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ABSTRACT

Measuring and testing for independence and homogeneity of distributions are some funda-

mental problems in statistics, finding applications in a wide variety of areas like independent

component analysis, gene selection, graphical modeling, causal inference, goodness-of-fit testing,

change-point detection and so on.

Székely et al. (2007), in their seminal paper, introduced the notion of distance covariance

(dCov) as a measure of dependence between two random vectors of arbitrary (but fixed) dimen-

sions. The innovative feature of dCov is the fact that dCov between two random vectors takes the

value zero if and only if they are independent, thereby completely characterizing independence

between two random vectors.

However, many statistical applications, such as independent component analysis, diagnostic

checking for structural equation modeling, etc., require the quantification of joint independence

among d ≥ 2 random vectors, which is a quite different and more ambitious task than testing for

pairwise independence of a collection of random vectors. The first work (Chapter 2) proposes a

new dependence metric called the Joint Distance Covariance (JdCov) which generalizes or extends

the notion of distance covariance to quantify joint dependence among d ≥ 2 random vectors of

arbitrary (but fixed) dimensions. JdCov takes the value zero if and only if the d random vectors

are jointly independent, and thereby completely characterizes their joint independence. We pro-

pose empirical estimators of JdCov, study their asymptotic behaviors and consequently propose a

consistent bootstrap-based nonparametric test for joint independence. The proposed dependence

metrics are employed to perform model selection in causal inference, based on the joint indepen-

dence testing of the residuals from the fitted structural equation models. The effectiveness of the

method is illustrated via both simulated and real datasets.

The second work (Chapter 3) proposes nonparametric tests for homogeneity and indepen-

dence between two high-dimensional random vectors. Energy distance (proposed by Székely and

Rizzo (2004)) is a classical measure of equality of two multivariate distributions, taking the value
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zero if and only if the two random vectors are identically distributed. Our work shows that energy

distance based on the usual Euclidean distance cannot completely characterize the homogeneity

of two high-dimensional distributions in the sense that it can only detect the equality of means

and the traces of covariance matrices of two high-dimensional random vectors. In other words, the

classical energy distance fails to detect inhomogeneity between two high-dimensional distributions

beyond the first two moments. Also it has been pointed out very recently by Zhu et al. (2019) that

the classical distance covariance can only capture component-wise linear dependence between two

high-dimensional random vectors. Such limitations of the classical energy distance and distance

covariance arise due to the use of Euclidean distance, and we propose a new class of distance

metrics for high-dimensional Euclidean spaces to overcome the drawbacks.

We propose a new class of homogeneity/dependence metrics based on the new distance met-

rics, which inherit the desirable properties of the classical energy distance/distance covariance

in the low-dimensional setting. And more importantly, in the high-dimensional setup the new

metrics are capable of completely characterizing the homogeneity/independence between the low-

dimensional marginal distributions, going above and beyond the scope of the classical energy

distance/distance covariance. Moreover we propose t-tests based on the new metrics to perform

high-dimensional two-sample testing/independence testing in a fully nonparametric framework

and study their asymptotic properties. We use our methodology to analyze cross-sector indepen-

dence of (high-dimensional) stock prices data.

Change-point detection has been a classical problem in statistics, finding applications in a wide

variety of fields. A nonparametric change-point detection procedure is concerned with detecting

abrupt distributional changes in the data generating distribution, rather than only changes in mean.

In the third work (Chapter 4), we consider the problem of detecting an unknown number of change-

points in an independent sequence of high-dimensional observations and testing for the significance

of the estimated change-point locations. Our approach essentially rests upon nonparametric tests

for the homogeneity of two high-dimensional distributions. We construct a single change-point

location estimator via defining a cumulative sum process in an embedded Hilbert space. As the
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key theoretical innovation, we rigorously derive its limiting distribution under the high dimension

medium sample size (HDMSS) framework. Subsequently we combine our statistic with the idea

of wild binary segmentation to recursively estimate and test for multiple change-point locations.

The superior performance of our methodology compared to several other existing procedures is

illustrated via both simulated and real datasets.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Literature Review

1.1.1 Nonparametric tests for independence

Measuring and testing dependence is of central importance in statistics, which has found ap-

plications in a wide variety of areas including independent component analysis, gene selection,

graphical modeling and causal inference. Statistical tests of independence can be associated with

widely many dependence measures. Two of the most classical measures of association between

two ordinal random variables are Spearman’s rho and Kendall’s tau. However, tests for (pairwise)

independence using these two classical measures of association are not consistent, and only have

power for alternatives with monotonic association. Contingency table-based methods, and in par-

ticular the power-divergence family of test statistics (Read and Cressie, 1988), are the best known

general purpose tests of independence, but are limited to relatively low dimensions, since they re-

quire a partitioning of the space in which each random variable resides. Another classical measure

of dependence between two random vectors is the mutual information (Cover and Thomas, 1991),

which can be interpreted as the Kullback-Leibler divergence between the joint density and the

product of the marginal densities. The idea originally dates back to the 1950’s, in groundbreaking

works by Shannon and Weaver (1949), Mcgill (1954) and Fano (1961). Mutual information com-

pletely characterizes independence and generalizes to more than two random vectors. However,

test based on mutual information involves distributional assumptions for the random vectors and

hence is not robust to model misspecification.

In the past fifteen years, kernel-based methods have received considerable attention in both

the statistics and machine learning literature. For instance, Bach and Jordan (2002) derived a

regularized correlation operator from the covariance and cross-covariance operators and used its

largest singular value to conduct independence test. Gretton et al. (2005; 2007) introduced a

kernel-based independence measure, namely the Hilbert-Schmidt Independence Criterion (HSIC),
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to test for independence of two random vectors. This idea was recently extended by Sejdinovic

et al. (2013) and Pfister et al. (2018) to quantify the joint independence among more than two

random vectors.

Along with a different direction, Székely et al. (2007), in their seminal paper, introduced the

notion of distance covariance (dCov) and distance correlation as a measure of dependence between

two random vectors of arbitrary dimensions. Given the theoretical appeal of the population quantity

and the striking simplicity of the sample version, the idea has been widely extended and analyzed

in various ways in Székely and Rizzo (2012; 2014), Lyons (2013), Sejdinovic et al. (2013), Dueck

et al. (2014), Bergsma et al. (2014), Wang et al. (2015), and Huo and Székely (2016), to mention

only a few.

1.1.2 Nonparametric tests for homogeneity of distributions

Nonparametric two-sample testing of homogeneity of distributions has been a classical prob-

lem in statistics, finding a plethora of applications in goodness-of-fit testing, clustering, change-

point detection and so on. Some of the most traditional tools in this domain are Kolmogorov-

Smirnov test, and Wald-Wolfowitz runs test, whose multivariate and multidimensional extensions

have been studied by Darling (1957), David (1958) and Bickel (1969) among others. Friedman and

Rafsky (1979) proposed a distribution-free multivariate generalization of the Wald-Wolfowitz runs

test applicable for arbitrary but fixed dimensions. Schilling (1986) proposed another distribution-

free test for multivariate two-sample problem based on k-nearest neighbor (k-NN) graphs. Maa

et al. (1996) suggested a technique for reducing the dimensionality by examining the distribution

of interpoint distances. In a recent novel work, Chen and Friedman (2017) proposed graph-based

tests for moderate to high dimensional data and non-Euclidean data. The last two decades have

seen an abundance of literature on distance and kernel-based tests for equality of distributions.

Energy distance (first introduced by Székely (2002)) and maximum mean discrepancy or MMD

(see Gretton et al. (2012)) have been widely studied in both the statistics and machine learning

communities. Sejdinovic et al. (2013) provided a unifying framework establishing the equivalence

between the (generalized) energy distance and MMD.
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1.1.3 Nonparametric change-point detection

Change-point detection has been a classical and well-established problem in statistics, aiming

to detect lack of homogeneity in a sequence of time-ordered observations. This finds abundance

of applications in a wide variety of fields, for example, bioinformatics (see Picard et al. (2005),

Curtis et al. (2012)), neuroscience (see Park et al. (2015)), digital speech processing (see Rabiner

and Schäfer (2007)), social network analysis (see McCulloh (2009)), and so on. A nonparametric

change-point detection procedure is concerned with detecting and localizing quite general types

of changes in the data generating distribution, rather than only changes in mean. This challeng-

ing problem of detecting abrupt distributional changes in the nonparametric setting has been ad-

dressed in the literature over the last couple of decades. But many of the methodologies developed

suffer from several limitations, for example, applicability only for real-valued data or in the low-

dimensional setting, assumption that the number of true change-points is known, etc. Harchaoui

and Cappé (2007) proposed a kernel-based procedure assuming a known number of change-points,

which reduces its practical interest. Zou et al. (2014) proposed a nonparametric maximum likeli-

hood approach for detecting multiple (unknown number of) change-points using BIC, but is only

applicable for real-valued data. Lung-Yut-Fong et al. (2012) developed a nonparametric approach

based on marginal rank statistics, which requires the number of observations to be larger than the

dimension of the data. Arlot et al. (2012) proposed a kernel-based multiple change-point detection

algorithm for multivariate (but fixed dimensional) or complex (non-Euclidean) data. Some graph-

based tests have been proposed recently by Chen and Zhang (2015) and Chu and Chen (2019)

for high-dimensional data, which allow us to detect only one or two change-points. Matteson

and James (2014) proposed a procedure for estimating multiple change-point locations, namely

E-Divisive, built upon an energy distance based test that applies to multivariate observations of

arbitrary (but fixed) dimensions. Biau et al. (2016) rigorously derived the asymptotic distribution

of the statistic proposed by Matteson and James (2014), thereby adding theoretical justifications to

their methodology.
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1.2 An overview : distance and kernel-based metrics

In this section, we provide a vivid overview of some classical distance and kernel-based de-

pendence and homogeneity metrics, which serves as the background of Chapters 2, 3 and 4. Let

us clarify some notations first.

Notation. Let X = (X1, . . . Xp) ∈ Rp and Y = (Y1, . . . , Yq) ∈ Rq be two random vec-

tors of dimensions p and q respectively. Denote by ‖ · ‖p the Euclidean norm of Rp (we shall

use it interchangeably with ‖ · ‖ when there is no confusion). Let 0p be the origin of Rp. We

use X ⊥⊥ Y to denote that X is independent of Y , and use “X
d
= Y ” to indicate that X and

Y are identically distributed. Let (X ′, Y ′) and (X ′′, Y ′′) be independent copies of (X, Y ). For

a metric space (X , dX ), let M(X ) and M1(X ) denote the set of all finite signed Borel mea-

sures on X and all probability measures on X , respectively. DefineM1
dX

(X ) := {v ∈ M(X ) :

∃x0 ∈ X s.t.
∫
X dX (x, x0) d|v|(x) < ∞}. For θ > 0, define Mθ

K(X ) := {v ∈ M(X ) :∫
X K

θ(x, x) d|v|(x) <∞}, where K : X ×X → R is a bivariate kernel function. DefineM1
dY

(Y)

andMθ
K(Y) in a similar way. For a matrix A = (akl)

n
k,l=1 ∈ Rn×n, define its U-centered version

Ã = (ãkl) ∈ Rn×n as follows

ãkl =


akl −

1

n− 2

n∑
j=1

akj −
1

n− 2

n∑
i=1

ail +
1

(n− 1)(n− 2)

n∑
i,j=1

aij, k 6= l,

0, k = l,

(1.1)

for k, l = 1, . . . , n. Define

(Ã · B̃) :=
1

n(n− 3)

∑
k 6=l

ãklb̃kl

for Ã = (ãkl) and B̃ = (b̃kl) ∈ Rn×n.

1.2.1 Energy distance and MMD

Energy distance (see Székely et al. (2004, 2005), Baringhaus and Franz (2004)) or the Eu-

clidean energy distance between two random vectors X, Y ∈ Rp and X ⊥⊥ Y with E‖X‖p < ∞
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and E‖Y ‖p <∞, is defined as

ED(X, Y ) = 2E‖X − Y ‖p − E‖X −X ′‖p − E‖Y − Y ′‖p , (1.2)

where (X ′, Y ′) is an independent copy of (X, Y ). Theorem 1 in Székely et al. (2005) shows that

ED(X, Y ) ≥ 0 and the equality holds if and only if X d
= Y . In general, for an arbitrary metric

space (X , d), the generalized energy distance between X ∼ PX and Y ∼ PY where PX , PY ∈

M1(X ) ∩M1
d(X ) is defined as

EDd(X, Y ) = 2E d(X, Y )− E d(X,X ′)− E d(Y, Y ′) . (1.3)

Definition 1.2.1 (Spaces of negative type). A metric space (X , d) is said to have negative type

if for all n ≥ 1, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R with
∑n

i=1 αi = 0, we have

n∑
i,j=1

αi αj d(xi, xj) ≤ 0 . (1.4)

The metric space (X , d) is said to be of strong negative type if the equality in (4.5) holds only when

αi = 0 for all i ∈ {1, . . . , n}.

If (X , d) has strong negative type, then EDd(X, Y ) completely characterizes the homogeneity

of the distributions of X and Y (see Lyons (2013) and Sejdinovic et al. (2013) for detailed dis-

cussions). This quantification of homogeneity of distributions lends itself for reasonable use in

one-sample goodness-of-fit testing and two sample testing for equality of distributions.

On the machine learning side, Gretton et al. (2012) proposed a kernel-based metric, namely

maximum mean discrepancy (MMD), to conduct two-sample testing for equality of distributions.

We provide some background before introducing MMD.

Definition 1.2.2. (RKHS) Let H be a Hilbert space of real valued functions defined on some

space X . A bivariate function K : X × X → R is called a reproducing kernel ofH if :

1. ∀x ∈ X ,K(·, x) ∈ H
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2. ∀x ∈ X ,∀f ∈ H, 〈f,K(·, x)〉H = f(x)

where 〈·, ·〉H is the inner product associated withH. IfH has a reproducing kernel, it is said to be

a reproducing kernel Hilbert space (RKHS).

By Moore-Aronszajn theorem, for every positive definite function (also called a kernel) K :

X × X → R, there is an associated RKHS HK with the reproducing kernel K. The map Π :

M1(X )→ HK, defined as Π(P ) =
∫
X K(·, x) dP (x) for P ∈M1(X ) is called the mean embed-

ding function associated with K. A kernel K is said to be characteristic toM1(X ) if the map Π

associated with K is injective. Suppose K is a characteristic kernel on X . Then the MMD between

X ∼ PX and Y ∼ PY , where PX , PY ∈M1(X ) ∩M1/2
K (X ) is defined as

MMDK(X, Y ) = ‖Π(PX) − Π(PY ) ‖HK . (1.5)

By virtue of K being a characteristic kernel, MMDK(X, Y ) = 0 if and only if X d
= Y . Lemma 6

in Gretton et al. (2012) shows that the squared MMD can be equivalently expressed as

MMD2
K(X, Y ) = EK(X,X ′) + EK(Y, Y ′) − 2EK(X, Y ) . (1.6)

Theorem 22 in Sejdinovic et al. (2013) establishes the equivalence between (generalized) en-

ergy distance and MMD. Following is the definition of a kernel induced by a distance metric (refer

to Section 4.1 in Sejdinovic et al. (2013) for more details).

Definition 1.2.3. (Distance-induced kernel and kernel-induced distance) Let (X , d) be a metric

space of negative type and x0 ∈ X . Denote K : X × X → R as

K(x, x′) =
1

2
{d(x, x0) + d(x′, x0)− d(x, x′)} . (1.7)

The kernelK is positive definite if and only if (X , d) has negative type, and thusK is a valid kernel

on X whenever d is a metric of negative type. The kernel K defined in (1.7) is said to be the
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distance-induced kernel induced by d and centered at x0. One the other hand, the distance d can

be generated by the kernel K through

d(x, x′) = K(x, x) +K(x′, x′)− 2K(x, x′). (1.8)

Proposition 29 in Sejdinovic et al. (2013) establishes that the distance-induced kernel K in-

duced by d is characteristic toM1(X ) ∩M1
K(X ) if and only if (X , d) has strong negative type.

Therefore, MMD can be viewed as a special case of the generalized energy distance in (4.4) with

d being the metric induced by a characteristic kernel.

Suppose {Xi}ni=1 and {Yi}mi=1 are i.i.d samples of X and Y respectively. A U-statistic type

estimator of Ed(X, Y ) is defined as

En,m(X, Y ) =
2

nm

n∑
k=1

m∑
l=1

d(Xk, Yl)−
1

n(n− 1)

n∑
k 6=l

d(Xk, Xl)−
1

m(m− 1)

m∑
k 6=l

d(Yk, Yl) .

(1.9)

1.2.2 Distance covariance and HSIC

Distance covariance (dCov) was first introduced in the seminal paper by Székely et al. (2007)

to quantify the dependence between two random vectors of arbitrary (fixed) dimensions. Consider

two random vectors X ∈ Rp and Y ∈ Rq with E‖X‖p < ∞ and E‖Y ‖q < ∞. The Euclidean

dCov between X and Y is defined as the positive square root of

dCov2(X, Y ) =
1

cpcq

∫
Rp+q

|fX,Y (t, s)− fX(t)fY (s)|2

‖t‖1+pp ‖s‖1+qq

dtds,

where fX , fY and fX,Y are the individual and joint characteristic functions ofX and Y respectively,

and, cp = π(1+p)/2/Γ((1 + p)/2) is a constant with Γ(·) being the complete gamma function.

The key feature of dCov is that it completely characterizes independence between two random

vectors of arbitrary dimensions, or in other words dCov(X, Y ) = 0 if and only if X ⊥⊥ Y .
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According to Remark 3 in Székely et al. (2007), dCov can be equivalently expressed as

dCov2(X, Y ) = E ‖X −X ′‖p‖Y − Y ′‖q + E ‖X −X ′‖p E ‖Y − Y ′‖q

− 2E ‖X −X ′‖p‖Y − Y ′′‖q.
(1.10)

Lyons (2013) extends the notion of dCov from Euclidean spaces to general metric spaces. For

arbitrary metric spaces (X , dX ) and (Y , dY), the generalized dCov between X ∼ PX ∈M1(X ) ∩

M1
dX

(X ) and Y ∼ PY ∈M1(Y) ∩M1
dY

(Y) is defined as

D2
dX ,dY

(X, Y ) = E dX (X,X ′)dY(Y, Y ′) + E dX (X,X ′)E dY(Y, Y ′)

− 2E dX (X,X ′)dY(Y, Y ′′).

(1.11)

Theorem 3.11 in Lyons (2013) shows that if (X , dX ) and (Y , dY) are both metric spaces of strong

negative type, then DdX ,dY (X, Y ) = 0 if and only if X ⊥⊥ Y . In other words, the complete

characterization of independence by dCov holds true for any metric spaces of strong negative type.

According to Theorem 3.16 in Lyons (2013), every separable Hilbert space is of strong negative

type. As Euclidean spaces are separable Hilbert spaces, the characterization of independence by

dCov between two random vectors in (Rp, ‖ · ‖p) and (Rq, ‖ · ‖q) is just a special case.

Hilbert-Schmidt Independence Criterion (HSIC) was introduced as a kernel-based indepen-

dence measure by Gretton et al. (2005, 2007). Suppose X and Y are arbitrary topological spaces,

KX and KY are characteristic kernels on X and Y with the respective RKHSs HKX and HKY . Let

K = KX ⊗ KY be the tensor product of the kernels KX and KY , and, HK be the tensor prod-

uct of the RKHSs HKX and HKY . The HSIC between X ∼ PX ∈ M1(X ) ∩ M1/2
K (X ) and

Y ∼ PY ∈M1(Y) ∩M1/2
K (Y) is defined as

HSICKX ,KY (X, Y ) = ‖Π(PXY ) − Π(PXPY ) ‖HK , (1.12)

where PXY denotes the joint probability distribution of X and Y . The HSIC between X and Y is

essentially the MMD between the joint distribution PXY and the product of the marginals PX and
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PY . Clearly, HSICKX ,KY (X, Y ) = 0 if and only if X ⊥⊥ Y . Gretton et al. (2005) shows that the

squared HSIC can be equivalently expressed as

HSIC2
KX ,KY (X, Y ) = EKX (X,X ′)KY(Y, Y ′) + EKX (X,X ′)EKY(Y, Y ′)

− 2EKX (X,X ′)KY(Y, Y ′′).

(1.13)

Theorem 24 in Sejdinovic et al. (2013) establishes the equivalence between the generalized dCov

and HSIC.

For an observed random sample (Xi, Yi)
n
i=1 from the joint distribution ofX and Y , a U-statistic

type estimator of the generalized dCov in (1.11) can be defined as

D̃2
n ; dX ,dY

(X, Y ) = (Ã · B̃) =
1

n(n− 3)

∑
k 6=l

ãklb̃kl , (1.14)

where Ã, B̃ are the U-centered versions (see (4.1)) of A =
(
dX (Xk, Xl)

)n
k,l=1

and

B =
(
dY(Yk, Yl)

)n
k,l=1

, respectively. We denote D̃2
n ; dX ,dY

(X, Y ) by dCov2n(X, Y ) when dX and

dY are Euclidean distances.
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2. DISTANCE-BASED NONPARAMETRIC TESTS FOR JOINT INDEPENDENCE∗

2.1 Background and notations

Many statistical applications require the quantification of joint dependence among d ≥ 2 ran-

dom variables (or vectors). Examples include model diagnostic checking for directed acyclic graph

(DAG) where inferring pairwise independence is not enough in this case (see more details in Sec-

tion 2.6), and independent component analysis which is a means for finding a suitable representa-

tion of multivariate data such that the components of the transformed data are mutually indepen-

dent. In this work, we shall introduce new metrics which generalize the notion of dCov to quantify

joint dependence of d ≥ 2 random vectors. We first introduce the notion of high order dCov to

measure the so-called Lancaster interaction dependence (Lancaster, 1969). We generalize the no-

tion of Brownian covariance (Székely et al., 2009) and show that it coincides with the high order

distance covariance. We then define the joint dCov (Jdcov) as a linear combination of pairwise

dCov and their high order counterparts. The proposed metric provides a natural decomposition of

joint dependence into the sum of lower order and high order effects, where the relative importance

of the lower order effect terms and the high order effect terms is determined by a user-chosen num-

ber. In the population case, Jdcov is equal to zero if and only if the d random vectors are mutually

independent, and thus completely characterizes joint independence. It is also worth mentioning

that the proposed metrics are invariant to permutation of the variables and they inherit some nice

properties of dCov, see Section 2.2.2.

Following the idea of Streitberg (1990), we introduce the concept of distance cumulant and dis-

tance characteristic function, which leads us to an equivalent characterization of independence of

the d random vectors. Furthermore, we establish a scale invariant version of Jdcov and discuss the

concept of rank-based distance measures, which can be viewed as the counterparts of Spearman’s

rho to dCov and JdCov.
∗Reprinted with permission from “Distance Metrics for Measuring Joint Dependence with Application to Causal

Inference" by Shubhadeep Chakraborty and Xianyang Zhang, 2019. Journal of the American Statistical Association,
114(528), 1638-1650, Copyright[2019] by Taylor & Francis Group.
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JdCov and its scale-invariant versions can be conveniently estimated in finite sample using V-

statistics or their bias-corrected versions. We study the asymptotic properties of the estimators,

and introduce a bootstrap procedure to approximate their sampling distributions. The asymptotic

validity of the bootstrap procedure is justified under both the null and alternative hypotheses. The

new metrics are employed to perform model selection in a causal inference problem, which is based

on the joint independence testing of the residuals from the fitted structural equation models. We

compare our tests with the bootstrap version of the d-variate HSIC (dHSIC) test recently introduced

in Pfister et al. (2018) and the mutual independence test proposed by Matteson and Tsay (2017).

Finally we remark that although we focus on Euclidean space valued random variables, our results

can be readily extended to general metric spaces in view of the results in Lyons (2013).

The rest of the work is organized as follows. Section 2.2.1 introduces the high order distance

covariance and studies its basic properties. Section 2.2.2 describes the JdCov to quantity joint

dependence. Sections 2.2.3-2.2.4 further introduce some related concepts including the distance

cumulant, distance characteristic function, and rank-based distance covariance. We study the es-

timation of the distance metrics in Section 2.3 and present a joint independence test based on the

proposed metrics in Section 2.4. Section 4.4 is devoted to numerical studies. The new metrics are

employed to perform model selection in causal inference in Section 2.6. Section 2.7 discusses the

efficient computation of distance metrics and future research directions. The technical details are

gathered in the appendix.

Notations. Consider d ≥ 2 random vectors X = {X1, . . . , Xd}, where Xi ∈ Rpi . Set p0 =∑d
i=1 pi. Let {X ′1, . . . , X ′d} be an independent copy of X . Denote by ı =

√
−1 the imaginary

unit. Let | · |p be the Euclidean norm of Rp with the subscript omitted later without ambiguity. For

a, b ∈ Rp, let 〈a, b〉 = a>b. For a complex number a, denote by ā its conjugate. Let fi be the

characteristic function of Xi, i.e., fi(t) = E[eı〈t,Xi〉] with t ∈ Rpi . Define wp(t) = (cp|t|1+pp )−1

with cp = π(1+p)/2/Γ((1 + p)/2). Write dw = (cp1cp2 . . . cpd|t1|1+p1p1
· · · |td|1+pdpd

)−1dt1 · · · dtd. Let

Idk be the collection of k-tuples of indices from {1, 2, . . . , d} such that each index occurs exactly

once. Denote by bac the integer part of a ∈ R. Write X ⊥⊥ Y if X is independent of Y.
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2.2 Measuring joint dependence

2.2.1 High order distance covariance

We briefly review the concept of Lancaster interactions first introduced by Lancaster (1969).

The Lancaster interaction measure associated with a multidimensional probability distribution of

d random variables {X1, . . . , Xd} with the joint distribution F = F1,2,...,d, is a signed measure ∆F

given by

∆F = (F ∗1 − F1)(F
∗
2 − F2) · · · (F ∗d − Fd) , (2.1)

where after expansion, a product of the form F ∗i F
∗
j · · ·F ∗k denotes the corresponding joint distri-

bution function Fi,j,...,k of {Xi, Xj, . . . , Xk}. For example for d = 4, the term F ∗1F
∗
2F3F4 stands

for F12F3F4, F ∗1F2F3F4 stands for F1F2F3F4, etc. In particular for d = 3, (2.1) simplifies to

∆F = F123 − F1F23 − F2F13 − F3F12 + 2F1F2F3 . (2.2)

In light of the Lancaster interaction measure, we introduce the concept of dth order dCov as fol-

lows.

Definition 2.2.1. The dth order dCov is defined as the positive square root of

dCov2(X1, . . . , Xd) =

∫
Rp0

∣∣∣∣∣E
[

d∏
i=1

(fi(ti)− eı〈ti,Xi〉)

]∣∣∣∣∣
2

dw, (2.3)

When d = 2, it reduces to the dCov in Székely et al. (2007).

The term E[
∏d

i=1(fi(ti) − eı〈ti,Xi〉)] in the definition of dCov is a counterpart of the Lancaster

interaction measure in (2.1) with the joint distribution functions replaced by the joint characteristic

functions. When d = 3, dCov2(X1, X2, X3) > 0 rules out the possibility of any factorization of

the joint distribution. To see this, we note that X1 ⊥⊥ (X2, X3), X2 ⊥⊥ (X1, X3) or X3 ⊥⊥ (X1, X2)
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all lead to dCov2(X1, X2, X3) = 0. On the other hand, dCov2(X1, X2, X3) = 0 implies that

f123(t1, t2, t3)− f1(t1)f2(t2)f3(t3)

=f1(t1)f23(t2, t3) + f2(t2)f13(t1, t3) + f3(t3)f12(t1, t2)− 3f1(t1)f2(t2)f3(t3)

for ti ∈ Rpi almost everywhere. In this case, the “higher order effect” i.e., f123(t1, t2, t3) −

f1(t1)f2(t2)f3(t3) can be represented by the “lower order/pairwise effects” fij(ti, tj)−fi(ti)fj(tj)

for 1 ≤ i 6= j ≤ 3. However, this does not necessarily imply that X1, X2 and X3 are jointly

independent. In other words when d = 3 (or more generally when d ≥ 3), joint independence of

X1, X2 and X3 is not a necessary condition for dCov to be zero. To address this issue, we shall

introduce a new distance metric to quantify any forms of dependence among X in Section 2.2.2.

In the following, we present some basic properties of high order dCov. Define the bivariate

function Ui(x, x
′) = E|x − X ′i| + E|Xi − x′| − |x − x′| − E|Xi − X ′i| for x, x′ ∈ Rpi with

1 ≤ i ≤ d. Our definition of dCov is partly motivated by the following lemma.

Lemma 2.2.1. For 1 ≤ i ≤ d,

Ui(x, x
′) =

∫
Rpi

{
(fi(t)− eı〈t,x〉)(fi(−t)− e−ı〈t,x

′〉)
}
wpi(t)dt.

By Lemma 2.2.1 and Fubini’s theorem, the dth order (squared) dCov admits the following

equivalent representation,

dCov2(X1, . . . , Xd) =

∫
Rp0

∣∣∣∣∣E
[

d∏
i=1

(fi(ti)− eı〈ti,Xi〉)

]∣∣∣∣∣
2

dw

=

∫
Rp0

E

[
d∏
i=1

(fi(ti)− eı〈ti,Xi〉)

]
E

[
d∏
i=1

(fi(ti)− eı〈ti,X
′
i〉)

]
dw

=E

[
d∏
i=1

Ui(Xi, X
′
i)

]
.

(2.4)

This suggests that similar to dCov, its high order counterpart has an expression based on the mo-
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ments of Uis, which results in very simple and applicable empirical formulas, see more details in

Section 2.3.

Remark 2.2.1. From the definition of dCov in Székely et al. (2007), it might appear that its most

natural generalization to the case of d = 3 would be to define a measure in the following way

1

cpcqcr

∫
Rp+q+r

|fX,Y,Z(t, s, u)− fX(t)fY (s)fZ(u)|2

|t|1+pp |s|1+qq |u|1+rr

dtdsdu ,

whereX ∈ Rp, Y ∈ Rq and Z ∈ Rr. Assuming that the integral above exists, one can easily verify

that such a measure completely characterizes joint independence among X, Y and Z. However,

it does not admit a nice equivalent representation as in (2.4) (unless one considers a different

weighting function). We exploit this equivalent representation of the dth order dCov to propose

a V-statistic type estimator of the population quantity (see Section 3) which is much simpler to

compute rather than evaluating an integral as in the original definition in (2.3).

Remark 2.2.2. Székely et al. (2009) introduced the notion of covariance with respect to a stochas-

tic process. Theorem 8 in Székely et al. (2009) shows that population distance covariance coincides

with the covariance with respect to Brownian motion (or the so-called Brownian covariance). The

Brownian covariance of two random variables X ∈ Rp and Y ∈ Rq with E(|X|2 + |Y |2) < ∞ is

defined as the positive square root of

W2(X, Y ) = Cov2W (X, Y ) = E[XWX
′

WYW ′Y
′

W ′
] ,

where W and W
′ are independent Brownian motions with zero mean and covariance function

C(t, s) = |s|+ |t| − |s− t| on Rp and Rq respectively, and

XW = W (X)− E[W (X)|W ] .

Conditional onW (orW ′),X ′W (or Y ′
W ′

) is an i.i.d. copy ofXW (or YW ′ ). Then following Theorem

8 in Székely et al. (2009) and Definition 2.1, we have dCov2(X, Y ) =W2(X, Y ) .
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Now for d ≥ 2 random variables {X1, X2, . . . , Xd} where Xi ∈ Rpi , 1 ≤ i ≤ d, we can

generalize the notion of Brownian covariance as the positive square root of

W2(X1, . . . , Xd) = E

[
d∏
i=1

XiWi
X
′

iWi

]
,

where Wi’s are independent Brownian motions on Rpi , 1 ≤ i ≤ d. Property (2) in Proposition 2.1

below establishes the connection between the higher order distance covariances and the generalized

notion of Brownian covariance.

Similar to dCov, our definition of high order dCov possesses the following important proper-

ties.

Proposition 2.2.1. We have the following properties regarding dCov(X1, X2, . . . , Xd):

(1) For any ai ∈ Rpi , ci ∈ R, and orthogonal transformations Ai ∈ Rpi×pi , dCov2(a1 +

c1A1X1, . . . , ad + cdAdXd) =
∏d

i=1 |ci| dCov2(X1, . . . , Xd). Moreover, dCov is invariant to

any permutation of {X1, X2,

. . . , Xd}.

(2) Under Assumption 4.3.2 (see Section 2.3), the dth order dCov exists and

W2(X1, . . . , Xd) = dCov2(X1, . . . , Xd) .

Property (1) shows that dCov is invariant to translation, orthogonal transformation and per-

mutation on Xis. In property (2), the existence of the dth order dCov follows from (2.4) and

application of Fubini’s Theorem and Hölder’s inequality. The equality with Brownian covariance

readily follows from the proof of Theorem 7 in Székely et al. (2009).

Theorem 7 in Székely et al. (2007) shows the relationship between distance correlation and the

correlation coefficient for bivariate normal distributions. We extend that result in case of multivari-

ate normal random variables with zero mean, unit variance and pairwise correlation ρ. Proposition
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2.2.2 below establishes a relationship between the correlation coefficient and higher order distance

covariances for multivariate normal random variables.

Proposition 2.2.2. Suppose (X1, X2, . . . , Xd) ∼ N(0,Σ), where Σ = (σi,j)
d
i,j=1 with σii = 1

for 1 ≤ i ≤ d and σij = ρ for 1 ≤ i 6= j ≤ d. When d = 2k− 1 or d = 2k, dCov2(X1, . . . , Xd) =

O(|ρ|2k) for k ≥ 2.

Proposition A.0.1 in the appendix shows some additional properties of the dth order dCov.

2.2.2 Joint distance covariance

In this subsection, we introduce a new joint dependence measure called the joint dCov (Jdcov),

which is designed to capture all types of interaction dependence among the d random vectors. To

achieve this goal, we define JdCov as the linear combination of all kth order dCov for 1 ≤ k ≤ d.

Definition 2.2.2. The JdCov among {X1, . . . , Xd} is given by

JdCov2(X1, . . . , Xd;C2, . . . , Cd)

=C2

∑
(i1,i2)∈Id2

dCov2(Xi1 , Xi2) + C3

∑
(i1,i2,i3)∈Id3

dCov2(Xi1 , Xi2 , Xi3)

+ · · ·+ Cd dCov
2(X1, . . . , Xd),

(2.5)

for some nonnegative constants Ci ≥ 0 with 2 ≤ i ≤ d.

Proposition 2.2.3 below states that JdCov completely characterizes joint independence among

{X1, . . . , Xd}.

Proposition 2.2.3. Suppose Ci > 0 for 2 ≤ i ≤ d. Then JdCov2(X1, . . . , Xd;C2, . . . , Cd) = 0

if and only if {X1, . . . , Xd} are mutually independent.

Next we show that by properly choosing Cis, JdCov2(X1, . . . , Xd;C2, . . . , Cd) has a relatively

simple expression, which does not require the evaluation of 2d − d − 1 dCov terms in its original

definition (2.5). Specifically, let Ci = cd−i for c ≥ 0 in the definition of JdCov and denote
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JdCov2(X1, . . . , Xd; c) = JdCov2(X1, . . . , Xd; c
d−2, cd−1, . . . , 1). Then, we have the following

result.

Proposition 2.2.4. For any c ≥ 0,

JdCov2(X1, . . . , Xd; c) = E

[
d∏
i=1

(Ui(Xi, X
′
i) + c)

]
− cd.

In particular, JdCov2(X1, X2; c) = E[U1(X1, X
′
1)U2(X2, X

′
2)] = dCov2(X1, X2).

By (2.5), the dependence measured by JdCov can be decomposed into the main effect term∑
(i1,i2)∈Id2

dCov2(Xi1 , Xi2) quantifying the pairwise dependence as well as the higher order effect

terms
∑

(i1,i2,...,ik)∈Idk
dCov2(Xi1 , Xi2 , . . . , Xik) quantifying the multi-way interaction dependence

among any k-tuples. The choice of c reflects the relative importance of the main effect and the

higher order effects. For c ≥ 1, Ci = cd−i is nonincreasing in i. Thus, the larger c we select, the

smaller weights we put on the higher order terms. In particular, we have

lim
c→+∞

c2−dJdCov2(X1, . . . , Xd; c) =
∑

(i1,i2)∈Id2

dCov2(Xi1 , Xi2),

that is JdCov reduces to the main effect term as c → +∞. We remark that the main effect term

fully characterizes joint dependence in the case of elliptical distribution and it has been recently

used in Yao et al. (2018) to test mutual independence for high-dimensional data. On the other

hand, JdCov becomes the dth order dCov as c→ 0, i.e.,

lim
c→0

JdCov2(X1, . . . , Xd; c) = dCov2(X1, . . . , Xd).

The choice of c depends on the types of interaction dependence of interest as well as the specific

scientific problem, and thus is left for the user to decide.

It is worth noting that JdCov2(X1, . . . , Xd; c) depends on the scale of Xi. To obtain a scale-

invariant metric, one can normalize Ui by the corresponding distance variance. Specifically, when
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dCov(Xi) := dCov(Xi, Xi) > 0, the resulting quantity is given by,

JdCov2S(X1, . . . , Xd; c) = E

[
d∏
i=1

(
Ui(Xi, X

′
i)

dCov(Xi)
+ c

)]
− cd,

which is scale-invariant. Another way to obtain a scale-invariant metric is presented in Section

2.2.4 based on the idea of rank transformation.

Below we present some basic properties of JdCov, which follow directly from Proposition

2.2.1.

Proposition 2.2.5. We have the following properties regarding JdCov:

(1) For any ai ∈ Rpi , c0 ∈ R, and orthogonal transformations Ai ∈ Rpi×pi , JdCov2(a1 +

c0A1X1, . . . , ad + c0AdXd; |c0|c) = |c0|dJdCov2(X1, . . . , Xd; c). Moreover, JdCov is in-

variant to any permutation of {X1, X2, . . . , Xd}.

(2) For any ai ∈ Rpi , ci 6= 0, and orthogonal transformations Ai ∈ Rpi×pi , JdCov2S(a1 +

c1A1X1, . . . , ad + cdAdXd; c) = JdCov2S(X1, . . . , Xd; c).

Remark 2.2.3. A natural question to ask is what should be a data driven way to choose the tuning

parameter c. Although we leave it for future research, here we present a heuristic idea of choosing

c. In the discussion below Proposition 2.2.4, we pointed out that choosing c > 1 (or < 1) puts

lesser (or higher) weightage on the higher order effects. Note that if the data is Gaussian, testing for

the mutual independence of {X1, . . . , Xd} is equivalent to testing for their pairwise independences.

In that case, intuitively one should choose a larger (> 1) value of c. If, however, the data is non-

Gaussian, it might be of interest to look into higher order dependencies and thus a smaller (< 1)

choice of c makes sense.

To summarize, a heuristic way to choose the tuning parameter c could be :

Choose c


> 1, if {X1, . . . , Xd} are jointly Gaussian

< 1, if {X1, . . . , Xd} are not jointly Gaussian.
(2.6)
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There is a huge literature on testing for joint normality of random vectors. It has been shown

that the test based on energy distance is consistent against fixed alternatives (Székely and Rizzo,

2004) and shows higher empirical power compared to several competing tests (Székely and Rizzo,

2005; 2013). Suppose p is the p-value of the energy distance based test for joint normality of

{X1, . . . , Xd} at level α. We expect c to increase (or decrease) from 1 as p > (or <) α, so one

heuristic choice of c can be

c = 1 + sign(p− α)× |p− α|1/4 , (2.7)

where sign(x) = 1, 0 or − 1 depending on whether x > 0, x = 0 or x < 0. For example, p =

(0.001, 0.03, 0.0499, 0.0501, 0.1, 0.3) and α = 0.05 yields c = (0.53, 0.62, 0.9, 1.1, 1.47, 1.71).

2.2.3 Distance cumulant and distance characteristic function

As noted in Streitberg (1990), for d ≥ 4, the Lancaster interaction measure fails to capture

all possible factorizations of the joint distribution. For example, it may not vanish if (X1, X2) ⊥⊥

(X3, X4). Streitberg (1990) corrected the definition of Lancaster interaction measure using a more

complicated construction, which essentially corresponds to the cumulant version of dCov in our

context. Specifically, Streitberg (1990) proposed a corrected version of Lancaster interaction as

follows

∆̃F =
∑
π

(−1)|π|−1(|π| − 1)!
∏
D∈π

FD,

where π is a partition of the set {1,2,. . . ,d}, |π| denotes the number of blocks of the partition π

and FD denotes the joint distribution of {Xi : i ∈ D}. It has been shown in Streitberg (1990) that

∆̃F = 0 whenever F is decomposable. Our definition of joint distance cumulant of {X1, . . . , Xd}

below can be viewed as the dCov version of Streitberg’s correction.
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Definition 2.2.3. The joint distance cumulant among {X1, . . . , Xd} is defined as

cum(X1, . . . , Xd) =
∑
π

(−1)|π|−1(|π| − 1)!
∏
D∈π

E

(∏
i∈D

Ui(Xi, X
′
i)

)
, (2.8)

where π runs through all partitions of {1, 2, . . . , d}.

It is not hard to verify that cum(X1, . . . , Xd) = 0 if {X1, . . . , Xd} can be decomposed into

two mutually independent groups say (Xi)i∈π1 and (Xj)j∈π2 with π1 and π2 being a partition of

{1, 2, . . . , d}. We further define the distance characteristic function.

Definition 2.2.4. The joint distance characteristic function among {X1, . . . , Xd} is defined as

dcf(t1, . . . , td) = E

[
exp

(
ı

d∑
i=1

tiUi(Xi, X
′
i)

)]
, (2.9)

for t1, . . . , td ∈ R.

The following result shows that distance cumulant can be interpreted as the coefficient of the

Taylor expansion of the log distance characteristic function.

Proposition 2.2.6. The joint distance cumulant cum(Xi1 , . . . , Xis) is given by the coefficient

of ıs
∏s

k=1 tik in the Taylor expansion of log {dcf(t1, . . . , td)}, where {i1, . . . , is} is any subset of

{1, 2, . . . , d} with s ≤ d.

Our next result indicates that the mutual independence among {X1, . . . , Xd} is equivalent to

the mutual independence among {U1(X1, X
′
1), . . . , Ud(Xd, X

′
d)}.

Proposition 2.2.7. The random variables {X1, . . . , Xd} are mutually independent if and only if

dcf(t1, . . . , td) =
∏d

i=1 dcf(ti) for ti almost everywhere, where dcf(ti) = E[exp{ıtiUi(Xi, X
′
i)}].

2.2.4 Rank-based metrics

In this subsection, we briefly discuss the concept of rank-based distance measures. For sim-

plicity, we assume that Xis are all univariate and remark that our definition can be generalized to
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the case where Xis are random vectors without essential difficulty. The basic idea here is to apply

the monotonic transformation based on the marginal distribution functions to each Xj , and then

use the dCov or JdCov to quantify the interaction and joint dependence of the coordinates after

transformation. Therefore it can be viewed as the counterpart of Spearman’s rho to dCov or JdCov.

Let Fj be the marginal distribution function for Xj . The squared rank dCov and JdCov among

{X1, . . . , Xd} are defined respectively as

dCov2R(X1, . . . , Xd) = dCov2(F1(X1), . . . , Fd(Xd)),

JdCov2R(X1, . . . , Xd; c) = JdCov2(F1(X1), . . . , Fd(Xd); c).

The rank-based dependence metrics enjoy a few appealing features: (1) they are invariant to mono-

tonic component wise transformations; (2) they are more robust to outliers and heavy tail of the

distribution; (3) their existence require very weak moment assumption on the components of X .

In Section 4.4, we shall compare the finite sample performance of JdCov2
R with that of JdCov and

JdCovS .

Table 2.1: Comparison of various distance metrics for measuring joint dependence of d ≥ 2
random vectors of arbitrary dimensions :

Distance metrics Complete characterization Permutation Scale
of joint independence invariance invariance

dHSIC X X ××× (for fixed bandwidth)
TMT X ××× ×××

High order dCov ××× (Captures Lancaster interactions) X ×××
JdCov X X ×××
JdCovS X X X
JdCovR X X X
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2.3 Estimation

We now turn to the estimation of the joint dependence metrics. Given n samples {Xj}nj=1 with

Xj = (Xj1, . . . , Xjd), we consider the plug-in estimators based on the V-statistics as well as their

bias-corrected versions to be described below. Denote by f̂i(ti) = n−1
∑n

j=1 e
ı〈ti,Xji〉 the empirical

characteristic function for Xi.

