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ABSTRACT

Spin glasses are disordered magnetic systems with frustration. The extremely compli-

cated energy landscapes built from the frustration gives spin glasses a new transition between

the paramagnetic phase and spin-glass phase. This new phenomenon triggers scientists’ en-

thusiasm for deeply understanding the physical foundations and mathematical description

for disordered systems. Also the use of numerical tools and statistical methods opens a win-

dow into an overlapping area between computational physics and information science, which

makes an interdisciplinary study necessary and helpful.

This research consists of two themes. The first theme includes the study on the uni-

versality of a diluted spin-glass model, the development of algorithms by introducing new

tools of artificial intelligence and extending the current algorithms for more general use.

First, I demonstrate that convolutional neural networks is a very powerful tool for detecting

spin-glass phase with appropriate training. Next, I show that isoenergetic cluster moves can

only be effective for graphs with low connectivities due to the relatively small percolation

thresholds in topologies. To conclude the first theme, I introduce the research on how the

critical exponent of the correction to the correlation length does not change with disorder,

which supports the strong universality scenario. The second theme includes the study of the

Boolean satisfiability problem through the use of Ising spin form. It show that Metropolis al-

gorithm combined with the Parallel tempering algorithm has an obvious advantage over the

current state-of-art algorithms on Boolean maximum satisfiability problem. Then, I intro-

duce how I improve the efficiency of the Boolean satisfiability problem-based membership

filter by turning the Boolean satisfiability instance into a not-all-equal form.
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NOMENCLATURE

E Internal energy

U internal energy per spin

m Magnetization per spin

N Number of variables or spins

T Temperature

� Inverse temprature 1/T

Z Partition function

Si Ising spin variable

d Dimension

L Linear dimension

H Hamiltonian

Jij Interaction between spin variable Si and Sj

M Magnetization

Tc Critical temperature

h· · · i Thermal average
⇥
· · ·
⇤

Disorder average

gm Binder cumulant

q Configurational overlap

ql Link-overlap

PT Parallel Tempering

MCS Monte Carlo Sweeps
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MCMC Markov-chain Monte Carlo

ICM Isoenergetic Cluster Move

RICM Restricted Isoenergetic Cluster Move

SAT Boolean satisfiability problem

MAX-SAT Boolean maximum satisfiability problem

NAE-SAT Not all equal satisfiability problem

NAE-SAT filter NAE-SAT based membership filter

SAT filter SAT based membership filter

V4 Unnormalized Binder ratio

NP Nondeterministic polynomial

O Observable

kB Boltzmann constant

P Distribution

p Probability

P Transition rate

⇠ Correlation length

� Susceptibility

⌧auto Autocorrelation time

C Special heat

PPR Projection pursuit regression

ANN Artificial neural networks

FFS Finite size scaling

CNN Convolutional neural networks

CNF Conjunctive normal form
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1. INTRODUCTION

Spin glasses are models that describe magnetic materials with atomic spins not aligned in

a regular pattern because of the co-existence of ferromagnetic and antiferromagnetic bonds

[4]. Spin glasses originally offer a simplified dilute solution to the “cusp” in susceptibility

that was found in experiments [5]. In the theoretical study of spin glasses, we usually as-

sign a probability distribution to the interaction Jij between each spin pair (ij) to mimic the

randomness of the positions of the atoms since it is impossible to simulate the random posi-

tions of all the atoms in real materials that usually have countless atoms. As a result, unlike

the Ising model, spin orientation in spin glasses is unlikely to be uniform in space because

the interactions between spins can randomly be either ferromagnetic and antiferromagnetic.

Even at low temperatures, the patterns of the spin configurations are disordered. Over time

the spin-glass phase is formed by the “frozen” disordered spin orientations that break ergod-

icity, which is different from the paramagnetic phase in which ergodicity is preserved during

the thermodynamic process. Although from the perspective of material science, spin glasses

are not particularly special since they are simply magnetic materials with disorders, in sta-

tistical physics spin glasses invoke large interest not only in theoretical studies but also in

industrial applications, especially in optimization problems. First of all, in a spin-glass sys-

tem, a thermodynamic phase transition (usually second-order) can take place starting from

a paramagnetic state at a relatively high temperature, which makes the study of spin glasses

appealing because the transition from paramagnetic to a new phase implies the existence of a

new magnetic state that can be completely different from ferromagnetic or antiferromagnetic

matter. A deep understanding of how this disordered glass state differs from the ordered state

and how this transition happens poses an important question in condensed matter physics and

statistical physics [6]. Secondly, the applications of spin glasses are important in multiple

1



fields including biology, computer science, neuroscience, and mathematics because it offers

a simple playground to conduct different studies in. Since the time when numerical sim-

ulation became the primary tool for studying the thermodynamic properties of spin-glass

systems, various efficient Monte Carlo algorithms have been adapted to different scenarios.

These simulation techniques play significant roles in the scientific research of spin glasses

as well as in a wide range of problems that are related to spin glasses, such as optimization

problems [7, 8], quantum computing [9, 10, 11, 12, 13], and associative memory [14, 15].

For example, in Boolean variable optimization area spin glasses offer a brand new approach

to find the optimal solutions by mapping the original problem into a spin-glass Hamiltonian,

which allows physics to study the optimizations. [4, 16, 8, 17, 18].

As mentioned in the previous paragraph, spin glasses have introduced new physical phe-

nomena into condensed matter physics, and Monte Carlo simulation is the most used tool in

this area. In the study of disordered systems, the numerical effort required to make systems

reach thermodynamic equilibrium is significant because of the existence of complicated free

energy landscapes caused by the quenched disorder. Also frustration in spin-glass instances

can lead to problems such as metastability, new forms of symmetry breaking, and even some

non-equilibration phenomena like memory and rejuvenation effects that are not seen in or-

dered systems [4, 18]. Although scientists have already developed various efficient Monte

Carlo algorithms such as parallel tempering [19], simulated annealing [20], Wang-Landau

algorithm [21] and population annealing [22], these algorithms are still not capable of filling

the fast-growing demands in larger system sizes and more precise estimations of thermo-

dynamic quantities. In general, to help push research forward there are two approaches to

develop new algorithms. First of all, we can modify existing algorithms to make them adapt

to new situations. For example, parallel tempering is a very powerful algorithm for dealing

with metastability because its design of exchanging replicas between high and low tempera-

tures can effectively avoid the system from getting stuck in local minima of the complex en-
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ergy landscape during simulations. But when the system temperature is low so that it is very

likely for the system to have a large local cluster, parallel tempering is not very efficient. In

addition to parallel tempering, a new cluster move based on the Houdayer cluster move helps

improve the performance in topologies with low percolation thresholds [23]. Furthermore,

we can continue upgrading this algorithm to make it work for the highly connected graphs.

Besides, we can also adapt algorithms from outside of physics to improve the efficiency of

calculation in order to save computational resources. For example, to simulate a medium-

size three-dimensional Edward-Anderson model with bimodal distribution, usually we need

20000 instances to cover the disorder and run 300000 Monte Carlo sweep on each instance

[24], which is already a heavy burden for computing not to mention that much larger system

sizes are needed if we target on more accurate results. In situations like this, we can borrow

ideas from other disciplines such as machine learning using statistical approaches to reduce

the simulation load and process a large number of data from simulations. Recently machine

learning algorithms, in particular deep learning algorithms, have been widely used in con-

densed matter physics in detecting the phase transitions of physical systems [25, 26, 27].

It has already been shown that well designed convolutional neural networks are capable of

recognizing the difference between ferromagnetic states and antiferromagnetic states with

high accuracy in an ordered Ising model if the networks are trained by the same set of data

in advance [27]. This is an intuitive idea that can lead real applications of machine learning

in disordered systems. Usually for an ordered system like the Ising model, traditional Monte

Carlo simulation is efficient enough, so it is not desirable to develop new approaches. Also,

it is usually impossible to know the phase transition temperature in advance when we are

working on unknown systems. Inspired by previous work [27, 25], a proposed systematic

machine learning approach with the ability of precisely detecting phase transitions of disor-

dered systems without knowing any information in advance can be a promising tool for the

research of disordered systems. We have obtained constructive results int this area, which
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will be introduced in Chapter. 3.

The value of spin glasses is in its contributions to physics and real-world applications.

In complexity theory, there is a class of problems defined as P problems [7], which can be

solved by polynomial-time decision algorithms. Another class, Nondeterministic Polyno-

mials (NP) [28, 29, 30, 16], can only be checked for the correctness of a given solution in

polynomial time. NP-complete problems is an important subclass of NP problems, which

can be introduced as follows: if A is NP-complete then any solution to A can be mapped in

polynomial time as a solution to any of the NP problems. Mathematically, the decision form

of the Ising spin model is NP-complete [31, 16] while spin glasses are known as NP-hard

problems [32], which is a class of optimization problems such as finding a ground in an Ising-

spin formation. Naturally, we consider that if there are connections between spin glasses and

any other NP-problems, we might be able to use algorithms for spin glasses to solve these

optimization problems. In fact, the connections between statistical physics and NP prob-

lems have already caught scientists’ eyes [33, 17] and some algorithms developed for spin

glasses, like simulated annealing, have already been used as approximate algorithms in clas-

sical computers [16]. More than that, the ruggedness of the energy landscapes of spin glasses

has already been used to explain the hardness of the NP-problems through the connections

between them [34]. Inspired by these previous works, we apply the Metropolis algorithm

combined with the parallel tempering algorithm on the Boolean satisfiability (SAT) problem

by mapping the original problem into a Hamiltonian in Ising spin form. During simulat-

ing the thermodynamics governed by the Hamiltonian, we record the ground states we have

found, then map these ground states back to the optimal solutions for the original problem.

This application is very successful and inspiring. I will discuss this project in Chapter. 6.

This dissertation can be separated into two main parts. The first part one is about the re-

search of spin glasses, including its physical properties and development of algorithms used

to study them. After an introduction of spin glasses, I discuss the application of machine
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learning in detecting the phase transition in a three-dimensional Edward-Anderson model

with different disorders. Next, I will discuss my research on extending the isoenergetic clus-

ter moves (ICM) to a restricted cluster moves (RICM), followed by the study of the univer-

sality of the two-dimensional bond-diluted Ising model. The second part is the application

of spin glasses in solving the Boolean satisfiability (SAT) problem, which includes further

exploration of the applications on the SAT filter. In conclusion I summarize this work.
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2. PRELIMINARIES

2.1 Spin glass

Let us start with the Ising model, which is named after the physicist Ernst Ising [35,

36, 37]. Ising model is a simple mathematical model describing many-body interactions

between spins that can only take binary values: S = ±1. In physics, the Ising spin S can

represent the microscopic magnetic moment is either pointing up or pointing down. Usually,

an Ising spin system has many spins that are distributed in a background topology, which

we call lattice while there is an interaction between some specific spin pair, whose strength

can be described by a bond J . To label the sites where the spins sit we introduce subscripts.

For example, if we have N spins then we can label spins as Si with i 2 {1, ..., N}. In this

way, we assign an interaction to a spin pair by using the bond between them: �J . Then the

interaction energy is �J when Si = Sj and J when Si = �Sj . Thus, if J > 0 then two spins

tend to point to the same direction because lower energy is more stable than high energy, and

in this case the positive bonds can lead to a macroscopic magnetism, so the J > 0 is referred

to as ferromagnetic interaction while J < 0 has an opposite situation and is referred to

as antiferromagnetic interaction. Besides, in some cases, a spin has its energy or Zeeman

energy in magnetism �hSi. Then the total energy of an Ising model can be described by the

following Hamiltonian:

H = �J
X

hiji

SiSj � h
NX

i=1

Si, ij = 1, ..., N, (2.1)

since the interaction in the Ising model is constant we do not need subscript for J and the

summation goes over all the spin pairs without repeat. The choice of the set for bonds

depends on the problem we are looking at. For example, if we have two-dimensional lattice
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with all the spins sitting on sites with regular intervals and the interactions are limited to

the nearest spins, then in Eq. (2.1) the first summation only runs over the nearest neighbor

bonds. And the thermodynamic average h· · · i of a physical observable O can be computed

by the trace over partition function Z using Gibbs-Boltzmann distribution S:

hOi =
X

S

O (S)
1

Z exp [��H (S)] , (2.2)

with � = 1/kBT .

Ising models and spin glasses have some similarities such as both are using binary vari-

ables and the interactions can be described by bonds, but Spin glasses are different from

Ising model especially in the choice of bonds. As we mentioned in introduction, each bond

in spin-glass model obeys a certain distribution, which means that both ferromagnetic and

antiferromagnetic interactions can coexist in the same spin-glass model. We suppose that the

Hamiltonian without field is expressed as:

H = �
X

hiji

JijSiSj, ij = 1, ..., N, (2.3)

here the summationgoes over all the spin pairs hiji without repeat and Jij can be considered

as Independent and identically distributed random variables. Usually the randomness of Jij

depends on the specific problem. Similar to Ising model, the set of bonds are different for

different models. For example the often used Edward-Anderson model (EA) [38] has the

nearest neighbor interactions so that the summation in Eq. (2.3) is only performed in nearest

neighbor spin pairs. For the randomness of Jij , the often used distributions P (Jij) include

Gaussian distribution and random ±J distribution. Their explicit forms are:

P (Jij) =
1p

2⇡J2
exp �(Jij � J0)2

2J2
(2.4)
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P (Jij) = p�(Jij � J) + (1 � p)�(Jij + J), (2.5)

where Eq. (2.4) is a Gaussian distribution with mean J0 and variance J2 while in Eq. (2.5)

Jij is either J with probability p or �J with probability (1 � p). To compute a physical

observable, in addition to thermodynamic average h· · · i a disorder average
⇥
· · ·
⇤

is required

to compute the effect of randomness of interactions, which can be realized by instances

with different bonds from the same distribution. For example, the often used configurational

overlap between two replicas in a spin-glass model can be written in the form:

q =


h

NX

i

S↵
i S�

i i
�
, (2.6)

where ↵ and � are two replicas in the same system and the average are over thermodynamics

h· · · i and disorder
⇥
· · ·
⇤
.

2.2 Phase transitions

Phase transition is defined as transformation from one state to another in the same ther-

modynamic system. Generally, a phase is a kind of macroscopic physical state with uniform

properties that can be described by a certain set of parameters such as volume, pressure,

temperature, etc. Some of these properties have abnormal changes when the phase transition

is happening. For example, water and ice are two different states of the same chemical sub-

stance. When the temperature drops from above 0�C to below 0�C, water becomes ice, and

if the water is heated up to the boiling point 100�C, water becomes vapor. A similar tran-

sition happens in a two-dimensional Ising model whose magnetization suddenly disappears

as the temperature exceeds the critical point. Usually, phase transition involves symmetry

breaking. We can use some of these physical quantities to quantitatively measure the degree

of order across the boundaries during the transition, and these quantities are called order

parameters. For example, in the two-dimensional Ising model, the order parameter magneti-

8



zation changes from a paramagnetic phase to a ferromagnetic phase in the transition, and this

phase transition can be seen as the Isotropic symmetry being broken when the temperature

drops through the critical temperature.

Although almost all the phase transitions can usually be described as sudden changes in

some physical quantities, it can be conventionally divided into two subcategories based on

the types of physical quantities that have singularities in the transition [39, 40], which are

called first-order phase transition and continues phase transition. This categorization can be

based on the behavior of the derivative of the free energy. For example in the first-order phase

transition, the first-order derivative of the free energy has a discontinuity, and latent heat is

transferred from one phase to another. A typical example of first-order phase transition is the

transition from ice to water, in which we can see that during the transition the temperature

of the mixture of ice-water remains but heat is flowing from outside into the substance. In

continuous phase transition, although there is no latent heat and discontinuity of the first-

order derivative of free energy, the second- or higher-order derivative of free energy has

divergence. These continue phase transitions are usually characterized by the divergence in

susceptibility and a power-law decay in correlations in the vicinity of the critical temperature.

An example of the continuous phase transition is the two-dimensional Ising model whose

magnetic susceptibility has divergence at the critical temperature. To compute the critical

temperature, analytic solutions can only be derived in limited cases such as one-dimensional

and two-dimensional Ising models [41, 35]. In principle, any physical quantities can be

calculated using Gibbs-Boltzmann Eq. (2.2), but in most situations, there are a large number

of spins so that it is almost impossible to calculate the 2N terms in the partition function.

Therefore, approximation methods are used in these situations like mean-filed theory are

often used. The idea of the mean-field theory is to approximate the local physical effect by

only considering the mean values without the microscopic fluctuation [42]. Although mean-

field theory can be used for some spin systems like Sherrington-Kirkpatrick (SK) model [43],
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in most of the case mean-field theory can not give qualitative approximations especially for

low dimensional systems because mean-field theory tends to treat the spins independently,

but only for models with high connectivities the interactions with neighbors can cancel each

other so that interactions can be neglected.

