DISTANCE AND KERNEL-BASED NONPARAMETRIC TESTS FOR INDEPENDENCE
AND HOMOGENEITY OF DISTRIBUTIONS, AND THEIR APPLICATIONS

A Dissertation
by
SHUBHADEEP CHAKRABORTY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee,  Xianyang Zhang

Committee Members, Jianhua Huang
Mohsen Pourahmadi
Ruihong Huang

Head of Department, Daren B.H. Cline

August 2020

Major Subject: Statistics

Copyright 2020 Shubhadeep Chakraborty



ABSTRACT

Measuring and testing for independence and homogeneity of distributions are some funda-
mental problems in statistics, finding applications in a wide variety of areas like independent
component analysis, gene selection, graphical modeling, causal inference, goodness-of-fit testing,
change-point detection and so on.

Székely et al.(2007), in their seminal paper, introduced the notion of distance covariance
(dCov) as a measure of dependence between two random vectors of arbitrary (but fixed) dimen-
sions. The innovative feature of dCov is the fact that dCov between two random vectors takes the
value zero if and only if they are independent, thereby completely characterizing independence
between two random vectors.

However, many statistical applications, such as independent component analysis, diagnostic
checking for structural equation modeling, etc., require the quantification of joint independence
among d > 2 random vectors, which is a quite different and more ambitious task than testing for
pairwise independence of a collection of random vectors. The first work (Chapter 2) proposes a
new dependence metric called the Joint Distance Covariance (JdCov) which generalizes or extends
the notion of distance covariance to quantify joint dependence among d > 2 random vectors of
arbitrary (but fixed) dimensions. JdCov takes the value zero if and only if the d random vectors
are jointly independent, and thereby completely characterizes their joint independence. We pro-
pose empirical estimators of JdCov, study their asymptotic behaviors and consequently propose a
consistent bootstrap-based nonparametric test for joint independence. The proposed dependence
metrics are employed to perform model selection in causal inference, based on the joint indepen-
dence testing of the residuals from the fitted structural equation models. The effectiveness of the
method is illustrated via both simulated and real datasets.

The second work (Chapter 3) proposes nonparametric tests for homogeneity and indepen-
dence between two high-dimensional random vectors. Energy distance (proposed by Székely and

Rizzo (2004)) is a classical measure of equality of two multivariate distributions, taking the value
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zero if and only if the two random vectors are identically distributed. Our work shows that energy
distance based on the usual Euclidean distance cannot completely characterize the homogeneity
of two high-dimensional distributions in the sense that it can only detect the equality of means
and the traces of covariance matrices of two high-dimensional random vectors. In other words, the
classical energy distance fails to detect inhomogeneity between two high-dimensional distributions
beyond the first two moments. Also it has been pointed out very recently by Zhu et al. (2019) that
the classical distance covariance can only capture component-wise linear dependence between two
high-dimensional random vectors. Such limitations of the classical energy distance and distance
covariance arise due to the use of Euclidean distance, and we propose a new class of distance
metrics for high-dimensional Euclidean spaces to overcome the drawbacks.

We propose a new class of homogeneity/dependence metrics based on the new distance met-
rics, which inherit the desirable properties of the classical energy distance/distance covariance
in the low-dimensional setting. And more importantly, in the high-dimensional setup the new
metrics are capable of completely characterizing the homogeneity/independence between the low-
dimensional marginal distributions, going above and beyond the scope of the classical energy
distance/distance covariance. Moreover we propose t-tests based on the new metrics to perform
high-dimensional two-sample testing/independence testing in a fully nonparametric framework
and study their asymptotic properties. We use our methodology to analyze cross-sector indepen-
dence of (high-dimensional) stock prices data.

Change-point detection has been a classical problem in statistics, finding applications in a wide
variety of fields. A nonparametric change-point detection procedure is concerned with detecting
abrupt distributional changes in the data generating distribution, rather than only changes in mean.
In the third work (Chapter 4), we consider the problem of detecting an unknown number of change-
points in an independent sequence of high-dimensional observations and testing for the significance
of the estimated change-point locations. Our approach essentially rests upon nonparametric tests
for the homogeneity of two high-dimensional distributions. We construct a single change-point

location estimator via defining a cumulative sum process in an embedded Hilbert space. As the
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key theoretical innovation, we rigorously derive its limiting distribution under the high dimension
medium sample size (HDMSS) framework. Subsequently we combine our statistic with the idea
of wild binary segmentation to recursively estimate and test for multiple change-point locations.
The superior performance of our methodology compared to several other existing procedures is

llustrated via both simulated and real datasets.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Literature Review
1.1.1 Nonparametric tests for independence

Measuring and testing dependence is of central importance in statistics, which has found ap-
plications in a wide variety of areas including independent component analysis, gene selection,
graphical modeling and causal inference. Statistical tests of independence can be associated with
widely many dependence measures. Two of the most classical measures of association between
two ordinal random variables are Spearman’s rho and Kendall’s tau. However, tests for (pairwise)
independence using these two classical measures of association are not consistent, and only have
power for alternatives with monotonic association. Contingency table-based methods, and in par-
ticular the power-divergence family of test statistics (Read and Cressie, 1988), are the best known
general purpose tests of independence, but are limited to relatively low dimensions, since they re-
quire a partitioning of the space in which each random variable resides. Another classical measure
of dependence between two random vectors is the mutual information (Cover and Thomas, 1991),
which can be interpreted as the Kullback-Leibler divergence between the joint density and the
product of the marginal densities. The idea originally dates back to the 1950’s, in groundbreaking
works by Shannon and Weaver (1949), Mcgill (1954) and Fano (1961). Mutual information com-
pletely characterizes independence and generalizes to more than two random vectors. However,
test based on mutual information involves distributional assumptions for the random vectors and
hence is not robust to model misspecification.

In the past fifteen years, kernel-based methods have received considerable attention in both
the statistics and machine learning literature. For instance, Bach and Jordan (2002) derived a
regularized correlation operator from the covariance and cross-covariance operators and used its
largest singular value to conduct independence test. Gretton et al. (2005; 2007) introduced a

kernel-based independence measure, namely the Hilbert-Schmidt Independence Criterion (HSIC),



to test for independence of two random vectors. This idea was recently extended by Sejdinovic
et al. (2013) and Pfister et al. (2018) to quantify the joint independence among more than two
random vectors.

Along with a different direction, Székely et al. (2007), in their seminal paper, introduced the
notion of distance covariance (dCov) and distance correlation as a measure of dependence between
two random vectors of arbitrary dimensions. Given the theoretical appeal of the population quantity
and the striking simplicity of the sample version, the idea has been widely extended and analyzed
in various ways in Székely and Rizzo (2012; 2014), Lyons (2013), Sejdinovic et al. (2013), Dueck
et al. (2014), Bergsma et al. (2014), Wang et al. (2015), and Huo and Székely (2016), to mention

only a few.
1.1.2 Nonparametric tests for homogeneity of distributions

Nonparametric two-sample testing of homogeneity of distributions has been a classical prob-
lem in statistics, finding a plethora of applications in goodness-of-fit testing, clustering, change-
point detection and so on. Some of the most traditional tools in this domain are Kolmogorov-
Smirnov test, and Wald-Wolfowitz runs test, whose multivariate and multidimensional extensions
have been studied by Darling (1957), David (1958) and Bickel (1969) among others. Friedman and
Rafsky (1979) proposed a distribution-free multivariate generalization of the Wald-Wolfowitz runs
test applicable for arbitrary but fixed dimensions. Schilling (1986) proposed another distribution-
free test for multivariate two-sample problem based on k-nearest neighbor (k-NN) graphs. Maa
et al. (1996) suggested a technique for reducing the dimensionality by examining the distribution
of interpoint distances. In a recent novel work, Chen and Friedman (2017) proposed graph-based
tests for moderate to high dimensional data and non-Euclidean data. The last two decades have
seen an abundance of literature on distance and kernel-based tests for equality of distributions.
Energy distance (first introduced by Székely (2002)) and maximum mean discrepancy or MMD
(see Gretton et al. (2012)) have been widely studied in both the statistics and machine learning
communities. Sejdinovic et al. (2013) provided a unifying framework establishing the equivalence

between the (generalized) energy distance and MMD.



1.1.3 Nonparametric change-point detection

Change-point detection has been a classical and well-established problem in statistics, aiming
to detect lack of homogeneity in a sequence of time-ordered observations. This finds abundance
of applications in a wide variety of fields, for example, bioinformatics (see Picard et al. (2005),
Curtis et al. (2012)), neuroscience (see Park et al. (2015)), digital speech processing (see Rabiner
and Schifer (2007)), social network analysis (see McCulloh (2009)), and so on. A nonparametric
change-point detection procedure is concerned with detecting and localizing quite general types
of changes in the data generating distribution, rather than only changes in mean. This challeng-
ing problem of detecting abrupt distributional changes in the nonparametric setting has been ad-
dressed in the literature over the last couple of decades. But many of the methodologies developed
suffer from several limitations, for example, applicability only for real-valued data or in the low-
dimensional setting, assumption that the number of true change-points is known, etc. Harchaoui
and Cappé (2007) proposed a kernel-based procedure assuming a known number of change-points,
which reduces its practical interest. Zou et al. (2014) proposed a nonparametric maximum likeli-
hood approach for detecting multiple (unknown number of) change-points using BIC, but is only
applicable for real-valued data. Lung-Yut-Fong et al. (2012) developed a nonparametric approach
based on marginal rank statistics, which requires the number of observations to be larger than the
dimension of the data. Arlot et al. (2012) proposed a kernel-based multiple change-point detection
algorithm for multivariate (but fixed dimensional) or complex (non-Euclidean) data. Some graph-
based tests have been proposed recently by Chen and Zhang (2015) and Chu and Chen (2019)
for high-dimensional data, which allow us to detect only one or two change-points. Matteson
and James (2014) proposed a procedure for estimating multiple change-point locations, namely
E-Divisive, built upon an energy distance based test that applies to multivariate observations of
arbitrary (but fixed) dimensions. Biau et al. (2016) rigorously derived the asymptotic distribution
of the statistic proposed by Matteson and James (2014), thereby adding theoretical justifications to

their methodology.



1.2 An overview : distance and kernel-based metrics

In this section, we provide a vivid overview of some classical distance and kernel-based de-
pendence and homogeneity metrics, which serves as the background of Chapters 2, 3 and 4. Let
us clarify some notations first.

Notation. Let X = (X1,...X,) € Rrand Y = (V3,...,Y,) € R? be two random vec-
tors of dimensions p and ¢ respectively. Denote by || - ||, the Euclidean norm of R? (we shall
use it interchangeably with || - || when there is no confusion). Let 0, be the origin of R”. We
use X 1L Y to denote that X is independent of Y, and use “X 4 Y” to indicate that X and
Y are identically distributed. Let (X’,Y”) and (X”,Y"”) be independent copies of (X,Y’). For
a metric space (X, dy), let M(X) and M;(X) denote the set of all finite signed Borel mea-
sures on X’ and all probability measures on X', respectively. Define M} (X) :== {v € M(X) :
Jzg € X st [,dx(z,20)dlv](z) < oo}. For § > 0, define MY (X) = {v € M(X)
[ K?(z, ) d|v|(x) < oo}, where K : X x X — R is a bivariate kernel function. Define Mg (V)
and M () in a similar way. For a matrix A = (a)},—, € R™*", define its U-centered version

A = (ag) € R™™ as follows

1 < 1 < 1 -
g — ———5 ) Qkj — Tza“ + — Z aij, k#1,
G — n—2 = n—24 (n—1)(n—2) = (1.1)
0, k=1,

for k,l =1,..., n. Define
L. 1 -
(A . B) = — dklbkl
n(n — 3) ;
for 121 = (&kl) and B = (Bkl) € Rm>»,
1.2.1 Energy distance and MMD

Energy distance (see Székely et al. (2004, 2005), Baringhaus and Franz (2004)) or the Eu-

clidean energy distance between two random vectors X,Y € RP and X I Y with E|| X ||, < oo



and E||Y|, < oo, is defined as
ED(X,Y) = 2B|X — Y|, - E|X — X[, — E[Y = Y|}, (1.2)

where (X', Y”) is an independent copy of (X,Y). Theorem 1 in Székely et al. (2005) shows that
ED(X,Y) > 0 and the equality holds if and only if X 2Y. In general, for an arbitrary metric
space (X, d), the generalized energy distance between X ~ Px and Y ~ Py where Px, Py €

M1 (X) N ML(X) is defined as
EDy(X,Y) = 2Ed(X,Y) —Ed(X,X') —Ed(Y,Y) . (1.3)

DEFINITION 1.2.1 (Spaces of negative type). A metric space (X, d) is said to have negative type

ifforalln > 1, xy,...,xp, € X and oy, ..., a0, € R withzglzlaizo, we have

i a; o d(zy, ;) <0 (1.4)
ij=1
The metric space (X, d) is said to be of strong negative type if the equality in (4.5) holds only when
a; =0forallie{l,... n}

If (X, d) has strong negative type, then F Dy(X,Y’) completely characterizes the homogeneity
of the distributions of X and Y (see Lyons (2013) and Sejdinovic et al. (2013) for detailed dis-
cussions). This quantification of homogeneity of distributions lends itself for reasonable use in
one-sample goodness-of-fit testing and two sample testing for equality of distributions.

On the machine learning side, Gretton et al. (2012) proposed a kernel-based metric, namely
maximum mean discrepancy (MMD), to conduct two-sample testing for equality of distributions.

We provide some background before introducing MMD.

DEeFINITION 1.2.2. (RKHS) Let H be a Hilbert space of real valued functions defined on some

space X. A bivariate function K : X X X — R is called a reproducing kernel of H if :

1. Vre X, K(-,z) e H



2. Vo e X Vf e, (f,K(,z))y = f(x)

where (-, ) is the inner product associated with H. If H has a reproducing kernel, it is said to be

a reproducing kernel Hilbert space (RKHS).

By Moore-Aronszajn theorem, for every positive definite function (also called a kernel) K :
X x X — R, there is an associated RKHS H - with the reproducing kernel /C. The map II :
My (X) = Hy, defined as II(P) = [, K(-, ) dP(z) for P € M;(X) is called the mean embed-
ding function associated with IC. A kernel K is said to be characteristic to M (X) if the map II
associated with K is injective. Suppose K is a characteristic kernel on X. Then the MMD between

X ~ Px andY ~ Py, where Px, Py € M1(X)N M,IC/Q(X) is defined as
MMDe(X,Y) = [|H(Px) — II(Py) |, - (1.5)

By virtue of K being a characteristic kernel, M M Dy (X,Y) = 0 if and only if X 2 Y. Lemma 6

in Gretton et al. (2012) shows that the squared MMD can be equivalently expressed as
MMDy(X,Y) = EK(X,X') + EX(Y,Y') — 2EK(X,Y) . (1.6)

Theorem 22 in Sejdinovic et al. (2013) establishes the equivalence between (generalized) en-
ergy distance and MMD. Following is the definition of a kernel induced by a distance metric (refer

to Section 4.1 in Sejdinovic et al. (2013) for more details).

DEFINITION 1.2.3. (Distance-induced kernel and kernel-induced distance) Let (X, d) be a metric

space of negative type and xy € X. Denote C : X x X — Ras
1
K(zx,z") = 5 {d(x,x0) + d(2', x0) — d(z,2")}. (1.7)

The kernel K is positive definite if and only if (X, d) has negative type, and thus K is a valid kernel

on X whenever d is a metric of negative type. The kernel K defined in (1.7) is said to be the



distance-induced kernel induced by d and centered at xy. One the other hand, the distance d can

be generated by the kernel K through
d(z,2') = K(z,z) + K(2,2") — 2K (z, 2). (1.8)

Proposition 29 in Sejdinovic et al. (2013) establishes that the distance-induced kernel K in-
duced by d is characteristic to M;(X) N Mj-(X) if and only if (X, d) has strong negative type.
Therefore, MMD can be viewed as a special case of the generalized energy distance in (4.4) with
d being the metric induced by a characteristic kernel.

Suppose {X;}*, and {Y;}7, are i.i.d samples of X and Y respectively. A U-statistic type
estimator of £4(X,Y) is defined as

Enm(X,Y) = > d(X, Y L Zd (Xp, X)) — =T ZdYk,

(1.9

1.2.2 Distance covariance and HSIC

Distance covariance (dCov) was first introduced in the seminal paper by Székely et al. (2007)
to quantify the dependence between two random vectors of arbitrary (fixed) dimensions. Consider
two random vectors X € R? and Y € R? with E|| X ||, < oo and E|Y||, < oco. The Euclidean

dCov between X and Y is defined as the positive square root of

dCOU2(X, Y) — 1 / |fX,Y(t7 S) _ fX(t)fY(S)PdtdS,
Rp+a

CpCq IEll>™ N1sllg™

where fx, fy and fx y are the individual and joint characteristic functions of X and Y respectively,
and, ¢, = 71P)/2 /T((1 + p)/2) is a constant with T'(+) being the complete gamma function.
The key feature of dCov is that it completely characterizes independence between two random

vectors of arbitrary dimensions, or in other words dCov(X,Y) = 0 if and only if X 1 Y.



According to Remark 3 in Székely et al. (2007), dCov can be equivalently expressed as

dCov*(X,Y) = E[|X = X'|[,[|Y = Y[l + E[|X - X", E[]Y - Y|,
(1.10)
—2E ||X - X/HPHY - YHHQ'
Lyons (2013) extends the notion of dCov from Euclidean spaces to general metric spaces. For

arbitrary metric spaces (X', dy) and (), dy), the generalized dCov between X ~ Py € M;(X)N
My (X) and Y ~ Py € My(Y) N M;y(y) is defined as

D7, 4, (X,Y) = Edx(X, X)dy(Y,Y") + Edx(X, X )Edy(Y,Y") i

— 2Edx(X, X )dy(Y,Y").

Theorem 3.11 in Lyons (2013) shows that if (X', dx) and (), dy) are both metric spaces of strong
negative type, then Dy, 4,(X,Y) = 0 if and only if X 1 Y. In other words, the complete
characterization of independence by dCov holds true for any metric spaces of strong negative type.
According to Theorem 3.16 in Lyons (2013), every separable Hilbert space is of strong negative
type. As Euclidean spaces are separable Hilbert spaces, the characterization of independence by
dCov between two random vectors in (R?, || - ||,,) and (R, || - ||,) is just a special case.

Hilbert-Schmidt Independence Criterion (HSIC) was introduced as a kernel-based indepen-
dence measure by Gretton et al. (2005, 2007). Suppose X and ) are arbitrary topological spaces,
Kx and Ky are characteristic kernels on X" and Y with the respective RKHSs Hy,, and Hy,,. Let
K = Kx ® Ky be the tensor product of the kernels Ky and Ky, and, Hx be the tensor prod-
uct of the RKHSs Hy, and Hy,. The HSIC between X ~ Px € M;(X) N J\/l,lc/Q(X) and
Y ~ Py € My(Y) N MZP(Y) is defined as

HSICx, i, (X,Y) = ||T(Pxy) — I(PxPy) [l34e (1.12)

where Pyxy denotes the joint probability distribution of X and Y. The HSIC between X and Y is

essentially the MMD between the joint distribution Pxy and the product of the marginals Py and



Py. Clearly, HSICk, k., (X,Y) = 0if and only if X Il Y. Gretton et al. (2005) shows that the

squared HSIC can be equivalently expressed as

HSICE:, o) (X,Y) = EKx(X, X )Ky(Y,Y") + EKx(X, X")EKy(Y,Y") .
— 2B K2 (X, X)Kp(Y,Y").

Theorem 24 in Sejdinovic et al. (2013) establishes the equivalence between the generalized dCov
and HSIC.
For an observed random sample (X, Y;)" ; from the joint distribution of X and Y, a U-statistic

type estimator of the generalized dCov in (1.11) can be defined as

o 1 5
D2 XY = (A-B) = — ) 1.14
m ey (X Y) ( ) n(n —3) ;akl ki s (1.14)

n
k=1

respectively. We denote 13:2“ dr.dy (X, Y) DY dCov%(X,Y) when dy and

where A, B are the U-centered versions (see (4.1)) of A = (d (X, Xl)) and

B = (dy(Yx, V1))

n
k=1’

dy are Euclidean distances.



2. DISTANCE-BASED NONPARAMETRIC TESTS FOR JOINT INDEPENDENCE*

2.1 Background and notations

Many statistical applications require the quantification of joint dependence among d > 2 ran-
dom variables (or vectors). Examples include model diagnostic checking for directed acyclic graph
(DAG) where inferring pairwise independence is not enough in this case (see more details in Sec-
tion 2.6), and independent component analysis which is a means for finding a suitable representa-
tion of multivariate data such that the components of the transformed data are mutually indepen-
dent. In this work, we shall introduce new metrics which generalize the notion of dCov to quantify
joint dependence of d > 2 random vectors. We first introduce the notion of high order dCov to
measure the so-called Lancaster interaction dependence (Lancaster, 1969). We generalize the no-
tion of Brownian covariance (Székely et al., 2009) and show that it coincides with the high order
distance covariance. We then define the joint dCov (Jdcov) as a linear combination of pairwise
dCov and their high order counterparts. The proposed metric provides a natural decomposition of
joint dependence into the sum of lower order and high order effects, where the relative importance
of the lower order effect terms and the high order effect terms is determined by a user-chosen num-
ber. In the population case, Jdcov is equal to zero if and only if the d random vectors are mutually
independent, and thus completely characterizes joint independence. It is also worth mentioning
that the proposed metrics are invariant to permutation of the variables and they inherit some nice
properties of dCov, see Section 2.2.2.

Following the idea of Streitberg (1990), we introduce the concept of distance cumulant and dis-
tance characteristic function, which leads us to an equivalent characterization of independence of
the d random vectors. Furthermore, we establish a scale invariant version of Jdcov and discuss the
concept of rank-based distance measures, which can be viewed as the counterparts of Spearman’s

rho to dCov and JdCov.

*Reprinted with permission from “Distance Metrics for Measuring Joint Dependence with Application to Causal
Inference" by Shubhadeep Chakraborty and Xianyang Zhang, 2019. Journal of the American Statistical Association,
114(528), 1638-1650, Copyright[2019] by Taylor & Francis Group.
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JdCov and its scale-invariant versions can be conveniently estimated in finite sample using V-
statistics or their bias-corrected versions. We study the asymptotic properties of the estimators,
and introduce a bootstrap procedure to approximate their sampling distributions. The asymptotic
validity of the bootstrap procedure is justified under both the null and alternative hypotheses. The
new metrics are employed to perform model selection in a causal inference problem, which is based
on the joint independence testing of the residuals from the fitted structural equation models. We
compare our tests with the bootstrap version of the d-variate HSIC (dHSIC) test recently introduced
in Pfister et al. (2018) and the mutual independence test proposed by Matteson and Tsay (2017).
Finally we remark that although we focus on Euclidean space valued random variables, our results
can be readily extended to general metric spaces in view of the results in Lyons (2013).

The rest of the work is organized as follows. Section 2.2.1 introduces the high order distance
covariance and studies its basic properties. Section 2.2.2 describes the JdCov to quantity joint
dependence. Sections 2.2.3-2.2.4 further introduce some related concepts including the distance
cumulant, distance characteristic function, and rank-based distance covariance. We study the es-
timation of the distance metrics in Section 2.3 and present a joint independence test based on the
proposed metrics in Section 2.4. Section 4.4 is devoted to numerical studies. The new metrics are
employed to perform model selection in causal inference in Section 2.6. Section 2.7 discusses the
efficient computation of distance metrics and future research directions. The technical details are
gathered in the appendix.

Notations. Consider d > 2 random vectors X = {X7,..., X}, where X; € RPi. Set py =
Zle pi. Let {X],..., X/} be an independent copy of X. Denote by ©+ = /—1 the imaginary
unit. Let | - |, be the Euclidean norm of R? with the subscript omitted later without ambiguity. For
a,b € R?, let {a,b) = a'b. For a complex number a, denote by a its conjugate. Let f; be the
characteristic function of X;, i.e., f;(t) = E[e*"*"] with t € RP. Define w,(t) = (c,|t[}™?) !
with ¢, = 7FP)/2/T((1 4 p)/2). Write dw = (¢p,Cpy - - - Cpu|ta|5P* -+ - [ta]LTP) Aty - - - diq. Let
I¢ be the collection of k-tuples of indices from {1,2, ..., d} such that each index occurs exactly

once. Denote by |a| the integer part of a € R. Write X I Y if X is independent of Y.

11



2.2 Measuring joint dependence
2.2.1 High order distance covariance

We briefly review the concept of Lancaster interactions first introduced by Lancaster (1969).
The Lancaster interaction measure associated with a multidimensional probability distribution of
d random variables { X1, ..., X} with the joint distribution F' = F} 5 4, is a signed measure AF’
given by

AF = (Ff = F\)(F5 — Fy)--- (Fj — Fy), @.1)

where after expansion, a product of the form F;"F - - - " denotes the corresponding joint distri-
bution function F; ; ; of {X;, X;,..., X;}. For example for d = 4, the term F}F} F5F) stands

for FioF5Fy, FYFy F3F), stands for Fy Fy F3Fy, etc. In particular for d = 3, (2.1) simplifies to
AF = Fioz — FiFy3 — FoFig — FsFip + 2F [y Fy . (2.2)

In light of the Lancaster interaction measure, we introduce the concept of dth order dCov as fol-

lows.

DEFINITION 2.2.1. The dth order dCov is defined as the positive square root of

2

E dw, (2.3)

dCov*(Xy, ..., Xy) :/
RPO

H(fi(ti) - €Z<ti’Xi>)]

=1

When d = 2, it reduces to the dCov in Székely et al. (2007).

The term ]E[Hf:1 (fi(t;) — e"®X)] in the definition of dCov is a counterpart of the Lancaster
interaction measure in (2.1) with the joint distribution functions replaced by the joint characteristic
functions. When d = 3, dCov?(X1, X5, X3) > 0 rules out the possibility of any factorization of

the joint distribution. To see this, we note that X; 1 (Xo, X3), Xo 1 (X3, X3) or X3 L (X3, X5)
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all lead to dCov*( X7, X5, X3) = 0. On the other hand, dC'ov?( X, X5, X3) = 0 implies that

fraa(t1, ta, t3) — fi(t1) falta) f3(ts)
=f1(t1) fas(t2, t3) + fao(t2) fis(tr, ts) + fa(ts) fr2(t1, t2) — 3f1(t1) fa(t2) f3(t3)

for t; € RPi almost everywhere. In this case, the “higher order effect” i.e., fio3(t1,%2,%3) —
fi1(t1) f2(t2) f3(t3) can be represented by the “lower order/pairwise effects” f;;(t;,t;) — fi(t:) f;(t;)
for 1 < i # 5 < 3. However, this does not necessarily imply that X;, X, and X3 are jointly
independent. In other words when d = 3 (or more generally when d > 3), joint independence of
X1, X5 and X3 is not a necessary condition for dCov to be zero. To address this issue, we shall
introduce a new distance metric to quantify any forms of dependence among X in Section 2.2.2.
In the following, we present some basic properties of high order dCov. Define the bivariate
function U;(z,2') = Elz — X!| + E|X; — 2/| — |z — 2| — E|X; — X]| for z,2’ € RPi with

1 <7 < d. Our definition of dCov is partly motivated by the following lemma.

LEMMA 2.2.1. For1 <i <d,

By Lemma 2.2.1 and Fubini’s theorem, the dth order (squared) dCov admits the following

equivalent representation,

dCov*(Xy,. .., Xy) :/
RPO

H (filt:) — e”ti’Xﬁ)] dw  (2.4)

This suggests that similar to dCov, its high order counterpart has an expression based on the mo-
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ments of U;s, which results in very simple and applicable empirical formulas, see more details in

Section 2.3.

REMARK 2.2.1. From the definition of dCov in Székely et al. (2007), it might appear that its most

natural generalization to the case of d = 3 would be to define a measure in the following way

1 / [fxyz(tsu) = Ix Oy () f2@)F 300
Rp+a+r

CpCqCr [t slg ™l

where X € R, Y € R?and Z € R". Assuming that the integral above exists, one can easily verify
that such a measure completely characterizes joint independence among X, Y and Z. However,
it does not admit a nice equivalent representation as in (2.4) (unless one considers a different
weighting function). We exploit this equivalent representation of the dth order dCov to propose
a V-statistic type estimator of the population quantity (see Section 3) which is much simpler to

compute rather than evaluating an integral as in the original definition in (2.3).

REMARK 2.2.2. Székely et al. (2009) introduced the notion of covariance with respect to a stochas-
tic process. Theorem 8 in Sz€kely et al. (2009) shows that population distance covariance coincides
with the covariance with respect to Brownian motion (or the so-called Brownian covariance). The
Brownian covariance of two random variables X € R? and Y € R? with E(|X|? + |[Y]?) < oo is

defined as the positive square root of
WA(X,Y) = Cov,(X,Y) = E[Xw Xy, Yy Y],

! . . . . . .
where I/ and W' are independent Brownian motions with zero mean and covariance function

C(t,s) = |s| + |t| = |s — t| on R? and R? respectively, and
Xw=W(X)—-E[W(X)W].

Conditional on W (or W), X {4, (or Y‘;V,) is ani.i.d. copy of Xy (or Y};+). Then following Theorem
8 in Székely et al. (2009) and Definition 2.1, we have dCov*(X,Y) = W?(X,Y).

14



Now for d > 2 random variables {X7, X5,..., X4} where X; € RPi;1 < i < d, we can

generalize the notion of Brownian covariance as the positive square root of

WA(X,,...,Xy) =E

d
=1

where W;’s are independent Brownian motions on RP, 1 < ¢ < d. Property (2) in Proposition 2.1
below establishes the connection between the higher order distance covariances and the generalized
notion of Brownian covariance.

Similar to dC'ov, our definition of high order dC'ov possesses the following important proper-

ties.
PROPOSITION 2.2.1. We have the following properties regarding dCov(Xy, Xo, ..., Xg):

(1) For any a; € RPi, ¢; € R, and orthogonal transformations A; € RPi*Pi, dC’on(al +
A1 Xy, ag + cgAgXy) = Hle les] dCov*(Xy, ..., Xy). Moreover, dCov is invariant to
any permutation of { X1, Xs,

LX)

(2) Under Assumption 4.3.2 (see Section 2.3), the dth order dCov exists and

W2(X1, c. ,Xd> = dCOU2(X1, c. ,Xd> .

Property (1) shows that dCov is invariant to translation, orthogonal transformation and per-
mutation on X;s. In property (2), the existence of the dth order dC'ov follows from (2.4) and
application of Fubini’s Theorem and Holder’s inequality. The equality with Brownian covariance
readily follows from the proof of Theorem 7 in Székely et al. (2009).

Theorem 7 in Székely et al. (2007) shows the relationship between distance correlation and the
correlation coefficient for bivariate normal distributions. We extend that result in case of multivari-

ate normal random variables with zero mean, unit variance and pairwise correlation p. Proposition
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2.2.2 below establishes a relationship between the correlation coefficient and higher order distance

covariances for multivariate normal random variables.

PROPOSITION 2.2.2. Suppose (X1, Xs,...,Xg) ~ N(0,%), where & = (0;;)¢,_, with 0;; = 1
for1<i<dandoy = pforl <i+#j<d Whend=2k—1ord=2k dCov*(Xy,...,X,) =
O(|p|*) for k > 2.

Proposition A.0.1 in the appendix shows some additional properties of the dth order dCov.

2.2.2 Joint distance covariance

In this subsection, we introduce a new joint dependence measure called the joint dCov (Jdcov),
which is designed to capture all types of interaction dependence among the d random vectors. To

achieve this goal, we define JdCov as the linear combination of all kth order dCov for 1 < k < d.
DEFINITION 2.2.2. The JdCov among { X1, ..., X} is given by

JdCov*(X1,..., Xq;Ca, ..., Cyq)

:CQ Z dCOUZ(Xil,Xi2) + Cg Z dCO’UQ(Xil s Xiz) i3> (25)

(i1,d2)€Ig (41,i2,i3)€I§

+ -t Cd dCOU2<X1, ce ,Xd)7
for some nonnegative constants C; > 0 with 2 <1 < d.

Proposition 2.2.3 below states that JdCov completely characterizes joint independence among

{(X1,..., X4}

PROPOSITION 2.2.3. Suppose C; > 0 for2 < i < d. Then JdCov*(Xy,...,Xg;Co,...,Cq) =0

ifand only if { X4, ..., X} are mutually independent.

Next we show that by properly choosing C;s, JdCov*( Xy, ..., X4;Cy, ..., Cy) has a relatively
simple expression, which does not require the evaluation of 2¢ — d — 1 dCov terms in its original

definition (2.5). Specifically, let C; = ¢ for ¢ > 0 in the definition of JdCov and denote
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JdCov*(Xy,..., Xy ¢) = JdCov?* (X1, ..., Xq;c?2,¢71 ... 1). Then, we have the following
result.

PROPOSITION 2.2.4. For any c > 0,

d

H (Ui( Xy, X]) +¢)

=1

- Cd.

JdCov*(X1,..., Xq;c) =E

In particular, JdCov? (X1, Xo;¢) = E[UL (X1, X])Us (X2, X3)] = dCov? (X1, Xs).

By (2.5), the dependence measured by JdCov can be decomposed into the main effect term
D (v in)e g dCov*(X;,, X;,) quantifying the pairwise dependence as well as the higher order effect
terms Z(ilm 77777 inerd dCov*(X;,, Xiy, - .., X;,) quantifying the multi-way interaction dependence
among any k-tuples. The choice of ¢ reflects the relative importance of the main effect and the
higher order effects. Forc > 1, C; = @ s nonincreasing in ¢. Thus, the larger ¢ we select, the
smaller weights we put on the higher order terms. In particular, we have
lim ¢4 JdCov*(Xy, ..., Xgc) = Z dCov*(Xy,, X3,),

c——+00
(il,ig)élg

that is JdCov reduces to the main effect term as ¢ — +o00. We remark that the main effect term
fully characterizes joint dependence in the case of elliptical distribution and it has been recently
used in Yao et al. (2018) to test mutual independence for high-dimensional data. On the other

hand, JdCov becomes the dth order dCov as ¢ — 0, i.e.,
hncl) JdCov*(X1,..., Xq;c) = dCov*(Xy,. .., Xq).
c—r

The choice of ¢ depends on the types of interaction dependence of interest as well as the specific
scientific problem, and thus is left for the user to decide.
It is worth noting that J dCon(X 1,-..,Xg;c) depends on the scale of X;. To obtain a scale-

invariant metric, one can normalize U; by the corresponding distance variance. Specifically, when
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dCov(X;) := dCov(X;, X;) > 0, the resulting quantity is given by,

fi (5 -] -+

=1

JdCovi(X1,..., X4 c) =E

which is scale-invariant. Another way to obtain a scale-invariant metric is presented in Section
2.2.4 based on the idea of rank transformation.
Below we present some basic properties of JdCov, which follow directly from Proposition

2.2.1.
PROPOSITION 2.2.5. We have the following properties regarding JdCov:

(1) For any a; € RPi, ¢y € R, and orthogonal transformations A; € RP*Pi JdCon(al +
coA1 X1, ... aq + coAaXya;|colc) = |co|dTdCov*(Xy,. .., X4 c). Moreover, JdCov is in-

variant to any permutation of { X1, Xo, ..., Xg}.

(2) For any a; € RPi, ¢; # 0, and orthogonal transformations A; € RPi*Pi JdCov(a; +

ClAle, N CdAdXd; C) = JdCOU%(Xl, . ,Xd; C).

REMARK 2.2.3. A natural question to ask is what should be a data driven way to choose the tuning
parameter c. Although we leave it for future research, here we present a heuristic idea of choosing
c. In the discussion below Proposition 2.2.4, we pointed out that choosing ¢ > 1 (or < 1) puts
lesser (or higher) weightage on the higher order effects. Note that if the data is Gaussian, testing for
the mutual independence of { X1, ..., X} is equivalent to testing for their pairwise independences.
In that case, intuitively one should choose a larger (> 1) value of c. If, however, the data is non-
Gaussian, it might be of interest to look into higher order dependencies and thus a smaller (< 1)
choice of ¢ makes sense.

To summarize, a heuristic way to choose the tuning parameter c could be :

> 1, if{Xj,..., Xy} are jointly Gaussian
Choose ¢ (2.6)

<1, if{Xy,...,X,} are not jointly Gaussian.
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There is a huge literature on testing for joint normality of random vectors. It has been shown
that the test based on energy distance is consistent against fixed alternatives (Székely and Rizzo,
2004) and shows higher empirical power compared to several competing tests (Székely and Rizzo,
2005; 2013). Suppose p is the p-value of the energy distance based test for joint normality of
{X1,..., X4} at level . We expect ¢ to increase (or decrease) from 1 as p > (or <) a, so one

heuristic choice of ¢ can be
c=1+sign(p—a) x |p—al/*, 2.7)

where sign(x) = 1,0 or — 1 depending on whether x > 0,z = 0 or x < 0. For example, p =

(0.001, 0.03,0.0499, 0.0501, 0.1, 0.3) and o = 0.05 yields ¢ = (0.53,0.62,0.9,1.1,1.47,1.71).

2.2.3 Distance cumulant and distance characteristic function

As noted in Streitberg (1990), for d > 4, the Lancaster interaction measure fails to capture
all possible factorizations of the joint distribution. For example, it may not vanish if (X7, X5) L
(X3, X4). Streitberg (1990) corrected the definition of Lancaster interaction measure using a more
complicated construction, which essentially corresponds to the cumulant version of dCov in our
context. Specifically, Streitberg (1990) proposed a corrected version of Lancaster interaction as

follows

AF =Y (=) = ) [ ] Fo.

