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ABSTRACT 

 In this paper, we investigate the optimal co-adaptation strategy between humans and 

machines in order to maximize the performance outcome in completing a coordinated task. 

Although prior works identified the optimal machine adaptation for human’s specific condition, 

it is still not clear how to design an optimal co-adaptation strategy which enables the machine to 

adapt to the human concurrent with human adaptation. To achieve the optimal co-adaptation 

between human and machine, the adaptation strategy should maximize the immense potential of 

the human adaptation while minimizing the resources required of the machine. To accomplish 

this, we propose a novel human-centric co-adaptation strategy of the machine. 

 In our strategy, the machine initially waits for the human to adapt to machine. Once 

human adaptation arrives to the plateau, the machine starts to adapt. Rather than addressing the error 

fully on its initial adaptation, the machine still provides headroom for the human to adapt further, 

since the changed condition might augment the capability of human adaptation. We call this 

strategy human-centric co-adaptation, as the machine adapts based on the human’s capability. 

We implemented the test setup by measuring the step distance of a human using a treadmill alongside 

an optical tracking system. We tested our strategy alongside two other adaptation strategies: single 

sided adaptation, where only the human adapts to the machine, and co-adaptation without a 

strategy, where both human and machine concurrently adapt to each other without priority.     

 Our results indicate that, with an accuracy task, machine co-adaptation did not reduce the 

error in easy target. However, if the target became challenging for the human, machine co-

adaptation successfully lowered the error. When the human-centric strategy was applied to the 

co-adaptation, the error was not further reduced but the dependency to the machine was reduced. 
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1. INTRODUCTION

From the more simple tasks of text messaging to the more complex tasks of assisted driving 

and robotic surgery, human-machine interaction (HMI) either helps humans to overcome their 

limited capability or promotes convenience in their lives. When machines did not have the 

capability to adjust to humans, HMI basically consisted of a human adapting to machine to 

optimize the coordination between the two. Therefore, the conventional design of machines 

focused on maximizing the human’s ability to adapt to the machine. However, as the physical and 

intellectual capabilities of machines approach or even exceed their human counterparts, machines 

are taking the role of adaptation from humans in these interactions [1], [2], [3]. For example, 

human gesture recognition software adjusts the required human gesture according to each person’s 

characteristics [4], and myoelectric-controlled active prosthesis adjusts the required muscle 

activation pattern for active joint control [5]. A lot of machine learning algorithms are in 

development to improve the adaptation ability of the machine. However, machine adaptation 

should be carefully designed because excessive machine adaptation can limit the human adaptation 

and degrade the HMI performance in the long run. Note that, although machines have become 

smarter and more dexterous, many of the human’s unique abilities could not be still imitated by 

the machine. 

As all interactions require at least one party to adapt and interact with the other, adaptations 

in HMI can be largely categorized by two kinds: single-sided adaptation (SSA) and co-adaptation 

(CA). Single-sided adaptation, or SSA, is the interaction between two parties where only one side 

adapts to the other. In case of SSA, only one side adjusts their operating parameters to fit to the 

other side, while both sides pursue the same objective. Although SSA can be applied to either side, 

in most cases the human is the sole party which adapts, since machines in HMI application usually 
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does not have capability to adapt to the human. An example of SSA would be a human interacting 

with an automatic paper towel dispenser. The machine is designed to dispense paper towels 

whenever it detects an object, in its vicinity. Although the machine dispenses a towel whenever a 

hand is detected, the machines function involves no adaptation to the human, since it is not able to 

adjust its activation range to fit to the human’s traits. The human, on the other hand, adapts to the 

machine by placing their hand in the specified activation range of the dispenser. 

Co-adaptation (CA), on the other hand, is where both parties are adapting to each other 

while performing a given task. Both sides still have a main task they aim to perform, however they 

adjust their methods of performing their task according to the performance of the other party. Co-

adaptation can be either one-time change in an entity’s routine or an evolving mechanism based 

on the subsequent adaptations in both parties. Essentially, co-adaptation of each party is 

determined based on the outcome of the other party, with pre-defined algorithm of co-adaptation 

at the machine side and natural adaptation ability at the human side.  

