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ABSTRACT

Surface-to-surface, blackbody radiation heat transfer is a fundamental phenomena essential

in the evaluation of some heat conduction problems. Representing it in digital simulations is of

interest in the nuclear power industry in a variety of contexts. Some of these contexts include,

but are not limited to: the analysis and design of micro- and space-reactors, the analysis of high-

temperature surfaces present during severe accidents, etc. An open source MOOSE application,

Phoenix, has been created and made freely available on github. The aim of this application is to

provide modeling capabilities for problems that involve surface-to-surface, blackbody radiation

heat transfer.

The work conducted for the completion of this thesis and in the construction of Phoenix in-

cludes:

• The incorporation of a vetted version of CGAL in the MOOSE application that is LGPL v3+

compliant. This allows for ray tracing capabilities provided by the trusted and broadly used

library. This is leveraged for the view factor calculations.

• Development of a unit-test suite of 264 tests within the MOOSE app. This provides confi-

dence in the correctness of the basic view factor calculations as the application is developed.

• Investigation into the appropriateness of quadrature-based integration in view factor calcula-

tions for a variety of geometrical configurations. This includes benchmarks of the generated

solutions against analytic solutions or solutions reported in trusted literature.

• Integration of view factor calculations with the multi-physics capabilities in MOOSE.

• Implemention of surface-to-surface, blackbody radiation boundary conditions for heat con-

duction problems.

• Investigation and benchmarks of the capabilities for surface-to-surface, blackbody radiation

boundary conditions.
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By accomplishing these tasks an extensible and perhaps useful application for simulating surface-

to-surface, blackbody radiation heat transfer is be freely available. Suggestions and direction for

future work is discussed in the conclusion of the thesis.
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NOMENCLATURE

CGAL The Computational Geometry Algorithms Library

MOOSE Multiphysics Object Oriented Simulation Environment

PETSc Portable, Extensible Toolkit for Scientific Computation

LWR Light Water Reactor

RCCS Reactor Cavity Cooling System

VHTRs Very High Temperature Reactors

HEX Used to denote the hexahedral meshing of the parallel, di-
rectly opposed plates.

PYR Used to denote the triangular pyramid meshing of the paral-
lel, directly opposed plates.

PRI Used to denote the triangular prism meshing of the parallel,
directly opposed plates.

API Application Programming Interface

PJFNK Preconditioned Jacobian-free Newton-Krylov

GMRES Generalized Minimal RESidual method

TDD Test-Driven Development

LGPL GNU Lesser General Public License
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Math Symbols

Ω A spatial domain of interest. For this thesis, Ω ⊂ R3.

∂Ω The surface of Ω.

∂Ωh
e The discretization of ∂Ω into disjoint and flat elements.

r⃗ Position vector in Ω.

T Temperature (K).

ρ Density (kg/m3).

cp Specific heat capacity (J/K·kg).

k Thermal conductivity (W/(m·K)).

q′′′ Local rate of heat generation (W/m3).

n̂ The local, surface unit-normal.

G Irradiation power of a surface (W/m2).

E Emissive power of a surface (W/m2).

J Radiosity (W/m2).

σ The Stefan–Boltzmann constant (5.670374419× 10−8 W/m2·K4).

Gb, Eb Blackbody irradiation and emissive powers, respectively (W /m2).

Ib The local blackbody intensity (W /(m2·sr)).

r Reflection Fraction (i.e. reflectivity).

α Absorbtion Fraction (i.e. absorptivity).

τ Transmission Fraction (i.e. transmissivity).

q′′ Heat Flux (W/m2).

i Test function index.

j Basis function index.

ψi A test function.
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ϕj A basis function.

Th The discrete approximation of T .

Tj Coefficients for Th.

T⃗ The vector of Tjs.

Ndofs The total number of degrees of freedom.

Ki(T⃗ ) The ith element of a kernel’s vector.

Ri(T⃗ ) The ith element of the residual vector.

x⃗ A general vector of solution values for a nonlinear problem.

δx⃗ The newton direction.

n The iteration index.

F⃗ A general residual vector for a nonlinear problem.

Ji,j An element of the jacobian matrix of F⃗ .

e, f Arbitrary surface indices.

dA A differential surface area.

n̂ The local unit normal of a surface.

s⃗e→f The ray cast from surface location e to location f .

θ Angle formed between a ray and the unit surface normal.

dFe→f The infinitesimal view factor of the diffusely emitting surface e di-
rected towards surface f .

d2Qe→f The total energy leaving an infinitesimal surface, e that irradiates sur-
face f .

dΩe The solid angle subtended by dAf when viewed from dAe.

∢ The view function.

∂Ωe A finite surface with index e.

Ae The surface area of the surface e.

Fe→f The finite view factor directed from e to f .
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dI irr
e→f The diffuse energy leaving dAe that is intercepted by dAf .

⟨ · ⟩e The surface–averaging operator over element e.

Eb
e The total energy emitted from the element via blackbody radiation

from the surface element e.

Gb
e(r⃗e) The differential, amount of diffuse energy that irradiates an element.

Gb
e The total amount of diffuse energy that irradiates the surface element

e.

Ke↔f The view factor kernel between the two surface locations e and f .

Re↔f The view factor residual between two finite surfaces ∂Ωe and ∂Ωf .

Qgen Total amount of heat generated in the plate in §5.1.

A The surface area of the boundary that is emitting radiation in §5.1.

t The thickness of the plate in §5.1.

Trad, surf The surface temperature of the face that is emitting radiation in §5.1.
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1. INTRODUCTION

Although this task appears very

simple, its solution is considerably

more knotted than one would expect...

the highly laborious computation

would fill even the most patient with

disgust and drive them away.

Johann Heinrich Lambert (1760)

Modeling and simulation of radiation heat transfer is of interest in many applications relevant

to the nuclear power industry, but their also exists a seemingly endless number of applications

outside of the nuclear industry. A few examples where radiation heat transfer plays an important

role includes:

• The gap between the fuel and the cladding in conventional light water reactor (LWR) fuel

pins [7],

• The heat transferred from the reactor vessel of Very High Temperature Reactors (VHTRs)

to the cooling panel of the Reactor Cavity Cooling System (RCCS) [8, 9],

• the emission of radiation from corium and other high temperature surfaces during severe

accident scenarios [10],

• The surface of heat pipes in certain terrestrial and space, nuclear reactors [11, 12, 13, 14],

• Continuous annealing furnaces used for recrystallization annealing and surface treatment in

cold-rolled strip manufacturing [15], and

• In a variety of thermal control and thermal protection systems used by spacecraft [16].
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The availability of tools to aid in the task of digitally representing surface-to-surface, blackbody

radiation heat transfer is critical for progress across multiple domains. Safety, policy and design

decisions are often informed by the models that are widely available. Each problem presents unique

requirements for its analysis, and only a wide availability of approaches leads to the possibility of

addressing all challenges that might arise.

The aim of this thesis is to create a free and open source tool that can be used in the anal-

ysis of engineering problems that involve surface-to-surface, blackbody radiation heat transfer.

Phoenix, a MOOSE application, was created and is freely available on github. In this application,

the Computational Geometry Algorithms Library (CGAL) is leveraged to handle the deterministic

computation of view factors. The view factor calculations can be used in the boundary conditions

for a heat transfer problem.

This thesis begins by overviewing the theory underlying the functionality provided by Phoenix

in §2. Next, the code development process (including the development of the benchmark exam-

ples) is discussed in §3. A variety of examples of the view factor calculation are included in this

thesis – from the very simple (which can be compared against analytic solutions) to the more com-

plex (which require occlusion detection and only have benchmark numerical approximations for

comparison). These benchmark cases can be found in §4. Two cases exercising the surface-to-

surface, blackbody radiation boundary conditions are included in §5. The thesis is concluded with

suggestions for future work and investigations in §6.
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2. THEORY AND LITERATURE REVIEW

The purpose of computing is insight,

not numbers.

Richard Wesley Hamming (1962)

2.1 Overview

Radiation heat transfer is the exchange of thermal energy between surfaces via photons. All

surfaces of materials emit photons as a result of oscillations or transitions of the many electrons

that constitute matter. In general, the emitted photons encompass a range of wavelengths, and they

are distributed in a variety of directions. Eventually, a photon will escape a local system, or it will

be absorbed by another surface within the system [17]. This thesis will focus on the idealized case

of modeling and simulating radiation exchange between blackbody surfaces.

The following sections will overview the background theory underlying the MOOSE app,

Phoenix. The first three subsections will provide the necessary theoretical background, and the

final subsection will narrow-in on the heart of the problem being addressed in this thesis. The first

section will review the fundamentals of heat conduction in a solid and radiation heat exchange at

a surface (§2.2). This will give the reader a high-level overview of the problem at hand. Next, the

basic finite element procedure in the MOOSE style is discussed (§2.3). Following this, the non-

linear solve by PJFNK is touched on (§2.4). A brief review will acquaint unfamiliar readers with

this critical component for solving surface-to-surface radiation heat transfer problems in MOOSE.

Finally, the view factor computations and the discretization of the surface-to-surface, blackbody

radiation boundary conditions are described (§2.5). All of this serves as the foundation for the

discussion of code development and implementation in §3.
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2.2 Radiation Heat Transfer and Heat Conduction

The solution for temperature, T , (K) to heat transfer problems involving heat conduction in a

solid material conform to the equation:

ρcp
∂T

∂t
−∇ · (k∇T ) = q′′′, ∀r⃗ ∈ Ω, (2.1)

where ρ is density (kg/m3), cp is the specific heat capacity (J/K·kg), k is thermal conductivity

(W/(m·K)) and q′′′ is the local rate of heat generation (W/m3). The specification of boundary

conditions is required in-order to close the problem. A variety of boundary conditions arise in real

world problems (e.g. convection, mixed, etc.). Blackbody radiation boundary conditions will be

the focus of the discussion, and it will be assumed that the reader is familiar with the standard

variety of boundary conditions for the heat diffusion equation. The heat flux on the boundary,

∂Ωrad, is related to the temperature field by:

q′′rad = −kdT
dn̂
, ∀r⃗ ∈ ∂Ωrad, (2.2)

where q′′rad is the net radiative heat flux, and dT
dn̂

is the temperature gradient in the direction of the

surface normal n̂. The expression for q′′rad will be derived below.

Consider a boundary of an opaque medium experiencing radiation heat transfer.
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G

rG

E

q′′rad

Figure 2.1: The boundary of an opaque medium experiencing radiation heat transfer.

In Figure 2.1, G is the irradiation incident on the surface and E is the emissive power of the

surface. Incident irradiation can either be reflected, absorbed or transmitted through the surface.

