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ABSTRACT

Security and computing efficiency are two important aspects in the field of computer engineer-

ing. With the increasing complexity of modern computers, various security problems are exposed.

Moreover, applications continuously present need for further computing efficiency. In this disser-

tation, techniques for both security and computing efficiency are studied. For hardware security,

split fabrication is recognized as a promising approach to defense against attacks by untrusted

foundries. The existing split fabrication methods mostly neglect manufacturability, which is an

unavoidable challenge in nanometer technologies. Observing that security and manufacturability

can be addressed in a synergistic manner, our research introduces routing techniques that can si-

multaneously improve both security and manufacturability. The effectiveness of these techniques

is confirmed by experiments on benchmark circuits. For software security, Control-Flow Integrity

(CFI) and Data-Flow Integrity (DFI) are effective defense techniques against a variety of memory-

based cyber attacks. CFI and DFI are usually enforced through software methods, which entail

considerable performance overhead. Hardware-based CFI techniques can largely avoid perfor-

mance overhead, but typically rely on code instrumentation, which forms a non-trivial hurdle to

the application of CFI. DFI often leads to even larger performance overhead comparing to CFI, and

its real-world application has been quite limited. The overhead is intrinsically difficult to reduce

unless the DFI verification criterion is lowered. We propose the hardware-based solutions for CFI

and DFI verification, where FPGA and Processing-In-Memory (PIM) are leveraged, respectively.

Experiments on popular benchmarks confirm that our designs can detect fine-grained CFI viola-

tions over unmodified binaries, and completely enforce the DFI defined in the original seminal

work. The measurement results show an average of 0.36% performance overhead for CFI and an

average 4× performance overhead reduction for DFI on SPEC 2006 benchmarks. For computing

efficiency, serverless or functions as a service runtimes offer an efficient and cost-effective mech-

anism for event-driven cloud applications. Training deep neural networks can be both compute

and memory intensive. We investigate the use of serverless runtimes for neural network training

ii



while leveraging data parallelism for large neural network models, show the challenges and lim-

itations due to the data communication bottleneck, and propose modifications to the underlying

runtime implementations that would mitigate them. For hyperparameter optimization of smaller

deep learning models, we show that serverless runtimes can provide significant benefit.
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1. INTRODUCTION1

With the development of modern computers, computer hardware designs and software appli-

cations become rather complex. As a result, researchers and engineers pay more attention on

computer security and efficiency. Due to the importance and the potential, our work focus on both

computing security and efficiency, covering a wide range of fields.

For security, there are two kinds of security fields in computer engineering: hardware security

and software security. For hardware security, our work targets at the potential new semiconductor

fabrication technology called split fabrication. Semiconductor fabrication is drastically complex

and expensive, and its business is increasingly concentrated to a few high-end foundries, which are

often offshore. Offshore fabrication leads to various attacks such as piracy and Trojan insertion.

Recently, the concept of split fabrication is proposed for security against untrusted foundries. By

separating the fabrications of Front-End-Of-Line (FEOL) and Back-End-Of-Line (BEOL) at dif-

ferent foundries, the difficulty for attacks at a single foundry is considerably increased [3,4]. Even

with the increased difficulty, however, a foundry may still be able to reverse engineer an entire

design according to design conventions and therefore continue to launch security attacks [3, 5, 6].

Cell placement [5] and routing perturbation [2] techniques have been developed to further enhance

security for split fabrication. However, almost none of the previous works on split fabrication

considers the manufacturability issue, which is fundamentally important and cannot be ignored

in practice. Usually, the security for split fabrication is improved by modifying circuit layout.

However, layout modification affects manufacturability as semiconductor manufacturing process

is usually sensitive to layout patterns. It may inadvertently degrade lithography printability, de-

1 c©2017 IEEE. Reprinted, with permission, from Lang Feng, Yujie Wang, Jiang Hu, Wai-Kei Mak and Jeyav-
ijayan Rajendran, "Making Split Fabrication Synergistically Secure and Manufacturable", IEEE/ACM International
Conference on Computer-Aided Design, 11/2017. c©2018 IEEE. Reprinted, with permission, from Lang Feng, Prab-
hakar Kudva, Dilma Da Silva and Jiang Hu, "Exploring Serverless Computing for Neural Network Training", IEEE
International Conference on Cloud Computing, 07/2018. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, International Conference on Computer-Aided Design, "FastCFI: Real-Time
Control Flow Integrity using FPGA without Code Instrumentation", Lang Feng, Jeff Huang, Jiang Hu and Abhijith
Reddy, c©2019.
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crease manufacturing yield, increase manufacturing cost or even cause unsolvable manufacturing

hot-spots [7]. On the one hand, all the previous techniques that ensure the security of split man-

ufacturing lead to DFM violations, making them not manufacturable. On the other hand, designs

that do not have DFM violations need not be secure, because attackers can use design conventions

as hints to retrieve the missing parts [3, 5, 6]. Thus, it is imperative to consider manufacturability

in conjunction with security-driven layout modification.

On the other hand, software security is the same important as hardware security. Two popular

regulations in the software security fields are Control-Flow Integrity (CFI) and Data-Flow Integrity

(DFI). CFI [8] is to regulate instruction flow transitions, such as branch, toward target addresses

conforming to the original design intention. Such regulation can prevent software execution from

being redirected to erroneous address or malicious code. It is widely recognized as an effective

approach to defend against a variety of security attacks including Return-Oriented Programming

(ROP) [9] and Jump-Oriented Programming (JOP) [10]. DFI is a regulation to ensure that data to

be accessed are written by legitimate instructions. As such, DFI verification can identify unwanted

data modifications that are not consistent with programmer’s intention. Therefore, it can detect

various security attacks including control data attacks such as JOP and ROP, and non-control data

attacks such as heartbleed [11] and nullhttpd [12]. Normally, most implementations of CFI and D-

FI verification are based on software. Software-based CFI usually competes for the same processor

resource as the software application being protected [8,13–15], and therefore it tends to incur large

performance overhead unless its resolution is very coarse-grained. Meanwhile, the concept of DFI

was introduced in the seminal work of [16], and has received a lot of attention thereafter due to its

potential of being a powerful security measure. However, a complete DFI enforcement by using

software as in [16] incurs more than 100% performance overhead even though several optimiza-

tion techniques have been applied. Indeed, a large overhead seems inevitable as every data access

needs to be examined. Because of this intrinsic difficulty, there have been few follow-up works on

DFI despite its widely recognized importance. This is in contrast to CFI, which has much more

published studies. Alternatively, CFI and DFI can be realized through hardware-based enforce-
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ment. Indeed, hardware-based CFI has attracted significant research attention recently [17–20].

Apart from relatively low overhead, some other issues of hardware CFI are worth a close look. For

example, some hardware CFI systems are stateless, have low granularity, or require code instru-

mentation. The first two issues are for security in term of CFI coverage. The last one issue affects

practical applications. To the best of our knowledge, there is no previous work that well addresses

all of these issues along with low overhead. In our research, we propose a hardware-based CFI

verification approach implemented on Field Programmable Gate Array (FPGA) named FastCFI.

We also propose a hardware approach to realize the general and complete DFI as defined in the

seminal work [16]. The main idea is to perform DFI verification in memory using the Processing-

In-Memory (PIM) technology. The data transferring to memory for the verification is much less

than those transferring to processor cores from memory required by the CPU-based software veri-

fication [16]. The considerable reduction of data transfer contributes to a large decrease of perfor-

mance overhead. PIM was originally suggested for improving microprocessor performance [21],

and recently becomes a very active research subject [22–24] as the progress of manufacturing pro-

cess technology is making it close to practical applications. Besides the hardware and software

designs for DFI verification in memory, lossless compression and runtime optimization techniques

are developed to further reduce overhead. Library functions and function return addresses are also

protected in our work. Moreover, circuit design techniques are proposed to make the hardware

overhead to be at a reasonable level.

For computing efficiency, we combine two popular topics, which are cloud computing and

machine learning. The former one has the ability to provide computing efficiency, while the com-

puting efficiency is largely needed by latter one. As cloud computing increasingly becomes the

platform of choice for commercial and scientific computing, serverless computing (also known as

Functions as a Service or FaaS) [25], has emerged in recent years. Serverless applications can be

either a set functions as code, triggered by some external event [26], or a larger application com-

posed of multiple functions. A key reason for their success has been the cost efficiency that such

runtimes provide in event-driven environments, where sporadic events may trigger computations,
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and the users only pay for the compute time they consume [27], rather than have long running

servers implemented on virtual machines for these event processing, which will cause idle waiting

for those sporadic events and result in unwanted monetary cost. Serverless computing has been ap-

plied to the area of machine learning [28, 29] with mixed results. The technology has been shown

to be particularly useful for inference and prediction in cloud environments. For training models,

especially deep learning models, which are compute and memory intensive and tightly coupled,

serverless has not yet shown promise. The use of distributed computing for deep learning with

accelerators is a well understood area [30–33]. While solutions such as MxNet [34] and Distribut-

ed TensorFlow have increased the performance of distributed computing with GPU acceleration

to speed up deep learning training, there are limited studies on the investigation of parallelism in

serverless runtimes. In order to facilitate the development of new serverless runtimes, and add fea-

tures to the implementation backend (like compute and memory affinities based on cold and warm

start) and others, it is important to understand strengths and limitations of deploying deep learning

models in existing technologies.

In our research, we focus on computing security and efficiency. Specifically, we solve problems

in the following three different fields:

• For secure and efficient circuit layout design, split fabrication is selected as our target. We

propose two algorithms to improve the FEOL security and manufacturability synergistically.

The algorithms can be applied to either Chemical Mechanical Planarization (CMP) unifor-

mity or Self-Aligned Double Patterning (SADP) compliance.

• For hardware-assisted software security, in CFI verification, to improve the performance,

decrease the latency, and increase the security simultaneously, the hardware-based CFI veri-

fication system called FastCFI is proposed with the hardware circuits implemented on FPGA.

In DFI verification, our work propose a DFI solution based on PIM, with data compression

and runtime optimization techniques proposed. Besides, circuit design are also developed to

restrain the hardware overhead.
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• For exploring serverless computing for machine learning model training, approaches are pro-

posed for large neural networks training under serverless environment and hyperparameter

tuning for small neural networks. Optimizations are also proposed for further improve the

performance of training and the monetary cost.
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2. SECURE AND EFFICIENT CIRCUIT LAYOUT DESIGN1

In this chapter, we propose routing techniques in split fabrication that can simultaneously im-

prove both security and manufacturability in terms of either Chemical Mechanical Planarization

(CMP) uniformity or Self-Aligned Double Patterning (SADP) compliance. We assume the FEOL

is fabricated at a high-end untrusted foundry, and the BEOL is fabricated at a trusted foundry. The

attack by untrusted foundry is the state-of-the-art network flow method [5] as it is one of the most

effective attack techniques.

2.1 Previous Works

The vulnerability of split fabrication alone to attacks was first demonstrated in [3]. This work

considered hierarchical designs, where the BEOL wires that connect different blocks can be easily

guessed by attackers according to the proximity of the corresponding pins. Later, a set of obfus-

cation techniques [35] are suggested to improve the security for split fabrication. A placement

perturbation technique is proposed in [5] to confuse attackers by moderately violating common

design conventions. This work also describes an advanced network flow based attack method for

flattened designs. Along the same direction, routing perturbation techniques are introduced in [2,6]

to enhance the security for split fabrication. Improvement to the proximity attack [3] is also dis-

cussed in [6]. The partitioning between FEOL and BEOL layers for security is studied in [36].

Security of memory and analog IP blocks in split fabrication is investigated in [37].

It is noticed in [38] that 3D IC can play a similar role as split fabrication for hardware security.

The concept of K-security and accordingly the wire lifting technique are introduced in [39] for 3D

IC chips; this work has a different threat model compared to others—the attacker has access to the

golden netlist. The work of [40] studies layer partitioning for 3D ICs such that the difficulty of

attacks is increased. It further suggests a placement technique to enhance the security.

1 c©2017 IEEE. Reprinted, with permission, from Lang Feng, Yujie Wang, Jiang Hu, Wai-Kei Mak and Jeyav-
ijayan Rajendran, "Making Split Fabrication Synergistically Secure and Manufacturable", IEEE/ACM International
Conference on Computer-Aided Design, 11/2017.
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Note that none of these security solutions addresses the manufacturability of their solutions. In

fact, our results indicate that many of these solutions are not manufacturable, as they have DFM

violations. Hence, we focus on developing solutions that are both manufacturable and secure.

Design For Manufacturability (DFM) has been an active research area for almost two decades.

This section summarizes several works on layout design considering CMP and SADP, which are

relevant to our methods. An early work on CMP-aware routing is [41], which shows that optimiz-

ing wire density for CMP is not equivalent to minimizing wire congestion in conventional routing.

It modifies a conventional global router by incorporating wire density and the impact on timing

into consideration. Another CMP routing work is [42]. Its important contribution is the use of

Voronoi diagram for accurately estimate wire density for CMP-driven global routing. In [43], an

SADP-aware detailed routing is developed in conjunction with layout decomposition. The work

of [44] is an SADP-driven routing method considering cut process. SADP routing for 1D gridded

designs is studied in [45, 46].

2.2 Preliminaries

2.2.1 Definitions

Some technical terms used in this paper are defined as follows.

Dangling wire: A wire on the topmost FEOL layer, with one end connected to driver/sink through

a via to lower layers and the other end connected to via to BEOL layers.

Sink wire: A dangling wire that is connected to sink through lower metal layers. Its connection to

driver is through BEOL layers. An example is the wire from b to B in Figure 2.1.

Source wire: A dangling wire that is connected with the driver through lower metal layers. Its

connection with sinks is through BEOL layers. An example is the wire from A to a in Figure 2.1.

Complete wire: A wire at the topmost FEOL layer and connected with the driver/sink through

lower metal layers, i.e., without using BEOL layers, such as the wire from c to d in Figure 2.1.

Up-via: A via connecting the topmost FEOL layer and the bottom BEOL layer. In Figure 2.1, a

and b are two up-vias.
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Down-via: A via connecting the topmost FEOL layer with its lower metal layers.

2.2.2 Attack Method

In our work, we assume the FEOL is fabricated at a high-end untrusted foundry, and the BEOL

is fabricated at a trusted foundry. The attack by untrusted foundry is the state-of-the-art network

flow method [5], which combined and optimized more factors of design conventions comparing

with other attack models. In the network model, there is an edge between a source wire and a sink

wire. The edge cost is defined according to hints from common design conventions. For example,

if the up-vias of the two wires are close to each other like a and e in Figure 2.1, the corresponding

edge cost tends to be small. Thus, they are more likely to be connected by the attack. We improved

this method by considering preferred routing direction on related layers. Suppose the horizontal

solid lines in Figure 2.1 indicate wires on the topmost FEOL layer. In other words, the preferred

routing direction of the topmost FEOL layer is horizontal, in this example. In such scenario,

A

B

a

b

c

Sink

Via

FEOL wire

BEOL wire

d

e

f

g

h

Figure 2.1: Illustration for definitions.

vertical alignment between two up-vias (like a and b in Figure 2.1) is much more common than
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horizontal alignments like g and h. In chip layout, the distance between to points (x1, y1) and

(x2, y2) is in Manhattan space as |x1 − x2| + |y1 − y2|. To improve the attack, we changed the

distance to be a weighted form wx · |x1−x2|+wy · |y1−y2|, where wx and wy are the horizontal and

vertical weights, respectively. For the scenario of Figure 2.1, where the preferred routing direction

on the topmost FEOL layer is horizontal, we make wx > wy such that the horizontal distance

between two up-vias is emphasized. Since the preferred direction of the lowest BEOL layer is

usually set different from that of the topmost FEOL layer, in this case, the preferred direction of

the lowest BEOL layer is vertical, which means it’s likely to connect two up-vias vertically. By

making wx > wy, the cost of vertical distance is much smaller than horizontal, which implies that

vertical alignment is preferred for this layer. Similarly, the horizontal alignment for a layer can be

preferred by altering the weights.

2.2.3 Framework of Routing for Security and Manufacturability

Two routing-based defense methods are proposed for split fabrication. One considers the CMP

friendliness and the other addresses SADP compliance. Both methods share the same framework,

although they have significant differences. Taking a fully placed and routed circuit as the input,

the framework consists of two steps.

• Step 1: Layer elevation. This is to selectively move some FEOL wires to BEOL layers such

that they become invisible to attackers and manufacturability is benefited.

• Step 2: Rerouting. Some FEOL wires are rerouted to improve both security and manufac-

turability.

The details of these steps are elaborated in Section 2.3 and 2.4.

2.3 CMP-Friendly Routing Defense

2.3.1 Background on CMP

Chemical Mechanical Planarization (CMP) is an important semiconductor manufacturing step.

After one layer of metal and Inter-Layer Dielectric (ILD) is finished, CMP is performed so that the

surface is flat enough for fabricating another layer. The effect of planarization depends on metal
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wire density as illustrated in Figure 2.2. If wire density is not uniform, the surface corresponding

to the sparse region is lower than that in the dense region. The unevenness causes not only man-

ufacturing difficult for upper metal layers but also ILD thickness variation, which worsens circuit

timing variability.

902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 7, JULY 2001

Model-Based Dummy Feature Placement for Oxide
Chemical–Mechanical Polishing Manufacturability

Ruiqi Tian, D. F. Wong, Member, IEEE, and Robert Boone, Member, IEEE

Abstract—Chemical–mechanical polishing (CMP) is an
enabling technique used in deep-submicrometer VLSI manufac-
turing to achieve long range oxide planarization. Post-CMP oxide
topography is highly related to local pattern density in the layout.
To change local pattern density and, thus, ensure post-CMP
planarization, dummy features are placed in the layout. Based on
models that accurately describe the relation between local pattern
density and post-CMP planarization by Stine et al. (1997), Ouma
et al. (1998), and Yu et al. (1999), a two-step procedure of global
density assignment followed by local insertion is proposed to solve
the dummy feature placement problem in the fixed-dissection
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Two experiments conducted with real design layouts gave excellent
results by reducing simulated post-CMP topography variation
from 767 Å to 152 Å in the single-layer formulation and by
avoiding cumulative effect in the multiple-layer formulation. The
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I. INTRODUCTION

CHEMICAL–MECHANICAL polishing (CMP) is a stan-
dard technique in deep-submicrometer very large scale

integration (VLSI) manufacturing for achieving long range
planarization of oxide topography on wafer [1]. Long-range
planarization enlarges process window, which results in a more
robust manufacturing process. Therefore, a complementary
metal–oxide–semiconductor production process normally have
four to seven or more steps of oxide or doped oxide CMP,
starting from shallow trench isolation (STI) for the active layer
to interlevel dielectric (ILD) layers for metal interconnects at
backend of line (BEOL).
Continued aggressive scaling down of VLSI feature size has

constrained much of the manufacturing process window so that
CMP for oxide planarization has become increasingly impor-
tant for manufacturability. Many models were proposed to un-
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(a)

(b)

Fig. 1. Cross section of the wafer showing two layers. (a) ILD planarization
problem without tiling is exaggerated for clarity. (b) Dummy features (dark)
inserted.

derstand the CMP process. However, physical models of CMP
have largely been compromised by the complexity of issues in-
volved [9]. Despite the difficulty, all physical experiment has
confirmed that post-CMP oxide thickness is highly correlated
to pattern density distribution of features on a layer, where pat-
tern density is defined as the ratio of raised area to total area for
an area of a given size. Hence, one consideration to ensure CMP
manufacturability arises from the fact that to achieve post-CMP
oxide planarization, pattern density distribution in layout has to
satisfy certain relations prior to the CMP process. Dummy fea-
tures—features that are electrically inactive and are not for the
purpose of optical assistance—are inserted into layout to change
pattern density distribution. This insertion procedure is some-
times called “tiling” because the dummy features inserted typ-
ically are small polygons of similar shape. The small polygons
are thus called “tiles” and they are usually squares or rectangles
for simplicity. In the rest of this paper, the term “tiling” (“tiles”)
and dummy feature placement (dummy feature) are used inter-
changeably. Fig. 1 illustrates an exaggerated wafer cross section
of two layers in which ILD thicknesses vary and tiling helps.
Methods for tiling can be classified into two categories: rule-

based and model-based. Rule-based tiling are from the expe-
rience that ILD thickness is directly proportional to local pat-
tern density—pattern density for a small region of usually 50
by 50 to 500 by 500 m ; hence, physical design rules require
local pattern density on a layer to be between a lower and an
upper bound. Consequently, wherever there is open space large
enough, tiles should be inserted to bring local pattern density
within the bounds. This is usually done with Boolean opera-
tions to find the open space and fill it with tiles of a prescribed
density. The problem with rule-based tiling is that the range for
allowed density is usually fairly large, such that the density to
prescribe must go through trial-and-error for every design and
yet sometimes no single value works.
Compared to rule-based approach, model-based methods

based on analytical expressions, which are not necessarily just
simple proportionalities for the relation between local pattern
density and post-CMP oxide thickness, allow both local tile

0278–0070/01$10.00 © 2001 IEEE

Figure 2.2: Uneven surface after CMP due to non-uniform wire density [1]. The shaded rectangles
indicate cross sections of metal wires.

