1 = 0, η̈1 = 0. (8.68)

Here, η1 represents the no-motion space in transformed coordinates. Moreover, η2 will evolve

according to the constrained dynamics in new coordinate system. Using Equations (8.65-8.68), the

dynamics equation (8.64) can be rewritten as:

MV2η̈2 +DV2η̇2 +KV2η2 = P f̃ + V1Σ1U
TΩ, (8.69)

Pre-multiplying the above equation by a non-singular matrix [V1 V2]T will yield two parts,

where second part gives the second order differential equation for the reduced dynamics:

V T
2 MV2η̈2 + V T

2 DV2η̇2 + V T
2 KV2η2 = V T

2 P f̃ + V T
2 V1Σ1U

TΩ,

⇒M2η̈2 +D2η̇2 +K2η2 = P2f̃ . (8.70)

withM2 = V T
2 MV2,D2 = V T

2 DV2, K2 = V T
2 KV2, and P2 = V T

2 P .

Let us substitute f̃ in terms of w̃ and γ̃ from equation (8.35) as:

M2η̈2 +D2η̇2 +K2η2 = P2w̃ − P2Kss̃− P2Kγ γ̃, (8.71)

Using s̃ = (Cs ⊗ I)ñ = (Cs ⊗ I)V2η2, the above equation can easily be converted to ñ
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coordinates as:

M2η̈2 +D2η̇2 + (K2 + P2Ks(Cs ⊗ I)V2)η2 = P2w̃ − P2Kγ γ̃, (8.72)

Mkη̈2 +Dkη̇2 +Kkη2 = Pkw̃ + Bkγ̃. (8.73)

Now using γ̃ = Kkss̃ + Kcs
˙̃s −Kpsρ̃, and again using s̃ = (Cs ⊗ I)V2η2, the above equation

can easily be converted to ñ coordinates as:

M2η̈2 + (D2 + P2KγKcs(Cs ⊗ I)V2)η̇2 + (K2 + P2Ks(Cs ⊗ I)V2 + P2KγKks(Cs ⊗ I)V2)η2

= P2w̃ + P2KγKpsρ̃. (8.74)

The following equation can be obtained for the open-loop linearized dynamics by substituting

for the ρ̃ = 0:

M2η̈2 + (D2 + P2KγKcs(Cs ⊗ I)V2)η̇2 + (K2 + P2Ks(Cs ⊗ I)V2 + P2KγKks(Cs ⊗ I)V2)η2

= P2w̃. (8.75)

This completes the proof.

8.3 Minimal-order linearized system

8.3.1 Class-1 Tensegrity System Dynamics

To generate the minimal order linearized dynamics model for both class-1 and class-k

tensegrity system, we start with the linearized model for the class-1 system given in Eqn. (8.31):

M¨̃n+D ˙̃n+Kñ = P f̃ , (8.76)
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and look for the modes in which the length of the bar is not changing. Let us start by writing the

coordinate transformation from bar coordinates to nodes coordinates as:

ñ =

([
1
2
CT
nbC

T
b 2CT

nbC
T
r CT

ns

]
⊗ I
)

b̃

r̃

r̃s

 , (8.77)

Now, the mode corresponding to the length change for all the bars can be calculated using

r̃ = r̃s = 0 and b̃ = δb̄. This can be understood as :

δn̄ =

([
1
2
CT
nbC

T
b 2CT

nbC
T
r CT

ns

]
⊗ I
)

δb̄

0

0

 . (8.78)

Note that the mode δn̄ represents the motion in the linearized mode where the length of all the

bars are changing by length δ. The modes corresponding to the length change of the ith bar can

be found by extracting the nodes related to that bar to create a δn̄1i ∈ R6×1 vector. Now, we find

5 modes which are perpendicular to this mode corresponding to the ith bar by finding the right

null space for the δn̄T
1i

dimensional vector as δn̄2i = ⊥δn̄T
1i
∈ R6×5. Now, the nodes can be

arranged in their respective order to generate Φ1i ∈ R6β×1 from n̄1i and Φ2i ∈ R6β×5 from n̄2i .

The similar procedure can be done for all the bars to create Φ1 =

[
· · ·Φ1i · · ·

]
∈ R6β×β and Φ2 =[

· · ·Φ2i · · ·
]
∈ R6β×5β . Finally, the coordinate transformation matrix Φ = [Φ1 Φ2] ∈ R6β×6β can

be formulated which spans the entire 6β dimensional space. Also, notice that each column of the

matrix Φ can be scaled to have unit length which will result in the matrix Φ to be orthonormal, i.e.,

Φ−1 = ΦT.

Now, let us transform the coordinates from ñ space to a new space φ space with ñ = Φφ and
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substituting it into Eq. (8.1) to obtain:

MΦφ̈+DΦφ̇+KΦφ = P f̃ , (8.79)

which after multiplying from the left hand side by ΦT can be written as:

ΦTMΦφ̈+ ΦTDΦφ̇+ ΦTKΦφ = ΦTP f̃ . (8.80)

Note that the feasible modes for the dynamics system with rigid bars are corresponding to Φ2

and thus, the physically feasible reduced-order system can be written as:

ΦT
2MΦ2φ̈+ ΦT

2DΦ2φ̇+ ΦT
2KΦ2φ = ΦT

2P f̃ . (8.81)

It was numerically observed that the matrix ΦT
2K1Φ2 was positive definite with feasible modes,

which corresponds to 3 translational and 2 rotational motion for each bar.

8.3.2 Class-K Tensegrity System Dynamics

The linear constraint for the class-k system should be added corresponding to the transformed

coordinates φ to only keep the feasible modes. It was mentioned earlier that the linear constraints

NP = D in the linearized vector form could be written as:

Añ = 0, A = PT ⊗ I, (8.82)

which can now be written in transformed coordinates as:

A2φ = 0, A2 , AΦ2, A = PT ⊗ I. (8.83)

Now, following the same procedure as described earlier, we can write the dynamics in even
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more reduced-order as:

ΦT
2MΦ2φ̈+ ΦT

2DΦ2φ̇+ ΦT
2KΦ2φ = ΦT

2P f̃ + AT
2 Ω. (8.84)

where A2 can be decomposed as:

A2 = UφΣφV
T
φ = Uφ

[
Σ1φ 0

]V T
1φ

V T
2φ

 , (8.85)

and by defining:

ηφ =

η1φ

η2φ

 , V T
φ φ =

V T
1φ
φ

V T
2φ
φ

 , (8.86)

the constraints can be modified as:

A2φ = Uφ

[
Σ1φ 0

]η1φ

η2φ

 = 0, (8.87)

implying:

η1φ = 0, η̇1φ = 0, η̈1φ = 0. (8.88)

Now, the dynamics with the constrained system and no bar length change will evolve as:

ΦT
2MΦ2V2φ η̈2φ + ΦT

2DΦ2V2φ η̇2φ + ΦT
2KΦ2V2φη2φ = ΦT

2P f̃ + V1φΣ1φU
T
φ Ω, (8.89)

and pre-multiplying the above equation by a non-singular matrix [V1φ V2φ ]T will yield two parts,
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where second part gives the second order differential equation for the reduced dynamics:

V T
2φ

ΦT
2MΦ2V2φ η̈2φ + V T

2φ
ΦT

2DΦ2V2φ η̇2φ + V T
2φ

ΦT
2KΦ2V2φη2φ = V T

2φ
ΦT

2P f̃ + V T
2φ
V1φΣ1φU

T
φ Ω,

(8.90)

which can finally be written as:

V T
2φ

ΦT
2MΦ2V2φ η̈2φ + V T

2φ
ΦT

2DΦ2V2φ η̇2φ + V T
2φ

ΦT
2KΦ2V2φη2φ = V T

2φ
ΦT

2P f̃ . (8.91)

This is the final linearized minimal-order dynamics equation for the class-k tensegrity system.

8.4 Information Architecture and Control design using the linearized model

The example for all the different bounds will have the simulation results discussed on the same

tensegrity T1D1 robotic arm with the initial configuration shown in Fig. 8.1.

Figure 8.1: Initial configuration of the tensegrity T1D1 robotic arm.
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8.4.1 Open-Loop response with different performance objectives

8.4.1.1 Bound on L∞ norm of error or GeneralizedH2 Problem

This problem can be solved as a energy to peak gain - Γep [85] or generalizedH2 problem [87].

Γep , sup
‖w‖L2≤1

‖y‖L∞ , (8.92)

Γep = inf
Q
‖CQCT‖1/2 :AclQ+QAT

cl +BclB
T
cl < 0, Q > 0. (8.93)

8.4.1.2 Bound on Covariance in position error

[87, 85] The covariance of the error in the position or velocity of the nodes can be bounded by

bounding the covariance matrix X for the linear system as:

E [yyT] = Y = CXCT < Ȳ , AclX +XAT
cl +BclWBT

cl < 0, X > 0. (8.94)

Figure 8.2: Left: Bound on L∞ norm of error for different values of the scaled prestress. Right:
Bound the covariance error for different values of the scaled prestress.

In Fig. 8.2, the plot on the left shows the bound on L∞ norm of error for the tip for the
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unit energy disturbance applied to all the nodes of T1D1 robotic arm for different values of the

scaled prestress in the strings. As the prestress value increases, the structure becomes stiffer which

reduces the motion of the tip of the arm. The same trend can be observed for the plot on the right

that the covariance bound on error for the tip of T1D1 robotic arm for different values of the scaled

prestress in the strings.

8.4.1.3 Bounded Γie or LQR Problem

This can also be defined as the peak disturbance to energy gain (‖y‖L2) for the system [85] can

be solved with disturbance w as the impulsive disturbance w(t) = w0δ(t):

Γie , sup
w0δ(t)≤1

‖y‖L2 , (8.95)

Γie = inf
P
‖BT

clPBcl‖1/2 :PAcl + AT
clP + CTC < 0, P > 0. (8.96)

8.4.1.4 Bounded Γee orH∞ Problem

The H∞ Problem is defined as [88, 89, 87]: ‖T‖H∞ , supw ‖T (jw)‖ < ε which can also be

understood in time domain analysis as the energy-to-energy gain problem [85]:

Γee , sup
‖w‖L2≤1

‖y‖L2 <ε, (8.97)

PAcl + AT
clP + PBclR

−1(PBcl)
T + CTC < 0, P > 0, R = ε2I > 0. (8.98)

The plots on the left in Fig. 8.3 shows the impulse to energy bound for the error in the tip of

T1D1 robotic arm for different values of the scaled prestress in the strings. The increased stiffness

due to increased prestress reduces the values of Γie. The same trend can be observed for the plot

on the right for the H∞ norm of the system which is also the gain from unit energy disturbance

to energy in the error of the node position for the tip of T1D1 robotic arm. The value for the H∞
norm decreases with the increased prestress.
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Figure 8.3: Left: Γie bound for different values of the scaled prestress. Right: H∞ bound for
different values of the scaled prestress.

