

OUTLIER DETECTION BY MODEL COMPLEXITY

A NEW DEEP LEARNING METHOD

A Thesis

by

SUNG JE BANG

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Duncan Henry M. Walker

Committee Members, Jun Kameoka

 Theodora Chaspari

Head of Department, Scott Schaefer

August 2020

Major Subject: Computer Engineering

Copyright 2020 Sung Je Bang

ii

ABSTRACT

In this research, we developed a new method of outlier detection and removal from point-

based data sets utilizing deep learning. To do this, we focused on creating an outlier detection

method that would tie the outlier detection procedure and a model-building process together.

Using the different behaviors of outliers and inliers, we used model complexity as an indicator

for outliers in data sets. In this context, “complexity” of a model means the weight of non-zero

edges in the model. This include features of a model such as number of layers and number of

nodes per layer.

Our proposed method of using model complexity to detect outliers consists of several

steps. First, a model of low complexity (low number of layers or low number of nodes per layer)

should be made and trained on a data set, and its predicted values for each instance of the data set

must be recorded. Second, we need to build multiple neural network models of differing number

of layers or number of nodes per layer and find a group of models of specific number of layers

with the best average performance values on a given data set. Performance in this context

includes general classification accuracy or mean squared error values of models. Third, within

the group, we pick the model with the highest number of nodes per layer and use its predictions

for each instance of the data set and compare them with the predicted values of the low-

complexity model from the first step. The instances with different prediction values by both

models should then be labeled as outliers and thus removed.

Two factors must be noted about this method. First, the lower the correlation that

attributes have to the output values in a data set, the fewer outliers the method will detect.

iii

Second, the larger and more complex a data set becomes (such as having many attributes), the

fewer outliers the method will find. These factors must be noted when using this method.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

 This work was supervised by a thesis committee consisting of Professors Duncan M.

(Hank) Walker Theodora Chaspari of the Department of Computer Science and Engineering, and

Professor Jun Kameoka of the Department of Electrical and Computer Engineering.

 The analysis of the prediction values of neural network models was partly assisted by

Professor Theodora Chaspari.

 All other work conducted in the thesis was completed by the student independently.

Funding

 Graduate study was supported by the Texas Aggie Graduate Grant provided by Texas

A&M University.

v

TABLE OF CONTENTS

Page

ABSTRACT .. ii

CONTRIBUTORS AND FUNDING SOURCES .. iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES .. viii

1. INTRODUCTION .. 1

1.1 The Outlier Problem .. 1

1.1.1 Data Sets and Neural Network .. 1

1.1.2 Outliers, the Parasite of Data Sets... 2

1.1.3 Background ... 3

1.1.4 Guide to this Paper .. 4

2. PURPOSE OF RESEARCH ... 5

2.1 A New Method of Outlier Detection .. 5

2.1.1 A New Approach to an Old Problem .. 5

2.1.2 The Narrowed Scope of Data Sets .. 5

2.2 Model Complexity as Metric ... 6

2.2.1 The Proposed Method of Outlier Detection .. 6

2.2.2 Procedure of Method... 6

2.2.3 Avoiding the Pitfall ... 9

2.2.4 The Scope of Complexity ... 10

3. EXPERIMENTATION ... 11

3.1 General Procedures .. 11

3.1.1 Generalized Approach Explained ... 11

3.1.2 Data Sets Used .. 15

3.2 Experimentation ... 22

3.2.1 What to Look For .. 22

3.2.2 Iris Data Set... 22

3.2.3 Haberman’s Survival Data Set .. 25

3.2.4 Red Wine Quality Data Set ... 29

3.3 Results ... 33

vi

3.3.1 The Pattern between Models’ Performance and Outlier Detection

 Efficiency .. 33

3.3.2 Verdict and Error Possibilities .. 36

4. CONCLUSION ... 39

4.1 Final Results and Thoughts .. 39

4.1.1 Main Results .. 39

4.1.2 Other Factors in the Results .. 39

4.1.3 Possible Errors .. 40

REFERENCES .. 41

vii

LIST OF FIGURES

 Page

Figure 1 Scatter Matrix for the Iris Data Set ... 17

Figure 2 Scatter Matrix for Haberman’s Survival Data Set .. 19

Figure 3 Comparison of the Values of “axil_nodes” and “surv_status” 20

Figure 4 Correlation Chart for the Red Wine Quality Data Set .. 21

viii

LIST OF TABLES

Page

Table 1 Example Data Set .. 8

Table 2 Two Models’ Prediction Values for Each Instance from Example Data Set 8

Table 3 Example Chart for Different Models’ Accuracy Performance on Untouched

Example Data Set Every Iteration & Average .. 13

Table 4 Example Chart for Different Models’ Accuracy Performance on Sigma-1

Example Data Set Every Iteration & Average .. 13

Table 5 Different Models’ Accuracy Average Values on Sigma-X Data Sets of the Iris

Data Set ... 23

Table 6 Different Models’ Average Percentage of Outliers Detected on Sigma-X Data

Sets of the Iris Data Set ... 24

Table 7 Different Models’ Average Percentage of Inliers Classified as Outliers on

Sigma-X Data Sets of the Iris Data Set ... 24

Table 8 Different Models’ Accuracy Average Values on Sigma-X Data Sets of the

Haberman’s Survival Data Set .. 26

Table 9 Different Models’ Average Percentage of Outliers Detected on Sigma-X Data

Sets of Haberman’s Survival Data Set .. 27

Table 10 Different Models’ Average Percentage of Inliers Classified as Outliers on

Sigma-X Data Sets of Haberman’s Survival Data Set .. 28

Table 11 Different Models’ MSE Average Values on Sigma-X Data Sets of the Red

Wine Quality Data Set .. 30

Table 12 Different Models’ Average Percentage of Outliers Detected on Sigma-X Data

Sets of the Red Wine Quality Data Set ... 31

Table 13 Different Models’ Average Percentage of Inliers Classified as Outliers on

Sigma-X Data Sets of the Red Wine Quality Data Set ... 31

1. INTRODUCTION

1.1 The Outlier Problem

1.1.1 Data Sets and Neural Network

In any professional field, people have to make decisions. When determining if a CPU

chip is good enough to be sold, a person has to determine if it performs at a high enough level.

When determining if an individual in a picture is a man or a woman, a person has to take note of

key features in the individual’s face and body. To make these decisions efficiently, people turned

to collecting and analyzing data from their respective fields. This practice became bigger in scale

and more sophisticated in methodologies as computers became more advanced to handle big

data, and now experts rely nearly entirely on digital data for data analytics [1]. Such methods

include data condensation, sampling, divide and conquer, and more [2]. The scale of digital data

storage and usage grew so large that the market for big data, in total, reached $16 billion in 2014

[3]. People extensively used data in other fields as well, such as disease research and prevention

[4], businesses [5], and smart cities [6]. Data usage, storage, and research continues to grow

today, which makes the concept of data more and more important.

As data grew, people developed new methods of analyzing data sets more efficiently.

During the 1960’s, Bayesian Inference, a statistical method of predicting outputs from instances

of data based on existing data, was developed for machine learning [7]. After facing a decline in

popularity in the 1970’s, machine learning began to resurface and gain even more popularity as

backpropagation, a method for finding the gradient, was rediscovered in the 1980’s [8][9].

Eventually in the 1990’s, machine learning became more focused on building models by training

on digital data sets [10]. During this time period, methods such as the Support Vector Machine

(SVM), machine learning models used for analyzing classification and regression problems in

2

data [11], became popular. In the 2000’s, unsupervised machine learning became widely

available and popular [12]. In 2009, people found that neural networks, a robust but expensive

machine learning method that normally cost too many computer resources to be practical, could

be run to create models efficiently by training on data sets using Nvidia’s graphical processing

units (GPU) [13]. GPUs make it possible to do neural network training on average computers

[14]. A powerful and robust machine learning method, neural networks can be used to analyze

and predict output values in many topics and fields, such as automatic speech recognition [15]

and image recognition [16]. Neural network models are currently one of the most powerful and

relevant machine learning methods for studying and utilizing data.

