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ABSTRACT 

The genetic yield potential in grain sorghum [Sorghum bicolor (L.) Moench] hybrids has 

increased at a slower rate than other cereal crops. Advances in new technology provide 

opportunities for breeders to enhance selection accuracy and throughput efficiency of 

new germplasm to bolster rates of genetic gain. In this thesis, Genotyping-By-

Sequencing was used to analyze the structure of heterotic groups in sorghum and access 

the relationship between the genetic similarity of parental lines and heterosis. Three 

distinct groups of germplasm in the Texas A&M sorghum breeding program were found 

through K-means clustering that closely aligned with functional classification as B-lines, 

R-lines, and forage lines. Forage lines exhibited the greatest range of genetic diversity

followed by R-lines, then B-lines. Significant heterosis was observed for grain yield, 

plant height, days to flower, and panicle exsertion; yet, estimates of genetic similarity 

were not a good predictor of heterosis or hybrid performance amongst elite Texas A&M 

sorghum inbred lines. However, some parental inbred performance measurements may 

be predictive of hybrid performance. Additionally, in this thesis, a phenotyping pipeline 

was developed utilizing CT imaging to quantify three-dimensional structural 

characteristics from grain sorghum caryopses which can then be related to end-use 

quality. It was possible to accurately classify 19 sorghum genotypes based on CT-

derived estimates of embryo volume, endosperm hardness, endosperm texture, 

endosperm volume, pericarp volume, and kernel volume. 
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1. INTRODUCTION

Sorghum [Sorghum bicolor (L.) Moench] is a morphologically diverse crop grown 

worldwide for a variety of end-use products. In the United States and many countries, 

sorghum is primarily cultivated as a hybrid crop largely for animal feed markets. 

Regardless of end-use, sorghum improvement programs have long selected for enhanced 

grain yield with modest success. Several recent studies estimate the rate of genetic gain 

in grain yield for sorghum hybrids to be less than that of other major US field crops 

(Gizzi & Gambin, 2016; Pfeiffer et al., 2019). Modest gains in yield are attributed to 

several factors including the shifting of production to more marginal environments, 

reduced inputs, and a reduction in public and private sector research expenditures. 

Regardless of the causes, the rate of genetic improvement must increase if sorghum is to 

remain a major agronomic commodity. 

In addition to increasing yield, manipulating and improving grain quality 

components are another important factor in keeping sorghum commercially viable. 

Recent focus shifted toward high-end specialty grain sorghums. This is evidenced by the 

development of niche markets that use sorghum products such as: popped sorghum, 

gluten free flours, alcoholic beverages, high antioxidant cereals, nutraceutical additives, 

packing materials, bacterial substrates, natural colorants, and biofuels (Aruna & 

Visarada, 2019). Consequently, varied end-use products will require tailored hybrids 

with specific grain structural and compositional characteristics.  

To meet market demands, plant breeders continuously search for new tools and 

novel uses for old tools to improve throughput and selection efficiency. This study seeks 

1 
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to examine two such tools and their usefulness in a sorghum breeding program. The first 

being applications of Genotyping-By-Sequencing (GBS) data to access the relationship 

between heterotic groups and predict heterosis in sorghum. The second being the 

development of protocol for analysis of endosperm texture in sorghum grain using X-ray 

computed tomography (CT). 
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2. PREDICTING HETEROSIS IN GRAIN SORGHUM HYBRIDS USING

SEQUENCE-BASED GENETIC SIMILARITY ESTIMATES* 

2.1. Introduction  

Sorghum [Sorghum bicolor (L.) Moench] is a cereal grain crop grown worldwide for 

food, animal feed, and bioenergy production. In the USA and many other countries, 

sorghum is primarily cultivated as a hybrid crop for animal feed markets. Sorghum 

improvement programs have long selected for enhanced grain yield with modest success. 

Recent studies estimate the rate of genetic gain in grain yield for sorghum hybrids to be 

0.008 t ha-1 yr-1, which is less than that of other major US field crops (Gizzi & Gambin, 

2016; Pfeiffer et al., 2019). Modest gains in yield are attributed to several factors, 

including the shifting of production to more marginal environments, reduced inputs, and 

a reduction in public and private sector research expenditures. Regardless of the causes, 

the rate of genetic improvement must increase if sorghum is to remain a major 

agronomic commodity.  

Commercial hybrid sorghum seed production relies on the three-line 

cytoplasmic-nuclear male sterility (CMS) system as first described by Stephens and 

Holland (1954). In this system, the process to develop parental inbreds is both costly and 

time-consuming, especially developing pairs of A/B parental lines. As with any hybrid 

breeding program, numerous new inbred lines are tested for general combining ability 

*This is an Author’s Original Manuscript of an article published by Taylor & Francis in Journal of Crop

Improvement on April 2, 2020, available online at the Taylor & Francis Ltd web site:

https://www.tandfonline.com/doi/full/10.1080/15427528.2020.1748152
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and then specific hybrid combinations with commercial potential must be identified. 

Methods capable of predicting hybrid sorghum performance should increase the 

effectiveness of elite hybrid evaluation within the same size breeding program and 

thereby increase the rate of genetic gain to levels observed in other crops (Basnet et al., 

2019; Voss-Fels et al., 2019). 

Heterosis, or hybrid vigor as first described by Shull (1908, 1914), is the 

phenomenon observed when F1 hybrids exhibit improved performance over either inbred 

parent. In sorghum, heterosis is an important component of hybrid performance that 

manifests in hybrids that are earlier maturing, slightly taller, and higher yielding with 

greater yield stability than inbred lines (Axtell et al., 1999; Duvick, 1999; Mindaye et al., 

2016; Quinby, 1963). Mid-parent heterosis (MPH) for grain yield in sorghum is 

substantially lower than in maize (Duvick, 2005; Pfeiffer et al., 2019). The lower 

heterosis in sorghum is thought to be caused by the natural self-pollination in the crop 

and the absence of heterotic groups from the initial deployment of hybrids (Duvick, 

1999; Pfeiffer et al., 2019). The latter factor is supported by the increase in heterosis in 

grain sorghum breeding programs over time (Menz et al., 2004; Pfeiffer et al., 2019). 

This demonstrates the ability to select and improve heterosis in sorghum for future 

genetic gains. 

While the underlying genetic mechanisms that govern heterosis are not fully 

understood (Schnable & Springer, 2013), a higher level of heterosis has been reported 

between parents that are more genetically distant than closely related parents 

(Amelework et al., 2017; Hallauer, 1999; Moll et al., 1965; Stupar et al., 2008; Wegary 
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et al., 2013; T. Zhang et al., 2010). However, other studies are less definitive and report 

little to no correlation between genetic similarity and heterosis depending on the 

molecular marker type, trait, and crop (Flint-Garcia et al., 2009; Nie et al., 2019; Wu et 

al., 2013). To date, relatively few studies have assessed the relationship between genetic 

similarity and heterosis in sorghum. Jordan et al. (2003) reported significant correlations 

between genetic similarity and hybrid yield, height, and maturity. Mindaye et al. (2016) 

reported a significant correlation between MPH for grain yield and genetic similarity, 

but not in all environments. In contrast, Amelework et al. (2017) found no significant 

relationship between genetic similarity and grain yield heterosis in sorghum.  

In highly genetically divergent parental material, heterotic expression is 

decreased presumably due to the beginnings of intraspecific genetic incompatibility 

(Moll et al., 1965; Wei & Zhang, 2018). Alternatively, genetically similar material will 

not manifest as much hybrid vigor. Consequently, there is a theorized optimal mating 

distance between parents to maximize heterosis and hybrid performance (Wei & Zhang, 

2018). Furthermore, in some parental material exhibiting extreme genetic divergence, 

one parent brings a yield drag or other unacceptable agronomic traits, such as height or 

maturity, that are manifested in the hybrid. For these reasons, panels of elite parental 

material that produce agronomically acceptable hybrids as opposed to exotic or 

unadapted germplasm with greater magnitude of genetic divergence are more relevant to 

breeding programs.  

Sorghum breeding programs have traditionally assessed genetic relatedness 

through analysis of ancestral relationships and morpho-anatomical traits. The 
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development of molecular markers, such as restriction fragment length polymorphisms 

(RFLPs) and simple sequence repeats (SSRs), has allowed calculation of genetic 

similarity with greater accuracy (Powell et al. 1996; Menz et al. 2004). However, when 

using RFLP and SSR markers, estimates of genetic similarity are greatly affected by the 

number and distribution of markers used (Powell et al., 1996). In contrast, the cost-

effectiveness and dense uniform distribution of single nucleotide polymorphism (SNP) 

markers make them an ideal candidate to measure genetic relatedness with high 

throughput efficiency. To this end, Morishige et al. (2013) developed a Genotyping-By-

Sequencing (GBS) pipeline for sorghum that employs methylation-sensitive enzymes 

that cut in gene-rich regions of the genome. This system has been effectively used to 

determine the genetic relatedness of various sorghum genotypes, both in diverse 

germplasm pools (Horne, 2019; Klein et al., 2015) and in highly related germplasm 

(Patil et al., 2019).  

In the present study, GBS was employed to assess the genetic relationship among 

germplasm within the Texas A&M sorghum breeding program, and subsequently, 

whether genetic similarity estimates were predictive of heterosis or hybrid performance 

among elite inbreds. The ultimate goal of this work is to determine whether genetic 

similarity estimates alone, or when used in conjunction with additional information 

(inbred line performance), can be useful for prediction models in hybrid grain sorghum 

development.  
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2.2. Materials and methods 

2.2.1. Plant material 

A representative collection of germplasm in the Texas A&M sorghum breeding 

program, consisting of 435 sorghum inbred lines, was evaluated in this study. From this, 

a subset of 24 elite grain-type inbred lines, consisting of publicly released and 

experimental germplasm from the Texas A&M sorghum breeding program, was further 

evaluated. This subset of elite lines was chosen to reflect the diversity of elite material 

with commercial potential developed within the Texas A&M sorghum breeding 

program. Selected parental lines were divided into two groups, 15 female parents (A/B-

lines) and nine male parents (R-lines), and 52 F1 hybrids were made by crossing these 

parents.  

2.2.2. Experimental details 

In the spring of 2015, hybrids and parental lines were grown in four Texas locations: 

College Station, Lubbock, Plainview, and Vega. The experimental design in each 

location was a randomized complete block design with three replications. An 

experimental unit was a two-row plot that was between six and ten meters in length. 

Row spacing ranged from 0.67 to 1.0 m depending on location. Standard agronomic 

practices for optimum sorghum production were followed, including judicial use of 

pesticides, fertilizer, and irrigation as needed.  

