
INTEGRATION OF PROCESS DESIGN, SCHEDULING, AND CONTROL VIA MODEL

BASED MULTIPARAMETRIC PROGRAMMING

A Thesis

by

BARIS BURNAK

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Efstratios N. Pistikopoulos
Committee Members, Mahmoud El-Halwagi

Costas Kravaris
Le Xie

Head of Department, Arul Jayaraman

August 2020

Major Subject: Chemical Engineering

Copyright 2020 Baris Burnak



ABSTRACT

The conventional approach to assess the multiscale operational activities sequentially often

leads to suboptimal solutions and even interruptions in the manufacturing process due to the inher-

ent differences in the objectives of the individual constituent problems. In this work, integration

of the traditionally isolated process design, scheduling, and control problems is investigated by

introducing a multiparametric programming based framework, where all decision layers are based

on a single high fidelity model. The overall problem is dissected into two constituent parts, namely

(i) design and control, and (ii) scheduling and control problems. The proposed framework was first

assessed on these constituent subproblems, followed by the implementation on the overall prob-

lem. The fundamental steps of the framework consists of (i) developing design dependent offline

control and scheduling strategies, and (ii) exact implementation of these offline rolling horizon

strategies in a mixed-integer dynamic optimization problem for the optimal design. The design

dependence of the offline operational strategies allows for the integrated problem to consider the

design, scheduling, and control problems simultaneously. The proposed framework is showcased

on (i) a binary distillation column for the separation of toluene and benzene, (ii) a system of two

continuous stirred tank reactor, (iii) a small residential heat and power network, and (iv) two batch

reactor systems. Furthermore, a novel algorithm for large scale multiparametric programming

problems is proposed to solve the classes of problems frequently encountered as a result of the

integration of rolling horizon strategies.
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1. INTRODUCTION AND OVERVIEW1

The complexity of decision making problems in the process industry has conventionally re-

sulted in isolation of decisions with respect to the time scales of their effects on the operation,

ranging from years-spanning process synthesis and design to seconds-long process control deci-

sions. Apart from the discrepancies in the time scales, the conventional decision layers differ in

their objectives. The long term operating decisions, such as the planning problem, aim to maximize

the profit, while the scheduling problem addresses the feasibility of the operation by allocating the

raw materials, utilities, and the process equipment in a shorter horizon. The dynamic performance

of the scheduled operation is assessed and maintained a posteriori by the process control decisions,

where the time steps are orders of magnitude smaller than the scheduling decisions [1]. In addi-

tion to the operational decisions, the “here-and-now” process design problem is another long term

decision that has significant impact on the future operating strategies and hence, the profitability,

feasibility, and the performance of the operation [2]. This established hierarchy of decision layers

largely neglects their interactions and suggests the information to flow dominantly in descending

order in the time scales the layers span [1].

However, overlooking the bidirectional relationship between the decision layers may lead to in-

feasible operations, forcing the process decisions to be overly conservative. The efforts to maintain

feasible operations without considering all the constituent layers in the decision hierarchy simul-

taneously results into deviation from the optimal decisions. Process Systems Engineering (PSE)

community has been accumulating formidable knowledge and know-how on mathematical mod-

eling techniques to improve our understanding on process design and operations, and developed

efficient tools to solve these advanced models [3]. It has been long established that the early design

problem should be studied simultaneously with the operational time-variant decisions to improve

the operability and flexibility of the process under variable internal and external plant conditions,

1Portions of this chapter have been adapted from Burnak, B., Diangelakis, N.A., Pistikopoulos, E.N., Towards the
Grand Unification of Process Design, Scheduling, and Control – Utopia or Reality?, Processes 2019, 7, (7), 461.
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and consequently to achieve more reliable, economically more favorable, and inherently safer

processes. The most recent efforts towards simultaneous consideration of design and operational

decisions explore effective methodologies to integrate the short term process regulatory decisions

(process control) and longer term economical decisions (scheduling) through mixed-integer dy-

namic optimization (MIDO) formulations. The proposed solution tools and techniques for this

class of integrated problems include (i) discretizing the dynamic high fidelity representation of

the process through orthogonal collocation on finite elements followed by solving a mixed-integer

nonlinear programming problem [4], (ii) “back-off” approach to ensure constraint satisfaction un-

der some assumed worst-case scenario [5, 6, 7], and (ii) multiparametric programming to explicitly

represent the operational strategies to derive tractable and equivalent MIDO formulations [8].

In this introduction chapter, we present a historical perspective on the development and progress

of modern process design techniques that account for the dynamic variability introduced by the pro-

cess control and scheduling decisions. In retrospect, we observe the evolution of methodologies

from fundamental analyses on design and process uncertainty at steady state to dynamic complex

models that explicitly encapsulate the scheduling and control decisions, as illustrated in Figure 1.1,

and summarized as follows.

i. Flexibility analysis and flexibility index. The early stages for design optimization under

uncertainty. The studies here analyze the steady state feasibility of a nominal process design

under a set of unknown process parameters and unrealized operating decisions, as we will

discuss in Section 1.1.

ii. Dynamic resilience and controllability analysis. Here, the researchers investigate the dy-

namic response of a system in closed loop, its interdependence with process design, and at-

tempt to develop the “perfect controller” simultaneously with the process that the controller

can act on. Such attempts will be demonstrated in Section 1.2.

iii. Complete integration of design, control, and operational policies. The focus of the most

recent studies in the field. The goal is to model tractable dynamic design optimization prob-

2



Steady state 
flexibility

Dynamic 
flexibility

Controllability

Profitability

Figure 1.1: A Venn diagram representation of major operability indices and their relation with
process economics. It is interesting to note that the design optimization approaches started from
the outermost layer, and with the advance of modeling techniques, they have progressed towards
the center for guaranteed operability, which delivers the optimal process economics (Reprinted
with permission from [9]).

lems that account for the scheduling and control decisions to guarantee the operability and

even profitability of the operation under all foreseeable conditions. These approaches will

be discussed in Section 1.3.

Clearly, it would be inaccurate and redundant trying to reduce down the individual research

efforts to a single category. The literature is noticeably diverse in this field with numerous different

approaches. However, we find it useful to classify into certain schools of thought that are also in

alignment with the historical progress of the field. In Section 1.4, we further seek to pose the

pivotal questions on future challenges and opportunities for the seamless integration of the design,

scheduling, and control problems based on the cumulative knowledge of the PSE community and

the current trends in the academia.

1.1 Early efforts in design optimization under uncertainty

The ongoing collective efforts towards the grand unification of design, scheduling, and control

was inaugurated through steady state design under uncertainty in plant conditions. Takamatsu et

al. (1970) [10] estimated the undesirable effects of variations in system parameters, measured

3



process disturbances, and manipulated variables on plant performance by sensitivity analysis on a

linearized model. Nishida et al. (1974) [11] adopted the notion of sensitivity analysis to structure

a min-max problem for design optimization, presented by Eq. 1.1.

min
des

max
θ

C(x, des, θ)

s.t. h(x, des, θ) = 0

g(x, des, θ) ≤ 0

θ ≤ θ ≤ θ

(1.1)

where x is the vector of states of the system, des is the vector of design variables including the

steady state manipulated variables, θ is the vector of parameters that agglomerates the system

uncertainties and process disturbances. Equation 1.1 is one of the first notable attempts to system-

atically assess the trade-off between minimizing the investment cost and improving the flexibility

of the process design. However, this strategy yields conservative solutions since it does not distin-

guish the time-invariant design variables and time-variant manipulated variables. Grossmann and

Sargent (1978) [12] remedied this issue by treating the time-sensitive variables (i.e. manipulated

actions and design variables that can be modified in the future) and fixed design variables sepa-

rately. They further adopted the parametric optimal design problem proposed by Kwak and Haug

(1976) [13], and formulated an objective function to minimize the average cost over the expected

range of parametric uncertainty, as presented by Eq. 1.2.

min
u,des

E{C(x, u, des, θ)}

s.t. max
θ∈Θ

gi(x, u, des, θ) ≤ 0, i = 1, 2, ..., t

(1.2)

where the expected cost function is defined the joint probability distribution of the parameter set

θ. Equation 1.2 requires solving infinite nonlinear programming (NLP) problems. Grossmann and

Sargent (1978) [12] proposed an efficient solution procedure for a special case of Eq. 1.2, where

each constraint gi is monotonic in θ, through discretization of the problem over the parameter
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space. However, solving the NLP problem at a finite number of θ realizations does not ensure the

feasibility of the design. This issue is addressed by Halemane and Grossmann (1983) [14] through

reformulating an equivalent design feasibility constraint as presented by Eq. 1.3.

max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0 (1.3)

The max-min-max problem in Eq. 1.3 mathematically expresses the feasibility question “For

all the uncertainty realizations Θ, does there exist a control action u such that the constraint set

g is feasible?”. Equation 1.3 was employed in a multiperiod design optimization problem, where

the deterministic uncertain parameter θ was allowed to vary within a prespecified range [14]. The

feasibility constraint then laid the foundation for the concept of feasibility index, F , proposed by

Swaney and Grossmann (1985) [15], as given by Eq. 1.4.

F = max δ

s.t. max
θ∈Θ

min
u∈U

max
i∈I

gi(x, u, des, θ) ≤ 0

T (δ) = {θ | (θnom − δ∆θ−) ≤ θ ≤ θ | (θnom + δ∆θ+}

(1.4)

where T is the hyperrectangle for the uncertain parameters, δ is the scaled parameter deviation,

and the superscript nom denotes nominal conditions. Equation 1.4 is the first significant attempt to

quantify the degree of flexibility of a process design, and has been exploited by numerous studies

on design optimization and process operability. However, Eq. 1.4 constitutes a nondifferentiable

global optimization problem and is still quite challenging to solve. Therefore, it requires simpli-

fying assumptions and approximations to maintain a tractable problem. Swaney and Grossmann

(1985) [16] introduced a heuristic vertex search method and an implicit enumeration scheme for

the special case where the critical uncertainty realizations are assumed to lie at the vertices of the

hyperrectangle T (δ). Clearly, this assumption fails to hold when the feasible space of the design

problem is non-convex. Grossmann and Floudas (1987) [17] relaxed this assumption by devel-

oping a mixed-integer nonlinear programming (MINLP) problem for the feasibility test presented
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by Eq. 1.3. They further proposed an active constraint strategy for the solution of the result-

ing MINLP. The mixed-integer formulation also provides a systematic approach to consider all

possible critical uncertainty realizations without exhaustive enumeration. The proposed formula-

tion was utilized for synthesis of a heat exchanger network with uncertain stream flow rates and

temperatures [18]. The case of linear constraints reduces to an MILP problem, for which global

solution is attainable by standard branch and bound enumeration techniques [17, 19, 20]. Bansal

et al. (2000) [21] developed a computationally efficient theory and algorithm based on multipara-

metric programming techniques for this special case of flexibility analysis problems. The authors

derived explicit expressions for the flexibility index as explicit functions of the continuous design

variables. Pistikopoulos and Grossmann (1988a, 1988b, 1988c) used the flexibility test with lin-

ear constraints for optimal retrofit design [22, 23, 24, 25] and redesign under infeasible nominal

uncertainties [26]. Although these approaches are effective and promising to handle the design

uncertainty, they require solving nested optimization problems, which poses a major challenge to

solve complex and large scale problems in a reasonable time. Raspanti et al. (2000) [27] proposed

replacing the complementarity conditions of the lower level optimization problems with a well-

behaved, smoothed nonlinear equality constraints, namely Kreisselmeier and Steinhauser function

[28] and Chen and Mangasarian smoothing function [29].

One of the common assumptions in these approaches is the known bounds of the uncertainties,

which is rarely the case in real world industrial applications. Pistikopoulos and Mazzuchi (1990)

[30] and Straub and Grossmann (1990, 1993) [31, 32] extended the flexibility test by assuming a

probability distribution model for the parameter uncertainty, which improved the economical per-

formance of the design optimization problem by addressing the “conservativeness” of the solution.

Another common assumption of these approaches is the steady state operation of the plant de-

sign, which creates a significant limitation on the applicability of the methodologies. Although

steady state assumption holds true for the dominant life cycle of the plant operation, design opti-

mization problem may fail to ensure the operability under transient behaviors such as startup or

shutdown and transitions between different operating conditions. Dimitriadis and Pistikopoulos
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(1995) [33] proposed a dynamic feasibility index for the systems that are described by differen-

tial algebraic equations (DAE) subject to time-varying constraints. However, the time-dependent

uncertainty in their formulation dictates to solve infinitely many dynamic optimization problems.

Therefore, the authors assumed that the critical scenarios of uncertainties are known and lie on the

vertices of the time-varying uncertainty space, similar to Swaney and Grossmann (1985) [15]. The

simplifying assumption reduced the problem to the form given by Eq. 1.5.

DF (des) = max
δ,u(t),t

δ

s.t. ẋ = f(x(t), u(t), des, θ(t), t), x(0) = x0

g(x(t), u(t), des, θ(t), t) ≤ 0

θ(t) = θN(t) + δ∆θc(t)

δ ≥ 0, u(t) ≤ u(t) ≤ u(t)

(1.5)

where the time dependence of the variables constitute a dynamic optimization problem, and the

solution was determined by control vector parameterization techniques [33]. Dynamic flexibility

has been widely utilized in numerous design optimization applications including batch processes

[34], separation systems [35, 36, 37, 38, 39], reaction systems [40], and heat exchanger network

synthesis [41, 42, 43].

The dynamic assessment of the plant feasibility under uncertainty has been also studied through

exploiting the multiperiod design optimization formulation proposed by Halemane and Grossmann

(1983) [14]. Varvarezos et al. (1992) [44] implemented an outer-approximation approach to solve

the multiperiod multiproduct batch plant problems operating with single product campaigns, which

was formulated as an MINLP. Pistikopoulos and Ierapetritou (1995) [45] considered stochastic

process uncertainty and proposed a two-stage decomposition that can handle convex nonlinear

problems.

As presented in this section, the early studies on integrated design optimization have primarily

focused on (i) investigating the range of operation (flexibility) of a nominal design configuration

under foreseeable conditions, and (ii) determining the “best” possible trade-off between the invest-
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ment cost and the capability of handling variations in the internal and external operating condi-

tions. These studies mostly considered open loop processes, under the traditional assumption that

controller design is a sequential task to process design. However, most processes in industry are

operated in closed loop, and the controller schemes inherently alter the process dynamics, render-

ing the open loop flexibility analyses of lesser relevance. In other words, an “attainable” operating

point according to open loop flexibility analysis may actually be an infeasible point in closed loop.

Realizing the shortcomings of open loop flexibility analyses, researchers began investigating the

“controllability” of process systems, and the interdependence of process control and design deci-

sions. In the following section, we present a retrospective background on the integration of process

control in the design optimization problem.

1.2 Integration of process control in design optimization

The initial efforts towards the integration of process control and design problems established a

fundamental understanding on the interdependence of the two decision making mechanisms. The

most pronounced school of thought in the early years to evaluate the controllability of the process

design is “dynamic resilience”, as conceptually defined by Morari (1983a, 1983b) [46, 47].

Morari (1983) [46] described dynamic resilience as “the ability of the plant to move fast and

smoothly from one operating condition to another and to deal effectively with disturbances”. This

depiction implies that there is not a clear cut distinction between flexibility, which was discussed

in Section 1.1, and resilience. However, Grossmann and Morari (1983) [48] pointed out the main

difference as “resiliency refers to the maintenance of satisfactory performance despite adverse

conditions while flexibility is the ability to handle alternate (desirable) operating conditions”. This

distinction is the primary motive for the majority of the flexibility analyses to study steady state

operations, while the resilience deals with the dynamic operations, as we will discuss in this sec-

tion.

Dynamic resilience, as described by Morari (1983) [46], aims to find the “perfect controller”

that is allowed by the physical limitations of the system to assess the controllability of the process

by using the internal model control (IMC) structure. The proposed technique decomposes the
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system transfer function G̃ into (i) a non-singular matrix G̃− to design the perfect controller G̃−1
− ,

and (ii) a singular matrix G̃+ to generate dynamic resilience indices based on (i) bounds on control

variables, (ii) presence of right half plane transmission zeroes, (iii) presence of time delays, and (iv)

plant-model mismatch. The proposed indices were utilized to improve the operability of numerous

process, including heat integrated reactor networks [49, 50, 51], separation systems [52], heat

exchanger networks [53].

Among the four aforementioned resilience indices, Perkins and Wong (1985) [54] studied the

last two by adapting the “functional controllability” theorem proposed by Rosenbrock (1970) [55].

The authors further define a system to be functionally controllable if there exists a manipulated

action u(t) that can generate any process output y(t) at any time t. Psarris and Floudas studied the

dynamic resilience and functional controllability of multiple input multiple output (MIMO) closed

loop systems with time delays [56, 57, 58], and transmission zeroes [57, 58]. Barton et al. (1991)

[59] investigated the open loop process indicators, namely minimum singular value and right half

plane zeros, to assess the interactions between different design configurations and their operability

with the best possible control configurations.

In the context of simultaneously assessing the process controllability in process design, one of

the first significant contributions is the “back-off approach” introduced by Narraway et al. (1991)

[60]. Narraway and Perkins (1994) [61] used this approach to systematically assess the trade-offs

between all possible controlled and manipulated variable pairs in a mixed integer formulation.

Bahri et al. (1995) [62] employed the back-off approach to handle process uncertainties in an

optimal control problem. The proposed approach is applicable to design linear and mildly nonlin-

ear processes, and relies on three key steps, namely (i) perform a steady state nonlinear process

optimization, (ii) linearize the process at the optimum point, and (iii) “back-off” from the opti-

mal solution by some distance to ensure the feasibility of the operation under some structured

disturbance profile. The proposed approach was shown to be effective effective to select between

alternative flowsheets as well as alternative control structures.

With the burgeoning interest in exploring the simultaneous design and control problem, the In-
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ternational Federation of Automatic Control (IFAC) organized the first workshop on “Interactions

between Process Design and Process Control” in the Centre for Process Systems Engineering at

Imperial College London in 1992. The workshop laid the groundwork for a plethora of approches

with a wide range of diversity. Walsh and Perkins (1992) [63] implemented a PI loop in the flexibil-

ity analysis, where the input-output loop is selected by an exhaustive screening procedure. Luyben

and Floudas (1992) [64] formulated a multiobjective MINLP problem to simultaneously consider

the disturbance rejection capacity of the control loop through disturbance condition number and

relative gain array to evaluate the interactions between the inputs and outputs of a MIMO system,

while designing the process. Shah et al. (1992) [65] used the State-Task Network (STN) repre-

sentation [66] to simultaneously consider the scheduling and design problems in a batch plant.

Thomaidis and Pistikopoulos (1992) [67] introduced a framework to consider the design problem

simultaneously with (i) the process flexibility through stochastic flexibility index, (ii) the effect of

equipment failures to the overall performance by combined flexibility-reliability index, and (iii)

the impact of equipment availability by combined flexibility-reliability index. These aforemen-

tioned novel approaches were shown to be promising concepts and techniques to address multiple

facets of operational decisions simultaneously with the process design problem. As a result, suc-

ceeding studies after this workshop expanded these techniques and branched out to explore further

opportunities.

Integrating PI controllers in the design optimization problem was one of the prominent out-

comes of the workshop and became the most attractive option for the following research. The

literature on PI controllers was already abundant and well-established by the time. Moreover, the

explicit form of the controller structure made the integration relatively easy and intuitive, which

significantly accelerated the research in closed loop design optimization. Walsh and Perkins (1994)

[68] presented an integrated PI control scheme and process design for waste water neutralization.

Although the proposed approach was effective for the SISO process, it was reported that it entails

further challenges for more complex processes. One major drawback of PI control is its inability

to tackle MIMO systems without any advanced modifications in the feedback loop structure. Nar-
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raway and Perkins (1993, 1994) [69, 61] developed an MILP based formulation to systematically

evaluate the economical performance of every input-output pair combination. Luyben and Floudas

(1994a, 1994b) [70, 71] adapted a similar approach in a multiobjective framework to determine the

best performing input-output pair based on the controllability indices introduced by them, earlier

(1992) [64]. The proposed framework was showcased on the design of a heat integrated distil-

lation system [70] and a reactor – separator – recycle system [71]. Mohideen et al. (1996) [35]

formulated a multiperiod design and control problem to account for the dynamic variations in

the operation, while including the input-output pairing superstructure in the problem. Moreover,

the authors utilized the flexibility index to account for the uncertain parameters in the model and

presented a decomposition algorithm for the resulting complex problem. Bansal et al. (2000)

[72] constructed a similar formulation as a mixed-integer dynamic optimization (MIDO) problem,

which was solved by a Generalized Benders Decomposition (GBD) based algorithm. The MIDO

formulation was presented as follows.

min
u,des

∑
i∈NS

wiC
(
ẋi(t), xi(t), ui(t), desi

)
s.t. ẋi(t) = hd

(
xi(t), ui(t), desi, θi, t

)
, x(t) = x0

yi(t) = ha
(
xi(t), ui(t), desi, θi, t

)
g
(
ẋi(t), xi(t), yi(t), ui(t), desi, θi, t

)
≤ 0

(1.6)

where wi is the discrete probability of a scenario i and NS is the discretized set of scenarios. The

discretization of uncertainty in the process was first proposed by Grossmann and Sargent (1978)

[12].

Although the aforementioned PI based design and control frameworks are applicable on nonlin-

ear processes, the range of operability is usually limited due to the mismatch between the nonlinear

process model and the linearized control model. Ricardez Sandoval et al. (2008, 2009) [73, 74]

used robust control tools and the back-off approach to integrate PI control and ensure its stability

while solving the design optimization problem. The proposed approach was also tested against the
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Tennessee Eastman process [75]. The back-off approach was later generalized for control struc-

ture selection in nonlinear processes by Kookos and Perkins (2016) [76]. Ricardez-Sandoval &

co-workers have extensively studied back-off approach for simultaneous process design and con-

trol under uncertainty [77, 78, 79].

One main limitation of integrating PI control in the design optimization in a dynamic formu-

lation is the increasing problem size and complexity. Kookos and Perkins (2001) [80] developed

an algorithm for the integrated PI control and design optimization problem, where the size of the

search space was reduced systematically in each successive iteration. Malcolm et al. (2007) [81]

proposed an “embedded control optimization” procedure, where the authors introduced a two-

stage decomposition scheme that approximates the complete integrated problem. The proposed

approach reduced the problem size and complexity, and was showcased on larger scale problems

including a reactor – separator system [82].

Apart from the inability to naturally handle MIMO systems, PI controllers do not explicitly

account for any process constraints stemming from operational, environmental, and safety limita-

tions. Model predictive control (MPC) overcomes these shortcomings by postulating a constrained

dynamic optimization problem subject to an explicit model of the process [83]. One of the first

remarkable efforts to integrate an MPC scheme in a nonlinear design problem was published by

Brengel and Seider (1992) [84]. Here, the authors postulate a bi-level optimization problem, where

the leader has an economic objective, while the follower is the MPC formulation, as presented by

Eq. 1.7.

12



min
des

Cdes
(
des
)

+ κCκ
(
x(t), y(t), u(t), des, θ(t)

)
s.t. fdes

(
des, θ(t)

)
= 0

gdes
(
des, θ(t)

)
≤ 0

min
u(t)

Cu
(
x(t), y(t), u(t), des, θ(t)

)
s.t. ẋ = fu

(
x(t), y(t), u(t), des, θ(t)

)
gu
(
x(t), y(t), u(t), des, θ(t)

)
= 0

hu
(
x(t), y(t), u(t), des, θ(t)

)
≤ 0

(1.7)

where κ is the design and control integration parameter that scales the trade-off between the con-

trollability of the system and the investment cost. The bi-level problem presented in Eq. 1.7 is

challenging to solve without appealing to simplifications. Therefore, the authors proposed replac-

ing the follower problem by complementary slackness equations. However, the solution strategy

was still intractable for more complex systems due to the numerical calculation of the second

derivatives [84]. As a consequence, integration of the MPC scheme in the design optimization

had been rather limited in the literature for almost a decade, until the invention of multiparametric

MPC (mpMPC/explicit MPC).

Bemporad et al. (2002) [85] proposed formulating the MPC problem as an explicit function

of the initial conditions of the system. This novel strategy allowed for deriving piecewise affine

explicit control laws by treating the initial conditions as parameters. The proposed approach for-

mulated the explicit MPC problem as presented by Eq. 1.8.
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ut(θ) = arg min
ut
‖xN‖2

P +
N−1∑
t=1

‖xt‖2
Q +

N−1∑
t=1

‖yt − yspt ‖2
QR +

M−1∑
t=0

‖ut − uspt ‖2
R +

M−1∑
t=0

‖∆ut‖2
R1

s.t. xt+1 = Axt +But + Cdt, yt = Dxt + Eut + Fdt

xt ≤ xt ≤ xt, y
t
≤ yt ≤ yt, ut ≤ ut ≤ ut, ∆ut ≤ ∆ut ≤ ∆ut, dt ≤ dt ≤ dt

θ = [xt=0, ut=−1, dt, y
sp
t , u

sp
t ]T

(1.8)

where N is the prediction horizon, M is the output horizon, superscript sp denotes set point, Q,

QR, R, and R1 are the corresponding weight matrices determined by tuning, P is calculated by

discrete algebraic Riccati equation, and ‖·‖ψ denotes weighted vector norm with a weight matrix

ψ. Different than conventional MPC, Eq. 1.8 formulates the optimal control problem exactly and

completely offline as a function of the set of parameters θ. The solution of this problem can be

determined by multiparametric programming techniques, which express the solution space as a

piecewise affine function, as presented by Eq. 1.9.

ut(θ) =Knθ + rn, ∀θ ∈ CRn

CRn :={θ ∈ Θ | CRAθ ≤ CRb}, ∀n ∈ {1, 2, ..., NC}
(1.9)

where CRn is refered as a critical region and it is the active polyhedral partition of the feasible

parameter space, Θ is a closed and bounded set, and NC is the number of critical regions.

The control law given by Eq. 1.9 reduces the complexity of solving an online optimization

problem to a simple look-up table algorithm (also known as point location problem) and function

evaluation, all of which are affine operations. Hence, the complexity of implementing an MPC

scheme is similar to that of a PI controller.

Sakizlis et al. (2003) [86] exploited the explicit nature of the mpMPC solution in the context

of design and control integration. The authors formulated a bi-level mixed integer dynamic opti-

mization problem similar to Eq. 1.7, where the leader accounted for the investment and operating

costs in the objective function subject to the dynamic high fidelity model, and the follower MPC
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problem was substituted by the affine control law Eq. 1.9. The proposed formulation offered an

elegant and systematic methodology to reduce the complexity of the bi-level Eq. 1.7 into a single

level dynamic optimization problem. However, the solution strategy still required repetitive lin-

earizations and solving a multiparametric programming problem at every iteration, which can be

restrictive for large scale complex problems. Diangelakis et al. (2017) [87] alleviated that limita-

tion by deriving a “design dependent offline controller”, which allowed for solving a single MIDO

problem after integrating the control law in the high fidelity model. Eliminating the linearization

step and formulating a single synergistic design and control problem also improved the economical

performance of the resulting process compared to the approach proposed by Sakizlis et al. (2003)

[86]. The proposed formulation was also showcased on a tank, a continuous stirred tank reactor,

and a residential scale combined heat and power unit. The cost effectiveness of the MPC integrated

optimal design was also reported to be superior than PI integrated approaches in the literature. Di-

angelakis and Pistikopoulos (2017) [88] reported that the mpMPC integrated optimal combined

heat and power unit operated more fuel efficient in closed loop than PI integrated design. Simi-

larly, Sanchez-Sanchez and Ricardez-Sandoval (2013) [89] showcased a system of CSTRs, where

the MPC integrated framework reduced both the operating and the investment costs compared to

the PI control integrated approach.

One common aspect of the studies on simultaneous design and control optimization is the as-

sumption that the process will be operated around the same steady-state point throughout the entire

life cycle of the plant. However, the external plant conditions, such as market conditions, may dic-

tate a considerably wider operating region with multiple steady state points [3]. The increasing

competition among the businesses impacts the volatility of the market, which creates rapid fluc-

tuations in the energy and raw material prices as well as their availability. Moreover, the demand

rate on the product is also subject to considerable variations during the plant operation. There-

fore, it is clear that there exists a “best” operating strategy under the knowledge available to the

operator, which necessitates the operability of the plant across a wider range. For example, high

production rates may be less profitable during the night time because of increased energy prices
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and hence, operating the energy intensive processes during the day time may reduce the operat-

ing costs. This indicates that the operating level of a processing unit might vary drastically by

the choice of the operator. However, the integrated design and control frameworks discussed in

this section usually assume a single operating point around which a controllability and flexibility

analysis is conducted. Consequently, these frameworks do not attempt to provide any means of

guaranteeing the operability of the process at different regions. In the next section, we will dis-

cuss several approaches that account for multiple operating regions in a plant, and their scheduling

during the operational optimization.

1.3 Towards the grand unification of process design, scheduling, and control

Process design, scheduling, and control problems are traditionally constructed to address dif-

ferent objectives and they span widely different time scales. In a nutshell, the plant design problem

dictates the capacity of processing and it usually comprises the most uncertainty due to its years

long life-cycle. The scheduling problem addresses the allocation of the resources and time, as well

as the operating level of processing units and their maintenance based on some economical criteria

over days/months long horizons. Lastly, the control problem maintains the performance of the

plant, while satisfying any physical limitations such as the environmental and safety constraints.

The discrepancy in the objectives and time scales creates a challenging problem to systematically

evaluate and determine the optimal trade-off between different decision makers.

Process scheduling is more critical in batch operations than continuous operations, as the for-

mer are inherently dynamically operated. Accordingly, the initial efforts focused primarily on the

batch processes for the integration of the operational optimization and design problems. Birewar

and Grossmann (1989) [90] formulated NLP models to incorporate the scheduling decisions in the

batch sizing and timing problem in a multiproduct plant for unlimited intermediate storage and zero

wait policies. Shah et al. (1992) [65] tackled a similar problem by using the STN representation.

White et al. (1996) [91] investigated the switchability of continuous processes between different

operating points through formulating an optimal control problem that accounts for the terminal

criteria and path constraints within a range of design parameters. Bhatia and Biegler (1996, 1997)
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[92, 93] formulated a dynamic optimization problem, where an economic objective function was

subject to a dynamic high fidelity model of the process described by differential algebraic system

of equations. The authors proposed a solution strategy based on discretizing the process model

by orthogonal collocation over finite elements, followed by solving the resulting NLP by using

a standard solver. The proposed modeling and solution strategy was shown to be promising to

satisfy the path constraints, which is a crucial benefit for dynamic systems. Terrazas-Moreno et al.

(2008) [4] extended this integration approach to account for the binary decisions in the scheduling

problem by formulating a MIDO. Similar to Bhatia and Biegler (1996, 1997) [92, 93], the authors

first discretized the problem by orthogonal collocation, followed by solving the resulting MINLP.

The early studies that explore the interactions between the scheduling and process control de-

cisions have a significant role in shaping today’s approaches for the integrated design optimization

problem. In their excellent review article, Baldea and Harjunkoski (2014) [94] classified these

attempts to integrate the scheduling and control decisions as (i) “top-down approaches”, where the

process dynamics and control elements are incorporated in a scheduling skeleton, and (ii) “bottom-

up approaches”, where the process economics are implemented in the plant-wide control decisions.

In terms of characterizing the transitions between different products in a single operating unit,

Mahadevan et al. (2002) [95] introduced a unique “top-down” perspective on the operational opti-

mization problem, revealing that a simultaneous approach on the scheduling and control problem

can identify and eliminate the fundamental limiting behavior during the transitions, as showcased

on a polymer grade transition process. However, the presented approach requires case specific

heuristic decisions to select the “best” fitting scheduling and control configuration and hence, it

is not suitable for different applications in the general sense. Chatzidoukas et al. (2003) [96]

studied a similar polymerization reactor, and formulated a MIDO problem to determine the time

optimal transition between different polymer grades and best performing control structure simul-

taneously. Flores-Tlacuahuac and Grossmann (2006) [97] introduced a monolithic approach on a

multiproduct cyclic CSTR, where the profit was maximized by manipulating the production se-

quence, transition times, production rates, length of processing times, and amounts manufactured

17



of each product. Different from the earlier studies [95, 96], the authors focused on the manipulated

actions rather than the optimal control configuration. They formulated a MIDO problem, which

was solved by discretization of the differential algebraic equations by orthogonal collocation on

finite elements followed by solving the resulting MINLP. The presented approach has been exten-

sively studied in the following years to broaden its scope and effectiveness. Terrazas-Moreno et al.

(2007) [98] applied this approach on two industrial polymerization reactors. Terrazas-Moreno et

al. (2008) [4] formulated a design optimization problem accounting for the scheduling and open

loop control trajectories using this approach. Flores-Tlacuahuac and Grossmann (2010, 2011) ex-

tended the formulation to partial differential equation systems, and showcased on tubular reactors

with single [99] and multiple production lines [100].

This monolithic approach usually generates open loop control trajectories, i.e. no feedback

loop is assumed to develop the input and output profiles. However, the processing units are subject

to internal process disturbances, and the mismatch between the process and the model leads to

deviations in the targeted operations. Zhuge and Ierapetritou (2012) [101] implemented the mono-

lithic approach in closed loop, where the authors initiate a readjustment procedure to solve the

integrated problem online if the states deviate from their reference trajectories. This approach does

not completely resolve issue of handling the process disturbances or the process/model mismatch,

however it was shown to mitigate these concerns to a great extent. Gutiérrez-Limón et al. (2014)

[102] also implemented a similar closed loop strategy with a nonlinear model predictive control

scheme, while extending the scope of the problem statement to account for an extended horizon

production policy. However, both approaches require solving a complex and large scale MINLP

problem at the time steps of the controller, which makes it unsuitable for the processes with fast

dynamics.

Low-order representation of fast process dynamics in the scheduling problem has been an ef-

fective approach to reduce the computational burden of solving complex optimization problems.

Du et al. (2015) [103] proposed a time scale-bridging model that describes the closed-loop in-

put–output behaviour of a process in the scheduling formulation, postulated as a MIDO problem.

18



The low-order representation also maintains the stability of the process in the existence of pro-

cess/model mismatch and handles disturbances. Baldea et al. (2015) [104] extended this approach

to MPC governed systems.

Burnak et al. (2018) [105] also addressed the online computational burden of “top-down”

approaches by developing a multiparametric programming based approach, where the authors ex-

plicitly mapped (i) the closed loop dynamic process behavior in a “control-aware” scheduling

problem, and (ii) the continuous and binary scheduling level decisions such as the operating level

and operational mode of the system in a “schedule-aware” MPC scheme (iii) to yield the optimal

operational decisions. The offline nature of the integrated scheduling and control scheme allows

for determining the feasible operating space prior to actualizing the operation. Furthermore, reduc-

ing the problem complexity from solving online optimization problems to a simple look-up table

and affine function evaluation, the framework is well-suited for fast process dynamics. Charitopou-

los et al. (2019) [106] employed a similar multiparametric programming approach to include the

planning decisions in their framework.

In the “bottom-up” approaches, on the other hand, incorporating the economical objectives in

the plant control structures has been perceived as the key for seamless integration of scheduling

and control. For this purpose, MPC formulations provide the flexibility to account for a spectrum

of objectives in the control level due to their optimization based structures. Loeblein and Perkins

(1999) [107] presented an economical analysis of unconstrained MPC scheme operating under

constrained systems. The authors determined the most cost effective model predictive regulatory

control structure by utilizing the back-off approach to satisfy the constraints. Zanin et al. (2002)

[108] addressed the discrepancy between the real-time optimization (RTO) and control layers by

incorporating the economic optimization problem in the controller and feeding the same piece of

information in both layers. The proposed formulation diminishes the discrepancy between the

decision layers to yield more economical operations, but the resulting control scheme does not

guarantee the stability of the process for the entirety of operations. Rawlings and Amrit (2009)

[109] developed asymptotic stability criteria by formulating the so-called “economic MPC” (or

19



EMPC), where the objective function of the MPC is designed to minimize the operational costs in-

stead of maintaining the steady state of the process. This approach aims to replace the conventional

two layer structure with RTO and dynamic regulatory control by a single control layer, where the

economic optimization and process regulation are conducted simultaneously. Amrit et al. (2011)

[110] further extended the stability criteria by (i) imposing a region constraint on the terminal state

instead of a point constraint, and (ii) adding a penalty on the terminal state to the regulator cost.

Similar to the monolithic “top-down” scheduling and control approach, EMPC has been shown

to be too complex to be solved in the control time steps. This limitation has led the researchers

to develop decomposition algorithms for faster computational times. Würth et al. (2011) [111]

proposed a decomposition framework for the single layer dynamic RTO formulation, where the

slow trends and process uncertainty is handled in the upper layer, while the lower layer accounts

for the fast disturbances actiong on the process. Ellis and Christofides (2014) [112] focused on

selecting a suitable input configuration for such two-layered dynamic RTO structures such that the

asymptotic stability is guaranteed. Jamaludin and Swartz (2017) [113] and Li and Swartz (2019)

[114] employed a convex MPC problem in the lower level regulatory control, which enabled its

exact substitution with KKT optimality conditions. Simkoff and Baldea (2019) [115] used the

same substitution strategy on a production scheduling problem.

Design optimization accounting for the scheduling and control decisions with closed loop im-

plementation is relatively recent in the literature. Patil et al. (2015) [5] modeled the product transi-

tions in design optimization, while maintaining the stability of the closed loop system governed by

a PI control scheme. The authors formulated an MINLP similar to Eq. 1.6 with the contribution of

the criterion, eig(Azi (xlin)) < 0, which enforces the stability of the linearized states for all products

i in a multiproduct unit under all critical scenarios z. Due to the linearization of the controllers

around the operating point, this approach requires repetitive identification of the states at every op-

timization iteration. Koller and Ricardez-Sandoval (2017) [6] improved this approach by applying

orthogonal collocation on finite elements on the integrated problem, and Koller et al. (2018) [7]

employed the back-off method to satisfy the constraints under uncertainty by using Monte Carlo
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sampling techniques to determine the back-off terms.