1.1.2 Outliers, the Parasite of Data Sets

One big issue that negatively impacts machine learning as a whole exists in data sets:

outliers. According to Frank E. Grubbs, a statistician, an outlier is an instance in a data set that

“appears to deviate markedly from other members of the sample” [17]. Outliers can be caused by

two issues. First, such values can be the result of groups of data within a data set being too

dispersed, causing such values to be undetected until further data analysis or a larger sample size.

Second, outliers can be caused by an error during the construction of their respective data set,

such as a physical disturbance or measurement error [18]. Outliers in the second case are

meaningless data, and they do not represent the nature of their respective data set in any way. It

is critical these values are removed so that they do not muddle the actual behaviors of the real

data, termed inliers.

For this research, we focus on a method of detecting and removing outliers from data

sets. Outliers continue to be a significant issue for all forms of data analytics, and people

continue to create sophisticated methods of detecting and removing outliers. Despite this, outliers

3

continue to be a significant problem, so we created a new method of outlier detection. However,

because of time constraints, we limited the scope of our research to point-based numerical data

sets.

1.1.3 Background

People started developing methods of detecting outliers long before neural networks

existed. During the mid-1800’s, Benjamin Peirce created Peirce’s Criterion, a classical outlier

removing method derived from the Gaussian distribution, and it allows for at least two outliers to

be labeled as outliers within a data set [19]. In this method, we first have to calculate the mean

and standard deviation of the complete data set. We then have to collect the R-value that matches

with the number of measurements in Peirce’s table. We then find the maximum deviation of the

value (|xi - xm|max). For any values that appear to be outliers, we find the |xi - xm| value. If |xi - xn|

is greater than |xi - xm|max, then the value must be labeled as an outlier [20]. Shortly after this,

William Chauvenet created the Chauvenet’s Criterion, another classical outlier removing method

[21]. When using this method on a data set, we first find the sample mean and sample standard

deviation. Then, for all data points that might be outliers (Xi), we calculate (|Xi - sample mean| /

sample standard deviation) and store each value. Next, we take that calculated value, find its

complementary error function (erfc), and multiply it by the number of instances in the data set. If

the resulting value is less than 0.5, then the value is an outlier [20]. In 1950, Frank E. Grubbs

created the Grubb’s Test, which was a different method that can only be used on univariate data

sets [22].

In the modern era, experts took inspirations from the classical methods and created

outlier detection methods with neural networks in mind. One type of method created with neural

networks in mind is the Deep Anomaly Detection (DAD) technique. As data sets grow larger in

4

size and more complex in types (images or large number of attributes), traditional outlier

detection became ineffective. To address this issue, people created the DAD technique. This

technique allows models to learn “hierarchical discriminative features” from given data sets [23].

One sophisticated DAD method is Outlier Exposure. In this method, learning neural network

models are exposed to outliers outside of their training data set to more effectively detect outliers

in the input for the models [24]. The DAD technique is efficient and is being used in industrial

practice, such as credit card fraud detection [25], cyber-intrusion detection [26], and the medical

domain [27].

1.1.4 Guide to this Paper

In this research, we focused on developing an outlier detection method that would

intuitively tie the outlier detection procedure and a model-building process together. We did this

to find a new, more efficient method of detecting, labeling, and removing outliers from point-

based data sets.

The second chapter focuses on why we chose this particularly method for detecting

outliers. We explain the logic behind our choice and demonstrate what kind of procedures our

method follows. To note, we use point-based data sets due to the limited time constraints of our

research..

We show our experimentation and findings in the third chapter. We explain in more

detail what steps we took, what data sets we tested this on, what results we gained, and what said

results showed. We also discussed the potential errors and hidden negative factors that may have

muddled our results.

In the fourth chapter, we conclude our research and summarize the research’s proposed

problem and new solution. We then discuss how this research can be improved in future work.

5

2. PURPOSE OF RESEARCH

2.1 A New Method of Outlier Detection

2.1.1 A New Approach to an Old Problem

The purpose of this research is to find an effective method of detecting and labeling

outliers within any point-based data set. To do this, this research focuses on developing an

outlier detection method that intuitively ties the outlier detection procedure and a model-building

process together. By implementing this feature, the process of outlier detection can be further

simplified while maintaining efficiency.

2.1.2 The Narrowed Scope of Data Sets

As mentioned earlier, the research focuses on detecting outlier values in point-based data

sets analyzed in a batch process. In this context, a point-based data set is a pre-made data set that

contains all necessary data values. As opposed to a sequential data set, a point-based data set is

not reliant on time, which means that it will not be collecting any more data values as time

passes.

Also, the type of data sets that used in this research will be strictly quantitative rather

than qualitative. We avoided implementing mixed methods research due to its time-consuming

nature. Also, many data sets containing both quantitative and qualitative data may have been

poorly collected; using such data sets in this research could lead to inaccurate results [28]. Also,

we chose to use quantitative data for our research because detecting association rules in

quantitative data have been effective to a certain degree [29]. Because of this, there is a higher

chance to find quantitative data sets with decent association between attributes and results in

comparison to qualitative data sets.

6

Because of this limited scope, this work does not make any claims on whether the

proposed detection method will work on time-based sequential data sets. It does, however, show

that the method will function on point-based data sets.

2.2 Model Complexity as Metric

2.2.1 The Proposed Method of Outlier Detection

The goal of this research is to develop a sophisticated process of using model complexity

as an indicator for outliers in any point-based data set. This will allow for any outlier point in a

data set to be labeled as an outlier, which would then be easily removed by a trained model. We

developed this method due to the differing characteristics of outliers and regular inliers in any

data set.

To explain generally, outliers and inliers behave differently in all data sets. Inlier values

usually stay grouped in a single or multiple clusters in their data set, maintaining one or more

specific patterns neural network models can detect. Outlier values, however, differ considerably

from the rest of the inlier values, causing them to exist outside of the general clusters of the

inliers. Each outlier can be viewed as being drawn from a different population than the inliers,

with each outlier potentially from its own unique population. Notably, in nearly all proper data

sets, inlier values far outnumber outlier values [30]. Despite this, a considerable number of

outliers usually exist in all data sets, and the nature of their unexpected behavior in data sets

disrupts the learning process of neural network models.

2.2.2 Procedure of Method

To elaborate on our proposed detection process, our method will use a neural network

model’s complexity as a metric of measuring and detecting outliers. The complexity of a model,

7

in this context, means the weight of non-zero edges in the model. This includes features such as

number of nodes per layer or number of layers within a model. Normally, a neural network

model with a set complexity that trains well on a data set with no outliers will struggle to train on

the same data set with outliers included. The model will have more difficulty learning the

characteristics of inliers due to outlier values disrupting the expected patterns in a data set. In this

case however, if we use a similar model but with more complexity added, then that model will be

able to detect the unexpected behaviors of outliers, detect them as outliers, and allow for a model

to learn from the same data set while avoiding the labeled outliers. In this context, adding more

complexity to a neural network model can mean adding more layers or adding more nodes per

layer. After this, the model of the same or similar complexity can be used to learn from the same

data set and detect the different behaviors of outliers the original model did not catch. This kind

of behavior can be used to compare the two models’ predicted output values for each instance in

the data set. A different prediction value for the same instance would mean that it is an outlier,

since theoretically, the original low-complexity model would not have detected the outlier while

the higher-complexity model would have detected it; this would most likely cause a difference in

prediction for the outlier instance.

Table 1, the Example Data Set, shows a demonstration. We have a data set with 5

instances with 1 input attribute and 1 output attribute that has 2 possible output classes: A or B.

One of the instances is an outlier while the rest are inliers.