The fractions r, α and τ are defined to account for these possibilities. These fractions are referred

to as the reflectivity, absorptivity and transmissivity, respectively.

It follows that,

r + α + τ = 1.

Hence, rG represents the incident radiation that is reflected. Finally, q′′rad is the net radiative

heat flux – the quantity that is relevant for defining the radiation boundary condition. It should be

noted that all of the quantities depicted in Figure 2.1 have units of W/m2.

For an opaque surface, τ = 0 (i.e. r+α = 1). Radiosity, J , is commonly described as the rate

at which all radiant energy leaves a surface per unit area. For an opaque surface, radiosity can be

expressed as:

J = E + rG. (2.3)

The net radiative heat flux is then:
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q′′rad = J − G. (2.4)

The exchange of blackbody radiation between surfaces will be the focus of this thesis, and con-

siderably simplifies the boundary conditions for the heat diffusion equation. Blackbody surfaces

absorb all incident radiation, and diffusely emit the maximal amount of radiation for a given tem-

perature. In this scenario, r = τ = 0 and α = 1. Hence, J = E and

q′′rad(r⃗) = Eb(r⃗)− Gb(r⃗), ∀r⃗ ∈ ∂Ωrad. (2.5)

The local emission of blackbody radiation is characterized by the Stefan-Boltzmann law:

Eb(r⃗) = σT (r⃗)4, (2.6)

where σ is the Stefan–Boltzmann constant. Determining Gb(r⃗) is a bit more complicated because

it involves the emission from all other surface locations within the view of a given surface location.

The details of this will be discussed in section 2.5. First, the basics of the finite element method

will be reviewed within the context of application to the heat diffusion equation.

2.3 Finite Element Modeling

The following section will demonstrate the basics of the finite element procedure applied to

Eq. (2.1) in the context of MOOSE. MOOSE is a computational framework that excels at simu-

lating large systems of coupled, nonlinear partial differential equations that are suitable for being

approximated in the continuous Galerkin paradigm. For this demonstration, let ϕj(r⃗) be that basis

functions and ψi(r⃗) be the test functions. In the case of the heat diffusion equation, the approximate

solution variable is represented as:

Th(r⃗) =

Ndofs∑
j=1

Tjϕj(r⃗), (2.7)

where Ndofs is the total number of degrees of freedom, and Tj are the coefficients of the basis
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function. If the basis functions are nodal then Tj = Th(r⃗j) where r⃗j are the node locations.

It follows that,

∇Th(r⃗) =
Ndofs∑
j=1

Tj∇ϕj(r⃗). (2.8)

Plugging the approximate solution for T (i.e. Th) into the heat diffusion equation, multiplying

by the test function ψi(r⃗), integrating over the entire spatial domain, Ω, and moving all of the terms

to the left of the equal sign:

∫
Ω

ρcp
∂Th
∂t

ψi dV −
∫
Ω

∇ · (k∇Th)ψi dV −
∫
Ω

q′′′ψi dV = 0. (2.9)

Using Gauss’ divergence theorem:

∫
Ω

ρcp
∂Th
∂t

ψi dV +

∫
Ω

(k∇Th) · ∇ψi dV −
∫
∂Ω

ψi (k∇Th) · n̂ dA−
∫
Ω

q′′′ψi dV = 0 (2.10)

If ψi has local support restricted to an element in Ωe ⊂ Ω (as it does in MOOSE), then:

∫
Ωe

ρcp
∂Th
∂t

ψidV +

∫
Ωe

(k∇Th)·∇ψidV +

∫
∂Ω∩∂Ωe

−ψi (k∇Th)·n̂dA+
∫
Ωe

−q′′′ψidV = 0 (2.11)

Each of the terms in the above equation is a so called kernel in MOOSE (analogous to kernels

used in image processing). This forms the ith element of the residual vector (assuming Dirichlet

boundary conditions are not applied):

Ri(T⃗ ) = K time
i (T⃗ ) +Kcond

i (T⃗ ) +Kbndry
i (T⃗ ) +Ksrc

i (T⃗ ), (2.12)

where T⃗ is the vector of coefficients for Th(r⃗). Each of the integrals in the kernels are evalu-

ated by quadrature (typically a Gauss–Legendre quadrature of a sufficiently high degree in order
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to exactly evaluate the integral). The heat diffusion equation is said to be satisfied in a weak

sense when R⃗(T⃗ ) = 0. Each of these kernels is implemented in the “heat_conduction” module

of MOOSE with the exception of the radiation boundary condition. The implementation of the

radiation boundary condition will be discussed in section 3.3. The next section will overview how

the solution vector, T⃗ , is solved for by searching for the solution that satisfies R⃗(T⃗ ) = 0. For

notational convenience, the h from Th will be dropped for the remainder of the thesis.

2.4 Nonlinear Solve

Discretization of radiation heat transfer problems result in a systems of nonlinear equations to

be solved. MOOSE leverages the Preconditioned Jacobian-free Newton-Krylov (PJFNK) solvers

provided by PETSc [18, 19, 20] to solve nonlinear multiphysics problems. The advantages of

using PJFNK is that the Newton method typically has super-linear convergence in the nonlinear

iteration [21, 22], and the Krylov subspace solver (typically GMRES) is efficient and suitable

when using appropriate preconditioning to approximately solve the intermediate linear systems of

equations [23, 24].

An overview of PJFNK solvers follows. Consider the residual statement for a general nonlinear

system of equation:

F⃗ (x⃗) = 0, (2.13)

where x⃗, F⃗ (x⃗) and 0 are vectors of length Ndofs. The elements of the jacobian matrix for the

system are:

J(x⃗)i,j =
∂(F )i
∂(x)j

(x⃗). (2.14)

Newton methods (in essence) consists of iteratively updating the iterate solution vector x⃗n in

the following fashion:

x⃗n+1 = x⃗n + δx⃗n, (2.15)

8



where n is the iteration number, and δx⃗n is the so called newton direction. Roughly speaking,

the iteration is continued until the residual statement is satisfied to a sufficient degree, or it is

terminated if divergence of the solution is detected. The newton direction is determined by solving

the following linear system:

J(x⃗n)δx⃗n = −F⃗ (x⃗n). (2.16)

If the initial guess is sufficiently close to the solution, and this linear system is exactly solved

in each iterate then it is provable that Newton’s method has q-quadratic convergence [21]. For

large, multiphysics problems this is impractical and often an approximation for δx⃗n is sufficient

for q-superlinear convergence. MOOSE uses preconditioned Krylov methods to rapidly arrive at

an approximation for δx⃗n. A nice feature of Krylov methods is that only matrix-vector products

are needed (as opposed to needing the details of the matrix itself). Krylov methods are often called

matrix-free if they are implemented in this manner, and this is why PJFNK is called jacobian-free.

Now, the reader should have some understanding of the theory underlying MOOSE. It is now

appropriate to discuss the surface–averaging process employeed to approximate the blackbody

radiation boundary conditions. This will provide as the inception of how surface-to-surface heat

transfer can be incorporated in MOOSE. The next section will first focus on view factor theory

as it is a critical component for handling the radiation boundary condition. The details of the

surface–averaging process for handling the boundary conditions will then be covered in §2.5.1.

The section is finished by over-viewing possible methods for computing view factors in §2.5.2, and

then providing the bare essentials of how view factors can be determined by surface integration in

§2.5.3.

2.5 View Factor Calculation and Computational Geometry

Consider the geometrical configuration of the two infinitesimal surface in the neighborhoods

of r⃗e and r⃗f , as shown in Figure 2.2.
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dAe

n̂e

dAf

n̂f

s⃗e→f

x
y

z

r⃗e

r⃗f

Figure 2.2: An arbitrary geometric configuration between two infinitesimal surfaces e and f .

The dA’s and n̂’s are the associated infinitesimal surface areas and unit normals. The ray, s⃗e→f

is related to the surface locations, r⃗e and r⃗f , by:

s⃗e→f = r⃗f − r⃗e. (2.17)

The cosine of the angles between s⃗e→f and each of the surface normals can be represented as:

cos θe =
s⃗e→f · n̂e

∥s⃗e→f∥
, and (2.18)

cos θf = − s⃗e→f · n̂f

∥s⃗e→f∥
. (2.19)

It is advantageous to define the infinitesimal view factor of the diffusely emitting surface e

directed towards surface f :

dFe→f ≡ diffuse energy leaving dAe directly toward and intercepted by dAf

total diffuse energy leaving dAe

. (2.20)
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For black body radiation the denominator is:

Eb(r⃗e)dAe = πIb(r⃗e)dAe, (2.21)

where Ib(r⃗e) is the local blackbody intensity having units of (W /(m2 · sr)). The total energy

leaving an infinitesimal surface, e that irradiates surface f is:

d2Qe→f = Eb(r⃗e)∢(r⃗e, r⃗f ) cos θedΩedAe, (2.22)

where dΩe is the solid angle subtended by dAf when viewed from dAe, and ∢(r⃗e, r⃗f ) is the view

function. The solid angle is:

dΩe =
cos θf
∥s⃗e→f∥2

dAf . (2.23)

The view function, ∢(r⃗e, r⃗f ), takes the entirety of the surface configuration into account. It must

behave such that:

∢(r⃗e, r⃗f ) =


0 if the ray, s⃗e→f , is occluded by a surface

1 otherwise
. (2.24)

A property of this function is that ∢(r⃗e, r⃗f ) = ∢(r⃗f , r⃗e) (i.e. the arguments are commutative).

Working with expression (2.20):

dFe→f ≡ diffuse energy leaving dAe directly toward and intercepted by dAf

total diffuse energy leaving dAe

=
d2Qe→f

Eb(r⃗e)dAe

dFe→f = ∢(r⃗e, r⃗f )
cos θe cos θf
π∥s⃗e→f∥2

dAf (2.25)

To be consistent with notation commonly found in finite element literature let a finite surface
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be denoted by ∂Ωe. The surface area of that surface will then be represented as Ae = |∂Ωe|. The

finite view factor directed from ∂Ωe to ∂Ωf is arrived at by integrating Eq. (2.25) over the two

surfaces:

Fe→f =
1

Ae

∫
∂Ωe

∫
∂Ωf

∢(r⃗e, r⃗f )
cos θe cos θf
π∥s⃗e→f∥2

dAfdAe. (2.26)

Before moving on, some important relationships that are used in the process of verifying and

implementing the code will be enumerated. In the relationships below, lowercase letters are used

to represent finite, disjoint surfaces, and uppercase letters represent sets of those surfaces.

