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 ABSTRACT 

 

Crop monitoring and appropriate agricultural management practices of elite 

germplasm will enhance bioenergy’s efficiency. Unmanned aerial systems (UAS) may be 

a useful tool for this purpose. The objective of this study was to assess the use of UAS 

with true color and multispectral imagery to predict the yield and total cellulosic content 

(TCC) of newly created energy cane germplasm. A trial was established in the growing 

season of 2016 at the Texas A&M AgriLife Research and Extension Center in Weslaco, 

Texas, where 15 energy cane elite lines and three checks were grown on experimental 

plots, arranged in a randomized complete block design (RCBD) and replicated four times. 

Four flights were executed at different growth stages in 2018, at the first ratoon crop, using 

two multi-rotor UAS: the DJI Phantom 4 Pro equipped with RGB camera and the DJI 

Matrice 100, equipped with multispectral sensor (SlantRange 3p). Canopy cover, canopy 

height, NDVI (Normalized Difference Vegetation Index), and ExG (Excess Green Index) 

were extracted from the images and used to perform a stepwise regression to obtain the 

yield and TCC models. The results showed a good agreement between the predicted and 

the measured yields (R2 = 0.88); however, a low coefficient of determination was found 

between the predicted and the observed TCC (R2 = 0.30). This study demonstrated the 

potential application of UAS to estimate energy cane yield with high accuracy, enabling 

plant breeders to phenotype larger populations and make selections with higher 

confidence. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

When producing biofuels from dedicated bioenergy crops, maintaining high yields 

in low input conditions is a priority if global environmental change and increase in world 

population are considered (Takeda & Matsuoka, 2008). Benefits from bioenergy crops can 

be expanded by deploying varieties adapted for growth on marginal or degraded lands. 

Promoting high yielding bioenergy crops with positive attributes for water use and soil 

impact will also expand bioenergy benefits, not to mention the production of bioenergy in 

land that makes a small contribution to food production.  

Perennial C4 plant species such as energy sorghum (Sorghum bicolor), sugarcane 

(Saccharum spp.), and energy cane are promising feedstock species for the South Central 

and Southern U.S. regions, where favorable weather conditions would allow maximum 

biomass production rates. The combination of high productivity (~20 dry tons per acre), 

resulting from the C4 photosynthesis, with high light, water, and nitrogen use efficiency, 

drought tolerance, and wide adaptation, make them well suited for marginal lands 

(Somerville et al., 2010). Because these species are perennial, they can also be ratooned 

(harvested and allowed to re-sprout from the roots or rhizomes, in the case of Saccharum 

spp.) for several years before replanting is necessary (Ellis & Merry, 2004). These species 

provide other environmental benefits compared to traditional row crops, including 

 
 Part of this section is reprinted with permission from “Forecasting yield and lignocellulosic composition of energy cane using 

unmanned aerial systems” by Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. (2020). Agronomy, 

10, 718. Copyright 2020 Cholula U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. 
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extensive root systems, which can increase nutrient capture, improve soil quality, 

sequester carbon, reduce erosion, and increase growth rate (Somerville et al., 2010).  

Sugarcane is an important crop in the United States, and it is grown commercially 

in Florida, Hawaii, Louisiana, and Texas. In 2017 the total sugarcane production was 

30.16 million tons from 365,844 ha of sugarcane crop grown for sugar and seed (USDA-

NASS, 2019). From the total sugarcane production, 28.30 million tons were destined for 

sugar, and 1.87 million tons were designated for seed. For the same year, the sugarcane 

production for sugar and seed was valued at $1.03 billion (USDA-NASS, 2019). The value 

of the production for sugar was $965.76 million, whereas the value of the production for 

seed was $59.77 million. 

Sugarcane is extremely high yielding, producing large quantities of biomass. 

Nonetheless, minimal efforts have been employed to develop varieties under low-input 

management specifically. The plant has tremendous yield potential but is restricted to 

subtropical and tropical regions. However, because modern sugarcane varieties have been 

derived from a hybridization process involving S. officinarum and the wild cane (S. 

spontaneum) (J. A. G. da Silva et al., 1993), which has drought and cold resistance (Park 

et al., 2015), the creation of energy cane adapted to low input conditions is possible. 

Sugarcane genetic breeding is a long process that takes between 10 and 12 years 

involving hybridization crosses and field selection of new genotypes (Scortecci et al., 

2012). Since the crop is highly polyploid and open-pollinated, the hybridization step 

generates hundreds of thousands of different genotypes to be selected. Because the species 

is clonally propagated, the biggest challenge for breeders is to identify, among those 
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genotypes, the very few individuals that will consistently produce higher yields over the 

years and across different environments. This process that may generate an enormous 

amount of phenotypic data to be analyzed. 

In the past, sugarcane breeding programs were looking for higher sugar 

productivity, but now some breeding programs are also focused on high yield of fiber 

(Carvalho-Netto et al., 2014). Different from conventional sugarcane (Saccharum spp.), 

energy cane is selected more for fiber than sucrose composition (Matsuoka et al., 2014). 

Therefore, as energy cane breeding programs work to develop a high-yield, low-input 

production system, two important goals for novel germplasm are maximizing productivity 

and optimizing composition. 

Energy cane is a high-fiber crop obtained from the hybridization of sugarcane 

(Saccharum spp.) and wild cane (Saccharum spontaneum) (Matsuoka et al., 2014; Salassi 

et al., 2013). Energy cane fiber is composed of 43% cellulose, 24% hemicellulose and 

22% lignin, whereas sugarcane comprises 42% cellulose, 25% hemicellulose and 20% 

lignin (Kim & Day, 2011). Energy cane has excellent potential as a biofuel feedstock due 

to its high fiber content. However, one of the current challenges for plant breeders is to 

expand the production to higher latitudes than sugarcane is presently grown in the U.S. 

