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ABSTRACT 

 

In this research, we developed a new method of outlier detection and removal from point-

based data sets utilizing deep learning. To do this, we focused on creating an outlier detection 

method that would tie the outlier detection procedure and a model-building process together. 

Using the different behaviors of outliers and inliers, we used model complexity as an indicator 

for outliers in data sets. In this context, “complexity” of a model means the weight of non-zero 

edges in the model. This include features of a model such as number of layers and number of 

nodes per layer. 

Our proposed method of using model complexity to detect outliers consists of several 

steps.  First, a model of low complexity (low number of layers or low number of nodes per layer) 

should be made and trained on a data set, and its predicted values for each instance of the data set 

must be recorded. Second, we need to build multiple neural network models of differing number 

of layers or number of nodes per layer and find a group of models of specific number of layers 

with the best average performance values on a given data set. Performance in this context 

includes general classification accuracy or mean squared error values of models. Third, within 

the group, we pick the model with the highest number of nodes per layer and use its predictions 

for each instance of the data set and compare them with the predicted values of the low-

complexity model from the first step. The instances with different prediction values by both 

models should then be labeled as outliers and thus removed. 

Two factors must be noted about this method. First, the lower the correlation that 

attributes have to the output values in a data set, the fewer outliers the method will detect. 
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Second, the larger and more complex a data set becomes (such as having many attributes), the 

fewer outliers the method will find. These factors must be noted when using this method. 
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1. INTRODUCTION

1.1 The Outlier Problem 

1.1.1 Data Sets and Neural Network 

In any professional field, people have to make decisions. When determining if a CPU 

chip is good enough to be sold, a person has to determine if it performs at a high enough level. 

When determining if an individual in a picture is a man or a woman, a person has to take note of 

key features in the individual’s face and body. To make these decisions efficiently, people turned 

to collecting and analyzing data from their respective fields. This practice became bigger in scale 

and more sophisticated in methodologies as computers became more advanced to handle big 

data, and now experts rely nearly entirely on digital data for data analytics [1]. Such methods 

include data condensation, sampling, divide and conquer, and more [2]. The scale of digital data 

storage and usage grew so large that the market for big data, in total, reached $16 billion in 2014 

[3]. People extensively used data in other fields as well, such as disease research and prevention 

[4], businesses [5], and smart cities [6]. Data usage, storage, and research continues to grow 

today, which makes the concept of data more and more important. 

As data grew, people developed new methods of analyzing data sets more efficiently. 

During the 1960’s, Bayesian Inference, a statistical method of predicting outputs from instances 

of data based on existing data, was developed for machine learning [7]. After facing a decline in 

popularity in the 1970’s, machine learning began to resurface and gain even more popularity as 

backpropagation, a method for finding the gradient, was rediscovered in the 1980’s [8][9]. 

Eventually in the 1990’s, machine learning became more focused on building models by training 

on digital data sets [10]. During this time period, methods such as the Support Vector Machine 

(SVM), machine learning models used for analyzing classification and regression problems in 
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data [11], became popular. In the 2000’s, unsupervised machine learning became widely 

available and popular [12]. In 2009, people found that neural networks, a robust but expensive 

machine learning method that normally cost too many computer resources to be practical, could 

be run to create models efficiently by training on data sets using Nvidia’s graphical processing 

units (GPU) [13]. GPUs make it possible to do neural network training on average computers 

[14]. A powerful and robust machine learning method, neural networks can be used to analyze 

and predict output values in many topics and fields, such as automatic speech recognition [15] 

and image recognition [16]. Neural network models are currently one of the most powerful and 

relevant machine learning methods for studying and utilizing data. 

1.1.2 Outliers, the Parasite of Data Sets 

One big issue that negatively impacts machine learning as a whole exists in data sets: 

outliers. According to Frank E. Grubbs, a statistician, an outlier is an instance in a data set that 

“appears to deviate markedly from other members of the sample” [17]. Outliers can be caused by 

two issues. First, such values can be the result of groups of data within a data set being too 

dispersed, causing such values to be undetected until further data analysis or a larger sample size. 

Second, outliers can be caused by an error during the construction of their respective data set, 

such as a physical disturbance or measurement error [18]. Outliers in the second case are 

meaningless data, and they do not represent the nature of their respective data set in any way. It 

is critical these values are removed so that they do not muddle the actual behaviors of the real 

data, termed inliers. 

For this research, we focus on a method of detecting and removing outliers from data 

sets. Outliers continue to be a significant issue for all forms of data analytics, and people 

continue to create sophisticated methods of detecting and removing outliers. Despite this, outliers 
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continue to be a significant problem, so we created a new method of outlier detection. However, 

because of time constraints, we limited the scope of our research to point-based numerical data 

sets. 

1.1.3 Background 

People started developing methods of detecting outliers long before neural networks 

existed. During the mid-1800’s, Benjamin Peirce created Peirce’s Criterion, a classical outlier 

removing method derived from the Gaussian distribution, and it allows for at least two outliers to 

be labeled as outliers within a data set [19]. In this method, we first have to calculate the mean 

and standard deviation of the complete data set. We then have to collect the R-value that matches 

with the number of measurements in Peirce’s table. We then find the maximum deviation of the 

value (|xi - xm|max). For any values that appear to be outliers, we find the |xi - xm| value. If |xi - xn| 

is greater than |xi - xm|max, then the value must be labeled as an outlier [20]. Shortly after this, 

William Chauvenet created the Chauvenet’s Criterion, another classical outlier removing method 

[21]. When using this method on a data set, we first find the sample mean and sample standard 

deviation. Then, for all data points that might be outliers (Xi), we calculate (|Xi - sample mean| / 

sample standard deviation) and store each value. Next, we take that calculated value, find its 

complementary error function (erfc), and multiply it by the number of instances in the data set. If 

the resulting value is less than 0.5, then the value is an outlier [20]. In 1950, Frank E. Grubbs 

created the Grubb’s Test, which was a different method that can only be used on univariate data 

sets [22]. 

In the modern era, experts took inspirations from the classical methods and created 

outlier detection methods with neural networks in mind. One type of method created with neural 

networks in mind is the Deep Anomaly Detection (DAD) technique. As data sets grow larger in 
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size and more complex in types (images or large number of attributes), traditional outlier 

detection became ineffective. To address this issue, people created the DAD technique. This 

technique allows models to learn “hierarchical discriminative features” from given data sets [23]. 

One sophisticated DAD method is Outlier Exposure. In this method, learning neural network 

models are exposed to outliers outside of their training data set to more effectively detect outliers 

in the input for the models [24]. The DAD technique is efficient and is being used in industrial 

practice, such as credit card fraud detection [25], cyber-intrusion detection [26], and the medical 

domain [27]. 

1.1.4 Guide to this Paper 

In this research, we focused on developing an outlier detection method that would 

intuitively tie the outlier detection procedure and a model-building process together. We did this 

to find a new, more efficient method of detecting, labeling, and removing outliers from point-

based data sets. 

The second chapter focuses on why we chose this particularly method for detecting 

outliers. We explain the logic behind our choice and demonstrate what kind of procedures our 

method follows. To note, we use point-based data sets due to the limited time constraints of our 

research.. 