Der

where 7 is a partition of the set {1,2,...,d}, || denotes the number of blocks of the partition 7
and F'p denotes the joint distribution of {X; : ¢ € D}. It has been shown in Streitberg (1990) that
AF = 0 whenever F is decomposable. Our definition of joint distance cumulant of { X7, ..., X}

below can be viewed as the dCov version of Streitberg’s correction.
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DEFINITION 2.2.3. The joint distance cumulant among { X, ..., X4} is defined as

cum(X1,..., Xa) =Y (=D (jx| - D) ] B (H Ui(Xi,X;)) , (2.8)

T Der €D

where m runs through all partitions of {1,2, ..., d}.

It is not hard to verify that cam(X1,..., Xy) = 0if {X;,..., X;} can be decomposed into
two mutually independent groups say (X;)iex, and (X;);ex, With m; and 7, being a partition of

{1,2,...,d}. We further define the distance characteristic function.

DEFINITION 2.2.4. The joint distance characteristic function among { X1, ..., X4} is defined as

dCf(tl, NP ,td) =E

d
exp <zZtiUi(Xi,X{)>] , (2.9)

i=1
forty, ... .ty € R

The following result shows that distance cumulant can be interpreted as the coefficient of the

Taylor expansion of the log distance characteristic function.

PROPOSITION 2.2.6. The joint distance cumulant cum(X;,, ..., X;.) is given by the coefficient
of ©* [[;_, ti, in the Taylor expansion of log{dcf(t1,...,tq)}, where {i1, ... is} is any subset of
{1,2,...,d} with s < d.

Our next result indicates that the mutual independence among { X7, ..., X} is equivalent to

the mutual independence among {U; (X1, X1), ..., Ua(Xq4, X))}

PROPOSITION 2.2.7. The random variables { X1, ..., X;} are mutually independent if and only if
def(ty, ... tq) = [1L, def(t;) for t; almost everywhere, where def (t;) = Elexp{ut;U;(X;, X!)}.
2.2.4 Rank-based metrics

In this subsection, we briefly discuss the concept of rank-based distance measures. For sim-

plicity, we assume that X;s are all univariate and remark that our definition can be generalized to
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the case where X;s are random vectors without essential difficulty. The basic idea here is to apply
the monotonic transformation based on the marginal distribution functions to each X;, and then
use the dCov or JdCov to quantify the interaction and joint dependence of the coordinates after
transformation. Therefore it can be viewed as the counterpart of Spearman’s rho to dCov or JdCov.

Let F); be the marginal distribution function for X;. The squared rank dCov and JdCov among

{X1,..., X4} are defined respectively as

dCovi(X1, ..., Xq) = dCov*(Fy(X)),. .., Fy(X4)),

JdCovi(Xy,. .., Xg;c) = JACov*(FL(X1), ..., Fy(Xy);c).

The rank-based dependence metrics enjoy a few appealing features: (1) they are invariant to mono-
tonic component wise transformations; (2) they are more robust to outliers and heavy tail of the
distribution; (3) their existence require very weak moment assumption on the components of X'.
In Section 4.4, we shall compare the finite sample performance of JdCov%, with that of JdCov and

JdCovyg.

Table 2.1: Comparison of various distance metrics for measuring joint dependence of d > 2
random vectors of arbitrary dimensions :

Distance metrics Complete characterization Permutation Scale
of joint independence invariance invariance

dHSIC v v x (for fixed bandwidth)
Tyr v X X
High order dCov | x (Captures Lancaster interactions) v X
JdCov v v X
JdCovg v v v
JdCovg v v v
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2.3 Estimation

We now turn to the estimation of the joint dependence metrics. Given n samples {X;}7_; with
X, = (Xj1,...,Xjq), we consider the plug-in estimators based on the V-statistics as well as their
bias-corrected versions to be described below. Denote by f;(t;) = n™* > e¥t-Xii) the empirical

characteristic function for Xj.
2.3.1 Plug-in estimators

For 1 S k),l S n, let ﬁz(k}, l) = n’l ZZ:I |X}W — Xm| +n’1 22:1 |Xuz — Xlz| — ’X}m — Xlz| —
n—?2 ZZ,U=1 | Xwi — Xui| be the sample estimate of U;( Xy, X;;). The V-statistic type estimators for

dCov, JdCov and its scale-invariant version are defined respectively as,

n d
N 1 ~ )
dCov* (X1, ..., X,) = — > HUZ»(k:,l) , (2.10)
k,l=111=1
—_— d ~
JACow (X1, X)) = = Z I1 (U (k, 1) +c) — @.11)
k=1 1=1
. 1 &% [ Uik, D)
JdCovd(Xy,..., Xg0) = — > J[| =" +¢| ¢, (2.12)
n kl=1i=1 dCOU(Xi)
where dCov2(X 2(Xi) =2y n Uy(k,1)? is the sample (squared) dCov. The following lemma

shows that the V-statistic type estimators are equivalent to the plug-in estimators by replacing the
characteristic functions and the expectation in the definitions of dCov and JdCov with their sample

counterparts.

LEMMA 2.3.1. The sample (squared) dCov can be rewritten as,

dCo(X,,. .., X,) :/ dw. (2.13)
RPO

k=1 Li=1
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Moreover, we have

Jd/C'Eﬂ(Xl, o, Xg )

— 42 Z m(Xil)Xi2)+cd_3 Z CEO\UQ(XZ'NXiQ,Xis) (2.14)

(41,i2)€1d (41,i,i3) €IS

REMARK 2.3.1. Consider the univariate case where p; = 1 forall 1 < i < d. Let E be the empiri-

~

cal distribution based on { X, }7_, and define Z;; = Fi(Xj;). Then, the rank-based metrics defined
in Section 2.2.4 can be estimated in a similar way by replacing X;; with Zj; in the definitions of

the above estimators.

REMARK 2.3.2. The distance cumulant can be estimated by

cum(Xy, ..., Xg) = Y (=) (x| = 1) [ ] {% > (H Ui (k, z>> } .

T Den k=1 \ieD

However, the combinatorial nature of distance cumulant implies that detecting interactions of

higher order requires significantly more costly computation.

We study the asymptotic properties of the V-statistic type estimators under suitable moment

assumptions.

AsSUMPTION 2.3.1. Suppose for any subset S of {1,2, ...,d} with |S| > 2, there exists a partition

S =81USysuchthat E[[,.q |Xi| < o0and E[],c, |Xi| < oo

i€S]

ProOPOSITION 2.3.1. Under Assumption 4.3.2 , we have as n — o0,

ACoR (X1, -, Xg) =5 dCov? (X1, -+, Xa),
Jd/C’E)Q(Xl,--- , Xaic) 25 JdCov*(X,. .., Xac),

J@g(?ﬁ,---  Xai ) =5 JdCovs(Xy, ..., Xa;c),

« a8 9y
where “ — 7 denotes the almost sure convergence.
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When d = 2, Assumption 2.3.1 reduces to the condition that E|X;| < oo and E|X5| < oo in
Theorem 2 of Székely et al. (2007). Suppose X;s are mutually independent. Then Assumption
2.3.1 is fulfilled provided that E|X;| < oo for all i. More generally, if F|X;|l)/2) < oo for
1 <@ < d, then Assumption 2.3.1 is satisfied.

Let I'(-) denote a complex-valued zero mean Gaussian random process with the covariance
function R(t, t') = [10, (fi(ti—t})— fi(t:) fi(—t})), Where t = (t1,ta, ..., ta),t' = (), th, ... 1) €
RPt x RP2 x - -« x RP4,

PROPOSITION 2.3.2. Suppose X1, Xo, ..., Xy are mutually independent, and E|X;| < oo for

1 < i <d. Then we have

ndeovX(Xy, Xa, -+, Xq) -5 |T|2 = ZAJ 2,
where ||T||* = [T(t1,ta, ..., te)*dw, Z; " N(0,1) and \; > 0 depends on the distribution of
X. As a consequence, we have

+oo
nJdeov?(Xq, Xo, -+, Xg; €) N Z)‘/ZQ

17970

with \; > 0 and Z; G N(0,1).

Proposition 2.3.2 shows that both dcov? and Jdcov? converge to weighted sum of chi-squared
random variables, where the weights depend on the marginal characteristic functions in a compli-
cated way. Since the limiting distribution is non-pivotal, we will introduce a bootstrap procedure
to approximate their sampling distributions in the next section.

It has been pointed out in the literature that the computational complexity of dCov is O(n?) if
it is implemented directly according to its definition. The computational cost of the V-statistic type

estimators and the bias-corrected estimators for JdCov are both of the order O(n?py).
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2.3.2 Bias-corrected estimators

It is well known that V-statistic leads to biased estimation. To remove the bias, one can con-
struct an estimator for the dth order dCov based on a dth order U-statistic. However, the compu-
tational complexity for the dth order U-statistic is of the order O(dn?), which is computationally
prohibitive when n and d are both large. Adopting the {/-centering idea in Székely and Rizzo
(2014), we propose bias-corrected estimators which do not bring extra computational cost as com-
pared to the plug-in estimators. Specifically, for 1 < i < d, we define the {/-centered version of
| Xk — Xy as

R R
Ui(k,1) :m Z | X — Xu| + I Z | X ki — Xoi| — | X — Xuil
u=1 v=1

1 n
ETENCED PR

u,v=1

when k +# [, and U;(k,1) = 0 when k = [. One can verify that D vtk Us(k,v) = D Us(u,l) =
0, which mimics the double-centered property E[U;(X;, X))|X;] = E[U;(X;, X!)|X[] = 0 for
its population counterpart. Let d/O\o—;?(Xi,Xj) = D ku Uy(k, 1)U, (k,1)/{n(n — 3)} and write

dCov(X;) = d/C'\o/v(Xi, X;). We define the bias-corrected estimators as,

n d

JdCov?(Xy,..., Xg¢) = ———— (Ui(k‘, )+ c) - e,

! n(n — 3) Pt E n—3
n d =
— 1 Ui(k,l
JdCov%(Xy,..., Xg¢) = ——— H %—l—c - .
n(n=3) &= i dCov(X;) n=3
Direct calculation yields that
—_ — N2
JdCo(Xy,..., Xp;0) = ¢ 3 dCov (X;, X;) + higher order terms. (2.15)
(ig)€ls

—~—2
It has been shown in Proposition 1 of Székely and Rizzo (2014) that dCov (X}, X;) is an un-

biased estimator for dCov?(X;, X;). In the supplementary material, we provide an alternative
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proof which simplifies the arguments in Székely and Rizzo (2014). Our argument relies on a new
decomposition of ﬁl(k;, [), which provides some insights on the U-centering idea. See Lemma
A.0.1 and Proposition A.0.2 in the supplementary material. In view of (2.15) and Proposition
A.0.2, the main effect in JdCov?(X1,..., X,;c) can be unbiasedly estimated by the main effect
of J%Q(X 1, -+, Xpn; c). However, it seems very challenging to study the impact of U/-centering

on the bias of the high order effect terms. We shall leave this problem to our future research.
2.4 Testing for joint independence

In this section, we consider the problem of testing the null hypothesis

Hy: Xq,..., X, are mutually independent (2.16)

—

against the alternative H 4 : negation of H,. For the purpose of illustration, we use nJdCov? as

our test statistic and set

1 if nJdCov(X,...,Xq) > cn,
On(Xq,.. ., X,) = (2.17)

0 if nJdCov®(Xi,...,Xs) < cn,

where the threshold ¢, remains to be chosen. Consequently, we define a decision rule as follows:
reject Hy if ¢,, = 1 and fail to reject Hy if ¢,, = 0.

Below we introduce a bootstrap procedure to approximate the sampling distribution of nJdCov
under Hj. Let ]3Z be the empirical distribution function based on the data points {X ji}?zl. Con-

ditional on the original sample, we define X} = (X7

f- -5 Xjy), where X7 are generated inde-

pendently from E for1 < i < d. Let {X}‘ _1 be n bootstrap samples. Then we can compute
the bootstrap statistics m* and Jd/C’EJQ* in the same way as dCov? and JdCov? based on

{X5}j_;. In particular, we note that the bootstrap version of the dth order dCoyv is given by

ndCo? (X1,...,X,) = ||IT%|]2 = /r;(tl,...,td)zdw,
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where

(i (t) = e,

n d
=1

O =02y

=11

da . o .
Denote by “ — 7 the weak convergence in the bootstrap world conditional on the original sample

{Xj}?zl'

PROPOSITION 2.4.1. Suppose E|X;| < oo for 1 <i < d. Then
—_— * +Oo
ndCov? (X1,...,Xq) AN Z NZ2,
j=1

AR

+o00
nJdCov? (Xy,...,Xy4) -z, Z .72
j=1

almost surely as n — oo.

Proposition 2.4.1 shows that the bootstrap statistic is able to imitate the limiting distribution of
— X

the test statistic. Thus, we shall choose ¢, to be the 1 — « quantile of the distribution of n.JdCov?
conditional on the sample {X;}7_,. The validity of the bootstrap-assisted test can be justified as

follows.

PROPOSITION 2.4.2. Forall o € (0, 1), the a-level bootstrap-assisted test has asymptotic level «

when testing Hy against H 4. In other words, under Hy, limsup P ( ¢,(X1,...,X,)=1) =«.

n—o0
PROPOSITION 2.4.3. For all a € (0,1), the a-level bootstrap-assisted test is consistent when

testing Hy against H 4. In other words, under H,, lim P (¢, (X4,...,X,)=1)=1.
n—oo

2.5 Numerical studies

We investigate the finite sample performance of the proposed methods. Our first goal is to
test the joint independence among the variables { X1, ..., X;} using the new dependence metrics,
and compare the performance with some existing alternatives in the literature in terms of size and
power. Throughout the simulation, we set ¢ = 0.5, 1,2 in JdCov and implement the bootstrap-

assisted test based on the bias-corrected estimators. We compare our tests with the dHSIC-based
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test in Pfister et al. (2018) and the mutual independence test proposed in Matteson and Tsay (2017),

which is defined as

d—1
Tyr =Y dCov®(Xi, Xi41)a), (2.18)

=1
where X(;1).0 = {Xi+1, Xiv2,...,Xq}. We consider both Gaussian and non-Gaussian distri-

butions and study the following models, motivated from Sejdinovic et al. (2013) and Yao et al.

(2018).

EXAMPLE 2.5.1. [Gaussian copula model] The data X = (X7, ..., X;;) are generated as follows:
1. X ~ N(0, I);
2. X =7Z"Yand Z ~ N(0, I,);
3. X =2Z3%and Z ~ N(0, I).

EXAMPLE 2.5.2. [Multivariate Gaussian model] The data X = (X7, ..., X;) are generated from

d

the multivariate normal distribution with the following three covariance matrices ¥ = (04;(p)) ;=1

with p = 0.25:
1. AR(1): 045 = pliil foralld,j € {1,...,d};
2. Banded: 0;; = 1fori=1,...,d;0; = pif 1 <|i — j| < 2and 0;; = 0 otherwise;

3. Block: Define Eblock = (O-ij)?,jzl with O = 1 and Oij = P if ¢ 7£ ] Let > = [l.d/5J &® Eblocka

where ® denotes the Kronecker product.

ExAMPLE 2.5.3. The data X = (X, Y, Z) are generated as follows:

L X,y %N (0,1), Z =sign(XY) W, where W follows an exponential distribution with

mean v/2;

2. X,Y are independent Bernoulli random variables with the success probability 0.5, and Z =

1{X =Y}
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EXAMPLE 2.5.4. In this example, we consider a triplet of random vectors (X, Y, Z) on RP x RP x

RP, with X, Y ESy N(0,1,). We focus on the following cases :

1. Z; = sign(X 1Y) W and Z,,, ~ N(0,1,_1), where W follows an exponential distribution
with mean v/2;
2. Zyp, ~ N(0,1,1) and

/

X? +e, with probability 1/3,

2y = Y2 +e with probability 1/3,

X 1Y) + ¢, with probability 1/3,

where e ~ U(—1,1).

We conduct tests for joint independence among the random variables described in the above
examples. For each example, we draw 1000 simulated datasets and perform tests of joint indepen-
dence with 500 bootstrap resamples. We try small and moderate sample sizes, i.e., n = 50, 100 or
200. Figure 2.1 and Figure 2.2 display the proportion of rejections (out of 1000 simulation runs)
for the five different tests, based on the statistics JdCov, J%@, Jd/C\o;}%, dHSIC and Ty7.
The detailed figures are reported in Tables A.1 and A.2 in the appendix.

In Example 2.5.1, the data generating scheme suggests that the variables are jointly indepen-
dent. The plots in Figure 2.1 show that all the five tests perform more or less equally well in
examples 2.5.1.1 and 2.5.1.2, and the rejection probabilities are quite close to the 10% or 5% nom-
inal level. In Example 2.5.1.3, the tests based on our proposed statistics show greater conformation
of the empirical size to the actual size of the test than 7),7. In Example 2.5.2, the tests based on

—_—

J%Q, JdCov% and JdCov% as well as Ty significantly outperform the dHSIC-based test.

Note that the empirical power becomes higher when c increases to 2. From Figure 2.2, we observe
that in Example 2.5.3 all the tests perform very well in the second case. However, in the first case,

our tests and the dHSIC-based test deliver higher power as compared to 7),p. Finally, in Example
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2.5.4, we allow X, Y, Z to be random vectors with dimension p = 5, 10. The rejection probabili-
ties for each of the five tests increase with n, and the proposed tests provide better performances in
comparison with the other two competitors. In particular, the test based on JEC\’—O/Ué outperforms all
the others in a majority of the cases. In Examples 2.5.3 and 2.5.4, the power becomes higher when
c decreases to 0.5. These results are consistent with our statistical intuition and the discussions in
Section 2.2.2. For the Gaussian copula model, only the main effect term matters, so a larger c is

preferable. For non-Gaussian models, the high order terms kick in and hence a smaller ¢ may lead

to higher power.

REMARK 2.5.1. We have considered U-statistic type estimators of JdCov?, JdCov% and JdCovF,
so far in all the above computations, as they remove the bias due to the main effects (see Section
2.3.2). However it might be interesting to see if the bias correction has any empirical impact. We
conduct tests for joint independence of the random variables in some of the above examples, this
time using the V-statistic type estimators (described in Section 2.3.1). Table A.3 (in the appendix)
shows the proportion of rejections (out of 1000 simulation runs) for the tests based on JmQ,
J@% and Jd/C'EIQ%, setting ¢ = 1. The results indicate that use of the bias corrected estimators

lead to greater conformation of the empirical size to the actual size of the test (in Example 2.5.1),

and slightly better power in Example 2.5.3.

REMARK 2.5.2. In connection to the heuristic idea discussed in Remark 2.2.3 about choosing the
tuning parameter ¢, we conduct tests for joint independence of the random variables in all the above
examples, choosing c in that way. Table A.4 (in the appendix) presents the proportion of rejections
for the proposed tests and the values of ¢ for each example, averaged over the 1000 simulated
datasets. The plots in Figure 2.1 and Figure 2.2 reveal some interesting features. In Example 2.5.2
we have Gaussian data, so a larger c is preferable. Clearly the proportion of rejections are a little
higher (or lower) in most of the cases when we choose c in the data-driven way (c turns out to
be around 1.6 or 1.7), than when c is subjectively chosen to be 0.5 (or 2). On the contrary, in
Example 2.5.3, the data is non-Gaussian and a smaller c is preferable. Evidently choosing c in the

data-driven way leads to nearly equally good power compared to when ¢ = 0.5, and higher power
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compared to when ¢ = 2.

2.6 Application to causal inference
2.6.1 Model diagnostic checking for Directed Acyclic Graph (DAG)

We employ the proposed metrics to perform model selection in causal inference which is based
on the joint independence testing of the residuals from the fitted structural equation models. Specif-
ically, given a candidate DAG G, we let Par(j) denote the index associated with the parents of the
jth node. Following Peters et al. (2014) and Biihlmann et al. (2014), we consider the structural

equation models with additive components

Xj= > fiulXp)+e, j=12.. 4 (2.19)
kePar(j)
where the noise variables €, ... ,¢; are jointly independent variables. Given n observations

{X;}r, with X; = (X4, ..., Xjq), we use generalized additive regression (Wood and Augustin,

2002) to regress X; on all its parents { X}, k € Par(j)} and denote the resulting residuals by
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Figure 2.1: Figures showing the empirical size and power for the different tests statistics in Exam-
ples 2.5.1 and 2.5.2. ¢* denotes the data-driven choice of c. The vertical height of a bar and a line
on a bar stand for the empirical size or power at3lsvels a = 0.1 or o = 0.05, respectively.
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Figure 2.2: Figures showing the empirical power for the different tests statistics in Examples 2.5.3
and 2.5.4. c¢* denotes the data-driven choice of c. The vertical height of a bar and a line on a bar
stand for the empirical power at levels o = 0.1 or aw = 0.05, respectively.

where fj,k is the B-spline estimator for f; ;. To check the goodness of fit of G, we test the joint

independence of the residuals. Let 7, be the statistic (e.g. JdCov?, JdCov% or JdCov%) to test

the joint dependence of (€1, ..., €4) constructed based on the fitted residuals €; = (€1, . .., €;4) for
1 < ¢ < n. Following the idea presented in Sen and Sen (2014), it seems that 7}, might have a
limiting distribution different from the one mentioned in Proposition 2.3.2. So to approximate the

sampling distribution of 7;,, we introduce the following residual bootstrap procedure.
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*

1. Randomly sample €5 = (¢}, ..., €,;) with replacement from the residuals {é, ..., €},

1 < j < d. Construct the bootstrap sample X5 = > p. i) Fin(Xap) + €5

2. Based on the bootstrap sample {X*}" , with X} = (X},..., X}, estimate f;; for k €

Par(j), and denote the corresponding residuals by €.
3. Calculate the bootstrap statistic 7); based on {¢€};}.

4. Repeat the above steps B times and let {Tb*,n}lj?zl be the corresponding values of the bootstrap

statistics. The p-value is given by B~ 30 {T}, > T,.}.

Pfister et al. (2018) proposed to bootstrap the residuals directly and used the bootstrapped residuals
to construct the test statistic. In contrast, we suggest the use of the above residual bootstrap to

capture the estimation effect caused by replacing f; , with the estimate fjk
2.6.2 Real data example

We now apply the model diagnostic checking procedure for DAG to one real world dataset.
A population of women who were at least 21 years old, of Pima Indian heritage and living near
Phoenix, Arizona, was tested for diabetes according to World Health Organization criteria. The
data were collected by the US National Institute of Diabetes and Digestive and Kidney Diseases.
We downloaded the data from https://archive.ics.uci.edu/ml/datasets/Pima+
Indians+Diabetes. We focus only on the following five variables : Age, Body Mass Index
(BMI), 2-Hour Serum Insulin (SI), Plasma Glucose Concentration (glu) and Diastolic Blood Pres-
sure (DBP). Further, we only selected the instances with non-zero values, as it seems that zero
values encode missing data. This yields n = 392 samples.

Now, age is likely to affect all the other variables (but of course not the other way round).
Moreover, serum insulin also has plausible causal effects on BMI and plasma glucose concentra-
tion. We try to determine the correct causal structure out of 48 candidate DAG models and perform
model diagnostic checking for each of the 48 models, as illustrated in Section 6.1. We first center

each of the variables and scale them so that [, norm of each of the variables is y/n. We perform the
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mutual independence test of residuals based on the statistics JdCov?, JdCov? and JdCov% with
¢ = 1, and compare with the bootstrap-assisted version of the dHSIC-based test proposed in Pfister
et al. (2018) and T»;r. For each of the tests, we implement the residual bootstrap to obtain the
p-value with B = 1000. Figure 3.2 shows the selected DAG models corresponding to the largest

p-values from each of the five tests.

DBP
(@) JdCov?, JdCov%, JdCov% and Tysr (b) dHSIC

Figure 2.3: The DAG models corresponding to the largest p-values from the five tests.

Figure 2.3a shows the model with the maximum p-value among all the 48 candidate DAG
models, when the test for joint independence of the residuals is conducted based on JECTO/U%
J%g and JEE-OZ% and T’,7. This graphical structure goes in tune with the biological evidences
of causal relationships among these five variables. Figure 2.3b stands for the model with the
maximum p-value when the test is based on dHSIC. Its only difference with Figure 2.3a is that, it
has an additional edge from glu to DBP, indicating a causal effect of Plasma Glucose Concentration

on Diastolic Blood Pressure. We are unsure of any biological evidence that supports such a causal

relationship in reality.

REMARK 2.6.1. In view of Remark 2.2.3, it might be intriguing to take into account the heuristic

data-driven way of determining c in the above example, instead of setting c at a default value of
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1. Our findings indicate that choosing c in the data-driven way leads to a slightly different result.

The tests based on dHSIC and JdCov? select the DAG model shown in Figure 2.3b (considering

the maximum p-value among all the 48 candidate DAG models), whereas Figure 2.3a is the DAG

model selected when the test is based on JdCov?, JdCov% and T)sr. The proposed tests (based

on JdCov? and J dCov%) still perform well.
2.6.3 A simulation study

We conduct a simulation study based on our findings in the previous real data example. To
save the computational cost, we focus our attention on three of the five variables, viz. Age, glu
and DBP. In the correct causal structure among these three variables, there are directed edges from

Age to glu and Age to DBP. We consider the additive structural equation models

Xj= > fisXe)+e, j=1,23, (2.20)
k€Par(j)

where X, X5, X3 correspond to Age, glu and DBP (after centering and scaling) respectively, and
fM denotes the estimated function from the real data. Note that X is the only variable without
any parent. In Section 2.6.2, we get from our numerical studies that the standard deviation of X, is
1.001, and the standard deviations of the residuals when X, and X3 are regressed on X (accord-
ing to the structural equation models in (2.19), are 0.918 and 0.95, respectively. In this simulation
study, we simulate X; from a zero mean Gaussian distribution with standard deviation 1. For X5
and X3, we simulate the noise variables from zero mean Gaussian distributions with standard devi-
ations 0.918 and 0.95, respectively. The same n = 392 is considered for the number of generated
observations, and based on this simulated dataset we perform the model diagnostic checking for
27 candidate DAG models. The number of bootstrap replications is set to be B = 100 (to save the
computational cost). This procedure is repeated 100 times to note how many times out of 100 that
the five tests select the correct model, based on the largest p-value. The results in Table 2.2 below

indicate that the proposed tests with ¢ = 1 and the dHSIC-based test outperform 7.
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Table 2.2: The number of times (out of 100) that the true model is being selected.

JdCov? JdCov% JdCov% dHSIC Tar
45 61 54 52 32

REMARK 2.6.2. A natural question to raise is why do we bootstrap the residuals and not test for the
joint independence of the estimated residuals directly, to check for the goodness of fit of the DAG
model. From the idea in Sen and Sen (2014), it appears that the joint distance covariance of the
estimated residuals might have a limiting distribution different from the one stated in Proposition
2.3.2. We leave the formulation of a rigorous theory in support of that for future research. We
present below the models selected most frequently (out of 100 times) by the different test statistics
if we repeat the simulation study done above in Section 2.6.3 without using residual bootstrap to
re-estimate f; ;. We immediately see that joint independence tests of the estimated residuals based
on all of the five statistics we consider, select a DAG model that is meaningless and far away from

the correct one.

)
—@—®

DBP N

—_~

(@ JdCow?, JdCovk, JdCovl, (®) Thrr (c) Correct model
dHSIC

Figure 2.4: The DAG models selected (most frequently out of 100 times) by the five tests, without
doing residual bootstrap to re-estimate f; j.

REMARK 2.6.3. In view of Remark 2.2.3, it might be intriguing to take into account the heuristic
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data-driven way of choosing c in the simulation study in Section 2.6.3, instead of setting ¢ at a
default value of 1. Our findings indicate that our proposed tests and the dHSIC-based test still
outperform 7);7. In the context of Remark 2.6.2, if we repeat the simulation study done in Section
2.6.3 (choosing c in the heuristic way), we still reach the same conclusion presented in Remark

2.6.2.

2.7 Discussions

Huo and Székely (2016) proposed an O(n log n) algorithm to compute dCov of univariate ran-
dom variables. In a more recent work, Huang and Huo (2017) introduced a fast method for multi-
variate cases which is based on random projection and has computational complexity O(nK logn),
where K is the number of random projections. One of the possible directions for future research is
to come up with a fast algorithm to compute JdCov. When p; = 1, we can indeed use the method
in Huo and Székely (2016) to compute JdCov. But their method may be inefficient when d is large
and it is not applicable to the case where p; > 1. Another direction is, to introduce the notion of
Conditional JdCov in light of Wang et al. (2015), to test if the variables (X, ..., X, ) are jointly

independent given another variable Z.
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3. NONPARAMETRIC TESTS FOR INDEPENDENCE AND EQUALITY OF
DISTRIBUTIONS IN HIGH DIMENSIONS

3.1 Background and notations

The behavior of the classical distance and kernel-based tests for independence and equality of
distributions in the high dimensional setup is still a pretty unexplored area. In a very recent work,
Zhu et al. (2020) showed that in the high dimension low sample size (HDLSS) setting, i.e., when
the dimensions grow while the sample size is held fixed, the sample distance covariance can only
measure the component-wise linear dependence between the two vectors. As a consequence, the
distance correlation based t-test proposed by Székely et al. (2013) for independence between two
high dimensional random vectors has trivial power when the two random vectors are nonlinearly
dependent but component-wise uncorrelated. As a remedy, Zhu et al. (2020) proposed a test by
aggregating the pairwise squared sample distance covariances and studied its asymptotic behavior
under the HDLSS setup.

This work presents a new class of metrics to quantify the homogeneity of distributions and in-
dependence between two high-dimensional random vectors. The core of our methodology is a new
way of defining the distance between sample points (interpoint distance) in the high-dimensional
Euclidean spaces. In the first part of this work, we show that the energy distance based on the usual
Euclidean distance cannot completely characterize the homogeneity of two high-dimensional dis-
tributions in the sense that it only detects the equality of means and the traces of covariance ma-
trices in the high-dimensional setup. To overcome such a limitation, we propose a new class of
metrics based on the new distance which inherits the nice properties of energy distance and max-
imum mean discrepancy in the low-dimensional setting and is capable of detecting the pairwise
homogeneity of the low-dimensional marginal distributions in the HDLSS setup. We construct a
high-dimensional two sample t-test based on the U-statistic type estimator of the proposed metric,

which can be viewed as a generalization of the classical two-sample t-test with equal variances. We
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show under the HDLSS setting that the new two sample t-test converges to a central t-distribution
under the null and it has nontrivial power for a broader class of alternatives compared to the energy
distance. We further show that the two sample t-test converges to a standard normal limit under the
null when the dimension and sample size both grow to infinity with the dimension growing more
rapidly. It is worth mentioning that we develop an approach to unify the analysis for the usual
energy distance and the proposed metrics. Compared to existing works, we make the following

contribution.

e We derive the asymptotic variance of the generalized energy distance under the HDLSS
setting and propose a computationally efficient variance estimator (whose computational
cost is linear in the dimension). Our analysis is based on a pivotal t-statistic which does not
require permutation or resampling-based inference and allows an asymptotic exact power

analysis.

In the second part, we propose a new framework to construct dependence metrics to quantify
the dependence between two high-dimensional random vectors X and Y of possibly different di-
mensions. The new metric, denoted by DQ(X ,Y'), generalizes both the distance covariance and
HSIC. It completely characterizes independence between X and Y and inherits all other desir-
able properties of the distance covariance and HSIC for fixed dimensions. In the HDLSS setting,
we show that the proposed population dependence metric behaves as an aggregation of group-
wise (generalized) distance covariances. We construct an unbiased U-statistic type estimator of
D?*(X,Y) and show that with growing dimensions, the unbiased estimator is asymptotically equiv-
alent to the sum of group-wise squared sample (generalized) distance covariances. Thus it can
quantify group-wise non-linear dependence between two high-dimensional random vectors, go-
ing beyond the scope of the distance covariance based on the usual Euclidean distance and HSIC
which have been recently shown only to capture the componentwise linear dependence in high
dimension, see Zhu et al. (2020). We further propose a t-test based on the new metrics to perform
high-dimensional independence testing and study its asymptotic size and power behaviors under

both the HDLSS and high dimension medium sample size (HDMSS) setups. In particular, under
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the HDLSS setting, we prove that the proposed t-test converges to a central t-distribution under the
null and a noncentral t-distribution with a random noncentrality parameter under the alternative.
Through extensive numerical studies, we demonstrate that the newly proposed t-test can capture
group-wise nonlinear dependence which cannot be detected by the usual distance covariance and
HSIC in the high dimensional regime. Compared to the marginal aggregation approach in Zhu et

al. (2020), our new method enjoys two major advantages.

e Our approach provides a neater way of generalizing the notion of distance and kernel-based
dependence metrics. The newly proposed metrics completely characterize dependence in the
low-dimensional case and capture group-wise nonlinear dependence in the high-dimensional
case. In this sense, our metric can detect a wider range of dependence compared to the

marginal aggregation approach.

e The computational complexity of the t-tests only grows linearly with the dimension and thus

is scalable to very high dimensional data.

Notation. Let X = (Xi,...X,) € RPand Y = (Yi,...,Y,) € R? be two random vectors
of dimensions p and ¢ respectively. Denote by || - ||, the Euclidean norm of R” (we shall use it
interchangeably with || - || when there is no confusion). Let 0, be the origin of R”?. We use X 1 Y
to denote that X is independent of Y, and use “X 4y to indicate that X and Y are identically
distributed. Let (X', Y”), (X”,Y") and (X", Y"") be independent copies of (X, Y). We utilize the
order in probability notations such as stochastic boundedness O, (big O in probability), conver-
gence in probability o, (small o in probability) and equivalent order =<, which is defined as follows:
for a sequence of random variables {Z,,}°° | and a sequence of real numbers {a,, }’°,, Z,, <, a,, if
and only if Z,, /a,, = O,(1) and a,,/Z,, = O,(1) as n — oo. For a metric space (X, dx), let M(X)
and M (X') denote the set of all finite signed Borel measures on X’ and all probability measures on
X, respectively. Define M} (X) := {v € M(X) : Jzg € X st. [, dx(x, ) d|v|(z) < oo}
For 0 > 0, define MY (X) := {v € M(X) : [, K(z,z)d|v|(z) < oo}, where K : X x X — R

is a bivariate kernel function. Define M, (Y) and MYE(Y) in a similar way. For a matrix
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A = (ap)y =, € R™", define its U-centered version A = (ay) € R™" as follows

1 < R 1 i
- — ;- —— i i, k#L,
Ukl n—QZakj n—2za’+(n—1>(n—2)2‘” 7
j=1 i=1 ij=1 (3.1)

0, k=1,

Qg =

for k,l =1,..., n. Define
I 1 s
(A-B) = —Zaklbkl

n(n — 3) o

for A = () and B = (by) € R™™. Denote by tr(A) the trace of a square matrix A. A ® B
denotes the kronecker product of two matrices A and B. Let ®(-) be the cumulative distribution
function of the standard normal distribution. Denote by ¢,; the noncentral t-distribution with a
degrees of freedom and noncentrality parameter b. Write {, = ?,. Denote by ¢,, and Z, the
upper « quantile of the distribution of ¢, and the standard normal distribution, respectively, for
a € (0,1). Also denote by x? the chi-square distribution with a degrees of freedom. Denote U ~
Rademacher (0.5) if P(U = 1) = P(U = —1) = 0.5. Let 1, denote the indicator function

associated with a set A. Finally, denote by |a| the integer part of @ € R.
3.2 New distance for Euclidean space

We introduce a family of distances for Euclidean space, which shall play a central role in
the subsequent developments. For z € RP, we partition z into p sub-vectors or groups, namely
T = (x(l), el m(p)), where z(;) € R with Zle d; = p. Let p; be a metric or semimetric (see for
example Definition 1 in Sejdinovic et al. (2013)) defined on R% for 1 < i < p. We define a family

of distances for R? as

Kq(z,2") = \/pl(a:(l),:v’(l)) + ot (), T, (3.2)

/

where z,2’ € R? with z = (z(),...,2(,)) and 2’ = (1) -+ 7(y)s and d = (dy, dy, .. ., d,) with

di € Zyand Y0 d; = p.
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PROPOSITION 3.2.1. Suppose each p; is a metric of strong negative type on R%. Then (Rﬁ , Kd)

satisfies the following two properties:
1. Kq:RP x R? — [0, 00) is a valid metric on R?;
2. (]R’5 , Kd) has strong negative type.

In a special case, suppose p; is the Euclidean distance on R%. By Theorem 3.16 in Lyons (2013),
(R%, p;) is a separable Hilbert space, and hence has strong negative type. Then the Euclidean space

equipped with the metric

Ka(a,2') = \/||x(1) — a2l + -+ e — 2l - (3.3)

is of strong negative type. Further, if all the components z(;) are unidimensional, i.e., d; = 1 for

1 <7 < p, then the metric boils down to

Ka(z,2') = |z —2'|)* = 1, (3.4)
where [|z]|; = >°¥_, |z;| is the /; or the absolute norm on R?. If
pi(zay, 2(y) = llze — (1, 1<i<p, (3.5)

then /(4 reduces to the usual Euclidean distance. We shall unify the analysis of our new metrics

with the classical metrics by considering K4 which is defined in (3.2) with
S1 each p; being a metric of strong negative type on R%;
S2 each p; being a semimetric defined in (3.5).

