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 ABSTRACT 

 

Polyelectrolyte multilayers (PEMs) are thin films formed by the alternating 

deposition of positively and negatively charged polyelectrolytes. They have become 

materials of great interest over the past few decades due to their highly adaptive properties. 

Water plays an important role in influencing the physical properties of PEMs, as it can act 

both as a plasticizer and swelling agent. However, the way in which water molecules 

distribute around and hydrate ion pairs has not been fully studied. In this thesis, the 

influence of ionic strength and temperature on PEM water microenvironments is studied. 

Here, we examine the effects of temperature and ionic strength on the hydration 

microenvironments of fully immersed poly(diallyldimethylammonium)/ polystyrene 

sulfonate (PDADMA/PSS) PEMs. This is accomplished by tracking the OD stretch peak 

using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy at 

0.25 M – 1.5 M NaCl and 35 – 70 °C. The OD stretch peak is deconvoluted into three 

peaks: 1) high frequency water represents tightly bound water, 2) low frequency water 

represents loosely bound water, and 3) bulk water represents water with little or no binding 

to ion pairs. In general, the majority of water absorbed into the PEM exists in a bound 

state, with little-to-no bulk water observed. As temperature increases, PDADMA/PSS 

PEM loses a small amount of water; meanwhile, the high frequency water maintains its 

peak area while the peak center shifts to the right. This indicates that tightly bound water 

becomes even more tightly bound with no change in amount. The effect of ionic strength 

on the PDADMA/PSS PEM is more nuanced and follows a trend influenced by competing 
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effects of electrostatic screening and repulsion. A van’t Hoff plot obtained from the ratio 

of the amount of high frequency water to low frequency water at each temperature shows 

that the amount of energy required to exchange between water states is from 11-22 kJ/mol 

across the studied range of salt concentration.  The entropy gain associated with this 

transition is 48-79 kJ/molK. These results provide quantitative information on the 

association of water molecules within PEMs and serves as a precursor to understanding 

these materials’ ion-water microenvironments with respect to temperature and ionic 

strength.  
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NOMENCLATURE 

 

A  Absorbance 
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c Speed of light 

c concentration of the sample 

CO2 Carbon dioxide 
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h Planck's constant 
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MDSC Modulated differential scanning calorimetry  
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NaCl Sodium chloride 

NMR Nuclear magnetic resonance 

NR Neutron reflectometry 

PAA Poly(acrylic acid) 

PAH Poly(allylamine hydrochloride) 

PDADMA Poly(diallyldimethyl ammonium chloride) 

PE Polyelectrolyte 

PEC Polyelectrolyte complex 

PEM Polyelectrolyte multilayer 

PMAA Poly(methacrylic acid) 

PSS Polystyrene sulfonate 

QCM Quartz crystal microbalance 

QPVP Quaternized poly(4-vinylpyridine) 

RH Relative humidity  

T Transmittance 

v Wavenumber 

XRR X-ray reflectometry 

ZnSe Zinc selenide 

ε Molar absorptivity 
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CHAPTER I  

INTRODUCTION  

 

1.1 Introductory Remarks 

Polyelectrolyte complexes and multilayers (PECs and PEMs) are formed by the 

simultaneous electrostatic attraction between polymers of opposite charge and the entropic 

expulsion of counterions. The earliest report of polyelectrolyte complexation was by 

Bungenberg de Jong et al. in 1929, where he observed a phase separation upon mixing a 

polycation with a polyanion.1 In general, complexation may lead to a solid-liquid or liquid-

liquid phase separation depending on the conditions of preparation. As a result, PECs are 

highly tunable with properties most commonly controlled by pH, salt, water and 

temperature.  

By virtue of their behavioral flexibility, PECs and PEMs have been studied for 

applications in a wide range of fields. From potential applications involving their use as 

separators in batteries2 to protective coatings3-5 to stimuli-responsive drug delivery and 

bio-compatible coatings6, 7, PECs and PEMs are worth the amount of attention they’ve 

received over the past years.  

PECs are formed by simultaneous mixing of both polycation and polyanion 

whereas PEMs are prepared by an alternating layer by’ layer (LbL) assembly. Both 

preparation techniques occur in aqueous media, thereby incorporating water as a one of 

the major components in both PECs and PEMs. 
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In this thesis, we study the influence of temperature and ionic strength on water 

uptake in PEMs. We then take a step further to group water into three possible water 

microenvironments within PEMs and equally study the influences both temperature and 

ionic strength.  

 

1.2 Polyelectrolytes (PEs) 

Polyelectrolytes are polymers which possess ionizable functional groups in their 

repeat structure.8 Just as typical electrolyte can be acids, bases and salts, polyelectrolytes 

can also be polycations, polyanions or polysalts. However, a polyelectrolyte differentiates 

from a simple electrolyte in that it is a macromolecule comprised of many repeat units. 

Also, polyelectrolytes dissociate when dissolved in water to form polymer that bears a 

charge while releasing counterions and this differentiates them from neutral polymers.9, 10  

The sulfonate (–SO3
-), carboxylate (–COO-), and phosphonate (–PO3H

-, –PO3
2-) 

are by far some of the most ubiquitous anionic functional groups while for cationic groups 

primary, secondary and quaternary ammonium (–NH3
+, =NH2

+ & ≡N+) for 

common.11 Often times these functional groups are found as a side group to the main 

polyelectrolyte backbone but can be found within the polyelectrolyte backbone. In this 

case, the polyelectrolytes are called polyionenes.11 

The most important property of polyelectrolytes is its solubility in water governed 

by its hydrophobicity or hydrophilicity.9 While most natural polyelectrolytes are soluble 

in water, many synthetic PEs are not because of the repulsions between hydrophobic 

backbone and water. 9, 12 This challenge can be resolved by adding more ionic components 
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to polyelectrolyte charge, that is increasing the charge density.9, 13 Changes in degree of 

dissociation have an influence on polymer chain size , end-end distance, radius of gyration 

and overall chain conformation.14 

All polyelectrolytes, including both polycations and polyanions can be classified 

into groups on a couple of bases. The most common are source and charge density of 

polyelectrolyte.  

 

1.2.1 Natural and Synthetic polyelectrolytes  

One way of classifying polyelectrolytes would be broadly into 2 groups of natural 

and synthetic polyelectrolytes. Natural polyelectrolytes such as polypeptides, DNA, 

chitosan (polycation) and sodium alginate (polyanion) can be extracted from both plant 

and animal sources.12 They are usually considered bio-compatible with human body from 

drug delivery systems and bio-coatings.12 Synthetic polyelectrolytes, on the other hand, 

are produced as a result of polymerization reactions.15 Of the synthetic polyelectrolytes, 

the most commonly studied are poly(diallyldimethyl ammonium chloride) (PDADMA), 

poly(styrene sulfonate) (PSS), poly(allyamine hydrochloride) (PAH), poly(acrylic acid) 

(PAA).16-21  

 

1.2.2 Strong and weak polyelectrolytes  

When polyelectrolytes dissolve in water, they dissociate into their charged states; 

another method of polyelectrolyte classification is based on the degree of this dissociation 

in water. Strong polyelectrolytes completely dissociate in water and their charge densities 
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are independent of pH.15 The dissociation constant, pKa, of weak polyelectrolytes, on the 

other hand, can be controlled by pH.22  

On their own, polyelectrolytes have been applied as excellent flocculants or 

dispersant in water purification, oil recovery and mineral processing.15 Figure 1.1 shows 

4 examples of synthetic polyelectrolytes classified by their ability to dissociate in water. 

In this thesis, we work with strong synthetic polyelectrolytes, PDADMA and PSS.  

 

 

Figure 1.1: Examples of strong and weak polyelectrolytes 
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1.3 Polyelectrolyte complexes and multilayers 

1.3.1 Polyelectrolyte complexes (PECs) 

  Polyelectrolyte complexes (PECs) are formed by the simultaneous mixing of 

oppositely charged polyelectrolytes causing an entropic expulsion of small counterions as 

shown in Figure 1.2. This interaction is described by equation 1.1. The PECs then remain 

bonded by electrostatic forces, in addition to weaker hydrogen bonds and hydrophobic 

forces exist within PEMs.  

 

𝑃𝑜𝑙+𝐴−
𝑎𝑞 + 𝑃𝑜𝑙−𝑀+

𝑎𝑞 → 𝑃𝑜𝑙+𝑃𝑜𝑙−
𝑠 + 𝐴−

𝑎𝑞 + 𝑀+ 𝑎𝑞                     𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.1 

 

Where Pol+ and Pol- represent polycation and polyanion 

And A- and M+ represent associated counterions  

 

Figure 1.2: Polyelectrolyte complex preparation 
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In the presence of salt ions, polyelectrolyte ion pairing is hindered by the breaking 

of polyelectrolyte-polyelectrolyte (intrinsic) ion pairs to form polyelectrolyte-salt 

(extrinsic) ion pairs. The green circles with broken lines surround an intrinsic ion pair 

whereas the red circles surround extrinsic ion pairs in the Figure 1.2. This can be described 

by the reverse of equation 1.1 expressed as equation 1.2 below. As a result of extrinsic ion 

pair formation, PECs exhibit 3 phases with increasing salt content; namely a solid 

precipitate phase, liquid-liquid phase separated coacervate phase, and a solution phase.23, 

24 From turbidity measurements, Zhang et al. show that turbidity of PDADMA/PSS PECs 

drop with increasing salt concentration indicating dissolution.23 Works by Chollakup et 

al. and Li et al. also outline the ionic strength before and after preparation as an important 

phase-determining factor.18, 25 Asides from salt, the polyelectrolyte mixing ratio,18, 23 

mixing order, polyelectrolyte molecular weight,7, 26 charge density, 18, 22 water content27, 

28 and, temperature.29  

 

𝑃𝑜𝑙+𝑃𝑜𝑙−
𝑠 + 𝐴−𝑀+ 𝑎𝑞  →  𝑃𝑜𝑙+𝐴−

𝑎𝑞 + 𝑃𝑜𝑙−𝑀+
𝑎𝑞                       𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.2 

 

Polyelectrolyte complexes have been described as glassy when dry and rubbery 

when wet, pointing to the fact that water is involved the plasticization of PECs. For neutral 

polymers, temperature has the plasticizing effect on a class of polymers known as 

thermoplastics. Whereas with PECs, temperature is shown to have a similar effect only in 

the presence of water molecules. Hence, PECs only show a glass transition when hydrated. 

With PECs, water salt and temperature have a plasticizing effect on PECs.  
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Due to the plasticizing nature of salt on PECs, PECs have now been termed 

“saloplastics”. This came at a time when PECs had been tagged unprocessable. PECs have 

then been developed into various forms such as capsules, micelles, gels and thin films. 

Now, a common variation of PECs available are polyelectrolyte multilayers (PEMs) 

prepared by a layer by layer technique.  

 

1.3.2 Polyelectrolyte multilayers (PEMs) 

 As early as 1966,30 multilayers prepared from colloidal mixtures by layer by layer 

were (LbL) techniques were developed but have gained more attention by the works of 

Gero Decher in the 1990’s.31 This came as a major advancement to adsorption techniques 

following Irving Langmuir monolayer adsorption theory.32, 33 Polyelectrolyte multilayers 

(PEMs) are resulting thin films from the alternating LbL deposition of a polycation and 

polyanion characterized by stratified structures.31, 34  Processing PECs by LbL allows for 

a control over nanoscale and microscale properties of the produced PEM. Hence, PEMs 

are highly tunable in nature and the structure, thickness, composition and dynamics can 

be altered by manipulating PE type, concentration, ionic strength, temperature and pH. 35-

39 
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Figure 1.3: Schematic representation of the processes used to fabricate polyelectrolyte 

multilayer films by LbL assembly. (a) Dipping LbL assembly. (b) Spin-assisted LbL 

assembly. (c) Spray-assisted LbL assembly. Multilayer films are formed by repeating 

steps 1 to 4 in a cycle fashion. Reproduced from Ref. [40] “Layer-by-layer assembly for 

rapid fabrication of thick polymeric films” by Li, Y., Wang, X., & Sun, J., 2012. Chemical 

Society Reviews, 41(18), 5998-6009 with permission from The Royal Society of 

Chemistry.  