The reciprocity relationship:

AeFe→f = AfFf→e. (2.27a)

The partial additive relationship:

Fe→F =
∑

∂Ωf∈∂ΩF

Fe→f . (2.27b)

The convex, partial-enclosure constraint:

∑
∂Ωf∈∂ΩF

Fe→f ≤ 1. (2.27c)

The complete additively relationship:

FE→F =
1

AE

∑
∂Ωe∈∂ΩE

∑
∂Ωf∈∂ΩF

AeFe→f . (2.27d)
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It should be noted that

AE ≡
∑

∂Ωe∈∂ΩE

Ae.

Now that the properties of view factors have been reviewed the expression for Gb(r⃗) can be

discussed. Let dI irr
e→f be defined as the diffuse energy leaving dAe that is intercepted by dAf . The

expression for this is:

dI irr
e→f = Eb(r⃗e)dAedFdAe→dAf

dI irr
e→f = σT (r⃗e)∢(r⃗e, r⃗f )

cos θe cos θf
π∥s⃗e→f∥2

dAedAf (2.28)

By swapping e and f , this expression can be integrated over all surfaces to get the total diffuse

energy intercepted by dAe:

Gb(r⃗e)dAe = σdAe

∫
A

T (r⃗f )
4∢(r⃗e, r⃗f )

cos θe cos θf
π∥s⃗e→f∥2

dAf . (2.29)

Finally, we arrive at the expression for the differential amount of diffuse energy intercepted:

Gb(r⃗e) = σ

∫
A

T (r⃗f )
4∢(r⃗e, r⃗f )

cos θe cos θf
π∥s⃗e→f∥2

dAf . (2.30)

The last piece of the puzzle is to relate the temperature profile at the surface to the radiation

emission and irradiation. This is done by using Fourier’s law of heat conduction:

(−k∇T (r⃗)) · n̂ = Eb(r⃗)− Gb(r⃗), ∀r⃗ ∈ ∂Ωrad. (2.31)

The next section will discuss how equations (2.6), (2.30) and (2.31) can be leveraged, after ap-

plying some simplifying assumptions, to incorporate external, blackbody radiation heat transfer

effects in MOOSE.
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2.5.1 Surface–Averaging Simplification

The following section will describe the surface–averaging process employed to approximate

external, blackbody radiation heat exchange. Consider the scenario where the surface, ∂Ω, has

been discretized into disjoint and flat elements, ∂Ωh
e . Let ∂Ωh represent the set of all surface

elements, and ∂Ωh
rad represent the set of all surface elements experiencing radiation heat exchange.

It follows that ∂Ωh
rad ⊆ ∂Ωh.

Consider the element, ∂Ωh
e ∈ ∂Ωh

rad. Similar to the previous section, Ae = |∂Ωh
e | (i.e. Ae is the

area of ∂Ωh
e ). Let the surface–averaging operator be defined by:

⟨ · ⟩e ≡

∫
∂Ωh

e
· dA

Ae

. (2.32)

The total energy emitted from the element via blackbody radiation is:

Eb
e ≡

∫
∂Ωh

e

Eb(r⃗)dA (2.33)

=

∫
∂Ωh

e

σT (r⃗)4dA

= σ

∫
∂Ωh

e

T (r⃗)4dA

Eb
e = σAe⟨T 4⟩e. (2.34)

The differential, amount of diffuse energy that irradiates the element is:

Gb
e(r⃗e) ≡ σ

∑
∂Ωf∈∂Ωh

rad

∫
∂Ωf

T (r⃗f )
4∢(r⃗e, r⃗f )

cos θe cos θf
π∥s⃗e→f∥2

dAf . (2.35)

Naturally, this lead to the definition of the total amount of diffuse energy that irradiates the element:
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Gb
e ≡

∫
∂Ωe

Gb
e(r⃗e)dAe (2.36)

= σ
∑

∂Ωf∈∂Ωh
rad

∫
∂Ωf

T (r⃗f )
4

(∫
∂Ωe

∢(r⃗e, r⃗f )
cos θe cos θf
π∥s⃗e→f∥2

dAe

)
dAf .

Make the simplifying assumption that the temperature profile of every surface element on the

radiation boundary is constant (i.e. T (r⃗e) = ⟨T ⟩e ∀r⃗e ∈ ∂Ωe, ∀∂Ωe ∈ ∂Ωh
rad). A consequence of

this is that ⟨T 4⟩e = ⟨T ⟩4e. The above equations then simplifies as follows:

= σ
∑

∂Ωf∈∂Ωh
rad

⟨T ⟩4f
∫
∂Ωf

∫
∂Ωe

∢(r⃗e, r⃗f )
cos θe cos θf
π∥s⃗e→f∥2

dAedAf

= σ
∑

∂Ωf∈∂Ωh
rad

⟨T 4⟩f
∫
∂Ωf

∫
∂Ωe

∢(r⃗e, r⃗f )
cos θe cos θf
π∥s⃗e→f∥2

dAedAf

= σ
∑

∂Ωf∈∂Ωh
rad

⟨T 4⟩fAfFf→e

Gb
e =

∑
∂Ωf∈∂Ωh

rad

Eb
fFf→e (2.37)

It is expected that the surface–averaged approximation of an idealized surface configuration ap-

proaches the real configuration in the limit of infinitely many sub-surfaces.

2.5.2 General View Factor Determination

A variety of methods exist to compute or approximate view factors:

• Direct integration

– Surface integration. Analytical or numerical.

– Contour integration. Analytical or numerical.

• Statistical determination (Monte Carlo)

15



• Special methods

– View factor algebra.

– Crossed-strings method.

– Unit sphere method.

– Inside sphere method.

• Approximate quadrature methods commonly used in computer graphics

– The hemicube algorithm.

– The cubic tetrahedral algorithm.

Details of these methods can be found throughout the literature [25, 26, 27, 28, 29, 30, 31, 32].

The focus of this thesis is to approximate view factors by double surface integration via numerical

quadrature. View factor algebra is also leveraged to reduce the number of quadratures that must be

conducted. This method has been shown to be accurate for sufficiently resolved discretizations of

geometric configurations [33].

Direct integration methods are attractive in certain circumstances because they offer determin-

istic run-times. The drawback is that analytic evaluation is only possible for simple geometric

configurations. Numerical methods must be leveraged to approximate the integrals.

The following sections will describe how the view factors are computed by this method and

justify the tools and methods utilized in the computations.

2.5.3 Determination of View Factors by Approximate Surface Integration

The form of the view factor integral in Eq. (2.26) does not lend itself well to computation. One

would have to determine the angle between the surface normal and the ray which is unnecessary.

An alternative approach is to leverage the properties of dot products expressed in Eq. (2.18) and

(2.19). Let the view factor kernel be defined as:

Ke↔f ≡ −∢(r⃗e, r⃗f )
(n̂e · s⃗e→f ) (n̂f · s⃗e→f )

π∥s⃗e→f∥4
. (2.38)
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Using this, the infinitesimal view factor from dAe to dAf can be expressed in terms of the view

factor kernel as:

dFe→f = Ke↔fdAf . (2.39)

Let the view factor residual between finite surfaces ∂Ωe and ∂Ωf be defined as:

Re↔f ≡
∫
∂Ωe

∫
∂Ωf

Ke↔fdAfdAe. (2.40)

By leveraging view factor algebra, the view factor from ∂Ωe to ∂Ωf can be computed by:

Fe→f =
Re↔f

Ae

. (2.41)

The reciprocal view factor can be computed by a similar formula without having to recompute the

residual. In effect, this halves the number of residual computations that must be conducted.
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3. CODE DEVELOPMENT AND IMPLEMENTATION

3.1 Overview on the Construction of Phoenix

A smaller scale code was first developed in python to test the evaluation of view factors

by quadrature. This code is called “thermal_radiation” and is available at https://github.com/

andfranklin/thermal_radiation. The version referenced by this thesis can be accessed with the

tag: thesis. Documentation and information on how to install “thermal_radiation” can be built as

follows:

1. Having a compatible version of python (e.g. 3.8.1) installed and an Internet connection.

2. Navigate to the “docs” directory.

3. Running the make file: “make html”.

4. Open “_build/html/index.html” in a web browser of choice.

After thermal radiation is installed the scripts at the root of the repository can be run. To test

that everything was installed properly the following can be run from the root directory: “python

tritri.py”.

The foundational geometry code can be found in “geometry.py”. Numpy [34, 35] is leveraged

to compute the unoccluded, differential view factors using double-precision, floating-point num-

bers. An arbitrary geometric configuration can be constructed out of instances of the “Triangle”

class.

Scipy [36] conveniently provides an interface to adaptively integrate functions over multiple

variable to an arbitrary degree of accuracy (scipy.integrate.nquad). The root functionality is sup-

ported by the Fortran library QUADPACK. Sympy [37] is used to construct the Gauss-Legendre

quadrature rules. Each of these libraries have been in wide use for a number of years, and they

are generally accepted as reliable. This function is used to integrate the differential unoccluded
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view factors to arrive at a reference solution for the view factors of triangles in the function “adap-

tive_triangle_view_factor”.

Alternatively, the closure, “get_fixed_triangle_view_factor”, can be used to approximate view

factors using a given quadrature rule. A user is expected to provide one of the two quadra-

ture classes defined in “quadrature_2d.py”: “TriangleTensorProductGaussLegendre2D” or “Trian-

gleSymmetricalGauss2D”. When provided one of the quadrature rules the closure returns a func-

tion that can approximate the view factors between two triangles. The resulting function has the

same interface as “adaptive_triangle_view_factor”.

A good example of how to use these building blocks can be found in “tritri.py”. First, the refer-

ence solution is computed by adaptive integration. Then, two approximate solutions are computed

by using the quadrature rules. This script measures the time of how long it takes each one of the

computations to complete. It was useful to develop this script to ensure the consistency between

the solutions as the quadrature orders are increased to the highest level. Although this does not

prove correctness of the implementation, it does provide some confidence when consistency is ob-

served. A fringe benefit of this script is that one can easily adjust the triangles and other parameters

to observe the interplay on the effects of the results.

Playing with this script might also impart some insight into how to improve the mesh in large

scale problems so as to obtain accurate solutions. Generally speaking, accuracy decreases when

using quadrature rules, and computation time increases when using adaptive integration. Also,

the tensor product quadrature rule is generally slower and on the same order of accuracy as the

symmetrical quadrature rule.

Other test cases for evaluating the view factor between quadrangles and triangles can be found

at the root of the directory. Of particular interest is the file “quadquad.py”. Here, the view factor

is evaluated between identical, parallel, directly opposed rectangles. Each rectangle is constructed

out of two triangles, and the final view factors for the rectangles are computed after the view factors

between the triangles are computed. This case is of interest because the analytic solution is easily

computed (see §4.1). In this way, both correctness and consistency between the methods can be
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evaluated.