Many human-machine interactions that appear to be CA are in fact SSA. For example, in 

the paper towel dispenser example, although it may appear that the dispenser is adapting to the 

human by dispensing a paper towel whenever the human is in its vicinity, this notion is false. 

Adaptation requires a change in routine or function to fit the other party, as the adaptive human 

gesture recognition software [4]. 

In conventional CA strategies, machines only consider how the human performs (i.e., 

outcome of the human) and not how the human adapts. Because of this, the conventional co-

adaptation is concluded to a machine-leading co-adaptation rather than the coordinated co-

adaptation, which limits the huge potential of the human adaptation, as described in the left side 

of Fig. 1. To secure the human adaptation and maximize the effectiveness of co-adaptation in HMI, 



3 

the machine should consider the trait and direction of human adaptation, instead of just monitoring 

the performance of the human. Having a well-defined co-adaptation strategy will not only make 

the HMI more effective and efficient, but also make the human operator feel more comfortable 

and arrive at the optimal solution that values human’s trait and direction of the adaptation. 

Figure 1. Conceptual description showing the importance of utilizing an optimal strategy 
when applying co-adaptation. With no co-adaptation at machine, the human cannot 
accomplish challenging task beyond their capability. Co-adaptation at the machine can 
improve the result but co-adaptation may limit the human capability in adaptation if the 
suboptimal strategy is applied (left side). For the human-machine coordination to achieve 
maximum capability for both parties, co-adaptation should be applied with optimal 
strategy that secures the capability of the human adaptation. 

To maximally use the capability of both the human and the machine, the co-adaptation will 

play an essential role for the future HMI [6]. Studies have been done to model how machine 

interaction could be introduced into HMIs [7], [8]. From there, co-adaptation methods have also 

been analyzed. Many attempts have been made to identify the optimal co-adaptation as a closed-

loop operation [9], [10]. Leader-follower strategies have also been investigated and applied to HMI 

[11], [12]. Most of the co-adaptation studies focused on how the machine better co-adapts to 

human interactions [13-15], but the importance of investigating how the machine should adapt to 

any human adaptation has been underrepresented. To preserve the immense potential of the human 

adaptation, as described in the right side of Fig. 1, it is important to adjust the degree of the co-

adaptation according to the progress of the human adaptation. Paolo et al have identified that the 
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machine should predict the traits of human motor learning and change the co-adaptation strategy 

according to the evolution of human skills and performance (i.e., progressive co-adaptation 

strategy) [16]. However, it was a conceptual study and the applicability of the progressive co-

adaptation strategy has not yet been tested in actual applications of HMI. So long as the effort to 

find proper implementation details and verification of their efficacy remains absent, the promise 

of optimal coordination between the human and the machine will remain uncertain. 

If CA is not properly designed, it often produces even worse performance outcome than 

SSA, particularly when the human can perform the given task with ease. Let’s assume a task of 

human throwing a dart in a short distance. Most of the humans will quickly learn how to hit the 

center with minimal error. If the machine attempts to co-adapt to the human, by controlling the 

position of dart board, then it would rather confuse the user instead of helping the user. In this 

case, CA (human and dart board adapting to each other) may produce worse performance outcome 

than SSA (no machine adaptation). In other words, for cases where the human is skilled enough to 

perform a task with decent accuracy and precision, SSA is the superior adaptation method. Any 

machine interference would hurt the user’s performance more than help it. 

Although less efficient in some situations, CA has clearly the potential to outshine its 

single-sided counterpart (i.e., SSA), particularly in scenarios where the human loses their accuracy, 

but keeps their precision. Using the same dart example, if the human is inaccurate at throwing 

darts but is still precise, the machine can co-adapt and move the dart board in the general direction 

of where the darts land. Having a higher precision allows the actions of the human to be much 

more predictable and allows the machine to adapt much more consistently to the human. 

Essentially, the human’s role in CA is to be as precise as possible, and the machine’s role is to turn 

their precision into accuracy. If the human is not able to maintain precision when performing a 
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task, the machine will have a much harder time adapting to the human’s abilities, and the potential 

for the machine and human to adapt to each other will severely be hindered. 