2.3.1 Plug-in estimators

For 1 ≤ k, l ≤ n, let Ûi(k, l) = n−1
∑n

v=1 |Xki−Xvi|+n−1
∑n

u=1 |Xui−Xli|− |Xki−Xli|−

n−2
∑n

u,v=1 |Xui−Xvi| be the sample estimate of Ui(Xki, Xli). The V-statistic type estimators for

dCov, JdCov and its scale-invariant version are defined respectively as,

d̂Cov2(X1, . . . , Xd) =
1

n2

n∑
k,l=1

d∏
i=1

Ûi(k, l)
2, (2.10)

̂JdCov2(X1, . . . , Xd; c)) =
1

n2

n∑
k,l=1

d∏
i=1

(
Ûi(k, l) + c

)
− cd, (2.11)

̂JdCov2S(X1, . . . , Xd; c) =
1

n2

n∑
k,l=1

d∏
i=1

(
Ûi(k, l)

d̂Cov(Xi)
+ c

)
− cd, (2.12)

where d̂Cov2(Xi) = n−2
∑n

k,l=1 Ûi(k, l)
2 is the sample (squared) dCov. The following lemma

shows that the V-statistic type estimators are equivalent to the plug-in estimators by replacing the

characteristic functions and the expectation in the definitions of dCov and JdCov with their sample

counterparts.

Lemma 2.3.1. The sample (squared) dCov can be rewritten as,

d̂Cov2(X1, . . . , Xd) =

∫
Rp0

∣∣∣∣∣ 1n
n∑
k=1

[
d∏
i=1

(f̂i(ti)− eı〈ti,Xki〉)

]∣∣∣∣∣
2

dw. (2.13)
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Moreover, we have

̂JdCov2(X1, . . . , Xd; c)

=cd−2
∑

(i1,i2)∈Id2

d̂Cov2(Xi1 , Xi2) + cd−3
∑

(i1,i2,i3)∈Id3

d̂Cov2(Xi1 , Xi2 , Xi3)

+ · · ·+ d̂Cov2(X1, . . . , Xd).

(2.14)

Remark 2.3.1. Consider the univariate case where pi = 1 for all 1 ≤ i ≤ d. Let F̂i be the empiri-

cal distribution based on {Xji}nj=1 and define Zji = F̂i(Xji). Then, the rank-based metrics defined

in Section 2.2.4 can be estimated in a similar way by replacing Xji with Zji in the definitions of

the above estimators.

Remark 2.3.2. The distance cumulant can be estimated by

ĉum(X1, . . . , Xd) =
∑
π

(−1)|π|−1(|π| − 1)!
∏
D∈π

{
1

n2

n∑
k,l=1

(∏
i∈D

Ûi(k, l)

)}
.

However, the combinatorial nature of distance cumulant implies that detecting interactions of

higher order requires significantly more costly computation.

We study the asymptotic properties of the V-statistic type estimators under suitable moment

assumptions.

Assumption 2.3.1. Suppose for any subset S of {1, 2, . . . , d} with |S| ≥ 2, there exists a partition

S = S1 ∪ S2 such that E
∏

i∈S1
|Xi| <∞ and E

∏
i∈S2
|Xi| <∞.

Proposition 2.3.1. Under Assumption 4.3.2 , we have as n→∞,

d̂Cov2(X1, · · · , Xd)
a.s−→ dCov2(X1, · · · , Xd),

̂JdCov2(X1, · · · , Xd; c)
a.s−→ JdCov2(X1, . . . , Xd; c),

̂JdCov2S(X1, · · · , Xd; c)
a.s−→ JdCov2S(X1, . . . , Xd; c),

where “
a.s−→ ” denotes the almost sure convergence.
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When d = 2, Assumption 2.3.1 reduces to the condition that E|X1| < ∞ and E|X2| < ∞ in

Theorem 2 of Székely et al. (2007). Suppose Xis are mutually independent. Then Assumption

2.3.1 is fulfilled provided that E|Xi| < ∞ for all i. More generally, if E|Xi|b(d+1)/2c < ∞ for

1 ≤ i ≤ d, then Assumption 2.3.1 is satisfied.

Let Γ(·) denote a complex-valued zero mean Gaussian random process with the covariance

functionR(t, t′) =
∏d

i=1

(
fi(ti−t′i)−fi(ti)fi(−t′i)

)
, where t = (t1, t2, . . . , td), t

′ = (t′1, t
′
2, . . . , t

′
d) ∈

Rp1 × Rp2 × · · · × Rpd .

Proposition 2.3.2. Suppose X1, X2, . . . , Xd are mutually independent, and E|Xi| < ∞ for

1 ≤ i ≤ d. Then we have

nd̂cov2(X1, X2, · · · , Xd)
d−→ ‖Γ‖2 =

+∞∑
j=1

λjZ
2
j ,

where ||Γ||2 =
∫

Γ(t1, t2, . . . , td)
2dw, Zj

i.i.d∼ N(0, 1) and λj > 0 depends on the distribution of

X . As a consequence, we have

nĴdcov2(X1, X2, · · · , Xd; c)
d−→

+∞∑
j=1

λ′jZ
2
j ,

with λ′j > 0 and Zj
i.i.d∼ N(0, 1).

Proposition 2.3.2 shows that both d̂cov2 and Ĵdcov2 converge to weighted sum of chi-squared

random variables, where the weights depend on the marginal characteristic functions in a compli-

cated way. Since the limiting distribution is non-pivotal, we will introduce a bootstrap procedure

to approximate their sampling distributions in the next section.

It has been pointed out in the literature that the computational complexity of dCov is O(n2) if

it is implemented directly according to its definition. The computational cost of the V-statistic type

estimators and the bias-corrected estimators for JdCov are both of the order O(n2p0).
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2.3.2 Bias-corrected estimators

It is well known that V-statistic leads to biased estimation. To remove the bias, one can con-

struct an estimator for the dth order dCov based on a dth order U-statistic. However, the compu-

tational complexity for the dth order U-statistic is of the order O(dnd), which is computationally

prohibitive when n and d are both large. Adopting the U-centering idea in Székely and Rizzo

(2014), we propose bias-corrected estimators which do not bring extra computational cost as com-

pared to the plug-in estimators. Specifically, for 1 ≤ i ≤ d, we define the U-centered version of

|Xki −Xli| as

Ũi(k, l) =
1

n− 2

n∑
u=1

|Xui −Xli|+
1

n− 2

n∑
v=1

|Xki −Xvi| − |Xki −Xli|

− 1

(n− 1)(n− 2)

n∑
u,v=1

|Xui −Xvi|

when k 6= l, and Ũi(k, l) = 0 when k = l. One can verify that
∑

v 6=k Ũi(k, v) =
∑

u6=l Ũi(u, l) =

0, which mimics the double-centered property E[Ui(Xi, X
′
i)|Xi] = E[Ui(Xi, X

′
i)|X ′i] = 0 for

its population counterpart. Let d̃Cov2(Xi, Xj) =
∑

k 6=l Ũi(k, l)Ũj(k, l)/{n(n − 3)} and write

d̃Cov(Xi) = d̃Cov(Xi, Xi). We define the bias-corrected estimators as,

˜JdCov2(X1, . . . , Xd; c) =
1

n(n− 3)

n∑
k,l=1

d∏
i=1

(
Ũi(k, l) + c

)
− n

n− 3
cd,

˜JdCov2S(X1, . . . , Xd; c) =
1

n(n− 3)

n∑
k,l=1

d∏
i=1

(
Ũi(k, l)

d̃Cov(Xi)
+ c

)
− n

n− 3
cd.

Direct calculation yields that

˜JdCov2(X1, . . . , Xn; c) = cd−2
∑

(i,j)∈Id2

d̃Cov
2
(Xi, Xj) + higher order terms. (2.15)

It has been shown in Proposition 1 of Székely and Rizzo (2014) that d̃Cov
2
(Xi, Xj) is an un-

biased estimator for dCov2(Xi, Xj). In the supplementary material, we provide an alternative
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proof which simplifies the arguments in Székely and Rizzo (2014). Our argument relies on a new

decomposition of Ũi(k, l), which provides some insights on the U-centering idea. See Lemma

A.0.1 and Proposition A.0.2 in the supplementary material. In view of (2.15) and Proposition

A.0.2, the main effect in JdCov2(X1, . . . , Xn; c) can be unbiasedly estimated by the main effect

of ˜JdCov2(X1, . . . , Xn; c). However, it seems very challenging to study the impact of U-centering

on the bias of the high order effect terms. We shall leave this problem to our future research.

2.4 Testing for joint independence

In this section, we consider the problem of testing the null hypothesis

H0 : X1, . . . , Xd are mutually independent (2.16)

against the alternative HA : negation of H0. For the purpose of illustration, we use n ̂JdCov2 as

our test statistic and set

φn(X1, . . . ,Xn) :=


1 if n ̂JdCov2(X1, . . . , Xd) > cn ,

0 if n ̂JdCov2(X1, . . . , Xd) ≤ cn ,

(2.17)

where the threshold cn remains to be chosen. Consequently, we define a decision rule as follows:

reject H0 if φn = 1 and fail to reject H0 if φn = 0.

Below we introduce a bootstrap procedure to approximate the sampling distribution of nĴdCov

under H0. Let F̂i be the empirical distribution function based on the data points {Xji}nj=1. Con-

ditional on the original sample, we define X∗j = (X∗j1, . . . , X
∗
jd), where X∗ji are generated inde-

pendently from F̂i for 1 ≤ i ≤ d. Let {X∗j}nj=1 be n bootstrap samples. Then we can compute

the bootstrap statistics d̂Cov2
∗

and ̂JdCov2
∗

in the same way as d̂Cov2 and ̂JdCov2 based on

{X∗j}nj=1. In particular, we note that the bootstrap version of the dth order dCov is given by

nd̂Cov2
∗
(X1, . . . , Xd) = ‖Γ∗n‖2 =

∫
Γ∗n(t1, . . . , td)

2dw,
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where

Γ∗n(t) = n−1/2
n∑
j=1

d∏
i=1

(f̂ ∗i (ti)− eı〈ti,X
∗
ji〉).

Denote by “
d∗−→ ” the weak convergence in the bootstrap world conditional on the original sample

{Xj}nj=1.

Proposition 2.4.1. Suppose E|Xi| <∞ for 1 ≤ i ≤ d. Then

nd̂Cov2
∗
(X1, . . . , Xd)

d∗−→
+∞∑
j=1

λjZ
2
j ,

n ̂JdCov2
∗
(X1, . . . , Xd)

d∗−→
+∞∑
j=1

λ′jZ
2
j ,

almost surely as n→∞.

Proposition 2.4.1 shows that the bootstrap statistic is able to imitate the limiting distribution of

the test statistic. Thus, we shall choose cn to be the 1−α quantile of the distribution of n ̂JdCov2
∗

conditional on the sample {Xj}nj=1. The validity of the bootstrap-assisted test can be justified as

follows.

Proposition 2.4.2. For all α ∈ (0, 1), the α-level bootstrap-assisted test has asymptotic level α

when testing H0 against HA. In other words, under H0, lim sup
n→∞

P (φn(X1, . . . ,Xn) = 1 ) = α .

Proposition 2.4.3. For all α ∈ (0, 1), the α-level bootstrap-assisted test is consistent when

testing H0 against HA. In other words, under HA, lim
n→∞

P (φn(X1, . . . ,Xn) = 1 ) = 1 .

2.5 Numerical studies

We investigate the finite sample performance of the proposed methods. Our first goal is to

test the joint independence among the variables {X1, . . . , Xd} using the new dependence metrics,

and compare the performance with some existing alternatives in the literature in terms of size and

power. Throughout the simulation, we set c = 0.5, 1, 2 in JdCov and implement the bootstrap-

assisted test based on the bias-corrected estimators. We compare our tests with the dHSIC-based
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test in Pfister et al. (2018) and the mutual independence test proposed in Matteson and Tsay (2017),

which is defined as

TMT :=
d−1∑
i=1

dCov2(Xi, X(i+1):d), (2.18)

where X(i+1):d = {Xi+1, Xi+2, . . . , Xd}. We consider both Gaussian and non-Gaussian distri-

butions and study the following models, motivated from Sejdinovic et al. (2013) and Yao et al.

(2018).

Example 2.5.1. [Gaussian copula model] The data X = (X1, . . . , Xd) are generated as follows:

1. X ∼ N(0, Id);

2. X = Z1/3 and Z ∼ N(0, Id);

3. X = Z3 and Z ∼ N(0, Id).

Example 2.5.2. [Multivariate Gaussian model] The data X = (X1, . . . , Xd) are generated from

the multivariate normal distribution with the following three covariance matrices Σ = (σij(ρ))di,j=1

with ρ = 0.25:

1. AR(1): σij = ρ|i−j| for all i, j ∈ {1, . . . , d};

2. Banded: σii = 1 for i = 1, . . . , d; σij = ρ if 1 ≤ |i− j| ≤ 2 and σij = 0 otherwise;

3. Block: Define Σblock = (σij)
5
i,j=1 with σii = 1 and σij = ρ if i 6= j. Let Σ = Ibd/5c ⊗ Σblock,

where ⊗ denotes the Kronecker product.

Example 2.5.3. The data X = (X, Y, Z) are generated as follows:

1. X, Y i.i.d∼ N(0, 1), Z = sign(XY )W , where W follows an exponential distribution with

mean
√

2;

2. X, Y are independent Bernoulli random variables with the success probability 0.5, and Z =

1{X = Y }.
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Example 2.5.4. In this example, we consider a triplet of random vectors (X, Y, Z) on Rp×Rp×

Rp, with X, Y i.i.d∼ N(0, Ip). We focus on the following cases :

1. Z1 = sign(X1Y1)W and Z2:p ∼ N(0, Ip−1), where W follows an exponential distribution

with mean
√

2;

2. Z2:p ∼ N(0, Ip−1) and

Z1 =


X2

1 + ε, with probability 1/3,

Y 2
1 + ε, with probability 1/3,

X1Y1 + ε, with probability 1/3,

where ε ∼ U(−1, 1).

We conduct tests for joint independence among the random variables described in the above

examples. For each example, we draw 1000 simulated datasets and perform tests of joint indepen-

dence with 500 bootstrap resamples. We try small and moderate sample sizes, i.e., n = 50, 100 or

200. Figure 2.1 and Figure 2.2 display the proportion of rejections (out of 1000 simulation runs)

for the five different tests, based on the statistics ˜JdCov2, ˜JdCov2S , ˜JdCov2R, dHSIC and TMT .

The detailed figures are reported in Tables A.1 and A.2 in the appendix.

In Example 2.5.1, the data generating scheme suggests that the variables are jointly indepen-

dent. The plots in Figure 2.1 show that all the five tests perform more or less equally well in

examples 2.5.1.1 and 2.5.1.2, and the rejection probabilities are quite close to the 10% or 5% nom-

inal level. In Example 2.5.1.3, the tests based on our proposed statistics show greater conformation

of the empirical size to the actual size of the test than TMT . In Example 2.5.2, the tests based on

˜JdCov2, ˜JdCov2S and ˜JdCov2R as well as TMT significantly outperform the dHSIC-based test.

Note that the empirical power becomes higher when c increases to 2. From Figure 2.2, we observe

that in Example 2.5.3 all the tests perform very well in the second case. However, in the first case,

our tests and the dHSIC-based test deliver higher power as compared to TMT . Finally, in Example
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2.5.4, we allow X, Y, Z to be random vectors with dimension p = 5, 10. The rejection probabili-

ties for each of the five tests increase with n, and the proposed tests provide better performances in

comparison with the other two competitors. In particular, the test based on ˜JdCov2S outperforms all

the others in a majority of the cases. In Examples 2.5.3 and 2.5.4, the power becomes higher when

c decreases to 0.5. These results are consistent with our statistical intuition and the discussions in

Section 2.2.2. For the Gaussian copula model, only the main effect term matters, so a larger c is

preferable. For non-Gaussian models, the high order terms kick in and hence a smaller c may lead

to higher power.

Remark 2.5.1. We have considered U-statistic type estimators of JdCov2, JdCov2S and JdCov2R

so far in all the above computations, as they remove the bias due to the main effects (see Section

2.3.2). However it might be interesting to see if the bias correction has any empirical impact. We

conduct tests for joint independence of the random variables in some of the above examples, this

time using the V-statistic type estimators (described in Section 2.3.1). Table A.3 (in the appendix)

shows the proportion of rejections (out of 1000 simulation runs) for the tests based on ̂JdCov2,

̂JdCov2S and ̂JdCov2R, setting c = 1. The results indicate that use of the bias corrected estimators

lead to greater conformation of the empirical size to the actual size of the test (in Example 2.5.1),

and slightly better power in Example 2.5.3.

Remark 2.5.2. In connection to the heuristic idea discussed in Remark 2.2.3 about choosing the

tuning parameter c, we conduct tests for joint independence of the random variables in all the above

examples, choosing c in that way. Table A.4 (in the appendix) presents the proportion of rejections

for the proposed tests and the values of c for each example, averaged over the 1000 simulated

datasets. The plots in Figure 2.1 and Figure 2.2 reveal some interesting features. In Example 2.5.2

we have Gaussian data, so a larger c is preferable. Clearly the proportion of rejections are a little

higher (or lower) in most of the cases when we choose c in the data-driven way (c turns out to

be around 1.6 or 1.7), than when c is subjectively chosen to be 0.5 (or 2). On the contrary, in

Example 2.5.3, the data is non-Gaussian and a smaller c is preferable. Evidently choosing c in the

data-driven way leads to nearly equally good power compared to when c = 0.5, and higher power
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compared to when c = 2.

2.6 Application to causal inference

2.6.1 Model diagnostic checking for Directed Acyclic Graph (DAG)

We employ the proposed metrics to perform model selection in causal inference which is based

on the joint independence testing of the residuals from the fitted structural equation models. Specif-

ically, given a candidate DAG G, we let Par(j) denote the index associated with the parents of the

jth node. Following Peters et al. (2014) and Bühlmann et al. (2014), we consider the structural

equation models with additive components

Xj =
∑

k∈Par(j)

fj,k(Xk) + εj , j = 1, 2, . . . , d, (2.19)

where the noise variables ε1, . . . , εd are jointly independent variables. Given n observations

{Xi}ni=1 with Xi = (Xi1, . . . , Xid), we use generalized additive regression (Wood and Augustin,

2002) to regress Xj on all its parents {Xk, k ∈ Par(j)} and denote the resulting residuals by

ε̂ij = Xij −
∑

k∈Par(j)

f̂j,k(Xik), 1 ≤ j ≤ d, 1 ≤ i ≤ n,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Figures showing the empirical size and power for the different tests statistics in Exam-
ples 2.5.1 and 2.5.2. c∗ denotes the data-driven choice of c. The vertical height of a bar and a line
on a bar stand for the empirical size or power at levels α = 0.1 or α = 0.05, respectively.
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(a) (b)

(c) (d)

Figure 2.2: Figures showing the empirical power for the different tests statistics in Examples 2.5.3
and 2.5.4. c∗ denotes the data-driven choice of c. The vertical height of a bar and a line on a bar
stand for the empirical power at levels α = 0.1 or α = 0.05, respectively.

where f̂j,k is the B-spline estimator for fj,k. To check the goodness of fit of G, we test the joint

independence of the residuals. Let Tn be the statistic (e.g. ˜JdCov2, ˜JdCov2S or ˜JdCov2R) to test

the joint dependence of (ε1, . . . , εd) constructed based on the fitted residuals ε̂i = (ε̂i1, . . . , ε̂id) for

1 ≤ i ≤ n. Following the idea presented in Sen and Sen (2014), it seems that Tn might have a

limiting distribution different from the one mentioned in Proposition 2.3.2. So to approximate the

sampling distribution of Tn, we introduce the following residual bootstrap procedure.
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1. Randomly sample ε∗j = (ε∗1j, . . . , ε
∗
nj) with replacement from the residuals {ε̂1j, . . . , ε̂nj},

1 ≤ j ≤ d. Construct the bootstrap sample X∗ij =
∑

k∈Par(j) f̂j,k(Xik) + ε∗ij .

2. Based on the bootstrap sample {X∗i }ni=1 with X∗i = (X∗i1, . . . , X
∗
id), estimate fj,k for k ∈

Par(j), and denote the corresponding residuals by ε̂∗ij.

3. Calculate the bootstrap statistic T ∗n based on {ε̂∗ij}.

4. Repeat the above stepsB times and let {T ∗b,n}Bb=1 be the corresponding values of the bootstrap

statistics. The p-value is given by B−1
∑B

b=1{T ∗b,n > Tn}.

Pfister et al. (2018) proposed to bootstrap the residuals directly and used the bootstrapped residuals

to construct the test statistic. In contrast, we suggest the use of the above residual bootstrap to

capture the estimation effect caused by replacing fj,k with the estimate f̂j,k.

2.6.2 Real data example

We now apply the model diagnostic checking procedure for DAG to one real world dataset.

A population of women who were at least 21 years old, of Pima Indian heritage and living near

Phoenix, Arizona, was tested for diabetes according to World Health Organization criteria. The

data were collected by the US National Institute of Diabetes and Digestive and Kidney Diseases.

We downloaded the data from https://archive.ics.uci.edu/ml/datasets/Pima+

Indians+Diabetes. We focus only on the following five variables : Age, Body Mass Index

(BMI), 2-Hour Serum Insulin (SI), Plasma Glucose Concentration (glu) and Diastolic Blood Pres-

sure (DBP). Further, we only selected the instances with non-zero values, as it seems that zero

values encode missing data. This yields n = 392 samples.

Now, age is likely to affect all the other variables (but of course not the other way round).

Moreover, serum insulin also has plausible causal effects on BMI and plasma glucose concentra-

tion. We try to determine the correct causal structure out of 48 candidate DAG models and perform

model diagnostic checking for each of the 48 models, as illustrated in Section 6.1. We first center

each of the variables and scale them so that l2 norm of each of the variables is
√
n. We perform the
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mutual independence test of residuals based on the statistics ˜JdCov2, ˜JdCov2S and ˜JdCov2R with

c = 1, and compare with the bootstrap-assisted version of the dHSIC-based test proposed in Pfister

et al. (2018) and TMT . For each of the tests, we implement the residual bootstrap to obtain the

p-value with B = 1000. Figure 3.2 shows the selected DAG models corresponding to the largest

p-values from each of the five tests.

(a) ˜JdCov2, ˜JdCov2S , ˜JdCov2R and TMT
(b) dHSIC

Figure 2.3: The DAG models corresponding to the largest p-values from the five tests.

Figure 2.3a shows the model with the maximum p-value among all the 48 candidate DAG

models, when the test for joint independence of the residuals is conducted based on ˜JdCov2,

˜JdCov2S and ˜JdCov2R and TMT . This graphical structure goes in tune with the biological evidences

of causal relationships among these five variables. Figure 2.3b stands for the model with the

maximum p-value when the test is based on dHSIC. Its only difference with Figure 2.3a is that, it

has an additional edge from glu to DBP, indicating a causal effect of Plasma Glucose Concentration

on Diastolic Blood Pressure. We are unsure of any biological evidence that supports such a causal

relationship in reality.

Remark 2.6.1. In view of Remark 2.2.3, it might be intriguing to take into account the heuristic

data-driven way of determining c in the above example, instead of setting c at a default value of
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1. Our findings indicate that choosing c in the data-driven way leads to a slightly different result.

The tests based on dHSIC and ˜JdCov2S select the DAG model shown in Figure 2.3b (considering

the maximum p-value among all the 48 candidate DAG models), whereas Figure 2.3a is the DAG

model selected when the test is based on ˜JdCov2, ˜JdCov2R and TMT . The proposed tests (based

on ˜JdCov2 and ˜JdCov2R) still perform well.

2.6.3 A simulation study

We conduct a simulation study based on our findings in the previous real data example. To

save the computational cost, we focus our attention on three of the five variables, viz. Age, glu

and DBP. In the correct causal structure among these three variables, there are directed edges from

Age to glu and Age to DBP. We consider the additive structural equation models

Xj =
∑

k∈Par(j)

f̂j,k(Xk) + ej , j = 1, 2, 3, (2.20)

where X1, X2, X3 correspond to Age, glu and DBP (after centering and scaling) respectively, and

f̂j,k denotes the estimated function from the real data. Note that X1 is the only variable without

any parent. In Section 2.6.2, we get from our numerical studies that the standard deviation of X1 is

1.001, and the standard deviations of the residuals when X2 and X3 are regressed on X1 (accord-

ing to the structural equation models in (2.19), are 0.918 and 0.95, respectively. In this simulation

study, we simulate X1 from a zero mean Gaussian distribution with standard deviation 1. For X2

andX3, we simulate the noise variables from zero mean Gaussian distributions with standard devi-

ations 0.918 and 0.95, respectively. The same n = 392 is considered for the number of generated

observations, and based on this simulated dataset we perform the model diagnostic checking for

27 candidate DAG models. The number of bootstrap replications is set to be B = 100 (to save the

computational cost). This procedure is repeated 100 times to note how many times out of 100 that

the five tests select the correct model, based on the largest p-value. The results in Table 2.2 below

indicate that the proposed tests with c = 1 and the dHSIC-based test outperform TMT .
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Table 2.2: The number of times (out of 100) that the true model is being selected.

˜JdCov2 ˜JdCov2S ˜JdCov2R dHSIC TMT

45 61 54 52 32

Remark 2.6.2. A natural question to raise is why do we bootstrap the residuals and not test for the

joint independence of the estimated residuals directly, to check for the goodness of fit of the DAG

model. From the idea in Sen and Sen (2014), it appears that the joint distance covariance of the

estimated residuals might have a limiting distribution different from the one stated in Proposition

2.3.2. We leave the formulation of a rigorous theory in support of that for future research. We

present below the models selected most frequently (out of 100 times) by the different test statistics

if we repeat the simulation study done above in Section 2.6.3 without using residual bootstrap to

re-estimate fj,k. We immediately see that joint independence tests of the estimated residuals based

on all of the five statistics we consider, select a DAG model that is meaningless and far away from

the correct one.

(a) ˜JdCov2, ˜JdCov2S , ˜JdCov2R,
dHSIC

(b) TMT (c) Correct model

Figure 2.4: The DAG models selected (most frequently out of 100 times) by the five tests, without
doing residual bootstrap to re-estimate fj,k.

Remark 2.6.3. In view of Remark 2.2.3, it might be intriguing to take into account the heuristic
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data-driven way of choosing c in the simulation study in Section 2.6.3, instead of setting c at a

default value of 1. Our findings indicate that our proposed tests and the dHSIC-based test still

outperform TMT . In the context of Remark 2.6.2, if we repeat the simulation study done in Section

2.6.3 (choosing c in the heuristic way), we still reach the same conclusion presented in Remark

2.6.2.

2.7 Discussions

Huo and Székely (2016) proposed an O(n log n) algorithm to compute dCov of univariate ran-

dom variables. In a more recent work, Huang and Huo (2017) introduced a fast method for multi-

variate cases which is based on random projection and has computational complexityO(nK log n),

where K is the number of random projections. One of the possible directions for future research is

to come up with a fast algorithm to compute JdCov. When pi = 1, we can indeed use the method

in Huo and Székely (2016) to compute JdCov. But their method may be inefficient when d is large

and it is not applicable to the case where pi > 1. Another direction is, to introduce the notion of

Conditional JdCov in light of Wang et al. (2015), to test if the variables (X1, . . . , Xd) are jointly

independent given another variable Z.
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3. NONPARAMETRIC TESTS FOR INDEPENDENCE AND EQUALITY OF

DISTRIBUTIONS IN HIGH DIMENSIONS

3.1 Background and notations

The behavior of the classical distance and kernel-based tests for independence and equality of

distributions in the high dimensional setup is still a pretty unexplored area. In a very recent work,

Zhu et al. (2020) showed that in the high dimension low sample size (HDLSS) setting, i.e., when

the dimensions grow while the sample size is held fixed, the sample distance covariance can only

measure the component-wise linear dependence between the two vectors. As a consequence, the

distance correlation based t-test proposed by Székely et al. (2013) for independence between two

high dimensional random vectors has trivial power when the two random vectors are nonlinearly

dependent but component-wise uncorrelated. As a remedy, Zhu et al. (2020) proposed a test by

aggregating the pairwise squared sample distance covariances and studied its asymptotic behavior

under the HDLSS setup.

This work presents a new class of metrics to quantify the homogeneity of distributions and in-

dependence between two high-dimensional random vectors. The core of our methodology is a new

way of defining the distance between sample points (interpoint distance) in the high-dimensional

Euclidean spaces. In the first part of this work, we show that the energy distance based on the usual

Euclidean distance cannot completely characterize the homogeneity of two high-dimensional dis-

tributions in the sense that it only detects the equality of means and the traces of covariance ma-

trices in the high-dimensional setup. To overcome such a limitation, we propose a new class of

metrics based on the new distance which inherits the nice properties of energy distance and max-

imum mean discrepancy in the low-dimensional setting and is capable of detecting the pairwise

homogeneity of the low-dimensional marginal distributions in the HDLSS setup. We construct a

high-dimensional two sample t-test based on the U-statistic type estimator of the proposed metric,

which can be viewed as a generalization of the classical two-sample t-test with equal variances. We
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show under the HDLSS setting that the new two sample t-test converges to a central t-distribution

under the null and it has nontrivial power for a broader class of alternatives compared to the energy

distance. We further show that the two sample t-test converges to a standard normal limit under the

null when the dimension and sample size both grow to infinity with the dimension growing more

rapidly. It is worth mentioning that we develop an approach to unify the analysis for the usual

energy distance and the proposed metrics. Compared to existing works, we make the following

contribution.

• We derive the asymptotic variance of the generalized energy distance under the HDLSS

setting and propose a computationally efficient variance estimator (whose computational

cost is linear in the dimension). Our analysis is based on a pivotal t-statistic which does not

require permutation or resampling-based inference and allows an asymptotic exact power

analysis.

In the second part, we propose a new framework to construct dependence metrics to quantify

the dependence between two high-dimensional random vectors X and Y of possibly different di-

mensions. The new metric, denoted by D2(X, Y ), generalizes both the distance covariance and

HSIC. It completely characterizes independence between X and Y and inherits all other desir-

able properties of the distance covariance and HSIC for fixed dimensions. In the HDLSS setting,

we show that the proposed population dependence metric behaves as an aggregation of group-

wise (generalized) distance covariances. We construct an unbiased U-statistic type estimator of

D2(X, Y ) and show that with growing dimensions, the unbiased estimator is asymptotically equiv-

alent to the sum of group-wise squared sample (generalized) distance covariances. Thus it can

quantify group-wise non-linear dependence between two high-dimensional random vectors, go-

ing beyond the scope of the distance covariance based on the usual Euclidean distance and HSIC

which have been recently shown only to capture the componentwise linear dependence in high

dimension, see Zhu et al. (2020). We further propose a t-test based on the new metrics to perform

high-dimensional independence testing and study its asymptotic size and power behaviors under

both the HDLSS and high dimension medium sample size (HDMSS) setups. In particular, under
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the HDLSS setting, we prove that the proposed t-test converges to a central t-distribution under the

null and a noncentral t-distribution with a random noncentrality parameter under the alternative.

Through extensive numerical studies, we demonstrate that the newly proposed t-test can capture

group-wise nonlinear dependence which cannot be detected by the usual distance covariance and

HSIC in the high dimensional regime. Compared to the marginal aggregation approach in Zhu et

al. (2020), our new method enjoys two major advantages.

• Our approach provides a neater way of generalizing the notion of distance and kernel-based

dependence metrics. The newly proposed metrics completely characterize dependence in the

low-dimensional case and capture group-wise nonlinear dependence in the high-dimensional

case. In this sense, our metric can detect a wider range of dependence compared to the

marginal aggregation approach.

• The computational complexity of the t-tests only grows linearly with the dimension and thus

is scalable to very high dimensional data.

Notation. Let X = (X1, . . . Xp) ∈ Rp and Y = (Y1, . . . , Yq) ∈ Rq be two random vectors

of dimensions p and q respectively. Denote by ‖ · ‖p the Euclidean norm of Rp (we shall use it

interchangeably with ‖ · ‖ when there is no confusion). Let 0p be the origin of Rp. We use X ⊥⊥ Y

to denote that X is independent of Y , and use “X
d
= Y ” to indicate that X and Y are identically

distributed. Let (X ′, Y ′), (X ′′, Y ′′) and (X ′′′, Y ′′′) be independent copies of (X, Y ). We utilize the

order in probability notations such as stochastic boundedness Op (big O in probability), conver-

gence in probability op (small o in probability) and equivalent order�, which is defined as follows:

for a sequence of random variables {Zn}∞n=1 and a sequence of real numbers {an}∞n=1, Zn �p an if

and only if Zn/an = Op(1) and an/Zn = Op(1) as n→∞. For a metric space (X , dX ), letM(X )

andM1(X ) denote the set of all finite signed Borel measures onX and all probability measures on

X , respectively. DefineM1
dX

(X ) := {v ∈ M(X ) : ∃x0 ∈ X s.t.
∫
X dX (x, x0) d|v|(x) < ∞}.

For θ > 0, defineMθ
K(X ) := {v ∈ M(X ) :

∫
X K

θ(x, x) d|v|(x) <∞}, where K : X × X → R

is a bivariate kernel function. Define M1
dY

(Y) and Mθ
K(Y) in a similar way. For a matrix
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A = (akl)
n
k,l=1 ∈ Rn×n, define its U-centered version Ã = (ãkl) ∈ Rn×n as follows

ãkl =


akl −

1

n− 2

n∑
j=1

akj −
1

n− 2

n∑
i=1

ail +
1

(n− 1)(n− 2)

n∑
i,j=1

aij, k 6= l,

0, k = l,

(3.1)

for k, l = 1, . . . , n. Define

(Ã · B̃) :=
1

n(n− 3)

∑
k 6=l

ãklb̃kl

for Ã = (ãkl) and B̃ = (b̃kl) ∈ Rn×n. Denote by tr(A) the trace of a square matrix A. A ⊗ B

denotes the kronecker product of two matrices A and B. Let Φ(·) be the cumulative distribution

function of the standard normal distribution. Denote by ta,b the noncentral t-distribution with a

degrees of freedom and noncentrality parameter b. Write ta = ta,0. Denote by qα,a and Zα the

upper α quantile of the distribution of ta and the standard normal distribution, respectively, for

α ∈ (0, 1). Also denote by χ2
a the chi-square distribution with a degrees of freedom. Denote U ∼

Rademacher (0.5) if P (U = 1) = P (U = −1) = 0.5. Let 1A denote the indicator function

associated with a set A. Finally, denote by bac the integer part of a ∈ R.

3.2 New distance for Euclidean space

We introduce a family of distances for Euclidean space, which shall play a central role in

the subsequent developments. For x ∈ Rp̃, we partition x into p sub-vectors or groups, namely

x = (x(1), . . . , x(p)), where x(i) ∈ Rdi with
∑p

i=1 di = p̃. Let ρi be a metric or semimetric (see for

example Definition 1 in Sejdinovic et al. (2013)) defined on Rdi for 1 ≤ i ≤ p. We define a family

of distances for Rp̃ as

Kd(x, x′) :=
√
ρ1(x(1), x′(1)) + . . . + ρp(x(p), x′(p)) , (3.2)

where x, x′ ∈ Rp̃ with x = (x(1), . . . , x(p)) and x′ = (x′(1), . . . , x
′
(p)), and d = (d1, d2, . . . , dp) with

di ∈ Z+ and
∑p

i=1 di = p̃.
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Proposition 3.2.1. Suppose each ρi is a metric of strong negative type on Rdi . Then
(
Rp̃, Kd

)
satisfies the following two properties:

1. Kd : Rp̃ × Rp̃ → [0,∞) is a valid metric on Rp̃;

2.
(
Rp̃, Kd

)
has strong negative type.

In a special case, suppose ρi is the Euclidean distance on Rdi . By Theorem 3.16 in Lyons (2013),

(Rdi , ρi) is a separable Hilbert space, and hence has strong negative type. Then the Euclidean space

equipped with the metric

Kd(x, x′) =
√
‖x(1) − x′(1)‖ + . . . + ‖x(p) − x′(p)‖ . (3.3)

is of strong negative type. Further, if all the components x(i) are unidimensional, i.e., di = 1 for

1 ≤ i ≤ p, then the metric boils down to

Kd(x, x′) = ‖x− x′‖1/21 =

√√√√ p∑
j=1

|xj − x′j| , (3.4)

where ‖x‖1 =
∑p

j=1 |xj| is the l1 or the absolute norm on Rp. If

ρi(x(i), x
′
(i)) = ‖x(i) − x′(i)‖2, 1 ≤ i ≤ p, (3.5)

then Kd reduces to the usual Euclidean distance. We shall unify the analysis of our new metrics

with the classical metrics by considering Kd which is defined in (3.2) with

S1 each ρi being a metric of strong negative type on Rdi;

S2 each ρi being a semimetric defined in (3.5).

The first case corresponds to the newly proposed metrics while the second case leads to the classical

metrics based on the usual Euclidean distance. Remarks 3.2.1 and 3.2.2 provide two different

ways of generalizing the class in (3.2). To be focused, our analysis below shall only concern about
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the distances defined in (3.2). In the numerical studies in Section 4.4, we consider ρi to be the

Euclidean distance and the distances induced by the Laplace and Gaussian kernels (see Definition

1.2.3) which are of strong negative type on Rdi for 1 ≤ i ≤ p.

Remark 3.2.1. A more general family of distances can be defined as

Kd,r(x, x
′) =

(
ρ1(x(1), x

′
(1)) + · · ·+ ρp(x(p), x

′
(p))
)r
, 0 < r < 1.

According to Remark 3.19 of Lyons (2013), the space (Rp̃, Kd,r) is of strong negative type. The

proposed distance is a special case with r = 1/2.

Remark 3.2.2. Based on the proposed distance, one can construct the generalized Gaussian and

Laplacian kernels as

f(Kd(x, x′)/γ) =


exp(−K2

d(x, x′)/γ2), f(x) = exp(−x2) for Gaussian kernel,

exp(−Kd(x, x′)/γ), f(x) = exp(−x) for Laplacian kernel.

If Kd is translation invariant, then by Theorem 9 in Sriperumbudur et al. (2010) it can be verified

that f(Kd(x, x′)/γ) is a characteristic kernel on Rp̃. As a consequence, the Euclidean space

equipped with the distance

Kd,f (x, x
′) = f(Kd(x, x)/γ) + f(Kd(x′, x′)/γ)− 2f(Kd(x, x′)/γ)

is of strong negative type.

Remark 3.2.3. In Sections 3.3 and 3.4 we develop new classes of homogeneity and dependence

metrics to quantify the pairwise homogeneity of distributions or the pairwise non-linear depen-

dence of the low-dimensional groups. A natural question to arise in this regard is how to partition

the random vectors optimally in practice. We present some real data examples in Section 3.5.3

where all the group sizes have been considered to be one (as a special case of the general theory

proposed in this work), and an additional real data example in Section B.3 of the appendix where
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the data admits some natural grouping. We believe this partitioning can be very much problem spe-

cific and may require subject knowledge. We leave it for future research to develop an algorithm

to find the optimal groups using the data and perhaps some auxiliary information.

3.3 Homogeneity metrics

Consider X, Y ∈ Rp̃. Suppose X and Y can be partitioned into p sub-vectors or groups, viz.

X =
(
X(1), X(2), . . . , X(p)

)
and Y =

(
Y(1), Y(2), . . . , Y(p)

)
, where the groups X(i) and Y(i) are di

dimensional, 1 ≤ i ≤ p, and p might be fixed or growing. We assume that X(i) and Y(i)’s are finite

(low) dimensional vectors, i.e., {di}pi=1 is a bounded sequence. Clearly p̃ =
∑p

i=1 di = O(p).

Denote the mean vectors and the covariance matrices of X and Y by µX and µY , and, ΣX and

ΣY , respectively. We propose the following class of metrics E to quantify the homogeneity of the

distributions of X and Y :

E(X, Y ) = 2EKd(X, Y ) − EKd(X,X ′) − EKd(Y, Y ′) , (3.6)

with d = (d1, . . . , dp). We shall drop the subscript d below for the ease of notation.

Assumption 3.3.1. Assume that sup1≤i≤p E ρ
1/2
i (X(i), 0di) <∞ and sup1≤i≤p E ρ

1/2
i (Y(i), 0di)

<∞.

Under Assumption 4.3.1, E is finite. In Section B.1.1 of the appendix we illustrate that in the

low-dimensional setting, E(X, Y ) completely characterizes the homogeneity of the distributions

of X and Y .

Consider i.i.d. samples {Xk}nk=1 and {Yl}ml=1 from the respective distributions of X and Y ∈

Rp̃, where Xk = (Xk(1), . . . , Xk(p)), Yl = (Yl(1), . . . , Yl(p)) for 1 ≤ k ≤ n, 1 ≤ l ≤ m and

Xk(i), Yl(i) ∈ Rdi . We propose an unbiased U-statistic type estimator En,m(X, Y ) of E(X, Y ) as in

equation (4.6) with d being the new metricK. We refer the reader to Section B.1.1 of the appendix,

where we show that En,m(X, Y ) essentially inherits all the nice properties of the U-statistic type

estimator of generalized energy distance and MMD.
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We define the following quantities which will play an important role in our subsequent analysis:

τ 2X = EK(X,X ′)2, τ 2Y = EK(Y, Y ′)2, τ 2 = EK(X, Y )2. (3.7)

In Case S2 (i.e., when K is the Euclidean distance), we have

τ 2X = 2trΣX , τ 2Y = 2trΣY , τ 2 = trΣX + trΣY + ‖µX − µY ‖2. (3.8)

Under the null hypothesis H0 : X
d
= Y , it is clear that τ 2X = τ 2Y = τ 2.

In the subsequent discussion we study the asymptotic behavior of E in the high-dimensional

framework, i.e., when p grows to∞ with fixed n and m (discussed in Subsection 3.3.1) and when

n and m grow to∞ as well (discussed in Subsection B.2.1 in the appendix). We point out some

limitations of the test for homogeneity of distributions in the high-dimensional setup based on the

usual Euclidean energy distance. Consequently we propose a test based on the proposed metric

and justify its consistency for growing dimension.

3.3.1 High dimension low sample size (HDLSS)

In this subsection, we study the asymptotic behavior of the Euclidean energy distance and our

proposed metric E when the dimension grows to infinity while the sample sizes n and m are held

fixed. We make the following moment assumption.

Assumption 3.3.2. There exist constants a, a′, a′′, A,A′, A′′ such that uniformly over p,

0 < a ≤ inf
1≤i≤p

E ρi(X(i), X
′
(i) ) ≤ sup

1≤i≤p
E ρi(X(i), X

′
(i) ) ≤ A <∞,

0 < a′ ≤ inf
1≤i≤p

E ρi(Y(i), Y ′(i) ) ≤ sup
1≤i≤p

E ρi(Y(i), Y ′(i) ) ≤ A′ <∞,

0 < a′′ ≤ inf
1≤i≤p

E ρi(X(i), Y(i) ) ≤ sup
1≤i≤p

E ρi(X(i), Y(i) ) ≤ A′′ <∞.

Under Assumption 3.3.2, it is not hard to see that τX , τY , τ � p1/2. The proposition below

provides an expansion for K evaluated at random samples.
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Proposition 3.3.1. Under Assumption 3.3.2, we have

K(X,X ′)

τX
= 1 +

1

2
LX(X,X ′) +RX(X,X ′), (3.9)

K(Y, Y ′)

τY
= 1 +

1

2
LY (Y, Y ′) +RY (Y, Y ′), (3.10)

and
K(X, Y )

τ
= 1 +

1

2
L(X, Y ) +R(X, Y ), (3.11)

where

LX(X,X ′) :=
K2(X,X ′)− τ 2X

τ 2X
, LY (Y, Y ′) :=

K2(Y, Y ′)− τ 2Y
τ 2Y

, L(X, Y ) :=
K2(X, Y )− τ 2

τ 2
,

and RX(X,X ′), RY (Y, Y ′), R(X, Y ) are the remainder terms. In addition, ifLX(X,X ′), LY (Y, Y ′)

and L(X, Y ) are op(1) random variables as p → ∞, then RX(X,X ′) = Op (L2
X(X,X ′)),

RY (Y, Y ′) = Op (L2
Y (Y, Y ′)) and R(X, Y ) = Op (L2(X, Y )).

