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ABSTRACT

The conventional approach to assess the multiscale operational activities sequentially often
leads to suboptimal solutions and even interruptions in the manufacturing process due to the inher-
ent differences in the objectives of the individual constituent problems. In this work, integration
of the traditionally isolated process design, scheduling, and control problems is investigated by
introducing a multiparametric programming based framework, where all decision layers are based
on a single high fidelity model. The overall problem is dissected into two constituent parts, namely
(1) design and control, and (i1) scheduling and control problems. The proposed framework was first
assessed on these constituent subproblems, followed by the implementation on the overall prob-
lem. The fundamental steps of the framework consists of (i) developing design dependent offline
control and scheduling strategies, and (ii) exact implementation of these offline rolling horizon
strategies in a mixed-integer dynamic optimization problem for the optimal design. The design
dependence of the offline operational strategies allows for the integrated problem to consider the
design, scheduling, and control problems simultaneously. The proposed framework is showcased
on (i) a binary distillation column for the separation of toluene and benzene, (ii) a system of two
continuous stirred tank reactor, (iii) a small residential heat and power network, and (iv) two batch
reactor systems. Furthermore, a novel algorithm for large scale multiparametric programming
problems is proposed to solve the classes of problems frequently encountered as a result of the

integration of rolling horizon strategies.
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1. INTRODUCTION AND OVERVIEW!

The complexity of decision making problems in the process industry has conventionally re-
sulted in isolation of decisions with respect to the time scales of their effects on the operation,
ranging from years-spanning process synthesis and design to seconds-long process control deci-
sions. Apart from the discrepancies in the time scales, the conventional decision layers differ in
their objectives. The long term operating decisions, such as the planning problem, aim to maximize
the profit, while the scheduling problem addresses the feasibility of the operation by allocating the
raw materials, utilities, and the process equipment in a shorter horizon. The dynamic performance
of the scheduled operation is assessed and maintained a posteriori by the process control decisions,
where the time steps are orders of magnitude smaller than the scheduling decisions [1]. In addi-
tion to the operational decisions, the “here-and-now” process design problem is another long term
decision that has significant impact on the future operating strategies and hence, the profitability,
feasibility, and the performance of the operation [2]. This established hierarchy of decision layers
largely neglects their interactions and suggests the information to flow dominantly in descending
order in the time scales the layers span [1].

However, overlooking the bidirectional relationship between the decision layers may lead to in-
feasible operations, forcing the process decisions to be overly conservative. The efforts to maintain
feasible operations without considering all the constituent layers in the decision hierarchy simul-
taneously results into deviation from the optimal decisions. Process Systems Engineering (PSE)
community has been accumulating formidable knowledge and know-how on mathematical mod-
eling techniques to improve our understanding on process design and operations, and developed
efficient tools to solve these advanced models [3]. It has been long established that the early design
problem should be studied simultaneously with the operational time-variant decisions to improve

the operability and flexibility of the process under variable internal and external plant conditions,

IPortions of this chapter have been adapted from Burnak, B., Diangelakis, N.A., Pistikopoulos, E.N., Towards the
Grand Unification of Process Design, Scheduling, and Control — Utopia or Reality?, Processes 2019, 7, (7), 461.



and consequently to achieve more reliable, economically more favorable, and inherently safer
processes. The most recent efforts towards simultaneous consideration of design and operational
decisions explore effective methodologies to integrate the short term process regulatory decisions
(process control) and longer term economical decisions (scheduling) through mixed-integer dy-
namic optimization (MIDO) formulations. The proposed solution tools and techniques for this
class of integrated problems include (i) discretizing the dynamic high fidelity representation of
the process through orthogonal collocation on finite elements followed by solving a mixed-integer
nonlinear programming problem [4], (ii) “back-off”” approach to ensure constraint satisfaction un-
der some assumed worst-case scenario [5, 6, 7], and (ii) multiparametric programming to explicitly
represent the operational strategies to derive tractable and equivalent MIDO formulations [8].

In this introduction chapter, we present a historical perspective on the development and progress
of modern process design techniques that account for the dynamic variability introduced by the pro-
cess control and scheduling decisions. In retrospect, we observe the evolution of methodologies
from fundamental analyses on design and process uncertainty at steady state to dynamic complex
models that explicitly encapsulate the scheduling and control decisions, as illustrated in Figure 1.1,

and summarized as follows.

1. Flexibility analysis and flexibility index. The early stages for design optimization under
uncertainty. The studies here analyze the steady state feasibility of a nominal process design
under a set of unknown process parameters and unrealized operating decisions, as we will

discuss in Section 1.1.

1. Dynamic resilience and controllability analysis. Here, the researchers investigate the dy-
namic response of a system in closed loop, its interdependence with process design, and at-
tempt to develop the “perfect controller” simultaneously with the process that the controller

can act on. Such attempts will be demonstrated in Section 1.2.

1i1. Complete integration of design, control, and operational policies. The focus of the most

recent studies in the field. The goal is to model tractable dynamic design optimization prob-



Steady state
flexibility

Dynamic
flexibility

Controllability

Profitability

Figure 1.1: A Venn diagram representation of major operability indices and their relation with
process economics. It is interesting to note that the design optimization approaches started from
the outermost layer, and with the advance of modeling techniques, they have progressed towards
the center for guaranteed operability, which delivers the optimal process economics (Reprinted
with permission from [9]).

lems that account for the scheduling and control decisions to guarantee the operability and
even profitability of the operation under all foreseeable conditions. These approaches will

be discussed in Section 1.3.

Clearly, it would be inaccurate and redundant trying to reduce down the individual research
efforts to a single category. The literature is noticeably diverse in this field with numerous different
approaches. However, we find it useful to classify into certain schools of thought that are also in
alignment with the historical progress of the field. In Section 1.4, we further seek to pose the
pivotal questions on future challenges and opportunities for the seamless integration of the design,
scheduling, and control problems based on the cumulative knowledge of the PSE community and

the current trends in the academia.
1.1 Early efforts in design optimization under uncertainty

The ongoing collective efforts towards the grand unification of design, scheduling, and control
was inaugurated through steady state design under uncertainty in plant conditions. Takamatsu et

al. (1970) [10] estimated the undesirable effects of variations in system parameters, measured



process disturbances, and manipulated variables on plant performance by sensitivity analysis on a
linearized model. Nishida et al. (1974) [11] adopted the notion of sensitivity analysis to structure
a min-max problem for design optimization, presented by Eq. 1.1.

minmax C(z, des, 0)
des 0

s.t. h(z,des,0) =0
(1.1)
g(:l?, des, 6) <0
0<0<0

where x is the vector of states of the system, des is the vector of design variables including the
steady state manipulated variables, 6 is the vector of parameters that agglomerates the system
uncertainties and process disturbances. Equation 1.1 is one of the first notable attempts to system-
atically assess the trade-off between minimizing the investment cost and improving the flexibility
of the process design. However, this strategy yields conservative solutions since it does not distin-
guish the time-invariant design variables and time-variant manipulated variables. Grossmann and
Sargent (1978) [12] remedied this issue by treating the time-sensitive variables (i.e. manipulated
actions and design variables that can be modified in the future) and fixed design variables sepa-
rately. They further adopted the parametric optimal design problem proposed by Kwak and Haug
(1976) [13], and formulated an objective function to minimize the average cost over the expected
range of parametric uncertainty, as presented by Eq. 1.2.
min  E{C(z,u,des,0)}

u,des

(1.2)

st. max g(x,u,des,0) <0, i=1,2 ..t
0o

where the expected cost function is defined the joint probability distribution of the parameter set
6. Equation 1.2 requires solving infinite nonlinear programming (NLP) problems. Grossmann and
Sargent (1978) [12] proposed an efficient solution procedure for a special case of Eq. 1.2, where

each constraint g; is monotonic in 6, through discretization of the problem over the parameter



space. However, solving the NLP problem at a finite number of 6 realizations does not ensure the
feasibility of the design. This issue is addressed by Halemane and Grossmann (1983) [14] through

reformulating an equivalent design feasibility constraint as presented by Eq. 1.3.

max min max g;(x, u, des, ) <0 (1.3)
0c6 uel icl

The max-min-max problem in Eq. 1.3 mathematically expresses the feasibility question “For
all the uncertainty realizations ©, does there exist a control action v such that the constraint set
g 1s feasible?”. Equation 1.3 was employed in a multiperiod design optimization problem, where
the deterministic uncertain parameter ¢ was allowed to vary within a prespecified range [14]. The
feasibility constraint then laid the foundation for the concept of feasibility index, F', proposed by

Swaney and Grossmann (1985) [15], as given by Eq. 1.4.

F =max ¢

s.t.  maxminmax g;(z,u,des, ) <0 (1.4)
0€0 uel icl

T)={0| (0™ —0A07) <O <O (0™ +6A07}
where 7' is the hyperrectangle for the uncertain parameters, ¢ is the scaled parameter deviation,
and the superscript nom denotes nominal conditions. Equation 1.4 is the first significant attempt to
quantify the degree of flexibility of a process design, and has been exploited by numerous studies
on design optimization and process operability. However, Eq. 1.4 constitutes a nondifferentiable
global optimization problem and is still quite challenging to solve. Therefore, it requires simpli-
fying assumptions and approximations to maintain a tractable problem. Swaney and Grossmann
(1985) [16] introduced a heuristic vertex search method and an implicit enumeration scheme for
the special case where the critical uncertainty realizations are assumed to lie at the vertices of the
hyperrectangle 7'(5). Clearly, this assumption fails to hold when the feasible space of the design
problem is non-convex. Grossmann and Floudas (1987) [17] relaxed this assumption by devel-

oping a mixed-integer nonlinear programming (MINLP) problem for the feasibility test presented



by Eq. 1.3. They further proposed an active constraint strategy for the solution of the result-
ing MINLP. The mixed-integer formulation also provides a systematic approach to consider all
possible critical uncertainty realizations without exhaustive enumeration. The proposed formula-
tion was utilized for synthesis of a heat exchanger network with uncertain stream flow rates and
temperatures [18]. The case of linear constraints reduces to an MILP problem, for which global
solution is attainable by standard branch and bound enumeration techniques [17, 19, 20]. Bansal
et al. (2000) [21] developed a computationally efficient theory and algorithm based on multipara-
metric programming techniques for this special case of flexibility analysis problems. The authors
derived explicit expressions for the flexibility index as explicit functions of the continuous design
variables. Pistikopoulos and Grossmann (1988a, 1988b, 1988c) used the flexibility test with lin-
ear constraints for optimal retrofit design [22, 23, 24, 25] and redesign under infeasible nominal
uncertainties [26]. Although these approaches are effective and promising to handle the design
uncertainty, they require solving nested optimization problems, which poses a major challenge to
solve complex and large scale problems in a reasonable time. Raspanti et al. (2000) [27] proposed
replacing the complementarity conditions of the lower level optimization problems with a well-
behaved, smoothed nonlinear equality constraints, namely Kreisselmeier and Steinhauser function
[28] and Chen and Mangasarian smoothing function [29].

One of the common assumptions in these approaches is the known bounds of the uncertainties,
which is rarely the case in real world industrial applications. Pistikopoulos and Mazzuchi (1990)
[30] and Straub and Grossmann (1990, 1993) [31, 32] extended the flexibility test by assuming a
probability distribution model for the parameter uncertainty, which improved the economical per-
formance of the design optimization problem by addressing the “conservativeness” of the solution.

Another common assumption of these approaches is the steady state operation of the plant de-
sign, which creates a significant limitation on the applicability of the methodologies. Although
steady state assumption holds true for the dominant life cycle of the plant operation, design opti-
mization problem may fail to ensure the operability under transient behaviors such as startup or

shutdown and transitions between different operating conditions. Dimitriadis and Pistikopoulos



(1995) [33] proposed a dynamic feasibility index for the systems that are described by differen-
tial algebraic equations (DAE) subject to time-varying constraints. However, the time-dependent
uncertainty in their formulation dictates to solve infinitely many dynamic optimization problems.
Therefore, the authors assumed that the critical scenarios of uncertainties are known and lie on the
vertices of the time-varying uncertainty space, similar to Swaney and Grossmann (1985) [15]. The
simplifying assumption reduced the problem to the form given by Eq. 1.5.
DF(des) = 5{5&52 0
st. &= f(x(t),u(t),des,0(t),t), x(0) =z

g(x(t), ult), des, 6(t),t) <0 (1.5)

0(t) = 0N (t) + 6 A0°(1)

0>0, wu(t) <u(t) <u(t)
where the time dependence of the variables constitute a dynamic optimization problem, and the
solution was determined by control vector parameterization techniques [33]. Dynamic flexibility
has been widely utilized in numerous design optimization applications including batch processes
[34], separation systems [35, 36, 37, 38, 39], reaction systems [40], and heat exchanger network
synthesis [41, 42, 43].

The dynamic assessment of the plant feasibility under uncertainty has been also studied through
exploiting the multiperiod design optimization formulation proposed by Halemane and Grossmann
(1983) [14]. Varvarezos et al. (1992) [44] implemented an outer-approximation approach to solve
the multiperiod multiproduct batch plant problems operating with single product campaigns, which
was formulated as an MINLP. Pistikopoulos and Ierapetritou (1995) [45] considered stochastic
process uncertainty and proposed a two-stage decomposition that can handle convex nonlinear
problems.

As presented in this section, the early studies on integrated design optimization have primarily
focused on (i) investigating the range of operation (flexibility) of a nominal design configuration

under foreseeable conditions, and (ii) determining the “best” possible trade-off between the invest-

7



ment cost and the capability of handling variations in the internal and external operating condi-
tions. These studies mostly considered open loop processes, under the traditional assumption that
controller design is a sequential task to process design. However, most processes in industry are
operated in closed loop, and the controller schemes inherently alter the process dynamics, render-
ing the open loop flexibility analyses of lesser relevance. In other words, an “attainable” operating
point according to open loop flexibility analysis may actually be an infeasible point in closed loop.
Realizing the shortcomings of open loop flexibility analyses, researchers began investigating the
“controllability” of process systems, and the interdependence of process control and design deci-
sions. In the following section, we present a retrospective background on the integration of process

control in the design optimization problem.
1.2 Integration of process control in design optimization

The initial efforts towards the integration of process control and design problems established a
fundamental understanding on the interdependence of the two decision making mechanisms. The
most pronounced school of thought in the early years to evaluate the controllability of the process
design is “dynamic resilience”, as conceptually defined by Morari (1983a, 1983b) [46, 47].

Morari (1983) [46] described dynamic resilience as “the ability of the plant to move fast and
smoothly from one operating condition to another and to deal effectively with disturbances”. This
depiction implies that there is not a clear cut distinction between flexibility, which was discussed
in Section 1.1, and resilience. However, Grossmann and Morari (1983) [48] pointed out the main
difference as “resiliency refers to the maintenance of satisfactory performance despite adverse
conditions while flexibility is the ability to handle alternate (desirable) operating conditions”. This
distinction is the primary motive for the majority of the flexibility analyses to study steady state
operations, while the resilience deals with the dynamic operations, as we will discuss in this sec-
tion.

Dynamic resilience, as described by Morari (1983) [46], aims to find the “perfect controller”
that is allowed by the physical limitations of the system to assess the controllability of the process

by using the internal model control (IMC) structure. The proposed technique decomposes the



system transfer function G into (i) a non-singular matrix G_ to design the perfect controller G,
and (ii) a singular matrix G, to generate dynamic resilience indices based on (i) bounds on control
variables, (ii) presence of right half plane transmission zeroes, (iii) presence of time delays, and (iv)
plant-model mismatch. The proposed indices were utilized to improve the operability of numerous
process, including heat integrated reactor networks [49, 50, 51], separation systems [52], heat
exchanger networks [53].

Among the four aforementioned resilience indices, Perkins and Wong (1985) [54] studied the
last two by adapting the “functional controllability” theorem proposed by Rosenbrock (1970) [55].
The authors further define a system to be functionally controllable if there exists a manipulated
action u(t) that can generate any process output y(t¢) at any time ¢. Psarris and Floudas studied the
dynamic resilience and functional controllability of multiple input multiple output (MIMO) closed
loop systems with time delays [56, 57, 58], and transmission zeroes [57, 58]. Barton et al. (1991)
[59] investigated the open loop process indicators, namely minimum singular value and right half
plane zeros, to assess the interactions between different design configurations and their operability
with the best possible control configurations.

In the context of simultaneously assessing the process controllability in process design, one of
the first significant contributions is the “back-off approach” introduced by Narraway et al. (1991)
[60]. Narraway and Perkins (1994) [61] used this approach to systematically assess the trade-offs
between all possible controlled and manipulated variable pairs in a mixed integer formulation.
Bahri et al. (1995) [62] employed the back-off approach to handle process uncertainties in an
optimal control problem. The proposed approach is applicable to design linear and mildly nonlin-
ear processes, and relies on three key steps, namely (i) perform a steady state nonlinear process
optimization, (ii) linearize the process at the optimum point, and (iii) “back-off” from the opti-
mal solution by some distance to ensure the feasibility of the operation under some structured
disturbance profile. The proposed approach was shown to be effective effective to select between
alternative flowsheets as well as alternative control structures.

With the burgeoning interest in exploring the simultaneous design and control problem, the In-



ternational Federation of Automatic Control (IFAC) organized the first workshop on “Interactions
between Process Design and Process Control” in the Centre for Process Systems Engineering at
Imperial College London in 1992. The workshop laid the groundwork for a plethora of approches
with a wide range of diversity. Walsh and Perkins (1992) [63] implemented a PI loop in the flexibil-
ity analysis, where the input-output loop is selected by an exhaustive screening procedure. Luyben
and Floudas (1992) [64] formulated a multiobjective MINLP problem to simultaneously consider
the disturbance rejection capacity of the control loop through disturbance condition number and
relative gain array to evaluate the interactions between the inputs and outputs of a MIMO system,
while designing the process. Shah et al. (1992) [65] used the State-Task Network (STN) repre-
sentation [66] to simultaneously consider the scheduling and design problems in a batch plant.
Thomaidis and Pistikopoulos (1992) [67] introduced a framework to consider the design problem
simultaneously with (i) the process flexibility through stochastic flexibility index, (ii) the effect of
equipment failures to the overall performance by combined flexibility-reliability index, and (iii)
the impact of equipment availability by combined flexibility-reliability index. These aforemen-
tioned novel approaches were shown to be promising concepts and techniques to address multiple
facets of operational decisions simultaneously with the process design problem. As a result, suc-
ceeding studies after this workshop expanded these techniques and branched out to explore further
opportunities.

Integrating PI controllers in the design optimization problem was one of the prominent out-
comes of the workshop and became the most attractive option for the following research. The
literature on PI controllers was already abundant and well-established by the time. Moreover, the
explicit form of the controller structure made the integration relatively easy and intuitive, which
significantly accelerated the research in closed loop design optimization. Walsh and Perkins (1994)
[68] presented an integrated PI control scheme and process design for waste water neutralization.
Although the proposed approach was effective for the SISO process, it was reported that it entails
further challenges for more complex processes. One major drawback of PI control is its inability

to tackle MIMO systems without any advanced modifications in the feedback loop structure. Nar-
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raway and Perkins (1993, 1994) [69, 61] developed an MILP based formulation to systematically
evaluate the economical performance of every input-output pair combination. Luyben and Floudas
(1994a, 1994b) [70, 71] adapted a similar approach in a multiobjective framework to determine the
best performing input-output pair based on the controllability indices introduced by them, earlier
(1992) [64]. The proposed framework was showcased on the design of a heat integrated distil-
lation system [70] and a reactor — separator — recycle system [71]. Mohideen et al. (1996) [35]
formulated a multiperiod design and control problem to account for the dynamic variations in
the operation, while including the input-output pairing superstructure in the problem. Moreover,
the authors utilized the flexibility index to account for the uncertain parameters in the model and
presented a decomposition algorithm for the resulting complex problem. Bansal et al. (2000)
[72] constructed a similar formulation as a mixed-integer dynamic optimization (MIDO) problem,
which was solved by a Generalized Benders Decomposition (GBD) based algorithm. The MIDO

formulation was presented as follows.

min Z w;C (&' (t), z'(t), u'(t), des’)

wdes TS
st &' (t) = he(2'(t), W' (1), des’, 0", t), z(t) = zg (1.6)
Y (t) = ha(2'(t),u'(t), des’, 0", 1)
g(&°(t), 2°(t), y' (t), u'(t), des’, §°, 1) <0
where w; is the discrete probability of a scenario ¢ and N S is the discretized set of scenarios. The
discretization of uncertainty in the process was first proposed by Grossmann and Sargent (1978)
[12].
Although the aforementioned PI based design and control frameworks are applicable on nonlin-
ear processes, the range of operability is usually limited due to the mismatch between the nonlinear
process model and the linearized control model. Ricardez Sandoval et al. (2008, 2009) [73, 74]

used robust control tools and the back-off approach to integrate PI control and ensure its stability

while solving the design optimization problem. The proposed approach was also tested against the
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Tennessee Eastman process [75]. The back-off approach was later generalized for control struc-
ture selection in nonlinear processes by Kookos and Perkins (2016) [76]. Ricardez-Sandoval &
co-workers have extensively studied back-off approach for simultaneous process design and con-
trol under uncertainty [77, 78, 79].

