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ABSTRACT

Effective disaster response depends on technologies that enable timely gathering and process-

ing of data from different disaster sites in the disaster area. However, a large scale disaster like Hur-

ricane Maria 2017 may totally destroy the infrastructure of the affected area, which makes both the

Internet and cloud unavailable and the disaster response inefficient. To deal with this issue, Edge

Computing and Communication (ECC), which performs data processing and data transmission at

the edge of network, is applied to provide temporary computing and communication services to the

first responders. By ECC, the first responders can process a large amount of sensing data at each

disaster site and only send the processing result back to the Emergency Operation Center (EOC)

via Disaster Response Networks (DRNs). However, the mobile devices carried by the first respon-

ders have limited computing resources, the wireless network connecting them is dynamic, and the

applications used to analyze sensing data are computation-intensive and have diverse performance

goals. Therefore, a lot of challenges exist for achieving high efficient ECC for disaster response.

In this dissertation, in order to address the aforementioned challenges, we propose an adaptive

edge computing and communication framework for disaster response. This framework consists of

a Distributed Mobile Stream Processing (DMSP) platform, a CNN-based multitask video process-

ing system, and a user-customizable delay-tolerant routing protocol. Specially, the mobile stream

processing platform allows first responders to perform computation-intensive stream processing on

a cluster of mobile devices. It adopts feedback-based task configuration, resilient task assignment

and adaptive stream grouping to deal with dynamic computing resources and network connectiv-

ity. The CNN-based multitask video processing system allows first responders to extract different

Information of Interests (IoIs) from the on-body camera video stream by using different CNNs

derived from the same base CNN. These CNNs can adaptively share different amount of common

layers to trade off between the total computation cost and inference accuracy. Each of these CNNs

can be adaptively divided into two separate parts to run on different mobile devices to meet the

specific performance goals. The user-customizable delay-tolerant routing protocol enables first

ii



responders to send back different information obtained at each disaster site to EOC based on the

specific Quality of Service (QoS) requirements. We evaluate the proposed framework through ex-

tensive real-world experiments and simulations, which demonstrate its effectiveness in enabling

high efficient ECC for disaster response.
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1. INTRODUCTION

1.1 Motivation

Natural disasters are becoming more frequent, growing more destructive, and affecting more

people than ever before [1]. For example, Hurricane Maria in 2017 devastated entire Puerto Rico

by killing 2982 lives and causing US$90 billion damage [2]. In order to minimize the personnel and

property loss caused by disasters, developing techniques to effectively support disaster response is

critical. Recently, with the development of AI technology, more and more AI-based applications,

such as victim tracking [3], medical assistant [4], damage assessment [5], etc., are installed on

the first responders’ mobile phones to help them perform rescue tasks in the disaster area. Most

of these AI-based applications have a thin client architecture, which gathers sensing data at each

disaster site and offloads the computation-intensive analysis to the remote cloud. An effective

disaster response depends on efficient data gathering and processing at each disaster site of the

affected area [6], so that the rescue dispatchers at the Emergency Operation Center (EOC) can have

an overview of the whole disaster to properly coordinate different disaster response organizations.

However, large scale disasters may totally destroy the infrastructure of the affected area, which

makes the Internet and cloud inaccessible. For example, 89.3% of the cellular towers in Puerto

Rico are still out of service even after 9 days of Hurricane Maria [7]. In this case, the normal

“processing after gathering” approach, which collects sensing data locally at each disaster site and

forwards the data to process at the cloud does not work. To deal with this issue, Edge Computing

and Communication (ECC) [8–10], which performs both data processing and gathering at the edge

of network, is applied to provide temporary computing and communication services to the first

responders. By using ECC, the first responders can process sensing data at each disaster site and

only send the processing results back to EOC via the Disaster Response Networks (DRNs) [6].

Although ECC is promising for achieving effective disaster response, a lot of challenges need

to be overcome before it becomes a solid solution. First, mobile devices carried by the first respon-
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ders usually have very limited computing resources. However, the stream processing applications

utilized for analyzing the sensing data at each disaster site requires a lot of computation. In this

case, how to leverage the resource-constrained mobile devices to support the computation intensive

stream processing applications becomes the first challenge. Many existing solutions [11–17] of-

fload the computation-intensive tasks to the cloud or nearby High Performance Computing (HPC)

servers to reduce the computation workload at mobile devices. However, as we mentioned earlier,

in an infrastructure-less scenario like disaster response, a stable access to the cloud or HPC servers

is not always available, especially for the first 24 hours after a disaster, when the technical teams

have not set up the temporary cellular tower yet. Even after the temporary cellular tower is set up,

the overall bandwidth from it to the cloud is still limited. First responders should not send all the

sensing data at each disaster site to the cloud through the temporary cellular tower, because that

will easily use up all the bandwidth. Some other existing solutions [8,18] propose to offload some

computation workload to the nearby mobile devices to perform Mobile Stream Processing (MSP).

However, as far as we know, these solutions underestimate two critical aspects of distributed mo-

bile stream processing: One is the dynamic computing resources at mobile devices and the other is

the dynamic wireless networks connecting them. With dynamic computing resources, how much

workload can each mobile device undertake and how the performance of offloaded tasks will be

are unpredictable. If an “offloadee”mobile device which is assigned with lots of stream processing

tasks starts some of its own applications, the actual available computing resources for stream pro-

cessing will decrease. If the “offloader” mobile device does not realize this situation and continues

to send the original amount of stream there, congestion and increasing queuing delay will occur at

that “offloadee”, which further affects the overall application performance. With dynamic wireless

networks, the bandwidth between mobile devices changes from time to time. If the bandwidth

between an “offloader” and an “offloadee” decreases below a certain threshold, communication

instead of computation will become the new bottleneck of stream processing. Besides, the wire-

less connections among mobile devices are sometimes intermittent. To improve the resilience of

mobile stream processing, when an “offloader” offloads stream processing tasks to nearby mobile
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devices, it should carefully choose “offloadees” that are more available to itself. All the above

factors make conducting distributed mobile stream processing at the edge challenging.

Second, video cameras now are very important sensors for disaster response [19–22]. With

on-body cameras, first responders can record the whole rescue process without any interference.

This is pretty important for first responders because they are already overloaded by other activi-

ties. However, just recording video stream cannot give the first responders any instant summary

about the Information of Interests (IoIs) they concern. For example, how many victims have they

rescued? Are those victims male or female? Are they old or young? Do they look happy or

sad? Ideally, all these basic information about victims should be extracted automatically from the

video stream during the rescue process. When a first responder wants to check this information and

sends it to EOC, he just needs to take out his mobile phone and clicks one button, instead of looking

through the whole video again and recording the above information by hand. To enable automatic

victim information extraction from video streams, a multitask video processing application based

on Convolutional Neural Networks (CNNs) can be applied to extract different IoIs. However,

executing multiple computation intensive CNNs on the resource-constrained mobile device is not

trivial. Existing solutions can be roughly divided into three categories: offloading, compression,

and sharing. First, most of the offloading strategies [14, 23–26] assume that there is a connection

between mobile devices and the remote cloud (or a nearby HPC server) so that parts of CNNs

can be offloaded there to achieve the desired performance. However, as we mentioned earlier, a

stable connection to the cloud or a nearby HPC server is not available during the disaster response.

Other offloading solutions [27–31] try to distribute a whole CNN to several wireless connected

mobile/IoT devices. However, they only consider the single CNN case, which is much simpler

than the multi-CNNs scenario we consider. Second, the model compression strategies construct

efficient CNN models for mobile/IoT devices through different compression techniques, such as

low-rank expansions [32], parameter quantization [33], pruning and Huffman coding [34], fully

factorized convolution [35], depth-wise separable convolution [36], channel-wise sparse connec-

tion [37], etc. Unfortunately, these solutions provide a one-for-all model, i.e., a fixed model com-
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pression technique is used for different performance goals, which easily leads to the sub-optimal

solution. Third, the sharing strategies try to reduce the total computation costs [23] and memory

footprint [38] by sharing common layers among different CNNs. However, these solutions only

consider running multiple CNNs on a single device. Therefore, the performance improvement is

restricted by the single device’s resource and their system scalability is poor.

Third, at the early stage of disaster response, the cellular towers of the disaster area have not

been recovered and the temporary cellular tower has not been set up yet. DRNs are used to provide

a temporary communication infrastructure for disaster response. In DRNs, battery-powered wire-

less routers are deployed at each disaster site [39]. First responders send the processing results at

each disaster site back to EOC via the wireless routers. Since an end-to-end connection is not avail-

able in DRNs, packets are stored in the wireless routers temporarily. Vehicles (e.g., ambulances,

supply vehicles, patrol cars) with on-board wireless routers move around the disaster area, collect

packets stored in the routers at different disaster sites, carry and forward them to the intermediate or

destination nodes (EOC) [40]. Many existing Delay Tolerant Networking (DTN) routing protocols

can be used in DRNs [41–44], which improve the routing metrics Packet Delivery Delay (PDD)

and Packet Delivery Rate (PDR) by using an unlimited level of packet replications [45]. These

approaches, however, are not energy-efficient, because the unlimited level of packet replication

depletes the batteries of the wireless routers soon. To prolong the lifetime of DRNs, how to restrict

the level of packet replication to reduce Total Transmission Energy (TTE), while maintaining other

metrics like PDD and PDR at an adequate level becomes the first challenge we need to overcome.

Moreover, most existing DTN routing protocols only address routing metrics such as PDD, PDR,

and TTE. However, in DRNs, the Standard Deviation of Packet Delivery Delay (PDS) is also im-

portant. A path with the minimum PDD might have a large PDS, which makes the actual delivery

delay of some packets much longer than expected. If the first responders prefer some information

to be sent back to EOC with a stable delay, the path with the minimum PDS is actually a better

choice. To satisfy the preference of different users, the second challenge arises: how to allow first

responders to express their preferences on PDD or PDS when choosing routing paths in DRNs?
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Furthermore, first responders sometimes have the requirements to deliver some urgent information

to EOC before a deadline. Otherwise, the value of this information will be discounted. To this end,

the third challenge arises: In DRNs, how to maximize the probability of delivering packets to the

destination before a given deadline?

To address all the aforementioned challenges, we propose an adaptive edge computing and

communication framework for disaster response. This framework consists of a Distributed Mo-

bile Stream Processing (DMSP) platform, a CNN-based multitask video processing system, and

a user-customizable delay-tolerant routing protocol. Specially, the mobile stream processing plat-

form allows first responders to perform computation-intensive stream processing on a cluster of

wireless-connected mobile devices. It adopts feedback-based executor and task configuration, re-

silient task assignment, and adaptive stream grouping to deal with dynamic computing resources

and network connectivity. The CNN-based multitask video processing system allows first respon-

ders to extract different IoIs from the on-body camera video stream by using different CNNs de-

rived from the same base CNN. These CNNs can adaptively share different amount of common

layers to trade off between the total computation cost and inference accuracy. Each of them can be

adaptively divided into two separate parts to run on different mobile devices to meet the specific

performance goals. The user-customizable delay-tolerant routing protocol enables first responders

to send back different information obtained at each disaster site to EOC based on the specific Qual-

ity of Service (QoS) requirements. We evaluate different components of the proposed framework

through extensive simulations and real-world experiments, which demonstrate its effectiveness in

enabling high efficient ECC for disaster response.

1.2 Dissertation Statement

As effective disaster response depends on timely gathering and processing of data from differ-

ent disaster sites of the infrastructure-less disaster area, the design of an adaptive edge computing

and communication framework, which consists of a distributed mobile stream processing platform,

a CNN-based multitask video processing system and a user-customizable delay-tolerant routing

protocol, is critical to enable first responders to process the huge sensing data at each disaster site
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and send back the important processing results to EOC through disaster response networks.

1.3 Main Contributions

The main contributions of this dissertation are outlined as follows:

• We propose feedback-based mobile stream processing (F-MStorm), which adopts feedback-

based approaches in the configuration, scheduling, and execution levels of system design to

deal with the dynamic computing resources of mobile devices. We implement F-MStorm on

Android phones and evaluate its performance through benchmark applications with different

computing resource conditions. We show that it achieves up to 75% lower response time,

10% higher throughput, and consumes 23% less communication energy than the state-of-

the-art systems.

• We propose resilient mobile stream processing (R-MStorm), which improves the MSP

survivability by 1) assigning tasks to mobile devices with higher availability to improve the

availability of physical stream paths; 2) assigning tasks of the same application components

to different devices to increase the diversity of physical stream paths; 3) adopting adaptive

stream grouping to efficiently direct the output stream of upstream tasks to downstream tasks;

4) adopting adaptive stream selection to skip stream data to alleviate congestion caused by

network disconnection and stream redirection. We implement R-MStorm on Android phones

and evaluate its performance through a video face recognition application under different

network conditions. We show that, compared with baseline approaches, R-MStorm achieves

up to 1.5x higher throughput, 75% lower response time, at a cost of 3.3% accuracy loss.

• We propose an adaptive execution framework for CNN-based multitask video process-

ing (AMVP), which combines three types of orthogonal strategies (offloading, compression

and sharing) to support the execution of multiple computational intensive CNNs on resource-

constrained mobile devices. AMVP selects the most appropriate CNN implementation and

executing device for each vision processing task based on the user performance goals and

actual available system resources. We implement AMVP on Android phones and evaluate
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its performance through a CNN-based multitask facial processing application. We show that

AMVP achieves up to 60% lower latency and 10% higher throughput than two other status

quo approaches with comparative accuracy.

• We propose an energy-aware risk-averse routing protocol (EAR), which 1) applies the

risk-aversion concept to address PDS, an important routing metric in DRNs that is over-

looked by previous DRN routing protocols; 2) leverages a parameter L to restrict the level of

packet replication; 3) applies a differentiated service model to deliver packets with less TTE

while maintaining other metrics at an adequate level; 4) introduces a “λ-optimal” algorithm

to search for the routing path with the lowest risk or highest probability to deliver the packets

before a deadline; 5) extends the “λ-optimal” algorithm to a multipath version and proposes

an EAR routing protocol based on it. We evaluate EAR through extensive simulations on

the Opportunistic Network Environment (ONE) simulator [46]. We show that EAR provides

flexible control of the routing risks and delivers packets to the destinations in a more energy-

efficient way (up to 8x higher Packet Delivery Efficiency (PDE) with 4% lower PDR) than

the well-known DRN routing protocols Prophet, MaxProp, RAPID, and Spray&Wait.

1.4 Organization

This dissertation is organized as follows. The current section motivates our work and states

the contributions of the research. In Chapter 2, the state-of-art solutions are presented. In Chap-

ter 3, we present the system architecture of the proposed edge computing and communication

framework. In Chapter 4, the design of feedback-based mobile stream processing is presented. In

Chapter 5, we present the design of resilient mobile stream processing. In Chapter 6, we present

the design of an adaptive execution framework for CNN-based multitask video processing. In

Chapter 7, the energy-aware risk-averse DRN routing protocol is presented. Finally, in Chapter 8,

we conclude this dissertation and present a few future directions.
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2. STATE OF THE ART

In this section we present the state-of-the-art of this dissertation. We first present the related

work for mobile stream processing, which includes computation offloading, edge computing and

distributed stream processing systems. Next, we discuss the state-of-the-art solutions for CNN-

based video processing, which are roughly divided into three categories. Finally, we present the

related work about routing protocols in DRNs.

2.1 Related Work For Mobile Stream Processing

Computation Offloading and Edge Computing. Computation offloading [11, 14, 18, 47–53] has

been a popular research area. Based on the offloading destinations, the existing work can be cat-

egorized into cloudlet offloading, cloud offloading and hybrid offloading. Cloudlet offloading is

named as edge computing [15, 54–56] as well, which aims at reducing the application response

time and saving the Internet communication bandwidth by taking the control of computing appli-

cations, data, and services away from some central nodes (“core") to the logical extreme (“edge")

of the Internet [57]. CloneCloud [48], JustInTime [49] and Odessa [11] are cloudlet offloading

systems that leverage virtual machine migration mechanisms to reduce the application response

time. However, all these systems rely on powerful nearby cloudlets, which are not always avail-

able in critical scenarios like disaster response, because first responders have to move from place

to place and they are only allowed to carry on some lightweight mobile devices. Different from

the above systems, our F-MStorm and R-MStorm only utilize nearby mobile devices as offloading

destinations, which are more practical for the disaster response scenario, because first responders

always work together as a group and their mobile devices can be connected together as a cluster.

MAUI [47] is a cloud offloading system which enables energy-aware offloading by using remote

function calls to the cloud. MCDNN [14] is a cloud offloading framework that employs a run-

time scheduler to trade off the application accuracy for resource usage and latency. Orbit [51] and

LEO [52] are similar systems that utilize profile-based partitioning of applications to offload com-
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putation tasks to hybrid computing resources. All these systems rely on the Internet access, which

however are not always available in some critical scenarios, because first responders always work

in some extremely difficult environments that do not provide any access to the Internet. Different

from these systems, F-MStorm and R-MStorm do not rely on the Internet. Instead, they only need

a mobile device to be set up as a hot spot, such that all the mobile devices in a group can be con-

nected together. Some existing work like Hyrax [53] and Serendipity [18] also offload computing

tasks to the nearby mobile devices. However, their work focuses on processing bounded batch jobs

that have relatively low requirements on the latency. Instead, F-MStorm and R-MStorm focus on

processing unbounded stream data, which has a higher requirement on the latency.

Distributed Stream Processing Systems. Apache Storm [58] is a distributed stream process-

ing system deployed on the cloud servers. Many improvements based on Storm have been pro-

posed [59–64]. Among them, AdaptiveStorm [59] continuously monitors the system performance

and reschedules tasks at run-time to reduce the overall response time. T-Storm [60] accelerates

stream processing by using traffic-aware scheduling, which minimizes the inter-device and inter-

process traffics. R-Storm [61] improves the throughput and minimizes the network latency by max-

imizing the resource utilization. All these works are closely related to F-MStorm and R-MStorm,

but they do not consider the detailed differences among inter-device links, which however are es-

sential in stream processing at the edge. The authors in [62] propose a scalable centralized scheme

for job reconfiguration, which minimizes the communication cost while keeping the nodes below

a computational load threshold. The authors in [63] propose a dynamic resource scheduler for

cloud-based distributed stream processing systems, which measures the system workload with the

minimal overhead and provisions the minimum resources to meet the response time constraints.

The authors in [64] provide a general formulation for the optimal data stream processing place-

ment and takes explicitly into account the heterogeneity of computing and networking resources.

Similar to these works, in F-MStorm and R-MStorm, we propose a general framework for stream

task assignment that takes delay, energy and load balance all into account. The difference is that,

our problem is more challenging, because in stream processing at the edge, the inter-device delay
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is dynamic and the users’ own application may cause disturbance to F-MStorm and R-MStorm.

Except for Storm and its subsequent improvements, there are other popular stream processing sys-

tems like Apache Spark Stream [65], Flink [66], Samza [67], etc. However, all these systems are

designed and implemented to run on cloud servers instead of mobile devices. To the best of our

knowledge, MStorm [8] is the first work that performs online distributed mobile stream processing

at the edge. However, it is inefficient in the system configuration, task scheduling and execution

aspects. F-MStorm improves its efficiency by using the feedback information. EdgeWise [68] is

a stream processing engine for edge which incorporates a congestion-aware scheduler to improve

throughput. However, all the above systems assume the wireless connections among devices are

always on, which is not always true in real life. R-MStorm improves the resilience of MSP by con-

sidering the dynamic network connection among mobile devices. MobiStreams [69] also provides

an MSP runtime in dynamic networks. However, it mainly focuses on the issue of fault tolerance.

Swing [70] is an MSP framework which considers both dynamism and heterogeneity of devices

to achieve performance objectives and energy efficiency. Frontier [71] is also an MSP system that

deals with network dynamics through back pressure stream grouping and failure recovery. How-

ever, both of the above two systems overlook the effects of task assignment on the MSP resilience.

They simply assign tasks to mobile devices in a simple round-robin manner, regardless of that fact

that some devices may frequently go out of range and have low availability.

2.2 Related Work For CNN-based Video Processing

CNN offloading. The key idea of CNN offloading is moving some CNN layers or the whole CNN

model from the resource constrained mobile devices to some resource sufficient servers, no matter

the server is in the cloud or at the edge. MCDNN [14] is an earlier representative work which

deploys different CNN variants on both cloud and mobile devices. The variants at the cloud have

higher accuracy but higher computation cost and extra communication overhead. The variants at

mobile devices have lower computation cost and no communication overhead but lower accuracy.

MCDNN selects a proper CNN variant at runtime to adapt to the dynamic operating conditions.

Another representative work of CNN offloading is Neurosurgeon [72], which performs CNN com-
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putation partition between mobile devices and cloud at the granularity of neural network layers.

It demonstrates that, compared to those cloud-only solutions, this collaborative solution achieves

lower latency, lower energy consumption and higher datacenter throughput. A recent work called

Couper [26] brings edge server into CNN offloading by quickly slicing CNNs into components ex-

ecuting on both the cloud and edge. It proves via extensive experiments that a powerful edge server

is essential for CNN offloading when the required latency is low while the network condition to

the cloud is bad. Although the above solutions achieve significant performance improvement, they

either rely on the cloud or a powerful edge server. Under some extreme conditions without Internet

or powerful edge server, such solutions do not work. Recent works also start to study distributing

CNN execution on several IoT or mobile devices. Modnn [27] and Mednn [28] utilize specific

partition schemes to partition CNN models onto several mobile devices to alleviate device-level

computing cost and memory footprint. DeepThings [30] proposes distributed inference on IoT

devices by employing a fused tile partitioning of convolution layers to expose parallelism, a dis-

tributed work stealing approach to balance dynamic workload and a novel scheduling procedure

to reduce the overall execution latency. Musical Chair [31] supports efficient recognition at local

by harvesting aggregated computational power from IoT devices in the same network. It explores

both data parallelism and model parallelism of CNN to deal with the inherit dynamic. Different

from above works which focus on the execution of single CNN, AMVP studies how to run multiple

CNNs on the mobile devices, which is obviously more challenging.

CNN compression. CNN compression uses different compression techniques to construct effi-

cient CNN models for mobile devices. XNOR-Net [73] approximates both input and weights into

binary values to reduce the computation workload for real-time inference at the cost of some accu-

racy loss. ThiNet [74] applies filter level pruning to compresses CNNs by greedily pruning the filter

that has the minimum effect on the activation values of the next layer. Factorized Networks [35]

factorizes a high-cost 3D convolution operation as a low-cost single intra-channel convolution and

a linear channel projection to reduce the computation while maintain the accuracy. All these works,

however, have an identical limitation: they use a fixed compression technique to compress a CNN,
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which results in a one-for-all model that cannot adapt to different performance goals and resource

constraints. To deal with this issue, a recent work [75] enables on-demand model compression

by applying proper compression techniques to different CNN layers, which achieves an optimal

balance between performance goals and resource constraints. In current AMVP, there is no di-

rect model compression technique to support CNN model compression. However, in the future,

we plan to integrate some. Except for the above works which compress CNN layers to reduce

computation cost and memory footprint, there are also some other works which compress the in-

termediate features to reduce the feature transmission size. For example, the authors in [76] claim

that intermediate deep feature compression will become the next battlefield of collaborative in-

telligent sensing. In [77] and [78], the authors study the impact of lossy and near-losses feature

compression on object detection accuracy. In [79], the authors present a lossy compression frame-

work for intermediate deep feature compression based on quantization and codec, which has been

adopted by the Audio Video Coding Standard Workgroup as the visual feature coding standard.

In AMVP, in order to reduce the feature traffic size between separated CNN components, we use

similar methods to compress the feature before sending.

CNN sharing. The key idea of CNN sharing is to share common layers or parameters among

multiple related CNNs to reduce the total computation workload or memory footprint. For ex-

ample, in NestDNN [38], the authors propose a nesting method to allow different variants of a

deep learning model to share common parameters, so that it can dynamically select the optimal

resource-accuracy trade-off at runtime to fit each model’s resource demand to the system available

resources. In Mainstream [23], the authors propose to share some common layers among multiple

CNNs at an edge server to reduce the computation workload. At deployment time, based on the

available resources and mix of applications on the edge server, it automatically determines the right

trade-off between per-frame accuracy and more frames per second by choosing different number

of shared layers. AMVP adopts similar layer sharing strategy as Mainstream. The difference is,

instead of choosing proper shared layers based on the available resource at edge server, AMVP

needs to consider the available resources of a mobile device cluster, as well as the condition of
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wireless network connecting them.

2.3 Related Work For Disaster Response Networks

Many routing protocols have been proposed for general DTNs [80]. Epidemic routing [41] is

a flood-based routing protocol that assumes purely random encounters among nodes and requires

each node to replicate and transmit packets to the new contacts that do not have a copy. It achieves

high PDR and low PDD via unlimited level of packet replication, which however, wastes a lot of

resources, because it never eliminates replications that are unlikely to improve the performance.

