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ABSTRACT 

 

Autonomous vehicle (AV) technology is rapidly developing and is predicted to 

have a significant impact on travel. One application of AV technology is Shared 

Autonomous Vehicles (SAV), where a single AV is shared amongst several users. SAV 

may prove to be more cost-effective than ownership of personal vehicles. This could imply 

an increasing demand for ride-sharing services and autonomous taxis (aTaxi) and 

increasing use of Mobility as a Service (MaaS). Moreover, Shared Autonomous Electric 

Vehicles (SAEV) reduce two significant cost factors for ridesharing, driver, and fuel. 

Thus, SAEV could dramatically change the economics of offering ridesharing or aTaxi 

services and potentially compete with existing TNCs (Transportation Network 

Companies) and vehicle ownership itself. Companies like Uber, Tesla, and Lyft are 

looking into various business models to capture this market. One such model is to 

incorporate a subscription-based pricing model, similar to Spotify or Netflix. This research 

evaluated a potential pricing structure for an autonomous ridesharing system under 

subscription-based pricing and compare it with existing ridesharing systems based on pay 

per ride and personal vehicles. The results show that a monthly fee of $170 can be charged 

per traveler with a per-mile cost varying between $0.31 and $0.71. 
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1. INTRODUCTION  

 

1.1. Overview 

Technology has a great deal of impact on our travel behavior. Even before a trip 

starts, technology can help travelers plan their trip and a whole new set of technologies 

help in completing the trip. Autonomous Vehicle (AV) technology may have a significant 

impact on travel and may offer unprecedented opportunities for businesses. The 

autonomous vehicle (AV) industry is developing rapidly and is estimated to reach $173 

billion by 2023 (HTF Market Intelligence, 2019). The anticipated exponential growth in 

adopting autonomous vehicles by the industry as well as the general public is due to many 

advantages offered by these vehicles, mainly improving safety and reducing congestion. 

As per the 2015 Summary of Motor Vehicle Crashes (Final Edition) published by NHTSA, 

human error is responsible for over 90 percent of vehicle crashes. It is expected that fully 

autonomous vehicles will improve safety on the road by eliminating human driving. Also, 

AVs will add the capability to carry children and elderly people to the destination in a safe 

manner increasing vehicle trips making the market open for most age groups irrespective 

of whether the user can drive or not. They may improve the capacity of roadways due to 

the vehicle to vehicle/infrastructure coordination. 

Meanwhile, the market for ride-sharing services is predicted to double in revenue 

from 2017-2023. These services affect people’s choice to use cars as a service rather than 

owning personal vehicles. However, for average travelers owning a personal vehicle is 

economically more beneficial in most cases. With AVs, one of the most substantial costs 
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of ridesharing, the driver, is removed. About two-thirds of the revenue generated by 

Transportation Network Companies (TNCs) is used for paying the drivers (Ulama, 2016). 

Therefore, AVs may further boost the ridesharing market. Various TNCs are 

experimenting in this field. For example, Google (Waymo) has started using self-driving 

cars for its ride-sharing service in Phoenix, AZ (https://waymo.com/journey/).   

Vehicle ownership is considered a major reason for people to not look for 

alternative modes of travel. With the introduction of AVs, Schoettle and Sivak (2015) 

indicated that the average household vehicle ownership as per NHTS (National Household 

Travel Survey) could be substantially reduced by roughly 40% to 1.2 vehicles per 

household. However, Freedman (2018) states that currently, Autonomous vehicles (AVs) 

lifetime costs exceed the cost of human-driven personal cars by 49%, but this is expected 

to come down to 6% considering 5-year Moore’s law prediction. Therefore, in the near 

future, owning an AV will likely be very expensive, due to the high purchase and 

maintenance cost. Hence, it makes the use of AVs as taxis or SAVs more economical and 

more likely. Fagnant et al. (2015) ran a simulation based on travel demand for the city of 

Austin in Texas, whose results claimed that 1 SAV could alone complete as many intra-

urban trips as 9 conventional vehicles.  

Mobility as a Service (MaaS) will play a vital role in introducing this technology 

to the general public before many individuals own an AV. AARP Public Policy Institute 

(2018) describes MaaS as “a shift away from personally-owned modes of transportation 

(i.e., car ownership) and towards mobility solutions consumed as a service.” One 

advantage of MaaS would be that users could choose the best mode of travel for them in 
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terms of cost and travel time for that particular trip. Juniper and Moovel (2017) claimed 

that subscription models would become the basis of MaaS and introduced various business 

models with a collection of pricing schemes. 

1.2. Problem Statement  

Predictions from various sources (IHS Markit, Statista) indicate that AV and 

ridesharing market share are set to rise rapidly soon. This, in turn, would possibly increase 

the autonomous taxis (aTaxi) services market share as well. However, this rise can only 

be sustained if people shift from personally owned vehicles towards MaaS. This change 

could be fostered by subscription-based pricing schemes which would retain a customer 

in business for longer duration thereby ensuring constant demand for service. This 

research examines the economic viability of SAV as MaaS for both business operators 

and riders. 

1.3. Research Objectives 

Collectively, various research studies have investigated the concept of Shared 

Autonomous Vehicles (SAV) and worked on developing a ride-sharing system. However, 

very few research studies have considered the concept of subscription-based ridesharing 

and worked on its financial viability. Moreover, there are very few studies that help users 

determine the best mode of travel between pay-per ride ridesharing, subscription-based 

ridesharing, and personal vehicle, based on their travel needs. The current research aims 

to bridge these gaps by achieving the following objectives: 

• Examine cost aspects of SAV to operate in ridesharing mode 

o Build a flexible simulation of the ridesharing environment 
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▪ Trip Generation 

▪ Trip Processing 

▪ Charging 

o Determine the fleet size for a given demand and Market Penetration Rate 

(MPR) 

o Evaluate the fixed and operating costs for a fleet size  

• Formulate different subscription-based pricing schemes 

o Pricing scheme to break-even 

o Pricing scheme to compete with current TNCs (Uber, Lyft, etc.) 

o Pricing scheme to compete with vehicle ownership 

• Evaluate the best economic strategy for consumers based on monthly travel needs 

o Compare TNC pricing with vehicle ownership costs 

o Compare SAV pricing with vehicle ownership costs 

1.4. Research Benefits 

This research would be most beneficial to ridesharing companies with AVs such 

as Uber, Lyft, Waymo, and Cruise that are looking for innovative pricing schemes to retain 

their customer base. Also, the research would serve as a way to determine their operational 

AV fleet size for any city/town of interest. The detailed cost analysis and considerations 

will help estimate the preliminary costs for setting up the SAV system and gauging the 

extent of profits in the system. The research also helps the general public to develop a 

deeper understanding of the cost of ridesharing and make rational decisions in choosing 

these services. 
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The next chapter presents insights into previous literature in the area of 

ridesharing, especially with SAVs.  
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2. LITERATURE REVIEW 

 

2.1. Overview 

Evaluating the potential cost and revenues from ridesharing services is key for 

companies looking to enter the ridesharing market. Several researchers have attempted to 

simulate ride-sharing systems with and without AVs to evaluate pricing, improve 

operational efficiency, and improve understanding of the ride-sharing systems.  However, 

there is limited public research into the potential costs and revenues from SAVs used as 

MaaS with subscription-based pricing.  There is likely considerable research done by 

current and potential ridesharing companies that are not publicly available. The financial 

viability of SAV with subscription pricing depends on the fixed costs which include 

vehicle ownership and infrastructure (charging stations) costs and operational costs which 

include fleet management, fuel, and other miscellaneous costs.   

 The cost of owning an Electric Vehicle (EV) has been decreasing since 2005 and 

is expected to continue to decline (Nykvist and Nilsson, 2015). The per-mile cost to power 

an electric-powered AV is lower compared to gas-powered AV. Also, unlike gas-powered 

vehicles, most EVs come with drive-by-wire systems, which help in running the cars 

autonomously without additional equipment. Therefore, AEV (Autonomous Electric 

Vehicle) may be more economical and viable than gas-powered AVs. However, owning 

any type of AV may still be years away as AVs are expected to be very soon. Therefore, 

it is more likely that individuals use SAVs as part of a ridesharing service. 

 



7 

 

2.2. Ridesharing Costs 

To better estimate all the potential costs of a ridesharing service many researchers 

have modeled those services.  Loeb et al. (2019) simulated both the electric and hybrid 

SAV (Shared Autonomous Vehicles) used as a ride-sharing fleet. They used tour patterns 

developed based on NHTS and US census data in Austin, Texas, and simulated ridesharing 

using MATSim. By comparing the cost per mile for 6 types of vehicle fleets (Gasoline 

Hybrid-electric SAEV, combinations of short and long-range SAEVs with slow charge 

and fast charge and long-range SAEVs having reduced fleet) they found fast charge long-

range SAEVs fleet to be the most advantageous EV option. This paper further developed 

this idea, by running simulations of ridesharing with a fleet of Tesla Model 3, a fast charge 

long-range SAEV (220 mileage) vehicle fleet, across the city of Austin, Texas.  

Similarly, a study by Aditi et al. (2017) examined SAV (Hybrid electric vehicle 

with a 60-mile battery range) in Ann Arbor, Michigan, and compared it to other 

alternatives. They found that public transport combined with first and last-mile 

connectivity using AVs promotes MaaS and has significant benefits over other 

alternatives, including energy savings up to 37 percent. However, to truly promote MaaS, 

the cost of the ridesharing services should be comparable to that of owning a personal 

vehicle. Johnston and Walker (2017) state that the average cost per mile of hiring Uber or 

Lyft comes out to be twice or thrice of what it cost to own and operate a personal vehicle. 

The study from Charlie and Jonathan (2017) show that AVs used for mobility service 

would cost roughly like what it cost for operating and owning a sedan like Camry (see 

Figure 1).  
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Reprinted from Charlie and Jonathan, 2017 

Figure 1 Effects of Automation on the Cost of TNC Services 

 

2.3. Acceptance of SAVs 

The acceptance of SAVs will also increase due to the fact they will likely be 

cheaper than current TNCs. A study of consumer behavior in Austin, Texas by Bansal 

(2016) state they noticed a jump of 26% in the number of residents who would choose to 

travel via SAVs at least once a week due to lower prices as compared to the current rates 

of using conventional vehicles in Uber or Lyft. Gruel and Stanford (2016) have studied 

potential traveler behavior when adopting and owning autonomous vehicles. They 

examined three scenarios: 1. the onset of autonomous vehicles will not change people’s 

behavior; 2. AVs will change people’s behavior but not ownership; 3. AVs will change 
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people’s behavior as well as ownership. They found the scenario 3 to be a more sustainable 

mobility option. In scenario 3, if SAVs are used along with public transportation, they can 

aid in boosting demand for public transportation by providing the first and last mile 

connectivity for a traveler and, in turn, counteract sprawl and further encourage MaaS. 