One main limitation of integrating PI control in the design optimization in a dynamic formu-
lation is the increasing problem size and complexity. Kookos and Perkins (2001) [80] developed
an algorithm for the integrated PI control and design optimization problem, where the size of the
search space was reduced systematically in each successive iteration. Malcolm et al. (2007) [81]
proposed an “embedded control optimization” procedure, where the authors introduced a two-
stage decomposition scheme that approximates the complete integrated problem. The proposed
approach reduced the problem size and complexity, and was showcased on larger scale problems
including a reactor — separator system [82].

Apart from the inability to naturally handle MIMO systems, PI controllers do not explicitly
account for any process constraints stemming from operational, environmental, and safety limita-
tions. Model predictive control (MPC) overcomes these shortcomings by postulating a constrained
dynamic optimization problem subject to an explicit model of the process [83]. One of the first
remarkable efforts to integrate an MPC scheme in a nonlinear design problem was published by
Brengel and Seider (1992) [84]. Here, the authors postulate a bi-level optimization problem, where
the leader has an economic objective, while the follower is the MPC formulation, as presented by

Eq. 1.7.
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min  Cyes (des) + kCy (2(t), y(t), u(t), des, 6(t))

des

s.t. fdes(des o(t ))

Jdes (des, Q(t)) <0

Iilél)l Cy (z(t), y(t), u(t), des, O(t)) (1.7)

st &= fu(z(t),y(t),u(t), des,6(t))

gu((t), y(t), u(t), des, 0(t)) =0

ha (2(t), y(t), u(t), des, 0(t)) <0
where « is the design and control integration parameter that scales the trade-off between the con-
trollability of the system and the investment cost. The bi-level problem presented in Eq. 1.7 is
challenging to solve without appealing to simplifications. Therefore, the authors proposed replac-
ing the follower problem by complementary slackness equations. However, the solution strategy
was still intractable for more complex systems due to the numerical calculation of the second
derivatives [84]. As a consequence, integration of the MPC scheme in the design optimization
had been rather limited in the literature for almost a decade, until the invention of multiparametric

MPC (mpMPC/explicit MPC).

Bemporad et al. (2002) [85] proposed formulating the MPC problem as an explicit function
of the initial conditions of the system. This novel strategy allowed for deriving piecewise affine
explicit control laws by treating the initial conditions as parameters. The proposed approach for-

mulated the explicit MPC problem as presented by Eq. 1.8.
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where N is the prediction horizon, M is the output horizon, superscript sp denotes set point, (),
®R, R, and R1 are the corresponding weight matrices determined by tuning, P is calculated by
discrete algebraic Riccati equation, and ||-||,, denotes weighted vector norm with a weight matrix
1. Different than conventional MPC, Eq. 1.8 formulates the optimal control problem exactly and
completely offline as a function of the set of parameters 6. The solution of this problem can be

determined by multiparametric programming techniques, which express the solution space as a

piecewise affine function, as presented by Eq. 1.9.

w(0) =K,0+r,, V0 € CR,
(1.9)

CR,:={0 € ©| CR"0 <CR"}, Vne{l,2,.,NC}
where C'R,, is refered as a critical region and it is the active polyhedral partition of the feasible
parameter space, O is a closed and bounded set, and NC' is the number of critical regions.

The control law given by Eq. 1.9 reduces the complexity of solving an online optimization
problem to a simple look-up table algorithm (also known as point location problem) and function
evaluation, all of which are affine operations. Hence, the complexity of implementing an MPC
scheme is similar to that of a PI controller.

Sakizlis et al. (2003) [86] exploited the explicit nature of the mpMPC solution in the context
of design and control integration. The authors formulated a bi-level mixed integer dynamic opti-
mization problem similar to Eq. 1.7, where the leader accounted for the investment and operating

costs in the objective function subject to the dynamic high fidelity model, and the follower MPC
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problem was substituted by the affine control law Eq. 1.9. The proposed formulation offered an
elegant and systematic methodology to reduce the complexity of the bi-level Eq. 1.7 into a single
level dynamic optimization problem. However, the solution strategy still required repetitive lin-
earizations and solving a multiparametric programming problem at every iteration, which can be
restrictive for large scale complex problems. Diangelakis et al. (2017) [87] alleviated that limita-
tion by deriving a “design dependent offline controller”, which allowed for solving a single MIDO
problem after integrating the control law in the high fidelity model. Eliminating the linearization
step and formulating a single synergistic design and control problem also improved the economical
performance of the resulting process compared to the approach proposed by Sakizlis et al. (2003)
[86]. The proposed formulation was also showcased on a tank, a continuous stirred tank reactor,
and a residential scale combined heat and power unit. The cost effectiveness of the MPC integrated
optimal design was also reported to be superior than PI integrated approaches in the literature. Di-
angelakis and Pistikopoulos (2017) [88] reported that the mpMPC integrated optimal combined
heat and power unit operated more fuel efficient in closed loop than PI integrated design. Simi-
larly, Sanchez-Sanchez and Ricardez-Sandoval (2013) [89] showcased a system of CSTRs, where
the MPC integrated framework reduced both the operating and the investment costs compared to
the PI control integrated approach.

One common aspect of the studies on simultaneous design and control optimization is the as-
sumption that the process will be operated around the same steady-state point throughout the entire
life cycle of the plant. However, the external plant conditions, such as market conditions, may dic-
tate a considerably wider operating region with multiple steady state points [3]. The increasing
competition among the businesses impacts the volatility of the market, which creates rapid fluc-
tuations in the energy and raw material prices as well as their availability. Moreover, the demand
rate on the product is also subject to considerable variations during the plant operation. There-
fore, it is clear that there exists a “best” operating strategy under the knowledge available to the
operator, which necessitates the operability of the plant across a wider range. For example, high

production rates may be less profitable during the night time because of increased energy prices
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and hence, operating the energy intensive processes during the day time may reduce the operat-
ing costs. This indicates that the operating level of a processing unit might vary drastically by
the choice of the operator. However, the integrated design and control frameworks discussed in
this section usually assume a single operating point around which a controllability and flexibility
analysis is conducted. Consequently, these frameworks do not attempt to provide any means of
guaranteeing the operability of the process at different regions. In the next section, we will dis-
cuss several approaches that account for multiple operating regions in a plant, and their scheduling

during the operational optimization.
1.3 Towards the grand unification of process design, scheduling, and control

Process design, scheduling, and control problems are traditionally constructed to address dif-
ferent objectives and they span widely different time scales. In a nutshell, the plant design problem
dictates the capacity of processing and it usually comprises the most uncertainty due to its years
long life-cycle. The scheduling problem addresses the allocation of the resources and time, as well
as the operating level of processing units and their maintenance based on some economical criteria
over days/months long horizons. Lastly, the control problem maintains the performance of the
plant, while satisfying any physical limitations such as the environmental and safety constraints.
The discrepancy in the objectives and time scales creates a challenging problem to systematically
evaluate and determine the optimal trade-off between different decision makers.

Process scheduling is more critical in batch operations than continuous operations, as the for-
mer are inherently dynamically operated. Accordingly, the initial efforts focused primarily on the
batch processes for the integration of the operational optimization and design problems. Birewar
and Grossmann (1989) [90] formulated NLP models to incorporate the scheduling decisions in the
batch sizing and timing problem in a multiproduct plant for unlimited intermediate storage and zero
wait policies. Shah et al. (1992) [65] tackled a similar problem by using the STN representation.
White et al. (1996) [91] investigated the switchability of continuous processes between different
operating points through formulating an optimal control problem that accounts for the terminal

criteria and path constraints within a range of design parameters. Bhatia and Biegler (1996, 1997)
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[92, 93] formulated a dynamic optimization problem, where an economic objective function was
subject to a dynamic high fidelity model of the process described by differential algebraic system
of equations. The authors proposed a solution strategy based on discretizing the process model
by orthogonal collocation over finite elements, followed by solving the resulting NLP by using
a standard solver. The proposed modeling and solution strategy was shown to be promising to
satisfy the path constraints, which is a crucial benefit for dynamic systems. Terrazas-Moreno et al.
(2008) [4] extended this integration approach to account for the binary decisions in the scheduling
problem by formulating a MIDO. Similar to Bhatia and Biegler (1996, 1997) [92, 93], the authors
first discretized the problem by orthogonal collocation, followed by solving the resulting MINLP.

The early studies that explore the interactions between the scheduling and process control de-
cisions have a significant role in shaping today’s approaches for the integrated design optimization
problem. In their excellent review article, Baldea and Harjunkoski (2014) [94] classified these
attempts to integrate the scheduling and control decisions as (i) “top-down approaches”, where the
process dynamics and control elements are incorporated in a scheduling skeleton, and (i1) “bottom-
up approaches”, where the process economics are implemented in the plant-wide control decisions.

In terms of characterizing the transitions between different products in a single operating unit,
Mahadevan et al. (2002) [95] introduced a unique “top-down” perspective on the operational opti-
mization problem, revealing that a simultaneous approach on the scheduling and control problem
can identify and eliminate the fundamental limiting behavior during the transitions, as showcased
on a polymer grade transition process. However, the presented approach requires case specific
heuristic decisions to select the “best” fitting scheduling and control configuration and hence, it
is not suitable for different applications in the general sense. Chatzidoukas et al. (2003) [96]
studied a similar polymerization reactor, and formulated a MIDO problem to determine the time
optimal transition between different polymer grades and best performing control structure simul-
taneously. Flores-Tlacuahuac and Grossmann (2006) [97] introduced a monolithic approach on a
multiproduct cyclic CSTR, where the profit was maximized by manipulating the production se-

quence, transition times, production rates, length of processing times, and amounts manufactured
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of each product. Different from the earlier studies [95, 96], the authors focused on the manipulated
actions rather than the optimal control configuration. They formulated a MIDO problem, which
was solved by discretization of the differential algebraic equations by orthogonal collocation on
finite elements followed by solving the resulting MINLP. The presented approach has been exten-
sively studied in the following years to broaden its scope and effectiveness. Terrazas-Moreno et al.
(2007) [98] applied this approach on two industrial polymerization reactors. Terrazas-Moreno et
al. (2008) [4] formulated a design optimization problem accounting for the scheduling and open
loop control trajectories using this approach. Flores-Tlacuahuac and Grossmann (2010, 2011) ex-
tended the formulation to partial differential equation systems, and showcased on tubular reactors
with single [99] and multiple production lines [100].

This monolithic approach usually generates open loop control trajectories, i.e. no feedback
loop is assumed to develop the input and output profiles. However, the processing units are subject
to internal process disturbances, and the mismatch between the process and the model leads to
deviations in the targeted operations. Zhuge and Ierapetritou (2012) [101] implemented the mono-
lithic approach in closed loop, where the authors initiate a readjustment procedure to solve the
integrated problem online if the states deviate from their reference trajectories. This approach does
not completely resolve issue of handling the process disturbances or the process/model mismatch,
however it was shown to mitigate these concerns to a great extent. Gutiérrez-Limon et al. (2014)
[102] also implemented a similar closed loop strategy with a nonlinear model predictive control
scheme, while extending the scope of the problem statement to account for an extended horizon
production policy. However, both approaches require solving a complex and large scale MINLP
problem at the time steps of the controller, which makes it unsuitable for the processes with fast
dynamics.

Low-order representation of fast process dynamics in the scheduling problem has been an ef-
fective approach to reduce the computational burden of solving complex optimization problems.
Du et al. (2015) [103] proposed a time scale-bridging model that describes the closed-loop in-

put—output behaviour of a process in the scheduling formulation, postulated as a MIDO problem.
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The low-order representation also maintains the stability of the process in the existence of pro-
cess/model mismatch and handles disturbances. Baldea et al. (2015) [104] extended this approach
to MPC governed systems.

Burnak et al. (2018) [105] also addressed the online computational burden of “top-down”
approaches by developing a multiparametric programming based approach, where the authors ex-
plicitly mapped (i) the closed loop dynamic process behavior in a “control-aware” scheduling
problem, and (ii) the continuous and binary scheduling level decisions such as the operating level
and operational mode of the system in a “schedule-aware” MPC scheme (iii) to yield the optimal
operational decisions. The offline nature of the integrated scheduling and control scheme allows
for determining the feasible operating space prior to actualizing the operation. Furthermore, reduc-
ing the problem complexity from solving online optimization problems to a simple look-up table
and affine function evaluation, the framework is well-suited for fast process dynamics. Charitopou-
los et al. (2019) [106] employed a similar multiparametric programming approach to include the
planning decisions in their framework.

In the “bottom-up” approaches, on the other hand, incorporating the economical objectives in
the plant control structures has been perceived as the key for seamless integration of scheduling
and control. For this purpose, MPC formulations provide the flexibility to account for a spectrum
of objectives in the control level due to their optimization based structures. Loeblein and Perkins
(1999) [107] presented an economical analysis of unconstrained MPC scheme operating under
constrained systems. The authors determined the most cost effective model predictive regulatory
control structure by utilizing the back-off approach to satisfy the constraints. Zanin et al. (2002)
[108] addressed the discrepancy between the real-time optimization (RTO) and control layers by
incorporating the economic optimization problem in the controller and feeding the same piece of
information in both layers. The proposed formulation diminishes the discrepancy between the
decision layers to yield more economical operations, but the resulting control scheme does not
guarantee the stability of the process for the entirety of operations. Rawlings and Amrit (2009)

[109] developed asymptotic stability criteria by formulating the so-called “economic MPC” (or
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EMPC), where the objective function of the MPC is designed to minimize the operational costs in-
stead of maintaining the steady state of the process. This approach aims to replace the conventional
two layer structure with RTO and dynamic regulatory control by a single control layer, where the
economic optimization and process regulation are conducted simultaneously. Amrit et al. (2011)
[110] further extended the stability criteria by (i) imposing a region constraint on the terminal state
instead of a point constraint, and (ii) adding a penalty on the terminal state to the regulator cost.

Similar to the monolithic “top-down” scheduling and control approach, EMPC has been shown
to be too complex to be solved in the control time steps. This limitation has led the researchers
to develop decomposition algorithms for faster computational times. Wiirth et al. (2011) [111]
proposed a decomposition framework for the single layer dynamic RTO formulation, where the
slow trends and process uncertainty is handled in the upper layer, while the lower layer accounts
for the fast disturbances actiong on the process. Ellis and Christofides (2014) [112] focused on
selecting a suitable input configuration for such two-layered dynamic RTO structures such that the
asymptotic stability is guaranteed. Jamaludin and Swartz (2017) [113] and Li and Swartz (2019)
[114] employed a convex MPC problem in the lower level regulatory control, which enabled its
exact substitution with KKT optimality conditions. Simkoff and Baldea (2019) [115] used the
same substitution strategy on a production scheduling problem.

Design optimization accounting for the scheduling and control decisions with closed loop im-
plementation is relatively recent in the literature. Patil et al. (2015) [5] modeled the product transi-
tions in design optimization, while maintaining the stability of the closed loop system governed by
a PI control scheme. The authors formulated an MINLP similar to Eq. 1.6 with the contribution of
the criterion, eig(AZ?(z1,)) < 0, which enforces the stability of the linearized states for all products
¢ in a multiproduct unit under all critical scenarios z. Due to the linearization of the controllers
around the operating point, this approach requires repetitive identification of the states at every op-
timization iteration. Koller and Ricardez-Sandoval (2017) [6] improved this approach by applying
orthogonal collocation on finite elements on the integrated problem, and Koller et al. (2018) [7]

employed the back-off method to satisfy the constraints under uncertainty by using Monte Carlo
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sampling techniques to determine the back-off terms.

Recently, Burnak et al. (2019) [8] introduced a multiparametric programming based theory and
framework for the integration of process design, scheduling, and control, which will be detailed
in the remainder of this thesis. To summarize, we derive offline design dependent control and
scheduling schemes that can be incorporated in a MIDO formulation in a multi-level fashion, as
presented by Eq. 1.10.

min /0 " Clet), y(t), ult), s(t), des, d())dt
() =

t) = f(a(t),y(t), u(t), 5(t), des, d(t), 1)
y(t) = g(x(t), y(t), ult), s(t), des, d(t),t) <

r(t) <7, des <des<des, d<dt)<d

s.t.

<
VAN

1=
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0. <0.= [1:3;:0, ytTczm dy,, des]” < .
where s and u denote the scheduling and control decisions, respectively. Note that the proposed

formulation postulates explicit expressions for the scheduling and control strategies as functions

of a set of parameters, #, which includes the design of the process. The design dependence of the
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operational strategies allows for their direct integration in the MIDO formulation. The postulated
formulation has two main benefits, (i) due to the explicit form of the follower problems, the multi-
level MIDO problem is reduced to a single level, and (ii) only the design variables are left as the

degrees of freedom of the problem, since the remaining are determined as a function of the design.
1.4 Current challenges and future directions

The PSE community has achieved unequivocally remarkable progress in realizing and advanc-
ing the set goals of Professor Sargent on systematic design optimization in five decades. Today, us-
ing design optimization tools to at least some extent has long become the standard practice in many
industries. Commercial modeling and simulation software tools such as gPROMS? and Aspen Plus
Dynamics® have been featuring robust and efficient solvers for dynamic optimization problems for
a few years. Despite these milestones in PSE, we still have to make significant assumptions and
simplifications regarding the operational decisions in the process design phase, even though the
impact of their interdependence on process economics and operability has been articulated in nu-
merous studies. Hence, the academia still needs to mature the theoretical foundations and the
applicability of unified design optimization approaches before it gains wide industrial recognition.
Here, we discuss some of the bottlenecks and potential directions to improve the state-of-the-art

for industrial practice.
1.4.1 The need for an industrial benchmark problem

As we have presented in this paper, there is a plethora of proposed modeling techniques and
solution approaches for the next generation unified design optimization problems. Therefore, it is
clear that we need a generally accepted benchmark problem, preferably in industrial scale, to vali-
date the effectiveness of proposed methodologies. The PSE community has benefited greatly from
such standardized problems, such as the famous Tennessee Eastman Process detailed by Downs
and Vogel (1993) [116] for process control studies. We believe that a well-defined problem will

clarify the objectives in unified design optimization and accelerate the research towards industrial

Zhttps://www.psenterprise.com/products/gproms
3https://www.aspentech.com/en/products/pages/aspen-plus-dynamics
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expectations. The problem should describe at least the following.

i. A high fidelity model that describes the dynamics of the process. The model should feature

11.

1il.

appropriate design variables to exhibit the dynamic consequences of scaling up/down the
process. Furthermore, considering the reduction in capital investment that the multipurpose
and multiproduct operating units provide, the process should comprise such units to exam-
ine the scheduling/design and scheduling/control trade-offs. Recent research that consider
process design, scheduling, and closed loop control problems simultaneously [8, 5, 7] have
studied only a single processing unit, which reflects a limited fraction of the overall benefit

that the grand unification can provide.

Cost relations for investment, utility, and raw materials. A functional form of the investment
cost with respect to the capacity of the process is required to have standardized comparable
results. Also, utility costs and raw materials may vary significantly, which inevitably impacts
the optimal scheduling decisions. For instance, grid electricity costs are known to exhibit
considerable differences during the day and night times. Thus, operational loads in energy
intensive processes may fluctuate heavily. The impact of such changes in operating levels on

design and control decisions were discussed in Section 1.2.

Product demand and availability of the utility, raw materials, and operating units over a
time horizon. Production allocation and timing is a key aspect of scheduling problem, which
are heavily dictated by the product demand and availability of resources. However, it is not a
trivial practice to estimate the future of these quantities. Therefore, probability distributions
of these components will be beneficial to determine their expected values, while being able

to take into account their worst case scenarios.

1.4.2 Robust advanced control and scheduling strategies

Incorporation of advanced control schemes seamlessly in the design optimization problem re-

quires the controller to capture the dynamics of the process for the entire range of design variables.
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Burnak et al. (2019) [8] attempted to approximately model the design configuration as a right hand
uncertainty in the constraint set, validated by closed loop simulations and closed loop MIDO prob-
lems. However, the design variables impose uncertainty in the left hand side of the constraints,
as well as the nonlinear and bilinear terms in the objective function. Therefore, robust control
strategies need to be developed for accurate predictions of future states in the control level prior
to the realization of the design, and to guarantee the stability of the closed loop operations in
simultaneous approaches.

Analogously, scheduling schemes should be robustified in the design optimization to mini-
mize the rescheduling due to unexpected disruptive events, such as unit failure, drastic changes
in product demand rate and raw material availability. Excluding these events in the scheduling
scheme may result in steep changes in the target operation, and thus unattainable set points for the

controller.