After some level of confidence had been gained in using standard quadratures to evaluate view

factor computation it was decided to implement the method in a way that it could be used to

address more practical problems. C++ was chosen as the language of choice because then the

computations could be integrated easily with MOOSE, and because its emphasis on zero cost

abstraction. The Computational Geometry Algorithms Library (CGAL) was selected to handle the

geometric aspects.

A standalone MOOSE application, Phoenix, was created. A vetted branch of CGAL was cre-

ated that contains only LGPL portions of the library. This is included in Phoenix as a git submod-

ule. Then, the low-level geometric primitives in CGAL were used to implement and extend the

functionality of “thermal_radiation”.

A test-driven development (TDD) approach was taken where, ultimately, a unit test suite of

264 tests were implemented using the googletest testing harness. Included in this test suite are

tests of view factors, tests of the collision detection primitives and testing of data structures used in

the full-scale view factor computations. For the tests of the view factors, the results are compared

against solutions generated by “thermal_radiation”. It should be noted that identical tests are run

for both exact and approximate number types wherever possible (see §3.2 for more information).

From there, functionality was incrementally added until surface-element-averaged radiation heat

transfer problems could be run.

3.2 CGAL and the Computational Geometry Aspects

CGAL was selected to handle the geometric aspects of the view factor calculations because of

its wide use, ease of access, permissive licenses and ability to robustly handle ray tracing while

also providing the flexibility to handle multiple number types.

The Computational Geometry Algorithms Library (CGAL) is utilized to compute the ray-

tracing [38]. This library was chosen because all of the required algorithms and routines were

implemented, the library has a permissive license for the required functionality, and this library is

a well tested and broadly used. In the event that there is a bug it is likely that it would be found
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quickly and fixed.

One of the nice features that CGAL provides is that it is trivial to switch between “exact”

and standard floating-point computation paradigms. This provides users with the option to choose

between precise computation of the connecting rays between elements, or one can sacrifice some

precision (which may or may not be catastrophic) to gain faster run-times and lower memory

profiles.

From the software developer’s perspective, a nice feature of CGAL is that it leverages template

meta-programming to generalize the algorithms to be independent of the underlying number type.

This leads to code that needs to be written only once, and will work for multiple number types after

template specialization. Sometimes this is referred to as compile-time polymorphism. Ultimately,

the template meta-programming style results in compact code that is less likely to have bugs, or

if there is a bug it is easier to fix across all template cases. It also allows for an effective method

for managing all possible combinations of user options. Many of the available compilers claim to

generate machine code from templates with run-time and space efficiency that matches handwritten

code [39].

The major drawback is that the code tends to becomes more abstract. It can be difficult for

those who do not have experience with template programming to understand what the code is

doing. From a design standpoint, functionality and correctness outweighed this drawback.

3.2.1 View Factor Implementation

The view factor residual can be analytically computed for arbitrary convex polygons [40], but

it is not appropriate when occlusion occurs. It was decided that it would be advantageous to use

quadrature rules provided by libMesh to approximate the residual integration [1, 2, 41].

Quadrature rules are used to approximate integrals by using finite summations:

∫
R

f(x)dx ≈
n∑

i=1

f(xi) · wi. (3.1)

Here, xi are quadrature points that lie within a reference spatial domain R, and wi are the quadra-
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ture weights. For a quadrature rule to be valid in view factor calculations, every xi must strictly

be within the reference spatial domain and every wi > 0. There are many different quadrature

rules and they each have their merits. libMesh provides may quadrature rules for quadrilaterals

and triangles.

To apply a quadrature rule to arbitrary domains, A, a mapping, m, must be defined between R

and A. The change of integration domain follows:

∫
A

u(x)dx =

∫
R

u(m(y)) |m′(y)| dy. (3.2)

It should be noted that quadrature rules where, R ⊂ R2, are of primary interest for this thesis. The

meshes of interest are embedded in R3. This implies that the mapping for each surface element

will be of the form, m : R2 → R3.

The view factor residuals are then approximated by the double summation:

Re↔f =
∑

(x⃗,w)e∈Q∂Ωe

∑
(x⃗,w)f∈Q∂Ωf

K(m∂Ωe(x⃗e),m∂Ωf
(x⃗f ))we|m′

∂Ωe
(x⃗e)|wf |m′

∂Ωf
(x⃗f )|, (3.3)

where

• Q’s are the sets of quadrature points and weights (i.e. (x⃗, w)) for a give quadrature rule,

• m’s are the mappings from the reference element domains to the actual surface elements’

domains,

• m′’s are the respective jacobians of the mappings, and

• K is the discrete view factor kernel.

The discrete view factor kernel is:

K(r⃗e, r⃗f ) = −∢(r⃗e, r⃗f )
(n̂e · s⃗e→f ) (n̂f · s⃗e→f )

π∥s⃗e→f∥4
, (3.4)
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and s⃗e→f is computed from r⃗e and r⃗f using equation 2.17.

3.2.2 Occlusion Detection

There are currently three implementations of ∢(r⃗e, r⃗f ) in Phoenix:

• “NONE” – returns 1 if the surfaces are facing each other, and 0 otherwise. This does not

satisfy property (2.24), but it does minimize the computation time.

• “BRUTE_FORCE_WITHOUT_BBOX” – If the surfaces of interest are facing each other

then it searches through every other surface element and does collision detection of the ray

and that test surface. It stops early if a collision is detected.

• “BRUTE_FORCE_WITH_BBOX” – Similarly searches through every surface element, but

it first does a collision detection between the ray and the surface’s bounding box, and then

does the actual collision detection of the ray and the surface. The hope is that there is some

speed-up in the computation because bounding box collision detection is quicker than that

of a triangle or quadrangle. This is especially true if the “exact” number system is used.

Having multiple options allows for users to select an appropriate option for their problem.

If some a priori knowledge about the geometric configuration is known a user might opt for no

collision detection or the bounding box method. It is up to the user to select an option that could

result in correct answers. To account for occlusion, and if uncertain of which option is appropriate,

the brute force option should be selected.

3.3 Boundary Conditions

To allow for the full generality of mixed boundary conditions, Kbndry
i (T⃗ ), is actually:

Kbndry
i (T⃗ ) = Kcond

i (T⃗ ) +Kconv
i (T⃗ ) +K rad

i (T⃗ ). (3.5)

If one of the modes of heat transfer is not active then one could think of respective kernel

returning zero. In MOOSE the kernel is simply not activated. The kernels for conduction and
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convection boundary conditions (Kcond
i (T⃗ ) and Kconv

i (T⃗ ), respectively) are included in MOOSE.

The theory for theses kernels will not be covered in this thesis.

Focusing on the boundary condition kernel for radiation:

K rad
i (T⃗ ) ≡

∫
∂Ωe

−ψi (k∇Th) · n̂ dA

=

∫
∂Ωe

ψi

(
Eb
e (r⃗)− Gb

e(r⃗)
)
dA. (3.6)

Since it is assumed that each surface is locally isothermal:

Eb
e (r⃗) =

Eb
e

Ae

∀r⃗ ∈ ∂Ωe, and (3.7)

Gb
e(r⃗) =

Gb
e

Ae

∀r⃗ ∈ ∂Ωe. (3.8)

The term in the parentheses within the right hand side of the surface integral can then be expanded

as:

Eb
e (r⃗)− Gb

e(r⃗) =
Eb
e

Ae

− Gb
e

Ae

(3.9)

=
Eb
e

Ae

− 1

Ae

∑
∂Ωf∈∂Ωh

rad

Eb
fFf→e

= σ⟨T 4⟩e −
1

Ae

∑
∂Ωf∈∂Ωh

rad

σAf⟨T 4⟩fFf→e.

Using relationship (2.27a):
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= σ⟨T 4⟩e −
1

Ae

∑
∂Ωf∈∂Ωh

rad

σ⟨T 4⟩fAeFe→f

Eb
e (r⃗)− Gb

e(r⃗) = σ

⟨T 4⟩e −
∑

∂Ωf∈∂Ωh
rad

⟨T 4⟩fFe→f

 . (3.10)

Substituting the expansion (3.10) into Eq. (3.6):

K rad
i (T⃗ ) = σ

⟨T 4⟩e −
∑

∂Ωf∈∂Ωh
rad

⟨T 4⟩fFe→f

∫
∂Ωe

ψi dA. (3.11)

This is how the radiation boundary conditions for the heat diffusion equation are handled. The

view factors, Fe→f , are computed before the simulation begins. The ⟨T 4⟩e’s are computed at the

beginning of the nonlinear iteration before the residual vector is computed, but after T⃗ is updated.

The jacobian of this kernel is determined by taking the derivative with respect to the Tj’s:

J rad
i,j (T⃗ ) =

∂K rad
i

∂Tj
(T⃗ ). (3.12)

An initial evaluation will yield:

J rad
i,j (T⃗ ) =

∂⟨T 4⟩e
∂Tj

−
∑

∂Ωf∈∂Ωh
rad

∂⟨T 4⟩f
∂Tj

Fe→f

σ

∫
∂Ωe

ψi dA. (3.13)

From Equations 2.7 and 2.32, ⟨T 4⟩e expanded is:

⟨T 4⟩e =
1

Ae

∫
∂Ωh

e

(
Ndofs∑
k=1

Tkϕk(r⃗)

)4

dA. (3.14)

Taking the partial derivative of this:

∂⟨T 4⟩f
∂Tj

=
4

Ae

∫
∂Ωh

e

T (r⃗)3

(
Ndofs∑
k=1

∂Tk
∂Tj

ϕk(r⃗)

)
dA. (3.15)
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This can be simplified even further by recognizing that ∂Tk

∂Tj
= δkj , where δkj is the Kronecker delta.

The final expression is:

∂⟨T 4⟩f
∂Tj

=
4

Ae

∫
∂Ωh

e

T (r⃗)3ϕj(r⃗)dA. (3.16)

Like the ⟨T 4⟩e’s, these values are computed at the beginning of the nonlinear iteration before

the residual vector is computed, but after T⃗ is updated. Once these values are computed, determin-

ing J rad
i,j (T⃗ ) is done by using those values in the evaluation of equation 3.13.

3.4 Meshing

All meshing was done using the open source tool Gmsh [4]. The python Application Pro-

gramming Interface (API) was used to parametrically define and automate the construction of the

meshes used in the examples. Gmsh does not allow for multi-block meshes, so geometric con-

figurations which require multiple blocks were constructed by separate scripts. MOOSE’s mesh

generation system is extensively used to read the Gmsh meshes into memory, specify the bound-

aries of those meshes, combine the meshes into a common mesh, and specify the boundaries as

separate blocks.