 

 LbL assembly involving the immersion of the intended substrate in each desired 

polymer solution followed by a rinse step to wash off all excess ions is the most common. 
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However other techniques of LbL assemblies exist including spray and spin-assisted 

assemblies identified in Figure 1.3.40 Between each layer deposition, it is common to dry 

each layer but this step can and has been skipped especially when a mechanical robot is 

used for deposition.  

 

Figure 1.4: Comparison of polyelectrolyte complexes and multilayers 

 

1.3.3 Comparing PECs and PEMs 

 Both PECs and PEMs are prepared from polyelectrolyte solutions with or without 

additional salt ions present. While PEC preparation involves quick mixing of both 

polyelectrolyte with one another, PEM preparation involves a simple LbL assembly 

technique. As shown by both Figure 1.4, while the macrostructure of both PECs and PEMs 

may the differ in appearance, they both comprise of two kinds of ion pairing, intrinsic and 
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extrinsic. Both preparations are possible for practically every synthetic and natural 

polyelectrolyte available. However, in cases of extremely low charge density or excessive 

salt, complexation has been found to be difficult or simply impossible.22, 41-43 Forces of 

complexation for both PECs and PEMs remain electrostatic attraction, hydrogen bonding 

and hydrophobic forces. 

The composition of PECs often follows stoichiometry of preparation whereas for 

PEMs a non-stoichiometry often arises.44, 45 Phase profiles of PECs show that 

complexation may lead to the formation of solid precipitates, liquid-liquid phase separated 

coacervates, or soluble complexes.18, 23 The most prominent condition for determining the 

produced phase is the salt concentration during preparation.23, 24 On the other hand, the 

build-up of PEMs may either be in linear or exponential growth regime.38 A study46 by 

Izumrodov et al. brought together PEC phase behavior and PEM growth behavior. Results 

showed that at 0.3 M NaCl solution, both quaternized poly(4-vinylpyridine) (QPVP) and 

poly(methacrylic acid) (PMAA) PECs and PEMs yielded maximum mass of complex 

precipitate or film.  

Binding energy and equilibration time have been shown to be dependent on the 

type of polyelectrolyte in use.47 Polyelectrolyte containing the sulfonate (SO3
-) group for 

polyanions and amine (NH3
+) group for polycations produce the strongest interchain 

interactions.47 When these two polyelectrolytes or a sulfonate-containing polyelectrolyte 

and most polycations mix, precipitation occurs as a result of thermodynamic stability 

fostered by kinetic restriction. For PEMs a short equilibration time would lead to the 

formation of films considered to be “kinetically-trapped”.46, 47 Longer equilibrium time 
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would allow for mass loss. In the same study with QPVP/PMAA PEMs, thicker films were 

obtained when the deposition time was only 5 minutes than when it was 1 hour each.46 

1.3.4 Applications of PEMs  

 Research on nanostructured polyelectrolyte assemblies continue to gain interest 

because of the wide range of possible applications. Self-healing properties of PEMs have 

been tapped into for use as protective coatings over corrosion effects or fire propagation.3, 

4 Polymer-clay coatings made from branched polyethylenimine (BPEI) and 

montmorillonite (MMT) were demonstrated to have long-term environmentally-friendly 

anti-corrosion properties when used as pre-treatment for aluminum alloy.4 In another 

work, the same BPEI/MMT PEM has exhibited fire-retardation properties by of self-

healing.48  

 Interest in PEMs in medicine and pharmaceuticals is also on the rise. PEM capsules 

and micelles have been prepared and studied for use as targeted drug-delivery vehicles 

benefitting from PEM stimuli-responsiveness.49 The search for bio-smart coatings for 

body implants have also taken a turn to PEMs relying on the ability to be produced from 

natural polyelectrolytes and for the PEMs to remain stable at controlled conditions.6 

 

1.4 Fourier Transform Infrared Spectroscopy  

 Fourier transform infrared (FTIR) spectroscopy is a material characterization 

technique commonly used in chemistry, physics, biology and engineering. It is used to 

identify functional groups in materials in the solid, liquid or gaseous state.50 Infrared (IR) 

spectroscopy techniques can be used to study a wide range of materials having covalent  
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Figure 1.5: Electromagnetic spectrum. Figure reproduced with permission from ref [51] 
“Biological effects of non-ionizing electromagnetic fields: Two sides of a coin” by Saliev, 

T., Begimbetova, D., Masoud, A.-R., & Matkarimov, B., 2019. Progress in Biophysics 

and Molecular Biology, 141, 25-36 by Elseveir, 

 

bonding using IR radiation. IR radiation has shorter wavelength and higher energy than 

microwave radiations but higher wavelength and lower energy than ultraviolet light. 

FTIR spectroscopy operates by measuring the absorption or transmission of IR 

radiation by each bond in a molecule of the material.50 The result is presented as a broad 

spectrum of the % transmittance or absorbance plotted against the wavenumber (v) in cm-

1. This wavenumber is proportional to energy (E) and frequency (f) making it easier to 

interpret data off a spectrum.  

 

𝐸 = ℎ𝑓 = ℎ
𝑐

𝜆
= ℎ𝑐𝑣                                                   𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.3 
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where h is Planck’s constant = 6.62607004 × 10-34 m2 kg / s 

c is the speed of light = 3.0 × 108 m/s 

𝜆 is the wavelength 

 From equation 1.3, we observe that higher wavenumber means higher frequency 

and larger energy and vice versa.  

In order for a functional group to be identified by FTIR, it has to be IR active; that 

is, it should have a dipole moment. This enables the IR radiation to excite the covalent 

bond leading to bending (change in bond angles) or stretching (change in bond length) 

modes of the bond. As a result, single atoms are not IR active. A typical molecule studied, 

would have multiple IR active bonds which are not affected by each other. Each bond 

absorbs IR radiation at a particular frequency which produces the IR spectrum. While, two 

different molecules may have peaks at same wavenumbers, the overall spectrum cannot 

be the same. Each spectrum obtained acts as a fingerprint of the material’s chemical 

structure.52  

There are four major types of FTIR spectroscopy, namely: transmission, attenuated 

total reflectance (ATR), specular reflectance and, diffuse reflectance FTIR. The 2 most 

common are transmission and ATR-FTIR for studies on polymers. Transmission FTIR 

reports resulting spectra as a plot of % transmittance against wavenumber. Transmittance 

(T) is a ration of the transmitted IR beam to the incident IR beam.53 On the other hand, 

ATR-FTIR measures the absorbance of the IR beam using the total internal reflection 

property of a trapezoidal high refractive index crystal.54 When an IR beam passes through 

such a crystal an evanescent wave with a penetration depth peculiar to the material from 
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which the crystal is made is formed.54 In recent times, there now exist software that convert 

spectra obtained using ATR-FTIR to transmission spectra.  

 

 

Figure 1.6: Working principle of ATR-FTIR 

 

𝑇 =  
𝐼

𝐼𝑜
                                                            𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.4 

 

where T is transmittance,  

Io is the intensity of incident beam and, 

I is the intensity of transmitted beam  

Both transmittance and absorbance are related,53 and absorbance is calculated using the 

equation below:  

 

𝐴 = 𝑙𝑜𝑔 (
𝐼𝑜

𝐼
) = 𝑙𝑜𝑔 (

1

𝑇
)                                      𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.5 
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where A is absorbance, 

Another way of calculating absorbance is Beer’s law which correlates absorbance to the 

concentration of molecules in sample as shown by the equation below:  

𝐴 =  𝜀𝑙𝑐                                                 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.6 

where A is absorbance,  

ε is the molar absorptivity, 

l is the path length and,  

c is the concentration of the sample 

The height or area of a peak in an absorbance spectrum is proportional to 

concentration; therefore, Beer’s law can be used to determine the concentrations of 

molecules in samples. 

 

1.5 Water in polyelectrolyte multilayers 

1.5.1 Water content of polyelectrolyte multilayers   

 A very prominent component present during the preparation of PEMs is water. 

Each polyelectrolyte is prepared into and aqueous solution and then after each deposition 

step involves a rinse with water or aqueous salt solution. It is no wonder that PEMs are 

typically hydrated when prepared and have to be heated to temperatures as high as 120 °C 

to completely get rid of all water present. However, the water content of PEMs does vary 

with varying preparation conditions and even the post-assembly conditions. 16, 28, 35, 55-58 

 Water is a major defining factor in PEMs. Michaels, in 1965, observed that PEMs 

are brittle when dry and rubbery when wet.59 Huglin et al.60 also further discovered that 
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in the absence of water, there is no thermal transition observed in PEMs, whereas in the 

presence of water, a “glass transition temperature” is observed. While some agree that this 

transition is a glass transition as the PEMs move from a glassy to a rubbery state, others 

argue against this proposition because the modulus in the “glassy” state is about 5 orders 

of magnitude lower than what is observable for regular polymers.28, 29  

 Using FTIR spectroscopy, the obtained spectra for both PDADMA/PSS PEMs and 

PECs were mostly identical.36 For both PDADMA/PSS PEMs and PECs prepared in a 1:1 

molar stoichiometry based on the polyelectrolyte repeat units, the broad peak at 3050 cm-

1 indicated the presence of water.36  The IR sulfonate peak has often been used as a 

measure of PSS contribution to PEMs or PECs.36, 61-63 Using sulfonate peak obtained from 

IR spectra of pure PSS in potassium bromide (KBr) solution as a reference, the sulfonate 

peaks at 1050 cm -1 were integrated and recalibrated to obtain the amount of PSS present 

within the PEMs. The amount PSS here represents the amount of intrinsic ion pairs 

present. Similarly, the water content of the PEMs was obtained by integrating the OH 

stretch peak. The water content with respect to ion pairs was shown to increase from 0 – 

3 water molecules per ion pair as the number of layers increased from 0 to 15 layers at 

fixed 30 % RH and 25 °C.36 

 An important influence on the water content of PEMs is the outermost layer of the 

PEM. This is known as the odd-even effect. Previous studies suggest that this odd-even 

effect arises due to the loss of material from the PEM. But more recent studies show that 

the hydrophobicity or hydrophilicity of the charges on the terminating layer plays a major 

role in this odd-even effect.64 The charges in polyelectrolytes make most contributions to 
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the hydrophilic behavior, without these charges, the hydrophobic behavior would be 

dominant.65 The most common way of observation is through thickness measurements. 

Neutron reflectometry studies65 showed that for PAH/PSS, PAH-terminated films yielded 

thinner films with lower total water volume fraction than PSS-terminated films.   

Asides from the water content of freshly prepared PEMs, the water uptake into 

PEMs post-assembly has been investigated to better understand swelling and deswelling 

in PEMs.2, 56, 57, 64, 66-71 Post-treatment exposures at varying temperatures, salt solutions, 

relative humidity (RH) and pH have been shown to induce swelling or shrinking of PEMs 

as would be discussed in later sections. Wong et al. showed, using PDADMA/PSS PEMs, 

that post-assembly swelling induced by changes in RH can be reversed.56 Swelling, water 

diffusion and mobility within PEMs have been studied using a vast range of technique 

including nuclear magnetic resonance (NMR) spectroscopy,69, 72 X-ray reflectometry 

(XRR),16 neutron reflectometry (NR),16, 39, 56 ellipsometry,56 quartz crystal microbalance 

(QCM)45 and FTIR.28, 73 

 

1.5.2 Water micro-environments in PEMs 

 While extensive research has been done to understand water uptake swelling as a 

whole, another group of researchers have embarked on the journey to identify the location 

of water molecules within the PEM films.16, 74-76 This emanates from the differences 

identified in the techniques used to measure water content of the years.  Water content of 

PEMs have been determined using various models. The earliest and simplest are based on 

changes in thickness or density of the PEMs as water content changes as described below;  
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a. Thickness model assumes that all of the added water leads to a change in thickness 

(d) of the PEM. 