1.4.3 Considering flowsheet optimization, process intensification, and modular design op-

portunities

Optimization based plant design techniques have been used and developed for more than
four decades [117, 118]. These techniques postulate “superstructures” that systematically sim-
ulate and compare every combination of flowsheet possibilities to determine the optimal pro-
cess. More recently, superstructures have been formulated at the phenomena level to capture
the fundamental relations between the mass and energy, which in turn yields intensified processes
[119, 120, 121, 122, 123, 124, 125]. Such intensified processes are expected to deliver significantly
increased operational efficiency and decreased unit volumes, making them very attractive options
both in academia and industry [126]. This rapidly growing interest in intensified processes is one
of the most pronounced directions that the PSE community has been taking. Therefore, study-
ing these intensified processes in the context of unified design optimization will attract a wider
audience from the industry. Clearly, modeling the spatial (synthesis/intensification) and temporal
(scheduling/control) decisions simultaneously in a single problem formulation will capture even

more synergistic interactions, which will increase the process profitability.
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Furthermore, the researchers studying process intensification can benefit from the tools and
methodologies on unification of design, scheduling, and control. Baldea (2015) [127] reported a
theoretical justification for the loss of control degrees of freedom due to process intensification,
which poses a significant limitation on intensification activities. Tian and Pistikopoulos (2019)
[128] and Dias and Ierapetritou (2019) [129] discuss the limitations on the operability of such
intensified systems and potential directions to overcome these limitations in their excellent review
papers. The researchers on process intensification technologies can adopt the techniques, ranging
from steady state and dynamic flexibility to integration of scheduling and control decisions, in

order to address the operability issues.
1.4.4 Theoretical and algorithmic developments in MIDO

The most limiting bottleneck of the simultaneous approaches is the size of the integrated MIDO
problems. The time component of the problem significantly increases the computational complex-
ity, yielding infinitely many NP-hard problems to acquire an optimal solution profile. However,
tailored algorithms can be developed by utilizing the special structure of such integrated problems.
For instance, the open loop design optimization problem is relatively simpler than the integrated
MIDO, and constitutes a lower bound on the optimal solution of the overall problem. Such prop-
erties can be exploited in decomposing the MIDO into subproblems to significantly reduce the

search space for faster algorithms.
1.4.5 Software development

Despite the theoretical and practical advances in the unified design problem among the academia,
there is no commercially available platform or a software prototype. Such a tool will make the in-
tegrated approaches more accessible to the process designers in industry who are not necessarily
experts on process control and scheduling, and it will attract more researchers from different disci-
plines and backgrounds. Pistikopoulos et al. (2015) [130] introduced the PARametric Optimization
& Control (PAROC) framework to design explicit controllers based on high fidelity models, which

can be a viable option to address the grand unification challenge [8, 105, 131, 2, 88]. However, it
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is clear that more progress is needed to engage a wider audience.
1.5 Scopse of this study

In this thesis, we consider a generic process where the interactions between the design (long
term decision), schedule (middle term decision), and control (short term decision) problems are
sufficiently significant to impact the feasibility and the optimality of each individual decision.
Therefore, we define the following problem statement that encapsulates all three decisions simul-

taneously.

(1) Given: A high fidelity model based on first principles or data-driven modeling techniques
that accurately captures the dynamics of the system, any physical limitations of the system
due to process safety considerations or product specifications, unit costs for design, raw

material, energy, and inventory, revenue for unit product, and an accurate demand forecast.

(i) Determine: Production sequence throughout an operating horizon, closed loop control strat-
egy that delivers the product specifications, set points for the operation tailored for the dy-
namics of the closed loop strategy, size of the processing equipment that ensures operability

of the process.

(ii1) Objective: Minimize the operating and capital costs.

Note that the objective of the problem can be replaced by the minimization of the energy uti-
lization, CO, emissions, processing time, or a combination of these tasks based on the application
without changing the framework. In this work, we showcase the minimization of costs as it is the
most frequently used objective in process operations.

The generalized mathematical formulation of the defined problem statement is given by Eq.

1.11 in the form of a mixed-integer dynamic optimization problem [8].
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min J:/ P(z,y,u,s,des,d)dt
0

u,s,des

st. &= f(z,u,s,des,d), x(0)=ux

<y=g(x,u,s,des,d) <7y

y<y=g( )<Y (L1
u<u=h(z,u,sdes,d) <u

s <s=m(z,u,s,des,d) <3

r<x<T, des<des<des, d<d<d

where x are the states of the system, y are the system outputs, u are the control actions, s are the
scheduling decisions, des are the design variables, and d are the measured disturbances, P is the
cost function accounting for the operating and capital costs, f and g are differential and algebraic
relations, h and m are the implicit relations that describe the operational decisions, and lower and
upper bars are the bounds on the variables. We also differentiate the disturbances at the control
level, d° C d, such as the variations in the feed conditions, and the disturbances at the scheduling
level, d® C d, such as the fluctuating market prices and demand rates. Note that discrete design
and scheduling decisions such as the number of trays in a distillation column, the product to be
manufactured at a particular time instance, and resource allocation render Problem 1.11 a mixed-
integer optimization problem.

The problem statement defined in Eq. 1.11 suggests that the high fidelity model given by f
and g, the cost function P, the bounds on the variables are known, and a realistic demand scenario
is available. The goal is to minimize the objective P over a time horizon 7 by manipulating the

degrees of freedom of the system available in the long term (des), middle term (s), and short term
(©).
1.6 Research objectives and thesis outline

The general formulation presented by Eq. 1.11 is typically a large scale, non-convex dynamic
optimization problem with integer variables, and is challenging to solve even for small scale prob-

lems comprising a single processing unit. Therefore, the objectives of this work to advance the
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current knowledge on integration of multi-scale decisions are listed as follows.

Objective I Develop a process agnostic and synergistic framework to integrate the process design,
scheduling, and control problems based on a single high-fidelity model. This goal requires
a tractable form of the integrated process design, scheduling, and control problem, i.e. Eq.
1.11. Furthermore, addressing the operability of the process is another challenge, since the
“optimal” profile determined by solving Eq. 1.11 without the consideration of the scheduling
and control decisions may not be a viable path during the online implementation. Here,
multiparametric programming is vital with its ability to map the optimal receding horizon

policies explicitly, which can be embedded exactly in the generalized MIDO formulation.

Objective II Investigate the interactions between the process design and control problems un-
der a single operating window. Based on their inherent relationship, (i) develop a single
optimal control strategy that is applicable under a range of design configurations, and (ii)
determine the optimal process design considering the closed-loop dynamics introduced by

the controller.

Objective III Investigate the interactions between the scheduling and control problems for a given
design configuration. Develop (i) a single optimal control strategy that is applicable under
a range of operating regions, and (ii) a scheduling strategy that is aware of the closed-loop

dynamics of the system.

Objective IV Develop an modeling technique and optimization approach to efficiently incorporate
the operational strategies in an MIDO formulation. Such an approach is especially vital for
the integration of decisions in batch processes, where the inherently dynamic systems and
the high number of discrete decisions increase the problem complexity compared to the

continuous processes.

Objective V Develop an algorithm to solve large scale multiparametric programming problems,
which is an inevitable result of integrating the control and scheduling problems in a single

formulation.
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2. INTEGRATION OF PROCESS DESIGN AND CONTROL!

2.1 Introduction

Traditionally, chemical plants have been designed with sequential assessment of the process
design based on the steady state economics, followed by a heuristically tuned control strategy to
govern the real-time operations around the designated steady-state. The independent characteriza-
tion of these two aspects (i) hinders the feedback controllers to respond better to disturbances and
process uncertainty, and (ii) results in overdesigned process equipments which directly increase
the capital costs, and impact the operating costs [132].

Considering the strong interactions between the design and control problems, a plethora of
approaches has been proposed in the past three decades. An indicative list of the contributions
proposed on the literature is provided in Table 2.1 [8]. The earlier approaches primarily focus on
developing a priori metrics for the reliability of the steady state design under process disturbances
and uncertainties based on feasibility, flexibility, stability, and controllability of the system. The
advances in computational power and mathematical programming techniques has shifted the recent
studies in the direction of simultaneous consideration of the control strategy during the process
design phase [88].

In this chapter, a process agnostic framework is presented to simultaneously address the pro-
cess design and control problems via multiparametric programming. A design dependent control
strategy is developed by using the PARametric Optimization and Control (PAROC) framework
[130] to derive an offline map of control actions as an explicit function of the design variables.
The offline map allows for direct implementation of the control strategy in the design optimiza-
tion problem. The integrated problem corresponds to an MIDO, given by Eq. 1.11, where the

scheduling decisions s are assumed to be constant.

Portions of this chapter have been adapted from Diangelakis, N.A., Burnak, B., Katz, J., Pistikopoulos, E.N.,
Process Design and Control optimization: A simultaneous approach by multi-parametric programming, AIChE Journal
2017, 63 (11), pp. 4827-4846 and Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N., Integrated process
design, scheduling, and control using multiparametric programming, Computers & Chemical Engineering 2019, 125,
pp- 164-184, Special Issue, with permission from Elsevier.
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Table 2.1: Design and control in the literature: An indicative list (Reprinted with permission from

[88]).

Author (year)

Contribution

Perkins & co-workers (1991) [60], Kravaris & co-workers
(1993) [133, 134], Pistikopoulos & co-workers (1994,

1997) [135, 37], Floudas & co-workers (1994, 2000, 2001)
[70, 136, 137], Romagnoli & co-workers (1997) [138],
Skogestad & co-workers (2014) [139], Gani & co-workers
(1995) [140], Francisco & co-workers (2014) [141]

Pistikopoulos & co-workers (2000, 2002, 2003a, 2003b, 2004)
[72, 142, 143, 144, 145, 86, 146], Linninger & co-workers
(2007) [81], Swartz & co-workers (2014) [147], Ricardez-
Sandoval (2012) [148]

Biegler & co-workers (2007, 2008) [149, 150], Seider & co-
workers (1992) [84], Ricardez-Sandoval & co-workers
(2008, 2016, 2017)[73, 77, 78], Pistikopoulos & co-workers
(1996) [36], Perkins & co-workers (2002, 2016) [151, 76],
Flores-Tlacuahuac & co-workers (2009) [152], Barton &
co-workers (2011, 2015) [153, 154, 155], Linninger & co-
workers (2006) [156]

Francisco & co-workers (2014) [157], Ricardez-Sandoval & co-
workers (2009, 2011) [132, 158], Gani & co-workers (2012)
[159], Mitsos & co-workers (2014) [160]

Feasibility, flexibility, sta-
bility, controllibility,
resilience metrics in
steady-state design op-
timization with MIDO
or MINLP

Integrated MIDO formu-
lation/ decomposition
with PID control or
(mp)MPC

Iterative MINLP formu-
lation with stochastic
back-off formulation
for uncertainty

Review articles on design
and control integration

30



The remainder of this chapter is organized as follows. In Section 2.2, the PAROC framework,
its utilization to derive design-dependent controllers, and the formulation of the integrated MIDO
problem are discussed in detail. An example comprising a binary distillation column is presented
to showcase the introduced framework in Section 2.3. Finally, the conclusions are summarized in

Section 2.4.
2.2 Simultaneous design and control optimization via PAROC

The PAROC framework and software platform provides a comprehensive environment to de-
sign chemical processes, to build advanced controllers, and to perform parameter estimation based
on high-fidelity models benefiting from the most recent advances in the filed of multiparamet-
ric prgramming [130]. The first step of the proposed methodology is to acquire a mathematical
"high-fidelity" model to describe the system of interest with sufficient accuracy. These models
are typically very large in size and complex in nature, rendering it difficult to directly apply an
advanced control strategy. Therefore, the original mathematical model is approximated or reduced
in size via the existing algorithms in the literature. Note that the design variables should be main-
tained in the lower dimensional model to lay the foundation of a design dependent controller. A
model predictive control (MPC) scheme is constructed using the approximate model, and solved
multiparametrically (mpMPC) to generate offline maps of optimal control actions as a function of
the design variables. The developed design dependent explicit expressions for the optimal control
actions are embedded exactly in the dynamic high-fidelity model, allowing for a dynamic opti-
mization problem to be formulated to determine the optimal design configuration and the control
strategy simultaneously. The steps of the framework are illustrated in Figure 2.1, and detailed as
follows.

Step 1 — High-fidelity dynamic modeling: A rigorous mathematical model based on first
principles, typically differential algebraic equations (DAE) or partial differential algebraic equa-
tions (PDAE), is used to simulate the dynamics of the system. In this work, we use the gPROMS®

environment to construct the model, as described with a general representation in Eq. 2.1.
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Figure 2.1: The PAROC framework approach for simultaneous design and control. Actions within
the gray area happen once and offline (Reprinted with permission from [88]).

(t) = f(x(t),u(t),d(t),des,t)

y(t) = g<x(t)7 u(t)7 d(t)a des, t)

2.1)

where x are the states, u are the manipulated variables, d are the external disturbances, des are the
design variables, t is independent time variable, y are the system outputs, and f and g are generic
functions.

Step 2 — Model approximation: The high-fidelity model designed in Step 1 usually comprises
highly nonlinear and non-convex terms that renders the practice of advanced control algorithms
quite challenging. Therefore, we appeal to system identification or model reduction techniques to
approximate the model formulation with a discrete time affine state space representation. In this
work, the model approximation is performed via the MATLAB® System Identification Toolbox
yielding the state space representation in Eq. 2.2. Note that the system identification techniques

may or may not preserve the physical meanings of the original states in Eq. 2.1.
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‘ 2.2)

U0, =Dxy, + Fuy, + F [dtTC, destTc]T
where A, B, C, D, F, and F are matrices with appropriate dimensions, ¢ are the outputs predicted
by the controller, and ¢. is the discretization step of the state space model. Addressing the plant-
model mismatch in the control problem will be addressed in the following step.

Note that the design variables are treated as a disturbance and thus, cannot be manipulated in
the state space model. Inclusion of the design variables is vital to represent the range of dynamics
of the system of interest in the control strategy.

Step 3 — Multiparametric model predictive control (mpMPC): The design of the feedback
controllers is based on the procedure described by Bemporad et al., (2002) [85]. The generalized

form of the mpMPC problem is described by Eq. 2.3.
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where 6 is the set of bounded parameters, [V, is the output horizon, M. is the control horizon, || ||

denotes weighted vector norm with a weight matrix ¥, S P denotes set point, P, @), QR, R, R1
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are the corresponding weight matrices. An error term e denotes the mismatch between the actual
system output and the predicted output at initial time.

The resulting multiparametric programming problem is solved via the POP toolbox [161] in
the MATLAB environment, yielding the explicit map of optimal control actions as a function of

the design variables, as given by Eq. 2.4.

u;(0) = K,0 +r,, V8 € CR, (2.4a)
9 = [xz;:m U,:Tc:_p dz;:Oa deSTv (yiP)T7 (uch)Ta ytj;:o} ’ (24b)
Vj e {0,1,..., M}, Vt. € {0,1, ..., N,} (2.4c)

where an arbitrary n'” critical region C'R,, is defined as a closed polyhedron given by CR,, :=

{6 € ©| L,0 <b,}. Equation 2.4 defines a piece-wise affine optimal control law over the param-

eter space comprising the states z; g, control action at the previous time step u; —_1, measured
SP

external disturbance d;__(, design variables des, output set points y,ip , input trajectories vy, and

output measurements y; —o.

Remark 1. Inclusion of the design variables in the optimal control law allows for the use of a

single control strategy across a range of design configurations.

Step 4 — Closed loop validation: The derived control law, Eq. 2.4 is validated against the
dynamic high fidelity model Eq. 2.1 within the bounds of design variables. Here, the control
law is expected to deliver satisfactory performance by (i) achieving effective set point tracking,
(11) satisfying the path constraints, and (ii1) maintaining stability. If the controller fails to deliver
sufficient performance, either the weight matrices in Eq. 2.3 are tuned accordingly, or the model
approximation step is revisited to develop a more accurate open loop low order model.

Step 5 — Dynamic optimization: The optimal control law, i.e. Eq. 2.4, is embedded in the

generalized MIDO formulation for the design optimization problem?. The exact implementation of

’The scheduling actions are assumed to be constant in Eq. 1.11 for this particular class of problem, as previously
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Figure 2.2: Schematic representation of the simultaneous design MIDO with embedded mpMPC.
The area within the dashed line represents the MIDO problem (Reprinted with permission from

[88]).

the control strategy allows for the simultaneous consideration of the design and control problems.
The flow of information to solve the resulting MIDO problem is illustrated in Figure 2.2.

The following section showcases the described framework on a binary distillation column.
2.3 Case Study - A binary distillation column

The distillation column model describes a binary separation process of benzene and toluene.
The column is allowed a maximum number of trays to be 30 with no restriction on feed tray
location. The purity in the top has a desired set point of 0.98 and the purity in the bottom has a

desired setpoint of 0.02. The feed composition is assumed sinusoidal.
2.3.1 High-Fidelity dynamic modeling

The distillation column utilizes mass and energy balances and thermodynamic relations to build
the full model. It has been assumed that (1) the energy dynamics are fast compared to mass transfer
dynamics, (ii) relative volatility is constant throughout the column, (iii) molar holdup is constant

in the condenser, (iv) the system responds immediately to the changes in pressure.

mentioned in Section 2.1.
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Table 2.2: Characteristic equations for a binary distillation column. Component ¢ is benzene, tray
number is k € {1...Ntrays} unless stated otherwise (Reprinted with permission from [88]).

Description

Equation

Component mass balance
Total mass balance

Vapor molar flow rate
Hold-up
Liquid level

Tray area
Weir length

Reboiler vapor liquid equilibrium
Condenser vapor liquid equilibrium

Relative volatility

Reboiler and reflux drum molar
balance

Reboiler and reflux drum energy
balance

i,
o = Livi®igr + VWi + Frzip + Brxip —

Dl = Lipr + Vier + Fy + R, — Ly — Vi, Yk €
{2..Ntrays — 1}
Vi = Vi1 = Vg, Vk € {2...Ntrays — 1}

Vol, = —M
PLmix,k

2/3
L
1.845)Lmim,kLweiT
0.87D,
Atray - 4 .
Lweir = 077DC

0 . 0 —p.
Pbenz,BxlvB+Ptol,B(1 x"vB)

L@’U@lk = + Hweir

b= T; P 1—x;
1 — P Oz,D + *0 i,D
(Pbenz,D Ptol,D )
PO PO
a = benz,g benz,B PO
Ptol,D tol,B
T g

yi7k = 1+J3Z‘7k(ﬁa—1)

dM;. g
o = Livin — Brip — VYyip
_ M;p
D
d; - VNtrays (yi,Ntrays - xi,D)
Mp = 22
D TiD

0=L,—B—-Vp
0=Vp—-XR,—D

The complete model of the binary distillation column is adapted from Sakizlis et al., (2003)

[86], and the characteristic equations of the model are presented in Table 2.2.

Mass balances for each tray, reboiler, and condenser are used while assuming constant molar

hold up in the total condenser. Energy balances are used in the reboiler and condenser assuming

an average temperature throughout the column. Relative volatility is used to determine vapor and

liquid correlations in each tray and in the reboiler. The model assumes the reflux flow rate and the

boilup rate to be the controllable variables in the system, and the molar hold ups to be the states of

the system. Column diameter, reflux tray position, and feed tray position are the design variables,

while the presence and position of the reboiler and condenser are fixed. Density of the liquid hold
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up on the trays is assumed to follow from a linear combination of the component densities.
Antoine equations were used to determine vapor pressures at the top and bottom of the dis-
tillation column and the log-mean temperature approach was used for the heat exchange at the
condenser and the reboiler. The distillation column is a multiple input multiple output (MIMO)
system where the reflux flow rate and vapor flow rate are the degrees of freedom to the system,
and the purity in the top and bottom is the output. The composition at the feed is treated as a

disturbance to the system operation.
2.3.2 Model approximation

The high fidelity model of the distillation column consists of 52 states and nonlinear equations.
Random sets of input/output data for different designs from the high fidelity model are introduced
into the System Identification Toolbox in MATLAB® to acquire a linear state-space model of the

form of Eq. 2.2. The identified state-space model is shown in Eq. 2.5.

0.9533 —0.05507 —0.01609 —0.01346
Tio41 = Ty, + Ug,+
0.0264 0.5494 —0.1129  0.08987

—0.1257 —9.703-107% —4.163-10~* d;
—1.005 7.184-107%* —5.874-107°| |des (2.5)

. —0.2357 —0.354
Yt. = T,

0.1098 —0.4719
t.=1s
where z,, are the identified states, u,, are the reflux flow rate and the vapor rate, d;, is the
composition of the feed and des is the feed and reflux tray location. The performance of the
approximate model to capture the dynamics of the high-fidelity model is presented by Figures 2.3
and 2.4, where the step and impulse responses of the approximate model is demonstrated. Note

that the column diameter is correlated to the minimum vapor flow rate and therefore is the design

decision of the system (See Eq. 2.6). The number of trays, and the location of the feed tray are
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Figure 2.3: Step response of the approximate model for the binary distillation column example
(Reprinted with permission from [88]).

also accounted for as design decisions, however addressing these integer variables is discussed in

the following subsection.
2.3.3 Design dependent mpMPC

The problem formulation of the control strategy is based on Eq. 2.3 and the tuning of the
controller is presented in Table 2.3. Note that since the vapor flow rate is limited by the column
diameter as presented in Eq. 2.6, the mpMPC is modified to account for the square of the column
diameter as a design parameter. Note that since the column diameter is always greater than zero and
it does not appear anywhere else within the mpMPC formulation we can define a new parameter

p = D? which renders Eq. 2.6 a linear inequality constraint.