2.2.3. Data collection 

In each environment, phenotypic data were collected on days to flowering, plant height, 

panicle exsertion, and grain yield. Days to flower was the number of days from planting 
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to the date on which 50% of plants in a plot had reached half-bloom. Panicle exsertion 

was measured at maturity as the distance from the collar of the flag leaf to the base of 

the panicle. Plant height was recorded at maturity as the distance from the soil surface to 

the tip of the panicle. Grain yield was measured using a plot combine, and grain weights 

are presented in kg•ha-1 with adjustments to 14% moisture content. 

2.2.4. Genotypic analysis 

To assess genetic diversity among the parental lines, GBS (Morishige et al., 2013) was 

conducted on the panel of 435 inbreds. Twenty seeds from each line were germinated in 

Sunshine MVP growing media (Sun Gro Horticulture, Agawam, MA) in a greenhouse 

for 14 days under natural sunlight supplemented with sodium halide lights. Total 

genomic sequence-quality DNA was extracted from leaf tissue (~12 seedlings) from 

each parental line with the FastPrep FP120 instrument (MP Biomedicals, Santa Ana, 

CA) used in conjunction with the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA) 

according to the manufacturer’s protocol. Purified DNA was quantified fluorometrically 

using a Qubit Fluorometer (Invitrogen, Carlsbad, CA). Illumina template libraries were 

prepared by digesting each sample with NgoMIV restriction enzyme as previously 

detailed by Burrell et al. (2015). Single-end sequencing of the template was performed 

on an Illumina HiSeq 2500 using standard Illumina protocols at the Texas A&M 

AgriLife Genomic and Bioinformatics Services. The sequences obtained were processed 

through a series of custom Perl and Python scripts to discard sequences lacking the 

partial NgoMIV restriction site and 12-bp barcode, sort sequences corresponding to each 

genotype into separate files, and trim the 12-bp barcode from the genomic sequences. 
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The processed reads were aligned to the sorghum reference genome of genotype 

B.Tx623 (Sbicolor v1.4, Phytozome) (Paterson et al., 2009) within the CLC Genomics

Workbench (Qiagen, Hilden, Germany), and reads that mapped to more than one region 

of the reference genome were removed. For variant detection in the CLC Genomics 

Workbench, the parameter settings included a maximum gap and mismatch count of 

three, a minimum quality of the SNP base of 20, a minimum average quality of the 

nucleotides surrounding the SNP of 15, a neighborhood radius of five and a minimum 

read coverage of nine. The mapping and variant files were exported as SAM and 

comma-separated-value (csv) formats, respectively, and further processed using custom 

scripts written in Perl and Python. Genomic positions where base calls were scored in at 

least 25% of the parental lines were retained, and missing data were imputed using 

fastPHASE (Scheet & Stephens, 2006). Following imputation, 69,874 SNPs, with a 

minor allele frequency of greater than 5%, were retained for further use. Markers 

spanned all 10 chromosomes, with greater density near the ends of chromosomes where 

gene density is highest. Fewer markers were present in the repeat-rich heterochromatic 

regions surrounding the centromeres. Genetic similarity among the parental lines was 

calculated using Nei’s genetic distance matrix in PowerMarker V3.25 (Liu & Muse, 

2005).  

2.2.5. Genetic structure analysis 

K-means clustering was done on 435 inbred lines in JMP (Version 15.0.0. SAS Institute

Inc., Cary, NC) based on genetic similarity between lines. Iterative clustering was done 

from 2 to 10 clusters and peak cubic clustering criterion was observed with three 



10 

clusters. Squared Euclidean distances for genotypes to their respective cluster center, 

based on functional classification, were calculated. The three derived clusters were 

visualized using principal component analysis based on genetic similarity between lines. 

The same clustering analysis was performed with the subset of 24 elite grain-type lines 

chosen for hybrid evaluation. Two clusters, as determined by the peak cubic clustering 

criteria, were similarly visualized using principal component analysis. Tukey-Kramer’s 

HSD test was used to compare differences between groups using genetic similarity and 

squared Euclidean distances. 

2.2.6. Statistical analysis 

Statistical analysis was performed using JMP, with inbreds and hybrids analyzed 

separately. In both, outliers were removed and homogeneity of variance was checked 

using the Brown-Forsythe test. A combined restricted maximum likelihood analysis 

(REML) was fitted for all environments using the following model: 

Yijk = u + Genj + Envk + Repi (Envk) + Genj × Envk + Eijk 

where Yijk is the trait value, u is the mean, Genj is the effect of the jth genotype, Repi is 

the effect of the ith replicate, Envk is the effect of the kth environment, Repi (Envk) is the 

effect of replicates nested within environments, Genj × Envk is the genotype-by-

environment interaction and Eijk is the random error term. Residuals from the models 

were normal for all traits, except for days to flower, based on QQ plots. Transformations 

for non-normal data were tried using Box-Cox functions; however, no significant 

improvement occurred, and thus untransformed data were used in statistical analyses. 

Variance components were estimated considering all factors as random effects, and the 
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Wald test was used to determine the significance of factors. Least square means 

(LSMeans) were estimated considering genotype as a fixed effect and all other factors as 

random effects. Pearson’s correlations, simple and multiple linear regression, mid-parent 

(MP) values, MPH, and high-parent heterosis (HPH) were calculated using LSMeans. 

Percent MPH and HPH were calculated using the following formulas:  

%MPH = [(F1 – MP) / MP] × 100 

%HPH = [(F1 – HP) / HP] × 100 

where F1 is the performance of the F1 hybrid, MP is the average performance of the 

parents in the cross, and HP is the performance of the high parent in the cross. A one-

sample t-test was used to assess whether heterosis was significantly different than zero. 

Simple and multiple linear regression models were constructed, and Mallows Cp and root 

mean square error (RMSE) were used for variable/model selection criteria.  

2.3. Results  

2.3.1. Genetic relatedness 

The genetic relationship of 435 parental lines in the Texas A&M sorghum breeding 

program was assessed through K-means cluster analysis based on genetic similarity and 

visualized using the principal component analysis (Figure 1). Clustering revealed three 

major groups; one primarily composed of R-lines, one mostly of B-lines, and the other 

comprised largely of forage lines. However, little separation was present between groups 

and some crossover between functional classification and genetic similarity-based 

clustering was present. Squared Euclidean distances for genotypes to their respective 

cluster center, based on functional classification, were calculated and averaged for the 
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three clusters to assess the amount of diversity present in each. Forage lines were more 

diverse than both B and R clusters based on Tukey-Kramer’s HSD test (p < 0.001) and 

had a mean squared Euclidean distance to the cluster center of 356.9. B-lines and R-lines 

did not differ significantly in diversity from one another (p = 0.150) and had a mean 

squared Euclidean distance to cluster centers of 209.7 and 241.5, respectively. An 

alternative analysis compared the genetic similarities for all B-lines, R-lines, and 

combinations between B-lines and R-Lines. The average genetic similarity among B-

lines, R-lines, and between B-lines and R-lines was 0.753, 0.715, and 0.689, 

respectively. Differences between groups were significant, as indicated by Tukey-

Kramer’s HSD test (p < 0.001), with the most similarity being observed among the B-

lines, and the least being observed between B-lines and R-lines. 

Having examined the genetic relationship among a large panel of sorghum 

genotypes within the Texas A&M sorghum breeding program, focus shifted to a 

narrower set of 24 elite grain sorghum B-lines and R-lines (Figure 2). This smaller 

collection is representative of elite grain-type inbreds developed within the Texas A&M 

sorghum breeding program with commercial potential. Analysis revealed elite parental 

lines clustered into two groups (Figure 2). Each cluster contained exclusively B-lines or 

R-lines; no crossovers between functional classification and K-means clustering, based

on genetic similarity, were observed. Comparing the clusters of elite B-lines and R-lines, 

mean squared Euclidean distances to the respective cluster centers for R lines was 19.1 

and that for B-lines was 11.8. Therefore, as confirmed by Tukey-Kramer’s HSD test, 

more genetic diversity was observed in elite R-lines than B-lines (p = 0.003). The 
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average genetic similarity among elite B-lines, R-lines, and between B-lines and R-lines 

was 0.782, 0.717, and 0.695, respectively. Differences between groups were significant, 

as indicated by Tukey-Kramer’s HSD test (p < 0.001), with the most similarity being 

observed among B-lines, and the least being observed between B-lines and R-lines. 
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Figure 1. Principal component analysis based on genetic similarity showing the 

relationship between 435 sorghum inbred lines. Lines are clustered into three groups 

through K-means clustering which are designated by the marker shape. Lines are colored 

based on functional grouping: red = grain-type B-line, green = forage line, blue = grain-

type R-line, and yellow = unknown classification. 
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Figure 2. Principal component analysis based on genetic similarity showing the 

relationship between twenty-four elite grain-type sorghum inbred lines. Lines are 

clustered into two groups through K-means clustering which are designated by the 

marker shape. Lines are colored based on functional grouping: red = B-line, blue = R-

line. The genotype of each line is displayed alongside its respective marker. 

2.3.2. Inbred and hybrid performance 

In the combined analysis across four environments, fitted separately for inbreds and 

hybrids, genetic variation was significant for all traits examined in both inbred and 
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hybrid performance trials (Table 1). In addition, significant genotype-by-environment 

interactions were observed for all traits in both inbreds and hybrids. Across 

environments, hybrids exhibited a comparative grain yield advantage of 1380.6 kg ha-1 

(36.9%) over inbred parental lines. In addition, hybrids reached mid-anthesis 6.6% 

earlier, were 23.4% taller, and had 70.2% greater panicle exsertion than inbred parental 

lines (Table 2).  

Table 1. Percent variance associated with sources of variation in the combined model 

fitted separately for 24 inbred parents and 52 hybrids across four environments in Texas. 

The Wald test was used to determine the significance of variance components. 

Inbred parents Hybrids 

Sources of 

variation 
HT EX DY Y HT EX DY Y 

Genotype 48.4*** 35.5*** 4.4** 3.0* 33.1** 22.6*** 1.3** 4.1* 

Environment 18.5 23.7 89.8 64.4 38.5 26.8 94.4 31.1 

Replication 0.9 1.7 0.1 0.0 1.8 7.4 0.4 1.3 

G x E 7.8** 10.6*** 3.2** 9.9*** 6.3*** 6.5** 1.8*** 23.9*** 

Residual 24.4 28.5 2.5 22.7 20.3 36.7 2.1 39.7 

Total 100 100 100 100 100 100 100 100 

Notes: HT = plant height, EX = panicle exsertion, DY = days to flower, Y = grain yield; G x E = genotype by environment 

interaction; Significance levels indicated by *(p < 0.05), **(p < 0.01), and ***(p < 0.001). 
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Table 2. Summary of average performance of 52 grain sorghum hybrids and 24 inbred 

parental lines across four environments in Texas. 

Inbred parents Hybrids 

Trait Mean SD Range Mean SD Range 

Grain yield (kg•ha-1) 3,744 522 2,752– 4,620 5,124 656 3,377 – 6,294 

Plant height (cm) 119 14 94 – 143 147 10 129 – 169 

Days to flowering 67 3 59 – 73 62 2 57 – 65 

Panicle exsertion (cm) 10 5 2 – 24 18 4 10 – 30 

Note: SD = standard deviation. 