Henceforth we will drop the subscripts X and Y from LX , LY , RX and RY for notational

convenience. Theorem 1 and Lemma 3.3.1 below provide insights into the behavior of E(X, Y ) in

the high-dimensional framework.

Assumption 3.3.3. Assume that L(X, Y ) = Op(ap), L(X,X ′) = Op(bp) and L(Y, Y ′) = Op(cp),

where ap, bp, cp are positive real sequences satisfying ap = o(1), bp = o(1), cp = o(1) and τa2p +

τXb
2
p + τY c

2
p = o(1).

Remark 3.3.1. To illustrate Assumption 3.3.3, we observe that under assumption 3.3.2 we can

write

var (L(X,X ′)) = O
( 1

p2

) p∑
i,j=1

cov
(
ρi(X(i), X

′
(i)) , ρj(X(j), X

′
(j))
)

= O
( 1

p2

) p∑
i,j=1

cov (Zi, Zj) ,

where Zi := ρi(X(i), X
′
(i)) for 1 ≤ i ≤ p. Assume that sup1≤i≤p E ρ2i (X(i), 0di) < ∞, which

implies sup1≤i≤p EZ2
i < ∞. Under certain strong mixing conditions or in general certain weak
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dependence assumptions, it is not hard to see that
∑p

i,j=1 cov (Zi, Zj) = O(p) as p → ∞ (see for

example Theorem 1.2 in Rio (1993) or Theorem 1 in Doukhan et al. (1999)). Therefore we have

var (L(X,X ′)) = O(1
p
) and hence by Chebyshev’s inequality, we have L(X,X ′) = Op(

1√
p
). We

refer the reader to Remark 2.1.1 in Zhu et al. (2020) for illustrations when each ρi is the squared

Euclidean distance.

Theorem 1. Suppose Assumptions 3.3.2 and 3.3.3 hold. Further assume that the following three

sequences {√
pL2(X, Y )

1 + L(X, Y )

}
,

{√
pL2(X,X ′)

1 + L(X,X ′)

}
,

{√
pL2(Y, Y ′)

1 + L(Y, Y ′)

}
indexed by p are all uniformly integrable. Then we have

E(X, Y ) = 2τ − τX − τY + o(1). (3.12)

Remark 3.3.2. Remark B.4.1 in the appendix provides some illustrations on certain sufficient

conditions under which {√pL2(X, Y )/(1 + L(X, Y ))}, {√pL2(X,X ′)/(1 + L(X,X ′))} and

{√pL2(Y, Y ′)/(1 + L(Y, Y ′))} are uniformly integrable.

Remark 3.3.3. To illustrate that the leading term in equation (3.12) indeed gives a close approxi-

mation of the population E(X, Y ), we consider the special case when K is the Euclidean distance.

Suppose X ∼ Np(0, Ip) and Y = X + N where N ∼ Np(0, Ip) with N ⊥⊥ X . Clearly from (3.8)

we have τ 2X = 2p, τ 2Y = 4p and τ 2 = 3p. We simulate large samples of sizes m = n = 5000 from

the distributions of X and Y for p = 20, 40, 60, 80 and 100. The large sample sizes are to ensure

that the U-statistic type estimator of E(X, Y ) gives a very close approximation of the population

E(X, Y ). In Table 3.1 we list the ratio between E(X, Y ) and the leading term in (3.12) for the

different values of p, which turn out to be very close to 1, demonstrating that the leading term in

(3.12) indeed approximates E(X, Y ) reasonably well.

Lemma 3.3.1. Assume τ, τX , τY <∞. We have

1. In Case S1, 2τ − τX − τY = 0 if and only if X(i)
d
= Y(i) for i ∈ {1, . . . , p};
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Table 3.1: Ratio of E(X, Y ) and the leading term in (3.12) for different values of p.

p = 20 p = 40 p = 60 p = 80 p = 100
0.995 0.987 0.992 0.997 0.983

2. In Case S2, 2τ − τX − τY = 0 if and only if µX = µY and tr ΣX = tr ΣY .

It is to be noted that assuming τ, τX , τY <∞ does not contradict with the growth rate τ, τX , τY =

O(p1/2). Clearly under H0, 2τ − τX − τY = 0 irrespective of the choice of K. In view of Lemma

3.3.1 and Theorem 1, in Case S2, the leading term of E(X, Y ) becomes zero if and only if µX = µY

and tr ΣX = tr ΣY . In other words, when dimension grows high, the Euclidean energy distance can

only capture the equality of the means and the first spectral means, whereas our proposed metric

captures the pairwise homogeneity of the low dimensional marginal distributions of X(i) and Y(i).

Clearly X(i)
d
= Y(i) for 1 ≤ i ≤ p implies µX = µY and tr ΣX = tr ΣY . Thus the proposed metric

can capture a wider range of inhomogeneity of distributions than the Euclidean energy distance.

Define

dkl(i) : = ρi(Xk(i), Yl(i)) − E
[
ρi(Xk(i), Yl(i))|Xk(i)

]
− E

[
ρi(Xk(i), Yl(i))|Yl(i)

]
+ E

[
ρi(Xk(i), Yl(i))

]
,

as the double-centered distance between Xk(i) and Yl(i) for 1 ≤ i ≤ p, 1 ≤ k ≤ n and 1 ≤ l ≤ m.

Similarly define dXkl(i) and dYkl(i) as the double-centered distances between Xk(i) and Xl(i) for

1 ≤ k 6= l ≤ n, and, Yk(i) and Yl(i) for 1 ≤ k 6= l ≤ m, respectively. Further define H(Xk, Yl) :=

1
τ

∑p
i=1 dkl(i) for 1 ≤ k ≤ n , 1 ≤ l ≤ m, H(Xk, Xl) := 1

τX

∑p
i=1 d

X
kl(i) for 1 ≤ k 6= l ≤ n and

H(Yk, Yl) in a similar way.

We impose the following conditions to study the asymptotic behavior of the (unbiased) U-

statistic type estimator of E(X, Y ) in the HDLSS setup.
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Assumption 3.3.4. For fixed n and m, as p→∞,


H(Xk, Yl)

H(Xs, Xt)

H(Yu, Yv)


k,l, s<t, u<v

d−→


akl

bst

cuv


k,l, s<t, u<v

,

where {akl, bst, cuv}k,l, s<t, u<v are jointly Gaussian with zero mean. Further we assume that

var(akl) := σ2 = lim
p→∞

E
[
H2(Xk, Yl)

]
,

var(bst) := σ2
X = lim

p→∞
E
[
H2(Xs, Xt)

]
,

var(cuv) := σ2
Y = lim

p→∞
E
[
H2(Yu, Yv)

]
.

{akl, bst, cuv}k,l, s<t, u<v are all independent with each other.

Due to the double-centering property and the independence between the two samples, it is

straightforward to verify that {H(Xk, Yl), H(Xs, Xt), H(Yu, Yv)}k,l,s<t,u<t are uncorrelated with

each other. So it is natural to expect that the limit {akl, bst, cuv}k,l, s<t, u<v are all independent with

each other.

Remark 3.3.4. The above multi-dimensional central limit theorem is classic and can be derived

under suitable moment and weak dependence assumptions on the components of X and Y , such as

mixing or near epoch dependent conditions. We refer the reader to Doukhan and Neumann (2008)

for a review on central limit theorem results under weak dependence assumptions.

We describe a new two-sample t-test for testing the null hypothesis H0 : X
d
= Y. The t statistic

can be constructed based on either the Euclidean energy distance or the new homogeneity metrics.

We show that the t-tests based on different metrics can have strikingly different power behaviors

under the HDLSS setup. The major difficulty here is to introduce a consistent and computationally

efficient variance estimator. Towards this end, we define a quantity called Cross Distance Covari-

ance (cdCov) between X and Y , which plays an important role in the construction of the t-test
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statistic:

cdCov2n,m(X, Y ) :=
1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

K̂(Xk, Yl)
2,

where

K̂(Xk, Yl) = K(Xk, Yl)−
1

n

n∑
i=1

K(Xi, Yl)−
1

m

m∑
j=1

K(Xk, Yj) +
1

nm

n∑
i=1

m∑
j=1

K(Xi, Yj).

Let vs := s(s− 3)/2 for s = m,n. We introduce the following quantities

m0 :=
σ2 (n− 1)(m− 1) + σ2

X vn + σ2
Y vm

(n− 1)(m− 1) + vn + vm
,

σnm :=

√
σ2

nm
+

σ2
X

2n(n− 1)
+

σ2
Y

2m(m− 1)
,

anm :=

√
1

nm
+

1

2n(n− 1)
+

1

2m(m− 1)
,

∆ := lim
p→∞

2τ − τX − τY ,

(3.13)

where σ2, σ2
X and σ2

Y are defined in Assumption 3.3.4. Under Assumption 3.3.5, further define

m∗0 := lim
m,n→∞

m0 =
2α0 σ

2 + σ2
X + σ2

Y α
2
0

2α0 + 1 + α2
0

,

a∗0 := lim
m,n→∞

anm
σnm

=
( 2α0 + α2

0 + 1

2α0 σ2 + α2
0 σ

2
X + σ2

Y

)1/2
.

We are now ready to introduce the two-sample t-test

Tn,m :=
En,m(X, Y )

anm
√
Sn,m

,

where

Sn,m :=
4(n− 1)(m− 1) cdCov2n,m(X, Y ) + 4vn D̃2

n(X,X) + 4vm D̃2
n(Y, Y )

(n− 1)(m− 1) + vn + vm
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is the pool variance estimator with D̃2
n(X,X) and D̃2

m(Y, Y ) being the unbiased estimators of the

(squared) distance variances defined in equation (1.14). It is interesting to note that the variability

of the sample generalized energy distance depends on the distance variances as well as the cdCov.

It is also worth mentioning that the computational complexity of the pool variance estimator and

thus the t-statistic is linear in p.

To study the asymptotic behavior of the test, we consider the following class of distributions

on (X, Y ):

P =
{

(PX , PY ) : X ∼ PX , Y ∼ PY , E[τL(X, Y )− τXL(X,X ′)|X] = op(1),

E[τL(X, Y )− τYL(Y, Y ′)|Y ] = op(1)
}
.

If PX = PY (i.e., under the H0), it is clear that (PX , PY ) ∈ P irrespective of the metrics in the

definition of L. Suppose ‖X − µX‖2 − tr(ΣX) = Op(
√
p) and ‖Y − µY ‖2 − tr(ΣY ) = Op(

√
p),

which hold under weak dependence assumptions on the components of X and Y . Then in Case S2

(i.e., K is the Euclidean distance), a set of sufficient conditions for (PX , PY ) ∈ P is given by

(µX − µY )>(ΣX + ΣY )(µX − µY ) = o(p), τ − τX = o(
√
p), τ − τY = o(

√
p), (3.14)

which suggests that the first two moments of PX and PY are not too far away from each other. In

this sense, P defines a class of local alternative distributions (with respect to the null H0 : PX =

PY ). We now state the main result of this subsection.

Theorem 2. In both Cases S1 and S2, under Assumptions 3.3.2, 3.3.3 and 3.3.4 as p →∞ with

n and m remaining fixed, and further assuming that (PX , PY ) ∈ P , we have

En,m(X, Y )− (2τ − τX − τY )

anm
√
Sn,m

d−→ σnm Z

anm
√
M

,

where

M
d
=
σ2 χ2

(n−1)(m−1) + σ2
Xχ

2
vn + σ2

Y χ
2
vm

(n− 1)(m− 1) + vn + vm
,
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χ2
(n−1)(m−1), χ

2
vn , χ

2
vm are independent chi-squared random variables, and Z ∼ N(0, 1). In other

words,

Tn,m
d−→ σnmN(∆/σnm, 1)

anm
√
M

,

where σnm and anm are defined in equation (3.13). In particular, under H0, we have

Tn,m
d−→ t(n−1)(m−1)+vn+vm .

Based on the asymptotic behavior of Tn,m for growing dimensions, we propose a test for H0 as

follows: at level α ∈ (0, 1), rejectH0 if Tn,m > qα,(n−1)(m−1)+vn+vm and fail to rejectH0 otherwise,

where P (t(n−1)(m−1)+vn+vm > qα,(n−1)(m−1)+vn+vm) = α. For a fixed real number t, define

φn,m(t) := lim
p→∞

P (Tn,m ≤ t) = E
[
P

(
σnmN(∆/σnm, 1)

anm
√
M

≤ t
∣∣∣ M)]

= E

[
Φ

(
anm
√
M t−∆

σnm

)]
.

(3.15)

The asymptotic power curve for testing H0 based on Tn,m is given by 1 − φm,n(t). The following

proposition gives a large sample approximation of the power curve.

Assumption 3.3.5. As m,n→∞, m/n→ α0 where α0 > 0.

Proposition 3.3.2. Suppose ∆ = ∆0/
√
nm where ∆0 is a constant with respect to n,m. Then

for any bounded real number t as n,m→∞ and under Assumption 3.3.5, we have

lim
m,n→∞

φn,m(t) = Φ
(
a∗0
√
m∗0 t − ∆∗0

)
,

where

∆∗0 = ∆0 lim
m,n→∞

1

σnm
√
nm

= ∆0

( 2α0

2σ2 α0 + σ2
X α

2
0 + σ2

Y

)1/2
.
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Under the alternative, if ∆0 →∞ as n,m→∞, we have

lim
m,n→∞

{
1− φn,m(qα,(n−1)(m−1)+vn+vm)

}
= 1,

thereby justifying the consistency of the test.

Remark 3.3.5. We first derive the power function 1 − φn,m(t) under the assumption that n and

m are fixed. The main idea behind Proposition 3.3.2 where we let n,m → ∞ is to see whether

we get a reasonably good approximation of power when n,m are large. In a sense we are doing

sequential asymptotics, first letting p → ∞ and deriving the power function, and then deriving

the leading term by letting n,m → ∞. This is a quite common practice in Econometrics (see for

example Phillips and Moon (1999)). The aim is to derive a leading term for the power when n,m

are fixed but large. Consider ∆ = s/
√
nm (as in Proposition 3.3.2) and set σ2 = σ2

X = σ2
Y = 1. In

Figure 3.1 below, we plot the exact power (computed from (3.15) with 50, 000 Monte Carlo samples

from the distribution of M ) with n = m = 5 and 10, t = qα,(n−1)(m−1)+vn+vm and α = 0.05, over

different values of s. We overlay the large sample approximation of the power function (given

in Proposition 3.3.2) and observe that the approximation works reasonably well even for small

sample sizes. Clearly larger s results in better power and s = 0 corresponds to trivial power.

We now discuss the power behavior of Tn,m based on the Euclidean energy distance. In Case

S2, it can be seen that

σ2
X = lim

p→∞

1

τ 2X

p∑
i,i′=1

4 tr Σ2
X(i, i′), (3.16)

where Σ2
X(i, i′) is the covariance matrix between X(i) and X(i′), and similar expressions for σ2

Y . In

case S2 (i.e., when K is the Euclidean distance), if we further assume µX = µY , it can be verified

that

σ2 = lim
p→∞

1

τ 2

p∑
i,i′=1

4 tr
(
ΣX(i, i′) ΣY (i, i′)

)
. (3.17)
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(a) Power comparison when m = n = 5 (b) Power comparison when m = n = 10

Figure 3.1: Comparison of exact and approximate power.

Hence in Case S2, under the assumptions that µX = µY , tr ΣX = tr ΣY and tr Σ2
X = tr Σ2

Y =

tr ΣXΣY , it can be easily seen from equations (3.8), (3.16) and (3.17) that

τ 2X = τ 2Y = τ 2, σ2
X = σ2

Y = σ2, (3.18)

which implies that ∆∗0 = 0 in Proposition 3.3.2. Consider the following class of alternative distri-

butions

HA = {(PX , PY ) : PX 6= PY , µX = µY , tr ΣX = tr ΣY , tr Σ2
X = tr Σ2

Y = tr ΣXΣY }.

According to Theorem 2, the t-test Tn,m based on Euclidean energy distance has trivial power

against HA. In contrast, the t-test based on the proposed metrics has non-trivial power against HA

as long as ∆∗0 > 0.

To summarize our contributions :
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• We show that the Euclidean energy distance can only detect the equality of means and the

traces of covariance matrices in the high-dimensional setup. To the best of our knowledge,

such a limitation of the Euclidean energy distance has not been pointed out in the literature

before.

• We propose a new class of homogeneity metrics which completely characterizes homogene-

ity of two distributions in the low-dimensional setup and has nontrivial power against a

broader range of alternatives, or in other words, can detect a wider range of inhomogeneity

of two distributions in the high-dimensional setup.

• Grouping allows us to detect homogeneity beyond univariate marginal distributions, as the

difference between two univariate marginal distributions is automatically captured by the

difference between the marginal distributions of the groups that contain these two univariate

components.

• Consequently we construct a high-dimensional two-sample t-test whose computational cost

is linear in p. Owing to the pivotal nature of the limiting distribution of the test statistic, no

resampling-based inference is needed.

Remark 3.3.6. Although the test based on our proposed statistic is asymptotically powerful

against the alternative HA unlike the Euclidean energy distance, it can be verified that it has

trivial power against the alternative HA′ = {(X, Y ) : X(i)
d
= Y(i), 1 ≤ i ≤ p}. Thus although

it can detect differences between two high-dimensional distributions beyond the first two moments

(as a significant improvement to the Euclidean energy distance), it cannot capture differences be-

yond the equality of the low-dimensional marginal distributions. We conjecture that there might

be some intrinsic difficulties for distance and kernel-based metrics to completely characterize the

discrepancy between two high-dimensional distributions.

3.4 Dependence metrics

In this section, we focus on dependence testing of two random vectors X ∈ Rp̃ and Y ∈ Rq̃.

SupposeX and Y can be partitioned into p and q groups, viz. X =
(
X(1), X(2), . . . , X(p)

)
and Y =
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(
Y(1), Y(2), . . . , Y(q)

)
, where the components X(i) and Y(j) are di and gj dimensional, respectively,

for 1 ≤ i ≤ p, 1 ≤ j ≤ q. Here p, q might be fixed or growing. We assume that X(i) and Y(j)’s

are finite (low) dimensional vectors, i.e., {di}pi=1 and {gj}qj=1 are bounded sequences. Clearly,

p̃ =
∑p

i=1 di = O(p) and q̃ =
∑q

j=1 gj = O(q). We define a class of dependence metrics D

between X and Y as the positive square root of

D2(X, Y ) := EKd(X,X ′)Kg(Y, Y ′) +EKd(X,X ′)EKg(Y, Y ′)− 2EKd(X,X ′)Kg(Y, Y ′′) ,

(3.19)

where d = (d1, . . . , dp) and g = (g1, . . . , gq). We drop the subscripts d,g of K for notational

convenience.

To ensure the existence of D, we make the following assumption.

Assumption 3.4.1. Assume that sup1≤i≤p Eρ
1/2
i (X(i), 0di) <∞ and sup1≤i≤q Eρ

1/2
i (Y(i), 0gi)

<∞.

In Section B.1.2 of the appendix we demonstrate that in the low-dimensional setting, D(X, Y )

completely characterizes independence between X and Y . For an observed random sample

(Xk, Yk)
n
k=1 from the joint distribution of X and Y , define DX := (dXkl) ∈ Rn×n with dXkl :=

K(Xk, Xl) and k, l ∈ {1, . . . , n}. Define dYkl and DY in a similar way. With some abuse of

notation, we consider the U-statistic type estimator D̃2
n(X, Y ) of D2 as defined in (1.14) with

dX and dY being Kd and Kg respectively. In Section B.1.2 of the appendix, we illustrate that

D̃2
n(X, Y ) essentially inherits all the nice properties of the U-statistic type estimator of generalized

dCov and HSIC.

In the subsequent discussion we study the asymptotic behavior of D in the high-dimensional

framework, i.e., when p and q grow to∞ with fixed n (discussed in Subsection 3.4.1) and when n

grows to∞ as well (discussed in Subsection B.2.2 in the appendix).

3.4.1 High dimension low sample size (HDLSS)

In this subsection, our goal is to explore the behavior of D2(X, Y ) and its unbiased U-statistic

type estimator in the HDLSS setting where p and q grow to ∞ while the sample size n is held
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fixed. Denote τ 2XY = τ 2Xτ
2
Y = EK2(X,X ′)EK2(Y, Y ′). We impose the following conditions.

Assumption 3.4.2. E [L2(X,X ′)] = O(a′2p ) and E [L2(Y, Y ′)] = O(b′2q ), where a′p and b′q are

positive real sequences satisfying a′p = o(1), b′q = o(1), τXY a′2p b
′
q = o(1) and τXY a′pb

′2
q = o(1).

Further assume that E [R2(X,X ′)] = O(a′4p ) and E [R2(Y, Y ′)] = O(b′4q ).

Remark 3.4.1. We refer the reader to Remark 3.3.1 in Section 3.3 for illustrations about some

sufficient conditions under which we have var (L(X,X ′)) = EL2(X,X ′) = O(1
p
), and similarly

for L(Y, Y ′). Remark B.4.1 in the appendix illustrates certain sufficient conditions under which

E [R2(X,X ′)] = O( 1
p2

), and similarly for R(Y, Y ′).

Theorem 3. Under Assumptions 3.3.2 and 3.4.2, we have

D2(X, Y ) =
1

4τXY

p∑
i=1

q∑
j=1

D2
ρi,ρj

(X(i), Y(j)) + R , (3.20)

whereR is the remainder term such thatR = O(τXY a
′2
p b
′
q + τXY a

′
pb
′2
q ) = o(1).

Theorem 3 shows that when dimensions grow high, the population D2(X, Y ) behaves as an

aggregation of group-wise generalized dCov and thus essentially captures group-wise non-linear

dependencies between X and Y .

Remark 3.4.2. Consider a special case where di = 1 and gj = 1, and ρi and ρj are Euclidean

distances for all 1 ≤ i ≤ p and 1 ≤ j ≤ q. Then Theorem 3 essentially boils down to

D2(X, Y ) =
1

4τXY

p∑
i=1

q∑
j=1

dCov2(Xi, Yj) + R , (3.21)

where R = o(1). This shows that in a special case (when we have unit group sizes), D2(X, Y )

essentially behaves as an aggregation of cross-component dCov between X and Y . If Kd and Kg

are Euclidean distances, or in other words if each ρi and ρj are squared Euclidean distances, then

using equation (1.10) it is straightforward to verify that D2
ρi,ρj

(Xi, Yj) = 4 cov2(Xi, Yj) for all
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1 ≤ i ≤ p and 1 ≤ j ≤ q. Consequently we have

D2(X, Y ) = dCov2(X, Y ) =
1

τXY

p∑
i=1

q∑
j=1

cov2(Xi, Yj) + R1 , (3.22)

where R1 = o(1), which essentially presents a population version of Theorem 2.1.1 in Zhu et

al. (2020) as a special case of Theorem 3.

Remark 3.4.3. To illustrate that the leading term in equation (3.20) indeed gives a close approx-

imation of the population D2(X, Y ), we consider the special case when Kd and Kg are Euclidean

distances and p = q. SupposeX ∼ Np(0, Ip) and Y = X+N whereN ∼ Np(0, Ip) withN ⊥⊥ X .

Clearly we have τ 2X = 2p, τ 2Y = 4p, D2
ρi,ρj

(Xi, Yj) = 4 cov2(Xi, Yj) = 4 for all 1 ≤ i = j ≤ p

and D2
ρi,ρj

(Xi, Yj) = 0 for all 1 ≤ i 6= j ≤ p. From Remark 3.4.2, it is clear that in this case we

essentially have D2(X, Y ) = dCov2(X, Y ). We simulate a large sample of size n = 5000 from

the distribution of (X, Y ) for p = 20, 40, 60, 80 and 100. The large sample size is to ensure that

the U-statistic type estimator of D2(X, Y ) (given in (1.14)) gives a very close approximation of

the population D2(X, Y ). We list the ratio between D2(X, Y ) and the leading term in (3.20) for

the different values of p, which turn out to be very close to 1, demonstrating that the leading term

in (3.20) indeed approximates D2(X, Y ) reasonably well.

Table 3.2: Ratio of D2(X, Y ) and the leading term in (3.20) for different values of p.

p = 20 p = 40 p = 60 p = 80 p = 100
0.980 0.993 0.994 0.989 0.997

The following theorem explores the behavior of the population D2(X, Y ) when p is fixed and

q grows to infinity, while the sample size is held fixed. As far as we know, this asymptotic regime

has not been previously considered in the literature. In this case, the Euclidean distance covari-

ance behaves as an aggregation of martingale difference divergences proposed in Shao and Zhang
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(2014) which measures conditional mean dependence. Figure 3.2 below summarizes the curse of

dimensionality for the Euclidean distance covariance under different asymptotic regimes.

Theorem 4. Under Assumption 3.3.2 and the assumption that E [R2(Y, Y ′)] = O(b′4q ) with

τY b
′2
q = o(1), as q →∞ with p and n remaining fixed, we have

D2(X, Y ) =
1

2τY

q∑
j=1

D2
Kd ,ρj

(X, Y(j)) + R,

whereR is the remainder term such thatR = O(τY b
′2
q ) = o(1).

Remark 3.4.4. In particular, when both Kd and Kg are Euclidean distances, we have

D2(X, Y ) = dCov2(X, Y ) =
1

τY

q̃∑
j=1

MDD2(Yj|X) + R,

where MDD2(Yj|X) = −E[(Yj − EYj)(Y ′j − EYj)‖X −X ′‖] is the martingale difference diver-

gence which completely characterizes the conditional mean dependence of Yj given X in the sense

that E[Yj|X] = E[Yj] almost surely if and only if MDD2(Yj|X) = 0.

Next we study the asymptotic behavior of the sample version D̃2
n(X, Y ).

Assumption 3.4.3. Assume that L(X,X ′) = Op(ap) and L(Y, Y ′) = Op(bq), where ap and bq

are positive real sequences satisfying ap = o(1), bq = o(1), τXY a2pbq = o(1) and τXY apb2q = o(1).

Remark 3.4.5. We refer the reader to Remark 3.3.1 in Section 3.3 for illustrations about Assump-

tion 3.4.3.

Theorem 5. Under Assumptions 3.3.2 and 3.4.3, it can be shown that

D̃2
n(X, Y ) =

1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) + Rn , (3.23)

whereX(i), Y(j) are the ith and jth groups ofX and Y , respectively, 1 ≤ i ≤ p, 1 ≤ j ≤ q , andRn

is the remainder term. Moreover Rn = Op(τXY a
2
pbq + τXY apb

2
q) = op(1), i.e., Rn is of smaller

order compared to the leading term and hence is asymptotically negligible.
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Figure 3.2: Curse of dimensionality for the Euclidean distance covariance under different asymp-
totic regimes

Arbitrary dependence
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The above theorem generalizes Theorem 2.1.1 in Zhu et al. (2020) by showing that the leading

term of D̃2
n(X, Y ) is the sum of all the group-wise (unbiased) squared sample generalized dCov

scaled by τXY . In other words, in the HDLSS setting, D̃2
n(X, Y ) is asymptotically equivalent to the

aggregation of group-wise squared sample generalized dCov. Thus D̃2
n(X, Y ) can quantify group-

wise non-linear dependencies between X and Y , going beyond the scope of the usual Euclidean

dCov.

Remark 3.4.6. Consider a special case where di = 1 and gj = 1, and ρi and ρj are Euclidean

distances for all 1 ≤ i ≤ p and 1 ≤ j ≤ q. Then Theorem 5 essentially states that

D̃2
n(X, Y ) =

1

4τXY

p∑
i=1

q∑
j=1

dCov2n(Xi, Yj) + Rn , (3.24)

where Rn = op(1). This demonstrates that in a special case (when we have unit group sizes),

D̃2
n(X, Y ) is asymptotically equivalent to the marginal aggregation of cross-component distance

covariances proposed by Zhu et al. (2020) as dimensions grow high. If Kd and Kg are Euclidean

distances, then Theorem 5 essentially boils down to Theorem 2.1.1 in Zhu et al. (2020) as a special
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case.

Remark 3.4.7. To illustrate the approximation of D̃2
n(X, Y ) by the aggregation of group-wise

squared sample generalized dCov given by Theorem 5, we simulated the datasets in Examples

4.4.2.1, 4.4.2.2, 4.4.3.1 and 4.4.3.2 100 times each with n = 50 and p = q = 50. For each of

the datasets, the difference between D̃2
n(X, Y ) and the leading term in the RHS of equation (3.23)

is smaller than 0.01 100% of the times, which illustrates that the approximation works reasonably

well.

The following theorem illustrates the asymptotic behavior of D̃2
n(X, Y ) when p is fixed and

q grows to infinity while the sample size is held fixed. Under this setup, if both Kd and Kg

are Euclidean distances, the leading term of D̃2
n(X, Y ) is the sum of the group-wise unbiased U-

statistic type estimators of MDD2(Yj|X) for 1 ≤ j ≤ q, scaled by τY . In other words, the

sample Euclidean distance covariance behaves as an aggregation of sample martingale difference

divergences.

Theorem 6. Under Assumption 3.3.2 and the assumption that L(Y, Y ′) = Op(bq) with bq = o(1)

and τY b
2
q = o(1), as q →∞ with p and n remaining fixed, we have

D̃2
n(X, Y ) =

1

2τY

q∑
j=1

D̃2
n ;Kd ,ρj

(X, Y(j)) + Rn,

whereRn is the remainder term such thatRn = Op(τY b
2
q) = op(1).

Remark 3.4.8. In particular, when both Kd and Kg are Euclidean distances, we have

D̃2
n(X, Y ) = dCov2n(X, Y ) =

1

τY

q̃∑
j=1

MDD2
n(Yj|X) + Rn,

where MDD2
n(Yj|X) is the unbiased U-statistic type estimator of MDD2(Yj|X) defined as in

(1.14) with dX (x, x′) = ‖x − x′‖ for x, x′ ∈ Rp̃ and dY(y, y′) = |y − y′|2/2 for y, y′ ∈ R,

respectively.
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Now denote Xk = (Xk(1), . . . , Xk(p)) and Yk = (Yk(1), . . . , Yk(q)) for 1 ≤ k ≤ n. Define the

leading term of D̃2
n(X, Y ) in equation (3.23) as

L :=
1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) .

It can be verified that

L =
1

4τXY

p∑
i=1

q∑
j=1

(
D̃X(i) · D̃Y (j)

)
,

where D̃X(i), D̃Y (j) are the U-centered versions ofDX(i) =
(
dXkl(i)

)n
k,l=1

andDY (j) =
(
dYkl(j)

)n
k,l=1

,

respectively. As an advantage of using the double-centered distances, we have for all 1 ≤ i, i′ ≤ p,

1 ≤ j, j′ ≤ q and {k, l} 6= {u, v},

E
[
dXkl(i) d

X
uv(i

′)
]

= E
[
dYkl(j) d

Y
uv(j

′)
]

= E
[
dXkl(i) d

Y
uv(j)

]
= 0. (3.25)

See for example the proof of Proposition 2.2.1 in Zhu et al. (2020) for a detailed explanation.

Assumption 3.4.4. For fixed n, as p, q →∞,


1

2 τX

p∑
i=1

dXkl(i)

1
2 τY

q∑
j=1

dYuv(j)


k<l, u<v

d−→


d1kl

d2uv


k<l, u<v

,

where {d1kl, d2uv}k<l, u<v are jointly Gaussian. Further we assume that

var(d1kl) := σ2
X = lim

p→∞

1

4τ 2X

p∑
i,i′=1

D2
ρi,ρi′

(
X(i), X(i′)

)
,

var(d2kl) := σ2
Y = lim

q→∞

1

4τ 2Y

q∑
j,j′=1

D2
ρj ,ρj′

(
Y(j), Y(j′)

)
,

cov (d1kl, d
2
kl) := σ2

XY = lim
p,q→∞

1

4τXY

p∑
i=1

q∑
j=1

D2
ρi,ρj

(
X(i), Y(j)

)
.
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In view of (3.25), we have cov (d1kl, d
1
uv) = cov (d2kl, d

2
uv) = cov (d1kl, d

2
uv) = 0 for {k, l} 6=

{u, v}. Theorem 5 states that for growing p and q and fixed n, D̃2
n(X, Y ) and L are asymptotically

equivalent. By studying the leading term, we obtain the limiting distribution of D̃2
n(X, Y ) as

follows.

Theorem 7. Under Assumptions 3.3.2, 3.4.3 and 3.4.4, for fixed n and p, q →∞,

D̃2
n(X, Y )

d−→ 1

ν
d1>Md2 ,

D̃2
n(X,X)

d−→ 1

ν
d1>Md1

d
=

σ2
X

ν
χ2
ν ,

D̃2
n(Y, Y )

d−→ 1

ν
d2>Md2

d
=

σ2
Y

ν
χ2
ν ,

where M is a projection matrix of rank ν = n(n−3)
2

, and

d1
d2

 ∼ N

0 ,


σ2
X In(n−1)

2

σ2
XY In(n−1)

2

σ2
XY In(n−1)

2

σ2
Y In(n−1)

2


 .

To perform independence testing, in the spirit of Székely and Rizzo (2014), we define the

studentized test statistic

Tn :=
√
ν − 1

D̃C2n(X, Y )√
1−

(
D̃C2n(X, Y )

)2 , (3.26)

where

D̃C2n(X, Y ) =
D̃2
n(X, Y )√

D̃2
n(X,X) D̃2

n(Y, Y )

.

Define ψ = σ2
XY /

√
σ2
Xσ

2
Y . The following theorem states the asymptotic distributions of the

test statistic Tn under the null hypothesis H̃0 : X ⊥⊥ Y and the alternative hypothesis H̃A : X 6⊥⊥

Y .
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Theorem 8. Under Assumptions 3.3.2, 3.4.3 and 3.4.4, for fixed n and p, q →∞,

PH̃0
(Tn ≤ t) −→ P (tν−1 ≤ t) ,

PH̃A
(Tn ≤ t) −→ E [P (tν−1,W ≤ t|W )] ,

where t is any fixed real number and W ∼
√

ψ2

1−ψ2 χ2
ν .

For an explicit form of E [P (tν−1,W ≤ t|W )], we refer the reader to Lemma 3 in the appendix

of Zhu et al. (2020). Now consider the local alternative hypothesis H̃∗A: X 6⊥⊥ Y with ψ = ψ0/
√
ν,

where ψ0 is a constant with respect to n. The following proposition gives an approximation of

E [P (tν−1,W ≤ t|W )] under the local alternative hypothesis H̃∗A when n is allowed to grow.

Proposition 3.4.1. Under H̃∗A, as n→∞ and t = O(1),

E [P (tν−1,W ≤ t|W )] = P (tν−1, ψ0 ≤ t) + O
(1

ν

)
.

The following summarizes our key findings in this section.

• Advantages of our proposed metrics over the Euclidean dCov and HSIC :

i) Our proposed dependence metrics completely characterize independence between X

and Y in the low-dimensional setup, and can detect group-wise non-linear dependen-

cies between X and Y in the high-dimensional setup as opposed to merely detecting

component-wise linear dependencies by the Euclidean dCov and HSIC (in light of The-

orem 2.1.1 in Zhu et al. (2020)).

ii) We also showed that with p remaining fixed and q growing high, the Euclidean dCov

can only quantify conditional mean independence of the components of Y given X

(which is weaker than independence). To the best of our knowledge, this has not been

pointed out in the literature before.
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• Advantages over the marginal aggregation approach by Zhu et al. (2020) :

i) In the low-dimensional setup, our proposed dependence metrics can completely char-

acterize independence between X and Y , whereas the metric proposed by Zhu et

al. (2020) can only capture pairwise dependencies between the components of X and

Y .

ii) We provide a neater way of generalizing dCov and HSIC between X and Y which is

shown to be asymptotically equivalent to the marginal aggregation of cross-component

distance covariances proposed by Zhu et al. (2020) as dimensions grow high. Also

grouping or partitioning the two high-dimensional random vectors (which again may

be problem specific) allows us to detect a wider range of alternatives compared to only

detecting component-wise non-linear dependencies, as independence of two univariate

marginals is implied from independence of two higher dimensional marginals contain-

ing the two univariate marginals.

iii) The computational complexity of the (unbiased) squared sample D(X, Y ) is O(n2(p+

q)). Thus the computational cost of our proposed two-sample t-test only grows linearly

with the dimension and therefore is scalable to very high-dimensional data. Although

a naive aggregation of marginal distance covariances has a computational complexity

of O(n2pq), the approach of Zhu et al. (2020) essentially corresponds to the use of an

additive kernel and the computational cost of their proposed estimator can also be made

linear in the dimensions if properly implemented.

3.5 Numerical studies

3.5.1 Testing for homogeneity of distributions

We investigate the empirical size and power of the tests for homogeneity of two high dimen-

sional distributions. For comparison, we consider the t-tests based on the following metrics:

I. E with ρi as the Euclidean distance for 1 ≤ i ≤ p;
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Table 3.3: Summary of the behaviors of the proposed homogeneity/dependence metrics for differ-
ent choices of ρi(x, x′) in high dimension.

Choice of ρi(x, x′) Asymptotic behavior of the
proposed homogeneity metric

Asymptotic behavior of the
proposed dependence metric

the semi-metric ‖x− x′‖2 Behaves as a sum of squared
Euclidean distances

Behaves as a sum of squared
Pearson correlations

metric of strong negative type on
Rdi

Behaves as a sum of groupwise
energy distances with the metric
ρi

Behaves as a sum of groupwise
dCov with the metric ρi

ki(x, x)+ki(x
′, x′)−2ki(x, x

′),
where ki is a characteristic
kernel on Rdi × Rdi

Behaves as a sum of groupwise
MMD with the kernel ki

Behaves as a sum of groupwise
HSIC with the kernel ki

II. E with ρi as the distance induced by the Laplace kernel for 1 ≤ i ≤ p;

III. E with ρi as the distance induced by the Gaussian kernel for 1 ≤ i ≤ p;

IV. the usual Euclidean energy distance;

V. MMD with the Laplace kernel;

VI. MMD with the Gaussian kernel.

We set di = 1 in Examples 3.5.1 and 3.5.2, and di = 2 in Example 3.5.3 for 1 ≤ i ≤ p.

Example 3.5.1. Consider Xk = (Xk1, . . . , Xkp) and Yl = (Yl1, . . . , Ylp) with k = 1, . . . , n and

l = 1, . . . ,m. We generate i.i.d. samples from the following models:

1. Xk ∼ N(0, Ip) and Yl ∼ N(0, Ip).

2. Xk ∼ N(0,Σ) and Yl ∼ N(0,Σ), where Σ = (σij)
p
i,j=1 with σii = 1 for i = 1, . . . , p,

σij = 0.25 if 1 ≤ |i− j| ≤ 2 and σij = 0 otherwise.

3. Xk ∼ N(0,Σ) and Yl ∼ N(0,Σ), where Σ = (σij)
p
i,j=1 with σij = 0.7|i−j|.

Example 3.5.2. Consider Xk = (Xk1, . . . , Xkp) and Yl = (Yl1, . . . , Ylp) with k = 1, . . . , n and

l = 1, . . . ,m. We generate i.i.d. samples from the following models:
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1. Xk ∼ N(µ, Ip) with µ = (1, . . . , 1) ∈ Rp and Yli
ind∼ Poisson (1) for i = 1, . . . , p.

2. Xk ∼ N(µ, Ip) with µ = (1, . . . , 1) ∈ Rp and Yli
ind∼ Exponential (1) for i = 1, . . . , p.

3. Xk ∼ N(0, Ip) and Yl = (Yl1, . . . , Ylbβpc, Yl(bβpc+1), . . . , Ylp), where Yl1, . . . , Ylbβpc
i.i.d.∼

Rademacher (0.5) and Yl(bβpc+1), . . . , Ylp
i.i.d.∼ N(0, 1).

4. Xk ∼ N(0, Ip) and Yl = (Yl1, . . . , Ylbβpc, Yl(bβpc+1), . . . , Ylp), where Yl1, . . . , Ylbβpc
i.i.d.∼

Uniform (−
√

3,
√

3) and Yl(bβpc+1), . . . , Ylp
i.i.d.∼ N(0, 1).

5. Xk = R1/2Z1k and Yl = R1/2Z2l, where R = (rij)
p
i,j=1 with rii = 1 for i = 1, . . . , p, rij =

0.25 if 1 ≤ |i−j| ≤ 2 and rij = 0 otherwise, Z1k ∼ N(0, Ip) and Z2l = (Z2l1, . . . , Z2lp)︸ ︷︷ ︸
i.i.d.∼ Exponential(1)

− 1.

Example 3.5.3. Consider Xk = (Xk(1), . . . , Xk(p)) and Yl = (Yl(1), . . . , Yl(p)) with k = 1, . . . , n

and l = 1, . . . ,m and di = 2 for 1 ≤ i ≤ p. We generate i.i.d. samples from the following models:

1. Xk(i) ∼ N(µ,Σ1) and Yl(i) ∼ N(µ,Σ2) with Xk(i) ⊥⊥ Xk(j) and Yl(i) ⊥⊥ Yl(j) for 1 ≤ i 6=

j ≤ p, where µ = (1, 1)>, Σ1 =

 1 0.9

0.9 1

 and Σ2 =

 1 0.1

0.1 1

.

2. Xk(i) ∼ N(µ,Σ) with Xk(i) ⊥⊥ Xk(j) for 1 ≤ i 6= j ≤ p, where µ = (1, 1)>, Σ = 1 0.7

0.7 1

. The components of Yl are i.i.d. Exponential (1).

Note that for Examples 3.5.1 and 3.5.2, the metric defined in equation (3.2) essentially boils

down to the special case in equation (4.7). We try small sample sizes n = m = 50, dimensions

p = q = 50, 100 and 200, and β = 1/2. Table 3.4 reports the proportion of rejections out of 1000

simulation runs for the different tests. For the tests V and VI, we chose the bandwidth parameter

heuristically as the median distance between the aggregated sample observations. For tests II and

III, the bandwidth parameters are chosen using the median heuristic separately for each group.

In Example 3.5.1, the data generating scheme suggests that the variables X and Y are identi-

cally distributed. The results in Table 3.4 show that the tests based on both the proposed homo-

geneity metrics and the usual Euclidean energy distance and MMD perform more or less equally
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good, and the rejection probabilities are quite close to the 10% or 5% nominal level. In Example

3.5.2, clearly X and Y have different distributions but µX = µY and ΣX = ΣY . The results in

Table 3.4 indicate that the tests based on the proposed homogeneity metrics are able to detect the

differences between the two high-dimensional distributions beyond the first two moments unlike

the tests based on the usual Euclidean energy distance and MMD, and thereby outperform the

latter in terms of empirical power. In Example 3.5.3, clearly µX = µY and tr ΣX = tr ΣY and

the results show that the tests based on the proposed homogeneity metrics are able to detect the

in-homogeneity of the low-dimensional marginal distributions unlike the tests based on the usual

Euclidean energy distance and MMD.
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Table 3.4: Empirical size and power for the different tests of homogeneity of distributions.