To reduce unnecessary replications, Prophet [42] maintains a set of probabilities for successful

delivery to different destinations based on the history information. A node replicates packets to

the encountered nodes only when they do not have the packets and have a better chance to deliver

these packets. Similar to Prophet, MaxProp [43] is a history-based routing protocol that main-

tains a queue ordered by the estimated likelihood of a future transitive path to the destination of

each packet. When nodes encounter, the packets at the head of the queue are transmitted first and

those at the tail are dropped first if the buffer space is full. It should be noted that all the above

protocols incidentally improve PDR and PDD by increasing the packet replicas. RAPID [44] is

a utility-based protocol that intentionally affects the routing metrics by estimating the marginal

utility gained from replicating a packet. Different from aforementioned protocols, EAR both in-

cidentally and intentionally affects routing metrics by using some specific parameters. Moreover,

to the best of our knowledge, none of the above protocols pays enough attention to PDS, which

nevertheless, is very important in DRNs. The work (p,q)-Epidemic [81] studies the distribution of

delay in a general way. It assumes that nodes have no knowledge about the network or mobility

and the historic information is useless for predicting the future. This assumption, however, is not

true in EAR, where the nodes follow some certain patterns to move. A recent work ICR [82] also

regards PDS as an important routing metric. However, instead of providing a parameter to adjust

the importance of PDS based on the preference, ICR uses a fixed number 1.65 to combine PDS

with PDD as a metric. Recently, many researchers have introduced the understanding of social

structures into DTN design [83–87]. By combing the knowledge on community structure and cen-
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trality, BubbleRap [88] maintains both the global and local rankings for each packet. A packet is

replicated and transmitted to the community of the destination using the global ranking and then to

the destination using the local ranking. SAPC [89] presents a similar two-stage routing algorithm

which performs multi-copy spreading based on social activity and single-copy forwarding based

on physical contact factor. SMART [90] assigns a weight to the link between two nodes by combin-

ing their encountering frequency and social closeness. Based on these links, packets are forwarded

to the node whose shortest path to the destination has the lowest weight. Similar to SMART, EAR

assigns a weight to the link between two nodes and routes along the shortest path. The difference is

that EAR uses recurrent movement pattern information instead of social structure information. In

TCCB [84], the authors try to use the past temporal correlations to infer the temporal social contact

patterns in remaining valid time of data and propose an efficient temporal closeness and centrality-

based data forwarding strategy. In [85], the authors construct a routing-delivery scheme for the

opportunistic networks based on the node profile. They claim that, the node profile can effectively

characterizes nodes by analyzing and comparing their attributes. In DRNs, different vehicles also

have their own movement patterns (or profile). Similarly, we can exploit these movement patterns

to efficiently forward packets to the destination. A recent work CTR [91] resembles EAR by us-

ing some movement pattern information to improve the efficacy of packet forwarding. However, it

only exploits the gathering pattern of survivors in the shelters, whereas EAR exploits the movement

patterns of all mobile agents. A key objective of DRNs routing is to reduce the energy consump-

tion per delivered packet to prolong the lifetime [91]. To achieve this goal, Spray&Wait [92] sets

a strict upper bound L on the number of replicas for each packet. It performs routing by first

“spraying” L packet copies into the network, and then “wait” until one of the relays meets the

destination. In [93], the authors extend epidemic routing by mathematically characterizing the

trade-off between packet forwarding efficacy and energy conservation as a heterogeneous dynamic

optimal control problem. They prove that the optimal dynamic forwarding decisions follow a sim-

ple threshold based structure, where the threshold for each node depends on its current remaining

energy. To reduce the resource overhead per packet, ICR [82] exploits the recurrent mobility and
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contact patterns in DRNs and proposes the differentiated service that allows DTN nodes to manage

the energy consumption based on the relative urgency of messages. Inspired by these significant

works, EAR proposes a mechanism that combines the strict upper bound, threshold and differenti-

ated service, which enables packets to be delivered in an energy-efficient way while maintaining

other metrics like PDD, PDS and PDR at an adequate level.
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3. SYSTEM ARCHITECTURE

In this chapter, we present the system architecture of the proposed adaptive edge computing

and communication framework for disaster response. We start from the hardware architecture to

describe different components and then switch to the software architecture to describe how these

different components work together.

3.1 Hardware Architecture
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Figure 3.1: Hardware architecture of adaptive edge computing and communication frame-
work for disaster response.

An overview of the hardware architecture of our edge computing and communication frame-

work for disaster response is shown in Figure 3.1, which mainly consists of two parts: The first

part is set up at each disaster site where first responders are dispatched to perform rescue tasks and

the second part is built up by leveraging different vehicles (including patrol cars, supply vehicles,

ambulances, etc.) equipped with wireless routers moving around the disaster area.

We name the first part as “edge bubble”, where a battery-powered wireless (WiFi/LTE) router

carried in a first responder’s manpack is set up as the temporary communication infrastructure at

the edge. By connecting to the wireless router, mobile devices carried by the first responders can

connect with each other to form a mobile computing cluster, which is used as the temporary com-
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Figure 3.2: Hardware implementation of an edge bubble.

puting infrastructure at the edge. When a first responder needs to execute a computation intensive

stream processing application, he can offload some stream processing tasks to other mobile devices

in the same cluster to perform distributed mobile stream processing. There is also a first respon-

der in each team equipped with an on-body/helmet camera to record the video during the rescue

process. By pairing the camera with a mobile device through a WiFi hot-spot link, video stream

can be pulled from the camera to the mobile device to perform CNN-based video processing. The

processing results will be temporarily stored in a hard disk co-located with the wireless router at

the manpack. In Figure 3.2, we show the real hardware implementation of our “edge bubble”. The

wireless manpack is implemented by a Ubiqutous R© Wifi router, a Baicells R© eNodeB and an Intel

NUC R© running an opensource EPC. The helmet of a first responder is equipped with a Yi R© 4K

camera, which supports both WiFi AP and hotspot mode. Each first responder is equipped with an

Essential R© Android phone, which supports Wifi AP, hotspot and LTE mode at the same time.

We name the second part as “disaster response networks”, where vehicles equipped with

on-board wireless routers move around the disaster area, collect packets stored in the wireless

routers at different disaster sites, carry and forward them to the intermediate (other disaster sites or

vehicles) or destination node (EOC). In this style of “store and forward” delay-tolerant network, an

end-to-end connection does not exist. The delay of each hop is mainly determined by the moving
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pattern and speed of different vehicles. The delay for packet transmission from one wireless router

to the other after they are connected is negligible.

3.2 Software Architecture

Figure 3.3: Distressnet-NG ecosystem and the role of MStorm.

Before we describe the software architecture of our adaptive edge computing and communi-

cation framework for disaster response, we first spend some time to introduce our Distressnet-NG

ecosystem. As shown in Figure 3.3, our Distressnet-NG ecosystem contains many different com-

ponents. The EdgeKeeper component is used for resilient edge management, its role in Distressnet-

NG is as Zookeeper’s role in Hadoop. The MDFS component is a mobile distributed file system,

and the RShare component is a resilient file sharing application. Both MDFS and RShare depend

on a resilient communication component called RSock. RSock is designed and implemented as a

transport layer protocol. It can adapt to network connectivity ranging from totally disconnected

to well connected. MMR is a batch processing platform deployed on mobile devices, its role in

Distressnet-NG is very similar to the role of MapReduce in Hadoop. Finally, our MStorm plat-

form is a stream processing platform running on mobile devices. Its role to Distressnet-NG is very

similar to the role of Storm, Spark or Flink in the cloud.

Next, we introduce the software architecture of our edge computing and communication frame-

work for disaster response in Figure 3.4, which mainly consists of MStorm for mobile stream pro-
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Figure 3.4: Software architecture of adaptive edge computing and communication frame-
work for disaster response.

cessing and DRNs for communication. F-MStorm and R-MStorm are two modules inside MStorm

which deal with dynamic computing resources and dynamic network connectivity, respectively.

AMVP is a module in MStorm supporting dynamic layer sharing among multiple CNN models for

multitask video processing. EAR is a routing protocol inside DRNs that helps choosing routing

paths to send the processing results of MStorm back to EOC. When disaster responders start to

rescue at the disaster site, the video stream taken by the on-body/helmet camera will be pulled

to the mobile device by a CNN-based multitask video processing application running on top of

MStorm. The AMVP module of MStorm chooses the most appropriate CNN implementation for

each vision analysis task inside the application and offloads parts of CNNs to execute on other

mobile devices. The processing results will be stored in a folder of local file system. The DRNs

module will fetch the stored results and forward it to the wireless router. The DRNs module at

the wireless router will forward the processing result to a proper vehicle passing by based on the

routing results calculated by the EAR routing protocol.
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4. F-MSTORM: FEEDBACK-BASED MOBILE STREAM PROCESSING∗

Emerging computation-intensive mobile applications [94–99] that process stream data col-

lected by various mobile sensors often require more computation resources than a single device

can provide. Therefore, many existing systems [11,14,52] offload the computation-intensive tasks

to the cloud or nearby high performance computing (HPC) servers to achieve low latency. For

example, MCDNN [14] offloads deep neural network based video processing tasks to the cloud,

Odessa [11] chooses nearby HPCs as additional computing resources to recognize objects from

real-time videos and LEO [52] utilizes on-chip DSP co-processors, GPUs together with the cloud

to run inference algorithms. Although such systems achieve low latency and high throughput, re-

sources in the cloud or nearby HPC servers are not always accessible in some infrastructure-less

scenarios. For example, imagine the following scenario:

“A group of first responders, equipped with mobile devices, is assigned to a post-earthquake

area to discover dangerous zones (e.g., leaking chemical pipes or unstable buildings) to avoid. The

teams collect a large amount of data via different sensors (e.g., on body video cameras) and ana-

lyze the data in real time via analytical software. Usually, such data analysis requires significant

computational resources and, thus, it is pushed to the cloud for analysis. However, the commu-

nication infrastructure was destroyed during the earthquake, which makes offloading to the cloud

impossible. In such case, offloading computation to the nearby mobile devices at the edge becomes

a promising option.”

In this chapter, we focus on a distributed stream processing system deployed on a cluster

of mobile devices without an Internet access (stream processing at the edge). Different from

most stream processing systems that run on a cluster of wire-connected servers in the cloud (such

as Storm [58], Spark [65] and Flink [66], etc.), stream processing on a cluster of mobile devices

is much more complicated, because mobile devices have very limited computation resources and

∗Reprinted with permission from “F-mstorm: Feedback-based online distributed mobile stream processing” by
Mengyuan Chao, Chen Yang, Yukun Zeng and Radu Stoleru in Proceedings of 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 273–285, Seattle, USA, 2018, Copyright 2018 by IEEE.
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batteries, and the wireless links between different devices are unstable. Some existing works [18,

53] are designed for the same environment as ours. However, they focus on processing bounded

batch jobs instead of unbounded stream data.

MStorm [8] makes an important first step towards mobile stream processing at the edge by

implementing a lightweight system on mobile phones. It provides some basic functionality, such

as parallelism configuration, task scheduling and stream grouping. However, since its current im-

plementation ignores some specific characteristics of stream processing at the edge, it is inefficient

as we demonstrate through some simple experiments. First, MStorm configures the number of

executors (threads that execute tasks) at each device simply based on CPU cores while not taking

into account the current CPU utilization. As the computation resources of a mobile device is also

shared by other applications, this static configuration can easily lead to a bottleneck that negatively

impacts the system performance (response time and throughput). Second, the task assignment,

when MStorm assigns computation tasks to devices, is based on a naive round robin strategy. This

may incur unnecessary inter-device traffic and consequently higher delay and energy consump-

tion. Third, MStorm adopts a shuffle stream grouping mechanism, where upstream tasks distribute

the output to downstream tasks uniformly at random. However, as downstream tasks may run on

highly occupied devices, the shuffle grouping mechanism might cause congestion there and lead

to high response time and low throughput.

To solve these problems, one potential solution is to carve out some static resources dedicated

for stream processing [100]. However, unlike servers in the cloud, the resources of mobile devices

at the edge are very limited and need to be shared with some other resource-intensive applica-

tions. It is unreasonable to allow MStorm to take up some resources even when there is no stream

processing tasks. Another approach is to apply a pull model [101, 102] like most modern cloud

computing systems, where the machines ask for tasks when they have free slots. However, this

model is not enough for stream processing at the edge as it does not consider other factors like

device-to-device delays and remaining batteries of devices. Our insight is that, instead of adopting

an open-loop task scheduling which assumes a static environment, a feedback-based approach that
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makes decisions based on the changing system state should be utilized to deal with the dynamic

environment at the edge.

To accomplish this goal, we propose F-MStorm, a feedback-based online distributed mobile

stream processing system. F-MStorm adopts a feedback-based approach at many different levels

of system design so that the system can adapt quickly to the changing environment to achieve high

performance. At the configuration level, F-MStorm configures the number of executors on each

mobile device based on the free CPU resources of mobile devices and CPU usage of tasks. At

the scheduling level, F-MStorm assigns tasks to mobile devices based on the task-to-task traffic

and device-to-device communication delay and energy consumption. At the execution level, the

upstream tasks distribute the output data to the downstream tasks based on the latter’s stream

arrival/processing rate and waiting queue length. We implement a prototype of F-MStorm on

Android phones and evaluate its performance through a customizable benchmark application. We

also compare F-MStorm with two scheduling algorithms proposed for Storm (i.e., T-Storm [60] and

R-Storm [61]). The experimental results show that, by using the feedback information, F-MStorm

achieves up to 3x lower response time, 10% higher throughput and 23% less communication energy

than the state-of-the-art systems.

Our main contributions are summarized as follows:

• Through some real world experiments, we demonstrate that, without an accurate estima-

tion of the current system state and appropriate adjustment of the initial configuration, task

scheduling and stream grouping, MStorm suffers up to three order of magnitude increase in

response time and 60% reduction in throughput (Section 4.1), which calls for the feedback-

based system design.

• We propose F-MStorm (Section 4.2), which consists of a feedback-based configuration

(FBC) method, a feedback-based task assignment (FBA) algorithm and a feedback-based

stream grouping (FBG) strategy.

• We implement F-MStorm on Android phones and conduct real world experiments to evaluate
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(a) MStorm Architecture (b) MStorm system architecture.

Figure 4.1: MStorm system architecture

(a) Topology example

(b) Extended topology example

Figure 4.2: Example of an MStorm application.

its performance (Section 4.3), which demonstrate the superiority of F-MStorm over MStorm

and two other state-of-the-art systems.

4.1 Background and Motivation

In this section, we at first briefly introduce the background of MStorm and its architecture.

Then, we show the inefficiency of MStorm via three experiments. Finally, we motivate our F-

MStorm by explaining why existing solutions do not work.
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4.1.1 MStorm

MStorm [8] is the first online distributed stream processing system running on mobile devices

with Android OS. It is designed for critical scenarios such as military operations and disaster

response, where no Internet access is available, whereas the mobile devices of the team members

are connected as a cluster through a manpack Wi-Fi access point. Instead of porting popular stream

processing systems (such as Storm [58], Spark [65] or Flink [66]) running on the cloud, MStorm

is designed and implemented from scratch with a lightweight infrastructure. This is paramount for

mobile stream processing at the edge, which only has limited resources.

MStorm adopts some technical designs from Apache Storm. Its architecture is shown in Fig-

ure 4.1(a). An MStorm master node contains one Nimbus and one Zookeeper service. Nimbus

schedules task execution while Zookeeper coordinates between Nimbus and mobile devices and

maintains the cluster metadata in a directory-like structure shown in Figure 4.1(b). Every mobile

device in the MStorm cluster runs a supervisor process and a worker process, both as Android

services. The supervisor receives tasks from Nimbus and assigns tasks to the worker, while the

worker manages multiple executors (threads) which are used to execute tasks. MStorm guarantees

an at-most-once processing semantics.

An application in MStorm is modeled as a directed graph called topology. A topology contains

two types of nodes, i.e., spout and bolt. A spout partitions the input stream into tuples and sends

these tuples to downstream bolts. A bolt processes tuples from spout or upstream bolts, and sends

the processed tuples to downstream bolts for further processing. We refer to a spout or a bolt

as application component (or simply component) in the rest of the chapter. A directed edge

between two nodes in a topology indicates that traffic flows from one to the other. Each component

can spawn multiple parallel tasks which are executed by devices’ executors. If we expand the

component in a topology with multiple nodes, each of which represents an individual task, we get

another directed graph, i.e., the extended topology. The extended topology graph shows the actual

data flow between individual tasks. Figure 4.2 shows the topology and the extended topology of

a sample MStorm application that contains one spout and two bolts, i.e., bolt1, bolt2. Each bolt
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further contains two parallel tasks, i.e., T2, T3 for bolt1, and T4, T5 for bolt2, respectively.

The MStorm application developer needs to provide the application topology as well as con-

figure the parallel tasks for each application component. MStorm then decides the number of

executors for each device and assigns tasks to devices for execution. The output tuples of each

task may need to be sent to the downstream tasks. The mechanism for distributing tuples is called

stream grouping. MStorm currently adopts a shuffle grouping strategy, i.e., tuples are randomly

distributed to downstream tasks such that all tasks have identical expected workload in the long

run.

4.1.2 Limitation of MStorm

Although MStorm makes an important first step towards a successful design of a mobile dis-

tributed stream processing system, its unawareness of system resource utilization and mobile net-

work’s characteristics lead to the suboptimal behaviors that prevent it from achieving a good per-

formance. In the following sections, we present three experiments that show the inefficiency of the

current MStorm system.

4.1.2.1 Resource-unaware configuration

We refer to the configuration as the users’ preference of parallelism for each component and

the system’s initial configuration of the number of executors at each device. In MStorm, the system

configures the number of executors at each device based on its CPU cores. However, since users

may run other applications on the mobile device, the available CPU resources depend not only on

the CPU cores but also on the current utilization. Configuring the number of executors without an

accurate estimation of current resource utilization may lead to performance bottleneck, where the

heavily-used nodes may be assigned identical number of executors compared to the idle ones.

We demonstrate this inefficiency through a sample application shown in Figure 4.3, which

consists of 4 tasks (T1 - T4). Four Google Nexus 5 mobile devices M1 - M4 form a cluster and

MStorm configures identical number of executors per node. Due to round robin task assignment,

which we discuss later, as it is also inefficient, each mobile device needs to execute one task.
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Figure 4.3: Sample application that demonstrates the inefficiency of resource-unaware con-
figuration and stream grouping.
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Figure 4.4: The results of sample application that demonstrate poor performance of
resource-unaware configuration.

Consider the case when M2 is actively used by other user’s application, MStorm fails to adapt to

this situation and results in poor performance as shown in Figure 4.4. We generate a stream of data

at 12 tuples per second (T/s) and measure the delay and throughput of each task. As we can see,

the delay for T2 increases from 100ms to 100s because of queuing after the system runs for 250s.

This is unacceptable for any real-time mobile application. Besides, the overall throughput (10T/s)

is smaller than the input rate (12T/s) due to the bottleneck at T2. This leads to increasing queues

in the system.

4.1.2.2 Traffic-unaware task assignment

As mentioned earlier, MStorm uses a round robin task assignment strategy, i.e., it sequentially

assigns tasks to each mobile device until all tasks are assigned. Although it is easy to implement, it
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Figure 4.5: The inter-device traffic incurred by different task assignment methods.

does not minimize the inter-device traffic, which leads to a higher delay and energy consumption.

To reduce the inter-device traffic, an intuitive idea is to put as many tasks as possible on the same

node. This leads to our two preliminary attempts for a more efficient task scheduling algorithm,

namely breadth and depth-first scheduling, respectively. The breadth (depth) first scheduling works

as follows: at first, sort the mobile device based on the number of configured executors; then

assign tasks to the same mobile device in a breadth (depth) first order when traversing the extended

topology, until the assigned tasks reach its capacity or there is no more task to assign. However,

we reveal by the following example that, even if the breadth (depth) first scheduling reduces some

inter-device traffic, their performance are still much worse than the optimal schedule.

Figure 4.5 (a) and (b) represent the topology and extended topology of an application. The edge

weights in the extended topology represent the total traffic from task to task during a period ∆T .

All tasks are assigned to mobile devices M1, M2, M3, M4 with 3, 2, 1, 1 executors by different

scheduling algorithms. Based on the breadth/depth-first scheduling, tasks are assigned to mobile

devices as shown in Figure 4.5 (c) and (d). Figure 4.5 (e) represents the optimal scheduling that

minimizes the inter-device traffic. Figure 4.5 (f) summarizes the scheduling result and correspond-

27



ing inter-device traffic for each scheduling algorithm, which shows that the round robin scheduling

generates 118% more inter-device traffic than the optimal scheduling, whereas the breadth-first and

depth-first scheduling also generates 45%, 64% more inter-device traffic than the optimal. This is

because they fail to further distinguish different inter-task traffic and don’t assign tasks with large

inter-task traffic to the same node.

Moreover, even if we distinguish different inter-task traffic, it is still coarse grained, considering

the diversity of wireless links. For example, given two tasks with fixed inter-task traffic, if they

are assigned to two nodes with a lower inter-device delay, the total delay will be lower. If they are

assigned to two nodes with lower communication power, the total energy consumption for traffic

transmission will be less. With round robin or breadth (depth) first scheduling, all these potential

chances of improving system performance will be missed.

Furthermore, except for minimizing delay and energy consumption, sometimes soldiers or first

responders require the system to last longer. To achieve this goal, the tasks need to be assigned

based on the remaining battery of each device. With round robin or breadth (depth) first scheduling,

the batteries of some devices might be depleted very soon.

4.1.2.3 Resource-unaware stream grouping

Recall that MStorm adopts a shuffle grouping strategy to distribute output tuples to downstream

tasks. Although shuffle grouping achieves fairness among tasks in terms of overall workload, we

demonstrate that it cannot adapt to the resource fluctuation caused users’ own application usage.

We use the same application as shown in Figure 4.3, where all nodes are idle in the beginning.

We set the input rate at 10T/s. We run resource-intensive applications on M2 and M3 at 500s and

50s, and close them at 600s and 170s, respectively. Since shuffle grouping assigns output tuples

from T1 to T2 and T3 uniformly at random, the arrival rate at T2 and T3 are 5T/s on average,

even if M2 and M3 are busy with other applications. As a result, we can see a significant increase

in response time in Figure 4.6(a) (from roughly 102ms to 105ms) and a decrease in throughput in

Figure 4.6(b) (from roughly 5T/s to 2T/s), when the resource-intensive application is running.

A key observation from Figure 4.3 is that the throughput of T2 and T3 increases to 6T/s and
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Figure 4.6: The results of sample application that demonstrate poor performance of
resource-unaware shuffle grouping.

8T/s after the resource-intensive application terminates, which indicates a higher processing capa-

bility than the average input rate of 5T/s. Therefore, it is possible to improve the overall throughput

by assigning more stream to other more capable nodes, given that we have an accurate online esti-

mation of resource utilization at each node.

4.1.3 Motivation of F-MStorm

One simple approach to solve the problems above is to carve out some static resources on each

mobile device dedicated for stream processing [100]. However, unlike servers in the cloud that

are uniformly managed by a cluster manger to undertake specific jobs, the limited resources of

mobile devices at the edge are shared by both MStorm and other user applications. Those applica-

tions might also be resource-intensive and even have higher priorities. It is unreasonable to allow

MStorm to take up the valuable resources even when there is no stream processing tasks. Another

approach is to apply a pull model [101,102] like most modern cloud computing systems, where the

machines ask for tasks when they have free slots. However, this model is not enough for stream

processing at the edge as it does not consider other factors like device-to-device delays, energy

consumption of inter-device communication and remaining batteries of devices. We argue that,

instead of adopting an open-loop task scheduling algorithm which assumes a rather static environ-

ment, a feedback-based approach which makes decisions based on the current system state (such as

CPU utilization, delays and energy consumption of inter-device communication, remaining batter-
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ies, etc.) should be utilized to deal with the dynamic environment at the edge. Two ameliorations

proposed for Apache Storm, namely T-Storm [60] and R-Storm [61], have similar insights with

F-MStorm. They also adopt a feedback-based approach to improve the system performance. How-

ever, neither of them concerns the energy consumption and balance of energy usage, as they are

proposed for systems running in the cloud. Nevertheless, for a mobile stream processing system

running at the edge, the above two factors directly decide how long a system can last for. It is

paramount for F-MStorm to take all these factors into account.

4.2 Design and Implementation of F-MStorm

In this section, we present the design and implementation of F-MStorm. To overcome the

inefficiencies presented in the previous section, F-MStorm sets configuration, task scheduling and

stream grouping all based on the feedback information. To better present our idea, we use a

scenario with m devices and an application with N components. The mathematical model of

the problem involves many notations. For readers’ convenience, we summarize them in Table 4.1.

4.2.1 Overview

Similar with MStorm, F-MStorm configures the parallelism of each application component

based on the user’s experience and assigns tasks to the mobile devices through round robin at the

beginning. Then, after a “warm-up” period, each mobile device periodically reports the feedback

information, including task execution, device resources and network condition, etc., to Nimbus.

Based on this feedback, F-MStorm reconfigures tasks for each component, resets available ex-

ecutors for each device and recalculates the best schedule for the whole application. Because of

the dynamic processing workload and changing environment, the best task schedule might change

from time to time. However, the new best schedule sometimes only achieve a small performance

improvement than the previous one. In such case, it is not beneficial to switch to the new schedule,

considering the rescheduling overhead and system stability. To deal with this issue, we propose

several reschedule conditions. If none of these conditions are met, the system just keeps the origin

schedule; otherwise, the reschedule takes place. Except for reporting to Nimbus, each downstream
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Table 4.1: Main notations used in F-MStorm.

Notation Description
i Index of component, i = 1, ..., N
j Index of task, j = 1, ..., n. n varies with configurations
k Index of mobile device, k = 1, ...,m

A(i) Task set of component i
c(j) Component that task j belongs to
v(j) Device that task j is assigned to
Wi Expected CPU usage of component i
Ii Expected input rate of component i
Oi Expected output rate of component i
wj CPU usage (MHz) of task j
lj Waiting queue length at task j
λj Input rate (T/s) of task j
µj Processing rate (T/s) at task j
tjj′ Output rate (T/s) from task j to j′

sjj′ Average tuple size (bit) from task j to j′

fk Single core frequency (MHz) of device k
ck The number of CPU cores of device k
uk Total CPU usage (MHz) of device k
rk Available CPU resource (MHz) at device k
dkk′ Communication delay (ms) from device k to k′

bk Remaining battery at device k
etk Energy consumption (nJ) per bit for Tx at device k
erk Energy consumption (nJ) per bit for Rx at device k
P Vector: parallel task number for each component
E Vector: available executors for each mobile device
B Vector: remaining battery for each mobile device
T Matrix: average output rate from task to task
S Matrix: average tuple size from task to task
D Matrix: communication delay from device to device
Q Matrix: energy/bit for transmitting between devices
X Matrix: task assignment to mobile devices
∆T Period that mobile devices report to Nimbus
∆t Period that tasks report to upstream tasks

task needs to report the execution information to the upstream tasks periodically. The upstream

tasks then distribute the output to the downstream tasks based on the feedback information.

4.2.2 Status Report

In F-MStorm, each mobile device reports the following information to Nimbus periodically

(every ∆T ):

• wj: the CPU usage (in MHz) of task j obtained from /proc/stat and /proc/stat/pid/task/tid/stat [60].
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• lj: the queue length at task j, i.e., the number of stream tuples that are waiting to be processed.

• λj and µj: the average input and processing rate (in T/s) of task j during ∆T .

• tjj′: the output rate (in T/s) from task j to j′ during ∆T .

• sjj′: the average tuple size (bit) from task j to j′ during ∆T . It is defined as the ratio between

the total tuple data size and the total number of tuples from task j to j′.

• rk: the available CPU resource (in MHz) at device k, defined as rk = fk ·ck−(uk−
∑

v(j)=k wj),

where fk is the single core frequency, ck is the number of cores, uk is the current CPU usage at

device k, and
∑

v(j)=k wj is the total CPU usage of current F-MStorm tasks at device k.

• dkk′: device-to-device communication delay (in ms) from device k to k′.

• bk: remaining battery (in mAh) at device k.

• etk and erk: energy consumption per bit (nJ/bit) for tuple transmission (Tx) and reception (Rx).

They can be estimated based on throughput [103], which we obtained from DeviceBandwidth-

Sampler [104].