However, most of the cases are not in the extremes and contain the traits suited for both 

SSA and CA. Therefore, it is necessary to design CA utilizing a smart strategy, to make it 

outperform SSA. In this paper, we proposed and tested a human-centric co-adaptation (HCCA) 

approach. The basic idea of the HCCA approach is machine adapting according to the human 

adaptation ability to secure the human adaptation ability. Previous studies have shown the need 

for HMIs to be centered around the human’s capabilities [2], [16], [17]. Co-adaptation between 

humans and machines should be human-centric, focusing on maximally using the human 

adaptation ability and at the same time, minimizing the potential discomfort of human caused by 

machine adaptation. At the same time, machine should be ready to assist the human if the human 

is not skillful enough to address the problem. Simply put, in our HCCA approach, if the human is 

skilled enough, the machine will not interfere with their adaptation, whereas if the user needs 

assistance, the machine will adapt based on the skill level of the human. A conceptual graph of the 

efficiencies of each adaptation method are shown in Fig. 2 for both skilled and unskilled humans. 

As the uses of individual machines varies greatly, the ability to adapt to both skilled and unskilled 

users is necessary for the advancement of different types these interactions. Machines which 

propagate rehabilitation may be used by those who are dysfunctional or lower skilled [18-20], 

whereas humans that are highly skilled may be handling equipment such as robotic surgery 

devices.  

In this paper, we compared the efficacy of SSA and CA, with and without the proposed 

human-centric strategies, using a challenging walking task on a treadmill to identify which 
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adaptation method is best in different scenarios. The following sections are composed of 

experimental design, experimental result, discussion, and conclusion. 

Figure 2. Conceptual graph of the efficiencies of multiple adaptation methods. For a skilled 
human, Co-adaptation is faster to adapt initially since there are two parties working rather 
than one, however it saturates at a lower efficiency rate than SSA/HCCA. For an unskilled 
human, CA both saturates and adapts at a quicker rate than SSA. Once HCCA is 
introduced, however, it saturates at a much higher efficiency rate than CA alone. 



2. EXPERIMENTAL DESIGN

2.1 Human Subject Recruitment 

The experiments in this study were performed in accordance with relevant 

guidelines and regulations, according to the procedure described in the protocol 

approved by the Institutional Review Board of Texas A&M University 

(IRB2019-1585D). Informed consent was collected from all subjects. Three healthy 

human subjects participated in the experiments in this study. The subject group consisted 

of three males. All subjects were over the age of 18, and the mean age of subjects was 23. 

2.2 HCCA was implemented by two co-adaptation strategies 

In this study, we implemented the HCCA strategy as a combination of two 

separate methods: ‘Delayed co-adaptation’ and ‘Threshold-based co-adaptation’. The 

aim for both methods is for the machine to regulate its adaptation according to the 

human’s ability to adapt. First, the machine holds off its adaptation for a certain 

interval until the human adaptation ability saturates (i.e., delayed co-adaptation). The 

purpose of this delay is to maximally utilize the human resources for the adaptation. 

After the delay, the machine adaptation was applied to further improve the new 

performance level (see Fig. 2). The machine determines when the human becomes 

saturated in their ability to adapt through a differential reading. As the human saturates 

in their adaptation, the difference in their current step and last step will become 

smaller over time. This difference is calculated for the human’s last three steps 

and is averaged. Once saturated, the user’s difference between steps can be 

positive or negative, and when these numbers are averaged,  the average value 

7 
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of a user with saturated adaptation is considerably smaller than that of a user who is still adapting. 

Once this average value has become sufficiently small, the machine will begin to adapt. 

Once the machine has recognized the human is saturated in its adaptation, it may begin to 

adapt. The machine starts adaptation if the humans error if larger than the intrinsic variation of the 

human (i.e., threshold-based co-adaptation), and stops once the humans error is smaller than the 

same threshold. The intrinsic variation of the human was measured ahead with easy objective. This 

threshold-based co-adaptation was designed to minimize the potential confusion of human, 

potentially caused by excessive machine adaptation. Similar to delayed co-adaptation, the average 

error of the last three steps are compared to the threshold, so as to prevent the machine from co-

adapting to any errors the user makes in their footsteps.  