The first case corresponds to the newly proposed metrics while the second case leads to the classical
metrics based on the usual Euclidean distance. Remarks 3.2.1 and 3.2.2 provide two different

ways of generalizing the class in (3.2). To be focused, our analysis below shall only concern about
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the distances defined in (3.2). In the numerical studies in Section 4.4, we consider p; to be the
Euclidean distance and the distances induced by the Laplace and Gaussian kernels (see Definition

1.2.3) which are of strong negative type on R% for 1 < i < p.

REMARK 3.2.1. A more general family of distances can be defined as

Ka,(z,2') = (,01(3:(1),36'(1)) +- 4+ pp(m(p),x’(p))) , 0<r<l1

According to Remark 3.19 of Lyons (2013), the space (RP, Kq,) is of strong negative type. The

proposed distance is a special case withr = 1/2.

REMARK 3.2.2. Based on the proposed distance, one can construct the generalized Gaussian and

Laplacian kernels as

exp(—K3(z,2')/v%), f(x) = exp(—2?) for Gaussian kernel,
f(Kd(x7 x,)/V) =
exp(—Kq(z,2")/v), f(x) = exp(—=z) for Laplacian kernel.

If K4 is translation invariant, then by Theorem 9 in Sriperumbudur et al. (2010) it can be verified
that f(Kq(x,2")/7) is a characteristic kernel on R?. As a consequence, the Euclidean space

equipped with the distance

Kag(z,2') = f(Ka(z,2)/v) + f(Ka(a', 2") /) = 2f (Ka(z,2") /7)

is of strong negative type.

REMARK 3.2.3. In Sections 3.3 and 3.4 we develop new classes of homogeneity and dependence
metrics to quantify the pairwise homogeneity of distributions or the pairwise non-linear depen-
dence of the low-dimensional groups. A natural question to arise in this regard is how to partition
the random vectors optimally in practice. We present some real data examples in Section 3.5.3
where all the group sizes have been considered to be one (as a special case of the general theory

proposed. in this work), and an additional real data example in Section B.3 of the appendix where
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the data admits some natural grouping. We believe this partitioning can be very much problem spe-
cific and may require subject knowledge. We leave it for future research to develop an algorithm

to find the optimal groups using the data and perhaps some auxiliary information.

3.3 Homogeneity metrics

Consider X,Y € RP. Suppose X and Y can be partitioned into p sub-vectors or groups, viz.
X = (X(l),X(Q), . ,X(p)) and Y = (Y(l), Yoy, ... 7Y(p)), where the groups X;) and Y{;) are d;
dimensional, 1 <7 < p, and p might be fixed or growing. We assume that X ;) and Y{;)’s are finite
(low) dimensional vectors, i.e., {d;}}_, is a bounded sequence. Clearly p = > 7  d; = O(p).
Denote the mean vectors and the covariance matrices of X and Y by px and py, and, X x and
Yy, respectively. We propose the following class of metrics £ to quantify the homogeneity of the

distributions of X and Y:
E(X,Y) = 2EKq(X,)Y) — IEKd(X,X’) — EKd(Y,Y’), 3.6)

withd = (dy, ..., d,). We shall drop the subscript d below for the ease of notation.

AssumpTION 3.3.1. Assume that suplSiSpEpg/Q(X(i), 04;,) < 00 and suplSiSpEpVQ(Y(i), 04;)

(2

< Q.

Under Assumption 4.3.1, £ is finite. In Section B.1.1 of the appendix we illustrate that in the
low-dimensional setting, £(X,Y’) completely characterizes the homogeneity of the distributions
of Xand Y.

Consider i.i.d. samples { X }7_, and {Y;}]*, from the respective distributions of X and Y €
R?, where Xy = (Xy), .- Xin)s YI = (Y1), Vi) for 1 < k < n, 1 <1 < mand
Xiti), i) € R%. We propose an unbiased U-statistic type estimator &, ,,(X,Y") of £(X,Y) as in
equation (4.6) with d being the new metric /. We refer the reader to Section B.1.1 of the appendix,
where we show that &, ,,(X,Y) essentially inherits all the nice properties of the U-statistic type

estimator of generalized energy distance and MMD.
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We define the following quantities which will play an important role in our subsequent analysis:
m=REK(X,X")? R =EKY,Y)? P?=EK(X,Y) (3.7)

In Case S2 (i.e., when K is the Euclidean distance), we have
T2 =2y, T =2trYy, 7%=ty +uXy + ||ux — py|> (3.8)

Under the null hypothesis Hy : X < Y, itis clear that 72 = 72 = 72.

In the subsequent discussion we study the asymptotic behavior of £ in the high-dimensional
framework, i.e., when p grows to oo with fixed n and m (discussed in Subsection 3.3.1) and when
n and m grow to oo as well (discussed in Subsection B.2.1 in the appendix). We point out some
limitations of the test for homogeneity of distributions in the high-dimensional setup based on the
usual Euclidean energy distance. Consequently we propose a test based on the proposed metric

and justify its consistency for growing dimension.
3.3.1 High dimension low sample size (HDLSS)

In this subsection, we study the asymptotic behavior of the Euclidean energy distance and our
proposed metric £ when the dimension grows to infinity while the sample sizes n and m are held

fixed. We make the following moment assumption.

AssUMPTION 3.3.2. There exist constants a,a’,a”, A, A, A” such that uniformly over p,

0<a< inf Epi(Xg),X(;)) < sup Epi(Xa), X(;)) < A< oo,

l=isp 1<i<p

0<a < inf Ep;(Y),Ys) < sup Epi(Y), V() < 4" < oo,

T 1<i<p 1<i<p

0<a” < inf Ep;( X, Ys)) < sup Epi (X, Yy ) < A" < 0.

TILi<p 1<i<p

Under Assumption 3.3.2, it is not hard to see that 7x, 7y, 7 =< p'/2. The proposition below

provides an expansion for K evaluated at random samples.
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ProrosIiTION 3.3.1. Under Assumption 3.3.2, we have

KX, X' 1
M:l—I—ELX(X,X’)ﬁLRX(X,X'), (3.9
X
KY,Y’ 1
KOOV L vy + Ry (v v, (3.10)
Ty 2
and
KXY 1
¥:1+§L(X,Y)—I—R(X,Y), (3.11D)
where
K*(X, X" — 12 K%Y, Y — 12 K*(X,)Y) - 1?2
LX(X, X/) = ( 7—2 ) X’ Ly(}/, Y/) — ( T2) Y’ L(X, Y) = ( T2) ’
X Y

and Rx(X,X"), Ry(Y,Y"), R(X,Y) are the remainder terms. In addition, if Lx (X, X"), Ly (Y,Y")
and L(X,Y) are 0,(1) random variables as p — oo, then Rx(X,X') = O, (L%(X,X")),
RY<Y> Y,) = Op (L%/(Y’? Y,)) and R(X7 Y) = Op (LZ(Xa Y))

Henceforth we will drop the subscripts X and Y from Ly, Ly, Ry and Ry for notational
convenience. Theorem 1 and Lemma 3.3.1 below provide insights into the behavior of £(X,Y) in

the high-dimensional framework.

AssuMPTION 3.3.3. Assume that L(X,Y) = Op(a,), L(X, X') = O,(b,) and L(Y,Y") = O,(c,),
where a,, by, ¢, are positive real sequences satisfying a, = o(1), b, = o(1), ¢, = o(1) and Ta; +

Txb2 + 1yl = o(1).

REMARK 3.3.1. To illustrate Assumption 3.3.3, we observe that under assumption 3.3.2 we can

write

: Iy : : Iy
var (L(X, X")) = O(E> Z cov (pi(X(i),X(i)),pj(X(j),X(j))) = O<]¥) Z cov(Z;, Z;) ,

i,j=1 i,j=1

where Z; := pi(X@), X{,)) for 1 < i < p. Assume that SUpP; <i<, B p7 (X (i), 0q,) < 00, which
implies sup; ., | Z? < oo. Under certain strong mixing conditions or in general certain weak
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dependence assumptions, it is not hard to see that Zf i=1€0v(Zi, Z;) = O(p) as p — o (see for
example Theorem 1.2 in Rio (1993) or Theorem 1 in Doukhan et al. (1999)). Therefore we have
var (L(X, X")) = O(Il)) and hence by Chebyshev’s inequality, we have L(X, X') = Op(\/iﬁ). We
refer the reader to Remark 2.1.1 in Zhu et al. (2020) for illustrations when each p; is the squared

Euclidean distance.

THEOREM 1. Suppose Assumptions 3.3.2 and 3.3.3 hold. Further assume that the following three

sequences

{\/5L2(X,Y)}’ {\/ﬁLQ(X,X’)}, {ﬁL2(Y,Y’)}

1+ L(X,Y) 1+ L(X, X" 1+ L(Y,Y")

indexed by p are all uniformly integrable. Then we have
EX,Y) = 21 —7x —1v + o(1). (3.12)

REMARK 3.3.2. Remark B.4.1 in the appendix provides some illustrations on certain sufficient
conditions under which {\/pL*(X,Y)/(1 + L(X,Y))}, {\/pL*(X,X")/(1 + L(X,X"))} and
{/pL*(Y,Y")/(1 4+ L(Y,Y"))} are uniformly integrable.

REMARK 3.3.3. To illustrate that the leading term in equation (3.12) indeed gives a close approxi-
mation of the population £(X,Y"), we consider the special case when K is the Euclidean distance.
Suppose X ~ N,(0,1,) andY = X + N where N ~ N,(0,1,) with N 1L X. Clearly from (3.8)
we have 7% = 2p, 7& = 4p and 7* = 3p. We simulate large samples of sizes m = n = 5000 from
the distributions of X and Y for p = 20,40, 60, 80 and 100. The large sample sizes are to ensure
that the U-statistic type estimator of £(X,Y) gives a very close approximation of the population
E(X,Y). In Table 3.1 we list the ratio between E(X,Y) and the leading term in (3.12) for the
different values of p, which turn out to be very close to 1, demonstrating that the leading term in

(3.12) indeed approximates £(X,Y) reasonably well.
LEmMA 3.3.1. Assume 7, 7x, Ty < 00. We have

1. In Case S1, 21 — 7x — 7y = 0 if and only if X; < Yo forie {1,...,p}
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Table 3.1: Ratio of £(X,Y') and the leading term in (3.12) for different values of p.

p=20 p=40 p=60 p=80 p=100
0.995 0.987 0.992 0.997 0.983

2. InCase S2, 21 —17x — v =0 ifand only if ux = py and tr¥Xx = trXy.

It is to be noted that assuming 7, 7x, Ty < oo does not contradict with the growth rate 7, 7x, 7y =
O(pl/ 2). Clearly under Hy, 27 — 7x — 7y = 0 irrespective of the choice of K. In view of Lemma
3.3.1 and Theorem 1, in Case S2, the leading term of £(X, Y') becomes zero if and only if 1 x = py
and tr X x = tr Xy. In other words, when dimension grows high, the Euclidean energy distance can
only capture the equality of the means and the first spectral means, whereas our proposed metric
captures the pairwise homogeneity of the low dimensional marginal distributions of X ;) and Y{;).
Clearly X, 2 Y for 1 < ¢ < pimplies px = py and trXx = tr Xy. Thus the proposed metric
can capture a wider range of inhomogeneity of distributions than the Euclidean energy distance.

Define

di (i) : = pi(Xie), Yiy) — E [pi( Xy, Vi) | X)) — E [pi(Xngiys Yi) | Yio))

+ E [pi(Xk(i%Yl(i))} ’

as the double-centered distance between Xj(;) and Yj;) for1 <i <p,1 <k <mand1 <[ <m.
Similarly define dy;(i) and d);() as the double-centered distances between Xy ;) and X for
1 <k #1<mn,and, Yy and Yy for 1 < k # [ < m, respectively. Further define H (X}, Y]) :=
I3 (i) forl <k <n,1<1<m, HXy X)) = % P ds(i)forl <k #1<nand
H(Y},Y)) in a similar way.

We impose the following conditions to study the asymptotic behavior of the (unbiased) U-

statistic type estimator of £(X,Y) in the HDLSS setup.
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AssumMPTION 3.3.4. For fixed n and m, as p — oo,

H(Xg,Y)) Qg
d
H(Xsa Xt) - bst )
H(Yua }/v) Cup
k,l, s<t,u<v k,l,s<t,u<v

where {ag;, bst, Cup Yot s<t, u<v are jointly Gaussian with zero mean. Further we assume that

var(ay) = o® = lim E[H*(X}, V)],

p—0o0

var(by) = o = lim E[H*(X,, X,)],

p—00

var(cy) = oy = lim E[H*(Y,,Y,)].

p—o0

{aki, bst, Cup b i1, s<t,u<v are all independent with each other.

Due to the double-centering property and the independence between the two samples, it is
straightforward to verify that { H(Xx,Y;), H(Xs, Xt), H(Yy, Ys) }r1.s<tu<e are uncorrelated with
each other. So it is natural to expect that the limit {a, bst, Cuy } i1, s<t, u<o are all independent with

each other.

REMARK 3.3.4. The above multi-dimensional central limit theorem is classic and can be derived
under suitable moment and weak dependence assumptions on the components of X and 'Y, such as
mixing or near epoch dependent conditions. We refer the reader to Doukhan and Neumann (2008)

for a review on central limit theorem results under weak dependence assumptions.

We describe a new two-sample t-test for testing the null hypothesis Hj : X 2 Y. The t statistic
can be constructed based on either the Euclidean energy distance or the new homogeneity metrics.
We show that the t-tests based on different metrics can have strikingly different power behaviors
under the HDLSS setup. The major difficulty here is to introduce a consistent and computationally
efficient variance estimator. Towards this end, we define a quantity called Cross Distance Covari-

ance (cdCov) between X and Y, which plays an important role in the construction of the t-test
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statistic:

n

1
(n—1)(m—1)

> KX, V)%

k=1 l=1

cdCov,, (X,Y) :=

where

n m n m

R(Xe ) = KX YD~ -3 K(XY) - = KX Y) + - S KX, Y))

i=1 j=1 i=1 j=1
Let v := s(s — 3)/2 for s = m, n. We introduce the following quantities

_o*(n—1)(m—1)+ 0% v, + 0} Uy

o (n—1(m—1) 4+ v, + vy ’
Onm = 0—2 + 03( + 052/ ,
nm  2n(n—1)  2m(m —1)
(3.13)
1 n 1 . 1
Apm — i )
nm  2n(n—1)  2m(m —1)
A = lim 27 — 7x — Ty,

p—00

where 02, 0% and o are defined in Assumption 3.3.4. Under Assumption 3.3.5, further define

. _ 200 0% + 0% + 0% o
my = lim my = 5>
m,n— o0 20(0 —+ 1 + O./O

— ( 200 + af + 1 >1/2

. )
ar = lim
0 20002 + ot ok + 0%

m,n—00 Onm
We are now ready to introduce the two-sample t-test

Enm(X,Y)

Thm = —————=t

)
Anm 4/ Sn,m

where

4(n —1)(m — 1) cdCov?,, (X,Y) + 40, D2(X, X) + 40, D2(Y,Y)

Snm = (n—1)(m—1) 4+ v, + v,
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is the pool variance estimator with ﬁ%(X ,X) and Yf)\?n(Y, Y') being the unbiased estimators of the
(squared) distance variances defined in equation (1.14). It is interesting to note that the variability
of the sample generalized energy distance depends on the distance variances as well as the cdCov.
It is also worth mentioning that the computational complexity of the pool variance estimator and
thus the t-statistic is linear in p.

To study the asymptotic behavior of the test, we consider the following class of distributions

on (X,Y):

P :{(PX, Py): X ~Px,Y ~ Py, E[TL(X,Y) — rx L(X, X)| X] = 0,(1),

ElrL(X,Y) — v L(Y,Y")[Y] = op<1)}.

If Px = Py (i.e., under the H), it is clear that (Px, Py) € P irrespective of the metrics in the
definition of L. Suppose [| X — ux||* — tr(Xx) = O,(\/p) and ||Y — py ||> — tr(Xy) = Op(\/D),
which hold under weak dependence assumptions on the components of X and Y. Then in Case S2

(i.e., K is the Euclidean distance), a set of sufficient conditions for (Py, Py) € P is given by

(x = py) ' (Bx +2y)(nx —py) =op), 7—7x =o(yp), T—1v=0(Vp), (3.14)

which suggests that the first two moments of Py and Py are not too far away from each other. In
this sense, P defines a class of local alternative distributions (with respect to the null H, : Px =

Py). We now state the main result of this subsection.

THEOREM 2. In both Cases S1 and S2, under Assumptions 3.3.2, 3.3.3 and 3.3.4 as p — oo with

n and m remaining fixed, and further assuming that (Px, Py) € P, we have

Enm(X,Y) — (21 —7x — Tv) d, Onm Z
Apm \/ Sn,m Apm V M 7

where

d 9 Xn-1)(m-1) T TXXa, T OVXG,,
= 7

n—1)(m—1)+v, + v,
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X%n—l)(m—l)’ X%ﬂ, sz are independent chi-squared random variables, and Z ~ N (0, 1). In other

words,

TnmﬁanmN(A/%m’l),
' W, VM

where o, and a,,, are defined in equation (3.13). In particular, under H,, we have

d
Tn,m — t(n—l)(m—l)—l—vn—l-vm .

Based on the asymptotic behavior of 7,, ,,, for growing dimensions, we propose a test for H as
follows: atlevel o € (0, 1), reject Hy if Ty, > Ga,(n—1)(m—1)+v,+0,, and fail to reject H, otherwise,

where P(t(n—1)(m—1)+vn+vm > Qa,(n—1)(m—1)+vn+vm) = @- For a fixed real number ¢, define

L B Tom N(A/0pm, 1)
Gnn(t) = lim P(Tom <1) = E [P( v L ’ M)}

q)(anmmt—A>

O’TLTTL

(3.15)

=E

The asymptotic power curve for testing H, based on T}, ,,, is given by 1 — ¢,,, »(¢). The following

proposition gives a large sample approximation of the power curve.
ASSUMPTION 3.3.5. As m,n — oo, m/n — oy where o > 0.

PROPOSITION 3.3.2. Suppose A = Ay/+/nm where A is a constant with respect to n, m. Then

for any bounded real number t as n, m — oo and under Assumption 3.3.5, we have

where
1 20, 1/
Af=A, lim ———— — A ( ) .
0 0 oo Crm /T "\ 2020y + o3t + 0%
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Under the alternative, if Ay — oo as n, m — oo, we have

lim {1—¢n,m(qa,(n—1)(m—1)+un+vm)} = 1,

m,n—00

thereby justifying the consistency of the test.

REMARK 3.3.5. We first derive the power function 1 — ¢,, ,,(t) under the assumption that n and
m are fixed. The main idea behind Proposition 3.3.2 where we let n,m — 00 is to see whether
we get a reasonably good approximation of power when n, m are large. In a sense we are doing
sequential asymptotics, first letting p — oo and deriving the power function, and then deriving
the leading term by letting n,m — oo. This is a quite common practice in Econometrics (see for
example Phillips and Moon (1999)). The aim is to derive a leading term for the power when n, m
are fixed but large. Consider A = s/~/nm (as in Proposition 3.3.2) and set 0* = 0% = o3 = 1. In
Figure 3.1 below, we plot the exact power (computed from (3.15) with 50,000 Monte Carlo samples
from the distribution of M) withn = m = 5 and 10, t = qo, (n—1)(m—1)+vn+vm and o = 0.05, over
different values of s. We overlay the large sample approximation of the power function (given
in Proposition 3.3.2) and observe that the approximation works reasonably well even for small

sample sizes. Clearly larger s results in better power and s = 0 corresponds to trivial power.

We now discuss the power behavior of 7,, ,,, based on the Euclidean energy distance. In Case
S2, it can be seen that
1 p
0% = lim — Y 45 (i), (3.16)

pee Ty Q=1

where X% (2, 7') is the covariance matrix between X ;) and X ;, and similar expressions for o}-. In
case S2 (i.e., when K is the Euclidean distance), if we further assume px = py, it can be verified
that
1 p
o = lim — Y 4w(Sx(i,i) Dy (i,7)). (3.17)

2
p—oo T
ii'=1
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100-

— approximate power — approximate power

--- exactpower e exact power
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S s

(a) Power comparison whenm =n =5 (b) Power comparison when m = n = 10

Figure 3.1: Comparison of exact and approximate power.

Hence in Case S2, under the assumptions that py = uy, tr¥x = trXy and r33% = tr¥2 =

tr X x 2y, it can be easily seen from equations (3.8), (3.16) and (3.17) that

2 2 2 2
Tx =Ty =T, Ox =0y =0, (3.18)

which implies that Aj = 0 in Proposition 3.3.2. Consider the following class of alternative distri-

butions

HA = {(Px,Py) : PX 7£ Py, Ux = Uy, tI'EX :trEy, trﬁg( :trEz :tI'ZXzy}.

According to Theorem 2, the t-test 7}, ,,, based on Euclidean energy distance has trivial power
against H 4. In contrast, the t-test based on the proposed metrics has non-trivial power against H 4

as long as Aj > 0.

To summarize our contributions :
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e We show that the Euclidean energy distance can only detect the equality of means and the
traces of covariance matrices in the high-dimensional setup. To the best of our knowledge,
such a limitation of the Euclidean energy distance has not been pointed out in the literature

before.

e We propose a new class of homogeneity metrics which completely characterizes homogene-
ity of two distributions in the low-dimensional setup and has nontrivial power against a
broader range of alternatives, or in other words, can detect a wider range of inhomogeneity

of two distributions in the high-dimensional setup.

e Grouping allows us to detect homogeneity beyond univariate marginal distributions, as the
difference between two univariate marginal distributions is automatically captured by the
difference between the marginal distributions of the groups that contain these two univariate

components.

e Consequently we construct a high-dimensional two-sample t-test whose computational cost
is linear in p. Owing to the pivotal nature of the limiting distribution of the test statistic, no

resampling-based inference is needed.

REMARK 3.3.6. Although the test based on our proposed statistic is asymptotically powerful
against the alternative H 4 unlike the Euclidean energy distance, it can be verified that it has
trivial power against the alternative Hy = {(X,Y) : X 4 Y, 1 < i < p}. Thus although
it can detect differences between two high-dimensional distributions beyond the first two moments
(as a significant improvement to the Euclidean energy distance), it cannot capture differences be-
yond the equality of the low-dimensional marginal distributions. We conjecture that there might
be some intrinsic difficulties for distance and kernel-based metrics to completely characterize the

discrepancy between two high-dimensional distributions.
3.4 Dependence metrics

In this section, we focus on dependence testing of two random vectors X € R? and Y € RY.

Suppose X and Y’ can be partitioned into p and ¢ groups, viz. X = (X(1), X(2), ..., X(p)) and Y =
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(Y(l), Yoy,..., Y(q)), where the components X ;) and Y{;) are d; and g; dimensional, respectively,
for1 <i < p,1 <j < q. Here p,q might be fixed or growing. We assume that X;) and Y(;)’s
are finite (low) dimensional vectors, i.e., {d;};_, and {g;}j_, are bounded sequences. Clearly,
p=24,di =0O(p)and ¢ = > 7 g; = O(q). We define a class of dependence metrics D

between X and Y as the positive square root of

DYX,Y) = EKq(X, X') Kg(V,Y')+E Ka(X, X")EK,(Y,Y') = 2E Kq(X, X') Kg(Y,Y"),

(3.19)
where d = (dy,...,d,) and g = (g1,...,9,). We drop the subscripts d, g of K for notational
convenience.

To ensure the existence of D, we make the following assumption.

ASSUMPTION 3.4.1. Assume that sup, <<, Epl/z

)

(X(),04;) < 00 and sup;;<, Epi/z(Y(i), 0g:)
< oQ.

In Section B.1.2 of the appendix we demonstrate that in the low-dimensional setting, D(X,Y)
completely characterizes independence between X and Y. For an observed random sample
(X}, Yi)?_, from the joint distribution of X and Y, define DX = (d3%) € R™™ with dj :=
K(X},X;) and k,1 € {1,...,n}. Define d}; and DY in a similar way. With some abuse of
notation, we consider the U-statistic type estimator ﬁ%(X ,Y') of D? as defined in (1.14) with
dyx and dy being K4 and K, respectively. In Section B.1.2 of the appendix, we illustrate that
52()( ,Y') essentially inherits all the nice properties of the U-statistic type estimator of generalized
dCov and HSIC.

In the subsequent discussion we study the asymptotic behavior of D in the high-dimensional
framework, i.e., when p and ¢ grow to co with fixed n (discussed in Subsection 3.4.1) and when n

grows to oo as well (discussed in Subsection B.2.2 in the appendix).
3.4.1 High dimension low sample size (HDLSS)

In this subsection, our goal is to explore the behavior of D?(X,Y") and its unbiased U-statistic

type estimator in the HDLSS setting where p and ¢ grow to oo while the sample size n is held

57



fixed. Denote 7%, = T37¢ = EK*(X, X')E K?(Y,Y”). We impose the following conditions.

ASSUMPTION 3.4.2. E[L*(X,X")] = O(a}}) and E[L*(Y,Y")] = O(b7), where a;, and b, are

/

. s ;L
positive real sequences satisfying a, = o(1), b,

= o(1), Txy ab), = o(1) and Txy alb? = o(1).

Further assume that E[R*(X, X")] = O(a}}) and E[R*(Y,Y")] = O(b.).

REMARK 3.4.1. We refer the reader to Remark 3.3.1 in Section 3.3 for illustrations about some
sufficient conditions under which we have var (L(X, X')) = EL*(X, X') = O(%), and similarly
for L(Y,Y"). Remark B.4.1 in the appendix illustrates certain sufficient conditions under which

E[R*(X, X")] = O(.5), and similarly for R(Y,Y").

THEOREM 3. Under Assumptions 3.3.2 and 3.4.2, we have

Y Di, (X0 Yy) + R, (3.20)

1

DX, Y) = — i

47—XY 1

q
7 =

where R is the remainder term such that R = O(7xy alb, + 7xy a,b?) = o(1).

Theorem 3 shows that when dimensions grow high, the population D?(X,Y’) behaves as an
aggregation of group-wise generalized dCov and thus essentially captures group-wise non-linear

dependencies between X and Y.

REMARK 3.4.2. Consider a special case where d; = 1 and g; = 1, and p; and p; are Euclidean

distances forall 1 <1 < pand1 < j < q. Then Theorem 3 essentially boils down to

> ) dCo*(X.,Y;) + R, (3.21)

where R = o(1). This shows that in a special case (when we have unit group sizes), D*(X,Y)
essentially behaves as an aggregation of cross-component dCov between X and Y. If K4 and K,

are Euclidean distances, or in other words if each p; and p; are squared Euclidean distances, then

using equation (1.10) it is straightforward to verify that Dghpj(Xi, Y;) = 4cov*(X;,Y;) for all
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1<i<pandl < j < q. Consequently we have

1 p q
DX(X,Y) = dCov?( :—ZZCOU DY) 4+ Ry, (3.22)
i=1 j=1

where R1 = o(1), which essentially presents a population version of Theorem 2.1.1 in Zhu et

al. (2020) as a special case of Theorem 3.

REMARK 3.4.3. To illustrate that the leading term in equation (3.20) indeed gives a close approx-
imation of the population D*(X,Y), we consider the special case when Ky and K, are Euclidean
distances and p = q. Suppose X ~ N,(0,1,) andY = X+ N where N ~ N,(0, I,) with N L X.
Clearly we have 75, = 2p, 7y = 4p, D> o, (Xi,Yj) = 4eov?(X;,Y;) =4 forall 1 <i=j<p
and D2 (XZ, Y;) = 0forall 1 < i+ j < p. From Remark 3.4.2, it is clear that in this case we
essentially have D*(X,Y) = dCov*(X,Y). We simulate a large sample of size n = 5000 from
the distribution of (X,Y) for p = 20,40, 60, 80 and 100. The large sample size is to ensure that
the U-statistic type estimator of D*(X,Y) (given in (1.14)) gives a very close approximation of
the population D*(X,Y'). We list the ratio between D*(X,Y') and the leading term in (3.20) for
the different values of p, which turn out to be very close to 1, demonstrating that the leading term

in (3.20) indeed approximates D*(X,Y') reasonably well.

Table 3.2: Ratio of D?(X,Y) and the leading term in (3.20) for different values of p.

p=20 p=40 p=60 p=80 p=100
0.980  0.993 0.994  0.989 0.997

The following theorem explores the behavior of the population D?(X,Y’) when p is fixed and
q grows to infinity, while the sample size is held fixed. As far as we know, this asymptotic regime
has not been previously considered in the literature. In this case, the Euclidean distance covari-

ance behaves as an aggregation of martingale difference divergences proposed in Shao and Zhang
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(2014) which measures conditional mean dependence. Figure 3.2 below summarizes the curse of

dimensionality for the Euclidean distance covariance under different asymptotic regimes.

THEOREM 4. Under Assumption 3.3.2 and the assumption that E[R*(Y,Y")] = O(b}) with

Ty bff = o(1), as ¢ — oo with p and n remaining fixed, we have

2 —

where R is the remainder term such that R = O(1y b?) = o(1).

REMARK 3.4.4. In particular, when both K4 and K, are Euclidean distances, we have

D}X,Y) = dCov®*(X,Y) = —ZMDD2(Y|X) R,

7j=1

where MDD?(Y;|X) = —E[(Y; — EY;)(Y] — EY})||X — X"||] is the martingale difference diver-
gence which completely characterizes the conditional mean dependence of Y; given X in the sense
that EY;| X] = E[Y;] almost surely if and only if M DD?*(Y;|X) = 0.

Next we study the asymptotic behavior of the sample version ZBT%(X Y.
AssumPTION 3.4.3. Assume that L(X, X') = O,(a,) and L(Y,Y') = O,(b,), where a, and b,
are positive real sequences satisfying a, = o(1), by = o(1), Txy a;by = o(1) and Txy a,b} = o(1).

REMARK 3.4.5. We refer the reader to Remark 3.3.1 in Section 3.3 for illustrations about Assump-

tion 3.4.3.

THEOREM §. Under Assumptions 3.3.2 and 3.4.3, it can be shown that

D2(X,Y)

@, Yy)) + Ra, (3.23)

nPlPJ
Zl]l

where X ;), Y(;) are the it" and j*" groups of X and Y, respectively, 1 <i <p, 1< j<q,and R,
is the remainder term. Moreover R,, = O,(Txy aibq + Txy apbg) = 0p(1), i.e., Ry, is of smaller

order compared to the leading term and hence is asymptotically negligible.
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Figure 3.2: Curse of dimensionality for the Euclidean distance covariance under different asymp-
totic regimes
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The above theorem generalizes Theorem 2.1.1 in Zhu et al. (2020) by showing that the leading
term of Z??L(X ,Y') is the sum of all the group-wise (unbiased) squared sample generalized dCov
scaled by 7xy . In other words, in the HDLSS setting, ZA??L(X ,Y') is asymptotically equivalent to the
aggregation of group-wise squared sample generalized dCov. Thus E%(X ,Y') can quantify group-
wise non-linear dependencies between X and Y, going beyond the scope of the usual Euclidean

dCov.

REMARK 3.4.6. Consider a special case where d; = 1 and g; = 1, and p; and p; are Euclidean

distances forall 1 <1 < pand1 < j < q. Then Theorem 5 essentially states that

D2(X,Y) X, Y) + R, (3.24)

11]1

where R,, = 0,(1). This demonstrates that in a special case (when we have unit group sizes),
IS?L(X ,Y') is asymptotically equivalent to the marginal aggregation of cross-component distance
covariances proposed by Zhu et al. (2020) as dimensions grow high. If K4 and K, are Euclidean

distances, then Theorem 5 essentially boils down to Theorem 2.1.1 in Zhu et al. (2020) as a special
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case.

REMARK 3.4.7. To illustrate the approximation of Z/DV%(X ,Y') by the aggregation of group-wise
squared sample generalized dCov given by Theorem 5, we simulated the datasets in Examples
4.4.2.1, 4.4.2.2, 4.4.3.1 and 4.4.3.2 100 times each with n = 50 and p = q = 50. For each of
the datasets, the difference between ZS?L(X ,Y') and the leading term in the RHS of equation (3.23)
is smaller than 0.01 100% of the times, which illustrates that the approximation works reasonably

well.

The following theorem illustrates the asymptotic behavior of E%(X ,Y) when p is fixed and
q grows to infinity while the sample size is held fixed. Under this setup, if both K4 and K,
are Euclidean distances, the leading term of 132()( ,Y') is the sum of the group-wise unbiased U-
statistic type estimators of M DD?*(Y;|X) for 1 < j < g, scaled by 7. In other words, the
sample Euclidean distance covariance behaves as an aggregation of sample martingale difference

divergences.

THEOREM 6. Under Assumption 3.3.2 and the assumption that L(Y,Y") = O,(b,) with b, = o(1)

and v b2 = o(1), as ¢ — oo with p and n remaining fixed, we have
q

— 1 L —
D’VQL(X7 Y) = % D?I;Kd ;05
j=1

where R, is the remainder term such that R,, = Oy(1y b7) = 0,(1).

REMARK 3.4.8. In particular, when both K4 and K, are Euclidean distances, we have
D2(X,Y) = dCo(X,Y) = — > MDD(V;|X) + R,,
A% =

where M DD?2(Y;|X) is the unbiased U-statistic type estimator of M DD?*(Y;|X) defined as in
(1.14) with dx(z,2') = ||z — 2'|| for z,2’ € RP and dy(y,y') = |y — y'|*/2 for y,y' € R,

respectively.
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Now denote X, = (Xyq), ..., Xkp) and Yy = (Yiq), ..., Yiqg)) for 1 < k < n. Define the

leading term of ﬁ%(X ,Y') in equation (3.23) as

L= 4TXY ZZDMZ (X, Y)) -

=1 j=1

It can be verified that

where DX (i), DY (j) are the U-centered versions of D™ (i) = (d;¥ (i ))kl L and DY (5) = (d};(j ))k:l ¥

respectively. As an advantage of using the double-centered distances, we have forall 1 <i,i" < p,

1 <45 <qand {k,1} # {u,v},
E [dy (i) dy, (1)) = E[dy(5)dy,(i")] = E[dp () dy,(5)] = 0. (3.25)

See for example the proof of Proposition 2.2.1 in Zhu et al. (2020) for a detailed explanation.

AssuMPTION 3.4.4. For fixed n, as p, q — 00,

P

: 1
5o Zdﬁ(z) iy
27’Y Zd d2

k<l,u<v wo k<l,u<v

where {d},;, d2,}k<1,u<v are jointly Gaussian. Further we assume that

N
var(dy,) := o% = lim —)2{ Z Di“pi, (X(i),X(i/)) ,

1
var(dy) == 0% = lim — > Dy . (Y5 Yin)

g—o0 4T
Y jj=1

cov (dy, diy) = Giy—pggloo TxyzZDzsz Xy Y) -

=1 j=1
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In view of (3.25), we have cov (d},,d},) = cov(d,, d2,) = cov (d},,d?,) = 0 for {k,l} #
{u,v}. Theorem 5 states that for growing p and ¢ and fixed n, 132()( ,Y') and L are asymptotically
equivalent. By studying the leading term, we obtain the limiting distribution of I/D\E(X ,Y) as

follows.

THEOREM 7. Under Assumptions 3.3.2, 3.4.3 and 3.4.4, for fixed n and p,q — oo,

—~ 1
D2(X,Y) -% —d""Md?,
v
N2 a Lot 1 a4 0% o
Dn<X7X) — —d Md = — Xu>
v v

v

— 1 2
DY,Y) -& T M 4 %Yx2

where M is a projection matrix of rank v = n(n2—3), and

2 2
UX [n(n271) UXY [n(n271)
~ N|o,

U‘%{Y In(nfl) 0-}2/ In(nfl)
2 2

To perform independence testing, in the spirit of Székely and Rizzo (2014), we define the

studentized test statistic

(3.26)

where -
D2(X,Y)

JDRX ) D2 Y)

DC2(X,Y) =

Define ) = 0%y /+/0%0%. The following theorem states the asymptotic distributions of the
test statistic 7,, under the null hypothesis H, : X 1L Y and the alternative hypothesis H4 : X
Y.
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THEOREM 8. Under Assumptions 3.3.2, 3.4.3 and 3.4.4, for fixed n and p,q — oo,

Py (T <t) — P(t,1 <),

Py (T, <t) — E[P(t,1w < tW)],

where t is any fixed real number and W ~ 4 / 17’_”;2 X2.

For an explicit form of E [P (¢, w < t|W)], we refer the reader to Lemma 3 in the appendix
of Zhu et al. (2020). Now consider the local alternative hypothesis f[jl: X LY with ¢ = ¢y /\/v,
where 1), is a constant with respect to n. The following proposition gives an approximation of

E [P (t,—1w < t|W)] under the local alternative hypothesis % when n is allowed to grow.

PROPOSITION 3.4.1. Under H*, asn — oo and t = O(1),
1
B[P (tyow < t{W)] = P(ty_ryy <1t) + 0(;).

The following summarizes our key findings in this section.

e Advantages of our proposed metrics over the Euclidean dCov and HSIC :

1) Our proposed dependence metrics completely characterize independence between X
and Y in the low-dimensional setup, and can detect group-wise non-linear dependen-
cies between X and Y in the high-dimensional setup as opposed to merely detecting
component-wise linear dependencies by the Euclidean dCov and HSIC (in light of The-

orem 2.1.1 in Zhu et al. (2020)).

ii) We also showed that with p remaining fixed and ¢ growing high, the Euclidean dCov
can only quantify conditional mean independence of the components of Y given X
(which is weaker than independence). To the best of our knowledge, this has not been

pointed out in the literature before.
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e Advantages over the marginal aggregation approach by Zhu et al. (2020) :

1) In the low-dimensional setup, our proposed dependence metrics can completely char-
acterize independence between X and Y, whereas the metric proposed by Zhu et
al. (2020) can only capture pairwise dependencies between the components of X and

Y.