This expansion can potentially be accomplished through conventional breeding techniques 

to develop varieties more tolerant to stress including cold (Matsuoka et al., 2014; Salassi 

et al., 2015).  

Plants have developed different responses to abiotic stresses, resulting in different 

traits for avoidance or tolerance (Levitt, 1980). The incorporation of such traits in plant 
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breeding may be facilitated through phenotyping protocols (Salekdeh et al., 2009). High-

throughput phenotyping is particularly important in studies of tolerance to abiotic stresses, 

such as drought. The highly complex responses of plants to drought require the dissection 

of such responses into a series of component traits that can be measured most efficiently 

and accurately with non-destructive image technologies (Berger et al., 2010).   

The traditional methods for quantifying crop traits, such as plant height, leaf area 

index (LAI), biomass and yield, depend on manual sampling, which is time consuming, 

laborious and inefficient (Berni et al., 2009; Li et al., 2016; Rahaman et al., 2015). Crop 

yield is commonly estimated with manual surveys or by establishing the relationship 

between agronomic factors or climatic factors and crop yield based on statistical analysis 

methods (Swain et al., 2010). However, several observations and sampling of 

experimental plots are required to determine the parameters of a yield prediction model 

(Yang et al., 2017).  

New approaches have been used for crop yield prediction. You et al. (2017) 

forecasted soybean yield in the United States at county-level with deep learning models 

such as convolutional neural networks (CNN) and long-short term memory (LSTM) 

networks. Their models performed better than traditional remote sensing methods with a 

30% reduction of root mean square error (RMSE). Similarly, Khaki et al. (2020) proposed 

a model to predict corn and soybean yield across the Corn Belt in the United States using 

convolutional neural networks (CNN) and recurrent neural networks (RNNs) based on 

environmental data and management practices. The model outperformed other methods 

tested, achieving a RMSE between 9% and 8% of their corresponding average yields. 



 

5 

 

Some disadvantages of these methods are the lack of specific regression relationships, and 

the labor-intensive calculation process, which substantially restrict their efficiency and 

implementation.  

Other studies explored remote sensing approaches for predicting crop yield.  

Rahman and Robson (2016) generated a model based on time series Landsat data to predict 

sugarcane yield in the Bundaberg region, Queensland, Australia. A significant correlation 

(R2 = 0.69 and RMSE = 4.2 t ha-1) was found between the maximum GNDVI (Green 

Normalized Difference Vegetation Index) provided by the model and the annual harvested 

yield (t ha-1). Rahman and Robson (2020) improved the accuracies of the previously 

developed time series model at the individual block level, integrating sugarcane planting 

or previous harvest dates. High accuracies (R2 = 0.87 and RMSE = 11.33 (t ha-1)) were 

achieved at the block level when compared to actual harvested yield. Fernandes et al. 

(2017) predicted sugarcane yield in São Paulo State, Brazil at municipal and regional 

scales using metrics from normalized difference vegetation index (NDVI) time series from 

the Moderate Resolution Image Spectroradiometer (MODIS) and ensemble model of 

artificial neural networks (ANNs). The relative root mean square error (RRMSE) and the 

coefficient of determination (R2) for the predicted yield were 6.8% and 0.61, respectively. 

Unmanned aerial systems (UAS) equipped with various sensors have been used 

for rapid and non-destructive high-throughput phenotyping. UAS have the advantage of 

adaptable and convenient operation, fast access to the data, and high spatial resolution 

(Yang et al., 2017). Digital and multispectral cameras are frequently used sensors. Some 

of the applications of these sensors for field-based phenotyping include biomass 
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estimation, canopy surface modeling, and crop height estimation (Diaz-Varela et al., 2014; 

Mathews & Jensen, 2013; Zarco-Tejada et al., 2014). Therefore, UAS have been used to 

predict yield with plant physiological parameters and vegetation indices (Yang et al., 

2017). Sanches et al. (2018) predicted sugarcane yield in Brazil using the LAI (Leaf Area 

Index) and GRVI (Green-Red Vegetation Index). Their results showed that GRVI 

estimated yield (R2 = 0.69) with higher accuracy than LAI (R2 = 0.34), but when both 

indices were combined, the yield was estimated with greater precision (R2 = 0.79). 

However, the authors suggested for future studies the incorporation of plant height and 

additional indices to improve the results. Chea et al. (2020) developed prediction models 

for Brix, Pol, fiber, and CCS (Commercial Cane Sugar) value using six vegetation indices 

(GNDVI, NDVI, RVI, CIgreen, CIrededge, and SRPIb). Their findings indicate that 

CIrededge is correlated with Pol (R2 = 0.77) and CCS (R2 =0.68), independent of variety, 

whereas Brix models depend on the variety and need different vegetation indices. A weak 

correlation (R2 = 0.35 – 0.50) was found between fiber content with the six vegetation 

indices.  