Recently, Burnak et al. (2019) [8] introduced a multiparametric programming based theory and

framework for the integration of process design, scheduling, and control, which will be detailed

in the remainder of this thesis. To summarize, we derive offline design dependent control and

scheduling schemes that can be incorporated in a MIDO formulation in a multi-level fashion, as

presented by Eq. 1.10.

min
u,s,des

∫ τ

0

C(x(t), y(t), u(t), s(t), des, d(t))dt

s.t. ẋ(t) = f(x(t), y(t), u(t), s(t), des, d(t), t)

y ≤ y(t) = g(x(t), y(t), u(t), s(t), des, d(t), t) ≤ y

x ≤ x(t) ≤ x, des ≤ des ≤ des, d ≤ d(t) ≤ d

st(θs) = arg min
s

∑
ts∈Ns

Cs(xts , yts , sts , des, dts)

s.t. xts ≤ xts+1 = Atsxts +Btssts + Ctsdts ≤ xts

y
ts
≤ yts = Dtsxts + Etssts + Ftsdts ≤ yts

sts ≤ sts ≤ sts , dts ≤ dts ≤ dts

θs ≤ θs = [xTts=0, y
T
ts=0, dts , des]

T ≤ θs

ut(θc) = arg min
c

∑
tc∈Nc

Cc(xtc , ytc , utc , des, dtc)

s.t. xtc ≤ xtc+1 = Atcxtc +Btcutc + Ctcdtc ≤ xtc

y
tc
≤ ytc = Dtcxtc + Etcutc + Ftcdtc ≤ ytc

utc ≤ utc ≤ utc , dtc ≤ dtc ≤ dtc

θc ≤ θc = [xTtc=0, y
T
tc=0, dtc , des]

T ≤ θc

(1.10)

where s and u denote the scheduling and control decisions, respectively. Note that the proposed

formulation postulates explicit expressions for the scheduling and control strategies as functions

of a set of parameters, θ, which includes the design of the process. The design dependence of the
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operational strategies allows for their direct integration in the MIDO formulation. The postulated

formulation has two main benefits, (i) due to the explicit form of the follower problems, the multi-

level MIDO problem is reduced to a single level, and (ii) only the design variables are left as the

degrees of freedom of the problem, since the remaining are determined as a function of the design.

1.4 Current challenges and future directions

The PSE community has achieved unequivocally remarkable progress in realizing and advanc-

ing the set goals of Professor Sargent on systematic design optimization in five decades. Today, us-

ing design optimization tools to at least some extent has long become the standard practice in many

industries. Commercial modeling and simulation software tools such as gPROMS2 and Aspen Plus

Dynamics3 have been featuring robust and efficient solvers for dynamic optimization problems for

a few years. Despite these milestones in PSE, we still have to make significant assumptions and

simplifications regarding the operational decisions in the process design phase, even though the

impact of their interdependence on process economics and operability has been articulated in nu-

merous studies. Hence, the academia still needs to mature the theoretical foundations and the

applicability of unified design optimization approaches before it gains wide industrial recognition.

Here, we discuss some of the bottlenecks and potential directions to improve the state-of-the-art

for industrial practice.

1.4.1 The need for an industrial benchmark problem

As we have presented in this paper, there is a plethora of proposed modeling techniques and

solution approaches for the next generation unified design optimization problems. Therefore, it is

clear that we need a generally accepted benchmark problem, preferably in industrial scale, to vali-

date the effectiveness of proposed methodologies. The PSE community has benefited greatly from

such standardized problems, such as the famous Tennessee Eastman Process detailed by Downs

and Vogel (1993) [116] for process control studies. We believe that a well-defined problem will

clarify the objectives in unified design optimization and accelerate the research towards industrial

2https://www.psenterprise.com/products/gproms
3https://www.aspentech.com/en/products/pages/aspen-plus-dynamics
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expectations. The problem should describe at least the following.

i. A high fidelity model that describes the dynamics of the process. The model should feature

appropriate design variables to exhibit the dynamic consequences of scaling up/down the

process. Furthermore, considering the reduction in capital investment that the multipurpose

and multiproduct operating units provide, the process should comprise such units to exam-

ine the scheduling/design and scheduling/control trade-offs. Recent research that consider

process design, scheduling, and closed loop control problems simultaneously [8, 5, 7] have

studied only a single processing unit, which reflects a limited fraction of the overall benefit

that the grand unification can provide.

ii. Cost relations for investment, utility, and raw materials. A functional form of the investment

cost with respect to the capacity of the process is required to have standardized comparable

results. Also, utility costs and raw materials may vary significantly, which inevitably impacts

the optimal scheduling decisions. For instance, grid electricity costs are known to exhibit

considerable differences during the day and night times. Thus, operational loads in energy

intensive processes may fluctuate heavily. The impact of such changes in operating levels on

design and control decisions were discussed in Section 1.2.

iii. Product demand and availability of the utility, raw materials, and operating units over a

time horizon. Production allocation and timing is a key aspect of scheduling problem, which

are heavily dictated by the product demand and availability of resources. However, it is not a

trivial practice to estimate the future of these quantities. Therefore, probability distributions

of these components will be beneficial to determine their expected values, while being able

to take into account their worst case scenarios.

1.4.2 Robust advanced control and scheduling strategies

Incorporation of advanced control schemes seamlessly in the design optimization problem re-

quires the controller to capture the dynamics of the process for the entire range of design variables.
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Burnak et al. (2019) [8] attempted to approximately model the design configuration as a right hand

uncertainty in the constraint set, validated by closed loop simulations and closed loop MIDO prob-

lems. However, the design variables impose uncertainty in the left hand side of the constraints,

as well as the nonlinear and bilinear terms in the objective function. Therefore, robust control

strategies need to be developed for accurate predictions of future states in the control level prior

to the realization of the design, and to guarantee the stability of the closed loop operations in

simultaneous approaches.

Analogously, scheduling schemes should be robustified in the design optimization to mini-

mize the rescheduling due to unexpected disruptive events, such as unit failure, drastic changes

in product demand rate and raw material availability. Excluding these events in the scheduling

scheme may result in steep changes in the target operation, and thus unattainable set points for the

controller.

1.4.3 Considering flowsheet optimization, process intensification, and modular design op-

portunities

Optimization based plant design techniques have been used and developed for more than

four decades [117, 118]. These techniques postulate “superstructures” that systematically sim-

ulate and compare every combination of flowsheet possibilities to determine the optimal pro-

cess. More recently, superstructures have been formulated at the phenomena level to capture

the fundamental relations between the mass and energy, which in turn yields intensified processes

[119, 120, 121, 122, 123, 124, 125]. Such intensified processes are expected to deliver significantly

increased operational efficiency and decreased unit volumes, making them very attractive options

both in academia and industry [126]. This rapidly growing interest in intensified processes is one

of the most pronounced directions that the PSE community has been taking. Therefore, study-

ing these intensified processes in the context of unified design optimization will attract a wider

audience from the industry. Clearly, modeling the spatial (synthesis/intensification) and temporal

(scheduling/control) decisions simultaneously in a single problem formulation will capture even

more synergistic interactions, which will increase the process profitability.
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Furthermore, the researchers studying process intensification can benefit from the tools and

methodologies on unification of design, scheduling, and control. Baldea (2015) [127] reported a

theoretical justification for the loss of control degrees of freedom due to process intensification,

which poses a significant limitation on intensification activities. Tian and Pistikopoulos (2019)

[128] and Dias and Ierapetritou (2019) [129] discuss the limitations on the operability of such

intensified systems and potential directions to overcome these limitations in their excellent review

papers. The researchers on process intensification technologies can adopt the techniques, ranging

from steady state and dynamic flexibility to integration of scheduling and control decisions, in

order to address the operability issues.

1.4.4 Theoretical and algorithmic developments in MIDO

The most limiting bottleneck of the simultaneous approaches is the size of the integrated MIDO

problems. The time component of the problem significantly increases the computational complex-

ity, yielding infinitely many NP-hard problems to acquire an optimal solution profile. However,

tailored algorithms can be developed by utilizing the special structure of such integrated problems.

For instance, the open loop design optimization problem is relatively simpler than the integrated

MIDO, and constitutes a lower bound on the optimal solution of the overall problem. Such prop-

erties can be exploited in decomposing the MIDO into subproblems to significantly reduce the

search space for faster algorithms.

1.4.5 Software development

Despite the theoretical and practical advances in the unified design problem among the academia,

there is no commercially available platform or a software prototype. Such a tool will make the in-

tegrated approaches more accessible to the process designers in industry who are not necessarily

experts on process control and scheduling, and it will attract more researchers from different disci-

plines and backgrounds. Pistikopoulos et al. (2015) [130] introduced the PARametric Optimization

& Control (PAROC) framework to design explicit controllers based on high fidelity models, which

can be a viable option to address the grand unification challenge [8, 105, 131, 2, 88]. However, it
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is clear that more progress is needed to engage a wider audience.

1.5 Scopse of this study

In this thesis, we consider a generic process where the interactions between the design (long

term decision), schedule (middle term decision), and control (short term decision) problems are

sufficiently significant to impact the feasibility and the optimality of each individual decision.

Therefore, we define the following problem statement that encapsulates all three decisions simul-

taneously.

(i) Given: A high fidelity model based on first principles or data-driven modeling techniques

that accurately captures the dynamics of the system, any physical limitations of the system

due to process safety considerations or product specifications, unit costs for design, raw

material, energy, and inventory, revenue for unit product, and an accurate demand forecast.

(ii) Determine: Production sequence throughout an operating horizon, closed loop control strat-

egy that delivers the product specifications, set points for the operation tailored for the dy-

namics of the closed loop strategy, size of the processing equipment that ensures operability

of the process.

(iii) Objective: Minimize the operating and capital costs.

Note that the objective of the problem can be replaced by the minimization of the energy uti-

lization, CO2 emissions, processing time, or a combination of these tasks based on the application

without changing the framework. In this work, we showcase the minimization of costs as it is the

most frequently used objective in process operations.

The generalized mathematical formulation of the defined problem statement is given by Eq.

1.11 in the form of a mixed-integer dynamic optimization problem [8].
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min
u,s,des

J =

∫ τ

0

P (x, y, u, s, des, d)dt

s.t. ẋ = f(x, u, s, des, d), x(0) = x0

y ≤ y = g(x, u, s, des, d) ≤ y

u ≤ u = h(x, u, s, des, d) ≤ u

s ≤ s = m(x, u, s, des, d) ≤ s

x ≤ x ≤ x, des ≤ des ≤ des, d ≤ d ≤ d

(1.11)

where x are the states of the system, y are the system outputs, u are the control actions, s are the

scheduling decisions, des are the design variables, and d are the measured disturbances, P is the

cost function accounting for the operating and capital costs, f and g are differential and algebraic

relations, h and m are the implicit relations that describe the operational decisions, and lower and

upper bars are the bounds on the variables. We also differentiate the disturbances at the control

level, dc ⊆ d, such as the variations in the feed conditions, and the disturbances at the scheduling

level, ds ⊆ d, such as the fluctuating market prices and demand rates. Note that discrete design

and scheduling decisions such as the number of trays in a distillation column, the product to be

manufactured at a particular time instance, and resource allocation render Problem 1.11 a mixed-

integer optimization problem.

The problem statement defined in Eq. 1.11 suggests that the high fidelity model given by f

and g, the cost function P , the bounds on the variables are known, and a realistic demand scenario

is available. The goal is to minimize the objective P over a time horizon τ by manipulating the

degrees of freedom of the system available in the long term (des), middle term (s), and short term

(c).

1.6 Research objectives and thesis outline

The general formulation presented by Eq. 1.11 is typically a large scale, non-convex dynamic

optimization problem with integer variables, and is challenging to solve even for small scale prob-

lems comprising a single processing unit. Therefore, the objectives of this work to advance the
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current knowledge on integration of multi-scale decisions are listed as follows.

Objective I Develop a process agnostic and synergistic framework to integrate the process design,

scheduling, and control problems based on a single high-fidelity model. This goal requires

a tractable form of the integrated process design, scheduling, and control problem, i.e. Eq.

1.11. Furthermore, addressing the operability of the process is another challenge, since the

“optimal” profile determined by solving Eq. 1.11 without the consideration of the scheduling

and control decisions may not be a viable path during the online implementation. Here,

multiparametric programming is vital with its ability to map the optimal receding horizon

policies explicitly, which can be embedded exactly in the generalized MIDO formulation.

Objective II Investigate the interactions between the process design and control problems un-

der a single operating window. Based on their inherent relationship, (i) develop a single

optimal control strategy that is applicable under a range of design configurations, and (ii)

determine the optimal process design considering the closed-loop dynamics introduced by

the controller.

Objective III Investigate the interactions between the scheduling and control problems for a given

design configuration. Develop (i) a single optimal control strategy that is applicable under

a range of operating regions, and (ii) a scheduling strategy that is aware of the closed-loop

dynamics of the system.

Objective IV Develop an modeling technique and optimization approach to efficiently incorporate

the operational strategies in an MIDO formulation. Such an approach is especially vital for

the integration of decisions in batch processes, where the inherently dynamic systems and

the high number of discrete decisions increase the problem complexity compared to the

continuous processes.

Objective V Develop an algorithm to solve large scale multiparametric programming problems,

which is an inevitable result of integrating the control and scheduling problems in a single

formulation.
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2. INTEGRATION OF PROCESS DESIGN AND CONTROL1

2.1 Introduction

Traditionally, chemical plants have been designed with sequential assessment of the process

design based on the steady state economics, followed by a heuristically tuned control strategy to

govern the real-time operations around the designated steady-state. The independent characteriza-

tion of these two aspects (i) hinders the feedback controllers to respond better to disturbances and

process uncertainty, and (ii) results in overdesigned process equipments which directly increase

the capital costs, and impact the operating costs [132].

Considering the strong interactions between the design and control problems, a plethora of

approaches has been proposed in the past three decades. An indicative list of the contributions

proposed on the literature is provided in Table 2.1 [8]. The earlier approaches primarily focus on

developing a priori metrics for the reliability of the steady state design under process disturbances

and uncertainties based on feasibility, flexibility, stability, and controllability of the system. The

advances in computational power and mathematical programming techniques has shifted the recent

studies in the direction of simultaneous consideration of the control strategy during the process

design phase [88].

In this chapter, a process agnostic framework is presented to simultaneously address the pro-

cess design and control problems via multiparametric programming. A design dependent control

strategy is developed by using the PARametric Optimization and Control (PAROC) framework

[130] to derive an offline map of control actions as an explicit function of the design variables.

The offline map allows for direct implementation of the control strategy in the design optimiza-

tion problem. The integrated problem corresponds to an MIDO, given by Eq. 1.11, where the

scheduling decisions s are assumed to be constant.

1Portions of this chapter have been adapted from Diangelakis, N.A., Burnak, B., Katz, J., Pistikopoulos, E.N.,
Process Design and Control optimization: A simultaneous approach by multi-parametric programming, AIChE Journal
2017, 63 (11), pp. 4827-4846 and Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N., Integrated process
design, scheduling, and control using multiparametric programming, Computers & Chemical Engineering 2019, 125,
pp. 164-184, Special Issue, with permission from Elsevier.
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Table 2.1: Design and control in the literature: An indicative list (Reprinted with permission from
[88]).

Author (year) Contribution
Perkins & co-workers (1991) [60], Kravaris & co-workers

(1993) [133, 134], Pistikopoulos & co-workers (1994,
1997) [135, 37], Floudas & co-workers (1994, 2000, 2001)
[70, 136, 137], Romagnoli & co-workers (1997) [138],
Skogestad & co-workers (2014) [139], Gani & co-workers
(1995) [140], Francisco & co-workers (2014) [141]

Feasibility, flexibility, sta-
bility, controllibility,
resilience metrics in
steady-state design op-
timization with MIDO
or MINLP

Pistikopoulos & co-workers (2000, 2002, 2003a, 2003b, 2004)
[72, 142, 143, 144, 145, 86, 146], Linninger & co-workers
(2007) [81], Swartz & co-workers (2014) [147], Ricardez-
Sandoval (2012) [148]

Integrated MIDO formu-
lation/ decomposition
with PID control or
(mp)MPC

Biegler & co-workers (2007, 2008) [149, 150], Seider & co-
workers (1992) [84], Ricardez-Sandoval & co-workers
(2008, 2016, 2017)[73, 77, 78], Pistikopoulos & co-workers
(1996) [36], Perkins & co-workers (2002, 2016) [151, 76],
Flores-Tlacuahuac & co-workers (2009) [152], Barton &
co-workers (2011, 2015) [153, 154, 155], Linninger & co-
workers (2006) [156]

Iterative MINLP formu-
lation with stochastic
back-off formulation
for uncertainty

Francisco & co-workers (2014) [157], Ricardez-Sandoval & co-
workers (2009, 2011) [132, 158], Gani & co-workers (2012)
[159], Mitsos & co-workers (2014) [160]

Review articles on design
and control integration
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The remainder of this chapter is organized as follows. In Section 2.2, the PAROC framework,

its utilization to derive design-dependent controllers, and the formulation of the integrated MIDO

problem are discussed in detail. An example comprising a binary distillation column is presented

to showcase the introduced framework in Section 2.3. Finally, the conclusions are summarized in

Section 2.4.

2.2 Simultaneous design and control optimization via PAROC

The PAROC framework and software platform provides a comprehensive environment to de-

sign chemical processes, to build advanced controllers, and to perform parameter estimation based

on high-fidelity models benefiting from the most recent advances in the filed of multiparamet-

ric prgramming [130]. The first step of the proposed methodology is to acquire a mathematical

"high-fidelity" model to describe the system of interest with sufficient accuracy. These models

are typically very large in size and complex in nature, rendering it difficult to directly apply an

advanced control strategy. Therefore, the original mathematical model is approximated or reduced

in size via the existing algorithms in the literature. Note that the design variables should be main-

tained in the lower dimensional model to lay the foundation of a design dependent controller. A

model predictive control (MPC) scheme is constructed using the approximate model, and solved

multiparametrically (mpMPC) to generate offline maps of optimal control actions as a function of

the design variables. The developed design dependent explicit expressions for the optimal control

actions are embedded exactly in the dynamic high-fidelity model, allowing for a dynamic opti-

mization problem to be formulated to determine the optimal design configuration and the control

strategy simultaneously. The steps of the framework are illustrated in Figure 2.1, and detailed as

follows.

Step 1 – High-fidelity dynamic modeling: A rigorous mathematical model based on first

principles, typically differential algebraic equations (DAE) or partial differential algebraic equa-

tions (PDAE), is used to simulate the dynamics of the system. In this work, we use the gPROMS R©

environment to construct the model, as described with a general representation in Eq. 2.1.
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Figure 2.1: The PAROC framework approach for simultaneous design and control. Actions within
the gray area happen once and offline (Reprinted with permission from [88]).

ẋ(t) = f(x(t), u(t), d(t), des, t)

y(t) = g(x(t), u(t), d(t), des, t)

(2.1)

where x are the states, u are the manipulated variables, d are the external disturbances, des are the

design variables, t is independent time variable, y are the system outputs, and f and g are generic

functions.

Step 2 – Model approximation: The high-fidelity model designed in Step 1 usually comprises

highly nonlinear and non-convex terms that renders the practice of advanced control algorithms

quite challenging. Therefore, we appeal to system identification or model reduction techniques to

approximate the model formulation with a discrete time affine state space representation. In this

work, the model approximation is performed via the MATLAB R© System Identification ToolboxTM

yielding the state space representation in Eq. 2.2. Note that the system identification techniques

may or may not preserve the physical meanings of the original states in Eq. 2.1.
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xtc+1 = A xtc +B utc + C [dTtc , des
T
tc ]
T

ŷtc = D xtc + E utc + F [dTtc , des
T
tc ]
T

(2.2)

where A, B, C, D, E, and F are matrices with appropriate dimensions, ŷ are the outputs predicted

by the controller, and tc is the discretization step of the state space model. Addressing the plant-

model mismatch in the control problem will be addressed in the following step.

Note that the design variables are treated as a disturbance and thus, cannot be manipulated in

the state space model. Inclusion of the design variables is vital to represent the range of dynamics

of the system of interest in the control strategy.

Step 3 – Multiparametric model predictive control (mpMPC): The design of the feedback

controllers is based on the procedure described by Bemporad et al., (2002) [85]. The generalized

form of the mpMPC problem is described by Eq. 2.3.

utc(θ) = arg min
utc

‖xNc‖2
P +

Nc−1∑
tc=1

‖xtc‖2
Q +

Nc−1∑
tc=1

‖ytc − ySPtc ‖
2
QR

+
Mc−1∑
tc=0

‖utc − uSPtc ‖
2
R +

Mc−1∑
tc=0

‖∆utc‖2
R1

s.t. xtc+1 = Axtc +Butc + C[dTtc , des
T ]T

ŷtc = Dxtc + Eutc + F [dTtc , des
T ]T

ytc = ŷtc + e

e = ytc=0 − ŷtc=0

x ≤ xtc ≤ x, y ≤ ytc ≤ y

u ≤ utc ≤ u, ∆u ≤ ∆utc ≤ ∆u

θ = [xTtc=0, u
T
tc=−1, d

T
tc=0, des

T ]T

∀tc ∈ {0, 1, ..., Nc − 1}

(2.3)

where θ is the set of bounded parameters, Nc is the output horizon, Mc is the control horizon, ‖·‖Ψ

denotes weighted vector norm with a weight matrix Ψ, SP denotes set point, P , Q, QR, R, R1
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are the corresponding weight matrices. An error term e denotes the mismatch between the actual

system output and the predicted output at initial time.

The resulting multiparametric programming problem is solved via the POP toolbox [161] in

the MATLAB environment, yielding the explicit map of optimal control actions as a function of

the design variables, as given by Eq. 2.4.

uj(θ) = Knθ + rn,∀θ ∈ CRn (2.4a)

θ :=
[
xTtc=0, u

T
tc=−1, d

T
tc=0, des

T , (ySPtc )T , (uSPtc )T , yTtc=0

]T (2.4b)

∀j ∈ {0, 1, ...,Mc},∀tc ∈ {0, 1, ..., Nc} (2.4c)

where an arbitrary nth critical region CRn is defined as a closed polyhedron given by CRn :=

{θ ∈ Θ | Lnθ ≤ bn}. Equation 2.4 defines a piece-wise affine optimal control law over the param-

eter space comprising the states xtc=0, control action at the previous time step utc=−1, measured

external disturbance dtc=0, design variables des, output set points ySPtc , input trajectories uSPtc , and

output measurements ytc=0.

Remark 1. Inclusion of the design variables in the optimal control law allows for the use of a

single control strategy across a range of design configurations.

Step 4 – Closed loop validation: The derived control law, Eq. 2.4 is validated against the

dynamic high fidelity model Eq. 2.1 within the bounds of design variables. Here, the control

law is expected to deliver satisfactory performance by (i) achieving effective set point tracking,

(ii) satisfying the path constraints, and (iii) maintaining stability. If the controller fails to deliver

sufficient performance, either the weight matrices in Eq. 2.3 are tuned accordingly, or the model

approximation step is revisited to develop a more accurate open loop low order model.

Step 5 – Dynamic optimization: The optimal control law, i.e. Eq. 2.4, is embedded in the

generalized MIDO formulation for the design optimization problem2. The exact implementation of
2The scheduling actions are assumed to be constant in Eq. 1.11 for this particular class of problem, as previously
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Figure 2.2: Schematic representation of the simultaneous design MIDO with embedded mpMPC.
The area within the dashed line represents the MIDO problem (Reprinted with permission from
[88]).

the control strategy allows for the simultaneous consideration of the design and control problems.

The flow of information to solve the resulting MIDO problem is illustrated in Figure 2.2.

The following section showcases the described framework on a binary distillation column.

2.3 Case Study – A binary distillation column

The distillation column model describes a binary separation process of benzene and toluene.

The column is allowed a maximum number of trays to be 30 with no restriction on feed tray

location. The purity in the top has a desired set point of 0.98 and the purity in the bottom has a

desired setpoint of 0.02. The feed composition is assumed sinusoidal.

2.3.1 High-Fidelity dynamic modeling

The distillation column utilizes mass and energy balances and thermodynamic relations to build

the full model. It has been assumed that (i) the energy dynamics are fast compared to mass transfer

dynamics, (ii) relative volatility is constant throughout the column, (iii) molar holdup is constant

in the condenser, (iv) the system responds immediately to the changes in pressure.

mentioned in Section 2.1.
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Table 2.2: Characteristic equations for a binary distillation column. Component i is benzene, tray
number is k ∈ {1...Ntrays} unless stated otherwise (Reprinted with permission from [88]).

Description Equation
Component mass balance dMi,k

dt
= Lk+1xi,k+1 + Vk−1yi,k−1 + Fkzi,f + Rkxi,D −

Lkxi,k − Vkyi,k, ∀k ∈ {2...Ntrays− 1}
Total mass balance dMk

dt
= Lk+1 + Vk−1 + Fk + Rk − Lk − Vk, ∀k ∈

{2...Ntrays− 1}
Vapor molar flow rate Vk = Vk−1 = VB, ∀k ∈ {2...Ntrays− 1}
Hold-up V olk = Mk

ρLmix,k

Liquid level Levelk =
L
2/3
k

1.84ρLmix,kLweir
+Hweir

Tray area Atray = 0.8πD2
c

4

Weir length Lweir = 0.77Dc

Reboiler vapor liquid equilibrium 1 =
P 0
benz,Bxi,B+P 0

tol,B(1−xi,B)

P

Condenser vapor liquid equilibrium 1 = P (
xi,D

P 0
benz,D

+
1−xi,D
P 0
tol,D

)

Relative volatility
α =

√
P 0
benz,DP

0
benz,B

P 0
tol,D

P 0
tol,B

yi,k =
αxi,k

1+xi,k(α−1)

Reboiler and reflux drum molar
balance

dMi,B

dt
= L1xi,1 −Bxi,B − VByi,B

MB =
Mi,B

xi,B
dMi,D

dt
= VNtrays(yi,Ntrays − xi,D)

MD =
Mi,D

xi,D

Reboiler and reflux drum energy
balance

0 = L1 −B − VB
0 = VD − ΣRk −D

The complete model of the binary distillation column is adapted from Sakizlis et al., (2003)

[86], and the characteristic equations of the model are presented in Table 2.2.

Mass balances for each tray, reboiler, and condenser are used while assuming constant molar

hold up in the total condenser. Energy balances are used in the reboiler and condenser assuming

an average temperature throughout the column. Relative volatility is used to determine vapor and

liquid correlations in each tray and in the reboiler. The model assumes the reflux flow rate and the

boilup rate to be the controllable variables in the system, and the molar hold ups to be the states of

the system. Column diameter, reflux tray position, and feed tray position are the design variables,

while the presence and position of the reboiler and condenser are fixed. Density of the liquid hold
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up on the trays is assumed to follow from a linear combination of the component densities.

Antoine equations were used to determine vapor pressures at the top and bottom of the dis-

tillation column and the log-mean temperature approach was used for the heat exchange at the

condenser and the reboiler. The distillation column is a multiple input multiple output (MIMO)

system where the reflux flow rate and vapor flow rate are the degrees of freedom to the system,

and the purity in the top and bottom is the output. The composition at the feed is treated as a

disturbance to the system operation.

2.3.2 Model approximation

The high fidelity model of the distillation column consists of 52 states and nonlinear equations.

Random sets of input/output data for different designs from the high fidelity model are introduced

into the System Identification Toolbox in MATLAB R© to acquire a linear state-space model of the

form of Eq. 2.2. The identified state-space model is shown in Eq. 2.5.

xtc+1 =

0.9533 −0.05507

0.0264 0.5494

 xtc +

−0.01609 −0.01346

−0.1129 0.08987

 utc+

−0.1257 −9.703 · 10−5 −4.163 · 10−4

−1.005 7.184 · 10−4 −5.874 · 10−5


dtc
des


ŷtc =

−0.2357 −0.354

0.1098 −0.4719

 xtc

tc = 1s

(2.5)

where xtc are the identified states, utc are the reflux flow rate and the vapor rate, dtc is the

composition of the feed and des is the feed and reflux tray location. The performance of the

approximate model to capture the dynamics of the high-fidelity model is presented by Figures 2.3

and 2.4, where the step and impulse responses of the approximate model is demonstrated. Note

that the column diameter is correlated to the minimum vapor flow rate and therefore is the design

decision of the system (See Eq. 2.6). The number of trays, and the location of the feed tray are
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Figure 2.3: Step response of the approximate model for the binary distillation column example
(Reprinted with permission from [88]).

also accounted for as design decisions, however addressing these integer variables is discussed in

the following subsection.

2.3.3 Design dependent mpMPC

The problem formulation of the control strategy is based on Eq. 2.3 and the tuning of the

controller is presented in Table 2.3. Note that since the vapor flow rate is limited by the column

diameter as presented in Eq. 2.6, the mpMPC is modified to account for the square of the column

diameter as a design parameter. Note that since the column diameter is always greater than zero and

it does not appear anywhere else within the mpMPC formulation we can define a new parameter

p = D2
c which renders Eq. 2.6 a linear inequality constraint.

0.4514 · VB ≤ D2
c

(2.6)

The integer parameters corresponding to the tray locations are reformulated into binary param-

eters and solved based on the algorithm presented in [162]. An alternative formulation could be

the treatment of integer parameters as continuous parameters (similar to handling binary variables

in [163]) since the integer value realization of the parameter is a subset of their continuous values
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Figure 2.4: Impulse response of the approximate model for the binary distillation column example
(Reprinted with permission from [88]).

Table 2.3: Weight tuning for the mpMPC of the distillation column (Reprinted with permission
from [88]).

MPC design parameters Value
Nc 3
Mc 1

QRk,∀k ∈ {1, ...,N}
[
107 0
0 107

]
Rk,∀k ∈ {1, ...,M}

[
10−2 0

0 10−2

]
x

[
−103 −103

]T
x

[
103 103

]T
u

[
2 3

]T
u

[
4.7 7

]T
y

[
0 0

]T
y

[
1 1

]T
d

[
0.45 1 1

]T
d

[
0.5 30 30

]T
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and the realization is not an mpMPC decision.

The objective of the design dependent controller is to maintain the purity set points for the

top and bottom product at 98% vol and 2% vol regardless of the disturbance at the inlet of the

system. Deviations from the desired set points are allowed but penalized in the design optimization

formulation.

2.3.4 Closed loop validation

The developed control strategy is validated against the high-fidelity model, under a range of

design realizations. Figure 2.5 shows the closed loop profile for an arbitrary design configuration.

It is observed that the controller is (i) able to track a set point, (ii) satisfies the path constraints, and

(iii) maintains the stability of the system under external process disturbances.

2.3.5 Dynamic optimization

The dynamic optimization is formulated with the explicit map of optimal control strategy and

solved allowing for the optimizer to select the optimal value for the area of the condenser, area of

the reboiler, reflux tray location, feed tray location, and diameter of the column. To account for

the reflux and feed tray location changing additional equations were added or modified as seen in

Table 2.4.

Allowing the dynamic optimization to run over a time span of 1 hour, the results obtained

are presented in Table 2.5. It can be seen that by utilizing the simultaneous design and control

approach presented here, a distillation column with a smaller annualized total cost is designed.

2.4 Conclusions

In this chapter, an integrated framework was presented for the application of process design

and control optimization via multiparametric programming. Explicit expressions were developed

for the design dependent optimal control actions, which allowed for using a single offline control

strategy to be employed under a range of design configurations. The design and control problems

were then simultaneously solved by incorporating the map of design dependent control strategy in

the design optimization problem and the solving the integrated MIDO. The presented framework
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Figure 2.5: Closed loop validation of the control strategy against the high-fidelity model. The ar-
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Table 2.4: Additional/Modified equations for dynamic optimization. Component i is benzene, tray
number is k ∈ {1...Ntrays} unless stated otherwise (Reprinted with permission from [88]).

Description Equation
Feed tray location Fk = Fδfk ,

∑Ntrays
k=1 δfk = 1

Reflux tray location Rk = Rδrk,
∑Ntrays

k=1 δrk = 1

Feed tray location only below reflux δfk −
∑Ntrays

k′=k δrk′ ≤ 0

Component mass balance (
∑Ntrays

k′=k δrk′)
dMi,k

dt
= Lk+1xi,k+1 + Vk−1yi,k−1 +

Fkzi,f + Rkxi,d − Lkxi,k − Vkyi,k, ∀k ∈
{2.., Ntrays− 1}

Total mass balance (
∑Ntrays

k′=k δrk′)
dMk

dt
= Lk+1 + Vk−1 + Fk + Rk −

Lk − Vk, ∀k ∈ {2.., Ntrays− 1}
Reboiler cost Creb = 0.6 · 101.3M&S

280
( 104AR

144·2.542
)0.65 · 3.22 · 1.35

Total cost TotalCost = OpCost + 1
3
(Ccolumn + Creb +

Ccond)

Table 2.5: Results of the current approach and comparison against Sakizlis et al. (2003) [86]
(Reprinted with permission from [88]).

Current Approach Comparison against Sakizlis et al. [86]
Condenser Area [m2] 120 132
Reboiler Area [m2] 266 276
Diameter of Column [m] 1.62 1.65
Reflux Tray 25 25
Feed Tray 12 12
Total Cost [k$] 590 620
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was showcased on a binary distillation column, and a comparison was made with a previously in-

troduced integration methodology. The comparison revealed that the recently proposed framework

yielded lower operating and capital costs.

Although the presented framework was shown to be effective to integrate the design and control

problems, its applicability is limited with the operations where the operating region is limited

and known prior to the realization of the process. For instance in the binary distillation column

example, we knew a priori that the product purities would be around 98%. However, the optimal

operating region is typically an economical decision that needs to account for the state of the

system along with the market conditions, including the raw material and utility costs, demand on

the products, availability of the process equipment. Therefore in the next chapter, the proposed

framework will be modified to account for the scheduling level decisions.
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3. INTEGRATION OF PROCESS SCHEDULING AND CONTROL1

3.1 Introduction

Production scheduling and process control are two layers in the process operations that are

highly dependent due to the volume of reciprocal information flow. Typically, the process schedule

coordinates the production sequence, production times, and inventory levels based on the market

dynamics. Process control, on the other hand, delivers the production targets with the existence of

operational uncertainty, measured/unmeasured process disturbances, and plant-model mismatch.

These layers are typically addressed independently and sequentially due to the hierarchical nature

of the underlying problems. The isolation between the decisions from different layers can result in

suboptimal, or even infeasible operations [164, 94].

Individual assessment of the scheduling and control problems requires assumptions that ne-

glect the dynamics introduced by their complements. The scheduling problem utilizes static tables

comprising the process time constants for the transitions between the operating modes of the sys-

tem. These time constants are typically obtained by exhaustive closed-loop simulations conducted

offline. Consequently, the static tables fail to represent the closed-loop dynamics of the system due

to the lack of an underlying high-fidelity model [103, 97].

A simultaneous approach for process scheduling and control reconstructs the two problems as

a unified problem. The reformulated problem takes into account the degrees of freedom of the two

subproblems simultaneously, leading to an augmented feasible space. This allows the chemical

plant to respond to rapidly changing market conditions while maintaining feasible and profitable

operation. These changes include but are not limited to the market demand, price, and the spec-

trum and specifications regarding the products manufactured in the chemical plant. Furthermore,

fluctuating operating costs require flexibility in the process scheduling [94]. Therefore, a chemical

1Portions of this chapter have been adapted with permission from Burnak, B., Katz, J., Diangelakis, N.A., Pis-
tikopoulos, E.N., Simultaneous Process Scheduling and Control: A Multiparametric Programming-Based Approach,
Industrial & Engineering Chemistry Research 2018, 57, pp. 3963-3976. Copyright (2018) American Chemical Soci-
ety.
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Table 3.1: Scheduling and control in the literature: An indicative list (Reprinted with permission
from [105]).

Author (year) Contribution
Grossmann & co-workers (2006, 2007, 2010, 2011, 2012, 2014)

[97, 98, 99, 100, 166, 167], Gudi & co-workers (2010) [168],
Biegler & co-workers (2012, 2014) [169, 170], Espuña & co-
workers (2013) [171], You & co-workers (2013) [172], Baldea &
co-workers (2016, 2018) [173, 174]

Decomposition of
MIDO or MINLP
and open loop
optimal control

Allcock & co-workers (2002) [95], Pistikopoulos & co-workers (2003)
[96], Ierapetritou & co-workers (2012) [101], You & co-workers
(2012) [175], Baldea & co-workers (2015, 2018) [103, 176]

Formulation/ De-
composition of
MIDO schedule
with PID control

Ierapetritou & co-workers (2014, 2018) [177, 178], Christofides & co-
workers (2014a, 2014b, 2015, 2017) [112, 179, 180, 181], Baldea
& co-workers (2015, 2018) [104, 178], Swartz & co-workers
(2017) [113], Pistikopoulos & co-workers (2017, 2018) [131, 105],
Dua & co-workers (2019) [106], Hedengren & co-workers (2018)
[182]

(mp)MPC imple-
mentation in eco-
nomic receding
horizon policies

Puigjaner & co-workers (1995) [183], Marquardt & co-workers (2011)
[111], Rawlings & co-workers (2011, 2012, 2013) [110, 184, 185],
Pistikopoulos & co-workers (2013, 2014) [186, 187], Baldea &
co-workers (2014) [188], Liu & co-workers (2016) [189]

Control theory/ Eco-
nomic MPC in
scheduling prob-
lems

Reklaitis & co-workers (1996) [190], Grossmann (2005) [1], Har-
junkoski & co-workers (2009) [165], Engell & Harjunkoski (2012)
[164], Baldea & co-workers (2014) [94], Christofides & co-
workers (2014) [191], You & co-workers (2015) [192], Ierapetritou
& co-workers (2016, 2017) [193, 194]

Review articles on
scheduling and
control integra-
tion

process needs integrated decisions that enable higher adaptability and operability to remain com-

petitive in the market [165]. There have been some attempts over the years to tackle the two aspects

of operational optimization in an integrated framework. An indicative list of these contributions is

presented in Table 3.1.