2.3.3. Heterosis and genetic similarity 

MPH and HPH were significant for all traits, as indicated by a one-sample t-test (Table 

3). All traits had positive MPH and HPH, except days to flower. Negative heterosis for 

days to flowering indicated that hybrids matured earlier than their respective inbred 

parental lines. 

Genetic similarity between parents used in hybrid combination ranged from 

0.632 to 0.792, with a mean of 0.697 (Table 4). Significant correlations existed among 

the genetic similarity between parents with both MPH and HPH, but there were no other 

significant correlations among the genetic similarity between parents with MPH or HPH 

for other traits (Table 3). MPH exhibited a greater magnitude of correlation to genetic 

similarity between parents than did HPH. In addition, as MPH considers the genetic 

contribution from both parents, as opposed to only the high parent, further analysis in 

this study focused on MPH. 
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Although not significant, trends across traits indicated greater MPH was 

associated with crosses of more dissimilar parents. This is exemplified in Table 3, where 

a negative correlation can be seen between MPH for all traits (except days to flower) and 

genetic similarity between parents. Given the direction of MPH for days to flower, a 

positive correlation between MPH for days to flower and genetic similarity between 

parents is consistent with the aforementioned trend. 

Table 3. Average percent mid-parent and high-parent heterosis across all hybrids and 

Pearson correlation coefficients between genetic similarities of inbred parents and 

observed heterosis. Nonzero heterosis was accessed using a one-sample t-test. 

MPH HPH 

Trait Mean SD Range 
GS - MPH 

correlation 
Mean SD Range 

GS - HPH 

correlation 

Grain yield 33.6*** 15.2 2.8 – 67.8 -0.174 25.3*** 14.8 -9.8 – 54.7 -0.102

Plant height 22.5*** 5.0 13.8 – 38.3 -0.340* 14.9*** 6.4 1.1 – 31.4 -0.325*

Days to flowering -5.6*** 2.5 -11.8 – 0.9 0.213 -8.2*** 3.5 -15.4 – -0.3 0.154 

Panicle exsertion 74.0*** 47.7 14.6 – 288.9 -0.080 30.1*** 32.9 -22.7 – 141.4 0.040

Notes: SD = standard deviation; GS = genetic similarity; MPH = mid-parent heterosis, HPH = high-parent heterosis; Significance 

levels indicated by *(p < 0.05), **(p < 0.01), and ***(p < 0.001). 
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Table 4. Genetic similarity matrix among parental-inbred lines of the 52 examined 

hybrids based on Genotyping-By-Sequencing SNP data. 

Parental lines R.Tx436 R.05393 R.06239 R.08187 R.09201b R.10219 R.11109 R.11148 R.11188 

N290B 0.707 0.717 

B.Tx2752 0.697 0.687 0.643 0.632 0.667 

B.Tx2928 0.696 0.685 0.732 0.686 0.687 0.675 

B.Tx623 0.716 0.792 0.705 0.688 0.691 0.719 

B.Tx631 0.678 0.699 

B.Tx645 0.719 0.702 0.691 0.673 

B.TxARG-1 0.694 0.714 0.704 

B.03093 0.715 0.686 0.720 0.702 

B.03121 0.719 0.672 

B.05210 0.699 0.703 0.689 0.676 

B.05269 0.705 0.694 

B.08062 0.691 0.706 0.713 

B.08085 0.705 

B.08137 0.704 0.692 0.680 0.670 0.686 

B.10581 0.716 0.715 0.688 

Notes: B-lines in which the sterile A-line were used as female parents are denoted in red; R-lines used as fertile male restorer lines 

are denoted in blue, Empty spaces indicate hybrid combinations not tested. 

2.3.4. Correlations with hybrid performance  

Correlations between hybrid performance and genetic similarity of parental lines were 

non-significant for all traits, except for panicle exsertion (Table 5). MPH for grain yield 

was significantly correlated with hybrid yield (r = 0.660), as was MPH for days to 

flower and hybrid days to flower (r = 0.482). A significant negative correlation existed 

between MPH for parental panicle exsertion and hybrid panicle exsertion, and no 

significant correlation was found between MPH for parental height and hybrid height 
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(Table 5). The mid-parent value for a given trait was significantly and positively 

correlated with hybrid performance for all respective traits. Of most interest was mid-

parent grain yield, which was correlated with hybrid grain yield (r = 0.553) (Table 5). 

Table 5. Pearson correlation coefficients between hybrid and average mid-parent values, 

mid-parent heterosis, and genetic similarity from 52 elite grain-type sorghum hybrids. 

Hybrid traits Mid-parent MPH Genetic similarity 

Grain yield 0.553*** 0.660*** -0.075

Plant height 0.863*** -0.081 -0.206

Days to flowering 0.598*** 0.482*** -0.076

Panicle exsertion 0.895*** -0.379** 0.299* 

Notes: MPH = mid-parent heterosis; Significance levels indicated by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). 

2.3.5. Prediction of hybrid yield 

Grain yield is the most critical component of hybrid grain sorghum performance, and the 

ability to predict hybrid performance is central to increasing the rate of genetic gain. To 

this end, genotypic and phenotypic information presented herein was used to construct 

simple and multiple linear regression models in an attempt to predict hybrid grain yield. 

Based on stepwise regression, in which minimum RMSE and Mallows Cp were used as 

selection criteria, the best model to predict hybrid grain yield used mid-parent grain 

yield, mid-parent plant height, mid-parent days to flower, and genetic similarity (Table 

6). The model provided significant predictive capability, as determined by an F-test (p < 

0.001), with an R2 of 0.417. In the effects test, mid-parent yield and mid-parent height 
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were significant. However, genetic similarity and mid-parent maturity were not 

significant. Thus, despite inclusion of genetic similarity in the best predictive model, this 

factor was not a major determinant of hybrid grain yield in this study. 

Table 6. Summary of simple linear regression models and best multiple linear models 

using two, three, four, and five predictors as determined by stepwise regression for 

predicting hybrid grain yield from parental traits. 

Independent variables R2 RMSE Cp 

MY 0.306*** 553.03 7.04 

MMA 0.089* 633.67 24.26 

MHT 0.023 656.09 29.47 

MEX 0.008 660.10 30.63 

GS 0.006 661.95 30.86 

MY, MHT 0.364*** 534.60 4.41 

GS, MY, MHT 0.385*** 531.24 4.76 

GS, MMA, MY, MHT 0.417*** 522.68 4.22 

GS, MEX, MMA, MY, MHT 0.420*** 527.09 6.00 

Notes: MY = mid-parent yield, MMA = mid-parent maturity, MHT = mid-parent height, MEX = mid-parent exsertion, and GS = 

genetic similarity, RMSE = root mean squared error, Cp = Mallows Cp; Significance levels indicated by * (p < 0.05), ** (p < 

0.01), and *** (p < 0.001). 

2.4. Discussion 

The large panel of sorghum lines formed distinct groups based on their functional 

classification as B-lines, R-lines, or forage lines (Figure 1). Previous studies using 

genotypic analysis to distinguish between heterotic groups in sorghum were 

inconclusive. Some reported that B-lines and R-lines cluster separately (Ahnert et al., 
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1996), whereas others reported a higher degree of correspondence to ancestral racial 

origins (Brown et al., 2011; Menz et al., 2004; Mindaye et al., 2015; Ramu et al., 2013). 

The necessity of using a CMS system to produce seed of commercial hybrids dictates 

that heterotic groups be based on the fertility reaction score of sorghum genotypes. 

Sorghum genotypes were detected that did not cluster based on their fertility reaction 

score (e.g., R-lines clustered with B-lines). The crossovers and lack of marked distance 

between groups are reflective of the inbreeding in foundational sorghum accessions 

before heterotic pools were established. When examining the subset of 24 elite parental 

grain inbreds, clusters of genotypes based on B-lines or R-line classification were 

mutually exclusive and thus, represented genetically distinct heterotic pools (Figure 2). 

The increase in heterosis in sorghum since the development of hybrids (Gizzi & 

Gambin, 2016; Pfeiffer et al., 2019), and results presented herein support that sorghum 

breeding efforts have resulted in the development of genetically distinct heterotic pools. 

However, there is less divergence among sorghum heterotic groups compared with 

outcrossing species, such as maize (Duvick, 2005; Niebur et al., 2004). This implies that 

there are opportunities for future selection and breeding of more divergent 

complementary groups.  

In both the large sorghum panel of 435 lines and the subset of elite grain-type 

lines, R-lines exhibited more genetic diversity than B-lines. Menz et al. (2004) found 

similar results in a collection of 50 elite and historically important sorghum inbred lines. 

These results reflect the restrictive development process for new pairs of A/B lines and 

the resultant slower speed at which developed germplasm can be incorporated back into 
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the breeding program. Additionally, average similarity among B-lines increased (0.753 

to 0.782) from the large panel to the subset of elite grain-type lines, whereas no change 

in average similarity was detected among R-lines. Thus, showing that the effects of the 

restrictive development process of new A/B-line pairs is further amplified within elite 

material. Maintaining robust genetic variation within both heterotic groups is 

advantageous for continual advances in genetic gain; therefore, targeted efforts to 

increase diversity in sorghum should focus on developing more elite B-lines. 

Genetic variation was observed within both B-lines and R-lines in the subset of 

elite germplasm that facilitated selection of parents for use in hybrid combinations with 

varying degrees of genetic divergence. Previous studies in sorghum have shown an 

average genetic similarity between B-lines and R-lines of 0.73, with a range of 0.61 to 

0.99 using genome-wide SNP markers (Mindaye et al., 2015), or an average genetic 

similarity of 0.584, ranging from 0 to 0.886 using a series of AFLP and SSR markers 

(Menz et al., 2004). The estimates of genetic similarity in the present study were similar, 

but the range of genetic similarity was lower (Table 4). This observation could be 

attributable to the marker coverage and type of marker systems utilized in previous 

studies (e.g., dominant markers, such as AFLPs and limited number of SSRs). 

Alternatively, the present study placed an emphasis on elite inbreds as opposed to the 

large numbers of unadapted landraces or historical sorghum accessions used in the 

aforementioned studies (Menz et al., 2004; Mindaye et al., 2015).  

Significant correlations between hybrid performance and MPH for several traits 

confirm that heterosis is an important component in determining hybrid sorghum 
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performance (Table 5). Heterosis was associated with sorghum hybrids that produced 

more grain yield, matured faster, were taller, and had greater panicle exsertion (Table 3). 

This is consistent with the previously reported findings on effects of heterosis in 

sorghum (Axtell et al., 1999; Duvick, 1999; Mindaye et al., 2016; Quinby, 1963).  