I II III IV V VI

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 3.5.1

(1) 50 0.109 0.062 0.109 0.058 0.106 0.063 0.109 0.068 0.110 0.069 0.109 0.070

(1) 100 0.124 0.073 0.119 0.053 0.121 0.063 0.116 0.067 0.114 0.068 0.117 0.068

(1) 200 0.086 0.043 0.099 0.048 0.088 0.035 0.090 0.045 0.086 0.043 0.090 0.045

(2) 50 0.114 0.069 0.108 0.054 0.118 0.068 0.116 0.077 0.115 0.073 0.116 0.078

(2) 100 0.130 0.069 0.133 0.073 0.124 0.070 0.126 0.067 0.123 0.068 0.124 0.067

(2) 200 0.099 0.048 0.103 0.041 0.092 0.047 0.097 0.040 0.095 0.039 0.097 0.040

(3) 50 0.100 0.064 0.107 0.057 0.099 0.060 0.112 0.072 0.105 0.067 0.110 0.073

(3) 100 0.103 0.062 0.113 0.061 0.113 0.063 0.097 0.060 0.100 0.057 0.098 0.059

(3) 200 0.108 0.062 0.115 0.062 0.117 0.064 0.091 0.055 0.093 0.056 0.090 0.055

Ex 3.5.2

(1) 50 1 1 1 1 0.995 0.994 0.102 0.067 0.111 0.069 0.103 0.066

(1) 100 1 1 1 1 1 1 0.120 0.066 0.120 0.071 0.119 0.066

(1) 200 1 1 1 1 1 1 0.111 0.057 0.111 0.057 0.111 0.057

(2) 50 1 1 1 1 1 1 0.126 0.085 0.154 0.105 0.119 0.073

(2) 100 1 1 1 1 1 1 0.098 0.058 0.108 0.066 0.094 0.055

(2) 200 1 1 1 1 1 1 0.111 0.055 0.114 0.056 0.108 0.054

(3) 50 1 1 1 1 1 0.999 0.118 0.069 0.117 0.072 0.120 0.070

(3) 100 1 1 1 1 1 1 0.102 0.067 0.106 0.065 0.103 0.067

(3) 200 1 1 1 1 1 1 0.103 0.046 0.103 0.049 0.102 0.046

(4) 50 0.452 0.328 0.863 0.771 0.552 0.421 0.114 0.061 0.111 0.061 0.114 0.061

(4) 100 0.640 0.491 0.990 0.967 0.761 0.637 0.098 0.063 0.104 0.063 0.098 0.062

(4) 200 0.840 0.733 1 0.999 0.933 0.876 0.105 0.042 0.108 0.042 0.105 0.043

(5) 50 1 1 1 1 1 1 0.128 0.078 0.163 0.098 0.115 0.077

(5) 100 1 1 1 1 1 1 0.098 0.053 0.115 0.063 0.091 0.051

(5) 200 1 1 1 1 1 1 0.100 0.050 0.103 0.054 0.098 0.050

Ex 3.5.3

(1) 50 1 1 1 1 1 1 0.157 0.098 0.223 0.137 0.156 0.098

(1) 100 1 1 1 1 1 1 0.158 0.089 0.188 0.124 0.157 0.090

(1) 200 1 1 1 1 1 1 0.122 0.074 0.161 0.091 0.121 0.074

(2) 50 1 1 1 1 1 1 0.140 0.078 0.190 0.118 0.137 0.075

(2) 100 1 1 1 1 1 1 0.139 0.080 0.171 0.105 0.136 0.080

(2) 200 1 1 1 1 1 1 0.109 0.053 0.127 0.069 0.108 0.053

Remark 3.5.1. In Example 3.5.3.1, marginally the p-many two-dimensional groups of X and Y

are not identically distributed, but each of the 2p unidimensional components of X and Y have
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identical distributions. Consequently, choosing di = 1 for 1 ≤ i ≤ p leads to trivial power of even

our proposed tests, as is evident from Table 3.5 below. This demonstrates that grouping allows us

to detect a wider range of alternatives.

Table 3.5: Empirical power in Example 3.5.3.1 if we choose di = 1 for 1 ≤ i ≤ p.

I II III IV V VI

p 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 3.5.3

(1) 50 0.144 0.087 0.133 0.076 0.143 0.086 0.174 0.107 0.266 0.170 0.175 0.105

(1) 100 0.145 0.085 0.134 0.070 0.142 0.085 0.157 0.098 0.223 0.137 0.156 0.098

(1) 200 0.126 0.063 0.101 0.058 0.111 0.065 0.158 0.089 0.188 0.124 0.157 0.090

3.5.2 Testing for independence

We study the empirical size and power of tests for independence between two high dimensional

random vectors. We consider the t-tests based on the following metrics:

I. D with di = 1 and ρi be the Euclidean distance for 1 ≤ i ≤ p;

II. D with di = 1 and ρi be the distance induced by the Laplace kernel for 1 ≤ i ≤ p;

III. D with di = 1 and ρi be the distance induced by the Gaussian kernel for 1 ≤ i ≤ p;

IV. the usual Euclidean distance covariance;

V. HSIC with the Laplace kernel;

VI. HSIC with the Gaussian kernel.

We also compare the empirical size and power of the above tests with the

VII. projection correlation based test for independence proposed by Zhu et al. (2017),
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which is shown to have higher empirical power compared to the usual Euclidean distance covari-

ance when the dimensions are relatively large. The numerical examples we consider are motivated

from Zhu et al. (2020).

Example 3.5.4. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp) for k = 1, . . . , n. We

generate i.i.d. samples from the following models :

1. Xk ∼ N(0, Ip) and Yk ∼ N(0, Ip).

2. Xk ∼ AR(1), φ = 0.5, Yk ∼ AR(1), φ = −0.5, where AR(1) denotes the autoregressive

model of order 1 with parameter φ.

3. Xk ∼ N(0,Σ) and Yk ∼ N(0,Σ), where Σ = (σij)
p
i,j=1 with σij = 0.7|i−j|.

Example 3.5.5. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp), k = 1, . . . , n. We

generate i.i.d. samples from the following models :

1. Xk ∼ N(0, Ip) and Ykj = X2
kj for j = 1, . . . , p.

2. Xk ∼ N(0, Ip) and Ykj = log |Xkj| for j = 1, . . . , p.

3. Xk ∼ N(0,Σ) and Ykj = X2
kj for j = 1, . . . , p, where Σ = (σij)

p
i,j=1 with σij = 0.7|i−j|.

Example 3.5.6. Consider Xk = (Xk1, . . . , Xkp) and Yk = (Yk1, . . . , Ykp), k = 1, . . . , n. Let ◦

denote the Hadamard product of matrices. We generate i.i.d. samples from the following models:

1. Xkj ∼ U(−1, 1) for j = 1, . . . , p, and Yk = Xk ◦Xk.

2. Xkj ∼ U(0, 1) for j = 1, . . . , p, and Yk = 4Xk ◦Xk − 4Xk + 2.

3. Xkj = sin(Zkj) and Ykj = cos(Zkj) with Zkj ∼ U(0, 2π) and j = 1, . . . , p.

For each example, we draw 1000 simulated datasets and perform tests for independence be-

tween the two variables based on the proposed dependence metrics, and the usual Euclidean dCov

and HSIC. We try a small sample size n = 50 and dimensions p = 50, 100 and 200. For the tests
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II, III, V and VI, we chose the bandwidth parameter heuristically as the median distance between

the sample observations. Table 3.6 reports the proportion of rejections out of the 1000 simulation

runs for the different tests. For VII, we conduct a permutation based test with 500 replicates.

In Example 4.4.2, the data generating scheme suggests that the variables X and Y are inde-

pendent. The results in Table 3.6 show that the tests based on the proposed dependence metrics

perform almost equally good as the other competitors, and the rejection probabilities are quite close

to the 10% or 5% nominal level. In Examples 4.4.3 and 4.4.4, the variables are clearly (componen-

twise non-linearly) dependent by virtue of the data generating scheme. The results indicate that the

tests based on the proposed dependence metrics are able to detect the componentwise non-linear

dependence between the two high-dimensional random vectors unlike the tests based on the usual

Euclidean dCov and HSIC, and thereby outperform the latter in terms of empirical power. Also,

our proposed tests clearly perform far better compared to the projection correlation based test.
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3.5.3 Real data analysis

3.5.3.1 Testing for homogeneity of distributions

We consider the two sample testing problem of homogeneity of two high-dimensional distribu-

tions on Earthquakes data. The dataset has been downloaded from UCR Time Series Classifi-

cation Archive (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/).

The data are taken from Northern California Earthquake Data Center. There are 368 negative

and 93 positive earthquake events and each data point is of length 512.

Table 3.7 shows the p-values corresponding to the different tests for the homogeneity of distri-

butions between the two classes. Here we set di = 1 for tests I-III. Clearly the tests based on the

proposed homogeneity metrics reject the null hypothesis of equality of distributions at 5% level.

However the tests based on the usual Euclidean energy distance and MMD fail to reject the null at

5% level, thereby indicating no significant difference between the distributions of the two classes.

Table 3.7: p-values corresponding to the different tests for homogeneity of distributions for Earth-
quakes data.

I II III IV V VI
2.27× 10−93 3.19× 10−86 9.74× 10−110 0.070 0.068 0.070

3.5.3.2 Testing for independence

We consider the daily closed stock prices of p = 126 companies under the finance sector and

q = 122 companies under the healthcare sector on the first dates of each month during the time

period between January 1, 2017 and December 31, 2018. The data has been downloaded from

Yahoo Finance via the R package ‘quantmod’. At each time t, denote the closed stock prices of

these companies from the two different sectors by Xt = (X1t, . . . , Xpt) and Yt = (Y1t, . . . , Yqt)

for 1 ≤ t ≤ 24. We consider the stock returns SXt = (SX1t , . . . , S
X
pt ) and SYt = (SY1t, . . . , S

Y
qt)

for 1 ≤ t ≤ 23, where SXit = log
Xi,t+1

Xit
and SYjt = log

Yj,t+1

Yjt
for 1 ≤ i ≤ p and 1 ≤ j ≤ q. It
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seems intuitive that the stock returns for the companies under two different sectors are not totally

independent, especially when a large number of companies are being considered. Table 3.8 shows

the p-values corresponding to the different tests for independence between {SXt }23t=1 and {SYt }23t=1,

where we set di = gi = 1 for the proposed tests. The tests based on the proposed dependence

metrics deliver much smaller p-values compared to the tests based on traditional metrics. We note

that the tests based on the usual dCov and HSIC as well as projection correlation fail to reject the

null at 5% level, thereby indicating cross-sector independence of stock return values. These results

are consistent with the fact that the dependence among financial asset returns is usually nonlinear

and thus cannot be fully characterized by traditional metrics in the high dimensional setup.

Table 3.8: p-values corresponding to the different tests for cross-sector independence of stock
returns data.

I II III IV V VI VII
4.91× 10−12 4.29× 10−11 1.12× 10−11 0.093 0.084 0.099 0.154

We present an additional real data example on testing for independence in high dimensions in

Section B.3 of the appendix. There the data admits a natural grouping, and our results indicate that

our proposed tests for independence exhibit better power when we consider the natural grouping

than when we consider unit group sizes. It is to be noted that considering unit group sizes makes

our proposed statistics essentially equivalent to the marginal aggregation approach proposed by

Zhu et al. (2020). This indicates that grouping or clustering might improve the power of testing as

they are capable of detecting a wider range of dependencies.

3.6 Discussions

In this work, we introduce a family of distances for high dimensional Euclidean spaces. Built

on the new distances, we propose a class of distance and kernel-based metrics for high-dimensional

two-sample and independence testing. The proposed metrics overcome certain limitations of the

traditional metrics constructed based on the Euclidean distance. The new distance we introduce
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corresponds to a semi-norm given by

B(x) =
√
ρ1(x(1)) + . . . , ρp(x(p)),

where ρi(x(i)) = ρi(x(i), 0di) and x = (x(1), . . . , x(p)) ∈ Rp̃ with x(i) = (xi,1, . . . , xi,di). Such a

semi-norm has an interpretation based on a tree as illustrated by Figure 3.3.

Figure 3.3: An interpretation of the semi-norm B(·) based on a tree

. . .

. . . . . .

Tree structure provides useful information for doing grouping at different levels/depths. The-

oretically, grouping allows us to detect a wider range of alternatives. For example, in two-sample

testing, the difference between two one-dimensional marginals is always captured by the differ-

ence between two higher dimensional marginals that contain the two one-dimensional marginals.

The same thing is true for dependence testing. Generally, one would like to find blocks which

are nearly independent, but the variables inside a block have significant dependence among them-

selves. It is interesting to develop an algorithm for finding the optimal groups using the data and

perhaps some auxiliary information. Another interesting direction is to study the semi-norm and

distance constructed based on a more sophisticated tree structure. For example, in microbiome-

wide association studies, phylogenetic tree or evolutionary tree which is a branching diagram or
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“tree” showing the evolutionary relationships among various biological species. Distance and

kernel-based metrics constructed based on the distance utilizing the phylogenetic tree information

is expected to be more powerful in signal detection. We leave these topics for future investigation.
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4. NONPARAMETRIC MULTIPLE CHANGE-POINT DETECTION FOR HIGH

DIMENSIONAL DATA

4.1 Background and notations

Change-point detection has been a classical and well-established problem in statistics, aiming

to detect lack of homogeneity in a sequence of time-ordered observations. This finds abundance

of applications in a wide variety of fields, for example, bioinformatics (see Picard et al. (2005),

Curtis et al. (2012)), neuroscience (see Park et al. (2015)), digital speech processing (see Rabiner

and Schäfer (2007)), social network analysis (see McCulloh (2009)), and so on. A nonparametric

change-point detection procedure is concerned with detecting and localizing quite general types

of changes in the data generating distribution, rather than only changes in mean. This challeng-

ing problem of detecting abrupt distributional changes in the nonparametric setting has been ad-

dressed in the literature over the last couple of decades. But many of the methodologies developed

suffer from several limitations, for example, applicability only for real-valued data or in the low-

dimensional setting, assumption that the number of true change-points is known, etc. Harchaoui

and Cappé (2007) proposed a kernel-based procedure assuming a known number of change-points,

which reduces its practical interest. Zou et al. (2014) proposed a nonparametric maximum likeli-

hood approach for detecting multiple (unknown number of) change-points using BIC, but is only

applicable for real-valued data. Lung-Yut-Fong et al. (2012) developed a nonparametric approach

based on marginal rank statistics, which requires the number of observations to be larger than the

dimension of the data. Arlot et al. (2012) proposed a kernel-based multiple change-point detection

algorithm for multivariate (but fixed dimensional) or complex (non-Euclidean) data. Some graph-

based tests have been proposed recently by Chen and Zhang (2015) and Chu and Chen (2019)

for high-dimensional data, which allow us to detect only one or two change-points. Matteson

and James (2014) proposed a procedure for estimating multiple change-point locations, namely

E-Divisive, built upon an energy distance based test that applies to multivariate observations of
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arbitrary (but fixed) dimensions. Biau et al. (2016) rigorously derived the asymptotic distribution

of the statistic proposed by Matteson and James (2014), thereby adding theoretical justifications

to their methodology. However, some recent research revelations on the performance of energy

distance for growing dimensions put a question on its performance when we have a sequence of

high-dimensional observations. To the best of our knowledge, the literature in general on nonpara-

metric multiple change-point detection in the high-dimensional setup is quite scarce till date.

Energy distance, proposed by Székely et al. (2004, 2005) and Baringhaus and Franz (2004), is

a classical distance-based measure of equality of two multivariate distributions, taking the value

zero if and only if the two random vectors are identically distributed. Such a complete characteriza-

tion of homogeneity of distributions lends itself for reasonable use in one-sample goodness-of-fit

testing and two-sample testing for equality of distributions, and has been widely studied in the

literature over the last couple of decades. In a very recent paper, Chakraborty and Zhang (2019)

showed a striking result that energy distance based on the usual Euclidean distance cannot com-

pletely characterize the homogeneity of the two high-dimensional distributions in the sense that

it can only detect the equality of means and the traces of covariance matrices of the two high-

dimensional random vectors. In other words, the Euclidean energy distance fails to detect inhomo-

geneity between two high-dimensional distributions beyond the first two moments. To overcome

such a limitation, the authors proposed a new class of homogeneity metrics which inherits the de-

sirable properties of energy distance in the low-dimensional setting. And more importantly, in the

high-dimensional setup the new class of homogeneity metrics is capable of detecting the pairwise

homogeneity of the low-dimensional marginal distributions, going beyond the scope of the Eu-

clidean energy distance. In other words, the proposed class of homogeneity metrics can capture a

wider range of inhomogeneity of distributions compared to the classical Euclidean energy distance

in the high-dimensional framework. The core of their methodology is a new way of defining the

distance between sample points (interpoint distance) in the high-dimensional Euclidean spaces.

This work focuses on estimating an unknown number of multiple change-point locations in

an independent sequence of Rp-valued observations of size n, where p can by far exceed n. Our
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approach essentially rests upon distance-based nonparametric two-sample tests for homogeneity

of two high-dimensional distributions. We first construct a single change-point location estimator

Mn based on the homogeneity metrics proposed by Chakraborty and Zhang (2019) via defining a

cumulative sum process in an embedded Hilbert space. It essentially generalizes the single change-

point location estimator developed by Matteson and James (2014) and Biau et al. (2016) in the high-

dimensional setup, providing a unifying framework. Testing for the statistical significance of the

estimated candidate change-point location necessitates determining the quantiles of the distribution

of Mn. The key theoretical innovation of this paper is to rigorously derive the asymptotic null

distribution of Mn as both the dimension p and the sample size n grow to infinity, with n growing

at a smaller rate compared to p. Such a setup is typically known in the literature as the high

dimension medium sample size (HDMSS) framework. The intrinsic difficulty is to establish the

uniform weak convergence of an underlying stochastic process under certain mild assumptions,

which has been non-trivial and challenging. Because of the pivotal nature of the limiting null

distribution, its quantiles can be approximated using a large number of Monte Carlo simulations.

We propose an algorithm for single change-point detection based on a permutation procedure to

better approximate the quantiles of the distribution of Mn. Subsequently, we combine the idea

of Wild Binary Segmentation (WBS) proposed by Fryzlewicz (2014) to recursively estimate and

test for the significance of (an unknown number of) multiple change-point locations. The superior

performance of our procedure compared to several of the existing methodologies is illustrated via

both simulated and real datasets.

Notation. Denote by ‖ · ‖p the Euclidean norm of Rp (we shall use it interchangeably with

‖ · ‖ when there is no confusion). Let 0p be the origin of Rp. We use “X
d
= Y ” to indicate that

X and Y are identically distributed. Let X ′, X ′′, X ′′′ be independent copies of X . ‘O’ and ‘o’

stand for the usual notations in mathematics : ‘is of the same order as’ and ‘is ultimately smaller

than’. We use the symbol “a . b” to indicate that a ≤ C b for some constant C > 0. We

utilize the order in probability notations such as stochastic boundedness Op (big O in probability),

convergence in probability op (small o in probability) and equivalent order �, which is defined as
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follows: for a sequence of random variables {Zn}∞n=1 and a sequence of real numbers {an}∞n=1,

Zn �p an if and only if Zn/an = Op(1) and an/Zn = Op(1) as n → ∞. If Zn
P→ Z as

n→∞, then we say plimn→∞ Zn = Z. For a metric space (X , dX ), letM(X ) andM1(X ) denote

the set of all finite signed Borel measures on X and all probability measures on X , respectively.

Define M1
dX

(X ) := {v ∈ M(X ) : ∃x0 ∈ X s.t.
∫
X dX (x, x0) d|v|(x) < ∞}. For a matrix

A = (akl)
n
k,l=1 ∈ Rn×n, define its U-centered version Ã = (ãkl) ∈ Rn×n as follows

ãkl =


akl −

1

n− 2

n∑
j=1

akj −
1

n− 2

n∑
i=1

ail +
1

(n− 1)(n− 2)

n∑
i,j=1

aij, k 6= l,

0, k = l,

(4.1)

for k, l = 1, . . . , n. Let 1(A) denote the indicator function associated with a set A. Finally, denote

by bac and {a} the integer and fractional part of a ∈ R, respectively.

4.2 An overview

4.2.1 Energy Distance

Energy distance (see Székely et al. (2004, 2005), Baringhaus and Franz (2004)) or the Eu-

clidean energy distance between two random vectors X, Y ∈ Rp and X ⊥⊥ Y with E‖X‖p < ∞

and E‖Y ‖p <∞, is defined as

ED(X, Y ) =
1

cp

∫
Rp

|fX(t)− fY (t)|2

‖t‖1+pp

dt , (4.2)

where fX and fY are the characteristic functions ofX and Y respectively, and cp = π(1+p)/2/Γ((1+

p)/2) is a constant with Γ(·) being the complete gamma function. Theorem 1 in Székely et

al. (2005) shows that ED(X, Y ) ≥ 0 and the equality holds if and only if X d
= Y . In other

words, energy distance can completely characterize the homogeneity between two multivariate

distributions.
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Alternatively an equivalent expression for ED(X, Y ) is given by

ED(X, Y ) = 2E‖X − Y ‖p − E‖X −X ′‖p − E‖Y − Y ′‖p , (4.3)

where (X ′, Y ′) is an independent copy of (X, Y ).

In general, for an arbitrary metric space (X , K), the generalized energy distance between X ∼

PX and Y ∼ PY where PX , PY ∈M1(X ) ∩M1
K(X ) is defined as

EDK(X, Y ) = 2EK(X, Y )− EK(X,X ′)− EK(Y, Y ′) . (4.4)

Definition 4.2.1 (Spaces of negative type). A metric space (X , K) is said to have negative type

if for all n ≥ 1, x1, . . . , xn ∈ X and α1, . . . , αn ∈ R with
∑n

i=1 αi = 0, we have

n∑
i,j=1

αi αjK(xi, xj) ≤ 0 . (4.5)

The metric space (X , K) is said to be of strong negative type if the equality in (4.5) holds only

when αi = 0 for all i ∈ {1, . . . , n}.

By Theorem 3.16 in Lyons (2013), every separable Hilbert space is of strong negative type. In

particular, Euclidean spaces are separable Hilbert spaces and therefore have strong negative type.

If (X , K) has strong negative type, thenEDK(X, Y ) = 0 if and only ifX d
= Y . In other words,

the completely characterization of the homogeneity of two distributions holds good in any metric

spaces of strong negative type (we refer the reader to Lyons (2013) and Sejdinovic et al. (2013)

for detailed discussions). Thus the quantification of homogeneity of distributions by the Euclidean

energy distance given in (4.3) is just a special case when K is the Euclidean distance on X = Rp.

This quantification of homogeneity of distributions lends itself for reasonable use in one-

sample goodness-of-fit testing and two-sample testing for equality of distributions. Suppose {Xi}ni=1

and {Xj}Nj=n+1 are two independent i.i.d samples on X and Y taking values in (X , K). An U-
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statistic type estimator of the generalized energy distance between X and Y is defined as

EK; 1,N,n =
2

n(N − n)

n∑
i1=1

N∑
i2=n+1

K(Xi1 , Xi2) −
1

n(n− 1)

∑
1≤i1 6=i2≤n

K(Xi1 , Xi2)

− 1

(N − n)(N − n− 1)

∑
n+1≤i1 6=i2≤N

K(Xi1 , Xi2) .

(4.6)

We refer the reader to Section A.1 in the supplementary materials of Chakraborty and Zhang (2019)

for a comprehensive overview of the properties and asymptotic behavior of the U-statistic type

estimator of EK(X, Y ) in the low-dimensional setting.

4.2.2 Modifications to the classical energy distance in high dimensions

The question of interest is how do the classical distance-based homogeneity metrics like energy

distance behave in the high-dimensional framework. Consider two Rp-valued random vectors

X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp). Chakraborty and Zhang (2019) in their recent paper

showed a striking result that when dimension grows high, the Euclidean energy distance between

X and Y can only capture the equality of the means and the first spectral means, viz. µX = µY

and tr ΣX = tr ΣY , where µX and µY , and, ΣX and ΣY are the mean vectors and the covariance

matrices of X and Y , respectively.

To illustrate, consider the case X ∼ N(µ, Ip) with µ = (1, . . . , 1) ∈ Rp and Yi
ind∼ Exponen-

tial (1) for 1 ≤ i ≤ p. That is, µX = µY and tr ΣX = tr ΣY although X and Y have different

distributions. Section 6.1 in Chakraborty and Zhang (2019) demonstrates that when p is much

larger than the sample sizes observed, the Euclidean energy distance does a poor job in detecting

the in-homogeneity of the two distributions.

Such a limitation of the classical Euclidean energy distance arises essentially due to the use

of Euclidean distance. The authors proposed a new class of homogeneity metrics to overcome

such a limitation of the Euclidean energy distance, which is based on a new way of defining the

distance between sample points (interpoint distance) in the high-dimensional Euclidean spaces.

For x, x′ ∈ Rp with x = (x1, . . . , xp) and x′ = (x′1, . . . , x
′
p), consider the distance metric
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K(x, x′) =
( p∑
j=1

|xj − x′j|
)1/2

= ‖x− x′‖1/21 , (4.7)

where ‖x‖1 =
∑p

j=1 |xj| is the l1 or the absolute norm on Rp.

Based on the new distance metric defined in (4.7), the following homogeneity metric E is

proposed to quantify the homogeneity of the distributions of X and Y :

E(X, Y ) = 2EK(X, Y ) − EK(X,X ′) − EK(Y, Y ′) , (4.8)

which is essentially a generalized energy distance as defined in (4.4) with X = Rp and K as

defined in (4.7). Under the assumption that sup1≤i≤p E |Xi|1/2 <∞, E is finite.

For fixed p, (Rp, K) is shown to have strong negative type and hence E(X, Y ) = 0 if and only if

X
d
= Y . In other words, E(X, Y ) completely characterizes the homogeneity of the distributions of

X and Y in the low-dimensional setting. Theorem 4.1 and Lemma 4.1 in this paper show that when

dimension grows high, E(X, Y ) can capture the pairwise homogeneity of the univariate marginal

distributions ofXi and Yi. ClearlyXi
d
= Yi for 1 ≤ i ≤ p implies µX = µY and tr ΣX = tr ΣY , and

therefore the proposed class of homogeneity metrics can capture a wider range of in-homogeneity

of distributions compared to the Euclidean energy distance in the high-dimensional framework.

Completely characterizing the discrepancy between two high-dimensional distributions might have

some intrinsic difficulties and remains as an open problem for future investigation.

Consider i.i.d. samples {Xk}nk=1 and {Xl}Nl=n+1 from the respective distributions of X and Y .

The authors propose an unbiased U-statistic type estimator E1,N,n of E(X, Y ) as in equation (4.6)

with K being the metric defined in (4.7).

Denote X1:k = {X1, . . . , Xk} and X(k+1):N = {Xk+1, . . . , XN} for 1 ≤ k ≤ N . Also denote

vs = s(s− 3)/2 for s = n, N − n. The pooled variance estimator Sn,N−n of E1,N,n is constructed

as

Sn,N−n :=
4(n− 1)(N − n− 1) cdCov2n,N−n(X1:n, X(n+1):N ) + 4 vn D̃2

n(X1:n) + 4 vN−n D̃2
N−n(X(n+1):N )

(n− 1)(N − n− 1) + vn + vN−n
,
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where

cdCov2n,N−n(X1:n, X(n+1):N ) :=
1

(n− 1)(N − n− 1)

n∑
i1=1

N∑
i2=n+1

K̂(Xi1 , Xi2)2 ,

K̂(Xi1 , Xi2) := K(Xi1 , Xi2)− 1

n

n∑
i3=1

K(Xi3 , Xi2)− 1

N − n

N∑
i4=n+1

K(Xi1 , Xi4)

+
1

n(N − n)

n∑
i3=1

N∑
i4=n+1

K(Xi3 , Xi4) for 1 ≤ i1 ≤ n, n+ 1 ≤ i2 ≤ N ,

D̃2
n(X1:n) :=

1

n(n− 3)

∑
1≤k 6=l≤n

ã2kl , and D̃2
N−n(X(n+1):N ) :=

1

(N − n)(N − n− 3)

∑
n+1≤k 6=l≤N

b̃2kl ,

with Ã = (ãkl)
n
k,l=1 ∈ Rn×n and B̃ = (b̃kl)

N
k,l=n+1 ∈ R(N−n)×(N−n) being the U-centered versions

(see (4.1)) of the distance matrices A := (akl)
n
k,l=1 := (K(Xk, Xl))

n
k,l=1 and B := (bkl)

N
k,l=n+1 :=

(K(Xk, Xl))
N
k,l=n+1, respectively.

Based on E1,N,n and its pooled variance estimator, the authors propose a two-sample test statis-

tic

T1,N,n(X) =
E1,N,n

an,N−n S
1/2
n,N−n

, (4.9)

where

an,N−n =

√
1

n(N − n)
+

1

2n(n− 1)
+

1

2(N − n)(N − n− 1)
.

We will denote T1,N,n(X) simply by T1,N,n henceforth. Likewise, henceforth we will simply

denote

cdCov2n,N−n(X1:n, X(n+1):N), D̃2
n(X1:n) and D̃2

N−n(X(n+1):N) respectively by cdCov2n,N−n, D̃2
n

and D̃2
N−n for notational simplicities. Note that the construction of the pooled variance estimator

Sn,N−n and hence the two-sample statistic T1,N,n requires n ≥ 4 and N − n ≥ 4, i.e., 4 ≤ n ≤

N − 4.

Under certain mild assumptions, it is shown in Theorem B.1 in their paper that under H0 :

X
d
= Y , T1,N,n

d→ N(0, 1) as p → ∞ and n, (N − n) → ∞ at a slower rate than p. Based
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on the asymptotic behavior of T1,N,n for growing dimensions, the authors propose a test for H0

against a general alternative. Owing to the pivotal nature of the limiting distribution of T1,N,n, no

resampling-based inference is needed.

4.3 Methodology

Consider an independent sequence of Rp-valued observations {Xt}nt=1, where the dimension p

is typically much higher than the sample size n. We are concerned with testing the null hypothesis

H0 : Xt ∼ F0 , t = 1, . . . , n against the single change-point alternative

H1 : ∃ 1 ≤ τ0 < n , Xt ∼


F0, 1 ≤ t ≤ τ0,

F1, τ0 + 1 ≤ t ≤ n,

(4.10)

or the multiple change-point alternative

H2 : ∃ N0 ∈ Z, N0 ≥ 2, 1 ≤ τ1 < · · · < τN0 < n, Xt ∼



F0, 1 ≤ t ≤ τ1,

F1, τ1 + 1 ≤ t ≤ τ2,

...

FN0 , τN0 + 1 ≤ t ≤ n,

(4.11)

where the probability distributions F0, F1, . . . , FN0 differ on a set of non-zero measure.

4.3.1 Construction of a single change-point location estimator via cumulative sum process

in embedded spaces

The starting point of many change-point detection procedures rest upon the so-called cumula-

tive sum process. In this subsection, we illustrate the idea behind the construction of our proposed

test statistic in Section 4.3.2 for estimation of a single change-point location. The idea essentially

rests upon the construction of a cumulative sum process in embedded spaces.

[Equivalent characterization of spaces of negative type] A metric space (X , K) is of negative

type if and only if there is a Hilbert space H and an embedding φ : X → H such that K(x, x′) =
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‖φ(x) − φ(x′)‖2H for all x, x′ ∈ X , where ‖ · ‖H is the norm associated with H (see Section 3 in

Lyons (2013)).

It is well known that Rp equipped with the usual Euclidean distance is a separable Hilbert

space, and therefore has strong negative type (by Theorem 3.16 in Lyons (2013)). This combined

with Result 4.3.1 ensures the existence of an embedding φ : Rp → H for some Hilbert space H

such that

‖x− x′‖p = ‖φ(x)− φ(x′)‖2H = 〈φ(x)− φ(x′) , φ(x)− φ(x′) 〉H , (4.12)

where x, x′ ∈ Rp and 〈·, ·〉H denotes the inner product associated with H. Therefore we get from

(4.12)

〈φ(x) , φ(x′) 〉H = 2−1
(
‖x‖ + ‖x′‖ − ‖x− x′‖

)
=: l(x, x′) . (4.13)

We define the cumulative sum process in the embedded space as

Sk =
1√
n

k∑
t=1

(
φ(Xt)− φ̄

)
=

1√
n

( k∑
t=1

φ(Xt) −
k

n

k∑
t=1

φ(Xt) −
k

n

n∑
t=k+1

φ(Xt)
)

=
(n− k)k

n3/2

(1

k

k∑
t=1

φ(Xt) −
1

n− k

n∑
t=k+1

φ(Xt)
) (4.14)

for 1 ≤ k ≤ n, where φ̄ = 1
n

∑n
t=1 φ(Xt). The squared norm of Sk induced by the inner product

〈·, ·〉H is given by

n3

(n− k)2 k2
‖Sk‖2 =

1

k2

k∑
t,t′=1

l(Xt, Xt′) +
1

(n− k)2

n∑
t,t′=k+1

l(Xt, Xt′) −
2

k(n− k)

k∑
t=1

n∑
t′=k+1

l(Xt, Xt′)

=
1

k(n− k)

k∑
t=1

n∑
t′=k+1

‖Xt −Xt′‖ −
1

2k2

k∑
t,t′=1

‖Xt −Xt′‖ −
1

2(n− k)2

n∑
t,t′=k+1

‖Xt −Xt′‖ ,

(4.15)

which essentially follows from (4.13). If there is a single change-point in the sequence of data

observations, a natural statistic to consider is the maximizer of the cumulative sum statistic ‖Sk‖2
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over 1 ≤ k ≤ n, viz.

Vn = max
1≤k≤n

‖Sk‖2 = max
1≤k≤n

(n− k)2k2

n3

( 1

k(n− k)

k∑
t=1

n∑
t′=k+1

‖Xt −Xt′‖ −
1

2k2

k∑
t,t′=1

‖Xt −Xt′‖

− 1

2(n− k)2

n∑
t,t′=k+1

‖Xt −Xt′‖
)
,

(4.16)

which gives a candidate change-point location that needs to be tested against a certain threshold.

A U-statistic version of the statistic in (4.16) is given by

Un = max
1≤k≤n

(n− k)2k2

2n3
E1,n,k , (4.17)

where E1,n,k is the U-statistic type estimator of the Euclidean energy distance between the two

samples X1:k and X(k+1):n (with d as the Euclidean distance in (4.6)). We want to point out to

the reader that Un constructed as above looks quite similar to the statistic considered by Matteson

and James (2014) for estimation of a single change-point location, slightly differing in the scaling

factor.

Consequently the single change-point location can be estimated as τ̂0U := argmax1≤k≤n
(n−k)2k2

2n3

E1,n,k. The statistical significance of the candidate change-point location τ̂0U remains to be tested,

which requires rigorously deriving the null distribution of Un.

4.3.2 Estimation of a single change-point location

The setup considered in Section 4.3.1 for the construction of the single change-point location

estimator Un is essentially low dimensional, i.e., when the dimension of the observations is much

smaller than the sample size. The motivation of this work is to develop a nonparametric methodol-

ogy for detection of change-point locations when we have a sequence of high-dimensional observa-

tions, i.e., when p can by far exceed n. Our approach essentially rests upon testing for homogeneity

of two high-dimensional distributions based upon the modifications to the usual Euclidean energy

distance discussed in Section 4.2.2.
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Building upon the insights from Section 4.3.1, we propose the following statistic :

Mn := max
4≤k≤n−4

T (1, n ; k) = max
4≤k≤n−4

(n− k)k

n2
T1,n,k , (4.18)

where T1,n,k is the two-sample statistic stated in (4.9), computed based on the two samples X1:k

and X(k+1):n, and T (1, n ; k) := (n−k)k
n2 T1,n,k. Mn essentially estimates a candidate single change-

point location as

τ̂0 := argmax
4≤k≤n−4

T (1, n ; k) . (4.19)

The statistical significance of the estimated change-point location τ̂0 needs to be tested, which

necessitates determining the null distribution of Mn. The key theoretical innovation of this paper

is to rigorously derive the asymptotic null distribution of Mn as n, p → ∞, with n growing at a

smaller rate compared to p. The intrinsic difficulty is to derive a uniform weak convergence result

for the stochastic process T1,n,k, as clearly a pointwise weak convergence result won’t suffice.

Towards that end, we begin with introducing some technical definitions. Define

τ 2 := EK(X,X ′)2.

Assumption 4.3.1. There exist constants a and A such that uniformly over p

0 < a ≤ inf
1≤i≤p

E |Xi −X ′i| ≤ sup
1≤i≤p

E |Xi −X ′i| ≤ A <∞ .

Under Assumption 4.3.1, it is easy to see that τ � p1/2. The following proposition (Proposition

4.1 in Chakraborty and Zhang (2019)) presents an expansion formula for the distance metric K

when the dimension is high, which plays a key role in the theoretical analysis.

Proposition 4.3.1. Under Assumption 4.3.1, we have

K(X,X ′)

τ
= 1 +

1

2
L(X,X ′) +R(X,X ′) ,
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where L(X,X ′) := K2(X,X′)−τ2
τ2

is the leading term and R(X,X ′) is the remainder term. In

addition, if L(X,X ′) is a op(1) random variable as p→∞, then R(X,X ′) = Op (L2(X,X ′)).

Define H(Xk, Xl) := 1
τ

∑p
i=1 dkl(i) for 1 ≤ k, l ≤ n, where

dkl(i) := |Xki −Xli| − E
[
|Xki −Xli|

∣∣Xki

]
− E

[
|Xki −Xli|

∣∣Xli

]
+ E [ |Xki −Xli| ]

is the double-centered distance between Xki and Xli.

Assumption 4.3.2. As n, p→∞,

1

n2

E [H4(X,X ′)]

(E [H2(X,X ′)])2
= o(1),

1

n

E [H2(X,X ′′)H2(X ′, X ′′)]

(E [H2(X,X ′)])2
= o(1),

E [H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)]

(E [H2(X,X ′)])2
= o(1).

Remark 4.3.1. We refer the reader to Section 2.2 in Zhang et al. (2018) for an illustration of

Assumption 4.3.2.

Assumption 4.3.3. Suppose E [L2(X,X ′)] = O(α2
p) where αp is a positive real sequence such

that τα2
p = o(1) as p→∞. Further assume that as n, p→∞,

n4 τ 4 E [R4(X,X ′)]

(E [H2(X,X ′)])2
= o(1) .

Remark 4.3.2. We refer the reader to Remark 4.1 in Chakraborty and Zhang (2019) which il-

lustrates some sufficient conditions under which αp = O( 1√
p
) and consequently τα2

p = o(1)

holds, as τ � p1/2. In similar lines of Remark D.1 in the supplementary materials of their

paper, it can be argued that E [R4(X,X ′)] = O
(

1
p4

)
. Further with a mild assumption that

σ2 := limp→∞ E [H2(Xk, Xl)], we have E [H2(X,X ′)] � 1. Combining all the above, it is easy

to verify that
n4 τ4 E [R4(X,X′)]
(E [H2(X,X′)])2

= o(1) holds provided n = o(p1/2).

The following theorem establishes a uniform weak convergence result of the stochastic process

{T1,n,bnrc}r∈[0,1] which plays a key role in deriving the limiting null distribution of Mn as n, p →
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∞.

Theorem 9. Under Assumptions 4.3.2 and 4.3.3, as n, p→∞,

{
T1,n,bnrc

}
r∈[0,1]

d−→ G0 in L∞ ([0, 1]) ,

where G0(r) := Q(0, 1) − 1
r
Q(0, r) − 1

1−r Q(r, 1) for r ∈ (0, 1) and zero otherwise, and Q is a

centered gaussian process with covariance function given by

cov
(
Q(a1, b1) , Q(a2, b2)

)
=
(
b1 ∧ b2 − a1 ∨ a2

)2
1
(
b1 ∧ b2 > a1 ∨ a2

)
.

In particular, var
(
Q(a, b)

)
= (b− a)2 1(b > a).

The proof of this theorem is non-trivial, requiring the finite dimensional weak convergence

and stochastic equicontinuity of the process {T1,n,bnrc}r∈[0,1] to be established (see Theorem 10.2

in Pollard et al. (1990)). Because of its extremely long and technical nature, we relegate it to the

supplementary materials.

Theorem B.1 in the supplementary materials of Chakraborty and Zhang (2019) essentially

proves that for fixed r ∈ (0, 1), T1,n,bnrc
d→ N(0, 1) as n, p → ∞, under the same Assumptions

4.3.2 and 4.3.3. Note that in Theorem 9, for fixed r ∈ (0, 1), G0(r) has a gaussian distribution

with zero mean. From the covariance structure of the gaussian process Q given in Theorem 9,

it is not hard to verify that var (G0(r)) = 1. This illustrates that the uniform weak convergence

result established in Theorem 9 in fact generalizes the pointwise weak convergence result proven

in Theorem B.1 in Chakraborty and Zhang (2019).

As a consequence of Theorem 9, we derive the limiting null distribution of Mn, which serves

as the main theoretical innovation of the paper.

Theorem 10. Under Assumptions 4.3.2 and 4.3.3, as n, p→∞, Mn
d→ sup

r∈(0,1)
r (1− r)G0(r).

Theorem 10 essentially follows from Theorem 9 and continuous mapping theorem. One thing

to be noted is that the limiting null distribution is pivotal in nature and the quantiles of the limiting
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distribution can be approximated via a large number of Monte Carlo simulations.

With the limiting null distribution ofMn being rigorously established, we now present in Algo-

rithm 1 the pseudocode of the procedure to test for H0 against the single change-point alternative

H1. We use a permutation procedure to approximate the quantiles of the distribution of Mn aiming

to achieve more accurate results.

Algorithm 1 Single change-point detection

Input : Rp-valued observations {X1, . . . , Xn}; level of significance α ∈ (0, 1); number of per-
mutation replicates B.
Compute the value of the test statistic Mn and the candidate change-point location τ̂0.
for j = 1, 2, . . . , B do

Generate a random permutation of the observations {X1, . . . , Xn}.
Compute the value of the test statistic for the permuted data, call it M j

n.
end for
Compute Mα, the 100(1− α)th percentile of {M1

n, . . . ,M
B
n }.

if Mn > Mα then
Reject H0 at level α.
Return τ̂0 as the estimated change-point.

end if

4.3.3 Recursive estimation of multiple change-point locations

In practice, both the number and locations of change-points are unknown and need to be esti-

mated. We need a ‘greedy’ procedure to sequentially detect multiple change-point locations, with

each stage relying on the previously detected change-points, which are never re-visited. We com-

bine our proposed test statistic Mn with the Wild Binary Segmentation (WBS) procedure proposed

by Fryzlewicz (2014) to recursively estimate and test for the significance of multiple change-point

locations.

The main idea is quite simple. In the beginning, instead of computing the statistic Mn over the

entire sample {X1, . . . , Xn}, we randomly draw (hence the term ‘wild’) M sub-samples

{Xsm , . . . , Xem}, 1 ≤ m ≤ M , where sm, em are integers satisfying 1 ≤ sm ≤ n − 7 and

sm + 7 ≤ em ≤ n. We compute the statistic T (sm, em ; b) = (em−b)(b−sm+1)
(em−sm+1)2

Tsm,em,b for each
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sub-sample with b ranging over {sm + 3, . . . , em − 4}. We require sm + 7 ≤ em to ensure there

are em − sm + 1 ≥ 8 observations in the sub-sample {Xsm , . . . , Xem}. We choose the largest

maximizer over all the sub-samples to be the first change-point candidate to be tested against a

certain threshold. We determine that threshold using a permutation procedure with B replicates.

If the candidate change-point location turns out to be statistically significant, the same procedure

is then repeated to the left and right of it. The recursive search quits a bisected sub-interval if

either it doesn’t contain at least 8 observations, or, if no further significant change-point locations

are detected within that sub-interval. We illustrate in Algorithm 2 the pseudocode of the WBS

procedure for detecting significant multiple change-point locations within a generic interval (s, e).

Algorithm 2 WBS procedure for multiple change-point detection
1: function WBS(s, e)
2: if (e− s < 7) then
3: STOP;
4: else
5: Ms,e := {(sm, em),m = 1, . . . ,M : s ≤ sm ≤ em − 7 ≤ e− 7}.
6: (m0, b0) := argmax

m∈Ms,e

b=sm+3, ... ,em−4

T (sm, em ; b).

7: for j = 1, 2, . . . , B do
8: Generate a random permutation of the observations {Xs, . . . , Xe}.
9: Compute T j := max

m∈Ms,e

b=sm+3, ... ,em−4

T (sm, em ; b).

10: end for
11: Compute ζα, the 100(1− α)th percentile of {T 1, . . . , TB}.
12: if (T (sm0 , em0 ; b0) > ζα) then
13: Add b0 to the set of estimated change-points.
14: WBS(s, b0)
15: WBS(b0 + 1, e)
16: end if
17: end if
18: end function
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4.4 Numerical studies

4.4.1 Simulation studies

In this subsection, we examine the finite sample performance of our proposed methodology for

multiple change-point detection via simulation studies. We first consider the following examples

of the single change-point alternative.