The usage of ridesharing services is also dependent on the wait times. When an 

SAV system is introduced on a subscription basis and is intended to challenge vehicle 

ownership, the wait times for riders should be within acceptable limits. Therefore, the 

location of vehicle charging stations is important to minimize wait times of trips. The 

charging stations act as the home location for the fleet. Vazifeh et al. (2019) used an 

innovative data-driven approach to obtain the optimal number of charging stations. Using 

the data consisting of the movements of 1 million users cell phones in the city of Boston, 

they performed optimization over the network to reduce the minimum distance the driver 

needs to cover in order to reach the closest charging station. A genetic algorithm was then 

used to find optimal locations that reduce the number of charging stations by 10% as 

compared to randomly assigning the locations. Their results were found to be robust to 

changes with input data and EV penetration rates. Other papers like Ma and Zhang (2018) 

used the BASS model to predict the number of EVs and the size of charging stations. They 

solved the objective function, defined as the minimum sum of the cost of waiting time of 

EV and the cost of operation of charging stations, using 0-1 integer linear programming. 

The 0 and 1 corresponding to if the site is selected or not. 

Some researchers have worked on the dynamic trip allocation of SAVs to further 

reduce wait times. Hyland and Mahmassani (2018) used 6 optimization strategies to assign 
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AVs to travelers: 1. Longest idle AV assigned to the first booked traveler; 2. Closest idle 

AV assigned to first booked traveler; 3. Simultaneous (not sequential) assignment of 

travelers to idle AVs; 4. Reassigning of AVs from previously assigned traveler to newly 

unassigned traveler if the latter is nearer to AV; 5. Assigning AV which is about to drop-

off the passenger and is nearest to the unassigned traveler; 6. Considering both reassigning 

of AVs and assigning AV which is en-route drop-off strategies to pick up the nearest 

unassigned passenger. It is found that the total fleet mileage is reduced from 12.9 miles in 

the first strategy to 5.4 miles in the last one and the passenger wait times were also 

decreased considerably. The last 4 sophisticated strategies are particularly effective during 

peak hours when the utilization of the fleet of AVs is at its peak. 

2.4. Chapter Summary 

This chapter summarizes some of the relevant work in the area of ridesharing and 

pricing. Some of the key points are: 

• The driver and fuel (gasoline) costs are the most significant costs to ridesharing 

companies, which are significantly reduced by SAEVs 

• The cost of SAV could potentially compete with that of personal vehicle ownership 

costs 

• The general acceptance of SAVs is greatly dependent on the price, and the wait 

times (availability) of the SAV service 
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To examine the potential for SAVs to compete with personal vehicle ownership 

this thesis examines SAVs operated as MaaS in Austin, Texas. To perform this analysis 

a great deal of data was required, as outlined in the next chapter. 
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3. DATA 

3.1. Overview 

For this study, the Capital Area Metropolitan Planning Organization (CAMPO) 

travel demand model for the Austin and nearby counties was used. Figure 2 below 

provides an overview of the different counties that are part of the CAMPO model. Each 

county is further divided into TAZs which makes it convenient to select the region of 

interest within or between counties for further analysis. The “External” areas represent 

hypothetical TAZs, which simulate inflow and outflow of traffic from counties outside the 

model’s region of interest. The roadway network is used as links for the traffic flow. 

 
Figure 2 CAMPO Model with Highway Network 
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3.2. CAMPO Travel Demand Model  

The Capital Area Metropolitan Planning Organization (CAMPO) travel demand 

model for the year 2040 was used to develop the trips between Traffic Analysis Zones 

(TAZs). Only the projects included in the 2040 regional transportation plan (RTP) were 

carried into the 2040 roadway network in the CAMPO model. CAMPO developed its 

population projection for the 2040 scenario with information from the Texas State Data 

Center (SDC).  For the employment growth, the data from the Bureau of Labor Statistics 

suggests that the economy will continue to produce new jobs and that the employment 

base of the whole CAMPO region will increase 200 percent to 2.32 million jobs by 

2040.  CAMPO uses its Demographic Allocation Tool to predict where future population 

and employment might be located. This tool uses parcel-level data to create an 

attractiveness rating for each parcel.  The data of the transit routes/services included in the 

2040 scenario/plan were collected from the service plans of the regional’s major transit 

providers: The Capital Metropolitan Transportation Authority (CapMetro), the Capital 

Area Rural Transportation System (CARTS) and 38 client-focused transportation 

providers. 

3.3. Data Pre-processing 

The CAMPO model consists of 2258 TAZs in total of which only 641 TAZs (see 

Figure 3) are considered for our case study. These 641 TAZs correspond to Travis County 

in Austin, Texas, where the population is urban and there are likely to be many early 

adopters of this type of system. Confining the area to Travis county makes it easy for 

ridesharing companies to set up charging stations efficiently and evaluate the concept of 
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MaaS effectively. The SAV service is available for only trips within (both origin and 

destination) this geographical region (shown in Red in Figure 3). 

  
Figure 3 Location of Region of Interest Corresponding to 641 TAZs 

 

A grid system of 3375 (75 x 45) nodes was generated, representing the geographic 

area used in this study (see Figure 4).  The actual origin and destination of trips from the 

2040 CAMPO model from the areas outlined in Figure 4 were transposed to the 

hypothetical grid. The link between adjacent nodes is 0.25 miles in length, making the 

total area of study 18.5 x 11 miles. This area was divided into 15 zones of 15 x 15 nodes 

(3.5 x 3.5 miles) and a charging station was placed at the center of each zone. Following 

the division, the O-D Data from the CAMPO model is filtered to represent TAZs that 

belong to these 15 zones.  
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Figure 4 Approximation of Region of Interest onto Grid Network (75 x 45) 

  

3.4. Traffic Speed Characteristics in the Grid Network 

 Once the grid network was created, the traffic speeds were established using the 

distance and travel time skim matrices obtained from the CAMPO model. The distance 

skim consists of the shortest distances along with the highway network from one TAZ to 

any other TAZ. Similarly, the travel time skim consists of the time it takes to travel from 

origin TAZ to any other destination TAZ. The travel time skim matrix varies with the time 

of day, which is divided into 4 time periods: AM peak, Mid-day, PM peak, and Night 

(shown in Table 1).  
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Table 1 Division of Day into Four Time Periods 

Period Hours Duration (min) 

AM Peak 06:00 – 09:00  180 

Mid-Day 09:00 – 15:30  390 

PM Peak 15:30 - 18:30 180 

Night 18:30 – 06:00  690 

 

Using the skims, the route level speed is established for all possible TAZ O-D pairs 

during each time period. The variation of speeds within a day is depicted by histograms in 

Figure 5. The pairs AM-PM and MD-NT had a similar distribution of speeds. The speeds 

at NT were found to be higher than the rest of the times of the day. Amongst AM and PM 

peak, AM speeds were higher. The individual speed characteristics for each time period 

are presented in Table 2. The average speed across all time periods was close to 30 MPH 

(0.5 miles per min). 
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Figure 5 Histograms of Variation of Speeds with Time of the Day 

 

 

 

 



18 

 

Table 2 Characteristics of Inter-zonal Speeds 

Period Hours 

Mean 

Speed 

(MPH) 

Standard 

Deviation 

(MPH) 

Minimum 

Speed 

(MPH) 

Maximum 

Speed 

(MPH) 

AM Peak 06:00 – 09:00 31.8 8.6 6.1 67.1 

Mid-Day 09:00 – 15:30 31.8 9.7 7.5 68.6 

PM Peak 15:30 - 18:30 28 8.25 2.5 65.3 

Night 18:30 – 06:00 36.9 9.6 15 70 

 

3.5. Chapter Summary  

This chapter presents some insights into the Data that is required to conduct 

simulations. Some key takeaways are: 

• The CAMPO Travel Demand model predicts the number of trips in the year 2040 

and thereby provides O-D Data 

• The study area is restricted to 641 TAZs that belong to Travis County where the 

population is urban 

• A hypothetical grid with 15 zones is overlaid on top of the 641 TAZs 

• The average traffic speed in the grid network was close to 30 MPH or 0.5 miles 

/min 

 

In the next chapters, we use the same hypothetical grid to simulate the ride-sharing 

environment. The O-D data obtained from the CAMPO model is combined with a suitable 
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MPR to generate SAV trips every minute. The traffic speed characteristics are used to 

determine the trip speeds. Combining all this data, the simulation provides the number of 

SAVs required to satisfy the demand along with charging station capacities. The next 

chapter will discuss the simulation in greater detail. 
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4. RESEARCH METHODOLOGY 

 

Simulating ridesharing is a complex task as it involves several interdependent 

processes such as the generation and assignment of trips, processing the trips (picking up 

the rider, completing the ride), and the fueling or charging of the vehicles. These processes 

are time-dependent and stochastic, which makes the ride-sharing system very dynamic 

and random. To evaluate the feasibility of MaaS with SAVs, the system should also be 

flexible to changes, since most of the inputs to the system are not constant and are hard to 

estimate, as it is based on travel patterns. A microscopic simulation model allows for 

testing of different input variables and evaluation of multiple operational scenarios, 

thereby helping the TNCs develop better strategies for pricing and operations. 

4.1. Simulation Setup 

This research developed a simulated environment with flexible and dynamic 

architecture allowing parameters to be fine-tuned to make the model as realistic as 

possible. The model also incorporated geographic and physical constraints such as land 

availability, cost of renting or purchasing the land, and charging station capacity all 

according to the location in which the system is being deployed. The entire simulation was 

developed using Python language. Additionally, Python libraries Numpy, and Pandas 

were used to store, retrieve, and analyze the data.  

The simulation has 3 major subparts that update every time step. The time step 

duration for the simulation is 1 minute. The three subparts are: 

1) Trip generation and assignment, 
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2) Processing of current trips  

3) Charging of vehicles. 

4.2. Simulation Subtasks 

 To estimate the number of vehicles required at each charging station inside the 

city, a mock simulation starting with zero SAVs at every charging station was run for a 

period of 24 hours (1 day). Each day was divided into 4 periods: AM peak, Mid-day, PM 

peak, and Night to correspond with the CAMPO model and the travel data from that 

model. The trips per minute were estimated using the CAMPO model with Market 

Penetration Rate (MPR) of the ride-sharing system assumed to be 5 percent of total trips 

generated. The distribution of trips per minute is shown in Table 3. The trips represent all 

trip purposes and not just home-based work (HBW) trips in the year 2040. Also, all trips 

had their origin and destination being one in Travis County (the 15 zones in this study). 