We show our experimentation and findings in the third chapter. We explain in more 

detail what steps we took, what data sets we tested this on, what results we gained, and what said 

results showed. We also discussed the potential errors and hidden negative factors that may have 

muddled our results. 

In the fourth chapter, we conclude our research and summarize the research’s proposed 

problem and new solution. We then discuss how this research can be improved in future work. 
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2. PURPOSE OF RESEARCH 

2.1 A New Method of Outlier Detection 

2.1.1 A New Approach to an Old Problem 

The purpose of this research is to find an effective method of detecting and labeling 

outliers within any point-based data set. To do this, this research focuses on developing an 

outlier detection method that intuitively ties the outlier detection procedure and a model-building 

process together. By implementing this feature, the process of outlier detection can be further 

simplified while maintaining efficiency. 

2.1.2 The Narrowed Scope of Data Sets 

As mentioned earlier, the research focuses on detecting outlier values in point-based data 

sets analyzed in a batch process. In this context, a point-based data set is a pre-made data set that 

contains all necessary data values. As opposed to a sequential data set, a point-based data set is 

not reliant on time, which means that it will not be collecting any more data values as time 

passes. 

Also, the type of data sets that used in this research will be strictly quantitative rather 

than qualitative. We avoided implementing mixed methods research due to its time-consuming 

nature. Also, many data sets containing both quantitative and qualitative data may have been 

poorly collected; using such data sets in this research could lead to inaccurate results [28]. Also, 

we chose to use quantitative data for our research because detecting association rules in 

quantitative data have been effective to a certain degree [29]. Because of this, there is a higher 

chance to find quantitative data sets with decent association between attributes and results in 

comparison to qualitative data sets. 
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Because of this limited scope, this work does not make any claims on whether the 

proposed detection method will work on time-based sequential data sets. It does, however, show 

that the method will function on point-based data sets. 

 

2.2 Model Complexity as Metric 

2.2.1 The Proposed Method of Outlier Detection 

The goal of this research is to develop a sophisticated process of using model complexity 

as an indicator for outliers in any point-based data set. This will allow for any outlier point in a 

data set to be labeled as an outlier, which would then be easily removed by a trained model. We 

developed this method due to the differing characteristics of outliers and regular inliers in any 

data set. 

To explain generally, outliers and inliers behave differently in all data sets. Inlier values 

usually stay grouped in a single or multiple clusters in their data set, maintaining one or more 

specific patterns neural network models can detect. Outlier values, however, differ considerably 

from the rest of the inlier values, causing them to exist outside of the general clusters of the 

inliers. Each outlier can be viewed as being drawn from a different population than the inliers, 

with each outlier potentially from its own unique population. Notably, in nearly all proper data 

sets, inlier values far outnumber outlier values [30]. Despite this, a considerable number of 

outliers usually exist in all data sets, and the nature of their unexpected behavior in data sets 

disrupts the learning process of neural network models. 

2.2.2 Procedure of Method 

To elaborate on our proposed detection process, our method will use a neural network 

model’s complexity as a metric of measuring and detecting outliers. The complexity of a model, 
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in this context, means the weight of non-zero edges in the model. This includes features such as 

number of nodes per layer or number of layers within a model. Normally, a neural network 

model with a set complexity that trains well on a data set with no outliers will struggle to train on 

the same data set with outliers included. The model will have more difficulty learning the 

characteristics of inliers due to outlier values disrupting the expected patterns in a data set. In this 

case however, if we use a similar model but with more complexity added, then that model will be 

able to detect the unexpected behaviors of outliers, detect them as outliers, and allow for a model 

to learn from the same data set while avoiding the labeled outliers. In this context, adding more 

complexity to a neural network model can mean adding more layers or adding more nodes per 

layer. After this, the model of the same or similar complexity can be used to learn from the same 

data set and detect the different behaviors of outliers the original model did not catch. This kind 

of behavior can be used to compare the two models’ predicted output values for each instance in 

the data set. A different prediction value for the same instance would mean that it is an outlier, 

since theoretically, the original low-complexity model would not have detected the outlier while 

the higher-complexity model would have detected it; this would most likely cause a difference in 

prediction for the outlier instance. 

Table 1, the Example Data Set, shows a demonstration. We have a data set with 5 

instances with 1 input attribute and 1 output attribute that has 2 possible output classes: A or B. 

One of the instances is an outlier while the rest are inliers. 
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Attribute  Output 

1 A 

1 A 

2 B 

2 B 

5 (outlier) A 

Table 1: Example Data Set 

For this scenario, a single-layer neural network model with 32 nodes is built. However, 

after training on the data set, the model improperly learns the data set due to the outlier and 

predicts the last instance in the data set as “B” while predicting the rest correctly. 

A model with two layers and 32 nodes per layer, however, has a better performance. It 

has a 100% accuracy on the training value and can predict all instances correctly. This means 

that it predicted the last instance’s class correctly as “A”. 

We would then compare the prediction values of the two models. The comparison is 

demonstration in Table 2, which shows the Two Models’ Prediction Values for Each Instance 

from Example Data Set. 

32 Model  32-32 Model  

A A 

A A 

B B 

B B 

B A 

Table 2: Two Models’ Prediction Values for Each Instance from Example Data Set 

The last instance is predicted differently by the two models. This means that the last 

instance is an outlier. We can then label the last instance as an outlier, which would allow for 

easy removal for future training. This is the general summarization of what we plan to show 

during the experimentation in the next chapter. 

Notably, the more outliers there are and the farther they deviate from inliers in a data set, 

the more likely they will disrupt the learning process of a neural network model. This means that 
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a model will have more difficulty detecting inlier behaviors and differentiate them from outlier 

behaviors. Considering this, some data sets have outlier values that are more severe in deviation 

from the inliers than other data sets. In this case, the more severe the outliers become, the higher 

the complexity can be raised in the model for training. We must, however, also keep note of how 

many inliers the model correctly classifies. In other words, we must also check if the model is 

classifying most, if not all, inliers as inliers rather than outliers. We must beware of cases where 

models incorrectly classify outliers as inliers and a significant number of inliers as outliers. By 

keeping these factors in mind, we may be able to find a method of using model complexity as a 

means of detecting outliers while correctly classifying inliers as inliers in any data set. 

2.2.3 Avoiding the Pitfall 

Importantly, one cannot use a neural network model of very high complexity on a data set 

by default. To optimally detect outliers in a data set, we need to start with a low complexity, train 

the model on the data set, and record its general accuracy on the test data set. After this, we need 

to raise the model’s complexity slightly, train the model on the data set, and compare its general 

accuracy on the test data set to the previous model’s results. This process of raising the 

complexity continues until the general accuracy of the model peaks and begins to drop with 

higher complexity. This rise and fall of performance (accuracy of a model) happens because of 

underfitting. When a model gains too high of a complexity, it begins to over-analyze the 

behaviors of both inliers and outliers [31]. This causes a model to classify more behaviors than 

normal within a data set, which results in the model mislabeling data points. This means that the 

model becomes inefficient at detecting outliers when it has more complexity than needed for a 

data set. This factor forces model complexity to remain as a metric for outlier severity in data 

sets, so model complexity cannot be set high on default to detect outliers. 
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2.2.4 The Scope of Complexity 

Considering the information explained in the chapter, we may be able to detect outliers in 

any point-based data by altering model complexity. We will do this by altering the non-zero 

edges within the model being used for each data set we will use for experimentation. This 

includes changing the number of nodes per layer or changing the number of layers of a neural 

network model.  
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3. EXPERIMENTATION 

3.1 General Procedures 

3.1.1 Generalized Approach Explained 

As mentioned earlier, we performed research on finding a new outlier detection method 

that utilizes model complexity. To do this, we completed two tasks. First, we took three publicly 

available labeled data sets, manually replaced some of their inlier values with outlier values, and 

tested models of differing complexities. Second, we selected the models with the overall good 

performances in the first task and observed how they reacted to the outlier values within the data 

sets. 