∅𝑠𝑤𝑒𝑙𝑙 =
𝑑𝑠𝑤𝑜𝑙𝑙𝑒𝑛 − 𝑑𝑑𝑟𝑦

𝑑𝑠𝑤𝑜𝑙𝑙𝑒𝑛
 

Where ∅𝑠𝑤𝑒𝑙𝑙 is a measure of swelling water,  

𝑑𝑠𝑤𝑜𝑙𝑙𝑒𝑛 is the thickness of the swollen PEM and, 

𝑑𝑑𝑟𝑦 is the thickness of dry PEM 

 

b. Density model accounts for changes in the scattering length density (Nb) of the 

PEM77  

∅′𝑠𝑤𝑒𝑙𝑙 =
𝑁𝑏𝑠𝑤𝑜𝑙𝑙𝑒𝑛 − 𝑁𝑏𝑑𝑟𝑦

𝑁𝑏𝑤𝑎𝑡𝑒𝑟 − 𝑁𝑏𝑑𝑟𝑦
 

  

 However more recently in 2010, Dodoo et al. reveal that there are discrepancies in 

the ∅𝑠𝑤𝑒𝑙𝑙 and ∅′𝑠𝑤𝑒𝑙𝑙 values from both models for PDADMA/PSS.78 This suggests that 

there is some water which does not contribute to swelling thickness but influences the 

scattering length density of the PEMs. The inaccuracy of these two models lies in the 

existence of voids within the polyelectrolyte chains. This gave rise to the void model: 

 

c. Void model accounts for voids present within polyelectrolyte chains78  

∅𝑡𝑜𝑡𝑎𝑙 = (1 − 𝑥)(1 − ∅𝑠𝑤𝑒𝑙𝑙) + ∅𝑠𝑤𝑒𝑙𝑙 = ∅𝑣𝑜𝑖𝑑 + ∅𝑠𝑤𝑒𝑙𝑙 

Where x is the polymer fraction given by  
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𝑥 =  
𝑁𝑏𝑑𝑟𝑦 

𝑁𝑏𝑤𝑎𝑡𝑒𝑟
−

𝑁𝑏𝑠𝑤𝑜𝑙𝑙𝑒𝑛 − ∅𝑠𝑤𝑒𝑙𝑙𝑁𝑏𝑤𝑎𝑡𝑒𝑟

(1 − ∅𝑠𝑤𝑒𝑙𝑙)𝑁𝑏𝑤𝑎𝑡𝑒𝑟
+ 1 

∅𝑡𝑜𝑡𝑎𝑙 is the total amount of water present in PEM 

∅𝑣𝑜𝑖𝑑  is a measure of the void water present 

𝑁𝑏𝑤𝑎𝑡𝑒𝑟, 𝑁𝑏𝑑𝑟𝑦, 𝑁𝑏𝑠𝑤𝑜𝑙𝑙𝑒𝑛 are the scattering length densities of water, dry PEM and 

swollen PEM 

 Using neutron reflectometry, they identify the need to account for the voids in 

swelling because added water to the PEMs first fill up these voids before making any 

changes to the thickness. In this study, PDADMA/PSS PEMs were prepared in the 

presence of varying concentrations of NaCl, NaF, and NaBr. Samples were then exposed 

to light and heavy water, H2O and D2O in vapor and liquid states. By observing changes 

in the scattering length density, they identify two types of water: void water and swelling 

water (Figure 1.7a). This was done by incorporating the ∅𝑠𝑤𝑒𝑙𝑙 from the thickness model 

into the void model. They found that both H2O and D2O caused roughly equal amounts of 

swelling in the PEMs. The amount of swelling water increased with salt concentration and 

the order of the Hoffmeister series. Salt had no influence on the void water on the other 

hand.  

 Simpler techniques like ellipsometry have also proven the existence of both void 

and swelling water in PDADMA/PSS PEMs in the same fashion. 16 In this case, in place 

of the scattering length density, permittivity (ϵ) which is directly proportional to the 

refractive index (n) of the PEMs was monitored. At 1 %RH, PEMs are considered dry and 

contain voids which have the capacity to hold water (Figure 1. 7a).74 The refractive index  
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Figure 1.7: Swelling and void water in PEMs. Reprinted from reference [74] “About 

different types of water in swollen polyelectrolyte multilayers” by Koehler, R., Steitz, R., 

& von Klitzing, R., 2014. Advances in Colloid and Interface Science, 207, 325-331 with 

permission from Elsevier.   

 

of water (nwater) is 1.33 whereas that of a dry PEM (ndry PEM) is 1.56. 16, 56, 79 76 As the PEMs 

become hydrated, the refractive index of the PEM (nPEM) gradually decreases. While the 

void model provided a new insight to the microenvironments of water in PEMs, the model 

is only fully successful at RH > 20 %. Below 20 % RH, the measured data begins to 

diverge from the fit. As a result, this more recent study in 2018 probes further with an 

extended void model. The extended void model now accounts for influence of air-water 

exchange within the voids on the permittivity of the PEM. 

 

d. Extended void model which accounts for the voids between polyelectrolyte chain 

as well as exchange between air and water in voids  

𝜖𝑠𝑤𝑜𝑙𝑙𝑒𝑛 = 𝑆 ∙ 𝜖𝑤𝑎𝑡𝑒𝑟 + (1 − 𝑆) ∙ [𝑥 ∙ 𝜖𝑝𝑜𝑙𝑦 + (1 − 𝑥) ∙ (𝑎 ∙ 𝜖𝑤𝑎𝑡𝑒𝑟 + (1 − 𝑎) ∙ 𝜖𝑎𝑖𝑟)] 

Where S is the swelling water as in thickness model  

𝜖𝑤𝑎𝑡𝑒𝑟, 𝜖𝑎𝑖𝑟, and 𝜖𝑝𝑜𝑙𝑦 is the permittivity of water, air and pure polymer 
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x is the polymer fraction and 

a describes the air- water exchange  

𝑎 =  
𝑏 ∙ 𝑆      𝑓𝑜𝑟 𝑆 < 0.08
1           𝑓𝑜𝑟 𝑆 ≥ 0.08

 

b is a fitting parameter 

Results show that at RH < 30 %, air-water exchange still takes place and the voids are not 

entirely filled with water. This is evident as the value of the parameter, a increases up to 

30 %RH before stabilizing. Though this study claims to provide the first model of air-

water exchange, they also admit that possible errors may arise in the model as the void 

sizes change with humidity.  

 Another approach is by studying the thermal properties of water within the PEM 

films. One study using modulated differential scanning calorimetry (MDSC), revealed that 

by monitoring the freezing temperature of water at different PEM hydration levels from 

18-30 wt% water, the state of water can be identified.75 Characteristic freezing temperature 

of water is at 273 K (0 °C). Three water microenvironments were identified in this study, 

namely: freezing free water, freezing bound water, and non-freezing bound water. 

Freezing free water is water which still freezes at the normal water freezing temperature 

of 273 K. Freezing bound water is water which freezes at a temperature lower than 273 K 

indicating some influence from polyelectrolyte ion pairing. Lastly, non-freezing bound 

water is water which shows no sign of freezing within the films. These are considered to 

be very tightly bound to ion pairs. For the studied range, no freezing free water was found. 
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Figure 1.8: Freezing free, freezing bound and non-freezing bound water. Reprinted with 

permission from [75] “Hydration and Temperature Response of Water Mobility in 

Poly(diallyldimethylammonium)–Poly(sodium 4-styrenesulfonate) Complexes” by 

Batys, P., Zhang, Y., Lutkenhaus, J. L., & Sammalkorpi, M., 2018. Macromolecules, 

51(20), 8268-8277. Copyright (2018) American Chemical Society 

https://pubs.acs.org/doi/full/10.1021/acs.macromol.8b01441 

 

1.5.3 Effects of ionic strength on water content of PEMs  

 The presence of salt in the contacting polyelectrolyte solutions during build-up 

cause charges to be extrinsically-compensated as opposed to being intrinsically 

compensated in the absence of salt ions. Also, when PEMs are exposed to salt solutions 

after preparation, rearrangement of ion pairing occurs. This leads to swelling and 
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smoothening of PEMs. By swelling, we expect that the introduction of salt ions into the 

PEMs would increase its hydrophilicity and in turn attract more water to itself. This 

process has been termed salt annealing or salt doping. 64 

 Swelling ratio of PDADMA/PSS films calculated as the ratio between wet and dry 

thickness of the films were observed to study swelling as a function of salt concentration. 

Beyond 2.0 M NaCl, PDADMA/PSS films began to disintegrate, whereas this critical 

concentration for PAA/PDADMA films is as low 0.3 M NaCl.64 This shows that the extent 

to which salt influences extend is also control by the type of polyelectrolyte in question 

and its charge density and hydrophobicity. At very low salt concentration (~ < 0.25 M), 

the films experience deswelling probably as a result of osmotic effects. However, with the 

addition of more salt (> 0.25 M), the films begin to regain its thickness, achieving its initial 

thickness at ~0.5 M. Above 0.5 M, swelling truly picks up until 2.0 M NaCl.  

 Using neutron reflectometry, effects of salt on water microenvironments, swelling 

and void water, was investigated.78 For 6 layer pairs of PDADMA/PSS films prepared in 

the absence of salt, the reported thicknesses for 0.1 M, 0.25 M and 0.5 M were 144 ± 1 Å, 

267 ± 6 Å, and 481 ± 3 Å, respectively. However, as total water content increases, only 

the amount of swelling water increases while void water actually decreases. This may be 

attributed to the reduction in voids as polymer chains become more interdigitated. As 

confirmed by both studies described, salt ions enhance mixing of polymer chains within 

the PEMs and in turn promote smoothening of film surface.  
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1.5.4 Effects of temperature on water content of PEMs 

 The effect temperature has on PEMs has widely studied to gain full understanding 

of PEMs which may be incorporated into high temperature applications. Polymer chains 

within PEMs respond to changes in temperature. At higher temperature, it is assumed that 

polymer chains gain energy, increase polymer conformation dynamics, thereby increasing 

the distance between charges.80-82 PSS/PAH PEMs prepared at an elevated temperature of 

55 °C (100nm at 20 layers) showed an accelerated growth rate compared to those prepared 

at 19 °C (100nm at 36 layers).82 However, post-assembly thermal treatments of PEMs 

have some influence on thickness,80 capsule diameter (for PEM capsules),81 surface 

roughness80, and water content.  

 Observable changes in thickness are a function of swelling and chain 

conformations. The relationship between temperature and is a two-way relationship. 

While the temperature of preparation or post-assembly temperature influences the water 

content of the films, water content of the films in turn influence the thermal transition 

temperature of films. 27, 75, 83 
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CHAPTER II  

EXPERIMENTAL SECTION1 

 

2.1 Materials  

Poly(diallyldimethylammonium chloride) (PDADMA, Mw = 200,000 –  350,000 

g/mol, 20 wt% solution), polystyrene sulfonate (PSS, Mw = 500,000 g/mol) were 

purchased from Polysciences, Inc. Deuterium oxide (D2O) (99.8% deuterium) was 

purchased from Tokyo Chemical Industries Co. and sodium chloride (NaCl) was 

purchased from Sigma-Aldrich. The substrate used was a 45° angle Zinc Selenide (ZnSe) 

crystal purchased from Specac Ltd. 