Therefore, the AM Peak had fewer trips per minute than Mid-Day due to the lower overall 

non-work travel during early morning hours and the many work trips that originated 

outside of Travis County.  The total number of trips in a day for Travis County was close 

to 2 million. With MPR of 5%, 104,040 trips were generated in 24 hours (equivalent to 72 

trips/min). The discussion that follows, and the rest of the thesis, includes only 5% of the 

trips that were randomly selected for SAV from O-D data. 
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Table 3 Trips per Minute during Different Time Periods of the Day 

Period Hours Duration (min) Trips per minute 

AM Peak 06:00 – 09:00  180 58 

Mid-Day 09:00 – 15:30  390 120 

PM Peak 15:30 - 18:30 180 122 

Night 18:30 – 06:00  690 36 

 

For every trip, a trip state is defined to know the status of the trip. In total, 8 trip 

states are defined, they are: 

0 - Trip is assigned 

1 - Charging station to the origin 

2 - Picking up the passenger 

3 - Origin to destination 

4 - Dropping off the passenger 

5 - Destination to charging station 

6 - Docking of SAV 

7 - Trip Complete  

4.2.1. New Trips Generation and Assignment 

The trip origin and destination were based on trips from the CAMPO model. The 

origin and destination of the trips in the CAMPO model were matched to one of the 15 

zones in the simplified model (Figure 4). The exact origin and destination of new trips 

within each zone were randomized with equal probability of choosing each node. The 
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generated trips had the same probability of occurring in this model as they do in the 

CAMPO model for each O-D pair.  Each trip was immediately added to a waitlist for the 

MaaS service. The waitlist ensures that all trips are processed sequentially with priority to 

trips that were generated early. The dispatch time was defined as the time the trip remains 

inside the waitlist before it is assigned an SAV.  

The maximum total distance that the SAV must cover is the distance from Charge 

station to Origin, Origin to Destination and Destination to Charging station. Dijkstra's 

shortest path algorithm was used to calculate the distance between any two nodes. When 

a new ride request is received, the algorithm checks if any SAVs (with a trip status greater 

than ‘4’) are available outside charging station and if they are closer to the Origin than the 

charging station nearest to Origin of the trip. If yes, the SAV is checked if it can complete 

the trip with its current charge and if assigned the trip if it satisfies the criteria. This process 

is repeated every time step until the wait time has exceeded 5 min. After 5 min wait time, 

the next nearest zones were processed. If any SAV outside charging station with a trip 

status greater than ‘4’ can complete the trip with the current charge, it is assigned 

immediately.  If no SAV is assigned to the trip for 10 min, a new SAV is generated at the 

charging station nearest to Origin and is assigned to the Trip. This process repeats until all 

trips in waitlist with wait time greater than 10 min are assigned. 

4.2.2. Trips Processing 

The trips generated are updated in the next time steps unless the trip has ended 

with a complete status ‘7’. In each time step, the location of the vehicle is updated based 

on the speed of the vehicle, its current location and future desired location. The speed of 
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each vehicle was multiple of 15MPH (15, 30, 45, and 60 MPH) determined by the time of 

the day, and the trip origin and destination. The charge of the vehicle was updated 

accordingly with the amount of distance it travels in each time step. Once the passenger is 

dropped off, the SAV searches for the charging station nearest to the destination of the trip 

and proceeds towards it. Meanwhile, the SAV checks for rides nearby and accepts them if 

it is closer than any other SAV and can safely make the trip and return to the charging 

station with its current charge. 

4.2.3. Charging of Vehicles 

Vehicles will proceed to the nearest charging station if their charge is lower than 

the range of trips or no trips are available nearby. All the SAVs docked inside the charging 

station (trip state equal to 7) will be charging at a rate of 0.75 miles per minute (45 miles 

per hour), updated every time step (pluglesspower.com). The maximum charge is assumed 

to be 250 miles according to Tesla model 3. The SAV leaves the charging station 

immediately when the range criteria were satisfied, and the trip is assigned to it. 

4.3. Day 0 Simulation and Results  

By using the methodology in Section 4.2, the Day-0 environment is simulated for 

24 hours.  Figure 6 shows the flowchart of the Day 0 simulation. Multiple instances of this 

simulation were run since each simulation gave different results due to the stochasticity of 

the model. Further, the variation of this model with different speeds was tested.  

4.3.1. Variation of SAV Fleet Size with Speed of SAV 

The size of the SAV fleet depends partially on the speed of the SAV fleet. For the 

same number of trips served within a day, the size of the SAV fleet is inversely 
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proportional to the vehicle speed of the fleet. To understand the variation better 

simulations with varying speeds (15, 30, 45, and 60 mph) were conducted. Within these 

simulations, all vehicles were assumed to have a constant speed irrespective of the origin 

and destination of the trip. At 0th hour, the simulation starts at night with 0 SAVs at all 

charging stations. After a minimum wait time of 10min, the SAV fleet keeps increasing 

steadily to match the current demand. This pattern keeps repeating throughout the day and 

stabilizes at the end of 24 hours.  Figure 7 shows a similar pattern for the different speeds 

simulated. In all the cases, the maximum SAV count was reached before 24 hours of 

simulation ensuring that simulating the environment for 1 day is sufficient. The marginal 

reduction of the fleet size decreases with an increase in the speed of the SAV as current 

running trips become the limiting factor.   
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Figure 6 Day 0 Simulation Flowchart 

 



27 

 

 
Figure 7 Variation of SAV Fleet Size with Speed 

  

4.3.2. Variation of Current Trips per Minute with Speed of SAV 

 The number of current running trips is highly correlated with the SAV fleet size. 

If completing a trip takes no time, then the current running trips graph would be similar to 

trips generated per minute graph. However, each trip needs some processing (travel) time, 

during which the SAV is unavailable. This accumulates the trips generated in the previous 

time steps. In order to service every customer, the fleet size increases. As speed decreases, 

the time for processing each trip increases thereby increasing fleet size. From Figure 8, it 

was observed that the variation of current trips with speed was similar to that of Figure 7. 

The marginal decrease in the current trips diminishes with an increase in speed. At low 
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speeds, the peak of the curve matches with fleet size, indicating speed as the limiting factor 

and at higher speeds the peak of the curve is below the fleet size, indicating trip demand 

as limiting factor. 

 
Figure 8 Variation of Current Trips Count with Speed 
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MPH multiple (15, 30, 45, and 60 MPH). Although few observations had speeds below 

15 MPH, 15 MPH was considered the minimum speed due to constraints on simulation 

size and time. The probability density function (PDF) gives a better comparison of speeds 

(see Figure 9).  

 
Figure 9 Probability Density Function (PDF) of Speeds with Time of the Day 

 

Like earlier simulations with constant speed, the number of SAVs needed increases 

initially and then remains constant with time towards the end of the day as shown in Figure 

10. For all simulations, a maximum of 3095 vehicles was needed to service every trip in 

24 hours, and this was chosen as the number of vehicles to use for the Day-1 simulation. 

The charging station capacities were adopted based on the simulation results. For every 
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additional vehicle added, the capacity of the charging stations where the trip originates 

was increased by 1. The capacities of all charging stations are established by the end of 

this simulation. The capacities are given as input to the next simulation assuming all SAVs 

are docked at their respective charging stations with a full charge. 

 
Figure 10 Trip Count vs Car Count in a Day 
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minimum wait time for dispatch is zero and the maximum wait time for dispatch is 

assumed to be 8 minutes after which the ride is canceled (by rider). Also, if no SAV is 

assigned to the trip for 3 minutes of wait time, the next nearest zones to the origin of the 

trip are checked for available SAV (unlike the 5-minute maximum in the Day 0 

simulation).  

 
Figure 11 Initial Distribution of SAVs at All Charging Stations 
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Figure 12 Day 1 Simulation Flowchart 

 



33 

 

4.4.2. Redistribution of SAVs at Charging Stations 

 During the Day 0 simulation, the SAVs were generated at charging stations nearest 

to the origin. Although this method reduces the distance and dispatch times during Day 0 

simulation, it is not efficient during Day 1 simulation. The dispatch times and 

unavailability of SAVs increase if the distribution of SAVs at charging stations is skewed. 

In some simulation, trips were canceled due to the unavailability of SAVs for more than 

8 minutes. To address this issue, during Day-1 simulation, the distribution of SAVs at 

charging stations was recorded at regular 24hr intervals. The average of these recorded 

distributions was later used as the initial distribution (see Figure 13). 

 
Figure 13 Re-Distribution of SAVs at All Charging Stations 
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4.4.3. Day 1 Simulation Results 

With the newly obtained SAV distribution, the simulation was run for the full day 

(24 hours). The data of each trip generated and SAV used is stored in every time step into 

a table in CSV format.  On average each SAV makes 34 trips a day, traveling 269 miles 

in total and 175 miles (5.14 miles per trip) while having a passenger. No trips were 

canceled during the simulation ensuring that sufficient vehicles were assigned to each 

charging station. The comparison of trips per min with day 0 simulation is presented in 

Figure 14. The Day 1 trip per min plot closely retraces the Day 0 simulation except that 

the peaks are flattened due to the availability of more SAVs initially. 

 
Figure 14 Comparison of Day 0 and Day 1 Simulation Trips per Minute 
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The wait times for dispatch of SAV during the Day 1 Simulation were recorded. 

The maximum dispatch time for a trip during Day 1 simulation was 6 min and the overall 

average dispatch time was 0.213 min (12.8 sec before assigning an SAV to a trip). No 

trips had dispatch time greater than or equal to 8 min. Therefore, no trips were canceled 

during the Day 1 simulation. Figure 15 shows the proportions of dispatch times of trips 

with the percentage of total trips. About 88% of trips had a dispatch time of 0 min i.e. 

SAVs were assigned immediately to trips. To explore the variation of dispatch times with 

the time of the day, the average dispatch times for each time period in the day is calculated 

and is shown in Figure 16. The peaks coincide with the change in the time periods (AM, 

MD, PM, and NT), indicating a change in O-D distributions. 

 
Figure 15 Proportions of Dispatch Times for Trips 
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 The rationale behind the peaks coinciding with the change in time period was due 

to change of O-D distribution with time period. Therefore, to reduce the peaks in the 

average dispatch time, the SAVs have to be also re-distributed each day before the start of 

new time period. The best time for this is during the change from NT to AM when most 

SAVs are docked at charging stations and charged overnight. However, this would 

decrease the ration of passenger miles to total miles. 

 
Figure 16 Variation of Average Dispatch Time with Time of the Day 
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(1) Trip Generation, (2) Trip Processing, (3) Charging of SAVs 

• The trips were generated according to the CAMPO model and O-D of the trip lies 

within the hypothetical grid. The average trip length was 4.65 miles 

• The Day 0 simulation determines the size of the SAV fleet and provides an initial 

distribution of SAVs at each charging station.  