Over two decades of academic literature on integrated approaches for the process scheduling

and control problem has focused on a systematic methodology to overcome the following funda-

mental challenges [104]:

(i) Discrepancies in objectives: The schedule and control formulations are designed to deliver
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specialized tasks in a process. The former aims to bring profitable operation by taking into

account the operational aspects such as the process economics, raw material and equipment

availability, and product specifications; while the latter involves real-time manipulation of

select process variables to meet the targeted product specifications. These scheduling and

control goals are not always aligned and frequently require the compromise of one of their

respective objectives.

(ii) Discrepancies in time-scales: A typical control horizon varies between seconds and minutes,

whereas the scheduling horizon is on the order of hours or weeks. Therefore, integration of

the two distinct problems into a unified formulation creates a large scale, stiff system due

to the order of magnitude differences in their respective time scales [104, 103]. Follow-

ing direct solution approaches for the reformulated unified problem have been shown to be

computationally intractable [170].

In this chapter, a surrogate model formulation is presented to bridge the inherent gap between

the schedule and control formulations. The surrogate model is designed to translate the fast closed-

loop dynamics to the slower scheduling dynamics, while providing corrective time varying tar-

gets for the controller. We utilize the reactive scheduling approach introduced by Subramanian

et al. [184], and adapted in a multiparametric framework by Kopanos and Pistikopoulos [187],

formulating a state-space representation that is implemented in a rolling horizon framework. This

formulation is solved once and offline via multiparametric programming techniques, deriving op-

timal scheduling decisions as affine functions of the product demand scenarios. The derivation

of the controllers, on the other hand, is adapted from the PAROC framework [130], which pro-

vides a systematic methodology to design advanced model-based controllers via multiparametric

programming.

The remainder of the chapter is organized as follows. In Section 3.2 derivation of a control-

aware scheduler, and a schedule-aware controller using the PAROC framework is introduced. In

Section 3.3, a CSTR example with a three raw materials and three products is presented to show-

case the framework, and the example is generalized to multiple CSTRs operating in parallel. Fi-
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Figure 3.1: Derivation of the scheduling scheme. Actions within the gray area happen once and
offline (Reprinted with permission from [105]).

nally, the conclusions are summarized in Section 3.4.

3.2 Simultaneous scheduling and control via PAROC

The objective and the function of the PAROC framework and software prototype has been pre-

viously introduced in Chapter 2, where the integrated design and control optimization has been

addressed. Here, we demonstrate the applicability of the framework on the simultaneous schedul-

ing and control problem.

First, we derive an offline schedule-aware control strategy that is applicable under distinctly

separate range of process conditions. This offline strategy is embedded into the original mathemat-

ical model, and a control-aware approximate model is derived to describe the closed-loop behavior

of the system. The resulting model is used to generate offline maps of (i) long term decisions

regarding the operational feasibility and profitability and (ii) a surrogate model to bridge the gap

between the short term and long term decisions. The offline maps are validated against the high-

fidelity model used in the first step. A schematic representation of the proposed methodology is

presented in Figure 3.1 [105]. The closed-loop implementation of the framework and the funda-

mental interactions between different layers of models for the integration of schedule and control
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Figure 3.2: Schematic representation of the simultaneous scheduling and control (Reprinted with
permission from [105]).

are depicted in Figure 3.2 [105].

Note the following advantages of solving the multiparametric counterparts of the schedule,

control, and time scale bridging surrogate model:

• Offline maps of optimal operations at both long and short terms are acquired as explicit

expressions.

• Online computational time for the optimal control problem is reduced to a simple look-up

table algorithm and evaluation of an affine function. Such significant reduction enables the

application of the framework to system with fast dynamics.

• The offline maps of solutions can allow for the integration of the design of the process/equipment

with the schedule and control in a dynamic optimization framework. We will see the benefits

of this advantage in the next chapter, where we formulate an integrated design, scheduling,

and control problem utilizing the generated offline rolling horizon operating strategies.

Following are the fundamental steps of PAROC in further detail, tailored specific to the needs

of the simultaneous scheduling and control problem.
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3.2.1 Designing schedule-aware controller

Developing the offline control strategy is similar to the procedure described in Section 2.2,

hence only the key differences are highlighted in this section.

Step 1 – High-fidelity dynamic modeling: Similar to the integrated design and control prob-

lem, we start with constructing a rigorous mathematical model that simulates the dynamics of the

system of interest. The general representation of the high fidelity model is given by Eq. 3.1.

ẋ(t) = f(x(t), u(t), s(t), d(t), t)

y(t) = g(x(t), u(t), s(t), d(t), t)

(3.1)

where x are the states, u are the control decisions, s are the scheduling decisions, d are the external

disturbances, t is independent time variable, y are the system outputs, and f and g are generic

functions.

Step 2 – Model approximation: Model approximation is performed via the MATLAB R© Sys-

tem Identification ToolboxTM yielding the state space representation in Equation 3.2.

xqtc+1 = Aqxqtc +Bqutc + Cq[dTtc , Sc
T
tc ]
T

ŷtc = Dqxqtc + Equtc + F q[dTtc , Sc
T
tc ]
T

(3.2)

where A, B, C, D, E, and F are matrices with appropriate dimensions, superscript q denotes

the index of the linear model, Sc denotes the degrees of the system that is determined by the

scheduler and unavailable to the controller, ŷ are the outputs predicted by the controller, and tc is

the discretization step of the state space model. Note that the states xqtc can be concatenated into a

single vector, xtc .

Remark 2. Due to the nature of the problem, the controller is expected to operate at multiple

regions. Therefore, a single state space model may be inadequate to capture the entire process

dynamics. This problem is addressed by deriving multiple state space models that will be uti-

lized in nonoverlapping operating regions. The formulation to define the domain of each state

space model is achieved by mixed-integer modeling in designing the control strategy, which will be
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demonstrated in the example presented in Section 3.3.1.

Step 3 – Multiparametric model predictive control (mpMPC): The control scheme is de-

signed based on the developed approximate model given by Eq. 3.2. Note that the mpMPC is

aware of the scheduling level decisions since the state space model incorporates them as measured

disturbances. Equation 3.3 describes the general form of the mpMPC formulation used in this

chapter.

utc(θ) = arg min
utc

‖xNc‖2
P +

Nc−1∑
tc=1

‖xtc‖2
Q +

Nc−1∑
tc=1

‖ytc − ySPtc ‖
2
QR

+
Mc−1∑
tc=0

‖utc − uSPtc ‖
2
R +

Mc−1∑
tc=0

‖∆utc‖2
R1

s.t. xtc+1 = Axtc +Butc + C[dTtc , Sc
T
tc ]
T

ŷtc = Dxtc + Eutc + F [dTtc , Sc
T
tc ]
T

ytc = ŷtc + e

e = ytc=0 − ŷtc=0

x ≤ xtc ≤ x, y ≤ ytc ≤ y

u ≤ utc ≤ u, ∆u ≤ ∆utc ≤ ∆u

θ = [xTtc=0, u
T
tc=−1, d

T
tc=0, s

T
tc ]
T

{ySPtc , u
SP
tc , Sctc} ⊆ stc , ∀tc ∈ {0, 1, ..., Nc − 1}

(3.3)

where x are the state variables, y are the system outputs, u are the control variables, ∆u are the

magnitude between two consecutive control actions, d are measured disturbances, Q, QR, R, R1

are the corresponding weights in the objective function, P is the stabilizing term determined by

solving the discrete time algebraic Ricatti equation, N and M are the output horizon and control

horizon, respectively. e denotes the plant-model mismatch and is defined as the difference between

the real output measured and the state space estimation of the output at tc = 0. ySP and uSP are the

output set points and input reference points, respectively. Note that these two vectors of variables

are scheduling level decisions (i.e. {ySP , uSP} ⊆ s), and hence mpMPC treats them as additional
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parameters in θ.

The minimization problem presented in Equation 3.3 is translated into a linearly constrained

quadratic multiparametric programming problem (mpQP) via the YALMIP toolbox [195], and

solved via the Parametric OPtimization (POP) Toolbox [161] in MATLAB R©. The solution of the

mpQP problem yields explicit control actions as an affine function of the uncertain parameters, as

presented in Equation 3.4.

uj(θ) = Knθ + rn,∀θ ∈ CRn

θ :=
[
xTtc=0, u

T
tc=−1, d

T
tc=0, Sc

T
tc , (y

SP
tc )T , (uSPtc )T , yTtc=0

]T
CRn := {θ ∈ Θ | Lnθ ≤ bn},∀n ∈ {1, 2, ...NC}

∀j ∈ {0, 1, ...,Mc},∀tc ∈ {0, 1, ..., Nc}

(3.4)

where θ is the set of uncertain parameters measured at tc = 0, utc=−1 is the optimal control action

at the previous time step, CRn is the active polyhedral partition of the feasible parameter space,

NC is the number of critical regions CRn, and Θ is defined as a closed and bounded set. Note

that inclusion of scheduling level decisions, i.e. Sctc , ySPtc , and uSPtc in the parameter space enables

mpMPC to account for any future changes in the operational level a priori within the range of the

output horizon.

Step 4 – Closed-loop validation: Since the framework suggests an approximation of the high

fidelity model, a validation step is mandatory to test the validity of the simplified model, as well

as the controller scheme. Therefore, the mpMPC derived in Step 3 is validated through in-silico

testing against the high fidelity model in Step 1.

3.2.2 Designing control-aware scheduler

Production scheduling of a chemical process formulated as a general MILP problem can also

be represented by a state space model [184, 185]. Multiparametric counterpart of this class of re-

active scheduling problems and its solution is described extensively in Kopanos and Pistikopoulos

[187]. This approach yields an optimal map of solutions under potential disruptions in the course
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of operation prior to the occurrence of the event. The explicit form of the schedule significantly

reduces the computational cost of repetitive evaluations after every disruptive event. However, the

sampling time of the state space model is typically too large to account for the dynamic consid-

erations inherent to the process. Hence, such an approach suggests utilization of static transition

tables based on exhaustive testing [103] that create plant-model mismatch since they are agnostic

to the real system dynamics.

In this chapter, a two level scheduling scheme with a hierarchical order is proposed: (i) an upper

level schedule for the regulation of the economic considerations and operational feasibility based

on the formulation of Kopanos and Pistikopoulos, (2014) [187], and (ii) a lower level surrogate

model to bridge the time scales between the control and the upper level schedule based on the

closed loop behavior of the high fidelity model. The surrogate model further aims to remedy the

plant-model mismatch introduced by the schedule.

Step 1 – High fidelity model with controller embedded: The control scheme derived in the

earlier phase (Eq. 3.4) is embedded in the original high fidelity model (Eq. 3.1).

Step 2 – Approximate models: A discrete time state space model is derived based on the

closed loop behavior of the high fidelity model. The input-output relationship focuses on cap-

turing the overall response of the closed loop system to the step changes in the output set points

and input reference trajectories. Note that the discretization time of the identified model for the

upper level scheduler is several orders of magnitude larger than the mpMPC. Therefore, we intro-

duce a surrogate model formulation to translate the upper level scheduling decisions in the first

scheduling time step into the control time steps. This translation is carried out by resampling the

identified scheduling model with a discretization step matching the output horizon of the mpMPC.

The resampled model is used as the governing constraint in the surrogate model formulation, as

described in detail in the next step.

Step 3 – Design of the multiparametric schedule and surrogate model: The multipara-

metric schedule is formulated with an objective to account for the economic considerations and

operational feasibility, subjected to the corresponding approximate model derived earlier, as de-
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scribed in Kopanos and Pistikopoulos, (2014) [187]. The resulting formulation creates a mpMILP

that treats the disruptive scheduling events as parameters described in Eq. 3.5.

min
sts

J(θ) =
Ns∑
ts=1

αT x̃ts +
Ns−1∑
ts=0

βT t̃rts +
Ns∑
ts=0

φT ũts

s.t. x̃ts+1 = A1x̃ts +B1ũts + C1d̃ts

t̃rts = A2(x̃ts − x̃ts−1) +B2(ũts − ũts−1)

ũts =
[
S̃c

T

ts , (ỹ
SP
ts )T , (ũSPts )T

]T
θ =

[
x̃Tts=0, x̃

T
ts=−1, ũ

T
ts=−1, d̃

T
ts

]T
xts ≤ x̃ts ≤ xts

trts ≤ t̃rts ≤ trts

utsYts ≤ ũts ≤ utsYts

sts = [ũts , Yts ], ∀ts ∈ {0, 1, ..., Ns}

(3.5)

where the tilde (∼) sign denotes a scheduling level counterpart of the variable, x̃ is the operational

level and the inventory, t̃r denotes transition to a different operational mode, and the Greek letters

α, β, and φ are the corresponding cost parameters. Note that additional constraints can be included

in Equation 3.5 regarding the needs of the specific problem. The multiparametric solution of

Equation 3.5 provides explicit affine expressions of the optimal scheduling actions as functions of

the system parameters, as defined in Equation 3.6.

sts = K̃nθ + r̃n,∀θ ∈ CRn

θ :=
[
x̃Tts=0, x̃

T
ts=−1, ũ

T
ts=−1, d̃

T
ts

]T
CRn := {θ ∈ Θ | L̃nθ ≤ b̃n}, ∀n ∈ {1, 2, ...NC}

∀ts ∈ {0, 1, ..., Ns}

(3.6)

Due to approximation of the scheduling model and the large discretization time, there exists a

plant-model mismatch that is handled by a surrogate model formulated as a mp(MI)QP. Therefore,
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we utilize the formulation presented in Equation 3.7 to minimize the aforementioned mismatch.

min
stsm

J(θ) =
Nsm∑
tsm=0

‖stsm − ũts‖2
R′

s.t. x′tsm+1 = Ax′tsm +Bstsm

ytsm = Cx′tsm +Dstsm

stsm =
[
ScTtsm , (y

SP
tsm)T , (uSPtsm)T

]T
θ =

[
ũTtsm , Y

T
tsm

]
x′tsm ≤ xtsm ≤ x′tsm

y
tsm
≤ ytsm ≤ ytsm

stsmYtsm ≤ stsm ≤ stsmYtsm

∀tsm ∈ {0, 1, ..., Nsm}

(3.7)

Equation 3.7 poses an mpQP problem that reinterprets the scheduling actions sts in the time

steps of the controller. Sctsm is directly passed to the process, and the set points ySPtsm and uSPtsm

are determined to be used by the controller. ∆tsm is based on the output horizon of the mpMPC

(∆tsm = ∆tcNc), and Nsm is selected such that the surrogate model horizon can account for the

first scheduling time step in its entirety (i.e. Nsm ≥ ∆ts/∆tsm). The multiparametric solution

to Eq. 3.7 yields an offline map of optimal scheduling actions and set points for the controller,

allowing for fast reevaluation of the scheduling decisions under varying market conditions. The

surrogate model formulation utilizes a linear state space representation of the closed loop dynamics

of the system. Therefore, the number of state space models required to capture the complete

dynamics is dependent on the complexity of the high fidelity model and the size of the explicit

control law. The validity of these surrogate models representations is assured in the subsequent

step.

Note that binary decisions Ytsm from Eq. 3.5 are treated as continuous uncertain parameters.

Oberdieck et al. (2016) [162] presents a rigorous proof through Basic Sensitivity Theorem that

relaxation of the binary parameters yields the exact solution in this class of problems. Equiva-
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Schedule (𝐸𝑞. 3.5)

Surrogate (𝐸𝑞. 3.7)

Process (𝐸𝑞. 3.1)

Control (𝐸𝑞. 3.3)

𝑠𝑡𝑠

𝑌t𝑠

𝑆𝑐𝑡𝑠𝑚

𝑢𝑡𝑐
(𝐸𝑞. 3.4)

𝑦t𝑠𝑚
𝑆𝑃 , 𝑢t𝑠𝑚

𝑆𝑃

𝑥𝑡𝑐

𝑥𝑡𝑠𝑚

 𝑥𝑡𝑠

 𝑑𝑡𝑠

Figure 3.3: The information flow among the scheduler, surrogate model controller, and the pro-
cess. The gray area indicates the overall control-aware scheduler (Reprinted with permission from
[105]).

lently, one can generate 2n mpQP problems to exhaustively enumerate all combinations of binary

parameter realizations, where n is the number of binary parameters.

Step 4 – Closed-loop validation: Overall validation of the integrated schedule-control scheme

is performed in a rolling horizon fashion through utilizing the maps of solutions generated with

Equations 3.3, 3.5, and 3.7 simultaneously on the high fidelity model (Equation 3.1). The overall

system is subjected to randomized market conditions that is updated in the time steps of the sched-

uler to yield the input and output trajectories in the scheduling and control levels. The interplay

and the flow of information among the multiparametric scheduler, surrogate model, controller, and

the process is summarized and depicted in Figure 3.3.

Note that the framework assumes an update in the disruptive events at the time steps of the

schedule. Any further scheduling level disturbances in between these time steps can be addressed

by reevaluating the set points through the surrogate model to remedy a potential performance

degradation. The process disturbances, on the other hand, are accounted for by the controller of
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Control scheme

Scheduling scheme

Figure 3.4: CSTR flowsheet with the online implementation of the scheduling and control schemes
(Reprinted with permission from [105]).

which dynamics are embedded in the scheduler.

The following section presents the application of the framework on (i) a CSTR with three

reactants and three outputs, and (ii) two CSTRs operated in parallel.

3.3 Examples

3.3.1 Single CSTR with three inputs and three outputs

65textitProblem definition: This case study, adapted from Flores-Tlacuahuac and Grossmann,

(2006) [97], considers an isothermal CSTR designed to manufacture three products on a single

production line, as depicted in Figure 3.4. In the figure, Ri denotes the ith reactant, Pj denotes

the jth product, and DemandPj
denotes the demand rate for product Pj . The problem statement

encompasses the following: foot

(i) Given: A high-fidelity model of the three product CSTR, unit cost for inventory, a scenario

of product demands.

(ii) Determine: Production sequence, production rates, optimal control actions to achieve the

target production rate and to reach the threshold purity.

(iii) Objective: Minimize the total cost comprising the inventory and transition costs.
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Based on the described problem definition, the control scheme aims to determine the opti-

mal transitions between the production periods of three products through tracking a time variant

product concentration set point to maintain a certain level of purity threshold. The controller is

designed to deliver this short term objective by manipulating the feed composition at the inlet of

the reactor, and monitoring the states of the system. To obtain the longer term objectives, we

utilize a scheduling scheme to minimize the operating and inventory costs, while satisfying a con-

tinuous demand rate for each product. The scheduler aims to determine the optimal production

sequence and manufacturing time, while accounting for the inventory levels in the storage tanks

and a demand scenario. The scheduling decisions are passed on to the controller as set points

and operating modes. Note that different from Flores-Tlacuahuac and Grossmann, (2006) [97],

this work relaxes the assumption of constant product demand rate profile, and considers a variable

demand rate profile.

High-fidelity dynamic model: Three irreversible reactions take place in parallel in the CSTR

reaction network given in Eq. 3.8.

2R1
k1−→ P1

R1 +R2
k2−→ P2

R1 +R3
k3−→ P3

(3.8)

where k1, k2, and k3 are the rate constants of the respective reactions. Note that production of P1

requires onlyR1, which also features as one of the raw materials of products P2 and P3. Hence, the

given reaction network yields P1 as a by-product during the production phases of P2 and P3. The

by-product concentration degrades the purity of the product of interest, and needs to be accounted

for by the control scheme to achieve high selectivity.

The high-fidelity model that describes the dynamic behavior of the CSTR comprises mole

balances (Eq. 3.9) and power law kinetic expressions for elementary reactions (Eq. 3.10).

dCRi

dt
=
QRi

Cf
Ri
−QtotalCRi

V
+RRi

dCPj

dt
=
Qtotal(CPj

− CPj
)

V
+RPj

(3.9)
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Table 3.2: Parameters of the high-fidelity CSTR model (Reprinted with permission from [105]).

Reaction
rate constants Value

Reactant concentration
at the feed Value

k1 0.1 Cf
R1

1.0
k2 0.9 Cf

R2
0.8

k3 1.5 Cf
R3

1.0

RR1 = −2RP1 −RP2 −RP3

RR2 = −RP2

RR3 = −RP3

RP1 = k1C
2
R1

RP2 = k2CR1CR2

RP3 = k3CR1CR3

(3.10)

where C denotes the concentration, Q is the volumetric flow rate, V is the volume of the CSTR,R

is the reaction rate, superscript f denotes the feed to the CSTR, Ri and Pj are the indices for the

ith reactant and jth product, respectively. The system parameters are given in Table 3.2.

The total volumetric flow rate is defined as the sum of reactant flow rates at the inlet of the

reactor. Note that constant volume reactor is assumed, therefore the total flow rate at the inlet is

equal to the total flow rate at the outlet.

Qtotal =
∑
i

QRi (3.11)

The inventory levels of the product of interest is as follows.

dWPj

dt
=


QtotalCPj

−DRPj
, if PurPj

≥ 0.90

−DRPj
, if PurPj

< 0.90

(3.12)

where WPj
is the inventory level, DRPj

is the demand rate, and PurPj
is the purity level in the
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CSTR as defined in Equation 3.13.

PurPj
=

CPj∑
j CPj

(3.13)

The molar fractions of the reactant flow rates are defined in Equation 3.14. Note that the molar

fractions are utilized as the manipulated variables in the mpMPC control scheme, as demonstrated

in the following sections.

aRi
=

QRi

Qtotal∑
i

aRi
= 1

(3.14)

Model approximation: The highly nonlinear nature of the model necessitates partitioning of

the input space to capture the system dynamics with higher accuracy. Rigorous simulations of the

high fidelity model suggests the partitioning of each degree of freedom available to the controller

(i.e. aR2 and aR3) to at least two mutually exclusive subspaces, respectively. Hence, the discrete

time state space model generated in the form presented by Eq. 3.2.

Remark 3. A significant difference of this example from the binary distillation column example

presented in Chapter 2 is the multitude of operating regions in the CSTR. The binary distillation

column is designed to operate at a single desired set point, as opposed to the CSTR is expected

to deliver three products with a time-variant set point on product concentration based on market

conditions. Therefore, we derive multiple state space models that are defined over mutually exclu-

sive domains. The domains of the state space models with respect to the input space is given by

Eq. 3.15.
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Figure 3.5: Step responses of the identified open loop model with respect to the system inputs and
the scheduling variable Qtotal (Reprinted with permission from [105]).

utc =
[
u1,tc , u2,tc , u3,tc , u4,tc

]T
u1,tc = aR2 , aR2 ∈ [0, 0.5)

u2,tc = aR2 , aR2 ∈ [0.5, 1]

u3,tc = aR3 , aR3 ∈ [0, 0.55)

u4,tc = aR3 , aR3 ∈ [0.55, 1]

(3.15)

where x are the identified states, u are the molar fractions of the reactant flow rates partitioned in

the input space as given in Equation 3.15, d are the total volumetric flow rate (Qtotal), and y are

the product concentrations (CPj
). The state space matrices are given in the Appendix A.1. Note

that aR1 is excluded from the manipulated variables due to the linear independence of the molar

fractions.

The step and impulse responses of the open loop approximate model are stable within the range

of inputs, as presented in Figures 3.5 and 3.6, respectively.

Design of the mpMPC: The formulation of the mpMPC is based on Eq. 3.3 with additional

soft constraints included as presented in Eq. 3.16. The tuning of the corresponding parameters is

based on heuristic MPC design methods, and the parameters are provided in Table 3.3.
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Figure 3.6: Impulse responses of the identified open loop model with respect to the system inputs
and the scheduling variable Qtotal (Reprinted with permission from [105]).

min
utc ,ztc ,εtc

J(θ) =
Nc∑
tc=1

‖ytc − ySPtc ‖
2
QR +

Mc−1∑
tc=0

‖∆utc‖2
R1 +

Nc∑
tc=1

‖εtc‖2
P1

s.t. xtc+1 = Acxtc +Bcutc + CcSctc

ŷtc = Dxtc

ytc = ŷtc + e, e = ytc=0 − ŷtc

x ≤ xtc ≤ x, y ≤ ytc ≤ y, uztc ≤ utc ≤ uztc

uYtc ≤ utc ≤ uYtc , d ≤ dtc ≤ d, ∆u ≤ ∆utc ≤ ∆u

− y∗,tc + Purmin
∑
i

yi,tc ≤ −εtc +MYtc

0 ≤ εtc ≤ 1, ztc ∈ {0, 1}

θ = [xTtc=0, y
T
tc=0, d

T
tc=0, (y

SP
tc )T , uTtc=−1, Y

T
tc ]T

∀tc ∈ {0, 1, ..., Nc}

(3.16)

where the additional terms ε is the slack variables, P1 is the penalty matrix, Purmin is the mini-

mum purity level required to trigger accumulation in the storage tanks, y∗ is the concentration of

the product of interest, andM is a big-M parameter. The binary switch parameter Y determined

by an upper level decision maker dictates the product of interest, and binary switch variable z de-
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Table 3.3: Tuning parameters for the mpMPC of the single CSTR example (Reprinted with per-
mission from [105]).

mpMPC design parameters Value
Nc 6
Mc 2

QR

102 0 0
0 10 0
0 0 10


R1 50
P1 90
y [0, 0, 0]T

y [1, 1, 1]T

u [0, 0, 0]T

u [1, 1, 1]T

d 0

d 500

termines the optimal input subspace. The soft constraints are constructed on y∗ via slack variables

ε to minimize the transition time by penalizing any production below the threshold purity level

throughout the output horizon. Therefore, the non-negative slack variables ε contribute to the ob-

jective function if and only if the purity of the product of interest is below the threshold. Note that

any process disturbances, such as reactant concentrations at the feed stream, can be easily incorpo-

rated in the control scheme without modifying the overall framework by simply introducing them

as additional parameters.

The optimization problem given in Equation 3.16 is reformulated as a mpMIQP problem and

solved via the POP toolbox to generate the map of optimal control actions as affine functions of the

system parameters. The explicit expression of the control action is designed to (i) track a set point

determined by an upper level decision maker, (ii) adapt proactively to changing operating modes

(i.e. shifting between different products), and (iii) minimize the transition time by penalizing

impure production periods.

Note that the mpMPC formulation utilizes a single state space model with piecewise affine

inputs that are selected via binary switch variables, ztc . Therefore, the control scheme single-
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Figure 3.7: Closed-loop validation of the mpMPC against the high-fidelity model for the single
CSTR example (Reprinted with permission from [105]).

handedly recognizes the dynamics of the transitions between the production periods. Although the

stability of the system under such transitions is left outside the scope of this study, it can be further

investigated following the approach proposed by Grieder et al. (2004) [196].

Closed-loop validation: The control scheme is validated by exhaustive testing against the

high-fidelity dynamic model under various scheduling decisions. Figure 3.7 presents a 2 h closed-

loop operation with two distinct operational modes. The process starts from zero product concen-

tration and goes through a shift from the production of P3 to production of P2 at t = 60 min.

This shift is manually enforced by changing the concentration set points from ySP = [0, 0, 0.1]T to

ySP = [0, 0.1, 0]T .

The closed-loop simulation in Figure 3.7 validates the mpMPC as it (i) tracks the set points of

three product concentrations, (ii) handles operations at different production modes, (iii) prioritizes
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purity satisfaction to minimize transition time, and (iv) maintains feasible operation by keeping

the system within specified bounds. Note that the entirety of the closed loop simulations uses only

one mpMPC scheme in both the production and the transition periods. Therefore, the controller

parameters are tuned regarding every possible transition between the products.

High-fidelity model with the mpMPC embedded: The initial high-fidelity model given in

Eq. 3.9-3.14 is integrated with the derived control scheme in the form of Eq. 3.4.

Model approximation: To keep the example tangible, only the mole balance around the stor-

age tanks is considered in the upper level schedule, while the dynamics of the CSTR is accounted

for in the lower level surrogate model formulation. The bilinear QtotalCPj
term in Eq. 3.12 re-

sults into a non-convex mpMINLP problem, for which only approximate solution algorithms exist.

Hence, we postulate a mpMILP problem, for which POP toolbox features an exact algorithm, via

replacing Eq. 3.12 with Eq. 3.17.

dWPj

dt
= FPj

−DRPj
(3.17)

where FPj
is the molar product flow rate at the exit of the CSTR. Having merely linear terms in

Eq. 3.17 enables the formulation of a mpMILP in the subsequent step.

The lower level surrogate model, on the other hand, is identified via MATLAB R© System Iden-

tification ToolboxTM as described in the previous section. Three surrogate models are derived for

three distinct operational modes (provided in Appendix A.1 with their respective step and impulse

responses).

Design of the scheduler and the surrogate model: The scheduler for this problem is designed

to minimize the inventory cost, while satisfying continuous demand rates for the three products

forecasted through the scheduling horizon, as presented in Eq. 3.18.
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Table 3.4: System parameters for the scheduler of the single CSTR example (Reprinted with per-
mission from [105]).

System parameters Value
Ns 3

α [$/h.mol] [1.0, 1.5, 1.8]T

∆ts [min] 60
F [0, 0, 0]T

F [50, 50, 50]T

W [0, 0, 0]T

W [50, 50, 50]T

D [0, 0, 0]T

D [60, 60, 60]T

min
Fj,ts ,YPj,ts

J(θ) =
∑
j=1

Ns∑
ts=1

αTPj
Wts

s.t. WPj ,ts+1 = WPj ,ts + ∆tsFj,ts −∆tsDRPj ,ts∑
j=1

Fj,ts = Ftotal,ts

∑
j=1

YPj ,ts = 1

FYPj ,ts ≤ Fj,ts ≤ FYPj ,ts

W ≤ WPj ,ts ≤ W

DR ≤ DRPj ,ts ≤ DR

θ = [W T
Pj ,ts=0, DR

T
Pj ,ts

]T

YPj ,ts ∈ {0, 1}, ∀ts ∈ {0, 1, ..., Ns}

(3.18)

where YPj ,ts denotes the selected product Pj to be manufactured at time ts, Fj,ts is the molar

product flow rate, ∆ts is the sampling time for the schedule. Note that Equation 3.17 is discretized

into time steps ∆ts. The system parameters for Equation 3.18 are given in Table 3.4.

The bridge between the mpMPC and the scheduler derived in Equations 3.16 and 3.18 is con-

structed based on Equation 3.7. Analogous to the mpMPC, the surrogate model also features the
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soft constraints to enforce a threshold purity level.

min
Qtotal,tsm ,C

SP
Pj,tsm

,ε′tsm

J(θ) =
Msm∑
tsm=0

‖Qtotal,tsm − Q̃total,tsm‖2
R′ +

Nsm∑
tsm=1

‖ε′tsm‖
2
P1′

s.t. Equations A.1− A.3

Q̃total,tsm =
Ftotal,tsm
CP∗,tsm=0

y ≤ ytsm ≤ ymax

Q
min
≤ Qtotal,tsm ≤ Qmax

CSP ≤ CSP
Pj ,tsm

≤ CSP
max

− y∗,tsm + Purmin
∑
i

yi,tsm ≤ −ε′tsm

0 ≤ ε′tsm ≤ 1

θ =

[
xTtsm ,

Ftotal,tsm
CP∗,tsm=0

]T
∀tsm ∈ {0, 1, ..., Nsm}

(3.19)

Note that the formulation given in Equation 3.19 is only valid for the product of interest. Hence,

three separate formulations are constructed for each product. Tuning of the surrogate model param-

eters is based on heuristic decisions that yield a desirable performance in the closed loop validation,

and the parameters are given in Table 3.5.

Closed-loop validation of the overall scheme: Closing the loop of the CSTR is performed

via testing the scheduling and control scheme against the high fidelity model. Figure 3.8 presents

a 12 h operation with the scheduler, the surrogate model, and the controller operating in tandem

with the dynamic model while no specific knowledge of the demand profile assumed. A sample of

the explicit simultaneous decisions is demonstrated in Table 3.6, where the functional form of the

scheduling and control actions at t = 60 min is shown. The scheduler (i) maintains low inventory

levels, and (ii) adapts to the changes in the demand profile, while satisfying the continuous demand
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Table 3.5: System parameters for the surrogate model of the single CSTR example (Reprinted with
permission from [105]).

System parameters Model 1 Model 2 Model 3
Nsm 10 10 10
Msm 1 1 1

∆tsm [min] 6 6 6

R′ 103

[
10−4 0

0 10−1

] [
10−4 0

0 10−1

]
P1′ 104 106 108

ymin [mol/L] [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

ymax [mol/L] [1, 1, 1]T [1, 1, 1]T [1, 1, 1]T

Qmin [L/min] 0 0 0
Qmax [L/min] 500 500 500
CSP
min [mol/L] [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

CSP
max [mol/L] [1, 1, 1]T [1, 1, 1]T [1, 1, 1]T

rate. Due to the rolling horizon strategy, the schedule is updated at every discretization step ∆ts,

with the current inventory level and the new demand profileNs time steps into the future. Note that

the resultant production sequence is different from a cyclic schedule reported in Flores-Tlacuahuac

and Grossmann [97] and Zhuge and Ierapetritou [101], since the demand rates in this work are time

variant.

Figure 3.9 presents a snapshot of the first 6 h of operation, focusing on the lower level surrogate

model decisions. The volumetric feed flow rate from the schedule and the surrogate model are

juxtaposed in Figure 3.9a to emphasize the corrective actions of the latter. During the transition

between production regimes, the surrogate model saturates Qtotal at its upper bound to purge the

previous product left in the reactor. The transitions can also be monitored from the product purities

presented in Figure 3.9c. The surrogate model and the mpMPC operate in tandem to drive the

system above the threshold purity level. The transitions to product P2 specifically show that the

integrated schedule and control scheme prioritizes the purity satisfaction to minimize the transition

time.

Note the following:

• The explicit expressions for the optimal scheduling decisions enable rescheduling with a
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Figure 3.8: Closed-loop validation of the scheduling scheme for the single CSTR example
(Reprinted with permission from [105]).

Table 3.6: Optimal scheduling and control decisions at t = 60 min (Reprinted with permission
from [105]).

Decision variable Affine expression
Ftotal,ts=0 = −16.7W2 +DRts=0,2 +DRts=1,2

Ftotal,ts=1 = −16.7W3 +DRts=0,3 +DRts=1,3 +DRts=2,3

Ftotal,ts=2 = DRts=2,2

Qtotal = 500
CSP
P1

= 0
CSP
P2

= 0.91CP1 − 0.01CP2 + 0.02
CSP
P3

= 0
aR1 = 0
aR2 = 0.55
aR3 = 0

68



Q
to
ta
l

50 

200

350

500

(a)

Qschedule

Qtotal

C
S
P

P
j

0  

0.1

0.2

0.3

(b)

CSP
P2

CSP
P3

Time [h]

0 1 2 3 4 5 6

P
u
r
P
j

0.7

0.8

0.9

1  

(c)PurP1

PurP2

PurP3

Purmin

Figure 3.9: Closed-loop simulation of the CSTR for the first 6 h of operation for the CSTR exam-
ple. (a) volumetric flow rate determined by the scheduler, and the corrected action of the surrogate
model, (b) product concentration set points, (c) product purities (Reprinted with permission from
[105]).

small computational cost when disruptive events occur in the product demands.

• The transition time is not determined explicitly by the integrated scheduling and control

scheme, but is minimized through soft constraints in the surrogate model and controller for-

mulations. The non-negative slack variables εtc and ε′tsm in Eq. 3.16 and 3.19 are nonzero

only if the product concentration of interest is below the threshold level, and contribute to

the objective function J(θ) proportional to P1 and P1′, respectively. A more accurate ap-

proach would be allocating every time step for all products with binary variables to determine

whether the purity threshold is satisfied. However, employing such a large number of binary

variables in a multiparametric programming problem results in an exponential increase in the

computational burden. Hence, we alleviate this problem via the soft constraint formulation.

• The heavy penalty terms for purity satisfaction in the surrogate models result in steep changes
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in Qtotal during the transitions, as observed in Figure 3.9. The upper level schedule is unable

to make such corrective decisions due to its large time step. The lower level surrogate model

provides time varying targets and set points for the controller due to the embedded closed

loop dynamics in its formulation.

• Due to the strong nonlinearity of the high-fidelity model, the input space is partitioned as pre-

sented in Equation 3.15. Finer partitions will yield more accurate controllers at the expense

of increased computation time to generate the offline maps of optimal actions.

• Utilizing the maps of optimal solutions for the control, surrogate model, and schedule actions

eases the online implementation. Calculation of the optimal actions is reduced from an

online optimization problem to a simple look-up table algorithm and evaluation of an affine

function.

3.3.2 Two CSTRs operating in parallel

Problem definition: This case study extends the CSTR example from Section 3.3.1 to encom-

pass two identical CSTRs operating in parallel. Due to the identical design of the reactors, the

mpMPC and the surrogate model driving the closed-loop system are identical as well. Hence, the

derivation of their formulations and attaining the explicit maps of solutions are omitted.