8.5 Closed-Loop response with different performance objectives

8.5.1 Information Architecture Design

This subsection is taken from the following paper by Li and Skelton [94]. A major direction

of research is to extend control theory to include Information Precision and Architecture in control

design, and to show the tractability of integrating the design of information precision and control.

This enlarges the set of solved linear control problems, from solutions of linear controllers with

sensors/actuators prespecified, to solutions which specify the sensor/actuator requirements jointly

with the control solution [94]. Let us consider the linear control system:


ẋ

y

z

 =


A Dp B

Cy Dy By

Cz Dz 0



x

w

u

 ,
 u
ẋc

 =

Dc Cc

Bc Ac


 z
xc

 = G

 z
xc

 . (8.99)

Suppose that Dy = 0, By = 0, Dp = [Dpn Da 0], and Dz = [0 0 Ds]. The vector

wT =

[
wTp wTa wTs

]
contains process noise wp, actuator noise wa, and sensor noise ws. These

disturbances are modeled as independent zero mean white noises with intensities Wp, Wa, and Ws,

respectively. The process noise intensityWp was assumed to be known and fixed. The actuator and
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sensor precisions are defined as the inverse of the noise intensity (or variance in the discrete-time

case) in each channel as:

diag(γa) , Γa , Wa
−1, diag(γs) , Γs , Ws

−1. (8.100)

It was also assumed that the price of each actuator/sensor is proportional to the precision

associated with that instrument. Therefore, the total cost of all actuators and sensors is:

$ = pTa γa + pTs γs, (8.101)

where pa and ps are vectors containing the price per unit of actuator precision and sensor precision,

respectively.

Theorem 8.5.1. [94] Let $̄ represent the budget; the allowed upper bound on sensor/actuator

costs, and γ̄a and γ̄s represent the limit on available precisions of actuators and sensors. Then,

there exists a dynamic controller G and choices of sensor/actuator precisions Γs,Γa that satisfy

the constraints:

$ < $̄, γa < γ̄a, γs < γ̄s, E[uuT ] < Ū, E[yyT ] < Ȳ , (8.102)

if and only if there exist matrices L, F,Q,X,Z, and vectors γa, and γs such that the following

LMIs are satisfied:

pTa γa + pTs γs < $̄, γa < γ̄a, γs < γ̄s, (8.103)
Ȳ CyX Cy

(CyX)T X I

Cy
T I Z

>0,


Ū L 0

LT X I

0 I Z

 >0,

Φ11 Φ12

ΦT12 Φ22

 < 0, (8.104)
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Φ11 = φ+ φT , φ =

AX +BL A

Q ZA+ FCz

 , (8.105)

Φ12 =

 Dpn Da 0

ZDpn ZDa FDs

 , Φ22 =


−WP

−1 0 0

0 −Γa 0

0 0 −Γs

 . (8.106)

Note that the matrix inequalities (8.103)–(8.106) are LMIs in the collection of variables

(L, F,Q,X,Z, γa, γs), hence, the joint control/sensor/actuator design is a convex problem. After a

solution (L, F,Q,X,Z, γa, γs) is found using the LMIs (8.103)–(8.106), then, the problem (8.102)

is solved for the controller as:

G =

 0 I

V −1
l −V −1

l ZB


Q− ZAX F

L 0


0 V −1

r

I −CzXV −1
r

 , (8.107)

where Vl and Vr are left and right factors of the matrix I − ZX (which can be found from the

singular value decomposition I − ZX = UΣV T = (UΣ1/2)(Σ1/2V T ) = (Vl)(Vr)).

8.5.1.1 Result for T1D1 Robotic Arm with full state feedback

This subsection provides the results with disturbance as zero mean white noise applied to all

the nodes and output as the tip of the T1D1 robotic arm. The plots are generated for process noise

covariance of Wp = 0.01N and actuator and sensor precision bound γ̄a = γ̄s = 1000 with 1$ price

for unit precision value.

Figure 8.4 shows the plots for output covariance Ȳ for the different values of input covariance

bounds. Ten different curves are shown for different values of price bounds $̄. It can be observed

from the figure that increasing the bound on available control reduces the covariance bound on

output. The same is observed for relaxing the budget constraint as more precise sensors and

actuators can be used to control the covariance.
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Figure 8.4: The plots between Ȳ and Ū for different values of $̄ with both position and velocity of
all the nodes available for feedback.

Figure 8.5: The plots between actuator/sensor precision γa/γs and Ū for different values of $̄ with
both position and velocity of all the nodes available for feedback.

Figure 8.5 shows the plots for the total price of actuators and the total price of sensors for

different bounds on the control input. It is obvious that both the prices for actuators and sensors

will increase with the increase in budget constraints. However, one interesting observation was

that the price for actuators decreases with an increase in Ū , and the price for sensors increases with

an increase in Ū . It can be explained as with higher control capability, more precision is required

on measurement as compared to precise actuation.
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8.5.1.2 Result for T1D1 Robotic Arm with only position as feedback

Figure 8.6 shows the plots for Ȳ and Ū for different values of $̄ with only position of all the

nodes available for feedback. Note that the bound on the output covariance has increased due to

less measurement information available for feedback. The same trend of decrease in output bound

with relaxed input and budget constraint is observed here also.

Figure 8.6: The plots between Ȳ and Ū for different values of $̄ with only position of all the nodes
available for feedback.

Figure 8.7 shows the plots for the total price of actuators and plots for the total price of

sensors for different bounds on control input with only position available as feedback. A similar

observation that the price for actuators decreases with an increase in Ū and price for sensors

increases with an increase in Ū was also observed here.

Table 8.1 provides the result for sensor precision with least price required to bound the output

and input covariance as Ȳ = 0.1 and Ū = 0.1, respectively. The table provides the precision

value with only positions available for the feedback. The precision value is given for all the nodes

and along all the three axes. The most precise sensor is required for the position of the tip of

the robotic arm which is the output to be controlled. Table 8.2 gives the precision values for the

actuation of the strings. The highest precision is required for the strings - 4,5, and 6, which are

222



Figure 8.7: The plots between actuator/sensor precision γa/γs and Ū for different values of $̄ with
only position of all the nodes available for feedback.

Table 8.1: Sensor Precision for the measurement of position of x, y and z coordinates of all the
nodes except nodes n1, n7, n8, n9 (refer to Fig.8.1).

n2 n3 n4 n5 n6 n10 n11 n12 n13 n14 n15
x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
y 135.74 20.51 20.51 8.16 8.16 0.00 8.73 8.73 0.00 25.98 25.98
z 137.26 33.12 7.10 9.43 9.43 12.56 0.00 0.00 41.54 0.00 0.00

directly connected to node 2. The least precision is required for the strings - 7,8, and 9, which are

required only to globally stabilize the T-bar part of the T1D1 robotic arm.

8.6 Integrating Structure, Information Architecture and Control Design

A continuous linear time-invariant system is described by the following descriptor state-space

representation:

E(α)ẋ = A(α)x+Bu+Dp(α)wp +Da(α)wa, (8.108)

y = Cy(α)x, (output) (8.109)

z = Czx+Dsws, (measurement) (8.110)
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Table 8.2: Actuator Precision for all the strings (refer to Fig.8.1).

Str No. γa Str No. γa Str No. γa Str No. γa
1 38.09 7 9.16 13 10.44 19 31.23
2 37.54 8 9.18 14 13.85 20 30.46
3 37.54 9 9.16 15 10.44 21 30.46
4 68.49 10 43.93 16 63.22 22 34.49
5 67.34 11 43.26 17 70.42 23 34.08
6 67.34 12 43.26 18 63.22 24 34.08

where x ∈ Rn is the state of the system, u ∈ Rm is the control vector, y ∈ Rp is the output of

the system, z ∈ R` denotes the measurement vector, and wi for i = a, s, p are noisy inputs to

the system. The vector α consists of generalized variable structure parameters that can be treated

as decision variables in the system design problem. It is assumed that the following matrices

are affine in the parameters α: A(α), E(α), Dp(α), Da(α) and Cy(α). Note that in a typical

second-order system, it is paramount to adopt the descriptor representation in order to preserve

the affine property of the system mass matrix. The matrix E(α) is also assumed to be full rank.

In the above model (8.108-8.110), the actuator noise is defined by wa, sensor noise by ws, and

ambient process noise by wp. These vectors are modeled as independent zero mean white noises

with intensities Wa, Ws and Wp, respectively, i.e.:

E∞(wi) = 0, (8.111)

E∞(wiw
T
i ) = Wiδ(t− τ), (8.112)

where i = a, s, p, and E∞(x) = limt→∞ E(x) which denotes the asymptotic expected value of the

random variable x. We assume the process noise intensity Wp to be known and fixed. The actuator

and sensor precisions are defined to be inversely proportional to the respective noise intensities.

Γa , W−1
a , Γs , W−1

s . (8.113)
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We also define the vectors γa and γs such that:

Γa , diag(γa), Γs , diag(γs). (8.114)

As defined in [94], we associate a price to each actuator/sensor that is inversely proportional to the

noise intensity associated with that instrument. In this work, prices associated with the structure

parameters are also considered. Therefore, the total design price can be expressed as:

$ = pTaγa + pTs γs + pTαα, (8.115)

where pa, ps and pα are vectors containing the price per unit of actuator precision, sensor precision

and price per unit of structure parameter, respectively. Now, the problem to be solved is defined

as:

Design a dynamic compensator of the form:

ẋc = Acxc +Bcz,

u = Ccxc +Dcz,

(8.116)

and simultaneously select the structure parameter values, appropriate actuator and sensor

precisions such that the following constraints are satisfied:

$ < $̄, γa < γ̄a, γs < γ̄s, ᾱL < α < ᾱU ,

E∞(uuT) < Ū, E∞(yyT) < Ȳ

(8.117)

for given $̄, Ū , Ȳ , γ̄a, γ̄s, ᾱL, and ᾱU .