2.3 Critical phenomena

Continuous phase transitions always involve abnormal behaviors around the critical points

where different phases coexist. These behaviors are called critical phenomena. Let us again

take the magnetic materials as an example to explain how we approach the critical phenom-

ena. Suppose that the temperature is originally above the critical point Tc, so the magne-

tization is zero because spins do not spontaneously point to the same direction at a high

temperature T > Tc. Then we decrease the temperature letting it approach Tc from above,

which makes spins tend to have a similar direction in a relatively large region when T is close

to Tc. The scale of these clustered spin will grow into a macroscopic size once T is in the

vicinity of Tc. In this case, some physical quantities such as correlation length (⇠) and sus-

ceptibility (�) show singularities. And the degree of singularity of physical quantities near

critical point can be described by critical exponents (↵, �, �,�,...), and experiments show

that physical quantities that have singularities will have power-law behaviors as functions of

control parameters such as temperature near critical point [44]. Again, we use a magnetic

system (Ising model) to demonstrate these power-law relations:

� ⇠ t��, (2.7)

M ⇠ |t|��, (2.8)

⇠ ⇠ |t|�⌫ , (2.9)
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C ⇠ |t|�↵, (2.10)

where � is the susceptibility, C is special heat, M is magnetization, ⇠ is correlation length and

t is the reduced temperature that is dimensionless: t = (T�Tc)
Tc

. Besides, there actually exist

additional weaker singularities and regular terms. Therefore, a more accurate expression

should include these terms. We take ⇠ as an example to write the terms:

⇠ = A|t|�� + B|t|��+1 + ... + const + t + t2 + .... (2.11)

And additionally these Ising critical exponents obey the following relations:

↵ + 2� + � = 2

⌫d = 2 � ↵,
(2.12)

here d is the dimension of the system. Although the degree of freedom of the critical expo-

nents is reduced to 2 by the relation in Eq. (2.12), it is still difficult to compute the critical

exponents for systems with infinite size. We introduce scaling hypotheses, which can be

used to compute the critical exponents [45]. Again we use Ising model to explain how it

works. According to renormalization group theory [46], the finite-size magnetization of a

d-dimensional Ising system has a asymptotical form for large system size L:

hML(t)i ⇠ L�/⌫M̃(tL1/⌫), (2.13)

here M̃ is an unknown scaling function, and other quantities have the similar relations. In

Eq. (2.13), if we evaluate the function exactly at T = Tc it is only the function of L, therefore

in large-L limit we expect the data from different system sizes cross at T = Tc, provide

we give correct � and ⌫. But in practice it is difficult to precisely compute these critical
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exponents without knowing the true values for the � and ⌫. Instead, a more practical method

would be using a dimensionless quantities such as Binder cumulant or Binder ratio [47]:

gm =
1

2


3 � hm4i

hm2i2

�
⇠ G̃[L1/⌫(T � Tc)] . (2.14)

Since Binder ratio is a dimensionless quantity, the pre-factor in Eq. (2.13) will cancel out,

therefore asymptotically data from different sizes will have a uniform curve with correct

critical exponents. By using this dimensionless quantity the Tc can be determined as well as

critical exponents. If two models have the same independent critical exponents, they belong

to the same universality class, which is a concept of modern theory of critical phenomena

predicted by renormalization group near critical points. Models belonging to the same uni-

versality class have the same scaling function and the thermodynamic properties near critical

point only depends on dimensionality and symmetry.

2.4 Algorithms for spin glasses

As we mention in Section. 2.1, we need to average the quantity over the states weighted

by the Gibbs-Boltzmann distribution Eq. (2.2) to computer a physics quantities, which is

difficult for a system with N spins because a complete calculation will have to go over total

2N different spin configurations. Indeed if we are interested in the thermodynamic limit,

the summation is over an infinite number of states which is computationally impossible.

Although exact solutions have been found for some models like two-dimensional Ising, it

has not been proved possible to analytically solve the majority of the modes of interest.

Also, approximate methods like the mean-field theory can only deal with systems with weak

interactions, and no general approximate approaches that are suitable for general systems

have already been found yet. Therefore, it is necessary and desirable to develop numerical

algorithms.

The often used numerical methods in statistical physics is Monte Carlo simulation. The
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basic idea behind Monte Carlo is using Markov-chain to directly simulate the thermody-

namic procedure, which is a random fluctuation of the system from one state to another over

time. Although for past decades, scientists have already developed various efficient Monte

Carlo algorithms that can be used in different scenarios, research topics such as critical tem-

peratures, critical exponents and seeking ground states require notoriously large calculation

load that can not be completely fulfilled by modern computing facilities. So more powerful

algorithms are needed to tackle the computational limitations. This section will give a review

of the algorithms used in spin glasses.

2.4.1 Metroplis algorithm

Metropolis algorithm is a beautifully simple and widely used Markov-chain Monte Carlo

algorithm introduced by Nicolas Metropolis and his co-workers [48]. The idea behind

Metropolis algorithm is to choose the selection a probability g(µ ! ⌫) and an acceptance

rate A(µ ! ⌫) so that the transition rate P(µ ! ⌫) for each states pair fulfill detailed

balance:
P(µ ! ⌫)

P(⌫ ! µ)
=

g(µ ! ⌫)A(µ ! ⌫)

g(⌫ ! µ)A(⌫ ! µ)
= exp[��(E⌫ � Eµ)]. (2.15)

Assume that we have overall N spins, then for each state µ there are 2N states that state

µ can transfer to and the selection for each ⌫ is equally 1
2N . Therefore, Eq. (2.15) becomes:

P(µ ! ⌫)

P(⌫ ! µ)
=

g(µ ! ⌫)A(µ ! ⌫)

g(⌫ ! µ)A(⌫ ! µ)
=

A(µ ! ⌫)

A(⌫ ! µ)
= exp[��(E⌫ � Eµ)]. (2.16)

For the acceptance rate, in order to satisfy Eq. (2.15) a simple choice would be:

A(µ ! ⌫) = A0 exp[
1

2
�(E⌫ � Eµ)]. (2.17)

Since the constant can be canceled in Eq. (2.15), any value would work for it except that it is

not greater than one because it is a probability. Therefore the simplest but workable choice
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for A(µ ! ⌫) would be:

A(µ ! ⌫) =

8
>><

>>:

exp[��(E⌫ � Eµ)] E⌫ � Eµ > 0

1 otherwise.
(2.18)

It is the Eq. (2.18) that makes it a Metropolis algorithm, which was first invented by Metropo-

lis and his co-workers, and any algorithms that use probability Eq. (2.18) can be said to be

Metropolis algorithm. The Metropolis algorithm we introduced here is a single-spin flip al-

gorithm. For Ising models with ferromagnetic interactions, i.e., Jij = 1, this works quite

well. But when disorder is added, Metropolis is insufficient because the energy landscape

can be very complicated with many metastable states. When temperature is low, the dynam-

ics of spin system can be very slow because the acceptance probabilities (Eq. (2.18)) are

often exponentially small. Therefore, for complex systems like spin glasses we need better

ideas from different perspectives.

2.4.2 Parallel tempering

Parallel tempering is a replica-exchange Markov-chain Monte Carlo algorithm first de-

veloped by Hukushima [49]. The basic idea is to swap the replicas from high temperatures

and lower temperatures to improve the thermodynamic procedure. As an additional move

to Metropolis algorithms or other Monte Carlo algorithms, parallel tempering can efficiently

overcome metastable states. In principle, NT replicas of the system are randomly initialized,

and each of these replicas is performed at a range of temperatures {T1, T2, ..., TNT }. To swap

the states between replicas, configurations at different temperatures are exchanged based on

the Metropolis criterion, which is

P (Ei, Ti ! Ei+1, Ti+1) = min{1, exp [�E��]} , (2.19)
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where �� = 1/Ti+1 � 1/Ti is the difference between the inverse temperatures and �E =

Ei+1 �Ei is the difference in the energy of the two replicas. By swapping the configurations

between different configurations at high temperatures available to the simulations at low

temperatures, and vice versa. This method results in a very robust ensemble that can sample

both low and high-temperature configurations.

For parallel tempering, the choice of the temperature set has a significant effect on the

performance [50]. Large temperature gaps between replicas will result in low acceptance

of swap because replicas with large temperature gaps tend to have fewer states in common

and from Eq. (2.19) we can see that the acceptance rate will be low if �E is large. If the

temperature gaps are small, large number of CPU hours are needed [51]. By performing

parallel tempering with other algorithms like Metropolis algorithms, the low-temperature

problem can be efficiently resolved for intermediate size systems because the swap between

replicas with high and low temperatures can help systems get out of metastable states.

2.4.3 Houdayer cluster algorithm

As mentioned before, pure Metropolis could face the problem of getting stuck in metastable

states and parallel tempering can help get the system out of the local minimums. Another

tough problem in Monte Carlo is called “critical slowing down”, which means that the auto-

correlation time is given by:

⌧ ⇠ ⌘z, (2.20)

with z ⇠ 2. Because when the temperature is at the critical point the correlation length grows

as large as system size, then ⌧ will diverge too, which means the system will suffer a severe

critical slowing down. In this situation, single spin flipping Monte Carlo simulations do not

work well, therefore a cluster update is required.

Houdayer cluster move is a global update algorithm that originally was designed for two-

dimensional Edward-Anderson model, and was proved to be able to significantly improve the
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thermodynamic procedure so that it is possible to reach much lower temperatures and much

large system sizes than as ever been reached [52]. To perform the algorithm, first, we need

to introduce two replicas with local overlap denoted by:

qi = S1
i S

2
i , (2.21)

which defines two domains in the lattice, one with qi = �1 and the other one with qi = 1.

The clusters are defined as the connected parts of this domain. By “connected” it means two

spins having a bond Jij between them. One cluster move includes that first we randomly

pick a site with qi = �1, then find the whole cluster that includes this site and flip the spin

on each site in both replicas. By doing this cluster move we can see that in each replica a new

configuration is created and the sum of total energies of two replicas stays the same. This

property is an important feature to keep the detailed balance for a reject-free cluster move:

PC1!C2 = min(1, exp[(�2 � �1)(H2 � H1)]), (2.22)

here C represents the configuration of the replica, � = 1/kT and H denotes the energy of the

replica and the subscript denotes the index of the replica. In this way, the Houdayer cluster

move is a reject-free multi-spin flipping Monte Carlo move that keeps the detailed balance.

Only Houdayer cluster move is not ergodic, therefore for simulations on thermodynamic

systems, a simple way to achieve ergodicity is to add another Markov-chain Monte Carlo

such as Metropolis algorithm.

2.5 Optimization

Optimization problems are very common in daily life. For example, when driving to a

destination we always want to find the shortest route that can b considered as a “optimal

solution” for the trip. Sometimes we need to find the “optimal solution” amongst all the
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options that are constrained in a certain range. For example, when driving to work we only

get to pick these routes that are suitable for your vehicle. Mathematically, optimization can

be described as the problem of finding the best solution from a feasible solutions [53]. In

general it can be defined as follows:

minx f(x),

gi(x)  0, i = 1, ..., m,
(2.23)

where gi(x) is called “ constrains”. To solve this type of problem we can introduce “Lagrange

multipliers” [54], which re-expresses Eq. (2.23) as follows:

LP = f(x) +
mX

i=1

↵igi(x), i = 1, ..., m, (2.24)

where we minimize w.r.t x, ↵i, and ↵i is a Lagrange multiplier. Based on the properties

of function f(x), there are many different methods to find the optimal solution. For exam-

ple, if f(x) is quadratic and gi(x) is linear then the problem is convex, which means it has

unique optimal solution [55, 56, 57]. In general we can use Karush-Kuhn-Rucker (KKT)

[58] approach to solve it.

Similarly, in physics, each system can be described by a Hamiltonian. This function

fully describes the behavior of the said system, from a simple ball tossed across a courtyard

to a magnetic material or a quantum system. The Hamiltonian describes the dynamics and

evaluating the Hamiltonian of a physical system for a given set of parameters and variables

results in the energy. In the simplest Ising representation, for a system with N magnetic

moments (variables), 2N possible arrangements of the variables are allowed. Because the

number of arrangements grows exponentially fast with the size of the input N , statistical

physics, where ensembles are studied, is the tool of choice. The study of magnetic systems

is thus closely related to constraint optimization problems (COP) [8], because the magnetic
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moments can be identified with the variables of a COP and the Hamiltonian with the set

constraint-optimization formula. In physics, a system is in its ground-state equilibrium when

the energy of a Hamiltonian system is minimal, i.e., the ground state of a magnetic system

corresponds directly to the minimum of a COP cost function. The relation between the

physical model and optimization problem can be described in Table. tab:opt.

Physics terminology Optimization terminology

Hamiltonian �! cost function
Ising spin �! variable
spin flip �! variable update
ground state �! minimizing configuration (solution)
Monte Carlo �! stochastic search
cluster �! connected component
temperature �! parameter that influences variable flips
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3. DETECTING CRITICAL TEMPERATURE OF A DISORDERED SYSTEM WITH

CONVOLUTIONAL NEURAL NETWORKS AND THE IMPACT OF POISONED

TRAINING

Machine learning algorithms are statistical methods for learning information from data,

which has been studied for decades. Recently machine learning became a hot area for both

theoretical research and practical applications due to fast developments in computer science.

The field encompasses many methods such as lasso [59, 60] and sparse regression [61, 62],

classification and regression trees [63, 64, 65], and boosting and support vector machines

[66, 67, 68, 69, 70]. Neural networks [71, 72] are one of the most versatile and powerful

tools. They have been well developed and widely used from image recognition to self-

driving cars [73, 74]. Recently machine learning algorithms, especially neural network-

related algorithms have been applied in studying statistical and condensed matter physics

[25, 26, 27, 75, 76, 77, 78, 79]. The advantage of neural network, especially convolutional

neural networks [55, 80, 81] is the ability of learning patterns of various graphs. For instance,

in [27] the authors use the configurations generated from a two-dimensional Ising model to

train a convolutional neural network, then use this network to detect the phase transition

of the two-dimensional Ising model. This suggests that the convolutional neural network

algorithm might have the ability to detect the phase transition of a system with Boolean

variables like the Ising model.

3.1 Motivation

We apply the neural network algorithm on spin-glass systems [4, 18, 82] with disordered

magnetic moments aligned in special patterns. Due to the existence of frustration, Monte

Carlo simulation usually takes a huge number of CPU hours to reach thermal equilibrium

for large system sizes [83]. While Ref. [84] already shows the potential utility of machine
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learning and works around the issues imposed by different observables typically measured

in spin-glass simulations, here we develop a more reliable and systematic usage of convo-

lutional neural networks with finite size scaling [85, 86] to detect the phase transition of

spin-glass systems. We note that similar to the Binder ratio [4, 87, 83] classification prob-

ability has finite size effect as well. Furthermore, finite size scaling can be used to extract

the critical temperature and critical exponents from the classification probabilities of systems

with different sizes.

More importantly, in Refs. [88, 89, 90] the authors show that data poisoning is very

crucial in machine learning. For instance, attackers can deliberately influence the training

dataset to manipulate the results of a predictive model [91, 92], which means that the results

from machine learning algorithms can sensitively rely on the inputs. In our case, the poisoned

data can come from the training data by Monte Carlo with incorrect parameters. For example,

when we generate training data, we might either mislabel the training data, which can lead

to a misclassification on the following prediction stage or use the training data from a system

in a bad equilibrium. To well evaluate how poisoned data impact the prediction, we conduct

experiments from different angles to demonstrate the importance of training data.

In experiments, we implement neural network architectures using the Tensorflow [93]

library in python, which is a widely used deep learning [55, 94, 95, 96] tool developed by

Google. First, we calculate the classification probabilities from different system sizes. Then

we extract the phase transition temperatures and the corresponding exponent indices using

finite size scaling. The results match the ones from Monte Carlo [83] very well. Furthermore,

we generate sets of poisoned data from different perspectives to train the neural network, then

estimate how the results are affected by the poisoning.
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3.2 Statistical learning and convolutional neural networks

Statistical learning, also referred to as machine learning, uses data to approximate and

predict trends in a model. Specifically, there are two categories of machine learning algo-

rithms: supervised learning and unsupervised learning [56]. For supervised learning, each

data point includes a predictor and a response variable: (xi, yi), where xi could be a vec-

tor of p features: xi = (x1
i , x

2
i , ..., x

p
i ). Depending on whether the response variable yi is

quantitative or qualitative, supervised learning can be subdivided into two subcategories: re-

gression and classification. For regression, the outputs belong to Rn, n = 1, 2, ..., and the

goal is to predict the conditional mean, f(xi) = E(yi|xi), which can be proved to have the

minimum prediction error as a prediction function [56]. For classification, the outputs are

categories, Ĝi, and the goal is to assign each input to its corresponding category. Typically,

we would pick the category that maximizes the conditional probability, P (yi = Ĝi|xi), a

method used in the Bayes classifier [56]. For the scope of this dissertation, we focus on

supervised learning.

First let us look at a simplified model called projection pursuit regression (PPR). Let us

assume that we have an input vector X with p components, and a target Y . Let !m(m =

1, 2, ..., M) be unit p-vectors of unknown parameters (M is the number of parameters). The

PPR model has the form:

f(X) =
MX

m=1

gm(!T
mX). (3.1)

By forming nonlinear functions from linear combinations of predictors, we are generat-

ing a large class of models. PPR can be stated as having the “general” form of these models.