Nimbus maintains a moving average for each status, that is, V = δ ∗ Vold + (1 − δ) ∗ Vnew,

where Vold is the old value stored at Nimbus, Vnew is the new feedback value, and 0 ≤ δ ≤ 1 is a

factor used to indicate how the status depends on the history.

It deserves to be mentioned that, periodically reporting and updating these system statuses

might cause some extra communication and computing overhead. However, compared with the

communication traffic size and processing workload of stream data, the overhead is negligible.

4.2.3 Feedback Based Configuration (FBC)

Based on the feedback, Nimbus calculates the following vectors to reconfigure the system:

P = [Pi]
N
i=1, E = [Ek]

m
k=1. Pi represents the number of parallel tasks of component i and Ek

represents the available executors of each mobile device k. They are calculated by equation Pi =

dWi

R e and Ek = b rkR c, where Wi is the expected CPU usage of component i, rk is the available
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CPU resource at device k and R represents the computing resource of each executor. The ceiling

and floor functions are used to leave some margins for device resource fluctuation. R is calculated

by the following equations:



R = min{max{Rl,Re},Ru}

Rl = ηl ∗mink{fk}

Re = mini,k{Wi,
rk
ck
}

Ru = ηu ∗mink{fk}

(4.1)

where ηl and ηu (0 ≤ ηl ≤ ηu ≤ 1) are parameters to control the lower and upper bound of an

executor’s resource. The intuitions are as follows. First, the resource of an executor is mostly

determined by the CPU usage of components and the available resource of mobile devices. Based

on this, we can calculate a basic version of executor resource, namelyRe. Then, to make full use of

the CPU resource, a single executor should not occupy more resource than a CPU core. Therefore,

we need to set an upper bound Ru for the executor resource. On the other hand, the resource of

an executor should not be too little, otherwise a mobile device will be configured with too many

executors, which incurs a lot of OS scheduling overheads. Therefore, we also need to add a lower

boundRl for the executor resource.

4.2.4 Feedback Based Assignment (FBA)

We formulate the task assignment in F-MStorm as a mixed-integer quadratic programming

(MIQP) and solve it by a genetic algorithm. Moreover, to ensure the system stability, we propose

4 reschedule conditions to avoid frequent reschedules.

4.2.4.1 Problem Formulation

Let matrix T = [Tjj′ ]n×n represent the expected tuple output rate from task to task, with Tjj′ =

Ii/Pi∑
j′ tjj′
∗ tjj′ , where i = c(j) is the component that task j belongs to, Ii is the expected input rate of

component i. Ii/Pi represents the expected tuple input rate of each task. Let matrix S = [sjj′ ]n×n

represent the measured average tuple size from task to task and let matrix D = [dkk′ ]m×m represent
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the communication delay between mobile devices. Let matrix Q = [Qkk′ ]m×m represent the energy

per bit for communication from device k to k′, where Qkk′ = etk + erk′ . We denote the decision

variables for the task assignment as a n-by-m 0-1 matrix X , with Xjk = 1 representing that task j

is assigned to device k.

Our objective is to minimize the average end-to-end delay and energy consumption for each

tuple while ensuring the load balance in energy consumption. The end-to-end delay consists of

processing delay, queuing delay and communication delay. The energy consumption consists of

processing energy and communication energy. Since the system we care is homogeneous in ex-

ecutor’s processing speed and energy consumption model, the way we assign tasks will not affect

the end-to-end processing delay, queuing delay and processing energy. Therefore, the objective

is reduced to minimize the average end-to-end communication delay and communication energy

consumption while ensuring the load balance in energy consumption. We formulate the problem

as:

minimize
X

F = α ∗ gd
gmaxd

+ β ∗ gq
gmaxq

+ γ ∗ gb
gmaxb

(4.2)

s.t. ∀j,
m∑
k=1

Xjk = 1

∀k,
n∑
j=1

Xjk ≤ Ek

∀j, k, Xjk ∈ {0, 1}

(4.3)

where gd is the average communication delay, gq is the average communication energy consump-

tion and gb is the load balance index. gmaxd , gmaxq , gmaxb represent the maximum gd, gq and gb that

are used to unify the units. α, β, γ ∈ [0, 1] are customized according to the user’s preference.

gd is calculated as follows. Given the task-to-task output rate matrix T and task assignment

matrix X , we can obtain matrix T ′ = ∆T · TX , where element T ′jk represents the total number

of tuples output by j from device v(j) to k during ∆T . Similarly, we can obtain matrix D′ =

XD, where element D′jk represents the communication delay from v(j) to k. With T ′ and D′,

we can obtain matrix Md = T ′ �D′, where element Md
jk represents the total communication

delay of tuples output by task j from v(j) to k during ∆T , and � represents Hadamard product.
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λ =
∑

j∈A(1) µj represents the total output rate of the spout. Then, the average communication

delay of each tuple is calculated as:

gd =

∑
j,kM

d
jk

λ∆T
=

∑
j,k ∆T · (TX �XD)jk

λ∆T

=

∑
j,k(TX �XD)jk

λ

(4.4)

Next, we consider the calculation of gq. Similar to the communication delay, we utilize matrix

T ′′ = ∆T · (T � S)X to represent the total traffic data size output by task j from device v(j) to

k in ∆T , matrix Q′ = XQ to represent the energy consumption per bit for tuple transmission by

Wi-Fi from device v(j) to k. Thereby, the total energy consumption for tuple transmission from

device v(j) to k in ∆T can be represented as matrix Mq = T ′′ �Q′. Then, the power of tuple

transmission is calculated as:

gq =

∑
j,kM

q
jk

∆T
=

∑
j,k ∆T · ((T � S)X �XQ)jk

∆T

=
∑
j,k

((T � S)X �XQ)jk

(4.5)

Finally, gb is calculated as follows:

gb =
m∑
k=1

(
n∑
j=1

Xjk −
bk∑m
k=1 bk

∗ n)2 (4.6)

where bk is the remaining battery of device k. The effect of this item is intuitive: when two devices

posses the same available CPU resources, the computation tasks should be assigned to the one with

more remaining battery to prolong the lifetime of the whole system.

4.2.4.2 Genetic Algorithm-based Solution

The aforementioned problem is typically solved by a CPLEX solver [105]. However, based

on our experimental results, it takes 77 seconds on average to solve a moderately sized (e.g., 15

nodes and 15 tasks) problem on a desktop, which is impractical for real time applications on mobile
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platforms. To deal with this issue, we implement an approximation algorithm (Algorithm 1), which

returns a near-optimal solution (within 5% of the optimal) in less than 1s for the same problem.

Algorithm 1 is based on a “GeneTaskAlloc” procedure that implements the Genetic Algorithm

(GA) to solve the optimization problems.

Algorithm 1 works as follows. Notice that, F , gmaxd , gmaxq and gmaxb share the same constraints

as shown in Equation 4.3. Therefore, they can be solved by GeneTaskAlloc with different objective

functions and goals, i.e. max or min. We first solve the optimization problem to get gmaxd , gmaxq

and gmaxb (line 1 - 9). Then, we use gmaxd , gmaxq and gmaxb to construct the final objective function

F (line 10), and call GeneTaskAlloc again to get the final solution (line 11).

The GeneTaskAlloc procedure, which takes a fitness function and an optimization type as input,

maintains an iterative process containing the following operations [106]: SelectParents, which

selects parents from all candidate schedules with the probability proportional to the fitness function

value; GenerateOffspring, which generates children schedules with parent schedules by uniform

crossover; Mutate, which chooses a certain number of rows randomly from the schedule matrix

according to the mutate rate and changes the position of 1 randomly; Recombination, which goes

through a schedule matrix row by row and replaces the original schedule with a better one by

exchanging adjacent two rows; FilterOffSpring, which filters the offspring schedules that do not

satisfy the constraints; SelectPopulations, which selects a fixed number of populations from the

current available schedules according to the fitness function value; SelectBestSchedules, which

selects the best schedule in terms of the fitness function value. When the iteration times reach the

previously set threshold, the procedure will exit with the current best schedule.

4.2.4.3 Reschedule Condition

Sometimes, the new schedules achieve small performance improvement, and switching to them

will actually hurt the performance, considering the rescheduling overhead and system stability. To

avoid such unnecessary reschedules, we propose the following reschedule conditions:

• It is the first time that the system gets feedback and do reschedule.
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Algorithm 1: ApproxTaskSchedulingAlg()
Input : T , D, S, Q, B, α ,β, γ, λ
Output: Task schedule matrix X

1 if α 6= 0 then
2 gd ← Equation 4.4
3 gmaxd ← GeneTaskAlloc(gd,max).value

4 if β 6= 0 then
5 gq ← Equation 4.5
6 gmaxq ← GeneTaskAlloc(gq,max).value

7 if γ 6= 0 then
8 gb ← Equation 4.6
9 gmaxb ← GeneTaskAlloc(gb,max).value

10 F ← Equation 4.2
11 X ← GeneTaskAlloc(F,min).solution
12 return X

• The average end-to-end delay exceeds a threshold τ .

• The input rate of any component i exceeds a threshold times the output, i.e., ∃i,
∑

j:c(j)=i λj >

σ ∗
∑

j:c(j)=i µj .

• The metric of old schedule exceeds a threshold times the metric of new schedule, i.e.,

F (X) > ξ ∗ F (Xnew), where F is the objective function in Equation 4.2.

When any of the above conditions is met, the task reschedule will take place. To guarantee

consistent processing, before switching to a new schedule, the spout of the old schedule will stop

pulling stream from the data source and the old schedule will continue running for a while until all

the remaining tuples in the system are processed.

4.2.5 Feedback Based Grouping (FBG)

Except for reporting to Nimbus, each mobile device also reports the execution information

(such as task input and output rates, queue lengths, etc.) to the upstream tasks periodically (every

∆t). The upstream tasks then direct the output stream tuples to the downstream task with the

“Least Expected Waiting Time (LEWT)”, which is calculated as follows.
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Without loss of generality, we assume task j which belongs to the component i receives the task

execution report from task j′, which belongs to the downstream component i′, at time t0. Then,

at time t which satisfies t − t0 < ∆t, if task j chooses to send an output stream tuple to j′, the

“Expected Waiting Time (EWT)” for this tuple at task j′ can be calculated by

EWTj′ =
[(λj′ − tjj′ − µj′)(t− t0) + lj′ + ∆l]+ + 1

µj′
(4.7)

where (λj′ − tjj′) is the input rate from other tasks to task j′, µj′ is the processing rate and lj′ is

the waiting queue length at task j′. ∆l is the number of tuples sent to j′ from task j in the past

(t − t0) time. Function [x]+ = max(0, x). Since we consider applications in which tuples have

no temporal and spatial relations with each other, according to LEWT stream grouping, an output

tuple of j should be sent to task j′ ∈ A(i′) that achieves the minimum EWTj′ .

4.3 Evaluation

In this section, we at first introduce a benchmark application for evaluating the system perfor-

mance. Then, we present the experimental setup and analysis for the evaluation results.

Figure 4.7: The benchmark application for evaluating F-MStorm performance.

4.3.1 Benchmark Application

In order to thoroughly test the performance of F-MStorm, we developed a benchmark appli-

cation shown in Figure 4.7. The application consists of a data source and three components, i.e.,
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spout, bolt1 and bolt2. To precisely control the input, we let the data source directly generate

tuples with the same size and different inter-arrival time (IAT). The IAT can be configured with

different distributions, including constant, uniform (UR), Gaussian (GA) and exponential (EP) dis-

tributions. The processing time (PT) for each tuple can be configured with different distributions

as well, which includes constant, uniform, Gaussian and Pareto (PA) distributions. For the ease of

presentation, we denote spout, bolt1, bolt2 by C1, C2, C3 in the rest of the chapter.

4.3.2 Experimental Setup

We conduct experiments on three Google Nexus 5 phones running Android 6.0 and a laptop

configured as WiFi hotspot. Each Nexus 5 phone has a 4-core CPU and each core is set to run at

1574MHz. All phones are connected to the WiFi hotspot. We run F-MStorm or MStorm on these

phones and set system parameters ∆T = 15s, ∆t = 5s, δ = 0.4, τ = 2s, σ = 1.1 and ξ = 1.5.

To simulate the resource fluctuation when users invoke other applications during the execution of

F-MStorm or MStorm, we developed a resource-intensive disturbance application. We define the

light, medium, and heavy disturbance as the scenarios where we run this disturbance application

with 10%, 80% and 270% CPU utilization respectively (the total is 400%).

We thoroughly evaluate the system through different types of experiments. First, we run the

benchmark application with constant IAT (10T/s) and different constant workloads (defined below)

to demonstrate the efficiency of FBC and FBA. We define the light, medium, and heavy constant

workload (LCW, MCW, and HCW respectively) as the scenarios where the processing time ratios

between C1, C2, and C3 are 1:1:1, 1:15:1, and 1:25:15, respectively. Then, we show the efficiency

of FBG by running experiments with constant IAT and MCW, with light, medium, and heavy

disturbances respectively. We further evaluate the system’s overall performance and compare it

with two state-of-the-art solutions (T-Storm [60] and R-Storm [61] on MStorm) under different

constant input speeds, IAT distributions and processing time distributions. Finally, we investigate

the overall performance when the CPU frequency of phones decreases due to overheating.

For most experiments, we are interested in the response time (RT, in ms) and throughput (T/s).

For FBA experiments specifically, we care about the communication delay (ms) and communi-
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cation power (mW). In most experiments, we set α = 0.5, β = 0.5, γ = 0 because delay and

energy consumption are more important for us. However, to show that our system also provides

configuration for load balance, we run extra FBA experiments with α = 0.1, β = 0.1, γ = 0.8 and

compare its performance with the α = 0.5, β = 0.5, γ = 0 case.

4.3.3 Evaluation Results

The Effects of FBC: Figure 4.8 (a)-(c) show the results of both configuration and task assignment

when we have the same constant input rate and different workloads. The left side of each figure

shows the result of resource-unaware configuration (RUC) and round robin task assignment, while

the right side shows the result of FBC and FBA. The number of executors are shown beside each

mobile device. With RUC, the number of parallel tasks for C1, C2, C3 are always configured as

1:2:1, regardless of the workload. The number of executors is configured as 4 for all devices, which

equals the number of CPU cores. On the other hand, FBC reconfigures the number of parallel tasks

for the light workload as 1:1:1 and for the heavy workload as 1:3:2. The number of executors for

M1, M2, M3 are reconfigured as 2, 2, 3 based on the feedback.

Figure 4.8 (d)-(f) show the results of response time. Since FBC reconfigures the number of

tasks of LCW as 3, it allows FBA to assign all tasks to a single node M3. This significantly

reduces the communication delay and hence the total response time (Figure 4.8 (d)). In Figure

4.8 (f), FBC increases the number of tasks for C2 and C3 of HCW to 3 and 2 respectively, which

eliminates the congestion and reduces the response time.

Figure 4.8 (g)-(i) show the results of throughput. For LCW and MCW, both RUC and FBC have

throughput equal to the input rate; whereas for HCW, RUC has throughput lower than the input

rate because there are not enough parallel tasks for C2 and C3. On the other hand, the throughput

of FBC in HCW equals the input speed as the parallel tasks for C2 and C3 are reconfigured.

An interesting observation is about MCW, where FBC doesn’t change the original parallel tasks,

but the FBA algorithm reduces the inter-device traffic by half, just as shown in Figure 4.8 (b).

However, since the communication delay is much less than the computing delay in MCW, the

end-to-end response time only decreases a little bit in Figure 4.8 (e).
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(a) Config. and task assignment for LCW (b) Config. and task assignment for MCW

(c) Config. and task assignment for HCW
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(e) End-to-end response time for MCW
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(f) End-to-end response time for HCW
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Figure 4.8: Evaluation results of F-MStorm for constant inter arrival and processing time.

The Effects of FBA: To isolate the effects of task assignment algorithms, when we compare FBA

with round robin (RR), TStorm and RStorm, we let RR use the correct parallelism configuration
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(a) Communication delay for LCW
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(b) Communication delay for MCW
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(c) Communication delay for HCW
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(d) Communication power for LCW
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(e) Communication power for MCW
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(f) Communication power for HCW

Figure 4.9: Evaluation results for round robin and feedback based task assignment under
different constant workloads.

from the beginning, i.e., 1:1:1 for LCW, 1:2:1 for MCW and 1:3:2 for HCW (see Figure 4.8 (a) -

(c)). In contrast, in FBA, TStorm and RStorm, the parallelism configuration is reconfigured based

on the feedback.

Figure 4.9 shows the experimental results, where CommDelay is the average end-to-end com-

munication delay and CommPower is the power consumed for transmitting tuples. For LCW, FBA

and RStorm achieve much lower communication delay (Figure 4.9 (a)) and communication power

(Figure 4.9 (d)) than RR by assigning all tasks to a single device. Meanwhile, TStorm achieves bet-

ter performance than RR but worse performance than FBA and RStorm, because its task scheduling

algorithm not only tries to reduce the inter-device traffic but also aims at achieving load balance

between different nodes. This prevents assigning all tasks to a single node and therefore incurs

extra communication delay and energy consumption. For MCW, FBA reduces the communication
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Figure 4.11: Comparison of metrics with different α, β, γ settings.

delay (Figure 4.9 (b)) of RR, RStorm and TStorm by 68%, 50% and 26% respectively and the

communication power (Figure 4.9 (e)) of RR, RStorm and TStorm by 64%, 23% and 17% respec-

tively. This demonstrates the importance of distinguishing different inter-device communication,

in terms of traffic size, communication delay and power. As for HCW, FBA achieves similar com-

munication delay and power as TStorm and RStorm while a little bit lower communication delay

and power than RR (Figure 4.9 (c) and (f)). This is because, for this specific heavy workload, the

FBA scheduling algorithm happens to achieve the same schedule as TStorm and RStorm, and a

little bit better schedule as RR. It is interesting that, the performance of FBA, TStorm and RStorm

is worse than RR until they do rescheduling. This is because, RR utilizes the optimal parallelism

at the beginning, while FBA, TStorm and RStorm reschedule to the optimal parallelism based on

the feedback by themselves.

In order to throughly compare the performance of FBA, RR, TStorm and RStorm in more

general cases, we did 50 extra simulations with different mobile device capacities, application

43



10
0

10
1

10
2

10
3

10
4

10
5

 0  100  200  300  400  500  600  700  800  900  1000

light disturb at M3

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Packet ID

Shuffle
FBG

(a) Response time with light disturbance

10
0

10
1

10
2

10
3

10
4

10
5

 0  100  200  300  400  500  600  700  800  900  1000

medium disturb at M3

R
e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

Packet ID

Shuffle
FBG
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(c) Response time with heavy disturbance
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Figure 4.12: Shuffle and feedback based stream grouping under different disturbance.

topologies, number of tasks, task-to-task delays and traffic sizes. The scale the experiment is

about 15x15, which means 15 tasks are assigned to 15 mobile devices. Figure 4.10 shows the

experimental results. As we can observe, the performance of FBA is always close to (within 5%

of) the optimal schedule, while the performance of TStorm and RStorm is unstable, ranging from

near the optimal to more than 3x times worse. In terms of running time, TStorm and RStorm can

run as fast as RR (150ms), and our FBA takes about 850ms, while the optimal scheduling takes

77s. Taking both performance and running time into account, our FBA is more practical for a real

system deployment.

In order to show that our system provides flexible configuration for load balance, we run extra

FBA experiments with MCW and set α = 0.1, β = 0.1, γ = 0.8. As shown in Figure 4.11, a large

γ chooses a schedule with better load balance but higher communication delay and power. This is
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Figure 4.13: Evaluation results of F-MStorm when we vary the constant input speeds.

45



101
102
103
104
105

0 100 �00 300 400 500 600 700 800 900 1000

EP

Packet ID

MStorm F-MStorm

101
102
103
104
105 GA

R
e
s
p
o
n
s
e
T
im

e
(m

s
)

101
102
103
104
105 UR

(a) RT for Input with Diff. IAT

 0

 4

 8

 12

 16

 20

 24

 0  5  10  15  20  25  30  35  40  45  50  55  60

F-MStorm

Running Time (s)

 I(IAT-EP)  O(IAT-EP)

 0

 4

 8

 12

 16

 20

 24 MStorm

S
tr

e
a
m

 S
p
e
e
d
 (

T
/s

)

(b) Input/output for Input with Exp. IAT

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  100  200  300  400  500  600  700  800  900  1000

EP

Response Time (ms)

F-MStorm  TStorm  RStorm

 0
 0.2
 0.4
 0.6
 0.8

 1 GA

C
D

F

 0
 0.2
 0.4
 0.6
 0.8

 1 UR

(c) RT CDF comparison for input with Diff. IAT

Figure 4.14: Evaluation results of F-MStorm when we vary the inter arrival time of input.
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Figure 4.15: Evaluation results of F-MStorm when we vary the processing time of input.
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because, if a schedule achieves a good load balance, those tasks are very likely to be assigned to

different nodes, which will definitely increase the communication delay and energy consumption.

The Effects of FBG: In order to show the effectiveness of FBG, we turn off FBC and FBA. Tasks

T1, T2, T3, T4 are assigned to M2, M3, M1, M2 respectively (see Figure 4.8 (a) left). We start the

disturbance application at 50s on M3. As we can observe from Figure 4.12 (a-c): The light distur-

bance does not impact the system performance. However, the medium and heavy disturbance lead

to an increasing response time for Shuffle. This is because T1 completely ignores the disturbance

at M3 and still sends the output tuples to T2 and T3 randomly. This causes congestion at T2 and

leads to increasing delay. On the other hand, FBG relieves the negative impact of disturbance on

the performance. As shown in Figure 4.12 (d) and (e), when the disturbance begins, the through-

put of T2 begins to decrease and the throughput of T3 begins to increase, while the delay at T2

remains low. This is because T1 sends more output tuples to T3 at M1 after it receives feedback

from T2 and T3. We also run experiments with constant IAT and HCW with FBC and FBA turned

on. As shown in Figure 4.12 (f), when the medium disturbance occurs, the system with Shuffle

grouping has to perform rescheduling to achieve low latency while the system with FBG can avoid

rescheduling by directing more stream to the tasks running on the under-loaded devices.

Varying Input Speed: Figure 4.13 (a)-(c) show the results when we adopt the MCW and use

different constant input speeds. Figure 4.13 (a) shows the response time. When the input speeds are

10T/s and 16T/s, both MStorm and F-MStorm can achieve a stable low response time. However,

when the input speed increases to 20T/s, the response time becomes unstable and keeps increasing.

This is because, the input speed exceeds the maximum processing speed and causes congestions at

the computation intensive component. In that case, F-MStorm will do reschedule and increase the

parallelism for that component, which finally eliminates the congestion and brings the latency back

to normal. Figure 4.13 (b) shows the results for throughput with constant input at 20T/s. As we can

see, MStorm always has a lower output rate than the input rate, while F-MStorm has an output rate

equal to the input rate after rescheduling. Figure 4.13 (c) shows the CDF of stable response time

in F-MStorm, TStorm and RStorm with input speeds equal to 10T/s, 16T/s and 20T/s respectively.
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When the input speed is 10T/s, the response time of F-MStorm, TStorm and RStorm are similar

with each other. This is because they adopt similar task assignment, and have similar inter-devices

communication delay. However, when the input speed increases to 16T/s, the latency of TStorm

and RStorm can be up to 1.5x latency of F-MStorm. And when the input speed increases to 20T/s,

the advantage of F-MStorm becomes more obvious, which can be up to 3x faster than TStorm and

RStorm. This is because, as the input speed increases, there are more tasks after rescheduling. The

inter-device communication among different tasks will increase and the advantages of F-MStorm,

which takes inter-device communication diversity into account, will become more obvious.

Varying Inter Arrival Time: Figure 4.14 (a)-(c) show the results when we adopt the MCW and

vary the IAT distribution. Figure 4.14 (a) shows the response time. In MStorm, regardless of

the IAT distribution, the response time increases with the running time. However, in F-MStorm,

although the response time is increasing at the beginning, it goes back to be low after reschedul-

ing. This is because F-MStorm increases the parallelism of the computing-intensive component

to eliminate the congestion. The results in Figure 4.14 (b) prove this claim, where the IAT dis-

tribution is exponential. MStorm always has a 1T/s lower output rate than the input rate, while

F-MStorm has an output rate equal to the input rate after rescheduling. It should be noted that, al-

though the throughputs of MStorm and F-MStorm seem similar, there is a fundamental difference:

a congestion happens in MStorm, while no congestion happens after rescheduling in F-MStorm.

The delays of MStorm and F-MStorm in Figure 4.14 (a) clearly reflects this phenomenon. Due

to space limitation, we omit the throughput results for other distributions because they are similar.

Figure 4.14 (c) shows the CDF of the stable response time in F-MStorm, TStorm and RStorm with

uniform, Gaussian and exponential IAT distribution, respectively. With uniform IAT distribution,

the response time of RStorm can be up to 1/3 shorter than that of TStorm but still up to 2x that of

F-MStorm. With Gaussian IAT distribution, the response time in TStorm and RStorm are similar

with each other, but they are both up to 2x that of F-MStorm. With exponential IAT distribution, the

response time of F-MStorm becomes longer. However, it is up to 1/2 shorter than that of TStorm

and RStorm. The mechanism behind is that: more tasks and inter-device communication exist in
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the Gaussian and exponential IAT distribution cases, so the advantages of F-MStorm, which takes

inter-device communication diversity into account becomes more obvious.

Varying Processing Time: Figure 4.15 (a)-(c) show the results when we adopt the constant input

rate (10T/s) and vary the processing time. Figure 4.15 (a) shows the response time. As we can

see, with uniform distribution of processing time, both MStorm and F-MStorm achieve stable

and low latency. However, with Gaussian and Pareto distribution of processing time, F-MStorm

achieves much lower and stable response time than MStorm, because F-MStorm increases the

parallelism of the computing-intensive component, which eliminates the congestion. Figure 4.15

(b) shows the results for throughput with Pareto distribution. MStorm always achieves 10% lower

output rate than the input rate, while F-MStorm achieves an output rate that is the same as the

input rate after rescheduling. Due to space limitation, we omit the throughput results for other

distributions because they are similar. Figure 4.15 (c) shows the CDF of the stable response time

in F-MStorm, TStorm and RStorm with uniform, Gaussian and Pareto distribution of processing

time respectively. With uniform distribution of processing time, the response time of F-MStorm,

TStorm and RStorm are similar with each other. However, with Gaussian distribution of processing

time, TStorm achieves up to 1/4 shorter response time than RStorm but 1/5 longer response time

than F-MStorm. With Pareto distribution of processing time, the advantage of F-MStorm becomes

more obvious. The mechanism behind is that: more tasks and inter-device communication exist

in the Gaussian and Pareto distribution of processing time cases, so the advantages of F-MStorm,

which takes inter-device communication diversity into account becomes more obvious.