1) We provide a neater way of generalizing dCov and HSIC between X and Y which is
shown to be asymptotically equivalent to the marginal aggregation of cross-component
distance covariances proposed by Zhu et al. (2020) as dimensions grow high. Also
grouping or partitioning the two high-dimensional random vectors (which again may
be problem specific) allows us to detect a wider range of alternatives compared to only
detecting component-wise non-linear dependencies, as independence of two univariate
marginals is implied from independence of two higher dimensional marginals contain-
ing the two univariate marginals.

iii) The computational complexity of the (unbiased) squared sample D(X,Y") is O(n?(p +
q)). Thus the computational cost of our proposed two-sample t-test only grows linearly
with the dimension and therefore is scalable to very high-dimensional data. Although
a naive aggregation of marginal distance covariances has a computational complexity
of O(n?pq), the approach of Zhu et al. (2020) essentially corresponds to the use of an
additive kernel and the computational cost of their proposed estimator can also be made

linear in the dimensions if properly implemented.

3.5 Numerical studies
3.5.1 Testing for homogeneity of distributions
We investigate the empirical size and power of the tests for homogeneity of two high dimen-
sional distributions. For comparison, we consider the t-tests based on the following metrics:
I. &€ with p; as the Euclidean distance for 1 <1 < p;

66



Table 3.3: Summary of the behaviors of the proposed homogeneity/dependence metrics for differ-

ent choices of p;(x, 2’) in high dimension.

Choice of p;(z, z")

Asymptotic behavior of the
proposed homogeneity metric

Asymptotic behavior of the
proposed dependence metric

the semi-metric ||z — 2’|

Behaves as a sum of squared
Euclidean distances

Behaves as a sum of squared
Pearson correlations

metric of strong negative type on
R%

Behaves as a sum of groupwise
energy distances with the metric

Pi

Behaves as a sum of groupwise
dCov with the metric p;

ki(z, )+ k(2 ) — 2ki(z, 2'),
where k; is a characteristic
kernel on R% x R%

Behaves as a sum of groupwise
MMD with the kernel k;

Behaves as a sum of groupwise
HSIC with the kernel k;

II. € with p; as the distance induced by the Laplace kernel for 1 < i < p;

III. &€ with p; as the distance induced by the Gaussian kernel for 1 <1 < p;

IV. the usual Euclidean energy distance;

V. MMD with the Laplace kernel;

VI. MMD with the Gaussian kernel.

We set d; = 1 in Examples 3.5.1 and 3.5.2, and d; = 2 in Example 3.5.3 for 1 < < p.

ExaMPLE 3.5.1. Consider X;, =

(Xk1, - -

3 Xip) and Y, = (Y, ...

l=1,...,m. We generate i.i.d. samples from the following models:

1. Xj, ~ N(0,1,) and Y; ~ N(0, I,).

2. Xj ~ N(0,%) and Y} ~ N(0,%), where ¥ = (03;); j— with 0y; = 1for i = 1,...

oij = 0.25if1 <|i — j| <2ando;; = 0 otherwise.

3. Xi ~ N(0,%) and Y; ~ N(0,%), where X2 = (03;)} ;_y with o;; = 0.7\,

ExAMPLE 3.5.2. Consider X;, =

(Xk1, - -

o Xip) and Yy = (Y, ...,

l=1,...,m. We generate i.i.d. samples from the following models:
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1. Xy~ N(u, L) withp=(1,...,1) € R” and Y}, iﬁflPoisson(l)fori: 1,...,p.

2. Xy~ N(p, L) withp=(1,...,1) €

3. Xy ~ N(0,1,) and Y, = (Y,...

Rademacher (0.5) and Yy gp|+1), - - -

4. X, ~ N(0,1,) and Y; = (Yy,..

Uniform (—\/g, \/§) and Yy gp|+1), - - -

R? and Y}, g Exponential (1) fori=1,...,p.

7.7.d.
Yiisp), Yi(8pl41)s - - -5 Yip), Where Yii, ..., Yygp '~
Yip RN (0,1),

1.3.d.
S Yise) Yigpl+1)s - -+ Yip), where Yo, .. Yy g, ™

5. Xy = RV?Zy, and Yy = RY?Zy, where R = (ry;)} ,_y withry; = 1 for i = 1,...,p, ry =

0.25if1 < |i—j| < 2andr;; = 0 otherwise, Zy, ~ N (0, I,) and Zy = (Zayp1, . -

EXAMPLE 3.5.3. Consider X;, = (Xiq), - - -

o) — 1.
~" Exponential(1)

,Xk(p)) and Y, = (YZ(I); ce ,Yi(p)) withk =1,...,n

andl =1,....m and d; = 2 for 1 < i < p. We generate i.i.d. samples from the following models:

1 Xk(i) ~ N(,u, 21) and ifl(i) ~ N(LL, 22) with Xk:(i) AL Xk(j) and ifl(i) AL }/l(j) fOl’ 1 S 1 7§

1

j <p where = (1,1)7, 3, =

0.9

0.9 1
and Y, =

1 0.1 1

0.1

2. Xy ~ N(p,X) with Xyy L Xy for 1 < i # j < p, where p = (1,1)7, & =

1 0.7

. The components of Y, are i.i.d. Exponential (1).

0.7 1

Note that for Examples 3.5.1 and 3.5.2, the metric defined in equation (3.2) essentially boils

down to the special case in equation (4.7).

We try small sample sizes n = m = 50, dimensions

p = ¢ = 50,100 and 200, and § = 1/2. Table 3.4 reports the proportion of rejections out of 1000

simulation runs for the different tests. For the tests V and VI, we chose the bandwidth parameter

heuristically as the median distance between the aggregated sample observations. For tests II and

III, the bandwidth parameters are chosen using the median heuristic separately for each group.

In Example 3.5.1, the data generating scheme suggests that the variables X and Y are identi-

cally distributed. The results in Table 3.4 show that the tests based on both the proposed homo-

geneity metrics and the usual Euclidean energy distance and MMD perform more or less equally
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good, and the rejection probabilities are quite close to the 10% or 5% nominal level. In Example
3.5.2, clearly X and Y have different distributions but ;1 x = py and Xx = Xy. The results in
Table 3.4 indicate that the tests based on the proposed homogeneity metrics are able to detect the
differences between the two high-dimensional distributions beyond the first two moments unlike
the tests based on the usual Euclidean energy distance and MMD, and thereby outperform the
latter in terms of empirical power. In Example 3.5.3, clearly ux = py and trXx = trXy and
the results show that the tests based on the proposed homogeneity metrics are able to detect the
in-homogeneity of the low-dimensional marginal distributions unlike the tests based on the usual

Euclidean energy distance and MMD.
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Table 3.4: Empirical size and power for the different tests of homogeneity of distributions.

I I 1II v v VI

P 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

(1) 50 0109 0.062 0.109 0.058 0.106 0.063 0.109 0.068 0.110 0.069 0.109 0.070
(1) 100 0.124 0.073 0.119 0.053 0.121 0.063 0.116 0.067 0.114 0.068 0.117 0.068
(1) 200 0.086 0.043 0.099 0.048 0.088 0.035 0.090 0.045 0.086 0.043 0.090 0.045
(2) 50 0.114 0.069 0.108 0.054 0.118 0.068 0.116 0.077 0.115 0.073 0.116 0.078
Ex351 () 100 0.130 0.069 0.133 0.073 0.124 0.070 0.126  0.067 0.123 0.068 0.124  0.067
(2) 200 0.099 0.048 0.103 0.041 0.092 0.047 0.097 0.040 0.095 0.039 0.097 0.040
3) 50 0100 0.064 0.107 0.057 0.099 0.060 0.112 0.072 0.105 0.067 0.110 0.073
(3) 100 0.103 0.062 0.113 0.061 0.113 0.063 0.097 0.060 0.100 0.057 0.098 0.059
(3) 200 0.108 0.062 0.115 0.062 0.117 0.064 0.091 0.055 0.093 0.056 0.090 0.055

(1) 50 1 1 1 1 0995 0994 0.102 0.067 0.111 0.069 0.103 0.066
(1) 100 1 1 1 1 1 1 0.120 0.066 0.120 0.071 0.119  0.066
(1) 200 1 1 1 1 1 1 0.111  0.057 0.111 0.057 0.111 0.057
2) 50 1 1 1 1 1 1 0.126  0.085 0.154 0.105 0.119 0.073
(2) 100 1 1 1 1 1 1 0.098 0.058 0.108 0.066 0.094 0.055
(2) 200 1 1 1 1 1 1 0.111 0.055 0.114 0.056 0.108 0.054
Ex 352
3) 50 1 1 1 1 1 0999 0.118 0.069 0.117 0.072 0.120 0.070
(3) 100 1 1 1 1 1 1 0.102 0.067 0.106 0.065 0.103 0.067
(3) 200 1 1 1 1 1 1 0.103 0.046 0.103 0.049 0.102 0.046
(4 50 0452 0328 0.863 0.771 0552 0421 0.114 0.061 0.111 0.061 0.114 0.061
(4) 100 0.640 0491 099 0967 0.761 0.637 0.098 0.063 0.104 0.063 0.098 0.062
(4) 200 0.840 0.733 1 0999 0933 0.876 0.105 0.042 0.108 0.042 0.105 0.043
5) 50 1 1 1 1 1 1 0.128 0.078 0.163  0.098 0.115 0.077
(5) 100 1 1 1 1 1 1 0.098 0.053 0.115 0.063 0.091 0.051
(5) 200 1 1 1 1 1 1 0.100  0.050 0.103  0.054 0.098 0.050
(1) 50 1 1 1 1 1 1 0.157 0.098 0223 0.137 0.156  0.098
(1) 100 1 1 1 1 1 1 0.158 0.089 0.188 0.124 0.157 0.090
(1) 200 1 1 1 1 1 1 0.122  0.074 0.161 0.091 0.121 0.074
Ex3.53
2) 50 1 1 1 1 1 1 0.140 0.078 0.190 0.118 0.137 0.075
(2) 100 1 1 1 1 1 1 0.139  0.080 0.171  0.105 0.136  0.080
(2) 200 1 1 1 1 1 1 0.109 0.053 0.127 0.069 0.108 0.053

REMARK 3.5.1. In Example 3.5.3.1, marginally the p-many two-dimensional groups of X and Y

are not identically distributed, but each of the 2p unidimensional components of X and Y have
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identical distributions. Consequently, choosing d; = 1 for 1 <1 < p leads to trivial power of even
our proposed tests, as is evident from Table 3.5 below. This demonstrates that grouping allows us

to detect a wider range of alternatives.

Table 3.5: Empirical power in Example 3.5.3.1 if we choose d; = 1 for 1 <7 < p.

P 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

(1) 50 0.144 0.087 0.133 0.076 0.143 0.086 0.174 0.107 0.266 0.170 0.175 0.105
Ex353 (1) 100 0.145 0.085 0.134 0070 0.142 0.085 0.157 0.098 0223 0.137 0.156 0.098
(1) 200 0.126 0.063 0.101 0.058 0.111 0.065 0.158 0.089 0.188 0.124 0.157  0.090

3.5.2 Testing for independence

We study the empirical size and power of tests for independence between two high dimensional

random vectors. We consider the t-tests based on the following metrics:
I. D with d; = 1 and p; be the Euclidean distance for 1 < ¢ < p;

II. D with d; = 1 and p; be the distance induced by the Laplace kernel for 1 < < p;
III. D with d; = 1 and p; be the distance induced by the Gaussian kernel for 1 < ¢ < p;
IV. the usual Euclidean distance covariance;

V. HSIC with the Laplace kernel;

VI. HSIC with the Gaussian kernel.
We also compare the empirical size and power of the above tests with the

VII. projection correlation based test for independence proposed by Zhu et al. (2017),
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which is shown to have higher empirical power compared to the usual Euclidean distance covari-
ance when the dimensions are relatively large. The numerical examples we consider are motivated

from Zhu et al. (2020).

ExampLE 3.54. Consider Xy, = (Xp1,..., Xgp) and Yy = (Yiq, ..., Vi) fork =1,...,n. We

generate i.i.d. samples from the following models :
1. Xy, ~ N(0,1,) and Yy, ~ N(0, I,).

2. Xp ~ AR(1),¢ = 0.5, Y, ~ AR(1),¢p = —0.5, where AR(1) denotes the autoregressive

model of order 1 with parameter ¢.
3. Xp ~ N(0,%) and Yy, ~ N(0,%), where ¥ = (03;)F iy with o35 = 0.7,

EXAMPLE 3.5.5. Consider Xy, = (Xj1,...,Xgp) and Yy = (Yia,...,Ye), bk =1,...,n. We

generate i.i.d. samples from the following models :
1. Xj ~N(0,1,) and Yy, = X,%jforj =1,...,p
2. Xy, ~ N(0,1,) and Yy; =log|Xy,|forj=1,...,p.
3. X~ N(0,%) and Yi; = X3 for j = 1,...,p, where ¥ = (03;)} ;) with 0 = 0.71=l,

ExAMPLE 3.5.6. Consider X, = (Xj1,...,Xkp) and Y, = (Yia, ..., Vi), k=1,...,n. Leto

denote the Hadamard product of matrices. We generate i.i.d. samples from the following models:
1. Xy ~U(=1,1)forj=1,...,p,and Y = X} 0 Xj.
2. Xy~ U0, 1) forj=1,...,p,and Y}, = 4X; 0 X}, — 4X;, + 2.
3. Xyj = sin(Zy;) and Yy; = cos(Zy;) with Zy; ~ U(0,2n) and j = 1,...,p.

For each example, we draw 1000 simulated datasets and perform tests for independence be-
tween the two variables based on the proposed dependence metrics, and the usual Euclidean dCov

and HSIC. We try a small sample size n = 50 and dimensions p = 50, 100 and 200. For the tests
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IL, 111, V and VI, we chose the bandwidth parameter heuristically as the median distance between
the sample observations. Table 3.6 reports the proportion of rejections out of the 1000 simulation
runs for the different tests. For VII, we conduct a permutation based test with 500 replicates.

In Example 4.4.2, the data generating scheme suggests that the variables X and Y are inde-
pendent. The results in Table 3.6 show that the tests based on the proposed dependence metrics
perform almost equally good as the other competitors, and the rejection probabilities are quite close
to the 10% or 5% nominal level. In Examples 4.4.3 and 4.4.4, the variables are clearly (componen-
twise non-linearly) dependent by virtue of the data generating scheme. The results indicate that the
tests based on the proposed dependence metrics are able to detect the componentwise non-linear
dependence between the two high-dimensional random vectors unlike the tests based on the usual
Euclidean dCov and HSIC, and thereby outperform the latter in terms of empirical power. Also,

our proposed tests clearly perform far better compared to the projection correlation based test.
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3.5.3 Real data analysis

3.5.3.1 Testing for homogeneity of distributions

We consider the two sample testing problem of homogeneity of two high-dimensional distribu-
tions on Earthquakes data. The dataset has been downloaded from UCR Time Series Classifi-
cation Archive (https://www.cs.ucr.edu/~eamonn/time_series_data_2018/).
The data are taken from Northern California Earthquake Data Center. There are 368 negative
and 93 positive earthquake events and each data point is of length 512.

Table 3.7 shows the p-values corresponding to the different tests for the homogeneity of distri-
butions between the two classes. Here we set d; = 1 for tests I-III. Clearly the tests based on the
proposed homogeneity metrics reject the null hypothesis of equality of distributions at 5% level.
However the tests based on the usual Euclidean energy distance and MMD fail to reject the null at

5% level, thereby indicating no significant difference between the distributions of the two classes.

Table 3.7: p-values corresponding to the different tests for homogeneity of distributions for Earth-
quakes data.

I I I v \Y VI
227 x 1079 319x10°% 9.74x 10~ 0.070 0.068 0.070

3.5.3.2 Testing for independence

We consider the daily closed stock prices of p = 126 companies under the finance sector and
q = 122 companies under the healthcare sector on the first dates of each month during the time
period between January 1, 2017 and December 31, 2018. The data has been downloaded from
Yahoo Finance via the R package ‘quantmod’. At each time ¢, denote the closed stock prices of
these companies from the two different sectors by X; = (Xy,..., X)) and Y, = (Yi, ..., Yy)
for 1 < ¢ < 24. We consider the stock returns S;* = (Sjy,...,Sy) and S} = (S},,...,5))

for 1 < ¢ < 23, where S5f zlog%andS};:log%fml <i<pandl <j<gq It
(23 gt
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seems intuitive that the stock returns for the companies under two different sectors are not totally
independent, especially when a large number of companies are being considered. Table 3.8 shows
the p-values corresponding to the different tests for independence between {SX}22, and {S} }23,,
where we set d; = g; = 1 for the proposed tests. The tests based on the proposed dependence
metrics deliver much smaller p-values compared to the tests based on traditional metrics. We note
that the tests based on the usual dCov and HSIC as well as projection correlation fail to reject the
null at 5% level, thereby indicating cross-sector independence of stock return values. These results
are consistent with the fact that the dependence among financial asset returns is usually nonlinear

and thus cannot be fully characterized by traditional metrics in the high dimensional setup.

Table 3.8: p-values corresponding to the different tests for cross-sector independence of stock
returns data.

I I III v v VI VIl
491 x 10712 429 x 10717 1.12x 107 0.093 0.084 0.099 0.154

We present an additional real data example on testing for independence in high dimensions in
Section B.3 of the appendix. There the data admits a natural grouping, and our results indicate that
our proposed tests for independence exhibit better power when we consider the natural grouping
than when we consider unit group sizes. It is to be noted that considering unit group sizes makes
our proposed statistics essentially equivalent to the marginal aggregation approach proposed by
Zhu et al. (2020). This indicates that grouping or clustering might improve the power of testing as

they are capable of detecting a wider range of dependencies.
3.6 Discussions

In this work, we introduce a family of distances for high dimensional Euclidean spaces. Built
on the new distances, we propose a class of distance and kernel-based metrics for high-dimensional
two-sample and independence testing. The proposed metrics overcome certain limitations of the

traditional metrics constructed based on the Euclidean distance. The new distance we introduce
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corresponds to a semi-norm given by

B(x) = \/Pl(l“(l)) + . (@),

where Pi(x(i)) = pi(ZB(i), Odi) and x = (I(l), ce ,l‘(p)) € R? with Ty = (:L’Ll, e >Ii,di>- Such a

semi-norm has an interpretation based on a tree as illustrated by Figure 3.3.

Figure 3.3: An interpretation of the semi-norm B(-) based on a tree

B(x)

p1((1)) e Pp(T(p))

T11 " del Tp,1 .o xp’dp

Tree structure provides useful information for doing grouping at different levels/depths. The-
oretically, grouping allows us to detect a wider range of alternatives. For example, in two-sample
testing, the difference between two one-dimensional marginals is always captured by the differ-
ence between two higher dimensional marginals that contain the two one-dimensional marginals.
The same thing is true for dependence testing. Generally, one would like to find blocks which
are nearly independent, but the variables inside a block have significant dependence among them-
selves. It is interesting to develop an algorithm for finding the optimal groups using the data and
perhaps some auxiliary information. Another interesting direction is to study the semi-norm and
distance constructed based on a more sophisticated tree structure. For example, in microbiome-

wide association studies, phylogenetic tree or evolutionary tree which is a branching diagram or
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“tree” showing the evolutionary relationships among various biological species. Distance and
kernel-based metrics constructed based on the distance utilizing the phylogenetic tree information

is expected to be more powerful in signal detection. We leave these topics for future investigation.
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4. NONPARAMETRIC MULTIPLE CHANGE-POINT DETECTION FOR HIGH
DIMENSIONAL DATA

4.1 Background and notations

Change-point detection has been a classical and well-established problem in statistics, aiming
to detect lack of homogeneity in a sequence of time-ordered observations. This finds abundance
of applications in a wide variety of fields, for example, bioinformatics (see Picard et al. (2005),
Curtis et al. (2012)), neuroscience (see Park et al. (2015)), digital speech processing (see Rabiner
and Schifer (2007)), social network analysis (see McCulloh (2009)), and so on. A nonparametric
change-point detection procedure is concerned with detecting and localizing quite general types
of changes in the data generating distribution, rather than only changes in mean. This challeng-
ing problem of detecting abrupt distributional changes in the nonparametric setting has been ad-
dressed in the literature over the last couple of decades. But many of the methodologies developed
suffer from several limitations, for example, applicability only for real-valued data or in the low-
dimensional setting, assumption that the number of true change-points is known, etc. Harchaoui
and Cappé (2007) proposed a kernel-based procedure assuming a known number of change-points,
which reduces its practical interest. Zou et al. (2014) proposed a nonparametric maximum likeli-
hood approach for detecting multiple (unknown number of) change-points using BIC, but is only
applicable for real-valued data. Lung-Yut-Fong et al. (2012) developed a nonparametric approach
based on marginal rank statistics, which requires the number of observations to be larger than the
dimension of the data. Arlot et al. (2012) proposed a kernel-based multiple change-point detection
algorithm for multivariate (but fixed dimensional) or complex (non-Euclidean) data. Some graph-
based tests have been proposed recently by Chen and Zhang (2015) and Chu and Chen (2019)
for high-dimensional data, which allow us to detect only one or two change-points. Matteson
and James (2014) proposed a procedure for estimating multiple change-point locations, namely

E-Divisive, built upon an energy distance based test that applies to multivariate observations of
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arbitrary (but fixed) dimensions. Biau et al. (2016) rigorously derived the asymptotic distribution
of the statistic proposed by Matteson and James (2014), thereby adding theoretical justifications
to their methodology. However, some recent research revelations on the performance of energy
distance for growing dimensions put a question on its performance when we have a sequence of
high-dimensional observations. To the best of our knowledge, the literature in general on nonpara-
metric multiple change-point detection in the high-dimensional setup is quite scarce till date.
Energy distance, proposed by Székely et al. (2004, 2005) and Baringhaus and Franz (2004), is
a classical distance-based measure of equality of two multivariate distributions, taking the value
zero if and only if the two random vectors are identically distributed. Such a complete characteriza-
tion of homogeneity of distributions lends itself for reasonable use in one-sample goodness-of-fit
testing and two-sample testing for equality of distributions, and has been widely studied in the
literature over the last couple of decades. In a very recent paper, Chakraborty and Zhang (2019)
showed a striking result that energy distance based on the usual Euclidean distance cannot com-
pletely characterize the homogeneity of the two high-dimensional distributions in the sense that
it can only detect the equality of means and the traces of covariance matrices of the two high-
dimensional random vectors. In other words, the Euclidean energy distance fails to detect inhomo-
geneity between two high-dimensional distributions beyond the first two moments. To overcome
such a limitation, the authors proposed a new class of homogeneity metrics which inherits the de-
sirable properties of energy distance in the low-dimensional setting. And more importantly, in the
high-dimensional setup the new class of homogeneity metrics is capable of detecting the pairwise
homogeneity of the low-dimensional marginal distributions, going beyond the scope of the Eu-
clidean energy distance. In other words, the proposed class of homogeneity metrics can capture a
wider range of inhomogeneity of distributions compared to the classical Euclidean energy distance
in the high-dimensional framework. The core of their methodology is a new way of defining the
distance between sample points (interpoint distance) in the high-dimensional Euclidean spaces.
This work focuses on estimating an unknown number of multiple change-point locations in

an independent sequence of RP-valued observations of size n, where p can by far exceed n. Our

80



approach essentially rests upon distance-based nonparametric two-sample tests for homogeneity
of two high-dimensional distributions. We first construct a single change-point location estimator
M, based on the homogeneity metrics proposed by Chakraborty and Zhang (2019) via defining a
cumulative sum process in an embedded Hilbert space. It essentially generalizes the single change-
point location estimator developed by Matteson and James (2014) and Biau et al. (2016) in the high-
dimensional setup, providing a unifying framework. Testing for the statistical significance of the
estimated candidate change-point location necessitates determining the quantiles of the distribution
of M,. The key theoretical innovation of this paper is to rigorously derive the asymptotic null
distribution of M, as both the dimension p and the sample size n grow to infinity, with n growing
at a smaller rate compared to p. Such a setup is typically known in the literature as the high
dimension medium sample size (HDMSS) framework. The intrinsic difficulty is to establish the
uniform weak convergence of an underlying stochastic process under certain mild assumptions,
which has been non-trivial and challenging. Because of the pivotal nature of the limiting null
distribution, its quantiles can be approximated using a large number of Monte Carlo simulations.
We propose an algorithm for single change-point detection based on a permutation procedure to
better approximate the quantiles of the distribution of M,,. Subsequently, we combine the idea
of Wild Binary Segmentation (WBS) proposed by Fryzlewicz (2014) to recursively estimate and
test for the significance of (an unknown number of) multiple change-point locations. The superior
performance of our procedure compared to several of the existing methodologies is illustrated via
both simulated and real datasets.

Notation. Denote by || - ||, the Euclidean norm of R” (we shall use it interchangeably with
| - || when there is no confusion). Let 0,, be the origin of R?. We use “X £ Y” to indicate that
X and Y are identically distributed. Let X', X", X" be independent copies of X. ‘O’ and ‘0’
stand for the usual notations in mathematics : ‘is of the same order as’ and ‘is ultimately smaller
than’. We use the symbol “a < b7 to indicate that @ < C'b for some constant C' > 0. We
utilize the order in probability notations such as stochastic boundedness O,, (big O in probability),

convergence in probability o, (small o in probability) and equivalent order =, which is defined as
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follows: for a sequence of random variables {Z,}5%, and a sequence of real numbers {a,, }°2 |,
Zn =p Qap if and Only if Zn/an = Op(l) and an/Zn = Op<1) asn — oo. If Z, 5} Z as

n — 0o, then we say plim Z, = Z. For ametric space (X, dy), let M(X') and M, (X’) denote

n—oo
the set of all finite signed Borel measures on X and all probability measures on &X', respectively.
Define M) _(X) := {v € M(X) : Jzg € X sit. [, dx(x,20)d[v|(x) < oo}. For a matrix

A = (ap)y =y € R™", define its U-centered version A = (ay) € R™" as follows

1 1 < 1 g
g — ———5 ) Qkj — Tza“ + — Zaija k#1,
G = n—2 = n—2 — (n—1)(n—2) = @.1)
0, k=1,
fork,l =1,..., n. Let 1(A) denote the indicator function associated with a set A. Finally, denote

by |a| and {a} the integer and fractional part of a € R, respectively.
4.2 An overview
4.2.1 Energy Distance

Energy distance (see Székely et al. (2004, 2005), Baringhaus and Franz (2004)) or the Eu-
clidean energy distance between two random vectors X,Y € R? and X I Y with E|| X, < o0

and E||Y]|, < o0, is defined as

ED(X,Y) = l/ fx(t) — @) gt 4.2)
RP

Cp [ ’

where fy and fy are the characteristic functions of X and Y respectively, and ¢, = 7(1+P)/2 / T'((1+
p)/2) is a constant with I'(-) being the complete gamma function. Theorem 1 in Székely et
al. (2005) shows that ED(X,Y) > 0 and the equality holds if and only if X 2 Y. In other
words, energy distance can completely characterize the homogeneity between two multivariate

distributions.

82



Alternatively an equivalent expression for £D(X,Y) is given by
ED(X,Y) = 2E[X =Y, - E[|X — X"[|, —E[Y = Y"[|,, (4.3)

where (X', Y’) is an independent copy of (X, Y).
In general, for an arbitrary metric space (X', ), the generalized energy distance between X ~

Px and Y ~ Py where Px, Py € M;(X) N ML (X) is defined as
EDg(X,Y) = 2EK(X,Y) ~EK(X,X") ~EK(Y,Y). 4.4)

DEFINITION 4.2.1 (Spaces of negative type). A metric space (X, K) is said to have negative type

ifforalln > 1, xy,...,x, € X and oy, ...,a, € R wich?zlai:0, we have

Z Q; O K(IZ‘,ZE]‘) S 0. (45)
ij=1
The metric space (X, K) is said to be of strong negative type if the equality in (4.5) holds only

when a; = 0 foralli € {1,...,n}.

By Theorem 3.16 in Lyons (2013), every separable Hilbert space is of strong negative type. In
particular, Euclidean spaces are separable Hilbert spaces and therefore have strong negative type.

If (X, K) has strong negative type, then F Dy (X,Y) = 0if and only if X 2 Y. In other words,
the completely characterization of the homogeneity of two distributions holds good in any metric
spaces of strong negative type (we refer the reader to Lyons (2013) and Sejdinovic et al. (2013)
for detailed discussions). Thus the quantification of homogeneity of distributions by the Euclidean
energy distance given in (4.3) is just a special case when K is the Euclidean distance on X' = RP.

This quantification of homogeneity of distributions lends itself for reasonable use in one-
sample goodness-of-fit testing and two-sample testing for equality of distributions. Suppose { X},

and {X;}}_, ., are two independent i.i.d samples on X and Y taking values in (X, K'). An U-
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statistic type estimator of the generalized energy distance between X and Y is defined as

1
Exinn = N —n) Z Z X, X m Z K(Xy,, Xi,)

11=142=n+1 1<i1#ia<n (46)
1
_ K(X,, Xs,).
(N—-n)(N—-n-—1) Z (Xiy )

n+1<i1#12<N

We refer the reader to Section A.1 in the supplementary materials of Chakraborty and Zhang (2019)
for a comprehensive overview of the properties and asymptotic behavior of the U-statistic type

estimator of Ex (X, Y) in the low-dimensional setting.
4.2.2 Modifications to the classical energy distance in high dimensions

The question of interest is how do the classical distance-based homogeneity metrics like energy
distance behave in the high-dimensional framework. Consider two RP-valued random vectors
X = (Xy,...,X,) and Y = (Y3,...,Y,). Chakraborty and Zhang (2019) in their recent paper
showed a striking result that when dimension grows high, the Euclidean energy distance between
X and Y can only capture the equality of the means and the first spectral means, viz. pux = py
and tr Xy = tr Xy, where ux and py, and, X x and Yy are the mean vectors and the covariance
matrices of X and Y, respectively.

To illustrate, consider the case X ~ N(u,1,) with p = (1,...,1) € R? and Y; (S Exponen-
tial (1) for 1 < ¢ < p. Thatis, ux = py and trXx = trXy although X and Y have different
distributions. Section 6.1 in Chakraborty and Zhang (2019) demonstrates that when p is much
larger than the sample sizes observed, the Euclidean energy distance does a poor job in detecting
the in-homogeneity of the two distributions.

Such a limitation of the classical Euclidean energy distance arises essentially due to the use
of Euclidean distance. The authors proposed a new class of homogeneity metrics to overcome
such a limitation of the Euclidean energy distance, which is based on a new way of defining the
distance between sample points (interpoint distance) in the high-dimensional Euclidean spaces.

For z, 2" € R? with x = (xy,...,x,) and 2’ = (2}, ..., x}), consider the distance metric

p
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P 1/2
Kw,a) = (Y lay=afl) " = o —a'h’?, (47
j=1

where [|z[|; = > ¥_, |z;| is the [; or the absolute norm on R.
Based on the new distance metric defined in (4.7), the following homogeneity metric £ is

proposed to quantify the homogeneity of the distributions of X and Y':
EX,)Y) =2EK(X,Y) - EK(X,X') - EK(Y,Y), (4.8)

which is essentially a generalized energy distance as defined in (4.4) with X = RP and K as
defined in (4.7). Under the assumption that sup, -, E | X;|'/? < oo, £ is finite.

For fixed p, (R, K') is shown to have strong negative type and hence £(X,Y’) = 0 if and only if
X 2 Y. In other words, £(X,Y') completely characterizes the homogeneity of the distributions of
X and Y in the low-dimensional setting. Theorem 4.1 and Lemma 4.1 in this paper show that when
dimension grows high, £(X,Y") can capture the pairwise homogeneity of the univariate marginal
distributions of X; and Y;. Clearly X; Ll Yiforl <7 < pimplies ux = py and tr X2 x = tr Xy, and
therefore the proposed class of homogeneity metrics can capture a wider range of in-homogeneity
of distributions compared to the Euclidean energy distance in the high-dimensional framework.
Completely characterizing the discrepancy between two high-dimensional distributions might have
some intrinsic difficulties and remains as an open problem for future investigation.

Consider i.i.d. samples { X, }7_; and {X;};¥, ., from the respective distributions of X and Y.
The authors propose an unbiased U-statistic type estimator £ y,, of £(X,Y") as in equation (4.6)

with K being the metric defined in (4.7).
Denote Xy, = {X1,..., Xy} and Xpy1)nv = {Xps1,..., Xy} for 1 <k < N. Also denote
vs = s(s —3)/2 for s =n, N —n. The pooled variance estimator S,, x_,, of £; n, is constructed

as

— —_~—

. 4(“ - 1)(N -—n—- 1) CdCOUTQL,N_n(XlﬂuX(n+1):N) + 4v, D%(Xlzn) + 4don_p D?V_n(X(n-&-l):N)

S’ﬂ —n = ?
N (n—1)(N-n—-1)4v,+vn-n
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where

CdCOU37N_n(X1:n7X(n+1):N) = (n—l —n—l Z Z 117
11 1is=n+1
1
K(X,, X:,) = K(Xi,,Xi,) — ZK i Xia) = 57— Z K(X;,, X))
’L3 1 ig=n+1
Z Z K (X, X for 1<iy<nn+1<iz<N,
_n 13=11i4=n—+1
2 . 1 -2 —~— . 1 P2
PalXin) = S Z G o ad D Xoo) i= N gy 2 b
1<k#£I<n n+1<k#I<N

with A = (a)},_; € R and B = (b)), € RY=XN=") being the U-centered versions
(see (4.1)) of the distance matrices A := (ax)} ;=) = (K (X, X0))p =y and B = (br)pj—pyy =
(I (X, X0)) 1= 1- TESpectively.

Based on &; n, and its pooled variance estimator, the authors propose a two-sample test statis-
tic

EiNm
Tina(X) = L , (4.9)

1/2
n,N—n Sn,an

where

v =\ D) T A I )

We will denote 7' n,,(X) simply by T} v, henceforth. Likewise, henceforth we will simply

denote

—~——

ch’oviN_n(Xl:n,X(nﬂ):N) D2 2(X1.n) and D%, (X(ns1):n) respectively by cdCouv? D2

n,N—n> n

and D% _, for notational simplicities. Note that the construction of the pooled variance estimator
Sn,n—n and hence the two-sample statistic 7 y,, requires n > 4 and N —n > 4,ie.,4 < n <
N —4.

Under certain mild assumptions, it is shown in Theorem B.1 in their paper that under H :

X <y, Ting N N(0,1) as p — oo and n, (N — n) — oo at a slower rate than p. Based
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on the asymptotic behavior of 7}y, for growing dimensions, the authors propose a test for H,
against a general alternative. Owing to the pivotal nature of the limiting distribution of 7} y ,, no

resampling-based inference is needed.
4.3 Methodology

Consider an independent sequence of RP-valued observations { X;}? ,, where the dimension p
is typically much higher than the sample size n. We are concerned with testing the null hypothesis
Hy : Xy ~ Fy, t=1,...,n against the single change-point alternative

Fo, 1<t<m,
H : d1<15<n, X~ (4.10)

F, To+1<t<n,

or the multiple change-point alternative

F07 1 S t S 71,
Fl, T1+1§t§T27
Hy : 3Ny €Z, Ng>2,1<11<---<7pn, <1, X~
FNm TN()+1§t§n7
\
4.11)
where the probability distributions Fp, F1, ..., Fly, differ on a set of non-zero measure.

4.3.1 Construction of a single change-point location estimator via cumulative sum process

in embedded spaces

The starting point of many change-point detection procedures rest upon the so-called cumula-
tive sum process. In this subsection, we illustrate the idea behind the construction of our proposed
test statistic in Section 4.3.2 for estimation of a single change-point location. The idea essentially
rests upon the construction of a cumulative sum process in embedded spaces.

[Equivalent characterization of spaces of negative type] A metric space (X, K) is of negative

type if and only if there is a Hilbert space H and an embedding ¢ : X — H such that K (z,2') =
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|p(z) — d(a’)||3, forall x, 2" € X, where || - ||3 is the norm associated with H (see Section 3 in
Lyons (2013)).

It is well known that R? equipped with the usual Euclidean distance is a separable Hilbert
space, and therefore has strong negative type (by Theorem 3.16 in Lyons (2013)). This combined
with Result 4.3.1 ensures the existence of an embedding ¢ : RP — H for some Hilbert space ‘H

such that

lz = a'lly, = lé(z) — d@)5 = (b(z) — ¢a'), d(z) — ¢(a") ), (4.12)

where =, 2’ € R? and (-, -)3 denotes the inner product associated with H. Therefore we get from

(4.12)
(0(x), 6(@) ) = 27" (Il + 12l = o —2])) = I(z,2"). (4.13)

We define the cumulative sum process in the embedded space as

Se= =2 (000 =9) = —=(3ex —SZqﬁXt ) - B3 o)

t=1 t=1 t=k+1

oLy i 6(X) — 3 o)

t=1 t=k+1

(4.14)

n

|
e ‘

for 1 < k < n, where ¢ = 137" | ¢(X,). The squared norm of S, induced by the inner product
(-, )% is given by

3 k n k n
n , 1 1 2
— = — 7 —_— l X X / - l X X/
(n— k)2 k2 1Skl 2 Z 1(Xe, Xv) + (n— k)2 Z (Xe, X)) k(n—k)z Z (Xe, Xor)
tt'=1 tt =k—+1 t=1t/'=k+1
k n 1 k 1 n
Z HXt _Xt’H - 2%k2 Z ||Xt _Xt/” - 2(7L-k>2 Z ||Xt _Xt'” )
t=1t'—k t,t'=1 t,t'=k+1

(4.15)

which essentially follows from (4.13). If there is a single change-point in the sequence of data

observations, a natural statistic to consider is the maximizer of the cumulative sum statistic ||.Sy||*
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over 1 < k < n, viz.