Jordan et al. (2003) and Mindaye et al. (2016) reported significant correlations 

between genetic similarity and grain yield, height, maturity, and MPH for grain yield in 

sorghum. However, Amelework et al. (2017) reported no significant relationship 

between genetic similarity and grain yield heterosis in sorghum. While general trends in 

the results of this experiment indicate the magnitude of heterosis was less between more 

genetically similar parents, significant correlations were not seen for most traits (Table 

3). This suggests that the relationship that exists is variable and dependent on the 

specific genotypes within a population, and thus inferences related to the relationship 

between diversity and heterosis are likely fixed to those specific populations (Jordan et 

al., 2003; Mindaye et al., 2016). Accordingly, genetic similarity is not clearly linked to 

heterosis or hybrid performance between heterotic groups in the elite material tested 

herein.  

Rooney (2004) previously reported that although significant correlations existed 

between the performance of the parental line per se and hybrid performance, the 

correlation (r = 0.19) was not strong enough for direct application in a program. 

However, this estimate was derived from a narrow range of genetic diversity present in 

recombinant inbred line populations and was based on one-parent value, as opposed to 

mid-parent values. In this study, a much stronger correlation (r = 0.553) existed between 
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mid-parent grain yield in parental lines and hybrid grain yield. This, combined with 

other phenotypic and genetic traits, could be useful in prediction models to estimate 

grain yield in an untested potential hybrid. Thus, the old adage, “a good inbred often 

makes a good hybrid” professed by some sorghum breeders of generations past may 

have some basis in fact.  

There exists a consistent relationship between height and yield in sorghum in 

which taller hybrids yield more when lodging is not an issue (Rooney 2004). Supporting 

this, recent Texas A&M sorghum variety performance trials show a consistent positive 

relationship between plant height and yield and no relationship between plant height and 

lodging (Schnell, 2018). This means breeders can push the height envelope in sorghum 

to achieve higher yields. In addition, when environmental stresses, such as drought, are 

encountered, earlier-maturing hybrids generally produce higher yields. In the USA, 

because sorghum is predominantly grown in marginal dryland environments, stress is 

often encountered and earlier-maturing hybrids perform better under these conditions 

(Rooney 2004).  

Using this background information, a prediction model was constructed to 

estimate hybrid grain yield using the phenotypic traits of the parental lines and genetic 

similarity between lines. In the model development process, RMSE and Mallows Cp 

were used to prevent over parameterization and biased estimation. Inclusion of genetic 

similarity data into the model increased the overall predictive capacity and fit of the 

model by a small amount, but it was not significant in the effect test (Table 6). This 

reaffirmed that genetic similarity within genotypes examined herein was not a significant 
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predictor of hybrid performance. Ultimately, the best model was significant (R2 = 0.417) 

and there was no evidence of overfitting or biased estimation. There is potential 

usefulness of this model in selection of hybrid combinations and predicting testcross 

performance of new inbred lines, pending further validation.  

2.5. Conclusion 

Distinct heterotic groups are present in the germplasm contained in Texas A&M 

sorghum breeding program. Collective evidence presented herein and in previous studies 

shows that there is less diversity among sorghum B-lines than R-lines and this is likely 

attributable to the restrictive development process for new pairs of A/B-lines. Focusing 

only on a subset of elite parental lines limited the range of genetic diversity observed, 

but it provided an opportunity to examine the relationship between genetic similarity and 

heterosis within parental lines that produce elite grain hybrids. Parental inbred 

performance was correlated with hybrid performance and may be predictive enough to 

be of use in estimating grain yield in untested sorghum hybrids. However, generally 

there was no relationship between more genetically distant parents and heterosis or 

hybrid performance between the genotypes comprising the two heterotic pools. As other 

studies have reported genetic similarity as a component in predicting heterosis or hybrid 

performance in sorghum germplasm, the results collectively indicate that the inferences 

on these relationships are best restricted to the germplasm pools from which the 

estimates were obtained. To accurately predict heterosis, further research into genomic 

prediction models or more informative marker systems is needed. Recent advances in 

genomics research indicate that the information content of SNPs is highly dependent on 
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their genome location (e.g., open vs. closed chromatin and physical distance from gene 

models). Thus, future studies on genetic diversity using informative markers or 

haplotypes may improve the power of genetic diversity in predicting hybrid 

performance. 
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3. APPLICATIONS OF X-RAY COMPUTED TOMOGRAPHY TO ANALYZE THE

STRUCTURE OF SORGHUM GRAIN 

3.1. Introduction 

In sorghum, breeders have primarily focused on yield improvement and stability; grain 

quality has been a trait of secondary importance. However, the demand for cereal grains 

that increase animal feed efficiency, address global malnutrition, improve food quality 

for human consumption, and development of niche markets for sorghum dictate the 

necessity for improvements in grain quality (Aruna & Visarada, 2019; Bouis & Welch, 

2010; Thornton, 2010). While programs can select for improved grain quality, they must 

maintain grain yield and yield stability as any reduction would be detrimental to 

adoption and further reduce rates of genetic gain for yield. In wheat, it is possible to 

improve grain quality parameters without sacrificing agronomic performance, so it holds 

the same may prove to be true in sorghum (Anderson et al., 1998). 

A sorghum caryopsis is composed of three biological components: pericarp, 

endosperm, and embryo (germ) (Rooney & Miller, 1981). The relative size of each 

component varies among genotypes and production environment but pericarp, 

endosperm, and embryo account for around 7%, 84%, and 9% of kernel volume, 

respectively (Bean et al., 2016; Bidwell et al., 1922). The pericarp is the outermost 

layers of a kernel and includes the pericarp, mesocarp, and testa layers. The thickness of 

the pericarp is associated with multiple traits which affect sensitivity to grain 

weathering, processing qualities (ie, decortication), and storage stability (Earp & 

Rooney, 1982; Glueck & Rooney, 1980). The endosperm is composed of protein and 
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starch and is subdivided into the aleurone layer, peripheral, hard (vitreous), and soft 

(floury) portions (Bean et al., 2016). Lastly, the embryo is composed of the embryonic 

axis and scutellum and contains protein and the majority of lipids, vitamins, and 

minerals found in the caryopses (Waniska & Rooney, 2001).    

Studies on kernel structure in sorghum have traditionally involved hand 

dissection or bisectioning of kernels followed by observing the single longitudinal cross 

section (Bidwell et al., 1922; Glueck & Rooney, 1980; Hubbard et al., 1950; Menkir et 

al., 1996; Patil et al., 2019). These methods destroy the seed, offer only one cross section 

(typically in the middle of the kernel), and are time consuming, which limits the number 

of kernels that can be evaluated per sample. Because kernel components vary across 

cross sections (Rooney & Miller, 1981), cutting kernels in half is not representative of 

the whole seed resulting in biased estimates of kernel structure.  

In sorghum, grain quality often depends on matching the end-use with kernel 

characteristics. Physical properties that affect grain quality include seed size, 100 seed 

weight, endosperm texture, bulk density and grain hardness (Ratnavathi & Komala, 

2016). Endosperm texture is the portion of hard endosperm in relation to the soft 

endosperm (Rooney & Miller, 1981). Hard (or vitreous) endosperm in sorghum is 

harder, denser, and more translucent than the soft endosperm, whereas soft endosperm is 

more porous and opaquer. Endosperm texture is an important factor in the milling 

quality of grains and resulting flour, as well as susceptibility to grain mold (Menkir et 

al., 1996; Rooney & Miller, 1981). Generally, kernels with a higher portion of hard 

endosperm are preferred for milling because they are more resistant to breakage during 
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decortication and yield cleaner endosperm of larger particle size giving a higher milling 

yield (Rooney & Miller, 1981). Because endosperm texture is difficult to measure, 

relatively few studies have examined the genetics controlling this trait (Patil et al., 

2019). Therefore, identification of better phenotyping methods may lead to gene 

discovery, improved selection efficiency, and advances in grain quality. 

Computed tomography (CT) imaging technology is a powerful tool that can be 

utilized to measure complex features in biological specimens. These CT scanners work 

by beaming x-rays through an object while rotating around the object in a helical path. 

The resultant x-ray signals are then processed using mathematical algorithms and 

stitched together into cross sectional images, or “slices,” that are stacked together 

forming a three-dimensional image. From CT images, volumetric data can be analyzed 

for various structures with different densities. Until recently, the scale, resolution, 

throughput, accessibility and cost of this technology limited its use (Zhang & Zhang, 

2018). However, demand for medical imaging technology has made CT scanning 

technology accessible to plant scientists.  

Utilization of CT imaging offers many potential advantages over traditional 

phenotyping methods including nondestructive data acquisition, increased throughput 

and efficiency for gathering multiple traits, and better more accurate measurements 

(Dhondt et al., 2010; Zhang & Zhang 2018). Multiple vegetative plant structures have 

been characterized by CT imaging including stems, leaves, and roots and in numerous 

plant species (Dhondt et al., 2010; Zhu et al., 2012; Gomez et al., 2018; Keszthelyi, 

Kovács, and Donkó, 2016; Ahmed et al., 2018; Donis-González et al., 2015; Zhang & 
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Zhang, 2018). In sorghum, Gomez et al. (2018) developed a high throughput 

phenotyping system for morpho-anatomical stem properties that could be used in a crop 

improvement program. Therefore, it may be possible to develop similar methodology for 

analysis of grain although there are different challenges presented when working with 

the caryopsis. 

CT imaging has been used to analyze grain in cereal grain crops. In rice, CT 

imaging was used to characterize and distinguish high-amylose from wild-type rice (Zhu 

et al., 2012). In wheat, CT imaging has been used to study damage caused by sprouting 

and insect infestation (Suresh & Neethirajan, 2015). Similarly in corn, CT imaging was 

effective to assess damage from insect feeding as well as estimate kernel hardness 

(Guelpa et al., 2015; Keszthelyi et al., 2016). When measuring kernel hardness in corn, 

Guelpa et al. (2015) excluded regions not of interest (cavities and germ) which allowed 

for true determination of volumes and densities of the endosperm.  However, this was 

done by manual removal which is inefficient for practical application. If similar, but 

improved methodology could be developed for quantifying traits in sorghum grain, it 

should be possible to assess sorghum endosperm texture on a three-dimensional basis for 

the first time. In addition, it may be possible to extract information on other traits such as 

the spatial distribution of endosperm, endosperm hardness, embryo size, kernel size, 

pericarp thickness, and identification of waxy endosperm. 

CT scans produce a vast volume of images that requires efficient methods of data 

management and analytics. To extract information from CT scans, the images need to be 

simplified and partitioned into regions of interest. This process, segmentation, assigns a 
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label to every pixel in an image based on certain common characteristics. From this, 

quantitative data can be extracted in the form of size and shape of objects in proportion 

to one another. The simplest approach to segmenting an image is to use thresholds based 

on pixel intensity to subdivide an image into different regions. However, there are 

limitations to this approach when sufficient differences in pixel intensity are lacking as is 

common in real world applications. Guelpa et al. (2015) reported from CT scans of corn 

kernels that the density of the germ and hard endosperm were very similar and accurate 

discrimination between the two was not possible using thresholds based on pixel 

intensity. Other methods of segmentation include looking for acute changes in pixel 

intensity (edge detection), or changes in texture.  