Based on PPR model we can further introduce a toy model, which is also called a “single

hidden layer back-propagation network”. For a classification problem with K categories, we

begin with K units, where the kth unit models the probability that a data point belongs to

21



class k. There are K target measurements Yk(k = 1, ..., K) with each serving as Boolean

variable for the kth class. The target Yk is modeled as a function of linear combinations of

Zm, where, as shown in Eq. (3.2), Zm is created from linear combinations of input predictors:

Zm = �(↵0m + ↵T
mX), m = 1, ..M,

Tk = �0k + �T
k Z, k = 1, ...K,

fk(X) = gk(T ), k = 1, ..., K,

(3.2)

where Z = (Z1, Z2, ..., ZM), and T = (T1, T2, ..., TK). There are numerous options for the

activation function �(v). The standard choice would be:

�(v) = 1/(1 + e�v), (3.3)

because we have finer control over the function’s transition from linear to non-linear. But

in modern deep learning implementation, Rectifier Linear Unit(ReLU) is a better choice

because it could avoid the function from saturating [55]:

�(x) =

8
>><

>>:

x if x > 0

0 otherwise.
(3.4)

The output function gk(T ) allows a final transformation of the output vector T and is

usually the softmax function, which can make final result in the region of (0, 1]:

gk =
eTk

PK
l=1 eTl

. (3.5)

The units responsible for computing derived features Zm are called hidden units because

they are not directly observed. In real applications, the network typically has more than one
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intermediate layer, especially in deep learning models. Since this method can theoretically

model any function, the network can be very complex.

For convolutional neural networks (CNN) local convolution rather than global linear

transformation is used before nonlinear operations are applied. Local convolutions take into

account connections between neighbors, yielding serious benefits if our input is a graph with

strong local connections. Assume that our data is a two-dimensional grid of pixels, then if we

use Zp
i,j,k to denote data from the pth layer and Kp

i,l,m,n to denote the kernel for convolution

which provides the connection from the pth layer to the (p + 1)th layer, we have:

Zp+1
i,j,k = �(

X

l,m,n

Zp
l,j+m�1,k+n�1Ki,l,m,n), (3.6)

where i is the index for channels in the pth layer while l is the index for the channels in the

p + 1 layer. j and k are indices for rows and columns while m and n are the indices for the

convolution.

3.3 Previous research: application of fully connected neural networks on ferromag-

netic Ising model

The Hamiltonian of a two-dimensional Ising model in the absence of an external mag-

netic field is given by [25]

H = �J
X

hi,ji

�z
i �

z
j (3.7)

where J = ±1 is the coupling constant for ferromagnetic and antiferromagnetic system

respectively, and �z
i = ±1 is the Ising spin on site i. For a lattice with length L, the number

of spins is N = L2 and the number of states is up to 2L. Using the Monte Carlo method,

spin configuration weighted by Boltzmann distribution can be prepared at any temperature

on a specific lattice structure. Various observables, such as magnetization and specific heat,

can be calculated from these samples to study the thermodynamic properties of the system.
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The existence of a phase transition between low-temperature ferromagnetic phase and high-

temperature paramagnetic phase [41, 97] makes it possible to classify the two types of phase

by using supervised machine learning instead of thermodynamic observables [25].

To set up the machine learning model, the first thing is to prepare training and testing data.

We implement a standard Monte Carlo simulation with C to thermalize spin configurations

of lattice size L = 8, 16, 32, from T = 1.0 to T = 3.5 with a step �T = 0.05, and label the

configurations below T = 2.25 as low-temperature phase (“1”) and those above T = 2.30

as high-temperature phase (“0”). Two hundred independent samples are generated at each

temperature, so the total sample size is 10200. The data is ready to use after being split into

70% training set and 30% testing set.

!"

!#

!$

Input Layer

Hidden Layer

Output Layer

Figure 3.1: A schematic of the fully connected neural network used in our simulation. Data
representing spin configurations are fed into the model through the input layer and learned
by the hidden layer. The output layer return values indicating how likely an input state can
be classified as in the low-temperature phase.

We construct a fully connected neural network with one hidden layer of 100 neurons and

an output layer with only one node (Fig. 3.1). The arguments of the hidden layer neurons are
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given by

z1 = W 1x1 + b1 (3.8)

where W1 is the weight matrix of size (100, N), b1 is the bias vector of size (100, 1), and

x1 = (�z
1, �

z
2, . . . , �

z
N)T is the spin configurations. In our neural network, the activation

functions of the hidden layer and output layer are set to be sigmoid function, which can be

written as

S (x) =
1

1 + e�x
(3.9)

It follows that the arguments of the output layer can be found in a similar manner

z2 = W 2x2 + b2 (3.10)

where W2 and b2 are the weights and bias respectively, and x2 = S (z1) is the output of the

hidden layer. The final result is given by

y = S (z2) (3.11)

which is an indicator of how likely a particular spin configuration is in low-temperature

phase. The neural network is implemented by using TensorFlow [98] with Keras library. To

prevent overfitting, we use the binary cross-entropy cost function with L2 regularization in

the training.

A wide range of spin configurations on a square lattice at temperatures below and above

Tc are prepared by Monte Carlo simulation, without labeling which phase they are in, to

evaluate the performance of our neural network. The evaluation data sets have never been

fed into the model during training and testing. A thousand evaluation samples are generated

at each temperature to do statistics. As shown in Fig. 3.2(a), our neural network can cor-

rectly identify the phase of a given spin configuration at temperature T from the evaluation
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Figure 3.2: Parameters from different hidden layers in two-dimensional model. (a) The out-
put layer averaged over a set of evaluation data as a function of T/J , for square lattice of size
L = 8, 16, 32. The vertical dash line marks the critical temperature in thermodynamic limit,
Tc/J = 2/ ln(1 +

p
2), and the vertical solid line is the estimated location of the crossover

point for systems of different size. (b) Finite-size scaling of the averaged output layer as
a function of L1/⌫⇤

(T � T ⇤
c )/J , where ⌫⇤ = 0.98 and T ⇤

c /J = 2.273. Data from lattice
size L = 8, 16, 32 collapse to one curve. (c) and (d) Hidden layer arguments as a func-
tion of the magnetization of manually generated spin configurations with linear increasing
magnetization, before and after training, respectively.

data set. Finite-size scaling with estimated ⌫⇤ = 0.98 and T ⇤
c /J = 2.273 illustrates the

collapse of data for different lattice size, which is a characteristic feature of second-order

phase transition (Fig. 3.2(b)). The estimated T ⇤
c /J , and ⌫⇤ are close to the theoretical value

Tc/J = 2/ ln(1 +
p

2) and ⌫ = 1. This result also suggests the predictions made by our
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Figure 3.3: Parameters from output layer in two-dimensional model. (a) The output layer
averaged over a set of evaluation data as a function of T/J , for triangular lattice of size
L = 8, 16, 32. The vertical dash line marks the critical temperature in thermodynamic limit,
Tc/J = 4/ ln 3, and the vertical solid line is the estimated location of the crossover point for
systems of different size. (b) Finite-size scaling of the averaged output layer as a function of
L1/⌫⇤

(T � T ⇤
c )/J , where ⌫⇤ = 0.98 and T ⇤

c /J = 3.645. Data from lattice size L = 8, 16, 32
collapse to one curve.

model are physically correct.

To understand what happens in the hidden layer and why the machine can learn to classify

different phases, we manually generate spin configurations x with linear increasing magneti-

zations and plot all the components of hidden layer argument given by Eq. (3.8) as a function

of the magnetization m(x). At the beginning of training, the weight and bias are randomly

initialized from a normal distribution with µ = 0 and � = 1, so there is no explicit correla-

tion between W1x+b1 and m(x) (Fig. 3.2(c)). After the training is completed, the elements

of W1 and b1 are adjusted so that some components of W1x + b1 become constants and

the others are approximately linear functions of m(x) (Fig. 3.2(d)). These results indicate

that, in the hidden layer, the model can learn that magnetization is the “rule” that connects

different spin configurations to different phases.

A more powerful aspect of the neural networks is the ability to solve problems beyond its
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original design [25]. To demonstrate this, we evaluate our model, already trained by square-

lattice spin configurations, by feeding into the evaluation data set produced by Monte Carlo

simulation onto triangular-lattice Ising spins. As shown in Fig. 3.3(a), our model is able to

classify the phases of triangular lattice Ising spins, and data collapse in finite-size scaling

with ⌫⇤ = 0.98 and T ⇤
c /J = 3.645 also indicates the existence of a second-order phase tran-

sition (Fig. 3.3(b)). The estimated T ⇤
c /J and ⌫⇤ is close to the exact value Tc = 4/ ln 3 and

⌫ = 1, and are consistent with the values reported in Ref. [25].

We have shown that the artificial neural networks can be used to classify phases of two-

dimensional ferromagnetic Ising model and identify phase transitions. The model trained by

square-lattice Ising spins can be directly applied to the case of a triangular lattice. We expect

the model could make more precise predictions by extending to a deep neural network (three

or more hidden layers) [99] or a convolutional neural network [100].

3.4 Model

The model we study for disordered systems is the three dimensional Edward-Anderson

Ising glass model [5] without field, which is described by Hamiltonian

H = �
X

hiji

Jijsisj, (3.12)

where each Jij is a random variable generated from a certain probability distribution. Here,

couplings Jij come from two distributions, one from a Gaussian distribution with zero mean

and unit variance and the other one from a bimodal distribution. In this work, we demon-

strate how to use a convolutional neural network to detect the phase transition of a three-

dimensional Edward-Anderson model with a bimodal distribution by using the network

trained with the data from a Gaussian distribution.
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3.5 Implementation of convolutional neural networks

In [27] authors successfully use convolutional neural networks to detect the phase tran-

sition of two dimensional Ising model with the spin configurations as input. They also show

that the impact of convolution in the network is very important compared to the pure neural

networks, which can be explained by the fact that the interactions between spins are from

the nearest neighbors, therefore the local convolutional filters help more in extracting infor-

mation about local structures of the spin patterns than just a global linear function as used

in pure neural networks. For the same reason, in our model, we use convolutional neural

networks as well. But in our model, we use convolutional overlaps as input instead of spin

configurations. The reason is that in spin glasses the order parameter is the configurational

overlap [101, 83] between two replicas, which is defined as follows:

q↵� =
NX

i

S↵
i S�

i , (3.13)

where ↵ and � denote two independent replicas of the same system. Since the configura-

tional overlaps (3.13) include the information about phases, we expect that different phases

have different overlap patterns similar to grid-like graphs. Therefore, in the region of a spe-

cific phase, it is reasonable to believe that the probability (classification probability) for the

convolutional neural network to identify the phase correctly should be larger than 50%. Only

at the temperatures that are close to the phase transition point does the classification prob-

ability approach 50%. Based on this hypothesis, our task is to identify the temperature at

which the classification probability is 50%. This temperature is our estimation of the phase

transition point.

In order to quantitatively process the classification probabilities from the simulations, We

define a function p(T, L) to represent the classification probabilities, which is a function of

temperature t and system size L. In prediction, for each system size we average over 500
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samples to calculate the classification probability at each t. Also similar to [25, 26, 27],

we label all the prediction samples “0”, so that we can expect p(T, L) to be a monotonous

function of t at a fixed L. The reason is as follows: usually we expect the lowest probabil-

ity (0.5) happens around the “confusing area”, which is the vicinity of the phase transition

temperature, and the closer the temperature is to the phase transition temperature the more

“confused” the network would be in term of prediction. Therefore we always expect a “U”

shaped pattern for the classification probability as a function of T with lowest point being at

the phase transition temperature. But here we mislabel all the samples from category “1”, so

that half of the “U” shape turns to the mirror image of the other half, which means the whole

function is a monotonic function of T . From the scaling hypothesis of the theory of critical

phenomena, we expect p(T, L) to have the following behavior in the vicinity of the critical

temperature Tc:

hp(T, L)i = F̃
⇥
L1/⌫ml (T � Tc)

⇤
, (3.14)

in which the average is over disorder realizations. Note that the critical exponents ⌫ml are

different from the ones calculated from physical quantities. Due to the limited system sizes

that we have studies, finite size scaling (FFS) must be used in order to reliably calculate the

critical parameters at the thermodynamic limit. Assuming that we are close enough to the

critical temperature Tc, the scaling function F̃ in Eq. (3.14) can be expanded to a third order

polynomial in x = L1/⌫ml (T � Tc).

hp(T, L)i ⇠ p0 + p1x + p2x
2 + p3x

3. (3.15)

First we evaluate ⌫ml by noting that to the leading order in x, the derivative of hp(T, L)i in
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Eq. (3.15) with respect to temperature has the following form:

dhp(T, L)i
dT

⇠ L1/⌫ml
⇥
p1 + 2p2L

1/⌫ml (T � Tc) +

3p3L
2/⌫ml (T � Tc)

2⇤ . (3.16)

Therefore, the extremum point of dhp(T,L)i
dT will scale as

dhp(T, L)i
dT

|T=T ⇤ ⇠ L1/⌫ml . (3.17)

A linear fit in logarithmic scale will then give the value of ⌫ml which is then used to estimate

Tc. To do so we turn back to Eq. (3.15) where we realize that the coefficient of the linear

term with L1/⌫ml as the independent variable is proportional to (T � Tc) which will flip sign

at T = Tc. Alternatively, we can vary Tc until the data for all system sizes collapse to

a common third order polynomial curve. This is true because the scaling function F̃ as a

function of L1/⌫ml (T � Tc) is universal. The error bars can be computed using the bootstrap

method.

For training, we use the configurational overlaps from the three-dimensional Edward-

Anderson model with Gaussian distribution using Monte Carlo simulation. The details of

the parameters in Monte Carlo are listed in Table. 3.1 and the parameters for Monte Carlo

simulations that generate the configurational overlaps from bimodal distribution are listed in

Table. 3.2.

In order to cover the disorder, we use the same amount of instances as in Monte Carlo

simulation [24] with 100 configurational overlaps from each temperature in each instance.

Since we already know the phase transition temperature of Gaussian distribution is 0.94

[102], similar to the method used in Ref. [25, 26, 27] for training data we label the convo-

lutional overlaps from temperature above 0.94 “1” and the ones from below 0.94 “0”. For
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Table 3.1: Parameters for training samples. L is the size of system, Nsa is the number
of samples, Nsw is the number of Monte Carlo sweeps for each of replicas for as a single
sample, Tmin and Tmax are lowest and highest temperatures simulated, NT is the temperature
numbers used in parallel tempering method for each system size L, and Ncon is the number
of configurational overlaps for each temperature in each instance.

L Nsa Nsw Tmin Tmax NT Ncon

8 20000 50000 0.8 1.21 20 100
10 10000 40000 0.8 1.21 20 100
12 20000 655360 0.8 1.21 20 100
14 10000 1050000 0.8 1.21 20 100
16 5000 1050000 0.8 1.21 20 100

Table 3.2: Parameter for prediction samples. L is the size of system, Nsa is the number
of samples, Nsw is the number of Monte Carlo sweeps for each of replicas for as single
sample, Tmin and Tmin are lowest and highest temperatures simulated, NT is the temperature
numbers used in parallel tempering method for each system size L, and Ncon is the number
of configurational overlaps for each temperature in each instance.

L Nsa Nsw Tmin Tmax NT Ncon

8 15000 80000 1.05 1.25 12 500
10 10000 300000 1.05 1.25 12 500
12 4000 300000 1.05 1.25 12 500
14 4000 1280000 1.05 1.25 12 500
16 4000 1280000 1.05 1.25 12 500

the architecture of the convolutional neural network, the parameters are listed in Table. 3.3.

We inherit the structure with single layer from the previous work in Ref. [27], and all the

parameters are determined by extra validation sample sets, which are also generated from

Monte Carlo simulations.

Most importantly, in our work, the prediction samples are from a bimodal distribution

which is a different model whose phase transition temperate is not known previously. And

this design can show the ability of convolutional neural networks of detecting the common

features of different phases in different spin-glass models. We also use 4000 ⇠ 10000 in-
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Table 3.3: Parameters and Architecture for convolutional neural networks.

Number of Layers 1
Channels in each layer 5
Filter size 3x3x3
stride 2
Activation function ReLU
Optimizer AdamOptimizer(10�4)
Batch size 1000
Iteration 10000
Software Python with TensorFlow
Hardware Lenovo x86 HPC Cluster with single dual-GPU

Tesla K80 accelerator and 128 GB of RAM

stances to cover the disorder of a bimodal distribution, which is about 30% of the samples

used in Monte Carlo [24]. For each system size, the temperatures range from 1.05 to ⇠ 1.25,

which is in the vicinity of the phase transition temperature. Similar to the other physical

quantities, we further use finite size scaling to precisely extract the phase transition temper-

ature, and the details about the finite size scaling we use are described in the next section.