By delayed co-adaptation, we allow the humans to exhibit their adaptation ability 

unrestrained, allowing the machine to add value onto the human ability. At the same time, the 

machine is ready to assist the human if the human is not skillful enough to address the problem. 

For example, machine co-adaptation can begin very early if the human is novice on the given task. 

Additionally, the machine stops adaptation if the error is within the range of intrinsic human 

variation. These two methods also work independently, meaning that even if the machine has 

recognized the human has saturated their adaptation, it will not adapt if it recognizes the human is 

skilled enough. 

2.3 Treadmill walking task utilizing blocked vision and a posterior target line 

Note that, the task should be difficult enough for the humans not to easily accomplish the 

goal. In this regard, we selected a treadmill walking task with a posterior target line. Foot 

placement on the treadmill can be hardly accurate with intrinsic visual-proprioceptive mapping 

error [21], [22], especially when the target footstep location is located at the posterior side of the 
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belt. Additionally, another reason we selected the treadmill walking is that, humans lose their sense 

of accuracy but retain their precision when visual-proprioceptive mapping is involved in the motor 

task [21]. If the human performance shows high level of precision, the co-adaptation at the machine 

can be very effective as it can turn the precision into accuracy. As for the task itself, subjects were 

asked to walk on a treadmill, and the location of their footstep was calculated with each step. 

Subjects were asked to match the location of their footsteps with a posterior line shown on a 

graphical user interface. We will further expand upon this in later sections. 

2.4 Optical motion capture system to capture the location of the forefoot 

To measure the location of each footstep from the front end of the belt, an optical-tracking 

system (Prime 41, Motive: OptiTrack) was utilized. These motion capture cameras were placed 

around the ceiling in the room where the experiment was being held (8 in total). The cameras have 

the ability to track the 3D orientation of any object by detecting any retro-reflective spheres placed 

on them. To detect the footstep distance of the users, the retro-reflective spheres were placed on 

both the subject’s dominant foot as well as the head of the treadmill, as shown in Fig. 3. We used 

MATLAB to read the real-time coordinates of the treadmill and footsteps and detected the peak 

distance of these footsteps by finding the magnitude of the distance away from the two bodies, 

with a precision of 0.8 mm. Since the markers can only detect the center of the foot instead of the 

tip of it, the subjects placed their dominant foot at the base of the treadmill to determine the offset 

distance needed to find the correct position of their footstep relative to the treadmill. Readings 

were taken every 0.011 seconds (90 samples per second). 
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Figure 3. Overall experimental setup. The subject will perform the experiment while being 
tracked with an optical tracking system which detects the retro-reflective orbs placed on 
the feet and treadmill. The subject will perform the experiment while wearing 
proprioception-enabling goggles, looking only at the monitor with GUI running to allow for 
visual proprioception. 

2.5 Signal processing to update the target line 

The machine changed the distance of the target line based on the selected co-adaptation 

strategy: SSA, CA, and HCCA. Additionally, we will have a control test which consists of a target 

that does not change, located at a distance in which the user will have an easier time matching their 

footsteps to. Before each of the other three strategies, the subject initially walked for 10 steps on 

the treadmill, matching the same easier control target line, so as to keep the initial position as 

consistent as possible between tests and between subjects. The new target line then appeared on 

the screen and was updated to a new, more difficult location according to the co-adaptation 
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strategy. 1)  In case of SSA, the target line shifted backward to a more difficult location, then 

remained stagnant. 2) In case of CA, the target shifted backwards after 10 steps and for every step 

from 11th step, the target line was changed to the halfway location between the previous target line 

and the last forefoot line. We use the halfway mark (50% tolerance) simply to implement a low 

pass filter rather than a strategy. 3) In case of HCCA, the target shifted after 10 steps and did not 

change until the subjects did not make any more significant improvements in their footsteps. The 

machine determined if the human adaptation was saturated by comparing the change in the last 

step with the standard deviation of the subject’s step measured with the easy target line. The target 

line was then changed to the halfway location (similar to CA) between the previous target line and 

the last forefoot line. Subjects then adapted to the new target line. The machine also tracks the 

average change in the last three steps and compares it with the standard deviation of the subject’s 

step measured with the easy target line. If the average change in the last three steps is smaller than 

the standard deviation of the subject’s step, the machine stopped applying co-adaptation and target 

line will stay the same. We apply the same 50% tolerance of CA to HCCA to keep the filter 

consistent across tests. This filter does not apply to SSA, however, since the target line does not 

move in this scenario.  