8

Attribute Output

1 A

1 A

2 B

2 B

5 (outlier) A

Table 1: Example Data Set

For this scenario, a single-layer neural network model with 32 nodes is built. However,

after training on the data set, the model improperly learns the data set due to the outlier and

predicts the last instance in the data set as “B” while predicting the rest correctly.

A model with two layers and 32 nodes per layer, however, has a better performance. It

has a 100% accuracy on the training value and can predict all instances correctly. This means

that it predicted the last instance’s class correctly as “A”.

We would then compare the prediction values of the two models. The comparison is

demonstration in Table 2, which shows the Two Models’ Prediction Values for Each Instance

from Example Data Set.

32 Model 32-32 Model

A A

A A

B B

B B

B A

Table 2: Two Models’ Prediction Values for Each Instance from Example Data Set

The last instance is predicted differently by the two models. This means that the last

instance is an outlier. We can then label the last instance as an outlier, which would allow for

easy removal for future training. This is the general summarization of what we plan to show

during the experimentation in the next chapter.

Notably, the more outliers there are and the farther they deviate from inliers in a data set,

the more likely they will disrupt the learning process of a neural network model. This means that

9

a model will have more difficulty detecting inlier behaviors and differentiate them from outlier

behaviors. Considering this, some data sets have outlier values that are more severe in deviation

from the inliers than other data sets. In this case, the more severe the outliers become, the higher

the complexity can be raised in the model for training. We must, however, also keep note of how

many inliers the model correctly classifies. In other words, we must also check if the model is

classifying most, if not all, inliers as inliers rather than outliers. We must beware of cases where

models incorrectly classify outliers as inliers and a significant number of inliers as outliers. By

keeping these factors in mind, we may be able to find a method of using model complexity as a

means of detecting outliers while correctly classifying inliers as inliers in any data set.

2.2.3 Avoiding the Pitfall

Importantly, one cannot use a neural network model of very high complexity on a data set

by default. To optimally detect outliers in a data set, we need to start with a low complexity, train

the model on the data set, and record its general accuracy on the test data set. After this, we need

to raise the model’s complexity slightly, train the model on the data set, and compare its general

accuracy on the test data set to the previous model’s results. This process of raising the

complexity continues until the general accuracy of the model peaks and begins to drop with

higher complexity. This rise and fall of performance (accuracy of a model) happens because of

underfitting. When a model gains too high of a complexity, it begins to over-analyze the

behaviors of both inliers and outliers [31]. This causes a model to classify more behaviors than

normal within a data set, which results in the model mislabeling data points. This means that the

model becomes inefficient at detecting outliers when it has more complexity than needed for a

data set. This factor forces model complexity to remain as a metric for outlier severity in data

sets, so model complexity cannot be set high on default to detect outliers.

10

2.2.4 The Scope of Complexity

Considering the information explained in the chapter, we may be able to detect outliers in

any point-based data by altering model complexity. We will do this by altering the non-zero

edges within the model being used for each data set we will use for experimentation. This

includes changing the number of nodes per layer or changing the number of layers of a neural

network model.

11

3. EXPERIMENTATION

3.1 General Procedures

3.1.1 Generalized Approach Explained

As mentioned earlier, we performed research on finding a new outlier detection method

that utilizes model complexity. To do this, we completed two tasks. First, we took three publicly

available labeled data sets, manually replaced some of their inlier values with outlier values, and

tested models of differing complexities. Second, we selected the models with the overall good

performances in the first task and observed how they reacted to the outlier values within the data

sets.

For building a neural network model, we used a Keras Sequential model. Keras is a

TensorFlow-based API that allows programmers to easily build a neural network model with

features of their choice, ranging from applying different number of layers to creating a model for

specific types of inputs such as images or text [32]. For data analysis through code execution, we

used Google Colab, a cloud service provided Google that allows an individual to run Python

code on a browser [33]. This service provides a versatile virtual environment for data scientists

and programmers. These two allowed for speedy and intuitive experimentation in our research.

The first task focused on observing which model complexity allowed for the best

performance when training on data sets with differing severity of the deviations of outliers. We

performed the following sequence of steps:

1. We took a sample labeled data set and trained multiple models with different types of

complexities. For example, after creating a test data set from the sample data set, we

trained a model on the sample data set with one layer of 64 nodes, a model with a layer of

128 nodes, a model with two layers of 64 nodes, and so on.

12

2. We tested each model on the test data set and measured their performance, measured in

either overall accuracy or Mean Squared Error (MSE). In this context, accuracy is a

fraction of the number of the model’s correct predictions of data points’ classes over the

total number of data points in the data set. We recorded the performance values for each

model and repeated the process five or ten times. Once we completed this, we recorded

the average performance value for each model on the sample data set.

3. We took the sample data set and found the one or two attributes that affected the output

values the most. We did this instead of picking random attributes so that the outliers

would be able to muddle the data set most effectively. Then, we calculated the average

value and the standard deviation (sigma) for each attribute.

4. Using this, we took about 10% of the data set’s values and replaced them with the

summed value of the average value and the sigma value, manually creating outliers

within the data set. To maintain some uniformity, we did our best to evenly distribute the

outliers among each class in the data set, although this proved to be difficult to perform

consistently since some data sets had significantly more values in one class than the

others. No changes were made to the testing data set.

5. Once we completed the data set with 1-sigma outlier values, we repeated the process of

taking the same models of different complexity, recording their performance values on

the unchanged testing data set ten times, and recording their average performance values.

6. After completing the same process on the 1-sigma data set, we created a 2-sigma version

of the original data set by replacing 10% of the data set’s values (the same ones that were

changed to create the 1-sigma version of the data set) with summed values of the average

value and 2-sigma value (2 multiplied by the attribute’s standard deviation value).

13

7. We then repeated the process of finding the same models’ performance on the 2-sigma

data set and recording their average performance values on the unchanged testing data set

when trained on the 2-sigma version of the data set.

8. Finally, we created a 3-sigma data set and repeatedly trained on it and tested on the same

testing data set. The process was completed once all the averaged performance values

were recorded.

The following two example charts illustrate the task described above. Table 3 is the

Example Chart for Different Models’ Accuracy Performance on Untouched Example Data Set

Every Iteration & Average, and Table 4 is the Example Chart for Different Models’ Accuracy

Performance on Sigma-1 Example Data Set Every Iteration & Average. In a real experiment,

there would also be tables for 2-sigma and 3-sigma data sets.

Example Chart 1 - Models’ Accuracy Value on Unchanged Imaginary Data Set

 64 128 64-64 128-128 64-64-64 128-128-

128

Trial 1 .9 .95 .92 .94 .92 .93

Trial 2 .9 .95 .92 .94 .92 .93

Trial 3 .9 .95 .92 .94 .92 .93

Trial 4 .9 .95 .92 .94 .92 .93

Trial 5 .9 .95 .92 .94 .92 .93

Average .9 .95 .92 .94 .92 .93

Table 3: Example Chart for Different Models’ Accuracy Performance on Untouched

Example Data Set Every Iteration & Average

Example Chart 2 - Models’ Accuracy Value on Sigma-1 Imaginary Data Set

 64 128 64-64 128-128 64-64-64 128-128-

128

Trial 1 .88 .91 .92 .95 .93 .94

Trial 2 .88 .91 .92 .95 .93 .94

Trial 3 .88 .91 .92 .95 .93 .94

Trial 4 .88 .91 .92 .95 .93 .94

Trial 5 .88 .91 .92 .95 .93 .94

Average .88 .91 .92 .95 .93 .94

Table 4: Example Chart for Different Models’ Accuracy Performance on Sigma-1 Example

Data Set Every Iteration & Average

14

The charts would be used to observe which model performed the best on the original data

set, and what kind of complexity change, such as change in number of layers or change in

number of nodes per layer, would allow a model to maintain its performance when having to

train on the same data set but with manually inserted outlier values. Keep in mind that the

hypothesis is that as the outliers’ sigma values increase, the complexity has to rise accordingly.