0.4514 - Vg < D? (2.6)

The integer parameters corresponding to the tray locations are reformulated into binary param-
eters and solved based on the algorithm presented in [162]. An alternative formulation could be
the treatment of integer parameters as continuous parameters (similar to handling binary variables

in [163]) since the integer value realization of the parameter is a subset of their continuous values
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Figure 2.4: Impulse response of the approximate model for the binary distillation column example
(Reprinted with permission from [88]).

Table 2.3: Weight tuning for the mpMPC of the distillation column (Reprinted with permission
from [88]).

MPC design parameters Value
N. 3
M, 1
7
QRy,Vk € {1,..,N} 18 187
—2
Re,Vk € {1,.... M} [100 100_2]
z [—10% —10%]"
T [10° 10%]"
u 2 3]
u (a7 7"
y o 0]’
y 11"
d (045 1 1]"
d (0.5 30 30]"
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and the realization is not an mpMPC decision.

The objective of the design dependent controller is to maintain the purity set points for the
top and bottom product at 98% vol and 2% vol regardless of the disturbance at the inlet of the
system. Deviations from the desired set points are allowed but penalized in the design optimization

formulation.
2.3.4 Closed loop validation

The developed control strategy is validated against the high-fidelity model, under a range of
design realizations. Figure 2.5 shows the closed loop profile for an arbitrary design configuration.
It is observed that the controller is (i) able to track a set point, (i) satisfies the path constraints, and

(ii1) maintains the stability of the system under external process disturbances.
2.3.5 Dynamic optimization

The dynamic optimization is formulated with the explicit map of optimal control strategy and
solved allowing for the optimizer to select the optimal value for the area of the condenser, area of
the reboiler, reflux tray location, feed tray location, and diameter of the column. To account for
the reflux and feed tray location changing additional equations were added or modified as seen in
Table 2.4.

Allowing the dynamic optimization to run over a time span of 1 hour, the results obtained
are presented in Table 2.5. It can be seen that by utilizing the simultaneous design and control

approach presented here, a distillation column with a smaller annualized total cost is designed.
2.4 Conclusions

In this chapter, an integrated framework was presented for the application of process design
and control optimization via multiparametric programming. Explicit expressions were developed
for the design dependent optimal control actions, which allowed for using a single offline control
strategy to be employed under a range of design configurations. The design and control problems
were then simultaneously solved by incorporating the map of design dependent control strategy in

the design optimization problem and the solving the integrated MIDO. The presented framework
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Figure 2.5: Closed loop validation of the control strategy against the high-fidelity model. The ar-
bitrarily fixed design variables are as follows. Diameter of the column: 1.9m, Reflux tray position:
18, Feed tray position: 9 (Reprinted with permission from [88]).
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Table 2.4: Additional/Modified equations for dynamic optimization. Component  is benzene, tray
number is k € {1...Ntrays} unless stated otherwise (Reprinted with permission from [88]).

Description Equation

Feed tray location F. = Fol, S5l — 1

Reflux tray location Ry, = ROy, Soolnevs gr =

Feed tray location only below reflux 5 — SoNtravs e, < ()

Component mass balance (Sopiravs 5,’;/)0”5—;"“ = Lp1Tigr + VicYir—1 +

Total mass balance

Reboiler cost
Total cost

Frzip + Rpriga — Lpvipg — Vivip, VE €
{2.., Ntrays — 1}

(S piraws op ) = Ly + Viey + Fy + Ry —
Ly — Vi, Vk € {2.., Ntrays — 1}

Crep = 0.6 - 101.3M&5(100Az 1065 . 3 991,35
TotalCost = OpCost + %(Ccolumn + Crep +

CVcond)

Table 2.5: Results of the current approach and comparison against Sakizlis et al. (2003) [86]

(Reprinted with permission from [88]).

Current Approach Comparison against Sakizlis et al. [86]

Condenser Area [m?] 120
Reboiler Area [m?] 266
Diameter of Column [m] 1.62
Reflux Tray 25
Feed Tray 12
Total Cost [k$] 590

132
276
1.65
25
12
620
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was showcased on a binary distillation column, and a comparison was made with a previously in-
troduced integration methodology. The comparison revealed that the recently proposed framework
yielded lower operating and capital costs.

Although the presented framework was shown to be effective to integrate the design and control
problems, its applicability is limited with the operations where the operating region is limited
and known prior to the realization of the process. For instance in the binary distillation column
example, we knew a priori that the product purities would be around 98%. However, the optimal
operating region is typically an economical decision that needs to account for the state of the
system along with the market conditions, including the raw material and utility costs, demand on
the products, availability of the process equipment. Therefore in the next chapter, the proposed

framework will be modified to account for the scheduling level decisions.
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3. INTEGRATION OF PROCESS SCHEDULING AND CONTROL!

3.1 Introduction

Production scheduling and process control are two layers in the process operations that are
highly dependent due to the volume of reciprocal information flow. Typically, the process schedule
coordinates the production sequence, production times, and inventory levels based on the market
dynamics. Process control, on the other hand, delivers the production targets with the existence of
operational uncertainty, measured/unmeasured process disturbances, and plant-model mismatch.
These layers are typically addressed independently and sequentially due to the hierarchical nature
of the underlying problems. The isolation between the decisions from different layers can result in
suboptimal, or even infeasible operations [164, 94].

Individual assessment of the scheduling and control problems requires assumptions that ne-
glect the dynamics introduced by their complements. The scheduling problem utilizes static tables
comprising the process time constants for the transitions between the operating modes of the sys-
tem. These time constants are typically obtained by exhaustive closed-loop simulations conducted
offline. Consequently, the static tables fail to represent the closed-loop dynamics of the system due
to the lack of an underlying high-fidelity model [103, 97].

A simultaneous approach for process scheduling and control reconstructs the two problems as
a unified problem. The reformulated problem takes into account the degrees of freedom of the two
subproblems simultaneously, leading to an augmented feasible space. This allows the chemical
plant to respond to rapidly changing market conditions while maintaining feasible and profitable
operation. These changes include but are not limited to the market demand, price, and the spec-
trum and specifications regarding the products manufactured in the chemical plant. Furthermore,

fluctuating operating costs require flexibility in the process scheduling [94]. Therefore, a chemical

IPortions of this chapter have been adapted with permission from Burnak, B., Katz, J., Diangelakis, N.A., Pis-
tikopoulos, E.N., Simultaneous Process Scheduling and Control: A Multiparametric Programming-Based Approach,
Industrial & Engineering Chemistry Research 2018, 57, pp. 3963-3976. Copyright (2018) American Chemical Soci-
ety.
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Table 3.1: Scheduling and control in the literature: An indicative list (Reprinted with permission

from [105]).

Author (year) Contribution
Grossmann & co-workers (2006, 2007, 2010, 2011, 2012, 2014) Decomposition of
[97, 98, 99, 100, 166, 167], Gudi & co-workers (2010) [168], MIDO or MINLP

Biegler & co-workers (2012, 2014) [169, 170], Espuiia & co-
workers (2013) [171], You & co-workers (2013) [172], Baldea &
co-workers (2016, 2018) [173, 174]

Allcock & co-workers (2002) [95], Pistikopoulos & co-workers (2003)
[96], Ierapetritou & co-workers (2012) [101], You & co-workers
(2012) [175], Baldea & co-workers (2015, 2018) [103, 176]

Ierapetritou & co-workers (2014, 2018) [177, 178], Christofides & co-
workers (2014a, 2014b, 2015, 2017) [112, 179, 180, 181], Baldea
& co-workers (2015, 2018) [104, 178], Swartz & co-workers
(2017) [113], Pistikopoulos & co-workers (2017, 2018) [131, 105],
Dua & co-workers (2019) [106], Hedengren & co-workers (2018)
[182]

Puigjaner & co-workers (1995) [183], Marquardt & co-workers (2011)
[111], Rawlings & co-workers (2011, 2012, 2013) [110, 184, 185],
Pistikopoulos & co-workers (2013, 2014) [186, 187], Baldea &
co-workers (2014) [188], Liu & co-workers (2016) [189]

Reklaitis & co-workers (1996) [190], Grossmann (2005) [1], Har-
junkoski & co-workers (2009) [165], Engell & Harjunkoski (2012)
[164], Baldea & co-workers (2014) [94], Christofides & co-
workers (2014) [191], You & co-workers (2015) [192], Ierapetritou
& co-workers (2016, 2017) [193, 194]

and open loop
optimal control

Formulation/ De-
composition of
MIDO schedule
with PID control

(mp)MPC imple-
mentation in eco-
nomic receding
horizon policies

Control theory/ Eco-
nomic MPC in
scheduling prob-
lems

Review articles on
scheduling and
control integra-
tion

process needs integrated decisions that enable higher adaptability and operability to remain com-
petitive in the market [165]. There have been some attempts over the years to tackle the two aspects
of operational optimization in an integrated framework. An indicative list of these contributions is
presented in Table 3.1.

Over two decades of academic literature on integrated approaches for the process scheduling
and control problem has focused on a systematic methodology to overcome the following funda-

mental challenges [104]:

(i) Discrepancies in objectives: The schedule and control formulations are designed to deliver
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specialized tasks in a process. The former aims to bring profitable operation by taking into
account the operational aspects such as the process economics, raw material and equipment
availability, and product specifications; while the latter involves real-time manipulation of
select process variables to meet the targeted product specifications. These scheduling and
control goals are not always aligned and frequently require the compromise of one of their

respective objectives.

(i1) Discrepancies in time-scales: A typical control horizon varies between seconds and minutes,
whereas the scheduling horizon is on the order of hours or weeks. Therefore, integration of
the two distinct problems into a unified formulation creates a large scale, stiff system due
to the order of magnitude differences in their respective time scales [104, 103]. Follow-
ing direct solution approaches for the reformulated unified problem have been shown to be

computationally intractable [170].

In this chapter, a surrogate model formulation is presented to bridge the inherent gap between
the schedule and control formulations. The surrogate model is designed to translate the fast closed-
loop dynamics to the slower scheduling dynamics, while providing corrective time varying tar-
gets for the controller. We utilize the reactive scheduling approach introduced by Subramanian
et al. [184], and adapted in a multiparametric framework by Kopanos and Pistikopoulos [187],
formulating a state-space representation that is implemented in a rolling horizon framework. This
formulation is solved once and offline via multiparametric programming techniques, deriving op-
timal scheduling decisions as affine functions of the product demand scenarios. The derivation
of the controllers, on the other hand, is adapted from the PAROC framework [130], which pro-
vides a systematic methodology to design advanced model-based controllers via multiparametric
programming.

The remainder of the chapter is organized as follows. In Section 3.2 derivation of a control-
aware scheduler, and a schedule-aware controller using the PAROC framework is introduced. In
Section 3.3, a CSTR example with a three raw materials and three products is presented to show-

case the framework, and the example is generalized to multiple CSTRs operating in parallel. Fi-
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Figure 3.1: Derivation of the scheduling scheme. Actions within the gray area happen once and
offline (Reprinted with permission from [105]).

nally, the conclusions are summarized in Section 3.4.
3.2 Simultaneous scheduling and control via PAROC

The objective and the function of the PAROC framework and software prototype has been pre-
viously introduced in Chapter 2, where the integrated design and control optimization has been
addressed. Here, we demonstrate the applicability of the framework on the simultaneous schedul-
ing and control problem.

First, we derive an offline schedule-aware control strategy that is applicable under distinctly
separate range of process conditions. This offline strategy is embedded into the original mathemat-
ical model, and a control-aware approximate model is derived to describe the closed-loop behavior
of the system. The resulting model is used to generate offline maps of (i) long term decisions
regarding the operational feasibility and profitability and (ii) a surrogate model to bridge the gap
between the short term and long term decisions. The offline maps are validated against the high-
fidelity model used in the first step. A schematic representation of the proposed methodology is
presented in Figure 3.1 [105]. The closed-loop implementation of the framework and the funda-

mental interactions between different layers of models for the integration of schedule and control
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Figure 3.2: Schematic representation of the simultaneous scheduling and control (Reprinted with
permission from [105]).

are depicted in Figure 3.2 [105].
Note the following advantages of solving the multiparametric counterparts of the schedule,

control, and time scale bridging surrogate model:

e Offline maps of optimal operations at both long and short terms are acquired as explicit

expressions.

e Online computational time for the optimal control problem is reduced to a simple look-up
table algorithm and evaluation of an affine function. Such significant reduction enables the

application of the framework to system with fast dynamics.

e The offline maps of solutions can allow for the integration of the design of the process/equipment
with the schedule and control in a dynamic optimization framework. We will see the benefits
of this advantage in the next chapter, where we formulate an integrated design, scheduling,

and control problem utilizing the generated offline rolling horizon operating strategies.

Following are the fundamental steps of PAROC in further detail, tailored specific to the needs

of the simultaneous scheduling and control problem.
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3.2.1 Designing schedule-aware controller

Developing the offline control strategy is similar to the procedure described in Section 2.2,
hence only the key differences are highlighted in this section.

Step 1 — High-fidelity dynamic modeling: Similar to the integrated design and control prob-
lem, we start with constructing a rigorous mathematical model that simulates the dynamics of the

system of interest. The general representation of the high fidelity model is given by Eq. 3.1.

3.1

where x are the states, u are the control decisions, s are the scheduling decisions, d are the external
disturbances, t is independent time variable, y are the system outputs, and f and g are generic
functions.

Step 2 — Model approximation: Model approximation is performed via the MATLAB® Sys-

tem Identification Toolbox yielding the state space representation in Equation 3.2.

af . = A%l + B, + Cd], Scf]"
(3.2)
G, = Dl + By, + FI[d], ST
where A, B, C, D, E, and F are matrices with appropriate dimensions, superscript ¢ denotes
the index of the linear model, Sc denotes the degrees of the system that is determined by the
scheduler and unavailable to the controller, ¢ are the outputs predicted by the controller, and ¢, is
q

the discretization step of the state space model. Note that the states z;  can be concatenated into a

single vector, x;, .

Remark 2. Due to the nature of the problem, the controller is expected to operate at multiple
regions. Therefore, a single state space model may be inadequate to capture the entire process
dynamics. This problem is addressed by deriving multiple state space models that will be uti-
lized in nonoverlapping operating regions. The formulation to define the domain of each state

space model is achieved by mixed-integer modeling in designing the control strategy, which will be
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demonstrated in the example presented in Section 3.3.1.

Step 3 — Multiparametric model predictive control (mpMPC): The control scheme is de-
signed based on the developed approximate model given by Eq. 3.2. Note that the mpMPC is
aware of the scheduling level decisions since the state space model incorporates them as measured
disturbances. Equation 3.3 describes the general form of the mpMPC formulation used in this
chapter.

Ne—1 Ne—1

ur, (¢) = argmin len 3+ > Ml + ) v — v 135
¢ te=1 te=1

M.—1 M.—1
+ > e = w5+ Y 1A
te=0 te=0

s.t. Tt41 = Axtc + BU/tC + C[dz:, SC?;}T

01, = Dy, + Bwy, + F[d], Scf]"

Yt, = @tc +e (3.3)

€ = Yit.=0 — Yt.=0

18
IA

T §j7 ngt

c

IS
IA

Uy, < W, Au < Awy
0= [1‘3;:07 ui:—h di:o: StTc]T
{y2” ui", Ser,} C s, VYt €{0,1,..., N, — 1}
where x are the state variables, y are the system outputs, u are the control variables, Au are the
magnitude between two consecutive control actions, d are measured disturbances, ), QR, R, R1
are the corresponding weights in the objective function, P is the stabilizing term determined by
solving the discrete time algebraic Ricatti equation, N and M are the output horizon and control
horizon, respectively. e denotes the plant-model mismatch and is defined as the difference between
the real output measured and the state space estimation of the output at t. = 0. y°F and ©°* are the
output set points and input reference points, respectively. Note that these two vectors of variables

are scheduling level decisions (i.e. {y°F, 4"} C s), and hence mpMPC treats them as additional
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parameters in 6.

The minimization problem presented in Equation 3.3 is translated into a linearly constrained
quadratic multiparametric programming problem (mpQP) via the YALMIP toolbox [195], and
solved via the Parametric OPtimization (POP) Toolbox [161] in MATLAB®. The solution of the
mpQP problem yields explicit control actions as an affine function of the uncertain parameters, as

presented in Equation 3.4.

u;(0) = K,0 +r,,V0 € CR,
T
0 = [lezm Uz;:fp dz;:[ﬁ Sczlv (yiP)Tv (uip)T7 yg;:O}

(3.4)
CR, ={0€0O©|L,0 <b,},Vne{l,2,..NC}

vy €{0,1,..., M.}, vt. € {0,1,..., N.}

where 6 is the set of uncertain parameters measured at ¢. = 0, u;,—_1 is the optimal control action
at the previous time step, C'R,, is the active polyhedral partition of the feasible parameter space,
NC' is the number of critical regions C'R,,, and © is defined as a closed and bounded set. Note
that inclusion of scheduling level decisions, i.e. Sc;,, yf; P and uf P in the parameter space enables
mpMPC to account for any future changes in the operational level a priori within the range of the
output horizon.

Step 4 — Closed-loop validation: Since the framework suggests an approximation of the high
fidelity model, a validation step is mandatory to test the validity of the simplified model, as well

as the controller scheme. Therefore, the mpMPC derived in Step 3 is validated through in-silico

testing against the high fidelity model in Step 1.
3.2.2 Designing control-aware scheduler

Production scheduling of a chemical process formulated as a general MILP problem can also
be represented by a state space model [184, 185]. Multiparametric counterpart of this class of re-
active scheduling problems and its solution is described extensively in Kopanos and Pistikopoulos

[187]. This approach yields an optimal map of solutions under potential disruptions in the course
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of operation prior to the occurrence of the event. The explicit form of the schedule significantly
reduces the computational cost of repetitive evaluations after every disruptive event. However, the
sampling time of the state space model is typically too large to account for the dynamic consid-
erations inherent to the process. Hence, such an approach suggests utilization of static transition
tables based on exhaustive testing [103] that create plant-model mismatch since they are agnostic
to the real system dynamics.

In this chapter, a two level scheduling scheme with a hierarchical order is proposed: (i) an upper
level schedule for the regulation of the economic considerations and operational feasibility based
on the formulation of Kopanos and Pistikopoulos, (2014) [187], and (i1) a lower level surrogate
model to bridge the time scales between the control and the upper level schedule based on the
closed loop behavior of the high fidelity model. The surrogate model further aims to remedy the
plant-model mismatch introduced by the schedule.

Step 1 — High fidelity model with controller embedded: The control scheme derived in the
earlier phase (Eq. 3.4) is embedded in the original high fidelity model (Eq. 3.1).

Step 2 — Approximate models: A discrete time state space model is derived based on the
closed loop behavior of the high fidelity model. The input-output relationship focuses on cap-
turing the overall response of the closed loop system to the step changes in the output set points
and input reference trajectories. Note that the discretization time of the identified model for the
upper level scheduler is several orders of magnitude larger than the mpMPC. Therefore, we intro-
duce a surrogate model formulation to translate the upper level scheduling decisions in the first
scheduling time step into the control time steps. This translation is carried out by resampling the
identified scheduling model with a discretization step matching the output horizon of the mpMPC.
The resampled model is used as the governing constraint in the surrogate model formulation, as
described in detail in the next step.

Step 3 — Design of the multiparametric schedule and surrogate model: The multipara-
metric schedule is formulated with an objective to account for the economic considerations and

operational feasibility, subjected to the corresponding approximate model derived earlier, as de-
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scribed in Kopanos and Pistikopoulos, (2014) [187]. The resulting formulation creates a mpMILP

that treats the disruptive scheduling events as parameters described in Eq. 3.5.

N, No—1 N

min  J(0) = Z a’ Ty, + Z Brtr,, + Z o,
St ts=1 ts=0 ts=0
s.t. jts_;'_l = Aljts + Blﬂts + Cldts

tre, = Ao(Zy, — Ty,—1) + Ba(ly, — Uy,—1)
iy, = [écf; @) <a;?;P>T}T
0= [ 0B ) o)

Ly < Ty, < Ty,

try, < try, <try,

QtSYis <, < ﬂtsYis

S, = Uy, Yi.], Vts € {0,1,..., Ny}
where the tilde (~) sign denotes a scheduling level counterpart of the variable, Z is the operational
level and the inventory, tr denotes transition to a different operational mode, and the Greek letters
«, [, and ¢ are the corresponding cost parameters. Note that additional constraints can be included
in Equation 3.5 regarding the needs of the specific problem. The multiparametric solution of
Equation 3.5 provides explicit affine expressions of the optimal scheduling actions as functions of

the system parameters, as defined in Equation 3.6.

si. = K0 +7,,¥0 € CR,
6 - [‘Tts—07 x?—fla ut =—1 dT:|
) } (3.6)
CR, ={0€0O©|L,0 <b,},Yn e {1,2,..NC}
Vi, € {0,1,..., Ny}
Due to approximation of the scheduling model and the large discretization time, there exists a

plant-model mismatch that is handled by a surrogate model formulated as a mp(MI)QP. Therefore,
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we utilize the formulation presented in Equation 3.7 to minimize the aforementioned mismatch.