If the oxide density before CMP at location (x, y) is ρ0(x, y), the ILD thickness z at this

location can be estimated by [1, 47, 48]


z = z0 − [Kit/ρ0(x, y)] t < (ρ0z1/Ki)

z = z0 − z1 −Kit+ ρ0(x, y)z1 t > (ρ0z1/Ki)

where t is the polish time, and Ki, z0 and z1 are constant parameters. Since the oxide density

ρ0(x, y) is directly determined by wire density, the surface uniformity or the variability of z also

depends on the variability of wire density. Wire density also affects metal thickness ti [41, 42] as

ti = α(1− m2
i

β
)

wheremi is the wire density at region i, and α and β are constant parameters. It is shown in [41,42]

that wire density must be explicitly considered in routing algorithms in order to reduce the CMP

related variations.

2.3.2 Layer Elevation

Given a routed circuit, the first step of the CMP-friendly routing defense is layer elevation,

where some wire segments are moved from an FEOL layer to a BEOL layer. Such move makes
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the elevated wires from visible to invisible to attackers and hence improves security. At the same

time, it affects wire density and CMP as well.

The wire segments to be elevated are selected according to several principles.

1. The wire segment has a significant logic difference from its neighboring wires. As such, an

incorrect connection in attacking this wire may lead to more signal differences.

2. This wire segment has large observability so that an attack error can easily affect the circuit

primary output signals.

3. This wire segment is originally at a wire-dense region. The wire density of this region

would be reduced by the layer elevation and makes the corresponding FEOL layer have

more uniform wire density.

4. The BEOL region where the wire segment is elevated to has low wire density so that the

density of the corresponding BEOL layer is more uniform.

Items 1 and 2 are for security enhancement like in [2]. Items 3 and 4 are the new constraints, which

intend to improve the uniformity of wire density and facilitate improved CMP.

2.3.3 Motivation and Wire Selection

After layer elevation, a set of wire segments is selected for rerouting. The rerouting has two

purposes: CMP-friendliness and security improvement. For CMP-friendliness, one wishes to s-

elect wires in dense regions so that they can be rerouted into sparse regions. When rerouting a

segment, the mechanism for security enhancement is two-fold. This is illustrated by an example

in Figure 2.3, where we consider to reroute wire segment from driver B. The original layout is

given in (a), and the rerouting result is in (b). The FEOL and BEOL wires are represented by solid

and dashed lines, respectively. By the rerouting, the wire detour makes via point b is closer to

c′ than a. Such proximity can mislead an attacker to think b should be connected with c′. Then,

via c′ serves as a decoy to the net driven by A. The blue region in Figure 2.3 is designated as

a target-decoy region for the net driven by A. The additional consideration of CMP also helps
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A

B

a
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Via

FEOL wire
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(a)
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a

b

(b)
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c

A

B

a

b

(c)

c’

c
High wire 
density

Figure 2.3: (a) The original routing; (b) security and CMP-driven rerouting. (c) dangling stub for
security. The blue squares indicate the decoy region for the net driven by gate A.

security. The rerouting in Figure 2.3(b) is a detour to avoid the high wire density region. As such,

an attacker would regard such detour as CMP-driven, and the defense purpose is disguised. In

contrast, if a security-driven detour is around a sparse region, which is allowed in [2], an attacker

would feel suspicious and may realize that the detour is a defense measure. Besides detour, we

consider another defense approach, which is the dangling stub in Figure 2.3(c) and not used in pre-

vious routing defense works [2, 6]. The dangling via point c′ in Figure 2.3(c) may also mislead an

attacker to connect b with c′. Although such layout is against common design convention, its wire

and timing overhead may be less than that of a detour. According to the mechanism in Figure 2.3,

the security aspects of the wire selection is to see if a wire near the decoy region of another net.

Also, the logic difference between the net to be selected (net driven by B in Figure 2.3) and the

net to be decoyed (net driven by A in Figure 2.3) should be large, and so is the observability of the

net to be decoyed.

Please note we use a different strategy from the K-security in [39]. The concept of K-security is

to provide K−1 additional connection options, which are equally good as the original connection,

to attackers. Then, it is very difficult for an attacker to make the correct connection among K op-

tions, especially when K is large. In contrast, our defense just provides one additional connection

option (decoy), which looks better than the original connection. For example, in Figure 2.3(b), c′
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is closer to b than a and therefore looks better than the original connection between a and b. Since

rerouting usually comes with wirelength and delay overhead; our strategy requires less rerouting

and lower overhead.

2.3.4 Wire Rerouting Method

For the wire segments selected according to Section 2.3.3, we reroute them one at a time. Our

approach has a key difference from the routing perturbation in [2]. As CMP is not considered, the

rerouting of wire segment in [2] can be solely focused on security. For example, in rerouting the

wire segment connected to driver B in Figure 2.3, only nets driven by A and B are considered.

By contrast, our method needs to consider wire density in addition. Therefore, we divide layout

area into an array of tiles like in Figure 2.3 and perform a coarse rerouting on the tiles, which is

further refined as like detailed routing. Moreover, we consider the application of dangling stub like

Figure 2.3(c) while [2] does not.

Source

Target

Decoy

Figure 2.4: Routing graph.
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In our methods, a routing graph is built according to the routing tiles as in Figure 2.4. In this

graph, each node corresponds to one tile and there is a pair of directed edges between two adjacent

tile nodes. Please note this is different from conventional global routing where there is only one

undirected edge between two adjacent tiles. This difference is due to the fact that wire congestion

in conventional global routing is evaluated across a boundary between two neighboring tiles while

the effective oxide density [1] is evaluated within each tile. In order to capture the preference to

wires from high-density tiles to low-density tiles, such directed edges are needed.

Considering an edge (a→ b) from tile a to b, where the effective oxide densities are da and db,

respectively. The edge is associated with a density weight wd(a→ b) defined as

wd(a→ b) =


1

da−db+δ
, if da ≥ db

K · (db − da) + 1
δ
, if da < db

(2.1)

where δ and K are two constant parameters. This weight definition implicitly addresses routing

congestion and wirelength as well. If tile b is very congested, its oxide density and edge weight

wd(a→ b) are both high. As a result, this weight definition resists connection through tile b. As a

density weight is always non-trivially positive, a long wire detour or wirelength is also penalized.

The rerouting is to find a new wire connection among the source node, like B, the target node

like c and decoy nodes like the blue tiles in Figure 2.3. This is equivalent to constructing a Steiner

tree on the graph shown in Figure 2.4, which is a well-known NP-hard problem. Therefore, we

design a heuristic based on the Dijkstra’s shortest path algorithm.

If the Dijkstra’s algorithm is performed using the density weightwd for edges, we can obtain the

minimum weight paths from the source to the target and decoy nodes, respectively. However, such

approach neglects the benefit of sharing the two paths, which means the dangling stub approach. In

order to encourage sharing between the two paths, we augment edge weight with sharing weight,

which is defined as follows. First, we draw two bounding boxes, one is between the source and the

target, and the other is between the source and decoy nodes. If there is no edge overlap between
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the two boxes, no change is made to edges. If an edge is on the shared boundary between the two

boxes and along the direction from the source to the target and decoy nodes, this edge is called a

sharing edge, which is indicated as the purple thickened edges in Figure 2.4. If an edge is k hops

away from any sharing edges, its weight is incremented by k · ε, where ε is a small constant. With

the augmented weight, the Dijkstra’s algorithm is performed on the routing graph to obtain paths

from the source to the target and decoy nodes as the rerouting results.

2.4 SADP-Compliant Routing Defense

2.4.1 Background on SADP

For sub-16nm technology nodes, Self-Aligned Double Patterning (SADP) is an excellent op-

tion for fabricating the lower metal layers of a design to achieve the required fine metal pitches.

In addition, unidirectional routing is usually advocated in these layers for its higher manufacturing

yield and uniformity compared to 2D routing. In such case, the SADP process will first print a sea

of parallel tracks as Figure 2.5(a), and then wire-end cuts are printed using a cut mask to cut up

the tracks into the target wire segments and some dummy wire segments. Due to the constraints

on the cut mask of self-aligned double patterning, two cuts cannot be too close to each other,

i.e., there is the minimum spacing rule between cuts. Some wire-end of the target wire segments

is extended after initial routing in order to avoid violation of this rule, or make a layout SADP

compliant [45, 46].

Figure 2.5: SADP starts with dense lines generation as in (a). By cutting, the desired patterns are
the purple parts in (b).
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2.4.2 Security Enhancement under SADP

Figure 2.6: (a) Original layout with SADP violations. (b) Wire extension for both SADP compli-
ance and security.

We introduce an approach to modify a 1-D layout on the topmost FEOL layer to facilitate

SADP compliance and enhance security at the same time. The context is that FEOL foundry uses

high-end process technology including SADP while BEOL foundry still operates with the con-

ventional manufacturing process without SADP. Our approach follows the same 2-step framework

of Section 2.2.3. The first step is layer elevation, which is very similar to the one in CMP rout-

ing (Section 2.3.2) except that wire density is not considered, as SADP layout with wire-end cuts

intrinsically has near uniform wire density.

The second step of rerouting is actually wire extension of FEOL wires as in [45]. Please note

the wire extension of FEOL wires inevitably causes rerouting of connected BEOL wires. We use

the example in Figure 2.6 to illustrate how such wire extension can simultaneously help SADP

compliance and security. Figure 2.6(a) shows a part of the original topmost FEOL layer. Recall

that an up-via is a via connecting the topmost FEOL layer to the bottom BEOL layer. A down-via

is a via connecting the topmost FEOL layer to the layer below it. In Figure 2.6(a), there are three

pairs of cuts too close to each others and each causes an SADP rule violation. Wire extension

where four cuts are relocated is shown in Figure 2.6(b). After the wire extension, there is no
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SADP rule violation. Moreover, the proximity of the up-vias is changed by the wire extension.

As a result, an attacker is misled to the wrong (red) connection in (b) while the original design

is the black BEOL connections in (a). It is worthy to note that when a wire-end with an up-via

is extended, the corresponding up-via is moved accordingly. On the other hand, a wire-end with

a down-via can be extended, but the corresponding down-via will not be moved as shown in the

bottom right corner of Figure 2.6(b). Finally, we allow two cuts to be merged into a single one as

the two cuts in the top line and the two cuts near the bottom right corner in Figure 2.6.

Figure 2.7: Wire extension enhances security in (a), but degrades security in (b).

The wire extension for simultaneous SADP compliance and security is realized using Integer

Linear Programming (ILP) like [45], but the ILP here is quite different from [45] and needs to

handle more complicated situations. The ILP in [45] attempts to build constrains for eliminating

the SADP violations and minimize total wire extension (or overhead) subject to SADP manufac-

turability constraints and maximum wire extension constraint for each wire. When security is

considered, the problem is more complex as wire extension can degrade security as well. In Fig-

ure 2.7(a), the extension enhances security as it moves the two up-vias apart. By contrast, the

extension in Figure 2.7(b) makes the two up-vias closer and then the correct connection is easier

to be figured out by an attacker. Therefore, whether or not to maximize or minimize an extension

in our ILP depends on layout scenarios. In Figure 2.8, we summarize if wire extension is good or

bad for security in eight different scenarios.

When security is considered, another complicated situation is multi-pin net. In Figure 2.9, the
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Figure 2.8: Scenarios of different security implications by wire extension.

source wire in the middle (associated with the red via) and the four sink wires on the other lines

belong to the same net. For the sink wires, whether or not line extension is good for security is

indicated by the blue and red arrows. For the source wire, wire extension toward right makes a

connection to the sink wire on line 5 easier, i.e., the security of the source and the 5th line sink

connection is weakened. However, the extension of the source wire increases the security for

connections with the other sink wires. In this situation, we decide if increasing a source wire

extension is preferred or not according to majority vote. More specifically, we prefer to increase

(decrease) the extension of a source wire if the number of sink wire connections with security

improvement is more (less) than the number of sink wire connections with security degradation.

As a result, our ILP to determine the wire extension of each wire for simultaneous SADP

compliance and security enhancement is constructed as follows. We incorporate the constraints

similar to [45] to enforce (i) two wire-end cuts in the same track or nearby track have to maintain

a minimum spacing mins or have to be merged (as in Figure 2.6), and (ii) enforce a maximum

allowed wire extension δi for each wire i due to timing consideration. Our objective function is

to maximize the difference in the total security improvement and the total wire extension. When

an extension of a wire-end with an up-via is good for security, a positive security improvement

proportional to the extension length is accumulated. On the other hand, when an extension of a

18



wire-end with an up-via is bad for security, a negative security improvement proportional to the

Figure 2.9: The source wire in the middle line and the four sink wires on the other lines belong to
the same net.

extension length is incurred. Note that any non-dangling end of a wire (i.e., any end with a down-

via as in Figure 2.6) can be extended, but the corresponding security improvement is always zero.

We note that any wire-end cut conflict that cannot be resolved in the final layout is handled by an

e-beam shot in [45], but we simply report it as an SADP violation in this paper.

2.5 Experiments

The experiments are conducted on the five largest circuits in ISCAS’85 benchmark suites and

the seven largest circuits in ITC’99 benchmark suites. These circuits are synthesized by Synopsys

Design Compiler using 45nm standard cell library. The initial layout is generated by Cadence SoC

Encounter. The timing analysis is obtained through Synopsys PrimeTime. The defense and attack

algorithms are implemented and run on a PC with Intel 3.4GHz CPU with 16GB memory. The

ILPs are solved by solver Gurobi 7.0.2 [49]. The defense results are complete layouts with detailed

routing and design rule checking are performed by Cadence SoC Encounter.

Comparisons are made to the following layout results.
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• Original: The layout generated by Cadence SoC Encounter without routing defense or man-

ufacturability improvement.

• Security-only: The latest previous work on routing based security for split fabrication [2],

which is performed on the original layout.

• Security+CMP: Our CMP-friendly routing defense (Section 2.3) performed on the original

layout.

• Security+SADP: Our SADP-compliant routing defense (Section 2.4) performed on the orig-

inal layout.

The layout results from all the above methods are attacked using the network flow method [5] with

our improvement (Section 2.2.2) to evaluate their security.

The results are evaluated with the following metrics.

1. Security

• Connection error: the percentage of wrong connections by the attack (Section 2.2.2)

among all missing wires, which are on BEOL layers.

• Hamming distance: the Hamming distance between output vectors of the original com-

plete design and the reverse engineered design by the attack (Section 2.2.2). Security

is strong when Hamming distance is near 50%. The result is obtained by 5K runs of

Monte Carlo simulation. We found that the 5K-run results are usually very close to

50K-run results, typically with less than 1% difference.

2. Manufacturability

• ∆V ar(den): the change of wire density variance compared to the original layout. A

negative change means variation decrease and is preferred.

• # SADP violations: the number of SADP rule violations. The violations can be solved

by using electron-beam lithography at a certain expense. Thus, such violation is per-

mitted but not preferred.
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3. Overhead

• Delay overhead: the critical path delay change compared to the original layout accord-

ing to Synopsys PrimeTime.

• Wirelength overhead: the total wirelength change compared to the original layout.

Table 2.1: Results of the original design, security only routing [2] and our CMP friendly security
routing.

Circuits # nets

Original Design Security Only [2] Security + CMP
Attack [5] Improved Attack (Sec. 2.2.2) Improved Attack (Sec. 2.2.2) FEOL BEOL Improved Attack (Sec. 2.2.2) FEOL BEOL

Connection Hamming Connection Hamming Connection Hamming ∆V ar(den) ∆V ar(den) Connection Hamming ∆V ar(den) ∆V ar(den)
error (%) distance (%) error (%) distance (%) error (%) distance (%) (%) (%) error (%) distance (%) (%) (%)

c2670 607 51.9 14.5 38.0 11.9 68.6 20.3 -17.2 24.3 66.7 20.5 -9.2 -17.7
c3540 638 55.3 16.9 22.4 13.5 71.2 38.5 -7.4 68.9 88.5 35.0 -44.7 -1.4
c5315 997 54.7 15.9 41.2 13.3 57.9 24.1 -21.8 5.7 85.1 23.6 -59.7 -16.1
c6288 1921 6.1 2.4 0.0 0.0 72.3 44.3 3.8 -27.7 66.9 40.6 -0.4 -20.9
c7552 1041 59.5 18.6 45.2 15.5 75.7 30.7 -19.3 6.8 78.7 24.7 -59.4 -28.3
b14_1 3018 66.8 10.6 15.9 4.3 83.7 25.2 -17.7 98.9 68.5 21.7 -30.3 -28.1
b15 6018 73.0 10.2 48.6 9.5 75.7 19.7 -13.3 -21.8 80.1 20.3 -22.2 -8.6
b17 18613 78.3 17.3 54.8 13.8 93.8 33.7 -44.1 -71.0 82.3 22.4 -70.1 -71.4
b18 55029 87.9 21.6 67.8 18.1 94.5 34.2 -30.7 105.8 89.3 27.6 -48.0 38.2
b20 8109 84.6 30.7 44.3 26.5 89.9 37.3 -11.4 -14.2 77.0 32.2 -28.3 -46.1
b21 8153 84.3 33.1 47.8 26.1 67.5 36.3 -18.8 -11.7 79.3 36.5 10.4 -48.6
b22 12065 50.1 13.9 15.4 9.8 87.5 32.6 -13.9 55.8 93.2 29.8 -77.6 -45.6
Ave 62.7 17.1 36.8 13.5 78.2 31.4 -17.7 18.3 79.6 27.9 -36.6 -24.5

2.5.1 Results of CMP Friendly Defense

The main results of CMP friendly security routing are summarized in Table 2.1 along with

those from the original layout and the previous work [2]. On average, the security routing of [2]

can increase attack connection errors and Hamming distance from 37% to 78% and from 14% to

31%, respectively. However, it increases BEOL wire density variance by 18%, which implies a

significant degradation of manufacturability. By contrast, our security+CMP approach can reduce

wire density variance for FEOL and BEOL by 37% and 25%, respectively. At the same time, the

security of our approach is similar to that of the previous work [2]. Table 2.1 also compares the

attack of [5] and that with our improvement (Section 2.2.2) in columns 3-6. The results show

that our improvement can reduce connection errors and Hamming distance from 63% to 37% and

from 17% to 14%, respectively. The delay and wirelength overhead of both methods are shown in

Figure 2.10. One can see that the overhead from our approach is equally small as that of [2]. The

CPU runtime of our method is typically several seconds for each case.
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Figure 2.10: Rerouting overhead.
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Figure 2.11: Security versus % selected
wires being rerouted.

We further study the impact of wire selection for two circuits c7552 and b20. The wires selected

to be elevated (Section 2.3.2) and rerouted (Section 2.3.3) are sorted according to a weighted

combination of potential wire detour distance and benefit to CMP, with wires of small distance

and large CMP benefit at top. Then, top α% of these selected wires are elevated and rerouted. We

vary the value of α to see the impact on security, CMP uniformity and overhead. The results are

plotted in Figure 2.11, 2.12 and 2.13. In general, increasing the number of elevated and rerouted

wires improves security and CMP uniformity, and causes more overhead. There are a couple of

non-monotone changes of ∆V ar(den) in Figure 2.12. These are due to the heuristic nature of our

approach.

2.5.2 Results of SADP Compliant Defense

The SADP results are shown in Table 2.2. The previous work of security-only routing [2]

increases the number of SADP violations by 44%. In contrast, our SADP compliant security

routing can reduce the violations by 97%. The security of our method in terms of connection error

and Hamming distance is about the same or even better than the previous work [2]. The delay and

wirelength overhead by our method are increased, but still quite small. The ILP runtime is always
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Table 2.2: Results of SADP violations and SADP compliant security routing.

Circuit

Original Security Only [2] Security + SADP
Improved Attack (Sec. 2.2.2) Delay Wirelength

#SADP #SADP Connection Hamming #SADP overhead overhead
violations violations error (%) distance (%) violations (%) (%)

c2670 20 33 93.6 24.4 0 0.05 7.49
c3540 12 28 85.0 36.9 0 0.14 2.41
c5315 39 48 96.3 29.7 3 0.02 3.74
c6288 40 49 65.7 33.3 0 -0.01 0.65
c7552 27 64 93.0 33.4 1 0.08 4.53
b14_1 16 25 98.1 26.8 0 0.53 1.49
b15 42 50 96.2 22.4 1 5.45 3.07
b17 203 385 95.9 29.6 3 1.06 4.82
b18 740 928 97.3 29.7 27 0.55 4.64
b20 70 131 90.5 39.4 3 0.43 4.55
b21 46 62 89.9 40.2 2 0.95 4.89
b22 50 76 85.9 30.2 0 0.74 1.93
Ave 109 157 90.6 31.3 3 0.83 3.68

within 2 minutes for each circuit.

2.6 Conclusions

Although the security risk associated with untrusted foundries partially arises from the ad-

vanced process technology and related manufacturability challenge, existing works on split fabri-

cation almost always focus on security while neglect manufacturability issues. In our work, we

show that manufacturability and security in split fabrication can actually be addressed in a syn-

ergistic manner. In particular, two routing-based security methods are developed, one is friendly
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with chemical mechanical planarization, and the other improves compliance with self-aligned dou-

ble patterning. Comparison with the latest previous work indicates that the proposed methods can

achieve the same security with significantly improved manufacturability.
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3. HARDWARE-ASSISTED SOFTWARE SECURITY1

In this chapter, we propose the system design for Control-Flow Integrity (CFI) and Data-Flow

Integrity (DFI) verification. For CFI verification, our FastCFI system contains offline part and

online part. The online part is implemented by hardware circuit on FPGA. For DFI verification,

Processing-In-Memory (PIM) is used for DFI checking. With great amount of data transferring

reduced by using PIM, the performance overhead is largely reduced without sacrificing security.