3.6 Results from a model trained by well-prepared data

First of all, we show that a well-trained neural network can give a very precise prediction

of transition, which has the same accuracy as the Monte Carlo method [24]. Fig. 3.4 shows

the result of neural networks trained with well-prepared data from Gaussian distribution

predicting the phase transition of a bimodal distribution. As presented in panel (a) of Fig. 3.4

there are five sets of data each of which represents the average classification probability at

each temperature for each size. All the data sets smoothly cross in the close region of the

transition point. In panels (b)-(d) we show the estimates of ⌫ml and Tc using the techniques

developed in Section. 3.5.

We want to emphasize that in this experiment, we use fewer instances than in Monte

Carlo, but still obtain the same accuracy. It is promising because most studies on spin glasses
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require a huge number of samples, while in this work not only does the same accuracy is

achieved, but also the sample size is reduced by ⇠ 2/3.

3.7 Results from a model trained by poisoned data

Although the previous section shows that the prediction from the convolutional neural

networks can be very precise and efficient, we still need to test how the poisoned data impact

the final prediction because in experiments or even in simulations error happens normally.

In this simulation, first, we randomly mix the classification labels of the training sample by

the probability of 1%, which is already a very small portion since we use 100 sample from

each temperature from each instance and in average only 1 sample is mislabeled at each

temperature in each instance. Then we train the network by optimized parameters and use

the same samples in the prediction stage.

Compared to Fig. 3.4, Fig. 3.5 shows no clear signal of phase transition because there is

not a common crossing point at a finite temperature. This means that even by poisoning a

very small portion of the training data, the result can be chaos. The reason is that: neural

networks have a large number of parameters, and also the networks have hierarchic struc-

tures, which make the errors easily amplified in propagation [103, 104]. In our case since we

mixed the labels, even by a small portion, the difference between patterns from the spin-glass

phase and the paramagnetic phase becomes ambiguous, which is why in Fig. 3.5 the trend of

each curve is very different from the one in Fig. 3.4.

Furthermore, we test the impact of poisoned training from a non-equilibrium system.

This is similar to what happens in Monte Carlo simulation, in which when you have data

from systems that are not in good equilibrium, there is no way to have a good scaling result.

Fig. 3.6 shows the prediction result from the simulation that uses the training data from a

system that is not in equilibrium. In this simulation, we run 50% Monte Carlo sweeps as

needed to reach an equilibrium on each Gaussian instance for training samples. Then we
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Figure 3.4: Classification probabilities from different system sizes and prediction of phase
transition of a bimodal distribution by a convolutional neural network trained by the data
from Gaussian distribution combined with finite size scaling. In panel (a) there five different
classification probabilities for five different system sizes at different temperatures near the
phase transition temperature. Different data sets cross at Tc ⇠ 1.122. In panel (b) we
measure ⌫ml by performing a linear fit in logarithmic scale using the extremum points of the
derivative of the prediction error with respect to temperature. Panel (c) shows the estimate
of the critical temperature Tc using the coefficient of linear term in Eq. 3.15 (normalized to
1) with L1/⌫ml as the independent variable. The vertical dashed line shows the temperature
where the slope vanishes which corresponds to Tc. Finally in panel (d) we have plotted
the data for all system sizes as a third-order polynomial in x = L1/⌫ml (T � Tc) using the
previously estimated value of ⌫ml and Tc. We observe that the points collapse onto a universal
curve indicating that the estimates are accurate.

35



0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25

1% poisoned

p
[p

re
d
ic

ti
on

er
ro

r]

T

L = 10
L = 12
L = 14
L = 16

Figure 3.5: Classification probabilities for different system sizes of bimodal distribution with
mixed labels by probability of 1%.

follow the same steps as the previous runs. Fig. 3.6 shows that with training by data from

non-equilibrium systems the prediction result shows no consistent crossing point between

data from different system sizes.

3.8 Summary

We have implemented and evaluated a systematic way to detect the phase transition of

a spin-glass system using convolutional neural networks. Our method is nontrivial in two

ways: 1. training model and target model are different. This method has the potential to

make it possible to study a system that is hard to be simulated by using the information from

a relatively easy model. 2.the result is quantitatively precise compared to the traditional

Monte Carlo simulation while ⇠ 1/3 samples are used, which has the potential to benefit

large system size simulations.

More importantly, we test the impact of poisoned training from different perspectives,

which normally happen in research. We test the impact of both mixed training data and non-
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Figure 3.6: Classification probabilities for different system sizes of bimodal distribution
predicted by a convolutional neural networks trained with data from system that is not is
equilibrium.

equilibrium data. Neural networks usually have a large number of parameters, which does

not only mean a powerful ability to learn but also sensitivity to the training data [105]. This

is why the training is very important in this statistic learning model. To obtain a reliable and

robust result, we need to pay attention to the quality of the training data, which determines

the quality of the prediction.

Our method is intuitive. We believe that more advanced algorithms can further improve

the ability to detect phase transitions, especially by using much fewer samples and delivering

a more precise prediction. In this work, we demonstrate the possibility of neural networks

working between two different models which are expected to belong to the same universality

class [106, 24]. In the future, models from different universality classes can be tested for the

ability of neural networks working on disordered systems.
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4. RESTRICTED CLUSTER MOVE ON HIGHLY CONNECTED TOPOLOGIES

4.1 Motivation

The lack of deep understanding of disordered systems such as spin glasses mainly comes

from the difficulty of analytically studying the systems beyond mean-field theory and the

massive computational hours required by numerical simulations. Therefore efficient algo-

rithms such as parallel tempering [107] would make it reasonable to deeply study disordered

systems. However, every algorithm has its own “comfort zone”, beyond which we need other

algorithms to deal with new situations. One of the toughest situations for simulation disor-

dered systems is called “critical slowing down” [50], which means that at the temperatures

close to the critical point, the autocorrelation time is defined by:

⌧auto ⇠ ⇠z, (4.1)

with z > 1 and typically around 2. According to Eq. (2.9) correlation length ⇠ diverges at

phase critical point, therefore ⇠ diverges too. This means that at a temperature close to the

critical point the time it takes to reach equilibrium is indefinite. In the case of Ferromag-

netic systems, cluster algorithms such as Swendsen-Wang [19] and Woff [108] resolve this

problem by flipping the cluster that includes the correlated spins, it works very well for Fer-

romagnetic systems with any dimension. For example, in Wolff algorithm we first select a

random spin, then around this spin we gradually add new spins that are parallel to the initial

spin with probability 1 � exp(�2J/kT ), which guarantees the detailed balance, then flip all

the spins that have been added into the cluster. This cluster move randomizes the spin con-

figurations and updates multiple spins, which can effectively reduce the autocorrelation time.

But it does not work well when the temperature is extremely low because the in that case

almost all the spins align and the acceptance probability for flipping is high, therefore the
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algorithm just flip the entire spin configurations without making new states. Also for large

temperatures, the spins are pointing to random directions, so the cluster size is very small,

which means there is no big difference between “cluster move” and “single spin flipping”.

Thus this algorithm works best right at the critical point.

Similarly Houdayer developed a cluster algorithm [52] based on configurational over-

laps, which does not reflect the spin correlations in the spin system. As we mentioned in

Section. 2.4.3, Houdayer cluster move builds a cluster based on the configurational overlaps

qi = S1
i S

2
i . In this case, the cluster can speed up the equilibration when the cluster is not

extended to the size of the entire system (percolation) or the cluster is not comparable to

a single spin. Therefore, to make the cluster move works well, we still need to avoid the

situations with either small or large clusters. In the previous work [109], based on Houdayer

cluster move a rejection-free cluster algorithm - isoenergetic cluster moves (ICM) is devel-

oped and it works extremely well on spin systems on topologies with low connectivities by

accelerating the equilibration by several orders of magnitudes. One of the most interesting

properties of ICM is that the total energy between two replicas is unchanged, which is of

importance because any Monte Carlo algorithm used as a solver to find ground states of

Boolean variable Hamiltonian can benefit by adding the ICM. Because the ICM keeps the

total energy while generating new spin configurations, it has the potential to help the system

get through the energy barriers, which is a fact to significantly improve the efficiency of the

energy landscape traversal. Therefore for Boolean variable optimization problems, ICM can

be a very efficient solver. But when the dimension is high the connections between variables

are intensive, which causes cluster move to lose its power due to small percolation thresh-

old [109]. This limit restricts our research on problems with high dimensions, which are

very common in both academic and industrial research. For example, SAT instances around

threshold are highly connected if you turn these instances into Ising Hamiltonian. Addi-

tionally, using Ising spin glass instances with a dimension larger than 3 ICM hardly helps
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because of the intensive connection between spins. To update ICM to fit in a solver suitable

for any connection, we used different ways to cut the cluster sizes for spin flipping to try to

bring back the efficiency of cluster moves.

4.2 Equilibration

In Monte Carlo simulations the goal is to simulate the thermodynamic process of the sys-

tems so that we can obtain the physical quantities by averaging over samples recorded during

the process. But before the measurement, we need to make that the system has reached the

equilibrium, which turns out to one of the most important but difficult tasks in simulations.

Since any thermodynamic system can be considered as a subsystem of a bigger closed sys-

tem (a system not interacting with external word), and the interaction between the system

considered and the rest of the bigger system can be described by a heat bath which keeps ex-

changing energy and interacting with the system considered and allows the system to reach

a final equilibrium. Because of the complexity of the interactions, the system will hit every

possible state multiple times during a sufficiently long period. Let �p�q denotes an in-

finitesimal volume that represents a state in phase space of the system, then in a sufficiently

long time, the trajectory of the system will pass the small volume many times. Also if we

use �t to be the accumulated time that the system has stayed in a state that is represented

by volume �p�q, when the total time T approach infinite, then the ratio �t/T reach a limit

[110]:

w = lim
T!1

�t/T. (4.2)

A common explanation about this ratio is the probability that the system is observed to be

hitting the state represented by the given volume of �p�q. If a system is in a state such

that to a high degree of accuracy all the physical quantities are equal to the mean value (w in

Eq. (4.2)), we say that the system is in equilibrium.

Based on the previous theoretical description, during Mote Carlo we always hope to find
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a point after which all the physical quantities will have a stable mean value. A simple and

intuitive way is to record all the measurements of all the physical quantities, then compare

their mean values at different time points to decide which point can be the starting point of

equilibrium. This method is computationally not workable since even for a system of small

size it is impossible to record all the measurements for tens of thousands of Monte Carlo

sweeps. But for systems without disorders like the Ising model, we can usually measure

several physical quantities to test the equilibrium because for simple systems it is safe to

say that to a very accuracy system is in a good equilibrium once these physical quantities

like energy and magnetism have stable mean values. But the story is different for systems

with disorders like spin glasses. Usually, it is very hard to determine if a system has already

reached equilibrium because the existence of disorder and frustration, different quantities

will have different equilibration time, sometimes the difference is significant.

Although it is usually a tough task to determine the equilibrium for systems with disorder,

for spin glasses with Gaussian disorder we have a strong criterion for testing the equilibrium.

In a spin system the internal energy per spin is defined as follows:

U = � 1

N

X

i,j

[hJijSiSji]av, (4.3)

where h· · · iav denotes average over Monte Carlo sweeps and [· · · ]av denotes average over

disorder. If we take a partial integral over Jij we can obtain U from average link overlap

[111]:

U(q`) = �
⌧

z

2

1 � q`

T

��
, (4.4)

here q` is the link overlap

q` =
1

Nd

X

i,j

s↵
i s↵

j s�
i s�

i , (4.5)

z being the number of neighbors per spin and d being the dimension of the system. Therefore
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we can define a quantity � as a criterion to test the equilibrium of systems with Gaussian

disorder:

� = [hU(q`)i � hUi]. (4.6)

When � ! 0, the bulk of the disorder instances are thermalized [112]. Usually this method

gives a reliable estimation of equilibrium for spin-glass system with Gaussian disorder, so

we can use this as a criterion to test the efficiency of an algorithm. In [23], this criterion

is used to test how the Isoenergetic cluster move helps improve the efficiency on different

graphs compared to pure parallel tempering algorithm. And we also use this criterion as one

of the methods to test the efficiency of algorithms in my research.

4.3 Isoenergetic cluster move

Isoenergetic cluster move (ICM) is a reject-free cluster move algorithm based on Hou-

dayer cluster move, and it can be used to any dimensional graphs with low connectivities

(< 50%). Similar to Houdayer Cluster move two replicas for each temperature are required

so that clusters can be built based on the overlaps between two of these replicas. Because the

cluster move along is not ergodic we need to combine this move with one of these Markov-

chain Monte Carlo algorithms such as parallel tempering and simulated annealing. The

algorithm is described as follows [23]: First we perform one or multiple simple Monte Carlo

sweeps, then we build the largest cluster based on Houdayer cluster move which is described

in Section. 2.4.3. Then if the cluster size is large, say bigger than 50% of the entire system

we change the spins in one of the replicas, after which the total energy of two replicas stay

the same due to the spin-reversal symmetry and also the cluster size will be reduced to be

smaller than N/2. After that, we perform the Houdayer cluster mover on all the temperatures

to update multiple spins. Optionally we can add any moves before or after the cluster move

based on the properties of the problem in hand so that we take advantage of the cluster move

while keeping the features of the original algorithm.
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The most important condition for ICM to work is that the topology of the graph should

have a high percolation threshold, which has been numerically studied in Ref. [23]. The

reason is that when the percolation of the graph is small it is relatively easy for the algorithm

to build a cluster that has a similar size as the entire system, which means that flipping spins

in this cluster are almost equivalent to flipping all the spins. Because there are replicas that

have spins pointing to opposite directions flipping spins in a cluster with system size is no

different from swapping the two replicas, so that there are no new states generated by this

cluster move. In Ref. [23] it studies the comparison on the time to reach equilibrium amongst

three different graphs. It shows that the ICM works extremely well on graphs with dimen-

sions around two like two-dimensional Edward-Anderson model and chimera graph, but

ICM does not work well on graphs with relatively high dimension. The reason explained in

Ref. [23] is that for either two-dimensional Edward-Anderson model or chimera, the percola-

tion threshold is larger than 50% so that the largest cluster size is always lower the threshold,

meaning that the cluster will never grow to the size that is comparable to the entire system.

But graphs like three-dimensional Edward-Anderson model has relatively small percolation

threshold, therefore the largest connected component can easily be the cluster that connects

almost the entire system. For this reason, for a graph with low percolation threshold ICM is

equivalent to flipping the whole spins, which does not create new configurations.

We conjecture that if we stop the cluster from growing at some cutoff ratio (cluster

size/total spin number), ICM might still work well because the inefficiency comes from

flipping a large-sized cluster so that the cluster move becomes nothing but swapping two

replicas. Because In the previous work [109], it shows that two-dimensional regular lattice

is the ideal topology for ICM, we assume that the optimal cutoff ratio could be similar to the

ratio as in two-dimensional topology. Besides if we focus on optimization problems we can

give up on the detailed balance when performing the cluster move to improve the acceptance

of the cluster move.
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Figure 4.1: Ratios of the cluster sizes over temperatures of the systems in both two-
dimensional and three-dimensional with L = 8 for Edward-Anderson model with Gaussian
disorder. Here the y-axis is the ratio of the size of the cluster grown in ICM over the number
of potential cluster members, which is the total number of the sites with overlap equal �1
(In ICM the largest number of potential cluster members is set to be N/2).

4.4 Restricted cluster move with detailed balance

As we mentioned before, ICM works much better on a two-dimensional graph than on a

three-dimensional graph because of a relatively high percolation threshold. We simulate the

two-dimensional Edward-Anderson model and three-dimensional Edward-Anderson model

with Gaussian disorder to calculate the ratio of the size of the largest cluster over the size

of all the potential cluster members. From Fig. 4.1 we can see that for a three-dimensional

model when T & J = 1 the ratio is & 0.9, which is much larger than the largest ratio

in two-dimensional. For temperatures < 1 the ratio seems to be in a reasonable range, so

the cluster move might be able to work in this range. But the Tc for the three-dimensional

Gaussian model is ⇠ 1, therefore the potential cluster size is either very small or very large.

Because we already limit the cluster size to be smaller than N/2, for temperatures < 1, the

cluster size is very small, which means the gain is limited. Unfortunately due to the reasons
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we just mentioned ICM does not work for the three-dimensional model. Here we propose

to modify the ICM as follows based on the maximum cluster ratio in the two-dimensional

model (⇠ 0.72 in Fig. 4.1):
Algorithm 1: RICM with detailed balance

1 Perform one Monte Carlo sweep (N Metropolis updates) in each replica;

2 Count the number of spins that can potentially be the cluster members Np;

3 Build a cluster as we do in Houdyer cluster move, but when the cluster size reaches

the 0.72 ⇤ Np stop growing the cluster;

4 Flip the spins in the cluster built in the last step based on the probability exp[�H�],

�Hbeing the total energy change due to flipping the spins and � being 1/T ;

5 Perform one parallel tempering update for a pair of neighboring temperatures;

0
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Figure 4.2: Result of simulation performed on three-dimensional Edward-Anderson model
of size L = 8 with Gaussian distribution. X axis is the Monte Carlo sweeps in power of
2. Y axis is the difference of linkoverlaps calculated in two ways defined in Eq. (4.6). The
simulation is performed on three-dimensional Edward-Anderson model of size L = 8 with
Gaussian distribution. The maximum cluster ratio is selected to be 0.5 ⇤ 0.72 = 0.36, which
follows the two-dimensional result in Fig. 4.1. There is almost no improvement from RICM
compared with ICM and PT.
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Figure 4.3: Cluster size and acceptance for RICM on three-dimensional Edward-Anderson
model with Gaussian distribution. Left panel: acceptance probabilities for RCIM in two
regions. For small cluster size (red) the acceptance probability is relatively high, while the
acceptance probability is relatively low for large cluster size (green). This means that with
the detailed balance either larger cluster size or small size does not allow RCIM to flip spins
efficiently. Right panel: The cluster ratios of RCIM in two regions. Green one represents the
RCIM with cluster restricted between 10% - 30%, while red one represents the RCIM with
cluster restricted between 30% - 50%.