Machine learning approaches offer the potential to combine a collection of 

feature selection tools for improved image segmentation. The random forest is a 

classification method combining random uncorrelated decision trees into one prediction 

model (Breiman 2001). A decision tree is essentially a series of yes/no questions that 

lead to a predicted class. The trees are trained on different sets of data and use different 

features to protect each other from their individual errors. In this classification scheme, 

individually some trees may be wrong, however most trees will be correct. Random 

forest is a common machine learning based approach to segment images. Applying 

machine learning based approaches to segmenting CT images may alleviate the 

challenges put forth by Guelpa et al. (2015) and prevent the use of manual image 

cleaning.    
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One of the challenges in implementing machine learning to a broader range of 

applications is the knowledge gap between scientists versed in machine learning and 

applied researchers. Trainable Weka Segmentation is a Fiji plugin that combines a 

collection of machine learning algorithms with a graphical user interface for ease of 

accessibility and functionality (Arganda-Carreras et al., 2017). This software is freely 

available and can help bridge the gap between the machine learning and image 

processing fields.  

Limitations in accurate and nondestructive analysis of grain samples can impede 

improvements in sorghum grain quality. To this end, a phenotyping platform for analysis 

of sorghum grain using CT imaging was developed. Thereafter, a diversity panel of 

sorghum was used to validate the effectiveness of CT imaging to measure structural 

characteristics in sorghum kernels.  

3.2. Materials and methods 

3.2.1. Plant material 

A panel of 19 sorghum inbred lines selected for grain composition diversity was used for 

analysis (Table 7). These genotypes varied for kernel traits including pericarp color, 

mesocarp thickness, presence or absence of the testa layer, kernel size, kernel hardness, 

and endosperm texture. Grain was bulk harvested from ten panicles for each genotype in 

2019 at physiological maturity in College Station, Texas and stored in a cold vault at 11 

– 13% moisture until scans were conducted.
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Table 7. List of plant material and phenotypic kernel characteristics of 19 sorghum 

inbred lines evaluated in this study. 

Genotype 

Pericarp 

Color 

Mesocarp 

Thickness Testa Reference 

Ajabsido White Thick Yes (W. L. Rooney, 2004) 

B.OK11 White Thick No (Weibel et al., 1984) 

B.Tx2928 White Thick No (Rooney 2003) 

B.Tx378 Red Thick No (Stephens & Karper, 1965) 

B.Tx399 Red Thick No (Stephens & Karper, 1965) 

B.Tx642 Yellow Thick No (Rosenow, 2002) 

B.TxArg-1 White Thin No (Miller, Domanski, and Giorda 1992) 

Dorado White Thin No (Clara et al., 1986) 

FC6601_Spur Feterita White Thick Yes (Vinall et al., 1936) 

ICSV400 White Thin No (Murty et al., 1998) 

ICSV745 White Thin No (ICRISAT, 1994) 

R.TX2536 White Thin No (Rosenow, unpublished data, 1964) 

R.Tx430 White Thin No (Miller 1984) 

SC103-12E (IS12170C) Red Thin Yes (Rosenow, unpublished data, 1970) 

SC283 (IS7173C-TAM) White Thin No (Rosenow, unpublished data, 1972) 

Standard Early Hegari (SN106) White Thick Yes (Swanson & Laude, 1942) 

Sureno White Thin No (Meckenstock et al., 1993) 

TAM2566 Red Thin Yes (Johnson et al., 1982) 

Texas Blackhull Kafir (SN59) White Thick No (Stephens & Karper, 1965) 

3.2.2. Experimental details 

The experimental design was a randomized complete block design with three 

replications. An experimental unit, compromised of 40 sorghum kernels of a genotype, 

was placed in a single well in an expanded polystyrene foam microtube storage box. In 

total, each CT scan contained 21 experimental units constituted by 19 different 

genotypes. One entry (R.Tx430) was replicated three times to assess the extent of spatial 

variation within a scan. Three separate CT scans were completed; each scan was 

considered a replication.  
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3.2.3. CT scanning and image processing 

The CT scans were performed by a North Star Imaging X50 industrial 3D X-ray 

inspection system. VorteX automated single pass computed tomography scanning 

technique, which utilizes spiral acquisition and reconstruction with a digital flat-panel 

detector, was used to construct images. This alleviated the use of volume stitching and 

provided uniform resolution in axial and sagittal slices across the entire volume. Scans 

took approximately 2.5 hours to complete and provided a resolution of 20.2 um. After 

imaging, 2-dimenstional slices from the X-axis were exported as PNG files. From each 

scan, approximately 1500 images (~40 GB when uncompressed), were extracted. Stacks 

of two-dimensional slices were imported into Fiji (Schindelin et al., 2012) where they 

were converted to 8-bit greyscale to reduce file sizes. Stacks of images were then 

processed using the enhanced contrast feature with saturated pixels set to 0.3% and 

normalized using the stack histogram. This processing made manual classification easier 

and normalized the three different scans to a similar range of pixel values. 

3.2.4. Image data extraction 

A machine learning based plugin in Fiji, Trainable Weka Segmentation 3D (Arganda-

Carreras et al., 2017), was used to segment stacks of images into different regions. A 

classifier was manually trained on a set of images, then applied to the stacks of images to 

segment them into regions containing background, pericarp, embryo, soft endosperm, or 

hard endosperm. The classifier was built using a fast random forest, a multithreaded 

version of the random forest put forth by Breiman (2001), with 200 trees and two 

random features per node. The tree number was selected as a compromise between 
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computational power and the diminishing returns in performance gain with more trees 

(Oshiro et al., 2012; Probst & Boulesteix, 2018). All training features available were 

evaluated and the best ones were chosen based on out-of-bag error, computational 

requirements, and visual validation. The selected training features were Hessian, mean, 

and variance with a minimum sigma of one and a maximum sigma of eight. Mean and 

variance are texture-based filters useful in differentiating between areas that do not have 

distinct boundaries but contain patterns of homogenous variation. In the present study, 

this was useful in delimiting between the regions of sorghum kernels where there was a 

gradation in pixel values as opposed to distinct boundaries. Hessian is an edge detection 

filter useful in discriminating the borders of objects defined by clear boundaries such as 

that between the caryopsis and background. File sizes were too large segment all at once 

so stacks of images were subdivided into 21 smaller tiles of more manageable size. 

Every genotype was allocated to an individual tile and segmented separately using the 

common classifier. Pixel counts for each of the five classes were obtained for every 

experimental unit and retained for further use.  

Total pixel number of kernels for each experimental unit was calculated by 

adding the number of pixels containing hard endosperm, soft endosperm, pericarp and 

embryo. A reference point in the image was measured to find pixels per mm. Average 

single kernel volume was then calculated by converting total pixel number to mm3 and 

dividing that by 40 (the numbers of kernels/per entry). Average embryo, endosperm, and 

pericarp volume were calculated similarly to average kernel volume using the pixel 

number for each respective region. Endosperm texture was calculated by dividing the 
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total number of pixels containing hard endosperm, by the total number of pixels 

containing soft endosperm for each experimental unit.  

Not using the segmentation classifier, average endosperm intensity of each 

experimental unit was calculated by averaging the range of pixel values in all 40 kernels 

across all slices. Pixel values range in brightness from 1 to 255, where higher pixel 

values are brighter and represent denser objects in a CT scan. Pixel values below 70 

were ignored as background, and pixel values above 248 were ignored as embryo. This 

was done to achieve an approximation of endosperm hardness based on density, hence 

exclusion of background noise and regions containing pericarp or embryo.  

3.2.5. Ground-truth data collection for validation 

Reference grain quality parameters for each genotype were established using both 

quantitative and visual subjective tests. First, the Single Kernel Characterization System 

(SKCS) (SKCS 4100, Perten Instruments North America Inc., Springfield, IL) was used 

to measure diameter, weight, and hardness of 300 individual kernels. This method is 

widely used in the wheat industry and accepted by the sorghum industry as a tool for 

measuring grain quality parameters (Bean et al., 2006).  

Visual assessment of endosperm texture was estimated by cutting three kernels 

from each genotype longitudinally along the embryo to bisect the caryopsis, and visually 

scoring them based on the ratio of hard to soft endosperm. Genotypes were placed into 

categories from one to five where one is greater than 80% soft endosperm, two is 80% to 

60% soft endosperm, three is 60% to 40% soft endosperm, four is 40% to 20% soft 

endosperm, and five is less than 20% soft endosperm. This was done analogous to 
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traditional phenotyping methods in which the reliability of data is subject to the skill and 

expertise of the scorer (Maxson et al., 1971).  

3.2.6. Statistical analysis 

Restricted maximum likelihood analysis (REML) was conducted in JMP using the 

model:  

Yij = u + Genj + Repi + Colk + Rowl + Eij 

where Yij is the trait of interest, u is the mean effect, Genj is the effect of the jth 

genotype, Repi is the effect of the ith replicate, Colk is the effect of the kth 

column, Rowl is the effect of the lth row, and Eij is the random error term. Inclusion of 

spatial corrections, row and column, was done to assess and account for variance within 

CT scans. It was hypothesized that things in the center of a CT scan may appear denser 

possibly due to changes in attenuation from the x-ray passing through more material, or 

if the imaging gantry does not travel far enough past the ends of the sample to record an 

accurate image. Factors with negative variance components were removed from the 

model. Normality of residuals from the models were checked using the Anderson-

Darling test, and log base ten transformations were used to normalize non-normal traits. 

All random models were used to generate estimated best linear unbiased predictors 

(EBLUPs) for each genotype, variance components, and repeatability estimates. 

Repeatability (R) on an entry-mean basis was calculated using the equation:  

R = (σ2
g) / (σ

2
g + (σ2

e / rep)) 

where R = the repeatability, σ2
g = the genotypic variance, σ2

e = the error variance, and 

rep = the number of replications. Repeatability, calculated similar to heritability, 
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indicates the consistency of data and is used in the absence of family structure. Pearson 

correlation coefficients (r) were computed to assess the relationship between EBLUPs of 

CT-derived traits and validate against ground-truth data. Best linear unbiased estimators 

(BLUEs) were estimated using the aforementioned models with genotype being 

considered as a fixed effect and all other factors random effects. The Tukey – Kramer 

honestly significance difference (HSD) test was used to determine if genotypes were 

significantly different from one another using BLUEs.  