Example 4.4.1. (No change point)

1. Xk ∼ N(0, Ip) for 1 ≤ k ≤ n.

2. Xk ∼ N(0,Σ) for 1 ≤ k ≤ n, where Σ = (σij)
p
i,j=1 with σij = 0.7|i−j|.

Example 4.4.2. (Single change in mean)

1. Xk ∼ N(0, Ip) for 1 ≤ k ≤ bn/2c and Xk ∼ N(µ, Ip) for bn/2c + 1 ≤ k ≤ n, where

µ = (0.6, . . . , 0.6) ∈ Rp.

2. Xk ∼ N(0,Σ) for 1 ≤ k ≤ bn/2c and Xk ∼ N(µ,Σ) for bn/2c + 1 ≤ k ≤ n, where

Σ = (σij)
p
i,j=1 with σij = 0.7|i−j|, and µ = (0.6, . . . , 0.6) ∈ Rp.

Example 4.4.3. (Single change in distribution)

1. Xk ∼ N(µ, Ip) with µ = (1, . . . , 1) ∈ Rp for 1 ≤ k ≤ bn/2c and Xki
ind∼ Exponential (1)

for i = 1, . . . , p and bn/2c+ 1 ≤ k ≤ n.

2. Xk = (Xk1, . . . , Xkp)︸ ︷︷ ︸
i.i.d.∼ Poisson(1)

− 1 for 1 ≤ k ≤ bn/2c and Xk = (Xk1, . . . , Xkbβpc, Xk(bβpc+1), . . . ,

Xkp) where Xk1, . . . , Xkbβpc
i.i.d.∼ Poisson (1)− 1, and Xk(bβpc+1), . . . , Xkp

i.i.d.∼

Rademacher (0.5) for bn/2c+ 1 ≤ k ≤ n.

3. Xk = R1/2Z1k for 1 ≤ k ≤ bn/2c and Xk = R1/2Z2k for bn/2c + 1 ≤ k ≤ n, where

R = (rij)
p
i,j=1 with rii = 1 for i = 1, . . . , p, rij = 0.25 if 1 ≤ |i − j| ≤ 2 and rij = 0

otherwise, Z1k ∼ N(0, Ip) and Z2k = (Z2k1, . . . , Z2kp)︸ ︷︷ ︸
i.i.d.∼ Exponential(1)

− 1.
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We try n = 100, p = 100, 200 and β = 1/2. We implement Algorithm 1 with B = 199

permutation replicates and a significance level of α = 0.05. We cluster the observations based

on the estimated significant change-point location and compute the Adjusted Rand Index (ARI)

(Morey and Agresti (1984)). The ARI is a positive value between 0 and 1. The ARI value is

0 when there is no change-point estimated when there does exist one (or more), or there is no

change-point but the method estimates one (or more) change-point locations. The ARI value is 1

when the estimation is perfect. Higher the value of ARI, more accurate is the estimation of the

change-point location. We consider 100 simulations of each of the above examples, for each of

which we compute the ARI value and report it in the table below. We compare our test with

• the E-Divisive procedure proposed by Matteson and James (2014) with R = 199 random

permutations (using the ‘ecp’ R package); (denote by MJ)

• the test based on the graph-based original scan statistic proposed by Chen and Zhang (2015)

with 199 permutations (using the ‘gSeg’ R package); (denote by CZ)

• the max-type edge-count test proposed by Chu and Chen (2019) with 199 permutations (us-

ing the ‘gSeg’ R package); (denote by CC)

• the test proposed by Wang et al. (2019); (denote by WVS) and

• the INSPECT procedure proposed by Wang and Samworth (2018) (using the ‘InspectChange-

point’ R package) (denote by WS).

Although the methodologies proposed by Wang et al. (2019) and Wang and Samworth (2018)

are aimed at detecting a mean shift for high dimensional data, we compare our method with theirs

to illustrate that our method can capture inhomogeneities among a sequence of high-dimensional

observations beyond the first moment. The results from Table 4.1 indicate that almost all the

methods perform nearly equally good when there is no true change-point or when there is a mean

shift. When there is no true change-point, the procedure proposed by Wang and Samworth (2018)

still detects one, leading to a zero ARI value.
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Table 4.1: Comparison of average ARI values for different methods over 100 simulations.

n p Our test MJ CC CZ WVS WS

Ex 4.4.1

(1) 100 100 0.98 0.97 0.97 0.97 0.90 0.00
(1) 100 200 0.97 0.98 0.96 0.96 0.97 0.00
(2) 100 100 0.93 0.97 0.91 0.92 0.94 0.00
(2) 100 200 0.97 0.97 0.95 0.98 0.93 0.00

Ex 4.4.2

(1) 100 100 1 1 0.997 0.999 0.963 1
(1) 100 200 1 1 0.999 0.999 0.969 1
(2) 100 100 0.984 0.986 0.867 0.946 0.949 0.981
(2) 100 200 0.996 0.996 0.978 0.983 0.962 0.993

Ex 4.4.3

(1) 100 100 0.993 0.014 0.004 0.027 0.052 0.390
(1) 100 200 1 0.030 0.007 0.037 0.035 0.414
(2) 100 100 0.999 0.034 0.001 0.059 0.063 0.468
(2) 100 200 1 0.032 0.001 0.055 0.067 0.502
(3) 100 100 0.978 0.024 0.021 0.065 0.074 0.402
(3) 100 200 0.992 0.029 0.006 0.040 0.044 0.363

Most interestingly, when there is a change in distribution among the sequence of the high-

dimensional observations, our method performs way better than any of the other competitors in

terms of accurately estimating the single change-point location. That it clearly beats the E-Divisive

procedure, is quite expected as the Euclidean energy distance fails to capture any inhomogeneity

between two high-dimensional distributions beyond the first two moments.

The following examples are illustrate the performance of our methodology in case of two

change-points alternative.

Example 4.4.4. (Two changes in mean)

1. Xk ∼ N(0, Ip) for 1 ≤ k ≤ bn/3c and 2bn/3c + 1 ≤ k ≤ n, and Xk ∼ N(µ, Ip) for

bn/3c+ 1 ≤ k ≤ 2bn/3c, where µ = (0.6, . . . , 0.6) ∈ Rp.

2. Xk ∼ N(0,Σ) for 1 ≤ k ≤ bn/3c and 2bn/3c + 1 ≤ k ≤ n, and Xk ∼ N(µ,Σ) for

bn/3c+1 ≤ k ≤ 2bn/3c, where Σ = (σij)
p
i,j=1 with σij = 0.7|i−j| and µ = (0.6, . . . , 0.6) ∈

Rp.
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Table 4.2: Comparison of average ARI values for different methods over 100 simulations.

n p Our test MJ CC CZ WS

Ex 4.4.4
(1) 100 100 0.991 1 0.975 0.960 0.916
(2) 100 100 0.962 0.978 0.747 0.885 0.643

4.4.2 Real data illustration

We consider the daily closed stock prices of p = 72 companies under the Consumer Defensive

sector, listed under the NYSE and NASDAQ stock exchanges, on the first dates of each month

during the time period between January 1, 2005 and December 31, 2010. The data has been

downloaded from Yahoo Finance via the R package ‘quantmod’. At each time t, denote the closed

stock prices of these companies by Xt = (X1t, . . . , Xpt) for 1 ≤ t ≤ 72. We consider the stock

returns SXt = (SX1t , . . . , S
X
pt ) for 1 ≤ t ≤ 71, where SXit = log

Xi,t+1

Xit
for 1 ≤ i ≤ p.

According to the US National Bureau of Economic Research, the Great Recession began in the

United States in December 2007. The government responded with an unprecedented $700 billion

bank bailout in October 2008 and $787 billion fiscal stimulus package in February 2009 to save

existing jobs, provide temporary relief programs for those most affected by the recession, invest in

infrastructure, education, health and renewable energy, etc. The recession officially lasted till June

2009, thus extending over 19 months.

When a recession or an economic slowdown occurs, markets tend to become volatile, prompt-

ing investors to sell stocks. Although all industrial sectors are susceptible to economic changes,

some are less sensitive or more resistant to recessions (for example, Consumer Defensive, Util-

ity or Healthcare sectors) compared to some others (for example, Real Estate, Finance, Oil and

Gas, Automobiles, etc.). The goal is to consider stock returns of companies under a sector that is

known to perform relatively well even when a recession hits the market, and see if our proposed

methodology and the other state-of-the-art methods can detect change-points in the stock returns

data.
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When applied on the stock returns dataset (with n = 71 and p = 72) for the Consumer Defen-

sive sector :

• our procedure detects two change-points, viz. September 1, 2007 and January 1, 2009, which

seems quite reasonable given the historical sequence of eventualities;

• the E-Divisive procedure by Matteson and James (2014) fails to detect any change-point over

that time period;

• the test based on the graph-based original scan statistic proposed by Chen and Zhang (2015)

detects only one change-point, viz. March 1, 2009;

• the max-type edge-count test proposed by Chu and Chen (2019) detects two change-points,

viz. May 1, 2008 and September 1, 2008; and

• the methodology proposed by Wang and Samworth (2018) detects as many as 18 change-

points over the aforesaid period of time.
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Figure 4.1: Time series plots of the stock returns for six companies under the Consumer Defensive
sector. The solid red lines represent the change-point locations detected by our methodology. The
dotted blue and gray lines represent the change-point locations detected by the procedures proposed
by Chu and Chen (2019) and Chen and Zhang (2015), respectively.
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5. SUMMARY AND CONCLUSIONS

To summarize, measuring and testing for independence and homogeneity of distributions are

some fundamental problems in statistics, finding applications in a wide variety of areas. The first

work (Chapter 2) aims at quantifying and testing for joint independence among d ≥ 2 random

vectors, which is a quite different and more ambitious task than testing for pairwise independence

of a collection of random vectors. The second work (Chapter 3) upholds the limitations of the clas-

sical distance and kernel-based homogeneity and dependence metrics for growing dimensions, and

proposes a new class of homogeneity/dependence metrics to perform two-sample/independence

testing in the high-dimensional setup. The third work (Chapter 4) proposes a methodology to de-

tect an unknown number of change-points in an independent sequence of high-dimensional time-

ordered observations. The key idea essentially rests upon nonparametric testing for equality of two

high-dimensional distributions.

5.1 Future research

There are several intriguing problems that are worthy of investigation in the future.

• The direct implementation of JdCov has a time complexity of the order of O(n2), where n is

the sample size. This quadratic computational cost might be prohibitive in many applications

with large-scale datasets. One possible direction is to come up with a fast computational

algorithm to compute JdCov.

• Another potential direction for future research might be to develop a computationally and

statistically efficient algorithm to learn the correct causal structure among a collection of

random variables based on nonparametric tests for joint independence.

• Extension of our methodology for multiple change-point detection for a weakly dependent

high-dimensional time series seems to be of obvious interest, as temporal dependence is nat-

ural to expect in many practical applications. The problem, though quite intriguing, seems
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absolutely non-immediate and non-trivial from both methodological and theoretical perspec-

tives because of the additional complexity brought in by the temporal dependence.

• It would be interesting to develop theoretical consistency results for the wild binary segmen-

tation procedure we implemented for multiple change-point detection, similar to Theorem

3.2 in Fryzlewicz (2014). This again seems non-trivial and challenging, and we leave it as a

topic for future research.
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APPENDIX A

This is the Appendix for Chapter 2.

Proof of Lemma 2.2.1. By Lemma 1 of Székely et al. (2007), we have

RHS =

∫
Rp

{
Eeı〈t,Xi−X′i〉 + eı〈t,x−x

′〉 − Ee〈t,x−X′i〉 − Eeı〈t,Xi−x′〉
}
wpi(t)dt

=E
∫
Rp

{
cos(〈t,Xi −X ′i〉)− 1 + cos(〈t, x− x′〉)− 1 + 1− cos(〈t, x−X ′i〉)

+ 1− cos(〈t,Xi − x′〉)
}
wpi(t)dt+ ı

∫
R
E
{

sin(〈t,Xi −X ′i〉) + sin(〈t, x− x′〉)

− sin(〈t, x−X ′i〉)− sin(〈t,Xi − x′〉)
}
wpi(t)dt

=E|x−X ′i|+ E|Xi − x′| − |x− x′| − E|Xi −X ′i| = Ui(x, x
′).

Here we have used the fact that
∫
R{sin(〈t,X−X ′〉)+sin(〈t, x−x′〉)−sin(〈t, x−X ′〉)−sin(〈t,X−

x′〉)}wpi(t)dt = 0. ♦

Proof of Proposition 2.2.1. To show (1), notice that for ai, ci and orthogonal transformations Ai ∈

Rpi×pi ,

E
∏
i∈S

Ui(ai + ciAiXi, ai + ciAiX
′
i) =

∏
i∈S

|ci|E
∏
i∈S

Ui(Xi, X
′
i),

where S ⊂ {1, 2, . . . , d}. The conclusion follows directly. ♦

Proof of Proposition 2.2.2. The proof is essentially similar to the proof of Lemma 1.2 in the sup-

plementary material of Yao et al. (2018). It is easy to verify that

E

d∏
i=1

Ui(Xi, X
′
i) = C

∫
Rd

|A|2dt1
t21
. . .

dtd
t2d

,
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where C is some constant and

A = e−
t21+···+t2d

2

[
e−ρt1t2 + e−ρt1t3 + . . .

(
d

2

)
similar terms

− e−ρt1t2−−ρt1t3−ρt2t3 − e−ρt1t2−ρt1t4−ρt2t4 − . . .
(
d

3

)
similar terms

+ e−ρt1t2−−ρt1t3−ρt1t4−ρt2t3−ρt2t4−ρt3t4 + . . .

(
d

4

)
similar terms

+ . . . − (d− 1)
]
.

(A.1)

For example, if d ≥ 4 and we use the Taylor’s expansion ex = 1 + x + x2

2!
+
∞∑
l=3

xl

l!
, then keeping

in mind the multinomial theorem

(a1 + · · ·+ aq)
2 =

2∑
l1,...,lq=0
l1+···+lq=2

2!

l1! . . . lq!
, q ≥ 2 ,

it is easy to check that the leading terms and their coefficients (upto some constants) are

Leading terms Coefficients (upto some constants)

titj 1−
(
d−2
1

)
+
(
d−2
2

)
− . . . (= 0 for d > 2)

t2i t
2
j 1−

(
d−2
1

)
+
(
d−2
2

)
− . . . (= 0 for d > 2)

t2i tjtk −1 +
(
d−3
1

)
−
(
d−3
2

)
+ . . . (= 0 for d > 3)

titjtktl 1−
(
d−4
1

)
+
(
d−4
2

)
− . . . (= 1 if d = 4, = 0 for d > 4)

.

To get a non-trivial upper bound for E
d∏
i=1

Ui(Xi, X
′
i), we need to consider the Taylor’s expan-

sion ex = 1+x+ x2

2!
+ · · ·+ xk

k!
+

∞∑
l=k+1

xl

l!
, when d = 2k−1 or d = 2k, k ≥ 2, and the only leading

term in the Taylor’s expansion of (A.1) that would lead to a term with non-vanishing coefficient, is

xk

k!
. To see this, note that when d = 4, i.e., k = 2, it is shown in Lemma 1.2 in the supplementary

material of Yao et al. (2018) that the only non-vanishing term is t1t2t3t4 (upto some constants).

Likewise for d = 5 and 6, the only non-vanishing leading terms (upto some constants) are :
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d k The only non-vanishing term (upto some constants)
5 3 (titj)

1(tita)
1(tltm)1 = t2i tjtatltm

6 3 (titj)
1(tatl)

1(tmtn)1 = titjtatltmtn

, i 6= j 6= a 6= l 6= m 6= n .

In general when d = 2k − 1, for k ≥ 2, the only non-vanishing term (upto some constants) is

t2i1ti2 . . . tid , where (i1, . . . , id) is any permutation of (1, 2, . . . , d). Suppose Pd denotes the set of

all possible permutations of (1, 2, . . . , d). Then

E
d∏
i=1

Ui(Xi, X
′
i) = c0

∫
Rd

|e−
t21+···+t2d

2 ( c1ρ
k

∑
(i1,...,id)∈Pd

t2i1ti2 . . . tid +R ) |2 dt1
t21
. . .

dtd
t2d

= A0 + A1 + A2 + A3 ,

where

A0 = c̃0 ρ
2k

∑
(i1,...,id)∈Pd

∫
Rd

e−(t
2
1+···+t2d) t4i1t

2
i2
. . . t2id

dt1
t21
. . .

dtd
t2d

,

A1 = c̃1 |ρ|k
∑

(i1,...,id)∈Pd

∫
Rd

e−(t
2
1+···+t2d) t2i1ti2 . . . tid ×R

dt1
t21
. . .

dtd
t2d

,

A2 = c̃2 ρ
2k

∑
(i1,...,id)∈Pd

∫
Rd

e−(t
2
1+···+t2d) t3i1t

3
i2
t2i3 . . . t

2
id

dt1
t21
. . .

dtd
t2d

,

and

A3 = c̃3

∫
Rd

e−(t
2
1+···+t2d) ×R2 dt1

t21
. . .

dtd
t2d

,

c0, c1, c̃0, c̃1, c̃2 and c̃3 being some constants and R being the remainder term from the Taylor’s

expansion. Following the similar arguments of Yao et al. (2018), it can be shown that

A0 = O(|ρ|2k) , A1 = O(|ρ|2k+1) , A2 = O(|ρ|2k) and A3 = O(|ρ|2k+2) .
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Thus for d = 2k − 1, k ≥ 2,

E

d∏
i=1

Ui(Xi, X
′
i) = O(|ρ|2k) .

And when d = 2k, for k ≥ 2, the only non-vanishing term (upto some constants) is t1t2 . . . td.

Consequently

E
d∏
i=1

Ui(Xi, X
′
i) = c′0

∫
Rd

|e−
t21+···+t2d

2 ( c′1ρ
kt1t2 . . . td +R′ ) |2 dt1

t21
. . .

dtd
t2d

= A′0 + A′1 + A′2 ,

where

A′0 = c̃′0 ρ
2k

∫
Rd

e−(t
2
1+···+t2d) t21t

2
2 . . . t

2
d

dt1
t21
. . .

dtd
t2d

,

A′1 = c̃′1 |ρ|k
∫
Rd

e−(t
2
1+···+t2d) t1t2 . . . td ×R′

dt1
t21
. . .

dtd
t2d

,

and

A′2 = c̃′2

∫
Rd

e−(t
2
1+···+t2d) ×R′2 dt1

t21
. . .

dtd
t2d

,

c′0, c
′
1, c̃
′
0, c̃
′
1 and c̃′2 being some constants and R′ being the remainder term from the Taylor’s expan-

sion. Again following the similar arguments of Yao et al. (2018), it can be shown that

A′0 = O(|ρ|2k) , A′1 = O(|ρ|2k+1) and A′2 = O(|ρ|2k+2) .

Thus for d = 2k, k ≥ 2,

E
d∏
i=1

Ui(Xi, X
′
i) = O(|ρ|2k) ,

which completes the proof.

♦

Proposition A.0.1. (1) dCov2(X1, . . . , Xd) ≤ E[
∏d

j=1 min{aj(Xj), aj(X
′
j)}] with aj(x) =
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max{E|Xj −X ′j|, |E|Xj −X ′j| − 2E|x−Xj||}. For any partition S1 ∪ S2 = {1, 2, . . . , d}

and S1 ∩ S2 = ∅, we have dCov2(X1, . . . , Xd) ≤ E[
∏

i∈S1
aj(Xj)]E[

∏
i∈S2

aj(Xj)].

(2) dCov2(X1, . . . , Xd) ≤
∏d

i=1

{
E[|Ui(Xi, X

′
i)|d]

}1/d
. In particular, when d is even,

dCov2(X1, . . . , Xd) ≤
∏d

i=1 dCov
2(Xi, . . . , Xi︸ ︷︷ ︸

d

)1/d.

(3) Denote by µj the uniform probability measure on the unit sphere Spj−1. Then

dCov2(X1, . . . , Xd) = C

∫
∏d

j=1 S
pj−1

dCov2(〈u1, X1〉, . . . , 〈ud, Xd〉)dµ1(u1) · · · dµd(ud),

and

JdCov2(X1, . . . , Xd; c)

=C ′
∫
∏d

j=1 S
pj−1

JdCov2(〈u1, X1〉, . . . , 〈ud, Xd〉; c)dµ1(u1) · · · dµd(ud),

for some positive constants C and C ′.

Proof of Proposition A.0.1. To prove (1), we have by the triangle inequality

|E[|Xj − x′|]− |x− x′|| ≤ E[|x−X ′j|].

Thus we have |Uj(x, x′)| ≤ min{aj(x), aj(x
′)}, which implies that

E

[
d∏
j=1

Uj(Xj, X
′
j)

]
≤ E

[
d∏
j=1

min{aj(Xj), aj(X
′
j)}

]
.

For any partition S1 ∪ S2 = {1, 2, . . . , d} and S1 ∩ S2 = ∅, using the independence between Xj

and X ′j , we get

dCov2(X1, X2, . . . , Xd) ≤ E

[∏
i∈S1

aj(Xj)

]
E

[∏
i∈S2

aj(Xj)

]
.
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(2) follows from the Hölder’s inequality directly. Finally, by the change of variables: t1 = riui

where ri ∈ (0,+∞) and ui ∈ Spi−1, we have

dCov2(X1, X2, . . . , Xd)

=

∫
Rp0

∣∣∣∣∣E
[

d∏
i=1

(fi(ti)− eı〈ti,Xi〉)

]∣∣∣∣∣
2

dw

=C1

∫
Sp1+
· · ·
∫
Spd+

∫ +∞

−∞
· · ·
∫ +∞

−∞

∣∣∣∣∣E
[

d∏
i=1

(Eeıri〈ui,Xi〉 − eıri〈ui,Xi〉)

]∣∣∣∣∣
2 d∏
i=1

dµi(ui)dri

=C2

∫
Sp1+
· · ·
∫
Spd+

JdCov2(〈u1, X1〉, . . . , 〈ud, Xd〉; c)dµ1(u1) · · · dµd(ud)

=C3

∫
Sp1
· · ·
∫
Spd

JdCov2(〈u1, X1〉, . . . , 〈ud, Xd〉; c)dµ1(u1) · · · dµd(ud),

where C1, C2, C3 are some positive constants. ♦

Property (1) gives an upper bound for dCov2(X1, X2, . . . , Xd), which is motivated by Lemma

2.1 of Lyons (2013), whereas an alternative upper bound is given in Property (2) which follows

directly from the Hölder’s inequality. Property (3) allows us to represent dCov of random vectors

of any dimensions as an integral of dCov of univariate random variables, which are the projections

of the aforementioned random vectors.

Proof of Proposition 2.2.3. The “if” part is trivial. To prove the “only if” part, we proceed us-

ing induction. Clearly this is true if d = 2. Suppose the result holds for d = m. Note that

dCov2(X1, X2, . . . , Xm+1) = 0 implies that E
[∏m+1

i=1 (fi(ti)− eı〈tiXi〉)
]

= 0 almost everywhere.

Thus we can write the higher order effect f12···(m+1)(t1, . . . , tm+1)−
∏m+1

i=1 fi(ti) as a linear combi-

nation of the lower order effects. By the assumption that (Xi1 , . . . , Xim) are mutually independent

for any m-tuples in Idm with m < d, we know f12···(m+1)(t1, . . . , tm+1)−
∏m+1

i=1 fi(ti) = 0. ♦
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Proof of Proposition 2.2.4. Notice that

d∏
i=1

(Ui(Xi, X
′
i) + c)

=cd + cd−1
d∑
i=1

Ui(Xi, X
′
i) + cd−2

∑
(i1,i2)∈Id2

Ui1(Xi1 , X
′
i1

)Ui2(Xi2 , X
′
i2

)

+ · · ·+
d∏
i=1

Ui(Xi, X
′
i).

The conclusion follows from the fact that E[Ui(Xi, X
′
i)] = 0, equation (2.4) and the definition of

JdCov. ♦

Proof of Proposition 2.2.7. We only prove the “if” part. If dcf(t1, . . . , td) can be factored, U(Xi, X
′
i)

are independent. Therefore, it is easy to see that JdCov2(X1, . . . , Xd; c) = 0, which implies that

{X1, . . . , Xd} are mutually independent by Proposition 2.2.3. ♦

Proof of Lemma 2.3.1. The RHS of (2.13) in Chapter 2 is equal to

1

n2

n∑
k,l=1

m∏
i=1

∫
R
(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti)− e−ı〈ti,Xli〉)wpi(ti)dti.

Thus it is enough to prove that

∫
(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti)− e−ı〈ti,Xli〉)wpi(ti)dti = Ûi(k, l).
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To this end, we note that

(f̂i(ti)− eı〈ti,Xki〉) (f̂i(−ti)− e−ı〈ti,Xli〉)

= f̂i(ti)f̂i(−ti) − eı〈ti,Xki〉f̂i(−ti) − f̂i(ti)e
−ı〈ti,Xli〉 + eı〈ti,(Xki−Xli)〉

=
1

n2

n∑
k,l=1

eı〈ti,(Xki−Xli)〉 − 1

n

n∑
l=1

eı〈ti,(Xki−Xli)〉 − 1

n

n∑
k=1

eı〈ti,(Xki−Xli)〉 + eı〈ti,(Xki−Xli)〉

=
1

n

n∑
l=1

(1− eı〈ti,(Xki−Xli)〉) +
1

n

n∑
k=1

(1− eı〈ti,(Xki−Xli)〉)− (1− eı〈ti,(Xki−Xli)〉)

− 1

n2

n∑
k,l=1

(1− eı〈ti,(Xki−Xli)〉) .

Using (2.11) of Székely et al. (2007), we obtain

∫
(f̂i(ti)− eı〈ti,Xki〉)(f̂i(ti)− e−ı〈ti,Xli〉)wpi(ti)dti

=
1

n

n∑
l=1

|Xki −Xli|pi +
1

n

n∑
k=1

|Xki −Xli|pi − |Xki −Xli|pi −
1

n2

n∑
k,l=1

|Xki −Xli|pi

= Ûi(k, l) .

Finally, (2.14) in Chapter 2 follows from (2.13) in Chapter 2 and the definition of ̂JdCov2. ♦

Proof of Proposition 2.3.1. Define

ξ(t1, t2, . . . , td) =E

[
d∏
i=1

(fi(ti)− eı〈ti,Xi〉)

]
, ξn(t1, t2, . . . , td) =

1

n

n∑
j=1

d∏
i=1

(f̂i(ti)− eı〈ti,Xji〉),

and note that

dCov2(X1, X2, · · · , Xd) =

∫
|ξ(t1, t2, . . . , td)|2 dw,

d̂Cov2(X1, X2, · · · , Xd) =

∫
|ξn(t1, t2, . . . , td)|2 dw.

119



Direct calculation shows that

ξ(t1, t2, . . . , td) =
d∏
j=1

fj − d
d∏
j=1

fj +

(
f12

∏
j 6=1,2

fj + f13
∏
j 6=1,3

fj + · · ·

)

−

(
f123

∏
j 6=1,2,3

fj + f124
∏

j 6=1,2,4

fj + · · ·

)
+ · · ·+ (−1)df12,...,d,

and ξn(t1, t2, . . . , td) has the same expression by replacing the characteristic functions by their

empirical counterparts in ξ(t1, t2, . . . , td). Then by the strong law of large numbers, we have for

any fixed (t1, t2, . . . , td),

ξn(t1, t2, . . . , td)
a.s−→ ξ(t1, t2, . . . , td).

For complex numbers x1, x2, . . . , xn with n ≥ 2, the CR inequality says that for any r > 1

∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣
r

≤ nr−1
n∑
i=1

|xi|r. (A.2)

Using (A.2), we get

|ξn(t1, t2, . . . , td)|2 =

∣∣∣∣∣ 1

n

n∑
j=1

d∏
i=1

(f̂i(ti)− eı〈ti,Xji〉)

∣∣∣∣∣
2

≤ 1

n2
n2−1

n∑
j=1

d∏
i=1

∣∣∣f̂i(ti)− eı〈ti,Xji〉
∣∣∣2

=
1

n

n∑
j=1

d∏
i=1

4 = 4d.

For any δ > 0, define D(δ) = {(t1, t2, . . . , td) : δ ≤ |ti|pi ≤ 1/δ , i = 1, 2, . . . , d}. Notice that

d̂Cov2(X1, X2, . . . , Xd) =

∫
D(δ)

| ξn(t1, t2, . . . , td) |2 dw +

∫
Dc(δ)

| ξn(t1, t2, . . . , td) |2dw

= D
(1)
n,δ + D

(2)
n,δ (say),

where D(1)
n,δ ≤

∫
D(δ)

4d < ∞. Using the Dominated Convergence Theorem (DCT), we have as
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n→∞ ,

D
(1)
n,δ

a.s−→
∫
D(δ)

| ξ(t1, t2, .. , td) |2 dw = D
(1)
δ (say).

So, almost surely

lim
δ→0

lim
n→∞

D
(1)
n,δ = lim

δ→0
D

(1)
δ =

∫
| ξ(t1, t2, .. , td) |2 dw = dCov2(X1, X2, .. , Xd).

The proof will be complete if we can show almost surely

lim
δ→0

lim
n→∞

D
(2)
n,δ = 0.

To this end, write Dc(δ) =
⋃d
i=1(A

1
i ∪A2

i ), where A1
i = {|ti|pi < δ} and A2

i = {|ti|pi > 1
δ
} for

i = 1, 2, . . . , d. Then we have

D
(2)
n,δ =

∫
Dc(δ)

| ξn(t1, t2, . . . , td) |2 dw ≤
∑

i=1,2,...,d
k=1,2

∫
Ak

i

|ξn(t1, t2, . . . , td)|2dw.

Define uij = eı〈ti,Xji〉 − fi(ti) for 1 ≤ j ≤ n and 1 ≤ i ≤ d. Following the proof of Theorem 2 of

Székely et al. (2007), we have for i = 1, 2, . . . , d,

∫
Rpi

|uij|2

cpi |ti|
1+pi
pi

dti ≤ 2 ( |Xji|+ E|Xi| ), (A.3)∫
|ti|pi<δ

|uij|2

cpi |ti|
1+pi
pi

dti ≤ 2E[|Xji −Xi||Xji]G( |Xji −Xi|δ ), (A.4)∫
|ti|pi>1/δ

|uij|2

cpi |ti|
1+pi
pi

dti ≤ 4δ, (A.5)

where

G(y) =

∫
|z|<y

1− cos z1
|z|1+p

dz,
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which satisfies that G(y) ≤ cp and lim
y→0

G(y) = 0. Notice that

ξn(t1, t2, . . . , td) =
1

n

n∑
j=1

d∏
i=1

(
1

n

n∑
k=1

uik − uij

)
.

Some algebra yields that

ξn(t1, t2, . . . , td)

=

d∏
i=1

(
1

n

n∑
k=1

uik

)
− d

d∏
i=1

(
1

n

n∑
k=1

uik

)

+


(

1

n

n∑
k=1

u1ku
2
k

) ∏
i 6=1,2

(
1

n

n∑
k=1

uik

)
+

(
1

n

n∑
k=1

u1ku
3
k

) ∏
i 6=1,3

(
1

n

n∑
k=1

uik

)
+ · · ·


+


(

1

n

n∑
k=1

u1ku
2
ku

3
k

) ∏
i 6=1,2,3

(
1

n

n∑
k=1

uik

)
+

(
1

n

n∑
k=1

u1ku
2
ku

4
k

) ∏
i 6=1,2,4

(
1

n

n∑
k=1

uik

)
+ · · ·


+ (−1)d

(
1

n

n∑
k=1

u1ku
2
k · · ·udk

)
.

By the CR-inequality, we get

|ξn(t1, t2, . . . , td)|2

=C

[
d∏
i=1

(
1

n

n∑
k=1

|uik|2
)

+ d2
d∏
i=1

(
1

n

n∑
k=1

|uik|2
)

+


∣∣∣∣∣ 1n

n∑
k=1

u1ku
2
k

∣∣∣∣∣
2
 ∏

i 6=1,2

(
1

n

n∑
k=1

|uik|2
)

+

∣∣∣∣∣ 1n
n∑
k=1

u1ku
3
k

∣∣∣∣∣
2
 ∏

i 6=1,3

(
1

n

n∑
k=1

uik

)
+ · · ·


+


∣∣∣∣∣ 1n

n∑
k=1

u1ku
2
ku

3
k

∣∣∣∣∣
2
 ∏

i 6=1,2,3

(
1

n

n∑
k=1

|uik|2
)

+

∣∣∣∣∣ 1n
n∑
k=1

u1ku
2
ku

4
k

∣∣∣∣∣
2
 ∏

i 6=1,2,4

(
1

n

n∑
k=1

|uik|2
)

+ · · ·


+ (−1)d

∣∣∣∣∣ 1n
n∑
k=1

u1ku
2
k · · ·udk

∣∣∣∣∣
2
],
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for some positive constant C > 0. By the Cauchy-Schwarz inequality, we have for any 2 ≤ q ≤ d,

∣∣∣∣∣ 1n
n∑
k=1

u1k u
2
k · · ·u

q
k

∣∣∣∣∣
2

≤ 1

n

n∑
k=1

∏
i∈Sq1

|uik|2 .
1

n

n∑
k=1

∏
i∈Sq2

|uik|2, (A.6)

where Sq1 ∪ Sq2 = {1, 2, . . . , d}. By Assumption 4.3.2 and (A.3)-(A.5), we have

lim
δ→0

lim
n→∞

∫
|ti|pi<δ

|ξn(t1, t2, .. , td)|2 dw = 0 a.s,

lim
δ→0

lim
n→∞

∫
|ti|pi>1/δ

|ξn(t1, t2, .. , td)|2 dw = 0 a.s,

for every i ∈ {1, 2, . . . , d}. This implies that lim
δ→0

lim
n→∞

D
(2)
n,δ = 0 almost surely and thus completes

the proof. ♦

Proof of Proposition 2.3.2. Define the empirical process

Γn(t) =
√
n ξn(t1, t2, .., td) =

1√
n

n∑
j=1

d∏
i=1

(f̂i(ti)− eı〈ti,Xji〉).

Then nd̂cov2(X1, X2, . . . , Xd) = ‖Γn‖2 :=
∫

Γn(t1, t2, . . . , td)
2dw. Under the assumption of

independence, we have E(Γn(t)) = 0 and

Γn(t) Γn(t0) =
1

n

n∑
k,l=1

d∏
i=1

(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti0)− e−ı〈ti0,Xli〉)

=
1

n

{
n∑
k=1

d∏
i=1

(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti0)− e−ı〈ti0,Xki〉)

+
n∑
k 6=l

d∏
i=1

(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti0)− e−ı〈ti0,Xli〉)

}
,
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which implies that

E
[
Γn(t) Γn(t0)

]
=

1

n

{
n

d∏
i=1

E(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti0)− e−ı〈ti0,Xki〉)

+ n(n− 1)
d∏
i=1

E(f̂i(ti)− eı〈ti,Xki〉)(f̂i(−ti0)− e−ı〈ti0,Xli〉)
}

=
1

n

{
nA + n(n− 1)B

}
(say).

Direct calculation shows that

A =
d∏
i=1

E
{ 1

n2

n∑
a,b=1

eı〈ti,Xai〉−ı〈ti0,Xbi〉 − 1

n

n∑
b=1

eı〈ti,Xki〉−ı〈ti0,Xbi〉

− 1

n

n∑
a=1

e−ı〈ti0,Xki〉+ı〈ti,Xai〉 + eı〈ti−ti0,Xki〉
}

=
d∏
i=1

[ 1

n2

{
n fi(ti − ti0) + n(n− 1)fi(ti)fi(−ti0)

}
− 2

n

{
fi(ti − ti0) + (n− 1)fi(ti)fi(−ti0)

}
+ fi(ti − ti0)

]
=

(
n− 1

n

)d d∏
i=1

{
fi(ti − ti0) − fi(ti)fi(−ti0)

}
,

and

B =
d∏
i=1

E
[ 1

n2

n∑
a,b=1

eı〈ti,Xai〉−ı〈ti0,Xbi〉 −
n∑
b=1

eı〈ti,Xki〉−ı〈ti0,Xbi〉

− 1

n

n∑
a=1

e−ı〈ti0,Xli〉+ı〈ti,Xai〉 + eı〈ti,Xki〉−ı〈ti0,Xli〉
]

=
d∏
i=1

[ 1

n2

{
n fi(ti − ti0) + n(n− 1)fi(ti)fi(−ti0)

}
− 2

n

{
fi(ti − ti0) + (n− 1)fi(ti)fi(−ti0)

}
+ fi(ti)fi(−ti0)

]
=

(
− 1

n

)d d∏
i=1

{
fi(ti − ti0) − fi(ti)fi(−ti0)

}
.
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Hence we obtain

E
[
Γn(t)Γn(t0)

]
= cn

d∏
i=1

{
fi(ti − ti0)− fi(ti)fi(−ti0)

}
, (A.7)

where cn =
(
n−1
n

)d
+ (n − 1)

(
− 1
n

)d. To prove ‖Γn‖2
d−→ ‖Γ‖2 , we construct a sequence of

random variables {Qn(δ)} such that

1. Qn(δ)
d−→ Q(δ) as n→∞, for any fixed δ > 0;

2. lim sup
n→∞

E|Qn(δ)− ‖Γn‖2 | → 0 as δ → 0;

3. Q(δ)
d−→ ‖Γ‖2 as δ → 0.

Then ‖Γn‖2
d−→ ‖Γ‖2 follows from Theorem 8.6.2 of Resnick (1999).

We first show (1). Define

Qn(δ) =

∫
D(δ)

|Γn(t)|2 dw, Q(δ) =

∫
D(δ)

|Γ(t)|2 dw.

Given ε > 0, choose a partition {Dk}Nk=1 of D(δ) into N measurable sets with diameter at most ε.

Then

Qn(δ) =
N∑
k=1

∫
Dk

|Γn(t)|2 dw, Q(δ) =
N∑
k=1

∫
Dk

|Γ(t)|2 dw.

Define

Qε
n(δ) =

N∑
k=1

∫
Dk

|Γn(tk)|2 dw, Qε(δ) =
N∑
k=1

∫
Dk

|Γ(tk)|2 dw,

where {tk}Nk=1 are a set of distinct points such that tk ∈ Dk. In view of Theorem 8.6.2 of Resnick

(1999), it suffices to show that

i) lim sup
ε→0

lim sup
n→∞

E|Qε
n(δ)−Qn(δ) | = 0;

ii) lim sup
ε→0

E|Qε(δ)−Q(δ) | = 0;

iii) Qε
n(δ)

d−→ Qε(δ) as n→∞, for any fixed δ > 0.
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To this end, define βn(ε) = supt,t0 E
∣∣ |Γn(t)|2 − |Γn(t0)|2

∣∣ and β(ε) = supt,t0 E
∣∣ |Γ(t)|2 −

|Γ(t0)|2
∣∣, where the supremum is taken over all all t = (t1, .. , td) and t0 = (t10, .. , td0) such that

δ < |ti|, |ti0| < 1/δ for i = 1, 2, . . . , d, and
∑d

i=1 |ti − ti0|2pi < ε2. Since the function inside the

supremum is continuous in t and t0, and using the fact that a continuous function on a compact

support is uniformly continuous, it follows that lim
ε→0

β(ε) = 0 and lim
ε→0

βn(ε) = 0 for fixed δ > 0

and fixed n. Thus (i) and (ii) hold. To show (iii), it is enough to show



Γn(t1)

Γn(t2)

...

Γn(tN)


d−→



Γ(t1)

Γ(t2)

...

Γ(tN)


,

where (t1, . . . , tN) ∈ Rp1×Rp2×· · ·×Rpd is fixed. The rest follows from the Continuous Mapping

Theorem and the Cramer-Wold Device. Notice that Γn(t) = 1√
n

∑n
j=1

∏d
i=1

[ (
f̂i(ti) − fi(ti)

)
−(

eı〈ti,Xji〉 − fi(ti)
) ]

. By some algebra and the weak law of large number, we have



Γn(t1)

Γn(t2)

...

Γn(tN)


=

1√
n

n∑
j=1

Zj + op(1),

where Zj = (Zj1, . . . ,ZjN)′ with Zjk =
∏d

i=1

(
fi(t

k
i ) − eı〈t

k
i ,Xji〉

)
for 1 ≤ k ≤ N. By the

independence assumption, E[Xj] = 0 and for 1 ≤ l,m ≤ N ,

E[ZjlZjm] =
d∏
i=1

E
{
eı〈t

l
i,Xji〉 − fi(tli)

}{
e−ı〈t

m
i ,Xji〉 − fi(tmi )

}
= R(tl, tm).
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By the Central Limit Theorem (CLT) and Stutsky’s theorem, as n→∞,



Γn(t1)

Γn(t2)

...

Γn(tN)


d−→



Γ(t1)

Γ(t2)

...

Γ(tN)


,

which completes the proof of (1).

To prove (2), define ui = eı〈ti,Xi〉 − fi(ti). Then |ui|2 = 1 + |fi(ti)|2 − eı〈ti,Xi〉 fi(ti) −

e−ı〈ti,Xi〉 fi(ti), and hence

E|ui|2 = 1− |fi(ti)|2. (A.8)

Following the similar steps as in the proof of Theorem 5 in Székely et al.(2007) and using the

Fubini’s Theorem,

E |Qn(δ)− ‖Γn(t)‖2 | = E
∣∣ ∫

D(δ)

|Γn(t)|2 dw −
∫
|Γn(t)|2 dw

∣∣
≤
∫
|t1|p1<δ

E|Γn(t)|2 dw +

∫
|t1|p1>1/δ

E|Γn(t)|2 dw

+ · · · +

∫
|td|pd<δ

E |Γn(t)|2 dw +

∫
|td|pd>1/δ

E |Γn(t)|2 dw.

(A.9)

Using (A.7) and (A.8), we have E |Γn(t)|2 = cn
∏d

i=1 E|ui|2. Along with the independence as-

sumption, we have

∫
|t1|p1<δ

E |Γn(t)|2 dw = cn

∫
|t1|p1<δ

E|u1|2

cp1 |t1|
1+p1
p1

dt1

d∏
i=2

∫
E|ui|2

cpi |ti|
1+pi
pi

dti

≤ 2cnE|X1 −X
′

1|p1 G(|X1 −X
′

1|p1δ)
d∏
i=2

4E|Xi|pi .

Therefore

lim
δ→0

lim
n→∞

∫
|t1|p1<δ

E |Γn(t)|2 dw = 0 .
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Similarly

∫
|t1|p1>1/δ

E |Γn(t)|2 dw = cn

∫
|t1|p1>1/δ

E|u1|2

cp1 |t1|
1+p1
p1

dt1 .

d∏
i=2

∫
E|ui|2

cpi |ti|
1+pi
pi

dti

≤ 4δcn

d∏
i=2

4E|Xi|pi .

Therefore

lim
δ→0

lim
n→∞

∫
|t1|p1>1/δ

E |Γn(t)|2 dw = 0 .

Applying similar argument to the remaining summands in (A.9), we get

lim
δ→0

lim
n→∞

E|Qn(δ)− ‖Γn(t)‖2 | = 0 .

To prove (3), we note that

Γ(t)1
(
t ∈ D(δ)

) a.s−→ Γ(t)1
(
t ∈ Rp1 × Rp2 × · · · × Rpd

)
,

as δ → 0. Again by the Fubini’s Theorem and equation (2.5) of Székely et al. (2007),

E‖Γ‖2 =

∫ d∏
i=1

(
1− |fi(ti)|2

)
dw =

d∏
i=1

∫ (
1− |fi(ti)|2

)
cpi |ti|

1+pi
pi

dti

=
d∏
i=1

E
∫

1− cos〈ti, Xi −X
′
i〉

cpi |ti|
1+pi
pi

dti

=
d∏
i=1

E |Xi −X
′

i |pi < ∞ .

Hence ‖Γ‖2 < ∞ almost surely. By DCT, Q(δ)
a.s−→ ‖Γ‖2 as δ → 0, which completes the proof.