8.6.1 Solution to the Dynamic Compensation Problem

Theorem 8.6.1. Let a continuous time-invariant linear system be described by the descriptor state

space equation (8.108), the output equation (8.109) and the measurement equation (8.110). There

exist controller matricesAc,Bc, Cc and structure parameters α such that the cost and performance
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constraints (8.117) are satisfied, if and only if for some constant matrix G, there exists a symmetric

matrix Q, vectors γa, γs and α such that the following LMIs are satisfied:

pTaγa + pTs γs + pTαα < $̄, (8.118)

γa < γ̄a, γs < γ̄s, (8.119)

ᾱL < α < ᾱU , (8.120) Ū Mcl

MT
cl Q

 > 0,

 Ȳ Ccl

CT
cl Q

 > 0, (8.121)



(?) Bcl Acl Ecl

BT
cl −W−1 0 0

AT
cl 0 −Q 0

ET
cl 0 0 −Q


< 0, (8.122)

where

(?) = −(Acl − Ecl)GT −G(Acl − Ecl)T +GQGT,

W =


Wp 0 0

0 Wa 0

0 0 Ws

 , Acl =

A(α) BCc

BcCz Ac

 ,

Ecl =

E(α) 0

0 In

 , Bcl =

Dp(α) Da(α) 0

0 0 BcDs

 ,
Ccl =

[
Cy(α) 0

]
, Mcl =

[
0 Cc

]
,

and In is a n× n identity matrix.

Proof. Let us define the augmented vector x̃ and w as:

x̃T =

[
xT xTc

]
, wT =

[
wT
p wT

a wT
s

]
. (8.123)
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The closed loop dynamics for the state x̃ can be written in the descriptor representation form along

with the output and control equations as:

Ecl ˙̃x = Aclx̃+Bclw, (8.124)

y = Cclx̃, (8.125)

u = Mclx̃+ Fclw, (8.126)

where all the close loop matrices can easily be obtained from the system equations (8.108-8.110)

and controller equations (8.116).

Defining Ācl = E−1
cl Acl and B̄cl = E−1

cl Bcl and rearranging equation (8.124) gives:

˙̃x = Āclx+ B̄clw. (8.127)

It is a standard result that the above closed loop system is stable if and only if there exists a positive

definite symmetric matrix X such that:

ĀclX +XĀT
cl + B̄clWB̄T

cl < 0. (8.128)

Multiplying the inequality (8.128) from left by Ecl and from right by ET
cl yields:

AclXE
T
cl + EclXA

T
cl +BclWBT

cl < 0. (8.129)

Applying Schur’s complement on (8.129) gives:

AclXET
cl + EclXA

T
cl Bcl

BT
cl −W−1

 < 0. (8.130)

It can be shown that after substitution of Ecl, Acl and Bcl, inequality (8.130) does not form an

LMI since it is not affine in the decision variables Ac, Bc, α, etc. On completing the squares, the
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inequality (8.130) can be rewritten as:


AclXA

T
cl + EclXE

T
cl

− (Acl − Ecl)X(Acl − Ecl)T
Bcl

BT
cl −W−1

 < 0. (8.131)

Defining δ , (Ac, Bc, Cc, γa, γs, α,Q), Q , X−1, and applying Schur’s complement, we can

write the inequality (8.131) as:

F(δ) ,



(•) Bcl Acl Ecl

BT
cl −W−1 0 0

AT
cl 0 −Q 0

ET
cl 0 0 −Q


< 0, (8.132)

where (•) = −(Acl − Ecl)X(Acl − Ecl)
T. Note that F(δ) is not an LMI. Let us introduce the

convexifying algorithm Lemma to write a new LMI.

Lemma 8.6.1. Convexifying Algorithm Lemma. Let δ, η belong to a convex set φ, and F(δ)

be a first order differentiable non-convex matrix function. A convexifying potential function is

a first order differentiable function G(δ, η) such that the function F(δ) + G(δ, η) is convex in δ

for all δ, η ∈ φ. Thus, if F(δ) satisfies certain conditions, a stationary point of the non-convex

optimization problem

δ̄ = arg min
δ∈Ω

f(δ), Ω = {δ ∈ φ|F(δ) < 0}, (8.133)

can be obtained by iterating over a sequence of convex subproblems given by

δ̄k+1 = arg min
δ∈Ωk

f(δ),Ωk = {δ ∈ φ|F(δ) + G(δ, δk) < 0}. (8.134)

To ensure that the optimality conditions of both optimization problems (8.133) and (8.134) are

identical, the potential function G should be non-negative definite with G(δ, η) = 0 if and only if
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δ = η.

Remark 8.6.1. The previous Lemma is proven and discussed in further detail in [103]. Although

the Convexifying Algorithm will converge to a stationary point, a global solution is not guaranteed.

To use the previous Lemma, let us define the matrix G as:

G(η) , (Acl − Ecl)X, (8.135)

and the convexifying potential function as:

G(δ, η) ,

(∗) 0

0 0

 , (8.136)

(∗) = (Acl − Ecl −G(η)Q)X(Acl − Ecl −G(η)Q)T,

G(δ, η) ≥ 0, (8.137)

The matrix function F(δ) + G(δ, η):



(?) Bcl Acl Ecl

BT
cl −W−1 0 0

AT
cl 0 −Q 0

ET
cl 0 0 −Q


< 0, (8.138)

where (?) = −(Acl −Ecl)GT −G(Acl −Ecl)T +GQGT, is convex, where the dependency of the

matrix G on η is omitted for brevity. The function G(δ, η) satisfies the convexifying assumptions

since it is positive semidefinite and G(δ, η) = 0 if and only if δ = η. Furthermore, using Lemma

(8.6.1), it can be shown that any solution to (8.138) will also satisfy (8.132) [103].

The second constraint of the constraint set (8.117) can be evaluated by substituting in the
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expression for the control law (8.126) given by:

E∞(uuT) = E∞((Mclx̃)(Mclx̃)T) + E∞((Fclw̃)(Fclw̃)T), (8.139)

E∞(uuT) < Ū, (8.140)

MclXM
T
cl+FclWFT

cl < Ū. (8.141)

The second term can grow unbounded if Fcl 6= 0. Hence, substituting for Fcl = 0 in the above

equation gives:

MclXM
T
cl < Ū and Dc = 0 (Ds is full rank). (8.142)

and applying Schur’s complement to first term results in left inequality of equation (8.121). It is

then straightforward to show that the last constraint of (8.117) is satisfied if and only if

CclXC
T
cl < Ȳ . (8.143)

Applying Schur’s complement to this inequality results in (8.121). Finally, first four constraints in

(8.117) are first four inequalities of Theorem 8.6.1.

Remark 8.6.2. Assume that γ̄a and γ̄s are dictated by the marketplace. Let four parameters out of

the set (ᾱL, ᾱU ,$̄, Ū , Ȳ ) be hard constraints and let the fifth parameter, denoted z̄, be any value for

which the LMIs of Theorem 8.6.1 are feasible. The following iterative algorithm takes advantage

of Lemma 8.6.1 to find an extrema for z̄ (a minimum if z̄ = ᾱU , $̄, Ū , Ȳ or a maximum if z̄ = ᾱL).

Extrema-Finding Algorithm using the Convexifying Potential Function

• Set fixed nominal values for z̄0 and α0. Compute controller matrices Ac,0, Bc,0, Cc,0,

precision vectors γa,0, γs,0 and inverse covariance matrix Q0 according to [94] or some

alternative method. Set ε to some prescribed tolerance and k = 0

• Repeat: Set Gk ← (Acl(αk)− Ecl(αk))Q−1
k
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-For fixed G = Gk, find the extrema of z̄ for which the LMIs of Theorem 8.6.1 are feasible

-Denote the solution (z̄k+1, αk+1, Ac,k+1, Bc,k+1, Cc,k+1,γa,k+1, γs,k+1,Qk+1)

-Set k = k+1

• Until: ‖z̄k − z̄k−1‖ < ε

8.7 State Feedback Problem

8.7.1 Problem Statement

Consider the situation where full-state feedback is available for measurement. The system can

now be described as:

E(α)ẋ = A(α)x+Bu+Dp(α)wp +Da(α)wa, (8.144)

y = Cy(α)x, (output) (8.145)

As there is no measurement noise, the total design price is expressed as:

$ = pTaγa + pTαα. (8.146)

The state feedback problem can now be defined as:

Design a state feedback controller u = −Kx and simultaneously select the structure

parameters and the actuator precisions such that the following constraints are satisfied:

$ < $̄, γa < γ̄a, ᾱL < α < ᾱU , E∞(uuT) < Ū,E∞(yyT) < Ȳ , (8.147)

for given $̄, Ū , Ȳ , γ̄a, ᾱL, and ᾱU .

8.7.2 Solution to the State Feedback Problem

Lemma 8.7.1. Let a continuous time-invariant linear system be described by the descriptor state

space equation (8.144) and the output equation (8.145). There exists a controller gain K and

structure parameters α such that the cost and performance constraints (8.147) are satisfied if and

231



only if for some constant matrix G there exists a symmetric matrix Q and vectors γa and α such

that the following LMIs are satisfied:

pTaγa + pTαα < $̄, (8.148)

γa < γ̄a, ᾱL < α < ᾱU , (8.149) Ū K

KT Q

 > 0,

 Ȳ Cy(α)

Cy(α)T Q

 > 0, (8.150)



(?) Bcl Acl E(α)

BT
cl −W−1 0 0

AT
cl 0 −Q 0

ET(α) 0 0 −Q


< 0, (8.151)

where

(?) = −(Acl − E(α))GT −G(Acl − E(α))T +GQGT,

W =

Wp 0

0 Wa

 , Acl = A(α)−BK,

Bcl =

[
Dp(α) Da(α)

]
.

Remark 8.7.1. The proof is excluded as it follows very closely with Theorem 8.6.1.