Cooperative operation of independent reactors requires a centralized scheduling scheme to

allocate the production tasks on different reactors. However, the identical nature of the two closed-

loop system dynamics creates a multiplicity of solutions, as the reactors are indistinguishable to the

upper level schedule. Hence, the scheduling formulation presented in Eq. 3.18 is modified to (i)

account for the previous production regime as an additional uncertain parameter, and (ii) penalize

transitions between consecutive production regimes to break multiple solutions. Inclusion of the

retrospective information provides a distinction between the reactors, eliminating any redundant

transitions between the products. The mathematical representation of the described modification

is provided in Eq. 3.20.
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Γs =
Ns∑
ts=0

ψ
∣∣YPj ,ts − YPj ,ts−1

∣∣ (3.20)

where ψ is a very small number that virtually penalizes the changes in the operational mode. Eq.

3.20 can be reformulated as follows to maintain the linear structure of the scheduling problem.

Γs =
Ns∑
ts=0

ψT Ȳts

s.t. YPj ,ts − YPj ,ts−1 ≤ Ȳts

− YPj ,ts + YPj ,ts−1 ≤ Ȳts

0 ≤ Ȳts ≤ 1

(3.21)

where Ȳts is an auxiliary variable.

Design of the scheduler: The scheduling formulation presented in Eq. 3.18 is extended to

account for multiple production lines, and modified with Eq. 3.21 to eliminate multiple solutions,

which gives Eq. 3.22.
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min
Fj,ts,l,YPj,ts,l

,Ȳts,l

J(θ) =
∑
j=1

Ns∑
ts=1

αTPj
WPj ,ts +

NCSTR∑
l=1

Ns∑
ts=0

ψT Ȳts,l

s.t. WPj ,ts+1 = WPj ,ts +

NCSTR∑
l=1

∆tsFj,ts,l −∆tsDRPj ,ts∑
j=1

Fj,ts,l = Ftotal,ts,l

∑
j=1

YPj ,ts,l = 1

YPj ,ts,l − YPj ,ts−1,l ≤ Ȳts,l

− YPj ,ts,l + YPj ,ts−1,l ≤ Ȳts,l

0 ≤ Ȳts,l ≤ 1

FYPj ,ts,l ≤ Fj,ts,l ≤ FYPj ,ts,l

W ≤ WPj ,ts ≤ W

DR ≤ DRPj ,ts ≤ DR

θ = [WPj ,ts=0, DRPj ,ts , YPj ,ts=−1,l]
T

YPj ,ts,l ∈ {0, 1}, ∀ts ∈ {0, 1, ..., Ns},∀l ∈ {1, 2, ..., NCSTR}

(3.22)

where the additional weight ψ is tuned to be 0.001, and the number of the CSTRs, NCSTR, is 2 by

the problem definition.

Closed-loop validation: The validation of the overall scheduling and control scheme is pre-

sented in Figure 3.10. The scheduler, the surrogate model, and the controller are operated in tandem

with the high fidelity model for 12 h under a randomized demand profile. The integrated schedul-

ing and control scheme delivers the additional task to coordinate multiple reactors to operate in

parallel while satisfying the continuous demand rate. The inclusion of Eq. 3.21 in the objective

function breaks the symmetry between the reactors and coordinates the production sequence. Con-

sequently, uninterrupted manufacturing of the product of interest is maintained without redundant

shifts between the reactors.
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Figure 3.10: Closed-loop validation of the integrated scheduling and control scheme on two CSTR
example (Reprinted with permission from [105]).
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Figure 3.11: Realization of the schedule with time for the two CSTR example. Top bars and bottom
bars represent CSTR 1 and CSTR 2, respectively (Reprinted with permission from [105]).

Figure 3.11 presents the evolution of the schedule with time for the first 4 h of operation. Note

that the demand scenario is updated every hour in a rolling horizon manner, allowing reschedul-

ing of the production sequence and the target quantities by utilizing the offline maps of optimal

scheduling actions.
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3.4 Conclusions

In this chapter, a systematic framework was presented to integrate process scheduling and

control in continuous systems via multiparametric programming. Optimal scheduling and control

actions were derived simultaneously based on a single high fidelity model. We take advantage of

the synergistic interactions between the two decision making mechanisms to yield offline maps of

optimal operations as explicit affine expressions at both long and short terms of a process. The

generic structure of the framework renders it suitable for a software prototype towards enterprise-

wide optimization.

This chapter aims to increase the operability, flexibility, and profitability of process systems

through improving the scheduling and control decisions. Nevertheless, the processes with compa-

rable capital and operating costs necessitates the consideration of the design aspect simultaneously

with the scheduling and control. Hence, the next chapter focuses on the unification of the design,

scheduling, and control actions, simultaneously.
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4. INTEGRATION OF PROCESS DESIGN, SCHEDULING, AND CONTROL1

4.1 Introduction

Process design decisions, such as equipment selection and sizing, span the widest time-scale

in the functional hierarchy of a chemical process, and they are typically established by solving

a steady-state design optimization problem [79]. Operational decisions such as scheduling and

control are usually assumed to take a nominal value to make the problem complexity tractable

[170]. However, rapidly changing market conditions and process disturbances often force the

system to operate under a wide range of operating conditions, which may render the steady-state

process design dynamically infeasible. Design optimization under such operational uncertainties

have been extensively investigated in the literature by considering feasibility, flexibility, stability,

controllability, and resilience metrics [45, 148, 88]. However, direct inclusion of the operational

dynamics in the design optimization is rather limited. Terrazas-Moreno et al. (2008) [4] and Patil

et al. (2015) [5] presented MIDO based frameworks to account for the economical decisions in

open loop processes. Koller et al. (2018) [7] developed a stochastic back-off algorithm for the

simultaneous consideration of the design and operational optimization problems in the context of

closed loop operations, where the algorithms was showcased on a multiproduct CSTR.

In Chapters 2 and 3, a multiparametric programming based approach was introduced and ap-

plied to integrate (i) the design and control, and (ii) scheduling and control problems. In this

chapter, the previously introduced approaches are combined to yield a unified theory and frame-

work to integrate the design, scheduling, and control problems. We explicitly map the upper level

layer decisions on the lower levels by multiparametric programming. The explicit expressions

at the lower level layers enable their representation in the upper level problems. In other words,

the control problem is derived as a function of design and scheduling decisions, and similarly the

scheduling decisions are design dependent, and aware of the controller dynamics. These explicit

1Portions of this chapter have been adapted from Burnak, B., Diangelakis, N.A., Katz, J., Pistikopoulos, E.N.,
Integrated process design, scheduling, and control using multiparametric programming, Computers & Chemical En-
gineering 2019, 125, pp. 164-184, Special Issue with permission from Elsevier.
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scheduling and control maps allow for an exact implementation in a design optimization problem.

Furthermore, we introduce a design dependent surrogate model formulation to bridge the time

scale gap between the schedule and the control problems, which is also solved offline.

The remainder of the chapter is organized as follows. Section 4.2 defines the integration prob-

lem that is addressed in this study, and describes the proposed framework to approach the problem.

The framework is showcased in Section 4.3 on systems of reactors introduced in Section 3.3 and

residential combined heat and power (CHP) units. Lastly, Section 4.4 presents concluding remarks

and future directions.

4.2 Integration of design, scheduling, and control via multiparametric optimization

Problem definition: We consider a generic process where the interactions between the long term

(design), middle term (schedule), and short term (control) decisions are sufficiently significant to

impact the feasibility and the optimality of each individual decision. Therefore, we define the

following problem that encapsulates all three decisions simultaneously.

(i) Given: A high fidelity model based on first principles or data-driven modeling techniques

that accurately captures the dynamics of the system, any physical limitations of the system

due to process safety considerations or product specifications, unit costs for design, raw

material, energy, and inventory, revenue for unit product, and an accurate demand forecast.

(ii) Determine: Production sequence throughout an operating horizon, closed loop control strat-

egy that delivers the product specifications, set points for the operation tailored for the dy-

namics of the closed loop strategy, size of the processing equipment that ensures operability

of the process.

(iii) Objective: Minimize the operating and capital costs.

Therefore, the defined problem can be formulated as the initial integrated MIDO problem,

introduced in Eq. 1.11. Solving this problem comprises the challenges in the integrated design

and control, and scheduling and control problems, which have been discussed and addressed in
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Chapters 2 and 3. The proposed solution strategy to the overall integrated problem hence utilizes

the key pieces of the previously introduced frameworks, described as follows.

(i) Develop an offline control policy that takes into account the different process dynamic stem-

ming from the selection of the unit design (see Chapter 2) and online economical decisions

(see Chapter 3).

(ii) Derive a scheduling policy based on the closed loop behaviour of the system and the design

variables (see Chapter 3).

(iii) Determined the design that minimizes the capital and operating costs for a given time period

by utilizing the offline control and scheduling policies simultaneously (see Chapter 2).

Given that the foundation of the framework has been outlined in the previous chapters, we will

showcase the framework on (i) the CSTR examples introduced in Section 3.3.1 and 3.3.2, and (ii)

a small system of residential combined heat and power units. The interested reader can appeal to

Appendix A.2 for a detailed walk-through of the framework.

4.3 Examples

4.3.1 Single CSTR with three inputs and three outputs

In this section, the CSTR example introduced and defined in Section 3.3.1 is revisited to ac-

count for the design variables along with the operational optimization problem. Therefore, the

problem definition of the example is defined as follows.

(i) Given: A high-fidelity model of the three product CSTR, unit inventory costs, a functional

expression for the CSTR fixed cost, a scenario of product demands.

(ii) Determine: Volume of the CSTR, production sequence, production rates, optimal reactant

volumetric flow rates to achieve the target production rate and to reach the threshold purity.

(iii) Objective: Minimize the sum of operating and capital costs.
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The objective in the problem definition can be achieved by determining the reactor design, pro-

duction schedule, and closed loop dynamics that minimize the wasted raw materials and processing

time. Therefore, (i) the controller is expected to deliver optimal transitions between all operating

points determined by the scheduler, (ii) the scheduling decisions have to minimize the operating

costs while accounting for the closed loop dynamics, and (iii) the reactor must be large enough to

remain feasible throughout the entire operation, while avoiding overdesign to minimize the capital

costs.

We use the same high fideltiy model to simulate the dynamics of the CSTR that was introduced

in Section 3.3.1. However in this example, the dynamics introduced by the design variable (reactor

volume) needs to be included in the approximate model. Therefore, the reduced order state space

model is developed as given by Eq. 4.1.

xtc+1 = Axtc +B



u1,tc

u2,tc

u3,tc

u4,tc


+ C

Qtotal,tc

V



Ĉi,tc = Dxtc , i ∈ P

(4.1)

where x are the identified states, uk,tc is the kth partitioning of input u at time instance tc, Qtotal is

the volumetric flowrate at the feed, V is the volume of the reactor, and Ĉi is the ith product.

The developed approximate model is incorporated into the mpMPC problem described in Eq.

3.3, with the mere difference of the design dependence of the approximate model. Note that, (i)

the input space is partitioned to mutually exclusive domains to capture a wider range of operating

regions, and (ii) soft constraints are included to minimize the transition time at the control level.

The developed mpMPC is validated against the high-fidelity model, under a range of scheduling

decisions and design options. Figure 4.1 presents 4 h closed loop simulations for two reactor

volumes (V1 = 0.4m3, V2 = 1.0m3). The process undergoes a step change from P2 to P3 after 2

h of operation to test the validity of the control scheme under different scheduling decisions and
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design configurations. Note that all operations are governed by a single explicit control law that is

a function of the design and scheduling decisions.

The closed loop simulations presented in Figure 4.1 shows that the developed control scheme is

suitable for a range of scheduling and design options. The control scheme (i) achieves effective set

point tracking for all three products simultaneously, (ii) minimizes transition time by prioritizing

the purity satisfaction, (iii) recognizes the dynamics introduced by different scheduling decisions

and design configurations, and (iv) maintains the operation within the inherent/imposed bounds of

the system.

The validated explicit control law is integrated into the original high fidelity model, which is

used to simulate the closed loop process. Based on the dynamics of the new process dynamics,

we develop approximate models that include the design variable as a measured disturbance. The

developed approximate models for the closed loop process are provided in Appendix A.1 along

with their step responses. We utilize the upper level schedule introduced in Eq. 3.5 for the long

term economical decisions.

After deriving all the design dependent operational strategies, the controller, surrogate model,

and the scheduler are operated simultaneously on the high fidelity model under a range of design

options and product demand variations. Figure 4.2 showcases the closed loop profiles for 12 hours

at the lower bound (V1 = 0.4m3) and the upper bound (V2 = 1.0m3) of the design range. Note

that the same design dependent offline strategies are used in two reactors. The demand profiles

for the products are randomly regenerated every hour, and the scheduling decisions are updated

in a rolling horizon manner. The closed-loop simulations validate that the integrated scheduling

and control scheme (i) maintains low inventory levels in the storage tanks, (ii) reactively adapts to

changes in the demand profile, (iii) is applicable for a range of different design options. A sample

of the offline scheduling and control decisions is demonstrated in Table 4.1, where a snapshot

of the online operation of the large CSTR at t = 5h is tabulated. Such explicit expressions are

available for the range of design decisions, and will be used for design optimization described as

follows.
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Figure 4.1: Single CSTR example - Step change in set points in two reactors with different volumes
(Reprinted with permission from [8]).
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Figure 4.2: Single CSTR example – Closed-loop validation of the integrated scheduling and control
scheme in two reactors with different volumes (Reprinted with permission from [8]).
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Table 4.1: Single CSTR example – An illustration of the offline map of receding horizon policies
at t = 5h for the large CSTR (V2 = 1.0m3). Observe that the volume of the reactor has a direct
impact on the control action for this particular instance (Reprinted with permission from [8]).

Decision variable Affine expression
F3,t=0 = −16.7W3 +DR3,t=0 +DR3,t=1h +DR3,t=2h

F2,t=1h = −16.7W2 +DR2,t=0 +DR2,t=1h +DR2,t=2h

F1,t=2h = −16.7W1 +DR1,t=0 +DR1,t=1h +DR1,t=2h

Qtotal,t=0 = 500
CP SP

2,t=0 = 0.91(CP1,t=0 − 0.003)− 0.007(CP2,t=0 − 0.14)− 0.12
a1 = 0.45− 6× 10−3V
a2 = 0.55 + 6× 10−3V

The validated offline scheduling and control strategies are embedded in the overall MIDO

problem given in Eq. 1.11 in the gPROMS environment. The capital investmentment for the

reactor is given by Eq. 4.2 [197].

Ce = a+ bV n (4.2)

where Ce is the annualized reactor cost, and a, b, n are cost parameters given in Appendix A,

along with the cost escalation indexes for year 2018. The minimum total annual cost is found as

$330k/yr at V = 0.69m3. Note that the scheduling and control strategies yield feasible operation

for the optimal reactor volume as a result of their design dependence. Therefore, treating the

design, scheduling, and control problems simultaneously ensures the operability of the system, as

the MIDO problem comprises the exact closed loop strategies that will be used online during the

operation.

4.3.2 Two CSTRs operating in parallel

This case study presents an extension of the single CSTR example discussed in Section 4.3.1

to two CSTRs operating in parallel. The exact same control strategy and the surrogate model

formulations are employed because the open loop dynamics of the system remains unchanged. The

cooperative operation of the two CSTRs is maintained by a centralized scheduler that allocates the
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Figure 4.3: Two CSTRs in parallel - Closed loop validation of the generalized scheduling scheme
in two reactors operating in parallel. The volumes of the reactors are V1 = 0.4m3 and V2 = 1.0m3,
respectively (Reprinted with permission from [8]).

production tasks on the reactors based on their volumes and their production regimes at a given

time. This scheduler is based on the formulation presented by Eq. 3.5, and is omitted in this

section.

The generalized offline scheduling scheme is validated against the high fidelity model of the

two reactor system. Figure 4.3 showcases a scenario with one small reactor (V1 = 0.4m3) and one

larger reactor (V2 = 1.0m3) operated in parallel. The integrated scheduling and control scheme is

able to drive the inventory level of the most costly product, WP3 , close to zero by assigning it to the

larger reactor. The large reactor is capable of satisfying the demand on P3 standalone, and the small

reactor has a faster transition rate because of the lower retention time. Therefore recognizing the

closed loop dynamics and the capacity of the reactors, the integrated schedule assigns the costly

product, P3, to the large reactor, and alternates the production between P1 and P2 in the small

reactor.

Finally, the offline maps of scheduling and control are embedded in the overall MIDO problem

in the gPROMS environment. The reactor configuration with volumes V1 = 0.44m3 and V2 =
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0.92m3 minimizes the total annual cost accounting for the capital and operating costs. Note that the

optimizer selects one large reactor and one small reactor that delivers (i) uninterrupted production

of one of the products depending on their unit storage prices and demand rates throughout the

horizon, and (ii) fast transitions for alternating production of the remaining products, respectively.

4.3.3 Single residential heat and power unit

This case study presents an application of a combined heat and power generation system (CHP)

on a residential scale. In our previous work [88], we developed design dependent explicit con-

trollers to simultaneously optimize the design and control decisions in a MIDO formulation. In

this study, we extend this approach by taking into account the external factors that affect the de-

sired level of operation, i.e. the fluctuations in the heat and power demand rates, and changing

market prices for the electricity and fuel. We consider a residential district with 10 units, all of

which are supplied hot water for heating purposes and electricity from a single CHP unit. The

hot water can be stored in a buffer tank if the produced heat content exceeds the demand rate.

Additional electricity can be supplied from the central grid if the CHP unit falls short, and a sup-

plementary boiler is assumed to be available at all times to provide more heat content. Excess

electricity produced from the CHP unit can be sold to the central grid for revenue, and excess

hot water can be disposed of at an expense. Note that the rapidly changing electricity prices in

day time and night time has a significant economic impact on the operation of a CHP unit. For

instance, it may be more profitable to operate the CHP unit at a higher capacity during the day

time because of the increased cost of electricity purchase, and at a lower capacity at the night time

when the cost decreases. Therefore, determining the most cost effective operation can be achieved

by taking into account the fluctuation in the prices, demands rates, as well as the dynamics of the

CHP units. A generalized flowsheet of the CHP system with two parallel CHP units is presented

in Fig. 4.4. However in this section, we focus on a system with a single CHP system supplying the

heat and power to the residential units. Parallel operation of multiple units will be discussed in the

subsequent example.

The problem statement is then given as follows:
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Figure 4.4: CHP example – A generalized flowsheet of the CHP system (Reprinted with permission
from [8]).

(i) Given: A high-fidelity model of the CHP, a demand scenario for electricity and heat con-

sumption, investment cost of the CHP unit as a function of its size, market prices of fuel and

purchasing/selling electricity.

(ii) Determine: Internal combustion engine (ICE) size of the CHP, a schedule for the transactions

with the grid and fuel purchases, operating level of the CHP.

(iii) Objective: Minimize the sum of operating and capital costs.

The size of the ICE directly affects the process time of the system, and thus the responsiveness

of the CHP to fluctuations in the demand rates and market prices. ICEs smaller in size have lower

transition time, hence they can deliver fast responses to changes in the operating set points. On the

other hand, larger ICEs can supply more power and heat to the residential units when the demand

rates are high. The trade-off between the responsiveness and the capacity of the CHP is addressed

by integrating a design dependent scheduler and controller in the design optimization problem.

High-fidelity dynamic model: There are two main components taken into account in the CHP

model, (i) a natural gas powered ICE to produce electrical power, and (ii) a cooling system that

recovers the excess heat content of the ICE. We also include the dynamics of the throttle valve that

manipulates the inlet air mass flow rate, and the intake manifold that distributes the air into the ICE
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cylinders. For the detailed mathematical model, the reader is referred to Diangelakis et al. (2014)

[198].

Model approximation: The original high fidelity model is a DAE system with 364 algebraic

and 15 differential relations in the continuous domain. The complexity of the overall system was

previously addressed by decomposition into two approximate models, namely a power production

subsystem and a heat recovery subsystem [199, 88]. The former operating mode gives the relation

between the throttle valve opening and the power output of the CHP, while the latter is used to

estimate the water temperature at the outlet as a function of the power output and the water flow

rate into the heat recovery system. Equation 4.3 presents the identified state-space model for the

power production subsystem.

xtc+1 = 0.9799xtc + 0.0006utc + 6.516V

ytc = 7.839xtc

(4.3)

where x is the identified state, u is the throttle valve opening, V is the volume of the ICE, y is the

electrical power generated by the CHP.

The heat recovery subsystem is an explicit function of the output of the power production

subsystem and is given in Eq. 4.4.

xtc+1 =


0.997 0.103 −0.003

−0.002 0.940 0.116

−0.058 −0.056 0.179

xtc +


−0.008 0.001

0.280 −0.033

−1.280 0.146

utc
ŷtc =

[
−529.9 −2.827 0.252

]
xtc

(4.4)

where x is the set of identified states, u are the the power generation level and water flow rate,

respectively, and ŷ is the prediction of the hot water temperature at the outlet. The discretization

time steps of the models presented in Eq. 4.3 and 4.4 are both 0.1s.

Design of the mpMPC: The two subsystems derived in the previous step are operated by a

decentralized control policy, which comprises interlinked control strategies for each subsystem.

86



We define two operational modes for the decentralized control policy defined as follows.

• Electricity driven mode (Mode 1): The operating level of the CHP, i.e. the power set point, is

determined based on the power demand. Therefore, the throttle valve opening is manipulated

primarily to satisfy the demand on electricity. The operating level projected by the electricity

generation subsystem is treated as a measured disturbance by the heat recovery subsystem,

hence the produced heat is a function of the power output of the CHP. The heat production

level of a standalone CHP unit can be insufficient to satisfy the heat demand at a given

time, requiring the use of the supplementary boiler. It is also possible that the produced heat

content exceeds the heat demand, in which case the hot water is stored in a buffer tank.

• Heat production driven mode (Mode 2): The operating level of the CHP is determined based

on the heat demand. Tracking a water temperature set point at 70 ◦C, heat recovery sub-

system (i) determines an operating level set point to ensure sufficient heat production by

the power production subsystem, and (ii) manipulates the cooling water flow rate to recover

enough heat to satisfy the demand. Analogous to mode 1, the power production level may

not match the electricity demand. In case of insufficient power, additional electricity is pur-

chased from the central grid, and excess electricity is sold back to the grid for revenue.

The reader is referred to Diangelakis et al. [199, 88, 131] for more details on the operating

modes of the system and a quantified evaluation of the decentralized control policy.

Note that changing the operating modes creates an offset between the new set point and the cur-

rent output of the system. This offset has economical consequences on the operation and dictates

the quantity of electricity purchases/sales, usage of the buffer tank and the supplementary boiler.

These economical aspects are addressed and mitigated in the following steps.

Closed loop validation: The design dependent decentralized control policy is validated against

the high fidelity model under a range of different design and scheduling decisions. Figure 4.5

shows a closed loop simulation of a CHP with V = 1500cc operated with mode 1 only. The power

set point is subject to random changes throughout the operation.
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Figure 4.5: CHP example – Closed loop simulation of a CHP unit with V = 1500cc, operated with
mode 1 (Reprinted with permission from [8]).

Similarly, closed loop simulation on a larger CHP (V = 5000cc) is demonstrated in Figure 4.6.

Note that due to operating mode 2, the power set point is subject to changes dictated by the heat

recovery subsystem.

High fidelity model with the mpMPC embedded: The explicit form of the decentralized

control policy is implemented in the original high fidelity model.

Model approximation: The closed loop high fidelity model is used to develop an approximate

model for the scheduler via the MATLAB System Identification Toolbox. The identified model

establishes a relation between the power production and heat storage levels, and the change in the

power production set point, as presented in Eq. 4.5.

Ets+1

Bts+1

 =

0.999 0

37.9 0.955


Ets
Bts


99.5 0 0

0 11.2 −11.2



Rts

Qts

Dts

+

 0

−11.2

 ζhts (4.5)
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Figure 4.6: CHP example – Closed loop simulation of a CHP unit with V = 5000cc, operated with
mode 2 (Reprinted with permission from [8]).

where E is the energy production level, B is the heat storage level, R is the change in the power

production set point, Q is the additional heat supplied from the boiler, D is the disposed heat, ζh

is the heat demand, and the time step of the model is 10 s. We also use an overall energy balance

for the relation between the power production, power demand, and electricity purchases from the

central grid, presented in Eq. 4.6.

Pts + Ets = ζpts +Wts
(4.6)

where P is the electricity purchase, ζp is the power demand, and W is the excess electricity sold

back to the grid.

Design of the scheduler: The objective of the schedule is to minimize the operating costs,

including energy production, energy purchases and sales, and inventory costs, as given in Eq. 4.7.

Ns∑
t=1

βEts + ψtsPts − νtsWts + ξtsQts + ωtsDts + γBts (4.7)
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where the Greek letters denote the corresponding cost parameters. Note that the CHP unit is as-

sumed to be operational throughout the scheduling horizon. Hence, on/off switching costs are

excluded in the objective function. This assumption will be relaxed in Section 4.3.4 where we

discuss a parallel operation of multiple CHP units. The objective function is subject to the ap-

proximate CHP model derived in Eqs. 4.5 and 4.6, as well as the lower and upper bounds on the

optimization variables.

The power production capacity of the CHP unit is a function of the ICE size (i.e. E = E(V )).

The schedule treats this design variable as a bounded parameter along with the initial conditions

of the system, power and heat demands, unit cost of purchasing fuel and power, and unit revenue

of selling power, as listed in Eq. 4.8.

θ = [V,Ets , Bts , ζ
h
tsζ

p
ts , βts , ψts , νts , ξts , ωts , γts ] (4.8)

Design of the surrogate model: Equations 4.5 and 4.6 are resampled in the time steps of the

controller, and substituted in the surrogate model formulation presented in Eq. 3.7. The resampled

state space matrices are given in Appendix 4.9.

Etsm+1

Btsm+1

 =

1.0000 0

0.3880 0.9995


Etsm
Btsm

+

 0.9954 0 0

−19.2613 0.1143 −0.1143



Rtsm

Qtsm

Dtsm


+

 0 0

−0.1143 0.0001


δhtsm
V


(4.9)

Closed loop validation: The integrated scheduling and control scheme is validated against an

extensive set of design options and demand profiles. Figure 4.7 shows a snapshot of a closed loop

simulation of a CHP unit with a volume V = 5000cc. Note that the power set point throughout the

operation is determined by the offline schedule, and translated into the time steps of the controller
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Figure 4.7: CHP example – Closed-loop validation of the integrated scheduling and control scheme
on a CHP with V = 5000cc (Reprinted with permission from [8]).

by the surrogate model.

Design optimization: We formulate a MIDO problem in the gPROMS environment using the

high fidelity model, the explicit design dependent relations for the scheduler, surrogate model, and

the controller. The capital investment cost is assumed to be a linear function of V , and is given in

Appendix A.2. A CHP unit with an ICE volume of V = 1710cc yields the scheduling and control

strategies that minimizes the total annualized cost that includes the capital and operating costs.

4.3.4 Two residential heat and power units in parallel

The single CHP case study presented in Section 4.3.4 is extended to include two CHP units

operating in parallel. We generalize the scheduling formulation to account for multiple CHP units,

and showcase the proposed algorithm on a system with two units. We also include the dynamics

stemming from switching on/off the units, and their impact on the operational optimization.

Design of the scheduler: Evidently, multiple CHP units have a greater capacity to supply heat

and power compared to a single unit. However, the total production rate of multiple units can

exceed the demand rates significantly even when they are operated at their lowest capacities. In

other words, operating one CHP unit standalone can be more cost effective than operating two

CHPs simultaneously at low demand rates. Therefore, we include the start-up and shut-down
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dynamics in the schedule to account for the trade-off between switching on/off the operation and

maintaining the operating status of a unit.

The cost of switching on/off is described by Eq. 4.10.

NCHP∑
i=1

Ns∑
t=1

φiSi,ts + πiFi,ts (4.10)

where NCHP is the number of CHP units, Si,ts and Fi,ts are binary variables that indicate the

start-up and shut-down status, and φi and πi are their unit costs, respectively. The impact of the

switching status variables is incorporated in the schedule by introducing lifting-state variables,

S̃i,ts,n and F̃i,ts,n, as presented in Eq. 4.11.

S̃i,ts+1,n = S̃i,ts,n−1, S̃i,ts,n=0 = Si,ts

F̃i,ts+1,n = F̃i,ts,n−1, F̃i,ts,n=0 = Fi,ts

(4.11)

The state lifting-variables determine the operating status of the CHP units as described in Eq.

4.12.

Si,ts − Fi,ts = Xi,ts −Xi,ts−1

Xi,ts ≥
δupi∑
n=0

S̃i,ts,n

1−Xi,ts ≥
δdni∑
n=0

F̃i,ts,n

(4.12)

where Xi,ts is a binary variable that indicate the operating status, δupi and δdni are the start-

up and shut-down times of the ith CHP unit. The interested reader is referred to Subramanian

et al. (2012) [184] for more details on scheduling with lifting-state variables, and to Kopanos et

al. (2014) [187] for an application of reactive scheduling using lifting-state variables on a CHP

system.

The cost function given in Eq. 4.7 is generalized to encapsulate the operating cost of multiple

CHP units, as presented in Eq. 4.13.
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Figure 4.8: Two CHPs in parallel - Closed loop simulation of the generalized scheduling scheme
in two CHP units operating in parallel. The volumes of the ICE are V1 = 1500cc and V2 = 4500cc,
respectively (Reprinted with permission from [8]).

NCHP∑
i=1

Ns∑
t=1

βtsEi,ts +
Ns∑
t=1

ψtsPts − νtsWts + ξtsQts + ωtsDts + γBts (4.13)

The objective function of the schedule comprises the operating and purchasing costs described

by Eq. 4.13 and the switching costs given in Eq. 4.12.

Closed loop validation: The developed scheduling strategy is implemented on the high fidelity

model and operated in tandem with the offline controller. Figure 4.8 shows a snapshot of the

scheduling level decisions of an operation with two CHP units with ICE volumes V1 = 1500cc and

V2 = 4500cc, under a rapidly escalating demand profile given in Figure 4.9. The following are

some observations and remarks on the closed loop performance of the developed scheduling and

control strategies.

4.4 Conclusions

In this chapter, a novel, process agnostic framework was introduced to integrate the design,

scheduling, and control problems based on a single high fidelity model. Using multiparametric

programming, we derived offline piecewise strategies for (i) a control scheme as a funtion of the

design and scheduling decisions, (ii) a scheduling scheme as a function of design, and aware of
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Figure 4.9: Two CHPs in parallel – Snapshot of the electricity and heat demand profiles. Note the
steep increase in demand in short notice (Reprinted with permission from [8]).

the closed-loop dynamics through a surrogate model formulation. The offline maps of strategies

allowed for a direct implementation in a MIDO formulation for design optimization. The proposed

framework was able to determine the process design that guarantees the operability of the system

under a range of bounded process and market uncertainties by simultaneously considering the

optimal scheduling and control strategies used in closed-loop implementation.

Postulating all layers of decisions as optimization problems has specific benefits to tailor each

individual problem based on the needs of the system of interest. This advantage was illustrated by

using soft constraints to satisfy product purity in the CSTR examples, and by using a decentralized

control structure in the CHP examples. Note that the framework was applied on both problems

without appealing to further modifications.

The major bottleneck of the proposed framework is employing approximate models in the

control and scheduling levels. Although the confidence on the models were increased by using

well-established and previously proposed error metrics [200], the approximation creates a mis-

match between the real process dynamics and the decision making optimization problems. Future

work will focus on incorporating robust counterparts of the scheduling and control problems to

account for the mismatch. However, robust multiparametric receding horizon policies result in an

explosion in the number of critical regions in the parametric solution space. This increase is also
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a natural result of highly dynamic processes, such as batch mode operations. Therefore in Chap-

ter 5, we propose a computationally efficient modeling technique and optimization framework to

integrate the optimal operational strategies in an MIDO formulation for batch processes.
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5. INTEGRATED PROCESS DESIGN OPERATIONAL OPTIMIZATION OF BATCH

PROCESSES1

Batch processing has been the predominant choice of operation mode to manufacture high

value specialty chemicals due to its inherent flexibility to satisfy volatile customer requirements.

Short term scheduling in batch processing is a key factor towards delivering the targeted produc-

tion requirements by the end of a predetermined horizon, as the scheduling implementation can

often dictate the profitability of the entire process especially if a high number of products is to be

manufactured in a limited number of multipurpose equipment [201, 202].

A scheduling problem comprises a variety of decisions such as resource allocation, task se-

quencing, and task timing. State-Task Network (STN) [66] and Resource-Task Network (RTN)

[203] are two of the most widely used scheduling techniques that provide a systematic modeling

framework and solution strategy for these decisions through mixed-integer linear programming

(MILP). STN/RTN adopt a recipe based scheduling approach, where the batch sizes and process-

ing times are assumed to be fixed. Continuous-time scheduling approaches improve upon this

limitation by using linearized relations for the batch sizes and processing times [202, 204, 205,

206, 207, 208, 209]. However, the optimality and even the feasibility of the schedule is susceptible

to internal and external influences such as different initial conditions, known/unknown process dis-

turbances, and fluctuations in utility and raw material prices. Utilizing static transition tables that

comprise processing times or time constants is a common, albeit ad-hoc modeling representation

that poses challenges to generalize for all possible cases due to the lack of an in depth understand-

ing of the process dynamics [94].

Model based approaches that integrate scheduling decisions with faster time scale decisions are

shown to be promising to account for the dynamic characteristics of the process [1, 194, 9, 210].

Bhatia and Biegler (1996) [92] have proposed one of the first significant contributions to simultane-

1Portions of this chapter have been submitted for publication as Burnak, B., Katz, J., Pistikopoulos, E.N., Integrated
process design, scheduling, and model predictive control of batch processes with closed-loop implementation, in
review.
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ously address the process design, scheduling, and optimal control of a multipurpose batch process

in a dynamic optimization formulation. The authors formulated a dynamic model for the batch

process in continuous time domain, which was discretized into a finite dimensional nonlinear pro-

gramming problem (NLP) and solved using orthogonal collocation on finite elements. Biegler and

co-workers extended the use of dynamic models in an integrated formulation with more compre-

hensive and practically relevant scheduling schemes, state equipment networks (SEN) [169] and

RTN [170]. Chu and You (2014) [211] have proposed a surrogate modeling based approach for

the integration planning, scheduling, and open loop dynamic optimization for processes with fixed

batch sizes. More recently, Valdez-Navarro and Ricardez-Sandoval (2019) [212] have addressed

the integrated scheduling and control problem via the STN framework and a back-off algorithm to

handle process uncertainties. Although these approaches have been demonstrated to capture the

key interactions between the site level and unit level process decisions, they are merely intended

to be used in the offline phase of decision making. In other words, such open loop optimization

approaches neglect the behavior of the feedback controller, which fundamentally changes the dy-

namics of the process. Earlier studies by Soroush and Kravaris (1993) [134, 133] accounted for

the PID type state feedback controllers by incorporating their explicit control laws in a dynamic

optimization formulation. However, more advanced control strategies such as constrained Model

Predictive Control (MPC) have implicit forms, where the optimal control actions is only avail-

able after solving an optimization problem at every step in a rolling horizon manner. Zhuge and

Ierapetritou (2014) [177] developed multi-parametric MPCs (mpMPC) to be incorporated in an

integrated scheduling and control formulation. However, the proposed approach utilizes an event

point based scheduling formulation with variable discretization steps, which creates a mismatch

with the fixed step size of the state space model used in the mpMPC. Rossi et al. (2017) [213] have

proposed a two phase architecture for the integrated problem where the first phase solves a con-

ventional scheduling problem offline and the second phase comprises the online implementation

of a modified nonlinear MPC (NMPC).

In Chapter 4, we discussed the use of multi-parametric programming to derive explicit expres-
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sions to be integrated in an MIDO formulation with a focus on continuous processes. However,

batch processes are inherently transient and track time varying input-output trajectories. As a con-

sequence, the explicit solutions to optimal operational decisions are usually large in size, which

renders the problem computationally expensive. Therefore in this chapter, we introduce an efficient

modeling and optimization framework to integrate the design and operational decisions in batch

processing, while accounting for the increasing size in explicit solutions. Accounting for the MPC

dynamics in the integrated problem allows for the derivation of closed-loop optimal trajectories

that are attainable by the advanced control scheme, thereby offering certificates of operability for

the closed-loop implementation. We utilize the SEN framework for the scheduling problem due to

its suitability for the integration with the optimal control problem [169]. Moreover, we introduce

a methodology to exponentially reduce the number of binary variables for embedding the piece-

wise affine partitions derived from the multi-parametric solution of the MPC based on the base-2

numeral system.

The remainder of the chapter is organized as follows. Section 5.1 defines the integrated prob-

lem and the types of decisions that are considered in this chapter. In Section 5.2, we present a

mathematical formulation of the complete integrated problem, the methodology to derive explicit

MPC strategies that govern the system of interest, the essential components of the SEN framework,

and the methodology to embed the explicit MPC solution into the resulting mixed-integer dynamic

optimization formulation. Finally, we showcase the proposed approach with two batch process

examples in Section 5.3.

5.1 Problem Statement

We consider a multipurpose batch process where the products are allowed to follow different

routes through the plant at different times [214]. The objective of these batch plants may vary de-

pending on the application, such as minimizing the cost, minimizing the makespan, or maximizing

the yield of a specific product. The goal of this work is to present a unified theory and framework

to determine simultaneously the following four levels of operational decisions, while delivering the

target objective. Therefore, the problem statement is illustrated in Fig. 5.1 and outlined as follows.
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Design Optimization
Objective: min cost
Decisions: equipment capacity

1

Scheduling Optimization
Objective: min cost/makespan

max product yield
Decisions: task allocation, 
production sequence, batch size

2

Real-Time Optimization
Objective: min cost/makespan

max product yield
Decisions: inputs and outputs, e.g. 
flowrate, temperature and pressure

3

Closed-Loop Control
Objective: stability, set-point tracking
Decisions: inputs, e.g. flowrate

4

Tim
e

 scale

Figure 5.1: A schematic of the objectives and decisions in each multi-scale level. The dashed lines
denote the particular contribution of this study.