Even though the use of UAS to predict yield and composition of sugarcane has 

been evaluated, information is missing about the utilization of this technology for energy 

cane. Additionally, most studies have been focused on the commercial or industrial 

benefits that UAS can provide. However, this research proposes to use UAS as a tool in 

plant breeding that facilitates the acquisition of phenotypic information. For this reason, 

the objective of this study is to assess the use of UAS with true color and multispectral 
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imagery to predict the yield and total cellulosic content (TCC) of newly created energy 

cane germplasm. 
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2. MATERIALS AND METHODS 

 

2.1. Study Site 

The study was conducted on an experimental farm at the Texas A&M AgriLife 

Research and Extension Center in Weslaco, Texas (26°9'41.96"N, 97°56'30.72"W, 21 m 

AMSL). This region has a humid subtropical climate (Cfa) with an average annual rainfall 

of 632 mm. A trial was established in the growing season of 2016 in an area of 0.93 ha, 

where 15 energy cane elite lines and three checks were planted on 9.1 × 3.0 m plots with 

rows oriented in a north-south direction on a Raymondville clay loam soil. The 

experimental plots were arranged in a randomized complete block design, replicated four 

times (Figure 1). 

 
 Part of this section is reprinted with permission from “Forecasting yield and lignocellulosic composition of energy cane using 

unmanned aerial systems” by Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. (2020). Agronomy, 
10, 718. Copyright 2020 Cholula U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. 

 



 

9 

 

 

Figure 1. Study area location with the experimental plots (reprinted from Cholula 

et al., 2020; permissions for reproduction have been obtained from the copyright 

holders). 

 

2.2. Imagery Acquisition and Processing 

Two multi-rotor UAS were used to acquire the data, a DJI Phantom 4 Pro and a DJI 

Matrice 100 (SZ DJI Technology Co., Ltd., Shenzen, China) (Table 1). The Phantom was 

equipped with an RGB sensor with a resolution of 20 megapixels (spatial resolution of 

0.55 cm/pixel at 20 m), and 1” CMOS (Complementary Metal Oxide Semiconductor) 

detector. The Matrice was equipped with a SlantRange 3p multispectral sensor 

(SlantRange Inc., San Diego, CA, USA) and an ambient illumination sensor that can be 
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used to help calibrate images when sunlight conditions are changing at the time of data 

collection. The SlantRange 3p sensor has a spatial resolution of 4.8 cm/pixel at 120 m 

above ground level (AGL). 

 

Table 1. Specifications for the UAS and the sensors used to collect the data 

(reprinted from Cholula et al., 2020; permissions for reproduction have been 

obtained from the copyright holders). 

 
DJI Phantom 4 Pro 

with RGB sensor 

Matrice 100 with 

SlantRange 3p sensor 

Sensor resolution (pixels) 5472 × 3648 1280 × 1024 

Spectral resolution R, G, B NIR, red edge, R, G 

Weight (g) 1388 2781 

 

Images were acquired on July 17, September 18, November 14, and December 19 

of 2018, corresponding to 273, 210, 153, and 118 days before harvesting, respectively 

(Figure 2). The RGB images were collected at 20 m AGL and 80% overlap and sidelap, 

whereas the multispectral images were collected at 30 m AGL and 70% overlap and 

sidelap. Flights were conducted between 10:00 AM and 12:00 PM with wind speed less 

than 8 km/h to avoid image distortion. For georeferencing purposes, eight ground control 

points (GCPs) were placed uniformly in the study area. The GCPs were surveyed twice 

with a differential dual frequency, post-processed kinematic (PPK) GPS system, collecting 

data at 20 Hz (V-map Air model, Micro Aerial Projects L.L.C., Gainesville, FL, USA) 

(Figure 3).  

SlantView (SlantRange Inc., San Diego, CA, USA) software was used to export 

radiometrically calibrated multispectral images for further analysis. Both RGB and 

multispectral images were processed in Agisoft Metashape Professional software (Agisoft 
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LLC, St. Petersburg, Russia) to generate the orthomosaics and digital surface models 

(DSMs). 

 

 

Figure 2. RGB and multispectral sensors used for data collection. The DJI Phantom 

4 Pro (a) for RGB and the DJI Matrice 100 platform (b) with the SlantRange 3p 

sensor for multispectral data collection. 

   

(b) (a) 
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Figure 3. Ground control points (GCPs) survey with post-processed kinematic (PPK) 

V-map Air Model GPS system. 

 

2.3. Feature Extraction 

2.3.1. Canopy Height 

Point cloud datasets were imported into Quick Terrain Modeler (Applied Imagery, 

Chevy Chase, MD, USA) software to generate the canopy height models (CHMs). The 

ground surface was estimated with the AGL Analyst tool, and a 10 m grid sampling 

distance was selected. The digital terrain model (DTM) created was subtracted from the 

digital surface model (DSM) to obtain the CHMs (Figure 4). Additionally, the generated 

CHMs were processed in ENVI (Harris Geospatial Solutions Inc., Broomfield, CO, USA) 

to set the negative values to zero. CHMs were imported into ArcGIS 10.6.1 (ESRI, 

Redlands, CA, USA) in which average canopy height (CH) per plot was extracted. 
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Figure 4. Canopy height model (CHM) generation in Quick Terrain Modeler 

software. The DTM (b) was subtracted from the DSM (a) to create the CHM (c). 

 

2.3.2. Canopy Cover 

RGB orthomosaic images were converted into binary images with the canopeo 

algorithm (Patrignani & Ochsner, 2015) in QGIS (Open Source Geospatial Foundation 

Project), where zero designates non-canopy pixels, and one denotes canopy pixels (Figure 

5). The zonal statistics tool was used to compute the total number of pixels and the sum 

of canopy pixels within each plot. Then percentage canopy cover (CC) was calculated as 

the ratio of canopy pixels to the total number of pixels using Equation (1). 