) (n — k)2k? 1 K& 1 &
Vo = ISP = max = (e 0 Y I Xl = g 3T G- Xl

t=1t/'=k+1 t,t'=1

(4.16)

n

1
T k2 2: WXt—quH),

tt =k+1

which gives a candidate change-point location that needs to be tested against a certain threshold.

A U-statistic version of the statistic in (4.16) is given by

n — k)2k>
U, = max % i, (.17)

where F ,, ) 1s the U-statistic type estimator of the Euclidean energy distance between the two
samples Xy, and X (41, (With d as the Euclidean distance in (4.6)). We want to point out to
the reader that U,, constructed as above looks quite similar to the statistic considered by Matteson
and James (2014) for estimation of a single change-point location, slightly differing in the scaling

factor.

(n—k)2k?

Consequently the single change-point location can be estimated as 7oy := argmax <., 3,3

E, ,, i The statistical significance of the candidate change-point location 7y remains to be tested,

which requires rigorously deriving the null distribution of U,.
4.3.2 Estimation of a single change-point location

The setup considered in Section 4.3.1 for the construction of the single change-point location
estimator U, is essentially low dimensional, i.e., when the dimension of the observations is much
smaller than the sample size. The motivation of this work is to develop a nonparametric methodol-
ogy for detection of change-point locations when we have a sequence of high-dimensional observa-
tions, 1.e., when p can by far exceed n. Our approach essentially rests upon testing for homogeneity
of two high-dimensional distributions based upon the modifications to the usual Euclidean energy

distance discussed in Section 4.2.2.
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Building upon the insights from Section 4.3.1, we propose the following statistic :

M, = max T(1,n;k) = max MTLn,kv (4.18)

4<k<n—4 4<k<n—4 n?

where 77 ,, ;, 18 the two-sample statistic stated in (4.9), computed based on the two samples X1,

and X (x41)m, and T(l,n; k) := (”;f L T 5. M, essentially estimates a candidate single change-

point location as

7o = argmax T(1,n; k). (4.19)

4<k<n—4

The statistical significance of the estimated change-point location 7, needs to be tested, which

necessitates determining the null distribution of M,,. The key theoretical innovation of this paper

is to rigorously derive the asymptotic null distribution of M,, as n,p — oo, with n growing at a

smaller rate compared to p. The intrinsic difficulty is to derive a uniform weak convergence result

for the stochastic process 17, i, as clearly a pointwise weak convergence result won’t suffice.
Towards that end, we begin with introducing some technical definitions. Define

2 =EK(X, X

AssUMPTION 4.3.1. There exist constants a and A such that uniformly over p

0<a< inf E|X; — X/ < sup E|X; — X]| < A< 0.

1<i<p 1<i<p

Under Assumption 4.3.1, it is easy to see that 7 =< p'/2. The following proposition (Proposition
4.1 in Chakraborty and Zhang (2019)) presents an expansion formula for the distance metric K

when the dimension is high, which plays a key role in the theoretical analysis.

ProPOSITION 4.3.1. Under Assumption 4.3.1, we have

K(X, X’

T

1
=1+ 5 L(X, X') + R(X, X),
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where L(X, X') := w is the leading term and R(X,X') is the remainder term. In

addition, if L(X, X") is a 0,(1) random variable as p — oo, then R(X,X') = O, (L*(X, X")).

Define H (X, X;) := £ >0 di(i) for 1 < k,1 < n, where
dia(7) = | Xpi — Xui| — B [| X — Xu| | Xui] — E [| X — Xusl [ Xus] + E [|Xni — Xuil ]

is the double-centered distance between X; and X;.

ASSUMPTION 4.3.2. Asn,p — 00,

1 E [HY(X, X")] — o(1) 1E [H2(X, X") H*(X', X")] — o(1)

n? (B [H2(X, X'))? L on (B [HAX, X)) |
E[HX,X")HX' X")H(X,X")H(X', X")] — o(1)

(B [H2(X, X"))* |

REMARK 4.3.1. We refer the reader to Section 2.2 in Zhang et al. (2018) for an illustration of

Assumption 4.3.2.

ASSUMPTION 4.3.3. Suppose E[L*(X, X')] = O(a2) where o, is a positive real sequence such

that 7'04127 = o(1) as p — oco. Further assume that as n,p — oo,

nt T E [RYX, X")]
(E [H2(X, X))

= o(1).

REMARK 4.3.2. We refer the reader to Remark 4.1 in Chakraborty and Zhang (2019) which il-

L

VP

In similar lines of Remark D.I in the supplementary materials of their

lustrates some sufficient conditions under which o, = O(—=z) and consequently Ta; = o(1)

holds, as T =< pl/Q.
paper, it can be argued that E [R*(X, X")] = O (#) Further with a mild assumption that
o? = limy, 0o E[H*( Xy, X))], we have E [H*(X, X')] < 1. Combining all the above, it is easy

ntriE[RYXX))]

. T ERAA) . _ 1/2
to verify that B XX o(1) holds provided n = o(p'/?).

The following theorem establishes a uniform weak convergence result of the stochastic process

{Tl,n,tm" | }re[O,l] which plays a key role in deriving the limiting null distribution of M,, as n,p —

91



THEOREM 9. Under Assumptions 4.3.2 and 4.3.3, as n, p — 00,

TMT} Gy in L®(0,1])
{ 1,n,|nr] — 0 in (0, 1])

where Go(r) == Q(0,1) — £ Q(0,7) — = Q(r, 1) for r € (0,1) and zero otherwise, and Q) is a

centered gaussian process with covariance function given by
2
cov (Q(al, bl) , Q(CLQ, bQ)) = (b1 ANby — a1V CLQ) ]l(bl Nby > a1V CL2) .

In particular, var (Q(a,b)) = (b—a)*1(b > a).

The proof of this theorem is non-trivial, requiring the finite dimensional weak convergence
and stochastic equicontinuity of the process {7} 1L, |nr] }rE[O,l] to be established (see Theorem 10.2
in Pollard et al. (1990)). Because of its extremely long and technical nature, we relegate it to the
supplementary materials.

Theorem B.1 in the supplementary materials of Chakraborty and Zhang (2019) essentially
proves that for fixed r € (0,1), T\ 5 |nr| KN N(0,1) as n,p — oo, under the same Assumptions
4.3.2 and 4.3.3. Note that in Theorem 9, for fixed » € (0, 1), Go(r) has a gaussian distribution
with zero mean. From the covariance structure of the gaussian process () given in Theorem 9,
it is not hard to verify that var (Go(r)) = 1. This illustrates that the uniform weak convergence
result established in Theorem 9 in fact generalizes the pointwise weak convergence result proven
in Theorem B.1 in Chakraborty and Zhang (2019).

As a consequence of Theorem 9, we derive the limiting null distribution of M,,, which serves

as the main theoretical innovation of the paper.

THEOREM 10. Under Assumptions 4.3.2 and 4.3.3, as n,p — oo, M, % sup (1 —1)Go(r).
re(0,1)

Theorem 10 essentially follows from Theorem 9 and continuous mapping theorem. One thing

to be noted is that the limiting null distribution is pivotal in nature and the quantiles of the limiting
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distribution can be approximated via a large number of Monte Carlo simulations.

With the limiting null distribution of M,, being rigorously established, we now present in Algo-
rithm 1 the pseudocode of the procedure to test for H, against the single change-point alternative
H,. We use a permutation procedure to approximate the quantiles of the distribution of M,, aiming

to achieve more accurate results.

Algorithm 1 Single change-point detection

Input : RP-valued observations { X7, ..., X, }; level of significance o € (0, 1); number of per-
mutation replicates B.
Compute the value of the test statistic M,, and the candidate change-point location 7.
forj=1,2,...,Bdo
Generate a random permutation of the observations { X1, ..., X, }.
Compute the value of the test statistic for the permuted data, call it M.
end for
Compute M, the 100(1 — «)™" percentile of {M}, ... MPB}.
if M,, > M, then
Reject Hj at level a.
Return 7, as the estimated change-point.
end if

4.3.3 Recursive estimation of multiple change-point locations

In practice, both the number and locations of change-points are unknown and need to be esti-
mated. We need a ‘greedy’ procedure to sequentially detect multiple change-point locations, with
each stage relying on the previously detected change-points, which are never re-visited. We com-
bine our proposed test statistic M,, with the Wild Binary Segmentation (WBS) procedure proposed
by Fryzlewicz (2014) to recursively estimate and test for the significance of multiple change-point
locations.

The main idea is quite simple. In the beginning, instead of computing the statistic M,, over the

entire sample { X1, ..., X,,}, we randomly draw (hence the term ‘wild’) M sub-samples
{Xs,,, -, X}, 1 < m < M, where s,,, e, are integers satisfying 1 < s,, < n — 7 and
Sm+ 7 < en < n. We compute the statistic 7'(s,,, €, ; b) = % Ts,, e for each
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sub-sample with b ranging over {s,, + 3,...,e,, — 4}. We require s,, + 7 < e, to ensure there
are e, — s, + 1 > 8 observations in the sub-sample {X; ,..., X, }. We choose the largest
maximizer over all the sub-samples to be the first change-point candidate to be tested against a
certain threshold. We determine that threshold using a permutation procedure with B replicates.
If the candidate change-point location turns out to be statistically significant, the same procedure
is then repeated to the left and right of it. The recursive search quits a bisected sub-interval if
either it doesn’t contain at least 8 observations, or, if no further significant change-point locations
are detected within that sub-interval. We illustrate in Algorithm 2 the pseudocode of the WBS

procedure for detecting significant multiple change-point locations within a generic interval (s, €).

Algorithm 2 WBS procedure for multiple change-point detection

1: function WBS(s, e)

2 if (e — s < 7) then
3 STOP;

4: else
5
6

Mo ={(Sm,em)m=1,... ., M:5s<s, <e,—T7<e—T}

(mo,bo) ;= argmax  T(Sy,,en; b).
me Ms.e
b=sm+3,...,.em—4

7: forj=1,2,...,Bdo
8: Generate a random permutation of the observations { X, ..., X.}.

Compute 77 := max T(Sm,€m; b).

me Ms.e
b=sm+3,....em—4

10: end for
11 Compute (,, the 100(1 — «)™" percentile of {T",... T?}.
12: if (T (Simgs €me 5 bo) > () then
13: Add b, to the set of estimated change-points.
14: WBS(s, bo)
15: WBS(by + 1,¢)
16: end if
17: end if

18: end function
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4.4 Numerical studies
4.4.1 Simulation studies

In this subsection, we examine the finite sample performance of our proposed methodology for
multiple change-point detection via simulation studies. We first consider the following examples

of the single change-point alternative.
ExAMmPLE 4.4.1. (No change point)

1. Xy~ N(0,1,) for 1 <k<n.

2. X~ N(0,%) for 1 <k <mn, where ¥ = (o)} j_, with ;5 = 0.71=l,
ExXAMPLE 4.4.2. (Single change in mean)

1. Xy ~ N(0,1,) for 1 <k <|[n/2| and X}, ~ N(p,I,) for |n/2] +1 <k < n, where
1= (0.6,...,0.6) € R”.

2. Xg ~ N(0,%) for 1 <k < |n/2|] and X}, ~ N(u, %) for |n/2| +1 <k < n, where
¥ = (04)} ;= with o = 0.7, and j1 = (0.6,...,0.6) € RP.

ExAmPLE 4.4.3. (Single change in distribution)

I X~ N(u, L) with = (1,...,1) € R? for 1 < k < |n/2| and X;; ™ Exponential (1)

fori=1,....pand |n/2|+1<k<n.

2. Xk = (th e ,ka) —1 fOl’ 1 S k S Ln/2j and Xk = (th e 7Xk\ﬁpj7Xk(\ﬂpJ+1)7 c ey
~—_————

i‘iw'd‘Poisson(l)
i.4.d. . i.4.d.
ka) where Xkla'-'7XkU5pJ ~ POZSSOYZ(l) — 1, and Xk(LﬁpJJrl)’...?ka ~

Rademacher (0.5) for |[n/2] +1 <k <n.

3. X, = RV2Zy, for 1 <k < |n/2] and X, = RY*Zy, for |n/2] +1 < k < n, where
R = (rij)i =y withry; = Lfor i = 1,...,p, rj = 025 if 1 < |i — j| < 2andr;; =0
otherwise, Zy, ~ N (0, 1,) and Za, = (Zoga, - . . , Zogp) — 1.

(.

~~
Z‘}\‘Jd‘Eacponemfial(l)
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We try n = 100, p = 100,200 and 5 = 1/2. We implement Algorithm 1 with B = 199
permutation replicates and a significance level of a = 0.05. We cluster the observations based
on the estimated significant change-point location and compute the Adjusted Rand Index (ARI)
(Morey and Agresti (1984)). The ARI is a positive value between O and 1. The ARI value is
0 when there is no change-point estimated when there does exist one (or more), or there is no
change-point but the method estimates one (or more) change-point locations. The ARI value is 1
when the estimation is perfect. Higher the value of ARI, more accurate is the estimation of the
change-point location. We consider 100 simulations of each of the above examples, for each of

which we compute the ARI value and report it in the table below. We compare our test with

e the E-Divisive procedure proposed by Matteson and James (2014) with R = 199 random

permutations (using the ‘ecp’ R package); (denote by MJ)

o the test based on the graph-based original scan statistic proposed by Chen and Zhang (2015)

with 199 permutations (using the ‘gSeg’ R package); (denote by CZ)

e the max-type edge-count test proposed by Chu and Chen (2019) with 199 permutations (us-

ing the ‘gSeg’ R package); (denote by CC)
e the test proposed by Wang et al. (2019); (denote by WVS) and

e the INSPECT procedure proposed by Wang and Samworth (2018) (using the ‘InspectChange-
point’ R package) (denote by WS).

Although the methodologies proposed by Wang et al. (2019) and Wang and Samworth (2018)
are aimed at detecting a mean shift for high dimensional data, we compare our method with theirs
to illustrate that our method can capture inhomogeneities among a sequence of high-dimensional
observations beyond the first moment. The results from Table 4.1 indicate that almost all the
methods perform nearly equally good when there is no true change-point or when there is a mean
shift. When there is no true change-point, the procedure proposed by Wang and Samworth (2018)

still detects one, leading to a zero ARI value.
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Table 4.1: Comparison of average ARI values for different methods over 100 simulations.

n p  Ourtest MJ CC CZ WVS WS
(1) 100 100 0.98 097 097 097 090 0.00
(1) 100 200 0.97 098 096 096 097 0.00

Exd.41 (2) 100 100  0.93 097 091 092 094 0.00
(2) 100 200  0.97 097 095 098 093 0.00
(1) 100 100 1 1 0.997 0.999 0.963 1
Ex 4.4 (1) 100 200 1 1 0.999 0.999 0.969 1
T (2) 100 100 0984 0986 0.867 0.946 0.949 0.981
(2) 100 200 099 0996 0978 0983 0.962 0.993
(1) 100 100 0993 0.014 0.004 0.027 0.052 0.390
(1) 100 200 1 0.030 0.007 0.037 0.035 0414
Ex 4.4.3 (2) 100 100 0999 0.034 0.001 0.059 0.063 0.468

(2) 100 200 1 0.032 0.001 0.055 0.067 0.502
(3 100 100 0978 0.024 0.021 0.065 0.074 0.402
(3 100 200 0992 0.029 0.006 0.040 0.044 0.363

Most interestingly, when there is a change in distribution among the sequence of the high-
dimensional observations, our method performs way better than any of the other competitors in
terms of accurately estimating the single change-point location. That it clearly beats the E-Divisive
procedure, is quite expected as the Euclidean energy distance fails to capture any inhomogeneity
between two high-dimensional distributions beyond the first two moments.

The following examples are illustrate the performance of our methodology in case of two

change-points alternative.
ExAaMPLE 4.4.4. (Two changes in mean)

1. Xj, ~ N(0,1,) for 1 <k < |n/3| and 2|n/3| +1 <k <mn, and Xy ~ N(u,I,) for
n/3] +1<k<2|[n/3|, where ;1 = (0.6,...,0.6) € R”.

2. X ~ N(0,%) for 1 <k < |n/3| and 2|n/3] +1 <k <n, and X}, ~ N(u,%) for
[n/3]+1 <k <2|n/3], where ¥ = (o)} ;_, withoy; = 0.7 and ju = (0.6,...,0.6) €
RP.
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Table 4.2: Comparison of average ARI values for different methods over 100 simulations.

n p  Ourtest MJ CC (/4 WS
(1) 100 100 0.991 1 0.975 0960 0.916
(2) 100 100 0962 0978 0.747 0.885 0.643

Ex4.4.4

4.4.2 Real data illustration

We consider the daily closed stock prices of p = 72 companies under the Consumer Defensive
sector, listed under the NYSE and NASDAQ stock exchanges, on the first dates of each month
during the time period between January 1, 2005 and December 31, 2010. The data has been
downloaded from Yahoo Finance via the R package ‘quantmod’. At each time ¢, denote the closed
stock prices of these companies by X; = (Xy, ... ,Xpt) for 1 <t < 72. We consider the stock
returns S;* = (S5, . .. ,Sgg) for 1 <t < 71, where Sif = logX;{’—zt“ for1 <i<p.

According to the US National Bureau of Economic Research, the Great Recession began in the
United States in December 2007. The government responded with an unprecedented $700 billion
bank bailout in October 2008 and $787 billion fiscal stimulus package in February 2009 to save
existing jobs, provide temporary relief programs for those most affected by the recession, invest in
infrastructure, education, health and renewable energy, etc. The recession officially lasted till June
2009, thus extending over 19 months.

When a recession or an economic slowdown occurs, markets tend to become volatile, prompt-
ing investors to sell stocks. Although all industrial sectors are susceptible to economic changes,
some are less sensitive or more resistant to recessions (for example, Consumer Defensive, Util-
ity or Healthcare sectors) compared to some others (for example, Real Estate, Finance, Oil and
Gas, Automobiles, etc.). The goal is to consider stock returns of companies under a sector that is
known to perform relatively well even when a recession hits the market, and see if our proposed
methodology and the other state-of-the-art methods can detect change-points in the stock returns

data.
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When applied on the stock returns dataset (with n = 71 and p = 72) for the Consumer Defen-

sive sector :

e our procedure detects two change-points, viz. September 1, 2007 and January 1, 2009, which

seems quite reasonable given the historical sequence of eventualities;

o the E-Divisive procedure by Matteson and James (2014) fails to detect any change-point over

that time period;

o the test based on the graph-based original scan statistic proposed by Chen and Zhang (2015)

detects only one change-point, viz. March 1, 2009;

o the max-type edge-count test proposed by Chu and Chen (2019) detects two change-points,

viz. May 1, 2008 and September 1, 2008; and

e the methodology proposed by Wang and Samworth (2018) detects as many as 18 change-

points over the aforesaid period of time.
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Figure 4.1: Time series plots of the stock returns for six companies under the Consumer Defensive
sector. The solid red lines represent the change-point locations detected by our methodology. The
dotted blue and gray lines represent the change-point locations detected by the procedures proposed
by Chu and Chen (2019) and Chen and Zhang (2015), respectively.
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5. SUMMARY AND CONCLUSIONS

To summarize, measuring and testing for independence and homogeneity of distributions are
some fundamental problems in statistics, finding applications in a wide variety of areas. The first
work (Chapter 2) aims at quantifying and testing for joint independence among d > 2 random
vectors, which is a quite different and more ambitious task than testing for pairwise independence
of a collection of random vectors. The second work (Chapter 3) upholds the limitations of the clas-
sical distance and kernel-based homogeneity and dependence metrics for growing dimensions, and
proposes a new class of homogeneity/dependence metrics to perform two-sample/independence
testing in the high-dimensional setup. The third work (Chapter 4) proposes a methodology to de-
tect an unknown number of change-points in an independent sequence of high-dimensional time-
ordered observations. The key idea essentially rests upon nonparametric testing for equality of two

high-dimensional distributions.
5.1 Future research

There are several intriguing problems that are worthy of investigation in the future.

e The direct implementation of JACov has a time complexity of the order of O(n?), where n is
the sample size. This quadratic computational cost might be prohibitive in many applications
with large-scale datasets. One possible direction is to come up with a fast computational

algorithm to compute JdCov.

e Another potential direction for future research might be to develop a computationally and
statistically efficient algorithm to learn the correct causal structure among a collection of

random variables based on nonparametric tests for joint independence.

e Extension of our methodology for multiple change-point detection for a weakly dependent
high-dimensional time series seems to be of obvious interest, as temporal dependence is nat-

ural to expect in many practical applications. The problem, though quite intriguing, seems
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absolutely non-immediate and non-trivial from both methodological and theoretical perspec-

tives because of the additional complexity brought in by the temporal dependence.

e It would be interesting to develop theoretical consistency results for the wild binary segmen-
tation procedure we implemented for multiple change-point detection, similar to Theorem
3.2 in Fryzlewicz (2014). This again seems non-trivial and challenging, and we leave it as a

topic for future research.
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APPENDIX A

This is the Appendix for Chapter 2.

Proof of Lemma 2.2.1. By Lemma 1 of Székely et al. (2007), we have

RHS :/R {Ee’“’xi_){l{) + ebe=a) _ Relbr—Xi) _ Ee’(t’Xi_x/>}wpi (t)dt
:E/R { cos((t, X; — X[)) = 1+ cos((t,z — 2')) — 1+ 1 — cos((t,x — X]))
+ 1 —cos({t, X; — x’))}wpi(t)dt + Z/RJE{ sin((t, X; — X)) + sin({t,x — 2"))
—sin({t,z — X)) —sin({t, X; — a:’>)}wpi (t)dt

=E|z — X]| + E|X; — 2| — |z — 2'| — E|X; — X]| = Uj(x,2).

Here we have used the fact that [, {sin((¢t, X —X"))+sin((t, z—a'))—sin((t, 2 —X")) —sin({t, X —
') hw,, (t)dt = 0. ¢

Proof of Proposition 2.2.1. To show (1), notice that for a;, ¢; and orthogonal transformations A; €

Rpixpi,
i€S i€S ieS
where S C {1,2,...,d}. The conclusion follows directly. O

Proof of Proposition 2.2.2. The proof is essentially similar to the proof of Lemma 1.2 in the sup-

plementary material of Yao et al. (2018). It is easy to verify that

d
El[ui(x. X)) =C apda Al

R
PRy R4 1 d
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where C is some constant and

_t%_t,_,.._HZ

d\ . .
A=¢ 2 e Ptz 4 pmplits (2) similar terms

ay . .
— g Phtzm—phits—plats _ pmplita=phita=plats (3 similar terms
(A.1)
dy . .
+ e*Pt1t2**Pt1t3*Pt1t4*,0t2t3*pt2t4*Pt3t4 4o <4 similar terms
b —(d—1) ] .

© 1
For example, if d > 4 and we use the Taylor’s expansion e = 1 + x + 3—? + Z % then keeping
=3

in mind the multinomial theorem

2

2!

Iyeylg=0
Iy +etlg=2

it is easy to check that the leading terms and their coefficients (upto some constants) are

Leading terms Coefficients (upto some constants)
tit; 1- (") + () —... (=0ford>2)
t242 1— () + (%) —... (=0ford>2)
t2tt 1+ (") - () +... (=0ford>3)
tititity 1— (" + (5 -... (=1lifd=4,=0ford >4)

To get a non-trivial upper bound for & ﬁ U;(X;, X!), we need to consider the Taylor’s expan-

. i=1
sion e = 1+x+$2—?+- . -+%+ Z %, when d = 2k —1ord = 2k, k > 2, and the only leading
term in the Taylor’s expansion ofl(:KJ.rll) that would lead to a term with non-vanishing coefficient, is
%’;. To see this, note that when d = 4, i.e., k = 2, it is shown in Lemma 1.2 in the supplementary
material of Yao et al. (2018) that the only non-vanishing term is ¢,t5t3t, (upto some constants).

Likewise for d = 5 and 6, the only non-vanishing leading terms (upto some constants) are :

113



d | k | The only non-vanishing term (upto some constants)

(tit;) (tita)  (titn)t = ittt tm Vit jAatlEmFAEn.
6|3 (tit) (taty) (Entn)t = titjtatitmty,

()]
W

In general when d = 2k — 1, for & > 2, the only non-vanishing term (upto some constants) is

3ty .. . t;,, where (i1, ...,iq) is any permutation of (1,2,...,d). Suppose P; denotes the set of

all possible permutations of (1,2,...,d). Then

d

et dt dt
EJJUaXu X)) = co | le= 7 “(eap® Y. Bty ti,+R)P— .. =
. R4 . . tl td
=1 (21,..4,Zd)€Pd
= Ao+ A+ Ay + As
where

dt dt
o~ 2 t24-+t2) 44 42 2 1 d
Ay = Gp > /Rde ( Dt T

27
(i1,5ia)EPy d

dt dt
1zcl|p| E / — () t tldXRt—;t—zd,
1 d

(11,-,8q)EPy
Ay = &p™ Y / (tttd) 2 3 42 42 R
(11,-,8q)EPy d

and

Az = 53/ e~ (it +E) o R? dty %
R 22

Co, C1, Co, C1, Co and ¢3 being some constants and R being the remainder term from the Taylor’s
0, ¢1, €0, C15 €2 3 g g y

expansion. Following the similar arguments of Yao et al. (2018), it can be shown that

Ao = O(p*), A1 = O(Ipl™*'), Ay = O(|p*) and A5 = O(|p***?) .
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Thus ford =2k — 1,k > 2,
d
EJJuix:, X)) = O(p*) .

i=1

And when d = 2k, for £ > 2, the only non-vanishing term (upto some constants) is ¢1ts . . . t4.

Consequently
d / A Sk S dt o dig
ET[U(X:, X)) = ¢, | le = (hpftita. tg+ R )P — ... —
=1 Rd tl td
= Aj+ AL+ Aj
where
Ay = &p* / etier) gz 2 Al
Rd tl td
dt;  dt
A/1 = 6/1 |P|k/ ef(t§+---+t3) tity ..ty X R _21 o _2d ’
and
R4 t% tg

chs €1, Gy, ¢ and & being some constants and R’ being the remainder term from the Taylor’s expan-

sion. Again following the similar arguments of Yao et al. (2018), it can be shown that
Ay = O(pP*), A7 = O(|pf***") and A) = O(|p]***?).

Thus for d = 2k, k > 2,

which completes the proof.

PROPOSITION A0.1. (1) dCov?*(X,. .., X,) < E[[]1_, min{a;(X;), a;(X})}] with a;(z) =
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max{E|X; — X[, |[E|X; — X}| — 2E|zx — Xj|[}. For any partition S, U Sy = {1,2,...,d}
and Sy N Sy = (), we have dCov*(Xy, ..., Xa) < B[ L;cs, a;(XH)] E[[T;cq, a5(X;)].

(2) dCov*(Xy,...,Xq) < TIL, {E[|U:(X;, Xi’)|d]}1/d . In particular, when d is even,
d
dCov?*(Xy, ..., Xq) <[, dCov*(X;, ..., X;)Y4

d

(3) Denote by [i; the uniform probability measure on the unit sphere SP»~. Then
Y Ky p ry P

dCov* (X1, . .. , Xg) = C/ , dC’on(<u1, X1)y ooy (ug, Xa))dpy (uy) - - - dpg(ug),
I, 5%

and

JdCov*(X1,. .., Xg;c)

:c// d JdCov?((ur, X1), ..., (ug, Xa); ©)dpr (uq) - - - dpa(ua),
M, 8%

for some positive constants C' and C'.

Proof of Proposition A.0.1. To prove (1), we have by the triangle inequality
BIX; — 2] = o — 2| < Ellz — Xjl].

Thus we have |U;(x, 2')| < min{a;(z), a;(z")}, which implies that

d
H UJ(XjaX],)

j=1

E <E

Hmiﬂ{%(Xj% aj(X})}] :

For any partition S; U Sy = {1,2,...,d} and S; N S, = 0, using the independence between X;

/
and Xj, we get

dCov* (X1, Xs,..., Xq) <E
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(2) follows from the Holder’s inequality directly. Finally, by the change of variables: t; = r;u;

where 7; € (0, +00) and u; € SPi~1, we have

dCOU2<X1, XQ, oo ,Xd)

d 2
L. H(fi(tvz)—e““’X”)] du

=1
+oo +00
[ [T
Sil Sfrd —00 —00

:02/ / JdCov (s, X2, - (g, Xa): ) (1) - - - dyta(tg)
sh sid

+

E

2 4
i=1

d
H(Eezri(ui,Xi) . elﬁ(M,X«L))]

i=1

:Cg/ e JdCOU2(<U1, X1)y ooy {ug, Xa); o) dug (uy) - - - dpg(ug),
SP1 SPd

where C7, Cy, C3 are some positive constants. &

Property (1) gives an upper bound for dCov?( X1, Xs, . .., X,), which is motivated by Lemma
2.1 of Lyons (2013), whereas an alternative upper bound is given in Property (2) which follows
directly from the Holder’s inequality. Property (3) allows us to represent dC'ov of random vectors
of any dimensions as an integral of dC'ov of univariate random variables, which are the projections

of the aforementioned random vectors.

Proof of Proposition 2.2.3. The “if” part is trivial. To prove the “only if” part, we proceed us-
ing induction. Clearly this is true if d = 2. Suppose the result holds for d = m. Note that

dCov*(X1, Xy, ..., Xpmy1) = 0 implies that E [H":{l(fl(tl) — e'X))] = 0 almost everywhere.

7

Thus we can write the higher order effect fio...(m41)(t1, - - -, tms1) — Hfjll ;(t;) as a linear combi-
nation of the lower order effects. By the assumption that (X, ..., X; ) are mutually independent
for any m-tuples in I¢ with m < d, we know Jrzeman)(tr, - tmg1) — H:f[l i(t;) = 0. &
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Proof of Proposition 2.2.4. Notice that

[T Wixi, X)) +¢)

i=1

=C +Cd IZU X“X d 2 Z Uzl leaxl )U (XwaX/)

=1 (ll lQ)GId

d
+o o [ U(XG X)),

i=1

The conclusion follows from the fact that E[U;(X;, X])] = 0, equation (2.4) and the definition of
JdCov. &

Proof of Proposition 2.2.7. We only prove the “if” part. If dcf (¢1, . . . , t4) can be factored, U (X;, X)
are independent. Therefore, it is easy to see that JdCov?( X1, ..., X4;c) = 0, which implies that

{X1,..., X4} are mutually independent by Proposition 2.2.3. &

Proof of Lemma 2.3.1. The RHS of (2.13) in Chapter 2 is equal to
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To this end, we note that

(ilt) = €0300) (fi(—t) — e 0300)

_ z(tz) i(_ti) _ el<ti7in>fi<_ti) _ f( ) —2(ti,X1) + Mt (Xpi—= X))

— ﬁ Z Mt (Xki=Xus)) E Ze’b<tiv(in—Xli)> _ ﬁzel<ti7(in_X“)> i ot (X X22)
k=1 =1 1
1 & 1 <
= - (1— ez(tm(Xeru))) + - Z(l _ ez(ti,(Xer”))> —(1- €Z<tiv(in7Xli)>)
=1 k=1
— i - (1 _ ot (X Xu)))
2
n k=1

Using (2.11) of Székely et al. (2007), we obtain

/ (filte) — X0 (Fit) — 650 (1),

1 n
= - Z | Xki — Xiilp, + Z | Xki — Xiilp — [Xbi — Xulp, — e > X — Xy,
"4 k=1

~

= U(k.1) .

Finally, (2.14) in Chapter 2 follows from (2.13) in Chapter 2 and the definition of J@ﬁ.
Proof of Proposition 2.3.1. Define
d

H(fz( ) — o(t5,X; >)] o Ealty,tay . tg) = %ZH<fZ(tl) _ el<ti,in>)7

=1

E(ty,ta, ... tg) =

and note that

dOOUQ(Xl,Xg,-" ,Xd) :/K(tl,tz,---atd”zdwa

Cm(xhx%... , X4q) —/|§n(t1,t2,...,td)‘2dw.
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Direct calculation shows that

d d
U #) :Hfj_dHfj+ <f12 H fi+ fis H fj+--->
j=1 j=1

J#1,2 J#1,3
- (f123 H fi+ fioa H fi +> + o (=)o g,
J7#1,2,3 J#1,2,4
and &, (t1,ts,...,ty) has the same expression by replacing the characteristic functions by their
empirical counterparts in £(¢1,ts, ..., tq). Then by the strong law of large numbers, we have for

any fixed (t1, s, ..., tq),

Enlti,ta, .. tg) =5 E(ty, ta, .. . tg).

For complex numbers 1, s, . . ., x,, withn > 2, the CR inequality says that for any » > 1
Xn:xi <n! Zn: |4]" (A.2)
i=1 i=1
Using (A.2), we get
n 2 n d
Enlte, t2, ., ta)|” = ! > E WXy | < nlg n’! 2 g filti) — et

S

7j=1 i=1

1
n
For any 6 > 0, define D(0) = {(t1,t2,...,ta) : 0 < |ti|,, <1/0, i=1,2,...,d}. Notice that

dOOUQ(X17X27"'7Xd) = / |§n(t17t27"'7td) |2dw + / |€n(t17t27"‘7td) |2dw
D(s) <(9)

= Dy + D% (say),

n,

1
n)

where D 3; < f DE) 4% < oo. Using the Dominated Convergence Theorem (DCT), we have as
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n— oo,

Dg,c)s — / |E(ty, ta, o, tg) [P dw = D((;l) (say).
D(6)

So, almost surely

d—0n—oo n

lim lim D(lg = hm D /|§ t1,to, .., tq) |? dw = dCov?* (X1, Xo, .., Xq).

The proof will be complete if we can show almost surely

2

lim lim Dm

d—0n—oo

) =0

To this end, write D°(8) = [J?_, (Al U A?), where A! = {|t;|,, < 6} and A? =

1=1,2,...,d. Then we have

Dn2,()5 :/ ‘g’n(tlat27-.., |2dw < Z / |€n t17t27---7td)|2dw.
°(9)

1=1,2,...,
k12

> +} for

Define u; = et Xii) — fi(t;) for 1 < j <mand 1 <4 < d. Following the proof of Theorem 2 of

Székely et al. (2007), we have fori = 1,2,...,d,

|uf |
/.++mdti < 2(|X;| +E|IXi]),
R Cp;

AL Pi

Juj?
/ — oy At < 2E[XG — Xl | X5 G(1XG - XG]9),
tilp; <8 Cpi[ti

1|Pi

|uf |
il >1/8 Cp [tilpr P

where

1 —cosz
o= [ e,
lz|<y |Z’1+p
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which satisfies that G(y) < ¢, and 1i1r(1) G(y) = 0. Notice that
Yy—

Some algebra yields that

<

1 n Lo 1 n 4 1 n s 1 n '
£0n 159 (£n 159
k=1 k=1 i#1,3 k=1

By the CR-inequality, we get

En(ti,ta, ... ta)?
d 1 n ) d 1 n .
[T (23] s T (1 30
i=1 k=1 =1 k=1
1 & ? 1o~ 1 @&
st ) T (3w ) o (|5 2o
—1 i#1,2 k=1
2
1 . 72
H =) lul” |+
n
i#1,2,3 k=1

1 n
k=1
2
1 n
1,2 d
J— u u ...u
nz kUL k
k=1

+ (-1)¢ (

=C

2 n
11 (12“?@) 4.
iz13 \"" k=1

2 1 n

(g ]
i#1,2,4 k=1

1 n
1,2 4
n U U Uy,
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for some positive constant C' > (. By the Cauchy-Schwarz inequality, we have for any 2 < ¢ < d,

< %Z [T luil”- %Z IT luil. (A.6)

k=1i€Sq, k=11i€Sq,

1 — ?
—ZUiUi---UZ
n

k=1

where S,, U S,, = {1,2,...,d}. By Assumption 4.3.2 and (A.3)-(A.5), we have

lim lim &n(t1,t2, . tg) P dw =0 a.s,

d—0 n—oo ‘ti|p1<5

lim lim |€n(t1 Lo, .. t)|Pdw =0 a.s,
6—0 n—oo \tilp, >1/6

forevery i € {1,2,...,d}. This implies that lim lim D 2[); = 0 almost surely and thus completes

6—0n—o0

the proof. &

Proof of Proposition 2.3.2. Define the empirical process

=vné&,(ty, ta, .., !t Xii)
To(t) =vVnéa(ty, ta, -, ta) IZH )

J=1 =1

Then nc@(Xl,Xg, ooy Xg) = |ITL)1? == [Tu(ti,ta, ... tg)*dw. Under the assumption of

independence, we have E(I",,(¢)) = 0 and

k=1 i=1
n d
- { [T(t) — Xy (fu(—tsg) — et X0
k=1 i=1
n d
+ZH(fl(tl) — et Xm)(fz( tio) — e <20Xlz>)}a
kAl i=1
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which implies that

+ n(n — 1) [TEi(t:) — e X (fi(—tig) — e

i=1

= {nA + n(n-1)B} (say)

Direct calculation shows that

d n n
A = H E{% Z eUtiXai) —o(tio Xpi) _ l Ut Xpi) —1{tio, Xpi)
i=1 a1 o
_ l Z e~ Uti0, Xpi) +o(ti, Xai) + M ti—tio, Xki) }
n
a=1
T
=11 [E{nfi(ti —tio) + n(n — 1) fi(t:) fi(~tio) }
=1

)

{filti = tio) + (n = 1) fi(t:) fi(=tio) } + filt

_ (” - 1) {filt: — tw) — fits) fi(—tw)},

n !
=1

and
d 1 n n
_ - Z(ti,Xai>—Z<ti X 7‘> - l(ti,X i>—’L<ti , X z>
B_HE[TLQ%;& 0:Xb ;e ki) —1{ti0, X

_ l Z e~ ti0:X1a)+0(ti, Xai) + 61<tinki>_Z<ti07Xli>]
n

a=1

B H [%{nfi@i —tin) + n(n—1) fi(t;) fi(—ti0) }

=1

— tio)]

- %{fi(ti —tio) + (n = 1) falts) f(=tw) } + fi(ti)fi(_tio)}

_ <_%)d Zli {filti — tio) — fit:) fi(—tio) }-
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Hence we obtain
L d

where ¢, = (”T’l)d +(n—1) (—%)d. To prove ||, ]2 =% ||T'||? , we construct a sequence of

random variables {Q),,(J)} such that
1. Q.(9) N Q(d) as n — oo, for any fixed § > 0;

2. limsup E|Q,(0) — [|IT,|I?| — 0asd — 0;

n—o0

3. Q(5) —L |I||? as 6 — 0.

Then ||T,|2 =% ||T'||? follows from Theorem 8.6.2 of Resnick (1999).
We first show (1). Define

Qn(0) = /D@ T2 dw, Q) = /D(&) D)2 duw.