For building a neural network model, we used a Keras Sequential model. Keras is a 

TensorFlow-based API that allows programmers to easily build a neural network model with 

features of their choice, ranging from applying different number of layers to creating a model for 

specific types of inputs such as images or text [32]. For data analysis through code execution, we 

used Google Colab, a cloud service provided Google that allows an individual to run Python 

code on a browser [33]. This service provides a versatile virtual environment for data scientists 

and programmers. These two allowed for speedy and intuitive experimentation in our research. 

The first task focused on observing which model complexity allowed for the best 

performance when training on data sets with differing severity of the deviations of outliers. We 

performed the following sequence of steps: 

1. We took a sample labeled data set and trained multiple models with different types of 

complexities. For example, after creating a test data set from the sample data set, we 

trained a model on the sample data set with one layer of 64 nodes, a model with a layer of 

128 nodes, a model with two layers of 64 nodes, and so on.  
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2. We tested each model on the test data set and measured their performance, measured in 

either overall accuracy or Mean Squared Error (MSE). In this context, accuracy is a 

fraction of the number of the model’s correct predictions of data points’ classes over the 

total number of data points in the data set. We recorded the performance values for each 

model and repeated the process five or ten times. Once we completed this, we recorded 

the average performance value for each model on the sample data set.  

3. We took the sample data set and found the one or two attributes that affected the output 

values the most. We did this instead of picking random attributes so that the outliers 

would be able to muddle the data set most effectively. Then, we calculated the average 

value and the standard deviation (sigma) for each attribute.  

4. Using this, we took about 10% of the data set’s values and replaced them with the 

summed value of the average value and the sigma value, manually creating outliers 

within the data set. To maintain some uniformity, we did our best to evenly distribute the 

outliers among each class in the data set, although this proved to be difficult to perform 

consistently since some data sets had significantly more values in one class than the 

others. No changes were made to the testing data set. 

5. Once we completed the data set with 1-sigma outlier values, we repeated the process of 

taking the same models of different complexity, recording their performance values on 

the unchanged testing data set ten times, and recording their average performance values. 

6. After completing the same process on the 1-sigma data set, we created a 2-sigma version 

of the original data set by replacing 10% of the data set’s values (the same ones that were 

changed to create the 1-sigma version of the data set) with summed values of the average 

value and 2-sigma value (2 multiplied by the attribute’s standard deviation value). 
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7. We then repeated the process of finding the same models’ performance on the 2-sigma 

data set and recording their average performance values on the unchanged testing data set 

when trained on the 2-sigma version of the data set.  

8. Finally, we created a 3-sigma data set and repeatedly trained on it and tested on the same 

testing data set. The process was completed once all the averaged performance values 

were recorded. 

The following two example charts illustrate the task described above. Table 3 is the 

Example Chart for Different Models’ Accuracy Performance on Untouched Example Data Set 

Every Iteration & Average, and Table 4 is the Example Chart for Different Models’ Accuracy 

Performance on Sigma-1 Example Data Set Every Iteration & Average. In a real experiment, 

there would also be tables for 2-sigma and 3-sigma data sets. 

Example Chart 1 - Models’ Accuracy Value on Unchanged Imaginary Data Set 

  64 128 64-64 128-128 64-64-64 128-128-

128 

Trial 1 .9 .95 .92 .94 .92 .93 

Trial 2 .9 .95 .92 .94 .92 .93 

Trial 3 .9 .95 .92 .94 .92 .93 

Trial 4 .9 .95 .92 .94 .92 .93 

Trial 5 .9 .95 .92 .94 .92 .93 

Average .9 .95 .92 .94 .92 .93 

Table 3: Example Chart for Different Models’ Accuracy Performance on Untouched 

Example Data Set Every Iteration & Average 

 

Example Chart 2 - Models’ Accuracy Value on Sigma-1 Imaginary Data Set 

  64 128 64-64 128-128 64-64-64 128-128-

128 

Trial 1 .88 .91 .92 .95 .93 .94 

Trial 2 .88 .91 .92 .95 .93 .94 

Trial 3 .88 .91 .92 .95 .93 .94 

Trial 4 .88 .91 .92 .95 .93 .94 

Trial 5 .88 .91 .92 .95 .93 .94 

Average .88 .91 .92 .95 .93 .94 

Table 4: Example Chart for Different Models’ Accuracy Performance on Sigma-1 Example 

Data Set Every Iteration & Average 
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The charts would be used to observe which model performed the best on the original data 

set, and what kind of complexity change, such as change in number of layers or change in 

number of nodes per layer, would allow a model to maintain its performance when having to 

train on the same data set but with manually inserted outlier values. Keep in mind that the 

hypothesis is that as the outliers’ sigma values increase, the complexity has to rise accordingly. 

We also had to know which kind of complexity affected the performance more positively: 

prioritizing on raising the number of nodes per layer while statically keeping the layers, or 

prioritizing on raising the number of layers while statically maintaining the number of nodes per 

layer. Once all this procedure is completed, the first task would be completed. 

In the second task, we selected the models with good overall test performances from the 

first task and observed what predictions they would make for injected outliers. To do this, we 

first observe which model performed the best on the original data set. In Example Chart 1 from 

the first task, a model with one layer and 128 nodes performed the best, and in Example Chart 2 

a model with two layers and 128 nodes per layer and a model with three layers and 128 nodes 

per layer performed very well compared to other models. In this case, we observe that increasing 

the total number of nodes while maintaining the same amount of nodes per layer is the most 

effective way of increasing model complexity to maintain high performance against outliers. We 

selected the 128 model as the base model, since it performed the best on the original data set, and 

the 128-128 model and the 128-128-128 model for comparison to see what predictions they 

would make for injected outliers. Then, we take these models, train them on the 1-sigma data set, 

and record their prediction values for each data point in the data set. We then compare the base 

model’s prediction values for data points with injected outlier values against the other models’ 

prediction values for the same data points. The logic here is that trained models of lower 
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complexity will have more difficulty properly predicting the correct output values for outliers 

compared to higher complexity models. When this type of difference in prediction is detected for 

the outlier data, the data point could be labeled as an outlier within the data set, which would 

then allow for easy removal. During this phase, we focus on finding which of the models 

(excluding the base model) detects the most outliers. After this completed, the same process is 

repeated for 2-sigma and 3-sigma data sets. By comparing the best outlier-detecting models for 

each sigma data sets, we would also be able to observe the pattern between rising sigma outliers 

in data sets and rising complexity in a neural network model. 

3.1.2 Data Sets Used 

We evaluated our outlier detection method on three different data sets: The Iris Data Set, 

the Haberman’s Survival Data Set, and the Red Wine Quality Data set. We also go forward with 

the assumption that these data sets contain negligible outliers. 