Given. First principle dynamics to manufacture the desired products (preprocessing, reaction,

separation), any physical limitations regarding the product quality and process safety, unit capital

and operating costs, and the range of demands on products.

Determine.

i. Process design decisions: Dictates the capacity of the processing units.

ii. Process scheduling decisions: Includes task allocation, production span or cycle, production

sequence, and batch sizes.

iii. Real-time optimization decisions: Input and output trajectories that are transmitted to the

regulatory controller.

iv. Closed-loop control decisions: Model predictive control strategy that governs the process

through the control instruments.
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Objective. Minimize cost, minimize, makespan, maximize yield, etc.

Figure 5.1 illustrates the objectives and decisions associated with each layer considered in

this chapter in their hierarchical time-scale order. In Table 5.1, we present some of the notable

studies that explore the connectivities between these layers with their scopes and their significant

contributions in the field. The main contribution of this chapter, marked with dashed lines in Fig.

5.1, exploits synergistic interactions between advanced closed-loop control strategies and longer

term decisions to provide certificates of operability at each individual level. In Section 5.2, we

first provide a conceptual mathematical representation of the integrated problem, followed by a

framework to develop an offline MPC strategy for a batch process, characteristic equations in the

SEN framework, and an exact modeling technique to integrate the advanced controller in a mixed-

integer dynamic optimization (MIDO) formulation via logical disjunctions.

5.2 Problem Formulation

A generalized mathematical form of the integrated design and operation optimization prob-

lem has been already provided in 1.11. Therefore in this chapter, we formulate a bilevel MIDO

problem, given by Eq. 5.1, where the MPC dynamics are accounted for as the “follower” in the in-

tegrated problem. In Eq. 5.1, the integrated problem features (i) design decisions as time-invariant

variables, (ii) scheduling decisions based on a SEN representation, (iii) open loop optimal con-

trol profiles used as set points for the feedback controller, and (iv) closed-loop MPC dynamics

embedded via multi-parametric programming.
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Table 5.1: An indicative list of the notable studies with their scopes.

Authors
Design
deci-
sions

Scheduling
deci-
sions

Real-time
optimiza-
tion

Closed-
loop con-
trol

Significant contribution

Soroush and
Kravaris (1993)
[134, 133]

3 7 3 3

Incorporated PID control in a DO
formulation with notions of fea-
sibility, flexibility, controllability,
and safety.

Bhatia and
Biegler (1996)
[92]

3 3 3 7
Infinite dimensional DO is solved
via ortogonal collocation on finite
elements.

Nie et al. (2012)
[169] 3 3 3 7

Use of SEN for scheduling deci-
sions.

Zhuge and Ier-
apetritou (2012)
[101]*

7 3 3 3
Closed-loop implementation with
an iterative approach.

Chu and You
(2013) [215] 7 3 3 7

Stochastic programming and Gen-
eralized Benders Decomposition
based approach.

Zhuge and Ier-
apetritou (2014)
[177]

7 3 3 3
Closed-loop strategies accounted
for via multi-parametric program-
ming.

Nie et al. (2014)
[170] 3 3 3 7

Use of RTN for scheduling deci-
sions.

Du et al. (2015)
[103]* 7 3 3 3

Use of low-dimensional scale
bridging models.

Baldea et al.
(2015) [104]* 7 3 3 3

Use of low-dimensional scale
bridging models with model-based
control.

Valdez-Navarro
and Ricardez-
Sandoval (2019)
[212]

7 3 3 7
Implemented back-off approach
with Monte Carlo simulations to
account for uncertainty.

*Cyclic continuous process – included in the list due the applicability of the approach to batch processes.
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min
u(t),s(t),des

∫ τ

0

C(x(t), y(t), u(t), s(t), des, d(t))dt

s.t. ẋ(t) = f(x(t), u(t), s(t), des, d(t))

y ≤ y(t) = g(x(t), u(t), s(t), des, d(t)) ≤ y

u ≤ u(t) ≤ u, s ≤ s(t) ≤ s

x ≤ x(t) ≤ x, des ≤ des ≤ des, d ≤ d(t) ≤ d

x(0) = x0

min
uk

∑
k∈OH

‖xk‖2
Qk

+ ‖yk − yspk ‖
2
QRk

+
∑
k∈CH

‖uk − uspk ‖
2
Rk

+ ‖∆uk‖2
R1k

s.t. xk+1 = Axk +Buk + Cdk

yk = Dxk + Euk + Fdk

x ≤ xk ≤ x, y ≤ yk ≤ y, d ≤ dk ≤ d

u ≤ uk ≤ u, ∆u ≤ ∆uk ≤ ∆u

(5.1)

where the follower problem is a standard MPC formulation. In Eq. 5.1, ‖·‖Ψ denotes the weighted

vector norm with a weight matrix Ψ, OH is the index set of the output horizon, CH is the index

set of the control horizon, Qk, QRk, Rk, R1k are the weight matrices of the states, process outputs,

process inputs, and input deviations, respectively, and sp denotes the set point. Note that the MPC

formulation introduces an additional connectivity between the inputs and outputs of the system

that is neglected in Eq. 1.11, which inherently changes the process dynamics. Therefore, inclusion

of the MPC dynamics is paramount to achieve realizable optimal trajectories.

In Chapter 4, we presented a theory and framework for the integration of MPC in design op-

timization [88], and the incorporation of scheduling decisions via multi-parametric programming

[8]. Although this theory is applicable to batch processes in principle, the practical implementa-

tion becomes a challenging task as the control horizon and the number of manipulated variables

in the MPC scheme increase, which is frequently encountered in batch processes. Increasing the
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number of decision variables in the mpMPC formulation results in an exponential increase in the

number of critical regions, all of which contain the optimal control law to be used based on the

online state measurements. In the integrated formulation presented in Eq. 5.1, the critical regions

are embedded via a big-M or convex hull formulation, requiring the use of a binary variable for

each critical region throughout the optimization horizon.

In the following discussions, we detail the constituents of the MIDO problem, i.e. (i) SEN

formulation with its common assumptions, and (ii) the integration of the mpMPC in the SEN and

dynamic optimization formulation. Developing the mpMPC that governs the process has been al-

ready discussed in Chapters 2 and 3. The complete formulation of the MIDO is given in Appendix

A.3 in a generic form.

5.2.1 Scheduling using the state equipment network

In this section, we discuss the scheduling optimization via the SEN representation outlined in

Panel 2 of Fig. 5.1. Nie et al. (2012) [169] discussed the suitability of the SEN framework for

the integration of the scheduling decisions into a dynamic optimization formulation via general-

ized disjunctive programming. The authors adopted the unit specific event-based continuous time

representation, where the scheduling horizon is divided into a finite number of event slots for each

unit. Although this approach is practical for open loop dynamic optimization, it is a challenging

task to apply on a process governed by an MPC scheme due to two reasons. First, the bilevel

nature of the integrated problem poses a modeling challenge, which will be discussed in Section

5.2.2. Second, the MPC strategy acts on the system in a rolling horizon fashion, where the opti-

mal control action is updated in discrete time intervals, creating a mismatch with the continuous

optimal trajectory proposed by Nie et al. (2012) [169]. Since the discretization steps of the MPC

is fixed by design prior to operation, we use evenly distributed discrete time intervals in the SEN

framework to integrate the dynamic model and the mpMPC via logical disjunctions. In this part,

we discuss the essential constraints and objective functions that can be used in the discrete-time

SEN framework.
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Assignment constraints. We define a set if binary variables yj,s,t that denote operating state s of

an equipment j in time slot t. yj,s,t is equal to 1 if equipment j is occupied by state s in time slot

t, and 0 if otherwise. Therefore, we use Eq. 5.2 to dictate the exclusivity of states in an equipment

throughout the scheduling time horizon.

∑
s∈S

yj,s,t ≤ 1, ∀j ∈ J ,∀t ∈ T (5.2)

Similarly, one task can only be executed in one equipment, as given by Eq. 5.3.

∑
j∈J

yj,s,t ≤ 1, ∀s ∈ S,∀t ∈ T (5.3)

Continuity constraints. After a task is assigned to an equipment, it has to continue the process in

the same equipment.

yj,s,t+1 ≤ yj,s,t, ∀j ∈ J ,∀s ∈ S,∀t ∈ T , t 6= tf (5.4)

where tf is the final scheduling time step.

Material balance. At each discretization point, we construct the material balance for every com-

ponent c to determine their availability, as presented in Eq. 5.5.

Ec,t = Ec,t−1 +
∑
j∈J

∆Ej,c,t, ∀c ∈ C,∀t ∈ T , t > 0 (5.5)

where Ec,t denotes the amount of excess material of component c at time t, and ∆Ej,c,t is the

generation or consumption term, dictated by the reaction kinetics in the high-fidelity model.

Capacity constraints. The vessel sizes limit the amount of material that can be processed in every

task. ∑
s∈S

yj,s,tV ≤ Vj,t ≤
∑
s∈S

yj,s,tV , ∀s ∈ S,∀t ∈ T (5.6)
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where Vj,t is a set of continuous variables that describe the volume occupied in equipment j. Note

that it is possible to enforce similar constraints on the excess material Ec,t. However, we assume

unlimited intermediate storage (UIS) and neglect such constraints for simplicity.

Quality constraints. These constraints are included to enforce certain quality metrics, such as

product purity or target demand, at the end of the batch.

x∗s ≤ xs,t+1 +M(ws,t), ∀s ∈ S∗, t = 0

x∗s ≤ xs,t+1 +M
(
1− (ws,t − ws,t+1)

)
, ∀s ∈ S∗,∀t ∈ T , 0 ≤ t ≤ tf

x∗s ≤ xs,t+1 +M
(
1− ws,t

)
, ∀s ∈ S∗, t = tf

(5.7)

where superscript “∗” denotes the target states, M is a sufficiently large number for the big-M

formulation, and ws,t is defined as a set of linking variables between the scheduling model and

the dynamic high fidelity model. The linking variables ws,t are a set of Boolean variables that are

enforced to have a “true” value if the task is still in progress via Eq. 5.7, and “false” if otherwise.

These variables are linked to the scheduling model as presented by Eq. 5.8.

(t+ 1)ws,t ≤
∑
j′∈J

∑
t′∈T

yj′,s,t′ , ∀s ∈ S,∀t ∈ T (5.8)

Sequence constraints. In the case that one state should take place only after the completion of

another task (e.g. precursors), the priority can be dictated by Eq. 5.9.

yj,s+,t ≤
t∑

t′=0

yj,s−,t′ , ∀j ∈ J ,∀s− ∈ S−, ∀s+ ∈ S+,∀t ∈ T (5.9)

where superscript “−” denotes the states that should be scheduled earlier than the states labeled by

the superscript “+”.

Objective functions. Here, we will present two most commonly used objectives in a process

schedule, although they can be diversified and tailored to serve different purposes. For makespan

minimization, a set of Boolean variables zt is defined to indicate if the overall process is still in
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progress.

yj,s,t ≤ zt, ∀j ∈ J ,∀s ∈ S (5.10)

Then, the makespan of one batch cycle can be minimized by minimizing the sum of zt, as

presented by Eq. 5.11. ∑
t∈T

zt (5.11)

Similarly, cost minimization is one of the most common objectives encountered in processes

schedules, and can be expressed by Eq. 5.12.

∑
t∈T

Cuut +
∑
t∈T

Ctzt (5.12)

5.2.2 Integrating mpMPC in the MIDO

In Chapters 2 and 3, we introduced a systematic procedure to develop MPC schemes based on

a high fidelity model, and to derive the explicit form of the optimal control law, given by Eq. 2.4.

In this section, we will introduce an efficient methodology to integrate the optimal control law with

significantly less binary variables, which is previously outlined in Fig. 5.1 with the dashed lines.

The optimal control law is expressed by a piecewise affine expression, and has two components,

namely (i) a set of affine functions that are optimal for the polytopic space CRn (Eq. 2.4a), and

(ii) a set of polytopes that define the space that bound the corresponding affine expression (Eq.

2.4b). Equation 2.4a can be reformulated by using the two main relaxation schemes, namely big-

M reformulation and convex hull formulation. These relaxation schemes can be used to embed the

mpMPC to the SEN network via a set of binary variables yCRn,t .

−M(1− yCRn,t ) ≤ ut −Knθt − rn ≤M(1− yCRn,t ), ∀n ∈ NC,∀t ∈ T (5.13a)

−M(1− yCRn,t ) ≤ un,t −Knθt − rn ≤M(1− yCRn,t ), ∀n ∈ NC,∀t ∈ T

ut =
∑
n∈NC

un,t, ∀t ∈ T
(5.13b)
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where Eq. 5.13a represents the big-M reformulation and Eq. 5.13b represents the convex hull

reformulation for the optimal control law. We also dictate that at most one critical region can be

selected at a given time throughout the scheduling horizon, as given by Eq. 5.14.

∑
n∈NC

yCRn,t ≤ 1, ∀t ∈ T (5.14)

Selection of the critical region strictly depends on the feasibility of the parameter set θt at time

t. Therefore, we can simply relax the disjoint polytopes by Eq. 5.15.

ACRn θt − bCRn ≤M(1− yCRn,t ), ∀n ∈ NC,∀t ∈ T (5.15)

Note that both the big-M and convex hull reformulation schemes require a binary variable for

every critical region and for each time step throughout the scheduling horizon. Consequently, the

computational complexity of the MIDO problem grow exponentially as the number of critical re-

gions of the explicit optimal control law increase. The states of a batch process are inherently

time-varying and hence, the MPC scheme of a batch process requires longer output and control

horizons, and larger bounds on the variables compared to a typical continuous process. The com-

binatorial nature of the increased number of variables and constraints of the MPC problem results

into an exponential increase in the number of critical regions in its explicit solution. Therefore,

employing the big-M and convex hull reformulation techniques become impractical due to the

number of the yCRn,t variables, especially for the batch processes. Herein, we present an efficient

modeling technique with significantly less binary variables using the base-2 numeral system. The

goal of this technique is to represent each critical region in a time step with a unique combination

of a set of binary variables, ȳCRn2,t
.

Let n2 denote the nth critical region in the base-2 numeral system (i.e. n2 = n). We treat the

digits of n2 as an array of binary parameters, denoted by βn2 . Therefore, a generic constraint g(x)

can be relaxed with the unique combinations of a set of binary variables yi as presented by Eq.
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5.16.

g(x) ≤M

( ∑
i∈{m|βn2,m=0}

yi +
∑

i∈{m|βn2,m=1}

(1− yi)

)
(5.16)

The relaxation scheme presented in Eq. 5.16 reduces the number of required binary variables

from n to dlog2 ne, where d·e denotes the ceiling function. Note that if the number of binary

combinations is greater than the number of constraints (i.e. 2dlog2 ne > n), we need additional

constraints to exclude those combinations from the feasible space by integer cuts, as presented by

5.17. ∑
i∈{m|βn2,m=1}

yi −
∑

i∈{m|βn2,m=0}

yi ≤| m|βn2,m = 1 | −1 (5.17)

where | · | denotes the cardinality operator. An illustrative example for the use of base-2 numeral

system to relax a set of constraints is provided in Appendix A.4.

Using the base-2 numeral system to integrate the explicit MPC solution The base-2 numeral

system can be applied to the big-M (5.13a) and convex hull (5.13b) reformulation schemes for the

piecewise affine control law as presented by Eqs. 5.18 and 5.19, respectively.

−M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
≤ ut −Kn2θt − rn2 , ∀n2 ∈ NC2,∀t ∈ T

(5.18a)

ut −Kn2θt − rn2 ≤M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
, ∀n2 ∈ NC2,∀t ∈ T

(5.18b)
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−M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
≤ un2,t −Kn2θt − rn2 , ∀n2 ∈ NC2,∀t ∈ T

(5.19a)

un2,t −Kn2θt − rn2 ≤M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
, ∀n2 ∈ NC2,∀t ∈ T

(5.19b)

ut =
∑

n2∈NC2

un2,t, ∀t ∈ T (5.19c)

Note that we do not enforce Eq. 5.14 in the base-2 numeral system as any feasible combination

of the binary variables ȳCRn2,t
yield a unique optimal control law. The feasibility of the control laws

in closed loop is analogously satisfied by Eq. 5.20.

ACRn2
θt − bCRn2

≤M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
, ∀n2 ∈ NC2, ∀t ∈ T

(5.20)

Therefore, using Eqs. 5.18 or 5.13b along with Eq. 5.20 provides an exact integration of the

mpMPC into the MIDO formulation. If the number of critical regions n is greater than the number

of binary combinations (i.e. 2dlog2 ne > n), then we can use Eq. 5.17 by rewriting as follows to

eliminate the infeasible combinations.

∑
i∈{m|βn2,m=1}

ȳCRi,t −
∑

i∈{m|βn2,m=0}

ȳCRi,t ≤| m|βn2,m = 1 | −1, t ∈ T (5.21)

5.3 Case Studies

5.3.1 Illustrative example – Single reaction

We consider a reaction that takes place in a batch reactor under nonisothermal conditions.

The goal of this case study is to demonstrate the methodology to embed the MPC dynamics in
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a dynamic optimization framework. Therefore, the design problem and scheduling via the SEN

framework are excluded in this problem for simplicity. Here, we only focus on developing an

MPC that manipulates the heat input to track temperature and concentration set points that are

determined by the real-time optimization formulation. The stoichiometry of the reaction is given

as follows.

A
k1−−⇀↽−−
k−1

B
k2−→ C

where A is the raw material, B is the desired product, and C is a by-product with negligible

monetary value. The reaction setting is selected such that two of the most common challenges

in a batch reaction process, namely a reversible reaction and a side reaction, are included. Due

to the reverse reaction k−1, complete conversion to product B is thermodynamically infeasible.

Furthermore, since the reaction path involves a by-product through an irreversible reaction k2,

the trivial solution of using an infinitely long batch time at the maximum operable temperature

is also infeasible to satisfy the product demand. Therefore, a model based dynamic optimization

approach should be employed to maximize the desired performance metrics. In this case study, we

will demonstrate makespan minimization and yield maximization as performance metrics.

The high-fidelity dynamics of the reaction is developed as a set of DAE and presented as

follows. First, we consider the mass and energy balances, as given by Eqs. 5.22a and 5.22b,

respectively.

1

V

dNc

dt
=
∑
r∈R

sc,rrr, ∀c ∈ C (5.22a)

dT

dt
=
−
∑

r∈R rr∆Hr +Q/V

ρcp
(5.22b)

where V is the working volume, Nc is the amount of component c, sc,r is the stoichiometric coef-

ficient of product c in reaction r, rr is the rate of reaction of r, T is the temperature, ∆Hr is the

reaction enthalpy, Q is the heat input, ρ is the mixture molar density, and cp is the specific heat

capacity.
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Table 5.2: Parameters for Example 1 – single reaction case.

reaction sA,r sB,r sC,r
∆Hr

[kJ/mol]
kr

[106/h]
EA,r

[kJ/mol.K]

1 -1 1 0 13.8 5.0 50.8
-1 1 -1 0 -13.8 0.1 37.0
2 0 -1 1 -2.0 0.5 46.0

The rate expressions for all three reactions are given by Eq. 5.23.

rr = kr exp

(
− EA,r

RT

) ∏
c∈rxnr

Nc

V
, ∀r ∈ R (5.23)

where kr is the pre-exponential term of the Arrhenius equation, EA,r is the activation energy, R is

the ideal gas constant, and rxnr is the set of components that take place in reaction r. Note that all

reactions are assumed to be first order with respect to the reactants.

Lastly, the density and the heat capacity of the mixture are determined by assuming ideal

conditions.

ρ =

∑
c∈C Nc

V

cp =

∑
c∈C cp,cNc∑
c∈C Nc

(5.24)

The parameters of the reaction conditions are provided in Table 5.2. Notice that the desired

reaction is endothermic, therefore heat input to the reactor is mandatory to maintain a certain

temperature set-point.

5.3.1.1 Open loop dynamic optimization for optimal trajectories

Let the objective of the batch reaction be to produce a certain amount of product B, while the

batch time is minimized. A dynamic optimization problem can be formulated to address such a
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makespan minimization problem as presented by Eq. 5.25.

min
Q(t)

tf

s.t.
1

tf

1

V

dNc

dt
=
∑
r∈R

sc,rrr, ∀c ∈ C

1

tf

dT

dt
=
−
∑

r∈R rr∆Hr +Q/V

ρcp

Eqs. 5.23 and 5.24

NB(t = 1) ≥ Ndem
B = 0.4 [kmol]

− 12 [kJ/h] ≤ Q(t) ≤ 12 [kJ/h]

NA(t = 0) = 0 [kmol], NB(t = 0) = 1.0 [kmol]

NC(t = 0) = 0 [kmol], T (t = 0) = 363 [K]

(5.25)

where Ndem
B is the targeted amount of product at the end of the batch. Here, the horizon of the

problem is set as t = [0, 1], and the differential equations are scaled by tf , which denotes the batch

time.

The dynamic optimization problem formulated in Eq. 5.25 is solved by orthogonal collocation

on finite elements [216]. The orthogonal collocation formulation used in this work is based on

Lagrange polynomials and Radau roots. In this case study, we use 24 finite elements (25 mesh

points) with 3 collocation points for the differential and algebraic variables. After discretization,

the resulting NLP is solved by the IPOPT solver [217]. The optimal open loop profiles are de-

termined as presented in Fig. 5.2, and the minimized makespan tf is 1.96 hours. The calculated

batch time assumes complete degrees of freedom over the manipulated variables. However, practi-

cal applications often use closed-loop controllers that manipulate such variables based on process

measurements and set points, which results in inherently different process dynamics regardless of

the efficacy of the controller. Therefore, the only degrees of freedom in a closed-loop process

are the set point trajectories that are transmitted to the controller. The following discussions will

focus on (i) developing an MPC scheme for the batch process described by Eqs. 5.22-5.24, (ii) the
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Figure 5.2: Open loop optimal profiles for the temperature, component concentrations, and heat
input for Example 1.

effects of the MPC dynamics on the closed-loop realization of the optimal open loop profile, and

(iii) accounting for such effects in developing a realizable optimal closed-loop profile.

5.3.1.2 Developing an explicit MPC strategy for Example 1

We follow the procedure described in Section 2.2 to develop an explicit MPC strategy based

on the high fidelity model described by Eqs. 5.22-5.24. A multitude of computational experiments

are conducted to generate the relevant data for system identification. In each experiment, the input

signal is based on a pseudo-random binary sequence (PRBS) and randomized step amplitudes.

Using the MATLAB System Identification Toolbox, we develop the following matrices for the

approximate model state space model described by Eq. 2.2.
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A =


0.9905 0.0274 −0.0299

−0.1174 0.9713 0.0063

−0.1309 0.0618 0.9084


B =

[
−0.0860 −0.1808 −0.5156

]T

D =

0.2735 0.2436 −0.1495

1.2904 0.4882 −0.4445


Here, the identified model has one input variable, Q, two output variables NB and T , and three

identified states with no significant physical meanings with a discretization step of 0.25 h. The

input and outputs are scaled between 0 and 1 to avoid any numerical problems in deriving the

explicit MPC solution. Note that C, E, and F from Eq. 2.2 are zero matrices since there are no

measured disturbances and zeroth order inputs to the system. The step response of the identified

model is provided in the Appendix, Fig. A.5.

The state space model is used in Eq. 2.3 to construct the offline MPC formulation. The bounds

on the variables and the tuning of the weight matrices are presented in Table 5.3. Note that the iden-

tified states do not have any bounds or weights in the objective function since they have no physical

meanings. We also enforce terminal constraints at the end of the output horizon to guarantee the

product quality at the process control level by using Eq. 5.26.

0.99yspkf ≤ ykf ≤ 1.01yspkf
(5.26)

The constructed mpMPC scheme is rearranged into a generic mpQP problem via the YALMIP

toolbox [195] and solved by using the POP toolbox [161] in the MATLAB environment to derive

the offline solution in the form of Eq. 2.4. The resulting offline control law has 955 critical

regions2, which requires 955 binary variables for every time step in the horizon to embed in an

integrated problem via the standard big-M or convex hull relaxation reformulations. Such a large

2The offline solution can be downloaded from http://paroc.tamu.edu/.
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Table 5.3: mpMPC tuning parameters and variable bounds.

parameter value
OH {1, 2, 3, 4}
CH {1, 2, 3}

QRk,∀k ∈ OH
[
0 0
0 104

]
R1k,∀k ∈ OH 1.0

y [1.0, 1.0]T

u 1.0
∆u 0.20
y [0, 0]T

u −1.0
∆u −0.20

number of binary variables make the integrated problem intractable even to determine a feasible

solution. Therefore, we use the base-2 numeral system detailed in Section 5.2.2 to use 10 binary

variables for each time step instead.

The developed mpMPC is integrated in the high fidelity model for a closed-loop validation of

the developed control law. The closed-loop system is tested rigorously with a set of computational

experiments, where the set points are changed arbitrarily, to observe the set point tracking efficacy

of the controller. Figure 5.3a presents a sample of a closed-loop simulation, where the tempera-

ture set point changes after 7 hours in the operation. The mpMPC scheme achieves satisfactory

set point tracking within the range of operation. However, it should be noted that any shift in the

operating set point results in a transition period where the states are distant from the desired val-

ues, regardless of the effectiveness of the controller. Open loop dynamic optimization approaches

neglect these transition periods and assume perfect control over the process. Neglecting the dy-

namics introduced by the feedback controller may result in a significant mismatch between the

desired set point and the realization of the control law. Therefore, we subject the closed-loop sys-

tem to the open loop optimal set point trajectories presented in Fig. 5.2 to test the compatibility

of the controller and operationally relevant conditions. However, the closed-loop simulation fails

to run due to infeasible parameter realizations in the mpMPC during the operation. The open loop
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(a) Closed-loop validation of the developed
mpMPC against the high fidelity model. The
temperature set point changes after 7 hours in the
operation.

(b) Closed-loop profile of the system subjected
to the optimal profile in Fig. 5.2. The terminal
constraints of the mpMPC are removed to de-
velop a realizable profile.

Figure 5.3: Closed-loop simulations of the process subjected to (a) arbitrarily changing set points
(b) the optimal profile. The dashed lines denote the set points.

optimal profile is unattainable for the controller due to the terminal constraints given by Eq. 5.26.

Therefore, we omit these terminal constraints to acquire a feasible closed-loop profile, as presented

in Fig. 5.3b. Here, we can observe that the change in the temperature set point is in fact too steep

for the controller to track, resulting in infeasible parameter realizations. The open loop optimal

trajectory aims to produce the targeted 0.40 kmol/m3 product B in 1.96 hours, while the achieved

yield in closed-loop simulation is 0.349 kmol/m3, indicating an error of 12.5% mismatch below

the desired amount.

With the motivation to bridge the gap between the optimal trajectories and the closed-loop

realizations, we integrate the mpMPC dynamics in the dynamic optimization formulation using the

base-2 numeral system. The integrated model is first used to determine the maximum possible yield

in 2 hours (~1.96 h) using the given process and the developed controller. The resulting MIDO

problem is discretized using 8 finite elements (9 mesh points) with 3 collocation points using the

Pyomo environment [218, 219, 220]. Note that each finite element has a horizon of 0.25 hours,

matching the discretization step of the mpMPC. Discretizing the MIDO yields an MINLP problem,

which is solved with GAMS/BARON [221] with a 15 minute limit on the solution time. The time

limit is enforced to mimic a real life application, where a decision has to be made periodically.
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Accordingly, determining a feasible solution is prioritized over its optimality to guarantee the

operability of the process. Figure 5.4a shows the closed-loop dynamic optimization profiles against

its implementation on the original high fidelity model. Here, the optimal trajectory and the optimal

set points are two distinct entities. While the former is the prediction of the closed-loop profile,

the latter indicates the set of operating points that are transmitted to the mpMPC. Notice that the

realization of the set points yields a similar profile to that predicted by the dynamic optimization.

The solution of the MINLP indicates that the maximum possible yield is 0.325 kmol/m3 at

the end of the 2 hour horizon. This result reveals that the original target of 0.40 kmol/m3 product

B in 1.96 hours is in fact infeasible in closed-loop, although an open loop optimal trajectory

is attainable. The yield attained at the end of the horizon is 0.314 kmol/m3 by simulating the

closed-loop system against the optimal trajectory, indicating an error of 3.4% mismatch. Note that

increasing the number of collocation points per finite element may decrease the error at the expense

of increasing the computational complexity.

In Figure 5.4b, the yield of product B is maximized for a horizon of 3 hours using the same

explicit control strategy. In this problem, 12 finite elements (13 mesh points) are used to maintain

the horizon of each individual element to 0.25 hours to match with the time steps of the mpMPC.

The dynamic optimization formulation predicts a yield of 0.367 kmol/m3, while the closed-loop

simulation tracking the optimal profile produces 0.363 kmol/m3 product B with an error of 1.1%.

The proposed integration methodology consistently bridges the gap between the optimal pro-

files that are used as set points by the controllers and the actual output of the closed-loop process,

as demonstrated in Fig. 5.4. The explicit solution of the MPC scheme facilitates its exact imple-

mentation into a dynamic optimization formulation. Moreover, the base-2 numeral system is used

as a basis for the relaxation of the piecewise affine critical regions, which rendered the problem

computationally tractable by exponentially reducing the required number of binary variables.

5.3.2 Three reactions in two reactors

In this case study, we consider a system of three sets of reactions taking place in two reac-

tors, where both reactors are capable of processing the available tasks. The stoichiometry of the
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(a) 2 hours. (b) 3 hours.

Figure 5.4: Closed-loop dynamic optimization to maximize the yield of B in given time and the
validation of the optimal profile against the high fidelity model. “Set points” denote the targets
determined by the MIDO and used by the mpMPC in closed-loop, “Trajectory” represents the
closed-loop profile that is predicted by the MIDO, “Realization” denotes the actual closed-loop
profile observed in the simulation.

reactions is presented as follows.

Reaction 1: A
k1−−⇀↽−−
k−1

B
k2−→ C

Reaction 2: A k3−→ D

Reaction 3: B +D
k4−→ E

where the first reaction set has the dynamics from the previous case study. In this example, the

valuable products are B, D, and E. Therefore, the operator has the degree of freedom to select the

most convenient task that delivers the requirements of the desired objective at a given time. We

employ the SEN framework, discussed in Section 5.2.1, to determine the process schedule over

a given horizon. The SEN representation of the process is shown in Fig. 5.5. The mathematical

model presented in Eqs. 5.22-5.24 are used to simulate the dynamic behavior of the system, and

the parameters of Reaction 2 and 3 are provided in Table 5.4.

The objective of this problem is to maximize the profit, which accounts for the revenue from

selling the products, the operating cost for the heat supply and raw material purchases, and the

investment cost due to the sizing of the reactors. The design decisions are particularly included in
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Reaction 1

Reaction 1

Reaction 2

Reaction 2

Reaction 3

A

A

B

B

D

D

E

Reactor 1,2

Reactor 1,2

Figure 5.5: State equipment network representation of the process in Example 2.

Table 5.4: Parameters for Example 2 – three reactions and two reactors case.

∆Hr

[kJ/mol]
kr

EA,r
[kJ/mol.K]

Reaction 2 9.8 5.0× 103 h−1 90
Reaction 3 −10 0.5 m3kmol−1h−1 40.7

this case study, as they directly conflict with the operating decisions in terms of the optimality and

feasibility of the problem. Note that the interactions between the design and operating decisions

do not conflict in other objectives such as maximizing the yield or minimizing the makespan. One

can simply maximize the reactor volumes to increase these performance metrics, which will yield

unrealistic design solutions.

We follow the same procedure to develop the explicit MPC strategies for Reactions 2 and 3.

The approximate state space models for these systems and their step responses are provided in

Appendix A.5. The tuning parameters of both control strategies are presented in Table 5.5. The

variable bounds, and the output and control horizons are omitted here since they are identical to the

values in Table 5.3. The explicit MPC solutions have 647 and 977 critical regions for Reactions 2

and 3, respectively3.

In this example, the schedule is designed over a horizon of 8 hours. We assume that the pro-

cessing time for the separation of the product of interest from the unreacted raw materials and

by-products is negligible. The integrated MIDO problem is reformulated as an MINLP by ortogo-

nal collocation on finite elements with 24 finite elements and 3 collocation points over each finite

3The explicit MPC solutions can be downloaded from http://paroc.tamu.edu/.
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Table 5.5: mpMPC tuning parameters for Reactions 2 and 3 in Example 2.

parameter Reaction 2 Reaction 3

QRk,∀k ∈ OH
[
0 0
0 103

] [
0 0
0 4× 103

]
R1k,∀k ∈ OH 1.0 1.0

element. The reformulated MINLP is solved with GAMS/BARON [221] with a 15 minute limit on

the solution time. The resulting process schedule is demonstrated on a Gantt chart in Fig. 5.6a. By

the end of the scheduling horizon, the targeted inventory is 0.28 kmol for B and 0.39 kmol for E,

while no excess D is produced. For reference, the same problem is solved without accounting for

the dynamics introduced by the MPC, which is presented in Fig. 5.6b. Here, the scheduler aims to

produce 0.76 kmol B, 1.02 kmol D, and 0.49 kmol E by the end of the horizon. Notice that the

targeted inventory levels are in fact lower when the MPC dynamics are included in the integrated

problem. Acquiring “worse” solutions with smaller profit margins with the proposed approach is

an expected outcome since the problem without the MPC dynamics is an underestimator4 of the

completely integrated problem. The most imperative contribution of the proposed approach is to

provide certificates of operability for the calculated optimal trajectory under the simultaneously de-

termined process design. The benefit of having such certificates can be observed in Fig. 5.7, where

the optimal trajectories are determined based on closed-loop and open loop dynamic optimization

formulations for three distinct tasks. The proposed approach bridges the gap between the optimal

trajectory and its realization in closed-loop by distinguishing the desired path from the set points

that need to be passed on to the controller. Following these trajectories, the proposed scheduling

and control scheme achieves the targeted inventory levels by producing 0.28 kmolB and 0.38 kmol

E at the end of the horizon. However in the reference case, the controllers fail quite often due to

infeasible parameter realizations. The steep changes in set points impose unrealistic trajectories

for the controller, which cannot satisfy the terminal constraints. Therefore, the closed-loop real-

izations in Figures 5.7b, 5.7d, and 5.7f are simulated without enforcing the terminal constraints in

4Underestimator is used in the direction of a conventional minimization problem.
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(a) Process schedule with the MPC dynamics in-
cluded. The reactor sizes are VR1 = 1.20m3 and
VR2 = 0.73m3, respectively.

(b) Process schedule without the MPC dynam-
ics. The reactor sizes are VR1 = 1.50m3 and
VR2 = 0.96m3, respectively.

Figure 5.6: Process schedule with and without the MPC dynamics. The colors red, orange, and
cyan represent the production of B, D, and E, respectively.

the MPC. Due to the mismatch between the set points and the closed-loop realization, the targeted

production cannot be achieved in the dedicated time interval. In other words, the schedule cannot

be satisfied due to the delay in delivering the intended amounts.

5.4 Conclusion

In this work, we presented a comprehensive modeling methodology to integrate the process

design, scheduling, and advanced control decisions in a single optimization formulation for a batch

process, while accounting for the closed-loop operability. We introduced an exact formulation

technique to integrate the MPC dynamics into a mixed integer dynamic optimization problem by

multi-parametric programming. The piecewise affine expression that represents the offline look-up

table for the optimal control law is embedded via the base-2 numeral system, which exponentially

reduced the required number of binary variables for the formulation. The scheduling problem

was formulated with the SEN framework due to its suitability for the integration with dynamic

optimization problems with dynamic optimization problems through logical disjunctions.

The main goal of this study is to account for the dynamics introduced by an MPC scheme

acting on a batch process. Open loop dynamic optimization often neglect such shifts in dynamic

behavior. However, it was observed that the MPC scheme may be unable to track the optimal open

loop trajectory due to its implicit effects on the process dynamics. Failing to deliver the targeted

production rates at the lower level decision layers caused the failure of several scheduling decisions
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(a) Production of B based on closed-loop opti-
mization.

(b) Production of B based on open loop opti-
mization.

(c) Production of D based on closed-loop opti-
mization.

(d) Production of D based on open loop opti-
mization.

(e) Production of E based on closed-loop opti-
mization.

(f) Production of E based on open loop opti-
mization.

Figure 5.7: Closed-loop validation of the optimal input-output trajectories for three different tasks
based on the closed-loop and open loop dynamic optimization formulations. Figures on the left
hand side (5.7a, 5.7c, and 5.7e) show the optimal closed-loop trajectories, set-points that are passed
on to the MPC, and the closed-loop realizations. Figures on the right hand side (5.7b, 5.7d, and
5.7f) only show the optimal trajectories and their closed-loop realizations since the trajectories are
used as the set points.
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such as equipment assignment and task start/end times in closed-loop application. Integrating the

feedback control law in the dynamic optimization allowed for deriving more attainable closed-loop

trajectories and thus, realizable processing times for the scheduler.

The proposed methodology was tested with different objectives, namely makespan minimiza-

tion, yield maximization, and profit maximization. We showcased two case studies, the latter of

which comprised all the decision layers in the scope of this work, i.e. process design, schedul-

ing, and control, with the objective to maximize the profit. Although the closed-loop optimization

predicts lower revenues and higher costs than the open loop trajectories, the optimized profiles

were realized with significantly higher accuracy. Therefore, accounting for the MPC dynamics is

paramount to provide certificates of operability.

Our future efforts will focus on addressing industrially relevant batch processes, which are

much larger in problem size. Although the proposed methodology allows for finding a feasible

solution, its optimality still needs significant improvement to approach the global minimum. Our

future efforts will include two main avenues that can also be used in tandem to improve the solution

quality. First, the piecewise affine control law is quadratic (hence convex) in the objective space.