We apply this restricted cluster move (RICM) on both a two-dimensional and a three-

dimensional model and the result is showed in Fig. 4.2, which is similar to what is studied

in Ref. [23]. To find out if the cluster size is the reason why RICM does not work for three-

dimensional model, we do two sets simulations with different ratios of cluster size over the

entire system size, which is equivalent to what we described in Algorithm 1 but with easier

implementations. The results are shown in Fig. 4.3. We can that when the cluster size is large

(0.3 ⇠ 0.5) the acceptance probability is low while the acceptance is high for small cluster

size (0.1 ⇠ 0.3), which causes the accepted cluster size to be always small. The reason is

that for ICM since it is reject-free all the spins in the cluster will be flipped as long as the

cluster has been built but for RICM, the flipping probability is:

p = exp[�H�]. (4.7)
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which takes on small values for a big cluster since a big cluster causes the energy change

�H to be big while small cluster size allows relatively large flipping probability. Again

the overall effect is a small accepted cluster of spins is flipped, which does not give many

gains. Based on our simulation we can have a conclusion that for a cluster move that is not

rejected-free, as long as the percolation of the graph is small the trade-off between detailed

balance and cluster size makes the cluster move inefficient.

4.5 Restricted cluster move without detailed balance

As we mentioned before Monte Carlo algorithms can be used as optimization algorithms

to find ground states which are the optimal solutions for the original problems. In this case,

we can give up the detailed balance on these algorithms if necessary to improve the effi-

ciency. Coincidently detailed balance is one of the obstacles that make cluster move not to

perform well on highly connected graphs. Therefore we try to give up the detailed balance

on the cluster move so that we have more freedom to select the cluster sizes. We modify the

RICM algorithm as follows:
Algorithm 2: RICM without detailed balance

6 Perform one Monte Carlo sweep (N Metropolis updates) in each replica;

7 Build a cluster as we do in Houdyer cluster move, but when the cluster size reaches a

certain size as we designed preciously stop growing the cluster;

8 Flip the spins in the cluster built in the last step;

9 Perform one parallel tempering update for a pair of neighboring temperatures;

Here we abandon the detailed balance, but to keep the algorithm ergodic, we keep the

Markov-chain Monte Carlo. In Fig. 4.4 we can see that the modified RICM has the advantage

over ICM, but the final value of � is not zero, which means the system could be still in

equilibrium but the ensemble could not be canonical [110]. Furthermore, we use the planted

instances with high connectivities to test if the modified RICM can be used as a solver for

highly connected graphs. The metric we use for this test is time to solution (TTS), which is
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Figure 4.4: RICM without detailed balance under the flipping ratio of 0.167. It shows that
� drops faster on the system with RICM than ICM. Although the system with RICM does
not obey detailed balance, we still consider the � as a criterion that measures if the system
reaches equilibrium but the final distribution is not Boltzmann distribution.

the time a certain algorithm needs to find a ground state. Fig. 4.5 shows that modified RICM

performs even worse than ICM on these highly connected instances. The top panel shows

than in terms of Monte Carlo sweeps ICM takes less than modified RICM, which means that

regardless of implementation ICM is more efficient as an algorithm. Also in terms of the

wall-clock time, ICM still completely outperforms modified RICM, which is presented on

the right panel in Fig. 4.4.

4.6 Summary

We systematically considered several ways to extend the working zone of ICM to highly

connected graphs. We found that as far as detailed balance plays an important role in the

implementation, percolation threshold is the key factor to determine the efficiency for a al-

gorithm that is not reject-free because the acceptance probability for the detailed balance

keep the size of the accepted cluster size in a relatively low level, which makes no gain for

the cluster move. Although abandoning detailed balance can be a breakpoint to make a clus-

48



5.5

6

6.5

7

7.5

8

8.5

9

9.5

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5

R
IC

M

ICM

MCS

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

R
IC

M
(
s)

ICM(s)

TTS

ICM(S)

R
IC
M
(S
)

ICM

R
IC
M

Figure 4.5: Comparison on performances of both RICM and ICM on instances produced in
the way presented in Ref. [1]. Both Monte Carlo and Time to Solution (TTS) are on log
scale. Left panel: Comparison between RICM and ICM on MCS needed to find the ground
states for each solver. It shows that ICM takes less MCS to find ground states for almost all
the 200 instances. Right panel: Comparison between RICM and ICM on the TTS. It shows
that ICM takes less time to find ground states for almost all the 200 instances. All the error
bars are calculated over 200 funs for each instance. The conclusion is that ICM outperform
RICM.

ter move more versatile, the system might end up in a different distribution that has a lower

probability of hitting ground states. So far cluster move works the best for models that have

low connectivities, but as we saw in Fig. 4.1 if we can find a specific temperature region in

which the ratios of the cluster sizes are 30% ⇠ 40% the cluster move can still be efficient.
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5. UNIVERSALITY OF TWO-DIMENSIONAL BOND DILUTED ISING MODEL

In this project, I study the universality in the two-dimensional Ising model with bond

dilution by Monte Carlo simulation. To avoid the effect of the small clusters with zero-

dimension, we consider only the largest cluster in geometry. We mainly study the behavior

of the critical exponent of the correction to the correlation length by simulating the Binder

cumulant in different bond concentration. The numerical calculation and finite size scal-

ing analysis suggest that the critical exponent of the correction to the correlation length is

independent of the dilution, which supports the so-called strong universality scenario.

5.1 Motivation

Critical behavior in topologies with a disorder is of great importance in the research of

phase transition in complex systems. Universality, as one the three pillars for modern theory

of critical phenomena was first brought up by Kadanoff at 1970 [113] and gives a way to

categorize different critical systems into relatively few “universality classes” (two systems

with the same values of local critical exponents and scaling functions belong to the same

universality class, which only depends on some global features such as dimensionality and

symmetry instead of the details of local interactions [24, 113]). A modern explanation of

universality comes from Wilson’s renormalization group theory [114, 115, 116, 117] that a

Tc can be explained as a fixed point of a transformed Hamiltonian of the system, and renor-

malization group also provides a calculation tool for numerical studies of critical exponents.

Besides, for these two-dimensional models, the critical behavior can also be analytically

studied by conformal field theory [118, 119], which has already helped exactly determine

the critical exponents for many two-dimensional models [120, 118, 121, 122]. Although

these analytical and numerical methods have helped statistical physicists made enormous

progress on determining critical exponents for various universality classes [123, 124, 125],

50



there are few works on systems with dilution. As a result, attention has been drawn to the

area of diluted systems, which belong to the category of disordered systems.

The earliest research in the area of impure systems could be tracked to 1974 when Harris

criterion was introduced for the first time [126]. The Harris criterion can be briefly described

as follows: if the specific heat critical exponent ↵ is positive, disorder would affect both the

critical component and universality class, and if ↵ is negative, the disorder will affect neither

the critical component nor universality class. However, some recent works report that the

Harris criterion is violated in the Voronoi Lattice [127]. For example, the Ising model in

three-dimensional Voronoi lattice has the same critical behavior as the system with complete

geometry [127]. Besides, the two-dimensional three-state Potts model also violates Harris

criterion in such a lattice [128]. Therefore, it is still a debate on how critical behaviors de-

pend on the disordered structure. One of the most interesting and relevant problems is the

criticality in the disordered structure in the two-dimensional Ising model, of which the com-

plete structure has zero value for ↵ so that the issue is not inclusive of the Harris criterion.

Recently, for this situation, physicists have two different points of view. One is that this be-

havior follows the weak universality scenario, meaning that disorder will very slowly change

critical exponents. The other one is the strong universality scenario meaning that critical be-

havior is independent of the disorder. Recent works [129, 130], in which both Monte Carlo

simulation and renormalization group methods are used, have supported strong universality

scenario, but also found the existence of logarithmic corrections to the critical behavior. For

example, in Ref. [129] a two-dimensional Ising model with site dilution is studied by simu-

lating the universal distribution function. The critical behavior is further characterized by an

effective temperature with scaling form as:

TL = Tc + AL�(1+✓)/⌫ , (5.1)
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where TL is an estimated critical temperature for diluted system with size L, which is deter-

mined by the scaled distribution function, ⌫ is the correlation length critical exponent, which

does not vary as disorder involves, ✓ is the correction exponent depending on the strength of

disorder and A is a pre-factor. In Ref. [129] the site dilution is realized by randomly can-

celing a certain number of sites according to the site concentration. Results show that the

correction term ✓ in Eq. (5.1) changes over the concentration of the sites. A very interesting

phenomenon is that in this model even with a very small change in concentration, correction

term varies a lot, especially for the case of concentration dropping from 1.0 to 0.99 while ✓

changing from ⇠ 3.0 to ⇠ 1.8, which is much more significant than the change for the same

concentration difference at other site concentrations. It would be natural to speculate that

this phenomenon might be caused by the zero-dimensional clusters in the diluted system,

which are formed by sites that are not connected to the major connected component. Also in

calculating TL, it is still difficult to quantitatively and precisely identify two identical scaled

distributions represented in two different histograms. We suspect that these two facts can

have an impact on the precision of the estimation on ✓. Although numerical evidence deliv-

ered in Ref. [129] seems to support the strong universality scenario, the existence of different

logarithmic corrections makes the debate about the universality of diluted systems continue.

Therefore studying the diluted two-dimensional Ising model from a different perspective is

necessary.

5.2 Model, Observations and Algorithms

The hamiltonian of the Ising model is given by:

H = �J
X

hi,ji

SiSj, (5.2)

where J is a constant, the summation over i and j goes over all the adjacent spin pairs and

Si = ±1. Periodic boundary condition is applied in our model. Similar to what has been
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done for site dilution in [131], for bond dilution we introduce a variable ✏ij for each bond to

control the bond dilution:

H = �J
X

hi,ji

✏ijSiSj, (5.3)

where ✏ij takes value 1 by probability of p, which is the bond concentration.

To implement the dilution, we need to first decide the concentration p, then generate

some instances to cover the disorder. Considering that we only need the largest connected

cluster in the diluted system, we use the breadth-first search (BFS) algorithm to efficiently

pick out the largest cluster:
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Algorithm 3: Find the largest connected cluster for an diluted instance

10 Initialize a set (st) to store the sites that have already been visited and a vector (v) to

record the indexes of the spins in the largest connected component so far;

11 for i = 1 to i = spin number � 1 do

12 if i is in st then

13 continue;

14 end

15 Initialize a local vector lv for storing cluster member connected to i and a queue

q to perform the BFS search;

16 Initialize q with i;

17 while q is not empty do

18 for d: members in q do

19 Push all the spins connected to d that are not in st into q and lv;

20 Add d into st;

21 Pop out d from q and push d into st;

22 end

23 end

24 if size of lv > size of v then

25 v = lv;

26 end

27 end

28 Reindex all the spins in v;

In simulation we measure Binder cumulant (or Binder ratio) [47], given by:

gm =
1

2

 
3 �

⇥
hq4iT

⇤
av⇥

hq2iT

⇤2
av

!
, (5.4)

54



where h· · · i represents a thermal average,
⇥
· · ·
⇤

is a disorder average over all the instances

and q is the spin overlap defined as follows:

q =
1

N

NX

i=1

S↵
i S�

i , (5.5)

here ↵ and � are two replicas of the system with same bonds and disorder. Binder cumulant

is a dimensionless quantity, which has simple scaling format [132]. But in Eq. (5.4) the

normalized Binder cumulant is in the range g 2
⇥
0, 1
⇤

near Tc, especially below Tc, so that

it is hard to “splay out”, we use the unnormalized binder ratio instead [124]:

V4 ⌘ hm4i
hm2i2

, (5.6)

which we will describe in details in Sec.5.3.

Considering that our simulations are performed near Tc, critical slowing down happens

[50]. So we use a hybrid algorithm where each Monte Carlo sweep includes a Metropolis

algorithm followed by the Parallel tempering algorithm [49] and Wolff algorithm [108]. By

using this combination, the equilibrium for our model is easy to be reached after ⇠ 104

Monte Carlo sweeps, after which we usually need ⇠ 109 more Monte Carlo sweeps to record

data points to obtain an accuracy around 10�4 for V4. For each concentration, the system size

L goes from 20 to 70 with each L having 7 temperatures.

5.3 Finite size scaling analysis and numerical results

According to the scaling ansatz [133, 134], the cumulant ratio V4 has the scaling form

[46, 24]:

V4(T, L) = Ṽ (AV tL1/⌫ , BV L��), (5.7)

where Ṽ is an universal function, ⌫ is the critical exponent of the correlation length, � is

the critical exponent of the correction of the correlation length [135, 136], t = T�Tc
Tc

is the
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reduced temperature and AV and BV are two universal constants. When the system size L

is large enough, the correction L�� can be neglected. The scaling formula in Eq. (5.7) is

reduced to:

V4(T, L) = Ṽr(tL
1/⌫), (5.8)

which is usually the formula to be used to determine the critical exponents [24]. The scaling

relation in Eq. (5.7) has been well established both analytically and numerically and already

been proved that the critical exponent is ⌫ = 1 [135, 136]. Our goal is to focus on the

universality issue on the second part in Eq. (5.7), which is related to the correction of critical

exponent �. We aim to further determine the value of correction of critical exponent �

for both pure Ising model and diluted system so that the two universality scenarios can be

investigated from a different angle from what has been done in Ref. [129] .

Eq. (5.7) can be expanded in powers of L�� as follows:

V4(T, L) = V0(tL
1/⌫) + V1(tL

1/⌫)L�� + O(L�2�), (5.9)

where V0 and V1 are coefficients depending on tL1/⌫ . At T = Tc, Eq. (5.9) can be reduced

to:

V4(Tc, L) = V0(0) + V1(0)L�� = V1 + BL��, (5.10)

here V1 = V0(0) is an universal value for V4 when L is infinity large at critical temperature

and B = V1(0). This is the scaling formula we will be focused on in the this work. We will

see that in order to estimate � we need to know Tc, which is not a problem for pure Ising but

needs a bit more work for diluted systems that will be described later.

First, we consider the pure Ising model. Since the exact Tc is exactly known, we can di-

rectly fit the Eq. (5.10) to the data from simulations. The data from the simulation is showed

in Table. 5.1. Fig. 5.1 shows a good agreement between the equation and the simulated data.
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Table 5.1: Simulation data of V4 for pure Ising model from each size. T is the temperature
of system, the errors are calculated from 400 instances using bootstrap resampling, for each
instance 104 ⇠ 105 Monte Carlo sweeps is run for equilibration and 109 data points are
recorded.

T 20 30 40 50 60 70
2.2686 1.16530(7) 1.16538(8) 1.16516(1) 1.16462(8) 1.16389(7) 1.16359(12)
2.2688 1.16548(8) 1.16583(10) 1.16598(7) 1.16557(7) 1.16538(9) 1.16493(13)
2.2690 1.16590(7)) 1.16662(10) 1.16658(11) 1.16672(8) 1.16662(9) 1.16651(10)
2.2692 1.16636(8) 1.16721(9) 1.16736(9) 1.16747(10) 1.16785(8) 1.16801(11)
2.2694 1.16691(10) 1.16778(8) 1.16830(10) 1.16862(10) 1.16917(11) 1.16928(11)
2.2696 1.16723(7) 1.16832(10) .16898(10) 1.16968(10) 1.17028(14) 1.17082(10)
2.2698 1.16756(8) 1, 16904(7) 1.16995(11) 1.17054(10) 1.17144(9) 1.17236(14)

1.1662

1.1664

1.1666
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Figure 5.1: Fitting Eq. (5.10) to the data from Monte Carlo simulation. Blue data points are
original data from Monte Carlo simulation and the error bars are calculated by resampling
from 400 sets of runs with bootstraps. The estimated � is 1.96(10) and the estimation of
V41 is 1.1679(4) agree well with results in Ref. [124] within error bars.