The Iris Data Set is a classic data set in the field of Data Science and is one of the three 

data sets used in this experiment. A biologist and statistician, R.A. Fisher, created the data set in 

1936 [34]. The data set contains three types of iris flowers, and its purpose is to show that each 

iris type can be determined from their four aspects: sepal length, sepal width, petal length, and 

petal width. In the data set, the attributes are named “SepalLengthCm”, “SepalWidthCm”, 

“PetalLengthCm”, and “PetalWidthCm”, respectively. The data set contains a total of 150 

instances and three iris types, or output classes: Iris-setosa, Iris-versicolor, and Iris-virginica. 

Each class, or output class, has 50 instances each [35]. 

From the Iris Data Set, we created a testing data set. We took 8 random instances from 

each class. This means that the entire testing data set contained 24 instances taken from the 

original Iris Data Set. 
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As described in the Generalized Approached Explained section, we created several 

different versions of the data set where we manually replaced some data values with our own 

outlier values. First, we chose several attributes to change. Figure 1, the Scatter Matrix for the 

Iris Data Set, shows the analysis of every attribute and how the output values relate to them. 

Through this data analysis, we found that the PetalLengthCm and PetalWidthCm have the 

clearest division of data points by their output classes, so we chose those two attributes. Next, we 

chose to replace 6 data points’ PetalLengthCm and PetalWidthCm values for each class, which 

means we replaced 18 data points’ values in total. Because the data set was nicely divided so that 

each flower class has 50 data points, we faced no difficulty evenly distributing the outlier values. 

Thus, for the first version of the data set, we found the sum of the average value of 

PetalLengthCm and its 1 sigma value and a sum of the average value of PetalWidthCm and its 1 

sigma value. Thus, for the first version of the data set, we replaced a total of 18 data points’ 

PetalLengthCm values with the sum of the attribute’s average and 1 sigma value and the 

PetalWidthCm values with the sum of that attribute’s average and 1 sigma value. We repeated 

the process for the second and third versions of the data set, but we instead used 2 sigma and 3 

sigma, respectively. 
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Figure 1: Scatter Matrix for the Iris Data Set 

The Haberman’s Survival Data Set is a result of research, conducted from 1958 to 1970, 

on breast cancer surgery patients at the University of Chicago’s Billings Hospital. The data set 

describes the conditions of the patients and shows which of them survived the operation or died 

within 5 years after the surgery. For each patient, the data set describes the person’s age when 

they underwent the surgery, the year they received the surgery, the number of positive axillary 
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nodes the patient had, and if the patient survived the operation for five years or longer or died 

within five years [35]. For these descriptions, the attributes are labeled “age”, “op_year”, 

“axil_nodes”, and “surv_status”, respectively. The data set contains a total of 306 instances and 

two output classes for “surv_status” [36]. The class is either 1 or 2. A class value of 1 signifies 

that the patient survived for five years or more after the surgery, and 2 means that the patient 

died within five years after the surgery. 225 instances had the surv_status of 1, and 81 instances 

had the surv_status of 2 [35]. Unfortunately, the data set is not balanced, so outlier distribution 

will have to be uneven. 

We created a testing data set for the Haberman Data Set also. We took 10 random 

instances from each class. This means that the testing data set contained 20 instances taken from 

the Haberman Data Set. 

As we did for the Iris Data Set, we created several versions of the Haberman Data Set 

where we replaced some data values with our own outlier values. Figure 2, the Scatter Matrix for 

Haberman’s Survival Data Set, shows the analysis of every attribute in the Haberman’s Survival 

Data Set and how its output values relate to them.  We first analyzed the attributes of the data 

sets to identify the attributes to use for outliers. Through data analysis, we found that no pair of 

attributes have a significant impact on a patient’s survivability. We examined the individual 

impact of each attribute and found that “axil_nodes” has the most effect on the output value of 

“surv_status”. The effect is not strong, but stronger than other attributes, singly or in pairs. 

Figure 3, which is a Comparison of the Values of “axil_nodes” and “surv_status”, shows the 

relationship between the survival status of patients and the number of axillary nodes they carried. 

After choosing “axil_nodes” as the attribute for outlier replacements, we found the sum of the 

attribute’s average value and 1 sigma value. Upon completing this, we replaced the “axil_node” 
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values of 20 instances that have the surv_status of 1 and 10 instances that have the surv_status of 

2 with this sum. Finally, as we did for the Iris Data Set, we repeated the process with 2 sigma 

and 3 sigma values, respectively. 

 

Figure 2: Scatter Matrix for Haberman’s Survival Data Set 
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Figure 3: Comparison of the Values of “axil_nodes” and “surv_status” 

The final data set is the Red Wine Quality Data Set, which is derived from the Wine 

Quality Data Set, made by P. Cortez and his group, which measures the overall quality of 

thousands of red wine and white wine samples [37]. This red wine data set contains different 

samples of the Portuguese “Vinho Verde” wine, measures each instance’s different qualities 

based on physicochemical tests, and finally rates the overall quality of the wine based on sensory 

data. The different qualities include fixed “acidity”, “volatile acidity”, “citric acid”, “residual 

sugar”, “chlorides”, “free sulfur dioxide”, “total sulfur dioxide”, “density”, “pH”, “sulphates”, 

and “alcohol”. The output variable is “quality”, which is a numerical score between 0 and 10. 

The data set contains 1,599 instances and the “quality” values of 3, 4, 5, 6, 7, and 8. There are 10 

instances with the quality score of 3, 53 instances with the score of 4, 681 instances with the 

score of 5, 638 instances with the score of 6, 199 instances with the score of 7, and 18 instances 
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with the score of 8 [38]. Since the data set is unbalanced, outliers will have to be distributed 

unevenly. 

We created a testing data set using 320 random instances from the Red Wine Quality 

Data Set. Like the previous two data sets, we created several versions of the Red Wine Quality 

Data Set, where we replaced some data values with our own outlier values. We first analyzed the 

attributes of the data set using the entire data set’s correlation plot shown in Figure 4, which is 

the Correlation Chart for the Red Wine Quality Data Set. Through it, we found that “quality” has 

the most correlation with “volatile acidity” (correlation score of -0.378372), “sulphates” 

(correlation score of 0.242596), and “alcohol” (correlation score of 0.472676). For each of the 

three attributes, we found the sum of the attribute’s average value and 1 sigma value, and then 

replaced the attribute value with the sum values. We replaced values of 2 instances with the 

score of 3, 4 instances with a score of 4, 51 instances with a score of 5, 47 instances with a score 

of 6, 14 instances with a score of 7, and 2 instances with a score of 8. We did the same for the 2-

sigma and 3-sigma versions with 2- sigma values and 3-sigma values, respectively. 

 

Figure 4: Correlation Chart for the Red Wine Quality Data Set 
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3.2 Experimentation 

3.2.1 What to Look For 

With the general procedures and the data sets (along with their three outlier versions) 

prepared, we moved on to the experimentation. While we experimented, we looked for what kind 

of complexity showed more positive effect on models’ performances as outliers’ sigma values 

rose: increasing the number of nodes per layer while maintaining the number of layers or 

increasing the number of layers while maintaining the number of nodes per layer. We also 

checked to see what kind of relationship existed between models’ performance and the models’ 

ability to detect many outliers. 