CPU Frequency Decrease: The CPU overheating protection mechanism on Android Phones will

reduce the CPU frequency when its temperature goes too high [107]. The CPU frequency of

smart phones we use might drop from 1574MHz to 1190MHz when it is overheating. To compare

MStorm and F-MStorm in this situation, we first run the resource-intensive application for a while

such that the CPU temperature gets high. Then, we start MStorm/F-MStorm and the benchmark

application with constant IAT and workload with processing time ratio 1:25:1. The tasks are as-

signed to mobile devices as shown in Figure 4.16. In F-MStorm, an initial rescheduling happens
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Figure 4.16: Sample example for CPU frequency decrease.

before the CPU frequency drops. The tasks of C1 change from T1 to T5; the tasks of C2 change

from T2, T3 to T6, T7, T8; and the tasks of C3 change from C4 to C9.

Figure 4.17 (a) and (d) show the time when the CPU frequency of mobile phones drops in

MStorm and F-MStorm respectively. We are interested in how the systems may react to it. Figure

4.17 (b) and (c) show the results for MStorm. When the CPU frequency of M2, which runs T1

and T4 (light tasks), drops, the end-to-end response time is not impacted. However, when the

CPU frequency of M1, which runs T3 (heavy task), drops, the end-to-end response time increases

instantly and the total output rate of C2 (9.5T/s) becomes lower than its input rate (10T/s). On the

other hand, Figure 4.17 (e) and (f) shows the results for F-MStorm. In F-MStorm, when the CPU

frequency of M1, which runs T5 and T9 (light tasks), drops, the end-to-end response time is not

impacted. When the CPU frequency of M2 and M3, which run T6, T7 and T8 (heavy tasks), drops,

the end-to-end response time only increases a little bit at the beginning, but soon returns to normal.

This is due to the fact that, when the CPU frequency of M2 drops, T5 directs more stream tuples

to T8; and when the CPU frequency of M3 drops, T5 directs more stream tuples to T7. The total

output rate of C2 keeps at 10T/s.
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5. R-MSTORM: RESILIENT MOBILE STREAM PROCESSING∗

In an MSP system, mobile devices are interconnected with wireless networks such as WiFi,

Bluetooth or LTE. Different from wired networks, the communication quality of wireless networks

are severely affected by the environment condition, signal attenuation, channel contention, etc.

Therefore, the connections among devices are with dynamic latency, fluctuating bandwidth and

intermittent connectivity. Such properties make MSP at the edge very inefficient: user applications

may have a long end-to-end response time, achieve a low throughput and suffer uncontrollable data

loss during the processing. Previous research [8, 108] designs the basic framework and resolves

the computing resource fluctuation in MSP, respectively. However, they both assume the wireless

connections among devices are always on, which is not a fact. A recent work [71] deals with the

network fluctuation in MSP by increasing the parallelism of application components. However, it

overlooks the effects of task assignment on the MSP resilience. Different from the existing works,

in this chapter, we present R-MStorm, a MSP system which aims to improve the resilience of MSP

at the edge from the following perspectives:

1) Task Assignment. In R-MStorm, an application is modeled as a Directed Acyclic Graph (DAG),

where a path from the source to the destination is defined as a stream path. Since each application

component may spawn several parallel tasks, there can be multiple stream paths at the same time.

To achieve resilient MSP, on one hand, all stream paths should be less affected by the network

fluctuation; on the other hand, even when the network is completely down, there should be at least

one stream path to continue the stream processing. To this end, R-MStorm uses Resilient Task

Assignment (RTA) to assign tasks of an application to mobile devices. First, RTA chooses mobile

devices with higher availability to run tasks, so that the availability of all stream paths improves.

Then, RTA assigns tasks of the same component to different devices to increase the diversity of

physical stream paths. Finally, RTA ensures that there is at least one stream path on the submitter

∗Reprinted with permission from “R-mstorm: A Resilient Mobile Stream Processing System for Dynamic Edge
Networks” by Mengyuan Chao and Radu Stoleru in Proceedings of 2020 IEEE International Conference on Fog
Computing (ICFC 2020), pages 1–9, Sydney, Australia, 2020, Copyright 2020 by IEEE.
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device, so that even if all the nearby mobile devices become disconnected, the stream processing

can still continue.

2) Stream Grouping. To efficiently divide stream among multiple stream paths, R-MStorm uses

Adaptive Stream Grouping (ASG). The core idea is: instead of sending the output of a task to

downstream tasks in a random way, the upstream task sends the output to a downstream task with

the minimum weight. The weight is calculated based on the link quality [109], queue lengths

and input, output and processing speed at each task. By applying ASG, R-MStorm schedules the

transmission and processing workload among multiple stream paths in an adaptive manner to avoid

congestion and improve throughput.

3) Stream Selection. Based on ASG, if the counterpart tasks (defined in Section 5.1.2) of a task

become temporarily unreachable, its upstream task(s) will send more stream data to this task. How-

ever, since each task has a limited processing capability, this might cause congestion and degrade

the overall performance. To alleviate the impact of congestion, R-MStorm uses an approximate

computing mechanism called Adaptive Stream Selection (ASS). ASS enables a congested task to

skip some stream units to reduce the processing workload while slightly sacrificing the processing

accuracy temporarily.

We implement R-MStorm on a cluster of mobile phones and evaluate it through a video face

recognition App under different network conditions. The experimental results show that, com-

pared with the baseline approaches, R-MStorm achieves up to 1.5x higher throughput, 75% lower

response time, at a cost of 3.3% temporary accuracy loss.

5.1 Mobile Stream Processing

This section describes the application scenarios, application models, and challenges of MSP.

5.1.1 Application Scenarios

With increasing processing capabilities of mobile devices, MSP, which combines mobile de-

vices via wireless networks, provides an innovative way to perform computation-intensive stream

processing autonomously at the edge. This paradigm is paramount for some specific application
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(c) Face recognition App for disaster response

Figure 5.1: A disaster response team enters a city after disaster to search and rescue victims
stuck in ruins. They are equipped with a wireless manpack, a helmet camera and multiple
mobile phones. A face recognition App assists them to automatically recognize victims during
the rescue process.

scenarios, where the Internet connectivity is unstable, unavailable, unsafe or costly.

As an example, consider a victim searching and recognition application for disaster response

in Figure 5.1. A disaster response team enters a city after disaster (Figure 5.1(a)) to perform

a “wide area search”. Since there is no Internet connectivity, they are equipped with a helmet

camera for video recording, a wireless manpack for communication and several mobile phones for

data processing (Figure 5.1(b)). Their task is to search victims stuck in ruins and recognize them

with a face recognition App.

As shown in Figure 5.1(c), this face recognition App for disaster response consists of three

components: 1) a picture capturer which continuously pulls stream from the helmet camera and

divides the stream into groups of pictures; 2) a face detector which detects faces from the input

pictures and outputs them to 3) a face recognizer. The face recognizer matches the input faces with

a database and outputs the recognized faces with names. Since these components are computation

intensive, it is impossible to execute them on a single mobile device to achieve high through-
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Figure 5.2: A sample MSP application.

put. Traditional cloud-based approaches, which offload computation-intensive components to the

cloud, fail to work when there is no Internet connectivity. In this case, these disaster responders

can perform MSP by connecting their mobile devices via wireless networks at the edge, such that

the face recognition App can still achieve a good throughput.

5.1.2 Application Models

In R-MStorm, an MSP application is modeled as a directed acyclic graph (DAG) called topol-

ogy. Each topology contains two types of nodes, i.e., spout and bolt. A spout continuously par-

titions the input stream into small tuples and sends them to downstream bolts. A bolt processes

tuples from spout or upstream bolts, and outputs the processed tuples to downstream bolts for fur-

ther processing. We refer to a spout or a bolt as an application component (or simply component).

A directed edge between two components indicates the dependency: for a tuple, a component can-

not start execution until its precedent component completes. Each component can spawn multiple

parallel tasks to perform the same operations. These parallel tasks are counterpart tasks of each

other. If we expand all the components with parallel tasks, we obtain another DAG called extended

topology, which shows the actual data flow among tasks. To improve the MSP throughput, tasks

of extended topology are assigned to different mobile devices. By choosing one task from each

component, we obtain a combination of tasks that we name a stream path. There are multiple

stream paths in an extended topology. Given a specific stream path, we define the combination of

mobile devices that run tasks of the stream path as a physical stream path.
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Figure 5.3: RSSI of a mobile device during disaster response.

Figure 5.2 shows the (a) topology, (b) extended topology and (c) distributed execution of an

MSP application. This application contains one spout and two bolts, i.e., bolt1, bolt2. Each bolt

further contains two parallel tasks, i.e., T2, T3 for bolt1 and T4, T5 for bolt2. All tasks are assigned

to mobile devicesM1,M2,M3 connected by dynamic wireless networks. T1-T2-T4 is a stream path

and M1-M2-M3 is its physical stream path.

5.1.3 Challenges

In MSP systems, mobile devices are interconnected with wireless networks such as WiFi, Blue-

tooth or LTE. Different from wired networks, the communication quality of wireless networks is

severely affected by signal shielding, attenuation and interference, hidden and exposed terminal

problems, channel contention, etc. These factors may bring unstable latency, dynamic bandwidth,

asymmetric and intermittent connectivity to the connections among mobile devices, which makes

MSP at the edge challenging: user applications may experience a long end-to-end response time,

achieve a low throughput and suffer uncontrollable data loss during the processing.

As an example, Figure 5.3 shows the Received Signal Strength Indicator (RSSI) value of a

mobile phone carried by a disaster responder during a wide area search exercise. Due to node

mobility, signal shielding and attenuation, RSSI value of this phone changes and sometimes goes

below the minimum RSSI value required by a stream application. This makes MSP tasks running

on this device suffer congestion and unpredictable delay. To solve this issue, we need a resilient

MSP system that can adapt to dynamic edge networks.
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5.2 System Overview

We present R-MStorm, a resilient MSP system running on a group of mobile devices at the

edge. First, we introduce the system architecture of R-MStorm, which shows how mobile devices

collaborate to perform MSP. Then, we introduce the R-MStorm client in detail, which consists of

several important modules that enable resilient MSP in dynamic edge networks.

5.2.1 System architecture

As shown in Figure 5.4, an R-MStorm system consists of a server and multiple clients. The

server is responsible for managing the clients and the clients are in charge of running the concrete

stream processing tasks. First, the clients which have spare resources send a request to the server

to join. Then, the server receiving the “joining” requests organizes the clients into one cluster. For

security reason, only clients belonging to the same cluster can share resource with each other. In a

real deployment, one server can manage multiple clusters.

When a user needs to perform stream processing, he/she at first sends an extended topology

of the application to the R-MStorm server via a supervisor at the client. When the server receives

the extended topology, it assigns corresponding tasks to multiple clients through a resilient task

assignment manager. This manager is very important for achieving resilient MSP, because its RTA

algorithm directly determines the availability and diversity of stream paths, which makes stream

processing resilient to the network change and failure. When a client gets assigned tasks from the

server, it runs each task in an executor of the worker and establishes connections to the upstream

and downstream tasks. The task execution and system states are monitored by a system state

manager. It maintains states of downstream tasks based on downstream reports. As we describe

later, multiple modules of R-MStorm client depend on these states to achieve resilient MSP.

During the stream processing, an R-MStorm client might get temporarily disconnected from

the R-MStorm server because of losses in communication. To solve this issue, the client will

keep reconnecting until the connection is restored or the maximum number of attempts has been

reached. It should be noted that, a client-to-server disconnection does not affect the stream pro-
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Figure 5.4: System architecture of R-MStorm.

cessing performance, because all stream transmissions are through connections between clients.

Nevertheless, if two clients get disconnected, the situation is different: one client not only needs

to keep reconnecting to the other, it also needs to process the output in a resilient manner. In

the following, we describe the detailed design of R-MStorm client to show how it deals with the

client-to-client disconnection.

5.2.2 Client architecture

As mentioned earlier, an R-MStorm client mainly consists of a supervisor for communica-

tion with the server, a system state manager for recording and reporting the system states, and a

worker for executing stream processing tasks. In this section, we mainly focus on the detailed

design of worker, as it directly affects the resilience of MSP. As shown in Figure 5.5, the worker

of R-MStorm client maintains an executor pool for running stream processing tasks, a group of in-

put/output queues for holding the input/output tuples of tasks, an adaptive stream dispatcher which

dispatches the output of each task to downstream tasks and an adaptive stream selector which skips

some tuples to avoid congestion and get short response time.

When tuples from the upstream tasks arrive at an R-MStorm client, they are pushed into the

input queue of a task. Then, based on the system states (e.g., input and output speeds of that task),

the adaptive stream selector determines whether an input tuple should be processed or not. The
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selected tuples are sent to the task executor for processing and the output tuples are sent to the out-

put queue. The adaptive stream dispatcher pulls tuples from the output queue and dispatches them

to the downstream tasks based on an adaptive stream grouping method. When the connection to a

downstream task is down, the adaptive stream dispatcher will immediately change corresponding

states of that task and resend stream tuples to other counterpart tasks.

5.3 Resilient Mobile Stream Processing

The resilience of R-MStorm is implemented by three mechanisms, i.e., resilient task assign-

ment, adaptive stream grouping and adaptive stream selection. This section describes these mecha-

nisms in detail. For convenience, we first list the main notations adopted in this section in Table 5.1.

5.3.1 Resilient Task Assignment

Given a topology consisting of components C1, C2, ..., CN , tasks T1, T2, ..., Tn, and a mobile

device cluster that contains devices M1,M2, ...,Mm, we model the MSP task assignment with

matrix X , where binary variable xjk = 1 if task j is assigned to device k and xjk = 0 otherwise.

Correspondingly, we model the MSP component assignment with matrix Y , where binary variable

yik = 1 if any task of component i is assigned to device k and yik = 0 otherwise.
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Table 5.1: Main notations adopted in R-MStorm.

Notation Description
Ci Component i, where i = 1, ..., N

Θ(i) Task set of component i
Tj Task j, where j = 1, ..., n and n =

∑N
i=1 |Θ(i)|

comp(j) Component that task j belongs to
λj Input rate of task j
µj Output rate of task j
pj Processing rate of task j
rjj′ Transmission rate from task j to task j′

qinj Input queue length of task j
qoutj Output queue length of task j
Mk Mobile device k, where k = 1, ...,m
ak Availability of device k
ek Number of executors at device k
X xjk denotes if task j is assigned to device k
Y yik denotes if component i has tasks on device k

5.3.1.1 Availability-oriented task assignment

With task assignment X , the availability of MSP application A(X) is defined as the avail-

ability of all the devices involved in the processing. In our scenario, the device availability is

determined by the wireless connection to the manpack and the connection is affected by the node

mobility and other environmental factors. For simplicity, we assume that the availability of each

device is independent. With this assumption, we have:

A(X) =
m∏
k=1

a
Uk(X)
k (5.1)

where

Uk(X) =
n∨
j=1

xjk = x1k ∨ x2k ∨ ... ∨ xnk (5.2)

represents whether device k is involved in the MSP processing. If Uk(X) = 1, the actual avail-

ability of device k equals to ak; otherwise, the actual availability of device k is 1. To avoid dealing

with exponentiation, we use the logarithm of the MSP availability as follows:

logA(X) =
m∑
k=1

log a
Uk(X)
k =

m∑
k=1

log ak · Uk(X) (5.3)
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Figure 5.6: A simple example which shows that higher availability does not always mean
higher survivability.

From Equation 5.3, we observe that: in order to maximize the availability of an MSP appli-

cation, we need to: 1) assign tasks to as few devices as possible; 2) assign tasks to devices with

higher availability first.

5.3.1.2 Availability vs. Survivability

As we described earlier, a typical MSP application usually has multiple stream paths. Ideally,

all the stream paths can work at the same time to improve the processing throughput. However, in

dynamic edge networks, this ideal situation does not always happen. Some stream paths may break

down when some devices become temporarily unavailable. Nevertheless, for an MSP application

that dynamically divides stream onto different physical stream paths, temporary partial availability

is acceptable: the remaining physical stream paths can handle the entire stream for a short period

of time until the impaired physical stream paths recover. Therefore, in MSP, instead of availability,

we care more about survivability, which is defined as the probability that at least one physical

stream path still exists when some of the involved devices become temporarily unavailable.

With the definition of survivability above, a research question comes up: Does a task assign-

ment with higher availability always have higher survivability? Unfortunately, the answer is no.

To demonstrate this, we show an example in Figure 5.6, where an application requires to offload

one component (two tasks) to other devices to perform MSP. For simplicity, we assume that each

device has the same availability a. In Assignment 1, both tasks T1 and T2 are assigned to device

M1. The availability of MSP is a2. Because both M0 and M1 are indispensable, the survivability
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of MSP is a2 as well. In Assignment 2, task T1 is assigned to device M1 and task T2 is assigned

to device M2. The availability of MSP is a3, which is lower than a2 of Assignment 1 as shown

in Figure 5.6(c). However, since T1 and T2 belong to the same component, one of M1 and M2 can

be temporarily unavailable. Therefore, the survivability of MSP is a3 + 2a2(1 − a) = 2a2 − a3,

which is always higher than a2 of Assignment 1 as shown in Figure 5.6(d).

Now that higher availability in MSP does not always mean higher survivability, the second

research question becomes: How to improve the survivability of a task assignment? Unlike MSP

availability that is only determined by the availability of devices involved in the processing, an

accurate calculation of MSP survivability is very complicated: it requires to consider all the cases

when some involved devices become temporarily unavailable. For a general case which involves

many devices, a simple expression for the MSP survivability is impossible. To solve this issue,

we leverages simpler metrics to depict the MSP survivability. First, we adopt a metric called

component-to-device (CTD) diversity. It measures the number of distinct devices that tasks of a

component are assigned to. We observe that, with the same devices, if we increase CTD diversity

of each component, survivability of the whole MSP assignment improves as well. The idea behind

is intuitive: since tasks of the same component are assigned to different mobile devices, when some

devices become unavailable, other devices running counterpart tasks can take over the stream to

perform the same processing. With CTD diversity Di for each component i, we define CTD

diversity of assignment X (and its corresponding component assignment Y ) as:

D(X) = D(Y ) =
N∏
i=1

Di =
N∏
i=1

m∑
k=1

yik (5.4)

where

yik =
∨

j∈Θ(i)

xjk (5.5)

denotes whether tasks of component i are assigned to device k. We also observe that, with the

same CTD diversity, improving MSP availability can increase MSP survivability significantly.

Therefore, availability is also an important part of survivability.
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Figure 5.7: Example of how to improve MSP survivability.

Figure 5.7 provides an example to showcase how to improve the MSP survivability of an as-

signment by increasing its MSP availability and CTD diversity. For simplicity, all devices are

assumed to have an identical availability a. Except the source and destination, all other compo-

nents have two parallel tasks. However, as shown in Figure 5.7(a)(i), increasing parallel tasks for

each component does not necessarily improves its CTD diversity: if two tasks of one component

are assigned to the same device, its CTD diversity still equals to 1. In Figure 5.7(a)(ii), we run

tasks on the same devices as Figure 5.7(a)(i) to keep MSP availability but assign tasks of the same

component to different devices. Then, its CTD diversity increases from 1 to 8 and the MSP sur-

vivability changes from a4 to 3a3 − 2a4. In Figure 5.7(a)(iii), we keep CTD diversity as 8 but

assign tasks to fewer devices to improve MSP availability from a4 to a3. Accordingly, its MSP

survivability changes from 3a3− 2a4 to 2a2− a3. As shown in Figure 5.7(b), with the higher MSP

availability and CTD diversity, Assignment (iii) achieves higher survivability than Assignment (i)

and (ii).

Sometimes, the above two metrics might conflict with each other as in Figure 5.6. This leads

to a multi-objective optimization (MOO) problem. This problem can be transformed into a single

objective problem by using the Simple Additive Weighting (SAW) technique [110]. According to

SAW, we can define MSP survivability as a weighted sum of MSP availability and CTD diversity
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Figure 5.8: Performance comparison of genetic algorithm and Sat4J.

as follows:

S(X) = wa
logA(X)− logAmin
logAmax − logAmin

+ wd
D(X)−Dmin

Dmax −Dmin

(5.6)

where wa, wd ≥ 0, wa + wd = 1 are weights for availability and CTD diversity, logAmax and

logAmin denote the maximum and minimum value of the availability term, Dmax and Dmin denote

the maximum and minimum value of the CTD diversity term, respectively. With the definition of

survivability, we formulate the resilient task assignment with a Nonlinear Pseudo-Boolean Opti-

mization (NPBO) model [111] as:

maximize
X

S(X) (5.7)

subject to:
m∑
k=1

xjk = 1 ∀j (5.8)

n∑
j=1

xjk ≤ ek ∀k (5.9)

xjk ∈ {0, 1} ∀j, k (5.10)

where equation (5.8) guarantees that each task is assigned to one device and constraint (5.9) limits
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the number of tasks assigned to each device based on its available executors. We solve this prob-

lem by both a genetic algorithm-based solver (Alg. 2) and a Sat4J [112] solver. We compare the

performance of these two solvers at different problem scales in Figure 5.8. The result shows that,

the genetic algorithm-based solver achieves a metric value within 5% worse than the Sat4J solver,

but its computation time is much shorter as the problem scale goes up. Therefore, in R-MStorm,

we adopt the genetic algorithm-based solver to solve the resilient task assignment problem.

Algorithm 2: GeneAlgBasedSolver()
Input : Availability ak, executors ek, constraints Q
Output: Task Allocation X

1 if wa 6= 0 then
2 logA← Equation 5.3
3 logAmax ← GeneTaskAlloc(logA,max,Q).value
4 logAmin ← GeneTaskAlloc(logA,min,Q).value

5 if wd 6= 0 then
6 D ← Equation 5.4
7 Dmax ← GeneTaskAlloc(D,max,Q).value
8 Dmin ← GeneTaskAlloc(D,min,Q).value

9 S ← Equation 5.6
10 X ← GeneTaskAlloc(S,max,Q).solution
11 return X

Algorithm 2 summarizes the genetic algorithm-based solver, which is based on a “Gene-

TaskAlloc” procedure described in Algorithm 3. It works as follows: First, it gets the maxi-

mum and the minimum values of the availability and diversity by calling “GeneTaskAlloc” with

different objective functions and optimization types. Then, based on these parameters, it calls

“GeneTaskAlloc” again to find the optimal task assignment which maximizes the survivability.

The “GeneTaskAlloc” procedure, which takes a specific objective function, an optimization

type and some constraints as inputs, performs an iterative process containing the following op-

erations: 1) SelectParents, which selects a certain number of parents from all candidates based

on the objective function; 2) GenerateChildren, which generates children assignments by uniform
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Algorithm 3: GeneTaskAlloc()
Input : ObjFunc F , OptType T , constraints Q
Output: Task allocation X = (solution, value)

1 Ps ← InitPopulation(s) // population size s
2 X ← SelectBest(F, T, Ps)

// evolve over n generations
3 for i← 1 to n do
4 Pp ← SelectParents(F, T, Ps, p) // parent size p
5 Pc ← GenerateChildren(Pp)
6 Pm ← Pc
7 for m ∈ Pm do
8 m←Mutate(m, r) // mutation rate r

// recombine every t generations
9 if i%t = 0 then

10 m← Recombination(m)

11 Po ← FilterOffspring(Q,Pc ∪ Pm)
12 Ps ← SelectPopulations(F, T, Pp ∪ Po, s)
13 X ← SelectBest(F, T, {X} ∪ Ps)
14 return X

crossover; 3) Mutate, which chooses some rows of an assignment based on a certain rate and

changes values at some positions randomly; 4) Recombination, which exchanges two rows of a

task assignment to achieve a better objective function value; 5) FilterOffSpring, which deletes the

task assignments that do not meet the constraints; 6) SelectPopulations, which selects new popu-

lations from the available candidates based on the objection function values; 7) SelectBest, which

selects the assignment that achieves the optimal objective function value. After iterating above op-

erations for a certain number of times, the procedure finally returns an assignment which achieves

an optimal objective function value with best efforts.

5.3.2 Adaptive Stream Processing

In MSP, each component has multiple tasks that are assigned to different devices to improve

the throughput and resilience. These tasks jointly handle the output tuples from the upstream. To

ensure good performance in a highly dynamic environment, when an upstream task chooses the

downstream task to send its outputs, it needs to take into account both the transmitting rate to
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and processing rate at different downstream tasks, rather than evenly or randomly distributing the

output to downstream tasks as in the cloud [58]. Additionally, when some tasks of a component

become unreachable, the upstream tasks will send all the outputs to the remaining counterpart

tasks. This may cause congestion and performance degradation at those tasks. To solve this issue,

a stream selection mechanism needs to be applied to selectively drop some stream tuples under

control to ensure smooth stream processing while keeping the processing accuracy at a certain

level. In the following, we describe the above two mechanisms in detail.

5.3.2.1 Adaptive Stream Grouping (ASG)

The core idea of ASG is to send the output to the downstream task with the minimum weight,

where the weight of each downstream task j′ for task j is calculated as follows:

weightj′ =
λj′ × qinj′ × qoutj′

rjj′ × pj′ × µj′
(5.11)

where qinj′ and qoutj′ represent the input and output queues of task j′, λj′ , pj′ and µj′ represents the

input, processing and output rates at task j′, and rjj′ represents the transmission rate from task j to

j′, respectively. The principle behind this equation is intuitive: an upstream task should first send

outputs to a downstream task with the lowest possibility of congestion.

As mentioned in Section 5.2, the above system parameters are maintained by the system state

manager and updated based on the reports from downstream. To achieve a high accuracy, the

reporting and updating periods should not be set too long. Moreover, to quickly adapt to net-

work disconnections, the rjj′ value should be set to 0 by the dispatcher immediately when task j′

becomes unreachable.

5.3.2.2 Adaptive Stream Selection (ASS)

As described before, when a task temporarily gets disconnected from some of its downstream

tasks, it will send all the output to other remaining counterpart tasks to continue the processing.

However, the increased input speed at those tasks may exceed their processing speed, which causes

congestion and performance degradation. To deal with this issue, we apply an adaptive stream
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Figure 5.9: A test platform for R-MStorm that consists of a helmet camera, four Android
phones and a wireless manpack.

selection mechanism to decide whether to process a tuple in real time or store it to the local file

system for later batch processing. The selection mechanism works as follows. First, the selector

calculates an IO-based skipping probability for task j as:

probj = max{λj − µj
λj

, 0} (5.12)

where λj and µj represents the input and output rates at task j, respectively. Then, for each input

tuple, the selector generates a random number to compare with probj . If the number is smaller than

probj , the tuple is skipped and stored to the local file system; otherwise, it is processed in real time.