• The maximum wait time for a trip in Day 0 simulation was 10 min after which a 

new SAV was generated. A total of 3095 SAVs were generated during the Day 0 

simulation 

• The Day 1 simulation is used to re-distribute the SAVs amongst the charging 

stations to reduce wait/dispatch time. With the re-distributed trips, on average each 

SAV makes 34 trips a day, with 269 total miles and 175 passenger miles 

 

In the next chapter, the fixed and operating costs for SAV service are evaluated 

and formulated into scenarios to evaluate potential pricing schemes. 
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5. FINANCIAL ANALYSIS 

The financial analysis included the following cost comparisons between SAVs 

(Tesla) and regular gas-powered vehicles (Ford Focus): 

• Fixed Costs  

o Vehicle purchase 

o Charger 

o Land 

o Ownership costs (Insurance + Registration + Taxes & Fees) 

o General administration 

o Attendants 

• Operating Costs  

o Fuel 

o Maintenance, repair, and tires 

o Cleaning 

5.1. Fixed and Operating Costs 

The simulations established the fleet size of SAVs needed to serve the given 

demand (based on MPR), and the usage statistics of each SAV. Next, several assumptions 

were necessary for financial analysis. The fixed and operational costs for the SAV were 

calculated first to see if SAVs could compete with existing TNCs. For SAV, a Tesla Model 

3 is taken as the reference vehicle and for the personal vehicle, a gasoline Ford Focus and 

electric Tesla Model 3 were taken as the reference vehicles.  
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The SAV fleet costs were then compared with personal vehicles to evaluate the 

financial viability of SAV as MaaS. For the comparison with vehicle ownership, the 

traveler was assumed to own a gas-powered Ford Focus vehicle. The cost per SAV per 

traveler and vehicle ownership costs per individual are presented in Tables 6,7,8 and are 

further elaborated in detail. 

  The vehicle life for an SAV was based on its daily usage. On average, each SAV 

traveled 269 miles a day, which equals 98,185 total miles per year per vehicle (assuming 

similar usage on weekdays and weekends). The Tesla Model 3, which is used as the SAV 

for calculations, can run for 250,000 miles in its entire life span, although the company’s 

CEO Elon Musk claimed that the vehicle can run for 1 million miles (electrek.co). Based 

on the 98,185 miles per year, this means approximately 2.5 years (2.55 years) life before 

retiring the vehicle.  The vehicle life for both the personal vehicles Tesla Model 3 and 

Ford Focus was assumed to be 5 years with 15,000 miles per year as usage. On average 

people retain the same vehicle for 5-7 years which is similar to the average auto loan 

period (autolist.com). 

The vehicle purchase costs for Tesla model 3 and Ford Focus were obtained from 

their respective websites (tesla.com, and ford.com). The Tesla Model 3 comes equipped 

with a variety of sensors. These include eight optical cameras, twelve ultrasonic (sonar) 

sensors, and a radar. The sensor information combined with the robust vehicle control 

algorithms makes Autopilot possible. The company claims that the vehicle has all the 

hardware essential for self-drive capability, which is anticipated to be allowed in the future 
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(www.tesla.com/autopilot). Therefore, the cost of the fully autonomous Tesla model 3 was 

assumed to be the same as the standard Tesla Model 3.  

Since the Tesla SAVs are electric, they need charging stations with chargers. The 

cost of the Tesla wall connector charger is $500. Each SAV needs a space for charging 

itself, the fixed and operational costs of charging stations were evaluated. The fixed costs 

included the cost of purchasing land for charging stations based on each charging station's 

capacities established through Day 1 simulation. As per Loeb and Kockelman (2019), the 

land acquisition costs varied with the location of charging stations. The land costs were 

divided into three categories High, Mid, and Low based on proximity to downtown Austin 

and the categorization is presented in Figure 17. The average land acquisition cost per 

SAV was then evaluated according to Table 4. Therefore, the land acquisition cost was 

assumed to be $3201 per vehicle space in Travis County, Austin. 

 

Table 4 Calculation of Average Land Acquisition Cost 

Category of Site 
Acquisition Cost  

per vehicle space 
SAV Count Cumulative Cost  

Low  1980 1059 2096820 

Mid 3460 1813 6272980 

High  6900 223 1538700 

Total 3095 9908500 

Average Land Acquisition Cost 3201 
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Figure 17 Variation of Land Acquisition Costs 

 

For every charging station, the variable costs included administrators and 

attendants to maintain the charging stations and service vehicles.  1 General Administrator 

(GA) and 2 attendants (AT) were appointed per charging station. The wages were assumed 

to be $25/hour for GA and $12/hour for the AT. For the 15 charging stations and 3095 

vehicles, this results in a cost of $2.91 and $2.79 per vehicle per day for GA and AT 

respectively. This amount, when multiplied with 365 days, gives $1061 and $1019 per 

year.  For 2.55 years (AV life), this totals a cost of $5297 per vehicle. The calculations are 

shown in Table 5. 
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Table 5 Calculation of Charging Station Maintenance Cost 

Employee Number 

Cost 

per 

hour 

Cost 

per day 

No of 

charging 

stations 

Cost per 

day per 

vehicle 

Cost 

per 

vehicle 

per 

year 

Cost per 

vehicle  

(2.55 

years) 

GA 1 25 600 15 2.91 1061.39 2703 

GT 2 12 576 15 2.79 1018.93 2594 

Total 5.70 2080 5297 

The fuel/electricity costs, maintenance costs, and ownership costs for the electric 

vehicles were taken from “Your driving costs 2018” report released by AAA (American 

Automobile Association) for SAV and from the Edmunds website (edmunds.com) for the 

Ford Focus. As per the AAA report, the electricity costs for electric vehicles were 

calculated at a rate of $0.125 per kWh, and the maintenance, repair, and tire costs are 

$0.076 per mile. These costs were for conventional electric vehicles (not AVs), but Wadud 

(2017) states that the net changes in these costs for AVs are small and can be neglected. 

Cleaning costs of vehicles were assumed to equal 8 cents per mile (Litman, 2019). The 

cleaning costs are additional to maintenance repair costs as each SAV is used by a group 

of riders, therefore cleaning the SAV frequently would be necessary. 
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Table 6 Vehicle Costs for Tesla SAV 

Costs 
Tesla (SAV) 

Source Cost per vehicle 

Fixed Costs 

Vehicle purchase 
Tesla website 

(tesla.com) 
39000 

Charger 
Tesla website 

(tesla.com) 
500 

Land 

Loeb and 

Kockelman, 2019 

(Table 4) 

3201 

Ownership costs (Insurance + 

Registration + Taxes & Fees) 
AAA (2018) 3109 

General administration ($25/hr) Table 5 2703 

Attendants ($12/hr) Table 5 2594 

Fixed costs for vehicle life (2.55 years) 51868 

Fixed costs per year 20340 

Fixed costs per year per traveler 2034 

Fixed costs per month per traveler 169.50 

Operating costs per mile 

Items Source 
Cost per vehicle  

per mile 

Fuel (Electricity) AAA (2018) 0.04 

Maintenance, repair, and tires AAA (2018) 0.08 

Cleaning Litman, 2019 0.08 

Operating costs per mile 0.20 
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Table 7 Vehicle Costs for Personal Tesla 

Costs 
Tesla (Personal) 

Source Cost per vehicle 

Fixed Costs 

Vehicle purchase 
Tesla website 

(tesla.com) 
39000 

Charger 
Tesla website 

(tesla.com) 
500 

Ownership costs (Insurance + 

Registration + Taxes & Fees) 
AAA (2018) 6105 

Fixed costs for vehicle life (5 years) 45605 

Fixed costs per year 9121 

Fixed costs per year per traveler 9121 

Fixed costs per month per traveler 760.08 

Operating costs per mile 

Items Source 
Cost per vehicle per 

mile 

Fuel (Electricity) AAA (2018) 0.04 

Maintenance, repair, and tires AAA (2018) 0.08 

Operating costs per mile 0.12 
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Table 8 Vehicle Costs for Personal Ford Focus 

Costs 
Ford Focus (Personal) 

Source Cost per vehicle 

Fixed Costs 

Vehicle purchase 
Ford website 

(ford.com) 
18800 

Ownership costs (Insurance + 

Registration + Taxes & Fees) 

Edmunds website 

(edmunds.com) 
8905 

Fixed costs for vehicle life (5 years) 27682 

Fixed costs per year 5536 

Fixed costs per year per traveler 5536 

Fixed costs per month per traveler 461.33 

Operating costs per mile 

Items Source 
Cost per vehicle per 

mile 

Fuel (Gasoline) AAA (2018) 0.08 

Maintenance, repair, and tires AAA (2018) 0.08 

Operating costs per mile 0.16 

 

Since each AV completes approximately 34 trips per day and a person travels on 

average 3.37 trips per day (NHTS 2017), an average of 10 travelers use a single SAV per 

day. This amounts to a fixed cost of $169.2 per month and an operating cost of $0.20 per 

mile for each traveler. This forms the base case where the business operator charges this 

price to customers and there is no profit for operating an SAV fleet. The total fixed and 

operating costs for the Personal Tesla are $760.08 per month and $0.12 per mile, and for 

Personal Ford Focus are $461.36 per month and $0.16 per mile. 
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5.2. Subscription Charges 

In the article “Uber and Lyft return to Austin: What’s changed, and why it’s 

important”, it was noted that Uber and Lyft charged $1 per mile and 20 cents per minute. 

(curbed.com). In the model, the vehicles are moving at an average speed of 0.5 miles per 

minute (30 mph). So, traveling 1 mile takes 2 minutes making the total fare $1.40 per mile. 

This price is further used to compare SAVs with other TNCs in additional scenarios. The 

first scenario examines the prices TNCs would charge to break even.  This equates to a 

subscription charge of $169.5 per month and $0.20 per mile the SAV travels. However, 

only 65% of the SAV miles were passenger miles, which makes the charge per mile close 

to $0.31. The next two scenarios investigate alternate subscription-based pricing schemes.  