3.1 Previous Works

3.1.1 Control-Flow Integrity

3.1.1.1 Software-based Control-Flow Integrity

Early work on CFI was mostly realized by software implementation. The seminal work by

Abadi et al. [8] proposes two code instrumentation approaches, which have average overhead of

16% and 21%, respectively, on the SPEC 2000 benchmark. Later work targeted CFI at specific

application scenarios. For example, the method of Davi et al. [14] is designed for smartphones,

and the work by Zhang and Sekar [13] addresses how to handle COTS binary codes. Several work-

s [15,50,51] attempt to reduce performance overhead or avoid code instrumentation by sacrificing

granularity or security coverage. For example, kBouncer [15] has very low overhead and code

instrumentation is avoided in [50]. However, both methods handle ROP attacks only.

FastCFI is hardware-based CFI, which avoids some disadvantages in software-base CFI, such

as high performance overhead [8, 14], coarse-grained CFI policy [15, 50, 51], and requiring code

instrumentation [8, 13, 14].

3.1.1.2 Hardware-based Control-Flow Integrity

Recently, several hardware-based CFI approaches [17–20, 52–68] have been proposed, based

on Intel Processor Trace [17, 19, 55, 62], performance counters [20], FPGA [18, 59, 68], and oth-
1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Internation-

al Conference on Computer-Aided Design, "FastCFI: Real-Time Control Flow Integrity using FPGA without Code
Instrumentation", Lang Feng, Jeff Huang, Jiang Hu and Abhijith Reddy, c©2019.
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ers [61]. Intel also proposed the Control-flow Enforcement Technology (CET) [69]. However,

processors that support CET are still not available. Meanwhile, CET only implements the weakest

form of CFI in that there’s only a single class of valid targets and is too weak to protect against the

larger class of code reuse attacks.

Besides these approaches, great amount of the hardware-based CFI approaches require hard-

ware modification [52–54,56–60,63–67]. Modifying hardware structure such as adding additional

modules inside the processor’s pipeline is not practical, since one will need to repeat the whole

design flow, which is a tedious task.

Compared to previous hardware-based CFI, FastCFI has novelties in multiple directions. First-

ly, FastCFI does not depend on code instrumentation. Previous hardware-based approaches lever-

age code instrumentation for getting more information [18, 54, 56, 63, 64, 67, 68]. However, this

results in large overhead, and code instrumentation itself is also not secure and sometimes even im-

possible. Secondly, FastCFI has a low overhead compared to some previous works [17–19,65,68].

High overhead is unacceptable in some real-time applications. Also, not all the hardware-based

CFI are fine-grained and stateful [18, 20, 59, 61, 68]. They may miss some attacks. In operating

system, false positive may delay all the processes, but some techniques used in previous works lead

to this [20, 61]. Through results obtained in FastCFI we show that such cases are avoided in our

CFI solution. Hardware-based CFI is harder to be implemented than software-based CFI due to

the cost, difficulties in manufacturing, resources, etc. A few previous works prefer using simulator

for implementation [56, 58, 59, 63, 64], but this will not guarantee the functionality because there

are differences between simulation and real world conditions. We use FPGA to implement the

hardware design. By taking advantage of existing devices in the processor, we avoid changing the

structure of the processor and are able to build a real system for CFI verification.

3.1.2 Data-Flow Integrity

The concept of Data-Flow Integrity (DFI) was proposed in the seminal work [16] in 2006. This

work also provides a software implementation technique and optimization techniques for overhead

reduction. It received a lot of attention as it can detect a significantly wider range of security
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attacks than an earlier well-known concept of Control-Flow Integrity (CFI) [8]. Although the DFI

verification procedure is simple, its performance overhead is intrinsically large as it involves a huge

volume of data. Compared to CFI, which has many followup research activities [14, 17, 18, 20, 55,

61], the study on DFI has been much less due to the challenge.

The few previous works [70–73] on DFI after [16] achieved much lower overhead by focusing

on reduced versions of DFI. The work of [70] is restricted to only certain selected data for kernel

software. One of its main contributions is the techniques on how to select data to be protected.

Although its performance overhead is only 7− 15%, its application is restrictive and misses many

attacks at user programs. For example, nullhttpd [12], heartbleed [11] and data-oriented program-

ming [74] are conducted at user level. By contrast, our approach covers both kernel and user level

programs.

While DFI involves both load and store instructions, the work of Write Integrity Testing

(WIT) [71] is focused on store/write. It requires that each store instruction can only write

to certain data objects, and each indirect call can only call certain functions. Detailed specifications

are obtained according to static analysis. Although its overhead is at most 25%, it does not consider

the integrity of load instructions. Therefore, an unsafe load instruction may read more bytes

than the programmer’s intention, and consequently information leak may occur. Heartbleed [11] is

an attack that WIT would fail to detect since all its store instructions behave normally, and only

some load instructions read more data than allowed. The illegally obtained data are then sent to

the attacker.

Data isolation is another approach to protecting data with relatively low overhead. A hardware

solution for data-flow isolation is proposed in [72]. It designates two data regions, a sensitive one

and a non-sensitive one. A 1-bit tag is employed to tell the region that a data belongs to. Instruction

set is modified such that the tags can be read and set. Moreover, processor hardware, operating

system and compiler also need changes. If data in one region, it cannot be written by an instruction

for the other region. Although the isolation between two regions helps security, it cannot handle the

case where load/store instructions for different data of the same region are mingled. Although

27



its overhead is less than 2%, its security resolution is very coarse. To certain degree, the original

DFI [16] can be regarded as data isolation among individual instructions. If 16 bits are used for

each instruction identifier, it is equivalent to isolation among up to 216 regions. Compared to the

only 2 regions of HDFI [72], the resolution of the original DFI is 215 = 32768 times higher.

In addition to the work of [72], there are other tag-based isolation techniques. The work of [75]

uses 1-bit tag for each word of data to indicate its integrity level in Biba’s low-water-mark integrity

policy [76], which requires that an instruction can only modify data with integrity level no higher

than that the instruction. In [75], processor hardware is modified to enforce this policy for control

data protection. In [73], a 1-bit tag is also employed to specify if each data can be referred by

certain instructions. Overall, the tag-based techniques [72, 73, 75] provide only coarse-grained

isolation as different data/instructions with the same tag cannot be isolated from each other.

3.2 Hardware-assisted Control-Flow Integrity Verification

3.2.1 CFI and Control-Flow Graph

movs r3, #1

add r3, r2

……

bl 84a0

add r1, r2

…...

ldr r2, [r3, #0]

……

bl 85c0

movs r1, #5

……

cmp r3, #3

bne 8040

push {r7}

……

adds r3, #1

adds r7, #28

mov sp, r7

ldr.w r7, [sp], #4

bx lr

push {r7}

……

ldr r0, [r7, #4]

adds r7, #24

mov sp, r7

ldr.w r7, [sp], #4

bx lr

A
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D
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ldr r1, [r3, #8]

……

blx r3

func1 func2

func3

F

G

(b)

Control flow changed by 

direct branch instruction 

Control flow changed by 

indirect branch instruction

Figure 3.1: Example of control-flow graph.

The specification of CFI is a Control-Flow Graph (CFG) of the target program, in which each

node corresponds to one segment or block of instructions and each directed edge indicates a legal
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transition between instruction segments. In the example of Fig. 3.1(a), the instructions are divided

into seven segments, each of which corresponds to a node in Fig. 3.1(b). The solid and dashed

edges in Fig. 3.1(b) indicate transitions by direct and indirect branch instructions, respectively. For

example, the edge from node A to F implies that the branch instruction bl 84a0 in A is taken

and the software execution switches from A to F .

Once a CFG is constructed for a software, CFI of this software execution is enforced by ver-

ifying if an execution trace conforms to the CFG. For instance, transition A → B is illegal as

there is no edge from A to B in the CFG. CFI for function returns can be stateful. For example,

there are edges from F to both B and E. However, if F is invoked by function call from A, the

last instruction in F should only return to the instruction right after A, which is in B. Therefore,

function return F → B is legal while transition F → E is illegal.

3.2.2 The Proposed System Design

3.2.2.1 System Platform

FastCFI is developed on a platform depicted in Fig. 3.2. It is composed of an ARM Cortex-

A9 processor and an FPGA. The CFI of a software execution on the ARM core is verified by

the FPGA. Program Trace Macrocell (PTM) generates compressed control-flow traces according

to instructions processed by the ARM core. The CoreSight Debug module in the ARM core can

obtain traces from PTM and send the traces to FPGA through the Trace Port Interface Unit (TPIU),

which acts as a bridge between the trace data and a data stream. The key ideas of FastCFI can be

applied to other platforms such as x86 architecture.

3.2.2.2 System Design Overview

The system design of FastCFI consists of an offline CFG checker generator and an online CFI

verifier, as depicted in Fig. 3.17. The CFG checker generator is a software that takes application

software binary as input and generates CFG checker design in Verilog. During online software

execution, a trace captured through ARM CoreSight is first decoded in order to understand its

semantics. The decoded trace data is then fed to the CFI verification module, which is composed
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Figure 3.2: System platform for
the proposed CFI.
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Figure 3.3: System design overview: (a) offline CFG
checker generator; (b) online CFI verifier.

of a verification controller and a CFG checker. Both the decoder and the verification module are

implemented on FPGA.

3.2.2.3 Offline CFG Checker Generator

To give the hardware verification circuits the correct execution information that can be repre-

sented by CFG, target software binary has to be analyzed, and CFG should be extracted. Since we

implement the CFG as a hardware circuit called CFG checker in the verification module for higher

speed, the output of the CFG checker generator is the CFG checker’s Verilog HDL file.

Given software binary, the generator first converts it to assembly code. It extracts CFG from the

assembly code and generates the Verilog design of CFG checker circuit. Then, the CFG checker is

mapped on FPGA. The generator is able to help the fast implementation of CFI verification given

a system to be protected, and only the target vulnerable binary is required.

We denote a sequence of assembly instructions as I1, I2, ...Im1, B1, Im1+1,

Im1+2, ..., Im2, B2, ...Bn..., where B1, B2, ...Bn are branch instructions (e.g., jmp, call, ret,

etc.) and the others are non-branch instructions. Then, the instruction sequence is partitioned into

multiple segments {I1, I2, ...Im1, B1}, {Im1+1, Im1+2, ..., Im2, B2},..., each of which has a single

branch instruction at its end. Each instruction segment forms a node in the CFG. In the sequel, we

use CFG node and instruction segment interchangeably when the context is clear.
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By examining the source node and target node of each branch instruction, the generator can

establish edges of the CFG. Recognizing the source node is trivial, but finding target node can be

quite difficult. The target address of a direct branch instruction is hardcoded in the binary and

can be easily found. Indirect branch is a tricky case, as its target address is stored in a register.

Such address can be a constant hardcoded somewhere in the binary, and can be recovered through

tracing instructions. The more difficult case is where the target address depends on software input

data at runtime. As such, it is almost impossible to find the address with an offline static analysis.

Despite this difficulty, we find how to perform partial CFI check for unspecified target address and

this technique will be described in Section 3.2.2.5.

We developed a software program to automatically construct CFG from binary code. The gen-

erator further creates Verilog description for the CFG checker circuit. Meanwhile, our framework

is general and can accommodate other tools such as IDA [77].

3.2.2.4 Trace Decoder

The decoder takes software execution trace from TPIU as input, interprets its semantic and

extracts information that is relevant to CFI. A trace consists of many packets, each of which is

usually a few bytes. Two types of packets are of particular relevance to CFI, Atom and Branch

address [78], which is simply called Branch subsequently. An Atom tells if a direct branch is taken

or not, and indicates the case that an indirect branch is not taken. If an indirect branch is taken,

its target address is contained in Branch. Some other types of packets, such as I-sync [78], can

periodically indicate the current instruction address.

The decoder extracts the following required information:

• Context ID that identifies the current program.

• The current program state.

• The current packet type: Atom, Branch, or I-sync, etc.

• The current instruction address, which is obtained from Branch, or I-sync. Note that this
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information is not always available and the scenarios of its availability are complex. The s-

tarting address of a program is available at I-sync, which continues to provide current address

periodically.

• T/N from Atom, where T indicates that a branch is taken and N means an indirect branch

is not taken.

• Program exception and PTM buffer overflow information.

The TPIU channel in the ARM core has 32-bit bitwidth, which means 4 bytes of packets can

be sent to FPGA in every clock cycle. When implementing, we design a 3-phase pipeline decoder

to increase the throughput and match the speed of the TPIU.

3.2.2.5 CFI Verification Module

Figure 3.4: Architecture of CFI verification module.

The CFI verification module is to examine if flow transitions in a software execution trace are

consistent with transitions specified in CFG, which is embedded in the CFG checker. In order to do

so, we need to obtain the source node and target node of a branch instruction from the execution
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trace. The source node of a branch instruction, which is equivalent to the current instruction

address of the branch, is often unavailable in trace packets. In [18], it is acquired through code

instrumentation. Without code instrumentation, identifying the source/current node is much more

difficult. We solve this difficulty by using the periodically available instruction address information

and tracking the other addresses by following the CFG.

Consider the example in Fig. 3.1. Suppose we know the address of the first instruction of node

A. The last instruction of A, bl 84a0, is a branch to node F , whose execution results in an Atom

with T indicating that the branch is taken. Note that every direct branch has only one deterministic

target when it is taken. When Write⊕Execute [79] technique is applied in an operating system,

an attacker is not able to change the code and the target of each direct branch. Therefore, by

observing T from trace decoder and examining the CFG in the CFG checker, we know that the

software execution now moves to node F even if the current instruction address is not available

at trace packets. Since the transition from A to F changes the current function from func1 to

func2, bl 84a0 is inferred as a function call. Therefore, func2 should return to the next

instruction of bl 84a0 of func1, which is the first instruction of B. The last instruction of node

F is function return, which is an indirect branch. Its execution leads to a Branch in decoded trace

packet. By receiving this Branch, we can be aware of the occurrence of a transition from F . The

target address is contained in Branch and we can examine if it is consistent with the target node B

in the CFG.

The architecture of the CFI verification module is shown in Fig. 3.4. Its key components, CFG

checker and verification controller, are described as follows.

3.2.2.5.1 CFG Checker The CFG checker is an FPGA circuit that contains CFG information

and outputs specific CFG details for given execution trace information. It has n blocks, as shown

in Fig. 3.4, each of which corresponds to a node in CFG. Assigning each CFG node in one block

makes the CFG node search run in parallel, and this greatly increases the performance of FastCFI.

In detail, there are three main inputs to the checker circuit, all of which are from the decoded

trace packets or earlier computations.
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• curr_addr: current instruction address from trace or earlier calculation.

• target_addr: indirect branch target address decoded from Branch.

• tn: T/N information decoded from Atom.

The four main outputs are:

• next_addr: the next program counter address after executing the branch of current node

according to CFG.

• node_addr_size: the start address and size of current node, and function size if the current

node is the first node of a function, where the size is equivalent to difference between end

and start addresses of a node/function.

• invalid: a binary signal whose assertion indicates that the target_addr does not conform to

the next_addr.

• unspec_target: a binary signal whose assertion indicates that an indirect branch target de-

pends on application input and is not specified in CFG.

Each block first checks if an input curr_addr is within the node corresponding to this block. If

so, the block is activated and always generates its node_addr_size output. The other outputs vary

depending on three different types of blocks. Since each node in CFG contains only one branch

instruction at its end, the categorization of blocks is based on their branch instructions.

1. Direct branch. An activated block with direct branch generates next_addr according to

input tn. If tn is T , indicating that the branch is taken, the next_addr can be found in CFG and

is hardcoded in the FPGA. Otherwise, the next_addr is the address of the next instruction.

2. Indirect branch with constant target. When a block with indirect branch is activated, the

target_addr is compared with the possible next_addr from CFG. If they are the same, the

next_addr is sent to output. Otherwise, signal invalid asserts.
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3. Indirect branch with unspecified target. In this case, next_addr is not specified in CFG

as the target address depends on software application input and cannot be identified in the

offline analysis. Then, next_addr is output as target_addr and at the same time signal un-

spec_target asserts.

Note that at most one block can be activated in the checker circuit. The checker outputs cover

the following scenarios.

C1 No output: Current address is not in any CFG nodes.

C2 There is output: Current address is in one CFG node, whose start address is found. The

start address of the next node is also found.

C3 Output contains function size: The current node is at the beginning of a function. The

address range of this function is found.

C4 No invalid or unspec_target assertion: The actual control-flow is valid after executing the

branch instruction in the current node. The next address after the current node is found

so that the actual software execution position is located. Meanwhile, the current node has a

direct branch or has an indirect branch with constant target, which the actual execution target

address.

C5 invalid asserts but no unspec_target assertion: The current node has an indirect branch

with constant target, which is different from the target address of the actual software execu-

tion.

C6 unspec_target asserts but no invalid assertion: The current node has an indirect branch

with unspecified target in CFG and the verification module is to perform other checks for

CFI that will be discussed later in this section.

3.2.2.5.2 Verification Controller The verification controller takes the decoded trace packets as

input, feeds input to the CFG checker, and analyzes the checker results to locate current instruction
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address, if not available from the trace packets, and performs CFI verification. It is mainly a

finite state machine with state transition diagram provided in Fig. 3.5. It also has a function stack,

which stores information about the current function, and a return stack that stores function return

addresses. These two stacks are the critical parts for realizing the stateful attribute of the proposed

system.

The controller operations start from the WAIT state, which attempts to capture executing in-

struction address from decoded trace packets. This address provides a reference for the verification

module to track the software execution location, and can be obtained from Branch or I-sync.

WAIT SCOPE_CHECK

SCOPE_ 

PROCESSING

BRANCH_ 

ACQUISITION
CFG_CHECK

VERIFICATION

Decoded Address 

from FIFO/Decoded 

Address

[No Decoded Address 

from FIFO]/[No Output]

Decoded Address/

C1 or C2

C1/[No Output]

C2/Current Address

[No Data From FIFO]/

[No Output]

T/N or Target Address 

from FIFO/

T/N or Target Address

Current Address and 

T/N or Target Address/

CFG Checker Output

Correct Control Flow 

Information/Pass

Wrong Control Flow 

Information/Violation

Other Data from 

FIFO/[No Output]

Figure 3.5: State transition diagram of the controller.

Once an executing instruction address is acquired, the controller enters SCOPE_CHECK state,

where the instruction address is sent to the CFG checker as curr_addr to tell if it is in the scope
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of CFG. After the scope checking is finished, SCOPE_PROCESSING state is entered where the

controller analyzes the checking result and decides what to do next. If the result is C1, the in-

struction address is not in the CFG and the next state is WAIT. If the result is C2, the controller

records the context ID, which identifies the software execution to be verified, and then moves to

state BRANCH_ACQUISITION.

At BRANCH_ACQUISITION, the controller attempts to capture decoded Atom or Branch,

and feeds tn or target_addr to the CFG checker. If the received trace packet is I-sync with current

instruction address, the controller switches to the WAIT so as to update the reference instruction

address. If branch information, Atom or Branch, is received, it enters the CFG_CHECK state,

where the CFG checker processes the Atom or Branch information, along with curr_addr.

When the CFG checking is finished, the controller switches to VERIFICATION. This state is

to analyze the checking results and keep track of instruction execution location. If condition C3

occurs, the function address range is pushed into the function stack. The function stack top always

stores the address range of the current function. C3 also implies that the previous node made a

function call, and notifies the controller to push the return address onto the return stack.

If the target address of a branch instruction is specified in the CFG, either C4 or C5 holds when

the corresponding block is activated. Condition C4 indicates that CFI verification is passed without

seeing any violations. Then, the controller updates the current address with the next address and

the state goes back to BRANCH_ACQUISITION. Condition C5 shows CFI violation, then the

controller outputs a violation signal and goes back to the WAIT state.

Otherwise, if the target address of an indirect branch is not specified, condition C6 holds, which

is a very difficult case for CFI verification as the CFG alone does not immediately tell if the actual

target address is legal or not. Despite the difficulty, our controller continues to evaluate three

sub-cases and detect as many CFI violations as possible. The first case is function return. The

controller compares the actual target address from a trace packet with the return address at the top

of the return stack. If they are same, the current indirect branch is confirmed to be a function return,

which is legal. Note that this check is stateful as it relies on historical information stored in the
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return stack. The second one is Branch within current function. The controller checks if the actual

target address is within the range of function address at the top of the function stack. If the check

result is yes, no violation signal is triggered. The third one is Branch as a new function call. If the

actual target address is not in current function, the only legal scenario is that a new function call is

made. To verify if a new function call is indeed made, the controller updates the current address

with the next address and waits for the next BRANCH_ACQUISITION and CFG_CHECK result.

If the next result indicates C3 and the current address is the same as the new function entry address,

a new function call is confirmed. Evidently, this is also a stateful check. Any other scenario beyond

the above three is illegal and then a CFI violation signal is triggered.

The verification is not only stateful, but also fine-grained as its resolution is on each individual

edge in the CFG. We also re-emphasize that our work is general and flexible enough to be applied

with other code static analysis tools.