The key idea of ASS is to temporarily sacrifice the processing accuracy to avoid congestion and

get shorter response time, which is very important for real time stream processing. By processing

tuples stored in the file system later, the processing accuracy will be the same in the end.

5.4 Evaluation

5.4.1 Experimental setup

The prototype implementation of R-MStorm includes a Java server and an Android client. As

shown in Figure 5.9, we run the R-MStorm server on a manpack and four R-MStorm clients on

four Essential phones. All these devices are interconnected with wireless networks provided by the
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Figure 5.10: Increasing parallelism improves MSP performance.

WiFi access point on the manpack. One phone runs a video face recognition App, pulls the video

stream from the helmet camera and offloads the stream processing workload to other phones. For

all the experiments, we set the video resolution to 1080p and input speed to 2 fps. To mimic the

intermittent connectivity of wireless networks during disaster response, we developed an Android

application that turns on/off the WiFi of each phone periodically based on a presetting probability.

The lower probability means the lower availability and the higher network dynamics. We vary its

value from 1 to 0.5 to create different network scenarios. We assume availability and diversity

contribute equally to survivability and set wa and wd as 0.5 in all the experiments. The metrics we

use to evaluate the MSP performance are response time and throughput.

5.4.2 Experimental Results

First, we run experiments with different mobile devices to show how parallelism of tasks influ-

ences MSP performance. Starting with one device, we configure the task parallelism of the face

recognition App to be 1:1:1:1, which means there is only one task for the picture capture, face de-

tection, face recognition and face sink component, respectively. As shown in Figure 5.10, since the

throughput 0.47fps is far below the input rate 2fps, heavy congestion exists in the system, which

makes the response time to increase. Then, we increase the number of devices to 2 and reconfigure

the task parallelism to 1:2:6:1. This improves the average throughput to 1.89fps and decreases the
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Figure 5.11: Network condition affects MSP performance.

response time to 10.2s. Finally, we increase the number of devices to 3 and configure the task

parallelism to 1:3:11:1. Then, the throughput of MSP increases to 2.01fps and the end-to-end re-

sponse time decreases to 3.6s on average. This experiment shows that, by using nearby mobile

devices to increase the task parallelism, the system throughput can be improved and the response

time can be reduced significantly.

Then, with 3 devices and task parallelism 1:3:11:1, we run experiments under different network

conditions. We change the availability of each phone from 1 to 0.7 to mimic more and more dy-

namic networks. As we see in Figure 5.11, when the network becomes more dynamic, the response

time and throughput fluctuate more as well. Meanwhile, the average response time increases from

3.6s to 7.7s and average throughput decreases from 2.01fps to 1.76fps. This experiment proves

that the dynamic edge networks will degrade the MSP performance in terms of both response time

and throughput.

To deal with dynamic edge networks, we use resilient task assignment to assign tasks of an MSP

application to mobile devices. In the following, we show how it improves the MSP performance

compared with the round-robin method. As shown in Figure 5.12(a), except for the device which

submits the topology (with availability 1.0 and executors 4), there are three other devices with

availability 0.9, 0.7, 0.5 and executors 6, 6, 6, respectively. Now, we need to assign tasks of the
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Figure 5.12: Task assignment methods affect MSP performance.

face recognition App (with parallelism 1:3:11:1) to these devices to perform MSP. According to the

round-robin method, all devices will be assigned some tasks. However, with RTA, it only chooses

three devices with higher availability to run tasks. Besides, RTA ensures that there is at least one

complete stream path on the device which submits the topology.

To fairly compare the above two tasks assignment methods, we configure the WiFi on/off time

points in two experiments to be the same. As shown in Figure 5.12(b), Figure 5.12(c), and Figure

5.12(d), the response time with RTA is much lower than that with round-robin and the average

throughput increases from 1.46fps in round-obin to 1.79fps in RTA. When all other devices become

unreachable, with RTA, since there is still a stream path left on the submitter device, the MSP can

continue. However, with round-robin, the MSP has to pause until the network recovers. This is
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Figure 5.13: Stream grouping and stream selection methods affect MSP performance.

clearly shown in the gray areas of Figure 5.12(b), where the response time gradually increases in

RTA (because of the congestion) while the response time in round-robin directly jumps to a high

value. The gray areas in Figure 5.12(d) also show this phenomenon, where the throughput in RTA

decreases to a low level whereas the throughput in round-robin directly decreases to 0.

Although RTA significantly improves the MSP performance, the response time is still very

high in dynamic edge networks. To further improve the performance, we combine RTA with the

minimum weight based adaptive stream grouping (MinWT). As shown in Figure 5.13(a) and Figure

5.13(b), with MinWT, the response time decreases from 8.8s to 5.2s and the throughput increases

from 1.79fps to 1.9fps on average. The effect of MinWT is particularly obvious when the network

recovered from disconnection. As shown in the gray areas of Figure 5.13(a), when the network just

recovers from disconnection, the response time in MinWT immediately decreases to the normal
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level. However, with Shuffle stream grouping, the response time is fluctuating. This is because,

in MinWT, since upstream tasks only send the output to the downstream task with the minimum

weight, those tasks on the submitter device will not receive any stream for a period time. However,

in Shuffle, since upstream tasks send output to the down stream tasks randomly, those congested

tasks at the submitter device will continue to get more stream. Tuples being processed by those

tasks will have a large response time. The gray areas in Figure 5.13(b) also demonstrate this

phenomenon, where the throughput in MinWT recovers much faster than that in Shuffle after the

network recovers.

Although RTA with MinWT improves the performance of MSP significantly, the average re-

sponse time (5.2s) is still far above the average response time (3.6s) in the ideal network. To

further reduce the response time in dynamic edge networks, we use the IO-based stream selection

mechanism (IOSelect). As shown in Figure 5.13(c), with IOSelect, the average response time is

further reduced from 5.2s to 4.0s, which is very close the ideal value. Because of skipping data,

the system with IOSelect achieves a lower output rate (1.6fps) than that without selection (1.9fps).

However, since a lot of the skipped data is duplicated with the processed ones, the actual accuracy

loss is very small: there are only 5 out of 150 (3.3%) faces temporarily missed because of IOSelect.

By processing tuples stored in the file system later, the processing accuracy will be the same as

without IOSelect in the end.
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6. AMVP: ADAPTIVE MULTITASK VIDEO PROCESSING

Nowadays, a core technology to enable complicated vision applications is Convolutional Neu-

ral Networks (CNNs), which have replaced traditional methods to become the mainstream technol-

ogy for vision processing due to their distinguished accuracy and performance [113–116]. In this

case, CNN-based multitask video processing, which utilizes multiple sophisticated CNNs to run

vision analysis tasks on a given raw video stream becomes popular [117–119]. However, running

multiple computational intensive CNNs on a resource constrained IoT device (e.g., a surveillance

camera) to achieve the user desired application performance (e.g., high accuracy and low latency)

is not easy. Additionally, the fact that different users may have different performance preference

on different tasks makes this problem more complicated and challenging.

Existing solutions for addressing the above challenge can be roughly divided into three cate-

gories: offloading, compression and sharing. First, many offloading strategies [14, 23–26] assume

there is a connection between mobile devices and the remote cloud (or nearby edge server) so that

parts of CNNs can be offloaded there to achieve the desired performance. However, a stable con-

nection to the cloud is not always available and deploying a powerful edge server near each video

camera is costly. Other offloading solutions [27–31] distributes a whole CNN to run on several

wireless connected IoT devices. However, they only consider the single CNN case, which is sim-

pler than the multi-CNNs case we consider. Second, the model compression strategies construct

efficient CNN models for IoT devices through different compression techniques, such as low-rank

expansions [32], parameter quantization [33], pruning and Huffman coding [34], fully factorized

convolution [35], depth-wise separable convolution [36], channel-wise sparse connection [37], etc.

Unfortunately, these solutions provide a one-for-all model, i.e., a fixed model compression tech-

nique is used for different performance goals. A recent work [75] uses on-demand compression,

which applies proper compression techniques to different CNN layers to achieve an optimal bal-

ance between performance goals and resource constraints. However, it still only considers the

single CNN case. Third, the sharing strategies reduce the computation costs [23] and memory
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footprint [38] by sharing some common layers among multiple CNNs. However, the existing so-

lutions run multiple CNNs on a single device. The performance improvement is restricted by the

device resource and its scalability is poor.

Different from existing works which use the above strategies separately, in this chapter, we

combine these strategies together as AMVP, an Adaptive execution framework for CNN-based

Multitask Video Processing on wireless connected IoT/mobile devices. First, AMVP reduces the

computation cost by sharing some common components among different analysis pipelines. For

the distinct components which run different vision tasks, AMVP provides multiple CNN imple-

mentation candidates. Those candidates are pre-trained from some well-known base CNNs (e.g.,

MobileNet [120], ResNet [121]) via transfer learning. If two distinct components choose CNNs

derived from the same base CNN, they can share some common frozen layers to further reduce

the computation cost. There is a trade-off between the number of common frozen layers differ-

ent CNNs can share and the inference accuracy each CNN can achieve. AMVP aims to keep an

optimal balance between them based on the user setting performance goals and available compu-

tational resources. Second, AMVP supports distributed execution of CNNs by splitting a big CNN

into two smaller components running on different mobile devices. In order to reduce the corre-

sponding communication costs, AMVP leverages an efficient feature compression method based

on quantization to compress the features transmitted between separated CNN components. Third,

AMVP is developed on top of a mobile stream processing platform called MStorm [8], where it

runs an adaptive scheduler to choose appropriate CNN candidates for different pipeline compo-

nents and assign these components to appropriate devices to achieve the user desired performance

goals. We implement a prototype system of AMVP on Android phones and demonstrate its su-

periority by running a sample CNN-based multitask video analysis application. The experimental

results show that, compared to two baseline solutions, AMVP achieves up to 60% lower latency

and 10% higher throughput with comparative accuracy.

In summary, this chapter makes the following contributions:

• It shows the possibility of combing three types of orthogonal strategies (i.e. offloading,
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Figure 6.1: An example of CNN-based multitask video processing, which consists of two
vision analysis pipelines and four CNNs.

compression and sharing) to support the execution of multiple computational intensive CNNs

on resource-constrained mobile devices.

• It designs an adaptive framework which chooses the most appropriate CNNs implementation

and running device for each pipeline component based on the user performance goals and

actual system resources available.

• It implements a prototype system on Android phones to shown its superiority over other

status quo approaches in supporting CNN-based multitask video processing.

6.1 Background and Motivation

6.1.1 CNN-based Multitask Video Processing

Multitask video processing is a new category of applications which applies multiple different

analysis pipelines on a given raw video stream to run various vision processing tasks, such as object

detection, people re-identification, image classification, activity recognition, etc. CNNs, because of

distinguished accuracy and effectiveness, have replaced traditional computer vision methods to be

the mainstream technology to implement complex vision tasks. In this case, CNN-based multitask

video processing becomes increasingly popular in our lives. Figure 6.1 is an example of CNN-

based multitask video processing which consists of two vision analysis pipelines and four CNNs.
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Figure 6.2: An example of Distributed Mobile Stream Processing (DMSP), which assigns six
components of a stream application to execute on four wireless-connected mobile devices.

It identifies both age and gender of victims shown up in a video stream from a helmet camera,

which helps disaster responders to collect the basic information about victims during recuse.

To deal with issues such as intermittent connectivity, bandwidth limitation, real-time require-

ments, privacy concern, etc., it is common to run CNN-based multitask video processing at the

edge rather than in the cloud. However, executing multiple CNNs concurrently is extremely com-

putational intensive while edge devices usually have very limited computing resources. In addition,

these resources are shared with other applications, which makes the actual resources available to

run CNNs even fewer. Moreover, the users expect to achieve good application performance and

the performance goals may change from time to time. All these factors make running CNN-based

multitask video processing at the edge devices challenging.

6.1.2 Distributed Mobile Stream Processing

Distributed Mobile Stream Processing (DMSP) is an emerging computing paradigm [70, 71,

108] that supports online stream processing at the edge. Different from previous systems which

offload computation tasks to a nearby edge server, DMSP uses resources of nearby mobile de-

vices to conduct real-time stream processing. In DMSP, a stream application is represented as a

graph called topology. Each topology consists of several logical units called component. Each

component implements an independent functionality of a whole pipeline. To execute a stream ap-

plication on a DMSP platform, the user at first needs to submit an application topology. Then,

the DMSP platform assigns different application components to proper devices to do distributed
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Figure 6.3: Motivation of AMVP: sharing components and layers of multiple CNNs and
running them on multiple mobile devices to improve the performance of multitask video
processing.

stream processing. Figure 6.2 shows an example of DMSP, where six components C1-C6 of the

stream application are assigned to run on four wireless-connected mobile devices M1-M4 to per-

form distributed stream processing.

Although DMSP makes it easier to deploy and scale stream processing at the edge, there are

still some challenges to solve. First, in DMSP, mobile devices are not dedicated to do stream

processing, other applications need to execute on them as well. This makes the actual available

resources for DMSP uncertain. It would be great if a component of a DMSP application could

adjust its workload based on the free resources on the device. Second, mobile devices in DMSP

are connected by wireless networks that have dynamic bandwidths. It would be great if the data

traffic size between two adjacent components can be adjusted according to the dynamic networks.

6.1.3 Motivation and Challenges

In this chapter, our goal is to develop an adaptive execution framework that enables CNN-based

multitask video processing to run on a DMSP platform. On the one hand, we realize that DMSP

can provide more computation resources to CNN-based multitask video processing to achieve

better performance. On the other hand, we find that CNNs can offer an elastic implementation

of application components which perfectly matches the above mentioned adaptive computing and

communication requirements of DMSP. Therefore, combing DMSP with CNN-based multitask

video processing is a perfect choice.
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However, as shown in Figure 6.3, to make the above combination possible, we need to solve

several challenges. First, we need to combine different pipelines in Figure 6.1 into a single one by

sharing common components. Second, we need to find an way which enables different CNNs to

share different common layers and adjust total computation workload. Third, we need to imple-

ment an adaptive scheduler which chooses the most appropriate CNN candidates for each applica-

tion component. Finally, we need to find a feature map compression technique which reduces the

traffic size between two separated CNN components running on two mobile devices.

6.2 AMVP Architecture
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Figure 6.4: AMVP architecture, which includes model training, splitting, profiling, selection
and assignment.

Figure 6.4 illustrates the architecture of AMVP, which consists of four stages: model training,

model splitting, model profiling and model selection & task assignment. The first three stages are

performed offline while the last state is performed online.

Model training. AMVP trains different CNNs for different vision processing tasks through

80



transfer learning. It first takes a well-known pre-trained model, such as mobileNet or ResNet, as

vanilla model. Then, it replaces the classifier layers of the vanilla model and freezes some of its

base layers. Next, AMVP trains the model with an input dataset (e.g., emotion dataset) and outputs

a new CNN (e.g., emotionNet) for a specific vision task (e.g., emotion analysis). By using different

vanilla models, replacing with different classifier layers, freezing different base layers and training

with different datasets, CNNs with different accuracy and computation workload are obtained for

different vision processing tasks. This stage is performed offline, with pre-trained models and

datasets as input, .h5 models as output.

Model splitting. Since complete CNNs might be too computational intensive for a resource-

constrained mobile device, they need to be split into two parts and run on different mobile devices

to achieve the desirable performance. To this end, after getting a group of .h5 CNN models from

the model training stage, AMVP splits each .h5 model into two and converts them to .tflite format

for mobile devices. To adapt to the uncertain available resources at mobile devices, AMVP splits

each .h5 model at different splitting points, resulting in different .tflite model pairs. For each pair,

the first part extracts intermediate features from the input and the second part makes inference on

the features output by the first part. For different pairs, the computation costs of the first and second

parts, as well as the features between them, are different. This stage is performed offline, with .h5

models as input and .tflite models as output.

Model profiling. After getting a set of .tflite model pairs for each vision task, AMVP profiles

each pair of .tflite models on mobile devices to get the execution latency, memory footprint, infer-

ence accuracy and traffic size of feature transmission. To set a benchmark, when profiling these

parameters, the mobile devices are assumed to be in an idle state, i.e., except for the necessary

system services, no other applications are running. This stage is also performed offline, with .tflite

models as input and diverse profile information as output.

Model selection & task assignment. Finally, after getting a group of .tflite models and cor-

responding profiles for each vision task, AMVP needs to assign a CNN-based multitask video

processing pipeline to execute on a DMSP platform to achieve the desirable performance. To this
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Figure 6.5: Transfer learning strategies for CNN models.

end, AMVP uses a resource and network monitor to acquire the actual available resources and

network speed at each mobile device. AMVP also uses a topology and user preference manager to

obtain the application topology and performance goals from the user. Then, based on these infor-

mation, AMVP chooses the optimal CNN candidate for each application component and assgins

all the components of application to the optimal devices based on an optimization function and a

task assignment scheme. A detailed description about optimization function and scheme are given

in the next section. This stage is performed online, with .tflite models and corresponding profiles,

actual resource and network condition, applicaiton topology and performance goals as input, with

an optimal model selection and task assignment as output.

6.3 Design of AMVP

6.3.1 Transfer Learning and Layer Sharing

In AMVP, CNNs for different vision processing tasks are obtained through transfer learning –

a popular approach which builds accurate CNNs for new tasks in a very efficient way. Instead of

learning from scratch, transfer learning starts with patterns learned from solving similar problems.

In computer vision, these patterns are pre-trained deep CNN models (e.g., VGGNet, MobileNet,

ResNet, InceptionNet, etc.) trained on a large benchmark dataset (e.g., ImageNet).

As shown in Figure 6.5, a pre-trained deep CNN model can be divided into two parts: the

convolutional base that consists of stacked convolutional and pooling layers and the classifier that
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consists of fully connected layers. The goal of a convolutional base is to extract features from

an input image and the goal of a classifier is to classify the image based on extracted features.

An interesting aspect of the convolution base is that it learns hierarchical features. The lower-

layer features are general and the higher-layer features are specialised, i.e., there is transition from

general to specific in the network [122]. General features can be reused in different tasks while

specific features strongly depend on the specific task and dataset.

When performing transfer learning, AMVP first replaces the original classifier in a pre-trained

model with a new classifier. Then, it fine tunes the parameters of the new model based on one of

three strategies shown in Figure 6.5. Strategy 1 re-trains all the weights of the model from scratch.

It requires a large dataset and a lot of computation. Strategy 2 freezes the whole convolutional base

and only trains the classifier. It uses the pre-trained model as a fixed feature extractor, which be

suitable for training tasks similar to the original one with small datasets. Strategy 3 is a compromise

between Strategy 1 and Strategy 2, which chooses how many layers in the convolutional base to

freeze. As a rule of thumb, if a new task has a small dataset, freezing more layers avoids overfitting.

But if a new task has a large dataset, retraining more layers improves the accuracy.

If CNNs for different tasks happen to be generated from the same pre-trained model, they will

have some common frozen layers in the convolutional base. To reduce the computation costs and

memory footprint, AMVP can share common frozen layers among multiple CNNs. An interesting

fact is that there is a trade-off between the number of frozen layers different CNNs share and the

inference accuracy each CNN achieves. In general, the more frozen layers different CNNs share,

the more computation costs can be saved, but the less specific each CNN will be and the lower

inference accuracy each CNN will achieve. AMVP needs to choose an appropriate frozen point

for each CNN model to keep a balance between the computation cost and inference accuracy.

6.3.2 Model Splitting and Feature Compression

In AMVP, to enable distributed CNN execution, a complete CNN model is split into two parts:

Feature Extraction (FE) and Feature Inference (FI). FE takes a raw image as input and outputs

features extracted from that image; FI takes features extracted from an image as input and outputs
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the inference results. There are multiple splitting points where a CNN model can be split, resulting

in a group of (FE, FI) pairs. To improve the processing throughput, FE and FI of a pair are

scheduled to run on different mobile devices. However, due to the large data size of intermediate

features and dynamic bandwidth of wireless networks, how to efficiently transfer features from

FE to FI becomes a key challenge. In AMVP, we use quantization-based compression method to

reduce the feature data size. The whole processes is shown in Figure 6.6, where the features output

by a FE is quantized by a quantizer before they are sent to a FI. Then FI receives the quantized

features, it uses a corresponding dequantizer to recover the original feature.

Splitting: There are multiple splitting points to divide a CNN into two separate parts. In different

splitting cases, the traffic sizes for feature transmission between two separate parts are different.

Usually, the size of features gradually gets reduced along with the inference process [79]. The

reason behind is: features at the lower layers represent lower level information which are more

detailed and fragmented; however, features at the higher layers represent higher level information

converged from the lower level, which are more abstract and advanced. Usually, the lower level

information is more than the higher level. However, this characteristic of CNNs does not mean that

AMVP should always split a CNN at a higher layer. Actually, except for the communication costs,

AMVP also considers the computation cost of two separated parts: although splitting at a higher

layer saves communication costs, computation costs of two parts become less balanced, which is

not beneficial for achieving high processing throughput.

Quantization: The features output by FE is quantized to n-bit precision by a uniform quantizer
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defined as follows:

F = b F−min (F)

max (F)−min (F)
· (2n − 1)e (6.1)

where F ∈ RH×W×C is the tensor containing the feature map data with H as height, W as width,

and C as channels. min(F) and max(F) denote the minimum and the maximum values in F,

respectively. F denotes the quantized feature tensor and b·e denotes a function rounding to the

nearest integer. When the quantized feature tensor F, min(F) and max(F) are obtained at the FI of

a CNN, F is dequantized by a uniform dequantizer:

F̂ =
max (F)−min (F)

2n − 1
· F + min (F) (6.2)

where F̂ denotes the dequantized feature tensor. It deserves to be mentioned that, although F̂ is not

exactly equal to F, some research [77,123,124] shows that, when the n value is above a threshold,

the quantization process has a negligible effect on the accuracy of image classification and object

detection. As described later in Section 6.4.2, AMVP uses n = 8 to compress the feature most

while keep the original accuracy.

Evaluation metric: We leverage three metrics to evaluate the quantization-based compression

performance. The first metric is compression rate (CR), which is defined as:

CR =
Feature size after compression

Feature size before compression
. (6.3)

The second metric is fidelity, which evaluates the information loss of dequantized features for

image classification. It is calculated by comparing the original onehot classification results with

the outputs inferred from the dequantized features [79]:

Fidelity = 1− 1

2N

N∑
i=1

Hamming(Oog
i , O

cp
i ) (6.4)

where Oog
i denotes the original onehot classification result of image sample i and Ocp

i denotes

the onehot output inferred from the dequantized features. Hamming(·) is the hamming distance
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function and N denotes the total number of samples.

The third metric is compression benefits (CPB), which compares the total latency for transmit-

ting features in compressed format and latency for transmitting features in original format. The

concrete definition is as follows:

CPB = OTR− (QT + TR +DQ) (6.5)

where OTR is the latency for transmitting features in original format, QT is the quantization

time for features, TR is the latency for transmitting features in compressed format and DQ is the

dequantization time for features.

6.3.3 Model Selection and Task Assignment

In AMVP, a set of .tflite models and profiles are deployed on mobile devices in advance, AMVP

needs to choose an appropriate model for each vision task and assign the whole CNN-based mul-

titask video processing pipeline to proper devices of a DMSP platform to achieve the desirable

performance. We name this procedure as Model Selection and Task Assignment (MSTA) and

formulate it mathematically as the following.

Let S denote the set of vision analytic tasks in a multitask video processing application and

let As, Ls and Ts denote the user setting goals for inference accuracy, processing latency and

processing throughput respectively for task s ∈ S. Let Ms represent the set of all available CNN

candidates for task s and let ms ∈ Ms denote a specific candidate with specific pre-trained CNN

type and frozen layers. In addition, we use ms = (m1
s,m

2
s) to denote a specific separation of

CNN model ms, which consists of two separate parts m1
s and m2

s. The size of features transmitted

from m1
s to m2

s is denoted as fm1
sm

2
s

and the communication bandwidth between devices k1, k2 that

execute m1
s, m

2
s is denoted as bk1k2 . D(fm1

sm
2
s
, bk1k2) denotes the latency for delivering features
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from k1 to k2. Then, the cost function for task s is defined as follows:

C(ms,u
k
s , s) = αs ·

As − A(ms)

As

+ βs ·
max(0, L(ms,u

k
s)− Ls)

L(ms,uk
s)

+ γs ·
max(0, Ts − T (ms,u

k
s))

Ts

(6.6)

where A(ms) is the inference accuracy of ms, L(ms,u
k
s) is the processing latency defined as

L(ms,u
k
s) =

lk1m1
s

uk1m1
s

+
lk2m2

s

uk2m2
s

+D(fm1
sm

2
s
, bk1k2) (6.7)

which includes both computation and communication latency and T (ms,u
k
s) is the processing

throughput defined as

T (ms,u
k
s) = min{uk1m1

s
tk1m1

s
, uk2m2

s
tk2m2

s
,

1

D(fm1
sm

2
s
, bk1k2)

} (6.8)

where uk
s = (uk1m1

s
, uk2m2

s
), ukj

mi
s
∈ (0, 1] denotes the percentage of computing resources allocated

to mi
s at device kj , l

kj
mi

s
and tkj

mi
s

denote the processing latency and throughput of mi
s when 100%

computing resources are allocated to mi
s at device kj .

In the cost function, the first term promotes to select a CNN candidate with the highest infer-

ence accuracy, the second term penalizes choosing a CNN candidate that achieves a processing

latency higher than the latency goal Ls and the third term penalizes choosing a CNN candidate

that achieves a processing throughput lower than the throughput goal Ts. However, since the video

stream is streamed at a fixed frame rate, there is no reward to achieve a latency lower than Ls and

a throughput higher than Ts. To allow trade-off among accuracy, latency and throughput, param-

eters αs, βs, γs ∈ [0, 1], αs + βs + γs = 1, can be set by the user to indicate the importance of

accuracy, latency and throughput, respectively. The larger a parameter is, the more important the

corresponding term is.

Given the cost function of each task, AMVP applies a widely used MinMaxCost scheme [38]
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Figure 6.7: Model Selection and Task Assignment (MSTA) for AMVP.

to perform the model selection and task assignment, which minimizes the cost of the task that has

the largest cost. The optimization problem of this scheme is formulated as follows:

minimize
ms,uk

s

C (6.9)

subject to: ∀s : C(ms,u
k
s , s) ≤ C, (6.10)

∀k :
∑
{mi

s}

ukmi
s
≤ Uk, (6.11)

∀k :
∑
{mi

s}

rkmi
s
≤ Rk (6.12)

where the cost of any task k must be smaller than C where C is minimized. {mi
s} is a CNN model

set where all the models inside are different. At device k, ukmi
s

denotes the percentage of computing

resources allocated to modelmi
s, Uk denotes the percentage of total available computing resources,

rkmi
s

denotes the runtime memory usage of model mi
s and Rk denotes the total available memory.