The correction � and the V41 extracted from the fit agree very well with the results calcu-

lated in Ref. [124]. For diluted systems, we consider the two bond dilution rates p = 0.99

and p = 0.97. These two rates are quite close to 1.00 to ensure that the value of p is far from

the percolation critical point so that we can avoid the impact of another disorder caused by
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the existence of multiple sizable clusters, which is not we are interested in. Compared to

pure model, the most difficult part in implementation is that for pure Ising model we already

know the exact solutions [137, 37] so we only need to consider � for the scaling, while for a

diluted model because we do not know the Tc we have to deal with the Tc as well. However,

we can still freeze the freedom for Tc by using different trial temperatures to narrow down

the error bars for the estimations of �. Indeed Eq. (5.10) only works in a very small vicinity

of Tc, therefore for data from temperatures that are not within the error bars, there is no good

fit for Eq. (5.10).

To determine the trial temperatures we look for the crossing point for the data from

different sizes because according to Eq. (5.8) the leading team shows a universal behavior at

Tc for different sizes, which means that all the data will cross at Tc [50, 24]. Following this

principle, we can continue to narrow down the interval of confidence to a certain size that

is precise enough. In our simulation, we first use the finite size scaling to find the crossing

point, then use a regression function to find the trial temperatures near the crossing point. The

data from simulations for p = 0.97 and p = 0.99 are showed in Table. 5.2 and Table. 5.3.

Fig. 5.2 shows the results of the trial temperatures, which have been narrowed down to the

three temperatures in the region that crossing happens.

After determining the trial temperatures we fit Eq. (5.10) to the data from each of these

trial temperatures, which is demonstrated in Fig. 5.3 for p = 0.97 and Fig. 5.4 for p =

0.99. This approach is reliable because it gives the error in the worst case directly based

on the original data from simulations. For example in our case, by a series attempts for trial

temperatures, we have narrowed down to three temperatures which means that the interval of

confidence is the gap between the highest trial temperature and the lowest trial temperature.

This non-linear fit is similar to the linear fit in Ref. [138]. The reason why we use non-linear

fit is that the propagation errors that come from taking logarithm on Eq. (5.10) can be large

for large L’s, which is also the reason why we simulate system sizes up to 70.
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Table 5.2: Simulation data of V4 for diluted Ising model with bond concentration of 0.99
from each size. T is the temperature of system, the errors are calculated from 400 instances
using bootstrap resampling, 104 ⇠ 105 Monte Carlo sweeps is run for equilibration and 109

data points are recorded.

T 20 30 40 50 60 70
2.23750 1.16244(8) 1.16180(6) 1.16057(7) 1.15923(7) 1.15783(4) 1.15656(5)
2.23830 1.16040(5) 1.16419(7) 1.16372(6) 1.16316(5) 1.16248(4) 1.16187(4)
2.23895 1.16532(5) 1.16610(6) 1.16635(7) 1.16641(5) 1.16639(4) 1.16649(5)
2.23899 1.16540(5) 1.16622(6) 1.16651(7) 1.16666(7) 1.16663(4) 1.16677(5)
2.23902 1.16546(5) 1.16632(6) 1.16663(7) 1.16677(7) 1.16682(4) 1.16698(5)
2.23950 1.16647(5) 1.16782(7) 1.16857(7) 1.16921(7) 1.16976(4) 1.70430(5)
2.24000 1.16749(5) 1.16937(7) 1.17063(7) 1.17178(7) 1.17286(5) 1.17406(5)

Table 5.3: Simulation data of V4 for diluted Ising model with bond concentration of 0.97
from each size. T is the temperature of system, the errors are calculated from 400 instances
using bootstrap resampling, for each instance 104 ⇠ 105 Monte Carlo sweeps is run for
equilibration and 109 data points are recorded.

T 20 30 40 50 60 70
2.1765 1600(2) 1.1589(2) 1.1573(2) 1.1555(2) 1.1538(1) 1.1520(1)
2.1775 1.1620(2) 1.1619(2) 1.1612(2) 1.1603(2) 1.1595(1) 1.1586(1))
2.1784 1.1637(2) 1.1644(2) 1.1646(2) 1.1645(2) 1.1645(1) 1.1644(1)
2.1785 1.1640(2) 1.1649(2) 1.1652(2) 1.1652(2) 1.1653(1) 1.1654(1)
2.1786 1.1641(2) 1.1651(2) 1.1655(2) 1.1655(2) 1.1658(1) 1.1659(1)
2.1795 1.1660(2) 1.1678(2) 1.1691(2) 1.1702(2) 1.1714(1) 1.7250(1)
2.1800 1.1670(2) 1.1694(2) 1.1713(2) 1.1728(2) 1.1745(1) 1.1761(2)

For p = 0.97, the estimated Tc is 2.17850(14), � is 1.97(18) and V41 is 1.1655(9),

which are showed in Fig. 5.3. The results for p = 0.99 are listed in Fig. 5.4, which are

Tc = 2.23899(4), � = 1.96(10) and V41 = 1.1699(3). Within error bars the �s from both

P = 0.97 and p = 0.99 are in a very agreement with the result for pure Ising model, which

is showed in Fig. 5.1, which is supported by renormalization group theory arguments that

the critical exponent of the correction should be the same for the same universality class.
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Figure 5.2: Cumulant ratio V4 as a function of system size L. (a): Data for ratio p = 0.99.
The crossing happens in range from the 3rd to the 5th temperatures (trial temperatures). (b):
Data for ratio p = 0.99. The crossing happens in range from the 3rd to the 5th temperatures
(trial temperatures). These data points at trial temperatures are generated based on a finite
size scaling on the original data. First use finite scaling to find the estimated Tc. Then in the
vicinity of Tc fit Eq. (5.10) to the data until a the regression can not be held inside error bars,
record the up and lower limit of Tc.

And this is also a strong evidence to support strong universality class scenario for disordered

system, which agrees with the conclusion in Ref. [129]. Also we found a slight disagreement

in V41 that by introducing the dilution the V41 changes from 1.1679(4) to 1.1655(4), which

shows a consistent trend of decreasing over disorder.

5.4 Summary

Numerically, we have studied the critical exponent � of the correction to the correlation

length in diluted Ising models with different bond concentration. The results show that within

error bars the correlation keeps the same when introducing disorders by changing the bond

concentration. This supports the strong universality scenario, which agrees with what has

been found in the Ising model with site dilution [129]. Importantly, we do not find the �

slowly changing, which is different from what has been reported in Ref. [129]. Compared to

the implementation of dilution in Ref. [129], we suspect that a logarithmic correction might
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Figure 5.3: Fitting Eq. (5.10) to data from p = 0.97 at each trial temperature. (a): fitting
result for trial temperature 2.17836. For the second and 6th data point the fit can barely keep
within the error bars. This identify the lower boundary of the validity of fitting Eq. (5.10).
For temperatures that lower than this temperature there will never be a good fit then can not
be a estimation of Tc. (b)l: fitting result for trial temperature 2.17850. All the data points stay
within the error bars. This is a good estimation of Tc. (c): fitting result for trial temperature
2.17857. For the 6th data point the fit can barely keep within the error bars. This identify
the high boundary of the validity of fitting Eq. (5.10). For temperatures that higher than this
temperature there will never be a good fit then can not be a estimation of Tc. The estimations
of Tc, � and V41 including the error bars can be read from these three trial temperatures:
Tc = 2.17850(14), � = 1.97(18), and V41 = 1.1655(9).

be caused by the impact of zero-dimensional clusters in diluted models. We also notice that

V41 depends on P , which is controversial to the traditional acknowledgment that the V41

should be universal for the same universality class. This puzzling paradox seems not a single

case [139], which requires further study. Although the asymptotical behavior of V41 seems

not to completely agree with what we expect, the current results on the critical exponent of

the correction to the correlation length tend to support the strong universality scenario.
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Figure 5.4: Fitting Eq. (5.10) to data from p = 0.99 at each trial temperature. (d) fitting
result for trial temperature 2.17836. For the second and 6th data point the fit can barely keep
within the error bars. This identify the lower boundary of the validity of fitting Eq. (5.10).
For temperatures that lower than this temperature there will never be a good fit then can not
be a estimation of Tc. (e): fitting result for trial temperature 2.17850. All the data points stay
within the error bars. This is a good estimation of Tc. (f): fitting result for trial temperature
2.17857. For the 6th data point the fit can barely keep within the error bars. This identify
the high boundary of the validity of fitting Eq. (5.10). For temperatures that higher than this
temperature there will never be a good fit then can not be a estimation of Tc. The estimations
of Tc, � and V41 including the error bars can be read from these three trial temperatures:
Tc = 2.23899(4), � = 1.96(10), and V41 = 1.1669(3).
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6. APPLICATION OF SPIN GLASSES: BOOLEAN SATISFIABILITY PROBLEM

AND BOOLEAN SATISFIABILITY BASED MEMBERSHIP FILTER ⇤

Optimization problems with Boolean variables that fall into the nondeterministic polyno-

mial (NP) class when cast as decision problems are of fundamental importance in computer

science, mathematics, physics, and industrial applications. Most notably, solving Boolean

satisfiability problems, which are related to spin-glass-like Hamiltonians in physics, remains

a difficult numerical task. As such, there has been great interest in designing efficient heuris-

tics to solve these computationally difficult problems. Inspired by parallel tempering Monte

Carlo developed for Ising spin glasses, we present a generalized global searching optimiza-

tion heuristic that can be applied to different NP-complete problems with Boolean variables.

The global searching algorithm allows for a wide-spread sampling of phase space, thus con-

siderably speeding up optimization. More than that a new type of membership filter that is

based on the Boolean satisfiability (SAT) problem has been proposed and studied in Ref. [3].

It shows that this new type of filter (SAT filter) is a promising candidate by offering high

efficiency in the usage of storage. Base on this proposal in Ref. [3], we try to use a new

solver that is based on the Ising spin form and a modified form of SAT filter to improve the

performance of SAT filer.

6.1 Application of metropolis algorithm with parallel tempering on Boolean satisfia-

bility problem

In complexity theory, there is a class of problems defined as P problems [7], which can

be solved by polynomial-time decision algorithms. Another class, Nondeterministic Poly-

nomials (NP) [28, 29, 30, 16], can only be checked for the correctness of a given solution in
⇤Part of this section is reprinted with permission from “borealis - A generalized global update algorithm

for Boolean optimization problems” by Zhu, Z., Fang, C., & Katzgraber, H.G., 2020. Optimization Letters,
https://doi.org/10.1007/s11590-020-01570-7, Copyright [2020] by Springer Nature.
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polynomial time. NP-complete problems are an important subclass of NP problems, which

can be introduced as follows: if A is NP-complete then any solution to A can be mapped in

polynomial time as a solution to any of the NP problems. Therefore, if we can prove that

“some P problem is NP-complete.” then all the NP problems are polynomially solvable. In

the category of NP, the Boolean satisfiability (SAT) problem is a very important problem

due to its useful applications in industry. One of the most important applications of SAT

problems is SAT filter [3], a highly efficient set membership filter that can be used in areas

like web indexing [140] and virus detection [141]. Additional applications of the SAT in-

clude Combinational Equivalence Checking, Automatic Test-Pattern Generation, and Model

Checking. Because these NP problems have many direct or indirect applications in industry,

efficient solvers for NP problems are in demand, which has already boosted the development

of many efficient solvers in computer science. For example, Walksat, developed by Selman

et al. [142], is a classic local search solver for random SAT instances whose working zone

is ratios lower than the threshold. Another solver, Dimetheus [143], is famous for its ability

to work around the instances with ratios higher than thresholds. Although we already have

many efficient solvers, the market is still hungry for more efficient solvers because harder

problems have been discovered and are waiting to be solved. Fortunately, we can develop

new algorithms for general NP problems from the perspective of physics, using the Ising

model [35]. This method is strongly supported by the fact that It has been proven that the

Ising model ⇤ is NP-hard [16], meaning that all NP-complete problems (and all the NP prob-

lems by proxy) can be reduced to Ising models. More than that, many efficient algorithms

have already been developed [50] and widely used in the research area of Ising spin models.

Also, it has been proven that many NP problems, including SAT, MVC, and Traveling Sales-

man problems (TSP), can be mapped to the Ising Models with reasonable effort [17], which

makes physics a promising approach to solve these NP problems. One of my research areas
⇤In this thesis, we refer to the Ising model as the model that could have both positive and negative for

bonds. This fits one of the mathematical definition of spin glass.

64



is to find efficient ways to apply these physics algorithms to solve SAT, and further develop

these algorithms for industrial applications.

6.1.1 Boolean satisfiability problem

An Boolean satisfiability problem (SAT) problem involves determining if there is a set

of values for its Boolean variables (either “False (0)” or “True (1)”) such that the given

Boolean formula can be satisfied. If the goal is to satisfy the maximum number of clauses

instead of the entire formula, the problem is called MAX-SAT. The Boolean formula is built

from variables, operators AND (conjunction, ^), OR (disjunction, _), NOT (negation, ¬),

and parentheses. A formula is said to be “satisfiable” if it can be made True by assigning

appropriate logical values (i.e. True, False) to its variables. Any formula is built by the

block of clauses, which is a combination of literals connected by operators. A literal is either

a variable, called positive literal, or the negation of a variable, called a negative literal. A

clause is a disjunction of literals (or a single literal). A formula is in conjunctive normal form

(CNF) if it is a conjunction of clauses (or a single clause):

CNF : C1 ^ C2 · · · ^ Cm ,

Clause : Cm = li,1 ^ · · · _ li,ki ,

li,k1 is a literal. It could be either xk or ¬xk .

(6.1)

If each clause includes exactly k literals and all clauses are randomly, uniformly and with

replacement drawn, it is called random k-SAT [144]. Random k-SAT instances exhibit quite

regular behavior in terms of the clauses-to-variables ratio. Specifically, given a random k-

SAT instance S , the ratio ↵ determines with high probability the satisfiability of S [145].

Given a fixed k, there exists a number ↵k such that whenever ↵S < ↵k, S is almost cer-

tainly satisfiable, and whenever ↵S > ↵k, S is almost certainly not satisfiable. In Ref. [146]

it is found that ↵k = 2k ln 2O(k), and the experimental values can be found in Ref. [3].
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SAT also has many variants. Not-All-Equal-SAT (NAE-SAT) is one of them. The differ-

ence between random SAT and NAE-SAT exists in the constraints to the solutions. As we

introduced above, a solution to a random SAT CNF is an assignment for all the clauses to

be satisfied. Therefore, to satisfy a single clause, at least one literal should be “True”, which

means the only unsatisfied situation for a single clause is all the literals unsatisfied. But in

NAE-SAT, a clause with all the literals satisfied is considered as “unsatisfied”. This feature

causes the solutions of NAE-SAT (NAE-solutions) to have large hamming distances so that

the solutions can be considered uncorrelated [147]. Considering that uncorrelated solutions

guarantee high efficiency for an SAT filter, NAE-SAT can improve the performance of SAT

filters. The maximum satisfiability problem (MAX-SAT) is also an NP optimization problem

of determining a set of Boolean variables {x1, ..., xN} that maximize the number of satisfied

clauses {C1, ..., CN} in a conjunctive normal form defined in Eq. (6.1).

Many optimization problems in the NP complexity class can be solved by local search

(LS) heuristics. These types of algorithms start from a candidate solution and then iter-

atively moves to a neighboring solution with random or greedy moves of single Boolean

variables. However, either the greedy single-variable dynamics are quickly trapped in local

minima of the cost function, or exhaustively explores plateaus in the landscape where no lo-

cal moves can decrease the cost in a reasonable amount of time. To escape this single-move

traps, randomizing moves can be performed at the cost of additional computational time.

Paradigmatic examples of (stochastic) local search algorithms have evolved from algorithms

such as GSAT and WalkSAT [148] for the maximum satisfiability problem, NuMVC [149]

for minimum vertex covers, as well as simulated annealing and 2-opt algorithms [150, 151]

for the traveling salesman problem. For spin glasses, methods such as extremal optimiza-

tion [152], local genetic algorithms [153] or the cluster-exact approximation method [7, 8]

have been successful in tackling problems with up to approximately 212 variables. In con-

trast to these local search algorithms that rely on updating variables in a certain area of
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the configuration space, when trapped in a local minimum are restarted from a new initial

configuration, global update algorithms target in traversal in the whole solution space. As

we mentioned parallel tempering algorithm is capable of avoiding the system from getting

trapped in local minima, and because it keeps the ergodic property parallel tempering can be

an ideal candidate for a global searching algorithm for the ground states. Fortunately, there

is a close relationship between the statistical physics of Ising spin glasses and a wide vari-

ety of Boolean NP problems [16]. Mathematically, because the decision form of the Ising

spin glass model is NP-complete [32], there exists a polynomial-time mapping to any other

NP-complete problem with Boolean variables [29]. In this way, the original problem can

be transferred to the problem of finding the ground states of the corresponding Ising spin

form. we experiment with an SAT solver [154] that efficiently traverses the solution space,

thus generating typically uncorrelated solutions. borealis — a method that works extremely

well to solve both weighted and unweighted MAX-SAT problems — is based on parallel

tempering Monte Carlo, a standard workhorse in the study of frustrated magnetic systems in

statistical physics. The idea is to randomly propose variable changes using a simple Monte

Carlo method. In addition to the local updates, the system is replicated at multiple tempera-

tures [49, 132, 155]. Swaps between temperatures are allowed, therefore allowing the system

to relax out of local minima and more efficiently sample the solution space. borealis is typ-

ically not faster than highly-tuned SAT solvers. However, it is a generic method that works

relatively well for many SAT-type problems and can produce easily uncorrelated solutions.