Given € > 0, choose a partition { Dy, }2_, of D(§) into N measurable sets with diameter at most €.

Then
Z / (t)|? dw, Z / (t)]? dw.
Dy
Define

B2 ky|2
Z/D 2 (%)) dw, Z/D (t)|* dw,

where {t*}1V | are a set of distinct points such that t* € Dy. In view of Theorem 8.6.2 of Resnick

(1999), it suffices to show that

i) limsup limsup E| Q5 () — Q.(5) | = 0;

e—0 n—o00
ii) limsup E| Q(5) — Q(6) | = 0;
e—0

iii) Q¢(9) LN Q°(0) as n — oo, for any fixed § > 0.
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To this end, define 3,(¢) = sup,,, E||Tn(t)]> — |Tw(to)?| and B(e) = sup,,, E|[T(t)]* —
IT(to)]”

8 < |ti], [tw] < 1/ fori=1,2,...,d,and 30| |t; — tiol2, < €. Since the function inside the

, where the supremum is taken over all all ¢t = (¢, ..,t4) and to = (t19, .., t40) such that

supremum is continuous in ¢ and ¢y, and using the fact that a continuous function on a compact
support is uniformly continuous, it follows that lir% p(e) = 0and lir% Bn(€) = 0 for fixed § > 0
€E— €E—>

and fixed n. Thus (1) and (ii) hold. To show (iii), it is enough to show

Ln(t!) L(th)
Lu(®) | o [ T@)
H R
o(tY) L")
where (t1,... t") € RP* x RP? x - - - x RP4 is fixed. The rest follows from the Continuous Mapping

Theorem and the Cramer-Wold Device. Notice that I, (t) = \/iﬁ > i Hle [ ( filts) — filty)) —

(et X — fi(t;)) ] . By some algebra and the weak law of large number, we have

[, (th)
L) | %Zz + 0,(1).
L,(tY)

where Z; = (Zj1,...,2Z;n) with Zj, = [I0, (fi(t}) — X)) for 1 < k < N. By the

independence assumption, E[X;] =0 and for 1 <I,m < N,

d
E[ZiZm) =[] E {0 — ()} e — fem)) = R( ™).
=1
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By the Central Limit Theorem (CLT) and Stutsky’s theorem, as n — oo,

L (t') r(t')
[,(t?) N L(%)
L, (V) INGAD

which completes the proof of (1).
To prove (2), define u; = %X — f,(¢;). Then |u)® = 1+ |fi(t;)|? — X0 f,(t;) —
e tXa) £i(t;), and hence

Elu;|* = 1—|f;(t:)]>. (A.8)

Following the similar steps as in the proof of Theorem 5 in Székely et al.(2007) and using the

Fubini’s Theorem,

B1Qu) ~ IR0 =B [ na 0w — [ o]

<[ mnoPas [ En@Pd (A9)
[t1lp, <6 [t1]p, >1/8

+ .- +/ E|T, () dw +/ E|T,(t)|? dw.
‘td|Pd<6 |td|pd>1/‘S

Using (A.7) and (A.8), we have E |T,(¢)> = ¢, [\, E|us|?. Along with the independence as-

sumption, we have

]E|u1‘2 E‘uz
[ EmoPd = [ H [ i
1], <0 119, <8 Cpr [t1]m

<2¢,E|1X; — Xy, G(1X; — Xy, 0) H4E|Xz-\p,

Therefore

lim lim E|T,(t)|*dw = 0.

6—0 n—oo lt1]p, <6
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Similarly

IE|u1|2 ]E|uz
[ ErPa= [ Eull II/ gl
[t1]py >1/5 [t11py >1/6 Cpy [t1]p: cp, |t

d
<4éc, [ [4E[ X, -

1=2

Therefore

lim lim E|T,(t)]*dw = 0.

6—0 n—oo lt1]p, >1/6

Applying similar argument to the remaining summands in (A.9), we get

lim lim E|Qn(d) — [Tu(t)|I*| = 0.

6—0 n—oo
To prove (3), we note that
L(t)1(t € D(6)) = T(t)1(t € R x R” x --- x RP?),

as 0 — 0. Again by the Fubini’s Theorem and equation (2.5) of Székely et al. (2007),

d
1_11
szfﬂmwm M—H/ leﬁ

Cpl
1 — cos(t;, X; — X)
- H / 1+pz dt;

d

o .

=1

Hence ||I'||? < oo almost surely. By DCT, Q(§) =% ||IT'||? as § — 0, which completes the proof.
¢
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LEMMA A.0.1. U;(k,1) can be composed as

~ n—3 n—3
Ui(k, 1) = Ui(Xui, Xii) + Ui(Xki, Xoi)
(n—1)(n—-2) 2 (n—1)(n—2) 2
ug{k,l} v {k,i}
-3 2
— U X z7Xz Uz XuiaXvi ’
U D P P >, U )
u,v%{k,l},u<v
where the four terms are uncorrelated with each other.
Proof of Lemma A.0.1. The result follows from direct calculation. &

—2
PROPOSITION A.0.2. E[dCov (X;, X;)| = dCov?*(X;, X;).

Proof of Proposition A.0.2. Using Lemma A.0.1 and the fact that dC'ov*(X;, X;) =
E[U;(Xki, X1:)U; (X4, Xij)] for k # [, we have for k # [,

E[U; (X, Xi:)U; (X, Xij)]

[ (n—23)? 2(n — 3)? 2(n — 3)
‘{<n—1>2 T -2 T 12 —2)

T ?dcoﬁ(xi,xj).

} E[U; (X, X1:)U; (Xij, Xi5)]

n p—
It thus implies that

E[dCOUQ(Xi7Xj)] = n—3

E[U; (X, Xui; @)U (Xpj, Xp5)] = dCov® (X, X;),

which completes the proof. &

Proof of Proposition 2.4.1. Denote by X = {Xj,...,X,}. By independence of the bootstrap
samples, we have E [I'} (¢)| X] = 0. Proceeding in the similar way as in the proof of PROPOSITION

2.3.2, it can be shown that

E[F*( )F* tO |X = Cn H fZ( Z)fZ( zO)}? (A.10)
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where ¢, = (”—’1)‘1 +(n—1) (—%)d.

To prove || T ||? SN |IT'||? almost surely, we construct a sequence of random variables {Q* (§)}
such that
1. Q5(0) LN ()(6) almost surely as n — oo, for any fixed 6 > 0;
2. limsup E [ Q5 () — ||IT:[* | X] — 0 almost surely as § — 0;
n—oo

3. Q(8) - ||T| as 6 — 0.

Then ||T% |2 =% ||T'||? almost surely follows from Theorem 8.6.2 of Resnick (1999).

We first show (1). Define

Q1(6) = /D TR, () = /D N

Given € > 0, choose a partition { Dy}, of D(4) into N measurable sets with diameter at most €.

Then
Qn(0) = D0 dw,  Q(8) = ID(t) |2 dw.

Define

Qr(0) =Y /D T Pde, Q6) = Y /D T ()] duw,

where {t¥} | are a set of distinct points such that t* € Dy. In view of Theorem 8.6.2 of Resnick
(1999), it suffices to show that
i) limsup limsup E [| Q5 () — Q5 (6) | | X] = 0 almost surely ;
e—0 n—00

i) imsup E[Q"(9) = Q(3)|] = 0

i) Q5*(9) N Q°(9) almost surely as n — oo, for any fixed § > 0.
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To this end, define

8i0) = sup B [| () — T3 X].

and,

Ble) = sup B TP = T(t) ],

where the supremum is taken over all all t = (t1, ..,%4) and o = (t10, .., t40) such that 6 <
’tll,‘tzo‘ < 1/(5fOI'Z: 1,2,...,d, andzlc.lzl ‘tl—tlo‘?) < €. Then for fixed § > 0, hr% 6(6) =0
‘ €—

and lir% Br(e) = 0 almost surely for fixed n. Thus (i) and (ii) hold. To show (iii), it is enough to
e—

show
() L(t')
e o [T
— almost surely,
I (V) (")
where (t1,... tV) € RP* x RP2 x - - - x RP4 is fixed. The rest follows from the Continuous Mapping

)

Theorem and the Cramer-Wold Device. Notice that I'* (¢) = \/Lﬁ > i1 I, [ ( frt) — f’,(tz)) -

(et X5 — fi(t,)) ] Using Markov’s inequality and Triangle inequality, observe that

k=1

o0 n (e, n 2
:ZP<ZY’“ >ne) = ZP ZY’“ > n?e?

n=1 k=1 n=1 k=1
:ZP<ZYkiE>n262) < 14E () Va¥n)?|X

n=1 k=1 n=1 (ne) L k=1

(o] 1 n _
=y ey > ViV VaiVa | X

n=1 k1,1,

k’Q,lQZl

=1

§;<n6)4.0n2 < 00,
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where C' > 0, Y}, = "X — f,(t;), and |Yy| < 2 forany 1 < k < n.

By Borel-Cantelli Lemma, as n — oo, f7(t;) — fi(t;) —> 0 almost surely. By some algebra

and the weak law of large number, we have

I (th)
I (t?) 1 <

— > 2 +U,
I (tY)

where Z; = (Z;1, ..., Z;n) with Z, = 1%, (fi(t¥) — e®X50) for 1 < k < N, and, U = 0,

almost surely. By the independence of Bootstrap samples, E[Z;| X] =0 and for 1 <I,m < N,

B2 Z5m] = [ B [(55 — fith) (e 5 — fi(—17)| X

Let R, and R be N x N matrices with the (I, m)" element being

d
Ru(l,m) = [ {fit, =) = L) (=)}

=1

and,

= [T {5t =6 = R f(-1)}
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By Multivariate CLT,

()
-3 FZ(tQ) d
R,? — N(0,Iy) almost surely ,
I7(EY)

which, along with the fact R,, =% R and Slutsky’s Theorem, implies

(th) L(t')
e | o | T

— almost surely ,
() L")

and thus completes the proof of (1).

To prove (2), define uf = etX) — £7(t;). Then |w|? = 1+ |f;(t:)]> — XD fi(t;) —

7

e~t:X7) f.(t;), and hence

E [[uf?IX] = 1—|fi(t:)]* (A.11)

Following the similar steps as in the proof of Theorem 5 in Székely et al.(2007) and using the

Fubini’s Theorem,

E [1Q;(6) — T3/ X]

_ [‘/D@ T (1) ? dw — /IFZ(t)Pdw| \X]

< /|tl|p1<a]E [T | X] dw +/ E [|IT50) | X] dw

‘tllpl >1/5

(A.12)

L +/ E [[05(6)2 | X] dw + E [IT5(6)|X] duw.
‘tdlpd<6

talpy>1/5

Using (A.10) and (A.11), we have E [|T5(¢)]?|X] = c,[IZ, E [|uf*|X]. Along with the
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independence assumption, we have

[ B Omor|x) de
119y <5
[fu |2\X E [l X]
= Cn/l 1 T H / o, 1+pz dt;

tilpy <6 Cpy [t1]p:

S%ﬂﬁﬁ—EM(WFXmlmﬂ}muﬁwm
=2

d 1 n

1 n
=2¢0 D X1 = Xialp, G(1 X1 — Xia |, 0) [[45

J,k=1

Jilpi
d

R [|X1—X;|p1 G(|X1—X;|p15)] [T4E [1X),,]  as n— .
=2

Therefore

lim lim E [\FZ(t)]Q‘X] dw = 0 almost surely.
0—0 n—oo |t1‘p1 <6

Similarly

2] X] d E [|u*]|X]
E [|T:(0)2|X] dw = n/ M / dt;
/tl|p1>1/6 “ ( )’ ’ ] w ¢ il >1/5 Cpy |t1 1+p1 l_g 1+p1

d
< 450nH4E |:|X:|p,|X:| :

=2

Therefore

lim lim E [IT;(0)]°|X] dw = 0 almost surely.

6—0 n—oo lt1]p, >1/6

Applying similar argument to the remaining summands in (A4.12), we get

lim lim E [|Q4(0) — [Th(®)|*||X] = 0 almost surely.

6—0 n—o0

The proof of part (3) is exactly the same as its counterpart in the proof of Proposition 2.3.2, which

completes the proof.
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Let G, be the set of all functions from {1,2,...,n}to {1,2,...,n}. Define a map g: R"*¢ —

R™*4 as the following

Xgl(1)71 Xg2(1)72 T ng(l)vd
g(Xl, ) ’Xn) _ Xgl (2)71 Xg2(2)72 e ng(Z)vd
Xgl (n))l XQQ(n)72 T ng(n)vd

where g; € G, for 1 < i < d. With some abuse of notation, we denote by Jd/C’EJQ(g(Xl, 5 Xy))
the sample (squared) JdCov computed based on the sample g(Xy,...,X,). Conditional on the
sample, the resampling distribution function F,, : [0,400) — [0,1] of the bootstrap statistic is

defined for all ¢t € R as

~

1
Fu(Xa, . X)) () = nnd Z 1{an/cE;2(g(x1 ..... Xn)) <t}

geGy

For a € (0, 1), we define the a-level bootstrap-assisted test for testing H against H 4 as

¢n(X1, Ce 7Xn) = 1{an/C;)2('l/1(X1,..,Xn)) > (ﬁn(X1 (A13)

Proof of Proposition 2.4.2. The proof is in similar lines of the proof of Theorem 3.7 in Pfister et

al. (2018). There exists a set Ay with P(Ay) = 1 such that forallw € Apand Vt € R,

. ~ . 1
i, BXa() - X)) (O = i 2o D L o saten) <0
geln

= fm B <1{nJ@2<g<x1<w),..7xn<w)>)9})

— lim p(njm2(g(xl(w), LX) < t)

n—00 -

= G(@),
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+oo
where G(+) is the distribution function of Z )\;- Z:.
j=1

Since G is continuous, for all w € Ay and V¢ € R, we have

lim (7, (X (). ..,Xn(w))>_1 ) = G\

n—oo

In particular, for all w € Ay, we have

lim (ﬁn(xl(w), . ,Xn(w))>_1 1-a) = G1-a). (A.14)

n—o0

When H, is true, using Proposition 2.3.2, equation (A.13) and Corollary 11.2.3 in Lehmann and
Romano (2005), we have

limsup P (¢n(Xy,...,X,)=1)

n—oo
— ~ -1
= limsup P (ndcon(Xl, o Xp) > (Fn(Xl, .. ,Xn)> (1-— a))
n—oo
n—oo

— ~ -1
=1—liminf P (ndcovz(Xl, o Xp) < (Fn(Xl, . ,Xn)> (1-— a))

=1-G(G'1-a) =1-(1-0a) = a.

This completes the proof of the proposition. O

Proof of Proposition 2.4.3. The proof is in similar lines of the proof of Theorem 3.8 in Pfister et

al. (2018). In the proof of Proposition 2.4.2, we showed that there exists a set Ay with P(Ag) = 1

such that for all w € A,

tim (F, (X (), ..,Xn(w))>1 (1—a) = G'(1-a).

n—oo
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Define the set

Av={w:VEER lim 1o oo @, xawn<y ~ 0 a.15)

Clearly, P(A;) = 1 and hence P(A; N A;) = 1. Fixw € AgN A;. Then by (A.13) and (A.14),

there exists a constant t* € R such that Vn € N,

lim (F\n(Xl(a}), - ,Xn(u))))_1 (1—a) < t".

n—0o0

Therefore,
lim 1, — - .
n-ro0  {ndeov?(Xi(), .. Xn(w)) < (Fa(X1(w), . Xn(w)))  (1-a)}
< M L @, X<y = O
e 2% 0 asn — oo. It follows by dominated conver-

" l{nd/coﬁ(xl,..,xn) < (Fu(X1,..Xn) ) (1-a)}

gence theorem that

lim P<nc@(xl, LX) < (Fn(Xl, Xn))

n—oo

1
<1—a>)

n—00 < ﬂ{n@(xl,.. Xn) < (Fo(X1,..X0) ) (1-0) } )

which completes the proof of the proposition. &
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Table A.1: Empirical size and power for the bootstrap-assisted joint independence tests (based on
the U-statistics) for ¢ = 1. The results are obtained based on 1000 replications and the number of
bootstrap resamples is taken to be 500.

—_~ e~

JdCov? JdCov? JdCov?, dHSIC Tyt
n d 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%

(1) 50 5 0.097 0.049 0.110 0.059 0.099 0.045 0.102 0.047 0.099 0.042
() 50 10 0.100 0.050 0.108 0.053 0.101 0.053 0.091 0.042 0.068 0.034
2) 50 5 0.103 0.062 0.096 0.052 0.099 0.045 0.104 0.048 0.115 0.061
2) 50 10 0.119 0.062 0.121 0.056 0.101 0.053 0.105 0.041 0.106 0.056
3) 50 5 0.057 0.022 0.112 0.047 0.099 0.045 0.103 0.047 0.027 0.011
Ex 2.5.1 3 50 10 0.050 0.017 0.100 0.051 0.101 0.053 0.091 0.040 0.013 0.006
e (1) 100 5 0.101 0.05 0.098 0.057 0.091 0.042 0.088 0.038 0.098 0.052
(I) 100 10 0.105 0.045 0.085 0.043 0.102 0.053 0.091 0.038 0.098 0.059
2) 100 5 0.094 0.047 0.093 0.049 0.091 0.042 0.102 0.042 0.094 0.054
(2) 100 10 0.115 0.063 0.102 0.06 0.102 0.053 0.104 0.049 0.106 0.06
3) 100 5 0.08 0.034 0.115 0.058 0.091 0.042 0.095 0.038 0.043 0.019
(3) 100 10 0.066 0.025 0.104 0.052 0.102 0.053 0.111 0.047 0.021 0.005
() 50 5 0606 0474 0510 0381 0.626 0.513 0.229 0.142 0.607 0.490
(H) 50 10 0495 0359 0306 0.192 0.705 0.596 0.145 0.070 0.669 0.545
2) 50 5 0813 0.720 0.732 0.632 0.835 0.751 0.342 0.219 0.805 0.706
2y 50 10 0.797 0.668 0466 0339 0941 0904 0201 0.113 0906 0.846
3) 50 5 0877 0.817 0.815 0.764 0.886 0.840 0.374 0.242 0.849 0.787
Ex 252 3) 50 10 0.848 0.749 0.521 0396 0960 0917 0.174 0.096 0.942 0.897
o () 100 5 0903 0.854 0.834 0.767 093 0.881 0.405 0.278 0913 0.863
(1) 100 10 0.853 0.756 0468 0337 0977 0954 0203 0.114 097 0936
2y 100 5 0989 0981 0968 0946 099 0983 0.618 0491 0987 00975
(2) 100 10 0998 0988 0.79 0.657 1 1 036 0.215 1 0.999
3) 100 5 0998 0994 0988 098 0997 0.991 0.649 0.518 0.995 0.991
(3) 100 10 0998 0991 0.816 0.721 1 1 0.307 0.189 1 0.999
(1) 50 3 0998 0986 1.000 1.000 0.624 0.365 0.898 0.794 0.221 0.106

2) 50 3 1 1 1 1 1 1 1 1 1 1
Ex233 ) 100 3 1 1 1 1 1 0999 1 1 0622 0368

2) 100 3 1 1 1 1 1 1 1 1 1 1
() 100 5 0339 0.195 0.523 0379 0.122 0.07 0.219 0.114 0.073 0.038
(I) 100 10 0.105 0.027 0.248 0.147 0.049 0.019 0.117 0.043 0.025 0.008
2) 100 5 0369 0235 0466 0362 0.162 0.09 0406 0.25 0.241 0.161
Ex 2.5.4 2) 100 10 0.097 0.04 0.218 0.13 0.06 0.021 0.164 0.077 0.046 0.022
e (1) 200 5 0813 0.676 0929 0865 0.238 0.128 0.378 0.224 0.085 0.044

10

(1) 200 0.262 0.140 0433 0305 0.093 0.045 0.137 0.061 0.047 0.023
(2) 200 5 0773 0.662 0.778 0.689 0.398 0.263 0.797 0.665 0.581 0.505
(2) 200 10 0.290 0.171 0.384 0.296 0.136 0.065 0.300 0.173 0.141 0.077

Note: In Examples 2.5.1-2.5.3, d denotes the number of random variables d. In Example 2.5.4, d stands for p.
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Table A.2: Empirical size and power for the bootstrap-assisted joint independence tests (based on
the U-statistics) for ¢ = 2 and 0.5. The results are obtained based on 1000 replications and the
number of bootstrap resamples is taken to be 500.

c=2 c=0.5
JdCov? JdCov% JdCov% JdCov? JdC’ovg JdCov%
n d 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5%
(D 50 5 0.097 0.05 0.099 0.052 0.094 0.045 | 0.102 0.05 0.115 0.061 0.099 0.054
D 50 10  0.103 0.049 0.112 0.056 0.097 0.048 | 0.102 0.051 0.116 0.067 0.107 0.051
2) 50 5 0.106 0.057 0.102 0.058 0.094 0.045 | 0.113 0.053 0.110 0.058 0.099 0.054
2) 50 10 0.107  0.051 0.107 0.06 0.097 0.048 | 0.125 0.074 0.120 0.071 0.107  0.051
3) 50 5 0.063 0.017 0.101 0.048 0.094 0.045 | 0.058 0.019 0.105 0.052 0.099 0.054
Ex2.5.1 3) 50 10 0.056 0.022 0.100 0.053 0.097 0.048 | 0.026 0.009 0.096 0.049 0.107 0.051
o (D 100 5 0.087 0.043 0.098 0.049 0.085 0.046 | 0.097 0.059 0.107 0.066 0.098 0.042
D 100 10 0.104 0.049 0.107 0.050 0.098 0.052 | 0.087 0.040 0.117 0.056 0.104 0.053
2) 100 5 0.088 0.046 0.091 0.039 0.085 0.046 | 0.104 0.059 0.108 0.057 0.098 0.042
2) 100 10 0.099 0.060 0.105 0.065 0.098 0.052 | 0.101 0.060 0.101 0.054 0.104 0.053
3) 100 5 0.080 0.034 0.113 0.057 0.085 0.046 | 0.086 0.034 0.120 0.063 0.098 0.042
3) 100 10 0.077 0.029 0.117 0.053 0.098 0.052 | 0.044 0.019 0.100 0.055 0.104 0.053
(1) 50 5 0.644 0.526 0.629 0.504 0.630 0.517 | 0434 0323 0291 0.196 0.610 0.499
N 50 10  0.690 0.580 0.603 0473 0.718 0.610 | 0.220 0.125 0.163 0.105 0.615 0.498
2) 50 5 0.857 0.777 0836 0.750 0.837 0.760 | 0.641 0519 0439 0318 0.816 0.734
2) 50 10 0944 0887 0.872 0.798 0953 0914 | 0313 0.212 0221 0.165 0.887 0.811
3) 50 5 0903 0.851 0889 0.835 0892 0.846 | 0.773 0.692 0.596 0.510 0.876 0.821
Ex2.52 3) 50 10 0957 0918 0912 0.842 0967 0.929 | 0.370 0.254 0.266 0.198 0915 0.868
~ €)) 100 5 0935 0.890 0912 0.877 0932 0.886 | 0.747 0.637 0453 0346 0916 0.867
(D 100 10 0979 0943 0927 0860 0.983 0963 | 0308 0.194 0.188 0.129 0.949 0.890
2) 100 5 0.994 0987 0.991 0.986 0.991 0983 | 0938 0.897 0.705 0.605 0988 0.981
2) 100 10 1 1 1 0.999 1 1 0476 0.352 0274 0.210 1 1
3) 100 5 0998 0.997 0998 0.994 0997 0.991 0980 0962 0872 0.817 0997 0.991
3) 100 10 1 1 1 0.999 1 1 0.559 0444 0336 0274 1 0.998
(1) 50 3 0.797 0.567 0978 0.893 0.267 0.155 1 1 1 1 1 0.984
Ex 253 2) 50 3 1 1 1 1 0.959 0.593 1 1 1 1 1 1
o (D 100 3 1 0.999 1 1 0.704  0.458 1 1 1 1 1 1
2) 100 3 1 1 1 1 1 1 1 1 1 1 1 1
nH 100 5 0.198 0.087 0.295 0.195 0.109 0.047 | 0.605 0413 0.768 0.638 0.178 0.096
D 100 10 0.074 0.018 0.171 0.092 0.045 0.017 | 0.149 0.046 0.357 0.221 0.050 0.020
2) 100 5 0.342 0221 0444 0315 0.180 0.095 | 0438 0338 0496 0419 0267 0.143
Ex 2.5.4 2) 100 10 0.083 0.034 0.179 0.105 0.055 0.016 | 0.134 0.056 0266 0.176 0.066 0.027
o (1) 200 5 0435 0293 0.619 0462 0.162 0.083 | 0.981 0951 0.995 0987 0.438 0.281
() 200 10 0.146 0.063 0.243 0.146 0.077 0.032 | 0465 0308 0.664 0528 0.132 0.057
2) 200 5 0.698 0.571 0.781 0.669 0338 0.212 | 0.715 0.623 0.688 0.611 0.534 0.400
2 200 10 0214 0.129 0316 0.213 0.120 0.052 | 0.349 0.241 0.442 0.352  0.169 0.082

Note: In Examples 2.5.1-2.5.3, d denotes the number of random variables d. In Example 2.5.4, d stands for p.
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Table A.3: Empirical size and power for the bootstrap-assisted joint independence tests based on
the V-statistic type estimators, with ¢ = 1. The results are obtained based on 1000 replications and
the number of bootstrap resamples is taken to be 500.

JdCov? JdCov? JdCov%,
n d 10% 5% 10% 5% 10% 5%
(1) 50 5 0.093 0033 0269 0.131 0.103 0.052
() 50 10 0.130 0.067 0257 0.139 0.110 0.063
() 50 5 0.142 0081 0.106 0.061 0.103 0.052
() 50 10 0452 0.130 0.077 0.020 0.110 0.063
3) 50 5 0.118 0067 0200 0.118 0.103 0.052
Ex2sg ) 50 10 0124 0069 0.195 0.111 0.110 0.063
=0 () 100 5 0068 0.024 0204 0.113 0090 0.044
(1) 100 10 0.086 0.042 0.184 0.092 0.107 0.058
() 100 5 0.121 0061 0.102 0.053 0.090 0.044
() 100 10 0222 0050 0.056 0.013 0.107 0.058
(3) 100 5 0.128 0066 0.191 0.116 0.090 0.044
(3) 100 10 0.114 0061 0.168 0.102 0.107 0.058
() 50 5 0485 0299 0649 0450 0.637 0.528
(1) 50 10 0284 0.161 0428 0271 0.727 0.627
2 50 5 0746 0571 0.806 0.659 0.846 0.768
() 50 10 0393 0250 0.544 0371 0955 0911
3) 50 5 0822 0725 0.877 0.788 0.895 0.848
Ex250 3 50 10 0479 0325 0.637 0459 0965 0938
~C () 100 5 0850 0.717 0.830 0.693 0932 0.886
(1) 100 10 0298 0.168 0.428 0276 0980 0.955
(2) 100 5 0985 0947 0974 0922 0.992 0985
(2) 100 10 0.500 0328 0.595 0.436 1.000 1.000
(3) 100 5 0995 0983 0.989 0.977 0.998 0.993
(3) 100 10 0.613 0441 0.700 0.551 1.000 1.000
(1) 50 3 0985 0928 0999 0997 0647 0377
2 50 3 1 1 1 1 1 1
Ex253 (1) 100 3 1 1 1 1 1 0.999
) 100 3 1 1 1 1 1 1

Note: d denotes the number of random variables d.
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Table A.4: Empirical size and power for the bootstrap-assisted joint independence tests (based
on the U-statistics) with ¢ chosen according to the heuristic idea discussed in Remark 2.2.3. The
results are obtained based on 1000 replications and the number of bootstrap resamples is taken to
be 500.

c JdCov? JdCov? JdCov?,
n d 10% 5% 10% 5% 10% 5% 10% 5%

() 50 5 1.646 1.724 0.103 0.053 0.107 0.055 0.107 0.053

(1) 50 10 1.657 1.732 0.101 0.049 0.106 0.056 0.095 0.052

2) 50 5 0440 0.533 0.116 0.055 0.114 0.058 0.110 0.052

2) 50 10 1519 1.636 0.099 0.052 0.087 0.045 0.094 0.050

3) 50 5 0438 0527 0050 0.020 0.113 0.048 0.110 0.052

Ex 2.5.1 3) 50 10 0438 0.527 0.027 0.011 0.094 0.051 0.107 0.048
e (1) 100 5 1.657 1.731 0.102 0.047 0.105 0.054 0.089 0.046

(I) 100 10 1.656 1.731 0.108 0.049 0.101 0.046 0.101 0.060

2) 100 5 0438 0.527 0.112 0.063 0.109 0.058 0.098 0.044

(2) 100 10 0484 0.620 0.104 0.064 0.104 0.048 0.116 0.066

(3 100 5 0438 0527 0.082 0.039 0.116 0.070 0.098 0.044

(3) 100 10 0.438 0.527 0.051 0.020 0.100 0.051 0.107 0.058

(1) 50 5 1.646 1.724 0.637 0.517 0.603 0.484 0.630 0.502

() 50 10 1.657 1.732 0.651 0.517 0.529 0.403 0.718 0.600

2) 50 5 1.646 1724 0.842 0.761 0.815 0.728 0.844 0.760

2) 50 10 1.657 1.732 0906 0.834 0.801 0.706 0948 0.909

3) 50 5 1.646 1.724 0901 0.844 0.882 0.819 0.889 0.845

Ex 252 3) 50 10 1.657 1.732 0928 0.871 0.843 0.766 0.957 0.919
e () 100 5 1.657 1.731 0923 0.884 0.891 0.845 0.929 0.883

(1) 100 10 1.656 1.731 0951 0905 0867 0.778 0982 0.953

2 100 5 1.657 1.731 0990 0986 0985 0977 0992 0.985

2) 100 10 1.656 1.731 0986 0982 0976 0.962 1.000 1.000

3) 100 5 1.657 1.731 0998 0996 0.996 0.990 0.996 0.992

(3) 100 10 1.656 1.731 0991 0984 0974 0.965 1.000 0.999

(1) 50 3 0554 0729 0984 0962 0.998 0.994 0.899 0.843

Ex2.53 2) 50 3 0438 0.527 1.000 1.000 1.000 1.000 1.000 1.000
e () 100 3 439 0.530 1.000 1.000 1.000 1.000 1.000 1.000

) 100 3 0438 0.527 1.000 1.000 1.000 1.000 1.000 1.000

(1) 100 5 1427 1545 0300 0.166 0417 0314 0.131 0.064

(I) 100 10 1.589 1.680 0.090 0.023 0.204 0.111 0.050 0.018

2) 100 5 0537 0.659 0.398 0.293 0468 0.375 0.233 0.129

Ex 2.5.4 (2) 100 10 1.040 1.198 0.106 0.040 0.212 0.132 0.058 0.018
e (1) 200 5 1.177 1350 0.681 0.568 0.804 0.720 0.250 0.153

(1) 200 10 1503 1.609 0.221 0.117 0.340 0.234 0.086 0.040
(2) 200 0.440 0532 0.709 0.621 0.681 0.603 0.539 0.392
(2) 200 10 0.606 0.735 0.290 0.179 0.381 0.277 0.149 0.065

W

Note: In Examples 2.5.1-2.5.3, d denotes the number of random variables d. In Example 2.5.4, d stands for p.
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APPENDIX B

This is the Appendix for Chapter 3.

The appendix is organized as follows. In Section B.1 we explore our proposed homogeneity
and dependence metrics in the low-dimensional setup. In Section B.2 we study the asymptotic be-
havior of our proposed homogeneity and dependence metrics in the high dimension medium sam-
ple size (HDMSS) framework where both the dimension(s) and the sample size(s) grow. Section
B.3 illustrates an additional real data example for testing for independence in the high-dimensional
framework. Finally, Section B.4 contains additional proofs of the main results in Chapter 3 and

Sections B.1 and B.2 in the appendix.
B.1 Low-dimensional setup

In this section we illustrate that the new class of homogeneity metrics proposed in Chapter 3
inherits all the nice properties of generalized energy distance and MMD in the low-dimensional
setting. Likewise, the proposed dependence metrics inherit all the desirable properties of general-

ized dCov and HSIC in the low-dimensional framework.
B.1.1 Homogeneity metrics

Note that in either Case S1 or S2, the Euclidean space equipped with distance K is of strong

negative type. As a consequence, we have the following result.

THEOREM 11. £(X,Y) = 0 if and only if X LY, in other words E(X,Y) completely character-

izes the homogeneity of the distributions of X and Y .

The following proposition shows that &, ,,(X,Y") is a two-sample U-statistic and an unbiased

estimator of £(X,Y).
PROPOSITION B.1.1. The U-statistic type estimator enjoys the following properties:
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1. &, is an unbiased estimator of the population E.

2. &, m admits the following form :

gn,m(X,Y): Z > (X, X5 YY),

2 2 1<i<j<n 1<k<Ii<m

where

1
X, X3 Y, V) = _<K(Xiayk> + K(X;,Y) + K(X;,Y) + K(Xj,Yl)>

2

The following theorem shows the asymptotic behavior of the U-statistic type estimator of £ for

fixed p and growing n.

THEOREM 12. Under Assumption 3.3.5 and the assumption that sup, <;, Ep;( X3, 04,) < oo and

SUP; <<, Epi(Y(i), 04;) < 00, as m,n — oo with p remaining fixed, we have the following:
1. & m(X, Y) &% £(X,Y).

2. When X Y, &,.m has degeneracy of order (1, 1), and

(m—1)(n—1) > 9
X Y E A Z —
n+m Enml " v (Z ’

where {Z.} is a sequence of independent N (0, 1) random variables and \y,’s depend on the

distribution of (X,Y).
Proposition B.1.1, Theorem 11 and Theorem 12 demonstrate that £ inherits all the nice prop-
erties of generalized energy distance and MMD in the low-dimensional setting.
B.1.2 Dependence metrics

Note that Proposition 3.2.1 in Section 3.2 and Proposition 3.7 in Lyons (2013) ensure that

D(X,Y) completely characterizes independence between X and Y, which leads to the following
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result.
THEOREM 13. Under Assumption 4.3.2, D(X,Y) =0 ifand only if X 1 Y.

The following proposition shows that 23:21(X ,Y') is an unbiased estimator of D?(X,Y’) and is a

U-statistic of order four.

PROPOSITION B.1.2. The U-statistic type estimator Zf)v% (defined in (1.14) in Chapter 3) has the

following properties:
1. 1/)721 is an unbiased estimator of the squared population D?.

2. 137% is a fourth-order U-statistic which admits the following form:

( Z hzgklv

4/ i<j<k<l

where

(i)jikil)

hoawe = 35 0 (3 + Xy, — 2%,
(s,t,u,v)
1 (4,5,k,1) (3,5,k,0)
= > (dhdy +dyd,) - Z dXd”
s<t,u<v (stu

the summation is over all possible permutations of the 4-tuple of indices (i, j,k,1). For
example, when (i, j, k,1) = (1,2, 3, 4), there exist 24 permutations, including (1,2, 3,4), .. .,

(4, 3,2,1). Furthermore, 73% has degeneracy of order 1 when X and Y are independent.

The following theorem shows the asymptotic behavior of the U-statistic type estimator of D?

for fixed p, ¢ and growing n.