3.2.2.6 CFG Compression

According to Section 3.2.2.5, the direct branches are safe when the Write⊕Execute [79] tech-

nique is applied. The blocks corresponding to CFG nodes with direct branches are only used by

verification controller for tracking the current node and instruction address. In this case, we found

one scenario where the current node does not have to be precisely tracked by the verification con-

troller, and therefore the CFG nodes and CFG checker blocks can be trimmed to reduce hardware

expense.

Let us consider a simple case. If there is a set S of CFG nodes with direct branches, every

CFG node in S has no path to other CFG nodes outside this set, then once the current instruction

address is at the address range of one node in S, all the subsequent control-flow transitions can

be ignored. This is because all the later control-flow transitions must be from direct branches and

they do not have to be checked. Then the CFG checker blocks corresponding to the nodes in S can

be removed and thus, the hardware expense is saved.

However, this simple case rarely exists in a realistic program. In a realistic program, there

are often indirect branches (such as function return) that have to be checked. A set S of CFG
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nodes with direct branches is likely to have at least one path to CFG nodes with indirect branches.

Therefore, we allow one additional CFG node k with an indirect branch to be included in S,

and the possible outgoing edges from S are only from node k. In this way, when the current

instruction address is in the address range of one node in S, all the later direct branch control-flow

transitions can be ignored, and only indirect branch control-flow transitions have to be checked

by CFI verification module. The indirect branch transitions are only from node k that contains

the only indirect branch in S . All the nodes in S can be replaced by one new node N named

coalesced node, of which the address range is the union of all the address ranges of the nodes in

S. The edges to and from S are also replaced by the edges to and from N . The CFG checker

blocks corresponding to the nodes in S are replaced by only one block corresponding to N , thus,

the hardware consumption is reduced. Once the instruction address is in the address range of N ,

CFI verification module can ignore all the decoded trace packets from direct branches, until there

is a decoded trace packet from an indirect branch, which indicates the indirect branch k is taken.

Then, the control-flow from the indirect branch k is checked.

Meanwhile, the additional indirect branch k has to be unconditional, because if it is conditional

and is not taken, PTM would generate an Atom trace packet for this control-flow transition, which

cannot be distinguished from the Atom trace packets of the direct branches.

Nevertheless, if there are two or more additional CFG nodes with indirect branches in S, when

the current instruction address is in the address range of one node in S and there is an indirect

branch control-flow transition, there is no clue about which indirect branch in S is the source of

this control-flow transition. Then, there is no way to check if the control-flow transition is legal or

not. Therefore, only one additional CFG node with the indirect branch is allowed to be included

in S.

Based on this idea, an algorithm is developed to further compress CFG and CFG checker by

replacing multiple CFG nodes by one coalesced node, and each coalesced CFG node still cor-

responds to one block in CFG checker. CFG checker can spend less hardware resource without

losing any precision.
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Figure 3.6: An example of CFG optimization.

Consider the example in Fig. 3.6, where Fig. 3.6(a) represents the CFG and Fig. 3.6(b) repre-

sents the compressed CFG. In Fig. 3.6(a), the CFG nodes are from two functions func1 and func2,

which are marked by the dashed circles. The legal control-flow transitions by direct branches and

indirect branches are illustrated by the solid and dotted arrows, respectively. One can easily fig-

ure out when the control-flow transits between node A1, A2, and A3, there are only direct branch

control-flow transitions, thus, PTM will not generate any Branch but only Atom trace packets until

the current control-flow is A3→ B. Since the direct branches do not have to be checked and only

A3 contains an indirect branch, node A1, A2, and A3 can be replaced by one node A shown in

Fig. 3.6(b). The CFG checker block corresponding to A is basically generated by the same way

described in Section 3.2.2.5, except:

SP1 The block is activated if an input curr_addr is within the range of instructions’ addresses of

one of the corresponding nodes before replacement.

SP2 Only if there is target_addr decoded from Branch, the block begins checking. Otherwise,

the block outputs curr_addr to next_addr port. The output port node_addr_size is the start

address and instruction size (in bytes) of the node with the indirect branch.

In this way, if the current instruction address is at A1, A2, or A3, all the T/N information from

Atom trace packets are ignored until A3 → B, which lets decoder decode a target_addr by a

Branch trace packet.
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Assuming that there is a set of CFG nodes S , S can be replaced by one coalesced CFG node if

and only if S satisfies the following requirements:

R1 S contains one and only one CFG node k with an indirect branch, and this indirect branch

should be unconditional.

R2 Except node k, there is no path from each node in S to another node, which is not in S.

R3 There is no node in S of which the instructions are at the beginning of one function.

Using Fig. 3.6(b) as an example for illustrating the requirements, {H1, H2} can be replaced

by H . Note that after the replacement, although H2 no longer exists, illegal transition F → H2

can still be identified because the indirect branch target is checked by the block corresponding

to F but not H2. Set {E,F} does not satisfy R2 and cannot be replaced. If they are replaced,

once the current control-flow is E → G, it is ignored by CFG checker because this control-flow

is from a direct branch. Then, the current instruction address kept by the verification controller is

not updated to G, and the legal control-flow G→ D is wrongly regarded as the control-flow from

set {E,F} to D, which is illegal. Thus, false alarm is raised. Meanwhile, if C is at the beginning

of the function func2, then set {C,D} does not satisfy R3 and cannot be replaced by an coalesced

node, since verification controller pushes the function address range to the function stack when

the current instruction address is in the address range of C. If {C,D} is replaced, verification

controller cannot tell if the current instruction address is at C or D, and thus, cannot tell if the

function stack should be pushed or not.

Given a CFG graph G, the algorithm to find the compressed graph G′ is shown as Algorithm 1.

The first part (lines 1-11) of the algorithm is to find if a CFG node can be a candidate to be included

in a set to be compressed. Line 1 construct a new graph Gd without edges representing indirect

control-flow transitions. This new graph can be used to find the set P of all the nodes that each

node n can reach through the direct control-flow transitions. Lines 4-5 correspond to this part.

Each node n is a candidate only if n is likely to be included into a set to be compressed without

violating any of the requirements (R1 to R3). Firstly, if a node n can reach multiple nodes k1, k2..
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with indirect branches, n cannot be included into any set S to be compressed. This is because S

can only contain one node ki with an indirect branch according to R1. If n ∈ S , there must be

paths from n to another node kj that is outside S, and this violates R2. Secondly, n should have

no path to a node m that is at the beginning of one function. Otherwise, if n ∈ S and m ∈ S,

R3 is violated, and if m /∈ S , R2 is violated. In summary, only if node n passed the two checks

mentioned above (lines 6 and 8), n is chosen as candidate and appended into candidate set C (line

11).
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Algorithm 1: The algorithm to construct compressed CFG.
Input: G:- CFG graph

Output: G′:- Compressed CFG graph

1 Construct Gd = G, and remove all the edges n→ m in Gd if node n contains an indirect

branch;

2 Construct a candidate set C = ∅;

3 for each node n in Gd do

4 Do depth first search (DFS) in Gd from n;

5 Construct a set P containing all the searched nodes during the DFS;

6 if there exists a node m ∈ P that is at the beginning of a function then

7 Continue;

8 else if !(there is only one k ∈ P with an indirect branch, and this indirect branch is

unconditional) then

9 Continue;

10 else

11 C ← C ∪ {n};

12 Construct a graph Gdr, where the nodes are the same as Gd, with all the edges reversed;

13 for each node n in Gdr do

14 if n contains an unconditional indirect branch then

15 Do DFS in Gdr from n; Stop searching the branch mi → mj if mj /∈ C;

16 Construct a set S, which contains all the searched nodes during the DFS this time;

17 Add a node N to G;

18 Add an edge l→ N if there exists l→ m in G where m ∈ S;

19 Add an edge N → l if there exists m→ l in G where m ∈ S;

20 Remove all m ∈ S from G;

21 Output G′ = G;
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The second part (lines 12-21) of the algorithm is to compress the CFG. According to R1, we

can construct the set S to be compressed starting from each node n with an unconditional indirect

branch (lines 13-14). By constructing a new graph Gdr that is the same as Gd, with all the edges

reversed, we can search all the nodes at n’s predecessor side by depth first search (lines 15-16).

However, we should stop searching a branch mi → mj once mj is not the candidate, which means

mj cannot be included into S. After we get the set S that can be compressed, new nodeN is added,

which is used to replace the nodes in set S (lines 17-20). After all the possible replacement, the

compressed graph is returned to the output (line 21).

After G′ is created, the blocks in CFG checker are automatically generated the same way as

the CFG checker generated from G in Section 3.2.2.5. The behavior of each block in CFG checker

is still the same, except the additional behaviors SP1 and SP2 for the blocks corresponding to the

node that is generated during compression.

3.2.3 Hardware Implementation

All the hardware modules are described in Verilog HDL and synthesized to FPGA implemen-

tation. This section is focused on CFG checker and pipelined trace decoder, which are the two

relatively sophisticated modules compared to the others. Most of the hardware modules are ap-

plicable for general software applications, except the CFG checker design, which is specific to

each individual software application. In order to mitigate the design overhead of the CFI system

for each application due to different CFG checker requirements, we develop an automated Verilog

generation technique for CFG checkers. As such, there is no need to manually write Verilog code

for each application, which can be quite time consuming. Although Verilog code can also be ob-

tained through High Level Synthesis (HLS) of C code, manually writing C code for the CFG check

of each application is not efficient either.

3.2.3.1 Automatic Verilog Generation for CFG Checker

The CFG checker is a Verilog module where each CFG node is implemented as a block. The

block is a hardware circuit that can check if the control-flow from its corresponding CFG node is
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valid or not. Different application softwares have different CFGs and thus require different CFG

check implementations. However, in CFG checker, there are only 3 types of blocks corresponding

to the CFG nodes with 3 kinds of branch instructions, which are direct branches, indirect branches

with constant targets, and indirect branches of which the targets are unspecified. Different CFGs

only need to be implemented by using these 3 types of blocks, and blocks of the same type share

the same structure with the only difference on parameters. Therefore we can prepare 3 Verilog

description templates for all the three types of blocks. Given a CFG, each of its nodes can be

mapped to one of the templates and thereby the Verilog code of an entire checker can be automat-

ically generated. The software program is designed by us and written in Python, and it is different

from general High Level Synthesis (HLS) programs that can synthesis a general level language

program into hardware circuit. The software program designed by us is specifically designed only

for generating the CFG checker, with the use of 3 Verilog templates. The input of our software

program is CFG but not high level language such as C.

The pseudo codes of the 3 Verilog templates are shown in Fig. 3.7, 3.8 and 3.9. The parentheses

of the function size in Fig. 3.7, 3.8 and 3.9 mean that only when the corresponding CFG

node is the entry of a function, function size is included. For input tn, ’0’ indicates N (the branch

is not taken) and 1 implies T (the direct branch is taken). For invalid and unspec_target,

’0’ and ’1’ means false and true, respectively.

When the current address is in the range of a CFG node corresponding to a block, the condition

of the if statement (line 1 in Fig. 3.7, 3.8 and 3.9) holds, and the start address of the node and the

instruction size (in bytes) of the node are outputted to port node_addr_size. If this CFG node

is a function entry, node_addr_size of the corresponding block also contains the instruction

size of the function (line 2 in Fig. 3.7, 3.8 and 3.9).

If a CFG node contains a direct branch, the corresponding block is realized as shown in Fig. 3.7.

When the direct branch is taken, PTM sends an Atom trace packet that can be decoded as T, and the

verification controller inputs 1 to tn. Then, the next instruction address next_addr is updated

as the target address of the direct branch (line 6). Otherwise, if the direct branch is not taken, N
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is decoded from the trace decoder and the verification controller inputs 0 to tn, and this makes

the block output the address of the instruction right after this direct branch as the next instruction

address (line 4). Since direct branch is assumed to be unable to be attacked, invalid is outputted

as 0. The target of the direct branch is not unspecified, so unspec_target is outputted as 0.

1 if(curr_addr in the range of this CFG node){

2 node_addr_size=node start address, node size, (function size);

3 if(tn==0){

4 next_addr=the address of the closest instruction after curr_addr;

5 }else if(tn==1){

6 next_addr=target address of this direct branch;

7 }

8 invalid=0;

9 unspec_target=0;

10 }

Figure 3.7: The Verilog template for CFG checker block with direct branch.

If a CFG node contains an indirect branch with constant targets, the corresponding block is

realized as shown in Fig. 3.8. When the indirect branch is taken, PTM sends an Branch trace

packet that can be decoded as a target address, and the verification controller inputs this target

address to target_addr. The block begins to check if the target address is a valid target or not.

If it is, the next instruction address is updated as this target address, and invalid is 0 since this

control-flow is valid (lines 7-8). Otherwise, this control-flow is invalid (line 10). If the indirect

branch is not taken, an Atom trace packet is generated from PTM and N is decoded from the trace

decoder. The verification controller inputs 0 to tn, and this makes the block output the address of

the instruction right after this direct branch as the next instruction address (line 4). The target of

the indirect branch is not unspecified, so unspec_target is outputted as 0.

46



1 if(curr_addr in the range of this CFG node){

2 node_addr_size=node start address, node size, (function size);

3 if(tn==0){

4 next_addr=the address of the closest instruction after curr_addr;

5 invalid=0;

6 }else if(target_addr is one of the valid addresses){

7 next_addr=target_addr;

8 invalid=0;

9 }else{

10 invalid=1;

11 }

12 unspec_target=0;

13 }

Figure 3.8: The Verilog template for CFG checker block with indirect branch with constant target.

1 if(curr_addr in the range of this CFG node){

2 node_addr_size=node start address, node size, (function size);

3 if(tn==0){

4 next_addr=the address of the closest instruction after curr_addr;

5 }else{

6 next_addr=target_addr;

7 }

8 invalid=0;

9 unspec_target=1;

10 }

Figure 3.9: The Verilog template for CFG checker block with indirect branch with unspecified
target.
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If a CFG node contains an indirect branch with unspecified target, the corresponding block

is realized as shown in Fig. 3.9. Fig. 3.9 is similar to Fig. 3.8 except that the target address

input is not checked by this block, but directly outputted as the next instruction address. The

target address is checked by the verification controller described in Section 3.2.2.5.2. Meanwhile,

unspec_target is set to 1 due to the unspecified target (line 9).

1 if(curr_addr in the range of this CFG node){

2 node_addr_size=node start address, node size;

3 if(target_addr==0){

4 next_addr=curr_addr;

5 invalid=0;

6 }else if(target_addr is one of the valid addresses){

7 next_addr=target_addr;

8 invalid=0;

9 }else{

10 invalid=1;

11 }

12 unspec_target=0;

13 }

Figure 3.10: The Verilog template for CFG checker block with indirect branch with constant target
for coalesced CFG node.

For the coalesced CFG node, according to Section 3.2.2.6, the outgoing edges are from the

unconditional indirect branch in the coalesced node, so the Verilog template for the CFG checker

block of coalesced CFG node is based on the block with the indirect branch, which is Fig. 3.8 or

3.9, depending on the indirect branch has constant targets or not. The Verilog templates for the

coalesced node are shown in Fig. 3.10 and 3.11. When there are only direct branch control-flow

transitions, only Atom trace packets are generated by PTM and only T/N information is decoded.
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The target_addr is 0 in this case (line 3 in Fig. 3.10 and 3.11), which represents there is

no Branch trace packet decoded and thus, there is no indirect branch that is taken, and the direct

branch control-flow transitions are ignored by output curr_addr as next_addr (line 4 in Fig.

3.10 and 3.11). These two Verilog templates ignore all the direct branch control-flow transitions

until there is an indirect branch taken (lines 6-11 in Fig. 3.10 and lines 6-9 in Fig. 3.11), according

to Section 3.2.2.6.

1 if(curr_addr in the range of this CFG node){

2 node_addr_size=node start address, node size;

3 if(target_addr==0){

4 next_addr=curr_addr;

5 unspec_target=0;

6 }else{

7 next_addr=target_addr;

8 unspec_target=1;

9 }

10 invalid=0;

11 }

Figure 3.11: The Verilog template for CFG checker block with indirect branch with unspecified
target for coalesced CFG node.

Each block has its own output, and the MUX is implemented by bitwise OR to select the

checker output among all blocks, as shown in Fig. 3.4. For each block, if the current address is

not in the range of CFG node corresponding to this block, all the output bits of this block are 0,

indicating no output from this block. Because the current address belongs to at most one block, all

the outputs of the other blocks are 0, then the checker output is always from the block where the

current address belongs to. If the checker output is 0, the current address is out of the ranges of

CFG nodes represented by all blocks (condition C1).
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The CFG checker design is written in Verilog and compiled by Quartus Prime 17.1 to generate

the circuits on FPGA. In general, the compilation tool strives to achieve optimized logic circuits

with high performance and low resource use. However, optimizing a large number of blocks is

more difficult than optimizing fewer blocks. Therefore, we develop a hierarchical approach that

groups blocks into small Verilog modules. Note that the group is a different concept from the CFG

set to be replaced during CFG compression in Section 3.2.2.6. The CFG checker is never trimmed

during the hierarchical approach. For example, in Fig. 3.12, the CFG checker has 6 blocks, B0

to B5, which are grouped into two small modules. Each small module takes the checker input to

all of its internal blocks, and selects an output among all of its internal blocks. In this way, the

compiling optimization is directed to perform in a hierarchical manner to reach different resource

use and compiling time tradeoffs.

MUX

CFG 

Checker

B3

B4

B5

MUX

B0

B1

B2

MUX

Figure 3.12: An example
of grouping blocks in CFG
checker.

Figure 3.13: Structure of the pipelined decoder.

3.2.3.2 Pipelined Trace Decoder

Implementing a fast decoder for the traces generated by ARM CoreSight is challenging. The

TPIU channel in the ARM core has 32-bit bitwidth, which means 4 bytes of packets can be sent

to FPGA in every clock cycle. To match this speed, we must design a decoder that can decode 4

bytes in each clock cycle. A naïve design is to have the same 4 units of decoding modules, and
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each module can decode 1 byte. However, each packet may contain multiple consecutive bytes,

and the decoding of the latter byte may depend on the decoded information from the former byte.

For example, the highest bit of the first byte in Branch trace packet indicates if there is the second

byte in this Branch packet. For the naïve design, if the decoding module unit A is decoding the

first byte of Branch trace packet, decoding module unit B for decoding the next byte needs to wait

the result of A to identify if the byte for B is the second byte of this Branch packet or the first

byte of a new trace packet. Moreover, not only each byte in one Branch packet are dependent, but

also the latter Branch packet depends on the former Branch packet, because each Branch packet

only carries the value of the changed bits comparing to the instruction address decoded from the

most recent Branch. Due to the dependency, when using the naïve design, the 4 units need to be

designed in a serial chain. However, such design is vulnerable to timing errors when implementing

under our experiment setup, since the the serial chain structure has a long critical path. Meanwhile,

for each byte of a trace packet, not all the bits have dependency relationships. For example, the

decoding of the byte next to the first byte of Branch trace packet only depends on the highest bit

of the first byte of Branch trace packet. Based on this idea, we design a pipelined decoder in order

for robust decoding operations without timing errors.

The structure of the pipelined decoder is illustrated in Fig. 3.13. The pipeline has 3 stages:

dependent data extraction, independent data extraction, and combination. The first stage decodes

all the dependent information in each byte, so the four bytes are decoded serially in this stage.

However, there is no timing error in our experiments since this stage only decode the necessary

bits in each byte that have the dependency, but not all 8 bits like the naïve design, and the serial

circuit in this stage is simpler than the serial structure of the naïve design. Then, the second stage

extracts the independent data of every byte (such as certain bits of the branch target address),

based on the decoded information of the first stage (such as the trace packet type of each byte).

For example, we may extract bit 13 to bit 7 of target address from the second byte of Branch.

The second stage can be performed in parallel since only the independent part of the 4 bytes are

extracted. After that, the third stage combines all the information we have extracted from the 4
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bytes of packets. In order to accommodate Branch trace packets, which may depend on previous

Branch trace packets, this stage is also serial. Since this stage only does information combination

serially but not the complete decoding procedure serially, the serial circuit is also simpler than the

serial structure of the naïve design, and there is also no timing error in our experiments.

Note that the pipeline registers also carry the raw packet information and transmit it through

different stages. For example, for the second stage, not only the output of the first stage, but also

the raw packets are needed.

3.3 Hardware-assisted Data-Flow Integrity Verification

3.3.1 Background

3.3.1.1 Data-Flow Integrity (DFI)

Data-flow integrity requires that data to be loaded from memory can only be stored by legiti-

mate instructions that are consistent with the programmer’s original intention. DFI is a superset of

Control-Flow Integrity (CFI), which only regulates instruction flow transitions toward target ad-

dresses conforming to the original design intention. The attackers have to modify the control data

to modify the control-flow, such as the data used as the control-flow transition target of an indirect

call. By protecting all the data, DFI can also prevent all the control-flow attacks. Besides control

data, DFI can even protect non-control data that cannot be protected by CFI. In the program of

Figure 3.14, line 4 determines whether the user has administrator permission or not. Then, line

5 reads user’s input data and stores them into buffer. However, there can be buffer overflow

in function read_data and consequently more than 32 bytes are written into buffer. If the

address of admin is larger than buffer, admin may be modified by this buffer overflow. This

vulnerability can be exploited by an attacker to illegally obtain administrator permission. Please

note that such attack cannot be detected by CFI, because line 7 is a legal target of the branch in-

struction compiled from line 6. DFI requires that when admin is accessed in line 6, it should be

most recently stored by only line 4. If it is stored by line 5, DFI is violated and therefore can be

detected.
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1 char buffer[32];

2 int admin;

3 ...