𝐶𝐶 = (
∑ 𝑐𝑎𝑛𝑜𝑝𝑦 𝑝𝑖𝑥𝑒𝑙𝑠

∑ 𝑝𝑖𝑥𝑒𝑙𝑠
) × 100 (1) 

 

(a) 

(b) 

(c) 
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Figure 5. Canopy cover estimation from the orthomosaic images. An RGB 

orthomosaic image is classified into a binary image with the canopeo algorithm. 

 

2.3.3. Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) was calculated in ArcGIS 

10.6.1 based on the multispectral orthomosaic images (Figure 6). In the raster calculator, 

the near infrared (NIR ) and red bands were selected to generate the index (Equation (2) 

(Rouse et al., 1974)). Then, average NDVI values per plot were extracted with the zonal 

statistics as a table tool. This index is reported to be well correlated with biomass, and it 

has been used to describe crop phenology in tomatoes ( Thenkabail et al., 2000; Enciso et 

al., 2019). 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 (2) 
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Figure 6. False color composite of a multispectral orthomosaic (left) and NDVI 

generated (right). 

 

2.3.4. Excess Green Index (ExG) 

For the Excess Green Index (ExG) calculation, the RGB orthomosaic images were 

imported into ArcGIS 10.6.1. The raster calculator tool was used to create ExG by 

selecting the green, red, and blue bands (Equation (3) (Woebbecke et al., 1995)) (Figure 

7). Average ExG values per plot were extracted with the zonal statistics as a table tool.  

𝐸𝑥𝐺 = 2𝑔 − 𝑟 − 𝑏 (3) 

 

where g, r, and b are the normalized spectral components, according to: 

𝑟 =
𝑅

𝑅 + 𝐺 + 𝐵
, 𝑔 =

𝐺

𝑅 + 𝐺 + 𝐵
 , 𝑏 =

𝐵

𝑅 + 𝐺 + 𝐵
 (4) 

 

R, G, and B denote the values of the red, green, and blue bands, respectively. 
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Figure 7. RGB orthomosaic image (left) and ExG generated (right). 

 

2.4. Cell Wall Composition Analysis 

 Before harvesting, one sample of 10 stalks per variety was collected per replicate 

for composition analyses (Figure 8). In the laboratory, the chemical composition of the 

energy cane bagasse was determined (cellulose, hemicellulose, and lignin) with near 

infrared spectroscopy (Berding et al., 1991). 
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Figure 8. Energy cane sampling for composition analyses. 

 

2.5. Harvest Data 

 At the end of the season the trial was harvested with a Cameco sugarcane harvester 

on April 16, 2019. The plot weights were measured with a small capacity weigh wagon 

(3-Ton Weigh Wagon, CAMECO) instrumented with three load cells (Bischoff et al., 

2001). Then the yield was calculated in megagrams per hectare (Mg ha-1).  

 

2.6. Data Analysis 

 The data were analyzed in JMP 14 software (SAS Institute Inc., Cary, NC, USA) 

to identify outliers with the quantile range outliers method. A tail quantile value of 0.25 

was defined, which means that the interquantile range is between 0.25 and 0.75 quantiles 

of the data. Then a multiplier (Q) of 1.5 was selected to identify values as outliers. An 

outlier was calculated as any value more than Q times the interquantile range from the 

lower and upper quantiles.  
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A multivariate analysis was performed in JMP 14 to find the pairwise and higher 

relationships among the CC, CH, NDVI, ExG, yield, and total cellulosic content (TCC). 

This analysis allowed summarization of the linear relationships between flights to check 

for data consistency. A correlation probability report was generated, which showed the p-

values that correspond to a test of the null hypothesis that the true correlation between the 

variables is zero. 

 

2.7. Yield and Total Cellulosic Content (TCC) Models 

A stepwise multiple regression approach with k-fold cross-validation was 

implemented in JMP 14 software to obtain the yield and total cellulosic content (TCC) 

models with the data from the varieties Ho02-113, TH16-19, and TH16-25. Ho02-113 is 

a high fiber sugarcane (energy cane) variety released for use as a biofuel feedstock by the 

USDA-ARS Sugarcane Research Unit in Houma, Louisiana; TH16-19 and TH16-25 are 

two energy cane varieties from Dr. Jorge da Silva’s Sugarcane Breeding Program. Six 

folds were selected to split the data into groups of an equal number of observations. The 

stopping rule adopted was Max K-Fold RSquare, which attempted to find a model to 

maximize the coefficient of determination for the validation set. Stepwise multiple linear 

regression is a commonly implemented empirical statistical method for high-throughput 

field phenotyping (Richards, 1990). It is used to improve the prediction performance of 

the models by eliminating unnecessary factors and selecting significant factors (Yu et al., 

2016). 
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3. RESULTS 

 

3.1. Statistics 

 After an initial analysis, no outliers were found in the variables CC, CH, NDVI, 

and ExG extracted from the UAS images, and in the observed yield and TCC (Table 2). 

The highest mean CC, CH, and ExG values were observed for the second flight (85.74, 

3.73, and 0.23, respectively), while the lowest values of CC and ExG were for the fourth 

flight; the lowest mean CH was observed during the first flight. Similarly, the highest 

mean NDVI values were obtained for the third flight (0.61), whereas the lowest NDVI 

values were for the fourth flight.  