A tailored branch and bound algorithm can be developed to fathom the infeasible or suboptimal

control laws by benefiting from the structure of the multi-parametric solution space. Second, the

open loop optimal trajectory is an underestimator of the integrated problem as discussed in Section

5.3. This solution can be used in the tailored algorithm to achieve a better initial starting point. An

improved solution strategy is essential to solve larger scale and industrially relevant problems.

Further improvement can be achieved with a more accurate representation for the nonlinear

effects of the design variables in the process control level. In our earlier works [105, 222, 88], we

accounted for the design variables as added disturbances in the MPC scheme. However, highly

nonlinear process design variables require piecewise affine models that render the mpMPC prob-

lem into an mpMIQP, which significantly increases the size of the offline look-up table. Our current

efforts focus on treating the design variables as left hand side parameters instead of added distur-

bances to alleviate the computational burden while handling highly nonlinear process designs.
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6. A NOVEL ALGORITHM FOR MULTIPARAMETRIC PROGRAMMING1

6.1 Introduction

Multiparametric programming is an established tool to solve optimization problems in the

presence of uncertain parameters [223]. The advantages of multiparametric programming lie in

the offline map of optimal solutions that (i) provides valuable insight on the behavior of the op-

timal decision under a range of parameters prior to their realization, (ii) the burden of solving

an optimization problem is removed and replaced with evaluating an explicit function after the

realization of the parameters [224], and (iii) allows for an exact formulation to embed the op-

timal solutions in the context of simulation and optimization [8]. The range of applications for

multiparametric programming spans multiparametric/explicit Model Predictive Control (mpMPC)

[85, 225, 226, 227, 228, 229], process scheduling [230, 187], integration of multi-scale decisions

[177, 88, 106, 105, 222, 8, 231], bi-level programming [232, 233], and parameter estimation [234].

Complete theories and solution strategies were proposed in the literature for multiparametric

linear programming (mpLP), quadratic programming (mpQP) [235, 85, 236, 237, 238, 239, 240],

and mixed-integer linear programming (mpMILP) [241]. A key difference in existing approaches

is their procedure to explore the parameter space to completion. Algorithms proposed by Bem-

porad et al. (2002) [85], Tøndel et al. (2003) [236], and Spjøtvold et al. (2006) [237] rely on

geometrical strategies, where the parametric solution is determined by direct exploration of the pa-

rameter space. Strategies for multiparametric programming proposed by Gupta et al. (2011) [238]

and Ahmadi-Moshkenani et al. (2018) [239] develop the parametric solution by enumerating pos-

sible active set combinations with a branch and bound style approach. These active set strategies

are inherently different from geometrical approaches because they do not rely on the parameter

space to identify the optimal explicit expressions that are defined over the parameter space. Algo-

rithms that incorporate both geometric and active set strategies, by Gal et al. (1972) and Oberdieck

1Portions of this chapter have been submitted for publication as Burnak, B., Katz, J., Pistikopoulos, E.N., A novel
geometrical algorithm for multiparametric programming, in review.
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et al. (2017) [235, 240], rely on representing the parametric solution as a connected graph where

each node represents an optimal active set combination.

Although these approaches theoretically guarantee developing the complete solution over the

parameter space, practical implementation becomes more challenging as the number of optimiza-

tion variables, constraints, and parameters grow because of the potential exponential increase in

optimal active set combinations. Managing the memory requirements of an exponential solution

space has been approached by Drgoňa et al. (2017) via the so-called regionless explicit MPC [242].

The regionless explicit MPC strategy saves memory by maintaining factored matrices and active set

combinations, instead of the optimal expressions defined over the parameter space. However, with

a solution space that grows combinatorially with the problem size, developing the full paramet-

ric solution becomes impractical, and using the complete explicit solution in offline applications

becomes intractable. For instance, in multi-level optimization formulations, the solution space of

the follower (lower level) problems increase rapidly in the number of variables and constraints,

necessitating a strategy to account for the potential explosion of optimal active set combinations

that define the multiparametric solution. Current theory and strategies in the open literature do not

attempt to address this potential explosion, hence the use of explicit solutions in large scale offline

applications is rather limited. Therefore, the exploration of a meaningful partial solution to these

large scale problems is necessary. In other words, the question that must be addressed is “What is

a good criterion that provides meaningful insight to the multiparametric solution, and how can an

efficient strategy be implemented to exploit this criterion?”.

In this chapter, we propose a novel parameter space exploration algorithm for mpLP, mpQP,

and mpMILP based on recursive construction of nonincreasing simplices via Delaunay triangula-

tion. The proposed algorithm prioritizes the volumetrically larger partitions of the solution space,

whereas the existing multiparametric programming solvers place no priority for the size of the

partitions identified. Identifying the larger partitions is particularly important in large scale multi-

level optimization problems, where even finding a feasible solution can be challenging. In these

problems, having identified the larger partitions of the follower (lower level) optimization prob-
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lem facilitates finding a feasible overestimator of the global minimum, while keeping the problem

tractable. The proposed algorithm returns a larger portion of the parameter space compared to the

existing state-of-the-art multiparametric solvers upon early termination, which is a promising step

towards using explicit optimal solutions in large scale offline applications.

The remainder of the chapter is organized as follows. A brief overview of multiparametric

programming is presented in Section 6.2. In Section 6.3, the proposed algorithm is described. The

performance of the proposed approach is evaluated by numerical examples and compared against

state-of-the-art solvers in Section 6.4. Lastly, a summary of the paper and directions for future

work are presented in Section 6.5.

6.2 Preliminaries for multiparametric programming

We consider standard mpLP and mpQP problems, described in the following general form

given in Problem P1. Note that the discussions will be extended to mixed-integer problems in

Section 6.3.5.

z∗(θ) = min
x

(Qx+Hθ + c)Tx

s.t. Ax ≤ b+ Fθ, θ ∈ Θ
(P1)

where x ∈ Rn is the vector of optimization variables, θ ∈ Rq is the vector of parameters

defined in a convex polytope Θ ⊂ Rq, z∗(θ) ∈ R is the optimal objective value as a function of

the parameters θ, and Q � 0 ∈ Rn×n, H ∈ Rn×q, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, F ∈ Rm×q.

Note that Q is defined for mpQP problems only. Also, let f(x, θ) denote the objective function,

N , {1, 2, ..., n} denote the set of optimization variables, andM , {1, 2, ...,m} denote the set

of indices of all constraints in Problem P1 in the following discussions.

Definition 1. (Linear Independence Constraint Qualification (LICQ) [237]). Let A indicate the

index of active constraints at any parameter realization θ̄. LICQ holds if the set of active constraint

gradients is linearly independent, i.e. AA has full row rank.
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Definition 2. (Strict Complementarity Slackness (SCS) [237]). Let x∗(θ̄) be the optimal solution,

and λ∗(θ̄) be the set of Lagrange multipliers for a parameter realization θ̄. SCS holds if either

the ith constraint in Problem P1 is active (Aix∗(θ̄) = bi + Fiθ̄) or the corresponding Lagrange

multiplier is zero (λ∗i (θ̄) = 0) for each i ∈M.

Theorem 1. (Basic Sensitivity Theorem [243]). Let x∗(θ̄) be the optimal solution and λ∗(θ̄) be

the set of Lagrange multipliers at any parameter realization θ̄. Also assume that LICQ and SCS

hold. Then, there exists a unique, once differentiable function [x∗T (θ), λ∗T (θ)]T satisfying the

Karush-Kuhn-Tucker (KKT) optimality conditions in the neighborhood of θ̄, and

x∗(θ)
λ∗(θ)

 = −M−1N(θ − θ̄) +

x∗(θ̄)
λ∗(θ̄)

 (1)

where

M =



∇2
xxL ∇xg1 · · · ∇xgm

λ1∇T
x g1 g1

... . . .

λm∇T
x gm gm


N = [∇2

θ,xL, λ1∇T
θ g1, λm∇T

θ gm]T

L(x, λ, θ) = f(x, θ) + λTg(x, θ)

g(x, θ) = Ax− b− Fθ

Remark 1. If the quadratic term Q is not defined, Problem P1 describes an mpLP, where Theorem

1 also holds without loss of generality.

Definition 3. (Piecewise affine [85]). A function x(θ) : Θ ⊂ Rq → Rn is piecewise affine if it is

possible to partition Θ into polytopic regions, such that

x(θ) = Kjθ + rj,∀θ ∈ Ωj, j ∈ J (2)
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where Ωj is defined as the jth polytopic region, and J is the index set. Note that piecewise quadratic

is defined analogously.

Theorem 2. (Properties of mpQP solution [85, 244]). Consider the mpQP problem presented in

Problem P1, where Q � 0. Then, the set of feasible parameters Θf ⊆ Θ is convex, the optimizer

x∗(θ) is continuous and piecewise affine, and the optimal objective function z∗(θ) is continuous

and piecewise quadratic.

Remark 2. Without loss of generality, Theorem 2 holds for mpLP solutions except the optimal

objective function z∗(θ) is piecewise affine [245, 85].

Definition 4. (Critical region). A polytopic region Ωj is a critical region, denoted by CRj , if Eq.

2 describes the optimal solution to Problem P1.

Lemma 1. Each critical region CRj is uniquely defined by the optimal active set associated with

it [238].

6.3 A Novel Geometric Exploration Strategy

We propose a systematic sampling strategy via Delaunay triangulation for the parameter search

space that prioritizes the volumetrically large critical regions. We begin the discussion by defin-

ing “candidate subset” and “candidate simplex”, which are the building blocks of the proposed

algorithm.

Definition 5. (Candidate subset and candidate simplex). Any full-dimensional polytope that is a

subset of Θ ⊂ Rq is a candidate subset, Θc ⊆ Θ. If the subset has q + 1 vertices, the candidate

subset is a candidate simplex.

The proposed strategy relies on (i) constructing candidate simplices in a non-increasing se-

quence, (ii) identifying the candidate simplices that are subsets of the optimal partitions in the

parameter space, and (iii) selecting a new sampling point if the candidate simplex is not a subset of

an optimal partition. The critical region around the sampled parameter realization is constructed

based on the Basic Sensitivity Theorem [243]. The procedure to explore the parameter space and
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developing the optimal partitions is summarized in Algorithm 1. We describe the detailed steps of

the exploration algorithm in Section 6.3.1.

Algorithm 1 Parameter space exploration procedure

1: Get Problem P1 and the parameter space Θ. Let Θh
c ← Θ.

2: Solve Problem P1 at all the vertices of Θh
c .

3: If the set of strongly active constraints,
−→
A , is identical for all vertices, eliminate Θh

c from the
parameter search space. Else, proceed to Step 5.

4: Check
−→
A for dual degeneracy. If it is non-degenerate, construct CRj based on the Basic Sen-

sitivity Theorem (see Theorem 1) (Also see Section 6.3.4 for degenerate cases), and proceed
to Step 7.

5: Let pc be the center of mass of
−→
θ h, 〈

−→
θ h〉.

6: Determine the child simplices of the point set
−→
θ h ∪ pc via Delaunay triangulation (see [246]

for the details on Delaunay Triangulation). Include the child simplices in the set of candidate
convex subsets.

7: Go back to Step 2. Repeat for all parent candidate convex subsets.
8: Increment h.

6.3.1 Parameter space exploration

Assume the solutions to Problem P1 are feasible at all vertex points of Θ. Note that this

assumption will be relaxed in Section 6.3.3, where an initialization strategy is presented.

The exploration procedure is initialized (h = 0) by defining a candidate convex subset, Θh
c

equal to the parameter space Θ. The initial candidate convex subset dictates the boundaries of

the search space throughout the rest of the procedure, because the algorithm explores the space

by creating new candidate simplices in a non-increasing sequence in the subsequent iterations.

Therefore, it is guaranteed that the algorithm never explores outside the parameter bounds.

Problem P1 is solved at the vertex points of Θh
c to find the corresponding active sets,

−→
A . Lemma

1 suggests that if all active set combinations in
−→
A are identical at the set of vertex points

−→
θ h, then

−→
A uniquely defines the critical region bounded by Θh

c . Therefore, knowing that the parameter

space is explored to completion (i.e. Θ \ Θh
c = ∅), the exploration algorithm is terminated by

eliminating Θh
c from the parameter search space, since it comprises only one optimal active set
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combination. Note that this is a trivial case where Θ is feasible for all parameter realizations and

has one critical region.

In the case where
−→
A at

−→
θ h are not all identical, there exist at least two critical regions within

Θh
c by Lemma 1. Therefore, we generate new non-increasing child candidate simplices for the next

iteration (Θh+1
c ) to explore the parameter space in higher resolution. Although it is possible to gen-

erate any finite number of non-overlapping candidate simplices [247], we propose a systematic and

efficient procedure to construct the child subsets iteratively. In the proposed algorithm, these child

subsets are generated such that (i) they are non-overlapping simplices, and (ii) each child subset

has q vertices that belong to the point set
−→
θ h and share one vertex at an arbitrary point, pc ∈ Θh

c .

An effective methodology to construct such subsets is to utilize computational geometry tools such

as triangulation algorithms. In this study, we employ Delaunay triangulation to generate child sub-

sets from the parent subsets (the interested reader is referred to de Berg et al. [246] for details on

Delaunay triangulation). Although this step can be replaced by any other triangulation algorithm,

Delaunay triangulation provides two main benefits. First, due to the empty circle property, it yields

well-distributed simplices compared to other algorithms [246], which promotes sparse sampling in

the parameter space and thus targets volumetrically larger critical regions. Second, Delaunay tri-

angulation is a well-established technique in the field of computational geometry, and its software

implementation is readily available in most of the widely used programming languages.

The procedure to generate child subsets Θh+1
c from a given parent subset Θh

c is depicted in

Figure 6.1, where the center of mass of the vertex points is assigned as pc = 〈
−→
θ h〉, where 〈·〉

represents the center of mass of a point set. The triangulation step is executed for each parent

subset of which the active sets,
−→
A , are different at the vertex points. On the other hand, if the

subset
−→
A is identical at the vertex points, we know that the simplex is a subset of a critical region

(i.e. Θh
c ⊆ CRj) by Lemma 1. Therefore, Θh

c can be eliminated from the parameter search space

since there is no need for further exploration.

The point set
−→
θ h is checked for dual degeneracy based on its corresponding active sets,

−→
A .

Handling dual degeneracy is omitted in this section to focus on exploration of the parameter space,
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and will be discussed in Section 6.3.4. For the non-degenerate case, the unique combinations of
−→
A and the corresponding parameter realizations θ ∈

−→
θ h are used to construct the critical regions

by the Basic Sensitivity Theorem. We derive the parametric expressions for the optimal solution

x∗(θ) and optimal Lagrange multipliers λ∗(θ) for all θ ∈
−→
θ h by Eq. 1. The bounds of the critical

regions and optimal objective function z∗(θ) are determined by direct substitution of x∗(θ) and

λ∗(θ) into Problem P1 and λ∗(θ) ≥ 0.

The points sampled from the parent subset Θh
c in iteration h comprise the point set

−→
θ h+1 =

−→
θ h ∪ pc for the next iteration. The generated child subsets, Θh+1

c , are subjected to the same ex-

ploration procedure, until all candidate simplices are eliminated from the parameter search space.

Therefore, the presented parameter space exploration algorithm can be summarized as follows.

i. Solve an optimization problem at the vertex points of each candidate subset to determine the

minimum number of unique active sets (i.e. critical regions) in the corresponding subsets.

ii. Develop the critical regions around the vertex points by Eq. 1.

iii. If there exists one unique active set in a candidate subset, eliminate the subset from the

parameter search space. Else, generate child subsets by Delaunay triangulation.

iv. Repeat until all candidate subsets are eliminated from the parameter search space.

Remark 3. One major iteration consists of two main loops to (i) solve the optimization problem

at the sampled points,
−→
θ h, and (ii) eliminate the fully explored subsets from the parameter search

space and triangulate into finer simplices if necessary. Note that the cycles in these loops are

completely independent, i.e. they can be evaluated without requiring the output of another cycle.

Therefore, both loops can be executed in parallel if multi-core processors are available.

Remark 4. The active set
−→
A is determined by checking for the positive Lagrange multipliers

(λi > 0), rather than the classical definition (gi = 0) to exclude the weakly active constraints from

the active set. Distinguishing the weakly and the strongly active constraints alleviates the dual

degeneracy problem during the exploration step.
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(a) Parent candidate simplex Θh
1 , with vertices {p1, p2, p3}.

(b) Center of triangulation, pc = 〈p1, p2, p3〉, is defined at the center of mass of the vertex points.

(c) Delaunay triangulation with the new point included in the point set. All Θh+1
c are siblings to each other,

and children of Θh
1 .

Figure 6.1: The proposed procedure to generate child candidate simplices from a given parent
subset by using Delaunay triangulation.
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Remark 5. The point set
−→
θ h may include parameter realizations sampled from an already explored

critical region. In that case, solving the optimization problem at these corresponding points is

redundant, since we know that the solution will not reveal any new active set combinations by

Lemma 1. Therefore, we can benefit from the previously explored critical regions to decide if the

solution of the optimization problem at the parameter realization is required.

The presented parameter space exploration strategy provides a structured methodology to sam-

ple the solution space. A key benefit of the sampling strategy employed is the ability to prioritize

identifying volumetrically larger critical regions. Large critical regions are prioritized because the

likelihood a vertex associated with a triangulated child simplex exists within a larger critical re-

gion is proportional to its volume. In other words, larger critical regions are likely to be identified

compared to smaller critical regions due to the proposed sampling method.

6.3.2 Illustrative example

A demonstration of Algorithm 1 is provided via an mpQP example with two parameters for

visualization, 10 optimization variables, and 15 constraints2. Here, we also introduce the concept

of accumulated volume, which will be discussed further in Section 6.4.2. The problem structure

is based on Problem P1, and the defining matrices are provided in the Appendix. The steps below

are illustrated in Figure 6.2.

Step 1 Given the upper and lower bounds of the hypercube defined by the polytope Θ, the initial

vertices are located, seen by Figure 6.2a,
−→
θ h=0 = {(10, 10), (10,−10, ), (−10,−10), (−10, 10)}.

For the presented problem, the total volume of the parametric solution is 400 magnitude units

(m.u.).

Step 2 An optimization problem is solved at each vertex point defined in Step 1. The solution

to these optimization problems provides the optimal active set combination for each vertex. The

active set for the vertices are defined as
−→
A = {{12}, {7, 13}, {7, 14}, {3, 14}}. These active sets

are not all identical, and by Lemma 1, multiple critical regions must exist. The critical regions

2The example problem and its exact solution can be downloaded at http://paroc.tamu.edu/Examples/.
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developed in this step occupy an accumulated volume of 104.9 m.u. These critical regions account

for 26.2% of the volume of the total solution.

Step 3 The polytope defined by Θ needs further exploration because of the active set discrep-

ancies found in Step 2. First, the center of mass of the vertices is determined, 〈
−→
θ h=0〉 = (0, 0),

and added to the vertex list pc =
−→
θ h=1 = 〈

−→
θ h=0〉. The initial vertices together with pc are used

to perform Delaunay triangulation, Figure 6.2c, which provides the union of child simplices to be

explored, Θh=1
c .

Step 4 Each child simplex is treated as a convex polytope, similar to the initial set of vertices

defined in Step 1. An optimization problem is solved for each newly defined vertex. In this

case, the only new vertex added was 〈
−→
θ h=0〉 = {(0, 0)}, and therefore only a single optimization

problem is solved in this step. The optimal active set combination is {∅}. The critical region

identified has a volume of 97.9 m.u., and the accumulated volume is 202.8 m.u. The accumulated

volume accounts for 50.7% of the total volume of the multiparametric solution.

Step 5 Each generated triangle determined in Step 3 is then analyzed. For a given generated

triangle, Θh=1
c , if all of the active set combinations associated with its vertex list are identical,

the simplex Θh=1
c is eliminated from the parameter search space, otherwise further exploration is

needed. For instance, Θh=1
1 has an active set list of

−→
A = {{∅}, {7, 13}, {7, 14}}, and thus further

exploration is needed. Each generated triangle requires further exploration, and therefore a new

set of points are defined
−→
θ h=2 = {(0,−6.67), (−6.67, 0), (0, 6.67), (6.67, 0)}

Step 6 Repeat Steps 2-5 until the termination criterion is met.

6.3.3 Initialization

In Section 6.3.1, we assumed that the solutions to Problem P1 are feasible at all vertex points

of Θ. However, this is rarely the case, and we need an effective initialization procedure when this

assumption does not hold.

Algorithm 1 can be initialized by labeling the infeasible vertex points of Θ as infeasible to

distinguish from the feasible
−→
A . However, if there exists at least one infeasible parameter realiza-
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(a) Step 1: Locate initial vertices. (b) Step 2: Identify active sets.

(c) Step 3: Delaunay triangulation. (d) Step 4: Identify active sets.

(e) Step 5: Further exploration. (f) Complete map of solutions.

Figure 6.2: Illustration of the proposed algorithm.
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tion in the points set
−→
θ h for h = 0, the proposed algorithm cannot guarantee exploration of the

full solution. The complement of the feasible parameter space is nonconvex in the general case.

Therefore, we cannot effectively use Algorithm 1 to eliminate the infeasible parameter space.

Hence, we propose a slight modification on the elimination criteria to maintain an exact algo-

rithm, as outlined in Algorithm 2, that guarantees the acquisition of the full solution when there

exists at least one infeasible vertex in Θ.

For a given candidate simplex Θh
c , we compare the active set combination

−→
A as discussed in

Algorithm 1. If all the vertex points are labeled as infeasible, we need to check if there exists a

feasible solution in the parameter space bounded by Θh
c . This would be a trivial exercise if we

had the closed half-space representation of Θh
c , however we only collect the vertex points of the

simplices during the exploration of the parameter space. Therefore, we define a point p, which is a

convex combination of the vertex points of the given candidate simplex by Theorem 3.

Algorithm 2 Modified parameter space elimination procedure

1: Get Problem P1, active set
−→
A , and candidate convex subset Θh

c .
2: If

−→
A is identical at all the vertices of Θh

c and a feasible combination, eliminate Θh
c from the

parameter search space and terminate Algorithm 2. Else, proceed to Step 3.
3: If

−→
A is identical at all the vertices of Θh

c and an infeasible combination, let p be a point in Θh
c .

Else, proceed to Step 5.
4: If a p exists such that Problem P1 is feasible, then pc ← p. Else, eliminate Θh

c from the
parameter search space and terminate Algorithm 2.

5: Assign the center of mass of the vertex points to pc. Terminate Algorithm 2.

Theorem 3. (Convex combination [248]) The convex hull of set S, H(S) is defined as the set of
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all convex combinations of S. Then p ∈ H(S) if and only if p can be represented as follows.

p =
r∑
i=1

µipi

r∑
i=1

µi = 1

µi ≥ 0, pi ∈ S

(3)

where r is the cardinality of point set S.

We know that there exists at least one critical region if Problem P1 can yield a feasible solution

for p ∈ H(
−→
θ h
k). One can simply formulate an LP problem with arbitrary weights on the optimiza-

tion variables and parameters, subject to the constraint set g(x, θ) and Eq. 3. However, the solution

of this problem may return a point on a facet of Θh
c , provided the constructed LP is non-degenerate.

Although any p ∈ H(
−→
θ h
k) is suitable to be assigned as pc, selecting a point on a facet reduces the

dimensionality of the search space to n − 1, ergo increases the number of triangulations in the

future iterations.

Therefore, the feasibility problem is addressed by finding the Chebyshev center3 of the con-

straint set g(x, θ) and Eq. 3. The Chebyshev center ensures that the located point pc (i) is feasible

for Problem P1, (ii) belongs to Θh
c , and (iii) does not lie on a facet of Θh

c . Note that finding the

Chebyshev center can be replaced by any technique that finds a feasible point in Θh
c .

6.3.4 Handling degeneracy

The discussion hitherto has focused on non-degenerate parametric problems. However, degen-

eracy in multiparametric optimization problems has been reported as a significant complication

that needs to addressed [250]. Two types of degeneracy are encountered in the literature, namely

primal and dual.

3The Chebyshev center is defined as the center of the largest “ball” that can fit in a polytope. The interested reader
is refered to Boyd and Vandenberghe [249] for details regarding the Chebyshev center.
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6.3.4.1 Primal degeneracy

Let A1 and A2 be the active sets of two adjacent critical regions CR1 and CR2, respectively.

Then, the active set at θ̄ = {θ | θ ∈ CR1 ∩ CR2} is A1 ∪ A2. If the rows of AA1∪A2 are

linearly dependent, the LICQ conditions are violated at θ̄. Problem P1 is primal degenerate at such

conditions. A detailed discussion on primal degeneracy is provided by Tøndel et al. [236].

In the proposed algorithm, we address the primal degeneracy by perturbing the point of explo-

ration pc in a random direction such that the new point remains in the parent candidate simplex

(i.e. p′c ∈ Θh
c ). The perturbed point is replaced with the original point in all sibling subsets.

6.3.4.2 Dual degeneracy

LetA be the active set of Problem P1 at an arbitrary parameter realization θ̄. If there exists any

j ∈ A such that gj = 0 and λj = 0 (weakly active constraints), then the SCS condition is violated,

and Problem P1 is dual degenerate at θ̄. Note that dual degeneracy can occur in mpLP problems,

whereas the mpQP problem is guaranteed to have a unique solution to its dual counterpart in the

feasible parameter space, since Problem P1 is defined as strictly convex (Q � 0). Therefore, the

remaining discussion in this subsection focuses on dual degeneracy in mpLP problems.

Various strategies have been proposed in the literature to address the dual degeneracy problem

[251, 250]. In this study, we follow a procedure summarized in Algorithm 3.

Algorithm 3 Handling dual degeneracy in mpLP

1: Get Problem P1,
−→
Aj , pc.

2: Assign
−→
A j as the strongly active constraint set at pc.

3: If |
−→
A j| is equal to the number of optimization variables, n, Problem P1 has a uniquely defined

critical region at pc, and return
−→
A j .

4: If |
−→
A j| is less than the number of optimization variables, n, Problem P1 has overlapping

critical regions at pc. Then, determine a full rank A by selecting constraints among the weakly
active constraint set, denoted as

−→
A ′j . Return the updated

−→
A j .
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The goal of Algorithm 3 is to force the LICQ condition to hold when it fails, by considering

all of the proper combinations of the weakly active constraints. The cardinality of an active set

combination, |
−→
A j|, gives the number of optimization variables that can be uniquely determined for

an mpLP problem at an arbitrary parameter realization4. Therefore, we know that the active set

combination
−→
A j is dual degenerate at point pc if the number of optimization variables exceeds the

number of strongly active constraints.

If dual degeneracy exists, the pivot columns of A−→Aj
indicate the variables that can be uniquely

determined, and their complement yields the index of degenerate variables. Hence, we need to

select n− |
−→
A j| linearly independent rows in A−→A ′j such that they are (i) orthogonal to A−→Aj

, and (ii)

weakly active at the parameter realization. Determining such constraints defines a critical region.

Note that the number of weakly active constraints can exceed the required number of rows to

force the LICQ conditions. In that case, all possible combinations that yield a full rankA−→Aj
should

be considered. However, each combination will yield overlapping critical regions.

Remark 6. Algorithm 3 allows for a separation between the space exploration and the dual de-

generacy checking steps. A significant benefit of complete separation of these two steps is that the

termination of the exploration algorithm is achieved regardless of the potential dual degeneracies

in the solution space.

6.3.5 Extension to mixed-integer problems

The discussion thus far considers strictly continuous variables in the parametric problem P1.

In this section, we extend the application of the algorithm to mpMILP, given by Problem 2 (P2).

z∗(θ) = min
ω

cTω

s.t. [A E]ω ≤ b+ Fθ,

ω = [xT yT ]T , θ ∈ Θ

(P2)

where y ∈ {0, 1}p, and all the matrices are of appropriate dimensions. The most significant

4Recall
−→
A only includes the strongly active set.
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Figure 6.3: The map of critical regions with respect to the objective function for an arbitrary
mpMILP problem with one parameter. Each color represents a different combination of integer
variables. Notice that integer combination 1 gives a lower objective value at θ ∈ [2, 3.25]. If the
algorithm first samples a point within this range, the solid red critical region will never be explored
since it is enclosed by the solid blue critical region.

challenge in this class of problems is the non-convexity of the feasible parameter space. Nonethe-

less, the elimination procedure described in Algorithm 2 can handle the non-convexity of the in-

feasible parameter space, rendering it possible to solve the class of problems described by Problem

P2.

The solution returned by the proposed algorithm will span the entirety of the feasible parame-

ter space Θf , however the optimality of the parametric expression across a critical region cannot

be guaranteed. The reason for the loss of optimality stems from the overlapping layers of criti-

cal regions for every combination of binary variables. The overlap may result into overlooking

the optimal critical regions in the existence of previously explored enclosing critical regions, as

illustrated on a one dimensional mpMILP problem in Figure 6.3.

Hence, we propose a post-processing procedure that evaluates the explored critical regions and

returns nonoverlapping optimal piecewise affine unique partitions, as outlined by Algorithm 4. For

each explored critical region CRj , we first exclude the optimal combination of binary variables by

an integer cut, defined by Eq. 8 [252].
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∑
i∈Y

yi +
∑
i∈Y ′

yi ≤ |Y| − 1,

Y = {i|yi = 1}
(8)

If P2 has a better solution in CRj after excluding the existing binary variable combination,

the optimal critical region is constructed around the new solution by Theorem 1, and denoted by

CRnew. The remainder of CRj is dissected into a set of polytopes, CR′j . Each polytope in CR′j

is described by the space enclosed by CRj , and the complement of a half plane that describes the

new critical region CRnew. The set of polytopes CR′j are further subjected to integer cuts in the

subsequent iterations. The procedure is iterated until no feasible solution is found after including

the integer cut.

Algorithm 4 Postprocessing mpMILP solutions
1: Get Problem P2 and the set of critical regions CR determined by Algorithm 1.
2: Let gic(ω, θ) be the integer cut to the binary combination in CRj .
3: If there exists a feasible parameter realization θ in the polytope described by g ∩ gic, find the

active set of the optimal solution.
4: Construct the new critical region, CRnew, based on Theorem 1. Return the critical region as

the optimal partition.
5: Define CR′j as the set of polytopes that comprises the relative complement of CRnew in CRj .

Note that each of these polytopes is described by the space enclosed between the critical region
CRj and the complement of the hyperplanes that bound CRnew.

6: Add CR′j to the set of critical regions CR. Increment j. Go back to Step 2.
7: Terminate when the set of critical regions CR is empty.

6.3.6 Limitations

While the proposed algorithm is effective in solving multiparametric problems with a large

number of optimization variables and constraints, it suffers handling large number of parameters.

This limitation is a direct consequence of the triangulation step, where determining the non-empty

and non-overlapping candidate simplices is computationally taxing. The primary difficulty arises

from the triangulation in the first iteration, where the algorithm generates
(

2q+1
q+1

)
child simplices,
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while the remaining iterations the number reduces to
(
q+2
q+1

)
, i.e. q + 2. The reason for the sharp

decrease is that the first triangulation step takes place in a q dimensional hypercube, which has

2q vertex points5. On the other hand, a simplex has q + 1 vertex points, which enables the trian-

gulation in significantly higher dimensions. Based on this fact, our current research focuses on

alleviating the computational burden by constructing the tightest overarching simplex to initialize

the triangulation in higher dimensions.

Additionally, further improvement can be achieved by developing stronger termination criteria.

For instance, the facet-to-facet property [237] can be introduced to the proposed algorithm to avoid

redundant triangulations between two adjacent critical regions that are already explored.

6.4 Numerical Examples

6.4.1 Performance against state-of-the-art solvers

The proposed algorithm is compared against state-of-the-art multiparametric solvers that can be

found in the POP toolbox [253] and the Multiparametric toolbox (MPT) [254]. In the POP toolbox,

the solvers used are the connected-graph and geometrical, which will be referred to as POP-Graph

and POP-Geo, respectively. The MPT solver used is the mpQP algorithm for the mpLP and mpQP.

MPT does not maintain a solver for mpMILP problems, and therefore is not considered for this

problem class. The numerical example problems used as a basis of comparison for the different

algorithms are randomly generated and summarized in Table 6.1. All of the experiments were done

on a 4 core machine using an Intel i7-4770 CPU at 3.40 GHz and 16 GB of RAM. Additionally,

the tests were run using the MATLAB environment.

The three problems generated for comparison are large in size and are described in Table 6.1,

where n is the number of optimization variables, q is the number of parameters, m is the number of

constraints, and p is the number of binary variables. Determining the full solution to the problems

generated requires a significant amount of time, therefore the algorithms tested were allotted 30

minutes to explore the solution space. The results for the number of critical regions identified

for each algorithm at the intervals of 1, 5, 10, 20, and 30 minutes are provided in Figures 6.4a,

5In most practical applications, Θ is usually described by box constraints, which yield 2q vertex points.
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Table 6.1: Details for the mpLP, mpQP, and mpMILP problems.

n p q m

mpLP 30 N/A 5 70
mpQP 100 N/A 5 150

mpMILP 20 10 5 50

(a) Number of critical regions identified for each al-
gorithm for the mpLP.

(b) Volume of the agglomeration of critical regions for
the mpLP.

Figure 6.4: Comparisons of the tested algorithms on the mpLP.

6.5a, and 6.6a. For the mpLP and mpQP problems, the proposed strategy is able to identify the

largest number of critical regions for the entire 30 minute duration. However, for the mpMILP

problem, the proposed approach has identified significantly less critical regions than POP-Geo and

POP-Graph.

The algorithm identifying a large number of critical regions is promising, however, a more

promising result lies in Figures 6.4b, 6.5b, and 6.6b. These figures provide details for the total

volume occupied by the identified critical regions at the specified interval. In all of the problems

considered, the proposed strategy identified the critical regions associated with the largest volume.

This phenomenon is a result of the sample based strategy the proposed algorithm employs; a

sampled point from the parameter space is more likely to exist in a larger critical region, and

thus be identified.
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(a) Number of critical regions identified for each al-
gorithm for the mpQP.

(b) Volume of the agglomeration of critical regions for
the mpQP.

Figure 6.5: Comparisons of the tested algorithms on the mpQP.

(a) Number of critical regions identified for each al-
gorithm for the mpMILP.

(b) Volume of the agglomeration of critical regions for
the mpMILP.

Figure 6.6: Comparisons of the tested algorithms on the mpMILP.
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Table 6.2: Summary of results for accumulated volume example.

Proposed POP-Geo POP-Graph MPT
critical regions 318 1358 3358 3340

accumulated volume (m.u.) 20.52 18.72 0.02 0.02

6.4.2 Accumulated volume analysis

To illustrate the concept of accumulated volume, an mpQP is generated with two parameters

for visualization. The problem has 800 constraints and 50 optimization variables. Each algorithm

is allotted 5 minutes, and the number of identified critical regions and accumulated volume are

detailed in Table 6.2. From Table 6.2, it is evident that POP-Graph identified the most critical re-

gions, and the proposed algorithm determined the largest accumulated volume. Therefore, a visual

comparison is made between the proposed approach and POP-Graph to highlight the difference

in concepts of number of critical regions identified and explored parameter space volume. The

comparison is seen in Figure 6.7, where POP-Graph identified 3358 critical regions and the pro-

posed algorithm determined 318 critical regions. Plotting the map of solutions on the same scale,

the critical regions identified by the proposed algorithm occupy a significantly larger volume of

Θf compared to the critical regions identified by POP-Graph. To summarize, POP-Graph is able

to identify over ten times the number of critical regions, but the developed solution for the pro-

posed approach accounts for 1000 times more accumulated volume. This comparison showcases

the proposed strategy prioritizes identifying larger critical regions and the importance for a method

to analyze partial multiparametric solutions that does not rely on the number of critical regions

explored. By analyzing the accumulated volume of the partial solution, a better representation of

the developed solution is determined, because the likelihood a parameter realization will exist in

an explored critical region is directly correlated with the total volume identified.

6.5 Conclusions

In this work, a novel space exploration was presented for mpLP, mpQP, and mpMILP prob-

lems. We employed Delaunay triangulation to effectively partition the parameter space into non-
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(a) The identified critical regions from the proposed algorithm.

(b) The identified critical regions from POP-Graph, where the right figure is a zoomed in version of the left
figure.

Figure 6.7: Map of solutions for the proposed algorithm and POP-Graph.
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increasing sets as simplices. These simplices were eliminated from the parameter search space

and excluded for further partitioning when determined to be a subset of an optimal unique par-

tition. Another contribution of this paper is investigating the volume occupied by the explored

critical regions. Due to the nature of the proposed exploration strategy, critical regions that occupy

a larger portion of volume in the parameter space are prioritized. The ability to prioritize larger

critical regions is a salient feature that is not exhibited by existing multiparametric algorithms. We

presented randomly generated numerical examples that are large scale in the number of variables

and constraints to showcase the proposed algorithms ability to identify the volumetrically larger

critical regions compared to the state-of-the-art solvers, especially in the early phase of the explo-

ration. Furthermore, we presented a simplistic procedure for the degenerate cases for the sake of

completeness. However, handling degeneracy is a major challenge in multiparametric program-

ming problems, and thus developing more efficient algorithms for degenerate problems is a future

direction.

The developed algorithm is well suited for large scale multi-level optimization problems, where

determining a feasible solution is challenging. In these multi-level optimization problems where

multiparametric programming provides the offline explicit expressions for operations decisions,

such as scheduling and control, the integrated optimization formulation is intractable for practical

applications in which the operational optimization problems are large. The proposed algorithm, by

prioritizing the large partitions of the solution space, allows for a tractable formulation for these in-

tegrated optimization problems, and the identified critical regions provide a feasible overestimator

to the global solution while maintaining tractability. Moreover, the exploration procedure allows

for efficient parallelization due to the complete independence of the calculation cycles, which is

another significant benefit to address large scale problems.