A critical feature for the analysis of radiation heat transfer is specifying the boundaries of

the mesh for which view factors are to be calculated and will have radiation boundary condi-

tions. Multiple generators that aid in the specification of boundaries are included in MOOSE by

default (“SideSetsFromNormalsGenerator”, “SideSetsFromPointsGenerator”, etc.). To accommo-

date some of the example cases presented in this thesis the “SideSetsPoolFloodGenerator” was

created and included in Phoenix. This new mesh generator adds new sidesets starting at the speci-

fied point containing all connected element faces that are a part of the specified pool sideset. It is

analogous to the paint bucket in Microsoft Paint.

3.5 Where to Find the Code and How to Get it Working

The code can be found at and cloned from “https://github.com/andfranklin/Phoenix”. Like all

MOOSE applications, the version control system, git, is used to manage and maintain the code.
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The “README.md” file at the root of the directory contains instructions on how to clone and

compile the code. All scripts and input files for the examples presented in this thesis are included

in the “problems” directory. It should be noted that python and Gmsh must be installed in order to

run the meshing scripts.

3.6 About the Tools Used to Generate the Results

The results presented in this thesis were generated on 2014 MacBook Pro with a 2.5 GHz Quad-

Core Intel Core i7 CPU and 16 GB of RAM running macOS Catalina 10.15.3. Python 3.8.1 and

Gmsh 4.5 were installed and used to create the meshes. The version of Phoenix used to generate

the results presented in this thesis can be accessed through the commit tag “thesis”.
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4. VIEW FACTOR EXAMPLES AND RESULTS

4.1 Parallel and Directly Opposed Plates

A variety of test cases were run of parallel and directly opposed plates. This helps verify that

the unoccluded view factor calculations are correct for both triangular and quadrangular surface

elements. Consider the geometric configuration in Figure 4.1.

A1

A2

a

b

c

Figure 4.1: The geometric configuration for identical, parallel, directly opposed rectangles.

The analytic solution for the view factors is given by [42, 32]:

FA1→A2 =
2

πXY

[
ln

(
(1 +X2) (1 + Y 2)

1 +X2 + Y 2

)1/2

+X
√
1 + Y 2 arctan

(
X√

1 + Y 2

)
+

Y
√
1 +X2 arctan

(
Y√

1 +X2

)
−X arctanX − Y arctanY

]
, (4.1)

where X ≡ a/c and Y ≡ b/c. It was arbitrarily chosen that the interacting plates will be of
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dimension 10 m × 10 m × 1 m, and are separated by 9 m. The analytic solution for the view factor

of one plate to the other (rounded to 16 digits) is 0.2285656684427082. All results presented in

the following subsections were generated by using standard double floating point numbers for all

geometric computations and not using occlusion detection (as it is know a priori that occlusion

does not occur in the configuration).

The following six subsections present figures of the meshes used in the calculations, the result-

ing view factors, and the respective errors of the calculations. Fourth-order Gauss quadrature was

used to approximate the double surface integrals. For the hexahedral meshes (HEX) each element

is 1 m × 1 m × 1 m. This results in 100 surface element on each surface of interest. For the trian-

gular prism meshes (PRI), 244 surface elements are present on each surface of interest. This results

in an average surface area of 0.40984 m2. The triangular pyramid meshes (PYR) have 246 surface

elements on each surface of interest. The average surface area of each element is 0.40650 m2.

The subsections following the base calculations very the quadrature rule, quadrature order and

the mesh refinement level. The hexahedron-hexahedron configuration was used for this case. This

section concludes with a brief summary of the results presented.
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4.1.1 Mesh Invariance

4.1.1.1 Hexahedron – Hexahedron

Figure 4.2 presents the HEX – HEX mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.2: The HEX – HEX mesh.1,2

As expected, the view factor from each plate to the other is exactly the same. The computed

view factor rounded to 16 digits is 0.2285656685503451. The absolute error of this view factor is

1.07637 × 10-10. The relative error is 4.70923 × 10-8%.
1To some, it may appear that the plates are closer than 9 m. This is a byproduct of visualizing the geometric

configuration with linear, perspective projection. Readers that are still doubtful are encouraged to explore the freely
available code (see §3.5).

2Strictly speaking, only surfaces need to be meshed in order for view factors to be computed. It was necessary to
use volumetric meshes for the view factor benchmarks because of how Gmsh, the mesh generator system in MOOSE
and the EXODUS II data file system currently work. Using volumetric meshes does not significantly impact view fac-
tor computation performance. Under the hood, a surface mesh is constructed with CGAL from a provided volumetric
mesh. The surface mesh is then used to efficiently conduct all view factor computations.
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4.1.1.2 Triangular Prism – Hexahedron

Figure 4.3 presents the PRI – HEX mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.3: The PRI – HEX mesh.

The view factor from the HEX mesh to the PRI mesh (FHEX→PRI), and the complementary view

factor (FPRI→HEX) are slightly different. They differ from each other by 1.38777 × 10-15. Table 4.1

summarizes the computed view factors for the PRI – HEX mesh.

View Factor Value Absolute Error Relative Error

FHEX→PRI 0.2285656685024703 5.97620×10-11 2.61465×10-8 %

FPRI→HEX 0.2285656685024717 5.97633×10-11 2.61471×10-8 %

Table 4.1: View factor results for the HEX – PRI mesh.
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4.1.1.3 Triangular Pyramid – Hexahedron

Figure 4.4 presents the PYR – HEX mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.4: The PYR – HEX mesh.

The view factor from the HEX mesh to the PYR mesh differ from each other by 1.94289 × 10-16.

Table 4.2 summarizes the computed view factors for the PYR – HEX mesh.

View Factor Value Absolute Error Relative Error

FHEX→PYR 0.2285656685058535 6.31451×10-11 2.76266×10-8 %

FPYR→HEX 0.2285656685058532 6.31449×10-11 2.76266×10-8 %

Table 4.2: View factor results for the PYR – HEX mesh.
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4.1.1.4 Triangular Prism – Triangular Prism

Figure 4.5 presents the PRI – PRI mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.5: The PRI – PRI mesh.

The view factor from each plate to the other is exactly the same. The computed view factor

rounded to 16 digits is 0.2285656684545930. The absolute error of this view factor is 1.18846 × 10-11.

The relative error is 5.19968 × 10-9%.
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4.1.1.5 Triangular Pyramid – Triangular Prism

Figure 4.6 presents the PYR – PRI mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.6: The PYR – PRI mesh.

The view factor from the PYR mesh to the PRI mesh differ from each other by 7.77156 × 10-16.

Table 4.3 summarizes the computed view factors for the PYR – PRI mesh.

View Factor Value Absolute Error Relative Error

FPRI→PYR 0.2285656684579763 1.52679×10-11 6.67989×10-9 %

FPYR→PRI 0.2285656684579755 1.52671×10-11 6.67955×10-9 %

Table 4.3: View factor results for the PYR – PRI mesh.
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4.1.1.6 Triangular Pyramid – Triangular Pyramid

Figure 4.7 presents the PYR – PYR mesh for the identical, parallel, directly opposed rectangle

case.

Figure 4.7: The PYR – PYR mesh.

The view factor from one plate to the other, and it’s complementary view factor differ from

each other by 2.19269 × 10-15. This is due to the asymmetry in the mesh. Table 4.4 summarizes the

computed view factors for the PYR – PYR mesh.

View Factor Value Absolute Error Relative Error

FA→B 0.2285656684594533 1.67450×10-11 7.32611×10-9 %

FB→A 0.2285656684594511 1.67428×10-11 7.32515×10-9 %

Table 4.4: View factor results for the PYR – PYR mesh.
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4.1.2 Mesh Refinement

The effect of mesh refinement on the the approximate view factor between surfaces is explored

in the following two subsections. The first subsection explores the HEX – HEX mesh, and the

second subsection explores the PYR – PYR mesh. The library, libMesh, provides a variety of

quadrature rules. A few quadrature rules were selected to conduct the mesh refinement study. The

selected view factors include:

• “GAUSS” – The standard tensor–product, Gauss–Legendre quadrature rules are used when

integrating over quadrangles. The well–known Dunavant rules are used when integrating

over triangles.

• “GRID” – Consists of quadrature points on a uniform grid, with order + 1 points on an edge.

Unlike most libMesh quadrature rules, it does not reduce the integration error exponentially

on smooth functions as the quadrature order is increased. It reduces the error quadratically.

However, this error reduction is more reliable on non-smooth functions than it is for other

quadrature rules. This quadrature type may be useful for integrating functions which have

discontinuities on scales smaller than your element size – like when occlusion occurs and

must be handled.

• “MONOMIAL” – These are alternate quadrature rules on tensor–product elements which can

be useful when integrating monomial finite element bases. This class provides quadrature

rules which are more efficient than tensor–product rules when they are available, and falls

back on Gaussian quadrature rules otherwise.

• “SIMPSON” – Simpson quadrature. This is the same thing as Newton–Cotes quadrature

with three points. Simpson’s rule can integrate polynomials of degree three exactly.

• “TRAP” – Trapezoidal quadrature. Sometimes also known as Newton–Cotes quadrature

with two points. These rules sample at the corners and will integrate linear functions exactly.
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More information about these quadrature rules can be found in the libMesh documentation and

code [41]. The fourth-order quadrature rule was selected for each quadrature rule type. Floating

point numbers were used in all aspects of the geometry computations.

4.1.2.1 Hexahedron – Hexahedron

The coarsest mesh consists of 4 elements in each plate – implying an elemental surface area of

25 m2. Each level of refinement splits a hexahedral element into eight sub-elements. The highest

level of refinement consists of 4,096 surface elements on each surface. This implies an elemental

surface area of 0.0244140625 m2 for the highest level of refinement. Figure 4.8 displays the two

extremes of the meshes used.

(a) The coarse mesh. (b) The fine mesh.

Figure 4.8: The two ends of the mesh refinement spectrum for the HEX – HEX configuration.

Figure 4.9 displays the absolute error versus the mesh refinement level for the fourth-order

version of five different quadrature rules.
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Figure 4.9: The mesh refinement results for the HEX – HEX configuration.

The “TRAP” quadrature rule has the slowest rate of convergence. The “GRID” quadrature rule

fared only slightly better than the “TRAP” rule, and with roughly the same rate of convergence.

The “SIMPSON” rule has an intermediate convergence rate, but it is still less than that of “GAUSS”

and the “MONOMIAL” quadrature rules.