We also had to know which kind of complexity affected the performance more positively:

prioritizing on raising the number of nodes per layer while statically keeping the layers, or

prioritizing on raising the number of layers while statically maintaining the number of nodes per

layer. Once all this procedure is completed, the first task would be completed.

In the second task, we selected the models with good overall test performances from the

first task and observed what predictions they would make for injected outliers. To do this, we

first observe which model performed the best on the original data set. In Example Chart 1 from

the first task, a model with one layer and 128 nodes performed the best, and in Example Chart 2

a model with two layers and 128 nodes per layer and a model with three layers and 128 nodes

per layer performed very well compared to other models. In this case, we observe that increasing

the total number of nodes while maintaining the same amount of nodes per layer is the most

effective way of increasing model complexity to maintain high performance against outliers. We

selected the 128 model as the base model, since it performed the best on the original data set, and

the 128-128 model and the 128-128-128 model for comparison to see what predictions they

would make for injected outliers. Then, we take these models, train them on the 1-sigma data set,

and record their prediction values for each data point in the data set. We then compare the base

model’s prediction values for data points with injected outlier values against the other models’

prediction values for the same data points. The logic here is that trained models of lower

15

complexity will have more difficulty properly predicting the correct output values for outliers

compared to higher complexity models. When this type of difference in prediction is detected for

the outlier data, the data point could be labeled as an outlier within the data set, which would

then allow for easy removal. During this phase, we focus on finding which of the models

(excluding the base model) detects the most outliers. After this completed, the same process is

repeated for 2-sigma and 3-sigma data sets. By comparing the best outlier-detecting models for

each sigma data sets, we would also be able to observe the pattern between rising sigma outliers

in data sets and rising complexity in a neural network model.

3.1.2 Data Sets Used

We evaluated our outlier detection method on three different data sets: The Iris Data Set,

the Haberman’s Survival Data Set, and the Red Wine Quality Data set. We also go forward with

the assumption that these data sets contain negligible outliers.

The Iris Data Set is a classic data set in the field of Data Science and is one of the three

data sets used in this experiment. A biologist and statistician, R.A. Fisher, created the data set in

1936 [34]. The data set contains three types of iris flowers, and its purpose is to show that each

iris type can be determined from their four aspects: sepal length, sepal width, petal length, and

petal width. In the data set, the attributes are named “SepalLengthCm”, “SepalWidthCm”,

“PetalLengthCm”, and “PetalWidthCm”, respectively. The data set contains a total of 150

instances and three iris types, or output classes: Iris-setosa, Iris-versicolor, and Iris-virginica.

Each class, or output class, has 50 instances each [35].

From the Iris Data Set, we created a testing data set. We took 8 random instances from

each class. This means that the entire testing data set contained 24 instances taken from the

original Iris Data Set.

16

As described in the Generalized Approached Explained section, we created several

different versions of the data set where we manually replaced some data values with our own

outlier values. First, we chose several attributes to change. Figure 1, the Scatter Matrix for the

Iris Data Set, shows the analysis of every attribute and how the output values relate to them.

Through this data analysis, we found that the PetalLengthCm and PetalWidthCm have the

clearest division of data points by their output classes, so we chose those two attributes. Next, we

chose to replace 6 data points’ PetalLengthCm and PetalWidthCm values for each class, which

means we replaced 18 data points’ values in total. Because the data set was nicely divided so that

each flower class has 50 data points, we faced no difficulty evenly distributing the outlier values.

Thus, for the first version of the data set, we found the sum of the average value of

PetalLengthCm and its 1 sigma value and a sum of the average value of PetalWidthCm and its 1

sigma value. Thus, for the first version of the data set, we replaced a total of 18 data points’

PetalLengthCm values with the sum of the attribute’s average and 1 sigma value and the

PetalWidthCm values with the sum of that attribute’s average and 1 sigma value. We repeated

the process for the second and third versions of the data set, but we instead used 2 sigma and 3

sigma, respectively.

17

Figure 1: Scatter Matrix for the Iris Data Set

The Haberman’s Survival Data Set is a result of research, conducted from 1958 to 1970,

on breast cancer surgery patients at the University of Chicago’s Billings Hospital. The data set

describes the conditions of the patients and shows which of them survived the operation or died

within 5 years after the surgery. For each patient, the data set describes the person’s age when

they underwent the surgery, the year they received the surgery, the number of positive axillary

18

nodes the patient had, and if the patient survived the operation for five years or longer or died

within five years [35]. For these descriptions, the attributes are labeled “age”, “op_year”,

“axil_nodes”, and “surv_status”, respectively. The data set contains a total of 306 instances and

two output classes for “surv_status” [36]. The class is either 1 or 2. A class value of 1 signifies

that the patient survived for five years or more after the surgery, and 2 means that the patient

died within five years after the surgery. 225 instances had the surv_status of 1, and 81 instances

had the surv_status of 2 [35]. Unfortunately, the data set is not balanced, so outlier distribution

will have to be uneven.

We created a testing data set for the Haberman Data Set also. We took 10 random

instances from each class. This means that the testing data set contained 20 instances taken from

the Haberman Data Set.

As we did for the Iris Data Set, we created several versions of the Haberman Data Set

where we replaced some data values with our own outlier values. Figure 2, the Scatter Matrix for

Haberman’s Survival Data Set, shows the analysis of every attribute in the Haberman’s Survival

Data Set and how its output values relate to them. We first analyzed the attributes of the data

sets to identify the attributes to use for outliers. Through data analysis, we found that no pair of

attributes have a significant impact on a patient’s survivability. We examined the individual

impact of each attribute and found that “axil_nodes” has the most effect on the output value of

“surv_status”. The effect is not strong, but stronger than other attributes, singly or in pairs.

Figure 3, which is a Comparison of the Values of “axil_nodes” and “surv_status”, shows the

relationship between the survival status of patients and the number of axillary nodes they carried.

After choosing “axil_nodes” as the attribute for outlier replacements, we found the sum of the

attribute’s average value and 1 sigma value. Upon completing this, we replaced the “axil_node”

19

values of 20 instances that have the surv_status of 1 and 10 instances that have the surv_status of

2 with this sum. Finally, as we did for the Iris Data Set, we repeated the process with 2 sigma

and 3 sigma values, respectively.

Figure 2: Scatter Matrix for Haberman’s Survival Data Set

20

Figure 3: Comparison of the Values of “axil_nodes” and “surv_status”

The final data set is the Red Wine Quality Data Set, which is derived from the Wine

Quality Data Set, made by P. Cortez and his group, which measures the overall quality of

thousands of red wine and white wine samples [37]. This red wine data set contains different

samples of the Portuguese “Vinho Verde” wine, measures each instance’s different qualities

based on physicochemical tests, and finally rates the overall quality of the wine based on sensory

data. The different qualities include fixed “acidity”, “volatile acidity”, “citric acid”, “residual

sugar”, “chlorides”, “free sulfur dioxide”, “total sulfur dioxide”, “density”, “pH”, “sulphates”,

and “alcohol”. The output variable is “quality”, which is a numerical score between 0 and 10.

The data set contains 1,599 instances and the “quality” values of 3, 4, 5, 6, 7, and 8. There are 10

instances with the quality score of 3, 53 instances with the score of 4, 681 instances with the

score of 5, 638 instances with the score of 6, 199 instances with the score of 7, and 18 instances

21

with the score of 8 [38]. Since the data set is unbalanced, outliers will have to be distributed

unevenly.