8.8 Tensegrity Formulation in Descriptor Form

Equation (8.61) for a class-k tensegrity structure can be represented in the following descriptor

form: I 0

0 Mk


η̇2

η̈2

 =

 0 I

−Kk −Dk


η2

η̇2

+

 0

Fk

w +

 0

Bk

 γ +

 0

Bk

wa. (8.152)

Equation (8.152) can also represent class-1 dynamics when the subscript ‘k’ is omitted from
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Mk,Dk,Kk,Bk,Fk, and η̃2 is replaced by ñ. In this problem formulation, we define the control

input to be force density in the strings (u = γ), process noise to be (wp = w), actuator noise to

be wa (same coefficient matrix), and structure parameter to be initial prestress or force density at

equilibrium condition (α = γ̄). It is to be noted that Kk(γ̄) is affine in initial prestress value γ̄ as:

Kk(γ̄) = V T
2 T TPbrT (CT

s ⊗ I) ̂(γ̄ ⊗ 1)(Cs ⊗ I)V2 + V T
2 T TKbr(f̄ , b̄,

˙̄b)T V2,

where Kbr(f̄ , b̄,
˙̄b) can also be written as some affine function of γ̄ as Kbr(f̄ , b̄,

˙̄b) = Gγ̄.

Comparing it to system equation (8.108) in chapter 3, we see only system matrix A(α) to be

dependent on structure parameter.

8.9 IASD Examples

8.9.1 A 3-story building example

Figure 8.8: 3-Story Building Model

To illustrate the proposed concept of simultaneous optimization of the structure, information

architecture, and control, we provide an example of a civil engineering structure. The idea is to

design a three-story building to sustain an earthquake of given intensity with active or passive

control. The building is modeled as a spring-mass-damper system with all springs, masses, and

dampers as variable structure parameters, as shown in Fig. 8.8. The prestressed cables provide the
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actuation force on three masses. The dynamics of the system can be written as:

I 0

0 M


ẋ
ẍ

 =

 0 I

−K −C


x
ẋ

+

 0

Bu

u+

 0

M

wp +

 0

Bu

wa.
where

K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3

 , Bu =


−1 1 0

0 −1 1

0 0 −1

 .

M = diag(m1,m2,m3) and C can be written identical to K. The control input is a vector of

tensions in the cables u = [t1 t2 t3]T and the disturbance due to earthquake (at acceleration level)

is modeled as a zero-mean white noise with intensity Wp = 1 m2/s4, which multiplied by M =

[m1 0 0]T gives disturbance force transferred to the first floor due to earthquake. The output and

measurement equations can be written as:

y =

[
x1 x2 − x1 x3 − x2 ẋ1 ẋ2 − ẋ1 ẋ3 − ẋ2

]T

y = cy

x
ẋ

 , z =

x
ẋ

+ Iws. (8.153)

where output to be minimized is the relative displacement and relative velocity between

consecutive floors. We assume all the states are available for measurement with noisy sensors.

Constraints used for this example are ᾱL = 0.2α0, ᾱU = 3α0, γ̄a = 1e4, γ̄s = 1e4, pa = ps =

pα = 20.

8.9.1.1 Active to Passive Control

First, we show that minimum control required to bound the output covariance with a

given budget constraint constantly decreases while optimizing structure parameters. The output

covariance constraint is assumed to be E∞(y2
i ) = 0.01 m2 for i = 1, 2, 3 and E∞(y2

i ) = 0.1 m2/s2
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for i = 4, 5, 6. Fig. 8.9 shows the variation in structural parameters, when started from nominal

values, and decrease in active control during optimization iterations. The required active control

decreases from Ū = 4.5e4 N2 to Ū = 3.5e4 N2 when only springs and dampers are considered as

optimization variable.

Figure 8.9: Variation in structure parameters with constant mass and required active control. (Ȳ =
diag(.01, .01, .01, .1, .1, .1), $̄ = 1e5).

Second, we assume all the structure parameters to be variables. Fig. 8.10 shows that the control

required goes to zero with the optimized structure parameters. The structure can now sustain the

earthquake with new passive design i.e., without any control.

8.9.1.2 Trade-off Analysis

The minimum cost required to achieve given output and control covariance is calculated along

with the optimized structural parameters. Fig. 8.11 shows the variation in cost and structure

parameters value during optimization iterations. As there are prices associated with all the structure

parameters, their values go to their respective minimum bound to reduce dollar value. Basically,

the algorithm fills up the upper bound on performance and control constraints by reducing the

parameters and precisions values, which in turn reduces the total cost.

Finally, Fig. 8.12 shows the decrease in required cost as we relax the output covariance bound
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Figure 8.10: Variation in all structure parameters and transition from active to passive control.
(Ȳ = diag(.01, .01, .01, .1, .1, .1), $̄ = 1e5).

for a fixed control requirement. The sensor and actuator precision also monotonically decreases by

relaxing the performance constraints. Also, note that more precise measurements are needed for

displacement and velocity of the first floor as compared to other floors. A similar decreasing trend

in dollar value was observed while relaxing the control covariance bound and fixing the output

constraint.

8.9.2 Tensegrity Example - 2D lander

For a given 2D tensegrity structure shown in Figure 8.13, this section optimizes the optimal

prestresses in each string, precisions of sensors and actuators, and matrices corresponding to the

dynamic controller for covariance control. The bars are shown in black, and the strings are shown

in red. The example is inspired by a tensegrity lander where the point mass (node 5) is the payload

to capture the images, and the two bars are fixed to ground depicting the lander in the landed

position.

The mass for both the bars are assumed to bemb = 1Kg and the mass for point mass is assumed

to be ms = 0.5Kg. The tensegrity dynamics is linearized about the equilibrium configuration

(corresponding to Figure 8.13) with prestress values of α0 = γ̄ = [1, 2.76, 1, 1, 1, 1, 1]T and no

external force. The disturbances come from the external force which is modeled as a zero-mean

white noise with intensity Wp = 1N2. The disturbances are present only on nodes 2, 3, and 5. All
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Figure 8.11: Variation in all structure parameters and price value.
(Ū = 1e5, Ȳ = diag(.01, .01, .01, .1, .1, .1)).

Figure 8.12: Variation in sensor and actuator precision and price value. (Ū = 1e5, $̄ = 1e5).

seven strings are actuated to control the structure. The output to be bound is the displacement of

payload (node 5) in x and y-direction.

y =

n5x

n5y

 = Cy

η2φ

η̇2φ

 , Cy =

[
0 I

]
Φ2V2φ

[
I 0

]
, (8.154)

and the measurements are the positions and velocity of nodes 2, 3, and 5 (nodes 1 and 4 are fixed
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Figure 8.13: 2D Tensegrity Lander

to ground).

z = Cz

η2φ

η̇2φ

+ Iws, Cz =

Φ2V2φ 0

0 Φ2V2φ

 . (8.155)

Some values assumed for this example are ᾱL = 0.1α0, ᾱU = 10α0, γ̄a = γ̄s = 1e3, pa = ps = 2,

and pα = 10.

The surface plot in Figure 8.14 shows the variation in budget requirement $̄ as we change the

input covariance bound Ū and output covariance bound Ȳ . The required budget monotonically

decreases with a more relaxed performance constraint for all values of control input bounds. The

same decreasing trend in budget follows as we increase the control input bound. This variation is

small showing the relatively less strict nature of control covariance bound.

Figure 8.15(a) shows the decreasing variation in the prestress required for all strings as we

increase the output covariance bound while maintaining the same control input Ū . Basically, less

prestress is required for relaxed performance constraints. The result shows that strings 1 and 3

have the same prestress values and variations. This can be understood from the symmetry of the

structure. Similarly, strings 4, 5, 6, and 7 follow the same trend. Notice that the optimization

requires strings 4, 5, 6, and 7 to have high prestress value as these strings are directly connected

238



Figure 8.14: A surface plot of the variation in budget with input-Ū and output-Ȳ .

to the payload. Figure 8.15(b) shows the effectiveness of the algorithm as the price converges in

about 20 to 30 iterations. The 10 different lines in the plot represent different values of performance

constraints Ȳ = (0.02 m2 to 0.04 m2).

The variation in required sensor precision with varying output bound Ȳ is shown in Figure

8.16(a). The sensors corresponding to ṅ2x and ṅ3x overlaps because of symmetry. Similarly, ṅ2y

and ṅ3y overlaps. As the output to be bounded is the displacement of node 5 in x and y-direction,

higher precision is required for ṅ5x and ṅ5y. The figure shows that less precision on sensors

and actuators is required for relaxed performance requirements. Figure 8.16(b) shows that more

precision is required on strings 4, 5, 6, and 7 as these strings are directly connected to the payload.

8.9.3 Tensegrity Beam Example

For a given 2D tensegrity structure shown in Figure 8.17, this section optimizes the optimal

prestresses in each string, precisions of sensors and actuators, and matrices corresponding to

the dynamic controller for covariance control. The bars are shown in black, and the strings are

shown in red. The mass for both the bars are assumed to be mb = 1Kg and the mass for point

mass is assumed to be ms = 0.5Kg. The tensegrity dynamics is linearized about the equilibrium
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Figure 8.15: (a)Variation in the optimal prestress with Ȳ . (b) Convergence of minimum price
required. Ū = 104 N2/m2 for all 7 strings.

configuration (corresponding to Figure 8.17) with minimum prestress values of γ̄ = 100 and no

external force. The disturbances come from the external force which is modeled as a zero-mean

white noise with intensity Wp = 1N2. The disturbances are present on all the nodes with all strings

as potential actuators. The output to be bound is the top node at the far right of the beam (node 10)

in x and y-direction.

y =

n10x

n10y

 = Cy

η2φ

η̇2φ

 , Cy =

[
0 I

]
Φ2V2φ

[
I 0

]
, (8.156)

and the measurements are the positions and velocity of all the nodes except nodes 1 and 2 as these

nodes are fixed to ground.

z = Cz

η2φ

η̇2φ

+ Iws, Cz =

Φ2V2φ 0

0 Φ2V2φ

 . (8.157)

Some values assumed for this example are ᾱL = 0.1α0, ᾱU = 10α0, γ̄a = γ̄s = 1e3, pa = ps = 1,

and pα = 10.
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Figure 8.16: (a)Variation in the required sensor precision. (b) Variation in the required actuator
precision.