Each AV travels 98185 miles per year of which 63820 are passenger miles per 

year, which when divided by 12 months and 10 shared users is equivalent to 532 miles 

traveled per rider per month. As per NHTS 2017, a typical traveler covers an average of 

38.98 miles per day or 1169 miles per month. The next two scenarios keep the monthly 

subscription costs the same and calculate the maximum per mile costs that can be charged 

to compete with the cost of vehicle ownership while providing profits to the SAV 

subscription company. Scenario 2 considers the average miles traveled by each traveler to 

be 532 miles, estimated through simulation. Scenario 3 considers the average miles 

traveled by a traveler to be 1169 miles according to NHTS. The subscription costs per 

month, charge per mile, and profits per month per traveler for all three scenarios are 

presented in Table 9.  
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Table 9 Profits with SAV Subscription 

Cost 
Scenario 1 

(Base scenario) 

Scenario 2 

(532 miles) 

Scenario 3 

(1169 miles) 

Subscription per month ($/month) 169.5 169.5 169.5 

Charge per mile ($/mile) 0.31 0.71 0.41 

Profit per month per traveler 

($/month/traveler) 
0 213 117 

 

5.3. Comparison of Alternatives 

The three scenarios represented by the charge per mile ($0.31, $0.71, and $0.41) 

are plotted against the vehicle ownership costs (personal Ford Focus and Tesla Model 3) 

and the current price charged by a TNC ($1.4/mile) as shown in Figure 18 below. Using 

the graph, a traveler can decide the most economical option based on their monthly usage. 

For example, in scenario 2, if a rider travels less than 246 miles in a month, the current 

price charged by TNC would prove to be cheaper. However, if the rider decides to travel 

more than 246 miles and less than 532 miles in a month, buying monthly subscription by 

AVs would be the cheapest option. If they drove more than 532 miles per month, the 

cheapest option would be owning a personal vehicle (Ford Focus). Similarly, in scenario 

3, below 171 miles per month the TNC, between 171 and 1169 miles per month the SAV 

subscription and above 1169 miles per month vehicle ownership (Ford Focus) are the most 

economical options. 
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Figure 18 Comparison of Costs in 3 Scenarios 
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5.4. Chapter Summary 

In this chapter, various costs were calculated to evaluate the fixed and operating 

costs of SAV, Personal Ford Focus, and Personal Tesla. Three scenarios were formulated 

to determine subscription pricing. Some important takeaways from this chapter are: 

• SAVs distribute the fixed costs of riders by sharing it amongst a group of riders 

thereby reducing the financial burden for each rider. The fixed cost for SAV 

subscription was close to $170 per month, whereas, for Personal Ford Focus and 

Personal Tesla, it was observed to be $460 and $740 per month, respectively 

• Scenarios 1, 2 and 3 were formulated and their operating costs were found to be 

$0.31, $0.71, and $0.41 per mile respectively 

• The profits per month per traveler were found to be $213 in Scenario 2, and $117 

in Scenario 3 

• The comparison of costs helps users make a rational choice and choose the best 

alternative according to monthly requirement/usage. 

 

Thus, the financial analysis shows that the subscription based SAV ridesharing 

service is financially viable. At the same time, it is also economically beneficial for a vast 

segment of riders. 
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6. CONCLUSION AND FUTURE RESEARCH 

 

AVs can truly transform the ridesharing environment by providing more 

accessibility and improving safety to riders. The concept of SAV where a single AV is 

shared amongst multiple users has many additional benefits. Firstly, SAVs provide the 

comfort of car travel while lowering the cost to riders. SAVs improve the reliability of the 

ridesharing service as they offer a steady supply at any time of the day.  Electric SAVs 

have fewer emissions and further cost benefits than gas-powered SAVs. Therefore, 

various companies are experimenting in the field of SAV including Google, Tesla, and 

GM. A subscription-based pricing scheme instead of pay-per-ride pricing would ensure 

an unswerving demand for SAV companies. Additionally, they can help rider’s transition 

from personally owned vehicles to transportation services on demand by switching to a 

single ridesharing service. 

The current research examined how SAVs might operate in a city with subscription 

pricing. The research stands unique as it explores the concepts of subscription pricing for 

SAVs and performs financial analysis from the perspective of both business operators and 

travelers. The research also presents a proof of concept by simulating ridesharing and 

evaluating pricing in the city of Austin, Texas. The simulation model is flexible to changes 

and can be used to analyze different scenarios/cities by varying its parameters such as grid 

size, node distance, speed, etc. By changing these parameters, the model can be used to 

evaluate the subscription pricing, and viability of SAV operations for any other city/town 

based on O-D data, speed characteristics, and MPR.  
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For the city of Austin, Texas, the simulations showed that 3100 SAVs could serve 

5% (MPR) of total all-purpose trips with an average dispatch time of 13 seconds and 

maximum dispatch time of 6 min. During the simulation, a single SAV on average traveled 

532 miles making 34 trips per day, substituting 10 conventional vehicles operating in an 

urban area.  This is consistent with the results shown by Fagnant et. al (2015) whose study 

claimed SAV could replace 9 conventional vehicles. The financial analysis was presented 

in the form of three scenarios that compared the TNC, SAV, and vehicle ownership 

alternatives. 

The three scenarios showed that as the distance traveled per rider per month 

increases, profits to SAV company increases, and savings compared to ownership costs 

reduce. More specifically, scenario 1 determined the least per mile operating price to 

ensure no loss for SAV company, which was equal to $0.31 per mile. With $0.31 charged 

as operating cost, the SAV subscription would be the best alternative for riders traveling 

more than 155 miles per month. Scenario 2 was used to decide the per-mile operating costs 

if the SAV companies want to ensure people maintain the way they travel currently (i.e. 

according to simulation). The results show a per-mile cost of $0.71 and the SAV 

subscription would be suitable for riders traveling more than 246 and less than 532 miles 

per month. Scenario 3 determined the maximum per mile operating costs if SAV 

companies want to compete with vehicle ownership. It was observed to be $0.41 per mile, 

which is close to time-based per-mile operating cost ($0.40) currently charged by TNCs. 

Consequently, the SAV subscription would be the most economical alternative for riders 

traveling more than 171 and less than 1169 miles per month. 
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The difference in operating costs of scenarios 2 and 3 may be reduced by 

optimization of the service, reduction of costs, and increase of profits. The improvements 

in operations include better techniques for assigning SAVs to trips, efficient distribution 

of vehicles in charging stations, and re-allocation of empty SAVs. These techniques either 

improve the ratio of passenger miles to total miles or reduce the wait times. The reduction 

of costs could also be brought about by having more SAVs at charging stations with lower 

costs and making collaborations with vehicle companies to reduce vehicle and charger 

costs (e.g. Uber collaboration with Volvo). The cost of electric vehicles is on a decline 

due to improvements in vehicle and battery technology. Also, the cost of sensors required 

for AV is on a decline and is expected to decrease further following Moore’s Law. Besides, 

the profits for SAV companies can be increased by incorporating surge pricing models 

that have higher costs during peak times. This also helps to keep the demand in check 

during peak hours. Also, tier-based pricing schemes can be introduced with additional 

benefits to top tier people at some minimal cost. Therefore, the future of SAV service 

seems promising economically to both users and companies. 

Apart from the direct cost benefits, SAVs also provide benefits in the form of the 

value of time savings. The rider can make the best use of their time whilst making the trip 

as they are not engaged in the driving. Considering economic/financial benefits, the SAV 

service can be expected to be a strong competitor to vehicle ownership and encourage 

MaaS. However, the comfort and reliability that a personal vehicle provides are hard to 

achieve. A system where travelers express an interest in a trip in the future could improve 

the reliability of the service as the SAV fleet could re-organize efficiently according to the 
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schedule of rides.  A shift from trip-based SAV service to time-based service, where SAV 

could be rented on time/day basis would improve the reliability and comfort to the 

travelers. A free market is essential just like any other good or service so that travelers 

have other modes of transport if they do not like to use SAV service or the SAV service 

is unavailable. Perhaps multiple SAV companies could be a solution. This would force 

companies to keep their prices competitively, limit profit margins thereby challenging 

vehicle ownership and genuinely promoting MaaS.    

The current research had to make many assumptions and does not consider various 

extra costs that may be incurred, such as installing cameras to monitor the behavior of 

passengers (Broussard, 2018), or installing wireless communication between vehicles 

(Litman, 2019). Since the area of study is restricted to Travis County, only trips that 

originate and end within this area are considered resulting in fewer long-range trips. 

Extending the area of study to larger areas may provide additional information in handling 

long-range trips that may require a different arrangement of SAVs.   

Some of the extensions to this research could include examining surge pricing 

models to reduce the demand during peak hours thereby reducing fleet size and increasing 

profits. Since all vehicles are assumed to be electric, they must return to charging stations 

intermittently. This increases the number of empty vehicle miles traveled. The 

optimization of the location of charging stations as well as efficiently allocating vehicles 

to pick-up and drop-off passengers can reduce empty vehicle miles traveled thus 

increasing profitability. The concept of carpooling opens several other dimensions to the 
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research such as optimal transfers, operating high occupancy vehicles, and efficient 

demand management. 

This research examined the case where the ridesharing company owns and 

operates all of the SAVs/vehicles. If the diffusion of autonomous vehicles in the public is 

considerable, the individual owners could share their vehicle with a ridesharing company, 

when it is not in use. This could, in turn, increase the demand and diffusion of AVs as they 

generate additional revenue when the vehicle is not in use by its owner, making SAVs 

more common and acceptable. Although the future remains unpredictable, the benefits 

especially economic that SAV could provide are definite. With greater diffusion of AVs, 

the possibilities with SAV services in all walks of transportation are enormous. 

Developing algorithms for such services and evaluating pricing would indeed be a 

challenging and interesting field of research. 
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APPENDIX A 

1) Day 0 Simulation – day_0_sim.py 

1. import numpy as np 

2. import pandas as pd 

3. from trip_utils import grid_util 

4. from load_data import data_loader 

5. from sim_objects import sav,trip,trip_wait 

6. ## Create virtual Grid 

7.   

8. grid = grid_util(5,3,15,0.25) 

9. grid.generate_map_layout() 

10.   

11.   

12. ## Load O-D Trips and Speed Data 

13. mpr = 5 # 5% MPR 

14. loader = data_loader() 

15. loader.load_trip_data(mpr) 

16. loader.load_speed_data() 

17. # a,b,c = loader.get_dist_trips(1) 

18.   

19. ## Initialize charging stations 

20. css = grid.generate_empty_css() 

21. css_copy = grid.generate_empty_css() 

22.   

23. # Initialize other hyper params 

24. days = 3 

25. t = 1440 #min 

26. trips = dict() 

27. car_count_dict = dict() 

28. trips_completed = [] 

29. cars = [] 

30. wait_list = [] 

31. car_count = 0 

32. trip_count = 0 

33. wait_count = 0  

34. max_charge = 250 

35.   