Nsm
, ~ 2
min  J(0) = E ||sta,, — e, || 7
S
tsm =0
/ o /
s.t. v, 1 = Az, + Bsy,,

ytsm = Cl‘;sm _'_ Dstsm
T
St =[St (i) (upl )]

0= [a,,.Yi.,]

tsm

(3.7

/ —/
T <y, < .

“tsm

< Yt S Ytom

“tsm

Stsmnsm < Stam < St Ytam
Vtsm € {0,1, ..., Non }

Equation 3.7 poses an mpQP problem that reinterprets the scheduling actions s;, in the time
steps of the controller. Sc;,,, is directly passed to the process, and the set points yfi and uii
are determined to be used by the controller. At,,, is based on the output horizon of the mpMPC
(Aty,, = At.N.), and Ny, is selected such that the surrogate model horizon can account for the
first scheduling time step in its entirety (i.e. Ny, > Aty/Atgy,). The multiparametric solution
to Eq. 3.7 yields an offline map of optimal scheduling actions and set points for the controller,
allowing for fast reevaluation of the scheduling decisions under varying market conditions. The
surrogate model formulation utilizes a linear state space representation of the closed loop dynamics
of the system. Therefore, the number of state space models required to capture the complete
dynamics is dependent on the complexity of the high fidelity model and the size of the explicit
control law. The validity of these surrogate models representations is assured in the subsequent
step.

Note that binary decisions Y;, from Eq. 3.5 are treated as continuous uncertain parameters.
Oberdieck et al. (2016) [162] presents a rigorous proof through Basic Sensitivity Theorem that

relaxation of the binary parameters yields the exact solution in this class of problems. Equiva-
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Figure 3.3: The information flow among the scheduler, surrogate model controller, and the pro-
cess. The gray area indicates the overall control-aware scheduler (Reprinted with permission from
[105]).

lently, one can generate 2" mpQP problems to exhaustively enumerate all combinations of binary
parameter realizations, where 7 is the number of binary parameters.

Step 4 — Closed-loop validation: Overall validation of the integrated schedule-control scheme
is performed in a rolling horizon fashion through utilizing the maps of solutions generated with
Equations 3.3, 3.5, and 3.7 simultaneously on the high fidelity model (Equation 3.1). The overall
system is subjected to randomized market conditions that is updated in the time steps of the sched-
uler to yield the input and output trajectories in the scheduling and control levels. The interplay
and the flow of information among the multiparametric scheduler, surrogate model, controller, and
the process is summarized and depicted in Figure 3.3.

Note that the framework assumes an update in the disruptive events at the time steps of the
schedule. Any further scheduling level disturbances in between these time steps can be addressed
by reevaluating the set points through the surrogate model to remedy a potential performance

degradation. The process disturbances, on the other hand, are accounted for by the controller of
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Figure 3.4: CSTR flowsheet with the online implementation of the scheduling and control schemes
(Reprinted with permission from [105]).

which dynamics are embedded in the scheduler.
The following section presents the application of the framework on (i) a CSTR with three

reactants and three outputs, and (ii) two CSTRs operated in parallel.
3.3 Examples
3.3.1 Single CSTR with three inputs and three outputs

65textitProblem definition: This case study, adapted from Flores-Tlacuahuac and Grossmann,
(2006) [97], considers an isothermal CSTR designed to manufacture three products on a single
production line, as depicted in Figure 3.4. In the figure, R; denotes the ' reactant, P; denotes
the j*" product, and Demand p; denotes the demand rate for product P;. The problem statement

encompasses the following: foot

(1) Given: A high-fidelity model of the three product CSTR, unit cost for inventory, a scenario

of product demands.

(i1) Determine: Production sequence, production rates, optimal control actions to achieve the

target production rate and to reach the threshold purity.
(iii)) Objective: Minimize the total cost comprising the inventory and transition costs.
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Based on the described problem definition, the control scheme aims to determine the opti-
mal transitions between the production periods of three products through tracking a time variant
product concentration set point to maintain a certain level of purity threshold. The controller is
designed to deliver this short term objective by manipulating the feed composition at the inlet of
the reactor, and monitoring the states of the system. To obtain the longer term objectives, we
utilize a scheduling scheme to minimize the operating and inventory costs, while satisfying a con-
tinuous demand rate for each product. The scheduler aims to determine the optimal production
sequence and manufacturing time, while accounting for the inventory levels in the storage tanks
and a demand scenario. The scheduling decisions are passed on to the controller as set points
and operating modes. Note that different from Flores-Tlacuahuac and Grossmann, (2006) [97],
this work relaxes the assumption of constant product demand rate profile, and considers a variable
demand rate profile.

High-fidelity dynamic model: Three irreversible reactions take place in parallel in the CSTR
reaction network given in Eq. 3.8.

2R, 4 Py
Ri+ Ry 2 P, (3.8)

R+ Rs ™ py

where ki, ko, and k3 are the rate constants of the respective reactions. Note that production of P
requires only Ry, which also features as one of the raw materials of products P, and P5. Hence, the
given reaction network yields P; as a by-product during the production phases of % and P3. The
by-product concentration degrades the purity of the product of interest, and needs to be accounted
for by the control scheme to achieve high selectivity.

The high-fidelity model that describes the dynamic behavior of the CSTR comprises mole

balances (Eq. 3.9) and power law kinetic expressions for elementary reactions (Eq. 3.10).

dCRi . QRZOJJ; - QtomlORi

+ R,

dt %4 ‘ (3.9)
dCPj _ Qtotal (CP] - CPJ' ) + R
dt % B
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Table 3.2: Parameters of the high-fidelity CSTR model (Reprinted with permission from [105]).

Reaction Reactant concentration

rate constants Value at the feed Value
ky 0.1 Cy, 1.0
ko 0.9 Ct, 0.8
ks 1.5 cl 1.0

R = —Ro,
Ry =R, (3.10)
Rpy = kiC2

where C' denotes the concentration, () is the volumetric flow rate, V' is the volume of the CSTR, R
is the reaction rate, superscript f denotes the feed to the CSTR, R; and P; are the indices for the
i" reactant and j*" product, respectively. The system parameters are given in Table 3.2.

The total volumetric flow rate is defined as the sum of reactant flow rates at the inlet of the

reactor. Note that constant volume reactor is assumed, therefore the total flow rate at the inlet is

equal to the total flow rate at the outlet.

Quotal = Y _ Qn, (3.11)

The inventory levels of the product of interest is as follows.

dWp. QtotatCp; — DRp;, if Purp, > 0.90
i (3.12)
—DRp,, if Purp; < 0.90

where Wp, is the inventory level, DRp, is the demand rate, and Purp, is the purity level in the
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CSTR as defined in Equation 3.13.

Cp,
NP (3.13)
7 J

The molar fractions of the reactant flow rates are defined in Equation 3.14. Note that the molar

Purp, =

fractions are utilized as the manipulated variables in the mpMPC control scheme, as demonstrated

in the following sections.

_ Qr,

aRr, =
' Qtotal

ZCLRi =1

Model approximation: The highly nonlinear nature of the model necessitates partitioning of

(3.14)

the input space to capture the system dynamics with higher accuracy. Rigorous simulations of the
high fidelity model suggests the partitioning of each degree of freedom available to the controller
(i.e. ar, and ag,) to at least two mutually exclusive subspaces, respectively. Hence, the discrete

time state space model generated in the form presented by Eq. 3.2.

Remark 3. A significant difference of this example from the binary distillation column example
presented in Chapter 2 is the multitude of operating regions in the CSTR. The binary distillation
column is designed to operate at a single desired set point, as opposed to the CSTR is expected
to deliver three products with a time-variant set point on product concentration based on market
conditions. Therefore, we derive multiple state space models that are defined over mutually exclu-
sive domains. The domains of the state space models with respect to the input space is given by

Eq. 3.15.
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Figure 3.5: Step responses of the identified open loop model with respect to the system inputs and
the scheduling variable ();,,; (Reprinted with permission from [105]).

U, = [Ul,tca U2 t., U3 tes U4,tc} g
Uy, = ARy, GR, € [0,0.5)
Uy, = ARy, GR, € [0.5,1] (3.15)
U, = ARy, GR, € [0,0.55)
Ugt, = ARy, GRy € [0.55,1]
where x are the identified states, u are the molar fractions of the reactant flow rates partitioned in
the input space as given in Equation 3.15, d are the total volumetric flow rate (Qyoa1), and y are
the product concentrations (Cp,). The state space matrices are given in the Appendix A.1. Note
that ar, is excluded from the manipulated variables due to the linear independence of the molar
fractions.
The step and impulse responses of the open loop approximate model are stable within the range
of inputs, as presented in Figures 3.5 and 3.6, respectively.
Design of the mpMPC: The formulation of the mpMPC is based on Eq. 3.3 with additional
soft constraints included as presented in Eq. 3.16. The tuning of the corresponding parameters is

based on heuristic MPC design methods, and the parameters are provided in Table 3.3.
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Figure 3.6: Impulse responses of the identified open loop model with respect to the system inputs
and the scheduling variable ()., (Reprinted with permission from [105]).

N¢
min  J(0) =Y lly. — i

Utcs2te Ete

s.t.

M.—1

te=1

Tp,11 = Acwy, + Bowy, + CeScy,

U, = Dy,
Yi, = U, + €, €= Yr—0 — Ys.
T<x, <T, Y<y <Y, Uz,

@}/;SC S utc S ana

Plor+ D I1Aue || +
te=0

Ne

> Nt

te=1

(3.16)

— Yurt, + Pur,n Z Yite < —&, + MY;C

0<e, <1,z €{0,1}
0 = [z{ _o,yf—ordf —o, ()" uf,

vt € {0,1,...,N,}

T
) utc:—lv Y;c ]

where the additional terms ¢ is the slack variables, P1 is the penalty matrix, Pur,,;, is the mini-

mum purity level required to trigger accumulation in the storage tanks, v, is the concentration of

the product of interest, and M is a big-M parameter. The binary switch parameter Y determined

by an upper level decision maker dictates the product of interest, and binary switch variable z de-
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Table 3.3: Tuning parameters for the mpMPC of the single CSTR example (Reprinted with per-
mission from [105]).

mpMPC design parameters Value
N, 6
M. 2
102 0 0
QR 0 10 O
0 0 10
R1 50
P1 90
y 0,0,0]"
v [, 1,17
u [0,0,0]"
u [1,1,1)F
d
d 500

termines the optimal input subspace. The soft constraints are constructed on y, via slack variables
€ to minimize the transition time by penalizing any production below the threshold purity level
throughout the output horizon. Therefore, the non-negative slack variables € contribute to the ob-
jective function if and only if the purity of the product of interest is below the threshold. Note that
any process disturbances, such as reactant concentrations at the feed stream, can be easily incorpo-
rated in the control scheme without modifying the overall framework by simply introducing them
as additional parameters.

The optimization problem given in Equation 3.16 is reformulated as a mpMIQP problem and
solved via the POP toolbox to generate the map of optimal control actions as affine functions of the
system parameters. The explicit expression of the control action is designed to (i) track a set point
determined by an upper level decision maker, (i1) adapt proactively to changing operating modes
(i.e. shifting between different products), and (iii) minimize the transition time by penalizing
impure production periods.

Note that the mpMPC formulation utilizes a single state space model with piecewise affine

inputs that are selected via binary switch variables, z,,. Therefore, the control scheme single-

62



N Cp,
G oef —

1 T T T T
& 05 ]
E o5 /\/\—’-‘
0 L . ) . .
0 20 40 60 80 100 120
Time [min]

Figure 3.7: Closed-loop validation of the mpMPC against the high-fidelity model for the single
CSTR example (Reprinted with permission from [105]).

handedly recognizes the dynamics of the transitions between the production periods. Although the
stability of the system under such transitions is left outside the scope of this study, it can be further
investigated following the approach proposed by Grieder et al. (2004) [196].

Closed-loop validation: The control scheme is validated by exhaustive testing against the
high-fidelity dynamic model under various scheduling decisions. Figure 3.7 presents a 2 h closed-
loop operation with two distinct operational modes. The process starts from zero product concen-
tration and goes through a shift from the production of P; to production of P, at ¢ = 60 min.
This shift is manually enforced by changing the concentration set points from y*” = [0,0,0.1]7 to
y*" =10,0.1,0]".

The closed-loop simulation in Figure 3.7 validates the mpMPC as it (i) tracks the set points of

three product concentrations, (ii) handles operations at different production modes, (ii1) prioritizes
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purity satisfaction to minimize transition time, and (iv) maintains feasible operation by keeping
the system within specified bounds. Note that the entirety of the closed loop simulations uses only
one mpMPC scheme in both the production and the transition periods. Therefore, the controller
parameters are tuned regarding every possible transition between the products.

High-fidelity model with the mpMPC embedded: The initial high-fidelity model given in
Eq. 3.9-3.14 1s integrated with the derived control scheme in the form of Eq. 3.4.

Model approximation: To keep the example tangible, only the mole balance around the stor-
age tanks is considered in the upper level schedule, while the dynamics of the CSTR is accounted
for in the lower level surrogate model formulation. The bilinear Qy1;Cp; term in Eq. 3.12 re-
sults into a non-convex mpMINLP problem, for which only approximate solution algorithms exist.
Hence, we postulate a mpMILP problem, for which POP toolbox features an exact algorithm, via
replacing Eq. 3.12 with Eq. 3.17.

dWp.
dtpf = Fp, — DRp, 3.17)

where Fp, is the molar product flow rate at the exit of the CSTR. Having merely linear terms in
Eq. 3.17 enables the formulation of a mpMILP in the subsequent step.

The lower level surrogate model, on the other hand, is identified via MATLAB® System Iden-
tification Toolbox " as described in the previous section. Three surrogate models are derived for
three distinct operational modes (provided in Appendix A.1 with their respective step and impulse
responses).

Design of the scheduler and the surrogate model: The scheduler for this problem is designed
to minimize the inventory cost, while satisfying continuous demand rates for the three products

forecasted through the scheduling horizon, as presented in Eq. 3.18.
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Table 3.4: System parameters for the scheduler of the single CSTR example (Reprinted with per-
mission from [105]).

System parameters Value
N, 3
a [$/h.mol] [1.0,1.5,1.8]"

Aty [min] 60
F [0,0,0]"
F [50, 50, 50]"
w [0,0,0]"
w [50, 50, 50]7
D [0,0, 00"
D (60, 60, 60]"

N
min  J(0) = Z Z aIng Wi,

FitaYpjits j=1 ts=1

s.t. WPj,ts-i-l == ijis + Atsﬁ},ts - AtSDRPj,tS

E -Fj,ts = Eotal,ts
Jj=1

Y Ypu =1

J=1 (3.18)
FYp, . < Fjy, < FYp 4

W < Wpy, <W

DR < DRp,;, < DR

0= [le’;,ts:O»DRJTDj,tS]T

Yp,i, €{0,1}, Vts € {0,1,..., N}
where Yp, ;. denotes the selected product P; to be manufactured at time ¢,, Fj;, is the molar
product flow rate, At, is the sampling time for the schedule. Note that Equation 3.17 is discretized
into time steps At,. The system parameters for Equation 3.18 are given in Table 3.4.

The bridge between the mpMPC and the scheduler derived in Equations 3.16 and 3.18 is con-

structed based on Equation 3.7. Analogous to the mpMPC, the surrogate model also features the
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soft constraints to enforce a threshold purity level.

Ms'm Nsm
. 2 2 ! 2
min J(0) = g | Qtotat tem — Qtotat,tem || + E et 11
QtOtal;tsm7ch,tsm’Etsm tem=0 tem=1
s.t. uations A.1 — A.
t Equat Al—-A3
Q Ftotal,tsm
totaltem — T~
o Cp*vtsm:()

g é ytsm S ymax

Qmin S Qtotal,tsm S Qma:p

CSP < CS’P < CSP

Pjts;m — ~mazx

(3.19)

/
- y*ytsm + Purmln : yiytsm S _gtsm
7

0<e <1

T
0 — |:LUT Ftotal,tsm :|

t 9
" CP, tym=0

Vtgn € {0,1, ..., Ny}

Note that the formulation given in Equation 3.19 is only valid for the product of interest. Hence,
three separate formulations are constructed for each product. Tuning of the surrogate model param-
eters is based on heuristic decisions that yield a desirable performance in the closed loop validation,
and the parameters are given in Table 3.5.

Closed-loop validation of the overall scheme: Closing the loop of the CSTR is performed
via testing the scheduling and control scheme against the high fidelity model. Figure 3.8 presents
a 12 h operation with the scheduler, the surrogate model, and the controller operating in tandem
with the dynamic model while no specific knowledge of the demand profile assumed. A sample of
the explicit simultaneous decisions is demonstrated in Table 3.6, where the functional form of the
scheduling and control actions at ¢ = 60 man is shown. The scheduler (i) maintains low inventory

levels, and (ii) adapts to the changes in the demand profile, while satisfying the continuous demand

66



Table 3.5: System parameters for the surrogate model of the single CSTR example (Reprinted with
permission from [105]).

System parameters Model 1 Model 2 Model 3
Ngm 10 10 10
M 1 1 1

Atgy, [min] 6 6
, 3 107 0 107 0

h 10 0 107! 0 107!

P 10* 10° 108
Ymin [mol /L] 0,0,0]" [0,0,0]" [0,0,0]"
Ymaz [Mol /L] [1,1,1]% ,1,1]7% ,1,1]%
Qmin [L/min] 0 0 0
Qmaz [L/min] 500 500 500
C3P [mol /L] 0,0,0]" [0,0,0]" [0,0,0]"
C3P [mol /L) [1,1,1]7 1,1,1]7 [1,1,1)F

rate. Due to the rolling horizon strategy, the schedule is updated at every discretization step At,,
with the current inventory level and the new demand profile /N, time steps into the future. Note that
the resultant production sequence is different from a cyclic schedule reported in Flores-Tlacuahuac
and Grossmann [97] and Zhuge and Ierapetritou [101], since the demand rates in this work are time
variant.

Figure 3.9 presents a snapshot of the first 6 h of operation, focusing on the lower level surrogate
model decisions. The volumetric feed flow rate from the schedule and the surrogate model are
juxtaposed in Figure 3.9a to emphasize the corrective actions of the latter. During the transition
between production regimes, the surrogate model saturates (s, at its upper bound to purge the
previous product left in the reactor. The transitions can also be monitored from the product purities
presented in Figure 3.9c. The surrogate model and the mpMPC operate in tandem to drive the
system above the threshold purity level. The transitions to product P, specifically show that the
integrated schedule and control scheme prioritizes the purity satisfaction to minimize the transition
time.

Note the following:

e The explicit expressions for the optimal scheduling decisions enable rescheduling with a
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Figure 3.8: Closed-loop validation of the scheduling scheme for the single CSTR example
(Reprinted with permission from [105]).

Table 3.6: Optimal scheduling and control decisions at ¢ = 60 min (Reprinted with permission
from [105]).

Decision variable Affine expression

Fiotal,t,—0 = —16.TWy + DR, —92 + DRy 12
Fiotal t,—1 = —16.TW3 + DR;,—o3 + DRy, —13+ DR;,—23
Eoml,ts:2 = DRts:2,2

Qtotal =500

CsP — 0

Cyl = 0.91Cp, — 0.01Cp, + 0.02

5P 0

aR, =0

ag, = 0.55

ARy =0
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Figure 3.9: Closed-loop simulation of the CSTR for the first 6 h of operation for the CSTR exam-
ple. (a) volumetric flow rate determined by the scheduler, and the corrected action of the surrogate

model, (b) product concentration set points, (c) product purities (Reprinted with permission from
[105]).

small computational cost when disruptive events occur in the product demands.

e The transition time is not determined explicitly by the integrated scheduling and control
scheme, but is minimized through soft constraints in the surrogate model and controller for-
mulations. The non-negative slack variables ¢, and £; in Eq. 3.16 and 3.19 are nonzero
only if the product concentration of interest is below the threshold level, and contribute to
the objective function J(6) proportional to P1 and P1’, respectively. A more accurate ap-
proach would be allocating every time step for all products with binary variables to determine
whether the purity threshold is satisfied. However, employing such a large number of binary
variables in a multiparametric programming problem results in an exponential increase in the

computational burden. Hence, we alleviate this problem via the soft constraint formulation.

e The heavy penalty terms for purity satisfaction in the surrogate models result in steep changes
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in Q441 during the transitions, as observed in Figure 3.9. The upper level schedule is unable
to make such corrective decisions due to its large time step. The lower level surrogate model
provides time varying targets and set points for the controller due to the embedded closed

loop dynamics in its formulation.

e Due to the strong nonlinearity of the high-fidelity model, the input space is partitioned as pre-
sented in Equation 3.15. Finer partitions will yield more accurate controllers at the expense

of increased computation time to generate the offline maps of optimal actions.

e Utilizing the maps of optimal solutions for the control, surrogate model, and schedule actions
eases the online implementation. Calculation of the optimal actions is reduced from an
online optimization problem to a simple look-up table algorithm and evaluation of an affine

function.