The surface plot in Figure 8.18 shows the variation in budget requirement $̄ as we change the

input covariance bound Ū and output covariance bound Ȳ . The required budget monotonically

decreases with a more relaxed performance constraint for all values of control input bounds. The

same decreasing trend in budget follows as we increase the control input bound. This variation is

small showing the relatively less strict nature of control covariance bound.

Figure 8.19 shows the contour curve for the variation in input-Ū and output-Ȳ . The figure

shows the decreasing values of the prestress required for all strings as we increase the output

covariance bound while maintaining the same control input Ū , or to reduce the output covariance

more prestress is required in the structure. Basically, less prestress is required for relaxed

performance constraints. The increase in prestress with relaxed input covariance can be understood

due to less precision required on actuator and sensor, hence more money can be spent on pre-stress.

Figure 8.20 shows the total sensor precision and actuator precision with variation in input-Ū

and output-Ȳ . It can be observed that less precision on sensors and actuators is required for relaxed

performance requirements along both the axes for output Ȳ and input Ū . This can be simply

related to less budget requirement for the relaxed performance and control energy requirement

from Fig. 8.18.
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Figure 8.17: 2D Tensegrity Beam

Table 8.3: Sensor Precision for the measurement of velocity of x and y coordinates of all the nodes
(refer to Fig.8.17).

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
x 0.00 0.00 5.49 12.75 8.75 17.47 12.31 46.59 13.61 164.17
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 73.24 155.39

The required sensor precision for output bound Ȳ = 0.02 and input bound Ū = 1.2 is given in

Tables (8.4 and 8.3). The position sensors needs measurement only for the node that have output

performance specified n10x, n10y. However, for the velocity measurement, considerable precision

is required to measure x-axis of all the nodes except the right most nodes and both x and y axis for

the right most nodes, ṅ9x, ṅ9y, ṅ10x, ṅ10y.

Table 8.5 gives the required precision values for all the actuators to achieve the performance

bound of Ȳ = 0.02 with input constraint of Ū = 1.2. The table shows higher precision is required

on strings 8, and 12 as these strings are directly connected to the output node and least precision is

required for strings 9,10, and 11 as these strings do not directly affect the motion of the node n10.
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Figure 8.18: The surface plot of the variation in budget with input-Ū and output-Ȳ .

Table 8.4: Sensor Precision for the measurement of position of x and y coordinates of all the nodes
(refer to Fig.8.17).

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10
x 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 144.92
y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 76.06

8.10 Conclusion

In the first part of this chapter, the nonlinear dynamics for the tensegrity system is linearized

about an equilibrium position, and the modes corresponding to bar length change are removed to

make the system physically realizable. The robust linear control theory was used to actively reject

the noises and disturbances using the standard H∞, generalized H2 formulation. Moreover, the

precision of the actuators and sensors (information architecture) along with the controller is also

solved for the covariance control problem. All the examples are shown on a T1D1 tensegrity robotic

arm system. With the fixed structural parameters, the above-mentioned problem was proved to be
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Figure 8.19: The contour plot for the prestress value with variation in input-Ū and output-Ȳ .

Table 8.5: Actuator Precision for all the strings (refer to Fig.8.17).

Str No. 1 2 3 4 5 6
γa 168.22 173.29 113.03 203.72 182.25 240.43
Str No. 7 8 9 10 11 12
γa 104.17 597.00 24.46 43.92 74.53 200.21

convex having a globally optimal solution.

In the last half of this chapter, a novel system-level design approach by the simultaneous

selection of control law, instrument precision, and structure parameters is developed. The system

dynamics is assumed to be linear along with the free structural parameters. A dynamic controller

is generated to bound the covariance of inputs and outputs with the precision of the sensors

and actuators as the optimization variable. The problem is set as a feasibility problem, where

matrix upper bounds are specified for the covariance of selected outputs and the covariance of

the control signals. Specified upper bounds on the available precision of sensors/actuators and

structural parameters are also given. The covariance control problem is formulated in the LMI

framework where the combined optimization for structure parameter, sensor/actuator precision,
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Figure 8.20: The contour plot for the total sensor precision and actuator precision with variation in
input-Ū and output-Ȳ .

and control law was found to be a non-convex problem. The nonlinear matrix inequalities

constraints were approximated as linear matrix inequalities by adding a convexifying potential

function. A sub-optimal solution was achieved by iterating over the approximated convex problem.

Results are provided for both dynamic compensation and full state feedback controller design.

The tensegrity paradigm was used to integrate the structure and control design along with the

information architecture. The linearized tensegrity dynamics model was used with initial prestress

in the strings as a free structure parameter which appears linearly in the system matrices. The

force density in the strings is used as the control input. This chapter may be used to design

passive structures by reducing the level set of control covariance (to zero) while holding the

output covariance constraint as shown in the example. Trade-off analysis provided between cost

vs. control energy and performance requirement showed that as performance and control energy

constraints are relaxed, tighter budget constraints are achievable. Tensegrity examples were used

to show the effectiveness of the developed results. The example results provide the knowledge on

price estimate, what initial prestress to choose, where to put more precise sensors/actuators and the

controller parameters.
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9. CONCLUSIONS AND CONTRIBUTIONS OF THE DISSERTATION

Tensegrity was chosen to be the paradigm to connect the structure and control because of its

several advantages explained earlier. The approach here is to make little progress in individual

domains and then finally integrate the domains to yield a system design formulation.

The first contribution the proposed research is to design minimum mass tensegrity

structures for compressive loading conditions. First, we design the structure according to

a given application. The design requirement can be to minimize the mass of the structure or

store mechanical energy while minimizing the mass of the structure. A detailed study of the

minimum mass tensegrity structures designed to take compressive loads was done. The optimal

configuration for tensegrity T-bar and D-bar structures were studied considering both local and

global failures. The calculation for the optimal configuration includes optimal complexity, angle,

and cross-sectional area for each member of the structure. Tensegrity D-bar structure was also

studied as a lightweight impact structure where most of the impact energy was stored in the elastic

strings to reduce the high impulse of the collision. The proposed research provides a general

approach to design a structure based on optimizing mass, stiffness or mechanical energy stored in

a tensegrity structure.

The second contribution of the proposed research is to develop the dynamics of any

tensegrity structure. After designing the structure to optimize some mechanical properties based

on static calculation, one needs to perform the dynamic simulation to understand the behaviour of

the structure in the presence of dynamic loading. This research provides a second-order matrix

differential equation that simulates the dynamics of any tensegrity structure. A reduced-order

model was also developed for class-k tensegrity structures making the model more accurate and

computationally efficient. The formulation also considers massive strings and opens an avenue to

study tensegrity membrane structures. An extra degree of freedom was also added to the control of
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the tensegrity structure by adding wheels to the rigid bars. The dynamics for this novel gyroscopic

tensegrity system was developed with proof of concept using a small bench top experimental

setup. A Matlab based tensegrity software is also developed as part of the proposed research.

The third contribution is to develop the control algorithm to change the shape of the

structure. In this chapter, a control algorithm is written that allows us to change the shape of any

class of tensegrity structure. The reduced-order model of tensegrity dynamics is used to control

the node position of any class-k tensegrity structure. The algorithm also allows to control the

positions, velocity and acceleration of any number of nodes and in any particular direction. A

TnD1 tensegrity robotic arm was used to provide all the results. The shape control of gyroscopic

tensegrity system is further discussed to shows the rotation of D-bar about its own axis which

was not possible with the standard tensegrity system control. A Linear Matrix Inequality (LMI)

framework is then used to calculate control gains to bound errors for five different types of control

problems for given disturbance statistics.

The final objective is to integrate structure, control and information architecture. To

integrate the disciplines, we start by realizing a minimal-order linear system with no modes

corresponding to the change in bar length. The robust liner control theory is further applied to

reject the disturbances using H∞, generalized H2 and covariance bound controller. The results

are provided for the tensegrity robotic arm. Finally, the covariance control formulation is used to

integrate structure and control design where free structure parameters, information architecture

(sensor/actuator precision) and control law are simultaneously optimized to meet some given

performance criteria in the presence of some budget constraint. The Linear Matrix Inequalities

(LMIs) are used to bound the covariance of output and covariance of control inputs. The prestress

in the strings is assumed as the free structure parameter that appears linearly in the characteristic

matrices of the linearized tensegrity dynamics. An algorithm to find the location and precision of

the sensor/actuator is also one of the outcomes of the proposed research.
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APPENDIX A

BAR LENGTH CORRECTION

In order to compensate the error accumulated during the integration of dynamics equations, the

vector of each rod b, centre of mass vector r and their time derivatives ḃ and ṙ have to be modified.

In this document, first we will correct the bar vector b and its derivative ḃ in such a way that the

resulting rod vector preserves its length and its velocity vector is orthogonal to it. After correcting

b and ḃ, we find r and ṙ such that the Class-K constraints are satisfied.

A.1 Class 1 Bar length Correction

Let us denote the corrupted value of bar vector and its derivative after integration as b̄ and ˙̄b,

respectively. Let the additive vectors p and r be added to b̄ and ˙̄b in such a way that the resulting

rod vector preserves its length and its velocity vector is orthogonal to it. Among infinite pairs

satisfying the constraints above, one reasonable choice can be selected by the following statement.