The promising results shown in this work encourages future research utilizing the underlying

concepts of the proposed algorithm. Therefore, current research focuses on (i) improving scalabil-

ity with the number of parameters, and (ii) developing stronger termination criteria, as well as (iii)

extending the applicability of the algorithm to multiparametric nonlinear programming problems.
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7. CONCLUSIONS

The aim of this thesis was to develop a unified, process agnostic strategy to integrate the pro-

cess design and operational optimization decisions, namely scheduling and control, using a single

high fidelity model. The main benefits of the proposed simultaneous approach can be summa-

rized in two folds. First, optimality of the overall dynamic system was improved significantly by

leveraging the synergistic interactions between the individual decision layers. Conventional ap-

proaches isolate these layers hierarchically and sequentially to achieve simplified models due to

lack of a coherent modeling technique that simultaneously accounts for their interactions. Neglect-

ing these interactions results in suboptimal decisions. Second, direct inclusion of advanced control

dynamics in the integrated problem allowed for providing certificates of operability in closed loop

implementation. Since the longer time scale decisions are aware of the exact dynamics dictated by

the faster decisions, they can impose realizable targets in closed loop.

The proposed methodology relies on developing explicit expressions for the optimal scheduling

and control strategies as a function of the process design variables via multi-parametric program-

ming. These design dependent functions are included in the design optimization problem, which

is posed as a mixed integer dynamic optimization formulation. Therefore, the overall degrees of

freedom of the integrated problem is reduced to the design variables only, which decreases the

feasible search space.

The proposed integration approach was first illustrated on a continuous binary distillation col-

umn for the separation of toluene and benzene. Scheduling decisions were excluded in this study,

since the goal of the process is to track time-independent set points. Integration of scheduling

and control decisions was showcased on a multiproduct CSTR, and two CSTRs operating in par-

allel. The complete framework was then demonstrated on a residential scale combined heat and

power system, which supplies electricity and hot water to a residential district in parallel to the

utilities. Finally, a batch process with multiple tasks was considered, which required the use of a

more complex representation, namely State Equipment Network, in order to systematically handle
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task sequencing, timing, and resource allocation. One challenge to embed the explicit optimal

control law into the mixed integer dynamic optimization problem was the size of the offline solu-

tions, which was addressed by introducing a base-2 numeral system based modeling technique to

exponentially reduce the required number of binary variables

7.1 Summary of the key contributions

The key benefits and observations of the proposed approach is listed as follows.

(i) Optimality of the decisions was improved significantly compared to conventional approaches.

This improvement is achieved by formulating an enlarged search space that includes the in-

teractions between decision layers.

(ii) Direct implementation of the faster time operational scale decisions in longer time strategic

decisions allow for certificates of operability in closed loop implementation.

(iii) Sizes of the processing equipment was reduced, indicating that we can achieve the benefits

of process intensification through integrating the temporal decisions.

(iv) Operating costs were decreased through reduced raw material and energy utilization.

(v) Offline maps of explicit optimal operations at both long and short terms allow for much

shorter online computational time. Therefore, the proposed framework is applicable to pro-

cesses with fast dynamics. In addition, these offline maps can be utilized to make strategic

decisions prior to the operation, such as exploring the range of feasible operation in the

existence of process faults, as presented by Onel et al. (2020) [229].

(vi) The complete list of publications that feature these contributions is given in Appendix C.

7.2 Recommendations for future work

Multi-parametric programming and explicit model predictive control are at the heart of the pro-

posed framework. However, the size of the explicit solutions is a limitation to solve the integrated
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dynamic optimization problem. Therefore, we proposed a novel algorithm for large scale multi-

parametric programs, where the exploration algorithm prioritizes the volumetrically large critical

regions. The computational experiments demonstrated that the proposed algorithm explores the

parameter space orders of magnitude faster in volume compared to the existing state-of-the-art

solvers. One of the future efforts will focus on using this algorithm to explore the parameter space

of the model predictive control and scheduling problems. A partial solution acquired by this algo-

rithm can be embedded in the integrated dynamic optimization problem, the solution of which will

yield an overestimator to the complete problem. Therefore, a feasible solution for all the decisions

can be derived simultaneously with a guarantee of operability in closed loop.

Uncertainty assessment is another direction of our future work. The current approach han-

dles the design variables in the scheduling and control levels as right hand side parameters in the

multi-parametric programming formulations. However, this approach assumes linear interactions

between the design variables and the operational strategies. Robust counterparts of these strategies

will capture the effects of the design variables with higher accuracy. However, this will result in a

multi-parametric program with left hand side uncertainty, for which a rigorous solution methodol-

ogy is not yet available. Our current efforts focus on developing an algorithm to solve this class of

optimization problems, which can improve the effectiveness of the proposed integrated approach.

Further improvement can be achieved by incorporating more complex process control schemes.

The proposed approach employed linear model predictive control (MPC) due the availability of an

exact offline solution. Linear MPC utilizes a linear state space model, which restricts the ca-

pacity of the controller to handle nonlinear relations in the control level. Although nonlinear

MPC (NMPC) can deliver an improved closed loop performance, a generalized strategy to derive

its multi-parametric counterpart quite challenging. Our recent efforts focus on developing solu-

tion strategies for specific class of problems, namely multi-parametric quadratically constrained

quadratic programming problems, which can be implemented in the integrated design formulation

[255].

Finally, the system measurements may not always be reliable due to faults that can rise in the
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process instrumentation. Such faults will result in deviations from the desired operating points. In

these cases, a fault tolerant control strategy should be adopted in the integrated dynamic optimiza-

tion formulation to proactively account for such process upsets. In Onel et al. (2020) [229], we

developed a multi-parametric fault tolerant model predictive control scheme that maps the optimal

control actions as a function of the potential process upsets. This approach allows for the detection

of the feasible range of operation in the existence of process faults. Our future work will include

embedding this proposed control strategy in the integrated design problem to yield more reliable

closed strategies with known type process faults. The interested user can appeal to Appendix B for

further details.
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APPENDIX A

SUPPORTING INFORMATION

A.1 Surrogate models from the single CSTR example presented in Section 3.3

The identified closed loop state space models are as follows.

Surrogate model 1

xt+1 =


0.004 −0.001 0.002

−0.031 −0.010 0.045

−0.118 −0.026 0.118

xt +


−7.2

−4.7

−3.1

 10−4Qtotal,t

yt =


0.340 −0.037 0.066

0.072 −0.040 0.031

0.048 −0.042 0.041

xt
(A.1)

Surrogate model 2

xt+1 =


0.045 0.027 −0.012

0.089 −0.022 −0.035

0.027 0.021 −0.092

xt +


2.4 · 10−4 0.130

9.0 · 10−5 −0.749

2.9 · 10−6 −0.716


Qtotal,t

CSP
P2,t



yt =


0.105 −0.038 −0.018

0.738 −1.005 −0.381

0 0 0

xt
(A.2)

Surrogate model 3

xt+1 =


−0.011 −0.012 −0.016

−0.067 0.112 0.117

0.134 −0.148 0.220

xt +


2.5 · 10−4 0.171

9.8 · 10−5 −0.620

−5.5 · 10−5 0.192


Qtotal,t

CSP
P3,t



yt =


0.014 −0.008 0.004

0 0 0

0.516 −1.081 0.477

xt
(A.3)

where xt is the identified states, and yt is the product concentrations (CPj ,t).
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A.2 Step by step description of the framework

The following are the detailed steps of the PAROC framework tailored to address the inte-

grated design, scheduling, and control problem, describing the derivation of (i) design dependent,

schedule-aware controller, (ii) design dependent, control-aware schedule, and (iii) optimal design

based on the offline control and scheduling policies, all summarized in Figure A.1. The interplay

between the offline decision layers and the information flow in the overall MIDO formulation is

illustrated in Figure A.1a. The derivation of the explicit MPC is explained schematically in Figure

A.1b. Lastly, the derivation of the offline scheduler is summarized in Figure A.1c. The steps are

detailed through the single CSTR example in Chapter 4.

A.2.1 Design dependent, schedule-aware controller

Dynamic high fidelity model. The dynamic equations for the multiproduct CSTR are given as

follows. First, we describe the mole balances for the reactants and products and the power law

kinetics for the elementary reactions.

dCRi

dt
=
QRi

Cf
Ri
−QtotalCRi

V
+RRi

dCPj

dt
=
Qtotal(CPj

− CPj
)

V
+RPj

(A.4)

RR1 = −2RP1 −RP2 −RP3

RR2 = −RP2

RR3 = −RP3

RP1 = k1C
2
R1

RP2 = k2CR1CR2

RP3 = k3CR1CR3

(A.5)

where C denotes the concentration, Q is the volumetric flow rate, V is the volume of the CSTR,R

is the reaction rate, superscript f denotes the feed to the CSTR, Ri and Pj are the indices for the

ith reactant and jth product, respectively. The system parameters are given in Table A.1.
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High-Fidelity Model 
featuring the

design variables

Dynamic Design 
Optimization 

Algorithm

Design Dependent 
Scheduling Problem

(mpMILP & 
mp(MI)QP)

Design Dependent 
Control Schemes

(mpMPC)

Design Variables

Demand Scenario

Control Setpoints
& Feedback

Discrete 
Decisions

MIDO

Measurements

Optimal Action

(a) Interplay between the process design, scheduling, and control
layers.

Approximate Model
featuring the design variables

Multi-Parametric Programming

 Design dependent, schedule-aware 
multiparametric control policies

Actions within this area happen once and offline

Process
‘High Fidelity’ Dynamic Modeling

featuring the design variables

(b) Explicit model predictive control as a
function of design and scheduling actions.
The offline strategy is verified against the high
fidelity model.

mpMILP

Actions within this area happen once and offline

Process
‘High Fidelity’ Dynamic Model

with design dependent control 

mp(MI)QP

Approximate Model based on the 
design dependent controlled system 

Control aware, 
design 

dependent 
Scheduler

Control aware, 
design 

dependent 
Surrogate

(c) Explicit scheduling as a function of de-
sign decisions and aware of closed loop
dynamics. The offline strategy is verified
against the high fidelity model.

Figure A.1: The integration of process design, scheduling, and control decisions via multiparamet-
ric optimization (Reprinted with permission from [8]).
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Table A.1: Parameters of the high-fidelity CSTR model (Reprinted with permission from [8]).

Reaction
rate constants Value

Reactant concentration
at the feed Value

k1 0.1 Cf
R1

1.0
k2 0.9 Cf

R2
0.8

k3 1.5 Cf
R3

1.0

The total volumetric flow rate is defined as the sum of reactant flow rates at the inlet of the

reactor. Note that constant volume reactor is assumed, therefore the total flow rate at the inlet is

equal to the total flow rate at the outlet.

Qtotal =
∑
i

QRi (A.6)

The inventory levels of the product of interest is as follows.

dWPj

dt
=


QtotalCPj

−DRPj
, if PurPj

≥ 0.90

−DRPj
, if PurPj

< 0.90

(A.7)

where WPj
is the inventory level, DRPj

is the demand rate, and PurPj
is the purity level in the

CSTR as defined in Equation A.8.

PurPj
=

CPj∑
j CPj

(A.8)

The molar fractions of the reactant flow rates are defined in Equation A.9. Note that the molar

fractions are utilized as the manipulated variables in the mpMPC control scheme, as demonstrated

in the following sections.

aRi
=

QRi

Qtotal∑
i

aRi
= 1

(A.9)
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Model approximation. The input space is partitioned into multiple mutually exclusive subspaces

which are concatenated into a single state space representation. Note that using a single state space

model model maintains the identical design dependence in every constituent subspace. The input

space is set up as presented in Eq. A.10.

u =
[
u1, u2, u3, u4

]T
u1 = a2, a2 ∈ [0, 0.5)

u2 = a2, a2 ∈ [0.5, 1]

u3 = a3, a3 ∈ [0, 0.55)

u4 = a3, a3 ∈ [0.55, 1]

(A.10)

where a2 and a3 are the volumetric fractions of R2 and R3 in the feed stream, respectively.

MATLAB R© System Identification ToolboxTMis used to derive the state space matrices model as

follows.

A · 104 =



9670 8.00 −23.0 −915 −23.1 −20.0 5.12

21.0 9650 −119 83.6 −793 47.5 −389

74.9 −75.3 8610 214 −1060 347 1360

656 172 127 9540 104 2270 −309

187 179 219 3.88 9850 879 −398

−1440 −151 −193 −741 −138 5650 148

149 1130 −36.5 −31.8 −82.0 57.9 6950



(A.11a)
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B · 103 =



2.35 −1.47 −1.82 3.36

1.46 −1.36 3.38 −1.76

2.69 −5.12 7.85 −7.13

−7.75 5.44 16.2 6.43

−3.56 2.36 5.31 1.37

15.1 −13.6 −34.1 −5.63

−12.8 −40.8 −11.0 −3.00



(A.11b)

C · 108 =



−537 95.4

532 −105

−5070 944

−2500 415

−89.6 6.44

4860 −822

5890 −1070



(A.11c)

D · 102 =


2.73 −748 303 202 −816 613 49.4

582 497 90.8 −31.6 −30.6 1.61 4.02

−705 730 134 28.2 −43.3 5.46 4.80

 (A.11d)

Design of the mpMPC. The control scheme is based on the standard MPC formulation given by

Eq. A.12, which features two major additions for this specific application, namely (i) incorpora-

tion of mutually exclusive control decisions, (ii) introduction of soft constraints to minimize the

transition time in the control level.
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utc(θ) = arg min
utc

‖xNc‖2
P +

Nc−1∑
tc=1

‖xtc‖2
Q +

Nc−1∑
tc=1

‖ytc − ySPtc ‖
2
QR

+
Mc−1∑
tc=0

‖utc − uSPtc ‖
2
R +

Mc−1∑
tc=0

‖∆utc‖2
R1 +

M∑
t=1

‖εtc‖2
P1

s.t. xtc+1 = Axtc +Butc + C[dTtc , Sc
T
tc , des

T ]T

ŷtc = Dxtc + Eutc + F [dTtc , Sc
T
tc , des

T ]T

ytc = ŷtc + e

e = ytc=0 − ŷtc=0

x ≤ xtc ≤ x, y ≤ ytc ≤ y

u ≤ utc ≤ u, ∆u ≤ ∆utc ≤ ∆u

θ = [xTtc=0, u
T
tc=−1, d

T
tc=0, stc , des

T ]T

uzi,tc ≤ ui,tc ≤ uzi,tc , ui,tc = utc

NP∑
i=1

zi,tc = 1

− y∗tc + Purmin
∑
i∈Prod

yi,tc ≤ −εtc +M(1− Y ), ε ∈ [0, 1]

{ySPtc , u
SP
tc , Sctc , Y } ⊆ stc , ∀tc ∈ {0, 1, ..., Nc − 1}

(A.12)

The control parameters are determined based on heuristic MPC tuning methods, and are pro-

vided in Table A.2.

Equation A.12 is an mpQP problem, which can be solved by using the POP toolbox [161].

Closed loop validation. The developed mpMPC is validated against the high fidelity model, under

a range of scheduling decisions and design options. The closed loop simulations for two reactor

volumes (V1 = 0.4m3, V2 = 1.0m3), are presented in Fig. 4.1.
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Table A.2: Tuning parameters for the mpMPC of the CSTR for Example 1 (Reprinted with per-
mission from [8]).

mpMPC Design Parameters Value
Nc 6
Mc 2

QR

102 0 0
0 10 0
0 0 10


R1 50
P1 90

Purmin 0.9
y [0, 0, 0]T

u [0, 0.5, 0, 0.55]T

d [0, 0.4]T

y [1, 1, 1]T

u [0.5, 1, 0.55, 1]T

d [500, 1.0]T

A.2.2 Design dependent, control-aware scheduler

High fidelity model with the mpMPC embedded. The explicit control law is integrated to the

original high fidelity model. The integrated model yields the closed loop dynamics of the system

that is required to formulate the scheduling problem.

Model approximation. Two approximate models are derived with the discretization time steps

of the scheduler (1 h) and the controller (1 min), respectively. For this particular example, the

approximate model for the scheduler is derived based on a simplified first principle mole balance

as presented in Eq. A.13 instead of an input-output based system identification. The mole balance

expressions yield linear expressions that are directly implemented in a scheduling problem in the

form of an mpMILP.

dWj

dt
= Fj −DRj (A.13)

where Wj is the inventory level, Fj is the product molar flow rate at the exit of the reactor, and

DRj is the demand rate of product Pj , respectively.

Three surrogate models are identified for three distinct products via the MATLAB System
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Identification Toolbox. The surrogate models take the total volumetric flow rate and reactor volume

as inputs and determines the product concentration set point and reference reactant composition

at the feed based on the closed loop behavior. The state space matrices and the step and impulse

responses of the surrogate models are presented by Eqs A.14 - A.16. Note that the discretization

time of the models are identical at 15 min.

xtsm+1 =


0.004 −0.001 0.002

−0.031 −0.010 0.045

−0.118 −0.026 0.118

xtsm +


−7.2

−4.7

−3.1

 10−4Qtotal,tsm +


1.7

1.4

2.1

 10−3V

Ĉi,tsm =


0.340 −0.037 0.066

0.072 −0.040 0.031

0.048 −0.042 0.041

xtsm , i ∈ P

(A.14)

xtsm+1 =


0.045 0.027 −0.012

0.089 −0.022 −0.035

0.027 0.021 −0.092

xtsm +


2.4 · 10−4 0.130

9.0 · 10−5 −0.749

2.9 · 10−6 −0.716


Qtotal,tsm

CSP
P2,tsm

+


−3.8

0.2

3.5

 10−5V

Ĉi,tsm =


0.105 −0.038 −0.018

0.738 −1.005 −0.381

0 0 0

xtsm , i ∈ P

(A.15)
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Figure A.2: Step response of Surrogate Model 1 with respect to the scheduling (Qtotal) and design
decisions (V ) (Reprinted with permission from [8]).

xtsm+1 =


−0.011 −0.012 −0.016

−0.067 0.112 0.117

0.134 −0.148 0.220

xtsm +


2.5 · 10−4 0.171

9.8 · 10−5 −0.620

−5.5 · 10−5 0.192


Qtotal,tsm

CSP
P3,tsm



+


−2.5

0.2

−1.0

 10−5V

Ĉi,tsm =


0.014 −0.008 0.004

0 0 0

0.516 −1.081 0.477

xtsm , i ∈ P

(A.16)

where xtc is the vector of identified states. The step responses of the surrogate models are

provided in Figures A.2 - A.4.

Design of the scheduler. The objective of the schedule is to minimize the inventory costs while

satisfying continuous demand rate forecast within the scheduling horizon. Therefore, the objective

function to be minimized is formulated as presented in Eq. A.17.
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Figure A.3: Step response of Surrogate Model 2 with respect to the scheduling (CSP
2 , Qtotal) and

design decisions (V ) (Reprinted with permission from [8]).
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Figure A.4: Step response of Surrogate Model 3 with respect to the scheduling (CSP
3 , Qtotal) and

design decisions (V ) (Reprinted with permission from [8]).
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∑
j=1

Ns∑
t=1

αjWj,t (A.17)

where Ns is the scheduling horizon, αj is the storage unit cost, and Wj,t is the inventory level

of Pj at discretized time step t. This objective function is subjected to the governing dynamic

approximate model given in Eq. A.13, discretized as presented in Eq. A.18.

Wj,t+1 = Wj,t + ∆tFj,t −∆tDRj,t, ∀j, ∀t ∈ {1, ..., Ns − 1} (A.18)

The reactor is allowed to produce one product at a given time instance. Therefore, product

assignment constraints are employed to enforce the system to select only one product at a time, as

presented in Eq. A.19.

∑
j=1

yj,t = 1

Fyj,t ≤ Fj,t ≤ Fyj,t

(A.19)

Capacity constraints are used to impose the physical limitations of the storage tanks, as pre-

sented in Eq. A.20.

W ≤ Wj,t ≤ W (A.20)

The initial conditions and the demand rate forecast are defined as uncertain and bounded pa-

rameters as presented in Eq. A.21.

θ = [Wj,t=0, DRj,t]

θ ≤ θ ≤ θ

(A.21)

Therefore, the overall scheduling problem is constructed to minimize Eq. A.17, subjected to

Eq. A.18 - A.21. The parameters of the scheduling problem are provided in Table A.3.
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Table A.3: System parameters of the scheduling problem for Example 1 (Reprinted with permis-
sion from [8]).

System Parameters Value
Ns 3

α ($/h.mol) [1.0, 1.5, 1.8]T

∆t(min) 60
F [50, 50, 50]T

W [50, 50, 50]T

D [60, 60, 60]T

F [0, 0, 0]T

W [0, 0, 0]T

D [0, 0, 0]T

Design of the surrogate model. The time scale gap between the scheduler and the controller is

addressed by a quadratic objective function that minimizes the L2 norm between the volumetric

flow rate determined by the schedule and the transformed decision that is passed to the controller,

as presented in Eq. A.22. An additional term is included for the slack variables that take place in

the purity governing soft constraints.

Msm∑
t=0

‖Qtotal,t − Q̃total,t‖2
R′ +

Nsm∑
t=1

‖ε′t‖2
P1′ (A.22)

where Q̃total,t is the scheduling decision, and is defined in Eq. A.23.

Q̃total,t =

∑
j Fj,t

CP ∗,t=0

(A.23)

The objective function constructed in Eq. A.22 is subjected to the approximate closed loop

dynamic models given by Eqs. A.14-A.16, box constraints on the inputs, outputs, and the parame-

ters (Eq. A.24), as well as the purity soft constraints discretized in the time steps of the surrogate

model).

u ≤ ut := [Qtotal,t, C
SP
j,t , ε

′
t] ≤ u

y ≤ yt := [Cj,t] ≤ y

d ≤ d := [Q̃total,t, des] ≤ d

(A.24)
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Table A.4: System parameters for the surrogate model for Example 1 (Reprinted with permission
from [8]).

System parameters Model 1 Model 2 Model 3
Nsm 10 10 10
Msm 1 1 1

∆tsm (min) 6 6 6

R′ 103
[
10−4 0

0 10−1

] [
10−4 0

0 10−1

]
P1′ 104 106 108

u [500, 1, 1, 1, 1, 1, 1]T [500, 1, 1, 1, 1, 1, 1]T [500, 1, 1, 1, 1, 1, 1]T

y [1, 1, 1]T [1, 1, 1]T [1, 1, 1]T

d [500, 1.0]T [500, 1.0]T [500, 1.0]T

u [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

y [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

d [0, 0.4]T [0, 0.4]T [0, 0.4]T

Three mpQP problems are constructed for three products. The surrogate model parameters are

tuned to improve the closed loop performance, and are provided in Table A.4.

Closed loop validation of the integrated scheduling and control scheme. The controller, surrogate

model, and the scheduler are operated simultaneously on the high fidelity model under a range of

design options and product demand variations. Figure 4.2 showcases the closed loop profiles for

12 hours at the lower bound (V1 = 0.4m3) and the upper bound (V2 = 1.0m3) of the design range.

After validating that the offline operational strategies on the original high fidelity model, we take

the next step to formulate the MIDO problem.

Design optimization. The validated offline scheduling and control strategies are embedded in the

overall MIDO problem given by Eq. 1.11 in the gPROMS environment. The capital investment-

ment for the reactor is determined by Eq. A.25 [197].

Ce = a+ bV n (A.25)

where Ce is the annualized reactor cost, and a, b, n are cost parameters for year 2010 given

in Table A.5. The cost is escalated from 2010 to 2018 by using Eq. A.26 and the Chemical

Engineering Plant Cost Index (CEPCI) [256]. The minimum total annual cost is found as $330k/yr
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Table A.5: CSTR cost parameters for year 2010 (Reprinted with permission from [8]).

Parameter Value
a 61500
b 32500
n 0.6

at V = 0.69m3.

Cost2018 = Cost2010
CEPCI2018

CEPCI2010

(A.26)

where the cost indexes CEPCI2010 and CEPCI2018 are 532.9 and 588.0, respectively.

A.3 Complete MIDO formulation in Chapter 5

Here, we present the complete mathematical formulation of the integrated process design,

scheduling, and control problem by Eq. A.27 as an MIDO. Note that using multi-parametric

programming, the original bilevel formulation presented by Eq. 5.1 is reduced to a single level

dynamic optimization problem, which can be solved by existing approaches. In this study, we use

ortogonal collocation on finite elements to acquire a finite dimensional MINLP problem, which is

solved by a global optimization solver, BARON [221].

min
u(t),s(t),des

∫ τ

0

C(x(t), y(t),u(t), s(t),des,d(t))dt (A.27)

s.t. Dynamic high fidelity model (DAE) (A.28)

ẋ(t) = f(x(t),u(t), s(t),des,d(t)), x(0) = x0

y ≤ y(t) = g(x(t),u(t), s(t),des,d(t)) ≤ y
(A.29)

Box constraints for the variable bounds (A.30)

u ≤ u(t) ≤ u, s ≤ s(t) ≤ s

x ≤ x(t) ≤ x, des ≤ des ≤ des, d ≤ d(t) ≤ d
(A.31)
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Scheduling constraints based on SEN representation (A.32)∑
s∈S

ξj,s,t ≤ 1, ∀j ∈ J ,∀t ∈ T

∑
j∈J

ξj,s,t ≤ 1, ∀s ∈ S,∀t ∈ T

ξj,s,t+1 ≤ ξj,s,t, ∀j ∈ J ,∀s ∈ S,∀t ∈ T , t 6= tf

Ec,t = Ec,t−1 +
∑
j∈J

∆Ej,c,t, ∀c ∈ C, ∀t ∈ T , t > 0

∑
s∈S

ξj,s,tV ≤ Vj,t ≤
∑
s∈S

ξj,s,tV , ∀s ∈ S,∀t ∈ T

x∗s ≤ xs,t+1 +M(ws,t), ∀s ∈ S∗, t = 0

x∗s ≤ xs,t+1 +M
(
1− (ws,t − ws,t+1)

)
, ∀s ∈ S∗,∀t ∈ T , 0 ≤ t ≤ tf

(t+ 1)ws,t ≤
∑
j′∈J

∑
t′∈T

ξj′,s,t′ , ∀s ∈ S, ∀t ∈ T

ξj,s+,t ≤
t∑

t′=0

ξj,s−,t′ , ∀j ∈ J ,∀s− ∈ S−,∀s+ ∈ S+,∀t ∈ T

x∗s ≤ xs,t+1 +M
(
1− ws,t

)
, ∀s ∈ S∗, t = tf

(A.33)

Explicit model predictive control (mpMPC) (A.34)

uk(θ) = Kn2θ + rn2 , ∀θ ∈ CRn2

CRn2
:= {θ ∈ Θ | ACRn2

θ ≤ bCRn2
}, ∀n2 ∈ NC2

(A.35)

Integrating mpMPC in the dynamic model (A.36)
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Table A.6: A numerical example to encode the disjoint constraint set via base-2 numeral system.

constraint y1 y2

g1 ≤ 0 0 0
g2 ≤ 0 0 1
g3 ≤ 0 1 0
g4 ≤ 0 1 1

−M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
≤ ut −Kn2θt − rn2

ut −Kn2θt − rn2 ≤M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)

ACRn2
θt − bCRn2

≤M

( ∑
i∈{m|βn2,m=0}

ȳCRi,t +
∑

i∈{m|βn2,m=1}

(1− ȳCRi,t )

)
∑

i∈{m|βn2,m=1}

ȳCRi,t −
∑

i∈{m|βn2,m=0}

ȳCRi,t ≤| m|βn2,m = 1 | −1, t ∈ T

∀n2 ∈ NC2, ∀t ∈ T

(A.37)

Note that the explicit form of the model predictive control (mpMPC) is derived using multi-

parametric programming, which allows for reformulating the bilevel program into a single level

optimization problem. Also note that the binary variables y from Eqs. 5.2-5.10 is substituted with

ξ here to differentiate with the output y from the high fidelity model.

A.4 Numerical example for modeling with the base-2 numeral system

Let gi(x) ≤ 0 be the set of disjunctive inequalities with i ∈ {1, 2, 3, 4}. Using the base-

2 numeral system, we can use the combinations of two binary variables, y1 and y2, to uniquely

activate or relax a constraint gi(x). In Table A.6, we present the binary coding that activates

the corresponding constraint and relaxes the remaining constraints. Therefore, we can use the

following reformulations to relax the inequalities.
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Figure A.5: Step response of the approximate model used in Example 1.

g1 ≤My1 +My2

g2 ≤My1 +M(1− y2)

g3 ≤M(1− y1) +My2

g4 ≤M(1− y1) +M(1− y2)

However, if the constraint set has three elements instead of four, i.e. i ∈ {1, 2, 3}, then we need

to use an integer cut to exclude the combination y1 = 1, y2 = 1.

g1 ≤My1 +My2

g2 ≤My1 +M(1− y2)

g3 ≤M(1− y1) +My2

y1 + y2 ≤ 1

A.5 Step responses of the approximate models for the batch reactions

The step response of the approximate model used in Example 1. The same approximate model

was also used in Example 2 to represent the dynamics of Reaction 1.

The approximate state space model for Reaction 2 has the following coefficient matrices, and
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Figure A.6: Step response of the approximate model used in Example 2, Reaction 2.

the step response of the model is presented in Fig. A.6.

A =

 0.9797 −0.0301

−0.0684 0.8518


B =

−0.0056

−0.0024


D =

−4.2018 5.0875

−4.0276 0.3175


The approximate state space model for Reaction 3 has the following coefficient matrices, and
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Figure A.7: Step response of the approximate model used in Example 2, Reaction 3.

the step response of the model is presented in Fig. A.7.

A =

0.9863 0.0418

0.0195 0.9385


B =

0.0082

0.0019


D =

0.6002 0.7780

2.4079 1.6798



A.6 Numerical example presented in Section 6.4

The multiparametric quadratic programming problem used as the motivating example is de-

fined as follows.
z∗(θ) = min

x
(Qx+Hθ + c)Tx

s.t. Ax ≤ b+ Fθ

x ≤ x ≤ x̄

θ ≤ θ ≤ θ̄

(A.38)
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Q =



24.97 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0

0 0 4.72 0 0 0 0 0 0 0

0 0 0 1.1 0 0 0 0 0 0

0 0 0 0 0.11 0 0 0 0 0

0 0 0 0 0 1.38 0 0 0 0

0 0 0 0 0 0 3.24 0 0 0

0 0 0 0 0 0 0 1.3 0 0

0 0 0 0 0 0 0 0 14.37 0

0 0 0 0 0 0 0 0 0 759.27



H =



0 0

1 1

0 1

0 −1

0 0

−1 −1

0 0

−1 0

0 0

0 0



c =



5

−3

1

−2

2

3

4

3

5

1



A =



0.14 0.21 −0.33 0.2 0 −0.52 −0.24 0 −0.5 0.26
−0.64 −0.05 −0.41 −0.24 0 −0.3 0.3 0.14 0 0.21
−0.57 −0.12 0 0 0 0 0.31 0 0 −0.54

0 0 0.07 −0.69 0 0.36 0.44 0.17 0 0.25
0.35 0 −0.21 0.55 0 −0.18 0 −0.56 0.19 0.03

0 −0.3−0.59 −0.38 0 0 0 −0.640 0
0.08 −0.63 −0.45 0 −0.33 −0.25 0 −0.23 0.15 0
0.24 −0.43 −0.17 0.28 −0.51 −0.23 −0.36 0.34 0 0.28

0 0 0 −0.17 −0.03 0.44 0 0.22 −0.72 0.19
0 0 −0.61 −0.28 0 0.3 0.41 −0.39 −0.37 0

−0.14 0 −0.53 0 0.14 0.11 0 −0.76 −0.29 0.026
0 −0.44 −0.02 0 −0.39 0 −0.17 0.4 −0.51 0
0 0.21 −0.11 −0.66 −0.14 0.43 0.15 0.47 −0.05 −0.25
0 −0.01 −0.37 −0.35 −0.29 −0.01 0.36 0.02 0 −0.17
0 0.32 0 0 0 −0.55 0.34 0.44 −0.24 0.36


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b =



7.57

10.72

5.47

9.26

12.32

8.47

5.22

6.89

3.70

6.22

8.43

4.74

3.74

3.05

5.68



F =



−0.38 0

0 −0.34

0.46 −0.25

−0.33 0

0.38 −0.01

0 0

0 0.39

−0.11 0

0.41 0

0 −0.04

0 0.09

0 −0.45

0 0.06

0.59 −0.38

−0.27 −0.15



x =



−1E7

−1E7

−1E7

−1E7

−1E7

−1E7

−1E7

−1E7

−1E7

−1E7



x̄ =



1E7

1E7

1E7

1E7

1E7

1E7

1E7

1E7

1E7

1E7



θ =

−10

−10



θ̄ =

10

10


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APPENDIX B

INTEGRATED DATA-DRIVEN PROCESS MONITORING AND EXPLICIT

FAULT-TOLERANT CONTROL 1

In this part of the Appendix, we integrate multiparametric model predictive control (mpMPC)

with our previously introduced data-driven process monitoring framework [257, 258, 258] for a

parametric fault-tolerant control (FTC) design framework. The developed framework can replace

the conventional approach, online controller parameter re-tuning, and be used as a novel corrective

maintenance strategy that significantly minimizes the process downtime spent under faulty condi-

tions by storing pre-calculated control laws. By using multi-parametric programming [130, 259],

we are able to establish the control actions for the faulty state explicitly and generate a priori, of-

fline, maps of approximate control actions to be implemented in the online phase. This is an active

fault-tolerant control strategy, specifically model-switching based active FTC, where we need to

use online fault detection and identification (FDI) mechanism to monitor the process and get infor-

mation on faults for further fault accommodation. Although switching based active fault-tolerant

control strategies that use multiparametric programming have been introduced in the literature

[260, 261, 262], the major challenge has remained to have a reliable and robust FDI system which

can provide accurate fault information and minimize the number of false-alarms. Thus, we build

data-driven fault detection and diagnosis models via Support Vector Machine (SVM)-based feature

selection algorithm [263, 257, 264], and develop data-driven models for fault magnitude estima-

tion via Random Forest algorithm. The developed control strategies are piecewise affine functions

of the system states and the magnitude of the detected fault which are transferred to the controller

via the built machine learning-based fault detection and identification (i.e. magnitude estima-

tion) mechanism. The premise of the presented framework is to increase process resilience and

1Portions of this Appendix have been adapted from Onel, M., Burnak, B., Pistikopoulos, E. N., Integrated Data-
Driven Process Monitoring and Explicit Fault-Tolerant Multiparametric Control, Industrial & Engineering Chemistry
Research 2020, 59 (6), pp. 2291-2306. Copyright (2020) American Chemical Society.
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minimize process downtime while maintaining a safe and profitable operation by enabling rapid

switches between a priori mapped control action strategies. The results are presented through a

semi-batch process for penicillin production.

The rest of the chapter is organized as follows: Section B.1 introduces the adopted benchmark

semi-batch process. Section B.2 describes the details of the parametric fault-tolerant control de-

sign framework. Section B.3 reports the application of the framework on two distinct fault types.

Finally Section B.4 provides the conclusion of the presented work.

B.1 Benchmark Semi-batch Process: Penicillin Production

We adopt fed-batch penicillin production process based on the PenSim benchmark model[265]

(Figure B.1). The process operates in two modes. First, it starts in batch mode with high substrate

(glucose) concentrations stimulating biomass growth. After the initial glucose level is depleted in

the bioreactor, the process switches to fed-batch mode where low but non-zero glucose concen-

tration is provided. Then, under these stressful conditions penicillin production is triggered via

biomass [265, 266]. In this work, we simulate process data for fed-batch penicillin production

by using the RAYMOND simulation package [267]. We produce 25 simulations for each fault

magnitude and onset combinations in addition to the 200 simulations of normal operating condi-

tion (NOC) by using the RAYMOND software. Of note, fault direction is defined as measured

value - real value within the RAYMOND simulator. In this work, a nominal feed rate of 0.06

L/h is chosen for the fed-batch phase of the simulations. A batch is terminated after a total of 30

L of substrate have been added. This corresponds to a total batch duration of approximately 549

h. The initial fermenter volume V0, biomass concentration Cx,0, and substrate concentration Cs,0

are all independently sampled from normal distributions with mean µ and standard deviation σ.

Values are limited to µ± 2.5σ in order to avoid outliers in the initial conditions. Measurements

are collected from 20 process variables, where white noise is included into each of them (Table

B.1). Sensors are sampled every 0.2 h which has generated an average of 2745 sample points per

batch. Please note that only subset of these 20 process variables can be readily measured online in

real-life and these are marked with asterisk in Table B.1. In fact, biomass, penicillin and substrate
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Figure B.1: Fed-batch penicillin production flow diagram (Reprinted with permission from [257]).

concentrations are indicated to be measured only offline usually every 8-10 h [266, 265]. We have

utilized all 20 process variables in this work in order to demonstrate the capability of our FTC

framework in handling large set of process variables.

In this work, we control the reactor temperature via fault-tolerant mpMPC by manipulating

water flow rate. We have studied two distinct fault types, namely (i) sensor fault, which introduces

a bias in reactor temperature measurements, and (ii) actuator fault, which creates bias in water flow

rate.

B.2 Parametric Fault-Tolerant Control Framework

In order to develop a parametric fault-tolerant control system, we design a fault-tolerant mpMPC

where we achieve offline optimal control strategies to be implemented for online control of the pro-

cess, and build a mechanism for fault detection and magnitude estimation in the offline phase. The

perspective is to obtain information on fault existence as well as magnitude of the detected fault in

order to inform the mpMPC with the corrected measurements. Fault is defined as the unpermitted

deviation in at least one observed variable or computed parameter of the system where controllers

cannot reverse it [257]. In this work, we assume that once a fault arises in the system, it does not
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Table B.1: List of process variables. Online measured variables are marked with asterisk
(Reprinted with permission from [257]).