The “GAUSS” and “MONOMIAL” quadrature rules fared the best, and roughly have the same

convergence rate. After the fourth refinement level round-off error accumulates and the absolute

errors of these two quadrature rules stops converging. Because of their superior convergence rate

either the “GAUSS” or “MONOMIAL” quadrature rules are preferred when calculating view fac-

tors between quadrangular surface elements.

4.1.2.2 Triangular Pyramid – Triangular Pyramid

The coarsest mesh consists of 14 elements on the surface of each plate – implying an average

elemental surface area of 7.142857 m2. Each level of refinement splits a tetrahedron element
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into eight sub-elements. At the highest level of refinement there are 3,584 surface elements on

each surface. This implies an elemental surface area of 0.0279017857 m2 for the highest level of

refinement. Figure 4.10 displays the two extremes of the meshes used.

(a) The coarse mesh. (b) The fine mesh.

Figure 4.10: The two ends of the mesh refinement spectrum for the PYR – PYR configuration.

Figure 4.11 displays the absolute error versus the mesh refinement level for the fourth-order

version of five different quadrature rules.
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Figure 4.11: The mesh refinement results for the PYR – PYR configuration.

It should be noted that the “MONOMIAL” quadrature rule falls back to the “GAUSS” quadra-

ture rule for triangular surface elements. Hence, the “GAUSS” and “MONOMIAL” lines are iden-

tical. Similar to the case of quadrangular surface elements, either the “GAUSS” or “MONOMIAL”

quadrature rules are preferred when calculating view factors between triangular surface elements.

4.1.3 Quadrature Refinement

A quadrature refinement study was conducted on the coarsest meshes (4 surface elements for

the HEX – HEX configuration, and 14 surface elements for the PYR – PYR configuration). Fig-

ure 4.12 presents the absolute error of the view factor versus the quadrature refinement level for

both the HEX – HEX and PYR – PYR meshes.
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(a) The HEX – HEX mesh. (b) The PYR – PYR mesh.

Figure 4.12: The quadrature refinement results.

As expected, “SIMPSON” and “TRAP” are simply flat lines as the quadrature order cannot be

increased. The “GRID” quadrature rule only gradually decreases the absolute error as the quadra-

ture order is increased. Again, for both configurations “GAUSS” or “MONOMIAL” quadrature

rules exhibit the best convergence rate. For these rules, every other quadrature order reduces the

absolute error by about two orders of magnitude.
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4.2 Ring to Parallel Coaxial Ring

Consider the geometric configuration in Figure 4.13.

r2

r1
A1

r4

r3
A2

a

Figure 4.13: The geometric configuration for ring to parallel coaxial ring.

The analytic solution for the view factor is given by [42, 32]:
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1

2 (R2
2 − 1)
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2
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2
)1/2

+((
1 +R2

4 +H2
)2 − (2R4)

2
)1/2

−
((

1 +R2
3 +H2

)2 − (2R3)
2
)1/2]

, (4.2)

where H ≡ a/r1, R2 ≡ r2/r1, R3 ≡ r3/r1 and R4 ≡ r4/r1. For the sake of verification an

arbitrary set of parameters for the configuration was selected. The parameters that were selected

are: r1 = r3 = 2 cm, r2 = 6 cm, r4 = 4 cm and a = 15 cm. The analytic solution (rounded to

16 digits) for the view factor of the small ring to the large ring is 0.1131618692082199. A mesh
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was generated out of triangular pyramid elements for this geometric configuration. Figure 4.14

displays the mesh generated for this example case.

Figure 4.14: The parallel coaxial ring mesh.

A mesh size of 0.25 cm was specified for both rings. The smaller ring has 1,478 surface

elements on the surface of interest – resulting in an average element surface area of 0.02550 cm2.

The larger ring has 3,860 surface elements on the surface of interest – resulting in an average

element surface area of 0.02604 cm2.

Table 4.5 presents the errors of the computed view factors from the small ring to the large ring

for all number type combinations. The fourth order Gauss quadrature rule was used for each com-

putation. The “NONE” occlusion detection was used because it is known that this configuration

does not involve occlusion.

As expected, the solutions are consistent for this simple geometry irrespective of the underlying

number types that are used. It should be noted that the run time significantly increases when exact
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Base N. Type Collision N. Type Quad. N. Type Abs. Error Rel. Error
Apprx. Apprx. Apprx. 1.4447× 10−5 1.276× 10−2 %
Exact Apprx. Apprx. 1.4447× 10−5 1.276× 10−2 %
Apprx. Exact Apprx. 1.4447× 10−5 1.276× 10−2 %
Exact Exact Apprx. 1.4447× 10−5 1.276× 10−2 %
Apprx. Apprx. Exact 1.4447× 10−5 1.276× 10−2 %
Exact Apprx. Exact 1.4447× 10−5 1.276× 10−2 %
Apprx. Exact Exact 1.4447× 10−5 1.276× 10−2 %
Exact Exact Exact 1.4447× 10−5 1.276× 10−2 %

Table 4.5: View factor results for the parallel coaxial ring example.

is selected for the quadrature number type. It is highly recommended that one should use the

approximate number type if it is sufficient for the application, otherwise the computation will be

slow.
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4.3 Ring to Parallel Coaxial Ring with a Blocking Coaxial Cylinder

Consider the geometric configuration in Figure 4.15.

r1

rc
A1

A2

h

r2

Figure 4.15: The geometric configuration for ring to parallel coaxial ring with a blocking coaxial
cylinder.

The analytic solution for the view factor is given by [42, 32]:
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1

πA

[
A

2
arccos

Rc

R2

+
B

2
arccos

Rc

R1

+ 2Rc

(
arctanY − arctanA1/2 − arctanB1/2

)
−
[(
1 + C2

) (
1 +D2

)]1/2
arctan

[
(1 + C2) (Y 2 −D2)

(1 +D2) (C2 − Y 2)

]1/2
+
[(
1 + (R1 +Rc)

2) (1 + (R1 −Rc)
2)]1/2 arctan[(1 + (R1 +Rc)

2) (R1 −Rc)(
1 + (R1 −Rc)

2) (R1 +Rc)

]1/2

+
[(
1 + (R2 +Rc)

2) (1 + (R2 −Rc)
2)]1/2 arctan[(1 + (R2 +Rc)

2) (R2 −Rc)(
1 + (R2 −Rc)

2) (R2 +Rc)

]1/2 (4.3)

45



where R1 ≡ r1/h, R2 ≡ r2/h, Rc ≡ rc/h and A ≡ R2
1 − R2

c , B ≡ R2
2 − R2

c , C ≡ R2 + R1,

D ≡ R2 −R1 and Y ≡ A1/2 +B1/2.

The following two subsections present the view factor results for a geometric configuration

of this type. Dimensions of r1 = 6 cm, r2 = 4 cm, rc = 2 cm and h = 15 cm are used. The

exact solution of the view factor from the small ring to the large ring (rounded to 16 digits) is

0.0725555875115452.

These dimensions were purposefully selected to match the dimensions in the previous section.

The following subsections present the view factor results computed on two meshes. The first mesh

consists of the geometric configuration discretized by tetrahedron. It should be noted that the

Delaunay algorithm in Gmsh does not preserve the convexity of the cylinder. The second mesh

is discretized by hexahedra, and is meshed in a way that preserves the convexity of the occluding

cylinder.
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4.3.1 Concave Mesh

Figure 4.16 is a visualization of the configuration discretized by tetrahedron.

Figure 4.16: The concave mesh for the parallel coaxial ring with a blocking coaxial cylinder ex-
ample.

A mesh size of 1 cm was used to discretize each entity. The cylinder’s surface consists of

472 triangular elements resulting in an average surface area of 0.399355 cm2. The smaller ring’s

surface consists of 91 triangular elements resulting in an average surface area of 0.414276 cm2.

The larger ring’s surface consists of 261 triangular elements resulting in an average surface area of

0.385176 cm2. Table 4.6 presents some view factor results computed for this mesh.
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Occlusion Detection FSMALL→LARGE Abs. Error FCYL→CYL Runtime

None 1.1336× 10−1 4.08× 10−2 1.7868× 10−4 0.59s

Brute Force w/ BBox 7.2418× 10−2 1.37× 10−4 1.8190× 10−4 79.95s

Brute Force w/o BBox 7.2418× 10−2 1.37× 10−4 1.8190× 10−4 109.15 s

Table 4.6: View factor results of the concave mesh for the parallel coaxial ring with a blocking
coaxial cylinder example.

As expected, selecting to not use occlusion detection results in the wrong answer that is more

consistent with the result without the occluding cylinder. Using occlusion detection results in an

answer that is close to the analytic solution. The view factor of the cylinder to itself is not zero

because of the concavity of the cylinder’s mesh. For this particular configuration, using bounding

boxes in the occlusion detection resulted in a faster runttime than not using them.
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4.3.2 Convex Mesh

Figure 4.17 is a visualization of the mesh discretized by hexahedra.

Figure 4.17: The convex mesh for the parallel coaxial ring with a blocking coaxial cylinder exam-
ple.

The cylinder’s surface consists of 480 quadrangular elements resulting in an average surface

area of 0.392699 cm2. The smaller ring’s surface consists of 128 quadrangular elements resulting

in an average surface area of 0.294524 cm2. The larger ring’s surface consists of 192 quadrangular

elements resulting in an average surface area of 0.523599 cm2. Table 4.7 presents some view factor

results computed for this mesh.
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Occlusion Detection FSMALL→LARGE Abs. Error FCYL→CYL Runtime

None 1.1258× 10−1 4.08× 10−2 0.0 0.70 s

Brute Force w/ BBox 7.2092× 10−2 4.64× 10−4 0.0 160.97 s

Brute Force w/o BBox 7.2092× 10−2 4.64× 10−4 0.0 239.34 s

Table 4.7: View factor results of the convex mesh for the parallel coaxial ring with a blocking
coaxial cylinder example.

The results are consistent with those presented in the previous subsection, but the view factor

of the cylinder to itself is now zero. The runtimes are approximately double the runtimes in the

previous subsection because quadrangels are represented as two triangles at the lower level of ab-

straction in the collision detection routine. Hence, twice as many collision detection computations

are conducted when calculating the view factor between each surface.
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4.4 W-Tube

This final section presents a benchmark of the view factor computation on a geometry of in-

terest for real applications. The original work was conducted by He et al. [15] as a means for

exploring the design space for a component used in continuous annealing furnaces. The results

presented in the report were computed using the monte carlo method. Figure 4.18 is an example

mesh used in the benchmark calculations conducted with Phoenix.

Figure 4.18: An example of the W-Tube mesh.