3.3.2 Two CSTRs operating in parallel

Problem definition: This case study extends the CSTR example from Section 3.3.1 to encom-
pass two identical CSTRs operating in parallel. Due to the identical design of the reactors, the
mpMPC and the surrogate model driving the closed-loop system are identical as well. Hence, the
derivation of their formulations and attaining the explicit maps of solutions are omitted.

Cooperative operation of independent reactors requires a centralized scheduling scheme to
allocate the production tasks on different reactors. However, the identical nature of the two closed-
loop system dynamics creates a multiplicity of solutions, as the reactors are indistinguishable to the
upper level schedule. Hence, the scheduling formulation presented in Eq. 3.18 is modified to (i)
account for the previous production regime as an additional uncertain parameter, and (ii) penalize
transitions between consecutive production regimes to break multiple solutions. Inclusion of the
retrospective information provides a distinction between the reactors, eliminating any redundant
transitions between the products. The mathematical representation of the described modification

is provided in Eq. 3.20.
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N
Dy=Y ¢|Ypu — Ve (3.20)

ts=0
where v is a very small number that virtually penalizes the changes in the operational mode. Eq.

3.20 can be reformulated as follows to maintain the linear structure of the scheduling problem.

N,
Iy = Z @Z)T}_/;fs

ts=0

st. Y —Yp 1 <Y, (3.21)

J»

where Y}, is an auxiliary variable.
Design of the scheduler: The scheduling formulation presented in Eq. 3.18 is extended to
account for multiple production lines, and modified with Eq. 3.21 to eliminate multiple solutions,

which gives Eq. 3.22.
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NosTr Ns

min ZZOCPWP £+ Z Z@D Vi1

F; Yp. Y,
Jits, bt Pjits, b ts,l j=1 ts=1 = ts=0

Nestr

s.t. We, o1 =Wea, + Y At Fji0— At DRp

E Jots,l Ftotal,ts,l

Ypi el — Yp 10 < \
) (3.22)
Pitel T YP o101 < Yiou
0<Y,.,<1
EYp .0 < Fjg < FYP tol
W <Wp,, < w
DR < DRp,;, < DR
0 = [Wp,t,—0, DRp, 4., YPj,tS:—l,z]T

YPj,tS,l € {0, 1}, Vts < {O, 1, ...,NS},\V/Z € {1,27 ...,NCSTR}

where the additional weight 1) is tuned to be 0.001, and the number of the CSTRs, Neogrg, is 2 by
the problem definition.

Closed-loop validation: The validation of the overall scheduling and control scheme is pre-
sented in Figure 3.10. The scheduler, the surrogate model, and the controller are operated in tandem
with the high fidelity model for 12 h under a randomized demand profile. The integrated schedul-
ing and control scheme delivers the additional task to coordinate multiple reactors to operate in
parallel while satisfying the continuous demand rate. The inclusion of Eq. 3.21 in the objective
function breaks the symmetry between the reactors and coordinates the production sequence. Con-
sequently, uninterrupted manufacturing of the product of interest is maintained without redundant

shifts between the reactors.
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Figure 3.10: Closed-loop validation of the integrated scheduling and control scheme on two CSTR
example (Reprinted with permission from [105]).
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Figure 3.11: Realization of the schedule with time for the two CSTR example. Top bars and bottom
bars represent CSTR 1 and CSTR 2, respectively (Reprinted with permission from [105]).

Figure 3.11 presents the evolution of the schedule with time for the first 4 h of operation. Note
that the demand scenario is updated every hour in a rolling horizon manner, allowing reschedul-
ing of the production sequence and the target quantities by utilizing the offline maps of optimal

scheduling actions.
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3.4 Conclusions

In this chapter, a systematic framework was presented to integrate process scheduling and
control in continuous systems via multiparametric programming. Optimal scheduling and control
actions were derived simultaneously based on a single high fidelity model. We take advantage of
the synergistic interactions between the two decision making mechanisms to yield offline maps of
optimal operations as explicit affine expressions at both long and short terms of a process. The
generic structure of the framework renders it suitable for a software prototype towards enterprise-
wide optimization.

This chapter aims to increase the operability, flexibility, and profitability of process systems
through improving the scheduling and control decisions. Nevertheless, the processes with compa-
rable capital and operating costs necessitates the consideration of the design aspect simultaneously
with the scheduling and control. Hence, the next chapter focuses on the unification of the design,

scheduling, and control actions, simultaneously.
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4. INTEGRATION OF PROCESS DESIGN, SCHEDULING, AND CONTROL!

4.1 Introduction

Process design decisions, such as equipment selection and sizing, span the widest time-scale
in the functional hierarchy of a chemical process, and they are typically established by solving
a steady-state design optimization problem [79]. Operational decisions such as scheduling and
control are usually assumed to take a nominal value to make the problem complexity tractable
[170]. However, rapidly changing market conditions and process disturbances often force the
system to operate under a wide range of operating conditions, which may render the steady-state
process design dynamically infeasible. Design optimization under such operational uncertainties
have been extensively investigated in the literature by considering feasibility, flexibility, stability,
controllability, and resilience metrics [45, 148, 88]. However, direct inclusion of the operational
dynamics in the design optimization is rather limited. Terrazas-Moreno et al. (2008) [4] and Patil
et al. (2015) [5] presented MIDO based frameworks to account for the economical decisions in
open loop processes. Koller et al. (2018) [7] developed a stochastic back-off algorithm for the
simultaneous consideration of the design and operational optimization problems in the context of
closed loop operations, where the algorithms was showcased on a multiproduct CSTR.

In Chapters 2 and 3, a multiparametric programming based approach was introduced and ap-
plied to integrate (i) the design and control, and (ii) scheduling and control problems. In this
chapter, the previously introduced approaches are combined to yield a unified theory and frame-
work to integrate the design, scheduling, and control problems. We explicitly map the upper level
layer decisions on the lower levels by multiparametric programming. The explicit expressions
at the lower level layers enable their representation in the upper level problems. In other words,
the control problem is derived as a function of design and scheduling decisions, and similarly the

scheduling decisions are design dependent, and aware of the controller dynamics. These explicit

"Portions of this chapter have been adapted from Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N.,
Integrated process design, scheduling, and control using multiparametric programming, Computers & Chemical En-
gineering 2019, 125, pp. 164-184, Special Issue with permission from Elsevier.
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scheduling and control maps allow for an exact implementation in a design optimization problem.
Furthermore, we introduce a design dependent surrogate model formulation to bridge the time
scale gap between the schedule and the control problems, which is also solved offline.

The remainder of the chapter is organized as follows. Section 4.2 defines the integration prob-
lem that is addressed in this study, and describes the proposed framework to approach the problem.
The framework is showcased in Section 4.3 on systems of reactors introduced in Section 3.3 and
residential combined heat and power (CHP) units. Lastly, Section 4.4 presents concluding remarks

and future directions.
4.2 Integration of design, scheduling, and control via multiparametric optimization

Problem definition: We consider a generic process where the interactions between the long term
(design), middle term (schedule), and short term (control) decisions are sufficiently significant to
impact the feasibility and the optimality of each individual decision. Therefore, we define the

following problem that encapsulates all three decisions simultaneously.

(1) Given: A high fidelity model based on first principles or data-driven modeling techniques
that accurately captures the dynamics of the system, any physical limitations of the system
due to process safety considerations or product specifications, unit costs for design, raw

material, energy, and inventory, revenue for unit product, and an accurate demand forecast.

(i) Determine: Production sequence throughout an operating horizon, closed loop control strat-
egy that delivers the product specifications, set points for the operation tailored for the dy-
namics of the closed loop strategy, size of the processing equipment that ensures operability

of the process.

(111) Objective: Minimize the operating and capital costs.

Therefore, the defined problem can be formulated as the initial integrated MIDO problem,
introduced in Eq. 1.11. Solving this problem comprises the challenges in the integrated design

and control, and scheduling and control problems, which have been discussed and addressed in
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Chapters 2 and 3. The proposed solution strategy to the overall integrated problem hence utilizes

the key pieces of the previously introduced frameworks, described as follows.

(1) Develop an offline control policy that takes into account the different process dynamic stem-
ming from the selection of the unit design (see Chapter 2) and online economical decisions

(see Chapter 3).

(i) Derive a scheduling policy based on the closed loop behaviour of the system and the design

variables (see Chapter 3).

(iii)) Determined the design that minimizes the capital and operating costs for a given time period

by utilizing the offline control and scheduling policies simultaneously (see Chapter 2).

Given that the foundation of the framework has been outlined in the previous chapters, we will
showcase the framework on (i) the CSTR examples introduced in Section 3.3.1 and 3.3.2, and (ii)
a small system of residential combined heat and power units. The interested reader can appeal to

Appendix A.2 for a detailed walk-through of the framework.
4.3 Examples
4.3.1 Single CSTR with three inputs and three outputs

In this section, the CSTR example introduced and defined in Section 3.3.1 is revisited to ac-
count for the design variables along with the operational optimization problem. Therefore, the

problem definition of the example is defined as follows.

(i) Given: A high-fidelity model of the three product CSTR, unit inventory costs, a functional

expression for the CSTR fixed cost, a scenario of product demands.

(i) Determine: Volume of the CSTR, production sequence, production rates, optimal reactant

volumetric flow rates to achieve the target production rate and to reach the threshold purity.

(111) Objective: Minimize the sum of operating and capital costs.
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The objective in the problem definition can be achieved by determining the reactor design, pro-
duction schedule, and closed loop dynamics that minimize the wasted raw materials and processing
time. Therefore, (i) the controller is expected to deliver optimal transitions between all operating
points determined by the scheduler, (ii) the scheduling decisions have to minimize the operating
costs while accounting for the closed loop dynamics, and (iii) the reactor must be large enough to
remain feasible throughout the entire operation, while avoiding overdesign to minimize the capital
costs.

We use the same high fideltiy model to simulate the dynamics of the CSTR that was introduced
in Section 3.3.1. However in this example, the dynamics introduced by the design variable (reactor
volume) needs to be included in the approximate model. Therefore, the reduced order state space

model is developed as given by Eq. 4.1.

Ui t.
U2 ¢, Qtoml,tc
Tio4+1 = A[L’tc + B + C
us g, V 4.1
Udtc

CA(i7tc = Dilftc, Z € P

where z are the identified states, uy ;, is the k" partitioning of input u at time instance t., Qo iS
the volumetric flowrate at the feed, V' is the volume of the reactor, and C’i is the it" product.

The developed approximate model is incorporated into the mpMPC problem described in Eq.
3.3, with the mere difference of the design dependence of the approximate model. Note that, (i)
the input space is partitioned to mutually exclusive domains to capture a wider range of operating
regions, and (i1) soft constraints are included to minimize the transition time at the control level.

The developed mpMPC is validated against the high-fidelity model, under a range of scheduling
decisions and design options. Figure 4.1 presents 4 h closed loop simulations for two reactor
volumes (V; = 0.4m3, Vo = 1.0m?). The process undergoes a step change from P, to P; after 2

h of operation to test the validity of the control scheme under different scheduling decisions and
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design configurations. Note that all operations are governed by a single explicit control law that is
a function of the design and scheduling decisions.

The closed loop simulations presented in Figure 4.1 shows that the developed control scheme is
suitable for a range of scheduling and design options. The control scheme (1) achieves effective set
point tracking for all three products simultaneously, (ii) minimizes transition time by prioritizing
the purity satisfaction, (iii) recognizes the dynamics introduced by different scheduling decisions
and design configurations, and (iv) maintains the operation within the inherent/imposed bounds of
the system.

The validated explicit control law is integrated into the original high fidelity model, which is
used to simulate the closed loop process. Based on the dynamics of the new process dynamics,
we develop approximate models that include the design variable as a measured disturbance. The
developed approximate models for the closed loop process are provided in Appendix A.1 along
with their step responses. We utilize the upper level schedule introduced in Eq. 3.5 for the long
term economical decisions.

After deriving all the design dependent operational strategies, the controller, surrogate model,
and the scheduler are operated simultaneously on the high fidelity model under a range of design
options and product demand variations. Figure 4.2 showcases the closed loop profiles for 12 hours
at the lower bound (V; = 0.4m?) and the upper bound (V, = 1.0m?) of the design range. Note
that the same design dependent offline strategies are used in two reactors. The demand profiles
for the products are randomly regenerated every hour, and the scheduling decisions are updated
in a rolling horizon manner. The closed-loop simulations validate that the integrated scheduling
and control scheme (1) maintains low inventory levels in the storage tanks, (ii) reactively adapts to
changes in the demand profile, (iii) is applicable for a range of different design options. A sample
of the offline scheduling and control decisions is demonstrated in Table 4.1, where a snapshot
of the online operation of the large CSTR at ¢ = 5h is tabulated. Such explicit expressions are
available for the range of design decisions, and will be used for design optimization described as

follows.
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Figure 4.1: Single CSTR example - Step change in set points in two reactors with different volumes
(Reprinted with permission from [8]).
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Figure 4.2: Single CSTR example —
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Table 4.1: Single CSTR example — An illustration of the offline map of receding horizon policies
at t = 5h for the large CSTR (V5 = 1.0m?). Observe that the volume of the reactor has a direct
impact on the control action for this particular instance (Reprinted with permission from [8]).

Decision variable Affine expression

F37t10 = —167W3 + DR3¢:() + DRgJ:lh + Dngtzgh
Fyi—in =—16.TWy + DRy—o + DRy j—15, + DRy —op
Fi—on =—16.TW1 4+ DRy t—o + DRy t—1n + DRy 1—op
Qtotal,t:(} =500
CPsY, = 0.91(CPy1—y — 0.003) — 0.007(C Pys—y — 0.14) — 0.12
ai =0.45—6 x 1073V
ao =0.554+6 x 1072V

The validated offline scheduling and control strategies are embedded in the overall MIDO
problem given in Eq. 1.11 in the gPROMS environment. The capital investmentment for the

reactor is given by Eq. 4.2 [197].

Co=a+0bV" (4.2)

where C. is the annualized reactor cost, and a, b, n are cost parameters given in Appendix A,
along with the cost escalation indexes for year 2018. The minimum total annual cost is found as
$330k /yr at V = 0.69m3>. Note that the scheduling and control strategies yield feasible operation
for the optimal reactor volume as a result of their design dependence. Therefore, treating the
design, scheduling, and control problems simultaneously ensures the operability of the system, as
the MIDO problem comprises the exact closed loop strategies that will be used online during the

operation.
4.3.2 Two CSTRs operating in parallel

This case study presents an extension of the single CSTR example discussed in Section 4.3.1
to two CSTRs operating in parallel. The exact same control strategy and the surrogate model
formulations are employed because the open loop dynamics of the system remains unchanged. The

cooperative operation of the two CSTRs is maintained by a centralized scheduler that allocates the
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Figure 4.3: Two CSTRs in parallel - Closed loop validation of the generalized scheduling scheme
in two reactors operating in parallel. The volumes of the reactors are V; = 0.4m3 and V5 = 1.0m?3,
respectively (Reprinted with permission from [8]).

production tasks on the reactors based on their volumes and their production regimes at a given
time. This scheduler is based on the formulation presented by Eq. 3.5, and is omitted in this
section.

The generalized offline scheduling scheme is validated against the high fidelity model of the
two reactor system. Figure 4.3 showcases a scenario with one small reactor (V; = 0.4m?*) and one
larger reactor (V3 = 1.0m?) operated in parallel. The integrated scheduling and control scheme is
able to drive the inventory level of the most costly product, Wp,, close to zero by assigning it to the
larger reactor. The large reactor is capable of satisfying the demand on P; standalone, and the small
reactor has a faster transition rate because of the lower retention time. Therefore recognizing the
closed loop dynamics and the capacity of the reactors, the integrated schedule assigns the costly
product, Ps, to the large reactor, and alternates the production between P, and P, in the small
reactor.

Finally, the offline maps of scheduling and control are embedded in the overall MIDO problem

in the gPROMS environment. The reactor configuration with volumes V; = 0.44m3 and V;, =
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0.92m? minimizes the total annual cost accounting for the capital and operating costs. Note that the
optimizer selects one large reactor and one small reactor that delivers (i) uninterrupted production
of one of the products depending on their unit storage prices and demand rates throughout the

horizon, and (i1) fast transitions for alternating production of the remaining products, respectively.
4.3.3 Single residential heat and power unit

This case study presents an application of a combined heat and power generation system (CHP)
on a residential scale. In our previous work [88], we developed design dependent explicit con-
trollers to simultaneously optimize the design and control decisions in a MIDO formulation. In
this study, we extend this approach by taking into account the external factors that affect the de-
sired level of operation, i.e. the fluctuations in the heat and power demand rates, and changing
market prices for the electricity and fuel. We consider a residential district with 10 units, all of
which are supplied hot water for heating purposes and electricity from a single CHP unit. The
hot water can be stored in a buffer tank if the produced heat content exceeds the demand rate.
Additional electricity can be supplied from the central grid if the CHP unit falls short, and a sup-
plementary boiler is assumed to be available at all times to provide more heat content. Excess
electricity produced from the CHP unit can be sold to the central grid for revenue, and excess
hot water can be disposed of at an expense. Note that the rapidly changing electricity prices in
day time and night time has a significant economic impact on the operation of a CHP unit. For
instance, it may be more profitable to operate the CHP unit at a higher capacity during the day
time because of the increased cost of electricity purchase, and at a lower capacity at the night time
when the cost decreases. Therefore, determining the most cost effective operation can be achieved
by taking into account the fluctuation in the prices, demands rates, as well as the dynamics of the
CHP units. A generalized flowsheet of the CHP system with two parallel CHP units is presented
in Fig. 4.4. However in this section, we focus on a system with a single CHP system supplying the
heat and power to the residential units. Parallel operation of multiple units will be discussed in the
subsequent example.

The problem statement is then given as follows:
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Figure 4.4: CHP example — A generalized flowsheet of the CHP system (Reprinted with permission
from [8]).

(1) Given: A high-fidelity model of the CHP, a demand scenario for electricity and heat con-
sumption, investment cost of the CHP unit as a function of its size, market prices of fuel and

purchasing/selling electricity.

(i) Determine: Internal combustion engine (ICE) size of the CHP, a schedule for the transactions

with the grid and fuel purchases, operating level of the CHP.

(ii1) Objective: Minimize the sum of operating and capital costs.

The size of the ICE directly affects the process time of the system, and thus the responsiveness
of the CHP to fluctuations in the demand rates and market prices. ICEs smaller in size have lower
transition time, hence they can deliver fast responses to changes in the operating set points. On the
other hand, larger ICEs can supply more power and heat to the residential units when the demand
rates are high. The trade-off between the responsiveness and the capacity of the CHP is addressed
by integrating a design dependent scheduler and controller in the design optimization problem.

High-fidelity dynamic model: There are two main components taken into account in the CHP
model, (1) a natural gas powered ICE to produce electrical power, and (i1) a cooling system that
recovers the excess heat content of the ICE. We also include the dynamics of the throttle valve that

manipulates the inlet air mass flow rate, and the intake manifold that distributes the air into the ICE
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cylinders. For the detailed mathematical model, the reader is referred to Diangelakis et al. (2014)
[198].

Model approximation: The original high fidelity model is a DAE system with 364 algebraic
and 15 differential relations in the continuous domain. The complexity of the overall system was
previously addressed by decomposition into two approximate models, namely a power production
subsystem and a heat recovery subsystem [199, 88]. The former operating mode gives the relation
between the throttle valve opening and the power output of the CHP, while the latter is used to
estimate the water temperature at the outlet as a function of the power output and the water flow
rate into the heat recovery system. Equation 4.3 presents the identified state-space model for the

power production subsystem.

411 = 0.9799z;. + 0.0006u,, + 6.516V
4.3)

Y, = 1.8397,,

where z is the identified state, u is the throttle valve opening, V' is the volume of the ICE, y is the
electrical power generated by the CHP.
The heat recovery subsystem is an explicit function of the output of the power production

subsystem and is given in Eq. 4.4.

0.997 0.103 —0.003 —0.008 0.001
Ti1 = |—0.002 0940  0.116 | Zr. + | 0.280 —0.033]| w.
4.4
—0.058 —0.056 0.179 —1.280 0.146 4

U, = |—529.9 —2.827 0.252]| x4,

where z is the set of identified states, u are the the power generation level and water flow rate,
respectively, and g is the prediction of the hot water temperature at the outlet. The discretization
time steps of the models presented in Eq. 4.3 and 4.4 are both 0.1s.

Design of the mpMPC: The two subsystems derived in the previous step are operated by a

decentralized control policy, which comprises interlinked control strategies for each subsystem.
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We define two operational modes for the decentralized control policy defined as follows.

e FElectricity driven mode (Mode 1): The operating level of the CHP, i.e. the power set point, is
determined based on the power demand. Therefore, the throttle valve opening is manipulated
primarily to satisfy the demand on electricity. The operating level projected by the electricity
generation subsystem is treated as a measured disturbance by the heat recovery subsystem,
hence the produced heat is a function of the power output of the CHP. The heat production
level of a standalone CHP unit can be insufficient to satisfy the heat demand at a given
time, requiring the use of the supplementary boiler. It is also possible that the produced heat

content exceeds the heat demand, in which case the hot water is stored in a buffer tank.

e Heat production driven mode (Mode 2): The operating level of the CHP is determined based
on the heat demand. Tracking a water temperature set point at 70 °C, heat recovery sub-
system (i) determines an operating level set point to ensure sufficient heat production by
the power production subsystem, and (i1) manipulates the cooling water flow rate to recover
enough heat to satisfy the demand. Analogous to mode 1, the power production level may
not match the electricity demand. In case of insufficient power, additional electricity is pur-

chased from the central grid, and excess electricity is sold back to the grid for revenue.