Theorem A.1.1. For any given b̄ and ˙̄b, the corrective vectors p and r minimizing

J(p, r) = q‖p‖2 + ‖r‖2, (A.1)

subject to constraints ‖b̄+ p‖ = l and (b̄+ p)T(˙̄b+ r) = 0 are calculated as

p = lv − b̄, r = −vvT ˙̄b, (A.2)

where v = [xI + ˙̄b ˙̄bT]−1qlb̄, and x is a real root of the following polynomial:

x4 + a3x
3 + a2x

2 + a1x+ a0 = 0, where (A.3)

a3 = 2‖ ˙̄b‖2, a2 = ‖ ˙̄b‖4 − (ql)2‖b̄‖2, a1 = 2(ql)2
(

(b̄T ˙̄b)2 − ‖ ˙̄b‖2‖b̄‖2
)
,

a0 = (ql)2‖ ˙̄b‖2
(

(b̄T ˙̄b)2 − ‖ ˙̄b‖2‖b̄‖2
)
. (A.4)
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Proof: The corrected rod vector and its corrected time derivative satisfy

(b̄+ p)T(b̄+ p) = bTb = l2, (A.5)

(b̄+ p)T(˙̄b+ r) = bTḃ = 0. (A.6)

Note that (A.5) implied that

b̄+ p = lv ⇒ p = lv − b̄, ∀vTv = 1. (A.7)

Besides, (A.6) yields

vT(˙̄b+ r) = 0⇒ r = −vvT ˙̄b+ Vvz, (A.8)

for any arbitrary z, since (vT)+ = v and vTVv = 0, where Vv is the left null space of v. Now, one

can solve the minimization problem of (A.1), with p and r given by (A.7) and (A.8), subject to

constraint vTv = 1, i.e.,

J(p, r) = q‖p‖2 + ‖r‖2 + λ(vTv − 1)

= q‖lv − b̄‖2 + ‖ − vvT ˙̄b+ Vvz‖2 + λ(vTv − 1)

= ql2vTv + q‖b̄‖2 − 2qlb̄Tv + (vT ˙̄b)2 + ‖z‖2 + λ(vTv − 1), (A.9)

since V T
v Vv = I . Note that (A.9) is minimized with respect to z when z = 0. Moreover, in order

to minimize (A.9) with respect to v, one can write
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∂J

∂v
= 0⇒ 2ql2v − 2qlb̄+ 2˙̄b ˙̄bTv + 2λv = 0 (A.10)

⇒ v =
(

(ql2 + λ)I + ˙̄b ˙̄bT
)−1

qlb̄ = (xI + ˙̄b ˙̄bT)−1qlb̄, (A.11)

where x = ql2 + λ. Using the matrix equivalence (A + BCD)−1 = A−1 − A−1B(C−1 +

DA−1B)−1DA−1 to express v in terms of x yields

(xI + ˙̄b ˙̄bT)−1 = x−1I − x−1(x+ ‖ ˙̄b‖2)−1 ˙̄b ˙̄bT

=
(
x(x+ ‖ ˙̄b‖2)

)−1(
(x+ ‖ ˙̄b‖2)I − ˙̄b ˙̄bT

)
⇒ v = ql

(
x(x+ ‖ ˙̄b‖2)

)−1(
(x+ ‖ ˙̄b‖2)b̄− ˙̄b ˙̄bTb̄

)
. (A.12)

Finally, substituting (A.12) in vTv = 1 and after some algebraic manipulations, one can obtain

polynomial (A.3) with coefficients presented in (A.4). Therefore, each real root of this polynomial

is substituted in (A.12) to generate v which in turn gives the pair p and r using (A.2). We choose

the root that gives the smallest value for J(p, r). �

A.2 Class K Bar length Correction

From the above polynomial algorithm, we get b and ḃ which can be arranged in matrix form to

give B and Ḃ. Now, we update R and Ṙ such that the Class K constraints are satisfied.

Theorem A.2.1. For any given B, Ḃ and corrupted matrix (not satisfying constraints because of

numerical errors in integration) of centre of mass vectors and its derivatives, R̄ and ˙̄R, we can find

corrected R and Ṙ using

R = (
1

2
D − 1

4
BCbP )V1Σ−1UT

1 + R̄U2U
T
2 (A.13)

Ṙ = −1

4
ḂCbPV1Σ−1UT

1 + ˙̄RU2U
T
2 (A.14)

where NP = D comes from Class K constraints and U1, U2,Σ, V1 and V2 come from the SVD of
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matrix CrP as

CrP =

[
U1 U2

]Σ 0

0 0


V T

1

V T
2


.

Proof: From our dynamics derivation, we define

[
B R

]
= N

[
CT
b CT

r

]

Recognizing that
[

1
2
CT
b 2CT

r

]−1

=

[
CT
b CT

r

]T
[14], we can write

N =

[
B R

]1
2
Cb

2Cr

 .
Now, using the Class K constraint equation

NP = D

[
B R

]1
2
Cb

2Cr

P = D

RCrP =
1

2
D − 1

4
BCbP.

Calling CrP = A and 1
2
D − 1

4
BCbP = C, the above equation becomes

RA = C. (A.15)
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The existence condition for the solution of above equation to exist is

C(I − A+A) = 0

and all the solutions of the equation are given by

R = CA+ + Z(I − AA+).

The Singular Value Decomposition of matrix A can be written as

A =

[
U1 U2

]Σ 0

0 0


V T

1

V T
2


A = U1ΣV T

1

Using the SVD of matrix A, the existence condition can be written as

CV2 = 0

where V2 represents the right null space of matrix A. Moreover, all the solutions can be written as

R = CA+ + Z2U
T
2

where U2 represents the left null space of matrix A and Z2 is an arbitrary matrix. Finally, the

existence condition and all the solution can respectively be written as

(
1

2
D − 1

4
BCbP )V2 = 0 (A.16)

R = (
1

2
D − 1

4
BCbP )V1Σ−1UT

1 + Z2U
T
2 (A.17)

We minimize the 2 norm of difference between previous center of position matrix (R̄) and updated
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center of position matrix(R) i.e. ||R− R̄||2 , to find the arbitrary matrix Z2.

min
z2
||(1

2
D − 1

4
BCbP )V1Σ−1UT

1 + Z2U
T
2 − R̄||2

Theroem: X = A+CB+ minimizes the ||AXB − C||.

Hence, the arbitrary matrix Z2 can be found out as

Z2 =
[
R̄− (

1

2
D − 1

4
BCbP )V1Σ−1UT

1

]
U2

Z2 = R̄U2

as UT
1 U2 = 0.

Substituting this result in Equation A.17, we obtain Equation A.13. A similar procedure can be

used to get equation A.14 using ṄP = 0. �

Finally, with updated B and Ḃ from section 1 and updated R and Ṙ from above section, we get

N =

[
B R

]1
2
Cb

2Cr


Ṅ =

[
Ḃ Ṙ

]1
2
Cb

2Cr

 .
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APPENDIX B

ANALYTICAL SOLUTION FOR LAGRANGE MULTIPLIER

The aim here is to write an analytical solution for the Lagrange multiplier Ω. Notice that Ω

appears linearly in two terms in Equation 5.109. We solve this by substituting Ks and λ̂ to write

the equation in terms of Ω and known variables only. Then we combine all the coefficients of Ω to

left hand side and all the known variables on right hand side to write it in a simple linear algebra

problem.

B.1 Lagrange Multiplier for General Tensegrity systems

Lemma B.1.1. The Lagrange Multiplier that satisfies Equation 5.109 can be computed as



ω1

ω2

...

ωc


=


β∑
i=1

1

2l2i
CT:,i ⊗ (bi ⊗ (biDi,:)T)−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3



−1 
AT

1,:

AT
2,:

AT
3,:

 , (B.1)

where ωi is the ith column of Ω, C = PTCT
nbC

T
b , D = CbCnbM

−1
s U1, E = PTM−1

s U1, and

A = −Sγ̂CsM−1
s U1 +Bb1

2
l̂−2BT(Sγ̂Cs−W )CT

nbC
T
b − l̂−2ĴḂTḂcCbCnbM−1

s U1 +WM−1
s U1 ∈

R3×c.

Proof: Let us start by substituting for Ks from Equation 5.98 in Equation 5.109:

N

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
M−1

s U1 − ΩPTM−1
s U1 = WM−1

s U1 (B.2)

N

([
CT
s γ̂Csb CT

s γ̂Css

]
−
[
CT
nbC

T
b λ̂Cb 0

])
M−1

s U1 − ΩPTM−1
s U1 = WM−1

s U1 (B.3)

N

(
CT
s γ̂

[
Csb Css

]
− CT

nbC
T
b λ̂Cb

[
I 0

])
M−1

s U1 − ΩPTM−1
s U1 = WM−1

s U1 (B.4)
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Now, we substitute for Cnb = [I 0] and Cs = [Csb Css] from Equation 5.61 and Equation 5.66

respectively:

N(CT
s γ̂Cs − CT

nbC
T
b λ̂CbCnb)M

−1
s U1 − ΩPTM−1

s U1 = WM−1
s U1 (B.5)

Sγ̂CsM
−1
s U1 −Bλ̂CbCnbM−1

s U1 − ΩPTM−1
s U1 = WM−1

s U1. (B.6)

Further substituting λ̂ from Equation 5.99 here gives:

Sγ̂CsM
−1
s U1 −Bb

1

2
l̂−2BT(Sγ̂Cs −W − ΩPT)CT

nbC
T
b −

l̂−2ĴḂTḂcCbCnbM−1
s U1 − ΩPTM−1

s U1 = WM−1
s U1 (B.7)

1

2
Bbl̂−2BTΩPTCT

nbC
T
b cCbCnbM−1

s U1 − ΩPTM−1
s U1 =

−Sγ̂CsM−1
s U1+Bb1

2
l̂−2BT(Sγ̂Cs−W )CT

nbC
T
b −l̂−2ĴḂTḂcCbCnbM−1

s U1+WM−1
s U1 = A

(B.8)

1

2
Bbl̂−2BTΩCcD − ΩE = A (B.9)

where C = PTCT
nbC

T
b , D = CbCnbM

−1
s U1, E = PTM−1

s U1, and B = [b1 b2 · · · bβ] ∈ R3×β .

Notice that Equation B.9 is only written in terms of Ω and known variables. Now, we combine the

coefficients of Ω by first breaking it as Ω = [ω1 ω2 · · ·ωc] ∈ R3×c and then combining all the
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coefficients together.

l̂−2BTΩC = l̂−2



bT1ω1 bT1ω2 · · · bT1ωc

bT2ω1 bT2ω2 · · · bT2ωc
... . . . ...

bTβω1 bTβω2 · · · bTβωc




C1,1 · · · C1,β

... . . . ...

Cc,1 · · · Cc,β

 (B.10)

⇒ F =
1

2
bl̂−2BTΩCc =


. . . 0 0

0
c∑
j=1

Cj,i
2l2i
bTi ωj 0

0 0
. . .