With the MinMaxCost scheme, AMVP assigns resources to all the tasks of video processing in a

fair way so that there is no obvious bottleneck.
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Algorithm 4: MSTA(), a greedy algorithm
Input : ∀s: Ms, As, Ls, Ts, αs, βs, γs;

∀k, k′: Uk, Rk, bkk′; ∀mi
s, k: lkmi

s
, tkmi

s

Output: Model selection Q and task assignment X
1 Q← ∅ , X ← ∅
2 minMaxCost← 1 // based on Eq. 6.6, the maximum cost is 1

// Initialize with CNNs that have the highest accuracy
3 P ← {∀s: ms|ms is CNN in Ms with highest accuracy}
4 while ∃ms ∈ P is NOT with the lowest accuracy do
5 CFL← common frozen layers of CNNs in P
6 Q← ∅
7 for ms ∈ P do

// split each model based on common frozen layers
8 ms ← (m1

s,m
2
s), separation of ms based on CFL

// record separated models as model selection
9 Q.add(ms)

10 X ← TaskAssign(Q, Input) // Algorithm 2
11 cost← 0, exit← ture, accCost← 1, s← NULL
12 for s ∈ S do

// calculate cost of each task and find the maximum
13 cost← max(cost, C(ms,u

k
s , s))

// update flag for early exit
14 if L(ms,u

k
s) > Ls or T (ms,u

k
s) < Ts then

15 exit← false

// find task with the minimum accuracy cost

16 if accCost > αs · As−A(ms)
As

then
17 s← s

18 accCost← αs · As−A(ms)
As

// update minMaxCost, model selection and task assignment
19 if cost < minMaxCost then
20 minMaxCost← cost

21 Q← Q, X ←X

22 if exit = ture then
23 return Q and X

// replace model for task with the minimum accuracy cost
24 m′s ← CNN in Ms with accuracy second to ms ∈ P
25 P ← P \ {ms} ∪ {m′s} // update model in P for task s

26 return Q and X
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In order to solve the above computationally hard nonlinear optimization problem, AMVP uses

a greedy heuristic algorithm to get an approximate solution. The key idea of this algorithm is

built on a basic workflow of MSTA shown in Figure 6.7(a). First, each task selects a specific

CNN implementation from all the available candidates, which implies the following information:

1) the used pre-trained CNN model; 2) the frozen CNN layers. This selection directly determines

the inference accuracy that each task can achieve. Then, after each task chooses its own CNN

implementation, information about how many common frozen layers are shareable among different

CNNs are easy to obtain. To minimize the total computation workload, different CNNs try to share

as many common frozen layers as possible. With this shared layer information, each related CNN

can be split into two sub-parts. Since the profile of each CNN sub-part is acquired in advance,

AMVP finally assigns all the sub-parts to proper devices based on the monitored system status.

Based on the assignment, throughput and latency of each task is determined. A detailed description

of this greedy algorithm is in Algorithm 4. First, we use Q and X to represent the final model

selection and task assignment and we set the minimum maximum cost value minMaxCost as 1

(line 1-2). Then, we create a set P by choosing the model with the highest inference accuracy

for each task (line 3). Starting with this initial set, a procedure is performed repeatedly until all

the models in the set have the lowest accuracy (line 4). In the procedure, we first figure out the

common frozen layers among all the models (line 5). Then, base on the common frozen layer,

each model is split into two and stored in Q (line 6-9). Next, based on the separated models and

the input information, we call a task assignment procedure (Algorithm 5) to get a task assignment

X (line 10). Based on the assignment X , we calculate the cost function of each task and record

the maximum one (line 13). We also calculate the latency and throughput of each task and check

if they meet the goals (line 14). If either of them does not meet the goal, the whole procedure

cannot exit in advance (line 15). Besides, we also check which task has the minimum accuracy

cost and record it for the later update (line 16-18). After we find the maximum cost of all tasks,

we compare it with minMaxCost and update minMaxCost with it if it is smaller (line 19-20).

Correspondingly, we also update Q and X with a better solution (line 21). Then, we check if the
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procedure can exit early (line 22). If so, we get current Q and X as the optimal solution (line

23). Otherwise, we update model set P by replacing the model of task with the minimum accuracy

cost and continue the loop procedure (line 24-25). In the end, when all the models in P have the

lowest accuracy, the loop procedure stops and the whole algorithm returns Q and X as the optimal

solution (line 26).

Algorithm 5: TaskAssign(), a genetic algorithm
Input : Q = {ms}; ∀s: As, Ls, Ts, αs, βs, γs;

∀k, k′: Uk, Rk, bkk′; ∀mi
s, k: lkmi

s
, tkmi

s

Output: Task assignment X
1 P ← RandomlyInitPopulations()
2 X ← SelectBest(C(ms,u

k
s , s), P )

3 gen← 0;
4 while gen < MAXGEN do
5 Ppa ← SelectParents(C(ms,u

k
s , s), P )

6 Pch ← GenerateChildren(Ppa)
7 Pmu ← Pch
8 for p ∈ Pmu do
9 p←Mutate(p,MR) // mutation rate: MR

// recombination period: RP
10 if gen%RP = 0 then
11 p← Recombination(p)

// Filter constraints: CSTR
12 Poff ← FilterOffspring(CSTR, Pch ∪ Pmu)
13 P ← SelectPopulations(C(ms,u

k
s , s), Ppa ∪ Poff )

14 X ← SelectBest(C(ms,u
k
s , s), {X} ∪ P )

15 return X

Algorithm 5 describes the task assignment procedure used in Algorithm 4. It is a genetic al-

gorithm which starts with a certain amount of random assignments (line 1) and runs an iterative

process (line 4-14) containing the following operations: a) SelectParents, which selects a certain

number of candidate assignments as parents based on the cost function (line 5); b) GenerateChil-

dren, which generates children assignments by running uniform crossover (line 6); c) Mutate,
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which chooses some rows of an assignment and changes the values at some random positions (line

9); d) Recombination, which exchanges two rows of a task assignment to achieve a lower cost (line

11); e) FilterOffSpring, which deletes task assignments that violate constraints (line 12); f) Select-

Populations, which selects new populations from all the candidates based on the cost function; g)

SelectBest, which selects an assignment with the minimum cost (line 13). After iterating the above

operations for some generations, it finally returns an assignment X which achieves a low cost with

best efforts (line 15).

A simple example of MSTA is in Figure 6.7(b), where three components of a video processing

application depends on CNNs. For each component, there are a group of CNN candidates with two

pre-trained CNN types (MobileNetV2, ResNet50V2) and different frozen layers. Based on MSTA,

GenderNet chooses a MobileNetV2-based CNN while both EmotionNet and AgeNet choose the

ResNet50V2-based CNNs. GenderNet executes the selected CNN at device M4. EmotionNet and

AgeNet execute the common frozen layers of the selected CNNs at device M2 and execute the

distinct layers of the CNNs at device M3.

6.4 Evaluation

6.4.1 Experimental setup

The implementation of AMVP are divided into two stages: offline stage and online stage. For

the offline stage, we first train a group of CNNs for different vision analytic tasks (e.g., gender

recognition, emotion recognition, age recognition, etc.) via transfer learning with Keras [125]

API of TensorFlow [126]. These CNNs are trained from different pre-trained CNNs with different

frozen layers, which result in a group of different .h5 models. The pre-trained CNNs we use are

MobileNetV2 and ResNet50V2 trained on ImageNet [127]. The dataset we use to train each vision

task contains 750 images for each category: 500 images for training and 250 images for validation.

After getting the .h5 models, we split each model at different layers and convert the separate models

into .tflite format. This results in a group of .tflite model pairs. Next, we run each .tflite model pair

on Android phones to profile critical information such as inference accuracy, processing latency,
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Figure 6.8: The number of frozen layers in the pre-trained CNNs affects the inference accu-
racy of vision analysis tasks.

memory footprint, feature traffic size, etc. We gather these information together as a database for

the later model selection and assignment.

For the online stage, we implement AMVP on top of a mobile distributed stream processing

system [108] running on a test platform shown in Figure 5.9, which consists of a helmet Yi R©

camera, four Essentail R© phones and a wireless manpack. An AMVP client application with a

group of .tflite model pairs is installed on each phone in advance. An AMVP server with the

profile database is running on the manpack for model selection and task assignment. Before a

user executes a multitask video processing application, he/she first sends a request containing the

application information and the performance goals to the AMVP server. When the server receives

the request, it calls the MSTA algorithm to select an appropriate CNN model for each vision task

and assigns them to run on proper devices. When an AMVP client receives the assignment from

the server, it loads the selected CNNs to memory to perform video analysis.

In our experiments, we utilizes a multitask video processing application in Figure 6.7(b) to eval-
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Figure 6.9: Latency, memory size of and feature size between separated CNNs at different
splitting points.

uate AMVP. We compare AMVP with two baseline strategies, i.e., Pure Sharing Strategy (PSS),

which shares common frozen layers among multiple CNNs on a single mobile device and Pure

Offloading Strategy (POS), which offloads CNNs layers to other devices without sharing. We run

extensive experiments with various performance goals under different computing and networking

condition to show how AMVP adapts to the dynamic edge environment.

6.4.2 Experimental results

Transfer learning of CNNs: We train CNNs for different vision analysis tasks through transfer

learning with different frozen layers in the pre-trained base models. As shown in Figure 6.8, in

general, ResNet50V2-based CNNs achieves higher inference accuracy than MobileNetV2-based

CNNs because the former models have deeper layers (190 vs. 155) and more parameters (23.56M
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vs. 2.25M). For each specific vision task, we observe that, as the number of frozen layers increases,

the inference accuracy first increases and then decreases. This is because the datasets we use for

training different vision analysis tasks are much smaller than the ImageNet [127] dataset used for

training ResNet50V2 and MobileNetV2. If we retrain all the layers in the base model (Strategy

1 in Figure 6.5), it is easy to encounter the overfitting problem. Specifically, we find that, the

overfitting problem for ResNet50V2-based CNNs is more serious than MobileNetV2-based CNNs

because it has more parameters. By contrast, if we freeze all the layers in the based model (Strategy

2 in Figure 6.5), it is difficult to extract specific features for each vision analysis task, which also

leads to low accuracy. Therefore, freezing some layers in the base model (Strategy 3 in Figure 6.5)

is a wise choice when performing transfer learning on large CNNs with small dataset. Besides, we

also observe that, the effect of freezing proper layers is more obvious for complicated applications.

For example, as shown in Figure 6.8(a), for gender recognition which is simpler than emotion or

age recognition, the accuracy difference of models with different frozen layers is smaller.

CNN model profiling: In Figure 6.9, we choose 17 points as candidate splitting points for Mo-

bileNetV2 and ResNet50V2. In fact, these points are the last layer of each CNN block. For each

splitting point, we profile the latency and memory size of two separated CNN parts P1 and P2, as

well as the feature size between them. As we observe in Figure 6.9(a), the latency of P1 almost

increases linearly with the increase of block number. Therefore, to balance the computation work-

load between P1 and P2, the optimal splitting point should be in the middle. However, the memory

size of a CNN is mainly concentrated in the back of the model (Figure 6.9(b)). Meanwhile, the

size of the feature between P1 and P2 is decreasing as the block number increases. Therefore,

from the perspective of memory balance and communication cost, splitting at a latter layer is bet-

ter. Moreover, from the layer sharing perspective, if we split different CNNs at a latter layer, these

CNNs will have a larger opportunity to share more layers by freezing the layers of their first parts.

However, as we observe from Figure 6.8, freezing too many CNN layers decreases the inference

accuracy of vision tasks. Overall, from the above profile data, we conclude that, when we split a

CNN model into two separated parts, there is a very complicated trade-off among different metrics
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Figure 6.10: An example (MobileNetV2-based AgeNet, splitting at layer 90, feature size≈ 50
KB) that shows how quantization precision affects quantization/dequantization time, com-
pression rate and fidelity.

including computation workload and memory footprint balance, communication costs, shareable

common layers, and inference accuracy. This motivates us to design a framework that is able

to adaptively choose the most appropriate splitting points for different CNNs based on the user

requirements and environment condition.

Feature compression and transmission: After we split a CNN into two separated parts P1 and

P2 and deploy them on two devices, P1 needs to transmit its extracted feature to P2 to finish the

inference. As mentioned in 6.3.2, in AMVP, we use a quantization-based method to compress the

feature before transmitting it. In Figure 6.10, we use a simple example to show how the quantiza-

tion precision affects the total quantization and dequantization time, compression rate and fidelity.

We use a MobileNetV2-based AgeNet, splitting at layer 90, with inter-part feature size around

50KB. As we see from the left side figure, when the quantization precision n decreases, both the

quantization and dequantization time also decreases. From the right side figure, we find that, al-

though the compression rate decreases as the quantization precision decreases, the fidelity metric

starts to decrease at some point (n=8, fidelity=0.999) as well. To keep the inference accuracy, we

adopt n=8 in AMVP.

With a fixed quantization precision n=8, we show in Figure 6.11 that how the network band-

width and feature data size affect the compression benefits. In the left side figure, we transmit

a fixed size feature (50KB) at different network bandwidths with both compressed size (CP) and

96



 0

 5

 10

 15

 20

 25

CP OG CP OG CP OG CP OG

T
im

e 
(m

s)

Network Bandwidth

 QT 
 TR 
 DQ 

80Mbps60Mbps40Mbps20Mbps

 0

 20

 40

 60

 80

 100

 120

CP OG CP OG CP OG CP OG

T
im

e 
(m

s)

Feature Size (Byte)

 QT 
 TR 
 DQ 

400K200K100K50K

Figure 6.11: An example that shows how network bandwidth (left, with feature size 50 KB)
and feature data size (right, with bandwidth 30Mbps) affect compression benefits.

 80

 85

 90

 95

 100

80 90

A
cc

ur
ac

y 
(%

)

Accuracy Req. (%)

Gender
Emotion

Age

 0

 500

 1000

 1500

 2000

 2500

80 90

La
te

nc
y 

(m
s)

Accuracy Req. (%)

Gender
Emotion

Age

 0

 0.5

 1

 1.5

 2

80 90

T
hr

ou
gh

pu
t (

F
/s

)

Accuracy Req. (%)

Gender
Emotion

Age

Figure 6.12: AMVP adapts to different accuracy requirement.

original size (OG). When the network bandwidth is low, although (de)quantization takes time, the

total amount of time for delivering the feature is still lower than that of delivering it in original

size. However, as the network bandwidth increases, transmitting feature in original size becomes

a better choice because the (de)quantization time exceeds the saved transmission time. In the right

side figure, we show that, when the network bandwidth is low, the larger the feature size is, the

more absolute compression benefits we can obtain by using the quantization-based compression.

In AMVP, system can adaptively choose to use the quantization-based compression method based

on the network condition.

Adapting to different accuracy requirement: The user of AMVP may have different accuracy

requirements. In Figure 6.12, we show how AMVP adapts to different accuracy requirements by
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Figure 6.13: AMVP adapts to different throughput requirement.

trading off other metrics. As we can see, the first user has an accuracy goal 80% for all three

vision tasks, which is not very high. He also has a latency goal 1000ms and a throughput goal

1F/s. Since he does not have strong preference on the accuracy goal, he sets α, β, γ all equal to

0.33. The second user, however, has a higher accuracy goal 90% and he has a latency goal 1000ms

and a throughput goal 1F/s as well. Since he has strong preference on achieving the accuracy goal,

he sets α = 0.8, β = 0.1 and γ = 0.1, respectively. Based on the different accuracy goals and

preference, AMVP offers a solution with lower accuracy and lower latency for the first user. For

the second user, however, AMVP offers a solution with higher accuracy by trading off the latency.

Both solutions meet the throughput goals.

Adapt to different throughput requirement: Video stream can be fed into AMVP at different

frame rate, which requires AMVP to provide different throughput. As shown in Figure 6.13, when

the input rate is 1F/s, AMVP provides a solution with high accuracy by using the ResNet50V2-

based model for each task, which also has higher latency. However, when the input rate becomes

3F/s, AMVP provides another solution by using the MobileNetV2-based models. This solution

provides 2.8x higher throughput and 5x lower latency than the original.

Adapting to different latency requirement: Sometimes, an AMVP user wants to instantly get an

inference result, which requires AMVP to provide a short latency. As shown in Figure 6.14, when

the latency required by the user is high (1500ms), AMVP provides a solution with a high latency

and a high accuracy. However, once the latency requirement becomes low (200ms), AMVP will
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Figure 6.14: AMVP adapts to different latency requirement.
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Figure 6.15: AMVP adapts to different computing resource.

choose another solution with lower latency, as well as lower accuracy. The throughput in both

solutions are equal to the input rate.

Adapt to different computing resource: The actual available computing resource of a mobile

device at the edge is uncertain because other applications also consume it. In Figure 6.15, we show

how AMVP adapts to changing computing resources of a mobile device by running a workload

application to consume a lot of computing resources. We compare AMVP with two other strate-

gies, i.e., the Pure Sharing Strategy (PSS), which shares layers among multiple CNNs on the same

device, and the Pure Offloading Strategy (POS), which offloads CNNs to other devices, to show

the superiority of AMVP. As we can observe from the left figure, when there is a workload applica-

tion running on a device, all the strategies choose to execute CNNs with lower accuracy to reduce

the computation cost. From the middle figure, we observe that: (a) when there is no workload,
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Figure 6.16: AMVP adapts to different network bandwidth.

AMVP achieves up to 48% shorter latency than PSS by offloading CNN layers to other devices

and around 6% shorter latency than POS by sharing common layers among CNNs; (b) when there

is workload, although all the three strategies choose a lightweight MobileNetV2-based model for

each task, AMVP achieves up to 61% shorter latency than PSS and POS; (c) for POS in the work-

load running case, GenderNet executing on the mobile device with the workload has obviously

higher latency than EmotionNet and AgeNet running on other devices. From the right figure, we

see that, when there is no workload, all three strategies achieve similar throughput. However, when

there is workload running, AMVP achieves around 10% higher throughput than PSS and around

7% higher throughput than POS.

Adapt to different network bandwidth: The edge network is dynamic: sometime, the network

bandwidth is large; some other time, it is small. In Figure 6.16, we show how AMVP outperforms

POS by running application under different network bandwidth. As we observe in the left figure,

when the network bandwidth drops from 50Mbps to 1Mbps, AMVP sacrifices the accuracy of

EmotionNet a little by selecting a model with more frozen layers so that different CNNs can share

more layers. However, for POS, it still uses the original models because it does not care about

layer sharing. From the middle figure, we find that, when the network bandwidth becomes 1Mbps,

AMVP chooses to executing all the CNNs locally while POS still offloads two CNNs to other

devices, which causes huge communication latency. From the right figure, we find that, AMVP

achieves around 1F/s throughput for all tasks in both 50Mbps and 1Mbps network scenarios. How-
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ever, for POS, since it offloads two tasks to other devices when the network bandwidth is 1Mbps,

the throughput of those tasks decreases.
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7. EAR: ENERGY-AWARE RISK-AVERSE ROUTING∗

The Emergency Operation Center (EOC), which is responsible for scheduling rescue tasks, re-

lies on data collected by first responders at different disaster sites to make informed decisions [128]. 

However, natural disasters damage the infrastructures of the affected areas, making communication 

in the disaster area extremely challenging. In this case, Disaster Response Networks (DRNs) are 

proposed to provide a temporary communication infrastructure. In DRNs, battery-powered wire-

less routers are deployed at disaster sites [39]. First responders send the processing results back to 

EOC via the wireless routers. Since the end-to-end connections are not available in DRNs, packets 

are stored in the routers temporarily. Vehicles (e.g., ambulances, supply vehicles, patrol cars) with 

on-board routers move around the disaster area, collect packets stored in the routers, carry and 

forward them to the intermediate (disaster sites or vehicles) or destination (EOC) node [40].

Many routing protocols have been proposed to support the communication in general DTNs [41–

44], which improve the routing metrics PDD and PDR by using unlimited level of packet repli-

cation [45]. This approach, however, is not energy-efficient, b ecause u nlimited l evel o f packet 

replication costs high TTE, which depletes the batteries of the fixed routers s oon. To prolong the 

lifetime of DRNs, the first research question a rises: how to restrict the level of packet replication 

to reduce TTE, while maintaining other metrics like PDD and PDR at an adequate level?

Moreover, most existing routing protocols only address routing metrics such as PDD, PDR and 

TTE. However, in DRNs, PDS is also significant. For example, a  path with the minimum PDD 

might have a large PDS, which makes the actual delivery delay of some packets much larger than 

expected. If the first responders prefer a stable delay, the path with the minimum PDS is actually 

a better choice. To satisfy the preference of different users, the second research question arises: 

how to allow first responders to express their preferences on PDD or PDS, when choosing routing 

paths in DRNs?
∗Reprinted with permission from “EAR: energy-aware risk-averse routing for disaster response networks” by 

Mengyuan Chao, Harsha Chenji, Chen Yang, Radu Stoleru, Evdokia Nikolova and Ala Altaweel in Adhoc Networks, 
2020, Copyright 2020 by Elsevier.
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Furthermore, first responders sometimes have the requirements to deliver some urgent packets

to the destination before a deadline. Otherwise, the value of these packets will be discounted. To

this end, the third research question arises: how to maximize the probability of delivering packets

to the destination before a given deadline?

To answer the three questions above, we present the Energy-Aware Risk-averse routing frame-

work (EAR). EAR models the mobility in DRNs with a stochastic multigraph [129]: the nodes

represent different centers and the weighted edges represent the delivery delay of packets between

centers via different types of vehicles. When first responders send data packets, multiple routing

paths can be utilized, each with a routing metric formulated by the Mean-Risk model [130], where

the PDD and PDS are combined into a single “risk” metric denoted by PDD + ρ ∗ PDS. The

DRNs users can trade off PDD with PDS by choosing different ρ values. In addition, EAR applies

the Max-Probability model [131] to improve the probability of delivering packets to the destina-

tion before a given deadline. Furthermore, to improve PDE, which measures the ratio of the total

distinct delivered packets over the total packet transmissions [132], EAR utilizes a parameter L to

restrict the level of packet replication and a differentiated service model to maintain other routing

metrics at an adequate level. EAR applies a “λ-optimal” algorithm to find multiple paths with the

optimal metrics to perform source routing. Simulation results show that EAR provides flexible

control of the routing risk and delivers packets to the destination in a more energy-efficient way

(up to 8x higher PDE with 4% lower PDR) than other well-known DTN routing protocols Prophet,

MaxProp, RAPID and Spray&Wait.

Out contributions in this chapter are summarized as the following: (1) we apply the risk-

aversion concept to address PDS, an important routing metric in DRNs that is overlooked by

most previous routing protocols; (2) we use a parameter L to restrict the level of packet repli-

cation and analyze its effects on different routing metrics; (3) we apply a differentiated service

model to deliver the packets with less TTE while maintaining other metrics at an adequate level;

(4) we introduce a “λ-optimal” algorithm [133] to search for the routing path with the lowest risk

or the highest probability to deliver the packets before a deadline; (5) we extend the “λ-optimal”
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algorithm to a multipath version and propose an EAR routing protocol based on it.

7.1 Background

This section first introduces the Post Disaster Mobility (PDM) model [134]. Then, a simple ex-

ample scenario is used to motivate our research. Finally, the state-of-the-art research is discussed.

7.1.1 Mobility Model

PDM uses two components to model the post disaster scenario: “centers” and “mobile agents

(MAs)”. Centers are important regions such as EOC, Triage and collapsed buildings, where a

wireless router is deployed to support the communication within the range. MAs include supply

vehicles (SVs), ambulances (Ambs), patrol cars (Pats) and first responders. They move in the

disaster area based on different moving patterns, each with an on-board or hand-held wireless

device that collects the buffered packets at one center, carries and forwards them to another.

Each SV is placed at a random center Cs ∈ C at the beginning. Then, it repeatedly chooses a

random center Ci ∈ C to travel to along the shortest path. Each Amb is initially located at Triage.

Then, it chooses a random center Ci ∈ C to travel to and returns to the Triage upon arriving.

This process is repeated, resulting in a series of alternating centers and Triages. Each Pat has a

predefined route {C1, C2, . . . , Cn, (C1)} ∈ C ×C × · · · ×C. They are placed at a random center

Ci initially and travel to Ci+1 along the shortest path. The process is repeated when arriving at

Ci+1. For first responders, each member is initially placed at a home center CH ∈ C. Then, he/she

randomly picks a point within the radius r of CH and travels to it along the shortest path. After

arriving at that point, the process is repeated. It should be noted that each category of MAs has its

own minimum and maximum speeds. They choose a speed randomly between the minimum and

maximum for each leg of travel.

There are two types of data flows in PDM: between centers and within a center. In this chapter,

we focus on routing between centers. The routing within a center is regarded as a direct delivery.
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Figure 7.1: A simple example scenario for calculating risk of DRNs routing.

Table 7.1: Two routing paths from a disaster site R to Emergency Operation Center E.

# Path Leg1 Leg2 PDD PDS P(X<25)% P(X<45)%
1 R→E Amb, SV - 20 12 72.4 95.9
2 R→T→E Amb SV 21 11.2 70.2 96.4

7.1.2 Risk of DRNs Routing

Based on our PDM, a simple example scenario is depicted in Figure 7.1, where the EOC (E)

and a Triage area (T) have been set up and a Rubble pile (R) is identified for search and rescue. Two

MAs are moving among these centers: Amb and SV. Due to different moving patterns of MAs,

the inter-contact rates between MAs and centers, and between MAs themselves, are different, and

are denoted by different λs. Based on the inter-contact information, we construct a stochastic

multigraph, where the vertices denote different centers and the edges denote the packet delivery

delays between centers via different MAs. The numbers next to each edge indicate (PDD, PDS) of

packet delivery delay via different MAs. We illustrate how to construct such graph in Section 3.2.

Now, suppose a first responder located at the Rubble pile R needs to send a report/message to a

manager located in EOC E. For this, multiple routing paths can be chosen. In Table 7.1, we list two

representative paths: path 1 is through Amb and SV (Hybrid vehicle edge); path 2 is from R to T

through Amb and then from T to E through SV. We observe that if the first responder needs a shorter

delay, Path 1 with the lower PDD is better. However, if he/she needs a more stable delay, Path 2

with the lower PDS is better. In addition, if he/she wants the message to be delivered in 25 minutes,

Path 1 should be chosen to maximize the probability. However, if the deadline is extended to 45
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minutes, Path 2 should be chosen instead. As this example shows, based on different preferences,

the optimal path is different. In order to adapt to diverse routing requirements of different first

responders, an adaptive DTN routing protocol is needed.