 

 

 

 

 

 

 

 

 

 

 
 Part of this section is reprinted with permission from “Forecasting yield and lignocellulosic composition of energy cane using 

unmanned aerial systems” by Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. (2020). Agronomy, 
10, 718. Copyright 2020 Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. 
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Table 2. Descriptive statistics of canopy cover (CC), canopy height (CH), NDVI, ExG, 

yield, and total cellulosic content (TCC) (reprinted from Cholula et al., 2020; 

permissions for reproduction have been obtained from the copyright holders). 
 N Mean Median SD Min Max 

CC – 1st 12 61.35 61.85 16.03 37.75 84.02 

CC – 2nd 12 85.74 86.30 7.80 70.37 97.02 

CC – 3rd 12 69.78 71.25 5.96 61.69 78.34 

CC – 4th 12 33.18 31.84 16.93 12.59 60.79 

CH– 1st 12 2.22 2.27 0.33 1.74 2.86 

CH– 2nd 12 3.73 3.73 0.35 3.23 4.39 

CH – 3rd 12 3.60 3.50 0.89 2.03 4.96 

CH – 4th 12 2.76 2.62 0.34 2.32 3.35 

NDVI – 1st 12 0.54 0.54 0.06 0.41 0.62 

NDVI – 2nd 12 0.58 0.58 0.03 0.51 0.61 

NDVI – 3rd 12 0.61 0.61 0.02 0.58 0.65 

NDVI – 4th 12 0.47 0.45 0.05 0.39 0.58 

ExG – 1st 12 0.18 0.17 0.04 0.13 0.26 

ExG – 2nd 12 0.23 0.23 0.02 0.20 0.27 

ExG – 3rd 12 0.18 0.19 0.02 0.14 0.23 

ExG – 4th 12 0.12 0.13 0.04 0.05 0.17 

Yield (Mg ha-1) 12 61.57 67.30 15.74 31.36 80.49 

TCC (%) 12 62.18 61.87 3.67 55.99 66.91 

1st–first flight (July 17, 2018), 2nd−second flight (September 18, 2018), 3rd–third flight (November 14, 

2018), 4th–fourth flight (December 19, 2018), N–sample size, SD–standard deviation, Min–minimum value, 

Max–maximum value. 

 

The canopy cover variability was greater during the third flight, evidenced by the 

negatively skewed distribution (Figure 9a). Canopy height variability was higher during 

the first, third, and fourth flights, which presented a negatively skewed distribution for the 

first flight and a positively skewed distribution for the third and fourth flights (Figure 9b). 

NDVI showed higher variation in the fourth flight with a positively skewed distribution 

(Figure 9c). ExG variability was observed in the first flight with a positively skewed 

distribution and the third flight with a negatively skewed distribution (Figure 9d).   
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Figure 9. Box-plot of canopy cover (a), canopy height (b), NDVI (c), and ExG (d) 

(reprinted from Cholula et al., 2020; permissions for reproduction have been 

obtained from the copyright holders). 

 

3.2. Relationship Analysis 

 The correlations among the independent variables were analyzed between flights 

(Table 3). CC showed high temporal consistency between the first and the fourth flight (r 

= 0.73); however, a weak correlation was found between the other flights. Positive 

relationships associated with canopy height were consistent throughout the evaluation 

period, being the lowest correlation between the first and fourth flight (r = 0.73). In 

contrast, the highest correlation was between the first and second flight (r = 0.93). A strong 

positive relationship was found between NDVI values of the first and second flight (r = 
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0.76), and between the first and fourth flights (r = 0.60); nevertheless, for the rest of flights, 

weak positive or negative correlations were observed. The highest ExG correlation was 

between the first and fourth flight (r = 0.63), followed by the correlation between the first 

and second flight (r = 0.39). On the other hand, weak positive relationships were found 

for the remaining flights.  

From each flight were identified the variables with a moderate or strong correlation 

with yield and TCC. For the first flight, CC, CH, and NDVI were positively related to 

yield, whereas CC and ExG were associated with TCC. For the second flight, CC, CH, 

and NDVI were positively correlated to yield; CC, CH, and ExG were related to TCC. For 

the third flight, the variables associated with yield were CH and NDVI: the first variable 

was positively correlated, and the second negatively correlated. In contrast, CH, NDVI, 

and ExG were related to TCC: CH was positively correlated, and NDVI and ExG 

negatively correlated. For the fourth flight, all the variables were moderately related to 

yield; CC, CH, and ExG were associated with TCC.  
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Table 3. Correlation coefficient matrix between CC, CH, NDVI, ExG, yield, and TCC (reprinted from Cholula et al., 

2020; permissions for reproduction have been obtained from the copyright holders). 
 CC1 CC2 CC3 CC4 CH1 CH2 CH3 CH4 NDVI1 NDVI2 NDVI3 NDVI4 ExG1 ExG2 ExG3 ExG4 Yield TCC 

CC1 1.00                  

CC2 0.46 1.00                 

CC3 0.01 0.14 1.00                

CC4 0.73** 0.47 -0.19 1.00               

CH1 0.56 0.54 -0.32 0.79 1.00              

CH2 0.56 0.63* -0.32 0.71 0.93*** 1.00             

CH3 0.55 0.83*** 0.04 0.55 0.78** 0.83*** 1.00            

CH4 0.56 0.71** 0.00 0.53 0.73** 0.83*** 0.76** 1.00           

NDVI1 0.29 0.81** -0.01 0.33 0.72** 0.79** 0.85*** 0.85*** 1.00          

NDVI2 0.08 0.82** 0.14 0.00 0.29 0.38 0.63* 0.48 0.76** 1.00         

NDVI3 -0.44 -0.58* -0.06 -0.16 -0.13 -0.21 -0.47 -0.19 -0.31 -0.56 1.00        

NDVI4 0.35 0.48 0.18 0.53 0.71** 0.66* 0.66* 0.67* 0.60* 0.36 0.09 1.00       

ExG1 0.85*** 0.43 -0.15 0.81** 0.57 0.57 0.38 0.55 0.29 0.00 -0.23 0.20 1.00      

ExG2 0.42 0.71** 0.50 0.26 -0.01 0.05 0.37 0.26 0.28 0.53 -0.70* 0.02 0.39 1.00     

ExG3 -0.09 -0.08 0.45 0.12 0.11 0.00 -0.04 -0.06 0.08 -0.12 0.25 0.14 0.10 0.05 1.00    