 . (B.11)

Therefore, the element on the mth row and nth column of the matrix G = 1
2
Bbl̂−2BTΩCcD, for

m ∈ {1, 2, 3} and n ∈ {1, 2, · · · , c}, is equal to

Gm,n = bm,1F1,1D1,n + bm,2F2,2D2,n + · · ·+ bm,βFβ,βDβ,n =
c∑
j=1

β∑
i=1

bm,iDi,n
Cj,i
2l2i

bTi ωj. (B.12)

The second term in Equation B.9 is also written in terms of the Lagrange multiplier as:

ΩE = [ω1 ω2 · · · ωc]E = ω1E1,: + ω2E2,: + · · ·+ ωcEc,: =
c∑
j=1

ωjEj,:. (B.13)

Similarly, the element on the mth row and nth column of this matrix is equal to:

(ΩE)m,n =
c∑
j=1

eTmωjEj,n =
c∑
j=1

Ej,neTmωj. (B.14)
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Substituting them,nth element from Equation B.12 and Equation B.14 into Equation B.9 gives:

c∑
j=1

β∑
i=1

bm,iDi,n
Cj,i
2l2i

bTi ωj −
c∑
j=1

Ej,neTmωj = Am,n (B.15)

⇒
c∑
j=1

( β∑
i=1

bm,iDi,nCj,i
2l2i

bTi − Ej,neTm
)
ωj = Am,n. (B.16)

This can be rearranged to shape a matrix equation:

Θ3c×3c



ω1

ω2

...

ωnc


=



A1,1

A1,2

...

A1,c

...

A2,1

A2,2

...

A2,c

...

A3,1

A3,2

...

A3,c



(B.17)
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

A1,1

A1,2

...

A1,c

...

A2,1

A2,2

...

A2,c

...

A3,1

A3,2

...

A3,c



=



β∑
i=1

b1,iDi,1C1,i
2l2i

bTi − E1,1e
T
1 · · ·

β∑
i=1

b1,iDi,1Cc,i
2l2i

bTi − Ec,1eT1
β∑
i=1

b1,iDi,2C1,i
2l2i

bTi − E1,2e
T
1 · · ·

β∑
i=1

b1,iDi,2Cc,i
2l2i

bTi − Ec,2eT1
... . . . ...

β∑
i=1

b1,iDi,cC1,i
2l2i

bTi − E1,ce
T
1 · · ·

β∑
i=1

b1,iDi,cCc,i
2l2i

bTi − Ec,ceT1
β∑
i=1

b2,iDi,1C1,i
2l2i

bTi − E1,1e
T
2 · · ·

β∑
i=1

b2,iDi,1Cc,i
2l2i

bTi − Ec,1eT2
β∑
i=1

b2,iDi,2C1,i
2l2i

bTi − E1,2e
T
2 · · ·

β∑
i=1

b2,iDi,2Cc,i
2l2i

bTi − Ec,2eT2
... . . . ...

β∑
i=1

b2,iDi,cC1,i
2l2i

bTi − E1,ce
T
2 · · ·

β∑
i=1

b2,iDi,cCc,i
2l2i

bTi − Ec,ceT2
β∑
i=1

b3,iDi,1C1,i
2l2i

bTi − E1,1e
T
3 · · ·

β∑
i=1

b3,iDi,1Cc,i
2l2i

bTi − Ec,1eT3
β∑
i=1

b3,iDi,2C1,i
2l2i

bTi − E1,2e
T
3 · · ·

β∑
i=1

b3,iDi,2Cc,i
2l2i

bTi − Ec,2eT3
... . . . ...

β∑
i=1

b3,iDi,cC1,i
2l2i

bTi − E1,ce
T
3 · · ·

β∑
i=1

b3,iDi,cCc,i
2l2i

bTi − Ec,ceT3





ω1

ω2

...

ωc


(B.18)


AT

1,:

AT
2,:

AT
3,:

 =



β∑
i=1

b1,iC1,i
2l2i
DT
i,:b

T
i · · ·

β∑
i=1

b1,iCc,i
2l2i
DT
i,:b

T
i

β∑
i=1

b2,iC1,i
2l2i
DT
i,:b

T
i · · ·

β∑
i=1

b2,iCc,i
2l2i
DT
i,:b

T
i

β∑
i=1

b3,iC1,i
2l2i
DT
i,:b

T
i · · ·

β∑
i=1

b3,iCc,i
2l2i
DT
i,:b

T
i





ω1

ω2

...

ωc


−


ET1,:eT1 ET2,:eT1 · · · ETc,:eT1
ET1,:eT2 ET2,:eT2 · · · ETc,:eT2
ET1,:eT3 ET2,:eT3 · · · ETc,:eT3





ω1

ω2

...

ωc


(B.19)
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
AT

1,:

AT
2,:

AT
3,:

 =


[
β∑
i=1

C1,i
2l2i
bi ⊗ (biDi,:)T · · ·

β∑
i=1

Cc,i
2l2i
bi ⊗ (biDi,:)T

]
−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3






ω1

ω2

...

ωc


(B.20)


AT

1,:

AT
2,:

AT
3,:

 =


β∑
i=1

1

2l2i
CT:,i ⊗ (bi ⊗ (biDi,:)T)−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3






ω1

ω2

...

ωc


(B.21)

The above equation represents 3c equations for 3c unknowns and taking the inverse will give us

Equation B.1.

B.2 Lagrange Multiplier for Gyroscopic Tensegrity systems

The aim here is to write an analytical solution for the Lagrange multiplier Ω in Equation 6.64.

Lemma B.2.1. The Lagrange Multiplier that satisfies Equation 6.64 can be computed as



ω1

ω2

...

ωc


=


β∑
i=1

1

2l2i
CT:,i ⊗ (bi ⊗ (biDi,:)T)−


E ⊗ eT1
E ⊗ eT2
E ⊗ eT3



−1 
AT

1,:

AT
2,:

AT
3,:

 , (B.22)

where ωi is the ith column of Ω, C = PTCT
nbC

T
b , D = CbCnbM

−1
s U1, E = PTM−1

s U1, and

A = −Sγ̂CsM−1
s U1 +Bb1

2
l̂−2BT(Sγ̂Cs−W )CT

nbC
T
b − l̂−2ĴḂTḂcCbCnbM−1

s U1 +WTM
−1
s U1 ∈

R3×c.
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B.3 Lagrange Multiplier for Vectorized Equations

The aim here is to write an analytical solution for the Lagrange multiplier ω. Notice that ω

appears linearly in two terms in Equation (7.110). We solve this by substituting Ks and λ̂ to write

the equation in terms of ω and known variables only. Then we combine all the coefficients of ω to

left hand side and all the known variables on right hand side to write it in a simple linear algebra

problem.

Lemma B.3.1. The Lagrange Multiplier that satisfies Equation (7.110) can be computed as

w = (V11DF̂xH + V12DF̂yH + V13DF̂zH− V T
1 M−1AT)−1V T

1 M−1Wvec

− (V11DF̂xH + V12DF̂yH + V13DF̂zH− V T
1 M−1AT)−1(V11Cnx + V12Cny + V13Cnz),

(B.23)

where V T
1 = [V11 V12 V13], D = 1

2
M−1

s CT
nbC

T
b l̂
−2, E = CT

nbC
T
b , Fx = CbCnbnx, Fy = CbCnbny,

Fz = CbCnbnz.

C = M−1
s CT

s γ̂Cs +M−1
s CT

nbC
T
b Ĵ l̂

−2bḂTḂcCbCnb

+
1

2
M−1

s CT
nbC

T
b l̂
−2bBT(W − Sγ̂Cs)CT

nbC
T
b cCbCnb,

andH =



eT1 (b11A
T
1 + b12A

T
2 + b13A

T
3 )

eT2 (b21A
T
1 + b22A

T
2 + b23A

T
3 )

...

eTβ (bβ1A
T
1 + bβ2A

T
2 + bβ3A

T
3 )



.
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Proof: Let us write V T
1 = [V11 V12 V13] and replace forM = (I3 ⊗Ms), K = (I3 ⊗Ks) and

n = [n1x n2x · · ·nNx n1y n2y · · ·nNy n1z n2z · · ·nNz]T = [nT
x n

T
y n

T
z ]T:

[V11 V12 V13]


M−1

s 0 0

0 M−1
s 0

0 0 M−1
s



Ks 0 0

0 Ks 0

0 0 Ks



nx

ny

nz

− V T
1 M−1ATω = V T

1 M−1Wvec

(B.24)

V11M
−1
s Ksnx + V12M

−1
s Ksny + V13M

−1
s Ksnz − V T

1 M−1ATω = V T
1 M−1Wvec (B.25)

Let us start by taking first term and substituting for Ks from Equation (5.98):

V11M
−1
s Ksnx =V11M

−1
s

[
CT
s γ̂Csb − CT

nbC
T
b λ̂Cb CT

s γ̂Css

]
nx (B.26)

=V11M
−1
s

([
CT
s γ̂Csb CT

s γ̂Css

]
−
[
CT
nbC

T
b λ̂Cb 0

])
nx (B.27)

=V11M
−1
s

(
CT
s γ̂

[
Csb Css

]
− CT

nbC
T
b λ̂Cb

[
I 0

])
nx (B.28)

Now, we substitute for Cnb = [I 0] and Cs = [Csb Css] from dynamics derivation :

V11M
−1
s Ksnx =V11M

−1
s (CT

s γ̂Cs − CT
nbC

T
b λ̂CbCnb)nx (B.29)

=V11M
−1
s CT

s γ̂Csnx − V11M
−1
s CT

nbC
T
b λ̂CbCnbnx (B.30)

Further substituting λ̂ from Equation (7.99) here gives:

V11M
−1
s Ksnx = V11M

−1
s CT

s γ̂Csnx + V11M
−1
s CT

nbC
T
b Ĵ l̂

−2bḂTḂcCbCnbnx

+
1

2
V11M

−1
s CT

nbC
T
b l̂
−2bBT(W + [AT

1ω A
T
2ω A

T
3ω]T − Sγ̂Cs)CT

nbC
T
b cCbCnbnx (B.31)
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V11M
−1
s Ksnx = V11M