7.2 The EAR Routing Framework

This section describes the EAR routing framework. At first, we formulate the routing prob-

lem from high level (Section 7.2.1) and construct a stochastic multigraph (Section 7.2.2). Then,

we define the risk of DRNs routing by the Mean-Risk model and Max-Probability model [131]

(Section 7.2.3). Next, we extend the routing problem from single path routing to multipath rout-

ing (Section 7.2.4). Following that we introduce the differentiated service model (Section 7.2.5).

Finally, we describe the EAR routing protocol (Section 7.2.6).

7.2.1 Problem Formulation

Given a disaster response scenario with centers C and mobile agents categories M , the prob-

lem of finding an optimal routing path p from all available paths P for routing from Cs ∈ C to

Cd ∈ C is formulated as:

min
p∈P

Rp / max
p∈P

Pr(Dp ≤ D),

s.t. p = (Cs,M1, C1, ...,Mi, Ci, ...,Mn, Cd),

Ci ∈ C,Mi ∈M ,

(7.1)

where p ∈ P is a routing path consisting of alternating Ci and Mi, Rp is the risk of path p and

Pr(Dp ≤ D) is the probability that a packet is delivered to the destination before D along path p.

The detailed definition of Rp and Pr(Dp ≤ D) is given in Section 7.2.3.

7.2.2 Stochastic Multigraph Construction

To describe R(p) and Pr(Dp ≤ D) in detail, we at first transfer the PDM model into a stochas-

tic multigraph. In Figure 7.2, centers in the PDM model are mapped to vertices like C1 and C2,

the delay from C1 to C2 via vehicle type V is mapped to a directed edge from C1 to C2. The
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Figure 7.2: Constructing stochastic multigraph for EAR through simulation.

delay consists of two parts: the traveling delay T from C1 to C2 via V and the waiting delay W

at C1 for V . The traveling delay T (Tm, Tv), where Tm and Tv represent the mean and variance,

respectively, can be calculated by dividing the length of the shortest path between C1 and C2 by

a random speed in the speed range of V . The waiting delay W (Wm,Wv), however, is not easy to

obtain: packets arrive at C1 at any time, and the time when a vehicle arrives at C1 and heads to C2

is determined by its mobility pattern. To calculate W (Wm,Wv), we utilize a new concept called

“Shortest Path Nodes (SPN)”, which is defined as: for any Ci, if C2 lies on the shortest path from

C1 to Ci, then Ci ∈ SPN(C1, C2). The idea behind SPN is: if a vehicle goes from C1 to any center

in SPN(C1, C2) along the shortest path, it must go through C2. In other words, if a vehicle of type

V arrives at C1 and heads to Ci, the packets at C1 with C2 as the next hop should be forwarded to

the vehicle if Ci ∈ SPN(C1, C2). Then, the waiting time at C1 for V heading to C2 is calculated

as follows: run a simulation in the ONE simulator [46] for a period of time and record all times

that vehicles of type V arrive at C1 and head to Ci ∈ SPN(C1, C2). We assume that packets arrive

at C1 with a Poisson process [82] and record all the arriving times. After getting all the vehicle and
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packet arriving times, we calculate waiting delay W (Wm,Wv) by statistical methods.
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Figure 7.4: Vehicle-center and vehicle-vehicle inter-contact time in DRNs.
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Indeed, there are other approaches to build such stochastic graph. For example, one can ob-

tain the inter-contact time (ICT) among vehicles and centers (including vehicle-to-vehicle), either

through simulations or by learning from history. Then, the ICT can be used to easily construct

such a stochastic graph. We illustrate the process via an example shown in Figure 7.3. In our

scenario, we focus on three centers C1, C2, C3 and two mobile agents m1, m2. The mobile

agents travel among centers and meet each other, in an opportunistic manner. Through simu-

lations (with results depicted in Figure 7.4) in the ONE simulator, we find that the ICT between

vehicles-and-centers and vehicles-and-vehicles in DRNs follows an exponential distribution, which

matches the observation in other DTN networks such as social opportunistic networks [135, 136]

or VANETs [137–139].

Suppose through simulation (or learning from history), we obtain the inter-contact rate λm2C1

between m2 and C1 and λm2C3 between m2 and C3. Then, the expectation of ICT between m2

and C1 and between m2 and C3 are 1/λm2C1 and 1/λm2C3, respectively. Since the inter-contact

time between two nodes follows exponential distribution, the packet delivery delay between them

follows the same exponential distribution [140, 141]. If the delay of each hop is independent,

the sum of these delays will follow a hypo-exponential distribution [142], with mean equal to∑
i 1/λi and variance equal to

∑
i 1/λ

2
i , where λi is the inter-contact rate between two nodes of

each hop. Then, an edge from C1 to C3 via m2 can be represented as (MC1m2C3, VC1m2C3), where

MC1m2C3 = 1/λm2C1 + 1/λm2C3 and VC1m2C3 = 1/λ2
m2C1 + 1/λ2

m2C3. The opportunistic nature of

communication is also employed by allowing vehicle-to-vehicle contacts to relay packets. More

specifically, a “virtual vehicle” between two centers can be created whenever multiple vehicles

meet in an opportunistic manner. This is illustrated in Figure 7.3(c) by the edge m2m1 between

C3 and C2, where MC3m2m1C2 = 1/λm2C3 + 1/λm1m2 + 1/λm1C2 and VC3m2m1C2 = 1/λ2
m2C3 +

1/λ2
m1m2 + 1/λ2

m1C2.

7.2.3 Mean-Risk and Max-Probability Models

This subsection introduces how to use the Mean-Risk model and the Max-Probability model to

formulate Rp and Pr(Dp ≤ D) defined in Section 7.2.1.
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The Mean-Risk Model: A path is regarded as “risky” if it has a high probability of realizing

a much larger delay than expected [129]. To quantify this “risk”, EAR adopts the Mean-Risk

model proposed in [131]: the risk Rp of a path p is defined as Rp = µp + ρ ∗ σp, where µp is the

expectation of the delay, σ2
p is the variance of the delay and ρ(ρ ≥ 0) is a coefficient representing

the importance of variance. ρ = 0 helps choosing the path with the lowest mean while a ρ = ∞

helps choosing the path with the lowest variance. However, it should be noted that the risk of the

path does not equal to the sum of its edges’ risks, i.e.,

Rp =
∑
e∈p

µe + ρ ∗
√∑

e∈p
σ2
e 6=

∑
e∈p

Re =
∑
e∈p

µe + ρ ∗
∑
e∈p

σe. (7.2)

Due to lack of sub-optimality, finding path with the lowest risk is challenging, because any dy-

namic programming approach based on substructure would fail. To deal with this, we need a

λ-optimal algorithm introduced in Section 7.3.

The Max-Probability Model: To maximize the probability of delivering a packet to a destination

before a deadline D, EAR adopts the Max-Probability model [131], which defines max{Pr(Dp ≤

D)} as the objective, where Dp represents the end-to-end delay of path p. According to one side

Chebyshev inequality, we get the upper bound for the probability Pr(Dp ≤ D) as follows:


Pr(Dp ≤ D) ≤ 1− 1

1+ϕ2
p
, if D ≥

∑
e∈p µe,

P r(Dp ≤ D) ≤ 1
1+ϕ2

p
, if D ≤

∑
e∈p µe,

(7.3)

ϕp =
D − µp
σp

=
D −

∑
e∈p µe√∑

e∈p σ
2
e

. (7.4)

To achieve a larger probability Pr(Dp ≤ D), a higher bound is preferred. For both cases, the

highest bounds are achieved when ϕp achieves the maximum value. Similar to Rp, ϕp does not

have an optimal substructure. Therefore, a λ-optimal algorithm is needed to find the path with
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the maximum ϕp as well. However, since the algorithm for the Max-Probability model is already

given in [133], we omit it in this chapter.

7.2.4 K-Safest Paths Problem (KSfP)

In EAR, the “safest” path on the stochastic multigraph is the one with the lowest Rp for the

Mean-Risk model or the one with the highestϕp for the Max-Probability model. To further improve

the performance, multiple routing paths should be utilized, which leads to the K-Safest Paths

Problem (KSfP). The objective of KSfP is to choose the K “safest” paths from the stochastic graph

S for a pair of source and destination nodes.

We solve KSfP from the K = 1 case. As described above, neither Rp nor ϕp has the sub-

optimality and, thus, no dynamic programming approaches based on substructure work for them.

To deal with this issue, we utilize a λ-optimal algorithm [133] to search for the paths with the

optimal nonlinear metrics by iteratively using a linear metrics µp + λi ∗ σ2
p , which starts from the

λ0 = 0, λ1 =∞ cases and updates λi towards the one achieving a better original nonlinear metric.

The λ-optimal algorithm for the Max-Probability model is already given in [133]. In this chapter,

we prove that it works for the Mean-Risk model as well (Section 7.3.2). Then, to solve the K > 1

case, we extend the simple path λ-optimal algorithm to a multipath version. To avoid repetition, we

only illustrate how it works for the Mean-Risk model in Section 7.3.3 but omit the corresponding

part for the Max-Probability model.

7.2.5 Differentiated Service Model

To prolong the lifetime of DRNs, EAR improves PDE by restricting the level of packet repli-

cation, while maintaining other routing metrics (such as PDD, PDS and PDR) at an adequate level

with a differentiated service model. In this model, we classify packets into four priority classes,

namely urgent, regular, non-urgent and custom: The urgent packets prefer low PDD; the non-

urgent packets prefer low PDS and less TTE; the regular packets, however, prefer a balance among

PDD, PDS and TTE; the custom packets, specifically, allows the user to set a specific deadline D.

When a user sends a packet, he/she needs to choose a specific class. Meanwhile, we classify the
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Table 7.2: Differentiated service model in EAR.

urgent regular non-urgent custom
sufficient ρ = 0, K = L ρ = 1, K = L

2 ρ = 10, K = 1 D, K = f(D)
insufficient ρ = 0, K = 1 ρ = 1, K = 1 ρ = 10, K = 1 D, K = 1

energy condition of DRNs into two classes, namely sufficient and insufficient: In sufficient case, the

average remaining battery of fixed routers is more than 20%, while in insufficient case, the average

remaining battery of fixed routers is less than 20%. The energy condition of DRNs determines how

many packet replicas can be used for the packet transmission.

When transmitting a non-custom packet, the risk-averse parameter ρ and the number of replicas

K are chosen based on the rules in Table 7.2, where L(L ≥ 2) is a system parameter. When

transmitting a custom packet, EAR chooses the number of packet replicas based on the length of

D. More specifically, it divides D into two cases. One is the long deadline case, which means

D ≥ 2 ∗PDDst; the other is the short deadline case, which means D < 2 ∗PDDst. PDDst is the

delay of the shortest path obtained from the Dijkstra’s algorithm. In the long deadline case, EAR

can set K = L to make PDR approaching 100% or set K = 1 to save energy. In the short deadline

case, EAR can set K = L; otherwise, PDR becomes too low. However, if the energy condition is

insufficient, EAR will set K = 1 to save energy.

7.2.6 The EAR Routing Protocol

The EAR routing protocol performs source routing: when K “safest” paths are obtained, each

path is stored in the head of each packet replication at the source node. Then, K replicated packets

are transmitted along the K paths to the destination. Based on the current carrier of packets, the

forwarding strategies are classified into two cases:

Case (a): the packets are currently at center Ci. Then, only when 1) the next hop Cj of vehicle V

is decided, 2) “Ci − V −Ck” are in the routing paths of the packets, 3) Cj ∈ SPN(Ci, Ck) and 4)

these packets do not exist in vehicle V , will the packets be sent to the vehicle V when it passes by.

Case (b): the packets are currently carried by vehicle V . Then, only when “V − Ci” is a segment

of the routing paths (or Ci is in the remaining paths) and these packets do not exist in center Ci,
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Algorithm 6: The EAR routing protocol
Input : PDM scenario P , source s, destination d
Output: None

1 if s and d are Centers then
2 Build the stochastic multigraph S using P
3 K, ρ ← Differentiated Service Model
4 Paths K← λ-optimal alg. with input S, K, ρ, s, d
5 Source routing along the paths in K
6 else if s is a first responder, d is a Center then
7 cs ← the Center around which s works
8 Direct delivery from s to cs
9 Apply EAR at cs with input P , cs, d

10 else if s is a Center, d is a first responder then
11 cd ← the Center around which d works
12 Apply EAR at s with input P , s, cd,
13 Direct delivery from cd to d

14 else
15 cs, cd ← the Centers around which s, d work
16 if cs = cd then
17 Directly delivery from s to cs then to d

18 else
19 Direct delivery from s to cs
20 Apply EAR at cs with input P , cs, cd
21 Direct delivery from cd to d

will the packets be sent to center Ci when the vehicle V passes by it.

Algorithm 6 shows the complete EAR routing protocol. Based on whether the source node s

and the destination node d are first responders or centers, EAR divide the routing into four cases.

The first case is that both s and d are centers (step 1). In such case, a stochastic multigraph S is

constructed from PDM scenario P at first (step 2). Then, it chooses proper K and ρ values based

on the Differentiated Service Model (step 3). Next, it uses the λ-optimal algorithm (step 4) to find

the K safest paths. Finally, the packets are routed along these paths to the destination d (step 5).

If s is a first responder (step 6), the packet is first delivered directly to the nearest center (steps

7-8), then the EAR protocol is applied as if the packet was created at the center (step 9). The steps
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are similar if d is a first responder (steps 10-13). If both s and d are first responders working at

the same center (steps 14-16), the source sends the packets to the center and the center sends the

packets to the destination (step 17) directly; otherwise, a combination of the previous strategies is

applied (steps 18-21).
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Figure 7.5: Enumerate extreme points (left) and skip unnecessary enumerations (middle,
right) to search for the λ-optimal path.

7.3 λ-optimal Algorithm For Mean-Risk Model

In this section, we introduce a λ-optimal algorithm for the Mean-Risk model to find the routing

path(s) with the minimum risk(s). At first, we introduce the basic version [143] to explain the high-

level idea. Then, we introduce the enhanced version that reduces the time complexity of the basic

version by applying three theorems from [133]. Finally, we extend the λ-optimal algorithm from

the single path version to a multipath version to find K paths with the minimum risks.

7.3.1 Basic Version

In [143], the authors proposed a basic version λ-optimal algorithm for the Max-Probability

Model based on the following two facts: 1) the optimal path only exists in the extreme points of

the convex hull for all the candidate paths in the Mean-Variance (M-V) plane; 2) there is a one-

to-one correspondence between the extreme points and the breakpoints of the parametric shortest

path problem [144] with edge weights Me +λ ∗Ve (breakpoints mean the λis at which the shortest

path changes). In [131], the author showed that the two facts hold for the Mean-Risk Model as

well. Therefore, we develop a similar λ-optimal algorithm for the Mean-Risk Model as follows:
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Step 1: Search two optimal paths for the linear metric Mp + λVp with λ = 0 and λ = ∞,

respectively. Their projections on the M-V plane are points A(M0, V0) and B(M∞, V∞) in Figure

7.5 (left). Compare these two paths with the original metric Mp + ρ
√
Vp, choose the one with

better metric as the current optimal path.

Step 2: Calculate the slope kAB of line AB, which generates a new λAB = −1
kAB

. Then, find the

optimal path for Mp+λABVp by assigning Me+λABVe as the edge weights. Since Mp+λABVp =∑
e∈p(Me + λABVe), classic shortest path algorithms can be used to find the optimal path (point

C). Next, calculate the original metric Mp + ρAB
√
Vp of path C and replace the current optimal

path with C if C’s metric value is lower than that of the current optimal path.

Step 3: Recursively find new λ-optimal paths between A,C and between C,B with λAC and λCB.

If the path is identical to the endpoints, the recursive process stops; otherwise, update the current

optimal path and λ to do more searching. When the whole procedure stops, return the current

optimal path as the optimal for the original metric.

The essence of the algorithm above is a quasi-binary search which exhaustively enumerates

all the extreme points with different breakpoints. Therefore, its time complexity depends on the

total number of extreme points (breakpoints). In [144], the author proved that there are NΘ(logN)

breakpoints in total for the worst case. Therefore, the time complexity of this λ-optimal algorithm

is O(NΘ(logN)), where N is the number of nodes in the network.

7.3.2 Enhanced Version

Although the basic version λ-optimal algorithm can find the optimal path eventually, it is time

consuming because it needs to recursively exhaust all the extreme points (breakpoints). In [133],

the authors proposed three theorems to eliminate some unnecessary enumerations, which greatly

reduces the time complexity. However, all these theorems are built upon and proved against the

Max-Probability model, whether they hold for the Mean-Risk Model remains unclear. In this

chapter, we prove that these theorems hold for the Mean-Risk Model as well. In the following part,

we will first give these theorems, then prove the correctness and finally illustrate their benefits.

To begin with, we introduce some technical terms with an example in Figure 7.5 (middle). A
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parabola M + ρ
√
V = r intersects with axis M at M = r. The square points on the M-V plane

represent the candidate paths. Points L1 and R2 represent the λ-optimal paths p0, p∞ for λ = 0

and λ =∞, respectively. Currently, since the metric value of p0 is better than that of p∞, we name

p0 as the current optimal path and its metric value as the current best metric value. We name the

line with slope equal to −1
λ

and going through the λ-optimal path point as the “λ-optimal search

line”. In Figure 7.5, the 0-optimal search line and the∞-optimal search line intersect at N0. Then,

with L1, R2, we calculate a new λL1R2 and find the λL1R2-optimal path at point R1/L2. The λL1R2-

optimal search line intersects with the 0-optimal search line and∞-optimal search line at N1, N2,

respectively. We name the triangular region4LiNiRi where paths with better metrics might exist

as a “candidate region” and the point Ni as the “probe point” of region4LiNiRi.

Theorem 1: If the metric value M + ρ
√
V of a probe point is larger than the current best, its

corresponding candidate region contains no global optimal path.

Proof 1: Suppose a probe point happens to be a path point, then no other path points in its

corresponding candidate region can be the optimal, since the optimal path only occurs among

extreme points. If the probe point is not a path point, we can add an imaginary path there. If the

metric value of the imaginary path is larger than the current best, the metric values of those real

path points in the candidate region can only be larger. Therefore, they can not be global optimal.

Benefit 1: Theorem 1 can reduce the time complexity of the basic version λ-optimal algorithm

by removing the candidate region whose probe point satisfies the condition above from recursive

searching. Figure 7.5 (right) illustrates this case, where the right candidate region 4L2N2R2 is

removed without searching because the metric value ofN2 is larger than that of the current optimal

path (p0). On the contrary, the left candidate region4L1N1R1 is searched since N1 has a smaller

metric value than the current best. Therefore, paths with better metric values might be found.

Theorem 2: The optimal path can only be found with λ upper bounded by λu, the negative

inverse of the slope of the tangent to the parabola M + ρ
√
V = M0 + ρ

√
V∞ at the intersection

of the 0-optimal and ∞-optimal search lines. When λ > λu, the metric value M + ρ
√
V of the

λ-optimal path can not be smaller than that of the λu-optimal path.
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Proof 2: Suppose λ > λu, if the λ-optimal path is the same as the λu-optimal path, finding

the optimal path with λu is enough; if the λ-optimal path is different from the λu-optimal path,

Mλu 6= Mλ or Vλu 6= Vλ. From the definition of λu, we get:

λu =
ρ

2
√
V∞

, (7.5)

From the definition of λ-optimal, we get:

Mλu + λuVλu < Mλ + λuVλ, (7.6)

Mλ + λVλ < Mλu + λVλu . (7.7)

Since λ > λu, we get:

Vλu > Vλ, Mλ > Mλu . (7.8)

Then, according to (5)(6)(8), we get:

Mλ −Mλu

Vλu − Vλ
> λu =

ρ

2
√
V∞

>
ρ

2
√
Vλ
. (7.9)

By multiplying two sides with
√
Vλu +

√
Vλ, we get:

Mλ −Mλu√
Vλu −

√
Vλ

>
ρ

2
√
Vλ

(√
Vλu +

√
Vλ

)
> ρ, (7.10)

Mλ + ρ
√
Vλ > Mλu + ρ

√
Vλu . (7.11)

Therefore, when λ > λu, even if the λ-optimal path is different from the λu-optimal path, the risk

value of it is larger than that of the λu-optimal path.

Benefit 2: Theorem 2 can reduce the time complexity of searching the λ-optimal path from

O(N2) to O(1) if λ is larger than λu. If a lot of λs satisfy this property, the time complexity of the

basic λ-optimal algorithm can be greatly reduced.
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Theorem 3: The optimal path can only be found with λ lower bounded by λl, the negative

inverse of the slope of the tangent to the parabolaM+ρ
√
V = Mcopt+ρ

√
Vcopt at the intersection

of the parabola and 0-optimal search line. When λ < λl, the metric value M + ρ
√
V of the λ-

optimal path can not be smaller than either that of the λl-optimal path or that of the current optimal

path.

Proof 3: Suppose λ < λl, if the λ-optimal path is the same as the λl-optimal path, finding

the optimal path with λl is enough; if the λ-optimal path is different from the λl-optimal path,

Mλl 6= Mλ or Vλl 6= Vλ. From the definition of λl, we get:

λl =
ρ

2
√
Vd
, (7.12)

where Vd is the value of V at the intersection point. Following similar steps as (6)(7)(8)(9), we get:

Mλ −Mλl√
Vλl −

√
Vλ

<
ρ

2
√
Vd

(√
Vλl +

√
Vλ

)
. (7.13)

Next, let us consider two cases: (a)
√
Vλ <

√
Vd; (b)

√
Vλ ≥

√
Vd. In case (a), since

√
Vλ <

√
Vd

and similar to (8) we have Vλl < Vλ, we get:

(
√
Vλl +

√
Vλ) < 2

√
Vλ < 2

√
Vd. (7.14)

Combine (13)(14), we get:

Mλ −Mλl√
Vλl −

√
Vλ

< ρ⇒Mλ + ρ
√
Vλ > Mλl + ρ

√
Vλl . (7.15)

In case (b), since
√
Vλ ≥

√
Vd, Mλ ≥M0 and M0 = Md, we can easily get:

Mλ + ρ
√
Vλ ≥Md + ρ

√
Vd = Mcopt + ρ

√
Vcopt (7.16)

Therefore, when λ < λl, even if the λ-optimal path is different from the λl-optimal path, the risk
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value of it is either larger than that of the λl-optimal path or not smaller than that of the current

optimal path.

Benefit 3: Theorem 3 can reduce the time complexity of searching the λ-optimal path from

O(N2) to O(1) if λ is smaller than λl. If a lot of λs satisfy this property, the time complexity of

the basic λ-optimal algorithm can be greatly reduced.

We combine Theorem 1-3 with the basic version λ-optimal algorithm to get an enhanced ver-

sion as Algorithm 7 as follows (the underlined part is for the multipath-version we describe later):

First, it uses p, q and Q to present the current optimal path, the region being searched and the

regions that have not been searched, respectively (step 1). Then, it searches the λ-optimal path for

λ = 0 (path p0) and for λ =∞ (path p∞) and store the one with a lower risk as the current optimal

path (steps 2-5). Next, it puts the region enclosed by p0, p∞ and the intersection (p0.M , p∞.V )

into Q as an candidate region (step 6) and updates λl, λu respectively (step 7). Following that,

it goes over each candidate region in Q by: 1) applying Theorem 1 (steps 9-10); 2) calculating a

new λ (step 11); 3) applying Theorem 2 (steps 12-16); 4) applying Theorem 3 (steps 17-21); 5)

calculating the λ-optimal path for the current λ (steps 22); 6) checking whether the λ-optimal path

is different from the left and right points of the region (step 23); 7) updating the current optimal

path and λl if the λ-optimal path has a lower risk than the current optimal path (step 24-26); 8)

adding new candidate regions into Q (steps 27-29). Finally, when all the candidate regions in Q

are checked, it will return the current optimal path as the path with the minimum risk (step 32).

In [133], the authors proved that the time complexity of the enhanced λ-optimal algorithm for

the Max-Probability model isO(N2log4N) on the average. Similarly, the algorithm has an average

O(N2log4N) time complexity for the Mean-Risk model. The reader can refer to [133] for details.

7.3.3 Multipath Version

In the above section, a λ-optimal algorithm for finding the path with the minimum risk is

introduced. However, to further improve routing metrics such as PDD and PDR, multiple routing

paths should be used to transmit several replicas for a packet simultaneously. This leads to the

“K-safest paths problem” mentioned before, which aims at finding “K paths with the least risks”
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Algorithm 7: λ-optimal alg. for Mean-Risk model
Input : multigraph S, source s, destination d, ρ
Output: path p with the least risk

1 path p← ∅, region q← ∅, regions Q← FIFO queue
2 p0← λ-optimal-path(0), p∞← λ-optimal-path(∞)
3 if p0 = p∞ then
4 return p0

5 else
6 p← (p0.risk < p∞.risk) ? p0 : p∞

7 Q.enqueue(region(l: p0, r: p∞, prob: (p0.M, p∞.V)))
8 calculate λl and λu
9 while q← Q.dequeue() 6= ∅ do

// Theorem 1
10 if q.prob.risk > p.risk then
11 continue

12 λ←− q.l.M−q.r.M
q.l.V−q.r.V

// Theorem 2
13 if λ ≥ λu then
14 if λu was not searched then
15 λ← λu

16 else
17 continue

// Theorem 3
18 if λ ≤ λl then
19 if λl was not searched then
20 λ← λl

21 else
22 continue

23 pλ ← λ-optimal-path(λ)
24 if pλ 6= q.l and pλ 6= q.r then
25 if pλ.risk < p.risk (and pλ /∈ K) then
26 p← pλ and update λl
27 locate probl and probr with λ-optimal line
28 Q.enqueue(region(l: q.l, r: pλ, prob: probl))
29 Q.enqueue(region(l: pλ, r: q.r, prob: probr))

30 return p
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for the Mean-Risk model. In the following, we illustrate how to solve this problem by extending

the λ-optimal algorithm to a multipath version.

First of all, by analyzing the procedure of λ-optimal algorithm, we find that it only searches the

triangle region enclosed by p0, p∞ and (p0.M, p∞.V ). This region is enough for finding the path

with the minimum risk because the least risky path must occur on the left side of the line connecting

p0 and p∞. However, when the number of required paths increases to K(K > 1), algorithms that

only search the triangle region might fail, because there might be no sufficient paths in that region.

In the following, we consider the K-safest paths problem in two cases.