ExG4 0.65* 0.49 -0.09 0.89*** 0.82** 0.73** 0.64* 0.46 0.43 0.14 -0.32 0.59* 0.63* 0.26 0.31 1.00   

Yield 0.32 0.70* -0.09 0.44 0.75** 0.79** 0.90*** 0.63* 0.84*** 0.55 -0.44 0.44 0.26 0.24 0.13 0.60* 1.00  

TCC 0.49 0.30 -0.10 0.53 0.28 0.35 0.39 0.32 0.07 -0.08 -0.36 0.07 0.37 0.31 -0.40 0.33 0.32 1.00 

1 First flight, 2 second flight, 3 third flight, and 4 fourth flight. * p < 0.05, ** p < 0.01, ***p < 0.001 
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3.3. Energy Cane Yield and TCC Models 

The yield models were obtained for the four flights after performing a stepwise 

regression. The coefficient of determination (R2), p-value, and RMSE were used to 

evaluate the model’s performance (Table 4). The variables that most influenced energy 

cane yield were NDVI and canopy height.  

The models for the first and third flights showed a good coefficient of 

determination to estimate energy cane yield. The lowest R2 was for the fourth flight, while 

the highest R2 corresponded to the third flight (Table 4).  

 

Table 4. Energy cane yield models with the coefficient of determination, p-value, 

and RMSE for the flight campaigns (reprinted from Cholula et al., 2020; 

permissions for reproduction have been obtained from the copyright holders). 

Flight Model R2 p-value RMSE 

07/17/18 yield = 222.08 NDVI – 58.39 0.71 0.0006 8.89 

09/18/18 yield = 30.66 CH + 148.40 NDVI – 138.34 0.69 0.0049 9.64 

11/14/18 yield = − 0.68 CC + 16.26 CH + 177.04 ExG + 18.25 0.88 0.0004 6.26 

12/19/18 yield = − 0.70 CC + 26.14 CH + 381.68 ExG – 32.95 0.62 0.0432 11.39 

 

In the same way, total cellulosic content (TCC) models for the fourth flights 

presented different coefficients of determination, p-values, and RMSE (Table 5). 

Nonetheless, since the variables were not significantly correlated to TCC, then low R2 

were obtained for all the flights.  
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Table 5. Energy cane TCC models with the coefficient of determination, p-value, 

and RMSE for the flight campaigns (reprinted from Cholula et al., 2020; 

permissions for reproduction have been obtained from the copyright holders). 

Flight Model R2 p-value RMSE 

07/17/18 TCC = 0.11 CC + 55.26 0.24 0.1032 3.35 

09/18/18 TCC = 3.58 CH + 47.19 ExG + 38.00 0.21 0.3519 3.61 

11/14/18 TCC = 1.54 CH – 57.14 ExG + 67.15 0.30 0.1996 3.39 

12/19/18 TCC = 0.11 CC + 58.39 0.28 0.0779 3.27 

 

The relationship between observed and predicted yield is presented in Figure 10. 

This figure shows that the best relationship between observed and predicted yield is given 

by the model for the third flight with a coefficient of determination of 0.88 (Figure 10c). 

In contrast, the lowest relationship of yields is found in the model for the fourth flight 

(Figure 10d).  
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Figure 10. Relationship between observed and predicted yields for the first (a), 

second (b), third (c), and fourth (d) flights (reprinted from Cholula et al., 2020; 

permissions for reproduction have been obtained from the copyright holders). 

 

The relationship between observed TCC and predicted TCC is shown in Figure 11. 

The best agreement between the observed and predicted TCC is provided by the model 

for the third flight with a coefficient of determination of 0.30 (Figure 11c). On the other 

hand, the lowest relationship of TCC is observed in the model for the second flight (Figure 

7d).  
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Figure 11. Relationship between the observed and predicted TCC for the first (a), 

second (b), third (c), and fourth (d) flights (reprinted from Cholula et al., 2020; 

permissions for reproduction have been obtained from the copyright holders). 
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4. DISCUSSION 

 

True color and multispectral imagery can be used to extract plant measurements 

and vegetation indices to estimate yield. However, it is necessary to know the best time 

for data collection to make the predictions, so there is a need to assess the accuracy of the 

models generated for each of the flights. A previous study by Sanches et al. (2018) found 

that the inflection point of biomass accumulation by the crop is a useful reference in the 

estimation of sugarcane yield with UAS images.  

NDVI has been used in several studies of yield prediction, and it has shown good 

results (Casadesús et al., 2007; Kyratzis et al., 2017; Pinheiro Lisboa et al., 2018; Zhou et 

al., 2017). In this study, it was significantly or moderately correlated to yield for the first 

(r = 0.84) and second (r = 0.55) assessments.  Nevertheless, the higher correlation was 

observed during the first flight, which indicates that this crop stage can be used to collect 

UAS imagery for energy cane yield prediction.  