3.3. Results and discussion 

3.3.1. Phenotypic variation 

Significant (p < .01) genetic variation was detected for embryo volume, endosperm 

intensity, endosperm texture, endosperm volume, pericarp volume, and kernel volume 

using CT imaging. Across traits, most of the percent variation was explained by the all 

random effects model (Figure 3). Residual errors were small which resulted in high R2 

values and repeatability estimates for all traits (Table 8). 

Some traits, such as CT Endosperm Intensity, had a large replication effect 

(Figure 3). This replication effect was likely due to subtle differences in average 

intensity values between scans (e.g., some scans were brighter than others). Therefore, if 

data is extracted from multiple CT scans, control genotypes or reference objects of 

known density are necessary to normalize all scans to the same range of intensity values. 

Traits derived using the machine learning classifier were less affected than endosperm 

intensity by replication effects because a combination of features (e.g., mean, variance 

and Hessian) was used as opposed to pixel intensity alone (Figure 3). 
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Spatial variation, accounted for in the model by row and column position in CT 

scans, were not significant sources of variation for any traits but a small amount of 

variance was partitioned to spatial effects. Since a conservative approach was used to 

assess significance of effects, spatial variation may still be present within scans. As 

previously mentioned, spatial variation may be due to due to changes in attenuation from 

the x-ray passing through more material, or if the imaging gantry did not travel far 

enough past the ends of the sample to record an accurate image.  

Across all genotypes, sorghum kernel composition measured using CT imaging 

averaged 9% pericarp, 76% endosperm, and 14% embryo (Table 8). Previous literature 

reported kernel composition as 7% pericarp, 84% endosperm, and 9% embryo (Bean et 

al., 2016; Bidwell et al., 1922), so CT-estimates are slightly higher for pericarp and 

embryo with a concomitant reduction in endosperm proportion.  Average kernel volume 

determined by CT imaging was 19.9 mm3; the most recent U.S. Grains Council survey 

reported similar US sorghum kernel volumes of 19.34 mm3 in 2015 and 20.57 mm3 in 

2016 (Bard & Schroeder, 2016).  



41 

Figure 3. Percent variance associated with factors in CT-derived estimates of sorghum 

kernel structure for 19 different sorghum genotypes. Replication refers to independent 

CT scans and while row and column refer to the spatial position within the CT machine. 
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Table 8. Best linear unbiased estimators for CT-derived measures of sorghum grain 

structure for 19 sorghum genotypes in which total variation explained by the model (R2), 

and repeatability are presented. 

Genotype 
CT Seed Size 
(mm3) 

CT Pericarp 
Volume (mm3)  

CT Embryo 

Volume 
(mm3) 

CT Endosperm 
Volume (mm3) 

CT 

Endosperm 
Texture 

CT 

Endosperm 
Intensity 

Ajabsido 29.12 2.21 4.05 22.77 1.79 181.59 

B.OK11 14.30 1.54 2.03 10.77 1.43 178.68 

B.Tx2928 16.94 1.76 2.53 12.68 2.19 181.27 

B.Tx378 20.56 2.03 2.81 15.56 1.69 179.17 

B.Tx399 24.13 2.02 3.33 18.79 2.69 185.63 

B.TxArg-1 12.55 1.30 1.82 9.24 2.98 183.87 

B.Tx642 18.13 1.76 2.46 13.65 3.51 186.49 

Dorado 20.86 1.93 2.62 16.20 2.54 184.34 

ICSV400 24.79 2.10 3.74 18.84 2.97 187.32 

ICSV745 11.82 1.24 1.73 8.82 3.96 184.98 

R.TX2536 22.54 2.05 3.07 17.25 2.29 182.79 

R.Tx430 27.00 2.26 4.14 20.46 2.31 182.86 

SC103-12E 20.19 2.00 2.72 15.10 1.08 174.55 

SC283 15.83 1.51 2.91 11.40 3.99 188.32 
Spur Feterita 

(FC6601) 26.91 2.24 3.68 21.06 1.48 178.72 

Standard Early 
Hegari (SN106) 19.40 1.70 2.54 14.91 1.41 176.68 

Sureno 14.68 1.49 2.38 10.97 5.11 187.8 

TAM2566 20.22 1.82 2.70 15.71 1.43 179.46 

Texas Blackhull 

Kafir (SN59) 17.66 1.70 2.06 13.74 1.35 175.29 

Average 19.87 1.82 2.81 15.15 2.43 182.10 

HSD 2.15 0.49 1.36 2.39 1.53 6.14 

R2 0.92 0.97 0.95 0.98 0.88 0.99 

Repeatability 0.97 0.94 0.97 0.99 0.91 0.99 

Note: HSD = honestly significant difference from Tukey-Kramers test. 

 

 

 

3.3.2. Correlations and validation 

Strong correlations were observed between many CT-derived trait measurements (Figure 

4). As expected, CT kernel volume was correlated (p < .01) with CT embryo volume, CT 

endosperm volume, and CT pericarp volume because larger grains are naturally 
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comprised of greater volumes of embryo, endosperm, and pericarp. CT endosperm 

intensity was correlated (p < .01) with CT endosperm texture, which is logical given the 

differences in density between soft and hard endosperm (Rooney and Miller 1981).  

Estimates of CT-derived traits were also correlated with ground-truth 

measurements from SKCS and visual scoring. Visual scoring for endosperm texture was 

highly correlated (p < .01) with both CT endosperm intensity and CT endosperm texture 

(Figure 4). SKCS kernel hardness was also strongly correlated (p < .01) with both CT 

endosperm intensity and CT endosperm texture (Figure 4). SKCS kernel diameter and 

SKCS kernel weight were both correlated (p < .01) with CT kernel volume (Figure 4). 

The strong correlations reported herein suggest that CT-derived trait measures are 

reliable.  
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Figure 4. Correlations among different sorghum structural characteristics as measured 

by CT imaging, SKCS, and visual scoring. Pearson’s correlation coefficients significant 

at p < .01 are colored green and shown in the top right. Graphic depictions of the 

correlation scatterplot matrices are presented in the lower left.  

3.3.3. CT imaging challenges  

CT images were segmented into regions containing background, embryo, soft 

endosperm, hard endosperm, and pericarp (Figure 5). In addition, other phenotypic 
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kernel characteristics, such as the presence of cracks and voids, were observed within 

some genotypes (Figure 5). Since the segmentation classifier used herein detected these 

large hollow voids and removed them from kernels, the estimates of sorghum kernel 

structure remained unbiased.  

Histograms of pixel values for scanned grain lacked distinct peaks and valleys 

corresponding to individual regions of the caryopsis as reported by Guelpa et al. (2015) 

in corn. This made segmentation more difficult and necessitated the use of a more 

complex approach than relying singularly on intensity value of regions. Some errors in 

classification were present, likely due to the lack of marked differences between regions 

of the kernel. For example, regions of hard endosperm were occasionally misclassified 

as embryo and regions of the embryo were occasionally misclassified as soft endosperm 

(Figure 5). This is because even within regions, pixel intensity and texture are not 

homogenous. For instance, within the embryo, the scutellum is denser and therefore 

brighter than the embryonic axis. This could lead to higher residual errors in models and 

either over or underestimation of some regions of the kernel. Potential ways of 

accounting for this in future analysis involve more robust segmentation classifiers with 

greater number of features, larger sigma values, and more classes. However, more robust 

models are computationally more intensive and often impractical as they would slow 

throughput efficiency of subsequent phenotypic analysis. Overall in this study, 

misclassifications were minimal and did not negatively impact data quality but they may 

explain why estimates of embryo and pericarp volume were slightly higher than that 

reported in previous literature.  
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Figure 5. Images of sorghum kernels before and after segmentation. (A) background, 

(B) embryo, (C) soft endosperm, (D) hard endosperm, (E) pericarp, (F) hollow void in

kernel, (G) hard endosperm misclassified as embryo, (H) less dense embryonic axis

region of embryo misclassified as soft endosperm.

3.3.4. Genotypic differences 

With the methodology presented herein, structural characteristics of sorghum caryopsis 

can be quantified. This serves many potential applications to plant breeders and cereal 

chemists alike for use in gene discovery, physiological studies, and other research. One 

such application is to discriminate between genotypes. Significant genotypic differences 

were detected between genotypes for all traits using CT imaging (Table 8). For a trait 

like endosperm texture, CT imaging detected more quantitative genotypic differences 

with more statistical differences between genotypes than visual scoring (Table 8). In 

addition, genotypes can be selected for different end-use purposes based on structural 
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characteristics. For milling, a genotype with larger kernels, higher percent endosperm, 

and harder endosperm would be preferred such as B.Tx399 (Table 8). Also, cracks and 

voids were observed in some genotypes, such as Ajabsido, which would be undesirable 

for milling as kernels would be more prone to breakage during harvest and decortication. 

The sorghum lines sampled in this analysis included one genotype with waxy 

endosperm (B.TxARG-1). Waxy endosperm is caused by a genetic mutation that inhibits 

the synthesis amylose resulting in a glossy endosperm phenotype that is slightly less 

dense and phenotypically distinct from normal endosperm (Karper 1933; Rooney and 

Miller 1981). Efforts to discern between waxy and regular endosperm using CT imaging 

were not successful. Consequently, the approaches used to measure endosperm 

properties characterized material similarly regardless of endosperm type. B.TxARG-1 

(waxy), was classified as around the same relative ranking for hardness and texture by 

SKCS, visual, and CT scanning. Therefore, there is no evidence to suggest separate 

phenotyping methods are needed for waxy and non-waxy genotypes using the 

phenotyping pipeline provided. 

3.4. Conclusions 

The phenotyping pipeline presented herein can be automated using the source code in 

Fiji and did not require manual input past training the initial classifier; thus, increasing 

throughput efficiency of previously difficult to measure traits. This allowed accurate 

classification of endosperm texture as well other sorghum kernel structural 

characteristics. Based on the results presented herein, CT imaging presents new and 

unique opportunities for scientists to study sorghum grain in a nondestructive manor. 
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With the capability to three-dimensionally segment sorghum kernels into regions, future 

studies can assess the spatial distribution and relationship structural characteristics have 

on other grain quality traits. 
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4. SUMMARY

Applications of new technology have been at the forefront of innovative plant breeding 

approaches that help contribute to continual advances in genetic gain. Consider the 

impact that agrobacterium mediated transformation had on select crop species, or the 

promise that gene editing, unmanned aerial systems, and genomic prediction models 

currently present. Adoption of these new technologies is not always a rapid process as it 

takes time to ascertain the potential benefits and optimize their use. Presented herein, 

applications to a sorghum breeding program for GBS and CT imaging were evaluated. 

GBS remains a powerful tool to examine the structure and relationship between 

germplasm. CT imaging presents new ways to increase throughput and selection 

efficiency for grain quality related traits in a nondestructive manor. 