Case 1: N ≥ K paths exist in the triangle region L1N0R2

We observe that the reason Theorem 1-3 can speed up the basic version λ-optimal algorithm is,

it only finds the global optimal solution. Under this target, regions that do not contain the global

optimal solution can be ruled out. However, when we extend it to multipath version, those regions

can not be ruled out any more, because path points there might be the 2nd − Kth optimal. With

this in mind, we propose to call Algorithm 7 with a slight modification (the underlined part) for K

times to find “K paths with the least risks”, which works as the following for each iteration i:

When a λ-optimal path is found, first check whether it has already been recorded in the path

container K. If it is not recorded and has a better metric value than the current best, replace the

current optimal path with the λ-optimal path to continue the searching process; otherwise, just use

the λ-optimal path to continue the searching process but do not replace the current optimal path.

In the end, add the current optimal path as the ith optimal path into the path container K.

Case 2: N < K paths exist in the triangle region L1N0R2

In such case, the algorithm above can find N paths with the minimum risks at most, which do

not meet the demand. Therefore, instead of trying to find K paths with the minimum risks accu-

rately, we propose an approximate algorithm that uses a similar idea with the λ-optimal algorithm,

which works as follows: First, find P (P � K) paths that have the smallest Mp + λVp values with

λ = M0−M∞
V∞−V0 . Then, sort these P paths by the risk metric Mp + ρ

√
Vp in ascending order. Finally,

add the first (K − N) paths that are not in K from the sorted P paths to finally get “K paths with
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the minimum risks.”

Algorithm 8: Approximate multipath λ-optimal alg.
Input : multigraph S, source s, destination d, ρ, K
Output: set K containing K paths with the least risks

1 path set K← ∅
2 for i← 1 to K do
3 pi← λ-optimal alg. with a tiny adjustment (the underlined red part)
4 K.add(pi) // Set K does not allow duplicated paths

5 if K.size < K then
6 P← P paths with least Mp + ρ ∗ Vp by Dijkstra’s alg.
7 sort P by Mp + ρ ∗

√
Vp in ascending order

8 for j ← 1 to P and K.size 6= K do
9 if pj /∈ K then

10 K.add(pj)

11 return K

By combining Case 1 and Case 2, we get a complete multipath λ-optimal algorithm as Algo-

rithm 8. As we mentioned eariler, the time complexity for the λ-optimal algorithm isO(N2log4N).

Then, the time complexity for Case 1 is K ∗O(N2log4N) = O(KN2log4N). For Case 2, since it

calls the Dijkstra’s algorithm for P times, the time complexity is P ∗ O(N2) = O(PN2). Then,

the time complexity for the whole algorithm is O(KN2log4N + PN2).

7.4 Evaluation

In this section, we evaluate the performance of EAR by both mathematical analysis and simu-

lations. At first, we analyze the effects of risk-aversion and level of replication on different routing

metrics. Because of space limitations, we only present the analysis for the Mean-Risk model.

Then, we introduce the experimental setup and present the experimental results for both Mean-

Risk and Max-Probability models with different parameters. Finally, we compare the performance

of EAR with other 4 well-known DTN routing protocols.
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7.4.1 Mathematical Analysis

Suppose set P has n random variables, which represent the delays of all paths from a given

source to a given destination in the stochastic multigraph. Each of these random variables Pi

has an associated mean and standard deviation (Mi,
√
Vi) = (PDDi, PDSi). According to the

Mean-Risk model, each Pi is assigned with a scalar risk metric (Ri = PDDi + ρ ∗ PDSi) for

a risk-aversion coefficient ρ ≥ 0. This set of n variables is ordered according to the risk metric,

resulting in a set P = {P1, P2, . . . , Pn}, where for ∀i < j, Ri < Rj . If there is no packet

replication, data is sent on P1 only. However, with K replications, the first K paths of P , i.e.

{P1, P2, . . . , PK} are chosen. When any of these replications arrives at the destination, the packet

is delivered. Therefore, the delivery delay is mean(ρ,K) = E[W ], and the standard deviation of

delivery delay is
√
var(ρ,K) =

√
V [W ], where the random variableW = min{P1, P2, . . . , PK}.

These Pis are supposed to be independent distributed because of the following assumptions: 1) the

storage size at each node is assumed to be infinite, so there is no conflict in packet storage; 2) the

waiting and traveling delays, rather than packet transmission delays between vehicle and center,

dominate the packet delivery delay, so there is no conflict in the bandwidth usage. Therefore, the

Cumulative Distribution Function (CDF) of W is

F (W ≤ x) = 1−
K∏
i=1

(1− F (Pi ≤ x)) (7.17)

Once we get CDF of W , its mean and variance are:

mean(ρ,K) = E[W ] =

∫ ∞
−∞

xf(x) dx (7.18)

var(ρ,K) = V [W ] =

∫ ∞
−∞

(x− E[W ])2f(x) dx (7.19)

where f(x) is the probability density function of F (x).

Based on the above equations, we get some analysis results in Table 7.3, where an intentional

effect changes a metric by design and an incidental effect does so implicitly [44]. In the following,
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Table 7.3: Effects of ρ and K on routing metrics in EAR.

PDD PDS PDR Energy
ρ Intentional Intentional Incidental Incidental
K Intentional Incidental Intentional Intentional

we describe them in detail.

Result 1: When K = 1, as the value of ρ increases from ρ1 to ρ2, var(ρ,K) decreases while

mean(ρ,K) increases. This result is proved by using the following two inequalities:

m1 + ρ1 ∗
√
v1 ≤ m2 + ρ1 ∗

√
v2

m2 + ρ2 ∗
√
v2 ≤ m1 + ρ2 ∗

√
v1

where mi = mean(ρi, K = 1) and vi = var(ρi, K = 1) represents the mean and variance of

the delay of the optimal path for ρi. We get that (ρ1 − ρ2)(
√
v1 −

√
v2) ≤ 0. Since ρ1 < ρ2,

we get v1 ≥ v2, i.e., var(ρ1, K = 1) ≥ var(ρ2, K = 1). Given this, we can get m1 ≤ m2, i.e.,

mean(ρ1, K = 1) ≤ mean(ρ2, K = 1). Therefore, when K = 1, ρ has an intentional effect on

PDD and PDS.

Result 2: When K ≥ 2, there is no guarantee that the conclusion in Result 1 still holds.

For example, suppose ρ1 chooses the path set P ρ1 = {P ρ1
1 , P ρ1

2 , . . . , P ρ1
K } and ρ2 chooses the

path set P ρ2 = {P ρ2
1 , P ρ2

2 , . . . , P ρ2
K }. Although the risk relationship among paths in the path

sets P ρ1 , P ρ2 and between the optimal paths P ρ1
1 and P ρ2

1 are clear, the risk relationships among

other paths are indeterminable. Therefore, it is difficult to infer the relationship of means and

variances among these paths. In addition, it is more difficult to infer the relationship between

W ρ1 = min{P ρ1
1 , P ρ1

2 , . . . , P ρ1
K } and W ρ2 = min{P ρ2

1 , P ρ2
2 , . . . , P ρ2

K }, because the variance rela-

tionship betweenW ρi and {P ρi
1 , P

ρi
2 , . . . , P

ρi
K } is indeterminable. Furthermore, asK increases, the

effect of adjusting ρ becomes less and less pronounced. It is difficult to reduce risk by adjusting

ρ when K is large, because the order of F (Pi ≤ x) in Equation 7.17 does not matter since it is a

product, and ρ only changes the order of selected random variables.
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Result 3: From Equation 7.18, we claim that as K increases, mean(ρ,K) decreases, which

means K has an intentional effect on PDD. We provide an informal proof below. First, we trans-

fer the continuous expression of mean(ρ,K) to a discrete expression limN→∞

∑N
j=1mean(ρ,K)j

N
,

where mean(ρ,K)j represents a sample of mean(ρ,K). Then, according to the meaning of

mean(ρ,K)j , we have mean(ρ,K)j = min{P j
1 , P

j
2 , . . . , P

j
K}, where P j

i is a sample of Pi. Sim-

ilarly, we can define mean(ρ,K + 1) as limN→∞

∑N
j=1mean(ρ,K+1)j

N
, where mean(ρ,K + 1)j =

min{P j
1 , P

j
2 , . . . , P

j
K , P

j
K+1}. Given the expressions of mean(ρ,K + 1)j and mean(ρ,K)j , it is

easy to prove that mean(ρ,K + 1)j < mean(ρ,K)j . Therefore, mean(ρ,K + 1) < mean(ρ,K),

i.e., mean(ρ,K) decreases as K increases. Surprisingly, there is no guarantee that such a claim

always holds for PDS [145], which means K has an incidental effect on PDS.

Result 4: From Equation 7.17, we observe that as K increases, F (W ≤ x) increases as well,

which means K has an intentional effect on PDR. Similarly, K has an intentional effect on the

TTE, because as K increases, the number of packet relays, and hence TTE increases as well.

However, we can not say how PDR or TTE will change with different ρ, because ρ only changes

the order of paths but not the number of paths. Thus, ρ has an incidental effect on PDR and TTE.

7.4.2 Experimental Setup

Experiments are performed using The ONE simulator [46] with the PDM mobility model on the

Helsinki street map. An EOC and a Triage are set up, with 8 collapsed buildings located for search

and rescue. 5 ambulances and 15 supply vehicles move in the city by following corresponding

mobility models with the speed at 12 − 15m/s and 15 − 20m/s, respectively. 2 patrol cars move

along the pre-planned routes with the speed at 6− 9m/s. The data traffic is generated as a Possion

process [82] at collapsed buildings sent to the EOC during time 10, 000s−50, 000s. The packet size

is 40KB, and the contact bandwidth is 80 Mbps. The simulation lasts for 180, 000s and each point

in the figures represents the average value of 32 random runs. The metrics we measure include

PDD, PDS, PDR, PDE and TTE. The DTN protocols chosen for comparison include Prophet,

MaxProp, RAPID and SprayWait (with 3 replicas, SW3), where Prophet and MaxProp attempt

to achieve high PDR through unlimited level of packet replication, RAPID aims to intentionally
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reduce PDD based on the marginal utility of increasing packet replicas and SprayWait improves

PDE by restricting the level of packet replication.

For the Mean-Risk model, since we want to study the end-to-end delay of all packets, we set

the Time To Live (TTL) value as 36, 000s, which is long enough for the packets to arrive at the

destination. We study the effects ofK and ρ on different metrics with different settings. At first, we

measure the effects of ρ on PDD and PDS for a fixed K. Then, for a fixed ρ, we increase the value

of K to see how it affects PDD and PDS. Finally, we choose three representative (K, ρ) settings to

compare EAR with other DTN protocols in terms of PDD, PDS and TTE. For the Max-Probability

model, we conduct experiments with different deadlines. At first, we measure the effects of K on

PDR and PDE. Then, we compare EAR with other DTN protocols in terms of PDR, PDE and TTE.

7.4.3 Evaluation of Mean-Risk Model

For a given K, increasing ρ. In Figure 7.6 (a), as K = 1 and ρ increases, PDS decreases while

PDD increases, which matches the analysis result from Result 1 that ρ has an intentional effect on

PDD and PDS when K = 1. This property is paramount for disaster response, because it enables

First responders to achieve desirable PDD and PDS based on their preference. From the changing

trend of PDD and PDS, we can observe that they are not strictly increasing/decreasing with the

increase of ρ. This is because, when two ρ values are close to each other, the λ-algorithm returns

the same path. Another interesting observation in Figure 7.6 (b) is that when K ≥ 2, even if PDD

increases with increasing ρ, PDS does not decrease as in the K = 1 case. This proves our analysis

result from Result 2 that when K ≥ 2, there is no guarantee how ρ will affect PDD and PDS.

Moreover, from the PDD/PDS results in Figure 7.6 (c), we find that when K is large, the effects of

ρ on PDD and PDS become small, which matches our analysis result from Result 2 as well.

For a given ρ, increasing K. In Figure 7.7, no matter what the value of ρ is, increasing K

always decreases PDD, just as our analysis in Result 3. This implies that no matter what the

user’s preference is, increasing the level of packet replication (the number of routing paths) always

helps delivering data packets to the destination in a shorter time on average. This property is

important as it allows first responders to achieve better PDD by simply increasing the level of
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Figure 7.6: The effects of increasing ρ on PDD and PDS for a given K in EAR.

packet replication. However, as we mentioned before, increasing the level of packet replication

increases energy consumption as well. Therefore, an upper bound should be adopted to guarantee

the packet transmission efficiency. From the changing trend of PDD in Figure 7.7, we observe

that the benefit of increasing K, in terms of decreasing PDD, becomes smaller as K becomes

larger. This indicates the rationality of setting an upper bound for the level of packet replication.

In the following part, when we compare EAR (Mean-Risk model) with other DTN protocols, we

set K = 3 as an upper bound. The other fact we observe in Figure 7.7 is that, increasing K does
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Figure 7.7: The effects of increasing K on PDD and PDS for a given ρ in EAR.

not always help decreasing PDS, especially when the value of ρ is large. This matches what we

mentioned in Result 3, K only has an incidental effect on PDS.

EAR (Mean-Risk) vs. other DTN protocols. We compare EAR (Mean-Risk) with four other

DTN protocols (Prophet, MaxProp, Rapid and SW3) in terms of PDD, PDS and TTE. Three

parameter settings for EAR are utilized, i.e., MRk1r0, MRk1r10 and MRk3r0, which represent

(K = 1, ρ = 0), (K = 1, ρ = 10) and (K = 3, ρ = 0), respectively. MRk1r10 and MRk1r0 repre-

sent two extreme cases in which the lowest PDS and PDD are preferred, respectively. MRk3r0 is
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Figure 7.9: TTE (in a log scale) comparison between EAR (Mean-Risk model) and other
routing protocols for DRNs.

chosen to compare with SW3 in a fair way. From Figure 7.8 and Figure 7.9, we find that MRk3r0

achieves 42% lower PDD and 57% lower PDS than MRk1r0, and 70% lower PDD and 39% lower

PDS than MRk1r10 by using two more replicas per packet (which increases packet transmissions

by just 86%). This means EAR allows trade-off among PDD, PDS and TTE. Besides, we find that

existing DTN routing protocols Prophet, MaxProp and Rapid achieve much lower PDD and PDS

than EAR, because they use up to 9x packet transmissions, and hence 9x TTE. Taking Rapid as

an example, MRk3r0 consumes 6x less energy by increasing PDD only by 48% and PDS only by

158%. This trade-off is beneficial in DRNs, because the batteries of the fixed routers have a lim-
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ited capacity. Quite different trade-offs exist between MRk3r0 and SW3. MRk3r0 achieves 35%

lower PDD and 53% lower PDS than SW3 with only 24% more packet transmissions. Therefore,

MRk3r0 is a good compromise when taking PDD, PDS and TTE all into account.
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Figure 7.10: The effects of increasing K on PDR and PDE for D = 10, 15, 20min in EAR.
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Figure 7.11: The effects of increasing K on PDR and PDE for D = 25, 30, 35min in EAR.

7.4.4 Evaluation of Max-Probability Model

For a given D, increasing K. As shown in Figure 7.10 and Figure 7.11, as K increases, PDR

always increases. This indicates that increasing packet replicas is an effective way to increase

the probability of delivering packets to the destination in time, as long as the energy condition

allows. Here, “in time” means the packet delivery delay is less than a user allowed maximum

delay, which is also named as deadline D. From the PDR results shown in Figure 7.10, we find

that when the deadline is short (D = 10min/15min/20min), increasing K from 1 to 3 increases
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PDR much faster than increasing K from 3 to 10. This indicates that the benefit of increasing

packet replicas becomes smaller as K increases. Therefore, we can set an upper bound for the

number of packet replicas to improve the packet transmission efficiency. However, from Figure

7.11, we observe that when the deadline is long (D = 25min/30min/35min), even with K = 1,

the PDR value is higher than 93%. In such case, we can send a single packet to save energy while

maintaining PDR at an adequate level. Since there are plenty of packets in DRNs that do not have

an urgent delivery requirement, this “deadline-based” replication is very useful for saving energy.

Therefore, in the following, when we compare EAR with other DTN protocols, we set K = 3 for

D = 10min/15min/20min and K = 1 for D = 25min/30min/35min.

In addition to PDR, we also show how PDE is affected by the increase ofK. PDE measures the

ratio of total number of distinct delivered packets over the total number of packet transmissions.

Figure 7.10 and Figure 7.11 show that, in general, PDE decreases as K increases. This is because,

although increasing K enables more distinct packets to be delivered to the destination in time, the

packet transmissions increase even faster. In order to eliminate useless packet transmission, we set

up a time-to-live (TTL) value for each packet. The TTL value keeps decreasing as time goes and

indicates a packet becoming expired as its value decreases to 0. The replicated packets will be dis-

carded as soon as they become expired. Therefore, the increase of packet transmissions is not linear

to the increase ofK (but much slower). That is the reason PDE does not drop dramatically whenK

increases. Another observation from Figure 7.11 is that in the case D = 20min/25min/30min,

when K increases from 1 to 2, PDE even increases. The reason behind is that when K = 1, EAR

chooses a path which has 4 hops (but with the highest PDR to deliver the packets before D), while

when K = 2, the newly added path only has 2 hops. In such case, the growth rate of distinct

delivered packets might be faster than that of packet transmissions, which makes PDE increasing.

This leads to another potential trade-off: shall we choose a path with higher PDR but more hops or

a path with lower PDR but fewer hops? To answer this question, we extend the Max-Probability

model to the Max-Probability Efficient model for K = 1 case and compare its performance with

other protocols in the following section.

132



 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MPk1
MPEk1

MRk1r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(a) D=25min

 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MPk1
MPEk1

MRk1r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(b) D=30min

 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MPk1
MPEk1

MRk1r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(c) D=35min

Figure 7.12: EAR (Max-Probability) vs. other protocols for D = 25, 30, 35min.

EAR (Max-Probability) vs. other DTN protocols. We compare EAR (Max-Probability) with

four other DTN protocols in terms of PDR, PDE and TTE. For the long deadline case (D =

25min/30min/35min), we adopt two typical parameter settings MPk1 and MPk3, which repre-

sent K = 1 and K = 3 in the Max-Probability model, respectively. Besides, we also add MRk1r0

(K = 1, ρ = 0 in the Mean-Risk model) into comparison to show the difference between the

133



 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MRk3r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(a) D=10min

 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MRk3r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(b) D=15min

 0

 20

 40

 60

 80

 100

 120

Prophet
MaxProp

Rapid
SW3 MPk3

MRk3r0

P
e

rc
e

n
ta

g
e

(%
)

Protocols

PDR PDE

(c) D=20min

Figure 7.13: EAR (Max-Probability) vs. other protocols for D = 10, 15, 20min.

Mean-Risk and Max-Probability models. Moreover, we compare MPk1 with its extension MPEk1

(Max-Probability Efficient model with K = 1) by replacing ϕp with ϕp/H (H is the number of

hops of a path). As shown in Figure 7.12, Prophet, MaxProp and Rapid achieve a little bit higher

PDR than EAR. However, the cost is much higher. For example, MaxProp improves PDR of MPk3

only by 0.3%, 0.05%, 0% for D = 25min/30min/35min, respectively, at the cost of 6.5x more

packet transmissions (Figure 7.14). Therefore, when the deadline is long and PDR is already very
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other routing protocols for DRNs.

high with just a single packet, the gain of increasing the level of packet replication is very lim-

ited. That is the reason that PDE of Prophet, MaxProp and Rapid is much lower than that of EAR

in Figure 7.12. Another interesting observation is that MPk1 achieves a slightly higher PDR but

over 2x lower PDE than MRk1r0. The reason behind is, MPk1 chooses a path with higher prob-

ability but more hops than MRk1, which leads to more packet transmissions. This result reveals

that the path with the lowest PDD is not always the path that maximizes PDR. That’s why we need

both Mean-Risk and Max-Probability models in EAR. From Figure 7.12, we observe that with

MPEk1, EAR increases PDE by choosing the path with fewer hops. The side effect is that PDR

of the path chosen by MPEk1 might be a bit lower than that chosen by MPk1. Therefore, EAR

should choose MPEk1/MPk1 based on whether PDE/PDR is more important in a specific scenario.

When we compare SW3 and MPk3, we find that the advantages of MPk3 seems to be not obvious

in the long deadline case, because although MPk3 achieves a bit higher PDR than SW3, its PDE

is lower. However, when we compare them in the short deadline case, the advantage of MPk3

becomes clear.

Next, we compare EAR (Max-Probability) and other protocols in terms of PDR, PDE and TTE.

For the short deadline case (D = 10min/15min/20min), in order to achieve high PDR, EAR just

uses MPk3. For completeness, we also add MRk3r0 (K = 3, ρ = 0 in the Mean-Risk model) for

reference. As shown in Figure 7.13, Prophet, MaxProp and Rapid achieve much higher PDR than
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EAR by using more packet transmissions (Figure 7.14). From Figure 7.13 (a), we find that although

MPk3 achieves 16% lower PDR than Prophet, MaxProp and Rapid when D = 10min, its PDE

is 6x-8x higher. When D increases to 15min and 20min, MPk3 achieves a PDR only 4% lower

than Prophet, MaxProp and Rapid, but 6x-8x higher PDE. This means that EAR is more energy-

efficient than Prophet, MaxProp and Rapid. In addition, we find that MPk3 outperforms SW3 by

achieving 25% higher PDR but comparable PDE when D = 10min. The reason behind is that the

mobility pattern information used by EAR becomes critical in the short deadline case. However,

when D = 15min/20min, although MPk3 still achieves higher PDR than SW3, PDE of the SWs

is higher. This is because, paths with more hops are used by MPk3 when D = 15min/20min,

which increases packet transmissions and decreases PDE.
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8. CONCLUSIONS AND FUTURE WORK

In this section, we conclude this dissertation and present the future work.

8.1 Conclusions

To reduce the impact of natural disasters, more and more new techniques are applied to assist

disaster response. As a key indicator of effective disaster response, efficient gathering and pro-

cessing of data from different disaster sites of the disaster area is very important to help the rescue

dispatchers at the Emergency Operation Center (EOC) to gain an overview of the whole disaster

area to make the right decision. In this dissertation, we present an adaptive edge computing and

communication framework for disaster response, which helps processing a large amount of sensing

data at each disaster site and sending the most important processing results back to EOC through

disaster response networks.

To enable executing computation intensive stream processing tasks on the resource-constrained

mobile devices, we design and implement a distributed mobile stream processing platform that en-

ables one mobile device to offload some computation tasks to its nearby mobile devices to perform

distributed mobile stream processing together. And in order to deal with the dynamic comput-

ing resources at mobile devices and the dynamic wireless networks connecting them, we propose

two important modules inside MStorm, namely F-MStorm and R-MStorm. F-MStorm adopts the

feedback-based approach in the configuration, scheduling and execution levels of system design

and R-MStorm implements resilient mobile stream processing by assigning tasks to the most avail-

able mobile devices and assigning tasks of the same application component to different devices to

increase the diversity of physical stream paths. We implement both F-MStorm and R-MStorm on

Android phones and demonstrate their effectiveness through some test applications.

To extract different information of interests from the video stream taken by the first respon-

ders’ on-body camera, we design and implement an adaptive execution framework for CNN-based

multitask video processing called AMVP. AMVP enables multiple CNNs to share some common
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frozen layers to reduce the total computation workload and automatically divides each CNN into

separated parts so that they can be scheduled to run on the MStorm platform based on the specific

application performance goals and actual available computing resources. We implement AMVP on

Android phones and show that it can adapt to different application performance goals, computing

resources and network conditions.

To transmitting the processing results at each disaster site back to EOC, we propose an energy-

aware risk-averse routing protocol for DRNs called EAR. EAR applies the risk-aversion model

to address PDS and the max-probability model to deliver the packets to EOC before a deadline.

It also applies a differentiated service model to deliver packets with less TTE while maintaining

other metrics at an adequate level. We evaluate EAR through extensive simulations and show that,

EAR provides flexible control of the routing risks and delivers packets to the destinations in a more

energy-efficient way than some well-known DRN routing protocols.

8.2 Future Work

In this section, we present a few ideas for future work.

8.2.1 Distributed Stream Processing on Heterogeneous Devices

In current MStorm, all mobile devices are assumed to be homogeneous. However, in prac-

tice, except for the mobile phones carried by the first responders, there are also many other mo-

bile devices at disaster sites such as UAVs, robots, wireless routers, which can also be used to

perform distributed mobile stream processing. These mobile devices have totally different hard-

ware/software architectures with Android phones, which makes the current MStorm fail to work

directly on them. In the future, we plan to implement MStorm on some other common systems

different from Android phones, so that it can use as much resources as possible at the disaster site.

8.2.2 In-order Mobile Stream Processing

In current MStorm, we only consider applications that can tolerate partial data missing and

out-of-order processing. However, in real word, there are a lot of applications which require 100%

in-order processing. To enable this feature in MStorm, we consider to use an end-to-end acknowl-
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edgement and some retransmission mechanisms in the future to ensure in-order processing and

application integrity.

8.2.3 Reduce Cost of Task Rescheduling

In current MStorm, when task rescheduling happens, the executor will first stop and kill all

the old tasks and then runs up the new one. Although this method is simple and convenient, it

has some drawbacks: 1) the switching time between two schedules is very long; 2) some stream

packets might get lost during the switching; 3) some unnecessary cost is incurred. In the future,

instead of stopping and killing all the old tasks before running the new ones, we first check if there

is some “common parts” between two schedules. If there are, those common part tasks will not

be killed but just hung up. Then, when the actual new tasks run up, those hung up tasks will be

notified to recover to run.

8.2.4 Energy Efficiency in Mobile Stream Processing

In current MStorm, we mainly focus on dealing with dynamic computing resources at mobile

devices and dynamic wireless networks connecting them. Although the communication energy

cost is considered in F-MStorm, how to reduce the computation energy cost of MSP is still not

considered yet. In the future, we will delve into the detailed implementation of MStorm to figure

out its energy bottleneck. We will replace the bottleneck code with more energy efficient one to

prolong the battery life time of first responders’ mobile phones.

8.2.5 More Accurate Model to Describe the Device Availability

In current R-MStorm, we assume that the availability of each mobile device can be obtained

by analyzing the RSSI trace during a rescue operation. However, the availability of mobile devices

is not only decided by the network condition but also by some other factors such as battery level

or system crash. In the future, we plan to introduce some more accurate models to describe the

availability of each mobile device.
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8.2.6 Supporting different DNNs in AMVP

In current AMVP, we only support image classification tasks. In the future, we plan to support

some other vision processing tasks such as objection detection, event detection, instance segmen-

tation, etc. Moreover, we also plan to support some speech and voice recognition tasks to better

assist first responders to conduct their rescue work.
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