2.6 Installation of treadmill, desk, and monitor with graphical user interface (GUI) 

A motorized treadmill 1 meter long was installed onto the ground and portable desk was 

positioned on top of the treadmill. To make sure the visual-proprioceptive error is engaged in the 

experiment, we blocked users’ vision on their feet by placing a desk between users’ vision and the 

treadmill belt. In addition, goggles were given to the user which blocked the vision of the lower 

half of their body. On top of the desk, monitor was located to provide a display of graphical user 

interface (GUI) to the subjects. The overall description of experimental setup is shown in Fig. 3. 
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The GUI was created by open-source graphical library “Processing”. The GUI showed two pieces 

of information by solid lines: the actual location where their forefoot stepped on, and the target 

location their forefoot needs to step on. Fig. 4 shows an image of the GUI and how the information 

was presented to subjects. 

Figure 4. Image of the Graphical User Interface to display the subjects step distance. A 
scaled model of the treadmill is shown in background, while the footsteps and the target 
line is shown on top of the treadmill. The horizontally dashed line represents the previous 
target. The footprint shows the GUI creating the step at the tip of the foot, while the 
vertically dashed lines show the error margins for the current and previous steps. 
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2.7 Test procedure to compare the performance with SSA, CA, and HCCA 

Subjects were initially standing on the treadmill and the operator increased the speed of the 

treadmill to 3.5 mph and subjects were asked to talk until the operator gave the verbal stop signal. 

The operator gave the verbal stop signal when subjects walked 50 steps with their dominant foot. 

Considering the initial 10 steps used for the subjects to adapt to the speed, subjects were asked to 

walk total 60 steps on the treadmill. The speed of 3.5 mph was maintained till the end of the trial, 

consistently for all subjects. Note that 3.5 mph is 12.9% faster than the normal human walking 

speed of 3.1 mph, which means the treadmill walking at 3.5 mph is challenging for most of the 

people. Subjects were asked to place their foot as closely as possible to the target line, which was 

provided at GUI on the monitor. Note that, to eliminate any discrepancy between the dominant 

and non-dominant foot in each user, only the user’s dominant foot was tracked in this co-adaptation 

process. 

The experiment itself consisted of the human trying to match the target line while three 

different adaptation methods were implemented on the machines side, being SSA, CA, and HCCA. 

For each of these adaptation methods, the test was conducted with the target line at two separate 

locations, resulting in a total of six tests for the experiment.  

In the 1st trial (control test), the subject walked on the treadmill matching an easy forefoot 

target line, located at the 15% (0.15 meter) position from the front end of the belt (0.85 meters 

from the back). No co-adaptation was applied at the first trial. In the 2nd, 3rd, and 4th trials (SSA, 

CA, and SBCA respectively), subjects walked on the treadmill with challenging forefoot target 

line, located at 60% position (0.6 meters from front of the treadmill, 0.4 meters from the back) 

from the front end of the belt. In the 2nd trial, no co-adaptation was applied. In the 3rd trial, co-
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adaptation was applied without strategy (i.e., CA). In the 4th trial, co-adaptation was applied with 

strategies of delayed co-adaptation and threshold-based co-adaptation (i.e., SBCA).  

The 1st trial provided a baseline variability of the subject, which was used to determine the 

skill level of the human by finding the standard deviation of their steps. The following trials added 

difficulty on the task, so that the human cannot achieve the goal without the help from the machine. 

The 2nd trial tested the ability of human adaptation to achieve the goal without the help from the 

machine. The 3rd trial tested the basic effect of the co-adaptation without any strategy. The 4th trial 

tested the efficacy of the co-adaptation strategies on achieving the goal by HMI, and utilized the 

skill level from the 1st trial to achieve this. 