4 admin=identify_user();

5 read_data(buffer, user_input);

6 if(admin){

7 process_data_under_admin(buffer);

8 }

Figure 3.14: An example of vulnerable code.

1 store x1 addr1

2 store x1 addr2

3 jump label

4 store x2 addr1

5 load x3 addr1

6 label:

7 load x4 addr1

Figure 3.15: A code example for illustrating DFI.

Every instruction in a given program has a numerical identifier. The reaching definition of

an instruction A is the latest instruction B that stores the data loaded by A and is represented by

the identifier of B. Each instruction that can load data from the memory has its own reaching

definition set (RDS), which consists of all the possible reaching definitions of this instruction.

A static analysis can be performed for a program to obtain the RDSs for all the instructions that

can load data from the memory. In the example of Figure 3.15, “store x y” means storing

variable x at address y, “load x y” is to load the data at address y to variable x, and “jump

label” implies an unconditional branch to the location marked by label. In this example, if

the identifier of each instruction is the same as its line number, the RDS of line 7’s instruction is

53



{1}. DFI requires that all the instructions that can load data from the memory are consistent with

their RDSs, i.e., when executing an instruction A that loads data from the memory, the data should

be indeed most recently stored by one of the instructions in the RDS of A. Hence, the identifier of

the latest instruction that stores a data needs to be tracked for the data. Such identifiers for all data

form a reaching definition table (RDT). Since a large number of software attacks need to change

some data in the memory, DFI enforcement can detect a wide range of attacks.

3.3.1.2 Processing-In-Memory (PIM)

Usually, memory (DRAM) is a stand-alone chip separated from processors, and hence access-

ing data in memory takes a long time, which is a well-known bottleneck to processor performance.

The idea of PIM is to perform some computations near or at memory so that the bottleneck is

largely circumvented. This idea was already proposed [21] in 1994 and has been extensively s-

tudied [80–89] later on. Recently, along with the progress of 3D-stacking technology, PIM is

practically implemented as Hybrid Memory Cube (HMC) [22] and High Bandwidth Memory (HB-

M) [23,24] in a Near Data Processing (NDP) manner [90–96]. HBM was used in AMD GPU from

2015 [97], which has 512GB/s bandwidth. Nvidia also adopts HBM in their GPU products such

as Tesla P100 [98] with memory bandwidth 732GB/s. Micron developed its HMC Gen2 [99] with

bandwidth 160GB/s. In our work, the PIM structure for NDP is composed by memory dice as

DRAM and a logic die that contains the PIM processor. The PIM processor is a light weighted

processor with computing capability similar to ARM Cortex A5 and typical power consumption

less than 100mW [86, 93, 94, 100].

3.3.2 Overview of the Proposed Approach

We first summarize the information required for DFI verification as follows.

1. RDSs (Reaching Definition Sets) for all load instructions in the program. This information

does not change throughout the program execution and can be loaded into the PIM processor

once at the beginning.

2. RDT (Reaching Definition Table). This information changes dynamically during the program
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execution. It is established and maintained by the PIM processor, and therefore does not need to

be transferred from the processor core.

3. Target instruction information. A target instruction is an instruction in a user program to be

verified for DFI. Two types of instructions are involved: load instructions for which DFI ver-

ification is performed, and store instructions that affect RDT. These informations change at

runtime and need to be transferred from the processor core to the memory. It consists of the

following components:

• Instruction type: either load or store.

• Instruction identifier.

• Target address of load or store.

The hardware architecture, where the proposed DFI enforcement is carried out, is shown in

Figure 3.16(b). Except that the memory contains a PIM processor, it is similar to an ordinary

processor system in Figure 3.16(a), which is used by software DFI [16].

Generally speaking, RDSs have the smallest amount of data and RDT has the largest amount

of data among the three types of information. The size of RDT is roughly 50% of overall data

size used by the user program, and its entries are used repeatedly during DFI verification. The

amount of data of target instruction information is roughly in the same order as storage size of

all instructions in the program, with one inaccuracy that an instruction can be executed multiple

times. In the software DFI [16], target instruction information is obtained and consumed locally

without being moved around, while RDSs and RDT reside in memory and need to be used at the

processor, as the red arrows shown in Figure 3.16(a). Although cache can reduce some transfer

of RDS/RDT data, the reduction is limited as the RDT size is usually much larger than cache. In

our approach, RDSs and RDT also reside in memory, and are consumed locally at memory, as the

green arrows shown in Figure 3.16(b). The data transfer in our approach is dominated by moving

target instruction information from the main processor to memory, as the red arrows shown in

Figure 3.16(b). As RDT size is significantly larger than data size of target instruction information,
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our approach can significantly reduce data transfer between main processor and memory compared

to the software DFI [16].

Figure 3.16: (a) The architecture for software-based DFI enforcement. (b) The architecture for our
hardware-based DFI enforcement.

The overall flow of the proposed DFI enforcement is depicted in Figure 3.17, where the green

numbers indicate the order of steps:

1. Static analysis is performed for the program.

2. RDSs are obtained from the static analysis.

3. The codes are instrumented. The main instrumentation is to add store instruction after each

target instruction so that its information is sent to the PIM processor. The instrumentation is il-

lustrated by the red font instructions in Figure 3.17. These instrumentation store instructions

are called DFI store. For example, in Figure 3.17, line 2 is an instrumentation instruction

store "load, id=12", which tells the instruction type and identifier of the target instruc-

tion in line 1. Please note the target address is not included in the DFI store, but can be easily

inferred from the prior target instruction.

4. The DFI verification program and RDS are loaded onto the PIM processor before the user pro-

gram execution starts on the main processor.

5. During the program execution, each DFI store sends the PIM processor the instruction type

and identifier of the target instruction. A hardware module, named info-collector in Figure 3.17,

56



is added in the main processor to extract the target address from the instruction prior to each DFI

store. Then the info-collector forms the target instruction information including instruction

type, identifier and target address as a DFI packet. For an ordinary instruction, the module

relays its input addr/data to its output addr’/data’ without change. For a DFI store,

the data’ produced by the module is a DFI packet and addr’ is the address in the packet

FIFO memory allocated in the memory. The dotted box in Figure 3.17 also keeps track of the

target address of the latest load and store executions. At the same time, The DFI verification

is performed at the PIM processor.

Figure 3.17: The flow for DFI verification.

3.3.3 Software Program Instrumentation

The software instrumentation in our approach helps not only extract the necessary information

but also avoid changing the instruction set. The description here is based on C/C++ programs com-

piled by LLVM [101] and the static analysis is performed by SVF [102]. However, our techniques

are general and directly applicable to other software languages, compilers and static analysis tools.
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3.3.3.1 Instrumentation for DFI Verification

Given a program’s LLVM IR (Intermediate Representation), static analysis is performed to

obtain its RDS, which will be sent to the PIM processor once at the beginning of code execution.

The instrumentation is performed onto the IR automatically. Then, the instrumented IR is further

compiled into binary code.

The instrumentation is mainly to extract the runtime information including instruction type and

identifier, either store or load, and send to the PIM processor. This is realized by an overload

use of the store instruction, which is DFI store. Therefore, DFI store is a special use of

store instruction with different underlying semantics from the ordinary use of store. A key

part of our instrumentation technique is on how to differentiate between ordinary store and DFI

store without any instruction change.

The basic syntax of the DFI store is

store runtime_info dfi_global

where dfi_global is a global variable declared at the beginning of the program and serves as a

signature to indicate a DFI store. The address of this global variable is set by writing a dummy

value at the beginning of the program as:

store dfi_dummy dfi_global

The info-collector (dotted box in Figure 3.17) checks if a store instruction has a target ad-

dress the same as that of dfi_global. If yes, then the instruction is a DFI store.

Every store and load instruction in the original user program, which is called target instruc-

tion, is followed by a DFI store. The runtime_info contains the instruction type and identifi-

er of the proceeding target instruction. When the info-collector recognizes a DFI store, it extracts

the target address of the proceeding target instruction. The target address and the runtime_info

form a DFI packet to be sent to the PIM processor. At the beginning of code execution, a memory

space is allocated at the PIM processor for DFI verification. This includes the memory space for

storing an incoming packet, which is called packet FIFO memory. The starting address of packet
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FIFO memory is packet_mem_addr. It is specified by adding the following instruction at the

beginning of the original program:

store packet_dummy packet_mem_addr

The packet_dummy is a dummy packet to obtain the destination address for future D-

FI packets. Later during code execution, all DFI packets are sent to FIFO memory based on

packet_mem_addr. Please note that dfi_global and packet_mem_addr are generated

by the automatic code instrumentation, and not visible to security attackers.

An example of the instrumentation is shown in Figure 3.18.

1 =====beginning of the program======

2 (instructions for allocating memory regions)

3 (instructions for storing RDS to memory)

4 store dfi_dummy dfi_glabal

5 store packet_dummy packet_mem_addr

6 ...

7 store x1 addr1 //(12)

8 store (0<<16)+12 dfi_global

9 ...

10 load x2 addr2 //(25)

11 store (1<<16)+25 dfi_global

Figure 3.18: An example of code instrumentation.

In Figure 3.18, lines 7 and 10 are the original instructions in the user program, while lines

2, 3, 4, 5, 8 and 11 are our instrumentations. The identifier of the instructions at lines 7 and

10 are in the parentheses (12 and 25). According to [16], 16 bits are sufficient for representing

instruction identifiers in a large program. We use an additional bit to indicate instruction type,

where 0 means write and 1 means read. Putting together, the data of a DFI store (lines 8 and

11 in Figure 3.18) has bit 16 for instruction type and bits 15-0 for storing an instruction identifier.
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3.3.3.2 Handling Library Functions

A software program often calls library functions, whose source code or IR is not directly acces-

sible. However, instrumentation can still be performed to obtain the target instruction information,

which is a library function call. This is similar to the wrapper approach [16] in spirit, but the real-

ization of our approach is quite different. As a library function call may involve a multi-byte data

block in general, the instrumentation needs to keep track of data-length besides data address. We

describe our approach through the example of Figure 3.19.

1 store (1<<20)+(1<<19)+(0<<18)+(1<<17)+7 dfi_global

2 store (y1’s addr) dfi_global

3 store (x1’s addr) dfi_global

4 store 40 dfi_signal

5 memcpy(x1, y1, 40) //(7)

6 ...

7 store (1<<20)+(0<<19)+(1<<18)+(1<<17)+15 dfi_global

8 store (x2’s addr) dfi_global

9 store 12 dfi_global

10 store 9 dfi_global

11 memset(x2, 3, (9<<32)+12) //(15)

Figure 3.19: The instrumentation for library functions.

In this example, the target instructions are the function calls in lines 5 and 11, with their iden-

tifiers in parentheses. The instrumentation for each library function call is multiple DFI store

instructions like lines 1-4 for the target instruction of line 5. The first DFI store keeps the corre-

sponding identifier in its lower 16 bits. Its bits 17-20 are four binary indicators telling if the target

instruction is a library function call or not, if the data-length needs 64 bits to represent or not, and

if the function loads/stores data or not.

The info-collector parses these indicators and then takes corresponding actions. Additional

verification store instructions are added to send other information to the PIM processor. For
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example, lines 2 and 3 send load and store addresses. Depending on if the data-length is repre-

sented in 32 or 64 bits, the data-length is needed to be sent through a single or two DFI store

instructions. For example, line 4 sends the data-length in a single DFI store while lines 9 and 10

send in two DFI store instructions.

Compared to the work of [16], our approach considerably reduces the data transfer between

the main processor and memory. Consider an example that a memcpy loads 128 words and stores

them to another address. As the work of [16] needs to transfer the identifiers from 128 entries of

the RDT in memory to the main processor, it needs to store another 128 entries of the RDT back

to the memory. By contrast, our approach only needs to send 5 words from the main processor to

the memory, as the RDT is maintained at PIM.

3.3.3.3 Function Return Protection

1 =====beginning of the function======

2 p_ret_addr = instruction_getting_ret_addr_pointer

3 store (1<<21)+(max_id+thread_id) dfi_global

4 store p_ret_addr dfi_global

5 ...

6 store (1<<21)+(1<<16)+(max_id+thread_id) dfi_global

7 store p_ret_addr dfi_global

8 return

9 =====end of the function======

Figure 3.20: Instrumentation for function return.

Function return addresses are stored in stack and vulnerable to security attacks such as Return-

Oriented Programming (ROP) [9]. We treat their access as implicit load/store instructions and

perform DFI check accordingly. When a parent function parent_func() calls a child function

child_func(), the return address is stored in the stack by an instruction parent_inst.

When function child_func() returns, the return address is loaded by another instruction
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child_inst. DFI is to ensure that the return address by child_inst should have the lat-

est store only by parent_inst. However, function return is not covered by some static analysis

tools like SVF [102]. Hence, we develop a dedicated instrumentation technique different from that

for ordinary load/store instructions. Similar idea was also proposed in the work of [16], but

the DFI of the return addresses is directly verified by the instrumentation in [16]. By contrast,

because our approach verifies it on the PIM processor, the performance overhead is reduced.

The instrumentation for function return is illustrated in Figure 3.20. At the beginning of a func-

tion (line 2), the pointer to return address p_ret_addr is obtained. For a C/C++ program, this

can be realized by calling the builtin function __builtin_frame_address(0) and adding 4

to the returned result.We designate the identifier of the implicit store instruction parent_inst

as the maximum identifier from the static analysis plus the thread ID (lines 3 and 6). This can en-

sure that the identifier of parent_inst is unique. Bit 21 of the data in the DFI store in line

3 is set to be 1, to inform the info-collector that this is a special instrumentation for function re-

turn. Then, the info-collector would expect a subsequent DFI store for the pointer to the return

address. The info-collector combines instruction type (implicit load/store), identifier and the

pointer to form a DFI packet to be sent to the PIM processor. At the end of the child function (lines

6 and 7), similar instrumentation instructions are added for the implicit load. For each load

whose identifier is larger than the maximum identifier of static analysis, DFI enforces the identifier

of the latest store to be the same as the identifier of this load.

3.3.4 Hardware Design

3.3.4.1 DFI Packet Generation

Info-collector is the key hardware component to be added at the main processor. It detects DFI

store instructions, collects runtime information of a target instruction, generates DFI packets

and sends the packets to the PIM processor. Its basic operations are depicted in the flow chart of

Figure 3.21.

The info-collector acts only when there is a store instruction being executed. In step B of
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Figure 3.21: Operations of info-collector.

Figure 3.21, it checks if dfi_global and packet_mem_addr have already been defined. If

not, it proceeds to step C to capture dfi_global or packet_mem_addr. Please note "store

dfi_dummy dfi_glabal" and "store packet_dummy packet_mem_addr" are in-

strumented at the beginning of a program. Moreover, both dfi_dummy and packet_dummy

have signature values that can be recognized by the info-collector. If they have already been de-

fined, the info-collector further checks if the store is a DFI store from instrumentation. This

is by examining if the target address is the same as that of dfi_global.

If this store is a DFI store, the info-collector parses the indicators in the data part of the

DFI store and tells if this is to verify load/store, function return or a library function call. If

this instrumentation is for a load/store instruction, info-collector collects instruction type and

identifier from this DFI store instruction, and the target address from the previous instruction.

These information forms a basic packet data’ to be sent to PIM.

If this DFI store is for a return address protection (step H in Figure 3.21), the info-collector

takes the identifier and instruction type from this DFI store, and extracts the pointer to the return

address from the next DFI store. These information also forms a basic packet to be sent to PIM.

If this DFI store is for a library function (step G), the indicators of this store tell if the library

function is to load data, store data or not, and if the data-length needs to be encoded by 64 bits or
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not. Next, the info-collector continues to collect additional information from the subsequent DFI

store instructions and generates a library packet to be sent to PIM.

If the store instruction is a part of the original program (step J), its data is relayed to

memory without any change and its target address is stored in a local register for future use. The

info-collector with the aforementioned operations can be straightforwardly implemented with a

combinational circuit through synthesizing Verilog description.

3.3.4.2 Packet Transfer to PIM

A memory space is allocated to store DFI packets sent from the main processor. Although

it is physically a memory design, we use it as a FIFO as the packets are processed at the PIM

processor in a first-come-first-serve manner. This is not a usual use of memory and memory design

is different from conventional FIFO queue. We develop techniques to solve this mismatch.

Figure 3.22: Operations of FIFO memory.

The info-collector specifies the starting memory address for a DFI packet as

packet_mem_addr, and maintains an offset to packet_mem_addr as the tail pointer

for the FIFO. The PIM processor reads the FIFO and maintains the head pointer. A key difference

from the conventional FIFO is that the head and tail pointers here are at two different locations -

one at the memory and the other at the main processor.

The operations of the FIFO memory is illustrated by an 8-word example in Figure 3.22, where
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a white rectangle indicates an empty slot, a grey rectangle means a word newly written by the

info-collector but has not be read by the PIM processor and a blue rectangle shows a word that

has been read by the PIM processor while the slot has not been written by a new word yet. There

are two pointers: I_p by the info-collector or tail pointer, and P_p by the PIM processor or head

pointer. Although the two pointers are drawn in the same figure, they are physically at different

places. Each of the info-collector and the PIM processor maintains a round bit, which is initialized

to 0 and flips when the write/read wraps around. Detecting if the FIFO memory is empty or full

depends on comparing the round bits of the info-collector and the PIM processor. However, they

are different locations and the comparison would require additional communication from the info-

collector to PIM. To avoid the performance penalty due to the communication, we reserve 1 bit in

each word as a copy of the round bit at the info-collector. The round bits of the words are in the

left columns in Figure 3.22.

Figure 3.22(a) shows a state in the first round, where all round bits are 0. When the write wraps

around as in (b), the round bit of the info-collector and the words newly written after wrap around

flip to 1. In (c), when the round bit at P_p - 1 is different from that of the PIM processor, FIFO

full is asserted. When the read wraps around in (d), the round bit of the PIM processor flips to 1. In

(e), when the round bit at P_p is different from that of the PIM processor, FIFO empty is detected.

As such, FIFO empty/full can be detected without communication from the info-collector to the

PIM processor.

3.3.4.3 Lossless Data Compression

A main reason for performance overhead is the data transfer (DFI packets) to the memory. We

propose to compress target addresses and identifiers by exploiting locality. The compression is

realized in the info-collector hardware.

Consider the two C program examples in Figure 3.23. For example A, assume the starting

memory address of aa is 0x8000, then the program stores the data at 0x8000, 0x8004, 0x8008,

and so on. Starting from i=1, each target address increases by 4 compared to the previous one.

Therefore, we only needs to send the increment in 4 bits, which include 1 sign bit, instead of an
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entire address of 32 bits. Example B in Figure 3.23 is similar, but has an address pattern of 0x8000,

0x8400, 0x8800, etc. Although the address increment here 0x400 is relatively large and needs 11

bits to represent, the lower bits of the increment are all 0s. Therefore, we use a format similar to

floating point number representation to further reduce the bitwidth of the address increment. This

format consists of a sign bit, significand and exponent of 16. To represent 0x400, the sign bit is

0, there are 3 bits for significand to represent 4 and the exponent is 2. Overall, the bitwidth is 6,

which is shorter than the 11-bit binary encoding.

1 ========Example A==========

2 int aa[1024];

3 for(int i=0;i<1024;i++)

4 aa[i]=i;

5 ========Example B==========

6 int bb[1024][1024];

7 for(int i=0;i<1024;i++)

8 for(int j=0;j<1024;j++)

9 bb[j][i]=i+j;

10 ===========================

Figure 3.23: Examples of address locality.

The increment of a target address is represented by an 8-bit floating number, with 1 sign bit,

4 bits of significand and 3 bits of exponents (the power of 16). This representation can cover

the range from −15 × 228 to 15 × 228. The info-collector calculates the difference between two

target addresses. If the difference is within this range and the significand is within −15 to 15, then

the difference is represented by the 8-bit floating number and sent to PIM. Identifiers can also be

compressed based on their value locality. However, they rarely have the patterns like example B,

where the increment is at the middle bits of an address. Thus, the difference between two identifiers

is represented by a binary number. Overall, a DFI packet can be compressed to 15 bits. Therefore,

we can pack two compressed packets into a single word. As each word sent to the PIM processor
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needs to have 1 bit tag for detecting PIM memory full at the PIM processor (Section 3.3.4.1), 15-bit

is the largest bitwidth for accommodating two compressed packets in one word.

3.3.4.4 Runtime Optimization

We develop packet pruning techniques and a technique for increasing the opportunity of local-

ity for data compression. These optimization techniques help reduce the amount of data to be sent

to the PIM processor and thereby decrease performance overhead. Some pruning techniques de-

scribed here are similar to those in [16]. However, the pruning techniques in [16] are offline while

our hardware approach allows pruning at runtime. As more information, such as target address, is

available at runtime, the opportunity of pruning is increased.

Similar to data transfer between memory and cache in cache lines, we pack multiple DFI pack-

ets into a block of hundreds of bytes before sending them to the PIM processor. The packets of

blocks are organized in a transmission buffer, which is implemented as a register file. The pro-

posed optimizations are performed for the packets in the transmission buffer before they are sent

out. Please note that waiting other packets to form a block only increases the DFI verification

latency while does not increase the performance overhead.