THEOREM 14. Under Assumption 4.3.2, with fixed p,q and n — o0, we have the following as

n — oo
1. D2(X,Y) £5 DX, Y);
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2. When D*(X,Y) =0 (ie, X 1L Y), nD2(X,Y) -1 ZS\E(ZE — 1), where Zjs are i.i.d.
i=1
standard normal random variables and \;’s depend on the distribution of (X,Y');

3. When D*(X,Y) > 0, nD2(X,Y) £ .

Proposition B.1.2, Theorem 13 and Theorem 14 demonstrate that in the low-dimensional
setting, D inherits all the nice properties of generalized dCov and HSIC.
B.2 High dimension medium sample size (HDMSS)
B.2.1 Homogeneity metrics

In this subsection, we consider the HDMSS setting where p — oo and n, m — oo at a slower
rate than p. Under H, we impose the following conditions to obtain the asymptotic null distribu-

tion of the statistic 7, ,,, under the HDMSS setup.

ASSUMPTION B.2.1. As n,m and p — oo,

1 E[HYX,X)] _ o(1) 1E [H*(X, X") H*(X', X")]
n? (E [H2(X, X))’ Con (B [H2(X, X))
E [H(X, X”) H(X/,X”) H(X, X///) H(X/,X”/)] _ 0(1)

(E [H2(X, X)) |

= o(1),

REMARK B.2.1. We refer the reader to Section 2.2 in Zhang et al. (2018) and Remark A.2.2 in Zhu
et al. (2020) for illustrations of Assumption B.2.1 where p; has been considered to be the Euclidean

distance or the squared Euclidean distance, respectively, for 1 <1 < p.

ASSUMPTION B.2.2. Suppose E [L*(X, X')] = O(«a3) where «, is a positive real sequence such

that TXoé?) = o(1) as p — oco. Further assume that as n,p — oo,

ntrv E [RY(X, X))
(E [H2(X, X))*

=0(1).

REMARK B.2.2. We refer the reader to Remark 3.3.1 in Chapter 3 which illustrates some sufficient

conditions under which o, = O( and consequently Txo; = o(1) holds, as Tx = pY2 In

1
7)
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similar lines of Remark B.4.1 in Section B.4 of the appendix, it can be argued that E [R*(X, X")] =

@) <i) If we further assume that Assumption 3.3.4 holds, then we have E [H*(X, X")] < 1.

p4
n' T4 E[RY(X,X)]
(E [H2(X,X")])*

Combining all the above, it is easy to verify that = o(1) holds provided n =

o(p'/?).

The following theorem illustrates the limiting null distribution of 75, ,,, under the HDMSS setup.

We refer the reader to Section B.4 of the appendix for a detailed proof.

THEOREM 15. Under H, and Assumptions 3.3.5, B.2.1 and B.2.2, as n, m and p — oo, we have

Tpm —2 N(O,1).

B.2.2 Dependence metrics

In this subsection, we consider the HDMSS setting where p, ¢ — oo and n — oo at a slower
rate than p, q. The following theorem shows that similar to the HDLSS setting, under the HDMSS
setup, 27721 is asymptotically equivalent to the aggregation of group-wise generalized dCov. In other
words Y/DV%(X ,Y') can quantify group-wise nonlinear dependence between X and Y in the HDMSS

setup as well.

AssuMPTION B.2.3. E[Lx(X,X')?] = a2, E[Lx(X,X")Y] = ~2, E[Ly(Y,Y")’] = (5 and
E[Ly(Y,Y')'] = X2, where oy, 7y, Bq, g are positive real sequences satisfying noy, = o(1),

nBy = o(1), 7)2( (O‘p’Yp +’Vz> = o(1), T}%(ﬁq)‘q + )‘3) = o(1), and Txy (O‘p/\q + 754 +'7p/\q) = o(1).

REMARK B.2.3. Following Remark 3.3.1 in Chapter 3, we can write L(X,X') = O(%) -

(Z; —E Z;), where Z; = p;i(X(), X(;)) for 1 < i < p. Assume that SUP; <<, E pf (X(3), 0g,) < 00,
which implies sup; ., E Z} < co. Under certain weak dependence assumptions, it can be shown
that B (Y0 (Z; — EZZ-))4 = O(p?) as p — oo (see for example Theorem 1 in Doukhan et
al. (1999)). Therefore we have E[L(X, X")Y] = O(I%). It follows from Hélder’s inequality that
E[L(X, X")?] = O(%). Similar arguments can be made about E[L(Y,Y")!| and E[L(Y,Y")?] as

well.
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THEOREM 16. Under Assumptions 3.3.2 and B.2.3, we can show that

D2(X,Y)

nplpj
Zl]l

where R, is the remainder term satisfying that R,, = O,(Txy (A + 78 + VpAg)) = 0,(1), ie.,

R, is of smaller order compared to the leading term and hence is asymptotically negligible.

The following theorem states the asymptotic null distribution of the studentized test statistic 7,

(given in equation (3.26) in Chapter 3) under the HDMSS setup. Define

U(Xy, X)) - XZd and V(V3,,Y)): Zd

ASSUMPTION B.2.4. Assume that

EUX. X o(1)
Vi (E[U(X, X7)]2)* ’
E[UX, X")UX', X")UX", X")U(X", X)]
(E[U(X, X")]?)*

= o(l),

and the same conditions hold for Y in terms of V (Y, Y").

REMARK B.2.4. We refer the reader to Section 2.2 in Zhang et al. (2018) and Remark A.2.2 in Zhu
et al. (2020) for illustrations of Assumption B.2.1 where p; has been considered to be the Euclidean

distance or the squared Euclidean distance, respectively.

We can show that under H,, the studentized test 7,, converge to the standard normal distribution

under the HDMSS setup.

THEOREM 17. Under H, and Assumptions B.2.3-B.2.4, as n,p,q — oo, we have T, N

N(0,1).
B.3 Additional real data example

We consider the monthly closed stock prices of p = 36 companies under the transport sec-

tor and ¢ = 41 companies under the utilities sector between January 1, 2017 and December 31,
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2018. The companies under both the sectors are clustered or grouped according to their coun-
tries. The data has been downloaded from Yahoo Finance via the R package ‘quantmod’. Under
the transport sector, we have ¢ = 14 countries or groups, viz. USA, Brazil, Canada, Greece,
China, Panama, Belgium, Bermuda, UK, Mexico, Chile, Monaco, Ireland and Hong Kong, with
d = (51,2,8,4,1,1,3,1,3,1,4,1,1). And under the utilities sector, we have ¢ = 21 coun-
tries or groups, viz. USA, Mexico, UK, India, Canada, China, Hong Kong, Taiwan, Brazil,
Cayman Islands, Israel, Argentina, Chile, Singapore, South Korea, Russia, France, Phillipines,
Indonesia, Spain and Turkey, with ¢ = (5,1,3,1,5,2,3,1,4,1,1,4,1,1,2,1,1,1,1,1,1). At
each time ¢, denote the closed stock prices of these companies from the two different sectors
by X; = (Xu4,..., Xp) and Yy = (Yie, ..., Y,) for 1 < ¢ < 24. We consider the stock returns
S = (S7y,...,Sy) and SY = (SY,...,S)) for 1 < t < 23, where S} = log =4 Xiesit gng

s Opt Xin
Shy = log 2L “+”’ for1<1<d;,1<i<p1<l<gjandl1<j<gq.

The intuitive idea is, stock returns of transport companies should affect the stock returns of
companies under the utilities sector, and here both the random vectors admit a natural grouping
based on the countries. Table B.1 below shows the p-values corresponding to the different tests for
independence between {S7X }22, and {S} }23,. The tests based on the proposed dependence metrics
considering the natural grouping deliver much smaller p-values compared to the tests based on the
usual dCov and HSIC, as well as the projection correlation based test, which fail to reject the null
hypothesis of independence between {S;¥}23, and {SY }2%,. This makes intuitive sense as the

dependence among financial asset returns is usually nonlinear in nature and thus cannot be fully

characterized by the usual dCov and HSIC in the high dimensional setup.

Table B.1: p-values corresponding to the different tests for cross-sector independence of stock
returns data considering the natural grouping based on countries.

I II III v v VI VII
0.0008 0.0011 0.0004 0.1106 0.1129 0.4848 0.1120
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Table B.2 below shows the p-values corresponding to the different tests for independence when
we disregard the natural grouping and consider d; = 1and g; = 1 forall1 <7 <pand1 < j <gq.
Considering unit group sizes makes our proposed statistics essentially equivalent to the marginal
aggregation approach proposed by Zhu et al. (2020). In this case the proposed tests have higher
p-values than when we consider the natural grouping, indicating that grouping or clustering might

improve the power of testing as they are capable of detecting a wider range of dependencies.

Table B.2: p-values corresponding to the different tests for cross-sector independence of stock
returns data considering unit group sizes.

I II I v A% VI VII
0.0067 0.0532 0.0796 0.1106 0.1129 0.4848 0.1120

B.4 Technical Appendix

Proof of Proposition 3.2.1. To prove (1), note that if d is a metric on a space X, then so is a2 1t
is easy to see that K2 is a metric on R?. To prove (2), note that (R% p;) has strong negative type

for 1 <4 < p. The rest follows from Corollary 3.20 in Lyons (2013). &

Proof of Proposition B.1.1. 1t is easy to verify that &, ,,, is an unbiased estimator of £ and is a

two-sample U-statistic with the kernel h. &

Proof of Theorem 12. The first part of the proof follows from Theorem 1 in Sen (1977) and the
observation that E [|h|log™ |h|] < E[h?]. The power mean inequality says that for a; € R, 1 <

i1<n,n>2andr > 1,

<Y al (B.2)
=1

n
>
i=1

Using the power mean inequality, it is easy to see that the assumptions sup; ;< Ep;(X(;), 04,) <

0o and sup, <;<, Ep;(Y(;),04,) < oo ensure that E[h*] < oco. For proving the second part, define
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hio(X) = E [R(X, XY, Y")|X] and ho1(Y) = E [h(X, X";Y,Y)|Y] Clearly, when X Ly,
hy0(X) and hg1(Y") are degenerate at 0 almost surely. Following Theorem 1.1 in Neuhaus (1977),

we have

(m—1)(n—1)

d o0
o Em(X,Y) 5 > op [(axUs + bVi)* = (af +87)]

k=1

where {Uy }, {Vi} are two sequences of independent /N (0, 1) variables, independent of each other,
and (o, ax, by)’s depend on the distribution of (X,Y’). The proof can be completed by some

simple rearrangement of terms. &

Proof of Proposition 3.3.1. The proof is essentially similar to the proof of Proposition 2.1.1 in Zhu

et al. (2020), replacing the Euclidean distance between, for example, X and X”, viz. || X —X’|

5> by
the new distance metric K (X, X”). To show that R(X, X") = O,(L*(X, X)) if L(X, X') = 0,(1),
we define f(x) = +/1 + x. By the definition of the Lagrange’s form of the remainder term from

Taylor’s expansion, we have
L(X,X")
R(X, X) = / £1(8) (L(X, XY — ) dt.
0
Using R and L interchangeably with R(X, X’) and L(X, X') respectively, we can write

L 0
R < |L) [ [ ot + [ nmdt]

= H ‘1 — #‘
2 V1+L
(B.3)
_ 1 12|
2 1+L+V1+1L
L2
< —.
~ 2(1+1L)
It is clear that R(X, X') = O,(L*(X, X)) provided that L(X, X") = 0,(1). &

Proof of Theorem 1. Observe that EL(X,Y) = EL(X,X’) = EL(Y,Y’) = 0. By Proposition
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3.3.1,

EX,)Y) =2E [t+7R(X,Y)] — E [rx + 7x R(X, X")] — E [ry + v R(Y,Y")]

= 21 —7x — Ty + Re¢.

Clearly |[Re| < 27E [|R(X,Y)|] + 7<E [|R(X, X")|] + v E [|R(Y,Y")|]. By (B.3) and

Assumption 3.3.3, we have

TLQ(X, Y) o
TIR(X,Y)| < S0+ LX.Y)) = O(ra,) = op(1).

As {/pL*(X,Y)/(1+ L(X,Y))} is uniformly integrable and 7 < ,/p, we must have
TE[|R(X,Y)|] = o(1). The other terms can be handled in a similar fashion. &

REMARK B.4.1. Write L(X,Y) = 5(A, —EA,) = 5> (Z —EZ;), where A, := %", Z,
and Z; := pi(X;,Y;) for 1 < i < p. Assume sup,; Ep8(X;,04.) < oo and sup,; Epf(X;,04,) < o0,
which imply sup; EZ? < co. Denote L(X,Y) by L and R(X,Y’) by R for notational simplicities.
Further assume that E exp(tA,) = O((1 — 01t)7%P) for 01,0, > 0 and 0y p > 4 uniformly over
t < 0 (which is clearly satisfied when Z;’s are independent and Eexp(tZ;) < ai(1 — aqt)™
uniformly overt < 0 and 1 <1 < p for some ay,as,a3 > 0 with azp > 4). Under certain weak

dependence assumptions, it can be shown that:
1. {\/pL?/(1 + L)} is uniformly integrable;
2 _ 0L
2. ER* = 0(55).
Similar arguments hold for L(X, X') and R(X, X"), and, L(Y,Y") and R(Y,Y") as well.

Proof of Remark B.4.1. To prove the first part, define L, := /pL*/(1 + L). Following Chapter

6 of Resnick (1999), it suffices to show that suppELf, < oo. Towards that end, using Holder’s
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inequality we observe

EL2 < (E(p’LY))" (E[ﬁ})m : (B.4)

With sup, EZ? < oo and under certain weak dependence assumptions, it can be shown that
E(A, —EA,)® = O(p?) (see for example Theorem 1 in Doukhan et al. (1999)). Consequently we
have E L® = O(;) , as 7 < \/p. Clearly this yields E (p°L*) = O(.).

Now note that

E[ﬁ] — °E (%) . (B.5)

Equation (3) in Cressie et al. (1981) states that for a non-negative random variable U with moment-

generating function My (t) = Eexp(tU), one can write
BU) = ()" [ ¢ M-ty e, ®.6)
0

for any positive integer k, provided both the integrals exist. Using equation (B.6), the assumptions
stated in Remark B.4.1 and basic properties of beta integrals, some straightforward calculations
yield

1 o t4_1 F(@gp—él)
E(|{— < — dt = _— B.7
(A4) = Cl/o v o = Ty (B.7)

p

where (', C are positive constants, which clearly implies that E (ﬁ) = O(#). This together
with equation (B.5) implies that E [ﬁ} =0(1),as T < /.

Combining all the above, we get from (B.4) that £ L129 = O(%) and therefore sup, £ LI% < 00,
which completes the proof of the first part.

To prove the second part, note that following the proof of Proposition 3.3.1 and Holder’s in-
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equality we can write

ER? =0 (E {ﬁb =0 ((E(LS))1/2 (E[ﬁ}yﬂ) . (B.8)

Following the arguments as in the proof of the first part, clearly we have E L® = O(#) and

E [m] = O(1). From this and equation (B.8), it is straightforward to verify that E R* = O(.5),

which completes the proof of the second part. &

Proof of Lemma 3.3.1. To see (2), first observe that the sufficient part is straightforward from
equation (3.8) in Chapter 3. For the necessary part, denote ¢ = trXx, b = trXy and ¢ =
lpix — py|*>. Then we have 2v/a+ b+ ¢ = v/2a + V/2b. Some straightforward calculations
yield (v/2a — v/2b)? + 4 ¢ = 0 which implies the rest.

To see (1), again the sufficient part is straightforward from equation (3.7) in Chapter 3 and the
form of K given in equation (3.2) in Chapter 3. For the necessary part, first note that as (R%, p;) is
a metric space of strong negative type for 1 < i < p, there exists a Hilbert space H; and an injective

map ¢; : R% — H; such that p;(z,2") = ||¢s(2) — ¢s(z )I

, where (-, -); is the inner product
defined on #; and || - ||, is the norm induced by the inner product (see Proposition 3 in Sejdinovic
et al. (2013) for detailed discussions). Further, if k; is a distance-induced kernel induced by the
metric p;, then by Proposition 14 in Sejdinovic et al. (2013), ‘H,; is the RKHS with the reproducing
kernel k; and ¢;(z) is essentially the canonical feature map for H;, viz. ¢;(2) : z — k;(-, 2). Tt is

easy to see that

TX =E ZH@ (@) sz(X(z QEZ”(bl EgbZ(X(Z))H%“

% =E ZH@(Y@) — (Y3, = 21@2!\@% —E¢:(Yiy)l3
3 =1

EZH@ @) — 6(Ya)ll3, = m%/2+ /2 + ¢,
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where (> = 37 | |E ¢(X(i)) — Eo(Yiy)|l3,- Thus 27 — 7x — 7y = 0 is equivalent to

ATE/24T2/24+C) = (1x +1v)? = 7% + T8 + 27Ty

which implies that

4 + (tx —1v)* = 0.

Therefore, 27 — 7x — 7v = 0 holds if and only if (1) { = 0, i.e., E ¢;(X(;)) = E¢i(Y(;)) for all

1 <i<p,and, 2) 7x = 1y, i.e.,

EY l6:i(Xe) —Edi(Xa)lz, = EY 16:i(Yie) — Edi(Yio) 3,
i=1 =1

Now if X ~ Pand Y ~ (), then note that

Egﬁz(X(z)) = /]Rdi ki(-7z) dR(Z) = HZ(PZ) and E¢z(§/(z)) = /Rdi ]{;Z-(-7Z) dQl(Z) = H1<QZ>,

where I1; is the mean embedding function (associated with the distance induced kernel k;) defined
in Section 1.2.1, P; and (); are the distributions of X ;) and Y(;), respectively. As p; is a metric of
strong negative type on R%, the induced kernel k; is characteristic to M (IR%) and hence the mean

embedding function II; is injective. Therefore condition (1) above implies X ;) 4 Y. &

Now we introduce some notation before presenting the proof of Theorem 2. The key of our
analysis is to study the variance of the leading term of £, ,,,(X, Y") in the HDLSS setup, propose the
variance estimator and study the asymptotic behavior of the variance estimator. It will be shown

later (in the proof of Theorem 2) that the leading term in the Taylor’s expansion of &, ,,(X,Y") —
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(21 — 7x — Ty) can be written as Ly + Lo, where

n

m

L= =3y
nmt

k=1 I=1

p 1 p

duld) - sz ) = Ty 2 2 )

1= k<l i=1 k<l i=1

(B.9)

where Li’s are defined accordingly and

n m V4
Ly = —— 3" (Bl (Kacoys Yieo) | X)) + 101X Vi) Vi) — 2E o1 (Ko, Vi) )
=1

p
> ) (E Pi(Xi(iy, X)) | Xkiy) + [0 (Xigay» X)) | Xaa)] — 2Epi(Xk(i)le(i)))
k<l i=1

p
- Z(E Pi Yoy Yio) Y] + 10i (Ve Vi) Vi) — 2E pi(Yeq), Vi (z)))
k<l i=1

(B.10)

By the double-centering properties, it is easy to see that L} for 1 <4 < 3 are uncorrelated. Define

1 P ) y X X
Vi 2 B )] + sy ZE 435 (0) dif ()]
1 B.11)

- E dY dY ( .

+ Sm(m — 1)72 ”2_1 1 (1) dig ()]

= ‘/1 + Vé + Véa
where V;’s are defined accordingly. Further let
Vi = nmV;, Vo = 2n(n—1)Va, V5 == 2m(m — 1)V;. (B.12)

It can be verified that

E [dyy (i) dia ()] = Dj, ., (X, X)) -

PisPyr
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Thus we have

1 & -
-2 Z (X0 X)) and Vs = — Z D2, (Yo.Yi).  (B.13)

zz/ 1

We study the variances of L} for 1 < i < 3 and propose some suitable estimators. The variance

for L? is given by

var(L?) = Z D Edy(i)dy()] = Va.

n—l T2
Xzz’ 1 k<l

Clearly

p

n(n — 1)V, 1 5
= D XZ 7X’i/ .
9 4TX Z Pi,P,j( (8)s X ( ))

i,4'=1

From Theorem 5 in Section 3.4.1, we know that for fixed n and growing p, Z/D\E(X , X)) is asymp-

totically equivalent to ﬁ ; Z, 1 D2 (X (i)» X(ir)). Therefore an estimator of Vy is given by
X

5 pisp

4 E%(X , X ). Note that the computational cost of D%(X , X) is linear in p while direct calculation
of its leading term 2 P =1 A;QL o (X(), X(#)) requires computation in the quadratic order of

p. Similarly it can be shown that the variance of L3 is V3 and V3 can be estimated by 4 13,%10/, Y).

Likewise some easy calculations show that the variance of L1 is V. Define

) 1 —
pi(Xk(i)> Yl(i)) = pz(Xk - = Z Pz a( Z pi<Xk(i)7 Y;)(i))
| oo "= (B.14)
+ % Z Z pi(Xa(z)a }/E)(Z)) )
a=1 b=1
and
R(Xp YD) = R(Xp YD) = = R(Xo YD) = — > R(Xp,Yi)+ — > % R(X,.Y)
a=1 b=1 a=1 b=1
(B.15)

156



It can be verified that

n m

0i( Xk, Yiy) = du(i) — _Zdal - %deb@) + %szab(i)
b1

a=1 b=1

Observe that

E [0i(Xk@), Yiey) pir(Xngiry, Yiry)] = (1 —=1/n)(1 = 1/m) E [dp (i) dia(3')] -

Let Al = (pAi(Xk(i), Yz(i)))k,ly A, = (pi(Xk(i)> Yi(i)))kJ € R™ ", Note that

(n_lim E;;pl (X, Yia) pi(Xniiny: Yier)
— e 1)1(m ) Etr(A;A)
= 1)1(m ) Etr(A;A))
== 1)1(m i Zj: (X Yian) 0i( Koy, Vi)
= E [d(7) d(7')],
which suggests that
1 ~\
i=—y Zl = 1) 1121: i ) i(Xni), Yi))

(B.16)

(B.17)

is an unbiased estimator for V;. However, the computational cost for f/l is linear in p? which

is prohibitive for large p. We aim to find a joint metric whose computational cost is linear in p

whose leading term is proportional to V1. It can be verified that ch’ovfhm(X ,Y') is asymptotically

equivalent to

n

1 p m
=D (n—l > Ai(Xia, Yi) A Xy, Yiw) -

i,i/=1 k=1 I=1
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This can be seen from the observation that

1 p 1 n m R )
4chova7m(X, Y) = 2 (n—1)(m—1) Z Zpi(Xk(i)a Yiw) pr(Xi@y, Yiar))
i’ =1 k=1 I=1
2 n m
T 2
* (n—1)(m—1) Z ZR (X%, V1) (B.18)
k=1 I=1
* (n—1)(m—1) Z . Pi( Xiy, Yaiy) TR(XG, V)

Using the Holder’s inequality as well as the fact that 72 R?(X},Y;) is O, (7> ay) = 0p(1) under
Assumption 3.3.3. Therefore, we can estimate Vi by 4chovfl,m(X ,Y'). Thus the variance of L,

is V' which can be estimated by

. 1 | — 1 —
V = —4cdC XY — 4D (X, X ——4D2 (Y)Y
nm ¢ V(XY + 2n(n — 1) Al X) + 2m(m — 1) m(Y>Y) (B.19)
= Vi + W+ Vi,

Proof of Theorem 2. Using Proposition 3.3.1, some algebraic calculations yield

T "= Tx n v m
= — L(X., Y,) — L(X, X L(Y:, Y, Rym
n Z ( ks l) 2n(n_1)z ( ks l) Qm(m— )Z ( k> l) +
1 n m D
= nmr ZZ Pi( Xk, Yi)) — E pi( X Y()))
k=1 =1 i=1
1
n(n — 1 ZZ Pz (Xkiy, X)) — Epi<Xk(i),Xl(i)))
k;él =1
2m(m — 1)7y ZZ pi(Yeiy, Yiy) — E pi(Yagiy Yiy)) + R,
k#l i=1
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where

2T o —
Rym = —
= Y R(X V) ZR (Xe, X)) — ZR (Y, V]
k=1 I=1 k;él k;él

(B.20)

By Assumption 3.3.3, R, ,, = Oy(7a; + 7xb2 + 1yc.) = 0p(1) as p — co. Denote the leading
term above by L. We can rewrite L as Ly + Lo, where L, and L, are defined in equations (B.9)

and (B.10), respectively. Some calculations yield that

Ly Z[ ZE Pi( Xy, Yoy )| Xy — —ZE Pi( Xiiys X(iy) | X ]] — (7 —7x)

Ez[ > Bt TiolTio) ~ =3 Blp o il | = (=)
1 n
=~ E[FL(X,Y) = o L(X5, X)) | X] + — ZE [TL(X,Y;) — 7x L(Y,Y') | Yi] .
k=1 =1
(B.21)
For (Px, Py) € P, we have Ly = 0,(1).
Under Assumption 3.3.4, the asymptotic distribution of L; as p — oo is given by
2 2 2
Ly — N(O, — )
! e 2n(n—1)  2m(m —1)
Define the vector dyee := (£ 37| di()), ., . |-, . It canbe verified that
A(n —1)(m — 1) cdCov, ,,(X,Y) = dye Adyec (B.22)

where A = Al + A2 + Ag -+ A4 with Al = In X Im, AQ = _In X %17”1:;, Ag = _%1n12 X [m

and A, = %lel;m. Here ® denotes the Kronecker product. It is not hard to see that A2 = A
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and rank(A) = (n — 1)(m — 1). Therefore by Assumption 3.3.4, we have as p — oo,

d
4(n—1)(m — 1) cdCov},,(X,Y) = O-QX%n—l)(m—l)'

By Theorem 7, we have as p — oo,

— 2 —
AD2(X, X) 4 X2 e, 40, DAX,X) b 02\,

Un

and similarly

4v,, 1/)\2;(}/, Y) N oy Xo

By Assumption 3.3.4, X7, 1y,,_1): X, and X3  are mutually independent. The proof can be com-

pleted by combining all the arguments above and using the continuous mapping theorem. &

Proof of Proposition 3.3.2. Note that as n, m — oo,

o 2(n—1)(m—1)0" +2v,0% +2v,0y
B0 = moy] - Mo U SR PR

where my = E[M]. Therefore by Chebyshev’s inequality, M — my = 0,(1) as n,m — co. As a
consequence, we have M BN mg, as n, m — oo. Observing that ® is a bounded function, the rest

follows from Lebesgue’s Dominated Convergence Theorem. &

Under H,, without any loss of generality define U} = Xy,...,U, = X,,,Up11 = Y1, ...,
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Upsm = Yy,. Further define

_—n(n i) H(UZUU ) if il,ige{l,...,n},

Piyiy ::¢(U117U) %H(UZI,UZQ) ifile{l,...,n},ize{n+1,...,n+m},

L m(mlH(UZUU) ifi1,i2€{n—|—1,...

,n+m}.

(B.23)
It can be verified that cov(¢;,;,, ¢

1) = 0 if the cardinality of the set {1, 45} N {7, 5} is less than
2. Define

b Eam(XY)
n,m \/V .

LEMMA B.4.1. Under Hy and Assumptions 3.3.5, B.2.1 and B.2.2, as n, m and p — oo, we have

Proof of Lemma B.4.1. Set N = n + m. Define Vy; = 25;11 ¢ij for2 < j < N, Sy, =

Do VNG =20 S ¢y for2 <r < N,and Fy, := o(Xy,...,X,). Then the leading term

of & (X, Y), viz., Ly (see equation (B.9)) can be expressed as

N N j—1 n N
= SNN = E VNj = E § Qbij = E ¢i1i2 + E E ¢i1i2 + E ¢i1i2'
=2 =2 =1 1<i1<ia<n i1=1io=n-+1 n+1<iy<ia<N

By Corollary 3.1 of Hall and Heyde (1980), it suffices to show the following :

1. For each N, {Sn,, Fn. Y
N

2. %ZE [V]\ij |]'-N,j_1] = 1,
=2

_, 1s a sequence of zero mean and square integrable martingales,

N
3-%§:E[W%1m®ﬂ>e¢vﬂfﬁfl L50, Ve>o.

Jj=2

T

To show (1), it is easy to see that Sy, is square integrable, E(Sy,) Z ZE ¢ij) = 0, and,

7j=2 1=1
Fni1 € Fy2 C ... € Fyn. We only need to show E(Sy, | Fn,) = Sn, for ¢ > . Now
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.

q -1
E(SNq’JT"NW) = E(¢” "FN,T). Ifj S r << q and ¢ < j, then E(¢” ’fN’T) = ¢” If

=2 i=1

r <7 <gq,then:
(1) ifr<i< j < q, then ]E((bl] ‘ .FNJ«) = E((blj) =0,
(i) if ¢« <r < j <gq,then E(¢;; | Fn,) = 0 (due to U-centering).

Therefore E(Sn, | Fn,-) = Sn, for ¢ > r. This completes the proof of (1).

To show (2), define L;(i, k) := E [¢i; ¢rj | Fnj—1] fori,k < j < N, and

N N j—1 N j—1
v = B[V | Fagor ] =D 0D Eloy bug | Fagoal = Y > Li(i, k)
=2 =2 ik=1 =2 i k=1
Note that E [L; (i, k)] = 0 for ¢ # k. Clearly
N N j—1 N j—1
Elpn] = D EVR) = Y Eldyérgl = D> Elg3]=V. (B.24)
=2 =2 ik=1 j=2 i=1

E[L;(i, k) Ly (7, )]
E [6*(U;, Uy)¢2(Us, U))] i=k=i =k,
= E [(U Up)o(Us, U)@(Us U(Un U)]  i=7 £ k=K or i=k £k=1

E [62(Us, U E [6*(Us, Uy)] i=kA T =K.

(B.25)

In view of equation (B.23), it can be verified that the above expression for E L;(i, k) L (7', k')
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holds true for j = j’ as well. Therefore
N -1 j'—1

var (n;) = Z Z Z cov (L;(i k), Ly(i', k"))

§.3'=24k=14 k=1

= Z{Zcov (U, U;j) ¢2(UZ7UJ/))

J—J’

+ QZE Ul,U Ukaj)QS(UZ,UJI)QS(Uk,UJ/)] }
i#k

+2 ) {Zcov (Ui, Uj), 6* (U3, Ujy))

2<]<j’<N

i#k

Under Assumption 3.3.5 and H,, it can be verified that

var(ny) = 0(%1@ [H2(X, X")HX(X', X")] + W]E[ (X, X"VH (X', X"V H(X, X"’)H(X’,X’”)]),

(B.26)

and

V= o (B [HXX]) (B.27)

Therefore under Assumption B.2.1 and H, we have

var (%V) =o(1),

which completes the proof of (2). To show (3), note that it suffices to show

N
1
WZ]E [V | Frya] == 0.
=2
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Observe that

N N j—1 4
>spi] - Yx(Ta)
j=2 7j=2 i=1
N j-1 N j-1
= Z E[¢4<Ula UJ)] + 3 Z Z E[¢2(Ui17 UJ) ¢2(Uj27 U])] :
7j=2 =1 J=2 11702

SE[V,] = O(55E [H(X,X)] + %]E (X, X" HA(X', X)) )

This along with the observation from equation (B.26) and Assumption B.2.1 complete the proof of

3).
Rnm

Finally to see that = 0p(1), note that from equation (B.20) we can derive using power

mean inequality that ER? < C7*E [R*(X, X")] for some positive constant C'. Using this,

equation (B.27), Chebyshev’s inequality and Holder’s inequality, we have for any € > 0

P(|Bz|> ) < Ble < o MEREX) O (N4T4E[R4<X,X'>1)”2

STay YRy S @\ EmEE )’
(B.28)

for some positive constant C’. From this and Assumptions 3.3.5 and B.2.2, we get R\%” = 0,(1),

as N =< n. This completes the proof of the lemma. O

LEMMA B.4.2. Under Hy and Assumptions 3.3.5 and B.2.2, as n, m and p — oo, we have

BV -V
Vi

=o(l) , 1<i<3,

where V; and V;, 1 < i < 3 are defined in equations (B.11) and (B.19), respectively.
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Proof of Lemma B.4.2. We first deal with V5. Note that

n(n — 3) oy
where
DY = K (X, X)) — Ly K (X, Xp) — ! Zn:K(X X))
kl — ky <M n—29 - ky <MD n—29 o ay <]
K(X,, Xp)
ey agl b (B.29)
1 p
= 2—2 ( Xy Xiy) + TR(XkaXl)
using Proposition 3.3.1. As a consequence, we can write
— 1 I —
DAXX) = 15 2 Diipp, (X X)) + ZR (Xp, X))
i,1'=1 k;ﬁl (B30)
Z sz (X, Xn) TR(Xk, X1).

k;ﬁl i=1

Note that following Step 3 in Section 1.6 in the supplementary material of Zhang et al. (2018), we

can write
~ n—3 - n—3 =
R(Xy, X)) = R(Xy, Xi) — R(X}, Xp)
n—1 (n—l)(n—Z)bez{Zk’l}
n—3 _
_ R(X,, X R(X,, Xp)
(n—1)(n—2) ag} (X Xa) + (n—l ab%l} '

where R(X, X") = R(X,X’') — E[R(X, X")|X] — E[R(X, X")|X'] + E[R(X, X")]. Using the
power mean inequality, it can be verified that E [R%(X},, X,)] < C'E[R%(X}, X;)] for some pos-

itive constant C'. Using this and the Holder’s inequality, the expectation of the third term in the
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summation in equation (B.30) can be bounded as follows

1

B n(n — 3)

1< _
Z ;Zpi(ka»Xl(i)) TR(Xk, Xi)
k£l =1

= n(nl_ 3) Z = (%Zﬁi(Xk(i),Xl(i))) T E [R*(Xk, X))]

k#l =

1/2

1/2
1 = :
<C <<§ Z D’ (X(Z»),X(i,))> 7 E [R*(X, X )])

i,i’'=1

for some positive constant C’. Combining all the above, we get

~ C _
[E(V2) = Va| <~ L _PERYX,X)

(n—1)
C 1 < _ 12
+ n(n—il) <<§ Z DIQ%',P«;/ (X(’)7X(l/))> 7—2E |:R2(X’ X/)]) 9

i,'=1

for some positive constants C; and Cy. As V5 = W_I)E [H?(X, X")],

B[] - V2
Vs

2 E [RQ(X, X’)] — (1)
E[H?(X, X")] ’

=o(1) is satisfied if

Using power mean inequality and Jensen’s inequality, it is not hard to verify that E [R*(X, X")] =

O (E [R*(X, X")]). Using this and Holder’s inequality, we have

CPERXX)] (T4E[R4(X,X’)])1/2
E[H*(X, X")] (E [H2(X, X")))* |

T E[RY(X,X")

Clearly Assumption B.2.2 implies E (X X’)]); = o(1), which in turn implies

2 E [R*(X, X')] — o)
E[H*(X,X")] '

Similar expressions can be derived for ‘73 as well. For the term involving VI, in the similar fashion,
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we can write

p n m
E [tedConn(X.1)] = % Zz_zl (n — 1)1(m —1) ; ZZI:E 15Xy, Yic) pir(Xiary, Yian)]
+ 7 ! s f:]E |2, 77)|
(n=1m-1) =3
1 "1 R
LT Tr— > -2 E [pi(kaaY(h)) TR(XkaYl)] :

(B.31)

where the expression for ]%(X k, Y1) is given in equation (B.15). Following equation (B.17) we can

write
1 <& 1 n A ) B 2
s ZZM:l (n—1)(m—1) kZl;E [5:(Xtoy: Yiewy) b ( Xy, Yiy)] = E[H*(X,Y)] .

Therefore in view of equations (B.11), (B.16) and (B.19), using the power mean inequality we can

write

nm nm

, , p 1/2
(V) - Vil < L PRRA(XY) 4+ ((i ZE[dkl@)dkl(w]) TZE[R%X,Y)}) ,

ii'=1

for some positive constants C] and C). Then under H, and Assumptions 3.3.5 and B.2.2, we have

E(W) -1

v =o(1).

¢

LEMMA B.4.3. Under Hy and Assumptions 3.3.5, B.2.1 and B.2.2, as n, m and p — oo, we have

Proof of Lemma B.4.3. Again we deal with V, first. To simplify the notations, denote A;; =
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K(X;, X;) and Zij = f)fj( for 1 <1 # j < n. Observe that

N 1 -
var (ID?L(X,X)) = var <m214w>
7]
1 ~ ~ o~ ~ o~
= Zvar(A?j) - Z cov(A47, AZ) + Z cov(A7;, A7)
i<j i<j<j’ 1<g,i’ <g’
{i,j}ﬂ{i/,j/}zqﬁ

(B.32)
As in the proof of Lemma B.4.2, we can write
~ n—3 - n—3 - n—3 -
Ton=1" (n=1)(n-2) l;} Y n-1)(n—-2) k;} &
. 7 7 (B.33)
A
LR Ty > Au.

k,i¢{i,j}

where the four summands are uncorrelated with each other. Using the power mean inequality, it

can be shown that
E(A}) < CE(A}) = CE [K*(X,X")],

for some positive constant C, where K (X, X') = K (X, X')—-E[K (X, X')| X]|-E[K (X, X")| X']+
E[K (X, X")] (similarly define L(X, X")). Therefore the first summand in equation (B.32) scaled

by 1722 iso(1) as n, p — oo, provided

n? v, 2
where V’z is defined in equations (B.12) and (B.13). Note that

KX, X) = %XZ(X,X’) + ry R(X, X').
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Using the power mean inequality we can write

1 E [RY(X, X))
* (E [H*(X, X")])”

) 1 v E [RY(X, X")]
XX OnE (B [HAX, X))

4 4
SCOLZTX]E[L (X, X9
n* (E[H

for some positive constants Cj and C. It is easy to see that
- 1 -
L(Xy, X)) = T—QKQ(Xk,Xl — Zd H(X;, X)) . (B.34)
X

From equation (B.34) it is easy to see that the condition

1 T E [LA(X, X)]
n? (E [H*(X, X)])"

: . 1 E[HYX,X')]
=o(1) is equivalent to 3 E XX o(1).