2.8 Data analysis 

To evaluate the efficacy of the strategies of co-adaptation, we used three kinds of measures 

and compared them among three adaptation strategies: SSA (no adaptation from machine), CA 

with no strategy (machine does its best to adapt), and HCCA (machine adapts based on human 

adaptation). First, we evaluated the accuracy of stepping (i.e., how close the forefoot step is to the 

target line). Second, we evaluated the machine resource usage by finding the distance between the 

original target line and the final target line (i.e., how much the machine must adapt to the human). 

Third, we evaluated the speed of adaptation by calculating how many steps were needed to reduce 

the variation within the standard variation. By this measure, we can evaluate the effect of the 

strategies of HMI in adaptation speed. 
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3. EXPERIMENTAL RESULTS

3.1 Stepping Accuracy 

To evaluate the speed of accuracy of stepping, we calculated the distance between the target 

line and the forefoot location. Since the initial few steps have an exponentially larger error than 

the rest of the steps, we have only calculated the accuracy after stabilizing, which is determined 

by the first step the users take which is within the standard deviation of the entire experiment. The 

mean and standard error are shown for both sections of this experiment, as well as their absolute 

values. The results for experiment A are shown in Fig. 5, and an example of experiment over time 

for is shown in Fig. 6. 

Figure 5.  Results for Experiment A, stepping accuracy. The mean and standard error are 
shown for each adaptation in the graph above.  The mean is shown by the dots on the 
graph, and the lines represent one standard error above or below the mean.  
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(a) (b) 

(c) (d) 

Figure 6.  Graph of each adaptation method over time from multiple subjects. A distance of 
0 marks the very front of the treadmill, and an increase in distance represents movement 
towards the back of the treadmill, simulating a top-down view of the machine. (a) shows 
the control test, where the target line is at a comfortable position for the user does not move 
at all. The SSA target line in (b) similarly does not move for the user, however it begins at a 
more difficult position towards the back of the treadmill. (c) shows the tests for CA, in 
which case the target line moves to the halfway distance between the previous target and 
the current step, and (d) show the tests for HCCA, which implement both the delayed 
adaptation and threshold-based adaptation methods. 

3.2 Machine Resource Utilization 

To evaluate the how much the machine needs to adapt to the human, the average distance 

between the original target line and the final target line was calculated for all trials. Additionally, 

the standard error was calculated for both CA and HCCA. As there is no target change in the 

control and SSA tests, the average target change is not shown for these tests. The results for 

experiment B are shown in Fig. 7.  
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3.3 Speed of Adaptation 

To evaluate the speed of adaptation, we calculated how many steps were needed to reduce 

the variation within the standard variation. The results for experiment C are shown in Fig. 8.  

The results for each experiment are shown in the figures below. The values for Experiment A and 

Experiment B are in millimeters, while the values for Experiment C are in number of steps. For 

Experiment A, positive values indicate the error is in front of the target (human steps too far 

forward), while negative errors indicate the error is behind the target (human does not step far 

enough). 

Fig. 6 shows the step and target values over the entire experiment for one subject. A 

distance of 0 indicates the very front of the treadmill. Step values lower than the target line (above 

the target line graphically), indicate that the step is in front of the target, and step values higher 

than the target line (below the target line graphically) indicate the step is behind the line. The 

control test stayed at a constant target of 150 (0.15 meters from the front of the treadmill) 

throughout the entire test, whereas the other three tests began at a target of 600 (0.6 meters from 

the front). The other three tests were additionally prefaced by a ten step target line 150mm from 

the front of the treadmill. This was done to keep the starting point consistent between tests, and 

the ten prefaced steps were not recorded. 
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(a) 

(b) 

Figure 7. Results for Experiment B, machine resource utilization. (a) shows a graph of the 
mean and standard error of target changes for each adaptation method. As the target does 
not change for the SSA tests, their tests are not considered when determining machine 
resource utilization. To give a better perspective on how these target lines change, (b) 
shows a graph of the target changes over time for one subject. SSA remains stagnant 
throughout the experiment. CA stabilizes quickly but never fully stabilizes to one point. 
While HCCA adapts much more slowly, once it has stabilized it does not change. 
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Figure 8. Results for Experiment C, speed of adaptation. The average number of steps for 
each adaptation method are shown above. The mean is shown by the dots, and the standard 
error is shown by the lines. 
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4. DISCUSSION