Consider two pairs of basic packets in the transmission buffer, (P1, P2) and (Q1, Q2). Each

basic packet is for instruction load, store, or function return, which is implicit load/store,

but not for library functions. Packet P1 (Q1) precedes P2 (Q2). The packets of each pair share the

same target address and there is no other DFI packet recording store of the same target address

between them. There are five optimization techniques described using the packet pairs:

A: If P1 and P2 are for store instruction, and there is no other DFI packet for a load with the

same target address between them, then packet P1 is redundant and can be pruned out without

being sent to PIM.

B: If P1 and P2 are both for store instruction, and their identifiers are also the same, then P2 is

redundant and can be pruned out.

C: If P1 and P2 are both for load instruction, and their identifiers are also the same, then P2 is
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redundant and can be pruned out.

D: If P1/P2 records store/load for the same target address. After P1 and P2, if packets Q1

and Q2 record store and load for another same target address, and Q1/Q2 have the same

identifiers as P1/P2, respectively, then Q1 and Q2 are redundant. This is to make sure that the

same store/load pair appears only once in the transmission buffer.

E: All basic packets in the transmission buffer are sorted according their target addresses. If two

packets have the same target address, their relative order keeps unchanged. If there is a library

packet, the basic packets before and after this library packet are sorted separately. After the

sorting, the target address difference between two adjacent packets is examined to find if data

compression can be performed. The sorting helps find opportunities of data compression. On

the other hand, load/store of different target addresses are not relevant to DFI and hence

the sorting does not affect the DFI verification.

Among the above optimization techniques, A, B and C are similar to those in [16] except they

are performed at runtime while those in [16] are performed offline. Techniques D and E are newly

developed in our work. After the optimizations, a packet is compressed if possible.

3.3.4.5 Implementation of the Optimizations

For the 5 optimizations, C and E are the most effective ones and their circuit implementations

are described as follows.

3.3.4.5.1 Circuit Design for Optimization C The schematic of combinational circuit implemen-

tation of optimization C is shown in Figure 3.24. Assume there are n basic packets in the trans-

mission buffer, Pi represents the i-th packet, and Ri indicates if the i-th packet is redundant or not.

Each square in Figure 3.24 is a Processing Element (PE) that computes if a packet is redundant

or not. In each column of Figure 3.24, a packet Pi is compared with all later packets Pj, j > i

and attempts to find a redundant Pj to be pruned. If there are multiple packets that are redundant

with respect to Pi, only the topmost one (with the smallest |j − i|) is asserted for pruning and the

others can be pruned later in other columns to the right. The R signals in a row are ORed such
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that the packet in a row can potentially be pruned by any proceeding packets organized in columns.

For example, P3 in row 3 of Figure 3.24 can be potentially pruned by P0, P1 or P2 in the left

three columns. Like illustrated in the dotted box, a PE compares two input packets Pa and Pb. A

necessary but insufficient condition for assertingR = TRUE is that Pa and Pb are both for load

with the same target address and identifier. The final result of R also depends on Din, which is

a disable signal for the pruning. The value of R = TRUE when Din == 0 and the necessary

condition holds. There are two scenarios where the disable signal asserts: (1) there is a store at

the same target address between the two load instructions of Pa and Pb, and thus the conditions

for optimization C is not completely satisfied; (2) a redundant packet has already been found and

no further pruning is needed in a column. For scenario (1), Dout = 1 when Pa is for load while

Pb is for store. For scenario (2), Dout = 1 if R = TRUE for the same PE.

Figure 3.24: Circuit for implementing optimization C.

The combinational circuit requires n·(n−1)
2

PEs. To reduce circuit area, it can be transformed

into a sequential circuit with m · (n − 1) PEs, which identifies all the redundant packets in dn−1
m
e

clock cycles. The value of m determines the tradeoff between circuit area and the number of clock

cycles. The sequential circuit requires additional flip-flops.
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Figure 3.25: Bitonic network for sorting 8 packets.

3.3.4.5.2 Circuit Design for Optimization E Optimization E is for sorting the packets in the

transmission buffer according to their target addresses. For combinational circuit implementation,

we use Bitonic sorting network [103], which sorts n elements in O(log2(n)) time. Figure 3.25

illustrates one such network for sorting 8 elements. Each component in the network, which is

shown as an arrow, takes two inputs along the two horizontal lines from left and then moves the

greater element along the arrow direction to obtain the two sorted outputs along the lines at the

right. The circuit area can be reduced by transforming into a sequential circuit. In Figure 3.25, the

circuit can be partitioned into 6 stages separated by dashed lines and the sequential circuit has 4

comparators to compute each stage in one clock cycle. In general, n
2

comparators are needed to

compute one stage for sorting n packets.

3.3.5 DFI Verification Program

The DFI verification program is written in C language, and its executable code is loaded onto

the PIM processor at the beginning of user program execution.

At PIM, RDT consumes a large memory space, which is allocated by the instrumentation code

at the beginning of user program execution. Same as in [16], all program data are organized

in words, each of which requires one RDT entry to record the identifier of the latest instruction

writing into this word. If the data memory for user program has N bytes, there are N/4 entries in

the RDT. Since each identifier has 16 bits = 2 bytes, the RDT uses N×2
4

= N/2 bytes of memory.
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The verification program at the PIM processor continuously reads DFI packets from the FIFO

memory, and either performs DFI verification for a packet or updates RDT according to a packet.

There are three kinds of DFI packets to be processed by the verification program.

• Packet for store or load without compression (basic packet): The verification program

extracts instruction type, identifier α and target address β from the packet. If the instruction type

is store, identifier α is stored at entry β >> 2 of RDT. The right shift is performed because

RDT is organized in words. If the instruction type is load, the verification program reads

identifier γ from entry β >> 2 of RDT, and loads the RDS of identifier α. Then, the program

checks if γ is in the RDS of α or not. If not, a DFI violation is reported. Finally, identifier α and

target address β are saved in registers for future decompression of compressed packets.

• Packet for store or load with compression (compressed packet): The process is similar

to handling basic packets except that decompression is performed. This is to add the increment

of target address (or identifier) to the most recently saved target address (or identifier).

• Packet for library function (library packet): The verification program extracts target address

α if there is load in the library function call, and target address β if there is store. Then,

data-length γ (in words) of the load and/or store and identifier δ of this function are also

extracted. If there is address α, the verification program loads the identifiers ε0, ε1... εγ−1 from

entries α >> 2, (α >> 2) + 1, ... (α >> 2) + γ − 1 in the RDT, and checks if every εi is in the

RDS of δ. If there is address β, the program stores identifier δ to all the entries from β >> 2 to

(β >> 2) + γ − 1 in the RDT.

3.3.6 Discussion

3.3.6.1 Static Analysis

Through static analysis, RDSs of a software program are obtained. An RDS consists of all

possible reaching definitions for an instruction. However, the possibility in a program is some-

times not very clear and it is difficult for a static analysis to precisely find an RDS. If a reaching

definition is likely to be possible yet actually never occurs in program execution, it may be includ-
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ed in the RDS by an inaccurate analysis. Consequently, this inaccuracy may be exploited by an

attack to bypass DFI enforcement. Therefore, the DFI security highly depends on the quality of

static analysis. In [16], two kinds of static analysis are discussed: intra-procedural analysis and

inter-procedural analysis. Intra-procedural analysis is flow-sensitive, but difficult to scale for large

programs. Inter-procedural analysis based on Andersen’s points-to analysis [104] is more practical

for handling large programs. In our experiments, inter-procedural analysis [102] is performed for

both the software DFI method [16] and our approach for a fair comparison, although other kinds

of static analysis can be applied with our work as well.

3.3.6.2 The Role and Effect of Cache

Instructions in a user program sometimes accesses data in cache instead of directly dealing

with memory. However, such instructions and data are still verified by our DFI as they are always

instrumented by DFI store instructions. On the other hand, cache may affect the latency (but

not performance overhead) of our DFI verification. If the cache writing policy is write-back, DFI

packets may stay at cache for certain amount of time before it is sent to the FIFO memory. For

write-through policy, DFI packets can be directly sent to memory without waiting in cache.

One may wonder that cache can reduce data transfer from memory for software DFI [16] and

thus our DFI PIM may not be very necessary. In reality, the RDT size is huge, about 50% of all data

size of a program, and much larger than ordinary cache size. Therefore, the help from cache on

reducing data transfer is limited. In fact, the software DFI [16] is performed on a processor where

the benefit of cache has already been enjoyed. In our approach, RDT also resides in memory

but is used by PIM processor. Thus, it does not need to be transferred between memory and

main processor at all. Compared to software DFI [16], we need to send runtime information to

memory. However, the amount of runtime information is significantly less than sending RDT

entries repeatedly from memory to processor in [16].
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3.3.6.3 Multithreading

1 =====thread 1======

2 lock

3 store x1 addr1 // (12)

4 store (0<<16)+12 dfi_global

5 load x2 addr1 // (25)

6 store (1<<16)+25 dfi_global

7 unlock

8 ===================

9 =====thread 2======

10 lock

11 store x1 addr1 // (36)

12 store (0<<16)+36 dfi_global

13 unlock

14 ...

15 ===================

Figure 3.26: An example of multithreaded program with locks.

The proposed DFI enforcement approach works for multithreaded programs under the condi-

tion that the program is completely data race free and race condition free. Further, during code

instrumentation, we need to ensure that a target instruction to be verified and its DFI store in-

structions from instrumentation need to be locked together to form an atomic operation. This is

illustrated in Figure 3.26.
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3.4 Experiments and Results

3.4.1 Experiment Setup

For CFI verification, all our experiments were run and measured on an Altera DE1-SoC board,

containing a Cyclone V FPGA working at 50MHz and an ARM Cortex-A9 dual core processor

working at 1GHz on which we loaded a Linux kernel. In addition, we use Quartus Prime 17.1 [105]

for Verilog compilation and FPGA layout synthesis, and Signal Tap Logic Analyzer for FPGA

signal monitoring. The Verilog compilation is done on a desktop with an Intel 3.8Ghz CPU and

16GB RAM.

For DFI verification, as PIM is used and there is no commercially available CPU processors

using PIM yet, the proposed techniques are evaluated by architecture simulations through SMC-

sim [100, 106], which is an extension to the gem5 simulator [107] for accommodating PIM. As

PIM simulation is a relatively young technology, it is supported for only a couple of host processor

platforms. The simulated system in our experiment is an ARM SoC, with an ARM Cortex-A15

processor working under 2GHz frequency and 512 MB memory for user programs. The PIM pro-

cessor operates with the typical 1GHz frequency [93, 94] and 64MB for RDT. Although the RDT

memory size is less than the ideal 256MB, it is sufficient for application testcases in the experiment.

3.4.2 Experiments and Results of Hardware-assisted CFI Verification

3.4.2.1 CFI without Code Instrumentation

All the experiments are performed with no modifications of the target program, and with no

code instrumentation. In the proposed hardware-based CFI approach, the information required for

CFI violation identification is gathered from the output of TPIU and computed by using CFG. The

results show that even without any code instrumentation, it is feasible to realize fine-grained and

stateful hardware-based CFI with negligible performance overhead. Avoiding code instrumenta-

tion, not only improves performance but more importantly, enables a practical solution eliminating

implementation difficulties and the related potential security issues.
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3.4.2.2 Security

We use RIPE [108, 109] to evaluate the effectiveness of FastCFI. RIPE is a popular bench-

mark that has been used frequently in previous works [17,19] for evaluating control-flow defenses.

However, RIPE is designed for Intel processors, and does not directly run on our ARM platform.

There are numerous processor architecture specific assembly and shell codes in RIPE, which we

had to modify for the ARM processor.

Table 3.1: Security performance for different attack methods.

Due to the engineering difficulties, it is hard to port all RIPE functions to ARM. Most attacks in

RIPE are based on buffer overflow related to 10 methods: memcpy(), strcpy(), strncpy(), sprintf(),

snprintf(), strcat(), strncat(), sscanf(), fscanf() and homebrew(). All these methods can be per-

formed on Intel processors, but only memcpy() and homebrew() work for our ARM-based Linux

system. However, the way how a buffer is overflowed does not affect how an attack is performed.

The difference is which API is used to copy data to the buffer. Therefore, we focused on only
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the attacks related to memcpy() and homebrew(). In total, we recovered 41 attacks (which can run

successfully on ARM), including both Return-Oriented Programming (ROP) and Jump-Oriented

Programming (JOP) attacks, as shown in Table 3.1 (Row #1-41). To assess the precision (i.e., no

false positive), we also added a new function (Row #42) in RIPE and let it run without attack.

The results in Table 3.1 show that all these attacks can be identified by FastCFI. In addition,

FastCFI does not report any false positive (for the newly introduced function with no attack). The

results are the same with and without CFG compression.

Figure 3.27: Code illustrating the stateful SP1 at-
tack.

Figure 3.28: Code illustrating the fine-
grained SP2 attack.

3.4.2.2.1 Fine-grained, stateful attacks. We also designed two special attacks not included in

RIPE, as shown in the last two rows of Table 3.1.

SP1 is a stateful attack that cannot be detected by stateless CFI techniques. As shown in

Fig. 3.27(a), in SP1, there is a function vuln that may be called by function func1 or func2. So

in the CFG, the node with function return of vuln has edges to nodes in both func1 and func2.

However, only one of them is valid each time vuln is called. If func1 calls vuln, then vuln can only
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return to func1. In our test, we use buffer overflow to change the return address of vuln to func2,

even if it is called by func1. Our experiment shows that FastCFI can easily identify this attack with

and without CFG compression. However, stateless CFI such as [20, 61] and the coarse-grained

approach in [17], would not be able to identify this attack.

SP2 is a fine-grained attack. In SP2, the attack changes a function call, making it call another

unintended function in the program’s binary. The C code is shown in Fig. 3.28(a). In main, there

is a structure struct_attack, which contains a buffer and a function pointer. Usually, the function

pointer in the memory is right after the buffer. The user data, which can be controlled by the

attacker, is copied to the buffer through memcpy. An attacker can input the data with a larger size

than the buffer, and put the address of the function func_wrong right after the 32-byte’s data. In

this way, when the struct_attack.func() is called, function func_wrong is executed rather than the

correct function func_correct.

For our fine-grained CFI, FastCFI can easily identify this attack. Fig. 3.28(b) shows part of the

assembly in main. The instruction at 84c0 is the function call struct_attack.func(). The program

would jump to the address stored in r3. By backtracking the value in r3, we can find that it should

be 0x8471, where there is the entry of func_correct. This is a typical example of indirect branch

with constant target address that we discussed before. We create the CFG with a node containing

the instruction at 84c0, and the only outgoing edge of this node is to the node containing the entry

of func_correct. If the buffer overflow is performed by an attacker, then the control-flow does not

go through the correct edge in CFG. This can be detected by FastCFI, both with and without CFG

compression.

However, this attack cannot be identified by coarse-grained CFI techniques such as Lee et

al. [18]. In [18], it only checks if the indirect branch instruction performed as a function call is

at the function’s entry. For the example above, the attacked target address of the indirect branch

instruction at 84c0 is still the function entry. This would be ignored by [18].
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Figure 3.29: The runtime overhead on SPEC 2006 benchmarks.

3.4.2.3 Performance Overhead

We used the SPEC CPU2006 benchmarks [110] to evaluate the runtime overhead of FastCFI.

We successfully ran all the benchmarks, except 403.gcc, which could not be cross compiled by the

arm-linux-gnueabihf-gcc(g++) compiler.

The results are reported in Fig. 3.29, including a comparison with the results from two recent

works: Griffin [17] and Lee [18]. Both results of Lee and Griffin are copied from the original

papers [17, 18]. For Lee [18], some benchmarks are marked with "\", because they were not

evaluated in Lee’s work. Besides, we also did the code instrumentation and repeated the overhead

experiments in [18], the results are shown as Lee Exp. The benchmarks not evaluated in Lee Exp

(marked with "/") are also not evaluated by Lee’s original work [18]. Moreover, 400.perlbench

and 458.sjeng are not evaluated by Lee but evaluated by our repeated experiment Lee Exp. There

are some benchmarks, such as 471.omnetpp, which have overhead less than 0. This is likely due

to cache effects or the noise of the measurement , since the actual overhead is negligible.

Overall, FastCFI has the lowest performance overhead, only 0.36% on average. The reason is

that we do not add or modify anything on the software side, and there is no code instrumentation

or running of other programs. The only overhead is caused by enabling the PTM device.

3.4.2.4 Latency

We also evaluated the latency introduced by FPGA to detect CFI violations, since it relies

on TPIU to communicate the trace between the ARM core and FPGA. The latency is the clock

cycles needed by FPGA to identify the attacks after receiving the trace packet containing the CFI
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Figure 3.30: The latency for FPGA to identify attacks.

violation information. The results are shown in Fig. 3.30. Overall, FastCFI has a latency within

dozens of clock cycles only. We note that some other hardware-based techniques such as [111]

incur a latency of tens of thousands of clock cycles, due to a more complex architectural design.

Meanwhile, the CFG compression does not have an obvious affect to the latency.

The latency varies between different attacks. This depends on the quantity of data in the FIFO

when the wrong control-flow information comes. The data in the FIFO must be processed sequen-

tially by the CFI verification module. The more data, the longer latency. In general, this can be

affected by many factors, such as the target program itself, the input, or the other programs running

on the same processor.

3.4.2.5 Circuit Resource Use and Compilation Time

Resource use is important for hardware design. Due to the resource limitation of our FPGA, for

some benchmarks the system may not fully verify the whole CFG, but a partial CFG, and ignores

the instruction flow transitions that happen outside the partial CFG. In our experiments, we always

create the complete CFG first, apply CFG compression next, and then select as many CFG nodes

or coalesced CFG nodes as our FPGA can contain for the partial CFG. In practice, the partial CFG

can be specified by the user or developer, who may choose the most security sensitive parts of the

code to protect against CFI attacks.

The resource use results are reported in Table 3.2. The results are separated into two parts in

terms of the columns, one without CFG compression and another with CFG compression. The

results are also separated into two parts in terms of the rows, one with partial CFG implement-
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Table 3.2: Resource use on SPEC 2006 benchmarks.

Without CFG Compression With CFG Compression
Benchmark CFG # of Compile Compressed CFG CFG Coverage # of Compile Total False

Nodes ALMs Time CFG Nodes Nodes Increase ALMs Time CFG Nodes Alarm?
400.perlbench 4563 32070 18m55s 4611 5816 27.46% 31559 21m00s 65083 None

445.gobmk 4585 31604 19m11s 4547 6133 33.76% 31308 20m36s 37019 None
Partial 456.hmmer 4602 31449 19m10s 4597 5269 14.49% 30590 20m23s 12286 None
CFG 458.sjeng 4591 18738 15m08s 4719 5405 17.73% 31048 20m57s 6458 None

464.h264ref 4513 32070 19m15s 4448 5641 24.99% 30757 19m02s 15195 None
471.omnetpp 4763 30250 18m07s 4719 4837 1.55% 28507 20m26s 31811 None

483.xalancbmk 4807 31576 18m39s 4605 5243 9.07% 29608 20m37s 173204 None
Without CFG Compression With CFG Compression

Benchmark CFG # of Compile Compressed CFG ALM Use # of Compile Total False
Nodes ALMs Time CFG Nodes Nodes Decrease ALMs Time CFG Nodes Alarm?

401.bzip2 2247 22840 15m32s 1796 2247 19.51% 20518 15m57s 2247 None
Full 429.mcf 471 16171 13m48s 262 471 13.20% 15480 14m32s 471 None
CFG 462.libquantum 1300 18738 15m08s 1223 1300 4.76% 18367 16m33s 1300 None

473.astar 1345 18995 15m07s 1116 1345 10.21% 18169 16m11s 1345 None

ed and another with full CFG implemented. An example in Figure 3.31 is used to illustrate the

metrics used for evaluating the effectiveness of CFG compression. The example CFG and its cor-

responding compressed CFG are shown in Figure 3.31(a) and (b), respectively. In Table 3.2, for

the results without CFG compression, “CFG Nodes" represents the number of CFG nodes in the

non-compressed CFG included in the CFG checker, such as the nodes in the set of the red circle

in Figure 3.31(a), which is {A1, A2, B1, B2, E}. The set of these CFG nodes is named S. For

the results with CFG compression, “Compressed CFG Nodes" represents the number of CFG n-

odes in the compressed CFG included in the CFG checker, such as the nodes in the set of the

green circle in Figure 3.31(b), which is {A,B,C,D,E}. The set of these CFG nodes is named

S ′. For the results with CFG compression, “CFG Nodes" represents the number of the CFG nodes

in the non-compressed CFG, which the CFG nodes in the compressed CFG included in the CFG

checker correspond to, such as the nodes in the set of the blue circle in Figure 3.31(a), which is

{A1, A2, B1, B2, C,D,E}. The set of these CFG nodes is named S ′′, where the nodes are the

nodes in S ′ before CFG compression. “CFG Coverage Increase" indicates percentage increase of

the number of nodes in S ′′ comparing to the number of the nodes in S. For the example in Fig-

ure 3.31, the CFG coverage increase is 7−5
5

= 40%. The ALM means adaptive logic module in

Altera FPGA, which is the basic element of FPGA and similar to LUT (Lookup Tables). The de-

coder and CFI verification module (without CFG checker) uses 2755 and 4015 ALMs, and all the
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parts (such as the modules communicating with ARM processor and FPGA) excluding CFG check-

er use 10938 ALMs. “ALM use decrease" indicates the percentage of the number of ALMs needed

decreased by applying CFG compression, when the CFG can be fully implemented. For these

experiments, we group 100 blocks in one small Verilog module as discussed in Section 3.2.2.5.1.