36. # Day 0 - Simulation 

37. count = 0 

38. for day in range(1,days+1): 

39.     print("Day : "+str(day)) 

40.     for t_step in range(0,t): 

41.         ## Status 

42.         print("Time : "+ str(t_step)) 

43.         print("Trips Running : "+str(len(trips))) 

44.         print("Cars : "+str(len(cars))) 

45.         print("Trips Completed : "+str(len(trips_completed))) 

46.         print("Trips in Total: "+str(trip_count)) 

47.         # New Trips in each step 

48.         semi_hr = int(t_step/30) 
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49.         trip_speed_dist,trip_od_dist,trips_in_step = 

loader.get_dist_trips(semi_hr) 

50.         # print(trips_in_step) 

51.         for each in range(0,trips_in_step): 

52.             count = count + 1 

53.             # New Trips Generation 

54.             trip_od_zones = 

np.random.choice(grid.rel_key.flatten(),1, p= 

trip_od_dist.flatten())[0] 

55.             # print("-------") 

56.             # print(trip_od_zones) 

57.             origin_like = 

np.random.choice(grid.int_zone_key.flatten(), 1, 

p=grid.int_zone_dist.flatten())[0]  

58.             origin = [grid.zones[trip_od_zones[0]][0] * 15 + 

origin_like[0], grid.zones[trip_od_zones[0]][1] * 15 + 

origin_like[1]] 

59. #             print(origin_like) 

60. #             print(origin) 

61.             dest_like = 

np.random.choice(grid.int_zone_key.flatten(), 1, 

p=grid.int_zone_dist.flatten())[0] 

62.             dest = [grid.zones[trip_od_zones[1]][0] * 15 + 

dest_like[0], grid.zones[trip_od_zones[1]][1] * 15 + dest_like[1]] 

63. #             print(dest_like) 

64. #             print(dest) 

65.             trip_length = grid.node_distance(origin,dest) 

66.             # Add immediately to wait list 

67.             trip_speed = 

trip_speed_dist[trip_od_zones[0]][trip_od_zones[1]] 

68.             

wait_list.append(trip_wait(wait_count,origin,dest,trip_speed,trip_len

gth,t_step)) 

69.             wait_count += 1 

70.              

71.             # Process waitlist and assign new trips 

72.             for tw_i, tw in enumerate(wait_list): 

73.                 # Assign by checking charging station 

74.                 origin = tw.origin 

75.                 dest = tw.dest 

76.                 trip_speed = tw.speed 

77.                 trip_length = tw.trip_length 

78.                 tot_dist = grid.charge_distance(origin) + 

grid.node_distance(origin,dest) + grid.charge_distance(dest) 

79.                 del_t = t_step - tw.assign_time 

80.                 cs_list = [] 

81.                 if del_t >= 2: # 2min minimum waittime 

82.                     if del_t <= 5: # 5min 

83.                         

cs_list.append(grid.nearest_cs_id(origin)) 

84.                     else: # search next nerest after 5 min 

85.                         cs_list = 

grid.next_nearest_cs_ids(origin) # next charge station 
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86.                     # Check for avaliable cars in all CS 

possible 

87.                     for cs_id in cs_list: 

88.                         cs = css[cs_id] 

89.                         car_id_assgn = -1 

90.                         car_i = -1 

91.                         if len(cs.savs) > 0: 

92.                             for i, car_id in 

enumerate(cs.savs): 

93.                                 if cars[car_id].on_trip == 0: 

94.                                     car_dist = 

grid.node_distance(cars[car_id].location,origin)+ 

grid.node_distance(origin,dest) + grid.charge_distance(dest) 

95.                                     if car_dist <= tot_dist: 

96.                                         if car_dist <= 

cars[car_id].charge: # charge 

97.                                             car_id_assgn = 

car_id 

98.                                             car_i = i 

99.                                             break 

100.                                     else: 

101.                                         if i == 0: # assign the 

first vehicle 

102.                                             if tot_dist <= 

cars[car_id].charge: # charge 

103.                                                 car_id_assgn = 

car_id 

104.                                                 car_i = i #no 

break 

105.                         if car_id_assgn != -1: 

106.                             old_trip_id = 

cars[car_id_assgn].trip_id 

107.                             if old_trip_id != -1: 

108.                                 

trips_completed.append(trips[old_trip_id]) 

109.                                 del trips[old_trip_id] 

110.                             trips[trip_count] = 

trip(trip_count,car_id_assgn,origin,dest,trip_speed,trip_length,t_ste

p,del_t) 

111.                             cars[car_id_assgn].trip_id = 

trip_count 

112.                             trip_count = trip_count + 1 

113.                             trip_a = 1 

114.                             del cs.savs[car_i] 

115.                             del wait_list[tw_i] 

116.                             break 

117.                         if del_t>= 10 and car_id_assgn == -1: 

118.                             # Check if charge is sufficient 

119.                             if tot_dist <= max_charge: 

120.                                 car_id_assgn = car_count 

121.                                 

cars.append(sav(car_count,cs.id,max_charge,grid.nearest_cs(origin))) 
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122.                                 

css_copy[grid.nearest_cs_id(origin)].savs.append(car_count) 

123.                                 trips[trip_count] = 

trip(trip_count,car_count,origin,dest,trip_speed,trip_length,t_step,d

el_t) 

124.                                 cars[car_count].trip_id = 

trip_count 

125.                                 trip_count = trip_count + 1 

126.                                 car_count = car_count + 1 

127.                                 trip_a = 1 

128.                                 del wait_list[tw_i] 

129.                                 break 

130.                          

131.         # Trip starting 

132.         # Old trips processing 

133.         for tr_id,tr in trips.copy().items(): 

134.             car_id = tr.sav_id 

135.             cars[car_id].speed = tr.trip_speed # 

max(tr.trip_speed,2) 

136. #             print(tr.trip_speed) 

137.             cs = grid.nearest_cs_id(cars[car_id].location) 

138.             if tr.trip_state == 0: # 0 - assigned 

139.                 cars[car_id].on_trip = 1 

140.                 cars[car_id].on_charging = 0  

141.                 tr.start_time = t_step  

142.                 tr.trip_state = 1 

143.             elif tr.trip_state == 1: #  1 - cs to origin 

144.                 cars[car_id].move(tr.origin) 

145.                 if cars[car_id].location == tr.origin: 

146.                     tr.trip_state = 2 

147.             # pickup delay 

148.             elif tr.trip_state == 2: # 2 - pickup 

149.                 tr.passenger = 1 

150.                 tr.trip_state = 3 

151.                 tr.pick_time = t_step 

152.             elif tr.trip_state == 3: # 3 - origin to 

destination  

153.                 cars[car_id].move(tr.dest) 

154.                 if cars[car_id].location == tr.dest: 

155.                     tr.trip_state = 4 

156.             #dropoff delay 

157.             elif tr.trip_state == 4: # 4 - drop off 

158.                 tr.passenger = 0 

159.                 tr.drop_time = t_step 

160.                 tr.trip_state = 5 

161.                 cars[car_id].on_trip = 0 

162.                 css[cs].savs.append(car_id) 

163.             elif tr.trip_state == 5: # 5 - destination to cs 

164.                 cs_loc= grid.nearest_cs(cars[car_id].location) 

165.                 

cars[car_id].move(grid.nearest_cs(cars[car_id].location)) 

166.                 if cars[car_id].location == cs_loc: 

167.                     tr.trip_state = 6 
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168.             elif tr.trip_state == 6: # 6 - docking 

169.                 tr.trip_state = 7 

170.                 cars[car_id].on_charging = 1 

171.             else: 

172.                 trips_completed.append(tr) 

173.                 cars[car_id].trip_id = -1 

174.                 del trips[tr_id] 

175.                      

176.         # Charging Process inside Charge station 

177.         for cs in css: 

178.             if len(cs.savs) > 0: 

179.                 for car_id in cs.savs: 

180.                     if cars[car_id].charge < max_charge and 

cars[car_id].on_charging == 1: 

181.                         cars[car_id].charge += 0.75   #60 miles 

in 4hrs(240min) 

182.                         if cars[car_id].charge> max_charge: 

183.                             cars[car_id].charge = max_charge 

184.         car_count_dict[day*24*60 + t_step] = { 

185.             "Day":day, 

186.             "Time":t_step, 

187.             "Trip Count":len(trips), 

188.             "Car Count":len(cars) 

189.         } 

190. ## Output files 

191. car_count_df= pd.DataFrame.from_dict(car_count_dict,"index") 

192. car_count_df.to_excel('day_0_results/car_count_thesis.xlsx') 

2) Day 1 Simulation – day_1_sim.py  

1. import numpy as np 
2. import pandas as pd 
3. from trip_utils import grid_util 
4. from load_data import data_loader 
5. from sim_objects import trip,trip_wait 
6. ## Create virtual Grid 
7.   
8. grid = grid_util(5,3,15,0.25) 
9. grid.generate_map_layout() 
10.   

11.   

12. ## Load O-D Trips and Speed Data 

13. mpr = 5 # 5% MPR 

14. loader = data_loader() 

15. loader.load_trip_data(mpr) 

16. loader.load_speed_data() 

17. # a,b,c = loader.get_dist_trips(1) 

18.   

19. ## Initialize charging stations 

20. css = grid.generate_empty_css() 

21. css_copy = grid.generate_empty_css() 
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22.   

23. # Initialize other hyper params 

24. ## Initialize charging  

25. max_charge = 250 

26. veh_count_cs = [ 63, 195, 186, 177, 201, 116, 261, 380, 178, 

128, 250, 115,  70, 623, 152 ] 

27. css , cars = grid.generate_filled_css_cars(veh_count_cs, 

max_charge) 

28. #1 [138, 133, 109, 402, 163, 66, 252, 629, 98, 37, 461, 71, 75, 

358, 103] 

29. #2 [ 68, 183, 211, 236, 252, 109, 286, 424, 141,  73, 223,  79,  

99, 557, 154] 

30. #3 [ 63, 195, 186, 177, 201, 116, 261, 380, 178, 128, 250, 114,  

70, 623, 152 ] 

31.   

32. t = 1440 #min 

33. days = 5 

34. trips = dict() 

35. wait_list = [] 

36. trips_completed = [] 

37. trip_count = 0 

38. wait_count = 0 

39. trip_not_found = 0 

40. car_id_store = 1 

41. css_dist= [] 

42. car_count_dict = dict() 

43. trip_create_dict = dict() 

44. trip_complete_dict = dict() 

45. car_dict = dict() 

46. trip_not_dict = dict() 

47.   