We created a testing data set using 320 random instances from the Red Wine Quality

Data Set. Like the previous two data sets, we created several versions of the Red Wine Quality

Data Set, where we replaced some data values with our own outlier values. We first analyzed the

attributes of the data set using the entire data set’s correlation plot shown in Figure 4, which is

the Correlation Chart for the Red Wine Quality Data Set. Through it, we found that “quality” has

the most correlation with “volatile acidity” (correlation score of -0.378372), “sulphates”

(correlation score of 0.242596), and “alcohol” (correlation score of 0.472676). For each of the

three attributes, we found the sum of the attribute’s average value and 1 sigma value, and then

replaced the attribute value with the sum values. We replaced values of 2 instances with the

score of 3, 4 instances with a score of 4, 51 instances with a score of 5, 47 instances with a score

of 6, 14 instances with a score of 7, and 2 instances with a score of 8. We did the same for the 2-

sigma and 3-sigma versions with 2- sigma values and 3-sigma values, respectively.

Figure 4: Correlation Chart for the Red Wine Quality Data Set

22

3.2 Experimentation

3.2.1 What to Look For

With the general procedures and the data sets (along with their three outlier versions)

prepared, we moved on to the experimentation. While we experimented, we looked for what kind

of complexity showed more positive effect on models’ performances as outliers’ sigma values

rose: increasing the number of nodes per layer while maintaining the number of layers or

increasing the number of layers while maintaining the number of nodes per layer. We also

checked to see what kind of relationship existed between models’ performance and the models’

ability to detect many outliers.

3.2.2 Iris Data Set

We obtained the Iris Data Set and created three other versions of the same data set. The

first version has 18 of its instances replaced with the sum of each attribute’s average value and

its 1 sigma value. The second version has 18 of its instances replaced with the sum of each

attribute’s average value and its 2 sigma value. The third version has 18 of its instances replaced

with the sum of each attribute’s average value and its 3 sigma value.

For the original version of the data set, we first trained multiple models varying in

complexity and tested them on the testing data set 10 times. We found that the model with one

hidden layer of 128 nodes, along with a sigmoid activation function, performed the best on

average with a 95.668% accuracy. In this context, accuracy means how accurately a model can

determine every instance’s iris type.

We then tested different model complexities on the outlier data sets. Along with the 128-

model, we trained multiple models with varying complexities on the 1-sigma, 2-sigma, and 3-

sigma data sets. This includes a model with one layer and 256 nodes, two layers with 64 nodes

23

per layer (64-64), two layers with 128 nodes per layer (128-128), and so on. Table 5, chart for

Different Models’ Accuracy Average Values on Sigma-X Data Sets of the Iris Data Set, shows

the average performance value of each model on the x-sigma data sets (average of 10 trials).

Different Model Complexities and Their Performance Averages on Outliers (Iris)

 128 256 128-128 256-256 128-

128-128

256-

256-256

128-

128-

128-128

256-

256-

256-256

1-sigma .92667 .93 .89001 .89667 .95334 .94334 .97002 .94669

2-sigma .92334 .93336 .93668 .96003 .95668 .9667 .95668 .9667

3-sigma .94334 .93002 .96002 .96336 .96336 .96336 .96336 .95002

Table 5: Different Models’ Accuracy Average Values on Sigma-X Data Sets of the Iris Data

Set

For 1-sigma, the models generally performed well with 3 or 4 layers. Having 4 layers is

better, but this is only by a small margin. Notably, the general performance of models are similar

according to the number of their layers, so there is a relationship between outlier detection and

model complexity in layers. Raising the number of nodes while maintaining a similar number of

layers does improve accuracy, but this is secondary compared to raising the number of layers

while maintaining a similar number of nodes.

For 2-sigma, the models generally performed well with 3 or 4 layers. Once again, 4 layers

is slightly better, and more layers improves accuracy more than more nodes.

For 3-sigma, models generally perform very well when having 2, 3, or 4 layers. They do

still, however, perform better than when the model has one layer.

Next, we must check how accurately models are able to detect outliers. We determine if a

model detected an outlier if they predict a different value from the original 128-model on data

points with replaced outlier values. Table 6, a chart for Different Models’ Average Percentage of

Outliers Detected on Sigma-X Data Sets of the Iris Data set, shows the fraction of the outliers the

models were able to detect for each sigma data set.

24

Different Model Complexities’ Outlier Detection Measurement (Iris)

 256 128-128 256-256 128-128-

128

256-256-

256

128-128-

128-128

256-256-

256-256

1-sigma .15556 .14444 .20556 .17222 .20556 .12778 .16667

2-sigma .11667 0.18333 .35556 .50556 .48333 .57222 .5

3-sigma .12778 .15 .37778 .52778 .67778 .75556 .76111

Table 6: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets

of the Iris Data Set

The outlier detection experimented yielded interesting results. For 1-sigma, the 256-256-

256 model performed the best while the 128-128-128-128 model performed the worst. Generally,

3-layer models detected the most outliers among the injected outliers while the 128-128 model

performed decently. For 2-sigma, the 128-128-128-128 model performed the best while the 256

model performed the worst. For 3-sigma, the 256-256-256-256 model performed the best while

the 256 model performed the worst.

Finally, we collected the percentage of the number of inliers the models detected

differently from the original 128 model. Table 7, a chart for Different Models’ Average

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of the Iris Data Set, shows

how much of the inliers the models were not able to detect consistently for each sigma data set.

Different Model Complexities’ Wrong Inlier Detection Measurement (Iris)

 256 128-128 256-256 128-128-

128

256-256-

256

128-128-

128-128

256-256-

256-256

1-sigma 0.03939 0.06061 0.05606 0.07121 0.05606 0.05152 0.06515

2-sigma 0.06364 0.04848 0.05076 0.05606 0.05227 0.05227 0.08333

3-sigma 0.06667 0.05682 0.05530 0.07652 0.07348 0.07348 0.06591

Table 7: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-X

Data Sets of the Iris Data Set

From these results, having more nodes per layer led to models classifying more inliers

correctly for models with two or three layers, but having less nodes per layer led to models

classifying more inliers correctly for models wtih four layers. For 1 sigma, the 256 model

25

classified the most inliers correctly, and the models began to classify more inliers incorrectly as

outliers as they rose in number of layers and nodes per layer. For 2 sigma, the 128-128 model

classified the most inliers correctly. The number of inliers being classified incorrectly as outliers

grew as the models rose in number of layers and number of nodes per layer. For 3 sigma, the

256-256 model detected the most amount of inliers correctly. The number of inliers being

classified incorrectly started relatively high for the 256 model, but dropped as it gained another

layer. But afterward, the models began to incorrectly classify more inliers as outliers as it gained

more layers or rose in number of nodes per layer.

Generally, we found interesting results from this data set. For the 1-sigma data set, the

256-256-256 model and the 256-256 model both performed the best in outlier detection, but they

performed average in correctly classifying inliers as inliers. The 256 model retained the most

amount of inliers, but it did a below-average job in detecting outliers within the 1-sigma data set.

For 2 sigma, the 128-128-128-128 model performed the best in outlier detection, and it did an

above average job in classifying inliers correctly. It must be noted that 256-256-256-256, despite

detecting a decent percentage of injected outliers, did poorly in classifyign inliers correctly. The

128-128 model performed the best in inlier detection. For 3 sigma, the 256-256-256-256 model

performed the best in outlier detection and performed average in inlier detection. The 256-256

model classified the most inliers correctly in this data set.

3.2.3 Haberman’s Survival Data Set

We created three outlier versions of the Haberman’s Survival Data Set. The first version

has 30 of its instances replaced with the sum of each attribute’s average value and its 1 sigma

value. The second version has 18 of its instances replaced with the sum of each attribute’s

26

average value and its 2 sigma value. The third version has 18 of its instances replaced with the

sum of each attribute’s average value and its 3 sigma value.

For the original version of the data set, we trained multiple models varying in

complexities and tested them on the testing data set 10 times. We found that the model with one

hidden layer of 64 nodes, along with a sigmoid activation function, performed the best on

average by scoring 77.287% accuracy. In this context, “accuracy”, similar to the Iris Data Set,

means how accurately a model is able to determine every patient’s survival status.