Overall, without CFG compression, our current FPGA can support around 4600 CFG nodes. When

Figure 3.31: An CFG compression example.

the CFG compression is applied, for the benchmarks where partial CFG is implemented, the FP-

GA can still support around 4600 CFG nodes in the compressed CFG, which corresponds 18.44%

more non-compressed CFG nodes (the nodes in S ′′) comparing to the implementation without CFG

compression (the nodes in S). For the small benchmarks where full CFG is implemented, CFG

compression can decrease the number of ALM needed, and the number of ALMs needed by the

CFG checker is decreased 11.93% on average. Both partial and full CFG implementation benefits

are from the fact that the compressed CFG has less hardware expense when the compressed CFG is

implemented in the CFG checker, because some CFG nodes coalesced into fewer nodes. Note that

even though with only the partial CFGs, FastCFI does not report any false alarms on the studied

benchmarks. As also reported in Table 3.2, the Verilog compilation time, including FPGA layout

synthesis, in our experiments is less than around 20 minutes for each benchmark.

The number of ALMs used by each block in CFG checker is shown in Fig. 3.32. It does not

vary much between different benchmarks, except 429.mcf and 458.sjeng. The result is the ratio
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between the number of ALMs needed for the CFG checker and the number of CFG checker blocks.

The number of CFG checker blocks is defined in the following: The CFG checker blocks in the

black bar results correspond to the CFG nodes in S. The CFG checker blocks in the gray bar results

correspond to the CFG nodes in S ′. The CFG checker blocks in the white bar results, of which the

legend is marked by “*", correspond to the CFG nodes in S ′′. The average number of ALMs per

block is about 5. The block corresponding to the CFG node in the compressed CFG (grey bars)

spends more ALMs than the block corresponding to CFG node without compression (black bars),

because the address range of the coalesced node is the union of the address ranges of all the nodes

before CFG compression, and this may require more comparisons in if statement of the block if

the address ranges of the nodes before CFG compression are not continuous. However, by CFG

compression, lots of CFG nodes are compressed to coalesced nodes, and the total number of CFG

nodes in the compressed CFG is decreased. This overwhelms the disadvantage that the average

number of ALMs needed by each block of the compressed CFG is increased, which is proved by

the results of the white bars. The results of the white bars indicate that each block corresponding

to the node in S ′′ spends fewer ALMs than the block corresponding to the node in S. Since node

in S and node in S ′′ are both the nodes in the non-compressed CFG, the results indicate that it

costs less hardware expense (fewer ALMs) to implement each node in the non-compressed CFG

by using CFG compression than not using CFG compression.

We also evaluated the performance improvement (as described in Section 3.2.3.1) by using

small Verilog modules of block groups instead of putting Verilog codes of all the blocks in the

top CFG checker Verilog module. We use a typical benchmark 483.xalancbmk to find out the

relationship between the number of blocks in one group and the resource use. The experiments are

done without CFG compression, and results are shown in Fig. 3.33.

Overall, using more small Verilog modules reduces the time for compilation. When more

blocks are grouped into one small Verilog module, it increases the optimization workload of each

small module for the compilation tool, and the time complexity of Verilog compilation is also not

linear. This results in the large time cost when the number of blocks is about 2000 in one group.
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different benchmarks.
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Figure 3.33: The relationship between the
number of ALMs, compilation time and
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For the number of ALMs, the results show an odder behavior. In theory, if we put more blocks in

one group, the number of ALMs should decrease because of the better optimization. However, in

Fig. 3.33 after the number of blocks in one group is more than 2000, the number of ALMs increases

a lot. The reason may be that when there are too many blocks in one small Verilog module, it is

hard for the compilation tool to find the optimized solution, even though there may exist a solution

that is more optimized. When the number of blocks is not large, the compilation tool is competent

to find almost the best solution, which makes the curve in Fig. 3.33 as we expect.

3.4.3 Experiments and Results of Hardware-assisted DFI Verification

3.4.3.1 Security

Our approach realizes the same DFI as defined in [16] and therefore can achieve the same

security as [16]. The effectiveness of our approach is further confirmed by a comparison with

the method of HDFI [72], control flow attack benchmark RIPE [108, 109], and some non-control

attacks.

3.4.3.1.1 Comparison with Hardware-assisted Data-flow Isolation Hardware-assisted Data-Flow

Isolation (HDFI) [72] only enforces partial DFI at a very coarse granularity to reduce the overhead.

It uses a 1-bit tag to differentiate a sensitive region and a non-sensitive data region, and only en-
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Table 3.3: The performance overhead of DFI. †Computation time of optimizations and compres-
sion is neglected. ‡Computation time of optimizations and compression is considered.

Software [16] Hardware (no cmpr or opt) Hardware (512B Buffer) Hardware (1KB Buffer) Hardware (2KB Buffer)
Column ID 1 2 3 4 5 6 7 8 9 10 11 12 13

Compression × ×
√

×
√ √ √ √ √ √ √ √ √

Transmit Buf Size - - - 2KB 512B 512B 512B 1KB 1KB 1KB 2KB 2KB 2KB
Runtime Optimize × × × All All C, E C, E All C, E C, E All C, E C, E

#Gates of Info-Collector - <2908 2908 † † † 116,769‡ † † 252,021‡ † † 753,666‡

401 221.88% 72.42% 72.08% 57.25% 46.73% 47.71% 49.50% 45.10% 46.33% 47.79% 44.05% 45.59% 46.80%
429 102.06% 40.64% 37.31% 34.21% 28.53% 29.53% 30.58% 28.52% 28.82% 29.67% 28.02% 28.43% 29.14%
433 87.23% 40.95% 37.18% 27.36% 28.70% 29.69% 30.53% 27.12% 28.74% 29.41% 26.36% 27.90% 28.46%
445 169.95% 78.05% 74.45% 66.24% 62.13% 62.88% 64.32% 61.08% 62.18% 63.35% 60.24% 61.78% 62.76%

Bench- 456 228.49% 105.43% 103.43% 69.14% 62.87% 62.90% 65.83% 57.81% 57.91% 60.29% 55.38% 55.50% 57.48%
marks 458 372.68% 37.42% 35.50% 30.49% 29.53% 29.94% 30.63% 28.52% 29.15% 29.75% 27.84% 28.65% 29.18%

462 60.36% 37.46% 29.47% 23.39% 22.58% 22.62% 23.49% 22.44% 22.47% 23.20% 22.39% 22.42% 23.05%
464 218.79% 80.60% 75.39% 61.31% 59.47% 60.68% 62.74% 57.73% 59.36% 61.37% 56.17% 58.53% 60.80%
473 115.39% 60.50% 57.77% 44.33% 40.44% 41.01% 42.43% 38.85% 39.65% 40.80% 37.70% 38.64% 39.61%
482 36.86% 24.62% 23.96% 21.51% 21.74% 21.65% 21.92% 21.50% 21.60% 21.82% 20.88% 21.01% 21.19%
Avg. 161.37% 57.81% 54.65% 43.52% 40.27% 40.86% 42.20% 38.87% 39.62% 40.74% 37.90% 38.85% 39.85%

sures that data in one region are not lastly written by an instruction for the other region. In other

words, it reports a violation only when data intends to be in one region but is actually written by

an instruction for the other region. Although its overhead is very small, the verification granularity

is very coarse and may miss attacks that mingle different data within the same region. As such,

it cannot detect attacks that mingles data within the same region. Consider the example in Fig-

ure 3.34, where input data are first written into u0 and u1 in lines 10 and 11. Later, the data are

copied to buffers in lines 13-15. If there is buffer overflow when executing line 10, i.e., the input

data size exceeds 256, then offset u0->off is modified unintentionally. If this happens, when

the program should copy the users’ data to their own buffers by lines 13-15, line 13 may copy

user0’s data to other users’ buffers through the modified u0->off. Meanwhile, user1 can write

to user2’s buffer in line 14 in the same way. As HDFI partitions data into only two regions. Then,

one of the user pairs - (user0, user1), (user0, user2) or (user1, user2) must share the same region.

As such, the former user in a pair can attack the latter in the pair without being detected by HDFI.

For the example of Figure 3.34, we tested different tag schemes of HDFI, which are listed in the

left three columns of Table 3.4. For each of those tag scheme, there is some overflow that cannot

be detected by HDFI as shown in the 4th column, where u0 ⇒ u1 means some data of user0 is

written into user1’s data through overflow. By contrast, our approach can successfully detect all

these overflows.
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1 struct vuln{

2 char data[256];

3 int off=0;

4 int size=0;

5 }*u0, *u1, *u2;

6 ===============

7 char user0_buffer[256];

8 char user1_buffer[256];

9 char user2_buffer[256];

10 read_user_input(u0, user0_input);

11 read_user_input(u1, user1_input);

12 ...

13 memcpy(user0_buffer+u0->off, u0->data, u0->size);

14 memcpy(user1_buffer+u1->off, u1->data, u1->size);

15 memcpy(user2_buffer+u2->off, u2->data, u2->size);

Figure 3.34: An example of vulnerability that HDFI cannot detect.

Table 3.4: Scenarios for the case of Figure 3.34 where HDFI fails.

HDFI Our approach
u0 u1 u2 Missed overflow detect?

Tag 0 Tag 0 Tag 0 u0⇒ u1 , u0⇒ u2, u1⇒ u2 Yes
Tag 0 Tag 0 Tag 1 u0⇒ u1 Yes
Tag 0 Tag 1 Tag 0 u0⇒ u2 Yes
Tag 0 Tag 1 Tag 1 u1⇒ u2 Yes
Tag 1 Tag 0 Tag 0 u1⇒ u2 Yes
Tag 1 Tag 0 Tag 1 u0⇒ u2 Yes
Tag 1 Tag 1 Tag 0 u0⇒ u1 Yes
Tag 1 Tag 1 Tag 1 u0⇒ u1 , u0⇒ u2, u1⇒ u2 Yes

3.4.3.1.2 RIPE Benchmark RIPE [108, 109] is a well-known benchmark containing various

control-flow attacks, and all control-flow attacks can also be identified by DFI. RIPE is originally

designed for X86 architecture and modification is required for executions on an ARM processor.

We totally implemented 156 attacks of the benchmark for our system, including Return-Oriented

Programming (ROP) [9] attacks and Jump-Oriented Programming (JOP) [10] attacks. In addition,
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we also prepared a RIPE program without any attack. It is observed that our DFI system success-

fully identifies all the 156 attacks and does not make false alarm for the case without attack.

3.4.3.1.3 Heartbleed Heartbleed (CVE-2014-0160) [11] is a vulnerability in OpenSSL cryp-

tography library. When a message, including the payload and the length of the payload, is sent to

a server, the server echoes back the message with the claimed length. However, it is not checked

if the actual payload length is the same as the claimed one. As such, an attacker may send a mes-

sage with the actual payload length smaller than the claimed one. Then, the server sends back not

only the original payload but also some additional data to fulfill the claimed length. It is likely the

additional data is some private sensitive data on the server. Consequently, sensitive data is stolen

by the attacker. This is a non-control data attack and thus cannot be detected by Control-Flow

Integrity (CFI). We make use of the source code in [112] to simulate such attack. This attack is

successfully detected by our DFI system as the data to be loaded for sending back cannot be most

recently written by an instruction not from the sender. An attack-free transaction, where the actual

payload length conforms to the claimed one, is also tested and no false alarm is made by our DFI

system.

3.4.3.1.4 Nullhttpd Nullhttpd is a HTTP server that has heap overflow vulnerability (CVE-

2002-1496) [12]. If the server receives a POST request with negative content length L, it should

not process the request. However, the server continues to process and allocates a buffer of L+1024

bytes, which is less than 1024 bytes. Later, the server writes data of 1024 bytes into the buffer, and

therefore buffer overflow occurs. The experiment shows that our DFI system successfully detects

such buffer overflow. When some load instruction attempts to access the data written by overflow,

it is found that the data is not written by any instructions in the RDS of the load instruction. An

experiment is also conducted to confirm that our DFI system does not produce false alarm in this

context.
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3.4.3.2 Performance and Circuit Overhead

The performance overhead of our approach as well as the original software DFI [16] are eval-

uated through simulations on the SPEC CPU 2006 benchmark [110]. As architecture simulation

is orders of magnitude slower than running on an actual system, only 4 billion clock cycles are

simulated for each application of the benchmark. Nevertheless, 4 billion clock cycle time is long

enough to pass the warm up phase and get deep into the region of interest of an application. To

ensure a fair comparison, each benchmark application was simulated to the same end point for our

approach, the previous work [16] and original benchmark without DFI enforcement. The exper-

iments for the previous work [16] and original benchmark without DFI enforcement use exactly

the same system as the experiments for our approach. The results are summarized in Table 3.3. As

the static analysis tool failed in some applications, results only from those with successful static

analysis are shown in this table.

On average, the overhead of software DFI [16] is 161% while our PIM approach without any

compression or optimization can reduce the overhead to about 58%. The compression alone can

further reduce another 3% and the runtime optimization alone can trim the overhead by another

14%. More overhead reduction is achieved when the compression and runtime optimizations are

jointly applied as optimization E allows more opportunities for data compression. This is con-

firmed by the results in columns 5-13. The three groups on the right are from results of different

transmission buffer sizes. One can see that the overhead decreases with buffer size increase. In

each group, “All" means all of the 5 optimization techniques are applied and “C, E" corresponds to

the results where only the two most effective optimizations are employed. The best result is from

column 11, where all optimizations are applied, and the average overhead is 37.9%. The computa-

tion time of compression and optimization contributes to about 2% overhead. Note that even when

using 2KB transmission buffer, the average latency introduced by the transmission buffer of all the

testcases is 19264 clock cycles of the main processor, which is reasonably small. When using 2KB

transmission buffer, the performance overhead is largely reduced to less than 40%. Although there

are still needs for further reducing the performance overhead, our work has already made a huge
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Figure 3.35: Tradeoff between performance overhead and transmission buffer size.

leap on DFI, which is the next frontier in security field.

The info-collector circuit is implemented by synthesizing Verilog using Synopsys Design Com-

piler and ASAP 7nm cell library [113]. The info-collector with basic operation and compression

costs only 2908 gates and less than 30ps circuit delay. Hence, its area and delay are negligible. We

also implemented the circuit for optimization C/E. The results with these implementations are in

columns 7, 10 and 13 of Table 3.3, where the gate counts of the info-collector with optimization

are listed. In our experience, the circuit overhead is mainly due to the optimization part. The gate

count of 754K is not trivial, but still a tiny fraction of a modern microprocessor that often has

hundreds of millions of gates.
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The effect of transmission buffer size on performance overhead is further investigated and the

results are plotted in Figure 3.35. It shows that an increase of buffer size from 0 quickly brings

down the overhead. However, the overhead reduction soon diminishes as buffer size reaches 2K

bytes and this is why we limit our buffer size to be no more than 2K in the main experiments.
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Figure 3.36: Impact of sampling rate on perfor-
mance overhead.
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We also evaluated a random sampling technique based on our approach. That is, a certain

percent of randomly selected load/store instructions of a program are verified for DFI with

the setting same as that for column 11 of Table 3.3. Please note this is not a complete DFI. The

results are plotted in Figure 3.36. In general, a low sampling rate incurs relatively low overhead as

expected. However, the overhead change versus sampling rate is not always monotone. For SPEC-

456, the overhead decreases when the sampling rate increases from 50% to 75%. This phenomenon

indicates that not all load/store instructions contribute equally to the overhead. The overhead

for verifying an instruction also depends on if it is on the critical path of program execution.
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3.4.3.3 Analysis of Optimizations

The effects of the 5 optimization techniques described in Section 3.3.4.4 on data reduction are

evaluated separately and the results are depicted in Figure 3.37. One can see that optimizations C

and E always lead to more data reduction than the other techniques. For SPEC-462, optimization C

can reduce data by over 80% while optimization E reduces data by more than 60% for both SPEC-

401 and SPEC-456. The effect of transmission buffer size on the data reduction is studied as well

and the results are plotted in Figure 3.38. When the buffer size increases at the beginning, more

opportunities are found for pruning and compression, and thereby more data reduction is obtained.

However, the benefit quickly diminishes when the buffer size exceeds 2K bytes.

3.5 Conclusions and Future Research

We have presented an FPGA-based CFI system named FastCFI. To the best of our knowledge,

it is the first to simultaneously achieves low overhead, fine-grained and stateful verification and

independence of code instrumentation. It does not produce false alarms and has low detection

latency. It successfully detects all CFI violations in major benchmarks and incurs an average

overhead of 0.36%. While it offers the computing efficiency of FPGAs, its deployment is nearly as

convenient as software due to our automated Verilog generation technique. These advantages make

FastCFI be feasible to be applied to the systems having high real-time and security requirements.

Besides, We proposed a new DFI approach based on Processing-in-Memory (PIM), which

can largely reduce the data transfer between main processor and memory. Data compression and
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runtime optimization techniques are further developed. The PIM-based approach can reduce the

overhead by 4× compared to the original software DFI. At the same time, a complete DFI enforce-

ment as defined in the original seminal work is achieved. To the best of our knowledge, this is

the only major progress on complete DFI over the past 10 years. As the reduced overhead is still

significant, we will study a collaborative software-PIM approach for further overhead reduction in

future research.
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4. EXPLORING SERVERLESS COMPUTING FOR MACHINE LEARNING MODEL

TRAINING1

In this chapter, we introduce the way to train large neural networks under serverless environ-

ment, with the use of a specific data parallelism scheme. In addition, optimizations are proposed.

We also introduce the approach for doing hyperparameter tuning for small neural networks with

serverless computing.

4.1 Previous Works

Previous works on serverless runtimes mainly fall into two areas. The first is the area with more

benefits on cost or performance over other runtimes like virtual machine or distributed computing.

Examples of applications in this area are shown in [25], where tasks are mostly event-driven,

stateless and have short run time.

The second is the area which aims at broadening the use of serverless runtimes, whereas most

of the works in this area do not focus on machine learning, and there is no work towards deploying

neural network training on serverless runtimes as our work. In this area, the works about scientific

computing have been demonstrated successfully on serverless platforms. These efforts demon-

strate the feasibility and promise of deploying scientific workload on serverless infrastructures.

With Pywren [114] for example, one can deploy python-based workloads on multiple AWS Lamb-

da services. The work of [115] proposed a performance evaluation framework with the use of a

scientific workflow system: HyperFlow. The results show different behaviors between different

serverless providers, such as AWS, Google, IBM and Microsoft. Another work, [116], mainly

focuses on the deployment of scientific workflows on serverless environment, and proposes many

feasible models for implementation. Those investigations are pioneer efforts on supercomputing

with serverless architectures.
1 c©2018 IEEE. Reprinted, with permission, from Lang Feng, Prabhakar Kudva, Dilma Da Silva and Jiang Hu,

"Exploring Serverless Computing for Neural Network Training", IEEE International Conference on Cloud Computing,
07/2018.
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There are also works in the second area towards machine learning on serverless architectures,

but the machine learning in these works has mostly been used for inference [28]. For example,

in [117], the latency impact of the use of serverless for deep neural networks is investigated. The

experiment in [117] shows the difference of the inference latency between the warm and cold

execution, and the latency difference between different memory sizes. However, this work does

not focus on deploying neural network for training, while our work proposes an optimized way for

taking advantage of parallelism for training deep neural networks.

4.2 Training Large Neural Network Models with Serverless

We define large neural network models as those whose training cannot be completed within

one serverless instance either due to constraints in runtime or memory requirements, such as the

model used in TensorFlow Tutorials [118]. In this section we review cases that require workflows

of several serverless instances with data transfer among them.

4.2.1 Data Transfer and Parallelism with Serverless

A key difference in the application of parallelism is the different nature between serverless

instances and normal distributed computing: serverless instances are inherently time-limited and

stateless, unlike parallel threads previously studied with deep neural networks. At present, there is

no way to transfer data between two serverless instances directly, or to assign serverless instances

affinity to compute resources close to the shared data. Therefore, intermediate storage such as

databases are used for holding states that are to be shared between subsequent serverless instances.

The data transfer between instances is shown in Figure 4.1. Since two serverless instances cannot

communicate directly, the parallelized data or models have additional costs, including:

• data transfer latency from source instance to database,

• data transfer latency from database to destination instance,

• warm up latency for loading data.
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Figure 4.1: Data transfer gateway between two serverless instances

Distributed deep learning platforms have been well studied over the years [33], with more

recent platforms such as distributed TensorFlow [119] and MxNet [34], as well as variants of

them [120] showing dramatic improvements on performance and scalability. Significant improve-

ments are noted when deep learning models take advantage of parallelism. For our work, we adapt

such well known approaches to training neural networks in a distributed fashion and investigate

their suitability to serverless. To coordinate the component instances in a training workflow, we

use the graph-based notation of step functions [121]. In the rest of this paper, the words graph and

structure will refer to the interconnected structure of serverless instances interleaved by writes and

reads to storage.