 

2.2 Methods 

2.2.1 Solution preparation  

Each PDADMA and PSS solution in water was prepared at a concentration of 1 

g/L. For layer-by-layer assembly, the salt concentration of both polyelectrolyte solutions 

and rinsing solutions were 0.5 M NaCl. HOD mixture was prepared using 5% by volume 

of D2O (4.52 mol% D2O in H2O) with 95% Milli-Q deionized H2O to make NaCl HOD 

solutions used for ATR-FTIR spectroscopy measurements. 

 

1 Adapted from Ref. 66. Eneh, C. I.;  Bolen, M. J.;  Suarez-Martinez, P. C.;  Bachmann, A. L.;  

Zimudzi, T. J.;  Hickner, M. A.;  Batys, P.;  Sammalkorpi, M.; Lutkenhaus, J. L., Fourier transform 

infrared spectroscopy investigation of water microenvironments in polyelectrolyte multilayers at 

varying temperatures. Soft Matter 2020, 16 (9), 2291-2300. with permission from The Royal 

Society of Chemistry. 
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2.2.2 Layer by Layer (LbL) assembly  

ZnSe crystal substrate was cleaned using Milli-Q water then acetone, followed by 

air-drying to remove any residual solvent. 2.5 M NaCl was used to remove any residual 

deposits on the crystal. LbL assembly of the polyelectrolytes was performed using an 

automated HMS slide stainer from Carl Zeiss, Inc. at room temperature. The ZnSe crystal 

was placed in a basket with the surface to be tested exposed. One layer of PDADMA on 

ZnSe crystal was made by immersing the crystal in 1g/L PDADMA solution for 15 min., 

followed by three rinses in 0.5 M NaCl with agitation for 2 min., 1 min., and 1 min. 

Similarly, a layer of PSS was deposited by repeating the same sequence. Dry thickness of 

70 layer-pairs of PDADMA/PSS films, measured using a profilometer, was determined to 

be 2.5 μm. 70 layer-pair films were thus prepared for all measurements to ensure that the 

film thickness was greater than the ZnSe penetration depth of the ATR-FTIR evanescent 

wave (0.71 – 0.80 μm for 2400 - 2700 cm-1). PEM films dried at ambient conditions 

overnight. 
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Figure 2.1: Schematic of layer by layer assembly of PDADMA/PSS films 

 

2.2.3 ATR-FTIR spectroscopy  

ATR-FTIR spectroscopy was performed using a Nicolet 6700 FTIR spectrometer 

from Thermo Scientific. A ZnSe crystal background spectrum was taken on a clean crystal 

under CO2-free conditions over a temperature range of 35 - 70 °C increasing by 5 oC 

temperature increments to assess the effect of temperature on background spectra. The 

background spectra were independent of temperature, thus the background spectrum at 35 

°C was chosen as the representative reference spectrum for all subsequent experiments. 

Each spectrum was recorded with a resolution of 4 cm-1 with 32 scans over the range of 

400 - 4000 cm-1. A low hydration ATR-FTIR spectroscopy measurement was performed 
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on each PEM using 100 μL of varying concentrations of NaCl HOD pipetted into FTIR 

stage. Following the same procedure, measurements were performed over the same 

temperature range on each PEM fully immersed in ~850 μL of NaCl HOD solutions.  

 

 

Figure 2.2: FTIR experimental set-up 

 

2.2.4 Non- Condon effects  

For this reason, all OD peaks were corrected for non-Condon effects and analyzed 

using a previously published three-population deconvolution method84 with Origin 8.0 

Pro. 

 

𝜇

𝜇𝑔
= 31.27 − (1.09 × 10−2𝑐𝑚)𝜔                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1 𝑎 

𝐴𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
𝐴𝑓𝑖𝑡

𝜇2
                                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2.1 𝑏 
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where 𝜇 is the transition dipole at each wavenumber  

and where 𝜇𝑔 and 𝜔 are the gas-phase transition dipole and frequency of the vibration 

respectively. 

 

2.2.5 FTIR analysis  

All spectra were processed using Omnic software and were baselined by fixing the 

absorbance at the end points of the wavelength region (400 - 4000 cm-1). The examined 

range represents the OD asymmetrical stretch peak and the spectrum was deconvoluted to 

show the following water microenvironments: low and high frequency and bulk water 

peaks. The high frequency component corresponds effectively to stronger PE-water 

interactions (weaker hydrogen bonds) and the low frequency components to weaker PE-

water interactions (stronger hydrogen bonds).85 Therefore, the water molecules with high 

frequency OD stretching can be identified as strongly bound to the polyelectrolyte. Simply 

put, 

• High frequency water = tightly bound to PE ion pair = weak H2 bonds 

• Low frequency water = loosely bound to PE ion pair = stronger H2 bonds 

• Bulk water = water free of PE ion pair influence 

 

Figure 2.3a shows a sample of a deconvoluted OD stretch peak showing the three 

identified peaks. Figure 2.3b is an illustration of these water microenvironments located 

around ion pairs.  
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Figure 2.3: (a) A sample spectrum showing deconvolution of the OD asymmetrical 

stretching region from 2400 to 2700 cm-1 of PDADMA/PSS PEM immersed in 0.50 M 

NaCl HOD solution. The three peaks (in blue, green, and red) correspond to populations 

of HOD in different states of association within the surrounding environment: bulk water, 

low frequency water, and high frequency water. (b) A visual representation of the water 

microenvironments and their distribution around both intrinsic and extrinsic ion pairs 

showing low frequency and high frequency water. 

 

First, the low and high frequency peak shapes were determined by examining a 

PEM under low hydration conditions; a three-peak fit was performed by fixing the bulk 

water peak center and full width half max (FWHM) (2509 cm-1 and 170 cm-1, 

respectively)86, 87 while allowing the other peak shapes (peak center and FWHM) to vary. 

For fully immersed samples, the bulk water peak intensity was then unconstrained, while 

fixing the high frequency peak shape (center and FWHM) and the low frequency peak 

center. The low frequency peak’s FWHM was left unconstrained because as hydration 
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increases, the low frequency peak’s FWHM will potentially change due to a broadening 

of the distribution of states within this population.88 The fits were iterated until their 

cumulative sum of the least squares difference was minimized. In examining all of the 

data, the deconvolutions were essentially reduced to two peak fittings due to the very small 

contribution from the bulk water peak.  
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CHAPTER III  

RESULTS AND DISCUSSION2 

 

3.1 Background FTIR spectra  

 

Figure 3.1: FTIR spectra of bare ZnSe crystal at different temperatures (35 – 70 °C at 5 

°C intervals) 

 

 In order to obtain the true FTIR spectrum of a material, we baselined the initial 

FTIR spectrum obtained for the sample material with a reference spectrum. Here, we use 

the spectrum obtained from the bare ZnSe crystal in air as the required background 

 

2 Adapted from Ref. 67. Eneh, C. I.;  Bolen, M. J.;  Suarez-Martinez, P. C.;  Bachmann, A. L.;  Zimudzi, T. 

J.;  Hickner, M. A.;  Batys, P.;  Sammalkorpi, M.; Lutkenhaus, J. L., Fourier transform infrared spectroscopy 

investigation of water microenvironments in polyelectrolyte multilayers at varying temperatures. Soft 

Matter 2020, 16 (9), 2291-2300. with permission from The Royal Society of Chemistry. 
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spectrum. Figure 3.1 shows the FTIR spectra of the bare ZnSe crystal obtained at different 

temperatures from 35 – 70 °C at 5 °C intervals in order to get a baseline for each 

temperature used in the entire study. However, we observe that temperature has minimal 

influence on the background spectra as seen in Figure 3.1. As a result, we proceed with 

the rest of the experiments using the background spectrum for bare ZnSe crystal at 35 °C 

as a baseline.  

 

3.2 OD stretch peak  

Taking into consideration the difficulties associated with analyzing OH stretch peaks, 

which have overlapping bands,89 the OD stretch peak instead was used to study water 

interactions in PDADMA/PSS multilayer systems. The presence of an OD stretch (2400 

– 2700 cm-1) peak is verified in Figure 3.2 upon addition of 5% v/v D2O to H2O. 

   

Figure 3.2: Comparison of 5 wt% D2O in H2O showing lack of interfering peaks in the 

OD region (2700 – 2400 cm-1). Spectra were not corrected for non-Condon effects. 
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3.3 Non-Condon correction of OD stretch peak  

 In spectroscopy, non-Condon effects are explained by the dependence of the 

vibrational transitional dipole moment of a molecule on the rotational and translational 

coordinates of all the molecules in the liquid.90 These non-Condon effects are more 

pronounced in strongly hydrogen-bonded systems like dilute HOD in H2O.90 The bond 

dipole derivative of an OH stretch is dependent on the hydrogen-bonding environment.90 

Figure 3.3 shows the resulting spectra from non-Condon correction using equations 2.1a 

and b in contrast to the raw spectrum obtained.  

 

 

Figure 3.3: Shape comparison disregarding peak height shows the shift of the overall peak 

maximum towards higher frequencies when spectra are corrected for non-Condon effects 

as described in the materials and methods section. Uncorrected left Y-axis, Non-Condon 

corrected right Y-axis. Data corresponds to 0.25 M @ 35 oC 
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3.4 FTIR spectra of PDADMA/PSS PEMs  

 

 

Figure 3.4: Set of baselined FTIR spectra (400 – 4000 cm-1) for a 70-layer pair 

PDADMA/PSS film assembled in 0.50 M NaCl solution and immersed in 0.50 M NaCl 

HOD solution at temperatures from 35 – 65 °C 

 

 Figure 3.4 shows FTIR spectra over the range of 400 - 4000 cm-1 for a film 

immersed in 0.5 M NaCl HOD. The full spectra comprise of the polymer fingerprint region 

from 1000 – 1500 cm-1, the OD stretch region from 2400 – 2700 cm-1 and, the OH stretch 

peak from 2800 - 3800 cm-1.  
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Figure 3.5: Set of baselined FTIR spectra of the polymer fingerprint region (1000 - 1500 

cm-1) of a 70-layer pair PDADMA/PSS film assembled in 0.50 M NaCl solution and 

immersed in 0.50 M NaCl HOD solution at temperatures from 35 – 65 °C  

 

 A zoomed-in image of the fingerprint region is shown in Figure 3.5 detailing the 

characteristic peaks at 1007, 1034, 1124, 1191, 1419 and 1472 cm-1. The peak at 1472 cm-

1 is assigned to the contribution due to bending of the C-H bond from PDADMA and the 

peak at 1419 cm-1 is assigned to the C=C rocking contribution of PSS.73 Symmetric and 

anti-symmetric vibrations of the SO3
- group appear as the 1034 and 1191 cm-1 peaks, 

respectively.36, 73, 91 Peaks at 1007 and 1124 cm-1 are assigned to the in-plane vibration and 

in-plane bending vibration of benzene ring.91, 92  
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3.5 Effects of temperature on PDADMA/PSS PEMs  

Figure 3.5 shows that there was no change in the fingerprint region spectra with 

increasing temperature. This result enables the deduction that the amount of 

polyelectrolyte molecules present in the multilayer is not affected by the temperature 

variations.  

 Figures 3.6 a and b, which show in detail the OH and OD stretching peaks, reveal 

a decrease in peak area as temperature increases up to 70 °C, indicating a reduced amount 

of water present in the films. Also, as temperature increased, a shift in the peak position 

from 2524 cm-1 to 2535 cm-1 was observed in the OD stretch peak shown in Figure 3.6b. 

This peak shift to higher wavenumber is indicative of a decrease in hydrogen bonding 

amongst the water molecules as temperature increases and a change to more tightly bound 

water.86 For example, water in the form of ice has its OD stretch peak center at 2440 cm-1 

but in the form of water vapor, the peak center is at 2719 cm-1.93 The data presented in 

both Figures 3.6 a and b reflect the qualitative shift of water populations to higher 

frequencies and also that water uptake into the multilayers is reduced with temperature.  