4.1 Machine co-adaptation enhances the human performance 

The results for multiple subjects over time are shown in Fig. 6. Since each subject has a 

different performance level, the graphs from the figure were cherry picked from subjects to give 

the best representation of how each test performs over time. For the control test, the average mean 

error was 3.07 mm and the absolute mean was 22.64 mm. Despite the challenges presented for the 

human, including the use of proprioception and walking at a relatively fast speed, under normal 

circumstances the subjects were able to be accurate in their footsteps. The low value of the standard 

deviation further indicates the human was able to be precise as well as accurate, having a normal 

standard deviation of less than 3 centimeters.  

By comparison, SSA has an exponentially larger mean error. We can see the mean error is 

around and standard deviation have both increased by a significant margin. By moving the target 

line back from the easy control target line to the harder SSA target line, the human becomes unable 

to perform the task as well. Additionally, the normal mean error and the absolute mean error are 

less than three percent different than each other after stabilization, indicating the vast majority of 

the steps for the SSA line are in front of the target. This indicates that the humans have an inability 

to reach the target line, and on average, walk around 9 cm in front of the designated target line due 

to their inability. Although the standard deviation also drastically rose, it did not rise nearly as 

much as the mean error, especially after the humans have stabilized. This indicates that although 

the humans have some inability to perform this task, they still retain most of their precision when 

attempting to reach the target line.   
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Our third test involved bringing machine adaptation into the mix. In this test, the machine 

continually adapted to the halfway point between the human’s steps and the previous target line. 

By introducing co-adaptation to the system, we can see the mean and absolute error have 

drastically decreased, indicating the machine has helped bring the user error down. After 

stabilization, the absolute mean decreased from 91.34 mm to 40.95 mm, almost half of the error 

margin of SSA. This drastic decrease, alongside the very low normal mean of 1.97 mm, shows by 

adding machine adaptation alongside the human’s adaptation, the human can become much more 

accurate in performing their task. Contrary to the mean, the normal standard deviation of CA is 

larger than the standard deviation of SSA. Paired with the change in the mean, this indicates that 

although CA assists the human in reaching their goal, their accuracy is still low due to the fact that 

although the machine adapts to the user’s shortcomings, the machine also adapts to the user’s 

errors, amplifying them further.  

By introducing our two methods (delayed adaptation and threshold-based adaptation) to 

CA, we were able to create a new co-adaptation technique, HCCA. Testing HCCA, the results of 

the test turned out to be better than not only SSA and CA, but also the control test. After 

stabilization, the normal mean is very near the CA test, however the absolute mean error is less 

than half of that of CA, indicating that utilizing HCCA, the human is able to reach the target both 

accurately and precisely. This is further confirmed by the low standard deviation, which is lower 

than that of the control test, even though the task is still moderately harder than the control test. 

This is likely due to the subjects being much more focused while performing a harder task than 

performing an easier one.   

Overall, when testing single-sided adaptation, the subjects had a difficult time matching 

the target line due to their inability to reach the target. This inability is able to be corrected when 
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co-adaptation is introduced, allowing the user to reach the target, however, using CA without any 

sort of strategy still retains the accuracy error of the subjects and does not preserve the human’s 

accuracy. By introducing a strategy to CA in our final test, the human’s intrinsic traits are preserved 

in this adaptation method, even when compared to the control method, indicating that although the 

task was more difficult, a more smart implementation of co-adaptation can preserve the human’s 

adaptation traits even performing a more difficult task. 

4.2 HCCA achieves the best accuracy and the best achievement level  

The achievement level is indicated by how much the target line changes with each test. 

Ideally, we would want the achievement level as high as possible, which is achieved by changing 

the target line as little as possible. A higher achievement level indicates that less resources are used 

on the machines side and is therefore more beneficial to the interaction.  