The reader is referred to Diangelakis et al. [199, 88, 131] for more details on the operating
modes of the system and a quantified evaluation of the decentralized control policy.

Note that changing the operating modes creates an offset between the new set point and the cur-
rent output of the system. This offset has economical consequences on the operation and dictates
the quantity of electricity purchases/sales, usage of the buffer tank and the supplementary boiler.
These economical aspects are addressed and mitigated in the following steps.

Closed loop validation: The design dependent decentralized control policy is validated against
the high fidelity model under a range of different design and scheduling decisions. Figure 4.5
shows a closed loop simulation of a CHP with VV = 1500cc operated with mode 1 only. The power

set point is subject to random changes throughout the operation.
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Figure 4.5: CHP example — Closed loop simulation of a CHP unit with V' = 1500cc, operated with
mode 1 (Reprinted with permission from [8]).

Similarly, closed loop simulation on a larger CHP (V' = 5000cc) is demonstrated in Figure 4.6.
Note that due to operating mode 2, the power set point is subject to changes dictated by the heat
recovery subsystem.

High fidelity model with the mpMPC embedded: The explicit form of the decentralized
control policy is implemented in the original high fidelity model.

Model approximation: The closed loop high fidelity model is used to develop an approximate
model for the scheduler via the MATLAB System Identification Toolbox. The identified model
establishes a relation between the power production and heat storage levels, and the change in the

power production set point, as presented in Eq. 4.5.

R,
By 0999 0 | |E.| ]995 o0 0 o |,
_ Q.| + h45)
By i1 37.9 0.955| |B..| | 0 112 —11.2 —11.2
D,
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Figure 4.6: CHP example — Closed loop simulation of a CHP unit with V' = 5000cc, operated with
mode 2 (Reprinted with permission from [8]).

where F is the energy production level, B is the heat storage level, R is the change in the power
production set point, ( is the additional heat supplied from the boiler, D is the disposed heat, ("
is the heat demand, and the time step of the model is 10 s. We also use an overall energy balance
for the relation between the power production, power demand, and electricity purchases from the

central grid, presented in Eq. 4.6.

Pts + Ets — Cti + Wts (46)

where P is the electricity purchase, (? is the power demand, and IV is the excess electricity sold
back to the grid.

Design of the scheduler: The objective of the schedule is to minimize the operating costs,
including energy production, energy purchases and sales, and inventory costs, as given in Eq. 4.7.

N

Z BE:, + U Py, — vy Wy, + &, Qr, + wi, Dy, + 7By, 4.7)

t=1
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where the Greek letters denote the corresponding cost parameters. Note that the CHP unit is as-
sumed to be operational throughout the scheduling horizon. Hence, on/off switching costs are
excluded in the objective function. This assumption will be relaxed in Section 4.3.4 where we
discuss a parallel operation of multiple CHP units. The objective function is subject to the ap-
proximate CHP model derived in Eqgs. 4.5 and 4.6, as well as the lower and upper bounds on the
optimization variables.

The power production capacity of the CHP unit is a function of the ICE size (i.e. E = E(V)).
The schedule treats this design variable as a bounded parameter along with the initial conditions
of the system, power and heat demands, unit cost of purchasing fuel and power, and unit revenue

of selling power, as listed in Eq. 4.8.

0= [V7 Etsa Btsa CﬁC&? ﬁtsa wtsa Vg gts y Wty ’Yts] (48)

Design of the surrogate model: Equations 4.5 and 4.6 are resampled in the time steps of the
controller, and substituted in the surrogate model formulation presented in Eq. 3.7. The resampled

state space matrices are given in Appendix 4.9.

Rtsm
E;., 11 1.0000 0 E;... 0.9954 0 0
- + tsm
By, 11 0.3880 0.9995| | Bs.,, —19.2613 0.1143 —0.1143
Dy, 4.9)
0 0 5Zm
_I_

—0.1143 0.0001 V

Closed loop validation: The integrated scheduling and control scheme is validated against an
extensive set of design options and demand profiles. Figure 4.7 shows a snapshot of a closed loop
simulation of a CHP unit with a volume V' = 5000cc. Note that the power set point throughout the

operation is determined by the offline schedule, and translated into the time steps of the controller
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Figure 4.7: CHP example — Closed-loop validation of the integrated scheduling and control scheme
on a CHP with V' = 5000cc (Reprinted with permission from [8]).

by the surrogate model.

Design optimization: We formulate a MIDO problem in the gPROMS environment using the
high fidelity model, the explicit design dependent relations for the scheduler, surrogate model, and
the controller. The capital investment cost is assumed to be a linear function of V', and is given in
Appendix A.2. A CHP unit with an ICE volume of V' = 1710cc yields the scheduling and control

strategies that minimizes the total annualized cost that includes the capital and operating costs.
4.3.4 Two residential heat and power units in parallel

The single CHP case study presented in Section 4.3.4 is extended to include two CHP units
operating in parallel. We generalize the scheduling formulation to account for multiple CHP units,
and showcase the proposed algorithm on a system with two units. We also include the dynamics
stemming from switching on/off the units, and their impact on the operational optimization.

Design of the scheduler: Evidently, multiple CHP units have a greater capacity to supply heat
and power compared to a single unit. However, the total production rate of multiple units can
exceed the demand rates significantly even when they are operated at their lowest capacities. In
other words, operating one CHP unit standalone can be more cost effective than operating two

CHPs simultaneously at low demand rates. Therefore, we include the start-up and shut-down
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dynamics in the schedule to account for the trade-off between switching on/off the operation and
maintaining the operating status of a unit.

The cost of switching on/off is described by Eq. 4.10.

Nocup Ns

SN ¢iSia, + miF, (4.10)

i=1 t=1

where Nogp is the number of CHP units, S;;, and F;, are binary variables that indicate the
start-up and shut-down status, and ¢; and ; are their unit costs, respectively. The impact of the
switching status variables is incorporated in the schedule by introducing lifting-state variables,

S’i’tsm and ﬁi,ts,m as presented in Eq. 4.11.

Si,tﬁ—l,n = Pits,n—1) Si,ts,nZO = Si,ts

4.11)

E,ts+1,n = Litsn—1, E,ts,nzo = Fi,ts
The state lifting-variables determine the operating status of the CHP units as described in Eq.

4.12.

Si,ts - -Fw’i,ts = Xi,ts - Xi,ts—l
5ur
Xi,t5 Z 2% Si,ts,n (412)

dn
o5

1— X, > Z Fiiom
n=0

where X, ;. is a binary variable that indicate the operating status, J;” and §¢" are the start-
up and shut-down times of the i CHP unit. The interested reader is referred to Subramanian
et al. (2012) [184] for more details on scheduling with lifting-state variables, and to Kopanos et
al. (2014) [187] for an application of reactive scheduling using lifting-state variables on a CHP
system.

The cost function given in Eq. 4.7 is generalized to encapsulate the operating cost of multiple

CHP units, as presented in Eq. 4.13.
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Figure 4.8: Two CHPs in parallel - Closed loop simulation of the generalized scheduling scheme
in two CHP units operating in parallel. The volumes of the ICE are V; = 1500cc and V> = 4500cc,
respectively (Reprinted with permission from [8]).

Noup Ns N

Z Z Bi.Eit, + Z Ve, Pry — i Wi, + &, Qr, +wi, Dy, + 7By, (4.13)

=1 t=1 t=1

The objective function of the schedule comprises the operating and purchasing costs described
by Eq. 4.13 and the switching costs given in Eq. 4.12.

Closed loop validation: The developed scheduling strategy is implemented on the high fidelity
model and operated in tandem with the offline controller. Figure 4.8 shows a snapshot of the
scheduling level decisions of an operation with two CHP units with ICE volumes V; = 1500cc and
V5 = 4500cc, under a rapidly escalating demand profile given in Figure 4.9. The following are
some observations and remarks on the closed loop performance of the developed scheduling and

control strategies.
4.4 Conclusions

In this chapter, a novel, process agnostic framework was introduced to integrate the design,
scheduling, and control problems based on a single high fidelity model. Using multiparametric
programming, we derived offline piecewise strategies for (i) a control scheme as a funtion of the

design and scheduling decisions, (ii) a scheduling scheme as a function of design, and aware of

93



20 : : — 140

g 1120
;;5’ —1oo§
£ leo 2
310 £
> {60 &
z S
= 0 3
g 5 T
m 120

0 50 100 150
Time (s)

Figure 4.9: Two CHPs in parallel — Snapshot of the electricity and heat demand profiles. Note the
steep increase in demand in short notice (Reprinted with permission from [8]).

the closed-loop dynamics through a surrogate model formulation. The offline maps of strategies
allowed for a direct implementation in a MIDO formulation for design optimization. The proposed
framework was able to determine the process design that guarantees the operability of the system
under a range of bounded process and market uncertainties by simultaneously considering the
optimal scheduling and control strategies used in closed-loop implementation.

Postulating all layers of decisions as optimization problems has specific benefits to tailor each
individual problem based on the needs of the system of interest. This advantage was illustrated by
using soft constraints to satisfy product purity in the CSTR examples, and by using a decentralized
control structure in the CHP examples. Note that the framework was applied on both problems
without appealing to further modifications.

The major bottleneck of the proposed framework is employing approximate models in the
control and scheduling levels. Although the confidence on the models were increased by using
well-established and previously proposed error metrics [200], the approximation creates a mis-
match between the real process dynamics and the decision making optimization problems. Future
work will focus on incorporating robust counterparts of the scheduling and control problems to
account for the mismatch. However, robust multiparametric receding horizon policies result in an

explosion in the number of critical regions in the parametric solution space. This increase is also
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a natural result of highly dynamic processes, such as batch mode operations. Therefore in Chap-
ter 5, we propose a computationally efficient modeling technique and optimization framework to

integrate the optimal operational strategies in an MIDO formulation for batch processes.
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5. INTEGRATED PROCESS DESIGN OPERATIONAL OPTIMIZATION OF BATCH
PROCESSES!

Batch processing has been the predominant choice of operation mode to manufacture high
value specialty chemicals due to its inherent flexibility to satisfy volatile customer requirements.
Short term scheduling in batch processing is a key factor towards delivering the targeted produc-
tion requirements by the end of a predetermined horizon, as the scheduling implementation can
often dictate the profitability of the entire process especially if a high number of products is to be
manufactured in a limited number of multipurpose equipment [201, 202].

A scheduling problem comprises a variety of decisions such as resource allocation, task se-
quencing, and task timing. State-Task Network (STN) [66] and Resource-Task Network (RTN)
[203] are two of the most widely used scheduling techniques that provide a systematic modeling
framework and solution strategy for these decisions through mixed-integer linear programming
(MILP). STN/RTN adopt a recipe based scheduling approach, where the batch sizes and process-
ing times are assumed to be fixed. Continuous-time scheduling approaches improve upon this
limitation by using linearized relations for the batch sizes and processing times [202, 204, 205,
206, 207, 208, 209]. However, the optimality and even the feasibility of the schedule is susceptible
to internal and external influences such as different initial conditions, known/unknown process dis-
turbances, and fluctuations in utility and raw material prices. Utilizing static transition tables that
comprise processing times or time constants is a common, albeit ad-hoc modeling representation
that poses challenges to generalize for all possible cases due to the lack of an in depth understand-
ing of the process dynamics [94].

Model based approaches that integrate scheduling decisions with faster time scale decisions are
shown to be promising to account for the dynamic characteristics of the process [1, 194, 9, 210].

Bhatia and Biegler (1996) [92] have proposed one of the first significant contributions to simultane-

IPortions of this chapter have been submitted for publication as Burnak, B., Katz, J., Pistikopoulos, E.N., Integrated
process design, scheduling, and model predictive control of batch processes with closed-loop implementation, in
review.
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ously address the process design, scheduling, and optimal control of a multipurpose batch process
in a dynamic optimization formulation. The authors formulated a dynamic model for the batch
process in continuous time domain, which was discretized into a finite dimensional nonlinear pro-
gramming problem (NLP) and solved using orthogonal collocation on finite elements. Biegler and
co-workers extended the use of dynamic models in an integrated formulation with more compre-
hensive and practically relevant scheduling schemes, state equipment networks (SEN) [169] and
RTN [170]. Chu and You (2014) [211] have proposed a surrogate modeling based approach for
the integration planning, scheduling, and open loop dynamic optimization for processes with fixed
batch sizes. More recently, Valdez-Navarro and Ricardez-Sandoval (2019) [212] have addressed
the integrated scheduling and control problem via the STN framework and a back-off algorithm to
handle process uncertainties. Although these approaches have been demonstrated to capture the
key interactions between the site level and unit level process decisions, they are merely intended
to be used in the offline phase of decision making. In other words, such open loop optimization
approaches neglect the behavior of the feedback controller, which fundamentally changes the dy-
namics of the process. Earlier studies by Soroush and Kravaris (1993) [134, 133] accounted for
the PID type state feedback controllers by incorporating their explicit control laws in a dynamic
optimization formulation. However, more advanced control strategies such as constrained Model
Predictive Control (MPC) have implicit forms, where the optimal control actions is only avail-
able after solving an optimization problem at every step in a rolling horizon manner. Zhuge and
Ierapetritou (2014) [177] developed multi-parametric MPCs (mpMPC) to be incorporated in an
integrated scheduling and control formulation. However, the proposed approach utilizes an event
point based scheduling formulation with variable discretization steps, which creates a mismatch
with the fixed step size of the state space model used in the mpMPC. Rossi et al. (2017) [213] have
proposed a two phase architecture for the integrated problem where the first phase solves a con-
ventional scheduling problem offline and the second phase comprises the online implementation
of a modified nonlinear MPC (NMPC).

In Chapter 4, we discussed the use of multi-parametric programming to derive explicit expres-
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sions to be integrated in an MIDO formulation with a focus on continuous processes. However,
batch processes are inherently transient and track time varying input-output trajectories. As a con-
sequence, the explicit solutions to optimal operational decisions are usually large in size, which
renders the problem computationally expensive. Therefore in this chapter, we introduce an efficient
modeling and optimization framework to integrate the design and operational decisions in batch
processing, while accounting for the increasing size in explicit solutions. Accounting for the MPC
dynamics in the integrated problem allows for the derivation of closed-loop optimal trajectories
that are attainable by the advanced control scheme, thereby offering certificates of operability for
the closed-loop implementation. We utilize the SEN framework for the scheduling problem due to
its suitability for the integration with the optimal control problem [169]. Moreover, we introduce
a methodology to exponentially reduce the number of binary variables for embedding the piece-
wise affine partitions derived from the multi-parametric solution of the MPC based on the base-2
numeral system.

The remainder of the chapter is organized as follows. Section 5.1 defines the integrated prob-
lem and the types of decisions that are considered in this chapter. In Section 5.2, we present a
mathematical formulation of the complete integrated problem, the methodology to derive explicit
MPC strategies that govern the system of interest, the essential components of the SEN framework,
and the methodology to embed the explicit MPC solution into the resulting mixed-integer dynamic
optimization formulation. Finally, we showcase the proposed approach with two batch process

examples in Section 5.3.
5.1 Problem Statement

We consider a multipurpose batch process where the products are allowed to follow different
routes through the plant at different times [214]. The objective of these batch plants may vary de-
pending on the application, such as minimizing the cost, minimizing the makespan, or maximizing
the yield of a specific product. The goal of this work is to present a unified theory and framework
to determine simultaneously the following four levels of operational decisions, while delivering the

target objective. Therefore, the problem statement is illustrated in Fig. 5.1 and outlined as follows.
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Design Optimization @

Objective:  min cost
Decisions: equipment capacity

Scheduling Optimization @
Objective: min cost/makespan
max product yield

Decisions: task allocation,
production sequence, batch size

Real-Time Optimization @
Objective: min cost/makespan
max product yield

Decisions: inputs and outputs, e.g.
flowrate, temperature and pressure

Y

: .
' : '
i : |

v v v

Closed-Loop Control @

| Objective: stability, set-point tracking

Decisions: inputs, e.g. flowrate

Figure 5.1: A schematic of the objectives and decisions in each multi-scale level. The dashed lines

denote the particular contribution of this study.

Given. First principle dynamics to manufacture the desired products (preprocessing, reaction,

separation), any physical limitations regarding the product quality and process safety, unit capital

and operating costs, and the range of demands on products.

Determine.

i. Process design decisions: Dictates the capacity of the processing units.

ii. Process scheduling decisions: Includes task allocation, production span or cycle, production

sequence, and batch sizes.

iii. Real-time optimization decisions: Input and output trajectories that are transmitted to the

regulatory controller.

1v. Closed-loop control decisions: Model predictive control strategy that governs the process

through the control instruments.
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Objective. Minimize cost, minimize, makespan, maximize yield, etc.

Figure 5.1 illustrates the objectives and decisions associated with each layer considered in
this chapter in their hierarchical time-scale order. In Table 5.1, we present some of the notable
studies that explore the connectivities between these layers with their scopes and their significant
contributions in the field. The main contribution of this chapter, marked with dashed lines in Fig.
5.1, exploits synergistic interactions between advanced closed-loop control strategies and longer
term decisions to provide certificates of operability at each individual level. In Section 5.2, we
first provide a conceptual mathematical representation of the integrated problem, followed by a
framework to develop an offline MPC strategy for a batch process, characteristic equations in the
SEN framework, and an exact modeling technique to integrate the advanced controller in a mixed-

integer dynamic optimization (MIDO) formulation via logical disjunctions.
5.2 Problem Formulation

A generalized mathematical form of the integrated design and operation optimization prob-
lem has been already provided in 1.11. Therefore in this chapter, we formulate a bilevel MIDO
problem, given by Eq. 5.1, where the MPC dynamics are accounted for as the “follower” in the in-
tegrated problem. In Eq. 5.1, the integrated problem features (i) design decisions as time-invariant
variables, (i1) scheduling decisions based on a SEN representation, (iii) open loop optimal con-
trol profiles used as set points for the feedback controller, and (iv) closed-loop MPC dynamics

embedded via multi-parametric programming.
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Table 5.1: An indicative list of the notable studies with their scopes.

Design ~ SchedulingReal-time Closed-
Authors deci- deci- optimiza- loop con-  Significant contribution
sions sions tion trol
Incorporated PID control in a DO
s ko, il
[134. 133] sibility, flexibility, controllability,
’ and safety.
Bhatia and Infinite dimensional DO is solved
Biegler (1996) v v v X via ortogonal collocation on finite
[92] elements.
Nie et al. (2012) Use of SEN for scheduling deci-
[169] v v v X sions.
f;;%;;;l‘(i;g;) X % v v Closed-loop implementation with
[101]* an iterative approach.
Stochastic programming and Gen-
(C;(l)ul ;;1 ([1;1((5);1 X v v X eralized Benders Decomposition
based approach.
Zhuge and ler- Closed-loop strategies accounted
apetritou (2014) X v v v for via multi-parametric program-
[177] ming.
Nie et al. (2014) Use of RTN for scheduling deci-
[170] v v v X sions.
Du et al. (2015) Use of low-dimensional scale
[103]* X v/ v v bridging models.
Baldea et al. Us.e qf low—dimens.ional scale
(2015) [104]* X v v v bridging models with model-based
control.
;ﬁl(lidl:igz\;{m Implemented back-off approach
Sandoval (2019) X v v X with Monte Carlo s.imulations to
212] account for uncertainty.

*Cyclic continuous process — included in the list due the applicability of the approach to batch processes.
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where the follower problem is a standard MPC formulation. In Eq. 5.1, ||-||¢ denotes the weighted
vector norm with a weight matrix ¥, O H is the index set of the output horizon, C'H is the index
set of the control horizon, Q)y, Q Ry, Ry, R1; are the weight matrices of the states, process outputs,
process inputs, and input deviations, respectively, and sp denotes the set point. Note that the MPC
formulation introduces an additional connectivity between the inputs and outputs of the system
that is neglected in Eq. 1.11, which inherently changes the process dynamics. Therefore, inclusion
of the MPC dynamics is paramount to achieve realizable optimal trajectories.

In Chapter 4, we presented a theory and framework for the integration of MPC in design op-
timization [88], and the incorporation of scheduling decisions via multi-parametric programming
[8]. Although this theory is applicable to batch processes in principle, the practical implementa-

tion becomes a challenging task as the control horizon and the number of manipulated variables

in the MPC scheme increase, which is frequently encountered in batch processes. Increasing the
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number of decision variables in the mpMPC formulation results in an exponential increase in the
number of critical regions, all of which contain the optimal control law to be used based on the
online state measurements. In the integrated formulation presented in Eq. 5.1, the critical regions
are embedded via a big-M or convex hull formulation, requiring the use of a binary variable for
each critical region throughout the optimization horizon.