All results from Figure 3.5 and 3.6 combined reveal that while polymer chain 

mobility and conformation may change, the polymer content present in PDADMA/PSS 

PEMs remain the same upon thermal changes.  On the other, both water content and water 

binding energy are largely influenced by temperature.  
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Figure 3.6: Set of baselined FTIR spectra of a) the OH stretching region (2800 - 3800 cm-

1), b) the OD stretching region (2400 - 2700 cm-1)of a 70-layer pair PDADMA/PSS film 

assembled in 0.50 M NaCl solution and immersed in 0.50 M NaCl HOD solution at 

temperatures from 35 – 65 °C  

 

 The deconvolution of the OD stretch peak of the multilayer immersed in varying 

concentrations (0.25 – 1.5 M) of NaCl HOD solution at 35 – 70 °C is shown in Figure 3.7 

and Table 3.1. Previous work suggests that the peak positions of the high and low 

frequency peaks change with properties of the polymer, but the bulk water characteristics 

stay constant.88 However, only two peaks are visible in all panels in Figure 3.7, attributed 

to low and high frequency water; the absence of a bulk water peak indicates that there is 

little or no bulk water present in the PEMs. This lack of bulk water may be due to the low 

porosity within the PEMs, which suggests that water molecules are always within the 

influence of the polyelectrolyte ionic groups.  
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Figure 3.7: Combined deconvolutions for a PEM immersed in HOD solutions of different 

salt concentrations with arrows indicating the change in peak position as temperature 

increases from 35 °C to 70 °C. a) 0.25 M, b) 0.50 M, c) 0.75 M, d) 1.00 M, e) 1.25 M, and 

f) 1.50 M. Legend in (f) applies to all panels. 
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 Likewise, a study using modulated differential scanning calorimetry (MDSC) 

showed the absence of bulk water in PDADMA/PSS PECs at hydration levels of 18 to 30 

wt%.75 This indicates that the water content in the PEC either existed totally as non-

freezing bound water or with a small fraction of freezing bound, water which was 

identified at 30% hydration.75 Consistent with these findings, the absence of a bulk water 

peak from a deconvoluted OD peak was attributed to the high density of the ionic groups 

for homopolymer sulfonated poly(styrene).88  

 Figure 3.7a  shows that as the temperature increases the high frequency water peak 

center shifts from 2553 to 2566 cm-1 (15 cm-1 shift toward effectively more tightly bound 

water), but a nearly constant peak area is maintained (the high frequency peak area 

increases by only 1.0 % with increasing temperature). The lower frequency loosely bound 

water peak maintains its center at 2497 ± 0.01 cm-1, while the peak area decreases by 20 

%. These peak shifts are consistent across all salt concentration.  

 In general, the FTIR spectral peak position shifts and area changes with 

temperature can be directly explained via increasing thermal energy of water molecules in 

the system. Especially for the strongly bound water molecules, the translational and 

rotational motion is restricted, which results in increased vibrational motion.75 The thermal 

motions at higher temperatures also lead to effectively weaker hydrogen bonding by the 

water molecules.93 However, in our data the tightly bound high frequency water peak 

shifts towards higher wavenumber which suggests that the PE-water associations are 

getting effectively stronger (hydrogen bonding strength decreases) with increasing 
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temperature. This may seem counterintuitive, considering the fact that temperature, in 

general, should presumptively weaken the hydrogen bonds between PE and water.94 

 However, the reduction in cumulative water peak area means that the system is 

losing water which leads to a decrease in the overall electrostatic screening of water and 

consequently effectively stronger bonding to the material for the tightly bound water 

molecules. 

 

 Table 3.1: Peak information for all temperatures at 0.25 M NaCl 

 
0.25 M   

  Bulk Low frequency High frequency Cumulat

ive water  

 Temp Area fwhm Peak 

center 

Area fwhm Peak 

center 

Area fwhm Peak 

center 

 Area 

35 1E-9 170 2509 31.5 92.0 2497.1 100.9 110.6 2553.7 132.4 

40 1E-9 170 2509 30.8 92.0 2497.1 101.2 110.5 2556.1 132.0 

45 1E-9 170 2509 29.1 92.0 2497.1 100.8 110.6 2557.4 129.9 

50 1E-9 170 2509 27.7 92.0 2497.1 101.2 110.4 2559.4 128.9 

55 1E-9 170 2509 27.3 92.0 2497.1 101.5 110.5 2561.3 128.8 

60 1E-9 170 2509 26.39 91.96 2497.1 101.2 110.4 2562.8 127.6 

65 1E-9 170 2509 25.84 91.96 2497.1 101.2 110.6 2564.5 127.1 

70 1E-9 170 2509 25.14 92.00 2497.1 102.0 110.4 2566.5 127.1 
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 Throughout the examined temperature range, the high frequency water peak 

maintained a constant peak area in Figure 3.7. This data indicates that a constant number 

of water molecules constitutes the high frequency water at all temperatures in the system. 

We suggest that all ion pairs are fully surrounded by high frequency water at all examined 

conditions with no change in hydration as temperature is varied. This potentially suggests 

that at extremely low hydrations all added water may exist as high frequency water, tightly 

bound to the ionic groups and hydrating them. Once the maximum amount of high 

frequency water is absorbed into the PEM, additional water becomes low frequency, 

loosely bound water and eventually bulk water. An earlier simulation work shows the 

saturation response of tightly bound water upon increasing hydration in partially hydrated 

PDADMA/PSS complexes. 75, 94  

 However, contrary to the tightly bound high frequency water, the weakly bound 

low frequency water exists with a fixed effective hydrogen bonding energy: its peak center 

remained constant at 2497 ± 0.01 cm-1, while the peak area decreased with increasing 

temperature. The decrease of the low frequency peak area with temperature suggests that 

the absolute amount of weakly bound water molecules decreases. At the microscopic level, 

this is very likely related with breaking some of the weaker hydrogen bonds in the outer 

hydration shell, which leads to release of water molecules, perhaps into the external 

contacting solution. At the macroscopic level, this would indicate that, as temperature 

increases, the PEMs hold less water. 

  The results presented in Figure 3.7 can be used to complement the interpretation 

of previous MD simulation results on partially hydrated PDADMA-PSS PECs75 to provide 
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some additional insight to the behavior of water molecules in this system. As the FTIR 

spectral characterization of this work was done for fully hydrated and immersed systems, 

we restrict the consideration to the temperature response. Both the data in Figure 3.7 and 

previous reports75 suggest that most of the water in the PEM is strongly bound even at 

high water content. Figure 3.7, moreover, indicates that strongly bound water dominates 

also in fully hydrated PDADMAC/PSS systems.  

 

 

3.6 Effects of ionic strength on PDADMA/PSS PEMs 

 In general, the uptake of water swells the PEM; specifically, a 4-layer pair of 

PDADMA/PSS capped with PDADMA prepared in Schlenoff and Dubas showed that 

PDADMA/PSS films prepared in the presence of 1.0 M NaCl swell up to 2.03 times that 

of the dry thickness when immersed in pure water.64 However, the films had a lower 

swelling ratio when immersed in < 0.7 M NaCl solutions, and higher ratios when 

immersed in > 0.7 M NaCl.64 Similarly, a decrease in thickness or no change was observed 

in PDADMA/PSS films (assembled from 0.5 M NaCl) when exposed to 0.1 M (~5% 

thickness decrease) and 0.5 M (~0% thickness change) KBr post assembly whereas films 

exposed to KBr solutions of lower or higher concentrations experienced swelling.45 These 

works show that PDADMA/PSS PEMs may swell or slightly contract depending on the 

doping salt concentration, the capping layer, and assembly conditions.  
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Figure 3.8: FTIR spectra of fingerprint region at varying salt concentrations 

 

 However, the introduction of counterions into the PEMs post-assembly causes 

variations in the sulfonate anti-symmetric stretch peak (Figures 3.8 and 3.9). In brief, the 

sulfonate anti-symmetric peak increases in area with the addition of salt up to 0.75 M 

NaCl, and then decreases in area with higher ionic strengths. This is attributed to 

polyelectrolyte and anti-polyelectrolyte effects,95 as well as the increased formation of 

extrinsic ion pairs via screening effects.45 An increase in peak area is observed as NaCl 

concentration increased to 0.75 M. This can be explained by an increase in PE-counterion 

pairing upon addition of salt, leading to tighter packed assemblies. Above 0.75 M, the 

PEMs experience swelling due to electrostatic screening effects leading to a drop in peak 

area. 
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Figure 3.9: A relationship between the SO3
- anti-symmetric stretch peak (at 1191 cm-1) 

and salt concentration obtained from Figure 3.8 

 

 Figure 3.10 compares the deconvolution of OD stretch peaks for varying salt 

concentrations of NaCl in HOD at a constant temperature of 40 °C. While the peak area 

of all the cumulative OD stretch peaks generally increased with increasing NaCl 

concentration, the cumulative peak center at all concentrations remained approximately 

constant. The deconvolution of the cumulative OD peak also shows that the areas of the 

high and low frequency water peaks increased with the addition of salt (Figures 3.10 c and 

d). These results indicate the PEMs swell with water as the ionic strength of the contacting 

solution increases.  
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Figure 3.10: a) Combined deconvolutions for a PEM immersed in HOD solutions of 

different salt concentrations at 40 °C showing the cumulative (black), high (red) and low 

frequency water (green), and bulk water (blue) peaks. b) Cumulative c) Low frequency d) 

High frequency water peaks at different salt concentrations at 40 °C obtained from Figure 

3.10a for clarity. The arrows in (b) and (d) indicate the trend with increasing salt 

concentration  

This finding is in accordance with previous studies of PDADMA/PSS multilayers in the 

presence of KBr using QCM-D,45 where the swelling response showed different regions 

of response as a function of the salt concentration of the contacting solution. 
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 The origin of this behavior has two features: an increase in ionic strength 1) breaks 

intrinsic polycation-polyanion pairs, allowing for an increase in free volume of the PEM 

network and 2) presumably causes swelling due to incoming water molecules that are 

hydrating the absorbed salt ions. This can be expected to lead to varying degrees of 

swelling of the multilayer, and previous simulation works also show that the presence of 

ions influences the water structure and PE-PE binding.58, 96, 97. In addition to examining 

the changes in peak area, we also sought to inspect changes in peak center; however, the 

peak center shifts were very subtle and within the resolution of the instrument (~4 cm-1).  

 A possible explanation for these variations may be related to the dual nature of salt 

in polyelectrolyte assemblies.58 Salt ions act as plasticizer to the PEMs by bringing 

additional water molecules, which is clearly demonstrated by the increasing peak area in 

Figure 3.10a. On the other hand, salt ions strongly bind water molecules through hydration 

of the ions and, therefore, compete with the polyelectrolytes for water interactions. At 

higher salt concentration, this effect can be pronounced enough to influence the hydration 

shell around polyelectrolytes by altering the number of water molecules or by altering the 

polyelectrolyte-water binding strength. As suggested by molecular dynamics simulations 

for the PDADMAC/PSS system,58 the increase in salt concentration decreases the amount 

of water around PSS and simultaneously increases the PSS-water hydrogen bond strength 

(or hydrogen bond lifetime). The increase in binding strength, as mentioned above, may 

be manifested by the shift in the high frequency peak center towards higher values. As can 

be seen in Table 3.2, at a constant temperature, a slight shift in high frequency peak center 

with increasing salt concentration can be observed. Altogether, our results combined with 
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previous considerations,45, 58 suggest that salt is changing the nature of polyelectrolyte-

water binding. 