4.2.2 Data Parallelism for Neural Network Training

Given a dataset, the training of a neural network is to iteratively modify network parameters,

such as edge weights and biases, such that the network inference results match the dataset. Many

common training algorithms, such as stochastic gradient [122], compute gradients according to

the training data and then the gradients are applied to update the parameters. In data parallelism,

a given dataset is partitioned into multiple subsets, each of which is applied to train a complete

network model on a machine, called worker. All workers share the same network model. When a

subset of training data is applied to a worker, corresponding gradients are computed there. Then,

gradients from all workers need to be collected by a machine, called parameter server, where

the network parameters are updated. The data parallelism by serverless computing is illustrated in

Figure 4.2, where each gray rectangle indicates one serverless instance. In serverless environments,

all the machines are serverless instances. The dataset is partitioned into n workers, which compute

gradients and send the gradients to the parameter server.
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Figure 4.2: Data parallelism by serverless computing

There are two approaches for updating parameters in the data parallelism: Synchronous and

asynchronous update.

In a synchronous update, the parameter server waits till gradients from all workers are received

and then updates the parameters. In an asynchronous update, the parameter server updates the

parameters each time it receives one set of gradients from one worker.

In our work, we focus on the synchronous update.

4.2.3 Optimizing Parallelism Structure for Serverless Training

For data parallelism, data transfers occur between workers and the parameter server. There are

two kinds of transfers:

• The parameter server transfers parameters to all workers.

• Workers transfer gradients to the parameter server.

For the transfer from the parameter server to workers, the latency is a constant as the number of

parameters is fixed for a given neural network model and all workers can read the same parameters

in parallel.

For the other transfer type, if there are n workers, the parameter server needs to receive n

sets of gradients, each of which corresponds to one set of parameters on one specific worker. If
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it takes time tm for each set of gradients to be transferred to the parameter server, the latency

of transferring all gradients in one iteration is n · tm. The linear dependence on the number of

gradient sets is confirmed by the measurement results shown in Figure 4.3, where the bars indicate

plus/minus standard deviation.

Since the data transfer is the main performance bottleneck for serverless training of neural net-

works, we propose a multi-layer parameter server structure to reduce the transfer latency. Please

note that the focus here is to reduce the latency of transferring gradients, as the latency of trans-

ferring parameters is constant. In Figure 4.4, we use blue nodes to represent workers and yellow

nodes to indicate parameter servers. Usually, multiple workers send their gradients to the param-

eter server as in Figure 4.4(a). The parameter server is also called merging node in the graphs in

Figure 4.4.

We propose a multi-layer merging structure as in Figure 4.4(b), which contains 6 workers and

3 parameter servers distributed in 2 layers. In such structure, a parameter server or merging node
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Figure 4.4: Different structures for merging gradients by parameter servers.

can receive gradient data from other merging nodes. In the upper merging layer of Figure 4.4(b),

each parameter server merges gradients from 3 workers and the merging takes 3tm. Since the two

merging nodes work in parallel, the merging latency of this layer is also 3tm. In the lower merging

layer, there is one parameter server, which merges gradients from the two parameter servers of

upper layer and the merging latency is 2tm. Therefore, the total gradient data transfer latency in

Figure 4.4(b) is 5tm. By contrast, the naïve merging structure in Figure 4.4(a) costs 6tm transfer

latency.

Figure 4.5: General structure of parameter servers

The example of Figure 4.4 indicates that the proposed multi-layer merging structure can re-

duce merging (gradient data transfer) latency. A general problem is how to decide the number

of merging layers and number of parameter severs in each merging layer such that the gradient
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data transfer latency is minimized. To solve this problem, we first introduce the latency model for

transferring gradients by workers to the parameter servers.

Consider a general data parallel structure as Figure 4.5. Assume there are n workers and k

intermediate merging layers, and for the ith merging layer, there are mi parameter servers. For the

bottom merging layer, there is only 1 parameter server to do the final data processing. Then, the

total latency can be described as

t = tm
n

m1

+ tm
m1

m2

+ ...tm
mk−1

mk

+ tmmk (4.1)

To minimize t, we first take partial derivatives with respect to each mi as below.



∂t
∂m1

= − n
m2

1
tm + 1

m2
tm

∂t
∂mi

= −mi−1

m2
i
tm + 1

mi+1
tm 1 < i < k

∂t
∂mk

= −mk−1

m2
k
tm + tm

(4.2)

One can tell that the second order derivatives are all positive, then the function t versus mi is

convex. By letting all first order derivatives be 0, the values of all mi minimizing t are given by


mk+1
k = n

mi = mk−i+1
k 1 ≤ i ≤ k − 1

(4.3)

Thus, the minimum t is found to be

tmin = tm(k + 1)n
1

k+1 (4.4)

We find the k that minimizes tmin by letting dtmin

dk
= 0, which gives k = ln(n) − 1. However, a

large k means many hops of data transfer, which increase the chance of packet loss and the costly

data retransmission. Therefore, we bound the value of k to be no greater than 2 in practice.
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Figure 4.6: Reuse worker serverless instances as parameter servers.

Since creating new serverless instances is associated with latency overhead, the actual data

transfer latency can be further reduced by reusing worker serverless instances as parameter servers

as shown by Figure 4.6. After completing their neural network training work, workers 3 and 6

continue to collect gradient data from 1, 2, 3, and 4, 5, 6, respectively. In other words, worker

3 (6) plays the role of parameter server 7 (8) now. After merging data from workers 4, 5, and 6,

node 6 further collects the gradient data from parameter server 3, and is actually doing the merging

formerly done by node 9. Please note such reuse is possible only for the synchronous data update.

4.2.4 Cost and Performance-Cost Ratio Optimization

A key motivation for serverless computing is its economic advantage over the conventional

cloud services. Hence, we study how to minimize monetary cost and maximize performance-cost

ratio in using serverless computing. In contrast to the offline structure optimization, the cost and

performance-cost ratio optimizations are online techniques.

Table 4.1: AWS Lambda price vs. memory use.

Memory (MB) Price per 100ms ($)
128 0.000000208
192 0.000000313
256 0.000000417
... ...

1408 0.000002292
1472 0.000002396
1536 0.000002501

We derive a model of monetary cost with respect to the memory allocated to a serverless in-
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stance. Please note memory size z of a serverless instance should be no less than the minimum

memory required to run the application there. In addition, a large memory size z implies shorter

latency [123]. Hence, latency is a function of memory size as t(z). For AWS Lambda [27], the

monetary price per unit runtime for different memory sizes [124] is shown in Table 4.1. By such

pricing, the monetary cost has linear dependence on memory size of the Lambda instance and

latency, and can be defined as

C(z) = p · n · z · t(z), (4.5)

where p = 1.63× 10−8$/(MB · s) and n is the number of Lambda instances.

We propose an online gradient descent method for finding memory size z for each serverless

instance such that the monetary cost C(z) is minimized. The online optimization starts with a

random memory size z1, which is sufficiently large for the neural network training and satisfies

serverless instance specification. The training with z1 memory is continued with q iterations and

the average cost C̄(z1) over the q iterations is estimated according to Equation (4.5). Then, memory

size is changed to another random and feasible value z2 for another q iterations of training to

obtain an average estimation C̄(z2). After the sampling of two random sizes, we find an optimized

memory size as

z∗3 = z1 − α
C̄(z1)− C̄(z2)

z1 − z2
(4.6)

where α is the step size for the gradient decent. Since there are lower bound zmin and upper bound

zmax for the actual memory size due to serverless instance restrictions and application requirement,

the actual memory size to be used next is

z3 = max(zmin,min(zmax, z
∗
3)) (4.7)

and this procedure can be repeated such that the memory size is continuously optimized.

We propose another online gradient decent method for maximizing performance-cost ratio.

Given a computing task that requires f floating point operations, the performance can be charac-

terized by FLOPS (floating point operations per second), which can be estimated by f
t(z)

. Then,
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the performance-cost ratio is defined by

R(z) =
f

p · n · z · t2(z)
(4.8)

which is a function depending on memory size z. Like minimizing the cost, one can sample a size

for q iterations. If the two consecutive sample sizes are zj−1 and zj , then the optimized memory

size can be obtained as

zj+1 = max(zmin,min(zmax, zj + α
R̄(zj)− R̄(zj−1)

zj − zj−1
)) (4.9)

where R̄ indicates the average ratio over q iterations.

4.3 Parallel Hyperparameter Tuning of Neural Network Models with Serverless

The effectiveness of a neural network model and its training efficiency highly depend on hy-

perparameters, such as the number of hidden layers, activation function and training rate. The

hyperparameters can be decided either manually or through automated search such as random

search, grid search and Bayesian optimization [125].

Since the evaluations of different hyperparameters can be independently carried out, serverless

computing is a particularly appealing choice for the tuning. Suppose H = {h1, h2, ...} is a set of

hyperparameters for a specific neural network model. All sets hyperparameters to be explored are

H = {H1, H2, ...}. One can request ni serverless instances for training the model specified by

Hi ∈ H. Since the total number of serverless instances one can request is bounded by N . We need

to make sure that
|H|∑
i=1

ni ≤ N. (4.10)

Due to this restriction, serverless hyperparameter tuning is mostly for small network models.
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4.4 Experiments

4.4.1 Experiment Setup

These experiments are conducted on a randomly generated dataset, CIFAR-10 dataset [126] and

MNIST dataset [127]. The random dataset contains 1 million samples, each of which is composed

by 20 binary features and 1 binary label. The random dataset is applied with a fully connected

neural network with 5 hidden layers, 500 hidden nodes and 42601 parameters. The CIFAR-10

dataset is to be trained by a convolution neural network, which has 2 convolution layers, 2 pooling

layers, 2 normalization layers, 2 fully connected layers and 1 softmax output layer. This structure

is the same as the structure used in the code of TensorFlow Tutorials [118]. The model for MNIST

is a fully connected neural network, whose structure is investigated through the hyperparameter

tuning. The characteristics of the 3 testcases are summarized in Table 4.2. The training of using

the datasets on the models is by TensorFlow [128]. The serverless computing experiments are con-

ducted through AWS Lambda [27], where latency, memory use and monetary cost are measured.

The training experiment is also performed on a desktop computer with a Intel 3.4GHz CPU with

16GB memory.

Table 4.2: Testcases

Case A Case B Case C
Dataset Random dataset CIFAR-10 [126] MNIST [127]
Network
type

Fully connected
neural network

Convolution neu-
ral network

Fully connected
neural network

Network
struc-
ture

5 hidden layers,
500 hidden nodes
and 42601 param-
eters.

Same as in
the code of
TensorFlow
Tutorial [118].

Structure investi-
gated through the
hyperparameter
tuning.

4.4.2 Latency Variation

When evaluating serverless computing latency, one faces the challenge of its variations. Server-

less runtimes are instantiated on infrastructure via resource scheduling by the service provider in
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a manner invisible to the end user. Similarly, the location and the latency response of database

for reads and writes may vary depending on the resource allocation on the cloud provider side.

There are no guarantees on latency and performance of such serverless instantiations beyond the

requested parameters such as memory size (which are priced). Likewise, the read and write la-

tency between serverless instance and database may vary depending on a variety of factors, like

the actual location of the database relative to the instance, traffic on networks, multi-tenancy, to

name a few. The end-user does not have control on these latencies and performance metric, and

expectations are that they vary within a certain known range (based on the provider) from a sta-

tistical perspective. Therefore, all latency and performance measurements reported in the paper

are representative, and a few percent variation or improvement is considered normal statistical

variation.

4.4.3 Structure Optimization

This part of experiment is to evaluate the effectiveness of the proposed multi-layer merging

structure and its optimization, which are introduced in Section 4.2.3. It is performed on Case A

and Case B. For Case A, the number of training iterations is 50. The training is done by 100

workers, each of which has 512MB memory. For Case B, the number of training iterations is

20. The training is done by 100 workers, each of which has 1536MB memory. The results are

summarized in Table 4.3. Each structure is indicated by a vector, where each element specifies the

number of nodes in a layer and the elements are in bottom-up order of the tree structure depicted

in Figure 4.5. For example, [1, 5, 100] means the gradients from 100 workers are transferred to 5

parameter servers, and finally merged at a single parameter server. The result in the first row, which

is labeled with ’*’, is the optimal solution according to our optimization. For Case A, One can see

this is the second to the minimal latency result according to the measurement. Its actual latency

569.55 is close to the minimal latency 534.28. The discrepancy between our optimal solution and

the actual minimal is due to the latency variation, which is discussed in Section 4.4.2. For Case

B, our optimal solution has the least latency and therefore the effectiveness of our optimization

is confirmed. One should also note that according to our discussion in Section 4.2.3, the optimal
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solution does not depend on the neural network model used but only depends on the number of

workers.

Table 4.3: Latency of different structures

Structure Latency for Case A (s) Latency for Case B (s)
*[1,5,22,100] 569.55 789.20

[1,100] 1216.97 1848.05
[1,2,100] 878.78 1195.97
[1,5,100] 650.66 866.29

[1,25,100] 616.67 920.22
[1,2,10,100] 570.66 823.25
[1,5,50,100] 604.90 890.91
[1,10,50,100] 534.28 838.89

[1,2,10,50,100] 585.25 883.96
[1,5,20,50,100] 578.22 868.78

4.4.4 Training Accuracy and Convergence Rate

We evaluate the training accuracy and convergence rate of the proposed serverless computing

and sequential computing on desktop PC on Case A and Case B. The serverless structures used

here are the same as in Section 4.4.3. The accuracy of a neural network is estimated by comparing

its inference results on training dataset labels. The accuracy versus training time results for Case A

are shown in Figure 4.7. The serverless computing converges slower than desktop PC, but reaches

a better accuracy. The results for Case B are plotted in Figure 4.8, where the serverless computing

leads to worse accuracy and convergence rate than the desktop PC.

The accuracy difference between the desktop PC and serverless results arises from the pa-

rameter update difference between sequential and parallel training. In serverless computing, the

parameter update is based on the average of gradients obtained from multiple workers. In the se-

quential training on desktop PC, by contrast, each parameter update is according to a single set of

gradients from a single process.
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Figure 4.7: Training accuracy vs. training time
for Case A.
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Figure 4.8: Training accuracy vs. training time
for Case B.

4.4.5 Result of Cost and Performance-Cost Ratio Optimization

The proposed online cost minimization method is evaluated on Case A. In this experiment,

q = 10, which means we modify the memory size every 10 iterations. In addition, the gradient

decent is performed at most five times. The lower and upper bounds of memory size are set as

zmin = 256MB and zmax = 1536MB, respectively. The results are shown in Figure 4.9, where

the red circles indicate our optimization results. The experiment is repeated 10 times. Due to the

latency t(z) variations, two different results (red circles) are obtained. For 9 times, the optimization

result is 256MB and 512MB is obtained once. The blue triangles and bars are the measurement

results of monetary cost at different memory sizes without optimization. For each memory size,

the experiment is repeated 100 times. Each blue triangle represents the average cost and the bars

indicate ±σ, which is the standard deviation. One can see that the cost variation can be very large

due to the latency uncertainty. Moreover, the cost vs. z change is not monotone. The average

cost of 640MB is less than that for 512MB memory. Most importantly, our optimization indeed

reaches the minimum or near minimum cost memory size.

The performance-cost ratio optimization results are plotted in Figure 4.10. Here, we attempt to
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Figure 4.9: Cost per iteration under different
Lambda instance memory sizes and optimiza-
tion results.
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Figure 4.10: Performance-cost ratio per itera-
tion under different Lambda instance memory
sizes and optimization results.

maximize the ratio. Indeed, the red circle results from our optimization are generally at memory

sizes where the ratio is at least near the maximum.

4.4.6 Results on Hyperparameter Tuning

The experiment on hyperparameter tuning is performed on Case C. In Figure 4.11, the com-

puting latency results versus the number of searched hyperparameter sets |H| for desktop PC and

AWS Lambda are plotted. Each dot in the figure is the average of 10 different experiments with

the same number of searched hyperparameter sets. One can see that the latency of desktop PC

grows linearly when more hyperparameters are evaluated because of its sequential computing na-

ture. The hyperparameter tuning on AWS Lambda is carried out in parallel. Thus, its latency does

not change when the hyperparameter search is expanded. This result clearly demonstrates the ad-

vantage of serverless computing for hyperparameter tuning in neural network model construction

and training.

4.5 Opportunities in Serverless Runtime Design

Serverless runtimes have been used for inference with good results. Our exploration of using

serverless for training large deep learning models has identified some disadvantages compared to
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Figure 4.11: Computing latency versus the number of searched hyperparameter sets |H|.

other distributed computing runtimes where data transfer between compute instances are not as

frequent (such as with GPUs). In order to improve serverless performance for the task of train-

ing deep learning models, it is necessary to minimize the frequency and quantity of data transfer

between subsequent serverless instances. We illustrate opportunities for improved data transfer

latencies, while at the same time maintaining the benefits of serverless such as the ability to pay

for a compute instance used only when and just long enough for needed computation.

Figure 4.12: Serverless affinity in runtimes
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Consider a step function where edges between serverless instances can be assigned higher

affinities indicating sharing of data between them, then the instances can be mapped by the in-

frastructure manager in a manner where the latencies for data transfer between the instances is

minimized. In Figure 4.12, a generic approach to such a solution is given, where a portion of the

step function has some serverless instances with weight w on the edges indicating shared data,

while the last instance has no weight assigned, indicating no such affinity. Such a specification can

be mapped in several ways as described below:

• Given affinities between serverless instances in a step function, the infrastructure maps these

instances to a common host where storage is persistent across serverless instance invocations.

In a runtime where each serverless instance is implemented as a Linux container, the storage

on the host is mounted onto the container during boot up, thus enabling sharing of data.

• Implementations based on processor in memory (PIM) may also be considered for this pur-

pose. A processor associated with a memory device such as a Linux on ARM associated

with SSD or Memory, can also be used to support the affinity for especially large models.

4.6 Conclusion

Training deep learning models with serverless runtimes is challenging and provides several

opportunities. We have investigated both large and small models. For large models, various struc-

tures for composition of serverless instances provide the best performance and cost to train deep

learning models, while taking advantage of data parallelism are explored. The challenges posed

by the ephemeral, stateless and warm up latency of serverless runtimes are studied. Potential in-

novations in runtime design for future serverless runtimes with containers are proposed to mitigate

the challenges and strengthen the opportunities. For smaller models, it is shown that serverless

runtimes showed benefit for hyperparameter tuning that could be performed in a truly distributed

manner.
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5. SUMMARY AND CONCLUSIONS1

This dissertation research is focused on security and efficiency across different levels of a

computing system, from hardware to software, from manufacturing to application, and from circuit

level to system level.

For secure and efficient circuit layout design, new techniques are developed to enhance the

split fabrication technology. Besides, DFM is considered in our security enhancement and thus,

the practicality is increased. The results prove the effectiveness of our proposed techniques. For

CMP, the uniformity of the wire density can be improved and each layer of the design can be more

flatten after CMP process. For SADP, almost all the violations are eliminated and thus, the design

can be manufactured by SADP technology without using many high cost ebeams.

For hardware-assisted software security, we designed hardware for CFI and DFI verification.

For hardware-based CFI verification, instead of software, FPGA is used to do the verification,

which decreases performance overhead to almost 0. Meanwhile, due to the performance advan-

tage of hardware circuits, the verification latency is as low as only more than 20 FPGA clock

cycles. The CFG compression algorithm is proposed and can make CFG checker accommodate

18% more CFG nodes or further reduce the hardware resource consumption of implementing the

CFG by 11%. Besides, automatic CFG checker generator is designed to provide users the abil-

ity to deploy the CFI verification FPGA design in 20 minutes given a software to be checked.

For hardware-based DFI verification, processing-in-memory is used to mitigate the most critical

problem existing in the software-based data-flow integrity verification, which is the intensive data

transferring. By implementing the DFI checking inside processor in the memory, the data trans-

1 c©2017 IEEE. Reprinted, with permission, from Lang Feng, Yujie Wang, Jiang Hu, Wai-Kei Mak and Jeyav-
ijayan Rajendran, "Making Split Fabrication Synergistically Secure and Manufacturable", IEEE/ACM International
Conference on Computer-Aided Design, 11/2017. c©2018 IEEE. Reprinted, with permission, from Lang Feng, Prab-
hakar Kudva, Dilma Da Silva and Jiang Hu, "Exploring Serverless Computing for Neural Network Training", IEEE
International Conference on Cloud Computing, 07/2018. Reprinted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, International Conference on Computer-Aided Design, "FastCFI: Real-Time
Control Flow Integrity using FPGA without Code Instrumentation", Lang Feng, Jeff Huang, Jiang Hu and Abhijith
Reddy, c©2019.
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ferring rate between the main processor and memory is largely reduced and the performance is

improved by 4× comparing to software-based DFI verification, without sacrificing verification

precision.

For exploring serverless computing for machine learning model training, large neural network

training is deployed in serverless environment. Besides, optimization approaches are proposed

to optimize the performance, cost and performance-cost ratio. For small neural network, paral-

lelized hyperparameter tuning by leveraging serverless computing is proposed. It shows serverless

computing has huge advantage to do hyperparameter tuning due to its high parallel capacity. The

bottleneck of the serverless computing, which is the data transferring can be mitigated by sharing

the storages between multiple serverless instances.

In the conclusion, this dissertation successfully explored different fields related to computing

efficiency and security, and proposed solutions for various of problems. Experiment results proved

the effectiveness of the solutions.
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