In the following discussions, we detail the constituents of the MIDO problem, i.e. (i) SEN
formulation with its common assumptions, and (ii) the integration of the mpMPC in the SEN and
dynamic optimization formulation. Developing the mpMPC that governs the process has been al-
ready discussed in Chapters 2 and 3. The complete formulation of the MIDO is given in Appendix

A.3 in a generic form.
5.2.1 Scheduling using the state equipment network

In this section, we discuss the scheduling optimization via the SEN representation outlined in
Panel 2 of Fig. 5.1. Nie et al. (2012) [169] discussed the suitability of the SEN framework for
the integration of the scheduling decisions into a dynamic optimization formulation via general-
ized disjunctive programming. The authors adopted the unit specific event-based continuous time
representation, where the scheduling horizon is divided into a finite number of event slots for each
unit. Although this approach is practical for open loop dynamic optimization, it is a challenging
task to apply on a process governed by an MPC scheme due to two reasons. First, the bilevel
nature of the integrated problem poses a modeling challenge, which will be discussed in Section
5.2.2. Second, the MPC strategy acts on the system in a rolling horizon fashion, where the opti-
mal control action is updated in discrete time intervals, creating a mismatch with the continuous
optimal trajectory proposed by Nie et al. (2012) [169]. Since the discretization steps of the MPC
is fixed by design prior to operation, we use evenly distributed discrete time intervals in the SEN
framework to integrate the dynamic model and the mpMPC via logical disjunctions. In this part,
we discuss the essential constraints and objective functions that can be used in the discrete-time

SEN framework.
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Assignment constraints. We define a set if binary variables y; ., that denote operating state s of
an equipment j in time slot ¢. y; . is equal to 1 if equipment j is occupied by state s in time slot
t, and O if otherwise. Therefore, we use Eq. 5.2 to dictate the exclusivity of states in an equipment

throughout the scheduling time horizon.

Y Y <1, VieJVteT (5.2)

seS

Similarly, one task can only be executed in one equipment, as given by Eq. 5.3.

Yy <1, VseSVteT (5.3)
JjeT

Continuity constraints. After a task is assigned to an equipment, it has to continue the process in

the same equipment.

yj7s,t+1 S yj,sﬂfv v] € j,VS S Sa Vt € Tvt 7é tf (54)

where ¢ is the final scheduling time step.

Material balance. At each discretization point, we construct the material balance for every com-

ponent ¢ to determine their availability, as presented in Eq. 5.5.
E.t=FE.; 1+ Z AEj.;, YcelC,VteT,t>0 (5.5)
JjeT
where E., denotes the amount of excess material of component c at time ¢, and AFE, ., is the
generation or consumption term, dictated by the reaction kinetics in the high-fidelity model.

Capacity constraints. The vessel sizes limit the amount of material that can be processed in every
task.
Z yj,s,tz S V}',t S Z yj,s,tv7 Vs € S7Vt € T (56)

seS seS
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where V; 1s a set of continuous variables that describe the volume occupied in equipment j. Note
that it is possible to enforce similar constraints on the excess material £.,. However, we assume

unlimited intermediate storage (UIS) and neglect such constraints for simplicity.

Quality constraints. These constraints are included to enforce certain quality metrics, such as

product purity or target demand, at the end of the batch.

l’: Sl’s’t+1+M(w57t), Vs GS*,tZO
I’: S I'S7t+1 + M(]_ — (w&t — w87t+1))7 VS S S*,Vt € T,O S t S tf (57)

vt <z + M(1—w,y), VseSHt=t;

where superscript “*” denotes the target states, M is a sufficiently large number for the big-M
formulation, and w,; is defined as a set of linking variables between the scheduling model and
the dynamic high fidelity model. The linking variables w;, ; are a set of Boolean variables that are
enforced to have a “true” value if the task is still in progress via Eq. 5.7, and “false” if otherwise.

These variables are linked to the scheduling model as presented by Eq. 5.8.

(t+ Dws, < Z Z Yirsy, VseSNVteT (5.8)

JeTVeET

Sequence constraints. In the case that one state should take place only after the completion of

another task (e.g. precursors), the priority can be dictated by Eq. 5.9.

t
Vistd SO Yismw, VjET Vs €8 Vst €St VieT (5.9)
=0
where superscript “~” denotes the states that should be scheduled earlier than the states labeled by

the superscript “*”.

Objective functions. Here, we will present two most commonly used objectives in a process
schedule, although they can be diversified and tailored to serve different purposes. For makespan

minimization, a set of Boolean variables z; is defined to indicate if the overall process is still in
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progress.

Yist <2z, VjeJ,VseS (5.10)

Then, the makespan of one batch cycle can be minimized by minimizing the sum of z;, as

presented by Eq. 5.11.

> (5.11)

teT
Similarly, cost minimization is one of the most common objectives encountered in processes

schedules, and can be expressed by Eq. 5.12.

> Cru+ > Cly (5.12)

teT teT

5.2.2 Integrating mpMPC in the MIDO

In Chapters 2 and 3, we introduced a systematic procedure to develop MPC schemes based on
a high fidelity model, and to derive the explicit form of the optimal control law, given by Eq. 2.4.
In this section, we will introduce an efficient methodology to integrate the optimal control law with
significantly less binary variables, which is previously outlined in Fig. 5.1 with the dashed lines.

The optimal control law is expressed by a piecewise affine expression, and has two components,
namely (i) a set of affine functions that are optimal for the polytopic space C'R,, (Eq. 2.4a), and
(i1) a set of polytopes that define the space that bound the corresponding affine expression (Eq.
2.4b). Equation 2.4a can be reformulated by using the two main relaxation schemes, namely big-
M reformulation and convex hull formulation. These relaxation schemes can be used to embed the

mpMPC to the SEN network via a set of binary variables yg R,

~ MR <up— Koy — 10 < M1 —ySF), Yne NCVteT (5.13a)
~ M=) <ty — Kby — 10 < M1 —ySF), Ve NCVEe T

Ut = Z Unp,t, YVt € 7-

neNC

(5.13b)
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where Eq. 5.13a represents the big-M reformulation and Eq. 5.13b represents the convex hull
reformulation for the optimal control law. We also dictate that at most one critical region can be

selected at a given time throughout the scheduling horizon, as given by Eq. 5.14.

dySE<1, VteT (5.14)

neNC

Selection of the critical region strictly depends on the feasibility of the parameter set 8; at time

t. Therefore, we can simply relax the disjoint polytopes by Eq. 5.15.

AT, — b < M(1—ylf), Vne NCVteT (5.15)

Note that both the big-M and convex hull reformulation schemes require a binary variable for
every critical region and for each time step throughout the scheduling horizon. Consequently, the
computational complexity of the MIDO problem grow exponentially as the number of critical re-
gions of the explicit optimal control law increase. The states of a batch process are inherently
time-varying and hence, the MPC scheme of a batch process requires longer output and control
horizons, and larger bounds on the variables compared to a typical continuous process. The com-
binatorial nature of the increased number of variables and constraints of the MPC problem results
into an exponential increase in the number of critical regions in its explicit solution. Therefore,
employing the big-M and convex hull reformulation techniques become impractical due to the
number of the ygf variables, especially for the batch processes. Herein, we present an efficient
modeling technique with significantly less binary variables using the base-2 numeral system. The
goal of this technique is to represent each critical region in a time step with a unique combination
of a set of binary variables, 757
Let ny denote the n'™ critical region in the base-2 numeral system (i.e. ny = n). We treat the

digits of ns as an array of binary parameters, denoted by 3,,,. Therefore, a generic constraint g(x)

can be relaxed with the unique combinations of a set of binary variables y; as presented by Eq.
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5.16.

g(w)§M< wt > (1—yi)) (5.16)

i€{m|Bny,m=0} i€{m|Bny,m=1}
The relaxation scheme presented in Eq. 5.16 reduces the number of required binary variables
from n to [log,n|, where [-] denotes the ceiling function. Note that if the number of binary
combinations is greater than the number of constraints (i.e. 2Mloganl ~ 1) we need additional

constraints to exclude those combinations from the feasible space by integer cuts, as presented by

5.17.
2 we 2 wElmun =t (5.17)
ie{m‘ﬂng,m:l} iE{m‘,B,LQ’,n:O}
where | - | denotes the cardinality operator. An illustrative example for the use of base-2 numeral

system to relax a set of constraints is provided in Appendix A.4.

Using the base-2 numeral system to integrate the explicit MPC solution The base-2 numeral
system can be applied to the big-M (5.13a) and convex hull (5.13b) reformulation schemes for the

piecewise affine control law as presented by Eqgs. 5.18 and 5.19, respectively.

—M( P Ve Y (1—yftR)>§ut—Kn29t—rn2, Vn, € NCy,Vt € T

ie{mlﬁng,mzo} ie{m|ﬁn2,m:1}
(5.18a)
up — K, 0 — 1y < M( Z z}ftR + Z (1-— in,tR)), Vng € NCo,Vt €T
ie{mlﬁng,mZO} ie{m‘ﬁng,mzl}

(5.18b)
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- M( Z ﬂftR + Z (1- yff)) < Upyt — Kby — 1y, Vg € NCy,VEET

ie{mlﬁng,mzo} ie{mlﬁng,mzl}

(5.19a)

Uny,t — Km@t — Thy S ,/\/l( Z gzc,tR + Z (1 — gg;R>> , VTLQ S NC'Q,Vt S T

i€{m|Bny,m=0} i€{m|Bnqy,m=1}

(5.19b)

U= > Uy, VEET (5.19¢)

n2€NCa

Note that we do not enforce Eq. 5.14 in the base-2 numeral system as any feasible combination
of the binary variables ggft yield a unique optimal control law. The feasibility of the control laws

in closed loop is analogously satisfied by Eq. 5.20.

ACRg, —pCR < M( oot D> a- yfﬁ)), Vns € NCy,Vt € T
ie{ml/gng,mzo} ie{m‘IBTLQ,m:l}

(5.20)

Therefore, using Eqgs. 5.18 or 5.13b along with Eq. 5.20 provides an exact integration of the

mpMPC into the MIDO formulation. If the number of critical regions n is greater than the number

of binary combinations (i.e. 2/°&2"l > p) then we can use Eq. 5.17 by rewriting as follows to

eliminate the infeasible combinations.

>oooul - Y i< mlBam =111, teT (5.21)

iG{m\,an,mzl} ie{m‘ﬂnz,mzo}

5.3 Case Studies
5.3.1 Illustrative example — Single reaction

We consider a reaction that takes place in a batch reactor under nonisothermal conditions.

The goal of this case study is to demonstrate the methodology to embed the MPC dynamics in
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a dynamic optimization framework. Therefore, the design problem and scheduling via the SEN
framework are excluded in this problem for simplicity. Here, we only focus on developing an
MPC that manipulates the heat input to track temperature and concentration set points that are
determined by the real-time optimization formulation. The stoichiometry of the reaction is given
as follows.

ko

= C

k1
A=—20H
k_1

where A is the raw material, B is the desired product, and C' is a by-product with negligible
monetary value. The reaction setting is selected such that two of the most common challenges
in a batch reaction process, namely a reversible reaction and a side reaction, are included. Due
to the reverse reaction k_;, complete conversion to product B is thermodynamically infeasible.
Furthermore, since the reaction path involves a by-product through an irreversible reaction ko,
the trivial solution of using an infinitely long batch time at the maximum operable temperature
is also infeasible to satisfy the product demand. Therefore, a model based dynamic optimization
approach should be employed to maximize the desired performance metrics. In this case study, we
will demonstrate makespan minimization and yield maximization as performance metrics.

The high-fidelity dynamics of the reaction is developed as a set of DAE and presented as
follows. First, we consider the mass and energy balances, as given by Eqs. 5.22a and 5.22b,

respectively.

1 dN.

— = 22
v dl ; SerTr, YVe€eC (5.22a)
dar — CAH, V
I’ _ =2 ,er™AH, +Q/ (5.22b)
dt PCp

where V' is the working volume, N, is the amount of component c, s, is the stoichiometric coef-
ficient of product c¢ in reaction r, 7, is the rate of reaction of r, 7' is the temperature, AH, is the
reaction enthalpy, () is the heat input, p is the mixture molar density, and c, is the specific heat

capacity.
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Table 5.2: Parameters for Example 1 — single reaction case.

o AH, k, Eap
eaction sS4, Sp, Scr [kJ/mol] [105/h] [kJ/mol.K]

11 0 13.8 5.0 50.8

1 1 -1 0  -138 0.1 37.0

2 0 -1 1 -2.0 0.5 46.0

The rate expressions for all three reactions are given by Eq. 5.23.

ZQAJ ]V;
r,,—krexp<— RT) 11 T TER (5.23)

cETTN

where k, is the pre-exponential term of the Arrhenius equation, /7,4, is the activation energy, I? is
the ideal gas constant, and rxn, is the set of components that take place in reaction r. Note that all
reactions are assumed to be first order with respect to the reactants.

Lastly, the density and the heat capacity of the mixture are determined by assuming ideal

conditions.
_ E:CEC'Aﬁ
p= v
5.24
c — ZCEC vacNC ( )
! E:cEC‘AQ

The parameters of the reaction conditions are provided in Table 5.2. Notice that the desired
reaction is endothermic, therefore heat input to the reactor is mandatory to maintain a certain

temperature set-point.
5.3.1.1 Open loop dynamic optimization for optimal trajectories

Let the objective of the batch reaction be to produce a certain amount of product B, while the

batch time is minimized. A dynamic optimization problem can be formulated to address such a
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makespan minimization problem as presented by Eq. 5.25.

min ¢y

Q(t)
1 1dN,

it ——— == erTr, Vel

S tf vV di ;s T CcEc
Ldr - ETGR rAH, +Q/V
tpdt pPCp
FEqgs. 5.23 and 5.24 (5.25)

Np(t=1) > Ngm = 0.4 [kmol]
12 [kJ/H] < Q() < 12 [kJ/A]
Na(t =0) =0[kmol], Ng(t=0)=1.0[kmol]

Ne(t =0) =0 [kmol], T(t=0)=2363[K]

where N@™ is the targeted amount of product at the end of the batch. Here, the horizon of the
problem is set as ¢ = [0, 1], and the differential equations are scaled by ¢ ¢, which denotes the batch
time.

The dynamic optimization problem formulated in Eq. 5.25 is solved by orthogonal collocation
on finite elements [216]. The orthogonal collocation formulation used in this work is based on
Lagrange polynomials and Radau roots. In this case study, we use 24 finite elements (25 mesh
points) with 3 collocation points for the differential and algebraic variables. After discretization,
the resulting NLP is solved by the IPOPT solver [217]. The optimal open loop profiles are de-
termined as presented in Fig. 5.2, and the minimized makespan ¢ is 1.96 hours. The calculated
batch time assumes complete degrees of freedom over the manipulated variables. However, practi-
cal applications often use closed-loop controllers that manipulate such variables based on process
measurements and set points, which results in inherently different process dynamics regardless of
the efficacy of the controller. Therefore, the only degrees of freedom in a closed-loop process
are the set point trajectories that are transmitted to the controller. The following discussions will

focus on (i) developing an MPC scheme for the batch process described by Eqgs. 5.22-5.24, (ii) the
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Figure 5.2: Open loop optimal profiles for the temperature, component concentrations, and heat
input for Example 1.

effects of the MPC dynamics on the closed-loop realization of the optimal open loop profile, and

(iii) accounting for such effects in developing a realizable optimal closed-loop profile.
5.3.1.2 Developing an explicit MPC strategy for Example 1

We follow the procedure described in Section 2.2 to develop an explicit MPC strategy based
on the high fidelity model described by Eqs. 5.22-5.24. A multitude of computational experiments
are conducted to generate the relevant data for system identification. In each experiment, the input
signal is based on a pseudo-random binary sequence (PRBS) and randomized step amplitudes.
Using the MATLAB System Identification Toolbox, we develop the following matrices for the

approximate model state space model described by Eq. 2.2.
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0.9905 0.0274 —0.0299
A= 1-0.1174 09713 0.0063
—0.1309 0.0618 0.9084

B =1-0.0860 —0.1808 —0.5156

0.2735 0.2436 —0.1495

1.2904 0.4882 —0.4445

Here, the identified model has one input variable, (), two output variables N and 7', and three
identified states with no significant physical meanings with a discretization step of 0.25 h. The
input and outputs are scaled between 0 and 1 to avoid any numerical problems in deriving the
explicit MPC solution. Note that C', F/, and F' from Eq. 2.2 are zero matrices since there are no
measured disturbances and zeroth order inputs to the system. The step response of the identified
model is provided in the Appendix, Fig. A.5.

The state space model is used in Eq. 2.3 to construct the offline MPC formulation. The bounds
on the variables and the tuning of the weight matrices are presented in Table 5.3. Note that the iden-
tified states do not have any bounds or weights in the objective function since they have no physical
meanings. We also enforce terminal constraints at the end of the output horizon to guarantee the

product quality at the process control level by using Eq. 5.26.

0.9y < i, < 101y (5.26)

The constructed mpMPC scheme is rearranged into a generic mpQP problem via the YALMIP
toolbox [195] and solved by using the POP toolbox [161] in the MATLAB environment to derive
the offline solution in the form of Eq. 2.4. The resulting offline control law has 955 critical
regions?, which requires 955 binary variables for every time step in the horizon to embed in an

integrated problem via the standard big-M or convex hull relaxation reformulations. Such a large

2The offline solution can be downloaded from http://paroc.tamu.edu/.
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Table 5.3: mpMPC tuning parameters and variable bounds.

parameter value
OH {1,2,3,4}
CH {1,2,3}
QRy,Vk € OH {O 0 1
’ 0 10*
R1,,Vk € OH 1.0
m [1.0,1.0]"
u 1.0
Au 0.20
y [0,0]"
u —1.0
Au —0.20

number of binary variables make the integrated problem intractable even to determine a feasible
solution. Therefore, we use the base-2 numeral system detailed in Section 5.2.2 to use 10 binary
variables for each time step instead.

The developed mpMPC is integrated in the high fidelity model for a closed-loop validation of
the developed control law. The closed-loop system is tested rigorously with a set of computational
experiments, where the set points are changed arbitrarily, to observe the set point tracking efficacy
of the controller. Figure 5.3a presents a sample of a closed-loop simulation, where the tempera-
ture set point changes after 7 hours in the operation. The mpMPC scheme achieves satisfactory
set point tracking within the range of operation. However, it should be noted that any shift in the
operating set point results in a transition period where the states are distant from the desired val-
ues, regardless of the effectiveness of the controller. Open loop dynamic optimization approaches
neglect these transition periods and assume perfect control over the process. Neglecting the dy-
namics introduced by the feedback controller may result in a significant mismatch between the
desired set point and the realization of the control law. Therefore, we subject the closed-loop sys-
tem to the open loop optimal set point trajectories presented in Fig. 5.2 to test the compatibility
of the controller and operationally relevant conditions. However, the closed-loop simulation fails

to run due to infeasible parameter realizations in the mpMPC during the operation. The open loop
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Figure 5.3: Closed-loop simulations of the process subjected to (a) arbitrarily changing set points
(b) the optimal profile. The dashed lines denote the set points.

optimal profile is unattainable for the controller due to the terminal constraints given by Eq. 5.26.
Therefore, we omit these terminal constraints to acquire a feasible closed-loop profile, as presented
in Fig. 5.3b. Here, we can observe that the change in the temperature set point is in fact too steep
for the controller to track, resulting in infeasible parameter realizations. The open loop optimal
trajectory aims to produce the targeted 0.40 kmol/m? product B in 1.96 hours, while the achieved
yield in closed-loop simulation is 0.349 kmol/m?, indicating an error of 12.5% mismatch below
the desired amount.

With the motivation to bridge the gap between the optimal trajectories and the closed-loop
realizations, we integrate the mpMPC dynamics in the dynamic optimization formulation using the
base-2 numeral system. The integrated model is first used to determine the maximum possible yield
in 2 hours (~1.96 h) using the given process and the developed controller. The resulting MIDO
problem is discretized using 8 finite elements (9 mesh points) with 3 collocation points using the
Pyomo environment [218, 219, 220]. Note that each finite element has a horizon of 0.25 hours,
matching the discretization step of the mpMPC. Discretizing the MIDO yields an MINLP problem,
which is solved with GAMS/BARON [221] with a 15 minute limit on the solution time. The time

limit is enforced to mimic a real life application, where a decision has to be made periodically.
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Accordingly, determining a feasible solution is prioritized over its optimality to guarantee the
operability of the process. Figure 5.4a shows the closed-loop dynamic optimization profiles against
its implementation on the original high fidelity model. Here, the optimal trajectory and the optimal
set points are two distinct entities. While the former is the prediction of the closed-loop profile,
the latter indicates the set of operating points that are transmitted to the mpMPC. Notice that the
realization of the set points yields a similar profile to that predicted by the dynamic optimization.

The solution of the MINLP indicates that the maximum possible yield is 0.325 kmol/m? at
the end of the 2 hour horizon. This result reveals that the original target of 0.40 kmol/m? product
B in 1.96 hours is in fact infeasible in closed-loop, although an open loop opti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>