All geometric configurations of the mesh were programatically generated with the python API

of Gmsh. In each case, the same geometry of the W-tube is used, and only the rectangular plane’s

configuration is varied. Parameters for the geometric configuration of the W-tube can be found in

the original report. For the rectangular plane, the parameter a is it’s width, b is it’s height and s is

the perpendicular distance from the rectangular plane (i.e. the cold-rolled strip) to the xOy plane

51



(i.e. the symmetry plane of W-tube parallel to the strip). More information can be found in the

original report.

A discretization similar to the one presented in the original report was used to represent the

W-tube. The plane is meshed by regular quadrangles – 40 in each direction. Approximate number

types were used, and no occlusion detection was used since it is known a priori that occlusion

does not occur in this configuration. Table 4.8 presents a comparison of the results generated by

Phoenix and those presented in the original report.

All of the results are in close agreement with the exception of case number 8. At this time it

is not certain why there is a disagreement in the results of this one case. One possibility is that

the results computed in the original report did not have a statistical tolerance that was sufficiently

strict. Another is that there was a transcription error when generating the report. An unlikely

possibility is that there is an undiscovered error in Phoenix, but the benchmarks presented in the

previous section suggest that other possibilities for this discrepancy should be explored first if it is

of significant concern.
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No. s, mm a, mm b, mm F ref
0→W F calc

0→W Rel. Error F ref
W→0 F calc

W→0 Rel. Error
1 450 1320 900 0.5474 0.5494 0.357% 0.1029 0.1035 0.578%
2 450 1320 950 0.5465 0.5487 0.408% 0.1085 0.1091 0.572%
3 450 1320 1000 0.5457 0.548 0.430% 0.114 0.1147 0.632%
4 450 1320 1050 0.5452 0.5473 0.386% 0.1196 0.1203 0.580%
5 450 1320 1100 0.5434 0.5465 0.569% 0.1249 0.1258 0.748%
6 450 1320 1150 0.5446 0.5456 0.184% 0.1308 0.1313 0.414%
7 450 1320 1200 0.5455 0.5446 0.158% 0.1368 0.1368 0.007%
8 450 1320 1250 0.5427 0.5436 0.163% 0.1308 0.1422 8.741%
9 450 1320 1300 0.5425 0.5424 0.012% 0.1474 0.1476 0.143%

10 450 1320 1350 0.5407 0.5412 0.090% 0.1525 0.1529 0.285%
11 450 1320 1400 0.5368 0.5398 0.563% 0.157 0.1582 0.764%
12 450 1320 1450 0.5383 0.5383 0.008% 0.1631 0.1634 0.184%
13 450 1320 1500 0.5373 0.5367 0.106% 0.1684 0.1685 0.076%
14 450 1320 1550 0.5342 0.535 0.146% 0.173 0.1736 0.334%
15 450 1320 1600 0.5342 0.5331 0.211% 0.1786 0.1785 0.034%
16 450 1320 1650 0.5298 0.531 0.229% 0.1826 0.1834 0.441%
17 450 1320 1700 0.5315 0.5288 0.512% 0.1888 0.1882 0.334%
18 450 1320 1750 0.5257 0.5264 0.127% 0.1922 0.1928 0.323%
19 450 1320 1800 0.5217 0.5238 0.397% 0.1962 0.1974 0.587%
20 450 1320 1850 0.5203 0.521 0.131% 0.2011 0.2018 0.325%
21 450 1320 1900 0.5168 0.518 0.231% 0.2052 0.206 0.398%
22 450 1320 1950 0.5137 0.5148 0.215% 0.2093 0.2101 0.400%
23 450 1320 2000 0.5099 0.5114 0.297% 0.2131 0.2141 0.472%
24 450 1320 2050 0.5066 0.5078 0.242% 0.217 0.2179 0.423%
25 450 1320 2100 0.5027 0.504 0.267% 0.2205 0.2216 0.485%
26 450 1370 2100 0.4952 0.4982 0.597% 0.2255 0.2273 0.788%
27 450 1420 2100 0.4889 0.4921 0.651% 0.2307 0.2327 0.867%
28 450 1470 2100 0.4831 0.4859 0.571% 0.2361 0.2378 0.740%
29 450 1520 2100 0.4771 0.4795 0.506% 0.241 0.2427 0.716%
30 350 1320 2100 0.576 0.5773 0.226% 0.2527 0.2538 0.425%
31 400 1320 2100 0.538 0.5388 0.154% 0.2361 0.2369 0.322%
32 450 1320 2100 0.5027 0.504 0.267% 0.2205 0.2216 0.485%
33 500 1320 2100 0.4704 0.4725 0.444% 0.2064 0.2077 0.630%
34 550 1320 2100 0.4415 0.4437 0.491% 0.1937 0.195 0.686%

Table 4.8: View factor results for various W-Tube configurations.
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5. HEAT TRANSFER EXAMPLES AND RESULTS

To demonstrate the heat transfer capabilities of Phoenix a few benchmark cases were generated.

First, two examples of a single plate are presented and used to benchmark the radiation emission

boundary conditions. Next, two examples of the parallel and directly opposed plates (see §4.1)

are presented. These examples are presented to demonstrate and benchmark the capabilities of

the area–averaged, blackbody radiation emission and irradiation boundary conditions. It should be

noted that material properties of k = 1 W/m · K, ρ = 1 kg/m3 and cp = 1 J/kg · K were used for

every entity in all of the examples presented in this chapter. All plates are discretized into 40 ×

40 × 4 elements. All of the details of each simulation can be found in the Phoenix repository (see

§3.5 and checkout the tag “thesis”).

5.1 Radiation Emission from a Single Plate

Consider a 10 m × 10 m × 1 m plate with a uniform heat generation of 10,000 W/m3. Adiabatic

boundary conditions 3 are applied to each side of the plate except for the 10 m × 10 m face at

z = 1 m. On that face, blackbody radiation is being emitted in accordance with Stefan–Boltzmann

law. One can arrive at the exact surface temperature of the emitting surface by the following an

energy balance argument. The total amount of heat generated in the plate is

Qgen = Atq′′′, (5.1)

where A is the surface area of the boundary that is emitting radiation and t is the thickness of the

plate (in this problem t = 1 m). The total amount of energy emitted from the plate via radiation is

derived from Stefan-Boltzmann law:

3To clarify, adiabatic boundary conditions means that q′′ ≡ (−k∇T ) · n̂ = 0. Notice that from Eq. (2.11) and
Eq. (2.12), Kbndry

i (T⃗ ) ≡
∫
∂Ωe

ψi (−k∇T ) · n̂ dA. Hence, Kbndry
i (T⃗ ) = 0 for adiabatic boundary conditions. Adiabatic

boundary conditions can be specified in MOOSE in at least two ways: 1) using the “NeumannBC” with a value of zero,
or 2) not specifying a boundary condition on the boundaries that are adiabatic. For simplicity, the second approach
was taken for implementing the heat conduction examples.
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Qrad = AσT 4
rad, surf, (5.2)

where Trad, surf is the surface temperature of the face that is emitting radiation. Equating (5.1) and

(5.2), one arrives at the expression for the surface temperature:

Trad, surf =

(
tq′′′

σ

)1/4

. (5.3)

For the example at hand, the surface temperature is 648.0329 K.

This value can be used to derive the analytic solution for the temperature profile in the plate.

Since all of the 10 m × 1 m boundaries are adiabatic, and we are seeking the steady–state solution,

Eq. (2.1) reduces to the differential equation:

− ∂2T

∂z2
= q′′′. (5.4)

Integrating twice over z, and applying the boundary conditions ∂T
∂z

∣∣
z=0

= 0 and T (z = 1) =

Trad, surf, we arrive at the analytic solution for this example:

T (x, y, z) = Trad, surf +
q′′′

2

(
1− z2

)
, (5.5)

where 0 ≤ x ≤ 10 m, 0 ≤ y ≤ 10 m, 0 ≤ z ≤ 1 m. From this, the peak temperature in the plate is

computed to be: T (x, y, z = 0) = 5, 648.0329 K.

Two simulations of this problem were run in Phoenix: 1) representing the radiation bound-

ary condition locally by the Stefan–Boltzmann law, and 2) representing the radiation boundary

condition by the surface–averaged T 4, and then using Stefan–Boltzmann law to determine the

approximate emitted radiation (see §2.5.1). It is expected that the solutions for each simulation

will be identical because the temperature profile on the emitting surface should be constant. The

purpose of running these simulations is to ensure that the implementations are correct for the

surface–averaging “UserObject” and the surface–averaged radiation emission boundary condition.
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Figure 5.1 is a visualization of the temperature profile generated by simulation 2.

Figure 5.1: Steady-state temperature profile of surface–averaged radiation emission for the emit-
ting plate example.

Visually, the maximum and the minimum temperatures are in agreement with those given by

the analytic solution, and the temperature profile is identical with the temperature profile generated

by simulation 1. Figure 5.2 is a plot of the temperature profiles sampled along the line centered at

x = 5 m and y = 5 m, and spanning 0 ≤ z ≤ 1 m.
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Figure 5.2: Steady–state, line–sampled temperature profiles for the emitting plate example.

As expected, the simulated solutions are in good agreement with the analytic solution, even

with the plate being coarsely discretized. Now that a base–line has been established for the emis-

sion boundary condition both the emission and irradiation boundary conditions will be exercised

and benchmarked in the remaining sections of this chapter.

5.2 Parallel and Directly Opposed Plates with Symmetric Heat Generation

The first example problem consists of adiabatic boundary conditions applied to all boundaries

that are not communicating via radiation heat exchange. The right boundary of the left plate and

the left boundary of the right plate are communicating. The plate on the left has a uniform heat

generation of 10,000 W/m3. The plate on the right does not have heat generation.

A reference solution was generated with ANSYS FLUENT v.19.02. In that simulation, each

plate was discretized with 100 × 100 elements in yz planes. The following section will present

the solutions generated by Phoenix and ANSYS FLUENT to benchmark the radiation boundary

conditions implemented in Phoenix.
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Figure 5.3 presents the steady–state temperature distributions of both plates.

Figure 5.3: Steady-state temperature profiles of the symmetric heating example.

Figure 5.4 shows the temperature profiles of the 10 m × 10 m surfaces of the plate with heat

generation.
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(a) Adiabatic Surface (Phoenix)

(b) Radiation Surface (Phoenix) (c) Radiation Surface (ANSYS FLUENT)

Figure 5.4: Steady-state, surface temperature profiles of the plate with heat generation in the sym-
metric heating example.

For the simulation conducted with Phoenix, one will notice that the temperature range of the

adiabatic surface is 5,655 – 5,660 K and the temperature range of the radiation surface is 653 –

660 K. These temperature ranges are higher than the surface temperatures for the example in the

previous section (5,648.0329 K and 648.0329 K, respectively). This makes sense because a small

portion of the energy that is emitted from the plate eventually returns to it by being absorbed and

re–emitted by the other plate. Ultimately, this increases the temperature of the plate with heat

generation. The nonuniform temperature profiles, which exhibit fourfold symmetry, are a result of
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the interaction with the other plate and the geometric configuration.