Variable Name Initial condition Measurement Noise (σ) Type
1. Substrate concentration [mg/L] 17.5± 1 0.01 State variable
2∗. Dissolved O2 concentration [mg/L] 1.1601 0.004 State variable
3. Biomass concentration [g/L] 0.1250± 0.030 0.5 State variable
4. Pencillin concentration [g/L] 0 0.02 State variable
5∗. Fermentation volume [m3] 102.5± 5 0.002 State variable
6∗. Dissolved CO2 concentration [mg/L] 0.4487 0.12 State variable
7∗. pH [-] 5 0.02 State variable
8∗. Reactor temperature [K] 298 0.01 State variable (controlled)
9. Reaction heat [cal] 0 – State variable
10∗. Feed rate [L/h] – 0.01 Input variable
11. Aeration rate [L/h] – 0.01 Input variable
12∗. Agitator power [W] – 0.01 Input variable
13∗. Feed temperature [K] – 0.1 Input variable
14∗. Water flow rate [L/h] – 0.01 Input variable (manipulated)
15. Hot/cold switch [–] – – Input variable
16∗. Base flow rate [mL/h] – 0.01 Input variable
17∗. Acid flow rate [mL/h] – 0.01 Input variable
18. Feed substrate concentration [mg/L] – – Input variable
19. Cooling medium temperature [K] – 0.1 Input variable
20. Heating medium temperature [K] – 0.05 Input variable

fade out, therefore we need to inform the controller about the deviation in order to ensure smooth

control actions.

The common first step is data acquisition. Data can be achieved via either historical operation

data or process data simulations based on the dynamic model of the system, which is often readily

available in industrial applications. For the offline design of the fault-tolerant mpMPC, we use nor-

mal operation data. We collect both normal and faulty operation data for building fault detection,

and diagnosis and magnitude estimation models.

For fault detection, we develop two-class classification models by following simultaneous fault

detection and diagnosis (s-FDD) framework [257, 264]. The major advantage of the s-FDD frame-

work compared to the other fault detection and diagnosis (FDD) frameworks in the literature is the

increased process monitoring efficiency by having one model that can detect and diagnose a fault.

This creates a significant advantage during online process monitoring in terms of time efficiency

where both detection and diagnosis can be achieved with a unique function evaluation. In other

words, s-FDD framework yields a classification model which recognizes process abnormalities,
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and marks them as process faults while it lists the major contributing process variables causing

the detected fault, thus provides diagnosis. Furthermore, fault magnitude estimation models are

achieved by developing regression models.

B.2.1 Offline Fault-Tolerant mpMPC Design via PAROC Framework

We build fault-tolerant mpMPC by using the PARametric Optimization and Control (PAROC)

framework [130]. The steps of the framework was discussed in Chapters 2 and we follow a similar

approach with the mere difference in formulating the model predictive control, which is discussed

as follows.

The offline control strategy is designed to (i) track the output set points determined prior to the

operation, (ii) acquire smooth control actions to maintain the longevity of the processing equip-

ment. Therefore, the objective function of the control problem is formulated is given by the fol-

lowing equation.

N∑
t=1

‖yt − yspt ‖2
QR +

M∑
t=0

‖∆ut − θa‖2
R1 (B.1)

where N is the prediction horizon, M is the control horizon, θa is the magnitude of the fault acting

on the corresponding actuator, ‖·‖ψ denotes weighted vector norm with a weight matrix ψ, QR

and R1 are the corresponding weight matrices, and the superscript sp denotes the set point. Hence,

the quadratic objective function is minimized only if the process outputs track the designated set

points ysp, and the consecutive control actions are smooth in the existence of faulty actuators θa.

The developed objective function is subjected to an approximate linear process model. How-

ever, using an approximate model to achieve closed loop control creates a mismatch between the

real process outputs, y, and the predicted output values, ŷ. We address this mismatch by including

Eq. B.2 in the mpMPC formulation.

e = yt − ŷt, t = 0 (B.2)

where the error term e denotes the mismatch magnitude between the real and predicted output
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values at the time of measurement, t = 0. The error term is carried over the entire prediction

horizon, as given by the equation below.

yt = ŷt + e− θs,∀t ∈ {1, 2, ..., N} (B.3)

Note that apart from the mismatch term, we also incorporate a sensor bias term θs to account

for the sensor faults in the mpMPC. The path constraints are formulated as box constraints for the

process variables to maintain certain product specifications, as presented by the equation shown

below.

x ≤ xt ≤ x

y ≤ yt ≤ y

u ≤ ut ≤ u

∆u ≤ ∆ut − θa ≤ ∆u

(B.4)

Lastly, we define the set of parameters in the control problem as follows:

θ := [xTt=0, u
T
t=−1, y

T
t=0, (y

sp
t )T , dTt=0, θ

a, θs]T (B.5)

where θ is the vector of parameters. Therefore, we postulate the explicit control strategy described

by Eq. B.6.

ut(θ) = arg min Equation B.1

s.t. x+ = Ax+Bu+ Cd

y = Dx+ Eu+ Fd

B.2−B.5

(B.6)

Note that the control strategy formulated by Eq. B.6 is a multi-parametric optimization problem

with a quadratic objective function and a set of linear constraints. This class of problems can be

solved exactly by using the Parametric OPtimization (POP) toolbox [161], and the solution to
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these problems are expressed as a single piece-wise affine function of the parameters. Therefore,

the explicit control law is derived as given by the equation below.

ut(θ) = Kiθ + ri,∀t ∈ {1, 2, ...,M},∀θ ∈ CRi

CRi := {θ ∈ Θ | CRA
i θ ≤ CRb

i}
(B.7)

where CR denotes a polyhedral partition of the feasible parameter space, and Θ is a closed and

bounded set.

Remark 7. Equation B.7 explicitly maps the exact optimal control actions for any parameter real-

ization in Θ, if a feasible solution exists. Therefore, inclusion of the monitored faults as parameters

in the explicit control law identifies the range of recovery in the existence of faulty sensors and/or

actuators prior to the operation.

B.2.2 Offline Fault Detection and Reconstruction Mechanism Development

The fault detection and reconstruction mechanism is responsible from two main tasks: (i) pre-

cise and rapid fault detection and diagnosis, and (ii) accurate fault direction and magnitude estima-

tion (a.k.a fault reconstruction). We follow the main steps of the s-FDD framework to build fault

and time-specific classification models for fault detection and diagnosis. Additionally, in order to

predict the magnitude of the detected fault, we develop regression models by adopting Random

Forest algorithm [268]. Specifically, we regress the water flow rate measurements for the actuator

fault, and reactor temperature measurements for the sensor fault. The modeling procedure for both

analysis is summarized in 3 main steps. The initial step is data pre-processing which includes

targeted data collection, unfolding of 3-dimensional (3D) batch process data into 2D, extracting

additional process descriptors when necessary, and data scaling, respectively. This is followed by

parameter tuning, and model building steps.

Data Pre-processing

Data pre-processing steps are necessary prior to model building in order to prevent bias and

improve the performance of the model. Generally, data pre-processing comprises of data format-
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ting, scaling and cleaning steps, where data cleaning includes both outlier removal and missing

data handling. Below, we describe these three main pillars of data pre-processing in four steps.

Step-1.1 to 1.3 describe data formatting, where we collect targeted process data, unfold the 3D

data into 2D, and extract further features when necessary to enrich the data set. We address data

scaling and cleaning steps in Step-1.4.

Targeted Data Collection: We are building (i) fault and time specific two-class C-SVM classi-

fication models for fault detection and diagnosis, and (ii) regression models for fault magnitude

estimation after fault onset time. Therefore we need to gather process data around the fault onset

time for both modeling. In this work, we have selected four different fault onset times, 100, 200,

300, and 400 h, where we introduce two different faults in various magnitudes. The details on the

fault types and their magnitude are provided in Section B.3. In each batch, we consider the time

periods that encompass the fault onset time and 10 h (50 sensor samples) afterwards, where the

sensor sampling frequency is every 0.2 h.

During fault detection classifier building, we extract process data by following a sliding win-

dow approach where we receive 5 samples per hour (sensor sampling frequency of every 0.2 h).

At each sensor sample, we collect historical data in 10 h blocks. For instance, to build a classi-

fier around 100 h, we consider the time period of 100 − 110 h of a batch. Next, starting from

the fault onset time 100 h until 110th h, we obtain process data in 10 h blocks: At hour 100, we

collect data from 90− 100th h. Similarly at next sensor sample time, 100.2 h, we collect data

from 90.2− 100.2 h. We obtain the process data iteratively until the end of the considered time

period, 110 h. The schematic representation of the targeted data collection is presented in Figure

B.2, wherein the gray boxes mark the fault onset time classification models are built. Blue line

indicates the first, red line indicates the last 10 h data block extracted from the 90-110 h time pe-

riod for 100 h fault detection classifier.. Each data collection from the selected window adds a new

instance in the data set. This approach yields a 3-dimensional (3D) data with size of 2500 X 20 X

50. The first dimension of the data set is obtained with 50 sliding window iterations in 50 batches

(25 faulty and 25 normal operating). Furthermore, we observe 20 process variables that includes
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Figure B.2: Schematic representation of targeted data collection for fault detection and diagnosis
classifier development (Reprinted with permission from [257]).

both state and manipulated variables B.1 in 50 sensor sample periods (i.e. 100 − 110 h for 100 h

classifier building). The data set size is consistent for each fault and time-specific fault detection

model building.

On the other hand, during fault magnitude regression development, we consider solely the

process variables and do not extract any further process descriptors. Here, we collect 10 h block

for actuator fault, and 1 h for sensor fault magnitude estimation model development. We also

combine all faulty operation data with varying fault magnitudes. Specifically, we have simulated

6 distinct fault magnitudes for sensor, and 8 for actuator faults. For each magnitude, we have

simulated 25 batches. This yields 150 faulty batches with sensor fault, and 200 faulty batches with

actuator fault. Next, we include equal amount of normal operating batches to our data sets. Thus,

the size of the obtained data set is 300X 20 X 5 for regression model development for sensor fault

magnitude estimation. Whereas the data set size for regression model development for actuator

fault magnitude estimation becomes 400 X 20 X 50. Here, the first dimension belongs to total

number of batches (with equal number of faulty and normal operating batches), second dimension

is the 20 process variable measurements, and the last dimension indicates the 10 h (50 sensor

sample) block, and 1 h (5 sensor sample) block examined after the fault onset time of actuator, and

sensor faults, respectively.
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Unfolding 3D Batch Process Data into 2D: The collected 3D data needs to be unfolded into 2D

prior to model building steps. The 3D data set can be unfolded in three ways by placing one

out of three dimensions as rows, and grouping the other two dimensions as columns. In this

work, we perform batch-wise unfolding for classification and measurement-wise unfolding for

regression analysis [269]. In bath-wise unfolding, batches are the instances which are provided in

the rows of the 2D data set. Whereas in measurement-wise unfolding, we keep the process variable

measurements as the features and place them to the columns of the 2D data set for regression

analysis. The features that constitute the columns of the 2D data sets are time-specific process

variable measurements for classification, and time-specific-batch ID for regression models. After

the unfolding step, the data set size becomes 2500 X 1000 for classification analysis. On the other

hand, the unfolded data set size becomes 20000 X 20 for actuator fault, and 1500 X 20 for sensor

fault magnitude estimation.

Extracting Additional Features: This step is optional. We apply this step only during classification

analysis. The aim of this step is to enrich the data set by including additional process descriptors to

capture the process nonlinearity, which can then improve classification model performances. To do

this, we calculate the (i) mean, (ii) standard deviation, and (iii) slope of 20 process measurements

within each sliding time window and incorporate them into the unfolded data set. This increases

the classification data set sizes to 2500 X 1060.

Data Normalization & Reduction: Final data-preprocessing step is scaling of the re-configured

data set and a priori dimensionality reduction to remove redundant features. This procedure is

common to both classification and regression analysis. Each column of the 2D data set is scaled

by z-score calculation, where mean of the column is extracted from each value and then divided

into the standard deviation of the column. Redundant features, where the standard deviation is less

than 10−8, are removed in order to decrease the computational cost during offline model building

phase.
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Parameter Tuning

We are training (i) C-SVM (two-class) classification models by using the Gaussian radial basis

function (RBF) as the nonlinear Kernel function for fault detection and diagnosis, and (ii) re-

gression models via Random Forest algorithm for fault magnitude estimation after fault detection.

Note that any regression model can be used for fault magnitude estimation, yet nonlinear regression

techniques are expected to be superior than linear techniques in terms of providing more accurate

fault magnitude estimations due to the nonlinear relationship between the process variables. In

this work, we investigated two advanced regression techniques, namely Random Forest regression

and C-parameterized Support Vector Regression (C-SVR). Specifically, we have trained C-SVR

models by using the introduced feature selection algorithm in Onel et al [257] and Onel et al [264].

The results from C-SVR models are tabulated in Table S1 for actuator and Table S2 for sensor

fault in the Supplementary. The results provided in Tables S1 and S2 show that dimensionality

reduction does not necessarily improve the model R2s. This is mainly due to having low ratio of

the number of features to the number of instances in the process data set. Therefore, we use the

entire process variables that remain after the data pre-processing step during regressor training. In

this work, we prefer Random Forest algorithm over C-SVR due to the added benefit of bagging

technique of Random Forest algorithm, which allows us to train more accurate regressors with the

entire process variables for fault magnitude estimation. Regardless of the analysis, the initial step

is parameter tuning which is required to achieve the optimal model performance.

Parameter Tuning for C-SVM Models: Here, we have two parameters to tune: (i) C (cost) param-

eter of C-SVM, and (ii) γ parameter of the Gaussian Radial Basis kernel function. While the first

parameter acts as a regularization parameter that controls the trade-off between low training error

and low test error. In other words, this parameter regulates the balance between model complexity

and model generalization. Lower the training error, higher the model complexity and lower the

model generalizability. On the other hand, lower the testing error, lower the model complexity and

higher model generalizability but with higher training error. Finding an optimal balance is crucial

to develop an accurate classifier. Furthermore, the γ parameter determines the complexity of the
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Gaussian RBF kernel and affects the radius of influence of the samples selected as support vectors

by the model.

In LIBSVM, the default value for RBF kernel parameter, γ, is 1/n, where n is the number of

features. Thus, we tune parameter γ̂ where

γ =
2γ̂

n
. (B.8)

Moreover, we tune parameter Ĉ, where the relation between Ĉ and C is:

C = 2Ĉ . (B.9)

According to the described iterative feature selection algorithm in our previous papers [257,

264], γ̂ can be re-tuned after each feature elimination step with the available set of features:

γ =
2γ̂

zT1
(B.10)

We have performed the parameter tuning via grid search and 10-fold cross-validation. In par-

ticular, we have used the values between −1 : 1 for Ĉ, and −10 : 10 for γ̂. We have performed the

parameter tuning once in the beginning where we have the entire features in the data set. Although

repeating grid search for parameters tuning after each feature elimination would be ideal, we avoid

the computational cost since the attained model performance has been observed to be satisfactory.

If one obtains a poor-performing model, tuning can be repeated with each available feature sub-

sets. Finally, the parameters that produce the highest average testing accuracy are chosen for the

next steps. The optimal parameters for the fault-and-time specific C-SVM models are provided in

Table B.2.

Parameter Tuning for Random Forest Regression Models: In regression analysis, we have one

parameter to tune, which is the number of features that can be used in training of each decision

trees of the random forest model, mtry. This is performed via grid search among the total number

of features until 1 while training Random Forest models via 10-fold cross-validation. The optimal
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Table B.2: Optimal C and γ parameters of the C-SVM classifiers (Reprinted with permission from
[257]).

Fault Type Fault Onset Time Optimal Ĉ Optimal γ̂
Actuator 100 h 1 0
Actuator 200 h 1 0
Actuator 300 h 1 0
Actuator 400 h 1 0
Sensor 100 h 1 -2
Sensor 200 h -1 0
Sensor 300 h 1 -2
Sensor 400 h 1 -2

Table B.3: Optimal mtry parameters of the Random Forest regressors (Reprinted with permission
from [257]).

Fault Type Fault Onset Time Optimal mtry
Actuator 100 h 12
Actuator 200 h 11
Actuator 300 h 11
Actuator 400 h 11
Sensor 100 h 16
Sensor 200 h 16
Sensor 300 h 12
Sensor 400 h 14

mtry parameters are obtained by using the “trainControl” function of the “caret” package of the

R statistical software. The optimal mtry values for each time-specific regressors are provided in

Table B.3.

Model Building

Here, we address the model building steps separately for classification and regression analysis.

We follow the s-FDD framework [257, 264] to build the C-SVM classifiers for fault detection

and diagnosis. The application of the framework and data-specific details are provided in Step

3.1. Furthermore, we describe the model building steps for regression analysis via Random Forest

algorithm in Step 3.2.
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Figure B.3: Algorithmic solution procedure for simultaneous Support Vector Machine-based fea-
ture selection and modeling (Reprinted with permission from [257]).

Training C-SVM Models: The overall procedure for fault detection model development is sum-

marized in Figure B.3.

Step-1. Feature Ranking via C-SVM Modeling: The tuned parameters are incorporated into si-

multaneous model-informed feature selection and classification algorithm via C-SVMs [263, 257,

264]. C-SVM binary classification models with Gaussian radial basis function (RBF) kernel are

trained iteratively with each feature subset as features are eliminated one by one. Features are

eliminated based on the Lagrangian sensitivity of the dual objective function of the built C-SVM

model with respect to the feature subset size at each iteration. This iterative process is performed

with each of the 10 train-test data set pairs which produces 10 separate feature ranking lists. Next,

we create an average feature rank list based on the statistical distribution of the feature ranks among

the 10 ranking lists.

Step-2. Developing C-SVM Models for each Feature Subset: Here, we re-build C-SVM models

by using the optimal parameters determined in Step 2 and 10-fold cross validation, where we use

the average feature rank list to guide the iterative feature elimination process. We start with the
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Table B.4: C-SVM model performances. (FDR: Fault Detection Rate, FAR: False Alarm Rate)
(Reprinted with permission from [257]).

Fault Type Fault Onset Time Accuracy (%) AUC FDR FAR (%) Optimal Feature Subset Size
Actuator 100 h 98.29 99.84 97.35 0.77 30
Actuator 200 h 98.34 99.86 97.55 0.87 35
Actuator 300 h 98.37 99.83 97.52 0.77 32
Actuator 400 h 98.77 99.05 98.29 0.75 45
Sensor 100 h 94.92 97.34 89.85 0.00 33
Sensor 200 h 98.84 99.21 97.68 0.00 59
Sensor 300 h 98.03 99.39 96.06 0.00 45
Sensor 400 h 99.00 99.38 98.00 0.00 7

whole set of features and eliminate them one by one based on this final ranking list. This process

produces 10 C-SVM classifiers for each feature subset due to the 10-fold cross-validation. The

performance of each model is assessed via accuracy, area under the curve (AUC), fault detection

rate, and false alarm rate. We average the performance of 10 classifiers and obtain one C-SVM

model performance per feature subset. At the end of this step, we tabulate the performance of C-

SVM models with each feature subset. Specifically, in this work, we have generated 1060 C-SVM

models.

Step-3. Choosing the C-SVM Model with Optimal Feature Subset: This step determines the final

C-SVM models to be implemented in the online phase for process monitoring. Here, we select the

classifier that has provided the highest model accuracy and area under the curve with minimum

number of features among the 1060 C-SVM models produced in Step 4. The selected feature

subset is used in analyzing the root-cause of the detected fault. Therefore, selecting minimum

number of features is significant in order to facilitate the interpretation of the fault diagnosis. The

performance of the selected fault-and-time specific C-SVM models are tabulated in Table B.4.

Training Random Forest Models: By using the optimal mtry parameters, we train Random

Forest models with 500 decision trees. Training is performed via the “randomForest” function

of the “randomForest” package of R statistical software. The performance of the fault-and-time

specific Random Forest models are tabulated in Table B.5.
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Table B.5: Random Forest regressor performances (RMSE: Root Mean Square) (Reprinted with
permission from [257]).

Fault Type Fault Onset Time R2 RMSE
Actuator 100 h 0.999 0.179
Actuator 200 h 0.999 0.262
Actuator 300 h 0.999 0.248
Actuator 400 h 0.999 0.260
Sensor 100 h 0.964 0.202
Sensor 200 h 0.911 0.321
Sensor 300 h 0.985 0.129
Sensor 400 h 0.973 0.176

B.2.3 Closed-loop Validation & Online Implementation

Prior to the online implementation, we have implemented the developed fault-tolerant mpMPC,

and fault detection and reconstruction mechanism to the RAYMOND simulator separately in order

to validate their individual performance. The performance of fault-tolerant mpMPC is assessed

by providing the fault onset time and magnitude information to the controller. We have observed

that the controller adapts to the faulty condition once it is provided with accurate information on

the fault type, onset time and magnitude. The accuracy of the fault detection and reconstruc-

tion mechanism is also tested and validated separately, where we have simulated a process with

known fault onset and magnitude without incorporating any fault-tolerant control actions during

the simulation. Finally, we implement the fault detection and reconstruction mechanism with the

fault-tolerant mpMPC in the RAYMOND simulator. During the online phase, the received signals

are (i) initially processed to detect the existence of any sensor or actuator faults, (ii) then recon-

structed to determine the magnitude of the fault, and (iii) finally passed on to the controller for the

optimal control action in the existence/absence of fault. .

B.3 Results

In this work, we control reactor temperature by manipulating water flow rate during penicillin

production. We build fault-tolerant control scheme that can tolerate for both actuator and sen-
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sor fault. We introduce sensor bias in water flow rate measurements for actuator fault, whereas

we introduce sensor bias in reactor temperature measurements to induce sensor fault. Numer-

ous fault magnitudes and onset time are simulated for each fault type. Particularly, we select

−2.5,−2.0,−1.5,+1.5,+2.0,+2.5, and −2.0,−1.5,−1.0,−0.5,+0.5,+1.0,+1.5,+2.0 for ac-

tuator and sensor fault magnitudes during the simulations, respectively. We have developed highly

accurate fault and time-specific fault detection models and regression models for fault magnitude

estimation (Table B.4 and B.5) and implemented them for the fault detection and reconstruction

mechanism of the established parametric fault-tolerant control system.

Figure B.4 provides a comparison of the open and closed (via fault-tolerant mpMPC) loop

simulation, which signifies the importance of having an accurate control actions on the reactor

temperature by manipulating the water flow rate. The mpMPC yields an offline, a priori, map of

optimal control actions for the process. Figure B.5 delineates the distinct control laws for various

magnitudes of sensor and actuator faults at the fixed parameters. The major advantage of the

built fault-tolerant system is to gain a priori knowledge on the control actions for different fault

magnitudes of actuator and sensor fault separately, as well as for different combinations of the two

distinct fault types simultaneously. This map further draws the limits of the fault tolerance for

each fault types. These limits indicate specific fault magnitudes for each fault type until where the

designed fault-tolerant mpMPC can recover the process back to the normal condition.

From the beginning, we monitor the process with the fault tolerant mpMPC and acquire infor-

mation on the existence of any fault within the system from the fault detection classifier models.

In this work, the adopted alarm policy is the generation of 3 consecutive alarms. In other words,

we conclude on the fault existence when we obtain 3 consecutive positive response from the fault

detection classifiers. Once the fault is detected, we initiate to regress the magnitude and direction

of the fault. The random forest models use the online process variable measurements to estimate

the amount of deviation from the reactor temperature of the normal operating condition. Here,

early detection of the faults is crucial to initiate the fault estimation process. If the fault detection

latency is high, that is when fault is detected late during the operation, the controller may not be
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Figure B.4: Simulated reactor temperature (controlled) and water flow rate (manipulated) profiles
in open and closed loop (via mpMPC) (Reprinted with permission from [257]).

Figure B.5: A demonstration of the offline map of the fault-tolerant mpMPC strategy projected
to the actuator and sensor fault magnitudes at an arbitrary time in a closed-loop simulation. Each
color contains a different explicit control law as a function of the parameters. The parameters θ1

denotes the identified state, θ2 is the normalized process output (reacture temperature), θ4 is the
output (reacture temperature) set point, and θ6 denotes the previous control action (Reprinted with
permission from [257]).
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Table B.6: Average fault detection latency of the fault&time-specific C-SVM models (Reprinted
with permission from [257]).

Fault Type Fault Onset Time Average Latency (h)
Actuator 100 h 0.5
Actuator 200 h 1.5
Actuator 300 h 0.04
Actuator 400 h 0.16
Sensor 100 h 0.38
Sensor 200 h 1.27
Sensor 300 h 0.64
Sensor 400 h 6.17

able to return the process back to the normal condition. The reason can be two-fold: (i) the validity

of the regressor may expire, thus accuracy of the fault estimation deteriorates, and (ii) there may

be significant damage on the process which is irreparable. Table B.6 presents the average fault de-

tection latency of each fault and time specific classifier among the entire simulations with varying

fault magnitudes.

Achieving low latency with the fault and time-specific C-SVM models indicates early fault

detection. When we compare the two different fault types, the average latency is lower for the

actuator fault models. The main reason for this can be the fact that changes in water flow rate may

affect the other process variables in a more definite way. This may lead to sudden changes not only

in one but numerous process variables, thus facilitates the fault detection. Furthermore, the process

nonlinearity affects the detection latency in distinct ways for different fault types. Specifically, we

observe that we detect the actuator fault more rapidly in the later stages of the batch process,

namely 300 h and 400 h models. On the other hand, the separation in the average latency is not

that clear among the sensor fault detection models. Here, the high latency can be linked to the

low number of process variables used in the fault magnitude estimator models, which may not be

adequate to capture the process behavior in the specific process time.

We are building fault and time-specific regression models for fault magnitude estimation.

Therefore, it is crucial to assess the accuracy of the fault reconstruction performance after the fault
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onset time. During the online operation, we use the regressors that are trained around the simulated

fault onset time. As the operation progresses after the fault onset time, where the process is kept

under normal condition thanks to the fault-tolerant mpMPC, the regressor model continues to use

the online process data at every new sampling point. However, as the sampling time moves away

from the fault onset time, the process data characteristics can significantly change, which renders

the regressor inaccurate for fault estimation. Fault estimation may not be performed as accurate

as it is done near the fault onset time, which hinders the controller’s learning about the process

condition. This, in turn, may lead to insufficient control actions to recover the process back to the

normal condition. Note that the extended validity of the regressor accuracy heavily depends on the

amount of deviation of the process data characteristics. As a result, it is significant and necessary

to assess the time-sensitivity of the fault estimators and identify when we need new models for

accurate fault reconstruction. Furthermore, the limit of each regressor determines the targeted data

collection location for the next regression model training.

Tables B.7 and B.8 tabulate the extent of the validity of the time-speicifc fault detection classi-

fiers and magnitude estimation regressors for two set of thresholds around the reactor temperature

set point being ± 0.5 and ± 0.75 K. The complete set of reactor temperature and water flow rate

profiles with ± 0.5 K threshold on the set point for each time-specific models are provided in the

Supplementary. In particular, we assess the extent of the validity of each time-specific model until

the next time-specific model territory (i.e. 100th h models are tested until 200th h etc.). The re-

sults for the actuator fault case show that the models that are built at 200th and 300th h have been

sucessfully provided necessary control actions until the target process time being 300th and 400th

h respectively. Similarly, models built at 400th h have enabled satisfactory control actions until the

end of the operation. The results for the models built for 100th show that the models are valid on

average for the next 73.5 h and 75.4 h for ± 0.5 and 0.75 K thresholds around the reacture temper-

ature set point, respectively. This highlights that we need to have additional models for accurate

fault detection and magnitude estimation between 100th − 200th h of the batch operation.

On the other hand, for the sensor fault case, we note that the models built for 200th and 400th
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h are not valid for an extended process time when negative fault magnitudes are observed. On

average, the models are valid for another 1.3 and 1.5 h after fault is introduced in 200 and 400 h,

respectively when the reactor temperature deviation threshold is set to 0.5 K. When we increase

the threshold to 0.75 K around the set point, we observe that the models built at 200th can maintain

a smooth operation for its entire targeted operation range, which is the next 100 h, because the

latency in fault detection has caused a deviation that is higher than 0.5 but lower than 0.75 K.

However this does not apply to the models for 400th h. The threshold increase does not extend

the validity of 400th h models since the maximum deviation observed is as high as 2.1 K (see the

Supplementary Information by Onel et al. (2020) [229]). The reason behind the limited model

validity for the two time-specific models at 200 and 400 h is due to the high fault detection latency.

In other words, by the time we detect the fault occurring at 200th and 400th h, the deviation from the

reactor temperature set point already exceeds the predetermined thresholds see the Supplementary

Information by Onel et al. (2020) [229]). Therefore, required control actions are not provided by

the controller as it has not been notified with the existence and magnitude of the fault. In order to

overcome this problem, fault detection latency is required to be improved. This can be achieved

by increasing the frequency of the fault detection classifiers between 200 and 400 h of the batch

operation.

In order to provide a comparison between the two fault types, we provide the reactor temper-

ature and water flow rate profiles for 100 h models. Particularly, we display the profiles of the

simulations where we introduce actuator fault with −2.5 and +2.5 fault magnitude in Figures B.6

and B.7, respectively. Additionally, Figures B.8 and B.9 demonstrate the profiles of the simula-

tions where we introduce sensor fault with −2 and +2 fault magnitude. The profiles with actuator

fault show that once the regressor model validity expires with the altering dynamics of the batch

process, the correction in the faulty water flow rate disrupts and deteriorates. This leads to a sig-

nificant increase in the reactor temperature that leads to a possible system failure. On the other

hand, the early capture of the sensor fault leads to rapid and necessary changes in the water flow

rate which enables fast process recovery back to the normal condition. Of note, in order to ensure
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Table B.7: Extent of time-specific fault detection and magnitude estimation model validity for
actuator fault (Reprinted with permission from [257]).

Fault Onset Time (h) Fault Magnitude Validity Limit for 0.5 K threshold (h) Validity Limit for 0.75 K threshold (h)
100 -2.5 143.2 146.6
100 -2 147.3 150.7
100 -1.5 151.2 155.0
100 1.5 199.4 200.0
100 2 200.0 200.0
100 2.5 200.0 200.0
200 -2.5 200.0 200.0
200 -2 300.0 300.0
200 -1.5 300.0 300.0
200 1.5 300.0 300.0
200 2 300.0 300.0
200 2.5 300.0 300.0
300 -2.5 400.0 400.0
300 -2 400.0 400.0
300 -1.5 400.0 400.0
300 1.5 400.0 400.0
300 2 400.0 400.0
300 2.5 400.0 400.0
400 -2.5 Through the end Through the end
400 -2 Through the end Through the end
400 -1.5 Through the end Through the end
400 1.5 Through the end Through the end
400 2 Through the end Through the end
400 2.5 Through the end Through the end
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Table B.8: Extent of time-specific fault detection and magnitude estimation model validity for
sensor fault (Reprinted with permission from [257]).

Fault Onset Time (h) Fault Magnitude Validity Limit for 0.5 K threshold (h) Validity Limit for 0.75 K threshold (h)
100 -2.0 187.9 200.0
100 -1.5 187.4 200.0
100 -1.0 187.2 200.0
100 -0.5 187.2 200.0
100 0.5 187.6 200.0
100 1.0 187.6 200.0
100 1.5 187.6 200.0
100 2.0 187.4 200.0
200 -2.0 201.3 300.0
200 -1.5 201.3 300.0
200 -1.0 201.3 300.0
200 -0.5 201.3 300.0
200 0.5 300.0 300.0
200 1.0 300.0 300.0
200 1.5 300.0 300.0
200 2.0 300.0 300.0
300 -2.0 358.1 358.1
300 -1.5 356.4 356.4
300 -1.0 359.9 359.9
300 -0.5 358.0 358.0
300 0.5 369.9 369.9
300 1.0 360.5 360.5
300 1.5 360.4 360.4
300 2.0 363.1 363.1
400 -2.0 401.4 401.4
400 -1.5 401.4 401.4
400 -1.0 401.4 401.4
400 -0.5 401.5 401.5
400 0.5 Through the end Through the end
400 1.0 Through the end Through the end
400 1.5 Through the end Through the end
400 2.0 Through the end Through the end
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smooth control actions, one needs to switch to the next valid model once the validity of the previ-

ous model expires. This is necessary in order to capture dynamic process characteristics and detect

any possible faults. The presented simulation profiles with actuator and sensor faults prove that the

designed fault-tolerant mpMPC provides smooth control actions successfully.

Finally, we perform a sensitivity analysis with the time-specific fault detection and magnitude

estimation models built at 100th and 200th h in order to determine the perimeter of the model effec-

tiveness. To this end, we use the time-specific models for ± 30 h perimeter of their corresponding

process time. Particularly, the C-SVM model for fault detection and random forest model for the

fault magnitude estimation are utilized for every 5 h fault onsets between 70th and 130th h with

the models built at 100th h and between 170th and 230th h with the models built at 200th h (Figure

B.10). We adopt the± 0.5 K threshold around the reactor temperature set point and only utilize the

extreme negative and positive fault magnitudes simulated in this work (-2.5 and +2.5 for actuator

and -2 and +2 for sensor fault) for the analysis. The results reveal that actuator fault models have

more limited range compared to sensor fault models. In particular, the models built at 100th have

successfully been used between 90 − 100th h of the batch operation. The validity range for the

models built at 200th reaches to 15 and 20 h for negative and positive fault magnitudes, respec-

tively. On the other hand, the analysis yield that the models built at 100th and 200th h for sensor

fault have been able to perform required control actions for the analyzed 30 h perimeter except

the analysis performed with negative fault magnitude with models built at 200th h. This is again

due to the fact that by the time fault is detected the raise in the reactor temperature exceeds the

allowed region (see the Supplementary Information by Onel et al. (2020) [229]). When the devia-

tion threshold is raised to ± 0.75 K, the time-specific models are shown to be valid for the entire

analyzed 30 h perimeter (Figure B.11). This analysis is significant to elucidate the effectiveness

limit of the time-specific models which is required to determine the model switching frequency

during online monitoring. Overall, the results demonstrate the need for additional models during

100-200 h of the operation if a strict deviation threshold (i.e. 0.5 K) is preferred during the op-

eration. Yet for 0.75 K deviation threshold, the presented time-specific models have successfully
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Figure B.6: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: -2.5 (Reprinted with permission from [257]).
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Figure B.7: Reactor temperature and water flow rate profiles for process with actuator fault. Fault
Onset: 100 h, Fault Magnitude: +2.5 (Reprinted with permission from [257]).
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Figure B.8: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: -2.0 (Reprinted with permission from [257]).

231



0 50 100 150 200 250
294

296

298

300

302

R
ea

ct
u

re
 T

em
p

er
at

u
re

(K
)

Limit:187.44 h

Real value
Measured value

0 50 100 150 200 250
Hour

0

20

40

60

80

100

120

W
at

er
 F

lo
w

 R
at

e 
(L

/h
)

Real value
Measured value

Figure B.9: Reactor temperature and water flow rate profiles for process with sensor fault. Fault
Onset: 100 h, Fault Magnitude: +2.0 (Reprinted with permission from [257]).
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provided satisfactory control actions under faulty condition.

B.4 Conclusions

As the effect of smart manufacturing revolution propagates and influences the vision of numer-

ous industrial operations, development of fault-tolerant control system becomes one of the major

factors in achieving high process resilience. Traditional corrective maintenance strategies include

controller re-tuning which leads to longer process downtime that may adverse the end-product

quality and cause higher operation cost. This work proposes a novel parametric fault-tolerant con-

trol framework that enables rapid and accurate switches within the offline map of control actions

to eliminate process downtime, and maximize process reliability. This further enables attaining

higher product quality which leads to higher profit from the operation.

In this work, we present a novel active fault-tolerant strategy and corrective maintenance strat-

egy which benefits from multiparametric programming and machine learning-based process mon-

itoring. Particularly, we have designed multiparametric model predictive controller by following

the PAROC framework [130] and the s-FDD framework. The s-FDD framework is used to formu-

late the fault detection and reconstruction mechanism of the fault-tolerant system, where the built

classifiers provide the information on fault existence and regressors yield the fault magnitude and

direction estimation. The trained C-SVM models with the optimal feature subset further enables

the rapid diagnosis of the detected of fault. The average accuracy of the classifiers is %98.44, and

%97.70 for the actuator and sensor faults, respectively. Moreover, the average R2 of the trained

regressors is 0.999 and 0.958 for the actuator and sensor faults, respectively. The presented ap-

proach formulates as a novel active fault-tolerant strategy in which an accurate and robust fault

detection and reconstruction mechanism is ensured via the s-FDD framework and multiparametric

MPC enables rapid switches between fault-tolerant control actions. Please note that the presented

fault-tolerant strategy is agnostic to any fault types, thus it can be extended to process faults as

well. Finally, we note that the design of the fault-tolerant mpMPC can further enable the handling

of simultaneous faults as it includes the deviation in both process variables (i.e. reactor temperature

and water flow rate) as additional parameters.
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Figure B.10: Sensitivity analysis of time-specific models built at 100th and 200th h for actuator
and sensor faults. The set point deviation threshold is ± 0.5 K. The green bars highlight that the
model is satisfactorily valid. The red bars belong to limited time model validity cases. Note that
once a red bar is assigned, the further hours are automatically assigned with red (Reprinted with
permission from [257]).
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Figure B.11: Sensitivity analysis of time-specific models built at 100th and 200th h for actuator
and sensor faults. The set point deviation threshold is ± 0.75 K. The green bars highlight that the
model is satisfactorily valid. The red bars belong to limited time model validity cases. Note that
once a red bar is assigned, the further hours are automatically assigned with red (Reprinted with
permission from [257]).
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