 

 

Table 3.2: Peak information for all salt concentrations at 40 °C 

  40 °C   

  Bulk Low frequency High frequency Cumulati

ve water  

 Salt 

Conc 

Area fwhm Peak 

center 

Area fwhm Peak 

center 

Area fwhm Peak 

center 

Area 

0.25 1E-9 170 2509 4.64 91.98 2497.1 15.3 110.5 2556.1 19.9 

0.5 1E-9 170 2509 12.99 92.62 2498.3 32.6 111.3 2562.1 45.6 

0.75 1E-9 170 2509 31.45 92.97 2499.2 87.3 111.9 2568.9 118.7 

1 1E-9 170 2509 30.89 93.08 2499.8 92.2 111.9 2565.7 123.1 

1.25 1E-9 170 2509 24.51 93.65 2500.2 98.7 112.3 2559.6 123.2 

1.5 1E-9 170 2509 31.49 94.30 2501.1 105.7 112.8 2562.4 137.3 
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3.7 Combined effects of temperature and ionic strength on PEMs 

  

Figure 3.11: (a) Population distribution of water as percent area of each state for all tested 

salt concentrations and temperatures. (b) Comparison of percent area of low and high 

frequency peaks with respect to increasing salt concentration at 40 °C (black) and 60 °C 

(red). The two top-most (higher percentage) lines correspond to the high frequency water 

peaks and the two bottom-most (lower percentage) correspond to the low frequency water 

peaks. 
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Figure 3.11 demonstrates a comparison of the effects of temperature and salt concentration 

on the population distribution of water within the PDAMA/PSS PEM. Figure 3.11a shows 

the variation of high frequency and low frequency OD peak areas with temperature at 

different NaCl concentrations. The results show that about 80% of water molecules 

contribute to the high-frequency peak and are more tightly bound; also, the relative peak 

area percentages do not change much with regard to temperature. Figure 3.11b compares 

the effects of salt concentration for two different temperatures, 40 and 65 C, on the 

population distribution of water within the PDADMA/PSS PEM. Similarly, there is little 

variation in the relative contributions of the high and low frequency peaks with regard to 

salt concentration. At 40 C, the relative contribution of high frequency water is slightly 

reduced, but remains within error of the contribution at 65 C. 

 

3.8 Van’t Hoff relationship  

 To obtain more insight into the temperature response of water within the PEMs, a 

van’t Hoff plot was constructed, Figure 3.12. The plot is based on the high and low 

frequency water populations from the deconvolution of OD stretch peaks and shows the 

natural logarithm of the ratio of the high frequency to low frequency water population 

against the inverse of temperature for each salt concentration of PEM. This analysis 

considers the equilibrium “reaction” of low frequency water shifting its state to high 

frequency water, equation 3.1. Similar works98, 99 have been done based on the same 

assumption that the water OH spectra can be deconvoluted into two water components:  
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Figure 3.12: van’t Hoff plot produced using the percent areas from Figure 3.11. The lines 

represent linear fits using the van’t Hoff relationship. b) van’t Hoff enthalpy dependence 

on salt concentration 

  

correlated (intermediate) water and non-correlated (free) water. An equilibrium isosbestic 

point, identified by equal absorption, is determined as a point of division for the two water 

components. Therefore, by assuming that the equilibrium of the reaction may be 

represented as the ratio of the high frequency water concentration to the low frequency 

water concentration, we can represent the van’t Hoff equation as equation 3.2. 

 Furthermore, by assuming that each water population is proportional to its 

respective FTIR peak area, the van’t Hoff equation may be modified to equation 3.3. This 

relationship predicts that the slope and y-intercept of the van’t Hoff plot will yield the 

enthalpy and entropy of the conversion of low frequency water to high frequency water.99 

 

𝐻2𝑂|𝐿 ↔ 𝐻2𝑂|𝐻                                        𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.1  
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𝐾𝑒𝑞 =
[𝐻2𝑂|𝐻]

[𝐻2𝑂|𝐿]
=

𝐴𝐻

𝐴𝐿
                                  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.2  

 

ln 𝐾𝑒𝑞 = ln
𝐴𝐻

𝐴𝐿
= −

Δ𝐻

𝑅𝑇
+

Δ𝑆

𝑅
                         𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.3  

 

 In accordance with typical van’t Hoff behavior, the data presents a linear trend of 

ln (AH/AL) ~ 1/T. The linear trend suggests that the enthalpy and entropy are independent 

of temperature for the experiment.98 However, the differences in the slope as salt varies 

indicates a salt-dependence of the van’t Hoff enthalpy relationship. Notably in Figure 

3.12a, the data sets corresponding to 0.25 M and 0.5 M have the greatest slopes. This 

means that, for these data sets, the ratio of the high frequency peak area to low frequency 

peak area is most sensitive to temperature change. In practice, the peak area change occurs 

mostly for the low frequency water peak but not so much for the high frequency peak. 

This means that these intermediate salt concentrations are more sensitive to the release of 

weakly bound water with increasing temperature. Figure 3.12b, shows that the calculated 

van’t Hoff enthalpy values range from 11 – 22 kJ/mol (2.6 – 5.2 kcal/mol) across the 

different salt concentrations studied. Similarly, the van’t Hoff entropy values range from 

48 – 79 kJ/molK (11.5 – 19 kcal/molK). Using various techniques including Raman and 

IR spectroscopy, light and neutron scattering, and molecular dynamics, the van’t Hoff 

enthalpy of liquid water has been obtained within the range from 2.3 – 3 kcal/mol,100-102 

which is of similar value here. This van’t Hoff enthalpy represents the breakage of a 

hydrogen bond across the two water microenvironments present in the PEM system.101 
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The changes in van’t Hoff enthalpy with ionic strength may be as a result of the screening 

effects of the salt ions present around water molecules. Also, results from  MD simulations 

by Batys et al.75 may be employed to shed more light on the endothermic nature of the 

van’t Hoff enthalpy. The increase in rotational diffusion of water molecules within 

PDADMA/PSS PECs with increasing temperature103104103103103104104104104104104104104 might 

suggest that the vibrational frequency of water molecules becomes faster as temperature 

increases. There is therefore a transition from slower to faster vibrations with temperature 

increase.  
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CHAPTER IV  

CONCLUSIONS AND FUTURE WORK 

 

4.1 Conclusions 

 The influence of salt concentration and temperature on the hydrogen bonding of 

water molecules (specifically, HOD molecules) within PDADMA/PSS films was studied 

via ATR-FTIR spectroscopy. Deconvolution of OD stretch peak led to the conclusion that 

most of the water molecules in a fully hydrated PEM are located within regions of 

influence with the polymers (tightly or loosely bound), regardless of salt concentration or 

temperature. An increase in temperature caused an overall decrease in the amount of water 

within the film, but the amount of tightly bound water remained constant, indicating that 

water was released only from the outer hydration shells of the ionic groups. Increasing the 

salt concentration led to the disruption of intrinsic polycation-polyanion pairs, which led 

to swelling of the film, as evidenced by the relative increase in the OD stretch peak area. 

The high and low frequency peak areas were quantified, and the peak area ratio followed 

a van’t Hoff-type relationship. The van’t Hoff enthalpy was in the range of 11 – 22 kJ/mol, 

which is in accordance with a typical hydrogen bonding response.  

 Altogether in this study, we showed that the water content in fully hydrated PEMs 

is influenced both by salt concentration and temperature, while the binding and 

interactions nature of individual polyelectrolyte molecules in the multilayers are 

controlled mostly by the salt counterions. Temperature plays a role via thermal vibrations, 

but it was not observed to change the binding character of the polyelectrolytes. An 
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assessment of the distribution of water binding around the ion pairs was also made. 

 Microenvironments of water molecules with high and low effective hydrogen 

bonding energy were identified; the amount of high frequency water remained relatively 

constant with temperature and salt indicating consistent hydration of the tightly bound 

water species in the PEM; meanwhile, the amount of low frequency water decreased with 

temperature indicating a loss of some of the more weakly hydrogen bonded water 

molecules with increasing temperature. The results provide insight into the character of 

water in PEMs but also lay foundation to understanding the varied microenvironments of 

water molecules within any charged system, whether it be synthetic or biological. 

 

4.2 Future Work 

 Following the results obtained from this research, future work would involve 

conducting similar studies using ATR-FTIR spectroscopy on weak PAH/PAA PEMs to 

determine response to both temperature and pH. Although this technique enables us 

identify water microenvironments by virtue of their binding energy to all polyelectrolyte 

ion pairs, it is also important to identify the particular ion pair water molecules associate 

with. That is, identifying the number of water molecules associated with intrinsic ion pairs 

and each kind of extrinsic ion pair. This is important as Zhang et al. have proved for both 

strong and weak polyelectrolyte systems, that the glass transition temperature of both 

PEMs and PECs can be related to the ratio of water molecules to intrinsic ion pairs.44 One 

possible characterization technique with this potential is quartz crystal microbalance 

(QCM). QCM operates on the piezo-electricity of a quartz crystal sandwich between two 
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electrodes. By so doing, the water content of the PEMs can be determined from the mass 

and thickness of PEMs at both hydrated and dry states.  

 

 

 



 

 

REFERENCES 

 

1. de Jong, B., Coacervation. Proc. Royal Acad. Amsterdam 1929, 32, 849-856. 

2. Parveen, N.; Schönhoff, M., Swelling and Stability of Polyelectrolyte Multilayers 

in Ionic Liquid Solutions. Macromolecules 2013, 46 (19), 7880-7888. 

3. Holder, K. M.;  Smith, R. J.; Grunlan, J. C., A review of flame retardant 

nanocoatings prepared using layer-by-layer assembly of polyelectrolytes. Journal of 

Materials Science 2017, 52 (22), 12923-12959. 

4. Suarez-Martinez, P. C.;  Robinson, J.;  An, H.;  Nahas, R. C.;  Cinoman, D.; 

Lutkenhaus, J. L., Polymer-clay nanocomposite coatings as efficient, environment-

friendly surface pretreatments for aluminum alloy 2024-T3. Electrochimica Acta 2018, 

260, 73-81. 

5. Ahmadiannamini, P.;  L. Bruening, M.; Tarabara, V., Sacrificial polyelectrolyte 

multilayer coatings as an approach to membrane fouling control: Disassembly and 

regeneration mechanisms. Journal of Membrane Science 2015, 491. 

6. Min, J.;  Braatz, R. D.; Hammond, P. T., Tunable staged release of therapeutics 

from layer-by-layer coatings with clay interlayer barrier. Biomaterials 2014, 35 (8), 2507-

2517. 

7. Sill, A.;  Nestler, P.;  Azinfar, A.; Helm, C. A., Tailorable Polyanion Diffusion 

Coefficient in LbL Films: The Role of Polycation Molecular Weight and Polymer 

Conformation. Macromolecules 2019, 52 (22), 9045-9052. 



 

58 

 

8. Morawetz, H., Polyelectrolytes, science and technology, Hara Masanori, ed., 

Marcel Dekker, New York, 1993, 416 pp. price: $150.00. Journal of Polymer Science Part 

A: Polymer Chemistry 1993, 31 (9), 2413-2413. 

9. Dobrynin, A. V.; Rubinstein, M., Hydrophobic Polyelectrolytes. Macromolecules 

1999, 32 (3), 915-922. 

10. Dobrynin, A. V.; Rubinstein, M., Theory of polyelectrolytes in solutions and at 

surfaces. Progress in Polymer Science 2005, 30 (11), 1049-1118. 

11. Zhu, T.;  Sha, Y.;  Yan, J.;  Pageni, P.;  Rahman, M. A.;  Yan, Y.; Tang, C., Metallo-

polyelectrolytes as a class of ionic macromolecules for functional materials. Nature 

Communications 2018, 9 (1), 4329. 

12. Kawamura, S., Effectiveness of Natural Polyelectrolytes in Water Treatment. 

Journal (American Water Works Association) 1991, 83 (10), 88-91. 