One will notice that the temperatures reported in the solution generated by ANSYS FLUENT

(figure 5.4c) have a range of 658 – 420 K. At this time it is uncertain why the temperatures in this

simulation are like this, but it is safe to say that they are incorrect.

Figure 5.5 displays plots generated by line–sampling the temperature within the plate with heat

generation. These plots were generated from the Phoenix simulation. Three locations on the plate’s

face were selected to take the line–samples: the center, the middle of an edge and along the corner.
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Figure 5.5: Plots of the steady–state, line–sampled temperature profiles for the plate with heat
generation.

One will notice that in Fig. 5.5a each of the line–samples coincide very closely with the an-

alytic solution for the plate that emits radiation (§5.1). The difference between the line–sampled

temperatures and the analytic temperature for the plate that emits radiation is shown in figure 5.5b.

All of the line–sampled temperatures are a few degrees higher than the analytic solution for the

radiation emission plate.

Figure 5.6 shows the surface temperature profiles of the plate without heat generation.
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(a) Adiabatic Surface (Phoenix)

(b) Radiation Surface (Phoenix) (c) Radiation Surface (ANSYS FLUENT)

Figure 5.6: Steady-state, surface temperature profiles of the plate without heat generation in the
symmetric heating example.

The temperature range for the results generated with Phoenix are 410 – 480 K (a 70 K dif-

ference). The range for the results generated with ANSYS FLUENT are 346 – 491 K (a 145 K

difference). The Phoenix results exhibit fourfold symmetry, and are visually smooth. The ANSYS

FLUENT results do not exhibit fourfold symmetry and are not visually smooth. At this time it

is not certain why these discrepancies exist. It is uncertain to what extent this is an artifact of

visualizing the results, or if this stems from one or more issues with the simulation conducted with

ANSYS FLUENT. Regardless, the inconsistency of the ANSYS FLUENT results for the plate
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with the heat generation with the plate that only emits radiation suggests that one or more issues

lie with the ANSYS FLUENT simulation. Figure 5.7 displays a plot generated by line–sampling

the temperature in the plate without heat generation.
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Figure 5.7: Plots of the steady–state, line–sampled temperature profiles for the plate without heat
generation.

The largest temperature gradient transverse to the radiation surface occurs in the corner of the

face (13.3358 K). The difference in temperature between the center of the plate and the corner is

64.3408 K.

5.3 Parallel and Directly Opposed Plates with Asymmetric Dirichlet Boundary Condition

As in the first example, the second example consists of adiabatic boundary conditions applied

to all boundaries that are not communicating via radiation heat exchange. Dirichlet boundary

conditions are applied at the top (500 K) and bottom (273.15 K) of the left plate. Both plates

do not have heat generation. The geometric configuration and its discretization are identical to
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that in the previous example. Figure 5.8 presents visualizations of the steady-state temperature

distribution.

(a) Overview

(b) Emitting plate’s radiation surface (c) Receiving plate’s radiation surface

Figure 5.8: Steady-state temperature profiles of the asymmetric heating case.

As expected, the temperature on the surface of the emitting plate drops below the temperatures

along the edges. The temperature always remains positive (agreeing with what on would expect),

and the minimum temperature of nearly 120 K occurs near the middle of the plate. On the receiving

plate’s surface, the maximum temperature of 140 K occurs along the middle of the top edge. The

minimum temperatures of 120 K occur in each of the bottom corners.
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6. SUMMARY

In summary, surface-to-surface, blackbody radiation heat transfer has been implemented in

the MOOSE app, Phoenix. The double, surface integral for the view factors are approximated by

quadrature. CGAL is leveraged to determine occlusion detection – this allows users to use floating

point numbers or exact computation. A unit-test suit of 264 tests is included with phoenix to ensure

that the view factor computations continue to work. A variety of example cases were simulated and

analyzed to ensure that the view factor calculations are correct. Finally, four test cases exercising

the radiation boundary conditions were ran and the resulting temperature profiles were analyzed.

Potentially significant discrepancies were found between the results generated by Phoenix, and

those generated by ANSYS FLUENT.

6.1 Further Study

Opportunities exist to extend and improve the functionality available within Phoenix. It would

be possible to include more methods to compute view factors. Another possibility would be to

improve the efficiency of the view factor computation by parallelizing the quadrature computation.

Clustering of view factors could also be incorporated [43]. It might also be worthwhile to extend

the boundary conditions to account for not only blackbody surfaces, but also gray-diffuse surfaces.

Additional studies could be conducted to verify, validate and compare Phoenix.

64



REFERENCES

[1] C. J. Permann, D. R. Gaston, D. Andrs, R. W. Carlsen, F. Kong, A. D. Lindsay, J. M. Miller,

J. W. Peterson, A. E. Slaughter, R. H. Stogner, and R. C. Martineau, “Moose: Enabling

massively parallel multiphysics simulation,” 2019.

[2] D. R. Gaston, C. J. Permann, J. W. Peterson, A. E. Slaughter, D. Andrš, Y. Wang, M. P. Short,

D. M. Perez, M. R. Tonks, J. Ortensi, L. Zou, and R. C. Martineau, “Physics-based multiscale

coupling for full core nuclear reactor simulation,” Annals of Nuclear Energy, vol. 84, pp. 45–

54, 2015.

[3] The CGAL Project, CGAL User and Reference Manual. CGAL Editorial Board, 5.0.1 ed.,

2020.

[4] C. Geuzaine1 and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator

with built-in pre- and post-processing facilities,” International Journal for Numerical Meth-

ods in Engineering, vol. 79, pp. 1309–1331, 2009.

[5] ISO, ISO/IEC 14882:1998: Programming languages — C++. Sept. 1998.

[6] G. van Rossum, “Python tutorial,” May 1995.

[7] N. E. Todreas and M. S. Kazimi, Nuclear Systems, vol. 1. CRC Press, 2nd ed., 2012.

[8] R. Vaghetto and Y. Hassan, “Experimental investigation of a scaled water-cooled reactor

cavity cooling system,” Nuclear Technology, vol. 187, pp. 282–293, 2014.

[9] H. J. V. Antwerpen and G. P. Greyvenstein, “Evaluation of a detailed radiation heat transfer

model in a high temperature reactor systems simulation model,” Nuclear Engineering and

Design, vol. 238, pp. 2985–2994, November 2008.

[10] L. Humphries, B. Beeny, F. Gelbard, D. Louie, and J. Phillips, MELCOR Computer Code

Manuals Vol. 2: Reference Manual. No. SAND2017-0876 O, January 2017.

[11] B. Zohuri, Heat Pipe Applications in Fission Driven Nuclear Power Plants. Springer, 2019.

65



[12] R. S. Reid, “Heat pipe transient response approximation,” Tech. Rep. LA-UR-01-5895, Los

Alamos National Laboratory, 2002.

[13] J. J. Martin and R. S. Reid, “Sodium based heat pipe modules for space reactor concepts:

Stainless steel safe-100 core,” tech. rep., 2004.

[14] A. Faghri, Heat Pipe Science and Technology. Global Digital Press, 2nd ed., 2016.

[15] F. He, J. Shi, L. Zhou, W. Li, and X. Li, “Monte carlo calculation of view factors between

some complex surfaces: Rectangular plane and parallel cylinder, rectangular plane and torus,

especially cold-rolled strip and w-shaped radiant tube in continuous annealing furnace,” In-

ternational Journal of Thermal Sciences, vol. 134, pp. 465–474, December 2018.

[16] S. L. Rickman, “Overview and introduction to passive thermal control and thermal protec-

tion,” December.

[17] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, Fundamentals of Heat and

Mass Transfer. Wiley, 7th ed., 2011.

[18] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May,

L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,

and H. Zhang, “PETSc Web page.” https://www.mcs.anl.gov/petsc, 2019.

[19] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,

A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May,

L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang,

and H. Zhang, “PETSc users manual,” Tech. Rep. ANL-95/11 - Revision 3.13, Argonne Na-

tional Laboratory, 2020.

[20] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism

in object oriented numerical software libraries,” in Modern Software Tools in Scientific Com-

puting (E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.), pp. 163–202, Birkhäuser Press,

1997.

66

https://www.mcs.anl.gov/petsc


[21] C. T. Kelly, Solving Nonlinear Equations with Newton’s Method. Society for Industrial and

Applied Mathematics, 2003.

[22] C. T. Kelly, Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and

Applied Mathematics, 1995.

[23] Y. Saad, Iterative Methods for Sparse Linear Systems. 2nd ed., 2000.

[24] D. A. Knoll and D. E. Keyes, “Jacobian-free newtonkrylov methods: a survey of approaches

and applications,” Journal of Computational Physics, vol. 197, pp. 357–397, 2004.

[25] S. L. Rickman, “Form factors, grey bodies and radiation conductances (radks).” Web, August

2012.

[26] S. C. Francisco, A. M. Raimundo, A. R. Gaspar, A. V. M. Oliveira, and D. A. Quintela, “Cal-

culation of view factors for complex geometries using stokes theorem,” Journal of Building

Performance Simulation, vol. 7:3, pp. 203–216, 2014.

[27] C. K. Krishnaprakas, “View-factor evaluation by quadrature over triangles,” Journal of Ther-

mophysics and Heat Transfer, vol. 12:1, pp. 118–120, January 1998.

[28] J. A. Clark and M. E. Korybalski, “Algebraic methods for the calculation of radiation ex-

change in an enclosure,” Wärme- und Stoffübertragung, vol. 7, pp. 31–44, 1974.

[29] M. F. Modest, Radiative Heat Transfer. Academic Press, 3rd ed., 2013.

[30] Z. S. Spakovszky, “16. unified: Thermodynamics and propulsion.”

[31] I. Ashdown, Radiosity: A Programmer’s Perspective. John Wiley & Sons, Inc., 1994.

[32] J. R. Howell, M. P. Mengüç, and R. Siegel, Thermal Radiation Heat Transfer. CRC Press,

6th ed., 2016.

[33] C. K. Krishnaprakas, “View-factor evaluation by quadrature over triangles,” Journal of Ther-

mophysics, vol. 12, pp. 118–120, December 2018.

[34] T. E. Oliphant, “A guide to numpy,” USA: Trelgol Publishing, 2006.

67



[35] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure for efficient

numerical computation,” Computing in Science & Engineering, vol. 13, pp. 22–30, 2011.

[36] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey,
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