50 

5. REFERENCES

Ahmed, M. R., Yasmin, J., Collins, W., & Cho, B.-K. (2018). X-ray CT image analysis 

for morphology of muskmelon seed in relation to germination. Biosystems 

Engineering, 175, 183–193. https://doi.org/10.1016/j.biosystemseng.2018.09.015 

Ahnert, D., Lee, M., Austin, D. F., Livini, C., Woodman, W. L., Openshaw, S. J., Smith, 

J. S. C., Porter, K., & Dalton, G. (1996). Genetic diversity among elite sorghum 

inbred lines assessed with DNA markers and pedigree information. Crop Science, 

36(5), 1385–1392. https://doi.org/10.2135/cropsci1996.0011183X003600050049x 

Amelework, B., Shimelis, H., & Laing, M. (2017). Genetic variation in sorghum as 

revealed by phenotypic and SSR markers: implications for combining ability and 

heterosis for grain yield. Plant Genetic Resources: Characterisation and 

Utilisation, 15(4), 335–347. https://doi.org/10.1017/S1479262115000696 

Anderson, W. K., Shackley, B. J., & Sawkins, D. (1998). Grain yield and quality: Does 

there have to be a trade-off? In H. J. Braun, F. Altay, & W. E. Kronstad (Eds.), 

Wheat Prospects for Global Improvment (pp. 249–254). Springer, Dordrecht. 

https://doi.org/10.1007/978-94-011-4896-2_34 

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J., Cardona, 

A., & Sebastian Seung, H. (2017). Trainable Weka Segmentation: a machine 

learning tool for microscopy pixel classification. Bioinformatics, 33(15), 2424–

2426. https://doi.org/10.1093/bioinformatics/btx180 

Aruna, C., & Visarada, K. B. R. S. (2019). Other industrial uses of sorghum. In C. 

Aruna, K. B. R. S. Visarada, B. V. Bhat, & V. A. Tonapi (Eds.), Breeding Sorghum 

for Diverse End Uses (pp. 271–292). Elsevier. https://doi.org/10.1016/b978-0-08-

101879-8.00017-6 

Axtell, J., Kapran, I., Ibrahim, Y., Ejeta, G., & Andrews, D. J. (1999). Heterosis in 

sorghum and pearl millet. In J. G. Coors & S. Pandey (Eds.), The Genetics and 

Exploitation of Heterosis in Crops (pp. 375–386). 

https://doi.org/10.2134/1999.geneticsandexploitation.c35 

Bard, S., & Schroeder, C. (2016). Sorghum harvest quality report. Washington D. C.: 

U.S. Grains Council. 

Basnet, B. R., Crossa, J., Dreisigacker, S., Pérez-Rodríguez, P., Manes, Y., Singh, R. P., 

Rosyara, U. R., Camarillo-Castillo, F., & Murua, M. (2019). Hybrid wheat 

prediction using genomic, pedigree, and environmental covariables interaction 

models. Plant Genome, 12(1). https://doi.org/10.3835/plantgenome2018.07.0051 

Bean, S. R., Chung, O. K., Tuinstra, M. R., Pedersen, J. F., & Erpelding, J. (2006). 



 

51 

 

Evaluation of the single kernel characterization system (SKCS) for measurement of 

sorghum grain attributes. Cereal Chemistry, 83(1), 108–113. 

https://doi.org/10.1094/CC-83-0108 

Bean, S. R., Wilson, J. D., Moreau, R. A., Galant, A., Awika, J. M., Kaufman, R. C., 

Adrianos, S. L., Ioerger, B. P., Ciampitti, I., & Prasad, V. (2016). Structure and 

composition of the sorghum grain. In I. Ciampitti & V. Prasad (Eds.), Sorghum: 

State of the Art and Future Perspectives. ASA, CSSA, and SSSA. 

https://doi.org/10.2134/agronmonogr58.2014.0081 

Bidwell, G. L., Bopst, L. E., & Bowling, J. D. (1922). A physical and chemical study of 

milo and feterita kernels. Washington D. C.: United States Department of 

Agriculture 

Bouis, H. E., & Welch, R. M. (2010). Biofortification—a sustainable agricultural 

strategy for reducing micronutrient malnutrition in the global south. Crop Science, 

50, S-20-S-32. https://doi.org/10.2135/cropsci2009.09.0531 

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Brown, P. J., Myles, S., & Kresovich, S. (2011). Genetic support for phenotype-based 

racial classification in sorghum. Crop Science, 51(1), 224–230. 

https://doi.org/10.2135/cropsci2010.03.0179 

Burrell, M., Sharma, A., Patil, N. Y., Collins, S. D., Anderson, W. F., Rooney, W. L., & 

Klein, P. E. (2015). Sequencing of an anthracnose-resistant sorghum genotype and 

mapping of a major QTL reveal strong candidate genes for anthracnose resistance. 

Crop Science, 55(2), 790–799. https://doi.org/10.2135/cropsci2014.06.0430 

Clara, R. V., Cordova, H. S., & Coto, H. A. (1986). Siembra maicillo (sorgo) ISIAP 

dorado. La Libertad: CENTA 

Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., & Inzé, D. (2010). Plant structure 

visualization by high-resolution X-ray computed tomography. Trends in Plant 

Science, 15(8), 419–422. https://doi.org/10.1016/j.tplants.2010.05.002 

Donis-González, I. R., Guyer, D. E., Chen, R., & Pease, A. (2015). Evaluation of 

undesirable fibrous tissue in processing carrots using computed tomography (CT) 

and structural fiber biochemistry. Journal of Food Engineering, 153, 108–116. 

https://doi.org/10.1016/j.jfoodeng.2014.12.012 

Duvick, D. N. (2005). The contribution of Breeding to Yield advances in maize (Zea 

mays L.). Advances in Agronomy, 86, 83–145. https://doi.org/10.1016/S0065-

2113(05)86002-X 



 

52 

 

Duvick, D. N. (1999). Heterosis: feeding people and protecting natural resources. In J. 

G. Coors & S. Pandey (Eds.), The Genetics and Exploitation of Heterosis in Crops 

(pp. 19–29). https://doi.org/10.2134/1999.geneticsandexploitation.c3 

Earp, C. F., & Rooney, L. W. (1982). Scanning electron microscopy of the pericarp and 

testa of several sorghum varieties. Food Structure, 1(2), 125–134. 

Flint-Garcia, S. A., Buckler, E. S., Tiffin, P., Ersoz, E., & Springer, N. M. (2009). 

Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS ONE, 

4(10). https://doi.org/10.1371/journal.pone.0007433 

Gizzi, G., & Gambin, B. L. (2016). Eco-physiological changes in sorghum hybrids 

released in Argentina over the last 30 years. Field Crops Research, 188, 41–49. 

https://doi.org/10.1016/j.fcr.2016.01.010 

Glueck, J. A., & Rooney, L. W. (1980). Chemistry and structure of grain in relation to 

mold resistance. In G. D. Bengtson (Ed.), International Workshop on Sorghum 

Diseases (pp. 119–140). Hyderabad: ICRISAT. 

Gomez, F. E., Carvalho, G., Shi, F., Muliana, A. H., & Rooney, W. L. (2018). High 

throughput phenotyping of morpho-anatomical stem properties using X-ray 

computed tomography in sorghum. Plant Methods, 14. 

https://doi.org/10.1186/s13007-018-0326-3 

Guelpa, A., Du Plessis, A., Kidd, M., & Manley, M. (2015). Non-destructive estimation 

of maize (Zea mays L.) kernel hardness by means of an X-ray micro-computed 

tomography (μCT) density calibration. Food and Bioprocess Technology, 8(7), 

1419–1429. https://doi.org/10.1007/s11947-015-1502-3 

Hallauer, A. R. (1999). Temperate maize and heterosis. In J. G. Coors & S. Pandey 

(Eds.), The Genetics and Exploitation of Heterosis in Crops (pp. 353–361). 

https://doi.org/10.2134/1999.geneticsandexploitation.c33 

Horne, D. W. (2019). Implementation of genomic and phenomic tools for introgression 

of reinstated sorghum conversion (RSC) germplasm (Doctoral dissertation, Texas 

A&M University). 

Hubbard, J. E., Hall, H. H., & Earle, F. R. (1950). Composition of the component parts 

ot the sorghum kernel. Cereal Chemisrty, 27, 415–420. 

ICRISAT. (1994). Midge-resistant sorghum cultivar ICSV 745. Andhra Pradesh: 

ICRISAT 

Johnson, J. W., Rosenow, D. T., Teetes, G. L., & Phillips, J. M. (1982). Registration of 

19 greenburg resistant sorghum germplasm lines. Crop Science, 22(6), 1272. 



 

53 

 

https://doi.org/10.2135/cropsci1982.0011183x002200060075x 

Jordan, D. R., Tao, Y., Godwin, I. D., Henzell, R. G., Cooper, M., & McIntyre, C. L. 

(2003). Prediction of hybrid performance in grain sorghum using RFLP markers. 

Theoretical and Applied Genetics, 106(3), 559–567. 

https://doi.org/10.1007/s00122-002-1144-5 

Karper, R. E. (1933). Inheritance of waxy endosperm in sorghum. The Journal of 

Heredity, 24(6), 257–262. 

Keszthelyi, S., Kovács, G., & Donkó, T. (2016). Computer tomography-assisted imaging 

analysis in damaged maize grain caused by sitotroga cerealella. Journal of Plant 

Diseases and Protection, 123(2), 89–92. https://doi.org/10.1007/s41348-016-0009-

0 

Klein, R. R., Miller, F. R., Dugas, D. V., Brown, P. J., Burrell, A. M., & Klein, P. E. 

(2015). Allelic variants in the PRR37 gene and the human-mediated dispersal and 

diversification of sorghum. Theoretical and Applied Genetics, 128(9), 1669–1683. 

https://doi.org/10.1007/s00122-015-2523-z 

Liu, K., & Muse, S. V. (2005). PowerMarker: an integrated analysis environment for 

genetic marker analysis. Bioinformatics, 21(9), 2128–2129. 

https://doi.org/10.1093/bioinformatics/bti282 

Meckenstock, D. H., Gomez, F., Rosenow, D. T., & Guiragossian, V. (1993). 

Registration of ‘Sureño’ sorghum. Crop Science, 33(1), 213–213. 

https://doi.org/10.2135/cropsci1993.0011183x003300010058x 

Menkir, A., Ejeta, I. G., Butler, L., & Melakeberhan, A. (1996). Physical and chemical 

kernel properties associated with resistance to grain mold in sorghum. Cereal 

Chemisrty, 73(5), 613–617. 

Menz, M. A., Klein, R. R., Unruh, N. C., Rooney, W. L., Klein, P. E., & Mullet, J. E. 