13. Wang, Y.;  Shen, Y.;  Zhang, Y.;  Yue, B.; Wu, C., pH‐Sensitive Polyacrylic Acid 

(PAA) Hydrogels Trapped with Polysodium‐p‐Styrenesulfonate (PSS). Journal of 

Macromolecular Science, Part B 2006, 45 (4), 563-571. 

14. Rathee, S. V.;  Sidky, H.;  Sikora, J. B.; Whitmer, K. J., Explicit Ion Effects on the 

Charge and Conformation of Weak Polyelectrolytes. Polymers 2019, 11 (1). 

15. Mortimer, D. A., Synthetic polyelectrolytes—A review. Polymer International 

1991, 25 (1), 29-41. 

16. Löhmann, O.;  Zerball, M.; von Klitzing, R., Water Uptake of Polyelectrolyte 

Multilayers Including Water Condensation in Voids. Langmuir 2018, 34 (38), 11518-

11525. 



 

59 

 

17. Guzmán, E.;  Ritacco, H.;  Rubio, J. E. F.;  Rubio, R. G.; Ortega, F., Salt-induced 

changes in the growth of polyelectrolyte layers of poly(diallyl-dimethylammonium 

chloride) and poly(4-styrene sulfonate of sodium). Soft Matter 2009, 5 (10), 2130-2142. 

18. Chollakup, R.;  Smitthipong, W.;  Eisenbach, C. D.; Tirrell, M., Phase Behavior 

and Coacervation of Aqueous Poly(acrylic acid)−Poly(allylamine) Solutions. 

Macromolecules 2010, 43 (5), 2518-2528. 

19. Ali, S.; Prabhu, V. M., Relaxation Behavior by Time-Salt and Time-Temperature 

Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate. Gels 2018, 

4 (1), 11. 

20. McAloney, R. A.;  Dudnik, V.; Goh, M. C., Kinetics of Salt-Induced Annealing of 

a Polyelectrolyte Multilayer Film Morphology. Langmuir 2003, 19 (9), 3947-3952. 

21. Miller, M. D.; Bruening, M. L., Correlation of the Swelling and Permeability of 

Polyelectrolyte Multilayer Films. Chemistry of Materials 2005, 17 (21), 5375-5381. 

22. Choi, J.; Rubner, M. F., Influence of the Degree of Ionization on Weak 

Polyelectrolyte Multilayer Assembly. Macromolecules 2005, 38 (1), 116-124. 

23. Zhang, Y.;  Yildirim, E.;  Antila, H. S.;  Valenzuela, L. D.;  Sammalkorpi, M.; 

Lutkenhaus, J. L., The influence of ionic strength and mixing ratio on the colloidal stability 

of PDAC/PSS polyelectrolyte complexes. Soft Matter 2015, 11 (37), 7392-7401. 

24. Wang, Q.; Schlenoff, J. B., The Polyelectrolyte Complex/Coacervate Continuum. 

Macromolecules 2014, 47 (9), 3108-3116. 



 

60 

 

25. Li, L.;  Srivastava, S.;  Andreev, M.;  Marciel, A. B.;  de Pablo, J. J.; Tirrell, M. 

V., Phase Behavior and Salt Partitioning in Polyelectrolyte Complex Coacervates. 

Macromolecules 2018, 51 (8), 2988-2995. 

26. Soltwedel, O.;  Nestler, P.;  Neumann, H.-G.;  Paßvogel, M.;  Köhler, R.; Helm, 

C. A., Influence of Polycation (PDADMAC) Weight on Vertical Diffusion within 

Polyelectrolyte Multilayers during Film Formation and Postpreparation Treatment. 

Macromolecules 2012, 45 (19), 7995-8004. 

27. Zhang, Y.;  Li, F.;  Valenzuela, L. D.;  Sammalkorpi, M.; Lutkenhaus, J. L., Effect 

of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)–

Poly(acrylic acid) Complexes. Macromolecules 2016, 49 (19), 7563-7570. 

28. Fu, J.;  Abbett, R. L.;  Fares, H. M.; Schlenoff, J. B., Water and the Glass Transition 

Temperature in a Polyelectrolyte Complex. ACS Macro Letters 2017, 6 (10), 1114-1118. 

29. Shao, L.; Lutkenhaus, J. L., Thermochemical properties of free-standing 

electrostatic layer-by-layer assemblies containing poly(allylamine hydrochloride) and 

poly(acrylic acid). Soft Matter 2010, 6 (14), 3363-3369. 

30. Iler, R. K., Multilayers of colloidal particles. Journal of Colloid and Interface 

Science 1966, 21 (6), 569-594. 

31. Decher, G.;  Hong, J. D.; Schmitt, J., Buildup of ultrathin multilayer films by a 

self-assembly process: III. Consecutively alternating adsorption of anionic and cationic 

polyelectrolytes on charged surfaces. Thin Solid Films 1992, 210-211, 831-835. 

32. Swenson, H.; Stadie, N. P., Langmuir’s Theory of Adsorption: A Centennial 

Review. Langmuir 2019, 35 (16), 5409-5426. 



 

61 

 

33. Langmuir, I., THE ADSORPTION OF GASES ON PLANE SURFACES OF 

GLASS, MICA AND PLATINUM. Journal of the American Chemical Society 1918, 40 

(9), 1361-1403. 

34. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. 

Science 1997, 277 (5330), 1232-1237. 

35. Iturri Ramos, J. J.;  Stahl, S.;  Richter, R. P.; Moya, S. E., Water Content and 

Buildup of Poly(diallyldimethylammonium chloride)/Poly(sodium 4-styrenesulfonate) 

and Poly(allylamine hydrochloride)/Poly(sodium 4-styrenesulfonate) Polyelectrolyte 

Multilayers Studied by an in Situ Combination of a Quartz Crystal Microbalance with 

Dissipation Monitoring and Spectroscopic Ellipsometry. Macromolecules 2010, 43 (21), 

9063-9070. 

36. Farhat, T.;  Yassin, G.;  Dubas, S. T.; Schlenoff, J. B., Water and Ion Pairing in 

Polyelectrolyte Multilayers. Langmuir 1999, 15 (20), 6621-6623. 

37. Jaber, J. A.; Schlenoff, J. B., Recent developments in the properties and 

applications of polyelectrolyte multilayers. Current Opinion in Colloid & Interface 

Science 2006, 11 (6), 324-329. 

38. Bieker, P.; Schönhoff, M., Linear and Exponential Growth Regimes of Multilayers 

of Weak Polyelectrolytes in Dependence on pH. Macromolecules 2010, 43 (11), 5052-

5059. 

39. v. Klitzing, R., Internal structure of polyelectrolyte multilayer assemblies. 

Physical Chemistry Chemical Physics 2006, 8 (43), 5012-5033. 



 

62 

 

40. Li, Y.;  Wang, X.; Sun, J., Layer-by-layer assembly for rapid fabrication of thick 

polymeric films. Chemical Society Reviews 2012, 41 (18), 5998-6009. 

41. Steitz, R.;  Jaeger, W.; Klitzing, R. v., Influence of Charge Density and Ionic 

Strength on the Multilayer Formation of Strong Polyelectrolytes. Langmuir 2001, 17 (15), 

4471-4474. 

42. Dubas, S. T.; Schlenoff, J. B., Polyelectrolyte Multilayers Containing a Weak 

Polyacid:  Construction and Deconstruction. Macromolecules 2001, 34 (11), 3736-3740. 

43. Kharlampieva, E.; Sukhishvili, S. A., Ionization and pH Stability of Multilayers 

Formed by Self-Assembly of Weak Polyelectrolytes. Langmuir 2003, 19 (4), 1235-1243. 

44. Zhang, Y.;  Batys, P.;  O’Neal, J. T.;  Li, F.;  Sammalkorpi, M.; Lutkenhaus, J. L., 

Molecular Origin of the Glass Transition in Polyelectrolyte Assemblies. ACS Central 

Science 2018, 4 (5), 638-644. 

45. O’Neal, J. T.;  Dai, E. Y.;  Zhang, Y.;  Clark, K. B.;  Wilcox, K. G.;  George, I. 

M.;  Ramasamy, N. E.;  Enriquez, D.;  Batys, P.;  Sammalkorpi, M.; Lutkenhaus, J. L., 

QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure 

to Monovalent Ions. Langmuir 2018, 34 (3), 999-1009. 

46. Izumrudov, V.;  Kharlampieva, E.; Sukhishvili, S. A., Salt-Induced Multilayer 

Growth:  Correlation with Phase Separation in Solution. Macromolecules 2004, 37 (22), 

8400-8406. 

47. Sukhishvili, S. A.;  Kharlampieva, E.; Izumrudov, V., Where Polyelectrolyte 

Multilayers and Polyelectrolyte Complexes Meet. Macromolecules 2006, 39 (26), 8873-

8881. 



 

63 

 

48. Li, Y.-C.;  Schulz, J.;  Mannen, S.;  Delhom, C.;  Condon, B.;  Chang, S.;  

Zammarano, M.; Grunlan, J. C., Flame Retardant Behavior of Polyelectrolyte−Clay Thin 

Film Assemblies on Cotton Fabric. ACS Nano 2010, 4 (6), 3325-3337. 

49. Izumrudov, V. A.;  Mussabayeva, B. K.; Murzagulova, K. B., Polyelectrolyte 

multilayers: preparation and applications. Russian Chemical Reviews 2018, 87 (2), 192-

200. 

50. Khan, S. A.;  Khan, S. B.;  Khan, L. U.;  Farooq, A.;  Akhtar, K.; Asiri, A. M., 

Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional 

Groups and Nanomaterials Characterization. In Handbook of Materials Characterization, 

Sharma, S. K., Ed. Springer International Publishing: Cham, 2018; pp 317-344. 

51. Saliev, T.;  Begimbetova, D.;  Masoud, A.-R.; Matkarimov, B., Biological effects 

of non-ionizing electromagnetic fields: Two sides of a coin. Progress in Biophysics and 

Molecular Biology 2019, 141, 25-36. 

52. Beasley, M. M.;  Bartelink, E. J.;  Taylor, L.; Miller, R. M., Comparison of 

transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone 

bioapatite diagenesis. Journal of Archaeological Science 2014, 46, 16-22. 

53. Moraes, L. G. P.;  Rocha, R. S. F.;  Menegazzo, L. M.;  de Araújo, E. B.;  Yukimito, 

K.; Moraes, J. C. S., Infrared spectroscopy: a tool for determination of the degree of 

conversion in dental composites. J Appl Oral Sci 2008, 16 (2), 145-149. 

54. Ausili, A.;  Sánchez, M.; Gómez-Fernández, J., Attenuated total reflectance 

infrared spectroscopy: A powerful method for the simultaneous study of structure and 



 

64 

 

spatial orientation of lipids and membrane proteins. Biomedical Spectroscopy and 

Imaging 2015, 4, 159-70. 

55. Ricci, m. A.;  Bruni, F.;  Gallo, P.;  Rovere, M.; K Soper, A., Water in confined 

geometries: Experiments and simulations. 2000; Vol. 12. 

56. Wong, J. E.;  Rehfeldt, F.;  Hänni, P.;  Tanaka, M.; Klitzing, R. v., Swelling 

Behavior of Polyelectrolyte Multilayers in Saturated Water Vapor. Macromolecules 2004, 

37 (19), 7285-7289. 

57. Kolasińska, M.;  Krastev, R.;  Gutberlet, T.; Warszyński, P. In Swelling and Water 

Uptake of PAH/PSS Polyelectrolyte Multilayers, Berlin, Heidelberg, Springer Berlin 

Heidelberg: Berlin, Heidelberg, 2008; pp 30-38. 

58. Zhang, R.;  Zhang, Y.;  Antila, H. S.;  Lutkenhaus, J. L.; Sammalkorpi, M., Role 

of Salt and Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. The 

Journal of Physical Chemistry B 2017, 121 (1), 322-333. 