6.1.2 Mapping

As we mentioned, for SAT problem the clauses-to-variables ratio ↵ determine if the

instances are solvable, which in the language of statistics there are at least two different

phases in the instance spaces that are separated by the “order parameter” ↵. The detailed

results can be obtained by looking at the SAT problem in the perspective of statistical physics.
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3-SAT (SAT with exact 3 literals in each clause) is the simplest NP model in SAT problem

[7], and the existence of a phase transition can provide a heuristic example of applying

tools developed in statistical physics of disordered system. The clauses can be uniquely

represented by:

cµ,i =

8
>>>>>><

>>>>>>:

+1 if xi 2 Cµ ,

�1 if xi 2 Cµ ,

0 else .

(6.2)

and the total hamiltonian counts the number of unsatisfied clauses,

H =
↵NX

µ=1

��k,
P

i cµ,iSi . (6.3)

In this way, 3-SAT has the following Hamiltonian:

H =
↵

8
N �

NX

i=1

HiSi �
X

ij

TijSiSj �
X

ijk

JijkSiSjSk . (6.4)

For the 3-SAT model, the Hamiltonian has teams up to order 3, which perspectively represent

random local fields, two-spin interactions and three-spin interactions of the corresponding

disordered statistical model:

Hi =
1

8

X

µ

cµ,i ,

Tij = �1

8

X

µ

cµ,icµ,j ,

Jijk =
1

8

X

µ

cµ,icµ,jcµ,k .

(6.5)
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This teams can be extended to any k-SAT problem that results in interactions with up to k

spins in the corresponding statistical model.

Base on the mapping, the ground states of the Hamiltonian for the statistical model cor-

respond to the optimal solutions for the original Boolean variable instance. In the satisfiable

phase of the SAT problem, the ground-state energy is zero while in the unsatisfiable phase the

energy of ground states is positive, which means that there is no solution to satisfy all clauses

simultaneously. Therefore, if we can determine the ground-state energy as a function of ↵,

we can identify the SAT/UNSAT threshold by using statistical physics. In Gibbs-Boltzmann

distribution, each spin configuration is assigned a weight exp[1�H] with � = 1/T , which

means when � approaches 1, the states will be more and more concentrated in ground-

states. When � reaches the zero-temperature limit � ! 1, only ground states maintain.

Therefore, for SAT problems we are only interested in the zero-temperature thermodynamic

properties of the corresponding statistical models. The ground-state properties in 3-SAT

have been studied based on replica-symmetric approximation [8, 156], and the threshold of

SAT/UNSAT for general k-SAT is given by [157]:

↵c(k) = (2k � 0.5) ln 2 � 0.5 + O(2�k). (6.6)

Although the current analytical and numerical tools can give some approximate results, it is

still hard for these local algorithms like RandomWlkSAT to get into a deep area - clustering

phase, which is insider the SAT phase including a phase with solutions concentrated in a

large cluster and a phase with solutions spreading in different small clusters [8].

6.1.3 Implementation of metropolis algorithm with parallel tempering on Boolean

satisfiability problem

Here we use the parallel tempering algorithm combined with the Metropolis algorithm as

an optimizer to solve the SAT problem, which is to find the ground states of the Hamiltonian
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for the corresponding statistical model. As we mentioned, the challenge is from the complex

energy landscapes and the current solvers are not able to execute global searching tasks

due to the existence of local minima. The parallel tempering algorithm, which is designed

to overcome the obstacles from energy landscapes, has already had its success in studying

disordered systems like spin glasses, therefore it is a strong candidate for the optimizer to

tackle the SAT problem in the perspective of statistical physics. It is described by the pseudo

code in (Algorithm 4) (we call it “Borealis”):
Algorithm 4: Borealis

29 Input: SAT instance;

30 Initialize systems with random truth assignments;

31 for MCS = 1 to maxMCS do

32 Metropolis update;

33 Parallel tempering update;

34 Keep track of lowest energy Emin of all systems;

35 end

36 Return Emin;

Here are some comments for this implementation. First of all, for the algorithm to be

able to work on it, we need to use Eq. (6.3) to build the Hamiltonian for the Ising spin

form. Then we set the maximum number of Monte Carlo steps, in which we assume that

up to a certain number of Monte Carlo steps all the configuration space has been visited.

Inside the Monte Carlo loop, one step of Metropolis plus one step of parallel tempering

count as one Monte Carlo step, and the Metropolis algorithm, it is unnecessary to use the

whole Hamiltonian to update the configuration. The reason is as follows: assume we are

working on a k-SAT instance we only need to pay attention to these clauses that are about to

change from “satisfied” to “unsatisfied” or verse Versa. Therefore, for the update, we count

the number of unsatisfied clauses with k � 1 unsatisfied literals that include the variable we
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are currently considering, then update this number. In the implementation, we use a two-

dimensional array to store this “k � 1 unsatisfied” clauses with the first index indicating the

variable and the second index indicating the position of the corresponding position for the

clause. Also, the most interesting ratio is alway around the transition ratio ↵c, which means

the instances are still close to “solvable”, therefore the clauses with k � 1 unsatisfied literals

are way less than other types of clauses. We compared this update method and the whole

update method, and this method can save 20% time in terms of finding the ground states for

the instances below and close to the threshold [154].

6.1.4 Results on maximum Boolean satisfiability problem

We evaluate our algorithm on a broad range of benchmarks, including unweighted MAX-

SAT, partial MAX-SAT, weighted partial MAX-SAT, NAE-MAX-SAT, weighted XOR-MAX-

SAT. The MAX-SAT instances comprise the most wide-spread benchmark, including ran-

dom instances from the Tenth MAX-SAT Evaluation in 2015 [158]. In general, physics-

based algorithms perform less well for highly-structured problems. Therefore, in this study,

we focus on random-instance benchmarks. To perform a scaling analysis we use the makewff

generator [159] with minor modifications to generate random MAX-k-SAT (M/N = 30)

instances and weighted XOR-MAX-2SAT instances (M/N = 1) with certain clause-to-

variable ratios.

Also we have compared our algorithm to four local search solvers: CCLS, DistUP, Dist1.

CCLS combines a configuration checking strategy with a random walk and has won four

categories in the incomplete track of the 2015 MAX-SAT Evaluation. Dist is a local search

algorithm with a clause weighting scheme and variable selection strategy. It has won the

weighted partial random MAX-SAT incomplete track of the 2015 MAX-SAT Evaluation.

DistUP combines an assigning procedure PrioUP with the solver Dist and has won the partial

random MAX-SAT incomplete track of the 2015 MAX-SAT Evaluation.
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We first compare the performance of our algorithm to CCLS, DistUP, and Dist1 from the

Tenth MAX-SAT Evaluation (2015) [160, 161]. Simulation parameters used in the experi-

ments with our algorithm are shown in Table. 6.1. We note that the algorithm is typically

relatively robust to parameter selection, as long as enough temperatures are used. While

this might seem as overhead at first, the speedup obtained by a too large set of temperatures

scales faster than the linear increase in effort due to additional temperatures and is typically

exponential. It is, however, important to select maxMCS carefully to ensure the solution

space is traversed efficiently.

Fig. 6.1, 6.2 and 6.3 show the time to solution (TTS) [162] of our algorithm and CCLS,

DistUP and Dist1 as a function category index for unweighted, partial and weighted partial

random MAX-SAT instances in Tenth MAX-SAT Evaluation (2015), respectively. Our algo-

rithm finds solutions for all instances and significantly outperforms CCLS, DistUP and Dist1

in most categories. In the partial and weighted partial MAX-SAT benchmark instances, PT

greatly benefits from weighting schemes which lower energy barriers without distorting the

original solution space. Fig. 6.4 demonstrates that our algorithm scales better than CCLS

with large k and ratio M/N .

6.2 Application on not-all-equal-satisfiability-based set membership filter

SAT problem has many important applications. One such application is an SAT filter,

a novel application of SAT to the set membership problem, which is applied in many ar-

eas, especially in computer engineering. Probabilistic membership filters are a type of data

structure designed to quickly verify whether an element of a large data set belongs to a sub-

set of the data. While false negatives are not possible, false positives are. Therefore, the

main goal of any good probabilistic membership filter is to have a small false-positive rate

while being memory efficient and fast to query. Although Bloom filters are fast to construct,

their memory efficiency is bounded by a strict theoretical upper bound. Weaver et al. in-
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troduced random satisfiability-based filters that significantly improved the efficiency of the

probabilistic filters, however, at the cost of solving a complex random satisfiability (SAT)

formula when constructing the filter. Here we present an improved SAT filter approach with

a focus on reducing the filter building times, as well as query times. Our approach is based

on using not-all-equal (NAE) SAT formulas to build the filters, solving these via a mapping

to random SAT using traditionally-fast random SAT solvers, as well as bit packing and the

reduction of the number of hash functions. Paired with fast hardware, NAE-SAT filters could

result in enterprise-size applications.

6.2.1 Set membership filter

The set membership problem is ubiquitous. It appears in many industrial [140], computer

science [163, 140], and security applications, and finds applicability across many fields of

research. The problem is simple to pose: Given a pool of subjects D, and a set of interest

Y ✓ D, determine if an element x 2 D belongs to Y . In real-world applications the subset Y

Table 6.1: Parameters for the different experiments in unweighted MAX-SAT, partial
MAX-SAT, weighted partial MAX-SAT. For each instance category simulated, we perform
maxMCS Monte Carlo sweeps for each of the 2NT copies of the system. Tmin [Tmax] is the
lowest [highest] temperature simulated, and NT is the total number of temperatures used in
the parallel tempering Monte Carlo method. Reprinted with permission from [154].

Track category Tmin Tmax NT (Nc) maxMCS

unweighted all 0.05 1.23 25 30000
partial min2sat 0.10 0.50 80 30000
partial min3sat 0.10 0.50 80 30000
partial pmax2sat 0.10 2.05 40 30000
partial pmax3sat 0.10 2.05 40 30000
weighted partial abrame 0.10 39.00 40 30000
weighted partial wmax2sat 0.10 39.00 40 30000
weighted partial wmax3sat 0.10 39.00 40 30000
weighted partial wpmax2sat 0.10 23.50 40 30000
weighted partial wpmax3sat 0.10 7.90 40 30000
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is finite, however, it can be very large. Therefore, determining if x is a member of the subset

Y can be a computationally expensive task. Some technical terms about set membership

problem are explained as follows:

• Let D be a particular domain, from which the element being tested for and the set

being tested against will be drawn. Some examples of such a domain may be the

collection of all the words in the English dictionary, the collection of all the travelers

in an airport, or the collection of all the stars in the sky. Usually, the domain is very

large, potentially infinite.

• Then the set membership problem is the following: given an element x 2 D and a

set of interest Y ✓ D, determine if x 2 Y , here Y is finite, but potentially very

large. If we take the dictionary for an example, D should be the set of all words in the
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Figure 6.1: Time to solution (CPU time) in seconds of our algorithm and CCLS. The hori-
zontal axis lists the different categories for the unweighted random MAX-SAT track in the
Tenth MAX-SAT Evaluation (2015). The time is averaged over all instances in each instance
category and error bars for our algorithm are computed via a bootstrap analysis. Our algo-
rithm significantly outperforms CCLS in all categories except for the high-girth instances
where it is still faster. Reprinted with permission from [154].
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dictionary and Y could be the set of all verbs. Then set membership problem could be

to check if a given string of letters is a word defined in Y .

• If the elements of D have a simple representation and also |Y | is small, a very simple

approach to set membership testing can be taken: compare the given element x against

every member A.

A simple example is the following: Let D be all travelers crossing a country’s border in a

year and Y be a terrorist watch list. The set membership problem is then to determine if a

randomly-screened traveler x 2 D is also a member of the watch list Y ✓ D. For a country

with few travelers |Y | crossing the border, this task is easily accomplished by listing all

members of Y and testing if x is one of them. However, for a large country where millions

of travelers across the border each year, verifying that x 2 Y can be a time-consuming task.

It is therefore desirable to develop a filter that quickly verifies if a particular traveler x is on

partial random MaxSAT
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Figure 6.2: Time to solution (CPU time) in seconds of our algorithm and DistUP. The hori-
zontal axis lists the different categories for the partial random MAX-SAT track in the 2015
Tenth MAX-SAT Evaluation. Our algorithm significantly outperforms DistUP in all cate-
gories except for the MIN-2SAT instances where the performance is comparable (overlap-
ping symbols). Reprinted with permission from [154].
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the watch list Y . In turn, membership filters are not Boolean. If an element x 2 D is sent

through a filter, it will return either maybe or no. While no here is a definite no, maybe is

interpreted as a possible presence of x 2 Y . This means that membership filters have a finite

false-positive rate. However, the storage needed to store the filter is considerably smaller

than the storage needed to store the set Y . Furthermore, the query time is (ideally) faster

than exhaustively searching for x in the set Y . Within the traveler example, this would mean

that when travelers are screened using a probabilistic membership filter, a query returning

no means x 62 Y . However, should this not be the case, then x would be sent to secondary

screening.

An ideal probabilistic set membership filter should, therefore, be fast, have a small mem-

ory footprint, and a low false-positive rate. Traditional workhorses are Bloom filters [164].

These are fast and easy to implement. However, there is an information theoretical up-

weighted partial random MaxSAT
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Figure 6.3: Time to solution (CPU time) in seconds of our algorithm and Dist1. The hori-
zontal axis lists the different categories for the weighted partial random MAX-SAT track in
the Tenth MAX-SAT Evaluation (2015). Our algorithm significantly outperforms Dist1 in
all categories except for the weighted partial MAX-2SAT instances with medium clauses to
variables ratio where the performance is comparable. Reprinted with permission from [154].
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per bound on their memory efficiency. More recently, Weaver etal. [3], introduced random

satisfiability-based membership filters that significantly improved efficiency. At the core of

the filter lies the solution of a complex satisfiability (SAT) formula [165] needed to construct

the actual filter. In this work, we present a variation of Weaver et al.’s SAT filter approach

with a focus on improving the filter building, as well as query times. Our approach is based

on using not-all-equal (NAE) SAT formulas to build the filters, as well as bit packing and

reduction of the hash functions to reduce the query times. Also, NAE-SAT filters have excel-

lent memory efficiency and are fast, therefore ideally suited for deployments on large-scale

applications.

6.2.2 Reminder — probabilistic Bloom filters

Probably the widest used probabilistic membership filters are Bloom filters [164]. Let

D be any set and Y ✓ D with m = |Y |. We assume that the available memory for the

filter BY is n bits. Select a hash function h: D ! Z that maps the elements in D to the
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Figure 6.4: Time to solution (CPU time) in seconds for our algorithm and CCLS as a function
of system size N for random unweighted MAX-SAT instances. The time is averaged over
100 instances for a given system size N . Error bars are computed using a bootstrap analysis
and are smaller than the symbols. Our algorithm outperforms CCLS for all system sizes and
scales better with large k and ratio M/N = 30. Reprinted with permission from [154].
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range [0:n) uniformly and randomly. After having chosen the hash function, the bits of

BY must be initialized to 0. Then, for an element in y 2 Y , we set the bit at h(y) to 1,

i.e., BY [h(Y )] ⌘ 1. To store all y 2 Y , store all elements of Y one by one. In most

implementations there are multiple hash functions h1, h2, . . . hk. In that case h1(y), h2(y),

. . . hk(y) must be computed first. Once that is completed, the bits of BY are all set to 1 at

the respective locations (for a pseudo-code version of the full Bloom filter algorithm, see,

for example, Ref. [3]). To query the filter with an element x 2 D, simply verify that the bits

at all the locations h1(x), h2(x), . . . hk(x) are set to 1. Only when the bits at those locations

are 1, will the filter return a maybe, otherwise the filter returns a definite no. In the latter

case x 62 Y . While Bloom filters are relatively fast, there is a information-theoretical limit

to their memory efficiency [3]. Therefore, fast probabilistic membership filters with a better

memory footprint are desirable.

6.2.3 Satisfiability-based set membership filter

There are two ways to build an SAT filter. Here we only discuss the single-instance filter.

For details on how to build a filter with more than one instance see Ref. [3]. The following

steps are needed to build a probabilistic membership filter based on SAT formulas:

⌘ Build a CNF — We use a set of hash functions h1, h2, . . . , hk to create a random

clause CY with k literals for each y 2 Y with |Y | = m. This means there are m

clauses, which make a random k-SAT instance (CNF) XY . During the process, it

is important to ensure that all literals are different in each clause. Furthermore, the

clause-to-variable ratio m/n should not be too high such that the CNF is not in the

unsatisfied regime.

⌘ Find solutions to the CNF – Once the CNF has been constructed, multiple uncorre-

lated solutions are needed to construct a good filter. It is important to use SAT formulas

for which efficient solvers are known to speed up this step of the filter building process.
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⌘ Store the filter — several (ideally uncorrelated) solutions, these are stored in an array

as the filter. Note that the storage requirements for the filter are considerably smaller

than the original data.