Sugarcane height is highly correlated with biomass and nitrogen uptake (Portz et 

al., 2012). Additionally, height can be an indicator of yield and other parameters since it 

is highly influenced by soil, total sugar content, leaf nitrogen, temperature, and light 

intensity (De Souza et al., 2017; S. Rahman, 2012).  Silva et al. (2008) suggested that stalk 

height is a useful trait for sugarcane breeding to accelerate and reduce the costs of the 

process. Nevertheless, when sugarcane plants attain a certain height, they start to lodge, 

 
 Part of this section is reprinted with permission from “Forecasting yield and lignocellulosic composition of energy cane using 

unmanned aerial systems” by Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. (2020). Agronomy, 
10, 718. Copyright 2020 Cholula, U., da Silva, J.A., Marconi, T., Thomasson, J.A., Solorzano J., and Enciso, J. 
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and environmental factors such as wind can cause plant breakage (De Souza et al., 2017). 

In this experiment, plant height was also affected by wind, and for the last two 

assessments, lodging was evident. The yield models for the third and fourth flights contain 

canopy height as one of their predictors; however, since the measurements after lodging 

are not representative, these models could have some limitations estimating energy cane 

yield. 

Canopy cover is related to crop growth and water use (Trout et al., 2008); hence, 

it is an essential parameter in crop monitoring. Wiedenfeld and Enciso (2008) found that 

sugarcane can compensate for differences in water levels producing maximum yields 

(Wiedenfeld & Enciso, 2008). In this study, canopy cover did not play an essential role in 

yield prediction; it was moderately correlated with the yield for the first (r = 0.32) and the 

fourth (r = 0.44) assessments. However, it was strongly correlated with the yield for the 

second assessment (r = 0.70). These results are due mainly to the thresholds used to 

separate green vegetation from non-vegetation according to the canopeo algorithm 

(Patrignani & Ochsner, 2015). 

ExG is useful for discriminating between green and non-green vegetation 

(Woebbecke et al., 1995). This index has been used coupled with crop classified mean 

heights to predict corn grain yield and showed good results (Geipel et al., 2014). Opposite 

to these findings, in the present study, the mean ExG values for the first, second, and third 

assessments were not significantly correlated to energy cane yield; it was only 

significantly correlated to yield for the fourth flight (r = 0.60).   



 

30 

 

In this study, a stepwise regression analysis was implemented to obtain the yield 

and TCC models, and the accuracy was assessed by means R2, p-value, and RMSE. Energy 

cane yield was satisfactorily estimated by two models, built with UAS data collected 273 

and 153 days before harvest. The predictor for the first model is NDVI, which implies that 

the acquisition of multispectral imagery is required, whereas, for the second model, the 

predictors are CC, CH, and ExG, which can be extracted from RGB images. The 

performance of these models was also satisfactory since RMSE ranged from 6.26 to 8.89 

Mg ha-1. These findings are similar to the model performances found by Pinheiro Lisboa 

et al. (2018), of between 0.24 and 10.34 Mg ha-1 and the RMSE reported by Fernandes et 

al. (2017), ranging from 7.20 to 11.0 Mg ha-1. Nevertheless, the performance of the model 

for the fourth flight was not satisfactory, since it was 11.39 Mg ha-1.  

The previous findings may apply to other locations if the environmental conditions 

at the time of the data collection are appropriate. It can also be applied to other crops such 

as sorghum (Shafian et al., 2018), maize (Maresma et al., 2016), wheat (Fu et al., 2020), 

and rice (Zhou et al., 2017). Furthermore, other variables that may be included in future 

yield prediction models could be abiotic stresses, such as temperature, drought, and soil 

salinity, which would increase the importance of this technology as a valuable tool for the 

breeding of stress tolerant varieties (Ashapure et al., 2019). 

TCC was not successfully estimated by the models created, and the main reason 

for this was the lack of correlation of TCC with the variables used. The coefficient of 

determination ranged from 0.21 to 0.30. These results agree with those reported by Chea 

et al. (2020), who found a weak correlation (R2 = 0.35 – 0.50) between fiber content with 
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GNDVI, NDVI, RVI (Ratio Vegetation Index), CIgreen (Green Chlorophyll Index), 

CIrededge (Red Edge Chlorophyll Index), and SRPIb (Simple Ratio Pigment Index). 

Moreover, Roberts et al. (2011) highlighted that lignocellulosic content indices rely on 

short-wave-infrared (SWIR) wavelengths, and wavelengths from 1500 to 1800 nm and 

2000 to 2350 nm, which compare reflectance at an absorbing wavelength to a non-

absorbing wavelength. In this case, hyperspectral imagery was not available to calculate 

indices such as CAI (Cellulose Absorption Index)  (Daughtry, 2001) or NDLI (Normalized 

Difference Lignin Index) (Serrano et al., 2002), so this could be a limiting factor to predict 

TCC in energy cane. 
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5. CONCLUSIONS 

 

This study assessed the utilization of UAS in the prediction of yield and 

composition of energy cane. Crop parameters and vegetation indices (NDVI and ExG) 

were extracted from true color and multispectral imagery to generate the models. The yield 

was satisfactorily estimated by two of the models created, the first model with data 

collected 273 days before harvest (R2 = 0.71) and the second with data collected 153 days 

before harvest (R2 = 0.88). TCC was not estimated satisfactorily; the highest coefficient 

of determination was 0.30. This study demonstrated the potential application of UAS to 

estimate energy cane yield with high accuracy, enabling plant breeders to phenotype larger 

populations and make selections with higher confidence. Further investigation is required 

fort TCC prediction considering the use of hyperspectral imagery. 
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APPENDIX A 

CROP PARAMETERS AND VEGETATION INDICES 

Table 6. Data extracted from RGB and multispectral orthomosaic images. 