For the third summand in equation (B.32), observe that

- o 1 o
2 2
A% =0(1)AZ + O (n ) > AyAw+0 (n2> Z | ApjA;+ 0 (714) > B Ay Ay
LU g{ig} kK ¢{i,g} kKLU ¢{i 5}
1\ - - 1\ - - 1 - —
0 (n) Aij Z Ay + O (n) Ayj Z Agj + O <n2> Agj Z A
1g{ij} k¢{i,j} kg {ig}
1 S 1 o
+0 (n > Z AyA;+ 0 <n3> Z | AjgAwr + O <n3> Z | AptAprj -
ki¢{ig} kLU ¢{i,5} kK {i,5}
(B.35)

Likewise Zl%j, admits a similar expression as in equation (B.35). We claim that when {i, 7} N
{i',j'} = ¢, the leading term of cov(Af], A2 /) is O (£ E(A}})). To see this first note that A;; is

independent of A;; when {i,j} N {i, j/} = ¢. Using the double-centering properties, it can be

verified that

cov Az%j/aAij Z Ail = COoVv Az%j’aAij Z Akj = COoVv A?/]/,AZ] Z Akl =0
1¢{i.j} k¢{i,j} k,i¢{i,j}
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To compute the quantity cov | A%, , O () Z Ay Ay |, consider the following cases:
LUe¢{i,gh

Casel. Whenl = 1" =i or Il =1' = j or I = i',l'! = j, cov (A7, AyAy) boils down to
2 A2 2 A2 2 A
COV(Ai,j/, AZ)) or COV(AZ»/J»/, Aij,) or cov(A7 ., A Aijr).

i’ 50

Case2. When ! = i,0' ¢ {i,j,i,j'} or I = j/,I' ¢ {i,j,i,j'}, cov (A%, AyAy) boils down to

cov(AZ,, Ay Ayr) or cov(A3,, Ay Ayr), which can be easily verified to be zero.
Case 3. When {[,I'} N {#',j'} = ¢, cov (A7, AyAir) is again zero.

Similar arguments can be made about

= 1 - _ 1 o
(¢{0)% Az%j/ s @) (ﬁ> Z | Aijk’j and cov A?’j/ s @] (ﬁ) Z AilAkj
k,k!&{i,5} k¢ {ij}

With this and using Holder’s inequality, it can be verified that when {4, j} N{3’, j'} = ¢, the leading

term of cov(A?;, A2 #)is O (£ E(A},)). Therefore the third summand in equation (B.32) scaled

by 1722 can be argued to be o(1) in similar lines of the argument for the first summand in equation
(B.32).
For the second summand in equation (B.32), in the similar line we can argue that the leading

- E?j,) is

150

term of cov(A

0 (l)n«: (4] + OWE[R2A2,] .

C
n VAN

Therefore the leading term of n—14 Z cov(g2

YR

’Z?j’) is

i<j<j’

o) el +0(5) L]

n? n
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For the second term above, using the power mean inequality we can write

1 E {fl?j A?y} C ol HE [L(X, X') L2(X, X")] /1 7E [L2(X, X') R(X', X")]
n(E[HAX,X))? © n (B [HA(X, X)) ’n (E [H2(X, X))
/l 4E [RQ(X X')RQ(X/ X”)]
°n (E [H2(X, X")])?
_ 1 E (X X)) HA(X, X")] 1 T°E [H*(X, X') R* (X', X")]
“no (B [HAX, X)) “n (E [H2(X, X")))?
. l HE [RQ(X, X') Rz(X/,X”)]
°n (E [H2(X, X")])?

for some positive constants C3, C% and C¥. Using Holder’s inequality it can be seen that the
~ 2
second summand in equation (B.32) scaled by V5 is o(1) as n,p — oo under Assumptions B.2.1

and B.2.2. This completes the proof that

. 1m 1 n m
K(Xy,Y) = K(X,, Y ——ZKXQ,Y EZK(Xk,m>+%ZZK<Xa,m
b= a=1 b=1
1m7 1 n mi
= K(X1.Y ——ZKXQ,Y — D> KXY+ —3 > K(X.Y)
b=1 a=1 b=1

will show that under Assumptions 3.3.5, B.2.1 and B.2.2,

var(V})
V2 = o(1) and vz =o(1).

%

LEMMA B.4.4. Under Hy and Assumptions 3.3.5, B.2.1 and B.2.2, as n, m and p — 00, we have
vivEil,
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Proof. It is enough to show that

It suffices to show the following

. 2
var(V;) <E Vil - Vz)
7= o(1) and 7 =o(l), 1<i<3
The proof can be completed using Lemmas B.4.2 and B.4.3. &

Proof of Theorem 15. The proof essentially follows from Lemma B.4.1 and B.4.4.
¢

Proof of Proposition B.1.2. The proof of the first part follows similar lines of the proof of Proposi-
tion 1 in Székely et al. (2014), replacing the Euclidean distance between X and X, viz. | X —X||;,
by K (X, X’). The second part of the proposition has a proof similar to Lemma 2.1 in Yao et

al. (2018) and Section 1.1 in the Supplement of Yao et al. (2018). &

Proof of Theorem 14. The first two parts of the theorem immediately follow from Proposition 2.6
and Theorem 2.7 in Lyons (2013), respectively and the parallel U-statistics theory (see for example
Serfling (1980)). The third part follows from the first part and the fact that D is non-zero for two

dependent random vectors. &

Proof of Theorem 3. Following the definition of D(X,Y") and applying Proposition 3.3.1, we can
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write

1 KX, XY K(Y,Y’ KX X' K(Y,Y’
DQ(X,Y) — ]E ( ) ) ( ) ) +]E ( ) )]E ( ) )
XY TX Ty TX %
/ 1"
L KOOLX) K(Y,Y7)
D¢ Ty

= (14 30X+ 05 X)) (14 3007 + ROGY))

+E <1 + %L(X, X')+ R(X, X’)) E (1 + %L(Y, Y') + R(Y, Y’))
- 2FE (1 + %L(X, X'+ R(X, X’)) (1 + %L(Y, Y")+ R(Y, Y”))

- L+ R,

where

L = %[EL(X,X’)L(Y,Y’) + EL(X, X"ELY,Y') — 2EL(X,X)L(Y,Y")],

and

R =E BL(X, XR(Y,Y') + %R(X, XNVL(Y,Y') + R(X,X")R(Y, Y’)}
- 28 | JLXXOR0CY") + JROCXDLGY) + RIXX)RKY)|

+ER(X,X)ER(Y,Y").
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Some simple calculations yield

L = {E[K*(X, X)K*(Y,Y")] + E[K*(X,X)E[K*(Y.Y")]

4TXY

— 2E[K*(X, X")K*(Y,Y")]

_ ZZ{ 0> X(o) i (Y0 Yol + Elpi( Xy, X(3)) E [0 (Y, V()

4T
XYzljl

— 2IE[pi(X(i),XEi))Pj(Kj)vY(IJ{)ﬂ}

To observe that the remainder term is negligible, note that under Assumption 3.4.2,

E[L(X, X)R(Y,Y")] < (E[L(X,X)2E[R(Y,Y")?})"* = O(d\p?),

1/2

E[R(X, X)L(Y,Y)] < (E[R(X, XPIE[LY,Y)H)"* = 0(a2)).

/ / / 1/2 /
E[R(X, X)R(Y,Y")] < (E[RX, XERY,Y)))"* = O@?) .
Clearly, R = TxyR = O(TXY CL;Qb; + Txy a;bf) <>

Proof of Theorem 4. The proof is essentially similar to the proof of Theorem 3. Note that using

Proposition 3.3.1, we can write

/ / "
iDQ(X,Y) = IE:K(X,X’)M + ]E:K(X,X’)IE:M — 2EK(X,X’)w
Ty Ty Ty Ty

1

= EK(X, X" <1+§L(Y, Y') + R(Y, Y’))
1
+ EK(X,XE <1+ 5L(Y, Y') + R(Y, Y’))
1
~- 2EK(X, X" (1 + 5L(Y, Y") 4+ R(Y, Y”))

— L + R,
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where

Q

L = QL {E[K(X X £i (V). Yl + EIK (X, XD Ep (Y, Y]

*@w

J=1

2 [K(X. X') py(¥iy. Y]}

Q

1
272 i P J

and
R =E [K(X,X"R(Y,Y)] + E [K(X,X) E[R(Y,Y")] — 2E [K(X,X)R(Y,Y")] .

Under the assumption that I [R*(Y,Y")] = O(b}'), using Holder’s inequality it is easy to see that

TyR = O(Ty bf) = 0(1)

Proof of Theorem 5. Following equation (B.29), we have for 1 < k #1 < n

~ Ty ~ ~ 1 < ~
Dy = %L(Xk,Xz) + xR(X), X)) = ?Zpi(Xk(i)aXl(i)) + TxR(X), X)),

~ 7' ~ ~
Dy = S L Y) + R, Y) = —sz Yii) Vi) + 7RV, YD).

From equation (1.14) in Chapter 3 it is easy to check that

1 poa
DQ(X Y) = Irey ZZD% i pJ(X(Z),Y'(J)) 2n n_ ZL Xk,Xl Yk,Y)
i=1 j=1 k;él
L(Y, X X —_— (Xk, X Y. Y.
2nn— Z k> Y1 Ky X1) + n(n— ZR & X)) R(Yi, YY)

k£l

Under Assumption 3.4.3, using Holder’s inequality and power mean inequality, it can be verified
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that

1/2
S L(Xk X)R(Ye, V) < | Y L(X, X))? ZR(Yk,Yl)?) = Op(aph}) |
k£l k£l k£l

1/2
S LY Y)R(Xi, Xp) < [ D L(Yi,Y)? Zé(xk,XlP) = Oylazb,) ,

k1 k#l Kl

1/2
> R(Xp, X)R(Y:Y) < | ) R(Xi, X))? ZE(Yk,n)2> = 0,(a??) .

k#l k#l k#l
This completes the proof of the theorem. &

Proof of Theorem 6. Following equation (B.29), we have for 1 < k #1<n
- 1 < ~
Dy, = o > 5y Yig) + R YY),
j=1

and therefore

— 1 <
Di(X,Y) = I D2, e, (X Y()) A+

7j=1

> K(Xi, X)R(Y:, V).

n(n—3) oy

Using power mean inequality, it can be verified that >, , K(Xi, X))R(Y},,Y)) = O,(b2). This
completes the proof of the theorem. &

Proof of Theorem 7. The proof follows similar lines of the proof Theorem 2.2.1 in Zhu et al. (2020),

with the distance metric being the one from the class of metrics we proposed in equation (3.2). <

Proof of Theorem 8. The proof of the theorem follows similar lines of the proof of Proposition

2.2.2 in Zhu et al. (2020). &

Proof of Theorem 16. The decomposition into the leading term follows the similar lines of the
proof of Theorem 5. The negligibility of the remainder term can be shown by mimicking the proof

of Theorem 3.1.1 in Zhu et al. (2020). &
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Proof of Theorem 17. It essentially follows similar lines of Proposition 3.2.1 in Zhu et al. (2020).

%
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APPENDIX C

This is the Appendix for Chapter 4.

C.1 Sketch of the proof of Theorem 9

From the proof of Lemma D.1 in the supplementary materials of Chakraborty and Zhang (2019),

we can write under H,,

gl,n,k - Ln,k + Rn,k (Cl)
where
k n
1
L = H(X _ H(X;, ,X;
n,k Z Z 117 k‘(k‘—l) Z ( 119 )
Zl =1i9=k+1 1<i1 <io<k
1
— H(X; K X;
(n—kK)(n—k—1) k+l<i21;i2<n (X, Xir)
N . - - (C.2)
e
and R, = Z Z R(X;,, X m Z R(Xi,, Xi,)
Z1 =1io=k+1 1<iy1 #i2<k
T
— Xiy, Xiy
(n—Fk)(n—Fk—1) Z R(Xs ):
k+1<i1#12<n

Following the discussions in Section D in the supplementary materials of Chakraborty and

Zhang (2019), the variance of L,, j, is given by

1 1 1
R

) EH%(X, X)
(C.3)
= Vn,k’;l + Vn,k’;? + Vn7k;3a
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which can be estimated by

. 1 1 —~ 1 —
Vg 1= Mn—_k)zxcdcov;n_k + mwz - ISl 4D?_, o
= Vori + Vkiz + Vi
Define
Ting = gl‘;n’“k . (C.5)
For 1 <1<k <m < n,define S,(k,m):= Y ki1 zzf » H(X,,, X,,) and
Lu(kslm) = (k:—l+1 m—k) zk: ZH
io=k+1 1=l
1
- TG lgi;hgkﬂ(xmx ) (C.6)
1
T k) m—k=1) kHS;QSmH(X“’X -

From (C.2) and (C.6), it is easy to see that L, = L, (k;1,n). With the definition of S, (k, m) as

above, we can write

1 ~ 1
(k—D(k—1+1) Sl k) - (m —k)(m —k — 1)
1
MR ES Iy

Zn(kJ’m) = - §n(k+1am>

(C.7)

(§n(z,m) ~ 5, k) — Sk + 1,m))

Denote S, (a,b) := S,(|na|+1, |nb]) forany 0 < a < b < 1. Furtherlet! = |na]+1,k = |nr],

and m = [nb] for 0 < a < r < b < 1. Therefore from (C.7) we have

} 1 !
Lo(k;l,m) = — I Snla,r) — (m—k)(m—Fk—1) Salr:) (C.8)
R i)(m — k) (Sn(a, b) = Sula,r) = Su(r, b)> '
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Also define

~ 1 1 1
Valkslm) i= ((k—l+1)(m—k)+2(k:—l)(/~c—l+1)+2(m—k)(m—k—1>>vo’

where V, := E H?*(X, X”). From (C.3) and (C.9), it is easy to check that V,,, = V,,(k;1,n).
THEOREM 18. Under Assumption 4.3.2, as n,p — 00,

LQ  in L™ ([0,1]%),

{ n\/?/b Sn(a, b) }a,be [0,1]

where () is a centered gaussian process with covariance function given by
2
cov (Q(al, bl) s Q(CLQ, bg)) = (b1 VAN b2 — a1V CLQ) ]]_(bl VAN bg >a; VvV CLQ) .

In particular, var (Q(a,b)) = (b—a)*1(b > a).
The proof of Theorem 18 is given in Section C.2. From (C.8) and (C.9), we can write

1

Ln(k;l,m) 1
% [* k—O)k—1+1)

\/V"(k;l’m) \/(k—l+1l)(m—k) + 2(k—l)(1k—l+1) + 2(m—k)(lm—k—1) \/70
1 1
_ . o s
=D 5 G (800~ Salen) = Su(D) |
= ! - n? V2 50(a,7)
- S ok—Dk—1+1
n\/(kfl+12)(m7k) + (lcfl)(llcfljtl) + (mfk)@ln,k,l) Vo ( ) +1) nvVo

n? V2 S, (r,b) n? (\/isn(a, b V2 S, (a,7)  V28,(r, b))} .

m—k)(m—k—1) nJ/% k—Il+1)(m—k \ /W WV W

Sn(a,r)

Combining the above with Theorem 18, it is not hard to see that as n, p — oo,

{ Ly(lnr): lna] +1, nb) } o i (01 .10,
VVllnr] s [na) + 1, [nb)) ) arpepon
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where

2 1 1 2 b— )2
\/(T—a)(b—r) T (r—a)? + (b—r)2 ( ( )

* oy (@@ Qe - aen))

for 0 < a < r < b <1 and zero otherwise. As a further consequence, when a = 0 and b = 1, we

have
{ LanJ L) } 2 Gy in L®(0,1]) , (C.11)
Vn(LTLTJ;l,n) r€[0,1]
where
1 1 1
ol = < [= 5001 - =501+
R e N
1

= QO.1) — QW) — Q)

for 0 < r < 1 and zero otherwise. The second equality in (C.12) follows from some straightfor-

ward calculations.

Now for 1 <1<k < m < n, define R,(k,m) := > k1 ZZ;}C T R(X;,, X;,) and

2T “ i T
Qn(k»lam) = (k—l+1)(m—k) Z ZR(Xn’Xm) - (k—l—f—l)(k—l) Z R(Xila ’iz)

io=k+1i1=I lgil;ﬁ’izgk

T

- Xi, Xi,).
R ETTD 2 RXaXa)
k+1<i1#ia<m

(C.13)

Comparing (C.2) and (C.13), it is easy to verify that R, = Qn(k;1, n). With the definition of
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R, (k,m) as above, clearly we have

Qulk;l,m) = (k—l+f)(m—k) @”(l’m)_E"(l’k)_ﬁn(kﬂ’m)) (C.14)
D Rolk) - 2 Ru(k+1,m).

NVEEDED (m —k)(m—k—1)

Denote R, (a,b) := R,(|na] + 1, |nb]) forany 0 < a < b < 1. Therefore we have from (C.15)

Quikitom) = e (Ra(eh) = Ruler) = Rurh)) = Gy Foeer)
R )
(C.15)
Define G,,(a, b) := n;m R, (a,b).
THEOREM 19. Under Assumption 4.3.3, as n,p — oo, bsu[(I)Jl]2 |Grn(a,b)| = oy(1).
abeo,
The proof of Theorem 19 is given in Section C.2. From (C.9) and (C.15), we have
Qu(k;lm) 1 y
V(K 1,m) \/(k—l+ll)(m—k) + 2(k—l)(1k—l+l) + 2(m—l<:)(1m—k—1) Vo
[ e f)(m — (Ru(a.b) ~ Bula,r) = Ry(r.1))
TR o l)(k:z—l+ Ty fnlam) + o= k;)(wi— F=1) Ra(r )]

Multiplying both the numerator and denominator above by 72, it is not hard to see that as a conse-

quence of Theorem 19 we have

Qn(|nr]; [nal +1,|nb))
VVallnr] s [na) + 1, [nb))

sup
a,r,be(0,1]

= 0,(1) as n,p — 0o. (C.16)
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As a special case, putting a = 0 and b = 1, we get from (C.16)

Qu(lnr];1,n)
Vn(tnrj :1,n)

sup = 0,(1) as n,p — 00. (C.17)

r€[0,1]

THEOREM 20. Under Assumptions 4.3.2 and 4.3.3, as n,p — oo,

A

Vn, [nr]

n,|nr|

-1

sup = 0,(1).

re(0,1]

With all the above, the proof of Theorem 9 can be completed as below.

Proof of Theorem 9. Combining (C.1) and (C.5) with (C.11) and (C.17) yields

Tnn} 4y Gy in L= ([0,1)) |
{1, SETTY g, o in L¥([0,1])

as n,p — oo. This equipped with Theorem 20 completes the proof of Theorem 9. &

C.2 Technical Appendix

Proof of Theorem 18. To establish the uniform weak convergence of #%/—0 Sy(a,b), by Theorem

10.2 in Pollard (1990) we need to show :

T1. the finite dimensional convergence, viz.

d

( V2 V2 sn(as,bs)) BN <Q(a1,b1),... ,Q(as,bs)>

NS (ay b)), ..
i onlan ) 7

as n,p — oo forfixed 0 <a; <b; <1,1 <i<s,and

T2. asymptotic stochastic equicontinuity of #@—0 S, (a,b) on [0, 1]%, viz. for any z > 0,

2 2
lim lim sup P( sup LSn(a,b) - Lsn(C’ d)‘) = 0.
00 np—oo l(ab)—(ed)<s | 2V Vo nv Vo
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To prove T1, we will consider the case s = 2 and the general case can be proved in a similar
fashion). By Cramér-Wold theorem, it is equivalent to prove

2 2
Qaq n—\é_vosn(ahbl) + Oézn—\é_vosn(a%bz) N a1 Qag,br) + a2 Q(az, bs) (C.18)

for any fixed a1, a0 € R,asn,p — 00. As0 < a; < b; < 1,7 = 1,2, we consider the following
three cases : l) aq S [05)) < b2 < bl, 11) aq < as S bl S bg, and lll) aq S bl S [05)) < bg.
Consider case (i1). We will prove T1 and T2 for this case and similar arguments can prove them

for the other two cases.

Proof of TI. We can write

V2

V2
Qaq n—\/vo Sn(a1,b1) + ag ——== Sy (az, b2)

Vo

V2 Lnb1] i1 b i—1
S S Y e S Y )] e
/v L | | | |
it=|na1 |+2 j=|na1|+1 i=|naz|+2 j=|naz]+1
lnb2]
= Z gn i
i=|nay|+2
where
(
(5] fl,i if Lnalj —+ 2 S 1 S LTLCLQJ +1
co_ V2 . |
Eni = /v, | 1+ an oy if [nas] +2 <4< [nb] ’
. (C.20)
[6%) fg’i if Lnblj +1 S 1 S LanJ
\
i—1 i—1
with &, = ) H(X,X;), and & = Y H(X,X;).
j=|na1|+1 j=|naz|+1

Define F; := o(X;, X;_1,...). By Theorem 3.2 and Corollary 3.1 in Hall and Heyde (1980), it

suffices to show :

P1. For each n > 1, {Z;ZQ gn,mal |+ }"l}lLZZ;QJ_LmlJ is a sequence of zero mean, square inte-

grable martingales.
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P2. Vo= S B[ L Flnang i) = 0 (hi—01)* 4 03 (by—a2)* +2 01 @ (b1

as)?, as n,p — oo.

P3. Zitzbﬂjaljw E [741,1} — 0, as n,p — oo.

From Theorem 3.2 in Hall and Heyde (1980),the variance of a; Q(aq, b1) + a2 Q(asz, be) should

be plim V,, as in P2. From there it is intuitive that

n,p—00
cov (Q(Gl, b1> s Q(CLQ, bQ)) = (bl ANby — a1 V CL2)2 ﬂ(bl ANby > a1V CLQ) .

To show P1, it is easy to see that EMWHZ is square integrable, [£ (Envtmlw) =0and F, C F,.

To prove P3, note that using the power mean inequality

n

S al” (C.21)

=1

n T
E a;l < n
i=1

for a;, e R, 1 <i<n,n>2andr > 1, we can write

[nb2 | _ |naz |+1 _ [nb1 | _ [nb2 | _
Y. ElG] = Y E[G]+ Y ElL]+ Y E[&)]
i=|nai]+2 i=|nai]+2 i=|naz]+2 i=|nby]+1
Lnaiﬂ NG anbij V2 V2
= E [a1 511] E[or——= & + o —— fzz]
i=|na1 |+2 n\/i i=|naz|+2 n\/i \/7
[nb2] NG)
+ Z E[a27§2ﬂ4
i=|nby |+1 vV
1 [nb1 ] [nbz]
S et Y ElE) ot Y E[E))
0 i=|nay |+2 i=|naz |+2
(C.22)

We have essentially used the definitions in (C.20) in the above calculations. Now for the first
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summand in the right hand side of (C.22), note that using (C.20) we have

[nb1] [nb1] i—1

1 1 — 4
41/2 Z E [gil,z] = i1/2 Z E Z H(Xz,X])
n*V n*V
0 i=|nay |+2 0 i=lna1]+2  j=[na1]+1
1 [nb | i—1
=~z D [ > EHYX;,X;) +3 > E H?(X;, X;,) H*(Xi, X;,)
0 i=|na1]+2  j=|nai]+1 [na1 |+1<j1#j2<i—1

1 O(nZEH4(X,X’) + n3EH2(X,X’)H2(X,X")>

nt [E H2(X, X")]?

(C.23)

This is because |na| < nfor0 < a < 1. Infactitis easy to see that lim Lna) = lim na - {na} =
n—oo N n—o00 n
a,as 0 < {na} < 1.
Similar expressions hold for the second summand in the right hand side of (C.22). With this, it

is easy to see that under Assumption 4.3.2

[nb2]

> E[&l] = o(1)  as n,p— oo,

i=|nay |+2

which completes the proof of P3.

To prove P2, write

[nb2|—|na | _ [nb2]
V, = E [ €2 narsi | Flnoyj4io1] = Z E[&,]Fii] (C.24)
=2 =|na1]+2
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where we have simply substituted [ = |na; | + 7. From (C.24) we have

[naz |+1 \/5 9 [nb1] \/i )
vV, = E|(—= ai1&y) |Fi-1| + Eld—= (@181 + a2y Fra
z:%m [(”\/VO ) | ] z:v%w H”‘/v“ ( )} | }
[nb2 | \/i 9
+ E a8y ) | Fi-1
l—LglJ—&-l [(nm ) ’ }
5 [nby | [rb2 ]
= 2 (04% Z E [&%,l | "rlfl] + O‘% Z E [f%,l ‘ "rlfl] +
n=vo I=|nas |+2 I=|nas)+2
[nb1 |
2a1 o Z E [&1,0 &2, ‘ fz-ﬂ)
I=|naz]|+2

= a?Vip + a3 Vo, 4+ 20102 V3,

(C.25)
where (b1
Vi = 2 1 E Fi
=y > E[ R4,
I=|nay|+2
9 [nb2 |
Vo = — Z E[&, | Fii], (C.26)
n*Vo
I=|naz|+2
9 [nb1]
Van = BV Z E [& &0 | Fia] -
Vo I=|naz|+2
Using the definition of &; ; from (C.20), we can write
9 [nb1 |
Voo = 2 Z E [H(X, X5) H(X, Xp) [ Fia] . (€27)
I=|na1]+2 j1,j2=|na1]+1
and therefore
9 [nb1 |
BV = v > Z H (X1, X;)] (C.28)

=|nai]+2 j=|na1]+1

as B [H(X;, X;,) H(X;,Xj,)] =0 for ji # jo. Using the fact that V, = E [H?(X, X")], some
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straightforward calculations yield

EVi, = — > E[H*(X,X")] = 2 (WHJ - LnalJ)

2 2
n?v n 2
0 [na1 |+1<j<I<|nb: |

_ % (lnbi) = [nar)) (Inby) — [nar] — 1) (€.29)

— (bl - a1)2 )

as n — oo. Define L;(ji,j2) := E [H(Xl,le) H(X;, X;,) |]—"l_1}. Then from (C.27) we can

write

[nb1] -1

Vvln = 2/ Z Ll<j17j2>7

0 I=|na1]+2 j1,j2:|_na1J+1

and therefore

A [nb1 | -1 -1

var (V1) = o Z Z Z cov (Ll(jlan)aLl’(jivjé))'

O 1L1=|na1]+2 j1,jo=|nai|+1 7},5,=|na1]+1

Following the proof of Lemma D.1 in the supplementary materials of Chakraborty and Zhang (2019),

we have E L;(j1,j2) = 0 for j; # jo, and

E [Li(j1, j2) Lo (51, 55)]

p

E [H*(X,, X;,) H*(X}, X;,)] if j1=j2=71=17J3,

E [H(X;, X;,) H(X;, X;,) H(X}, X;,) H(X}, X;,)] if 1= % jp = jb
or ji = jy # j1 = Jja,

E [HQ(XZ,XJ'I)]]E [HQ(Xl’ijiﬂ if jl :jZ 7&]1 :jé

\
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where the above expression holds for [ = I’ as well. Therefore

-1
Z{ Z cov (HQ(XlaXm)aHz(Xl/vle))
=" ji=|na1]+1

4
var (‘/]_n) = nT‘/Q
0

+ 2 Z E[H(lele)H(Xth)H(Xl,anl)H(Xl/th)] }
[na1 |[+1<j1#j2<l-1
-1

+ 2 3 { S cov (HA(X0. X)), H (X)), X))
[nay | +2<I<l<|nb1]|  ji1=|nai|+1

+ 2 Z E [H(X;, X;,) H(X;, Xj,) H(X), X5,) H(X}, Xj,)] }] .
[na | +1<j1 42 <11
This implies
_ 1 3 2 / 2 "
var (V) = n4V020<n E [H2(X,X') HX(X,X")]
+ ntE [H(X, X"VH(X', X")H(X, X" H(X/,X”/)} > (C.30)

= o(l),

as n,p — oo, under Assumption 4.3.2. Combining (C.29) and (C.30), we get

E (vm ~ (b — a1)2)2 = var (Vin) + (IE Vin — (b1 — a1)2)2

= o(1),
which combined with Chebyshev’s inequality implies
Vin LN (by — ay)? as n,p— oo. (C.31)
Likewise it can be shown that as n,p — oo,

Van —= (by—as)®>  and Vi, — (b —ap)?. (C.32)
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Combining (C.31) and (C.32), we get from (C.25)

Vn — O[% (bl — a1)2 + Oé% (bg — 02)2 + 207 ag (b1 — CLQ)Q . (C33)

This completes the proof of P2, and thereby the proof of T1, i.e., the finite dimensional conver-

gence. &

Proof of T2. Denote u = (a,b) and v = (¢, d). Also define W,,(u) := n\\/f% S, (u) for u € [0,1]%

To prove the stochastic equicontinuity of W, (u) for u € [0, 1]%, we need to show for any ¢ > 0

lim lim sup P< sup |Wn(u) - Wn(v)’) =0,
30 pp—oo u,v € [0,1]2
d(u,v)<d

where ([0, 1]2, d) is compact.

By Theorem A.8 in Li and Racine (2007), it suffices to show that V u, v € [0, 1]?

E|Wa(u) — W,(v)|" < d7(u,v) (C.34)
for some o > 0 and v > 1. For our purpose, we choose d(u,v) = |ju — U|H/2 for w,v € [0,1]%

Note that [0,1]> C R? is compact (closed and bounded) with respect to the metric p(u,v) =
|u — vl|;. It is easy to verify that [0, 1]? is closed and bounded (and hence compact) with respect
to the metric d(u, v) = p*/?(u, v) as well.

Choosing o = 2 and v = 2, we will prove that V u, v € [0, 1]2
E|[W,(u) — Wo(0)|* < d?(u,v), (C.35)

which will complete the proof.
Towards that end, consider the case a < ¢ < d < b. We will show that (C.35) holds in this

case, and similar arguments will do the job for other cases.
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Observe that

W(u) — Wa(v) = ‘/?/ S(a,b) — %Sn(c, d)
0
\/_ [nd| i—1
- [ Z Z HIX, X)) = > > H(X., X))
Vo b (e LnaJ+1 i=|nc)+2 j=|nc|+1
[nc| |nd] |ne]
_ [ 3 Z H(X, X))+ Y Z H(X:, X;)
\/VO i=|na|+2 j=|na]+1 i=|nc|+1j=|na]+1
[nb]  nc] nb]  |nd
oY HEXLX) + Y Z H(X;, X;)
i=|nd|+1 j=|na]+1 i=|nd|+1 j=|nc|+1
[nb] i1

Y Y HXLX, ]

i=|nd|+2 j=|nd|+1

= I+ 11+ 1T +1IV +V.

(C.36)
By power mean inequality,
(I + 1T+ I+ 1V +V)? <P+ 117+ 1117 + IV? 4+ V2, (C.37)
Now
9 Lnc i1—1 ia—1
E (%) = > E [H(X:, X;,) H(Xiy, Xj,)] -

n*Vo . A
i1,i2=|na]+2 j1=|nal+1 jo=|na|+1

Clearly E [H(X;,, X}, ) H(X;,, X;,)] = 0 if the cardinality of the set {i1, j1} N {iz, j2} is 0 or 1.

Therefore we have

[nc] i—1
E(I?) = Z Y E[H(X:,X))] = QLV > 17
i=|na]+2 j=|na]+1 Yo [na]+1 <j <i<[nc] (C38)
1
)

- (anJ — Lnaj) (anj — |na] — 1) )
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Note that

|nc] — |na] =1 < nc—na+na—|na) —1

= n(c—a) + ({na} —1)

< n(c—a),

as {na} < 1. Therefore we have from (C.38) and (C.39)
E([*) < c—a.

Likewise it can be shown that

Now

|nd] [ne]
2
sumy = 2 S Y R,
O iy ia=[ne]+1j1.jo=[nal+1
[nd| [nc]

:nfv S Y E[HAX, X))

0= [nc|+1 j=|na]+1

= 2 (Ind] ~ Lnel) (Inc) ~ na))
< = ole—a) +1]
S c—a.

Similarly it can be shown that

E(III*) < c—a and E (IV?)
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X)) H(

Xy, X

129

S b—d.

)]

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)



Combining (C.40)-(C.43) with (C.36) and (C.37), we get
E }Wn(u) — Wn(v)|2 <(c—a)+ (b—d) = |lu—v|; = d*(u,v).

This proves (C.35) and thereby completes the proof of T2.

This completes the proof of Theorem 18.

O

Proof of Theorem 19. Again consider the subset [0, 1]> C R? equipped with the metric d(u, v) =

|lu — v||1/2 for u,v € [0,1]2. By Theorem 1 in Andrews (1992), we essentially need to show :
Al. [0,1]? is totally bounded with respect to the metric d.
A2. Pointwise convergence : G, (u) L0 vue [0,1]? as n,p — oo.

A3. Asymptotic stochastic equicontinuity : for any € > 0,

lim lim sup P( sup |G (u) — Gn(v)D = 0.
5\1/0 n,p—ro0 u,v € [0,1}2
d(u,v)<d

Al is easy to see. [0, 1]? is compact with respect to the metric d, and therefore totally bounded.

To see A2, note that for fixed u € [0, 1], using Chebyshev’s inequality we have for any ¢ > 0

1

n2e2Vj

P(IGo(u)] > €) < éEGi(u) _ ER2(a,b). (C.44)

Recalling that R,(a,b) = R,(lan] + 1, [bn]) and the definition of R, (k,m), it is not hard to

verify that

R}(a,b) = > > PR(X,, X,) R(Xy, Xy).

[na|+1<iy <ia<|nb] |na)+1<4) <i,<|nb|
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Therefore by Holder’s inequality, we have

E R2(a,b) < 3 3 7 (ER*(X,,, X,,)) ? (ER* (X, X))
[na]+1<i1 <ia<|nb] |na)+1<4) <ib,<|nb|
o 1 9 17272
=T [5 (Lnbj — LnaJ) (Lnbj — |na] — 1) (]ER (X,X)) ]
- O<n4 2 ER*(X, X’))
_ O<n4 [74 E RY(X, X’)] 1/2) .
(C45)
Combining (C.44) and (C.45), we get
_ n2 4 4 ! 1/2
P(|Go(u)] > €) = 0(62 EE XX [T ER (X,X)} )
(C.46)

1 rn*r* ERYX, X)q1/2
<€_2[ (EHQ(X,X’))Q } )

Under Assumption 4.3.3, it is easy to see from (C.46) that
P(IGu(w)] > €) = o(1),

which implies G, (u) = 0 for any fixed u € [0, 1] as n, p — oco. This proves A2.

Finally to prove A3, again by Theorem A.8 in Li and Racine (2007) it will suffice to show that

Vu,v € [0,1]?

E|G(u) — Gu(v)]? < d?(u,0).

(C.47)

Similar to the proof of T2 before in the proof of Theorem 18, we will show that (C.47) holds in the

case a < ¢ < d < b. Similar arguments can prove (C.47) for other cases.
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Similar to the proof of T2, now we have

1
Gn(u) — Gu(v) = - VORn(a, b) — n\/_ R,.(c,d)
[nb] i—1
_ [ Y Y R(XLX)) Z Z R(X,, X, ]
n\/VO i=|na]+2 j=|nal+1 i=|nc]+2 j=|nc|+1
[ne) i—1 |nd) [nc|
_ [ S Y RXLx)+ Y Y RXLX)
i=|na]+2 j=|na]+1 i=|nc]+1 j=|na]+1
[nb]  lnc] nb)  Lnd]
> > RXLX)+ Y ) R(X,X))
i= |_ndj+1] |_naj+1 i=|nd]+1 j=|nc]+1

SIDSINCERY)

i=|nd|+2 j=|nd|+1

= ]G + ]IG + ]I]G + IVG + VG.

(C.48)
By power mean inequality,
Io + Il + I11g + IV + V) < I3 + 114 + I112 + IV2 4+ V2. (C.49)
~ da G G G G
Now
7_2 I_nC i1—1 2—1
E(IG) = = >, >, >, E[RXy X)) R(Xy Xs)].  (C50)
n*Vy

i1,42=|na]+2 ji1=|nal+1 jo=|nal+1

Again using Holder’s inequality and similar arguments as used in deriving (C.45), we get from

(C.50)
o, i e
E(1%) = ( Y Y (ERXLX)) )
i=[na)+2 j=na+1 (C.51)
7 (anJ = LnaJ) (anJ — |na] — 1)2 . )
- = n?ER*(X, X').
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Using the fact that |nc| — [na] — 1 < n(c —a), (¢ — a)? < (¢ — a) and Holder’s inequality, we

get from (C.51)

1/2
n2 2 2 / n?7r? (ERYX,X")
E(I2) < <c—a>( ER(X’X)) < <c—a>< ( ) )
(C.52)

E H2(X, X') E H?(X, X')

< (c—a) ntrt ERYX, X") 2
[E H2(X, X")]? '

ntrt ERY(X,X')

Under Assumption 4.3.3, M = o(1) as n,p — oo, and hence > must be a
[Em2(x,x7)) [EH2(xx0))
bounded sequence in n and p. Therefore we have from (C.52)
E(12) < (c—a). (C.53)

Likewise it can be shown that
E(I13) S (c—a), E(III2)  (c—a) , E(IVZ) S (b—d) . E(V2) S (b—d). (C54
Combining (C.53)-(C.54) with (C.48) and (C.49), we get
E|Gn(u) — G’n(v)‘2 S(c—a)+ (b—d) = lu—v|; = d*(u,v).

This proves (C.47) and thereby completes the proof of A3 and hence the theorem.
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