3.2.2 Iris Data Set 

We obtained the Iris Data Set and created three other versions of the same data set. The 

first version has 18 of its instances replaced with the sum of each attribute’s average value and 

its 1 sigma value. The second version has 18 of its instances replaced with the sum of each 

attribute’s average value and its 2 sigma value. The third version has 18 of its instances replaced 

with the sum of each attribute’s average value and its 3 sigma value.  

For the original version of the data set, we first trained multiple models varying in 

complexity and tested them on the testing data set 10 times. We found that the model with one 

hidden layer of 128 nodes, along with a sigmoid activation function, performed the best on 

average with a 95.668% accuracy. In this context, accuracy means how accurately a model can 

determine every instance’s iris type. 

We then tested different model complexities on the outlier data sets. Along with the 128-

model, we trained multiple models with varying complexities on the 1-sigma, 2-sigma, and 3-

sigma data sets. This includes a model with one layer and 256 nodes, two layers with 64 nodes 
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per layer (64-64), two layers with 128 nodes per layer (128-128), and so on. Table 5, chart for 

Different Models’ Accuracy Average Values on Sigma-X Data Sets of the Iris Data Set, shows 

the average performance value of each model on the x-sigma data sets (average of 10 trials). 

Different Model Complexities and Their Performance Averages on Outliers (Iris) 

  128 256 128-128 256-256 128-

128-128 

256-

256-256 

128-

128-

128-128 

256-

256-

256-256 

1-sigma .92667 .93 .89001 .89667 .95334 .94334 .97002 .94669 

2-sigma .92334 .93336 .93668 .96003 .95668 .9667 .95668 .9667 

3-sigma .94334 .93002 .96002 .96336 .96336 .96336 .96336 .95002 

Table 5: Different Models’ Accuracy Average Values on Sigma-X Data Sets of the Iris Data 

Set 

 

For 1-sigma, the models generally performed well with 3 or 4 layers. Having 4 layers is 

better, but this is only by a small margin. Notably, the general performance of models are similar 

according to the number of their layers, so there is a relationship between outlier detection and 

model complexity in layers. Raising the number of nodes while maintaining a similar number of 

layers does improve accuracy, but this is secondary compared to raising the number of layers 

while maintaining a similar number of nodes.  

For 2-sigma, the models generally performed well with 3 or 4 layers. Once again, 4 layers 

is slightly better, and more layers improves accuracy more than more nodes. 

For 3-sigma, models generally perform very well when having 2, 3, or 4 layers. They do 

still, however, perform better than when the model has one layer.  

Next, we must check how accurately models are able to detect outliers. We determine if a 

model detected an outlier if they predict a different value from the original 128-model on data 

points with replaced outlier values. Table 6, a chart for Different Models’ Average Percentage of 

Outliers Detected on Sigma-X Data Sets of the Iris Data set, shows the fraction of the outliers the 

models were able to detect for each sigma data set. 
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Different Model Complexities’ Outlier Detection Measurement (Iris) 

  256 128-128 256-256 128-128-

128 

256-256-

256 

128-128-

128-128 

256-256-

256-256 

1-sigma .15556 .14444 .20556 .17222 .20556 .12778 .16667 

2-sigma .11667 0.18333 .35556 .50556 .48333 .57222 .5 

3-sigma .12778 .15 .37778 .52778 .67778 .75556 .76111 

Table 6: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets 

of the Iris Data Set 

 

The outlier detection experimented yielded interesting results. For 1-sigma, the 256-256-

256 model performed the best while the 128-128-128-128 model performed the worst. Generally, 

3-layer models detected the most outliers among the injected outliers while the 128-128 model 

performed decently. For 2-sigma, the 128-128-128-128 model performed the best while the 256 

model performed the worst. For 3-sigma, the 256-256-256-256 model performed the best while 

the 256 model performed the worst.  

Finally, we collected the percentage of the number of inliers the models detected 

differently from the original 128 model. Table 7, a chart for Different Models’ Average 

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of the Iris Data Set, shows 

how much of the inliers the models were not able to detect consistently for each sigma data set. 

Different Model Complexities’ Wrong Inlier Detection Measurement (Iris) 

  256 128-128 256-256 128-128-

128 

256-256-

256 

128-128-

128-128 

256-256-

256-256 

1-sigma 0.03939 0.06061 0.05606 0.07121 0.05606 0.05152 0.06515 

2-sigma 0.06364 0.04848  0.05076 0.05606 0.05227 0.05227 0.08333 

3-sigma 0.06667 0.05682 0.05530 0.07652 0.07348 0.07348 0.06591 

Table 7: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-X 

Data Sets of the Iris Data Set 

 

From these results, having more nodes per layer led to models classifying more inliers 

correctly for models with two or three layers, but having less nodes per layer led to models 

classifying more inliers correctly for models wtih four layers. For 1 sigma, the 256 model 
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classified the most inliers correctly, and the models began to classify more inliers incorrectly as 

outliers as they rose in number of layers and nodes per layer. For 2 sigma, the 128-128 model 

classified the most inliers correctly. The number of inliers being classified incorrectly as outliers 

grew as the models rose in number of layers and number of nodes per layer. For 3 sigma, the 

256-256 model detected the most amount of inliers correctly. The number of inliers being 

classified incorrectly started relatively high for the 256 model, but dropped as it gained another 

layer. But afterward, the models began to incorrectly classify more inliers as outliers as it gained 

more layers or rose in number of nodes per layer. 

Generally, we found interesting results from this data set. For the 1-sigma data set, the 

256-256-256 model and the 256-256 model both performed the best in outlier detection, but they 

performed average in correctly classifying inliers as inliers. The 256 model retained the most 

amount of inliers, but it did a below-average job in detecting outliers within the 1-sigma data set. 

For 2 sigma, the 128-128-128-128 model performed the best in outlier detection, and it did an 

above average job in classifying inliers correctly. It must be noted that 256-256-256-256, despite 

detecting a decent percentage of injected outliers, did poorly in classifyign inliers correctly. The 

128-128 model performed the best in inlier detection. For 3 sigma, the 256-256-256-256 model 

performed the best in outlier detection and performed average in inlier detection. The 256-256 

model classified the most inliers correctly in this data set. 

3.2.3 Haberman’s Survival Data Set 

We created three outlier versions of the Haberman’s Survival Data Set. The first version 

has 30 of its instances replaced with the sum of each attribute’s average value and its 1 sigma 

value. The second version has 18 of its instances replaced with the sum of each attribute’s 
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average value and its 2 sigma value. The third version has 18 of its instances replaced with the 

sum of each attribute’s average value and its 3 sigma value. 

For the original version of the data set, we trained multiple models varying in 

complexities and tested them on the testing data set 10 times. We found that the model with one 

hidden layer of 64 nodes, along with a sigmoid activation function, performed the best on 

average by scoring 77.287% accuracy. In this context, “accuracy”, similar to the Iris Data Set, 

means how accurately a model is able to determine every patient’s survival status. 

We tested different model complexities on the three outlier data sets. As we did for the 

Iris Data Set, we trained different models with varying complexities on the 1-sigma, 2-sigma, 

and 3-sigma data sets. Table 8, a chart for Different Models’ Accuracy Average Values on 

Sigma-X Data Sets of the Haberman’s Survival Data Set, shows the average performance value 

of each model on the data sets (average of 10 trials). 