−1
s CT

s γ̂Csnx + V11M
−1
s CT

nbC
T
b Ĵ l̂

−2bḂTḂcCbCnbnx

+
1

2
V11M

−1
s CT

nbC
T
b l̂
−2bBT(W − Sγ̂Cs)CT

nbC
T
b cCbCnbnx

+
1

2
V11M

−1
s CT

nbC
T
b l̂
−2bBT[AT

1ω A
T
2ω A

T
3ω]TCT

nbC
T
b cCbCnbnx (B.32)

V11M
−1
s Ksnx = V11Cnx + V11DbBT[AT

1ω A
T
2ω A

T
3ω]TEcFx (B.33)

where

C = M−1
s CT

s γ̂Cs +M−1
s CT

nbC
T
b Ĵ l̂

−2bḂTḂcCbCnb

+
1

2
M−1

s CT
nbC

T
b l̂
−2bBT(W − Sγ̂Cs)CT

nbC
T
b cCbCnb (B.34)

D = 1
2
M−1

s CT
nbC

T
b l̂
−2, E = CT

nbC
T
b , and Fx = CbCnbnx.
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Let us take the right side of the equation (B.33)

DbBT[AT
1ω A

T
2ω A

T
3ω]TEcFx = DbET[AT

1ω A
T
2ω A

T
3ω]BcFx (B.35)

= Db



eT1

eT2
...

eTβ


[AT

1ω A
T
2ω A

T
3ω]

[
b1 b2 · · · bβ

]
cFx = D

̂

eT1Gb1

eT2Gb2

...

eTβGbβ


Fx (B.36)

= DF̂x



eT1 [AT
1ω A

T
2ω A

T
3ω]b1

eT2 [AT
1ω A

T
2ω A

T
3ω]b2

...

eTβ [AT
1ω A

T
2ω A

T
3ω]bβ



= DF̂x



eT1 (b11A
T
1ω + b12A

T
2ω + b13A

T
3ω)

eT2 (b21A
T
1ω + b22A

T
2ω + b23A

T
3ω)

...

eTβ (bβ1A
T
1ω + bβ2A

T
2ω + bβ3A

T
3ω)



(B.37)

= DF̂x



eT1 (b11A
T
1 + b12A

T
2 + b13A

T
3 )ω

eT2 (b21A
T
1 + b22A

T
2 + b23A

T
3 )ω

...

eTβ (bβ1A
T
1 + bβ2A

T
2 + bβ3A

T
3 )ω



= DF̂x



eT1 (b11A
T
1 + b12A

T
2 + b13A

T
3 )

eT2 (b21A
T
1 + b22A

T
2 + b23A

T
3 )

...

eTβ (bβ1A
T
1 + bβ2A

T
2 + bβ3A

T
3 )



ω (B.38)

DbBT[AT
1ω A

T
2ω A

T
3ω]TEcFx = DF̂xHω (B.39)
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whereH =



eT1 (b11A
T
1 + b12A

T
2 + b13A

T
3 )

eT2 (b21A
T
1 + b22A

T
2 + b23A

T
3 )

...

eTβ (bβ1A
T
1 + bβ2A

T
2 + bβ3A

T
3 )



.

Substituting from equation (B.39) into equation (B.33), we get

V11M
−1
s Ksnx = V11Cnx + V11DF̂xHω (B.40)

Similarly,

V12M
−1
s Ksny = V12Cny + V12DF̂yHω (B.41)

V13M
−1
s Ksnz = V13Cnz + V13DF̂zHω (B.42)

Substituting from equation (B.40-B.42) into equation (B.25), we get

V11Cnx + V11DF̂xHω + V12Cny + V12DF̂yHω + V13Cnz + V13DF̂zHω − V T
1 M−1ATω

= V T
1 M−1Wvec (B.43)

(V11DF̂xH + V12DF̂yH + V13DF̂zH− V T
1 M−1AT)ω

= V T
1 M−1Wvec − V11Cnx − V12Cny − V13Cnz (B.44)

Taking the inverse of square coefficient matrix of ω will give back the required equation (B.23).
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APPENDIX C

PROOF OF LEMMA AND THEOREMS

C.1 Proof of Lemma 2.3.1

Let us consider a section of a beam such as that illustrated in Fig. C.1. The axial strain ε at any

location in the beam is given as follows:

ε = ε0 − yκ = ε0 − y
d2w

dx2
. (C.1)

where −r ≤ y ≤ r and ε0 is the strain at y = 0. Here, we assume that ε0 = 0 (i.e., that the bar is

undergoing bending deformation only). By making this assumption, ε is given as:

ε = −yd2w

dx2
. (C.2)

y

x· · · · · ·r

r

r

y

z
<latexit sha1_base64="MhAs2ZWmJm1iaFF0NWyZ/2cPReU="></latexit><latexit sha1_base64="MhAs2ZWmJm1iaFF0NWyZ/2cPReU="></latexit><latexit sha1_base64="MhAs2ZWmJm1iaFF0NWyZ/2cPReU="></latexit><latexit sha1_base64="p7OrLcu/hEnULf0ezEsDcCk6S6M="></latexit>

(a) (b) 

Figure C.1: (a) Section of a beam aligned with the x-axis. (b) Circular beam cross-section of radius
r.

The first and second derivatives of deflection w from Eq. (2.2) with respect to the axial

coordinate x are given as follows:

dw

dx
= wmax

nπ

l
cos
(
nπx
l

)
,

d2w

dx2
= −wmax

(nπ
l

)2

sin
(
nπx
l

)
. (C.3)
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By substitution of Eq. (C.3) into Eq. (C.2), the following expression of the axial strain ε is

obtained:

ε = ywmax

(nπ
l

)2

sin
(
nπx
l

)
. (C.4)

For the linear elastic material comprising the beam, ε is related to the axial stress σ via Hooke’s

law:

ε =
σ

Eb
. (C.5)

As stated in Section 2.3, at post-buckling it is assumed that failure of the beam to support the

applied force occurs when material yielding starts. This failure condition is met when the stress at

any point in the beam reaches the material yield stress, denoted by σb. At such a stress, the strain

of the material at failure εb is determined via Eq. (C.5):

εb =
σb
Eb
. (C.6)

From Eq. (C.4), the maximum absolute value of strain in the beam occurs at:

y = ymax, sin
(
nπx
l

)
= ±1, (C.7)

where ymax is the largest value (in magnitude) of the off-axis coordinate y in the cross-section of

the beam. Assuming that the beam has a circular cross-section of radius r, then ymax = ±r. At

post-buckling failure due to material yield, the maximum absolute value of strain corresponds to

εb. By substituting Eqs. (C.6) and (C.7) into Eq. (C.4), the following expression is obtained:

εb =
σb
Eb

= rwmax

(nπ
l

)2

. (C.8)

The previous equation is rearranged to obtain the expression for wmax as a function of the

material yield stress σb provided in Eq. (2.3).
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The expression for wmax from Eq. (2.3) is substituted in Eq. (C.4) to obtain the maximum

allowable strain field in the bent beam:

ε = y
σb
rEb

(nπ
l

)−2 (nπ
l

)2

sin
(
nπx
l

)
= y

σb
rEb

sin
(
nπx
l

)
. (C.9)

cf. Eq. (2.4). This concludes the proof.

C.2 Proof of Theorem 2.4.2

Let us consider a D-bar system of length l, complexity q, angle parameter α, and p strings per

D-bar unit subject to a compressive force of magnitude f . The material comprising the bars has

Young’s modulus Eb and mass density ρb while the material comprising the strings has yield stress

σs and mass density ρs. The mass of each bar, denoted by mq, is given as:

mq = πρblqr
2
q . (C.10)

From Eqs. (2.26) and (C.10), it follows that:

mq = 2ρbl
2
q

(
fq
πEb

) 1
2

. (C.11)

By substitution of the expressions for fq and lq from Eqs. (2.21) and (2.15), respectively, the

following equation for the mass of each bar is obtained:

mq =
ρbl

2

22q−1p
q
2 cos

5q
2 (α)

(
f

πEb

) 1
2

. (C.12)

It can also be verified from Eqs. (C.10) and (C.12) that the radius rq of each bar is given as:

rq =

(
l

2q−1p
q
2 cos

3q
2 (α)

) 1
2 (

f

π3Eb

) 1
4

. (C.13)

We now add the mass of each bar in the D-bar system to obtain the total mass of the bars,

denoted by mb:
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mb = nbmq = (2p)q
ρbl

2

22q−1p
q
2 cos

5q
2 (α)

(
f

πEb

) 1
2

=
p
q
2ρbl

2

2q−1 cos
5q
2 (α)

(
f

πEb

) 1
2

. (C.14)

The mass of each string introduced at the ith self-similar iteration is denoted by msi, i =

1, . . . , q, and is determined as follows:

msi = ρslsiAsi i = 1, . . . , q. (C.15)

An expression for Asi determined by assuming failure due to material yielding at the strings is

provided in Eq. (2.36). We substitute such an expression into Eq. (C.15) and obtain the following

function for msi:

msi =
ρslsiti
σs

i = 1, . . . , q. (C.16)

The expressions for ti and lsi from Eqs. (2.22) and (2.19), respectively, are then substituted into

the previous equation:

msi =
lfρs tan2(α)

2i−1piσs cos2i−2(α)
i = 1, . . . , q. (C.17)

It can also be verified that the radius rsi of each string introduced at the ith self-similar iteration

is given as:

rsi =

 f tan(α)

πpi sin
(
π
p

)
σs cosi−1(α)

 1
2

i = 1, . . . , q. (C.18)

We now add the mass of all the strings in the D-bar system to obtain the total mass of the

strings, denoted by ms:
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ms =

q∑
i=1

nsimsi =

q∑
i=1

2i−1pi
lfρs tan2(α)

2i−1piσs cos2i−2(α)
, (C.19)

ms =
lfρs tan2(α)

σs

q∑
i=1

1

cos2i−2(α)
. (C.20)

Using the identity in Eq. (2.45), the following expression for the total mass of the strings in a

D-bar system is determined:

ms =
lfρs(sec2q(α)− 1)

σs
. (C.21)

The total mass of the D-bar system, mD, is obtained by adding the total mass of the bars and

the total mass of the strings:

mD = mb +ms. (C.22)

The final expression for mD stated in Eq. (2.48) is obtained by substituting mb and ms from

Eqs. (C.14) and (C.21), respectively, into Eq. (C.22). This concludes the proof.
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