We tested different model complexities on the three outlier data sets. As we did for the

Iris Data Set, we trained different models with varying complexities on the 1-sigma, 2-sigma,

and 3-sigma data sets. Table 8, a chart for Different Models’ Accuracy Average Values on

Sigma-X Data Sets of the Haberman’s Survival Data Set, shows the average performance value

of each model on the data sets (average of 10 trials).

Different Model Complexities and Their Performance Averages on Outliers (Haberman)

 64 32-32 64-64 128-128 64-64-

64

128-

128-128

64-64-

64-64

128-

128-

128-128

1-sigma .77124 .7722 .77285 .76928 .76471 .76568 .7696 .76632

2-sigma .77222 .77123 .77482 .77156 .76993 .76012 .77285 .76861

3-sigma .77613 .78267 .78136 .77483 .77286 .76862 .77219 .77286

Table 8: Different Models’ Accuracy Average Values on Sigma-X Data Sets of the

Haberman’s Survival Data Set

For 1-sigma, the models generally performed about the same with 1 or 2 layers. More

layers caused a slight decrease in model accuracy.

For 2-sigma, the models performed slightly better when having 2 layers, and then worse

with more layers. This does show that it is helpful to add more hidden layers to models the more

severe the outliers become in deviation.

27

For 3-sigma, the models performed slightly better when having 2 layers, and then slightly

worse for more layers. This, again, serves as small evidence that it is helpful to add more hidden

layers to models the more severe the outliers become in deviation.

Next, we need to see observe how accurately models detect outliers. As with the Iris Data

Set, we determine that a model detected an outlier if it predicts a different from the original 64-

model on data points with replaced outlier values. The following chart shows how much of the

outliers the models were able to detect for each sigma data sets.

Next, we need to see observe how accurately models detect outliers. As with the Iris Data

Set, we determine that a model detected an outlier if it predicts a different value from the original

64-model on data points with replaced outlier values. Table 9, a chart for Different Models’

Average Percentage of Outliers Detected on Sigma-X Data Sets of Haberman’s Survival Data

Set, shows how much of the outliers the models were able to detect for each sigma data set.

Different Model Complexities’ Outlier Detection Measurement (Haberman)

 64-64 128-128 64-64-64 128-128-

128

64-64-64-

64

128-128-

128-128

1-sigma .03 .09333 .04 .05333 .04667 .07667

2-sigma 0.03333 .07 .05333 .09667 .05333 .06667

3-sigma 0.08333 .11333 .07333 .10333 .05 .11333

Table 9: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets

of Haberman’s Survival Data Set

The outlier detection experimented showed led to some interesting findings. For 1-sigma,

the 128-128 model performed the best while the 64-64 model performed the worst. Overall,

though, 4-layer models detected the most outliers among the injected outliers, and models with

128 nodes per layer performed decently. For 2-sigma, the 128-128-128 model performed the best

while the 64-64 model performed the worst. For 3-sigma, the 128-128 model and the 128-128-

128-128 model performed the best while the 64 model performed the worst.

28

Finally, we collected the percentage of the number of inliers the models detected

differently from the original 64-64 model. Table 10, a chart for Different Models’ Average

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of Haberman’s Survival Data

Set, shows how much of the inliers the models were not able to detect consistently for each

sigma data set.

Different Model Complexities’ Wrong Inlier Detection Measurement (Haberman)

 64-64 128-128 64-64-64 128-128-

128

64-64-64-

64

128-128-

128-128

1-sigma 0.04161 0.08077 0.03846 0.055594 0.040210 0.069580

2-sigma 0.03846 0.05140 0.05 0.057692 0.047902 0.049650

3-sigma 0.05682 0.05530 0.076515 0.073484 0.073485 0.065909

Table 10: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-

X Data Sets of Haberman’s Survival Data Set

From these results, having more nodes per layer led to models classifying more inliers

correctly for models with two or three layers but having less nodes per layer led to models

classifying more inliers correctly for models with four layers. For 1 sigma, the 256 model

classified the most inliers correctly, and the models began to classify more inliers incorrectly as

outliers as they rose in number of layers and nodes per layer. For 2 sigma, the 128-128 model

classified the most inliers correctly. The number of inliers being classified incorrectly as outliers

grew as the models rose in number of layers and number of nodes per layer. For 3 sigma, the

256-256 model detected the most amount of inliers correctly. The number of inliers being

classified incorrectly started relatively high for the 256 model, but dropped as it gained another

layer. But afterward, the models began to incorrectly classify more inliers as outliers as it gained

more layers or rose in number of nodes per layer.

Generally, we found interesting results from this data set. For the 1-sigma data set, the

256-256-256 model and the 256-256 model both performed the best in outlier detection, but they

performed average in correctly classifying inliers as inliers. The 256 model retained the most

29

amount of inliers, but it did a below-average job in detecting outliers within the 1-sigma data set.

For 2 sigma, the 128-128-128-128 model performed the best in outlier detection, and it did an

above average job in classifying inliers correctly. It must be noted that 256-256-256-256, despite

detecting a decent percentage of injected outliers, did poorly in classifying inliers correctly. The

128-128 model performed the best in inlier detection. For 3 sigma, the 256-256-256-256 model

performed the best in outlier detection and performed average in inlier detection. The 256-256

model classified the most inliers correctly in this data set.

3.2.4 Red Wine Quality Data Set

We obtained the Red Wine Quality Data Set and created three other versions of the same

data. The first version has 320 of its instances replaced with the sum of each attribute’s average

value and its 1 sigma value. The second version has 18 of its instances replaced with the sum of

each attribute’s average value and its 2 sigma value. The third version has 18 of its instances

replaced with the sum of each attribute’s average value and its 3 sigma value.

Unlike the Iris Data Set and the Haberman’s Survival Data Set, however, this data set is a

regression data set. This means that a neural network model would not be classifying the output

value based on an instance’s attributes. It would calculate a numerical score for each instance,

which would fit this data set since it focuses on scoring each instance from 0 to 10. This also

means that the performances of the models that would learn from this would be shown through

their Mean Squared Error (MSE) values.

For the original version of the data set, we trained multiple models varying in

complexities and tested them on the testing data set. We found that the model with two hidden

layers and 64 nodes per layer, along with relu activation functions and a dropout value of 0.25

for every hidden layer, performed the best on average by scoring a MSE value of 0.3788. Since

30

all score values are in integer values ranging from 0 to 10, we consider this MSE value good for

the Red Wine Quality Data Set.

Next, we must check how accurately models are able to detect outliers. We determine if a

model detected an outlier if they predict a different value from the original 64-64 model on data

points with replaced outlier values. Table 11, a chart for Different Models’ MSE Average Values

on Sigma-X Data Sets of the Red Wine Quality Data Set, shows the performances (in terms of

MSE) of models on each data set.

Different Model Complexities’ Outlier Detection Measurement (Red Wine Quality)

 64-64 128-128 64-64-64 128-128-

128

64-64-64-

64

128-128-

128-128

1-sigma .3823 .4 .4179 .4174 .4063 .4151

2-sigma .3869 .3655 .4164 .4066 .41 .4135

3-sigma .4007 .3752 .3890 .4167 .41 .4188

Table 11: Different Models’ MSE Average Values on Sigma-X Data Sets of the Red Wine

Quality Data Set

For 1-sigma, the models generally performed the same when having multiple layers.

However, there is a slight worse performance when the number of layers increases to 3 layers or

more. This trend continued to both 2-sigma and 3-sigma.

Next, we need to see observe how accurately models detect outliers. Similarly with the

previous two data sets, we determine that a model detected an outlier if it predicts a different

from the original 64-64 model on data points with replaced outlier values. Table 12, a chart for

Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets of the Red

Wine Quality Data Set, shows how much of the outliers the models were able to detect for each

sigma data set.