Different Model Complexities and Their Performance Averages on Outliers (Haberman) 

  64 32-32 64-64 128-128 64-64-

64 

128-

128-128 

64-64-

64-64 

128-

128-

128-128 

1-sigma .77124 .7722 .77285 .76928 .76471 .76568 .7696 .76632 

2-sigma .77222 .77123 .77482 .77156 .76993 .76012 .77285 .76861 

3-sigma .77613 .78267 .78136 .77483 .77286 .76862 .77219 .77286 

Table 8: Different Models’ Accuracy Average Values on Sigma-X Data Sets of the 

Haberman’s Survival Data Set 

 

For 1-sigma, the models generally performed about the same with 1 or 2 layers. More 

layers caused a slight decrease in model accuracy. 

For 2-sigma, the models performed slightly better when having 2 layers, and then worse 

with more layers. This does show that it is helpful to add more hidden layers to models the more 

severe the outliers become in deviation. 
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For 3-sigma, the models performed slightly better when having 2 layers, and then slightly 

worse for more layers. This, again, serves as small evidence that it is helpful to add more hidden 

layers to models the more severe the outliers become in deviation. 

Next, we need to see observe how accurately models detect outliers. As with the Iris Data 

Set, we determine that a model detected an outlier if it predicts a different from the original 64-

model on data points with replaced outlier values. The following chart shows how much of the 

outliers the models were able to detect for each sigma data sets. 

Next, we need to see observe how accurately models detect outliers. As with the Iris Data 

Set, we determine that a model detected an outlier if it predicts a different value from the original 

64-model on data points with replaced outlier values. Table 9, a chart for Different Models’ 

Average Percentage of Outliers Detected on Sigma-X Data Sets of Haberman’s Survival Data 

Set, shows how much of the outliers the models were able to detect for each sigma data set. 

Different Model Complexities’ Outlier Detection Measurement (Haberman) 

  64-64 128-128 64-64-64 128-128-

128 

64-64-64-

64 

128-128-

128-128 

1-sigma .03 .09333 .04 .05333 .04667 .07667 

2-sigma 0.03333 .07 .05333 .09667 .05333 .06667 

3-sigma 0.08333 .11333 .07333 .10333 .05 .11333 

Table 9: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets 

of Haberman’s Survival Data Set 

 

The outlier detection experimented showed led to some interesting findings. For 1-sigma, 

the 128-128 model performed the best while the 64-64 model performed the worst. Overall, 

though, 4-layer models detected the most outliers among the injected outliers, and models with 

128 nodes per layer performed decently. For 2-sigma, the 128-128-128 model performed the best 

while the 64-64 model performed the worst. For 3-sigma, the 128-128 model and the 128-128-

128-128 model performed the best while the 64 model performed the worst.  
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Finally, we collected the percentage of the number of inliers the models detected 

differently from the original 64-64 model. Table 10, a chart for Different Models’ Average 

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of Haberman’s Survival Data 

Set, shows how much of the inliers the models were not able to detect consistently for each 

sigma data set. 

Different Model Complexities’ Wrong Inlier Detection Measurement (Haberman) 

  64-64 128-128 64-64-64 128-128-

128 

64-64-64-

64 

128-128-

128-128 

1-sigma 0.04161 0.08077 0.03846 0.055594 0.040210 0.069580 

2-sigma 0.03846 0.05140 0.05 0.057692 0.047902 0.049650 

3-sigma 0.05682 0.05530 0.076515 0.073484 0.073485 0.065909 

Table 10: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-

X Data Sets of Haberman’s Survival Data Set 

 

From these results, having more nodes per layer led to models classifying more inliers 

correctly for models with two or three layers but having less nodes per layer led to models 

classifying more inliers correctly for models with four layers. For 1 sigma, the 256 model 

classified the most inliers correctly, and the models began to classify more inliers incorrectly as 

outliers as they rose in number of layers and nodes per layer. For 2 sigma, the 128-128 model 

classified the most inliers correctly. The number of inliers being classified incorrectly as outliers 

grew as the models rose in number of layers and number of nodes per layer. For 3 sigma, the 

256-256 model detected the most amount of inliers correctly. The number of inliers being 

classified incorrectly started relatively high for the 256 model, but dropped as it gained another 

layer. But afterward, the models began to incorrectly classify more inliers as outliers as it gained 

more layers or rose in number of nodes per layer. 

Generally, we found interesting results from this data set. For the 1-sigma data set, the 

256-256-256 model and the 256-256 model both performed the best in outlier detection, but they 

performed average in correctly classifying inliers as inliers. The 256 model retained the most 
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amount of inliers, but it did a below-average job in detecting outliers within the 1-sigma data set. 

For 2 sigma, the 128-128-128-128 model performed the best in outlier detection, and it did an 

above average job in classifying inliers correctly. It must be noted that 256-256-256-256, despite 

detecting a decent percentage of injected outliers, did poorly in classifying inliers correctly. The 

128-128 model performed the best in inlier detection. For 3 sigma, the 256-256-256-256 model 

performed the best in outlier detection and performed average in inlier detection. The 256-256 

model classified the most inliers correctly in this data set. 

3.2.4 Red Wine Quality Data Set 

We obtained the Red Wine Quality Data Set and created three other versions of the same 

data. The first version has 320 of its instances replaced with the sum of each attribute’s average 

value and its 1 sigma value. The second version has 18 of its instances replaced with the sum of 

each attribute’s average value and its 2 sigma value. The third version has 18 of its instances 

replaced with the sum of each attribute’s average value and its 3 sigma value. 

Unlike the Iris Data Set and the Haberman’s Survival Data Set, however, this data set is a 

regression data set. This means that a neural network model would not be classifying the output 

value based on an instance’s attributes. It would calculate a numerical score for each instance, 

which would fit this data set since it focuses on scoring each instance from 0 to 10. This also 

means that the performances of the models that would learn from this would be shown through 

their Mean Squared Error (MSE) values. 

For the original version of the data set, we trained multiple models varying in 

complexities and tested them on the testing data set. We found that the model with two hidden 

layers and 64 nodes per layer, along with relu activation functions and a dropout value of 0.25 

for every hidden layer, performed the best on average by scoring a MSE value of 0.3788. Since 
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all score values are in integer values ranging from 0 to 10, we consider this MSE value good for 

the Red Wine Quality Data Set. 

Next, we must check how accurately models are able to detect outliers. We determine if a 

model detected an outlier if they predict a different value from the original 64-64 model on data 

points with replaced outlier values. Table 11, a chart for Different Models’ MSE Average Values 

on Sigma-X Data Sets of the Red Wine Quality Data Set, shows the performances (in terms of 

MSE) of models on each data set. 

Different Model Complexities’ Outlier Detection Measurement (Red Wine Quality) 

  64-64 128-128 64-64-64 128-128-

128 

64-64-64-

64 

128-128-

128-128 

1-sigma .3823 .4 .4179 .4174 .4063 .4151 

2-sigma .3869 .3655 .4164 .4066 .41 .4135 

3-sigma .4007 .3752 .3890 .4167 .41 .4188 

Table 11: Different Models’ MSE Average Values on Sigma-X Data Sets of the Red Wine 

Quality Data Set 

 

For 1-sigma, the models generally performed the same when having multiple layers. 