♦
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Lemma A.0.1. Ũi(k, l) can be composed as

Ũi(k, l) =
n− 3

(n− 1)(n− 2)

∑
u/∈{k,l}

Ui(Xui, Xli) +
n− 3

(n− 1)(n− 2)

∑
v/∈{k,l}

Ui(Xki, Xvi)

− n− 3

n− 1
Ui(Xki, Xli) +

2

(n− 1)(n− 2)

∑
u,v /∈{k,l},u<v

Ui(Xui, Xvi),

where the four terms are uncorrelated with each other.

Proof of Lemma A.0.1. The result follows from direct calculation. ♦

Proposition A.0.2. E[d̃Cov
2
(Xi, Xj)] = dCov2(Xi, Xj).

Proof of Proposition A.0.2. Using Lemma A.0.1 and the fact that dCov2(Xi, Xj) =

E[Ui(Xki, Xli)Uj(Xkj, Xlj)] for k 6= l, we have for k 6= l,

E[Ui(Xki, Xli)Uj(Xkj, Xlj)]

=

{
(n− 3)2

(n− 1)2
+

2(n− 3)2

(n− 1)2(n− 2)
+

2(n− 3)

(n− 1)2(n− 2)

}
E[Ui(Xki, Xli)Uj(Xkj, Xlj)]

=
n− 3

n− 1
dCov2(Xi, Xj).

It thus implies that

E[d̃Cov2(Xi, Xj)] =
n− 1

n− 3
E[Ui(Xki, Xli;α)Uj(Xkj, Xlj)] = dCov2(Xi, Xj),

which completes the proof. ♦

Proof of Proposition 2.4.1. Denote by X = {X1, . . . ,Xn}. By independence of the bootstrap

samples, we have E [Γ∗n(t)|X] = 0. Proceeding in the similar way as in the proof of PROPOSITION

2.3.2, it can be shown that

E
[
Γ∗n(t)Γ∗n(t0) | X

]
= cn

d∏
i=1

{
f̂i(ti − ti0)− f̂i(ti)f̂i(−ti0)

}
, (A.10)
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where cn =
(
n−1
n

)d
+ (n− 1)

(
− 1
n

)d.
To prove ‖Γ∗n‖2

d−→ ‖Γ‖2 almost surely, we construct a sequence of random variables {Q∗n(δ)}

such that

1. Q∗n(δ)
d−→ Q(δ) almost surely as n→∞, for any fixed δ > 0;

2. lim sup
n→∞

E
[
Q∗n(δ)− ‖Γ∗n‖2 | X

]
→ 0 almost surely as δ → 0;

3. Q(δ)
d−→ ‖Γ‖2 as δ → 0.

Then ‖Γ∗n‖2
d−→ ‖Γ‖2 almost surely follows from Theorem 8.6.2 of Resnick (1999).

We first show (1). Define

Q∗n(δ) =

∫
D(δ)

|Γ∗n(t)|2 dw, Q(δ) =

∫
D(δ)

|Γ(t)|2 dw.

Given ε > 0, choose a partition {Dk}Nk=1 of D(δ) into N measurable sets with diameter at most ε.

Then

Q∗n(δ) =
N∑
k=1

∫
Dk

|Γ∗n(t)|2 dw, Q(δ) =
N∑
k=1

∫
Dk

|Γ(t)|2 dw.

Define

Qε∗
n (δ) =

N∑
k=1

∫
Dk

|Γ∗n(tk)|2 dw, Qε(δ) =
N∑
k=1

∫
Dk

|Γ(tk)|2 dw,

where {tk}Nk=1 are a set of distinct points such that tk ∈ Dk. In view of Theorem 8.6.2 of Resnick

(1999), it suffices to show that

i) lim sup
ε→0

lim sup
n→∞

E
[
|Qε∗

n (δ)−Q∗n(δ) |
∣∣X] = 0 almost surely ;

ii) lim sup
ε→0

E [ |Qε(δ)−Q(δ) | ] = 0;

iii) Qε∗
n (δ)

d−→ Qε(δ) almost surely as n→∞, for any fixed δ > 0.
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To this end, define

β∗n(ε) = sup
t,t0

E
[ ∣∣ |Γ∗n(t)|2 − |Γ∗n(t0)|2

∣∣X ] ,
and,

β(ε) = sup
t,t0

E
[ ∣∣ |Γ(t)|2 − |Γ(t0)|2

∣∣ ] ,
where the supremum is taken over all all t = (t1, .. , td) and t0 = (t10, .. , td0) such that δ <

|ti|, |ti0| < 1/δ for i = 1, 2, . . . , d, and
∑d

i=1 |ti− ti0|2pi < ε2. Then for fixed δ > 0, lim
ε→0

β(ε) = 0

and lim
ε→0

β∗n(ε) = 0 almost surely for fixed n. Thus (i) and (ii) hold. To show (iii), it is enough to

show 

Γ∗n(t1)

Γ∗n(t2)

...

Γ∗n(tN)


d−→



Γ(t1)

Γ(t2)

...

Γ(tN)


almost surely,

where (t1, . . . , tN) ∈ Rp1×Rp2×· · ·×Rpd is fixed. The rest follows from the Continuous Mapping

Theorem and the Cramer-Wold Device. Notice that Γ∗n(t) = 1√
n

∑n
j=1

∏d
i=1

[ (
f̂ ∗i (ti)− f̂i(ti)

)
−(

eı〈ti,X
∗
ji〉 − f̂i(ti)

) ]
. Using Markov’s inequality and Triangle inequality, observe that

∞∑
n=1

P

(∣∣∣∣∣ 1n
n∑
k=1

(eı〈ti,X
∗
ki〉 − f̂i(ti)

∣∣∣∣∣ > ε

)

=
∞∑
n=1

P

(∣∣∣∣∣
n∑
k=1

Yki

∣∣∣∣∣ > nε

)
=

∞∑
n=1

P

∣∣∣∣∣
n∑
k=1

Yki

∣∣∣∣∣
2

> n2ε2


=

∞∑
n=1

P

(
n∑

k,l=1

YkiYli > n2ε2

)
≤

∞∑
n=1

1

(nε)4
E

[
(

n∑
k,l=1

YkiYli)
2
∣∣X]

=
∞∑
n=1

1

(nε)4
E


 n∑

k1,l1,
k2,l2=1

Yk1iYl1i Yk2iYl2i

 ∣∣X


≤
∞∑
n=1

1

(nε)4
. Cn2 < ∞,
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where C > 0, Yk = eı〈ti,X
∗
ki〉 − f̂i(ti), and |Yk| ≤ 2 for any 1 ≤ k ≤ n.

By Borel-Cantelli Lemma, as n → ∞, f̂ ∗i (ti) − f̂i(ti)
a.s−→ 0 almost surely. By some algebra

and the weak law of large number, we have



Γ∗n(t1)

Γ∗n(t2)

...

Γ∗n(tN)


=

1√
n

n∑
j=1

Zj + U ,

where Zj = (Zj1, . . . ,ZjN)′ with Zjk =
∏d

i=1

(
f̂i(t

k
i )− eı〈t

k
i ,X
∗
ji〉
)

for 1 ≤ k ≤ N , and, U a.s−→ 0,

almost surely. By the independence of Bootstrap samples, E[Zj|X] = 0 and for 1 ≤ l,m ≤ N ,

E[ZjlZjm] =
d∏
i=1

E
[
(eı〈t

l
i,X
∗
ji〉 − f̂i(tli)) (e−ı〈t

m
i ,X

∗
ji〉 − f̂i(−tmi ))| X

]
=

d∏
i=1

{
f̂i(t

l
i − tmi )− f̂i(tli)f̂i(−tmi )

}
.

Let Rn and R be N ×N matrices with the (l,m)th element being

Rn(l,m) =
d∏
i=1

{
f̂i(t

l
i − tmi )− f̂i(tli)f̂i(−tmi )

}
,

and,

R(l,m) =
d∏
i=1

{
fi(t

l
i − tmi )− fi(tli)fi(−tmi )

}
.
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By Multivariate CLT,

R
− 1

2
n



Γ∗n(t1)

Γ∗n(t2)

...

Γ∗n(tN)


d−→ N(0, IN) almost surely ,

which, along with the fact Rn
a.s−→ R and Slutsky’s Theorem, implies



Γ∗n(t1)

Γ∗n(t2)

...

Γ∗n(tN)


d−→



Γ(t1)

Γ(t2)

...

Γ(tN)


almost surely ,

and thus completes the proof of (1).

To prove (2), define u∗i = eı〈ti,X
∗
i 〉 − f̂i

∗
(ti). Then |ui|2 = 1 + |f̂i(ti)|2 − eı〈ti,X

∗
i 〉 f̂i(ti) −

e−ı〈ti,X
∗
i 〉 f̂i(ti), and hence

E
[
|u∗i |2 |X

]
= 1− |f̂i(ti)|2. (A.11)

Following the similar steps as in the proof of Theorem 5 in Székely et al.(2007) and using the

Fubini’s Theorem,

E
[
|Q∗n(δ)− ‖Γ∗n(t)‖2|

∣∣X]
= E

[∣∣ ∫
D(δ)

|Γ∗n(t)|2 dw −
∫
|Γ∗n(t)|2 dw|

∣∣X]
≤
∫
|t1|p1<δ

E
[
|Γ∗n(t)|2

∣∣X] dw +

∫
|t1|p1>1/δ

E
[
|Γ∗n(t)|2

∣∣X] dw
+ · · · +

∫
|td|pd<δ

E
[
|Γ∗n(t)|2

∣∣X] dw +

∫
|td|pd>1/δ

E
[
|Γ∗n(t)|2

∣∣X] dw.
(A.12)

Using (A.10) and (A.11), we have E
[
|Γ∗n(t)|2

∣∣X] = cn
∏d

i=1 E
[
|u∗i |2

∣∣X] . Along with the
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independence assumption, we have

∫
|t1|p1<δ

E
[
|Γ∗n(t)|2

∣∣X] dw
= cn

∫
|t1|p1<δ

E
[
|u∗1|2

∣∣X]
cp1 |t1|

1+p1
p1

dt1

d∏
i=2

∫ E
[
|u∗i |2

∣∣X]
cpi |ti|

1+pi
pi

dti

≤ 2 cn E
[
|X∗1 −X∗

′

1 |p1 G(|X∗1 −X∗
′

1 |p1δ) |X
] d∏
i=2

4E
[
|X∗i |pi |X

]
= 2 cn

1

n2

n∑
j,k=1

|Xj1 −Xk1|p1 G(|Xj1 −Xk1|p1δ)
d∏
i=2

4
1

n

n∑
j=1

|Xji|pi

a.s→ 2E
[
|X1 −X

′

1|p1 G(|X1 −X
′

1|p1δ)
] d∏
i=2

4E
[
|Xi|pi

]
as n→∞.

Therefore

lim
δ→0

lim
n→∞

∫
|t1|p1<δ

E
[
|Γ∗n(t)|2

∣∣X] dw = 0 almost surely.

Similarly

∫
|t1|p1>1/δ

E
[
|Γ∗n(t)|2

∣∣X] dw = cn

∫
|t1|p1>1/δ

E
[
|u∗1|2

∣∣X]
cp1 |t1|

1+p1
p1

dt1 .
d∏
i=2

∫ E
[
|u∗i |2

∣∣X]
cpi |ti|

1+pi
pi

dti

≤ 4δcn

d∏
i=2

4E
[
|X∗i |pi |X

]
.

Therefore

lim
δ→0

lim
n→∞

∫
|t1|p1>1/δ

E
[
|Γ∗n(t)|2

∣∣X] dw = 0 almost surely.

Applying similar argument to the remaining summands in (A.12), we get

lim
δ→0

lim
n→∞

E
[
|Q∗n(δ)− ‖Γ∗n(t)‖2 |

∣∣X] = 0 almost surely.

The proof of part (3) is exactly the same as its counterpart in the proof of Proposition 2.3.2, which

completes the proof.

♦
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Let Gn be the set of all functions from {1, 2, . . . , n} to {1, 2, . . . , n}. Define a map g: Rn×d →

Rn×d as the following

g(X1, . . . ,Xn) =



Xg1(1),1 Xg2(1),2 . . . Xgd(1),d

Xg1(2),1 Xg2(2),2 . . . Xgd(2),d

...
... . . . ...

Xg1(n),1 Xg2(n),2 . . . Xgd(n),d



where gi ∈ Gn for 1 ≤ i ≤ d. With some abuse of notation, we denote by ̂JdCov2(g(X1, . . . ,Xn))

the sample (squared) JdCov computed based on the sample g(X1, . . . ,Xn). Conditional on the

sample, the resampling distribution function F̂n : [0,+∞) → [0, 1] of the bootstrap statistic is

defined for all t ∈ R as

F̂n(X1, . . . ,Xn)(t) :=
1

nnd

∑
g∈Gd

n

1{n ̂JdCov2(g(X1,...,Xn))≤ t }
.

For α ∈ (0, 1), we define the α-level bootstrap-assisted test for testing H0 against HA as

φn(X1, . . . ,Xn) := 1{n ̂JdCov2(ψ(X1, .. ,Xn)) > (F̂n(X1,...,Xn))
−1

(1−α) } . (A.13)

Proof of Proposition 2.4.2. The proof is in similar lines of the proof of Theorem 3.7 in Pfister et

al. (2018). There exists a set A0 with P (A0) = 1 such that for all ω ∈ A0 and ∀ t ∈ R,

lim
n→∞

F̂n(X1(ω), .. ,Xn(ω)) (t) = lim
n→∞

1

nnd

∑
g∈Gd

n

1
{n ̂JdCov2

(
g(X1(ω), .. ,Xn(ω))

)
≤ t }

= lim
n→∞

E
(
1{n ̂JdCov2(g(X1(ω), .. ,Xn(ω)) )≤ t }

)
= lim

n→∞
P
(
n ̂JdCov2

(
g
(
X1(ω), .. ,Xn(ω))

)
≤ t

)
= G(t) ,
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where G(·) is the distribution function of
+∞∑
j=1

λ
′

jZ
2
j .

Since G is continuous, for all ω ∈ A0 and ∀ t ∈ R, we have

lim
n→∞

(
F̂n(X1(ω), .. ,Xn(ω))

)−1
(t) = G−1(t) .

In particular, for all ω ∈ A0, we have

lim
n→∞

(
F̂n(X1(ω), .. ,Xn(ω))

)−1
(1− α) = G−1(1− α) . (A.14)

When H0 is true, using Proposition 2.3.2, equation (A.13) and Corollary 11.2.3 in Lehmann and

Romano (2005), we have

lim sup
n→∞

P (φn(X1, . . . ,Xn) = 1 )

= lim sup
n→∞

P

(
n d̂cov2(X1, .. ,Xn) >

(
F̂n(X1, .. ,Xn)

)−1
(1− α)

)
= 1− lim inf

n→∞
P

(
n d̂cov2(X1, .. ,Xn) ≤

(
F̂n(X1, .. ,Xn)

)−1
(1− α)

)
=1−G

(
G−1(1− α)

)
= 1− (1− α) = α .

This completes the proof of the proposition. ♦

Proof of Proposition 2.4.3. The proof is in similar lines of the proof of Theorem 3.8 in Pfister et

al. (2018). In the proof of Proposition 2.4.2, we showed that there exists a set A0 with P (A0) = 1

such that for all ω ∈ A0,

lim
n→∞

(
F̂n(X1(ω), .. ,Xn(ω))

)−1
(1− α) = G−1(1− α) .
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Define the set

A1 = {ω : ∀ t ∈ R, lim
n→∞

1{n d̂cov2(X1(ω), .. ,Xn(ω))≤t }
= 0 } . (A.15)

Clearly, P (A1) = 1 and hence P (A0 ∩ A1) = 1. Fix ω ∈ A0 ∩ A1. Then by (A.13) and (A.14),

there exists a constant t∗ ∈ R such that ∀n ∈ N,

lim
n→∞

(
F̂n(X1(ω), .. ,Xn(ω))

)−1
(1− α) ≤ t∗ .

Therefore,

lim
n→∞

1{n d̂cov2(X1(ω), .. ,Xn(ω)) ≤ (F̂n(X1(ω), .. ,Xn(ω)) )
−1

(1−α) }

≤ lim
n→∞

1{n d̂cov2(X1(ω), .. ,Xn(ω))≤ t∗ }
= 0 ,

i.e., 1{n d̂cov2(X1, .. ,Xn) ≤ (F̂n(X1, .. ,Xn) )
−1

(1−α) }
a.s−→ 0 as n→∞. It follows by dominated conver-

gence theorem that

lim
n→∞

P

(
n d̂cov2(X1, .. ,Xn) ≤

(
F̂n(X1, .. ,Xn)

)−1
(1− α)

)
= lim

n→∞
E

(
1{n d̂cov2(X1, .. ,Xn) ≤ (F̂n(X1, .. ,Xn) )

−1
(1−α) }

)
= 0 ,

which completes the proof of the proposition. ♦

137



Table A.1: Empirical size and power for the bootstrap-assisted joint independence tests (based on
the U-statistics) for c = 1. The results are obtained based on 1000 replications and the number of
bootstrap resamples is taken to be 500.

˜JdCov2 ˜JdCov2S ˜JdCov2R dHSIC TMT

n d̃ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 2.5.1

(1) 50 5 0.097 0.049 0.110 0.059 0.099 0.045 0.102 0.047 0.099 0.042
(1) 50 10 0.100 0.050 0.108 0.053 0.101 0.053 0.091 0.042 0.068 0.034
(2) 50 5 0.103 0.062 0.096 0.052 0.099 0.045 0.104 0.048 0.115 0.061
(2) 50 10 0.119 0.062 0.121 0.056 0.101 0.053 0.105 0.041 0.106 0.056
(3) 50 5 0.057 0.022 0.112 0.047 0.099 0.045 0.103 0.047 0.027 0.011
(3) 50 10 0.050 0.017 0.100 0.051 0.101 0.053 0.091 0.040 0.013 0.006
(1) 100 5 0.101 0.05 0.098 0.057 0.091 0.042 0.088 0.038 0.098 0.052
(1) 100 10 0.105 0.045 0.085 0.043 0.102 0.053 0.091 0.038 0.098 0.059
(2) 100 5 0.094 0.047 0.093 0.049 0.091 0.042 0.102 0.042 0.094 0.054
(2) 100 10 0.115 0.063 0.102 0.06 0.102 0.053 0.104 0.049 0.106 0.06
(3) 100 5 0.08 0.034 0.115 0.058 0.091 0.042 0.095 0.038 0.043 0.019
(3) 100 10 0.066 0.025 0.104 0.052 0.102 0.053 0.111 0.047 0.021 0.005

Ex 2.5.2

(1) 50 5 0.606 0.474 0.510 0.381 0.626 0.513 0.229 0.142 0.607 0.490
(1) 50 10 0.495 0.359 0.306 0.192 0.705 0.596 0.145 0.070 0.669 0.545
(2) 50 5 0.813 0.720 0.732 0.632 0.835 0.751 0.342 0.219 0.805 0.706
(2) 50 10 0.797 0.668 0.466 0.339 0.941 0.904 0.201 0.113 0.906 0.846
(3) 50 5 0.877 0.817 0.815 0.764 0.886 0.840 0.374 0.242 0.849 0.787
(3) 50 10 0.848 0.749 0.521 0.396 0.960 0.917 0.174 0.096 0.942 0.897
(1) 100 5 0.903 0.854 0.834 0.767 0.93 0.881 0.405 0.278 0.913 0.863
(1) 100 10 0.853 0.756 0.468 0.337 0.977 0.954 0.203 0.114 0.97 0.936
(2) 100 5 0.989 0.981 0.968 0.946 0.99 0.983 0.618 0.491 0.987 0.975
(2) 100 10 0.998 0.988 0.79 0.657 1 1 0.36 0.215 1 0.999
(3) 100 5 0.998 0.994 0.988 0.98 0.997 0.991 0.649 0.518 0.995 0.991
(3) 100 10 0.998 0.991 0.816 0.721 1 1 0.307 0.189 1 0.999

Ex 2.5.3

(1) 50 3 0.998 0.986 1.000 1.000 0.624 0.365 0.898 0.794 0.221 0.106
(2) 50 3 1 1 1 1 1 1 1 1 1 1
(1) 100 3 1 1 1 1 1 0.999 1 1 0.622 0.368
(2) 100 3 1 1 1 1 1 1 1 1 1 1

Ex 2.5.4

(1) 100 5 0.339 0.195 0.523 0.379 0.122 0.07 0.219 0.114 0.073 0.038
(1) 100 10 0.105 0.027 0.248 0.147 0.049 0.019 0.117 0.043 0.025 0.008
(2) 100 5 0.369 0.235 0.466 0.362 0.162 0.09 0.406 0.25 0.241 0.161
(2) 100 10 0.097 0.04 0.218 0.13 0.06 0.021 0.164 0.077 0.046 0.022
(1) 200 5 0.813 0.676 0.929 0.865 0.238 0.128 0.378 0.224 0.085 0.044
(1) 200 10 0.262 0.140 0.433 0.305 0.093 0.045 0.137 0.061 0.047 0.023
(2) 200 5 0.773 0.662 0.778 0.689 0.398 0.263 0.797 0.665 0.581 0.505
(2) 200 10 0.290 0.171 0.384 0.296 0.136 0.065 0.300 0.173 0.141 0.077

Note: In Examples 2.5.1-2.5.3, d̃ denotes the number of random variables d. In Example 2.5.4, d̃ stands for p.
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Table A.2: Empirical size and power for the bootstrap-assisted joint independence tests (based on
the U-statistics) for c = 2 and 0.5. The results are obtained based on 1000 replications and the
number of bootstrap resamples is taken to be 500.

c = 2 c = 0.5

˜JdCov2 ˜JdCov2S
˜JdCov2R ˜JdCov2 ˜JdCov2S

˜JdCov2R
n d̃ 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

Ex 2.5.1

(1) 50 5 0.097 0.05 0.099 0.052 0.094 0.045 0.102 0.05 0.115 0.061 0.099 0.054
(1) 50 10 0.103 0.049 0.112 0.056 0.097 0.048 0.102 0.051 0.116 0.067 0.107 0.051
(2) 50 5 0.106 0.057 0.102 0.058 0.094 0.045 0.113 0.053 0.110 0.058 0.099 0.054
(2) 50 10 0.107 0.051 0.107 0.06 0.097 0.048 0.125 0.074 0.120 0.071 0.107 0.051
(3) 50 5 0.063 0.017 0.101 0.048 0.094 0.045 0.058 0.019 0.105 0.052 0.099 0.054
(3) 50 10 0.056 0.022 0.100 0.053 0.097 0.048 0.026 0.009 0.096 0.049 0.107 0.051
(1) 100 5 0.087 0.043 0.098 0.049 0.085 0.046 0.097 0.059 0.107 0.066 0.098 0.042
(1) 100 10 0.104 0.049 0.107 0.050 0.098 0.052 0.087 0.040 0.117 0.056 0.104 0.053
(2) 100 5 0.088 0.046 0.091 0.039 0.085 0.046 0.104 0.059 0.108 0.057 0.098 0.042
(2) 100 10 0.099 0.060 0.105 0.065 0.098 0.052 0.101 0.060 0.101 0.054 0.104 0.053
(3) 100 5 0.080 0.034 0.113 0.057 0.085 0.046 0.086 0.034 0.120 0.063 0.098 0.042
(3) 100 10 0.077 0.029 0.117 0.053 0.098 0.052 0.044 0.019 0.100 0.055 0.104 0.053

Ex 2.5.2

(1) 50 5 0.644 0.526 0.629 0.504 0.630 0.517 0.434 0.323 0.291 0.196 0.610 0.499
(1) 50 10 0.690 0.580 0.603 0.473 0.718 0.610 0.220 0.125 0.163 0.105 0.615 0.498
(2) 50 5 0.857 0.777 0.836 0.750 0.837 0.760 0.641 0.519 0.439 0.318 0.816 0.734
(2) 50 10 0.944 0.887 0.872 0.798 0.953 0.914 0.313 0.212 0.221 0.165 0.887 0.811
(3) 50 5 0.903 0.851 0.889 0.835 0.892 0.846 0.773 0.692 0.596 0.510 0.876 0.821
(3) 50 10 0.957 0.918 0.912 0.842 0.967 0.929 0.370 0.254 0.266 0.198 0.915 0.868
(1) 100 5 0.935 0.890 0.912 0.877 0.932 0.886 0.747 0.637 0.453 0.346 0.916 0.867
(1) 100 10 0.979 0.943 0.927 0.860 0.983 0.963 0.308 0.194 0.188 0.129 0.949 0.890
(2) 100 5 0.994 0.987 0.991 0.986 0.991 0.983 0.938 0.897 0.705 0.605 0.988 0.981
(2) 100 10 1 1 1 0.999 1 1 0.476 0.352 0.274 0.210 1 1
(3) 100 5 0.998 0.997 0.998 0.994 0.997 0.991 0.980 0.962 0.872 0.817 0.997 0.991
(3) 100 10 1 1 1 0.999 1 1 0.559 0.444 0.336 0.274 1 0.998

Ex 2.5.3

(1) 50 3 0.797 0.567 0.978 0.893 0.267 0.155 1 1 1 1 1 0.984
(2) 50 3 1 1 1 1 0.959 0.593 1 1 1 1 1 1
(1) 100 3 1 0.999 1 1 0.704 0.458 1 1 1 1 1 1
(2) 100 3 1 1 1 1 1 1 1 1 1 1 1 1

Ex 2.5.4

(1) 100 5 0.198 0.087 0.295 0.195 0.109 0.047 0.605 0.413 0.768 0.638 0.178 0.096
(1) 100 10 0.074 0.018 0.171 0.092 0.045 0.017 0.149 0.046 0.357 0.221 0.050 0.020
(2) 100 5 0.342 0.221 0.444 0.315 0.180 0.095 0.438 0.338 0.496 0.419 0.267 0.143
(2) 100 10 0.083 0.034 0.179 0.105 0.055 0.016 0.134 0.056 0.266 0.176 0.066 0.027
(1) 200 5 0.435 0.293 0.619 0.462 0.162 0.083 0.981 0.951 0.995 0.987 0.438 0.281
(1) 200 10 0.146 0.063 0.243 0.146 0.077 0.032 0.465 0.308 0.664 0.528 0.132 0.057
(2) 200 5 0.698 0.571 0.781 0.669 0.338 0.212 0.715 0.623 0.688 0.611 0.534 0.400
(2) 200 10 0.214 0.129 0.316 0.213 0.120 0.052 0.349 0.241 0.442 0.352 0.169 0.082

Note: In Examples 2.5.1-2.5.3, d̃ denotes the number of random variables d. In Example 2.5.4, d̃ stands for p.
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Table A.3: Empirical size and power for the bootstrap-assisted joint independence tests based on
the V-statistic type estimators, with c = 1. The results are obtained based on 1000 replications and
the number of bootstrap resamples is taken to be 500.

̂JdCov2 ̂JdCov2S ̂JdCov2R
n d̃ 10% 5% 10% 5% 10% 5%

Ex 2.5.1

(1) 50 5 0.093 0.033 0.269 0.131 0.103 0.052
(1) 50 10 0.130 0.067 0.257 0.139 0.110 0.063
(2) 50 5 0.142 0.081 0.106 0.061 0.103 0.052
(2) 50 10 0.452 0.130 0.077 0.020 0.110 0.063
(3) 50 5 0.118 0.067 0.200 0.118 0.103 0.052
(3) 50 10 0.124 0.069 0.195 0.111 0.110 0.063
(1) 100 5 0.068 0.024 0.204 0.113 0.090 0.044
(1) 100 10 0.086 0.042 0.184 0.092 0.107 0.058
(2) 100 5 0.121 0.061 0.102 0.053 0.090 0.044
(2) 100 10 0.222 0.050 0.056 0.013 0.107 0.058
(3) 100 5 0.128 0.066 0.191 0.116 0.090 0.044
(3) 100 10 0.114 0.061 0.168 0.102 0.107 0.058

Ex 2.5.2

(1) 50 5 0.485 0.299 0.649 0.450 0.637 0.528
(1) 50 10 0.284 0.161 0.428 0.271 0.727 0.627
(2) 50 5 0.746 0.571 0.806 0.659 0.846 0.768
(2) 50 10 0.393 0.250 0.544 0.371 0.955 0.911
(3) 50 5 0.822 0.725 0.877 0.788 0.895 0.848
(3) 50 10 0.479 0.325 0.637 0.459 0.965 0.938
(1) 100 5 0.850 0.717 0.830 0.693 0.932 0.886
(1) 100 10 0.298 0.168 0.428 0.276 0.980 0.955
(2) 100 5 0.985 0.947 0.974 0.922 0.992 0.985
(2) 100 10 0.500 0.328 0.595 0.436 1.000 1.000
(3) 100 5 0.995 0.983 0.989 0.977 0.998 0.993
(3) 100 10 0.613 0.441 0.700 0.551 1.000 1.000

Ex 2.5.3

(1) 50 3 0.985 0.928 0.999 0.997 0.647 0.377
(2) 50 3 1 1 1 1 1 1
(1) 100 3 1 1 1 1 1 0.999
(2) 100 3 1 1 1 1 1 1

Note: d̃ denotes the number of random variables d.
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Table A.4: Empirical size and power for the bootstrap-assisted joint independence tests (based
on the U-statistics) with c chosen according to the heuristic idea discussed in Remark 2.2.3. The
results are obtained based on 1000 replications and the number of bootstrap resamples is taken to
be 500.

c ˜JdCov2 ˜JdCov2S ˜JdCov2R
n d̃ 10% 5% 10% 5% 10% 5% 10% 5%

Ex 2.5.1

(1) 50 5 1.646 1.724 0.103 0.053 0.107 0.055 0.107 0.053
(1) 50 10 1.657 1.732 0.101 0.049 0.106 0.056 0.095 0.052
(2) 50 5 0.440 0.533 0.116 0.055 0.114 0.058 0.110 0.052
(2) 50 10 1.519 1.636 0.099 0.052 0.087 0.045 0.094 0.050
(3) 50 5 0.438 0.527 0.050 0.020 0.113 0.048 0.110 0.052
(3) 50 10 0.438 0.527 0.027 0.011 0.094 0.051 0.107 0.048
(1) 100 5 1.657 1.731 0.102 0.047 0.105 0.054 0.089 0.046
(1) 100 10 1.656 1.731 0.108 0.049 0.101 0.046 0.101 0.060
(2) 100 5 0.438 0.527 0.112 0.063 0.109 0.058 0.098 0.044
(2) 100 10 0.484 0.620 0.104 0.064 0.104 0.048 0.116 0.066
(3) 100 5 0.438 0.527 0.082 0.039 0.116 0.070 0.098 0.044
(3) 100 10 0.438 0.527 0.051 0.020 0.100 0.051 0.107 0.058

Ex 2.5.2

(1) 50 5 1.646 1.724 0.637 0.517 0.603 0.484 0.630 0.502
(1) 50 10 1.657 1.732 0.651 0.517 0.529 0.403 0.718 0.600
(2) 50 5 1.646 1.724 0.842 0.761 0.815 0.728 0.844 0.760
(2) 50 10 1.657 1.732 0.906 0.834 0.801 0.706 0.948 0.909
(3) 50 5 1.646 1.724 0.901 0.844 0.882 0.819 0.889 0.845
(3) 50 10 1.657 1.732 0.928 0.871 0.843 0.766 0.957 0.919
(1) 100 5 1.657 1.731 0.923 0.884 0.891 0.845 0.929 0.883
(1) 100 10 1.656 1.731 0.951 0.905 0.867 0.778 0.982 0.953
(2) 100 5 1.657 1.731 0.990 0.986 0.985 0.977 0.992 0.985
(2) 100 10 1.656 1.731 0.986 0.982 0.976 0.962 1.000 1.000
(3) 100 5 1.657 1.731 0.998 0.996 0.996 0.990 0.996 0.992
(3) 100 10 1.656 1.731 0.991 0.984 0.974 0.965 1.000 0.999

Ex 2.5.3

(1) 50 3 0.554 0.729 0.984 0.962 0.998 0.994 0.899 0.843
(2) 50 3 0.438 0.527 1.000 1.000 1.000 1.000 1.000 1.000
(1) 100 3 .439 0.530 1.000 1.000 1.000 1.000 1.000 1.000
(2) 100 3 0.438 0.527 1.000 1.000 1.000 1.000 1.000 1.000

Ex 2.5.4

(1) 100 5 1.427 1.545 0.300 0.166 0.417 0.314 0.131 0.064
(1) 100 10 1.589 1.680 0.090 0.023 0.204 0.111 0.050 0.018
(2) 100 5 0.537 0.659 0.398 0.293 0.468 0.375 0.233 0.129
(2) 100 10 1.040 1.198 0.106 0.040 0.212 0.132 0.058 0.018
(1) 200 5 1.177 1.350 0.681 0.568 0.804 0.720 0.250 0.153
(1) 200 10 1.503 1.609 0.221 0.117 0.340 0.234 0.086 0.040
(2) 200 5 0.440 0.532 0.709 0.621 0.681 0.603 0.539 0.392
(2) 200 10 0.606 0.735 0.290 0.179 0.381 0.277 0.149 0.065

Note: In Examples 2.5.1-2.5.3, d̃ denotes the number of random variables d. In Example 2.5.4, d̃ stands for p.
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APPENDIX B

This is the Appendix for Chapter 3.

The appendix is organized as follows. In Section B.1 we explore our proposed homogeneity

and dependence metrics in the low-dimensional setup. In Section B.2 we study the asymptotic be-

havior of our proposed homogeneity and dependence metrics in the high dimension medium sam-

ple size (HDMSS) framework where both the dimension(s) and the sample size(s) grow. Section

B.3 illustrates an additional real data example for testing for independence in the high-dimensional

framework. Finally, Section B.4 contains additional proofs of the main results in Chapter 3 and

Sections B.1 and B.2 in the appendix.

B.1 Low-dimensional setup

In this section we illustrate that the new class of homogeneity metrics proposed in Chapter 3

inherits all the nice properties of generalized energy distance and MMD in the low-dimensional

setting. Likewise, the proposed dependence metrics inherit all the desirable properties of general-

ized dCov and HSIC in the low-dimensional framework.

B.1.1 Homogeneity metrics

Note that in either Case S1 or S2, the Euclidean space equipped with distance K is of strong

negative type. As a consequence, we have the following result.

Theorem 11. E(X, Y ) = 0 if and only if X d
= Y , in other words E(X, Y ) completely character-

izes the homogeneity of the distributions of X and Y .

The following proposition shows that En,m(X, Y ) is a two-sample U-statistic and an unbiased

estimator of E(X, Y ).

Proposition B.1.1. The U-statistic type estimator enjoys the following properties:
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1. En,m is an unbiased estimator of the population E .

2. En,m admits the following form :

En,m(X, Y ) =
1(

n
2

) (
m
2

) ∑
1≤i<j≤n

∑
1≤k<l≤m

h(Xi, Xj;Yk, Yl) ,

where

h(Xi, Xj;Yk, Yl) =
1

2

(
K(Xi, Yk) + K(Xi, Yl) + K(Xj, Yk) + K(Xj, Yl)

)
− K(Xi, Xj) − K(Yk, Yl) .

The following theorem shows the asymptotic behavior of the U-statistic type estimator of E for

fixed p and growing n.

Theorem 12. Under Assumption 3.3.5 and the assumption that sup1≤i≤p Eρi(X(i), 0di) <∞ and

sup1≤i≤p Eρi(Y(i), 0di) <∞, as m,n→∞ with p remaining fixed, we have the following:

1. En,m(X, Y )
a.s.−→ E(X, Y ).

2. When X d
= Y , En,m has degeneracy of order (1, 1), and

(m− 1)(n− 1)

n+m
En,m(X, Y )

d−→
∞∑
k=1

λ2k
(
Z2
k − 1

)
,

where {Zk} is a sequence of independent N(0, 1) random variables and λk’s depend on the

distribution of (X, Y ).

Proposition B.1.1, Theorem 11 and Theorem 12 demonstrate that E inherits all the nice prop-

erties of generalized energy distance and MMD in the low-dimensional setting.

B.1.2 Dependence metrics

Note that Proposition 3.2.1 in Section 3.2 and Proposition 3.7 in Lyons (2013) ensure that

D(X, Y ) completely characterizes independence between X and Y , which leads to the following
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result.

Theorem 13. Under Assumption 4.3.2, D(X, Y ) = 0 if and only if X ⊥⊥ Y .

The following proposition shows that D̃2
n(X, Y ) is an unbiased estimator of D2(X, Y ) and is a

U-statistic of order four.

Proposition B.1.2. The U-statistic type estimator D̃2
n (defined in (1.14) in Chapter 3) has the

following properties:

1. D̃2
n is an unbiased estimator of the squared population D2.

2. D̃2
n is a fourth-order U-statistic which admits the following form:

D̃2
n =

1(
n
4

) ∑
i<j<k<l

hi,j,k,l ,

where

hi,j,k,l =
1

4!

(i,j,k,l)∑
(s,t,u,v)

(dXstd
Y
st + dXstd

Y
uv − 2dXstd

Y
su)

=
1

6

(i,j,k,l)∑
s<t,u<v

(dXstd
Y
st + dXstd

Y
uv)−

1

12

(i,j,k,l)∑
(s,t,u)

dXstd
Y
su ,

the summation is over all possible permutations of the 4-tuple of indices (i, j, k, l). For

example, when (i, j, k, l) = (1, 2, 3, 4), there exist 24 permutations, including (1, 2, 3, 4), . . . ,

(4, 3, 2, 1). Furthermore, D̃2
n has degeneracy of order 1 when X and Y are independent.

The following theorem shows the asymptotic behavior of the U-statistic type estimator of D2

for fixed p, q and growing n.

Theorem 14. Under Assumption 4.3.2, with fixed p, q and n → ∞, we have the following as

n→∞:

1. D̃2
n(X, Y )

a.s.−→ D2(X, Y );
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2. When D2(X, Y ) = 0 (i.e., X ⊥⊥ Y ), n D̃2
n(X, Y )

d−→
∞∑
i=1

λ̃2i (Z
2
i − 1), where Z ′is are i.i.d.

standard normal random variables and λ̃i’s depend on the distribution of (X, Y );

3. When D2(X, Y ) > 0, n D̃2
n(X, Y )

a.s.−→∞.

Proposition B.1.2, Theorem 13 and Theorem 14 demonstrate that in the low-dimensional

setting, D inherits all the nice properties of generalized dCov and HSIC.

B.2 High dimension medium sample size (HDMSS)

B.2.1 Homogeneity metrics

In this subsection, we consider the HDMSS setting where p → ∞ and n,m → ∞ at a slower

rate than p. Under H0, we impose the following conditions to obtain the asymptotic null distribu-

tion of the statistic Tn,m under the HDMSS setup.

Assumption B.2.1. As n,m and p→∞,

1

n2

E [H4(X,X ′)]

(E [H2(X,X ′)])2
= o(1),

1

n

E [H2(X,X ′′)H2(X ′, X ′′)]

(E [H2(X,X ′)])2
= o(1),

E [H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)]

(E [H2(X,X ′)])2
= o(1).

Remark B.2.1. We refer the reader to Section 2.2 in Zhang et al. (2018) and Remark A.2.2 in Zhu

et al. (2020) for illustrations of Assumption B.2.1 where ρi has been considered to be the Euclidean

distance or the squared Euclidean distance, respectively, for 1 ≤ i ≤ p.

Assumption B.2.2. Suppose E [L2(X,X ′)] = O(α2
p) where αp is a positive real sequence such

that τXα2
p = o(1) as p→∞. Further assume that as n, p→∞,

n4 τ 4X E [R4(X,X ′)]

(E [H2(X,X ′)])2
= o(1) .

Remark B.2.2. We refer the reader to Remark 3.3.1 in Chapter 3 which illustrates some sufficient

conditions under which αp = O( 1√
p
) and consequently τXα

2
p = o(1) holds, as τX � p1/2. In
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similar lines of Remark B.4.1 in Section B.4 of the appendix, it can be argued that E [R4(X,X ′)] =

O
(

1
p4

)
. If we further assume that Assumption 3.3.4 holds, then we have E [H2(X,X ′)] � 1.

Combining all the above, it is easy to verify that
n4 τ4X E [R4(X,X′)]
(E [H2(X,X′)])2

= o(1) holds provided n =

o(p1/2).

The following theorem illustrates the limiting null distribution of Tn,m under the HDMSS setup.

We refer the reader to Section B.4 of the appendix for a detailed proof.

Theorem 15. Under H0 and Assumptions 3.3.5, B.2.1 and B.2.2, as n,m and p→∞, we have

Tn,m
d−→ N(0, 1).

B.2.2 Dependence metrics

In this subsection, we consider the HDMSS setting where p, q → ∞ and n → ∞ at a slower

rate than p, q. The following theorem shows that similar to the HDLSS setting, under the HDMSS

setup, D̃2
n is asymptotically equivalent to the aggregation of group-wise generalized dCov. In other

words D̃2
n(X, Y ) can quantify group-wise nonlinear dependence between X and Y in the HDMSS

setup as well.

Assumption B.2.3. E[LX(X,X ′)2] = α2
p, E[LX(X,X ′)4] = γ2p , E[LY (Y, Y ′)2] = β2

q and

E[LY (Y, Y ′)4] = λ2q , where αp, γp, βq, λq are positive real sequences satisfying nαp = o(1),

nβq = o(1), τ 2X(αpγp +γ2p) = o(1), τ 2Y (βqλq +λ2q) = o(1), and τXY (αpλq +γpβq +γpλq) = o(1).

Remark B.2.3. Following Remark 3.3.1 in Chapter 3, we can write L(X,X ′) = O(1
p
)
∑p

i=1

(Zi − EZi), where Zi = ρi(X(i), X
′
(i)) for 1 ≤ i ≤ p. Assume that sup1≤i≤p E ρ4i (X(i), 0di) < ∞,

which implies sup1≤i≤p EZ4
i <∞. Under certain weak dependence assumptions, it can be shown

that E
(∑p

i=1(Zi − EZi)
)4

= O(p2) as p → ∞ (see for example Theorem 1 in Doukhan et

al. (1999)). Therefore we have E[L(X,X ′)4] = O( 1
p2

). It follows from Hölder’s inequality that

E[L(X,X ′)2] = O(1
p
). Similar arguments can be made about E[L(Y, Y ′)4] and E[L(Y, Y ′)2] as

well.
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Theorem 16. Under Assumptions 3.3.2 and B.2.3, we can show that

D̃2
n(X, Y ) =

1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) + Rn , (B.1)

whereRn is the remainder term satisfying thatRn = Op(τXY (αpλq + γpβq + γpλq)) = op(1), i.e.,

Rn is of smaller order compared to the leading term and hence is asymptotically negligible.

The following theorem states the asymptotic null distribution of the studentized test statistic Tn

(given in equation (3.26) in Chapter 3) under the HDMSS setup. Define

U(Xk, Xl) :=
1

τX

p∑
i=1

dXkl(i), and V (Yk, Yl) :=
1

τY

q∑
i=1

dYkl(i).

Assumption B.2.4. Assume that

E [U(X,X ′)]4
√
n (E[U(X,X ′)]2)2

= o(1),

E [U(X,X ′)U(X ′, X ′′)U(X ′′, X ′′′)U(X ′′′, X)]

(E[U(X,X ′)]2)2
= o(1),

and the same conditions hold for Y in terms of V (Y, Y ′).

Remark B.2.4. We refer the reader to Section 2.2 in Zhang et al. (2018) and Remark A.2.2 in Zhu

et al. (2020) for illustrations of Assumption B.2.1 where ρi has been considered to be the Euclidean

distance or the squared Euclidean distance, respectively.

We can show that underH0, the studentized test Tn converge to the standard normal distribution

under the HDMSS setup.

Theorem 17. Under H0 and Assumptions B.2.3-B.2.4, as n, p, q → ∞, we have Tn
d−→

N(0, 1) .