31

Different Model Complexities’ Outlier Detection Measurement (Red Wine Quality)

 128-128 64-64-64 128-128-128 64-64-64-64 128-128-128-

128

1-sigma .0509375 .0484375 .058125 .0503125 .040625

2-sigma .0525 .033125 .056875 .0309375 .0384375

3-sigma .0475 .0309375 .046875 .0384375 .0321875

Table 12: Different Models’ Average Percentage of Outliers Detected on Sigma-X Data Sets

of the Red Wine Quality Data Set

The outlier detection experimented yielded interesting results. For 1-sigma, the 128-128-

128 model performed the best while the 128-128-128-128 model performed the worst. Generally,

3-layer models detected the most outliers among the injected outliers while the 128-128 model

performed decently. For 2-sigma, the 128-128-128 model performed the best while the 64-64-64-

64 model performed the worst. It must be noted, however, that the 64-64-64 model and the 64-

64-64-64 model performed poorly. For 3-sigma, the 128-128-128 model performed the best

while the 64-64-64 model performed the worst.

Finally, we collected the percentage of the number of inliers the models detected

differently from the original 64-64 model. Table 13, a chart for Different Models’ Average

Percentage of Inliers Classified as Outliers on Sigma-X Data Sets of the Red Wine Quality Data

Set, shows how much of the inliers the models were not able to detect consistently for each

sigma data set.

Different Model Complexities’ Incorrect Inlier Detection Measurement (Red Wine Quality)

 128-128 64-64-64 128-128-128 64-64-64-64 128-128-128-

128

1-sigma 0.150733 0.157981 0.194219 0.150820 0.167731

2-sigma 0.152804 0.132787 0.155651 0.121225 0.156428

3-sigma 0.172476 0.112770 0.169974 0.140811 0.171096

Table 13: Different Models’ Average Percentage of Inliers Classified as Outliers on Sigma-

X Data Sets of the Red Wine Quality Data Set

Interestingly, in each layer, models with less nodes generally detected more inliers

correctly. It also seems that for every sigma, a model that detected the most outliers also

32

incorrectly identified the many inliers as outliers. It must be also be noted that the 64-64-64 and

64-64-64-64 models identified inliers correctly the most. In 1-sigma, the 64-64-64-64 model

performed the best in inlier detection. For 2-sigma, the 64-64-64-64 model detected the most

inliers, but the 64-64-64 model had a similarly good performance in inlier detection also. In 3-

sigma, the 64-64-64 model clearly performed the best in inlier detection.

We retrieved interesting results from this data set. For all sigma tests, the 128-128-128

model performed the best in outlier detection but also performed consistently bad in inlier

detection. Generally, models with 128 nodes per layer detected more outliers when their number

of layers rose from two to three, but dropped as it went from three to four layers. The same type

of story cannot be told for inlier detection. For 1-sigma, models with 128 nodes per layer

incorrectly classified inliers as outliers when the number of layers rose from two to three, but

dropped as it went from three to four layers. For 2-sigma, the number of incorrectly classification

of inliers as outliers rose as the number of layers rose from two to three, but increased

significantly less when rising from three to four layers. For 3-sigma, the models with 128 nodes

per layer generally performed similarly badly, incorrectly detecting around 17% of the inliers as

outliers. Meanwhile, the models with 64 nodes per layer detected less outliers than their 128-

node counter parts in each layer. Regardless, models with 64 nodes per layer detected more

outliers as the number of layers rose from three to four for sigma 1. For sigma 2, the models

detected less outliers as the number of layers rose from three to four. For sigma 3, the models

detected more outliers as the layers changed from three to four. Inlier detection for the models

with 64 nodes per layer were interesting. For sigma 1, more inliers were classified correctly as

the number of layers changed from three to four. For sigma 2, less inliers were classified

33

correctly as the number of layers changed from three to four. For sigma 3, less inliers were

classified correctly as the number of layers rose from three to four.

3.3 Results

3.3.1 The Pattern between Models’ Performance and Outlier Detection Efficiency

From the information we gathered from this experiment, we found that there is a pattern

between model complexity and outlier detection that can be used to detect and label some outlier

values. Unfortunately, the level of complexity of the models does not clearly show the sigma

value of the outliers in data sets. However, model complexities do point to what type of model

will do very well in detecting outliers in data sets.

There is a common behavior that shows nearly all the time in these data sets. When a

group of models of the same number of layers has the best performance for a data set compared

to models of different number of layers, then a model of that number of layers with the highest

number of nodes per layer in the group will do the best job at detecting outliers. On top of this,

this model correctly classifies most inliers as such, but becomes worse at doing this as the data

set it trains on becomes more complex.

For example, in the 1 Sigma version of the Red Wine Quality Data Set, the 64-64 model

and the 128-128 model perform the best on average MSE compared to average performance of

64-64-64 model and 128-128-128 model and the average performance of the 64-64-64-64 model

and 128-128-128-128 model. On top of this, a model with two layers along with 128 nodes per

layer performs the best in detecting outlier compared to other models. It also classifies a good

number of inliers as such compared to other models, but all models do not do well with this task

in general by classifying over 15% of the inliers as outliers at minimum. In the 2 Sigma version,

34

the 64-64 model and the 128-128 model performs the best on average compared to the average

performances of other groups of models of different layers. Although the 128-128 model does

not perform the best in outlier detection in the chart, it does perform very well in comparison to

other models in the figure. It detects 5.25% of the manually-replaced outliers while the only

model that performs better than this (128-128-128) detects 5.69% of the outliers. This is close

compared to other models that only detected about 3.5% of the outliers. The models in this data

set, however, do poorly in inlier classification, classifying over 10% of the inliers as outliers at

minimum. In the 3 Sigma version, the 64-64 model and the 128-128 model perform the best on

average compared to other groups of models of different numbers of layers. On top of this, a

model with two layers along with 128 nodes per layer performs the best in detecting outliers

compared to other models. However, the said models and the other models tested in this data set

do poorly in inlier classification here again. As shown in this data set, the model with the same

number of layers as the group of models that had the lowest MSE average value and with the

same number of nodes per layer as the group’s highest number of nodes per layers performed

very well generally in detected outliers, but they also all generally do poorly in inlier

classification.

In another example, in the 1-sigma version of the Haberman’s Survival Data Set, the 64-

64 model and the 128-128 model performed the best in accuracy compared to the average

accuracies of other groups of models of different number of layers. On top of this, a model with

two layers along with 128 nodes performed the best in outlier detection compared to other

models. The 128-128 model does badly in inlier classification, although its performance is

nowhere near as bad as the models in the Red Wine Quality Data Set. In the 2 sigma version, the

64-64 model and the 128-128 model performed the best in accuracy once again. Although the

35

128-128 model did not perform the best in detecting outliers by detecting 7% of the injected

outliers, it did perform the second best and scored lower than only the 128-128-128 model which

detected 9.67% of the outliers. The 128-128 model did the worst in inlier classification, but the

model’s percentage of inliers incorrectly classified as outliers was considerably low. In the 3

sigma version, the 64-64 model and the 128-128 model performed the best in accuracy. And this

time for outlier detection, the 128-128 model performed the best among the models. The inlier

classification performance of the 128-128 model was also good. For this data set also, the model

with the same number of layers as the group of models that had the highest accuracy average

value and with the same number of nodes per layer as the group’s highest number of nodes per

layers performed very well generally in detected outliers.