However, there is a slight worse performance when the number of layers increases to 3 layers or 

more. This trend continued to both 2-sigma and 3-sigma. 

Next, we need to see observe how accurately models detect outliers. Similarly with the 

previous two data sets, we determine that a model detected an outlier if it predicts a different 

from the original 64-64 model on data points with replaced outlier values. Table 12, a chart for 

Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets of the Red 

Wine Quality Data Set, shows how much of the outliers the models were able to detect for each 

sigma data set. 
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Different Model Complexities’ Outlier Detection Measurement (Red Wine Quality) 

  128-128 64-64-64 128-128-128 64-64-64-64 128-128-128-

128 

1-sigma .0509375 .0484375 .058125 .0503125 .040625 

2-sigma .0525 .033125 .056875 .0309375 .0384375 

3-sigma .0475 .0309375 .046875 .0384375 .0321875 

Table 12: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets 

of the Red Wine Quality Data Set 

 

The outlier detection experimented yielded interesting results. For 1-sigma, the 128-128-

128 model performed the best while the 128-128-128-128 model performed the worst. Generally, 

3-layer models detected the most outliers among the injected outliers while the 128-128 model 

performed decently. For 2-sigma, the 128-128-128 model performed the best while the 64-64-64-

64 model performed the worst. It must be noted, however, that the 64-64-64 model and the 64-

64-64-64 model performed poorly. For 3-sigma, the 128-128-128 model performed the best 

while the 64-64-64 model performed the worst.  

Finally, we collected the percentage of the number of inliers the models detected 

differently from the original 64-64 model. Table 13, a chart for Different Models’ Average 

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of the Red Wine Quality Data 

Set, shows how much of the inliers the models were not able to detect consistently for each 

sigma data set. 

Different Model Complexities’ Incorrect Inlier Detection Measurement (Red Wine Quality) 

  128-128 64-64-64 128-128-128 64-64-64-64 128-128-128-

128 

1-sigma 0.150733 0.157981 0.194219 0.150820 0.167731 

2-sigma 0.152804 0.132787 0.155651 0.121225 0.156428 

3-sigma 0.172476 0.112770 0.169974 0.140811 0.171096 

Table 13: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-

X Data Sets of the Red Wine Quality Data Set 

 

Interestingly, in each layer, models with less nodes generally detected more inliers 

correctly. It also seems that for every sigma, a model that detected the most outliers also 



 

32 

 

 

 

incorrectly identified the many inliers as outliers. It must be also be noted that the 64-64-64 and 

64-64-64-64 models identified inliers correctly the most. In 1-sigma, the 64-64-64-64 model 

performed the best in inlier detection. For 2-sigma, the 64-64-64-64 model detected the most 

inliers, but the 64-64-64 model had a similarly good performance in inlier detection also. In 3-

sigma, the 64-64-64 model clearly performed the best in inlier detection. 

We retrieved interesting results from this data set. For all sigma tests, the 128-128-128 

model performed the best in outlier detection but also performed consistently bad in inlier 

detection. Generally, models with 128 nodes per layer detected more outliers when their number 

of layers rose from two to three, but dropped as it went from three to four layers. The same type 

of story cannot be told for inlier detection. For 1-sigma, models with 128 nodes per layer 

incorrectly classified inliers as outliers when the number of layers rose from two to three, but 

dropped as it went from three to four layers. For 2-sigma, the number of incorrectly classification 

of inliers as outliers rose as the number of layers rose from two to three, but increased 

significantly less when rising from three to four layers. For 3-sigma, the models with 128 nodes 

per layer generally performed similarly badly, incorrectly detecting around 17% of the inliers as 

outliers. Meanwhile, the models with 64 nodes per layer detected less outliers than their 128-

node counter parts in each layer. Regardless, models with 64 nodes per layer detected more 

outliers as the number of layers rose from three to four for sigma 1. For sigma 2, the models 

detected less outliers as the number of layers rose from three to four. For sigma 3, the models 

detected more outliers as the layers changed from three to four. Inlier detection for the models 

with 64 nodes per layer were interesting. For sigma 1, more inliers were classified correctly as 

the number of layers changed from three to four. For sigma 2, less inliers were classified 
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correctly as the number of layers changed from three to four. For sigma 3, less inliers were 

classified correctly as the number of layers rose from three to four. 

 

3.3 Results 

3.3.1 The Pattern between Models’ Performance and Outlier Detection Efficiency 

From the information we gathered from this experiment, we found that there is a pattern 

between model complexity and outlier detection that can be used to detect and label some outlier 

values. Unfortunately, the level of complexity of the models does not clearly show the sigma 

value of the outliers in data sets. However, model complexities do point to what type of model 

will do very well in detecting outliers in data sets. 

There is a common behavior that shows nearly all the time in these data sets. When a 

group of models of the same number of layers has the best performance for a data set compared 

to models of different number of layers, then a model of that number of layers with the highest 

number of nodes per layer in the group will do the best job at detecting outliers. On top of this, 

this model correctly classifies most inliers as such, but becomes worse at doing this as the data 

set it trains on becomes more complex. 

For example, in the 1 Sigma version of the Red Wine Quality Data Set, the 64-64 model 

and the 128-128 model perform the best on average MSE compared to average performance of 

64-64-64 model and 128-128-128 model and the average performance of the 64-64-64-64 model 

and 128-128-128-128 model. On top of this, a model with two layers along with 128 nodes per 

layer performs the best in detecting outlier compared to other models. It also classifies a good 

number of inliers as such compared to other models, but all models do not do well with this task 

in general by classifying over 15% of the inliers as outliers at minimum. In the 2 Sigma version, 
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the 64-64 model and the 128-128 model performs the best on average compared to the average 

performances of other groups of models of different layers. Although the 128-128 model does 

not perform the best in outlier detection in the chart, it does perform very well in comparison to 

other models in the figure. It detects 5.25% of the manually-replaced outliers while the only 

model that performs better than this (128-128-128) detects 5.69% of the outliers. This is close 

compared to other models that only detected about 3.5% of the outliers. The models in this data 

set, however, do poorly in inlier classification, classifying over 10% of the inliers as outliers at 

minimum. In the 3 Sigma version, the 64-64 model and the 128-128 model perform the best on 

average compared to other groups of models of different numbers of layers. On top of this, a 

model with two layers along with 128 nodes per layer performs the best in detecting outliers 

compared to other models. However, the said models and the other models tested in this data set 

do poorly in inlier classification here again. As shown in this data set, the model with the same 

number of layers as the group of models that had the lowest MSE average value and with the 

same number of nodes per layer as the group’s highest number of nodes per layers performed 

very well generally in detected outliers, but they also all generally do poorly in inlier 

classification. 