48. # Day 1 - Simulation 

49. count = 0 

50. for day in range(1,days+1): 

51.     print("Day : "+str(day)) 

52.     css_counts  = np.zeros(15) 

53.     for car in cars: 

54.         cs_id = grid.nearest_cs_id(car.location) 

55.         css_counts[cs_id] += 1 

56.     css_dist.append(css_counts) 

57.     for t_step in range(0,t): 

58.         ## Status 

59.         print("Time : "+ str(t_step)) 

60.         print("Trips Running : "+str(len(trips))) 

61.         print("Cars : "+str(len(cars))) 

62.         print("Trips Completed : "+str(len(trips_completed))) 

63.         print("Trips in Total: "+str(trip_count)) 

64.         # New Trips in each step 

65.         semi_hr = int(t_step/30) 

66.         trip_speed_dist,trip_od_dist,trips_in_step = 

loader.get_dist_trips(semi_hr) 

67. #         print(trips_in_step) 

68.         for each in range(0,trips_in_step): 



65 

 

69.             count = count + 1 

70.             #print(css[0].savs) 

71.             # New Trips Generation 

72.             trip_od_zones = 

np.random.choice(grid.rel_key.flatten(),1, p= 

trip_od_dist.flatten())[0] 

73.             found = 0  

74.             while found == 0: 

75.                 origin_like = 

np.random.choice(grid.int_zone_key.flatten(), 1, 

p=grid.int_zone_dist.flatten())[0]  

76.                 origin = [grid.zones[trip_od_zones[0]][0] * 15 

+ origin_like[0], grid.zones[trip_od_zones[0]][1] * 15 + 

origin_like[1]] 

77.                 dest_like = 

np.random.choice(grid.int_zone_key.flatten(), 1, 

p=grid.int_zone_dist.flatten())[0] 

78.                 dest = [grid.zones[trip_od_zones[1]][0] * 15 + 

dest_like[0], grid.zones[trip_od_zones[1]][1] * 15 + 

dest_like[1]] 

79. #                 if origin != dest: ## ensuring minimum trip 

distance 

80.                 found = 1 

81.             # Add immediately to wait list 

82.             trip_speed = 

trip_speed_dist[trip_od_zones[0]][trip_od_zones[1]] 

83.             trip_length = grid.node_distance(origin,dest) 

84.             

wait_list.append(trip_wait(wait_count,origin,dest,trip_speed,trip

_length,t_step)) 

85.             

#(self,_id,_origin,_dest,_speed,_trip_length,assign_time): 

86.              

87.             wait_count += 1 

88.              

89.             # Process waitlist and assign new trips 

90.             for tw_i, tw in enumerate(wait_list): 

91.                 # Assign by checking charging station 

92.                 origin = tw.origin 

93.                 dest = tw.dest 

94.                 trip_length = tw.trip_length 

95.                 trip_speed = tw.speed 

96.                 tot_dist = grid.charge_distance(origin) + 

grid.node_distance(origin,dest) + grid.charge_distance(dest) 

97.                 del_t = t_step - tw.assign_time 

98.                 if del_t < 0: 

99.                     del_t = del_t + 1439 

100.                 cs_list = [] 
101. #                 if del_t >=0: # 0min minimum waittime 
102.                 if del_t <= 3: # 3min 
103.                     cs_list.append(grid.nearest_cs_id(origin)) 
104.                 elif del_t > 3 and del_t <=8: 
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105.                     cs_list = grid.next_nearest_cs_ids(origin) 
# next charge station 

106.                 else: # del_t>= 8 
107.                     trip_not_found += 1 
108.                     print("Trip Cancelled on Day: ", day) 
109.                     del wait_list[tw_i] 
110.                     break 
111.                 # Check for avaliable cars in all CS possible 
112.                 for cs_id in cs_list: 
113.                     cs = css[cs_id] 
114.                     car_id_assgn = -1 
115.                     car_i = -1 
116.                     if len(cs.savs) > 0: 
117.                         for i, car_id in enumerate(cs.savs): 
118.                             if cars[car_id].on_trip == 0: 
119.                                 car_dist = 

grid.node_distance(cars[car_id].location,origin)+ 

grid.node_distance(origin,dest) + grid.charge_distance(dest) 

120.                                 if car_dist <= tot_dist: 
121.                                     if car_dist <= 

cars[car_id].charge: # charge 

122.                                         car_id_assgn = car_id 
123.                                         car_i = i 
124.                                         tot_dist = car_dist 
125.                                         break 
126.                                 else: 
127.                                     if i == 0: 
128.                                         if tot_dist <= 

cars[car_id].charge: # charge 

129.                                             car_id_assgn = 
car_id 

130.                                             car_i = i 
131.                     if car_id_assgn != -1: 
132.                         old_trip_id = 

cars[car_id_assgn].trip_id 

133.                         if old_trip_id != -1: 
134.                             

trips_completed.append(trips[old_trip_id]) 

135.                             trip_complete_dict[trip_count] = { 
136.                                 "Trip ID":old_trip_id, 
137.                                 "Car ID": 

trips[old_trip_id].sav_id, 

138.                                 "Day":day, 
139.                                 "Time":t_step, 
140.                                 "Wait 

Time":trips[old_trip_id].waited_time, 

141.                                 
"Origin":trips[old_trip_id].origin, 

142.                                 
"Destination":trips[old_trip_id].dest, 

143.                                 "Trip 
length":trips[old_trip_id].trip_length, 
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144.                                 "Total 
length":cars[trips[old_trip_id].sav_id].miles 

145.                             } 
146.                             

cars[trips[old_trip_id].sav_id].miles = 0 

147.                             del trips[old_trip_id] 
148.                         trips[trip_count] = 

trip(trip_count,car_id_assgn,origin,dest,trip_speed,trip_length,t

_step, del_t) 

149.                         trip_create_dict[trip_count] = { 
150.                             "Trip ID":trip_count, 
151.                             "Car ID": car_id_assgn, 
152.                             "Day":day, 
153.                             "Time":t_step, 
154.                             "Wait Time":del_t, 
155.                             "Origin":origin, 
156.                             "Destination":dest, 
157.                             "Trip length":trip_length, 
158.                         } 
159.                         

#(self,_id,_sav_id,_origin,_dest,_speed,_trip_length,assign_time)

: 

160.                         cars[car_id_assgn].trip_id = trip_count 
161.                         trip_count = trip_count + 1 
162.                         trip_a = 1 
163.                         del cs.savs[car_i] 
164.                         del wait_list[tw_i] 
165.                         break 
166.                      
167.   
168.         # Trip starting 
169.         # Old trips processing 
170.         # print("Time step :" + str(t_step)) 
171.         for tr_id,tr in trips.copy().items(): 
172.             #print("No of trips"+ str(len(trips))) 
173.             car_id = tr.sav_id 
174.             cars[car_id].speed = tr.trip_speed 
175.             cs = grid.nearest_cs_id(cars[car_id].location) 
176.             if tr.trip_state == 0: # 0 - assigned 
177.                 cars[car_id].on_trip = 1 
178.                 cars[car_id].on_charging = 0 
179.                 tr.start_time = t_step  
180.                 tr.trip_state = 1 
181.             elif tr.trip_state == 1: #  1 - cs to origin 
182.                 cars[car_id].move(tr.origin) 
183.                 if cars[car_id].location == tr.origin: 
184.                     tr.trip_state = 2 
185.             # pickup delay 
186.             elif tr.trip_state == 2: # 2 - pickup 
187.                 tr.passenger = 1 
188.                 tr.trip_state = 3 
189.                 tr.pick_time = t_step 
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190.             elif tr.trip_state == 3: # 3 - origin to 
destination  

191.                 #step = 
step_closer(cars[car_id].location,tr.dest) 

192.                 cars[car_id].move(tr.dest) 
193.                 if cars[car_id].location == tr.dest: 
194.                     tr.trip_state = 4 
195.             #dropoff delay 
196.             elif tr.trip_state == 4: # 4 - drop off 
197.                 tr.passenger = 0 
198.                 tr.drop_time = t_step 
199.                 tr.trip_state = 5 
200.                 cars[car_id].on_trip = 0 
201.                 css[cs].savs.append(car_id) 
202.             elif tr.trip_state == 5: # 5 - destination to cs 
203.                 cs_loc= grid.nearest_cs(cars[car_id].location) 
204.                 

cars[car_id].move(grid.nearest_cs(cars[car_id].location)) 

205.                 #step = 
step_closer(cars[car_id].location,nearest_cs(cars[car_id].locatio

n)) 

206.                 if cars[car_id].location == cs_loc: 
207.                     tr.trip_state = 6 
208.             elif tr.trip_state == 6: # 6 - docking 
209.                 tr.trip_state = 7 
210.                 cars[car_id].on_charging = 1 
211.             else: 
212.                 trips_completed.append(tr) 
213.                 cars[car_id].trip_id = -1 
214.                 trip_complete_dict[trip_count] = { 
215.                     "Trip ID":tr_id, 
216.                     "Car ID": tr.sav_id, 
217.                     "Day":day, 
218.                     "Time":t_step, 
219.                     "Wait Time":tr.waited_time, 
220.                     "Origin":tr.origin, 
221.                     "Destination":tr.dest, 
222.                     "Trip length":tr.trip_length, 
223.                     "Total length":cars[car_id].miles 
224.                 } 
225.                 cars[car_id].miles = 0 
226.                 del trips[tr_id] 
227.         # Charging Process inside Charge station 
228.         for cs in css: 
229.             if len(cs.savs) > 0: 
230.                 for car_id in cs.savs: 
231.                     if cars[car_id].charge < max_charge and 

cars[car_id].on_charging == 1: 

232.                         cars[car_id].charge += 0.75 # 60 miles 
in 4hrs(240min) 

233.                         if cars[car_id].charge> max_charge: 
234.                             cars[car_id].charge = max_charge 
235.         # Store a vehicle path/2 
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236.         car_dict[(day-1)*60*24+t_step] = { 
237.             "Car ID": car_id_store, 
238.             "Day": day, 
239.             "Time": t_step, 
240.             "On Trip": cars[car_id_store].on_trip, 
241.             "Charge": cars[car_id_store].charge, 
242.             "Location": cars[car_id_store].location 
243.         } 
244.         car_count_dict[day*24*60 + t_step] = { 
245.             "Day":day, 
246.             "Time":t_step, 
247.             "Trip Count":len(trips), 
248.             "Trips Cancelled":trip_not_found 
249.         } 
250. print(count)  
251. # Output files 
252. trip_df_exl = pd.DataFrame.from_dict(trip_create_dict,"index") 
253. trip_df_exl.to_excel('day_1_results/create_trips_thesis.xlsx',e

ngine='xlsxwriter') 

254. trip1_df_exl = 
pd.DataFrame.from_dict(trip_complete_dict,"index") 

255. trip1_df_exl.to_excel('day_1_results/completed_trips_thesis.xls
x',engine='xlsxwriter') 

256. car_df_exl= pd.DataFrame.from_dict(car_dict,"index") 
257. car_df_exl.to_excel('day_1_results/cars_thesis1.xlsx',engine='x

lsxwriter') 

258. car_count_df = pd.DataFrame.from_dict(car_count_dict,"index") 
259. car_count_df.to_excel('day_1_results/car_counts1.xlsx',engine='

xlsxwriter')    

3) Trips Utils – trip_utils.py 

1. import numpy as np  
2. from sim_objects import charge_station,sav 
3.   
4. class grid_util: 
5.     def __init__(self,zone_w,zone_h,zone_res,node_dist): 
6.         self.zone_w = zone_w 
7.         self.zone_h = zone_h 
8.         self.zone_res = zone_res 
9.         self.zone_mid = int(zone_res / 2) 
10.         self.node_dist = node_dist 

11.          