Variety Rep Plot ID CC1 CC2 CC3 CC4 CH1 CH2 CH3 CH4 NDVI1 NDVI2 NDVI3 NDVI4 ExG1 ExG2 ExG3 ExG4 

Ho02-113 1 6 84.02 92.24 73.24 59.28 2.35 3.67 3.71 2.78 0.53 0.57 0.59 0.45 0.26 0.27 0.20 0.17 

Ho02-113 2 36 77.94 94.97 72.91 30.36 2.26 4.06 4.68 3.31 0.62 0.60 0.58 0.45 0.21 0.25 0.17 0.12 

Ho02-113 3 44 62.72 89.28 77.88 33.78 2.28 3.69 4.60 2.61 0.55 0.58 0.60 0.52 0.14 0.24 0.19 0.15 

Ho02-113 4 72 77.92 97.02 61.69 60.79 2.86 4.39 4.96 3.35 0.62 0.61 0.60 0.58 0.21 0.23 0.14 0.17 

TH16-19 1 3 77.92 80.83 62.64 51.67 2.31 3.92 3.34 2.57 0.48 0.53 0.62 0.44 0.24 0.22 0.19 0.16 

TH16-19 2 34 57.54 77.88 62.23 24.73 2.39 3.77 3.43 2.53 0.54 0.58 0.59 0.44 0.16 0.20 0.19 0.13 

TH16-19 3 55 38.51 91.41 71.39 33.33 2.25 3.85 3.56 2.78 0.59 0.61 0.61 0.49 0.16 0.24 0.22 0.14 

TH16-19 4 78 63.51 82.36 72.73 40.29 2.60 4.01 3.87 3.17 0.59 0.55 0.65 0.54 0.20 0.20 0.23 0.13 

TH16-25 1 11 42.90 70.37 71.10 21.72 1.74 3.23 2.03 2.32 0.41 0.51 0.63 0.43 0.13 0.21 0.17 0.07 

TH16-25 2 22 54.48 79.90 70.01 13.51 1.79 3.24 2.21 2.57 0.49 0.56 0.62 0.44 0.17 0.23 0.17 0.07 

TH16-25 3 58 60.99 86.90 78.34 16.05 1.89 3.44 3.42 2.63 0.52 0.61 0.61 0.48 0.16 0.25 0.19 0.08 

TH16-25 4 68 37.75 85.69 63.22 12.59 1.98 3.50 3.34 2.50 0.54 0.59 0.62 0.39 0.14 0.22 0.16 0.05 

1 First flight, 2 second flight, 3 third flight, and 4 fourth flight. 
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Table 7. Observed yield at the end of the season and predicted yield with the aerial 

data collected at different growth stages. 

Variety Rep Plot ID 
Observed yield 

(Mg ha-1) 

Predicted yield (Mg ha-1) 

First 

flight 

Second 

flight 

Third 

Flight 

Fourth 

flight 

Ho02-113 1 6 64.29 58.89 59.12 64.35 61.70 

Ho02-113 2 36 80.49 63.43 61.44 74.09 70.06 

Ho02-113 3 44 75.11 79.00 86.95 81.54 76.34 

Ho02-113 4 72 74.92 78.66 75.63 73.89 76.42 

TH16-19 1 3 55.32 49.20 61.00 62.68 57.80 

TH16-19 2 34 69.08 60.61 62.74 64.59 66.08 

TH16-19 3 55 69.93 71.77 69.85 66.65 70.93 

TH16-19 4 78 68.47 73.35 66.75 71.43 70.96 

TH16-25 1 11 35.72 33.55 36.70 32.77 40.20 

TH16-25 2 22 31.36 50.14 44.90 36.15 50.65 

TH16-25 3 58 48.09 57.94 57.78 53.22 54.64 

TH16-25 4 68 66.12 62.35 56.04 57.54 43.11 

 

Table 8. Observed TCC before harvest and predicted TCC with the aerial data 

collected at different growth stages. 

Variety Rep Plot ID 
Observed TCC 

(%) 

Predicted TCC (%) 

First 

flight 

Second 

flight 

Third 

Flight 

Fourth 

flight 

Ho02-113 1 6 66.29 64.74 64.09 61.32 65.17 

Ho02-113 2 36 66.91 62.34 62.46 63.15 62.25 

Ho02-113 3 44 62.23 64.05 64.45 66.78 65.34 

Ho02-113 4 72 66.61 64.06 64.57 64.86 61.86 

TH16-19 1 3 62.82 64.05 62.22 61.70 64.30 

TH16-19 2 34 59.98 61.75 61.08 61.74 61.22 

TH16-19 3 55 58.73 59.61 63.11 59.98 62.20 

TH16-19 4 78 59.32 62.43 61.86 60.22 63.00 

TH16-25 1 11 66.36 60.10 59.27 60.53 60.87 

TH16-25 2 22 55.99 61.41 60.27 60.94 59.94 

TH16-25 3 58 59.45 62.14 61.92 61.81 60.23 

TH16-25 4 68 61.51 59.52 60.90 63.18 59.83 
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APPENDIX B 

NDVI AND ExG MAPS 

 

Figure 12. NDVI maps for the first (a), second (b), third (c), and fourth (d) flights. 
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Figure 13. ExG maps for the first (a), second (b), third (c), and fourth (d) flights. 

 