In another example, in the 1-sigma version of the Haberman’s Survival Data Set, the 64-

64 model and the 128-128 model performed the best in accuracy compared to the average 

accuracies of other groups of models of different number of layers. On top of this, a model with 

two layers along with 128 nodes performed the best in outlier detection compared to other 

models. The 128-128 model does badly in inlier classification, although its performance is 

nowhere near as bad as the models in the Red Wine Quality Data Set. In the 2 sigma version, the 

64-64 model and the 128-128 model performed the best in accuracy once again. Although the 
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128-128 model did not perform the best in detecting outliers by detecting 7% of the injected 

outliers, it did perform the second best and scored lower than only the 128-128-128 model which 

detected 9.67% of the outliers. The 128-128 model did the worst in inlier classification, but the 

model’s percentage of inliers incorrectly classified as outliers was considerably low. In the 3 

sigma version, the 64-64 model and the 128-128 model performed the best in accuracy. And this 

time for outlier detection, the 128-128 model performed the best among the models. The inlier 

classification performance of the 128-128 model was also good. For this data set also, the model 

with the same number of layers as the group of models that had the highest accuracy average 

value and with the same number of nodes per layer as the group’s highest number of nodes per 

layers performed very well generally in detected outliers. 

Lastly, in the 1-sigma version of the Iris Data Set, the 128-128-128-128 model and the 

256-256-256-256 model performed the best in accuracy compared to the average accuarcies of 

other groups of models of different number of layers. Notably, the 256-256-256-256 model 

performed the fourth best among the models, detecting 16.67% of injected outliers while both the 

256-256 and 256-256-256 detected the most (20.56%). This was the only case where the model 

with the same number of layers and the highest number of nodes per layer as the group of models 

performed at a mediocre level. The 256-256-256-256 model also did below average in inlier 

classification compared to other models in the data set, but percentage of inliers wrongly 

classified as outliers was generally low. For the 2-sigma version, the group of the 128-128-128 

model and the 256-256-256 model and the group of the 128-128-128-128 model and the 256-

256-256-256 model performed the best with the same average accuracy value. However, the 

256-256-256-256 model detected more outliers than the 256-256-256 model. We can 

hypothesize from this that in the case of a tie between two models, the model with the higher 
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number of layers will perform better in outlier detection. The 256-256-256-256 model detected 

50% of the outliers, losing to the 128-128-128-128 model (which detected 57.22%) and the 128-

128-128 model (which detected 50.56%). It must be noted, however, that the 256-256-256-256 

model performed very well, detecting a very similar number of outliers as the 128-128-128 

model, which detected the second most number of outliers. The 256-256-256-256 model had an 

average inlier-classification performance also, but the percentage of inliers incorrectly classified 

as outliers was low once again. For the 3-sigma version, the group of 3 layer models, the 128-

128-128 model and the 256-256-256 model, had the highest accuracy on average. The 256-256-

256 model’s outlier detection performance was the third highest; the performance itself was high 

also. The model’s inlier classification was below average, but models in the data set generally 

classified most inliers as such correctly. From the experimentation on this data set also, the 

model with the same number of layers as the group of models that had the highest accuracy 

average value and with the same number of nodes per layer as the group’s highest number of 

nodes per layers generally performed very well in detected outliers. 

3.3.2 Verdict and Error Possibilities 

From this experiment, we found that the model with the same number of layers as the 

group of models that had the highest average of performance value (accuracy or MSE) and with 

the same number of nodes per layer as the group’s highest number of nodes per layers, will 

perform well in detecting outliers. Although, rarely, the model will not be the optimal model for 

detecting outliers, this method will generally find a model complexity that will allow for a model 

to detect outliers at high efficiency. Also, said model will normally classify most inliers as inliers 

correctly, but will grow more error prone as the data set it trains on becomes more complex by 

having more instances or having more attributes. 
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This method will allow for outlier detection and removal. First, a model of low 

complexity should be made and trained on a data set. It should also save the predicted values for 

each instances. Next, the method presented here can be used; different models of different levels 

of complexities should be tested on the data set, and the average highest performance values 

(whether it be accuracy on classification or MSE value) of a group of a same number of layers 

should be found. Then, within that group, a model with the highest number of nodes per layer 

should predict each instance output. That list of prediction should be checked with the list of 

prediction of the original low-complexity model made and trained earlier. All instances that have 

different prediction values should be removed, which will leave with a data set with considerably 

less outliers. 

Although we have finished this experiment, there are points of interest that must be 

mentioned. Firstly, some of the data sets we used, namely the Haberman’s Survival and the Red 

Wine Quality Data Sets, may have issues that are difficult to pinpoint. Throughout the 

experiment, the data sets have shown hints that it may have already contained outliers in the first 

place. Another possible issue is that the data sets may not have had attributes with strong 

correspondence with the output values. The strongest evidence of the two possible factors is that 

the data set with no injected outliers was not able to produce a neural network model with an 

accuracy value higher than 90% or an MSE value lower than 0.1. Because of at least one of the 

listed two issues, the results yielded by the two data sets may be slightly misleading. Secondly, 

this method works efficiently when the sigma of outliers grow. When the sigma values of the 

outliers are high, the method has a tremendous efficiency in finding the model with the right 

complexity that can detect outliers. When the sigma values of the outliers are low, however, the 

method struggles to find the right complexity that would allow for the model to detect a high 
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number of outliers. Finding a solution to these issues may lead to a more conclusive result. 
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4. CONCLUSION 

4.1 Final Results and Thoughts 

4.1.1 Main Results 

In the end, in a group of models with the same number of layers that had the highest 

average of performance value, the model with the highest number of nodes per layer detected 

outliers at a high level at the cost of misclassifying an average number of inliers most of the 

time. In most cases, this type of model generally detected outliers consistently well, which would 

allow many outlier values to be labeled as outliers in their respective data sets. In nearly all 

cases, such models misclassified an average number of inliers as outliers compared to other 

models of varying complexities. 

4.1.2 Other Factors in the Results 

It must be noted, however, that the findings pointed at other interesting behaviors. Neural 

network models generally detected less outliers the less correspondence attributes within the data 

set had with the output values. This is shown in the comparisons between the Iris Data Set and 

the Haberman’s Survival Data Set. The Iris Data Set had two highly correlating attributes, 

PetalLengthCm and PetalWidthCm. The Haberman’s Survival Data Set, however, had one 

attribute, axil_nodes, that showed correspondence with the output value. The attribute, however, 

had lower correspondence with the output than the two attributes for Iris Data Set had with their 

respective output attribute. Another factor to note is that neural network models generally 

detected fewer outliers the more complex the data set. By becoming more complex, we mean 

that data set has more correlating attributes or more instances. For example, the models for the 

Red Wine Quality Data Set detected fewer outliers in general compared to the models for the Iris 

Data Set. The Red Wine Quality Data Set had three highly correlating attributes while the Iris 
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Data Set only had two. On top of this, the Red Wine Quality Data Set contained many more 

instances than the Iris Data Set. 

4.1.3 Possible Errors 

There are possible factors that may have muddled our findings from this experimentation. 

First, it is possible one or more of our data sets contained attributes that did not have high 

enough correlation to the output. Namely, the Haberman’s Survival Data Set did not have 

attributes with high correlation to the survival status of patients. Contextually, it may also be 

possible that the data set was built without enough attributes in mind. For instances, the data set 

did not describe how each patients were treated, what type of health issues each patient had 

before the surgery, and more. Second, it is possible one or more of our data sets contained 

outliers to begin with. Finding outier-free data sets proved to be very difficult, and only the Iris 

Data Set showed a very high chance of it having very few outliers. If one wishes to use this work 

as reference for future work, these factors must be considered for improved findings. 
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