Utilizing SSA, although the achievement level is the highest since the machine does not 

change its target distance, the user error is significant enough to where introducing co-adaptation 

is beneficial. In the CA test, the target line eventually regressed from the initial position to around 

the same control location. Beginning at 0.6 meters from the front of the treadmill, the target line 

moved up to a final location of 0.182 meters from the front, 70.3% of the distance from their 

original location. This high change in the target line, paired with the fact that the target changes 

with every step, indicates a low achievement level for the system when utilizing CA. 

In the case of HCCA, however, the target line changed on average to 96.67 mm from the 

initial target line, with an average final target of 123.67 mm. Additionally, the target line changes 

very few times in the beginning of the test then ceases any changes for the remainder, due to the 

human’s newfound ability to reach the target. The lower average and final target change indicate 

a significantly higher achievement level for HCCA than for CA.  
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4.3 Speed of adaptation was not much sacrificed by HCCA 

The speed at which co-adaptation was determined by the moment the error fell within the 

standard deviation for SSA and CA, and the moment when the machine stopped adapting for 

HCCA. From the results in Fig. 8, we can see CA is the fastest to adapt, with an average of 5 steps 

needed to fully adapt. SSA requires an average of 6.33 steps to adapt, slightly higher than CA, and 

HCCA needs an average of 12.67 steps to adapt, more than twice the number of CA. Although CA 

and SSA both adapt and stabilize much faster than HCCA, the human will have an easier time 

adjusting to the system once stabilized in HCCA, whereas there is still an everlasting difficulty of 

not being able to reach the target line in SSA, and continually having to change your adaptation to 

a target line that hardly stays still in CA. This downside to HCCA is very much worth the tradeoff 

of maintaining better accuracy, especially interactions over long periods of time where the time to 

initially adapt is negligible compared to the time the interaction is stable. If strategies of delayed 

co-adaptation and threshold-based co-adaptation were applied, the human adaptation could be 

secured and synergistic with the machine adaptation. One thing to note, the average change in the 

final target line of 123.67 mm is fairly close to the average SSA error of 92.22 mm. These two 

numbers indicate that most of the adaptation on the machines part in HCCA is simply used to 

correct any inability on the users part. Paired with the low mean error and standard deviation of 

HCCA, overall the machine is able to preserve the human adaptation trait and allow them to 

perform their task freely without any unnecessary interference.  



5. CONCLUSION

Utilizing a treadmill and a GUI, subjects were able to accurately perform an easy walking 

task by matching their step distance to a static target line during a control test. Three adaptation 

methods were then tested using a more difficult target line and compared to one another as well 

as the control method. The three methods are single-sided adaptation, which consisted of a static 

target line, co-adaptation without a type of strategy, in which the machine constantly moved the 

target line closer to the humans steps, and co-adaptation utilizing a strategy, dubbed human-

centric co-adaptation, which consisted of the machine waiting for the human to fully adapt to the 

machine before adapting back to the human, as well as holding off any sort of adaptation while 

the human is performing on par to their general level of skill, so as not to confuse the user with 

any sort of unnecessary movements. 

Compared to an easy control test, the introduction of a challenging task made users 

unable to efficiently reach the target line in the SSA test. This inability was rectified by 

introducing co-adaptation on the machines part, however the results were still inefficient; 

Without introducing a strategy to co-adaptation, the machine introduces unnecessary interference 

while adapting, and the user must continually adapt to this unnecessary interference, further 

propagating error. Experiment A, B, and C demonstrated by introducing a type of strategy to co-

adaptation, in our case HCCA, any unnecessary adaptation is removed from the machines side, 

thereby saving the machines resources while increasing the accuracy of the user.  

Different machines have different ways of interacting with humans, and even though a 

human-centric strategy may not be the most optimal strategy to utilize in every single case, 

utilizing a strategy when attempting to co-adapt is necessary for both saving the machines 

resources as well as preserving the humans ability to adapt to any system and keeping  them 
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comfortable even when performing difficult tasks. Furthermore, these optimal strategies may be 

able to be varied from machine to machine, depending on the needs of the human, machine, or 

outcome objective.  
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