12.     def generate_map_layout(self): 

13.         ## Initialize all zones and make relational keys 

14.         self.zones = dict() 

15.         c = 0  

16.         for j in range(0,self.zone_w): 

17.             for i in range(0,self.zone_h): 

18.                     self.zones[c] = [i,j] 

19.                     c+=1 
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20.         # Zone size - 15 x 15 

21.         self.int_zone_dist = 

np.zeros([self.zone_res,self.zone_res]) 

22.         for i in range(0,self.zone_res): 

23.             for j in range(0,self.zone_res): 

24.                 self.int_zone_dist[i][j] = 1/(self.zone_res 

*self.zone_res) ## equal probablity of selecting any node 

25.         self.int_zone_key = 

np.zeros([self.zone_res,self.zone_res],dtype=object) 

26.         for i in range(0,self.zone_res): 

27.             for j in range(0,self.zone_res): 

28.                 self.int_zone_key[i][j] = [i,j] ## Key for the 

probability 

29.         self.rel_key = 

np.empty([self.zone_res,self.zone_res],dtype=object)  

30.         for i in range(0,self.zone_res): 

31.             for j in range(0,self.zone_res): 

32.                 self.rel_key[i][j] = [i,j] ## 

33.              

34.     def node_distance(self,nd1,nd2): 

35.         dist = (abs(nd1[0] - nd2[0]) + abs(nd1[1] - nd2[1])) * 

self.node_dist # 0.25 mile is the internodal distance 

36.         return dist 

37.      

38.     def charge_distance(self,nd): 

39.         x = nd[0]% self.zone_res 

40.         y = nd[1]% self.zone_res 

41.         dist = (abs(x - self.zone_mid) + abs(y - self.zone_mid)) * 

self.node_dist # 0.25 mile is the internodal distance 

42.         return dist 

43.      

44.     def nearest_cs(self,nd): 

45.         x = int(nd[0]/self.zone_res) 

46.         y = int(nd[1]/self.zone_res) 

47.         return 

[x*self.zone_res+self.zone_mid,y*self.zone_res+self.zone_mid] 

48.      

49.     def nearest_cs_id(self,nd): 

50.         x = int(nd[0]/self.zone_res) 

51.         y = int(nd[1]/self.zone_res) 

52.         return (x + y*self.zone_h) 

53.      

54.     def next_nearest_cs_ids(self,nd): 

55.         x = int(nd[0]/self.zone_res) 

56.         y = int(nd[1]/self.zone_res) 

57.         l = [] 

58.         if x-1 >= 0: 

59.             l.append((x-1)+y*self.zone_h) 

60.         if x+1 <= self.zone_h - 1: 

61.             l.append((x+1)+y*self.zone_h)  

62.         if y-1 >= 0:  

63.             l.append(x+(y-1)*self.zone_h) 

64.         if y+1 <= self.zone_h + 1:  
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65.             l.append(x+(y+1)*self.zone_h) 

66.         return l 

67.      

68.     def generate_empty_css(self): 

69.         css = [] 

70.         count = 0  

71.         for j in range(0,self.zone_w): 

72.             for i in range(0,self.zone_h): 

73.                 css.append(charge_station(count,[i*7+3,j*7+3])) 

74.                 count = count +1       

75.         return css           

76.      

77.     def generate_filled_css_cars(self,veh_count_cs,max_charge): 

78.         css = [] 

79.         cars = [] 

80.         cs_id = 0 

81.         car_id = 0  

82.         for j in range(0,5): 

83.             for i in range(0,3): 

84.                 css.append(charge_station(cs_id,[i*15+7,j*15+7])) 

85.                 for k in range(0,veh_count_cs[cs_id]): 

86.                     

cars.append(sav(car_id,cs_id,max_charge,[i*15+7,j*15+7])) 

87.                     css[cs_id].savs.append(car_id) 

88.                     car_id += 1 

89.                 cs_id += 1          

90.         return css,cars 

4) Data Loader – load_data.py 

1. import numpy as np 
2.   
3. class data_loader: 
4.     def __init__(self): 
5.         ## Time zones  
6.         self.am_time = 3 * 60 # 6 -9 
7.         self.md_time = 6.5 * 60 # 9 - 15:30 
8.         self.pm_time = 3 * 60 # 15:30 - 18:30 
9.         self.nt_time = 11.5 * 60 # 18:30 - 6 
10.   

11.          

12.     def load_trip_data(self,mpr): 

13.         dist_am = np.load('dist_am.npy') 

14.         dist_md = np.load('dist_md.npy') 

15.         dist_pm = np.load('dist_pm.npy') 

16.         dist_nt = np.load("dist_nt.npy") 

17.         ## MPR 5% 

18.         am_trip = dist_am * (mpr/100) 

19.         md_trip = dist_md * (mpr/100) 

20.         nt_trip = dist_nt * (mpr/100) 

21.         pm_trip = dist_pm * (mpr/100) 
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22.         ## Convert to Probability Distribution 

23.         self.am_trip_dist = am_trip/am_trip.sum() 

24.         self.md_trip_dist = md_trip/md_trip.sum() 

25.         self.nt_trip_dist = nt_trip/nt_trip.sum() 

26.         self.pm_trip_dist = pm_trip/pm_trip.sum() 

27.   

28.         ## Trip dist  

29.         am_total = am_trip.sum() 

30.         md_total = md_trip.sum() 

31.         pm_total = pm_trip.sum() 

32.         nt_total = nt_trip.sum() 

33.   

34.         ## Trip per min 

35.         self.am_trip_min = int(am_total/self.am_time) 

36.         self.md_trip_min = int(md_total/self.md_time) 

37.         self.pm_trip_min = int(pm_total/self.pm_time) 

38.         self.nt_trip_min = int(nt_total/self.nt_time) 

39.          

40.     def load_speed_data(self): 

41.         ## Speed Data Probability Distribution 

42.         self.dist_speed_am = 

np.load('dist_speed_am.npy').astype(int) 

43.         self.dist_speed_pm = 

np.load('dist_speed_pm.npy').astype(int) 

44.         self.dist_speed_md = 

np.load('dist_speed_md.npy').astype(int) 

45.         self.dist_speed_nt = 

np.load('dist_speed_nt.npy').astype(int) 

46.          

47.     def get_dist_trips(self,semi_hr): 

48.         if semi_hr >= 12 and semi_hr <18: 

49.             print("AM") 

50.             trip_speed_dist = self.dist_speed_am 

51.             trip_od_dist =  self.am_trip_dist 

52.             trips_in_step = self.am_trip_min 

53.         elif semi_hr >= 18 and semi_hr < 31: 

54.             print("MD") 

55.             trip_speed_dist = self.dist_speed_md 

56.             trip_od_dist =  self.md_trip_dist 

57.             trips_in_step = self.md_trip_min 

58.         elif semi_hr >= 31 and semi_hr < 37: 

59.             print("PM") 

60.             trip_speed_dist = self.dist_speed_pm 

61.             trip_od_dist =  self.pm_trip_dist 

62.             trips_in_step = self.pm_trip_min 

63.         else: 

64.             print("NT") 

65.             trip_speed_dist = self.dist_speed_nt 

66.             trip_od_dist = self. nt_trip_dist 

67.             trips_in_step = self.nt_trip_min 

68.      

69.         return trip_speed_dist,trip_od_dist,trips_in_step 
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5)  Simulation Objects – sim_objects.py 

1. class sav: 
2.     def __init__(self,_id,_cs,_charge,_location): 
3.         self.id = _id 
4.         self.cs_id = _cs 
5.         self.charge = _charge 
6.         self.location = _location 
7.         self.on_charging = 0 
8.         self.miles = 0 
9.         self.total_miles = 0 
10.         self.speed = 1 # 1 node / min = 0.25 mile/min = 15 mph 

11.         # 2 - 30 mph 

12.         # 3 - 45 mph 

13.         # 4 - 60 mph 

14.         self.on_trip = 0 

15.         self.trip_id = -1 

16.          

17.     def move(self,dst): 

18.         count = 0 

19.         while count < self.speed: 

20.             ori = self.location 

21.             if dst[0]-ori[0] != 0: 

22.                 self.charge -= 1 * 0.25 

23.                 self.miles += 1 * 0.25 

24.                 self.total_miles += 1 * 0.25 

25.                 if dst[0] - ori[0] > 0:  

26.                     step = [ori[0]+1,ori[1]] 

27.                 else: 

28.                     step = [ori[0]-1,ori[1]] 

29.             elif dst[1]-ori[1] != 0: 

30.                 self.charge -= 1 * 0.25 

31.                 self.miles += 1 * 0.25 

32.                 self.total_miles += 1 * 0.25 

33.                 if dst[1] - ori[1] > 0:  

34.                     step = [ori[0],ori[1]+1] 

35.                 else: 

36.                     step = [ori[0],ori[1]-1] 

37.             else: 

38.                 step = [ori[0],ori[1]] 

39.                 break 

40.             self.location = step 

41.             count +=1 

42.      

43.          

44. class charge_station: 

45.     def __init__(self,_id,_location): 

46.         self.id = _id 

47.         self.location = _location 

48.         self.savs = [] 

49.         self.max_cap = 20 

50.         self.current_cap = 0 
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51.      

52. class trip: 

53.     def 

__init__(self,_id,_sav_id,_origin,_dest,_speed,_trip_length,assign_t

ime,del_t): 

54.         self.id = _id 

55.         self.sav_id = _sav_id 

56.         self.origin = _origin 

57.         self.dest = _dest 

58.         self.trip_speed = _speed 

59.         self.trip_length = _trip_length 

60.         self.assign_time = assign_time 

61.         self.waited_time = del_t 

62.         self.start_time = -1 

63.         self.pick_time = -1 

64.         self.drop_time =-1 

65.         #self.end_time = -1 

66.         self.trip_state = 0  

67.     # 0 assigned, 1 - cs to origin, 2 - pickup, 3 - origin to 

destination, 4 drop off, 5-destination to cs, 6 docking, 7 complete  

68.         self.passenger = 0 

69.          

70. class trip_wait: 

71.     def 

__init__(self,_id,_origin,_dest,_speed,_trip_length,assign_time): 

72.         self.id = _id 

73.         self.origin = _origin 

74.         self.dest = _dest 

75.         self.speed = _speed 

76.         self.trip_length = _trip_length 

77.         self.assign_time = assign_time        

 

 

 

 