B.3 Additional real data example

We consider the monthly closed stock prices of p̃ = 36 companies under the transport sec-

tor and q̃ = 41 companies under the utilities sector between January 1, 2017 and December 31,

147



2018. The companies under both the sectors are clustered or grouped according to their coun-

tries. The data has been downloaded from Yahoo Finance via the R package ‘quantmod’. Under

the transport sector, we have q = 14 countries or groups, viz. USA, Brazil, Canada, Greece,

China, Panama, Belgium, Bermuda, UK, Mexico, Chile, Monaco, Ireland and Hong Kong, with

d = (5, 1, 2, 8, 4, 1, 1, 3, 1, 3, 1, 4, 1, 1). And under the utilities sector, we have q = 21 coun-

tries or groups, viz. USA, Mexico, UK, India, Canada, China, Hong Kong, Taiwan, Brazil,

Cayman Islands, Israel, Argentina, Chile, Singapore, South Korea, Russia, France, Phillipines,

Indonesia, Spain and Turkey, with g = (5, 1, 3, 1, 5, 2, 3, 1, 4, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1). At

each time t, denote the closed stock prices of these companies from the two different sectors

by Xt = (X1t, . . . , Xpt) and Yt = (Y1t, . . . , Yqt) for 1 ≤ t ≤ 24. We consider the stock returns

SXt = (SX1t , . . . , S
X
pt ) and SYt = (SY1t, . . . , S

Y
qt) for 1 ≤ t ≤ 23, where SXitl = log

Xi,t+1,l

Xitl
and

SYjtl′ = log
Yj,t+1,l′

Yjtl′
for 1 ≤ l ≤ di, 1 ≤ i ≤ p, 1 ≤ l′ ≤ gj and 1 ≤ j ≤ q.

The intuitive idea is, stock returns of transport companies should affect the stock returns of

companies under the utilities sector, and here both the random vectors admit a natural grouping

based on the countries. Table B.1 below shows the p-values corresponding to the different tests for

independence between {SXt }23t=1 and {SYt }23t=1. The tests based on the proposed dependence metrics

considering the natural grouping deliver much smaller p-values compared to the tests based on the

usual dCov and HSIC, as well as the projection correlation based test, which fail to reject the null

hypothesis of independence between {SXt }23t=1 and {SYt }23t=1. This makes intuitive sense as the

dependence among financial asset returns is usually nonlinear in nature and thus cannot be fully

characterized by the usual dCov and HSIC in the high dimensional setup.

Table B.1: p-values corresponding to the different tests for cross-sector independence of stock
returns data considering the natural grouping based on countries.

I II III IV V VI VII
0.0008 0.0011 0.0004 0.1106 0.1129 0.4848 0.1120
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Table B.2 below shows the p-values corresponding to the different tests for independence when

we disregard the natural grouping and consider di = 1 and gj = 1 for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

Considering unit group sizes makes our proposed statistics essentially equivalent to the marginal

aggregation approach proposed by Zhu et al. (2020). In this case the proposed tests have higher

p-values than when we consider the natural grouping, indicating that grouping or clustering might

improve the power of testing as they are capable of detecting a wider range of dependencies.

Table B.2: p-values corresponding to the different tests for cross-sector independence of stock
returns data considering unit group sizes.

I II III IV V VI VII
0.0067 0.0532 0.0796 0.1106 0.1129 0.4848 0.1120

B.4 Technical Appendix

Proof of Proposition 3.2.1. To prove (1), note that if d is a metric on a space X , then so is d1/2. It

is easy to see that K2 is a metric on Rp̃. To prove (2), note that (Rdi , ρi) has strong negative type

for 1 ≤ i ≤ p. The rest follows from Corollary 3.20 in Lyons (2013). ♦

Proof of Proposition B.1.1. It is easy to verify that En,m is an unbiased estimator of E and is a

two-sample U-statistic with the kernel h. ♦

Proof of Theorem 12. The first part of the proof follows from Theorem 1 in Sen (1977) and the

observation that E
[
|h| log+ |h|

]
≤ E[h2]. The power mean inequality says that for ai ∈ R, 1 ≤

i ≤ n, n ≥ 2 and r > 1,

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
r

≤ nr−1
n∑
i=1

|ai|r . (B.2)

Using the power mean inequality, it is easy to see that the assumptions sup1≤i≤p Eρi(X(i), 0di) <

∞ and sup1≤i≤p Eρi(Y(i), 0di) < ∞ ensure that E[h2] < ∞. For proving the second part, define
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h1,0(X) = E [h(X,X ′;Y, Y ′)|X] and h0,1(Y ) = E [h(X,X ′;Y, Y ′)|Y ] Clearly, when X d
= Y ,

h1,0(X) and h0,1(Y ) are degenerate at 0 almost surely. Following Theorem 1.1 in Neuhaus (1977),

we have

(m− 1)(n− 1)

n+m
Enm(X, Y )

d−→
∞∑
k=1

σ2
k

[
(akUk + bkVk)

2 − (a2k + b2k)
]
,

where {Uk}, {Vk} are two sequences of independent N(0, 1) variables, independent of each other,

and (σk, ak, bk)’s depend on the distribution of (X, Y ). The proof can be completed by some

simple rearrangement of terms. ♦

Proof of Proposition 3.3.1. The proof is essentially similar to the proof of Proposition 2.1.1 in Zhu

et al. (2020), replacing the Euclidean distance between, for example,X andX ′, viz. ‖X−X ′‖p̃ , by

the new distance metricK(X,X ′). To show thatR(X,X ′) = Op(L
2(X,X ′)) ifL(X,X ′) = op(1),

we define f(x) =
√

1 + x. By the definition of the Lagrange’s form of the remainder term from

Taylor’s expansion, we have

R(X,X ′) =

∫ L(X,X′)

0

f ′′(t) (L(X,X ′)− t ) dt .

Using R and L interchangeably with R(X,X ′) and L(X,X ′) respectively, we can write

|R| ≤ |L|
[∫ L

0

f ′′(t)1L>0 dt +

∫ 0

L

f ′′(t)1L<0 dt

]
=
|L|
2

∣∣1− 1√
1 + L

∣∣
=
|L|
2

|L|
1 + L+

√
1 + L

≤ L2

2(1 + L)
.

(B.3)

It is clear that R(X,X ′) = Op(L
2(X,X ′)) provided that L(X,X ′) = op(1). ♦

Proof of Theorem 1. Observe that EL(X, Y ) = EL(X,X ′) = EL(Y, Y ′) = 0. By Proposition
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3.3.1,

E(X, Y ) = 2E [τ + τ R(X, Y )] − E [τX + τX R(X,X ′)] − E [τY + τY R(Y, Y ′)]

= 2τ − τX − τY + RE .

Clearly |RE | ≤ 2 τ E [ |R(X, Y )| ] + τX E [ |R(X,X ′)| ] + τY E [ |R(Y, Y ′)| ] . By (B.3) and

Assumption 3.3.3, we have

τ |R(X, Y )| ≤ τL2(X, Y )

2(1 + L(X, Y ))
= O(τa2p) = op(1).

As {√pL2(X, Y )/(1 + L(X, Y ))} is uniformly integrable and τ � √p, we must have

τE[|R(X, Y )|] = o(1). The other terms can be handled in a similar fashion. ♦

Remark B.4.1. Write L(X, Y ) = 1
τ2

(Ap − EAp) = 1
τ2

∑p
i=1(Zi − EZi), where Ap :=

∑p
i=1 Zi

and Zi := ρi(Xi, Yi) for 1 ≤ i ≤ p. Assume supi Eρ8i (Xi, 0di) < ∞ and supi Eρ8i (Xi, 0di) < ∞,

which imply supi EZ8
i <∞. Denote L(X, Y ) by L and R(X, Y ) by R for notational simplicities.

Further assume that E exp(tAp) = O((1 − θ1t)−θ2p) for θ1, θ2 > 0 and θ2 p > 4 uniformly over

t < 0 (which is clearly satisfied when Zi’s are independent and E exp(tZi) ≤ a1(1 − a2t)
−a3

uniformly over t < 0 and 1 ≤ i ≤ p for some a1, a2, a3 > 0 with a3 p > 4). Under certain weak

dependence assumptions, it can be shown that:

1. {√pL2/(1 + L)} is uniformly integrable;

2. ER2 = O( 1
p2

).

Similar arguments hold for L(X,X ′) and R(X,X ′), and, L(Y, Y ′) and R(Y, Y ′) as well.

Proof of Remark B.4.1. To prove the first part, define Lp :=
√
pL2/(1 + L). Following Chapter

6 of Resnick (1999), it suffices to show that supp EL2
p < ∞. Towards that end, using Hölder’s
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inequality we observe

EL2
p ≤

(
E(p2L8)

)1/2 (E[ 1

(1 + L)4

])1/2

. (B.4)

With supi EZ8
i < ∞ and under certain weak dependence assumptions, it can be shown that

E(Ap − EAp)8 = O(p4) (see for example Theorem 1 in Doukhan et al. (1999)). Consequently we

have EL8 = O( 1
p4

) , as τ � √p. Clearly this yields E (p2L8) = O( 1
p2

).

Now note that

E
[ 1

(1 + L)4

]
= τ 8 E

(
1

A4
p

)
. (B.5)

Equation (3) in Cressie et al. (1981) states that for a non-negative random variable U with moment-

generating function MU(t) = E exp(tU), one can write

E(U−k) = (Γ(k))−1
∫ ∞
0

tk−1MU(−t) dt , (B.6)

for any positive integer k, provided both the integrals exist. Using equation (B.6), the assumptions

stated in Remark B.4.1 and basic properties of beta integrals, some straightforward calculations

yield

E
(

1

A4
p

)
≤ C1

∫ ∞
0

t4−1

(1 + θ1t)θ2p
dt = C2

Γ(θ2p− 4)

Γ(θ2p)
, (B.7)

where C1, C2 are positive constants, which clearly implies that E
(

1
A4

p

)
= O( 1

p4
). This together

with equation (B.5) implies that E
[

1
(1+L)4

]
= O(1), as τ � √p.

Combining all the above, we get from (B.4) that EL2
p = O(1

p
) and therefore supp EL2

p < ∞,

which completes the proof of the first part.

To prove the second part, note that following the proof of Proposition 3.3.1 and Hölder’s in-
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equality we can write

ER2 = O

(
E
[

L4

(1 + L)2

])
= O

((
E(L8)

)1/2 (E[ 1

(1 + L)4

])1/2
)
. (B.8)

Following the arguments as in the proof of the first part, clearly we have EL8 = O( 1
p4

) and

E
[

1
(1+L)4

]
= O(1). From this and equation (B.8), it is straightforward to verify that ER2 = O( 1

p2
),

which completes the proof of the second part. ♦

Proof of Lemma 3.3.1. To see (2), first observe that the sufficient part is straightforward from

equation (3.8) in Chapter 3. For the necessary part, denote a = tr ΣX , b = tr ΣY and c =

‖µX − µY ‖2. Then we have 2
√
a+ b+ c =

√
2a +

√
2b. Some straightforward calculations

yield (
√

2a−
√

2b)2 + 4 c = 0 which implies the rest.

To see (1), again the sufficient part is straightforward from equation (3.7) in Chapter 3 and the

form of K given in equation (3.2) in Chapter 3. For the necessary part, first note that as (Rdi , ρi) is

a metric space of strong negative type for 1 ≤ i ≤ p, there exists a Hilbert spaceHi and an injective

map φi : Rdi → Hi such that ρi(z, z′) = ‖φi(z) − φi(z′)‖2Hi
, where 〈·, ·〉Hi

is the inner product

defined onHi and ‖ · ‖Hi
is the norm induced by the inner product (see Proposition 3 in Sejdinovic

et al. (2013) for detailed discussions). Further, if ki is a distance-induced kernel induced by the

metric ρi, then by Proposition 14 in Sejdinovic et al. (2013),Hi is the RKHS with the reproducing

kernel ki and φi(z) is essentially the canonical feature map for Hi, viz. φi(z) : z 7→ ki(·, z). It is

easy to see that

τ 2X =E
p∑
i=1

‖φi(X(i))− φi(X ′(i))‖2Hi
= 2E

p∑
i=1

‖φi(X(i))− Eφi(X(i))‖2Hi
,

τ 2Y =E
p∑
i=1

‖φi(Y(i))− φi(Y ′(i))‖2Hi
= 2E

p∑
i=1

‖φi(Y(i))− Eφi(Y(i))‖2Hi
,

τ 2 =E
p∑
i=1

‖φi(X(i))− φi(Y(i))‖2Hi
= τ 2X/2 + τ 2Y /2 + ζ2,
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where ζ2 =
∑p

i=1 ‖Eφ(X(i))− Eφ(Y(i))‖2Hi
. Thus 2τ − τX − τY = 0 is equivalent to

4(τ 2X/2 + τ 2Y /2 + ζ2) = (τX + τY )2 = τ 2X + τ 2Y + 2τXτY .

which implies that

4ζ2 + (τX − τY )2 = 0.

Therefore, 2τ − τX − τY = 0 holds if and only if (1) ζ = 0, i.e., Eφi(X(i)) = Eφi(Y(i)) for all

1 ≤ i ≤ p, and, (2) τX = τY , i.e.,

E
p∑
i=1

‖φi(X(i))− Eφi(X(i))‖2Hi
= E

p∑
i=1

‖φi(Y(i))− Eφi(Y(i))‖2Hi
.

Now if X ∼ P and Y ∼ Q, then note that

Eφi(X(i)) =

∫
Rdi

ki(·, z) dPi(z) = Πi(Pi) and Eφi(Y(i)) =

∫
Rdi

ki(·, z) dQi(z) = Πi(Qi) ,

where Πi is the mean embedding function (associated with the distance induced kernel ki) defined

in Section 1.2.1, Pi and Qi are the distributions of X(i) and Y(i), respectively. As ρi is a metric of

strong negative type on Rdi , the induced kernel ki is characteristic toM1(Rdi) and hence the mean

embedding function Πi is injective. Therefore condition (1) above implies X(i)
d
= Y(i). ♦

Now we introduce some notation before presenting the proof of Theorem 2. The key of our

analysis is to study the variance of the leading term of En,m(X, Y ) in the HDLSS setup, propose the

variance estimator and study the asymptotic behavior of the variance estimator. It will be shown

later (in the proof of Theorem 2) that the leading term in the Taylor’s expansion of En,m(X, Y ) −
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(2τ − τX − τY ) can be written as L1 + L2, where

L1 :=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

dkl(i)−
1

n(n− 1)τX

∑
k<l

p∑
i=1

dXkl(i)−
1

m(m− 1)τY

∑
k<l

p∑
i=1

dYkl(i)

:= L1
1 − L2

1 − L3
1 ,

(B.9)

where Li1’s are defined accordingly and

L2 :=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

(
E [ρi(Xk(i), Yl(i))|Xk(i)] + [ρi(Xk(i), Yl(i))|Yl(i)]− 2E ρi(Xk(i), Yl(i))

)
− 1

n(n− 1)τX

∑
k<l

p∑
i=1

(
E [ρi(Xk(i), Xl(i))|Xk(i)] + [ρi(Xk(i), Xl(i))|Xl(i)]− 2E ρi(Xk(i), Xl(i))

)
− 1

m(m− 1)τY

∑
k<l

p∑
i=1

(
E [ρi(Yk(i), Yl(i))|Yk(i)] + [ρi(Yk(i), Yl(i))|Yl(i)]− 2E ρi(Yk(i), Yl(i))

)
.

(B.10)

By the double-centering properties, it is easy to see that Li1 for 1 ≤ i ≤ 3 are uncorrelated. Define

V :=
1

nmτ 2

p∑
i,i′=1

E [dkl(i) dkl(i
′)] +

1

2n(n− 1)τ 2X

p∑
i,i′=1

E [dXkl(i) d
X
kl(i
′)]

+
1

2m(m− 1)τ 2Y

p∑
i,i′=1

E [dYkl(i) d
Y
kl(i
′)]

:= V1 + V2 + V3,

(B.11)

where Vi’s are defined accordingly. Further let

Ṽ1 := nmV1 , Ṽ2 := 2n(n− 1)V2 , Ṽ3 := 2m(m− 1)V3 . (B.12)

It can be verified that

E [dXkl(i) d
X
kl(i
′)] = D2

ρi,ρi′
(X(i), X(i′)) .
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Thus we have

Ṽ2 =
1

τ 2X

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′)) and Ṽ3 =
1

τ 2Y

p∑
i,i′=1

D2
ρi,ρi′

(Y(i), Y(i′)) . (B.13)

We study the variances of Li1 for 1 ≤ i ≤ 3 and propose some suitable estimators. The variance

for L2
1 is given by

var(L2
1) =

1

n2(n− 1)2τ 2X

p∑
i,i′=1

∑
k<l

E [dXkl(i) d
X
kl(i
′)] = V2 .

Clearly
n(n− 1)V2

2
=

1

4τ 2X

p∑
i,i′=1

D2
ρi,ρj

(X(i), X(i′)) .

From Theorem 5 in Section 3.4.1, we know that for fixed n and growing p, D̃2
n(X,X) is asymp-

totically equivalent to 1
4τ2X

∑p
i,i′=1 D̃

2
n ; ρi,ρj

(X(i), X(i′)). Therefore an estimator of Ṽ2 is given by

4 D̃2
n(X,X). Note that the computational cost of D̃2

n(X,X) is linear in p while direct calculation

of its leading term 1
4τ2X

∑p
i,i′=1 D̃

2
n ; ρi,ρj

(X(i), X(i′)) requires computation in the quadratic order of

p. Similarly it can be shown that the variance of L3
1 is V3 and Ṽ3 can be estimated by 4 D̃2

m(Y, Y ).

Likewise some easy calculations show that the variance of L1
1 is V1. Define

ρ̂i(Xk(i), Yl(i)) := ρi(Xk(i), Yl(i)) −
1

n

n∑
a=1

ρi(Xa(i), Yl(i)) −
1

m

m∑
b=1

ρi(Xk(i), Yb(i))

+
1

nm

n∑
a=1

m∑
b=1

ρi(Xa(i), Yb(i)) ,

(B.14)

and

R̂(Xk, Yl) := R(Xk, Yl)−
1

n

n∑
a=1

R(Xa, Yl)−
1

m

m∑
b=1

R(Xk, Yb) +
1

nm

n∑
a=1

m∑
b=1

R(Xa, Yb) .

(B.15)
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It can be verified that

ρ̂i(Xk(i), Yl(i)) = dkl(i) −
1

n

n∑
a=1

dal(i) −
1

m

m∑
b=1

dkb(i) +
1

nm

n∑
a=1

m∑
b=1

dab(i).

Observe that

E [ρ̂i(Xk(i), Yl(i))ρi′(Xk(i′), Yl(i′))] = (1− 1/n)(1− 1/m)E [dkl(i) dkl(i
′)] . (B.16)

Let Âi = (ρ̂i(Xk(i), Yl(i)))k,l, Ai = (ρi(Xk(i), Yl(i)))k,l ∈ Rn×m. Note that

1

(n− 1)(m− 1)
E

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i))ρ̂i(Xk(i′), Yl(i′))

=
1

(n− 1)(m− 1)
E tr(ÂiÂ

>
i′ )

=
1

(n− 1)(m− 1)
E tr(ÂiA

>
i′ )

=
1

(n− 1)(m− 1)
E

n∑
k=1

m∑
l=1

ρi(Xk(i′), Yl(i′)) ρ̂i(Xk(i), Yl(i))

= E [dkl(i) dkl(i
′)],

(B.17)

which suggests that

V̆1 =
1

nmτ 2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i)) ρ̂i(Xk(i′), Yl(i′))

is an unbiased estimator for V1. However, the computational cost for V̆1 is linear in p2 which

is prohibitive for large p. We aim to find a joint metric whose computational cost is linear in p

whose leading term is proportional to V̆1. It can be verified that cdCov2n,m(X, Y ) is asymptotically

equivalent to

1

4τ 2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i))ρ̂i(Xk(i′), Yl(i′)) .
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This can be seen from the observation that

4 cdCov2n,m(X, Y ) =
1

τ 2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

+
τ 2

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

R̂2(Xk, Yl)

+
1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

1

τ

p∑
i=1

ρ̂i(Xk(i), Y(li)) τR̂(Xk, Yl).

(B.18)

Using the Hölder’s inequality as well as the fact that τ 2 R̂2(Xk, Yl) is Op(τ
2a4p) = op(1) under

Assumption 3.3.3. Therefore, we can estimate Ṽ1 by 4cdCov2n,m(X, Y ). Thus the variance of L1

is V which can be estimated by

V̂ :=
1

nm
4 cdCov2n,m(X, Y ) +

1

2n(n− 1)
4 D̃2

n(X,X) +
1

2m(m− 1)
4 D̃2

m(Y, Y )

:= V̂1 + V̂2 + V̂3 .

(B.19)

Proof of Theorem 2. Using Proposition 3.3.1, some algebraic calculations yield

Enm(X, Y )− (2τ − τX − τY )

=
τ

nm

n∑
k=1

m∑
l=1

L(Xk, Yl)−
τX

2n(n− 1)

n∑
k 6=l

L(Xk, Xl)−
τY

2m(m− 1)

m∑
k 6=l

L(Yk, Yl) + Rn,m

=
1

nmτ

n∑
k=1

m∑
l=1

p∑
i=1

(
ρi(Xk(i), Yl(i))− E ρi(Xk(i), Yl(i))

)
− 1

2n(n− 1)τX

n∑
k 6=l

p∑
i=1

(
ρi(Xk(i), Xl(i))− E ρi(Xk(i), Xl(i))

)
− 1

2m(m− 1)τY

m∑
k 6=l

p∑
i=1

(
ρi(Yk(i), Yl(i))− E ρi(Yk(i), Yl(i))

)
+ Rn,m,
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where

Rn,m =
2τ

nm

n∑
k=1

m∑
l=1

R(Xk, Yl)−
τX

n(n− 1)

n∑
k 6=l

R(Xk, Xl)−
τY

m(m− 1)

m∑
k 6=l

R(Yk, Yl) .

(B.20)

By Assumption 3.3.3, Rn,m = Op(τa
2
p + τXb

2
p + τY c

2
p) = op(1) as p → ∞. Denote the leading

term above by L. We can rewrite L as L1 + L2, where L1 and L2 are defined in equations (B.9)

and (B.10), respectively. Some calculations yield that

L2 =
1

n

n∑
k=1

[
1

τ

p∑
i=1

E [ρi(Xk(i), Y(i))|Xk(i)] −
1

τX

p∑
i=1

E [ρi(Xk(i), X
′
(i))|Xk(i)]

]
− (τ − τX)

+
1

m

m∑
l=1

[
1

τ

p∑
i=1

E [ρi(X(i), Yl(i))|Yl(i)] −
1

τY

p∑
i=1

E [ρi(Yl(i), Y
′
(i))|Yl(i)]

]
− (τ − τY )

=
1

n

n∑
k=1

E [τL(Xk, Y )− τXL(Xk, X
′) |Xk] +

1

m

m∑
l=1

E [τL(X, Yl)− τXL(Yl, Y
′) |Yl] .

(B.21)

For (PX , PY ) ∈ P , we have L2 = op(1).

Under Assumption 3.3.4, the asymptotic distribution of L1 as p→∞ is given by

L1
d−→ N

(
0 ,

σ2

nm
+

σ2
X

2n(n− 1)
+

σ2
Y

2m(m− 1)

)
.

Define the vector dvec :=
(
1
τ

∑p
i=1 dkl(i)

)
1≤k≤n, 1≤l≤m. It can be verified that

4(n− 1)(m− 1) cdCov2n,m(X, Y ) = d>vec Advec (B.22)

where A = A1 + A2 + A3 + A4 with A1 = In ⊗ Im, A2 = −In ⊗ 1
m

1m1>m, A3 = − 1
n
1n1>n ⊗ Im

and A4 = 1
nm

1nm1>nm. Here ⊗ denotes the Kronecker product. It is not hard to see that A2 = A
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and rank(A) = (n− 1)(m− 1). Therefore by Assumption 3.3.4, we have as p→∞,

4(n− 1)(m− 1) cdCov2n,m(X, Y )
d→ σ2χ2

(n−1)(m−1).

By Theorem 7, we have as p→∞,

4 D̃2
n(X,X)

d→ σ2
X

vn
χ2
vn , i.e., 4 vn D̃2

n(X,X)
d→ σ2

X χ
2
vn ,

and similarly

4 vm D̃2
m(Y, Y )

d→ σ2
Y χ

2
vm .

By Assumption 3.3.4, χ2
(n−1)(m−1), χ

2
vn and χ2

vm are mutually independent. The proof can be com-

pleted by combining all the arguments above and using the continuous mapping theorem. ♦

Proof of Proposition 3.3.2. Note that as n,m→∞,

E [(M −m0)
2] =

2(n− 1)(m− 1)σ4 + 2vnσ
4
X + 2vmσ

4
Y

{ (n− 1)(m− 1) + vn + vm }2
= o(1),

where m0 = E[M ]. Therefore by Chebyshev’s inequality, M −m0 = op(1) as n,m → ∞. As a

consequence, we have M
p−→ m∗0 as n,m→∞. Observing that Φ is a bounded function, the rest

follows from Lebesgue’s Dominated Convergence Theorem. ♦

Under H0, without any loss of generality define U1 = X1, . . . , Un = Xn, Un+1 := Y1, . . . ,
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Un+m := Ym. Further define

φi1i2 := φ(Ui1 , Ui2) =


− 1
n(n−1) H(Ui1 , Ui2) if i1, i2 ∈ {1, . . . , n} ,

1
nm

H(Ui1 , Ui2) if i1 ∈ {1, . . . , n}, i2 ∈ {n+ 1, . . . , n+m} ,

− 1
m(m−1) H(Ui1 , Ui2) if i1, i2 ∈ {n+ 1, . . . , n+m} .

(B.23)

It can be verified that cov(φi1i2 , φi′1i′2) = 0 if the cardinality of the set {i1, i2}∩{i′1, i′2} is less than

2. Define

T̆n,m =
En,m(X, Y )√

V
.

Lemma B.4.1. Under H0 and Assumptions 3.3.5, B.2.1 and B.2.2, as n,m and p→∞, we have

T̆n,m
d−→ N(0, 1) .

Proof of Lemma B.4.1. Set N = n + m. Define VNj :=
∑j−1

i=1 φij for 2 ≤ j ≤ N , SNr :=∑r
j=2 VNj =

∑r
j=2

∑j−1
i=1 φij for 2 ≤ r ≤ N , and FN,r := σ(X1, . . . , Xr). Then the leading term

of Enm(X, Y ), viz., L1 (see equation (B.9)) can be expressed as

L1 = SNN =
N∑
j=2

VNj =
N∑
j=2

j−1∑
i=1

φij =
∑

1≤i1<i2≤n

φi1i2 +
n∑

i1=1

N∑
i2=n+1

φi1i2 +
∑

n+1≤i1<i2≤N

φi1i2 .

By Corollary 3.1 of Hall and Heyde (1980), it suffices to show the following :

1. For each N , {SNr,FN,r}Nr=1 is a sequence of zero mean and square integrable martingales,

2. 1
V

N∑
j=2

E
[
V 2
Nj | FN,j−1

] P−→ 1 ,

3. 1
V

N∑
j=2

E
[
V 2
Nj 1(|VNj| > ε

√
V ) | FN,j−1

]
P−→ 0 , ∀ ε > 0.

To show (1), it is easy to see that SNr is square integrable, E(SNr) =
r∑
j=2

j−1∑
i=1

E(φij) = 0, and,

FN,1 ⊆ FN,2 ⊆ . . . ⊆ FN,N . We only need to show E(SNq | FN,r) = SNr for q > r. Now
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E(SNq | FN,r) =

q∑
j=2

j−1∑
i=1

E(φij | FN,r). If j ≤ r < q and i < j, then E(φij | FN,r) = φij . If

r < j ≤ q, then :

(i) if r < i < j ≤ q, then E(φij | FN,r) = E(φij) = 0,

(ii) if i ≤ r < j ≤ q, then E(φij | FN,r) = 0 (due to U-centering).

Therefore E(SNq | FN,r) = SNr for q > r. This completes the proof of (1).

To show (2), define Lj(i, k) := E [φij φkj | FN,j−1] for i, k < j ≤ N , and

ηN :=
N∑
j=2

E
[
V 2
Nj | FN,j−1

]
=

N∑
j=2

j−1∑
i,k=1

E[φij φkj | FN,j−1] =
N∑
j=2

j−1∑
i,k=1

Lj(i, k) .

Note that E [Lj(i, k)] = 0 for i 6= k. Clearly

E[ηN ] =
N∑
j=2

E[V 2
Nj] =

N∑
j=2

j−1∑
i,k=1

E[φij φkj] =
N∑
j=2

j−1∑
i=1

E[φ2
ij] = V . (B.24)

By virtue of Chebyshev’s inequality, it will suffice to show var(ηN
V

) = o(1). Note that

E [Lj(i, k)Lj′(i
′, k′)]

=


E
[
φ2(Ui, Uj)φ

2(Ui, U
′
j′)
]

i = k = i′ = k′ ,

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j′)φ(Uk, U

′
j′)
]

i = i′ 6= k = k′ or i = k′ 6= k = i′ ,

E [φ2(Ui, Uj)]E [φ2(Ui′ , Uj′)] i = k 6= i′ = k′ .

(B.25)

In view of equation (B.23), it can be verified that the above expression for ELj(i, k)Lj′(i
′, k′)
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holds true for j = j′ as well. Therefore

var (η2N ) =
N∑

j,j′=2

j−1∑
i,k=1

j′−1∑
i′,k′=1

cov (Lj(i, k) , Lj′(i
′, k′))

=
∑
j=j′

{
j−1∑
i=1

cov
(
φ2(Ui, Uj), φ

2(Ui, U
′
j)
)

+ 2

j−1∑
i 6=k

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j)φ(Uk, U

′
j)
]}

+ 2
∑

2≤j<j′≤N

{
j−1∑
i=1

cov
(
φ2(Ui, Uj), φ

2(Ui, U
′
j′)
)

+ 2

j−1∑
i 6=k

E
[
φ(Ui, Uj)φ(Uk, Uj)φ(Ui, U

′
j′)φ(Uk, U

′
j′)
]}

.

Under Assumption 3.3.5 and H0, it can be verified that

var(ηN ) = O
( 1

N5
E
[
H2(X,X ′′)H2(X ′, X ′′)

]
+

1

N4
E [H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)]

)
,

(B.26)

and

V 2 � 1

N4

(
E
[
H2(X,X ′)

])2
. (B.27)

Therefore under Assumption B.2.1 and H0, we have

var
(ηN
V

)
= o(1),

which completes the proof of (2). To show (3), note that it suffices to show

1

V 2

N∑
j=2

E
[
V 4
Nj | FN,j−1

] P−→ 0 .
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Observe that

N∑
j=2

E
[
V 4
Nj

]
=

N∑
j=2

E

(
j−1∑
i=1

φij

)4

=
N∑
j=2

j−1∑
i=1

E[φ4(Ui, Uj)] + 3
N∑
j=2

j−1∑
i1 6=i2

E[φ2(Ui1 , Uj)φ
2(Uj2 , Uj)] .

Under Assumption 3.3.5, we have

N∑
j=2

E
[
V 4
Nj

]
= O

( 1

N6
E
[
H4(X,X ′)

]
+

1

N5
E
[
H2(X,X ′′)H2(X ′, X ′′)

] )
.

This along with the observation from equation (B.26) and Assumption B.2.1 complete the proof of

(3).

Finally to see that Rn,m√
V

= op(1), note that from equation (B.20) we can derive using power

mean inequality that ER2
n,m ≤ C τ 2 E [R2(X,X ′)] for some positive constant C. Using this,

equation (B.27), Chebyshev’s inequality and Hölder’s inequality, we have for any ε > 0

P

(∣∣∣Rn,m√
V

∣∣∣ > ε

)
≤

ER2
n,m

ε2 V
≤ C ′

N2 τ 2 E [R2(X,X ′)]

ε2 E [H2(X,X ′)]
≤ C ′

ε2

(
N4 τ 4 E [R4(X,X ′)]

(E [H2(X,X ′)])2

)1/2

,

(B.28)

for some positive constant C ′. From this and Assumptions 3.3.5 and B.2.2, we get Rn,m√
V

= op(1),

as N � n. This completes the proof of the lemma. ♦

Lemma B.4.2. Under H0 and Assumptions 3.3.5 and B.2.2, as n,m and p→∞, we have

∣∣∣E [V̂i]− Vi
∣∣∣

Vi
= o(1) , 1 ≤ i ≤ 3 ,

where Vi and V̂i, 1 ≤ i ≤ 3 are defined in equations (B.11) and (B.19), respectively.
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Proof of Lemma B.4.2. We first deal with V̂2. Note that

D̃2
n(X,X) =

1

n(n− 3)

∑
k 6=l

(
D̃X
kl

)2
,

where

D̃X
kl = K(Xk, Xl) −

1

n− 2

n∑
b=1

K(Xk, Xb) −
1

n− 2

n∑
a=1

K(Xa, Xl)

+
1

(n− 1)(n− 2)

n∑
a,b=1

K(Xa, Xb)

=
1

2τ

p∑
i=1

ρ̃i(Xk(i), Xl(i)) + τR̃(Xk, Xl) ,

(B.29)

using Proposition 3.3.1. As a consequence, we can write

D̃2
n(X,X) =

1

4τ 2

p∑
i,i′=1

D̃2
n ; ρi,ρi′

(X(i), X(i′)) +
τ 2

n(n− 3)

∑
k 6=l

R̃2(Xk, Xl)

+
1

n(n− 3)

∑
k 6=l

1

τ

p∑
i=1

ρ̃i(Xk(i), X(li)) τR̃(Xk, Xl) .

(B.30)

Note that following Step 3 in Section 1.6 in the supplementary material of Zhang et al. (2018), we

can write

R̃(Xk, Xl) =
n− 3

n− 1
R̄(Xk, Xl) −

n− 3

(n− 1)(n− 2)

∑
b/∈{k,l}

R̄(Xk, Xb)

− n− 3

(n− 1)(n− 2)

∑
a/∈{k,l}

R̄(Xa, Xl) +
1

(n− 1)(n− 2)

∑
a,b/∈{k,l}

R̄(Xa, Xb) ,

where R̄(X,X ′) = R(X,X ′) − E[R(X,X ′)|X] − E[R(X,X ′)|X ′] + E[R(X,X ′)]. Using the

power mean inequality, it can be verified that E [R̃2(Xk, Xl)] ≤ C E [R̄2(Xk, Xl)] for some pos-

itive constant C. Using this and the Hölder’s inequality, the expectation of the third term in the
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summation in equation (B.30) can be bounded as follows

∣∣∣∣∣E
[

1

n(n− 3)

∑
k 6=l

1

τ

p∑
i=1

ρ̃i(Xk(i), Xl(i)) τR̃(Xk, Xl)

]∣∣∣∣∣
≤ 1

n(n− 3)

∑
k 6=l

E

(1

τ

p∑
i=1

ρ̃i(Xk(i), Xl(i))

)2
 τ 2 E

[
R̄2(Xk, Xl)

]1/2

≤ C ′

((
1

τ 2

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′))

)
τ 2 E

[
R̄2(X,X ′)

])1/2

for some positive constant C ′. Combining all the above, we get

|E (V̂2)− V2| ≤
C1

n(n− 1)
τ 2 E R̄2(X,X ′)

+
C2

n(n− 1)

((
1

τ 2

p∑
i,i′=1

D2
ρi,ρi′

(X(i), X(i′))

)
τ 2 E

[
R̄2(X,X ′)

])1/2

,

for some positive constants C1 and C2. As V2 = 1
2n(n−1)E[H2(X,X ′)],

∣∣∣E[V̂2]− V2
∣∣∣

V2
= o(1) is satisfied if

τ 2 E
[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= o(1) .

Using power mean inequality and Jensen’s inequality, it is not hard to verify that E
[
R̄4(X,X ′)

]
=

O (E [R4(X,X ′)]). Using this and Hölder’s inequality, we have

τ 2 E
[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= O

((
τ 4 E [R4(X,X ′)]

(E [H2(X,X ′)])2

)1/2
)
.

Clearly Assumption B.2.2 implies τ4 E [R4(X,X′)]

(E [H2(X,X′)])2
= o(1), which in turn implies

τ 2 E
[
R̄2(X,X ′)

]
E[H2(X,X ′)]

= o(1) .

Similar expressions can be derived for V̂3 as well. For the term involving V̂1, in the similar fashion,
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we can write

E
[
4 cdCov2n,m(X, Y )

]
=

1

τ 2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E
[
ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

]
+ τ 2

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E
[
R̂2(Xk, Yl)

]
+

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

1

τ

p∑
i=1

E
[
ρ̂i(Xk(i), Y(li)) τR̂(Xk, Yl)

]
,

(B.31)

where the expression for R̂(Xk, Yl) is given in equation (B.15). Following equation (B.17) we can

write

1

τ 2

p∑
i,i′=1

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

E
[
ρ̂i(Xk(i), Yl(i)) ρ̂i′(Xk(i′), Yl(i′))

]
= E

[
H2(X, Y )

]
.

Therefore in view of equations (B.11), (B.16) and (B.19), using the power mean inequality we can

write

|E (V̂1)− V1| ≤
C ′1
nm

τ 2 E R̄2(X, Y ) +
C ′2
nm

((
1

τ 2

p∑
i,i′=1

E [dkl(i)dkl(i
′)]

)
τ 2 E

[
R̄2(X, Y )

])1/2

,

for some positive constants C ′1 and C ′2. Then under H0 and Assumptions 3.3.5 and B.2.2, we have

∣∣∣E (V̂1)− V1
∣∣∣

V1
= o(1) .

♦

Lemma B.4.3. Under H0 and Assumptions 3.3.5, B.2.1 and B.2.2, as n,m and p→∞, we have

var(V̂i)
V 2
i

= o(1), 1 ≤ i ≤ 3 .

Proof of Lemma B.4.3. Again we deal with V̂2 first. To simplify the notations, denote Aij =
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K(Xi, Xj) and Ãij = D̃X
ij for 1 ≤ i 6= j ≤ n. Observe that

var
(
D̃2
n(X,X)

)
= var

(
1

n(n− 3)

∑
i 6=j

Ã2
ij

)

� 1

n4

∑
i<j

var(Ã2
ij) +

∑
i<j<j′

cov(Ã2
ij, Ã

2
jj′) +

∑
i<j,i′<j′

{i,j}∩{i′,j′}=φ

cov(Ã2
ij, Ã

2
i′j′)

 .

(B.32)

As in the proof of Lemma B.4.2, we can write

Ãij =
n− 3

n− 1
Āij −

n− 3

(n− 1)(n− 2)

∑
l /∈{i,j}

Āil −
n− 3

(n− 1)(n− 2)

∑
k/∈{i,j}

Ākj

+
1

(n− 1)(n− 2)

∑
k,l/∈{i,j}

Ākl ,

(B.33)

where the four summands are uncorrelated with each other. Using the power mean inequality, it

can be shown that

E (Ã4
ij) ≤ C E (Ā4

ij) = C E
[
K̄4(X,X ′)

]
,

for some positive constantC, where K̄(X,X ′) = K(X,X ′)−E[K(X,X ′)|X]−E[K(X,X ′)|X ′]+

E[K(X,X ′)] (similarly define L̄(X,X ′)). Therefore the first summand in equation (B.32) scaled

by Ṽ2
2

is o(1) as n, p→∞, provided

1

n2

E
[
K̄4(X,X ′)

]
Ṽ2

2 = o(1) ,

where Ṽ2 is defined in equations (B.12) and (B.13). Note that

K̄(X,X ′) =
τX
2
L̄(X,X ′) + τX R̄(X,X ′) .
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Using the power mean inequality we can write

1

n2

E
[
K̄4(X,X ′)

]
(E [H2(X,X ′)])2

≤ C0
1

n2

τ 4X E
[
L̄4(X,X ′)

]
(E [H2(X,X ′)])2

+ C ′0
1

n2

τ 4X E
[
R̄4(X,X ′)

]
(E [H2(X,X ′)])2

for some positive constants C0 and C ′0. It is easy to see that

L̄(Xk, Xl) =
1

τ 2X
K̄2(Xk, Xl) =

1

τ 2X

p∑
i=1

dXkl(i) =
1

τX
H(Xk, Xl) . (B.34)

From equation (B.34) it is easy to see that the condition

1

n2

τ 4X E
[
L̄4(X,X ′)

]
(E [H2(X,X ′)])2

= o(1) is equivalent to
1

n2

E [H4(X,X ′)]

(E [H2(X,X ′)])2
= o(1).

For the third summand in equation (B.32), observe that

Ã2
ij =O(1)Ā2

ij +O

(
1

n2

) ∑
l,l′ /∈{i,j}

ĀilĀil′ +O

(
1

n2

) ∑
k,k′ /∈{i,j}

ĀkjĀk′j +O

(
1

n4

) ∑
k,k′,l,l′ /∈{i,j}

ĀklĀk′l′

+O

(
1

n

)
Āij

∑
l /∈{i,j}

Āil + O

(
1

n

)
Āij

∑
k/∈{i,j}

Ākj + O

(
1

n2

)
Āij

∑
k,l/∈{i,j}

Ākl

+O

(
1

n2

) ∑
k,l/∈{i,j}

ĀilĀkj +O

(
1

n3

) ∑
k,l,l′ /∈{i,j}

ĀilĀkl′ + O

(
1

n3

) ∑
k,k′,l /∈{i,j}

ĀklĀk′j .

(B.35)

Likewise Ã2
i′j′ admits a similar expression as in equation (B.35). We claim that when {i, j} ∩

{i′, j′} = φ, the leading term of cov(Ã2
ij, Ã

2
i′j′) is O

(
1
n2 E (Ā4

ij)
)
. To see this first note that Āij is

independent of Āi′j′ when {i, j} ∩ {i′, j′} = φ. Using the double-centering properties, it can be

verified that

cov

Ā2
i′j′ , Āij

∑
l /∈{i,j}

Āil

 = cov

Ā2
i′j′ , Āij

∑
k/∈{i,j}

Ākj

 = cov

Ā2
i′j′ , Āij

∑
k,l/∈{i,j}

Ākl

 = 0.
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To compute the quantity cov

Ā2
i′j′ , O

(
1
n2

) ∑
l,l′ /∈{i,j}

ĀilĀil′

, consider the following cases:

Case 1 . When l = l′ = i′ or l = l′ = j′ or l = i′, l′ = j′, cov
(
Ā2
i′j′ , ĀilĀil′

)
boils down to

cov(Ā2
i′j′ , Ā

2
ii′) or cov(Ā2

i′j′ , Ā
2
ij′) or cov(Ā2

i′j′ , Āii′Āij′).

Case 2 . When l = i, l′ /∈ {i, j, i′, j′} or l = j′, l′ /∈ {i, j, i′, j′}, cov
(
Ā2
i′j′ , ĀilĀil′

)
boils down to

cov(Ā2
i′j′ , Āii′Āil′) or cov(Ā2

i′j′ , Āij′Āil′), which can be easily verified to be zero.

Case 3 . When {l, l′} ∩ {i′, j′} = φ, cov
(
Ā2
i′j′ , ĀilĀil′

)
is again zero.

Similar arguments can be made about

cov

Ā2
i′j′ , O

(
1

n2

) ∑
k,k′ /∈{i,j}

ĀkjĀk′j

 and cov

Ā2
i′j′ , O

(
1

n2

) ∑
k,l/∈{i,j}

ĀilĀkj

 .

With this and using Hölder’s inequality, it can be verified that when {i, j}∩{i′, j′} = φ, the leading

term of cov(Ã2
ij, Ã

2
i′j′) is O

(
1
n2 E (Ā4

ij)
)
. Therefore the third summand in equation (B.32) scaled

by Ṽ2
2

can be argued to be o(1) in similar lines of the argument for the first summand in equation

(B.32).

For the second summand in equation (B.32), in the similar line we can argue that the leading

term of cov(Ã2
ij, Ã

2
jj′) is

O

(
1

n

)
E
[
Ā4
ij

]
+ O(1)E

[
Ā2
ijĀ

2
jj′

]
.