Note that SAT filters do not allow insertions after they have been built, i.e., adding a new

element to Y will require a new filter to be constructed.

To query the filter, the first step is to generate a clause Cx from the elements x 2 D

using the hash functions used to generate the random clause in the first step of the filter

construction process. Then one has to verify if Cx is satisfied by the filter, i.e., all solutions

stored. If so, the filter returns maybe. However, if Cx is not satisfied by any of the solutions,

the filter returns a definite no. A filter is characterized by its false-positive rate, which should

be as low as possible, its memory efficiency, as well as ideally short build and query times.

Probabilistic membership filters have a finite false positive rate (FPR). This means that

for an element x that is not in the set of interest Y the filter might still return a maybe result.

The FPR for SAT filters is equivalent to the probability that a random k-SAT clause can be

satisfied by a specific solution. For a random k-SAT clause, the probability that the clause

can definitely not pass one regular solution is 2�k. Therefore, for a single solution to the

CNF, the FPR is (1 � 2�k). This can be improved, by using s > 1 solutions to the CNF, i.e.,

for s solutions

pSAT = (1 � 2�k)s. (6.7)

Using s > 1 solutions reduces the FPR, but increases both query times and storage require-

ments by a factor s. Note that if the solutions are correlated, then the FPR might not be

reduced by increasing the number of solutions. Therefore, it is imperative to use a SAT

solver that produces as uncorrelated solutions as possible (i.e., with a large hamming dis-

tance). We note that for the special case of building SAT filters with NAE-SAT formulas
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Eq. (6.7) changes to

pNAE = (1 � 2�k+1)s. (6.8)

The memory efficiency of a probabilistic membership filter is defined as the number of

filter bits required per keyword item. As introduced in [3], the memory efficiency ⇠ for a

SAT filter is given by

⇠ =
� log2 p

n/m
. (6.9)

Here, n is the number of memory bits and m = |Y |. For a SAT filter that uses s solutions,

one needs sn memory bits and therefore the efficiency is given by

⇠SAT =
� log2 pSAT

sn/m
=

� log2(1 � 2�k)

n/m
. (6.10)

Again, for the special case that uses NAE-SAT solutions, Eq. (6.10) changes to

⇠NAE =
� log2(1 � 2�k+1)

n/m
. (6.11)

In Ref. [3], it can be rigorously shown that SAT filters can achieve a theoretical efficiency of

1 (i.e., 100%). This is to be contrasted to Bloom filters that have an information-theoretical

upper bound for the efficiency, namely ⇠Bloom  log 2 ⇡ 0.693. This is the main reason why

SAT filters are more desirable than Bloom filters.

In Ref. [3] it is shown that while query times for SAT filters are short, they are still larger

than for Bloom filters. Furthermore, the construction of an SAT filter requires multiple

uncorrelated solutions to a CNF. While efficient SAT solvers exist, some tend to produce

correlated solutions, which thus means that there is potentially a large overhead in finding as

uncorrelated solutions (i.e., with a large hamming distance) as possible. In what follows we

demonstrate how filters designed using NAE-SAT formulas have considerably shorter build,

as well as query times. Furthermore, we show how an NAE-SAT CNF can be reformulated
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into an SAT formula such that one can take advantage of state-of-the-art random k-SAT

solvers. Finally, we show that only one hash function is needed, thus optimally speeding up

build and query times.

As we know, a low FPR is of utmost importance for probabilistic membership filters. In

the case of SAT filters, the theoretical FPR [Eq. (6.7)] can only be reached if the solutions to

the underlying SAT formula are uncorrelated. Because the solutions are from a single SAT

formula, the probability that these are correlated is high unless a typically large effort to find

enough uncorrelated solutions is performed. Here we work around this bottleneck by re-

placing standard SAT formulas with NAE-SAT formulas, because the solutions to NAE-SAT

problems have large Hamming distances (typically around 50% of the number of variables)

and are therefore far less correlated [147]. In our approach, we randomly select NAE-SAT

solutions to build the filter. Because we never know which solution in the pair was selected,

we can state statistically that the average hamming distances would be around 50% of the

number of variables by construction. This saves considerable time when building the proba-

bilistic filter. From now on, unless otherwise specified, we use NAE-SAT solutions.

We first analyze the performance of NAE-SAT filters using traditional random k-SAT

solvers and then show results using borealis. Note that we use similar parameters as used in

Ref. [3] to be able to perform a direct comparison between the results of Ref. [3] on tradi-

tional SAT filters and our NAE-SAT implementation shown here. To be able to use borealis

for NAE-SAT instances, we have modified the original NAE-SAT CNF into an SAT CNF

such that by construction all solutions satisfy the NAE requirement. This is accomplished by

adding a penalty clause to rule out the all-satisfied assignments to each clause in the original

CNF. In the penalty clause, all literals are complementary to the original clause. Then, as

long as the solver finds a solution, the solution is an NAE solution to the original CNF. For
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example,

(x3 _ x18 _ x12 _ x5) ! (x3 _ x18 _ x12 _ x5) ^ (x3 _ x18 _ x12 _ x5). (6.12)

The term on the right now satisfies the NAE constraint and can be handled by SAT solvers,

includingborealis. Because borealis [154] is designed to tackle statistical physics problems,

we need to cast the CNF of the NAE-SAT formula as a physical Hamiltonian (cost func-

tion). We use the number of unsatisfied clauses as a simple cost function for the n Boolean

variables in the CNF. If a cost of 0 is found (in physics, the ground state energy), the config-

uration represents a valid variable assignment to the CNF. Details on the algorithm and its

implementation can be found in Ref. [154].

Table 6.2: Build time in seconds, memory size in bytes and false-positive rate (FPR) in
percent for the k-SAT filter studied in Ref. [3]. The average hamming distance is at least
50%. Simulations were performed on a 2009 MacBook Pro with a 3.06 GHz processor. s
represents the number of SAT solutions used to build the filter.

Filter size Build time (s) Size (bytes) FPR (%)
k = 4, s = 22 20802 44748 24.20
k = 5, s = 44 610 44000 24.86
k = 6, s = 88 643 44144 25.09

Fig. 6.5 shows the memory efficiency ⇠NAE vs the FPR pNAE. Using formulas with

m/n = 10.1 and increasing the filter size m eventually has little effect on the efficiency.

However, for increasing m the FPR pNAE can be reduced to arbitrarily-low values; here be-

low 10�5. The solid horizontal (green) line represents the optimal bound which can easily be

achieved with little numerical effort. Note that the solutions were generated using Dimetheus

[143] because the ratio is close to the threshold.
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Table. 6.3 lists our results for the same instances studied in Table. 6.2, which shows that

NAE-SAT filters is still considerably faster than k-SAT filters. We do note, however, that

borealis works reasonably well for a broad range of ↵ values unlike traditional SAT solvers
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Figure 6.5: Efficiency ⇠NAE as a function of false-positive rate pNAE for a k-NAE-SAT filter.
As m increases for fixed k, the efficiency approaches the theoretical bound (solid horizontal
line). Note that very low FPRs can be obtained. Instances generated with Dimetheus.

Table 6.3: Build time in seconds, memory size in bytes and false-positive rate (FPR) in
percent for the k-NAE-SAT filter case study using borealis. By design, the average Hamming
distance is around 50%. Simulations were performed on a 2013 MacBook Pro with a 2.60
GHz processor. s represents the number of NAE-SAT instances used to build the filter.

Filter size Build time(s) Size(bytes) FPR(%)
k = 4, s = 11 6.2 44748 23.00
k = 5, s = 22 11.0 44000 24.45
k = 6, s = 44 17.8 44144 25.10
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that are tuned to specific regimes of ↵ values. Fig. 6.6 shows the efficiency ⇠ vs FPR p for

a fixed filter size m = 214 and different values of ↵ = m/n (k = 5). borealis performs

reasonably well for a broad range of ↵ values with 8 . ↵ . 19 < ↵c ⇡ 21.11. There

is a decrease of the efficiency ⇠ for small FPRs. This is because m is relatively small and

therefore the number of uncorrelated solutions is accordingly small. As such, finding a set

s of many uncorrelated solutions is difficult. This problem is referred to as finite-size effect

in physics and is easily alleviated by increasing the filter size. For large n/s the finite-size

effects become negligible.
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Figure 6.6: Efficiency ⇠NAE as a function of false-positive rate pNAE for a k-NAE-SAT filter.
Data computed with borealis for different values of ↵ = m/n. Finite-size effects (see text)
are visible due to the small filter size used. However, borealis is an efficient solver for a
broad range of ↵ values.

The last step for the filter is the query, To speed up query times for the NAE-SAT filter

we use bit packing. Given the 64-bit architecture of the benchmark machine, this means

that 64 solutions can be handled in parallel. For the benchmarks, we use a single-core 2013
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MacBook Pro with a 2.60GHz processor and 8Gb RAM. We query 217 64-bit strings. The

hash function used is MurmurHash3 [2]. Note that we deviate from the approach used in

Ref. [3], because, as Fig. 6.7 shows, the difference between the FPR using one or two hashes

is negligible. We did simply change the seed in MurmurHash3 to achieve these results.

This is yet another advantage of our implementation that speeds up query times.
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Figure 6.7: FPR p as a function of the number of solutions s using one, or two-hash functions
in MurmurHash3 [2]. The difference between both approaches is ⇠ 10�5, i.e., negligible.

Fig. 6.8 shows that the query times are approximately similar for different values of s, as

long as there are more than a certain number of solutions. The jump in the data might be due

to buffering issues in the bit packing.

6.2.4 Summary

By using NAE-SAT problems for the construction of SAT filters as first mentioned in

Ref. [3], filter build times can be considerably reduced. Using NAE-SAT formulas to build
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the filters has the advantage that, by design, the solutions tend to be uncorrelated. Further-

more, we show how the NAE-SAT constraint can be accommodated into a random SAT

formula such that standard SAT solvers can be used. Query times in our implementation

are reduced via bit packing and the use of a single hash function. Finally, by using physics-

inspired algorithms such as borealis the filter construction can be further parallelized and

improved further because the algorithm efficiently traverses the solution space.
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Figure 6.8: Query time as a function of the number of used instances s for a NAE-SAT filter
with k = 5, m = 217, and n = 16282. Queried are 217 64-bit strings. Time t is measured in
seconds.
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7. CONCLUSION AND OUTLOOK

In this dissertation, I introduced my interdisciplinary study of algorithms that are applied

to and derived from spin glasses along with the physical properties of Ising spin models.

The motivation is two-folded. On one hand, the fact that the Ising spin form has strong con-

nections with research areas such as combinational optimization [8] and complexity theory

[166] gives the motivation to deeply study the physical properties such as critical behavior,

which is closely related to some NP-hard problems such as Boolean satisfiability problem

[166, 3]. Also, it has already been proved that the Ising spin form is NP-complete [16], there-

fore Ising spin form can be a potential playground to build solvers for these NP problems

[33, 167, 166] by applying the well-developed algorithms in spin glasses to these real-world

problems. On the other hand, the fast development of the software in computer science,

especially in the algorithms for artificial intelligence [168, 169], can generally offer new al-

gorithms for problems in spin glasses, especially for these classification problems such as

detecting phase transitions [25, 26, 27].

One of these most successful applications of artificial intelligence to condensed matter

physics is using convolutional neural networks to detect phase transitions. In Chapter 3, I

demonstrated a systematic approach to quantitatively detect the phase transition of the three-

dimensional Edward-Anderson model with Bimodal disorder using Gaussian disorder. We

successfully find the phase transition temperature at ⇠ 1.122, which agrees with the result

obtained from Monte Carlo [83]. In this work, making a training model. Using different

models in training and prediction is practical because this approach can be a tool to study

new systems based on the data from well-known systems. More than that, I also showed the

importance of training. It shows that either training data from a non-equilibrium system or

a small portion of mixture between two classes (⇠ 1%) can give an unreliable prediction on
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the phase transition temperature. For future research, I think there are two directions can be

further studied. The first one is to test if this approach still works for two models belonging

to different universal classes, which is also a task to test if convolutional neural networks are

capable of recognizing the phases between different types of disorders. This extention can

not only help us study the difference between the phases of models from different universal-

ity classes through the parameters of the networks but also help us test the limit of neural

networks. The second direction is to develop more sophisticated convolutional networks to

gain more accurate estimation of phase transition in spin glasses, which can be a promising

candidate to replace Monte Carlo since we already showed that fewer instances are needed

in this new approach for results with the same accuracy.

In Chapter 4, I systematically explored the extension of ICM to topologies with high

connectivities. In previous work [109], the ICM move is proved to work very well on graphs

with low connectivities because a large cluster reduces the efficiency of the multi-spin update

procedure proposed by ICM. Inspired by the study on ICM, first I proposed to cut the cluster

to a size that is similar to the two-dimensional model, in which ICM works very well. But

a further simulation showed that as long as the detailed balance exists, the trade-off between

cluster size and the acceptance probability could cause the size of the final accepted cluster

to be relatively small so that the cluster update is no different from the single-spin update.

However, the detailed balance is not necessary for optimization problems, which inspired

me to modify the ICM by cutting the cluster size without performing the detailed balance.

Although this reject-free cluster update is similar to ICM, the total energy changes. We

found that this cutting could equilibrate the system faster than ICM, but the final distribution

is probably not Gibbs-Boltzmann distribution. To find out if this modified ICM can bring

speed-up for the highly connected graphs, I simulated the time to solution (TTS) on a planted

model [1] for both ICM and modified ICM. The results show that ICM has an advantage over

modified ICM on both Monte Carlo sweeps and wall clock time. For future research, I think
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it is worthy to look for a local reject-free cluster update that remains the total energy, which

could be a similar cluster move with ICM except that it is local so that it can avoid the trouble

of flipping the entire replica.

Chapter 5 is dedicated to the study of the Ising model with bond dilution. This work

is inspired by [129], which shows that the two-dimensional Ising model with site dilution

agrees with the strong universality scenario with logarithmic correction. In our work, we

realized the disorder by implementing the bond dilution in the two-dimensional Ising model.

For the implementation of the dilution, we eliminated all the zero-dimensional clusters to

avoid the impact on the estimation of the critical exponents. We found that the critical

exponent of the correction to the correlation length does not vary with the disorder, which

supports the strong universality scenario. But a different asymptotical behavior of V41 was

found. In the future, we still need to investigate the reason for the existence of different V41,

which still put the debate between strong and weak universality scenarios in the air.

Chapter 6.1 is my research on an intuitive case of solving the SAT problem using the

Ising spin form. First of all, we map the SAT instance to a Hamiltonian of an Ising spin

model, which is a one-on-one mapping without overhead [166]. Then we use the Metropolis

algorithm combined with the parallel tempering algorithm to simulate the thermodynamic

procedure to find the ground states of the Hamiltonian, which can be mapped back to the

solutions for the original SAT instance. This approach is global because thermodynamics of

the Ising spin model is ergodic. It works extremely well on the MAX-SAT problem because

not like the SAT problem whose solutions always have specific symmetry solutions, MAX-

SAT have more degree of freedom so that they are distributed globally in the configuration

space. Based on the Metropolis algorithm and parallel tempering algorithm, a solver is

developed generally for SAT and SAT related problems, which shows excellent performance

on MAX-SAT instances. This solver is further adapted to help solve the instances from the

SAT filter. By modifying the SAT filter to the NAE form, we developed a Not-all-equal-

89



SAT filter (NAE-SAT filter) that can naturally generate instances whose solutions have large

hamming distance, which can significantly reduce the false positives for the filter. Combined

with the solver’s ability to globally seek solutions, the NAE-SAT filter can have both high

efficiency and low false positives, which makes NAE-SAT filter a promising candidate to

compete with the traditional Bloom filter [170]. For future work, I think we can improve the

performance of the solver by introducing parallel computing such as multi-threads, which

can be very efficient for parallel tempering algorithm since the replicas in parallel tempering

are independent of each other. Other than that because usually the instances from the SAT

problem are highly connected so that global cluster move like ICM does not work well, we

can introduce the local cluster update to speed up the thermodynamics as mentioned in the

last paragraph.

To sum up, this body of work shows a connection between spin glasses and computer

science in terms of algorithms. First I demonstrated that Monte Carlo simulation is not the

only reliable method to study disordered systems. We can also study disordered systems

using artificial intelligence like machine learning by looking into the macroscopic properties

of the graph of configurations. On the algorithm side, I showed that a global multi-spin

cluster update can not be effective for the highly connected graph as long as the detailed

balance is considered. It tells that future work could be focused on looking for a local

reject-free cluster update that can avoid the trade-off obstacle caused by detailed balance.

Secondly, I studied the approach of solving the SAT problem using the Ising spin form. The

success of the Metropolis algorithm combined with the parallel tempering algorithm on the

SAT problem shows the power of global algorithms from spin glasses on optimization. We

already know that the Ising spin form is NP-complete and the mapping is one-on-one without

any overhead, therefore by mapping to the Ising spin form, statistical physics can provide a

new platform for studying NP-problems. For example, we can use phase transitions in the

Ising spin form to study the transitions of the hardness of SAT instances. .
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