(2004). Genetic diversity of public inbreds of sorghum determined by mapped 

AFLP and SSR markers. Crop Science, 44(4), 1236–1244. 

https://doi.org/10.2135/cropsci2004.1236 

Miller, F. R. (1984). Registration of RTx430 sorghum parental line. Crop Science, 24(6), 

1224–1224. https://doi.org/10.2135/cropsci1984.0011183x002400060074x 

Miller, Fred R., Domanski, C., & Giorda, L. M. (1992). Registration of A/BTxARG-1 

sorghum. Crop Science, 32(6), 1517. 

https://doi.org/10.2135/cropsci1992.0011183x003200060057x 

Mindaye, T. T., Mace, E. S., Godwin, I. D., & Jordan, D. R. (2015). Genetic 



 

54 

 

differentiation analysis for the identification of complementary parental pools for 

sorghum hybrid breeding in Ethiopia. Theoretical and Applied Genetics, 128(9), 

1765–1775. https://doi.org/10.1007/s00122-015-2545-6 

Mindaye, T. T., Mace, E. S., Godwin, I. D., & Jordan, D. R. (2016). Heterosis in locally 

adapted sorghum genotypes and potential of hybrids for increased productivity in 

contrasting environments in Ethiopia. Crop Journal, 4(6), 479–489. 

https://doi.org/10.1016/j.cj.2016.06.020 

Moll, R. H., Lonnquist, J. H., Fortuno, E. Z., & Johnson, E. C. (1965). The relationship 

of heterosis and genetic divergence in maize. Genetics, 52(1), 139–144. 

Morishige, D. T., Klein, P. E., Hilley, J. L., Sahraeian, S. M. E., Sharma, A., & Mullet, J. 

E. (2013). Digital genotyping of sorghum-a diverse plant species with a large 

repeat-rich genome. BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-

448 

Murty, D. S., Nwasike, C. C., & Bello, S. A. (1998). Registration of ‘ICSV 400’ 

sorghum cultivar. Crop Science, 38(6), 1717–1718. 

https://doi.org/10.2135/cropsci1998.0011183x003800060060x 

Nie, Y., Ji, W., & Ma, S. (2019). Assessment of heterosis based on genetic distance 

estimated using SNP in common wheat. Agronomy, 9(2). 

https://doi.org/10.3390/agronomy9020066 

Niebur, W. S., Rafalski, A. J., Smith, O. S., & Cooper, M. (2004). Applications of 

genomics technologies to enhance rate of genetic progress for yield of maize within 

a commercial breeding program. In Fischer T. et al. (Eds.), Proceedings of the 4th 

International Crop Science Congress, Brisbane, Australia: New Directions for a 

Diverse Planet. Retrieved from http://www.cropscience.org.au 

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How Many Trees in a Random 

Forest? In P. Perner (Ed.), International workshop on machine learning and data 

mining in pattern recognition (pp. 154–168). https://doi.org/10.1007/978-3-642-

31537-4_13 

Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, 

H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., 

Tang, H., Wang, X., Wicker, T., Bharti, A. K., Chapman, J., Feltus, F. A., Gowik, 

U., … Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversification 

of grasses. Nature, 457(7229), 551–556. https://doi.org/10.1038/nature07723 

Patil, N. Y., Pugh, N. A., Klein, R. R., Martinez, H. S., Martinez, R. S., Rodriguez-

Herrera, R., Rooney, W. L., & Klein, P. E. (2019). Heritability and quantitative trait 

loci of composition and structural characteristics in sorghum grain. Journal of Crop 



 

55 

 

Improvement, 33(1), 1–24. https://doi.org/10.1080/15427528.2018.1536006 

Pfeiffer, B. K., Pietsch, D., Schnell, R. W., & Rooney, W. L. (2019). Long-term 

selection in hybrid sorghum breeding programs. Crop Science, 59(1), 150–164. 

https://doi.org/10.2135/cropsci2018.05.0345 

Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. 

J. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) 

markers for germplasm analysis. Molecular Breeding, 2(3), 225–238. 

https://doi.org/10.1007/BF00564200 

Probst, P., & Boulesteix, A.-L. (2018). To tune or not to tune the number of trees in 

random forest. Journal of Machine Learning Research, 18, 1–18. 

Quinby, J. R. (1963). Manifestations of hybrid vigor in sorghum. Crop Science, 3(4), 

288. https://doi.org/10.2135/cropsci1963.0011183x000300040003x 

Ramu, P., Billot, C., Rami, J. F., Senthilvel, S., Upadhyaya, H. D., Ananda Reddy, L., & 

Hash, C. T. (2013). Assessment of genetic diversity in the sorghum reference set 

using EST-SSR markers. Theoretical and Applied Genetics, 126(8), 2051–2064. 

https://doi.org/10.1007/s00122-013-2117-6 

Ratnavathi, C. V., & Komala, V. V. (2016). Sorghum grain quality. In C. V. Ratnavathi, 

J. V. Patil, & U. D. Chavan (Eds.), Sorghum Biochemistry: An Industrial 

Perspective (pp. 1–61). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803157-

5.00001-0 

Rooney, Loyd W., & Miller, F. R. (1981). Variation in the structure and kernel 

characteristics of sorghum. In L. W. Rooney & D. S. Murty (Eds.), International 

Symposium on Sorghum Grain Quality, (pp. 143–162). Patancheru, India: ICRISAT 

Rooney, W. L. (2003). Registration of Tx2921 through Tx2928 sorghum germplasm 

lines. Crop Science, 43(1), 443. https://doi.org/10.2135/cropsci2003.4430 

Rooney, W. L. (2004). Sorghum improvment-integrating traditional and new technology 

to produce improved genotypes. Advances in Agronomy, 83, 37–109. 

https://doi.org/10.1016/S0065-2113(04)83002-5 

Rosenow, D. T. (2002). Release proposal for four A/B sorghum parental lines. Lubbock: 

Texas A&M Agrilife Research and Extension  

Scheet, P., & Stephens, M. (2006). A fast and flexible statistical model for large-scale 

population genotype data: Applications to inferring missing genotypes and 

haplotypic phase. American Journal of Human Genetics, 78(4), 629–644. 

https://doi.org/10.1086/502802 



 

56 

 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., 

Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-

source platform for biological-image analysis. Nature Methods, 9(7), 676–682. 

https://doi.org/10.1038/nmeth.2019 

Schnable, P. S., & Springer, N. M. (2013). Progress toward understanding heterosis in 

crop plants. Annual Review of Plant Biology, 64(1), 71–88. 

https://doi.org/10.1146/annurev-arplant-042110-103827 

Schnell, R. W. (2018). Hybrid selection – plant height and grain yield. College Station: 

Texas A&M Agrilife Extension - Sorghum Tips. 

Shull, G. H. (1908). The composition of a field of maize. Journal of Heredity, os-4(1), 

296–301. https://doi.org/10.1093/jhered/os-4.1.296 

Shull, G. H. (1914). Duplicate genes for capsule-form in Bursa bursa-pastoris. 

Zeitschrift Für Induktive Abstammungs- Und Vererbungslehre, 12(1), 97–149. 

https://doi.org/10.1007/BF01837282 

Stephens, J. C., & Holland, R. F. (1954). Cytoplasmic male-sterility for hybrid sorghum 

seed production. Agronomy Journal, 46(1), 20–24. 

https://doi.org/10.2134/agronj1954.00021962004600010006x 

Stephens, J. C., & Karper, R. E. (1965). Release of breeding stocks of male-sterilized 

grain sorghum lines. College Station: Texas A&M University 

Stupar, R. M., Gardiner, J. M., Oldre, A. G., Haun, W. J., Chandler, V. L., & Springer, 

N. M. (2008). Gene expression analyses in maize inbreds and hybrids with varying 

levels of heterosis. BMC Plant Biology, 8. https://doi.org/10.1186/1471-2229-8-33 

Suresh, A., & Neethirajan, S. (2015). Real-time 3D visualization and quantitative 

analysis of internal structure of wheat kernels. Journal of Cereal Science, 63, 81–

87. https://doi.org/10.1016/j.jcs.2015.03.006 

Swanson, A. F., & Laude, H. H. (1942). Sorghums for Kansas. In Bulletin (Vol. 304). 

Manhattan: Kansas State University 

Thornton, P. K. (2010). Livestock production: Recent trends, future prospects. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 

2853–2867. https://doi.org/10.1098/rstb.2010.0134 

Vinall, H. N., Stephens, J. C., & Martin, J. H. (1936). Identification, history and 

distribution of common sorghum varieties. In Technical Bulletin (Issue 506). 

Washington D. C.: United States Department of Agriculture 



 

57 

 

Voss-Fels, K. P., Cooper, M., & Hayes, B. J. (2019). Accelerating crop genetic gains 

with genomic selection. Theoretical and Applied Genetics, 132(3), 669–686. 

https://doi.org/10.1007/s00122-018-3270-8 

Waniska, R. D., & Rooney, L. W. (2001). Structure and chemistry of the sorghum 

caryopsis. In C. W. Smith & R. A. Frederiksen (Eds.), Origin, History, Technology 

and Production (pp. 649–688). Wiley, New York. 

Wegary, D., Vivek, B., & Labuschagne, M. (2013). Association of parental genetic 

distance with heterosis and specific combining ability in quality protein maize. 

Euphytica, 191(2), 205–216. https://doi.org/10.1007/s10681-012-0757-2 

Wei, X., & Zhang, J. (2018). The optimal mating distance resulting from heterosis and 

genetic incompatibility. Science Advances, 4(11). 

https://doi.org/10.1126/sciadv.aau5518 

Weibel, D. E., Seiglinger, J. B., & Davies, F. F. (1984). Registration of fourteen 

sorghum parental lines. Crop Science, 24(3), 628–628. 

https://doi.org/10.2135/cropsci1984.0011183x002400030064x 

Wu, J. W., Hu, C. Y., Shahid, M. Q., Guo, H. Bin, Zeng, Y. X., Liu, X. D., & Lu, Y. G. 

(2013). Analysis on genetic diversification and heterosis in autotetraploid rice. 

SpringerPlus, 2(1), 1–12. https://doi.org/10.1186/2193-1801-2-439 

Zhang, T., Xian-Lin, N. I., Jiang, K.-F., Deng, H.-F., Qian-Hua, Y., Li, Y., Xian-Qi, W., 

Cao, Y.-J., & Jia-Kui, Z. (2010). Relationship between heterosis and parental 

genetic distance based on molecular markers for functional genes related to yield 

traits in rice. Rice Science, 17(4), 288–295. https://doi.org/10.1016/S1672-

6308(09)60029-9 

Zhang, Y., & Zhang, N. (2018). Imaging technologies for plant high-throughput 

phenotyping: a review. Frontiers of Agricultural Science and Engineering, 5(4), 

406–419. https://doi.org/10.15302/J-FASE-2018242 

Zhu, L.-J., Dogan, H., Gajula, H., Gu, M.-H., Liu, Q.-Q., & Shi, Y.-C. (2012). Study of 

kernel structure of high-amylose and wild-type rice by X-ray microtomography and 

SEM. Journal of Cereal Science, 55(1), 1–5. 

https://doi.org/10.1016/j.jcs.2011.08.013 

 

 

 