Therefore the leading term of 1
n4

∑
i<j<j′

cov(Ã2
ij, Ã

2
jj′) is

O

(
1

n2

)
E
[
Ā4
ij

]
+ O

(
1

n

)
E
[
Ā2
ijĀ

2
jj′

]
.
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For the second term above, using the power mean inequality we can write

1

n

E
[
Ā2
ij Ā

2
jj′

]
(E [H2(X,X ′)])2

≤ C3
1

n

τ4 E
[
L̄2(X,X ′) L̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′3
1

n

τ4 E
[
L̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′′3
1

n

τ4 E
[
R̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

= C3
1

n

E
[
H2(X,X ′)H2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′3
1

n

τ2 E
[
H2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

+ C ′′3
1

n

τ4 E
[
R̄2(X,X ′) R̄2(X ′, X ′′)

]
(E [H2(X,X ′)])2

for some positive constants C3, C
′
3 and C ′′3 . Using Hölder’s inequality it can be seen that the

second summand in equation (B.32) scaled by Ṽ2
2

is o(1) as n, p → ∞ under Assumptions B.2.1

and B.2.2. This completes the proof that

var(V̂2)
V 2
2

= o(1) .

A similar line of argument and the simple observation that

K̂(Xk, Yl) = K(Xk, Yl)−
1

n

n∑
a=1

K(Xa, Yl)−
1

m

m∑
b=1

K(Xk, Yb) +
1

nm

n∑
a=1

m∑
b=1

K(Xa, Yb)

= K̄(Xk, Yl)−
1

n

n∑
a=1

K̄(Xa, Yl)−
1

m

m∑
b=1

K̄(Xk, Yb) +
1

nm

n∑
a=1

m∑
b=1

K̄(Xa, Yb)

will show that under Assumptions 3.3.5, B.2.1 and B.2.2,

var(V̂1)
V 2
1

= o(1) and
var(V̂3)
V 2
3

= o(1) .

♦

Lemma B.4.4. Under H0 and Assumptions 3.3.5, B.2.1 and B.2.2, as n,m and p → ∞, we have

V̂ /V
P→ 1 .
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Proof. It is enough to show that

E

( V̂
V
− 1

)2
 = o(1) , i.e. ,

var(V̂ ) +
(
E [V̂ ]− V

)2
V 2

= o(1) .

It suffices to show the following

var(V̂i)
V 2
i

= o(1) and

(
E [V̂i]− Vi

)2
V 2
i

= o(1), 1 ≤ i ≤ 3.

The proof can be completed using Lemmas B.4.2 and B.4.3. ♦

Proof of Theorem 15. The proof essentially follows from Lemma B.4.1 and B.4.4.

♦

Proof of Proposition B.1.2. The proof of the first part follows similar lines of the proof of Proposi-

tion 1 in Székely et al. (2014), replacing the Euclidean distance betweenX andX ′, viz. ‖X−X ′‖p̃ ,

by K(X,X ′). The second part of the proposition has a proof similar to Lemma 2.1 in Yao et

al. (2018) and Section 1.1 in the Supplement of Yao et al. (2018). ♦

Proof of Theorem 14. The first two parts of the theorem immediately follow from Proposition 2.6

and Theorem 2.7 in Lyons (2013), respectively and the parallel U-statistics theory (see for example

Serfling (1980)). The third part follows from the first part and the fact that D is non-zero for two

dependent random vectors. ♦

Proof of Theorem 3. Following the definition of D(X, Y ) and applying Proposition 3.3.1, we can
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write

1

τXY
D2(X, Y ) = E

K(X,X ′)

τX

K(Y, Y ′)

τY
+ E

K(X,X ′)

τX
E
K(Y, Y ′)

τY

− 2E
K(X,X ′)

τX

K(Y, Y ′′)

τY

= E
(

1 +
1

2
L(X,X ′) +R(X,X ′)

) (
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
+ E

(
1 +

1

2
L(X,X ′) +R(X,X ′)

)
E
(

1 +
1

2
L(Y, Y ′) +R(Y, Y ′)

)
− 2E

(
1 +

1

2
L(X,X ′) +R(X,X ′)

) (
1 +

1

2
L(Y, Y ′′) +R(Y, Y ′′)

)
= L + R,

where

L =
1

4
[EL(X,X ′)L(Y, Y ′) + EL(X,X ′)EL(Y, Y ′) − 2EL(X,X ′)L(Y, Y ′′) ] ,

and

R = E
[

1

2
L(X,X ′)R(Y, Y ′) +

1

2
R(X,X ′)L(Y, Y ′) + R(X,X ′)R(Y, Y ′)

]
− 2E

[
1

2
L(X,X ′)R(Y, Y ′′) +

1

2
R(X,X ′)L(Y, Y ′′) + R(X,X ′)R(Y, Y ′′)

]
+ ER(X,X ′)ER(Y, Y ′).
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Some simple calculations yield

L =
1

4τ 2XY

{
E [K2(X,X ′)K2(Y, Y ′)] + E [K2(X,X ′)]E [K2(Y, Y ′)]

− 2E [K2(X,X ′)K2(Y, Y ′′)]

=
1

4τ 2XY

p∑
i=1

q∑
j=1

{
E [ρi(X(i), X

′
(i)) ρj(Y(j), Y

′
(j))] + E [ρi(X(i), X

′
(i))]E [ρj(Y(j), Y

′
(j))]

− 2E [ρi(X(i), X
′
(i)) ρj(Y(j), Y

′′
(j))]
}

=
1

4τ 2XY

p∑
i=1

q∑
j=1

D2
ρi, ρj

(X(i), Y(j)) .

To observe that the remainder term is negligible, note that under Assumption 3.4.2,

E [L(X,X ′)R(Y, Y ′)] ≤
(
E [L(X,X ′)2]E [R(Y, Y ′)2]

)1/2
= O(a′pb

′2
q ) ,

E [R(X,X ′)L(Y, Y ′)] ≤
(
E [R(X,X ′)2]E [L(Y, Y ′)2]

)1/2
= O(a′2p b

′
q) ,

E [R(X,X ′)R(Y, Y ′)] ≤
(
E [R(X,X ′)2]E [R(Y, Y ′)2]

)1/2
= O(a′2p b

′2
q ) ,

Clearly,R = τXYR = O(τXY a
′2
p b
′
q + τXY a

′
pb
′2
q ). ♦

Proof of Theorem 4. The proof is essentially similar to the proof of Theorem 3. Note that using

Proposition 3.3.1, we can write

1

τY
D2(X, Y ) = EK(X,X ′)

K(Y, Y ′)

τY
+ EK(X,X ′)E

K(Y, Y ′)

τY
− 2EK(X,X ′)

K(Y, Y ′′)

τY

= EK(X,X ′)

(
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
+ EK(X,X ′)E

(
1 +

1

2
L(Y, Y ′) +R(Y, Y ′)

)
− 2EK(X,X ′)

(
1 +

1

2
L(Y, Y ′′) +R(Y, Y ′′)

)
= L + R,
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where

L =
1

2τ 2Y

q∑
j=1

{
E [K(X,X ′) ρj(Y(j), Y

′
(j))] + E [K(X,X ′)E [ρj(Y(j), Y

′
(j))]

− 2E [K(X,X ′) ρj(Y(j), Y
′′
(j))]
}

=
1

2τ 2Y

q∑
j=1

D2
K, ρj

(X, Y(j)) ,

and

R = E [K(X,X ′)R(Y, Y ′) ] + E [K(X,X ′)] E [R(Y, Y ′)] − 2E [K(X,X ′)R(Y, Y ′′) ] .

Under the assumption that E [R2(Y, Y ′)] = O(b′4q ), using Hölder’s inequality it is easy to see that

τYR = O(τY b
′2
q ) = o(1).

♦

Proof of Theorem 5. Following equation (B.29), we have for 1 ≤ k 6= l ≤ n

D̃X
kl =

τX
2
L̃(Xk, Xl) + τXR̃(Xk, Xl) =

1

2τX

p∑
i=1

ρ̃i(Xk(i), Xl(i)) + τXR̃(Xk, Xl) ,

D̃Y
kl =

τY
2
L̃(Yk, Yl) + τY R̃(Yk, Yl) =

1

2τY

q∑
j=1

ρ̃i(Yk(j), Yl(j)) + τY R̃(Yk, Yl) .

From equation (1.14) in Chapter 3 it is easy to check that

D̃2
n(X, Y ) =

1

4τXY

p∑
i=1

q∑
j=1

D̃2
n ; ρi,ρj

(X(i), Y(j)) +
τXY

2n(n− 3)

∑
k 6=l

L̃(Xk, Xl)R̃(Yk, Yl)

+
τXY

2n(n− 3)

∑
k 6=l

L̃(Yk, Yl)R̃(Xk, Xl) +
τXY

n(n− 3)

∑
k 6=l

R̃(Xk, Xl) R̃(Yk, Yl) .

Under Assumption 3.4.3, using Hölder’s inequality and power mean inequality, it can be verified
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that

∑
k 6=l

L̃(Xk, Xl)R̃(Yk, Yl) ≤

(∑
k 6=l

L̃(Xk, Xl)
2
∑
k 6=l

R̃(Yk, Yl)
2

)1/2

= Op(apb
2
q) ,

∑
k 6=l

L̃(Yk, Yl)R̃(Xk, Xl) ≤

(∑
k 6=l

L̃(Yk, Yl)
2
∑
k 6=l

R̃(Xk, Xl)
2

)1/2

= Op(a
2
pbq) ,

∑
k 6=l

R̃(Xk, Xl)R̃(Yk, Yl) ≤

(∑
k 6=l

R̃(Xk, Xl)
2
∑
k 6=l

R̃(Yk, Yl)
2

)1/2

= Op(a
2
pb

2
q) .

This completes the proof of the theorem. ♦

Proof of Theorem 6. Following equation (B.29), we have for 1 ≤ k 6= l ≤ n

D̃Y
kl =

1

2τY

q∑
j=1

ρ̃j(Yk(j), Yl(j)) + τY R̃(Yk, Yl) ,

and therefore

D̃2
n(X, Y ) =

1

2τY

q∑
j=1

D̃2
n ;K,ρj

(X, Y(j)) +
τY

n(n− 3)

∑
k 6=l

K̃(Xk, Xl)R̃(Yk, Yl) .

Using power mean inequality, it can be verified that
∑

k 6=l K̃(Xk, Xl)R̃(Yk, Yl) = Op(b
2
q). This

completes the proof of the theorem. ♦

Proof of Theorem 7. The proof follows similar lines of the proof Theorem 2.2.1 in Zhu et al. (2020),

with the distance metric being the one from the class of metrics we proposed in equation (3.2). ♦

Proof of Theorem 8. The proof of the theorem follows similar lines of the proof of Proposition

2.2.2 in Zhu et al. (2020). ♦

Proof of Theorem 16. The decomposition into the leading term follows the similar lines of the

proof of Theorem 5. The negligibility of the remainder term can be shown by mimicking the proof

of Theorem 3.1.1 in Zhu et al. (2020). ♦
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Proof of Theorem 17. It essentially follows similar lines of Proposition 3.2.1 in Zhu et al. (2020).

♦
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APPENDIX C

This is the Appendix for Chapter 4.

C.1 Sketch of the proof of Theorem 9

From the proof of Lemma D.1 in the supplementary materials of Chakraborty and Zhang (2019),

we can write under H0

E1,n,k = Ln,k + Rn,k (C.1)

where

Ln,k =
1

k(n− k)

k∑
i1=1

n∑
i2=k+1

H(Xi1 , Xi2) −
1

k(k − 1)

∑
1≤i1<i2≤k

H(Xi1 , Xi2)

− 1

(n− k)(n− k − 1)

∑
k+1≤i1<i2≤n

H(Xi1 , Xi1) ,

and Rn,k =
2τ

k(n− k)

k∑
i1=1

n∑
i2=k+1

R(Xi1 , Xi2) −
τ

k(k − 1)

∑
1≤i1 6=i2≤k

R(Xi1 , Xi2)

− τ

(n− k)(n− k − 1)

∑
k+1≤i1 6=i2≤n

R(Xi1 , Xi1) .

(C.2)

Following the discussions in Section D in the supplementary materials of Chakraborty and

Zhang (2019), the variance of Ln,k is given by

Vn,k :=
( 1

k(n− k)
+

1

2 k(k − 1)
+

1

2 (n− k)(n− k − 1)

)
EH2(X,X ′)

=: Vn,k ; 1 + Vn,k ; 2 + Vn,k ; 3 ,

(C.3)
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which can be estimated by

V̂n,k : =
1

k(n− k)
4 cdCov2k,n−k +

1

2 k(k − 1)
4 D̃2

k +
1

2 (n− k)(n− k − 1)
4 D̃2

n−k

=: V̂n,k ; 1 + V̂n,k ; 2 + V̂n,k ; 3 .

(C.4)

Define

T̆1,n,k =
E1,n,k√
Vn,k

. (C.5)

For 1 ≤ l ≤ k < m ≤ n, define S̃n(k,m) :=
∑m

i2=k+1

∑i2−1
i1=k

H(Xi1 , Xi2) and

L̃n(k ; l,m) :=
1

(k − l + 1)(m− k)

m∑
i2=k+1

k∑
i1=l

H(Xi1 , Xi2)

− 1

(k − l + 1)(k − l)
∑

l≤i1<i2≤k

H(Xi1 , Xi2)

− 1

(m− k)(m− k − 1)

∑
k+1≤i1<i2≤m

H(Xi1 , Xi1) .

(C.6)

From (C.2) and (C.6), it is easy to see that Ln,k = L̃n(k ; 1, n). With the definition of S̃n(k,m) as

above, we can write

L̃n(k ; l,m) = − 1

(k − l)(k − l + 1)
S̃n(l, k) − 1

(m− k)(m− k − 1)
S̃n(k + 1,m)

+
1

(k − l + 1)(m− k)

(
S̃n(l,m)− S̃n(l, k)− S̃n(k + 1,m)

)
.

(C.7)

Denote Sn(a, b) := S̃n(bnac+1, bnbc) for any 0 ≤ a < b ≤ 1. Further let l = bnac+1, k = bnrc,

and m = bnbc for 0 ≤ a < r < b ≤ 1. Therefore from (C.7) we have

L̃n(k ; l,m) = − 1

(k − l)(k − l + 1)
Sn(a, r) − 1

(m− k)(m− k − 1)
Sn(r, b)

+
1

(k − l + 1)(m− k)

(
Sn(a, b)− Sn(a, r)− Sn(r, b)

)
.

(C.8)
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Also define

Ṽn(k ; l,m) :=
( 1

(k − l + 1)(m− k)
+

1

2(k − l)(k − l + 1)
+

1

2(m− k)(m− k − 1)

)
V0 ,

(C.9)

where V0 := EH2(X,X ′). From (C.3) and (C.9), it is easy to check that Vn,k = Ṽn(k ; 1, n).

Theorem 18. Under Assumption 4.3.2, as n, p→∞,

{ √2

n
√
V0
Sn(a, b)

}
a,b∈ [0,1]

d−→ Q in L∞
(
[0, 1]2

)
,

where Q is a centered gaussian process with covariance function given by

cov
(
Q(a1, b1) , Q(a2, b2)

)
=
(
b1 ∧ b2 − a1 ∨ a2

)2
1
(
b1 ∧ b2 > a1 ∨ a2

)
.

In particular, var
(
Q(a, b)

)
= (b− a)2 1(b > a).

The proof of Theorem 18 is given in Section C.2. From (C.8) and (C.9), we can write

L̃n(k ; l,m)√
Ṽn(k ; l,m)

=
1√

1
(k−l+1)(m−k) + 1

2(k−l)(k−l+1) + 1
2(m−k)(m−k−1)

√
V0
×
[
− 1

(k − l)(k − l + 1)
Sn(a, r)

− 1

(m− k)(m− k − 1)
Sn(r, b) +

1

(k − l + 1)(m− k)

(
Sn(a, b)− Sn(a, r)− Sn(r, b)

)]
=

1

n
√

2
(k−l+1)(m−k) + 1

(k−l)(k−l+1) + 1
(m−k)(m−k−1)

√
V0
×
[
− n2

(k − l)(k − l + 1)

√
2Sn(a, r)

n
√
V0

− n2

(m− k)(m− k − 1)

√
2Sn(r, b)

n
√
V0

+
n2

(k − l + 1)(m− k)

(√2Sn(a, b)

n
√
V0

−
√

2Sn(a, r)

n
√
V0

−
√

2Sn(r, b)

n
√
V0

)]
.

Combining the above with Theorem 18, it is not hard to see that as n, p→∞,

{
L̃n(bnrc ; bnac+ 1, bnbc)√
Ṽn(bnrc ; bnac+ 1, bnbc)

}
a,r,b∈ [0,1]

d−→ G in L∞
(
[0, 1]3

)
, (C.10)
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where

G(r ; a, b) :=
1√

2
(r−a)(b−r) + 1

(r−a)2 + 1
(b−r)2

×
[
− 1

(r − a)2
Q(a, r) − 1

(b− r)2
Q(r, b)

+
1

(r − a)(b− r)

(
Q(a, b)−Q(a, r)−Q(r, b)

)]

for 0 ≤ a < r < b ≤ 1 and zero otherwise. As a further consequence, when a = 0 and b = 1, we

have

{
L̃n(bnrc ; 1, n))√
Ṽn(bnrc ; 1, n)

}
r∈ [0,1]

d−→ G0 in L∞ ([0, 1]) , (C.11)

where

G0(r) :=
1√

2
r(1−r) + 1

r2
+ 1

(1−r)2

×
[
− 1

r2
Q(0, r) − 1

(1− r)2
Q(r, 1) +

1

r(1− r)

(
Q(0, 1)−Q(0, r)−Q(r, 1)

)]
= Q(0, 1) − 1

r
Q(0, r) − 1

1− r
Q(r, 1)

(C.12)

for 0 < r < 1 and zero otherwise. The second equality in (C.12) follows from some straightfor-

ward calculations.

Now for 1 ≤ l ≤ k < m ≤ n, define R̃n(k,m) :=
∑m

i2=k+1

∑i2−1
i1=k

τ R(Xi1 , Xi2) and

Q̃n(k ; l,m) :=
2τ

(k − l + 1)(m− k)

m∑
i2=k+1

k∑
i1=l

R(Xi1 , Xi2) − τ

(k − l + 1)(k − l)
∑

l≤i1 6=i2≤k
R(Xi1 , Xi2)

− τ

(m− k)(m− k − 1)

∑
k+1≤i1 6=i2≤m

R(Xi1 , Xi1) .

(C.13)

Comparing (C.2) and (C.13), it is easy to verify that Rn,k = Q̃n(k ; 1, n). With the definition of
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R̃n(k,m) as above, clearly we have

Q̃n(k ; l,m) =
2

(k − l + 1)(m− k)

(
R̃n(l,m)− R̃n(l, k)− R̃n(k + 1,m)

)
− 2

(k − l + 1)(k − l)
R̃n(l, k) − 2

(m− k)(m− k − 1)
R̃n(k + 1,m) .

(C.14)

Denote Rn(a, b) := R̃n(bnac+ 1, bnbc) for any 0 ≤ a < b ≤ 1. Therefore we have from (C.15)

Q̃n(k ; l,m) =
2

(k − l + 1)(m− k)

(
Rn(a, b)−Rn(a, r)−Rn(r, b)

)
− 2

(k − l + 1)(k − l)
Rn(a, r)

− 2

(m− k)(m− k − 1)
Rn(r, b) .

(C.15)

Define Gn(a, b) := 1
n
√
V0
Rn(a, b).

Theorem 19. Under Assumption 4.3.3, as n, p→∞, sup
a,b∈ [0,1]2

|Gn(a, b)| = op(1).

The proof of Theorem 19 is given in Section C.2. From (C.9) and (C.15), we have

Q̃n(k ; l,m)√
Ṽn(k ; l,m)

=
1√

1
(k−l+1)(m−k) + 1

2(k−l)(k−l+1)
+ 1

2(m−k)(m−k−1)
√
V0
×

[ 2

(k − l + 1)(m− k)

(
Rn(a, b)−Rn(a, r)−Rn(r, b)

)
− 2

(k − l)(k − l + 1)
Rn(a, r) +

2

(m− k)(m− k − 1)
Rn(r, b)

]
.

Multiplying both the numerator and denominator above by n2, it is not hard to see that as a conse-

quence of Theorem 19 we have

sup
a,r,b∈ [0,1]

∣∣∣∣∣ Q̃n(bnrc ; bnac+ 1, bnbc)√
Ṽn(bnrc ; bnac+ 1, bnbc)

∣∣∣∣∣ = op(1) as n, p→∞ . (C.16)
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As a special case, putting a = 0 and b = 1, we get from (C.16)

sup
r∈ [0,1]

∣∣∣∣∣ Q̃n(bnrc ; 1, n)√
Ṽn(bnrc ; 1, n)

∣∣∣∣∣ = op(1) as n, p→∞ . (C.17)

Theorem 20. Under Assumptions 4.3.2 and 4.3.3, as n, p→∞,

sup
r∈ [0,1]

∣∣∣∣∣ V̂n,bnrcVn,bnrc
− 1

∣∣∣∣∣ = op(1) .

With all the above, the proof of Theorem 9 can be completed as below.

Proof of Theorem 9. Combining (C.1) and (C.5) with (C.11) and (C.17) yields

{
T̆1,n,bnrc

}
r∈[0,1]

d−→ G0 in L∞ ([0, 1]) ,

as n, p→∞. This equipped with Theorem 20 completes the proof of Theorem 9. ♦

C.2 Technical Appendix

Proof of Theorem 18. To establish the uniform weak convergence of
√
2

n
√
V0
Sn(a, b), by Theorem

10.2 in Pollard (1990) we need to show :

T1. the finite dimensional convergence, viz.

( √2

n
√
V0
Sn(a1, b1) , . . . ,

√
2

n
√
V0
Sn(as, bs)

)
d−→
(
Q(a1, b1), . . . , Q(as, bs)

)

as n, p→∞ for fixed 0 ≤ ai < bi ≤ 1, 1 ≤ i ≤ s, and

T2. asymptotic stochastic equicontinuity of
√
2

n
√
V0
Sn(a, b) on [0, 1]2, viz. for any x > 0,

lim
δ↓0

lim sup
n,p→∞

P
(

sup
‖(a,b)−(c,d)‖≤δ

∣∣∣ √2

n
√
V0
Sn(a, b) −

√
2

n
√
V0
Sn(c, d)

∣∣∣) = 0 .
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To prove T1, we will consider the case s = 2 and the general case can be proved in a similar

fashion). By Cramér-Wold theorem, it is equivalent to prove

α1

√
2

n
√
V0
Sn(a1, b1) + α2

√
2

n
√
V0
Sn(a2, b2)

d−→ α1Q(a1, b1) + α2Q(a2, b2) (C.18)

for any fixed α1, α2 ∈ R, as n, p → ∞. As 0 ≤ ai < bi ≤ 1, i = 1, 2, we consider the following

three cases : i) a1 ≤ a2 ≤ b2 ≤ b1, ii) a1 ≤ a2 ≤ b1 ≤ b2, and iii) a1 ≤ b1 ≤ a2 ≤ b2.

Consider case (ii). We will prove T1 and T2 for this case and similar arguments can prove them

for the other two cases.

Proof of T1. We can write

α1

√
2

n
√
V0
Sn(a1, b1) + α2

√
2

n
√
V0
Sn(a2, b2)

=

√
2

n
√
V0

[
α1

bnb1c∑
i=bna1c+2

i−1∑
j=bna1c+1

H(Xi, Xj) + α2

bnb2c∑
i=bna2c+2

i−1∑
j=bna2c+1

H(Xi, Xj)
]

=

bnb2c∑
i=bna1c+2

ξ̃n,i ,

(C.19)

where

ξ̃n,i :=

√
2

n
√
V0


α1 ξ1,i if bna1c+ 2 ≤ i ≤ bna2c+ 1

α1 ξ1,i + α2 ξ2,i if bna2c+ 2 ≤ i ≤ bnb1c

α2 ξ2,i if bnb1c+ 1 ≤ i ≤ bnb2c

,

with ξ1,i :=
i−1∑

j=bna1c+1

H(Xi, Xj) , and ξ2,i :=
i−1∑

j=bna2c+1

H(Xi, Xj) .

(C.20)

Define Fi := σ(Xi, Xi−1, . . . ). By Theorem 3.2 and Corollary 3.1 in Hall and Heyde (1980), it

suffices to show :

P1. For each n ≥ 1, {
∑i

l=2 ξ̃n,bna1c+l,Fl}
bnb2c−bna1c
i=2 is a sequence of zero mean, square inte-

grable martingales.
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P2. Vn :=
∑bnb2c−bna1c

i=2 E
[
ξ̃2n,bna1c+i | Fbna1c+i−1

] P−→ α2
1 (b1−a1)2 +α2

2 (b2−a2)2 + 2α1 α2 (b1−

a2)
2, as n, p→∞.

P3.
∑bnb2c

i=bna1c+2 E
[
ξ̃4n,i
]
−→ 0, as n, p→∞.

From Theorem 3.2 in Hall and Heyde (1980),the variance of α1Q(a1, b1) + α2Q(a2, b2) should

be plimn,p→∞ Vn as in P2. From there it is intuitive that

cov
(
Q(a1, b1) , Q(a2, b2)

)
=
(
b1 ∧ b2 − a1 ∨ a2

)2
1
(
b1 ∧ b2 > a1 ∨ a2

)
.

To show P1, it is easy to see that ξ̃n,bna1c+l is square integrable, E
(
ξ̃n,bna1c+l

)
= 0 andF2 ⊆ Fl.

To prove P3, note that using the power mean inequality

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
r

≤ nr−1
n∑
i=1

|ai|r (C.21)

for ai ∈ R, 1 ≤ i ≤ n, n ≥ 2 and r > 1, we can write

bnb2c∑
i=bna1c+2

E
[
ξ̃4n,i
]

=

bna2c+1∑
i=bna1c+2

E
[
ξ̃4n,i
]

+

bnb1c∑
i=bna2c+2

E
[
ξ̃4n,i
]

+

bnb2c∑
i=bnb1c+1

E
[
ξ̃4n,i
]

=

bna2c+1∑
i=bna1c+2

E
[
α1

√
2

n
√
V0

ξ1,i
]4

+

bnb1c∑
i=bna2c+2

E
[
α1

√
2

n
√
V0

ξ1,i + α2

√
2

n
√
V0

ξ2,i
]4

+

bnb2c∑
i=bnb1c+1

E
[
α2

√
2

n
√
V0

ξ2,i
]4

.
1

n4 V 2
0

(
α4
1

bnb1c∑
i=bna1c+2

E
[
ξ41,i
]

+ α4
2

bnb2c∑
i=bna2c+2

E
[
ξ42,i
])
.

(C.22)

We have essentially used the definitions in (C.20) in the above calculations. Now for the first
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summand in the right hand side of (C.22), note that using (C.20) we have

1

n4 V 2
0

bnb1c∑
i=bna1c+2

E
[
ξ41,i
]

=
1

n4 V 2
0

bnb1c∑
i=bna1c+2

E
[ i−1∑
j=bna1c+1

H(Xi, Xj)
]4

=
1

n4 V 2
0

bnb1c∑
i=bna1c+2

[ i−1∑
j=bna1c+1

EH4(Xi, Xj) + 3
∑

bna1c+1≤j1 6=j2≤i−1

EH2(Xi, Xj1)H2(Xi, Xj2)
]

=
1

n4
O
(n2 EH4(X,X ′) + n3 EH2(X,X ′)H2(X,X ′′)[

EH2(X,X ′)
]2 )

.

(C.23)

This is because bnac � n for 0 < a ≤ 1. In fact it is easy to see that lim
n→∞

bnac
n

= lim
n→∞

na− {na}
n

=

a, as 0 ≤ {na} < 1.

Similar expressions hold for the second summand in the right hand side of (C.22). With this, it

is easy to see that under Assumption 4.3.2

bnb2c∑
i=bna1c+2

E
[
ξ̃4n,i
]

= o(1) as n, p→∞ ,

which completes the proof of P3.

To prove P2, write

Vn =

bnb2c−bna1c∑
i=2

E
[
ξ̃2n,bna1c+i | Fbna1c+i−1

]
=

bnb2c∑
l=bna1c+2

E
[
ξ̃2n,l | Fl−1

]
(C.24)
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where we have simply substituted l = bna1c+ i. From (C.24) we have

Vn =

bna2c+1∑
l=bna1c+2

E
[ ( √2

n
√
V0

α1 ξ1,l

)2 ∣∣Fl−1] +

bnb1c∑
l=bna2c+2

E
[{ √2

n
√
V0

(
α1 ξ1,l + α2 ξ2,l

)}2 ∣∣Fl−1]

+

bnb2c∑
l=bnb1c+1

E
[ ( √2

n
√
V0

α2 ξ2,l

)2 ∣∣Fl−1]

=
2

n2V0

(
α2
1

bnb1c∑
l=bna1c+2

E
[
ξ21,l
∣∣Fl−1] + α2

2

bnb2c∑
l=bna2c+2

E
[
ξ22,l
∣∣Fl−1]+

2α1 α2

bnb1c∑
l=bna2c+2

E
[
ξ1,l ξ2,l

∣∣Fl−1])
= α2

1 V1n + α2
2 V2n + 2α1α2 V3n ,

(C.25)

where

V1n =
2

n2V0

bnb1c∑
l=bna1c+2

E
[
ξ21,l
∣∣Fl−1] ,

V2n =
2

n2V0

bnb2c∑
l=bna2c+2

E
[
ξ22,l
∣∣Fl−1] ,

V3n =
2

n2V0

bnb1c∑
l=bna2c+2

E
[
ξ1,l ξ2,l

∣∣Fl−1] .
(C.26)

Using the definition of ξ1,l from (C.20), we can write

V1n =
2

n2V0

bnb1c∑
l=bna1c+2

l−1∑
j1,j2=bna1c+1

E
[
H(Xl, Xj1)H(Xl, Xj2)

∣∣Fl−1] , (C.27)

and therefore

EV1n =
2

n2V0

bnb1c∑
l=bna1c+2

l−1∑
j=bna1c+1

E
[
H2(Xl, Xj)

]
, (C.28)

as E
[
H(Xl, Xj1)H(Xl, Xj2)

]
= 0 for j1 6= j2. Using the fact that V0 = E

[
H2(X,X ′)

]
, some
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straightforward calculations yield

EV1n =
2

n2V0

∑
bna1c+1≤j<l≤bnb1c

E
[
H2(X,X ′)

]
=

2

n2

(
bnb1c − bna1c

2

)
=

1

n2

(
bnb1c − bna1c)

(
bnb1c − bna1c − 1)

→ (b1 − a1)2 ,

(C.29)

as n → ∞. Define Ll(j1, j2) := E
[
H(Xl, Xj1)H(Xl, Xj2)

∣∣Fl−1]. Then from (C.27) we can

write

V1n =
2

n2V0

bnb1c∑
l=bna1c+2

l−1∑
j1,j2=bna1c+1

Ll(j1, j2) ,

and therefore

var (V1n) =
4

n4V 2
0

bnb1c∑
l,l′=bna1c+2

l−1∑
j1,j2=bna1c+1

l′−1∑
j′1,j
′
2=bna1c+1

cov
(
Ll(j1, j2), Ll′(j

′
1, j
′
2)
)
.

Following the proof of Lemma D.1 in the supplementary materials of Chakraborty and Zhang (2019),

we have ELl(j1, j2) = 0 for j1 6= j2, and

E
[
Ll(j1, j2)Ll′(j

′
1, j
′
2)
]

=



E [H2(Xl, Xj1)H
2(X ′l′ , Xj1)] if j1 = j2 = j′1 = j′2 ,

E [H(Xl, Xj1)H(Xl, Xj2)H(X ′l′ , Xj1)H(X ′l′ , Xj2)] if j1 = j′1 6= j2 = j′2

or j1 = j′2 6= j′1 = j2 ,

E [H2(Xl, Xj1)]E
[
H2(Xl′ , Xj′1

)
]

if j1 = j2 6= j′1 = j′2 .
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where the above expression holds for l = l′ as well. Therefore

var (V1n) =
4

n4V 2
0

[∑
l=l′

{ l−1∑
j1=bna1c+1

cov
(
H2(Xl, Xj1), H2(X ′l , Xj1)

)
+ 2

∑
bna1c+1≤j1 6=j2≤l−1

E
[
H(Xl, Xj1)H(Xl, Xj2)H(X ′l , Xj1)H(X ′l , Xj2)

] }

+ 2
∑

bna1c+2≤l<l′≤bnb1c

{ l−1∑
j1=bna1c+1

cov
(
H2(Xl, Xj1), H2(X ′l′ , Xj1)

)
+ 2

∑
bna1c+1≤j1 6=j2≤l−1

E
[
H(Xl, Xj1)H(Xl, Xj2)H(X ′l′ , Xj1)H(X ′l′ , Xj2)

] }]
.

This implies

var (V1n) =
1

n4V 2
0

O
(
n3 E

[
H2(X,X ′)H2(X,X ′′)

]
+ n4 E

[
H(X,X ′′)H(X ′, X ′′)H(X,X ′′′)H(X ′, X ′′′)

] )
= o(1) ,

(C.30)

as n, p→∞, under Assumption 4.3.2. Combining (C.29) and (C.30), we get

E
(
V1n − (b1 − a1)2

)2
= var (V1n) +

(
EV1n − (b1 − a1)2

)2
= o(1) ,

which combined with Chebyshev’s inequality implies

V1n
P−→ (b1 − a1)2 as n, p→∞ . (C.31)

Likewise it can be shown that as n, p→∞,

V2n
P−→ (b2 − a2)2 and V3n

P−→ (b1 − a2)2 . (C.32)
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Combining (C.31) and (C.32), we get from (C.25)

Vn
P−→ α2

1 (b1 − a1)2 + α2
2 (b2 − a2)2 + 2α1 α2 (b1 − a2)2 . (C.33)

This completes the proof of P2, and thereby the proof of T1, i.e., the finite dimensional conver-

gence. ♦

Proof of T2. Denote u = (a, b) and v = (c, d). Also define Wn(u) :=
√
2

n
√
V0
Sn(u) for u ∈ [0, 1]2.

To prove the stochastic equicontinuity of Wn(u) for u ∈ [0, 1]2, we need to show for any ε > 0

lim
δ↓0

lim sup
n,p→∞

P
(

sup
u,v ∈ [0,1]2
d(u,v)<δ

∣∣Wn(u) − Wn(v)
∣∣ ) = 0 ,

where
(
[0, 1]2, d

)
is compact.

By Theorem A.8 in Li and Racine (2007), it suffices to show that ∀u, v ∈ [0, 1]2

E
∣∣Wn(u) − Wn(v)

∣∣α . d γ(u, v) (C.34)

for some α > 0 and γ > 1. For our purpose, we choose d(u, v) = ‖u − v‖1/21 for u, v ∈ [0, 1]2.

Note that [0, 1]2 ⊆ R2 is compact (closed and bounded) with respect to the metric ρ(u, v) =

‖u − v‖1. It is easy to verify that [0, 1]2 is closed and bounded (and hence compact) with respect

to the metric d(u, v) = ρ1/2(u, v) as well.

Choosing α = 2 and γ = 2, we will prove that ∀u, v ∈ [0, 1]2

E
∣∣Wn(u) − Wn(v)

∣∣2 . d 2(u, v) , (C.35)

which will complete the proof.

Towards that end, consider the case a < c < d < b. We will show that (C.35) holds in this

case, and similar arguments will do the job for other cases.
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Observe that

Wn(u) − Wn(v) =

√
2

n
√
V0
Sn(a, b) −

√
2

n
√
V0
Sn(c, d)

=

√
2

n
√
V0

[ bnbc∑
i=bnac+2

i−1∑
j=bnac+1

H(Xi, Xj) −
bndc∑

i=bncc+2

i−1∑
j=bncc+1

H(Xi, Xj)
]

=

√
2

n
√
V0

[ bncc∑
i=bnac+2

i−1∑
j=bnac+1

H(Xi, Xj) +

bndc∑
i=bncc+1

bncc∑
j=bnac+1

H(Xi, Xj)

bnbc∑
i=bndc+1

bncc∑
j=bnac+1

H(Xi, Xj) +

bnbc∑
i=bndc+1

bndc∑
j=bncc+1

H(Xi, Xj)

bnbc∑
i=bndc+2

i−1∑
j=bndc+1

H(Xi, Xj)
]

=: I + II + III + IV + V .

(C.36)

By power mean inequality,

(I + II + III + IV + V )2 . I2 + II2 + III2 + IV 2 + V 2 . (C.37)

Now

E (I2) =
2

n2V0

bncc∑
i1,i2=bnac+2

i1−1∑
j1=bnac+1

i2−1∑
j2=bnac+1

E
[
H(Xi1 , Xj1)H(Xi2 , Xj2)

]
.

Clearly E
[
H(Xi1 , Xj1)H(Xi1 , Xj1)

]
= 0 if the cardinality of the set {i1, j1} ∩ {i2, j2} is 0 or 1.

Therefore we have

E (I2) =
2

n2V0

bncc∑
i=bnac+2

i−1∑
j=bnac+1

E
[
H2(Xi, Xj)

]
=

2

n2V0

∑
bnac+1≤j <i≤bncc

V0

=
1

n2

(
bncc − bnac

) (
bncc − bnac − 1

)
.

(C.38)
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Note that

bncc − bnac − 1 ≤ nc− na+ na− bnac − 1

= n(c− a) + ({na} − 1)

≤ n(c− a) ,

(C.39)

as {na} ≤ 1. Therefore we have from (C.38) and (C.39)

E (I2) . c− a . (C.40)

Likewise it can be shown that

E (V 2) . b− d . (C.41)

Now

E (II2) =
2

n2V0

bndc∑
i1,i2=bncc+1

bncc∑
j1,j2=bnac+1

E
[
H(Xi1 , Xj1)H(Xi2 , Xj2)

]
=

2

n2V0

bndc∑
i=bncc+1

bncc∑
j=bnac+1

E
[
H2(Xi, Xj)

]
=

2

n2

(
bndc − bncc

) (
bncc − bnac

)
.

1

n

[
n(c− a) + 1

]
. c− a .

(C.42)

Similarly it can be shown that

E (III2) . c− a and E (IV 2) . b− d . (C.43)
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Combining (C.40)-(C.43) with (C.36) and (C.37), we get

E
∣∣Wn(u) − Wn(v)

∣∣2 . (c− a) + (b− d) = ‖u− v‖1 = d 2(u, v) .

This proves (C.35) and thereby completes the proof of T2.

♦

This completes the proof of Theorem 18.

♦

Proof of Theorem 19. Again consider the subset [0, 1]2 ⊆ R2 equipped with the metric d(u, v) =

‖u− v‖1/21 for u, v ∈ [0, 1]2. By Theorem 1 in Andrews (1992), we essentially need to show :

A1. [0, 1]2 is totally bounded with respect to the metric d.

A2. Pointwise convergence : Gn(u)
P→ 0 ∀u ∈ [0, 1]2 as n, p→∞.

A3. Asymptotic stochastic equicontinuity : for any ε > 0,

lim
δ↓0

lim sup
n,p→∞

P
(

sup
u,v ∈ [0,1]2
d(u,v)≤δ

∣∣Gn(u) − Gn(v)
∣∣ ) = 0 .

A1 is easy to see. [0, 1]2 is compact with respect to the metric d, and therefore totally bounded.

To see A2, note that for fixed u ∈ [0, 1]2, using Chebyshev’s inequality we have for any ε > 0

P
(
|Gn(u)| > ε

)
≤ 1

ε2
EG2

n(u) =
1

n2ε2V0
ER2

n(a, b) . (C.44)

Recalling that Rn(a, b) = R̃n(banc + 1, bbnc) and the definition of R̃n(k,m), it is not hard to

verify that

R2
n(a, b) =

∑
bnac+1≤i1<i2≤bnbc

∑
bnac+1≤i′1<i′2≤bnbc

τ 2R(Xi1 , Xi2)R(Xi′1
, Xi′2

) .
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Therefore by Hölder’s inequality, we have

ER2
n(a, b) ≤

∑
bnac+1≤i1<i2≤bnbc

∑
bnac+1≤i′1<i′2≤bnbc

τ 2
(
ER2(Xi1 , Xi2)

)1/2 (ER2(Xi′1
, Xi′2

)
)1/2

= τ 2
[1

2

(
bnbc − bnac

) (
bnbc − bnac − 1

) (
ER2(X,X ′)

)1/2]2
= O

(
n4 τ 2 ER2(X,X ′)

)
= O

(
n4
[
τ 4 ER4(X,X ′)

]1/2)
.

(C.45)

Combining (C.44) and (C.45), we get

P
(
|Gn(u)| > ε

)
= O

( n2

ε2 EH2(X,X ′)

[
τ 4 ER4(X,X ′)

]1/2)
= O

( 1

ε2

[ n4 τ 4 ER4(X,X ′)(
EH2(X,X ′)

)2 ]1/2 )
.

(C.46)

Under Assumption 4.3.3, it is easy to see from (C.46) that

P
(
|Gn(u)| > ε

)
= o(1) ,

which implies Gn(u)
P→ 0 for any fixed u ∈ [0, 1]2 as n, p→∞. This proves A2.

Finally to prove A3, again by Theorem A.8 in Li and Racine (2007) it will suffice to show that

∀u, v ∈ [0, 1]2

E
∣∣Gn(u) − Gn(v)

∣∣2 . d 2(u, v) . (C.47)

Similar to the proof of T2 before in the proof of Theorem 18, we will show that (C.47) holds in the

case a < c < d < b. Similar arguments can prove (C.47) for other cases.
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Similar to the proof of T2, now we have

Gn(u) − Gn(v) =
1

n
√
V0
Rn(a, b) − 1

n
√
V0
Rn(c, d)

=
τ

n
√
V0

[ bnbc∑
i=bnac+2

i−1∑
j=bnac+1

R(Xi, Xj) −
bndc∑

i=bncc+2

i−1∑
j=bncc+1

R(Xi, Xj)
]

=
τ

n
√
V0

[ bncc∑
i=bnac+2

i−1∑
j=bnac+1

R(Xi, Xj) +

bndc∑
i=bncc+1

bncc∑
j=bnac+1

R(Xi, Xj)

bnbc∑
i=bndc+1

bncc∑
j=bnac+1

R(Xi, Xj) +

bnbc∑
i=bndc+1

bndc∑
j=bncc+1

R(Xi, Xj)

bnbc∑
i=bndc+2

i−1∑
j=bndc+1

R(Xi, Xj)
]

=: IG + IIG + IIIG + IVG + VG .

(C.48)

By power mean inequality,

(IG + IIG + IIIG + IVG + VG)2 . I2G + II2G + III2G + IV 2
G + V 2

G . (C.49)

Now

E (I2G) =
τ 2

n2V0

bncc∑
i1,i2=bnac+2

i1−1∑
j1=bnac+1

i2−1∑
j2=bnac+1

E
[
R(Xi1 , Xj1)R(Xi2 , Xj2)

]
. (C.50)

Again using Hölder’s inequality and similar arguments as used in deriving (C.45), we get from

(C.50)

E (I2G) =
τ 2

n2V0

( bncc∑
i=bnac+2

i−1∑
j=bnac+1

(
ER2(Xi, Xj)

)1/2)2
=

τ 2

n2V0

(
bncc − bnac

)2 (bncc − bnac − 1
)2

4n2
n2 ER2(X,X ′).

(C.51)

195



Using the fact that bncc − bnac − 1 ≤ n(c − a), (c − a)2 ≤ (c − a) and Hölder’s inequality, we

get from (C.51)

E (I2G) . (c− a)

(
n2 τ 2 ER2(X,X ′)

EH2(X,X ′)

)
≤ (c− a)

(
n2 τ 2

(
ER4(X,X ′)

)1/2
EH2(X,X ′)

)

≤ (c− a)

(
n4 τ 4 ER4(X,X ′)[
EH2(X,X ′)

]2
)1/2

.

(C.52)

Under Assumption 4.3.3, n
4 τ4 ER4(X,X′)[
EH2(X,X′)

]2 = o(1) as n, p→∞, and hence n4 τ4 ER4(X,X′)[
EH2(X,X′)

]2 must be a

bounded sequence in n and p. Therefore we have from (C.52)

E (I2G) . (c− a) . (C.53)

Likewise it can be shown that

E (II2G) . (c− a) , E (III2G) . (c− a) , E (IV 2
G) . (b− d) , E (V 2

G) . (b− d) . (C.54)

Combining (C.53)-(C.54) with (C.48) and (C.49), we get

E
∣∣Gn(u) − Gn(v)

∣∣2 . (c− a) + (b− d) = ‖u− v‖1 = d 2(u, v) .

This proves (C.47) and thereby completes the proof of A3 and hence the theorem.

♦
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