59. Michaels, A. S., POLYELECTROLYTE COMPLEXES. Industrial & 

Engineering Chemistry 1965, 57 (10), 32-40. 

60. Huglin, M. B.;  Webster, L.; Robb, I. D., Complex formation between poly(4-

vinylpyridinium chloride) and poly[sodium(2-acrylamido-2-methyl propane sulfonate)] in 

dilute aqueous solution. Polymer 1996, 37 (7), 1211-1215. 

61. Schlenoff, J. B.;  Rmaile, A. H.; Bucur, C. B., Hydration Contributions to 

Association in Polyelectrolyte Multilayers and Complexes: Visualizing Hydrophobicity. 

Journal of the American Chemical Society 2008, 130 (41), 13589-13597. 



 

65 

 

62. Sukhishvili, S. A.; Granick, S., Layered, Erasable Polymer Multilayers Formed by 

Hydrogen-Bonded Sequential Self-Assembly. Macromolecules 2002, 35 (1), 301-310. 

63. Wang, Y.;  Shen, Y.;  Zhang, Y.;  Yue, B.; Wu, C., pH‐Sensitive Polyacrylic Acid 

(PAA) Hydrogels Trapped with Polysodium‐p‐Styrenesulfonate (PSS). Journal of 

Macromolecular Science, Part B 2006, 45, 563-571. 

64. Dubas, S. T.; Schlenoff, J. B., Swelling and Smoothing of Polyelectrolyte 

Multilayers by Salt. Langmuir 2001, 17 (25), 7725-7727. 

65. Abbott, S. B.;  de Vos, W. M.;  Mears, L. L. E.;  Barker, R.;  Richardson, R. M.; 

Prescott, S. W., Hydration of Odd–Even Terminated Polyelectrolyte Multilayers under 

Mechanical Confinement. Macromolecules 2014, 47 (10), 3263-3273. 

66. Eneh, C. I.;  Bolen, M. J.;  Suarez-Martinez, P. C.;  Bachmann, A. L.;  Zimudzi, T. 

J.;  Hickner, M. A.;  Batys, P.;  Sammalkorpi, M.; Lutkenhaus, J. L., Fourier transform 

infrared spectroscopy investigation of water microenvironments in polyelectrolyte 

multilayers at varying temperatures. Soft Matter 2020, 16 (9), 2291-2300. 

67. Reid, D. K.;  Summers, A.;  O’Neal, J.;  Kavarthapu, A. V.; Lutkenhaus, J. L., 

Swelling and Thermal Transitions of Polyelectrolyte Multilayers in the Presence of 

Divalent Ions. Macromolecules 2016, 49 (16), 5921-5930. 

68. Gao, C.;  Leporatti, S.;  Moya, S.;  Donath, E.; Moehwald, H., Swelling and 

Shrinking of Polyelectrolyte Microcapsules in Response to Changes in Temperature and 

Ionic Strength. Chemistry (Weinheim an der Bergstrasse, Germany) 2003, 9, 915-20. 

69. Schwarz, B.; Schönhoff, M., Surface Potential Driven Swelling of Polyelectrolyte 

Multilayers. Langmuir 2002, 18 (8), 2964-2966. 



 

66 

 

70. Salomäki, M.; Kankare, J., Specific Anion Effect in Swelling of Polyelectrolyte 

Multilayers. Macromolecules 2008, 41 (12), 4423-4428. 

71. Köhler, K.;  Biesheuvel, M.;  Weinkamer, R.;  Moehwald, H.; Sukhorukov, G., 

Salt-Induced Swelling-to-Shrinking Transition in Polyelectrolyte Multilayer Capsules. 

Physical review letters 2006, 97, 188301. 

72. McCormick, M.;  Smith, R. N.;  Graf, R.;  Barrett, C. J.;  Reven, L.; Spiess, H. W., 

NMR Studies of the Effect of Adsorbed Water on Polyelectrolyte Multilayer Films in the 

Solid State. Macromolecules 2003, 36 (10), 3616-3625. 

73. Parveen, N.; Schönhoff, M., Quantifying and controlling the cation uptake upon 

hydrated ionic liquid-induced swelling of polyelectrolyte multilayers. Soft Matter 2017, 

13 (10), 1988-1997. 

74. Koehler, R.;  Steitz, R.; von Klitzing, R., About different types of water in swollen 

polyelectrolyte multilayers. Advances in Colloid and Interface Science 2014, 207, 325-

331. 

75. Batys, P.;  Zhang, Y.;  Lutkenhaus, J. L.; Sammalkorpi, M., Hydration and 

Temperature Response of Water Mobility in Poly(diallyldimethylammonium)–

Poly(sodium 4-styrenesulfonate) Complexes. Macromolecules 2018, 51 (20), 8268-8277. 

76. Zerball, M.;  Laschewsky, A.; von Klitzing, R., Swelling of Polyelectrolyte 

Multilayers: The Relation Between, Surface and Bulk Characteristics. The Journal of 

Physical Chemistry B 2015, 119 (35), 11879-11886. 



 

67 

 

77. Steitz, R.;  Leiner, V.;  Siebrecht, R.; v. Klitzing, R., Influence of the ionic strength 

on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces 

A: Physicochemical and Engineering Aspects 2000, 163 (1), 63-70. 

78. Dodoo, S.;  Steitz, R.;  Laschewsky, A.; von Klitzing, R., Effect of ionic strength 

and type of ions on the structure of water swollen polyelectrolyte multilayers. Physical 

Chemistry Chemical Physics 2011, 13 (21), 10318-10325. 

79. Mitra, S. K.;  Dass, N.; Varshneya, N. C., Temperature Dependence of the 

Refractive Index of Water. The Journal of Chemical Physics 1972, 57 (4), 1798-1799. 

80. Steitz, R.;  Leiner, V.;  Tauer, K.;  Khrenov, V.; v. Klitzing, R., Temperature-

induced changes in polyelectrolyte films at the solid–liquid interface. Applied Physics A 

2002, 74 (1), s519-s521. 

81. Köhler, K.;  Möhwald, H.; Sukhorukov, G. B., Thermal Behavior of 

Polyelectrolyte Multilayer Microcapsules:  2. Insight into Molecular Mechanisms for the 

PDADMAC/PSS System. The Journal of Physical Chemistry B 2006, 110 (47), 24002-

24010. 

82. Nestler, P.;  Block, S.; Helm, C. A., Temperature-Induced Transition from Odd–

Even to Even–Odd Effect in Polyelectrolyte Multilayers Due to Interpolyelectrolyte 

Interactions. The Journal of Physical Chemistry B 2012, 116 (4), 1234-1243. 

83. Lutkenhaus, J. L.;  Hrabak, K. D.;  McEnnis, K.; Hammond, P. T., Elastomeric 

Flexible Free-Standing Hydrogen-Bonded Nanoscale Assemblies. Journal of the 

American Chemical Society 2005, 127 (49), 17228-17234. 



 

68 

 

84. Smedley, S. B.;  Zimudzi, T. J.;  Chang, Y.;  Bae, C.; Hickner, M. A., 

Spectroscopic Characterization of Sulfonate Charge Density in Ion-Containing Polymers. 

The Journal of Physical Chemistry B 2017, 121 (51), 11504-11510. 

85. Kitadai, N.;  Sawai, T.;  Tonoue, R.;  Nakashima, S.;  Katsura, M.; Fukushi, K., 

Effects of Ions on the OH Stretching Band of Water as Revealed by ATR-IR Spectroscopy. 

Journal of Solution Chemistry 2014, 43 (6), 1055-1077. 

86. Moilanen, D. E.;  Piletic, I. R.; Fayer, M. D., Tracking Water's Response to 

Structural Changes in Nafion Membranes. The Journal of Physical Chemistry A 2006, 110 

(29), 9084-9088. 

87. Park, S.; Fayer, M. D., Hydrogen bond dynamics in aqueous NaBr solutions. Proc 

Natl Acad Sci U S A 2007, 104 (43), 16731-16738. 

88. Smedley, S. B.;  Chang, Y.;  Bae, C.; Hickner, M. A., Measuring water hydrogen 

bonding distributions in proton exchange membranes using linear Fourier Transform 

Infrared spectroscopy. Solid State Ionics 2015, 275, 66-70. 

89. Brubach, J.-B.;  Mermet, A.;  Filabozzi, A.;  Gerschel, A.; Roy, P., Signatures of 

the hydrogen bonding in the infrared bands of water. The Journal of Chemical Physics 

2005, 122 (18), 184509. 

90. Schmidt, J. R.;  Corcelli, S. A.; Skinner, J. L., Pronounced non-Condon effects in 

the ultrafast infrared spectroscopy of water. The Journal of Chemical Physics 2005, 123 

(4), 044513. 

91. Yang, J. C.;  Jablonsky, M. J.; Mays, J. W., NMR and FT-IR studies of sulfonated 

styrene-based homopolymers and copolymers. Polymer 2002, 43 (19), 5125-5132. 



 

69 

 

92. Wang, Y.;  Shen, Y.;  Zhang, Y.;  Yue, B.; Wu, C., pH‐Sensitive Polyacrylic Acid 

(PAA) Hydrogels Trapped with Polysodium‐p‐Styrenesulfonate (PSS). 2006; Vol. 45, p 

563-571. 

93. Falk, M.; Ford, T. A., INFRARED SPECTRUM AND STRUCTURE OF LIQUID 

WATER. Canadian Journal of Chemistry 1966, 44 (14), 1699-1707. 

94. Batys, P.;  Kivistö, S.;  Lalwani, S. M.;  Lutkenhaus, J. L.; Sammalkorpi, M., 

Comparing water-mediated hydrogen-bonding in different polyelectrolyte complexes. 

Soft Matter 2019, 15 (39), 7823-7831. 

95. Wang, F.;  Yang, J.; Zhao, J., Understanding anti-polyelectrolyte behavior of a 

well-defined polyzwitterion at the single-chain level. Polymer International 2015, 64 (8), 

999-1005. 

96. Antila, H. S.; Sammalkorpi, M., Polyelectrolyte Decomplexation via Addition of 

Salt: Charge Correlation Driven Zipper. The Journal of Physical Chemistry B 2014, 118 

(11), 3226-3234. 

97. Antila, H. S.;  Härkönen, M.; Sammalkorpi, M., Chemistry specificity of DNA–

polycation complex salt response: a simulation study of DNA, polylysine and 

polyethyleneimine. Physical Chemistry Chemical Physics 2015, 17 (7), 5279-5289. 

98. Ninno, A.;  Congiu Castellano, A.; Del Giudice, E., The supramolecular structure 

of liquid water and quantum coherent processes in biology. 2013; Vol. 442, p 012031. 

99. Ninno, A.;  Del Giudice, E.;  Gamberale, L.; Congiu Castellano, A., The Structure 

of Liquid Water Emerging from the Vibrational Spectroscopy: Interpretation with QED 

Theory. 2013. 



 

70 

 

100. Walrafen, G. E.;  Fisher, M. R.;  Hokmabadi, M. S.; Yang, W. H., Temperature 

dependence of the low‐ and high‐frequency Raman scattering from liquid water. The 

Journal of Chemical Physics 1986, 85 (12), 6970-6982. 

101. Walrafen, G. E., Raman Spectral Studies of the Effects of Electrolytes on Water. 

The Journal of Chemical Physics 1962, 36 (4), 1035-1042. 

102. Carey, D. M.; Korenowski, G. M., Measurement of the Raman spectrum of liquid 

water. The Journal of Chemical Physics 1998, 108 (7), 2669-2675. 

103. Krebs, T.;  Tan, H. L.;  Andersson, G.;  Morgner, H.; Gregory Van Patten, P., 

Increased layer interdiffusion in polyelectrolyte films upon annealing in water and 

aqueous salt solutions. Physical chemistry chemical physics : PCCP 2006, 8 (46), 5462-

8. 

 

 