Lastly, in the 1-sigma version of the Iris Data Set, the 128-128-128-128 model and the

256-256-256-256 model performed the best in accuracy compared to the average accuarcies of

other groups of models of different number of layers. Notably, the 256-256-256-256 model

performed the fourth best among the models, detecting 16.67% of injected outliers while both the

256-256 and 256-256-256 detected the most (20.56%). This was the only case where the model

with the same number of layers and the highest number of nodes per layer as the group of models

performed at a mediocre level. The 256-256-256-256 model also did below average in inlier

classification compared to other models in the data set, but percentage of inliers wrongly

classified as outliers was generally low. For the 2-sigma version, the group of the 128-128-128

model and the 256-256-256 model and the group of the 128-128-128-128 model and the 256-

256-256-256 model performed the best with the same average accuracy value. However, the

256-256-256-256 model detected more outliers than the 256-256-256 model. We can

hypothesize from this that in the case of a tie between two models, the model with the higher

36

number of layers will perform better in outlier detection. The 256-256-256-256 model detected

50% of the outliers, losing to the 128-128-128-128 model (which detected 57.22%) and the 128-

128-128 model (which detected 50.56%). It must be noted, however, that the 256-256-256-256

model performed very well, detecting a very similar number of outliers as the 128-128-128

model, which detected the second most number of outliers. The 256-256-256-256 model had an

average inlier-classification performance also, but the percentage of inliers incorrectly classified

as outliers was low once again. For the 3-sigma version, the group of 3 layer models, the 128-

128-128 model and the 256-256-256 model, had the highest accuracy on average. The 256-256-

256 model’s outlier detection performance was the third highest; the performance itself was high

also. The model’s inlier classification was below average, but models in the data set generally

classified most inliers as such correctly. From the experimentation on this data set also, the

model with the same number of layers as the group of models that had the highest accuracy

average value and with the same number of nodes per layer as the group’s highest number of

nodes per layers generally performed very well in detected outliers.

3.3.2 Verdict and Error Possibilities

From this experiment, we found that the model with the same number of layers as the

group of models that had the highest average of performance value (accuracy or MSE) and with

the same number of nodes per layer as the group’s highest number of nodes per layers, will

perform well in detecting outliers. Although, rarely, the model will not be the optimal model for

detecting outliers, this method will generally find a model complexity that will allow for a model

to detect outliers at high efficiency. Also, said model will normally classify most inliers as inliers

correctly, but will grow more error prone as the data set it trains on becomes more complex by

having more instances or having more attributes.

37

This method will allow for outlier detection and removal. First, a model of low

complexity should be made and trained on a data set. It should also save the predicted values for

each instances. Next, the method presented here can be used; different models of different levels

of complexities should be tested on the data set, and the average highest performance values

(whether it be accuracy on classification or MSE value) of a group of a same number of layers

should be found. Then, within that group, a model with the highest number of nodes per layer

should predict each instance output. That list of prediction should be checked with the list of

prediction of the original low-complexity model made and trained earlier. All instances that have

different prediction values should be removed, which will leave with a data set with considerably

less outliers.

Although we have finished this experiment, there are points of interest that must be

mentioned. Firstly, some of the data sets we used, namely the Haberman’s Survival and the Red

Wine Quality Data Sets, may have issues that are difficult to pinpoint. Throughout the

experiment, the data sets have shown hints that it may have already contained outliers in the first

place. Another possible issue is that the data sets may not have had attributes with strong

correspondence with the output values. The strongest evidence of the two possible factors is that

the data set with no injected outliers was not able to produce a neural network model with an

accuracy value higher than 90% or an MSE value lower than 0.1. Because of at least one of the

listed two issues, the results yielded by the two data sets may be slightly misleading. Secondly,

this method works efficiently when the sigma of outliers grow. When the sigma values of the

outliers are high, the method has a tremendous efficiency in finding the model with the right

complexity that can detect outliers. When the sigma values of the outliers are low, however, the

method struggles to find the right complexity that would allow for the model to detect a high

38

number of outliers. Finding a solution to these issues may lead to a more conclusive result.

39

4. CONCLUSION

4.1 Final Results and Thoughts

4.1.1 Main Results

In the end, in a group of models with the same number of layers that had the highest

average of performance value, the model with the highest number of nodes per layer detected

outliers at a high level at the cost of misclassifying an average number of inliers most of the

time. In most cases, this type of model generally detected outliers consistently well, which would

allow many outlier values to be labeled as outliers in their respective data sets. In nearly all

cases, such models misclassified an average number of inliers as outliers compared to other

models of varying complexities.

4.1.2 Other Factors in the Results

It must be noted, however, that the findings pointed at other interesting behaviors. Neural

network models generally detected less outliers the less correspondence attributes within the data

set had with the output values. This is shown in the comparisons between the Iris Data Set and

the Haberman’s Survival Data Set. The Iris Data Set had two highly correlating attributes,

PetalLengthCm and PetalWidthCm. The Haberman’s Survival Data Set, however, had one

attribute, axil_nodes, that showed correspondence with the output value. The attribute, however,

had lower correspondence with the output than the two attributes for Iris Data Set had with their

respective output attribute. Another factor to note is that neural network models generally

detected fewer outliers the more complex the data set. By becoming more complex, we mean

that data set has more correlating attributes or more instances. For example, the models for the

Red Wine Quality Data Set detected fewer outliers in general compared to the models for the Iris

Data Set. The Red Wine Quality Data Set had three highly correlating attributes while the Iris

40

Data Set only had two. On top of this, the Red Wine Quality Data Set contained many more

instances than the Iris Data Set.

4.1.3 Possible Errors

There are possible factors that may have muddled our findings from this experimentation.

First, it is possible one or more of our data sets contained attributes that did not have high

enough correlation to the output. Namely, the Haberman’s Survival Data Set did not have

attributes with high correlation to the survival status of patients. Contextually, it may also be

possible that the data set was built without enough attributes in mind. For instances, the data set

did not describe how each patients were treated, what type of health issues each patient had

before the surgery, and more. Second, it is possible one or more of our data sets contained

outliers to begin with. Finding outier-free data sets proved to be very difficult, and only the Iris

Data Set showed a very high chance of it having very few outliers. If one wishes to use this work

as reference for future work, these factors must be considered for improved findings.

41

REFERENCES

[1] Lyman P, Varian H. How much information 2003? Tech. Rep, 2004. [Online]. Available:

http://www2.sims.berkeley. edu/research/projects/how-much-info-

2003/printable_report.pdf.

[2] Xu R, Wunsch D. Clustering. Hoboken: Wiley-IEEE Press; 2009.

[3] Press G. $16.1 billion big data market: 2014 predictions from IDC and IIA, Forbes, Tech.

Rep. 2013. [Online]. Available: http://www.forbes.com/sites/ gilpress/2013/12/12/16-1-

billion-big-data-market-2014-predictions-from-idc-and-iia/.

[4] Mayer-Schonberger V, Cukier K. Big data: a revolution that will transform how we live,

work, and think. Boston: Houghton Mifflin Harcourt; 2013.

[5] Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to

big impact. MIS Quart. 2012;36(4):1165–88.

[6] Kitchin R. The real-time city? big data and smart urbanism. Geo J. 2014;79(1):1–14.

[7] Solomonoff, Ray J. “A formal theory of inductive inference. Part II.” Information and

control 7.2 (1964): 224–254.

[8] Goodfellow, Bengio & Courville (2016, p. 221), “Efficient applications of the chain rule

based on dynamic programming began to appear in the 1960s and 1970s, mostly for

control applications (Kelley, 1960; Bryson and Denham, 1961; Dreyfus, 1962; Bryson

and Ho, 1969; Dreyfus, 1973) but also for sensitivity analysis (Linnainmaa, 1976). ... The

idea was finally developed in practice after being independently rediscovered in different

ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a). The book Parallel

Distributed Processing presented the results of some of the first successful experiments

with back-propagation in a chapter (Rumelhart et al., 1986b) that contributed greatly to

http://www2.sims.berkeley/
http://www.forbes.com/sites/
https://en.wikipedia.org/wiki/Backpropagation#CITEREFGoodfellowBengioCourville2016

42

the popularization of back-propagation and initiated a very active period of research in

multilayer neural networks.”

[9] Rumelhart; Hinton; Williams (1986). “Learning representations by back-propagating

errors” (PDF). Nature. 323 (6088): 533–536. Bibcode:1986Natur.323..533R.

doi:10.1038/323533a0.

[10] Marr, Bernard. “A Short History of Machine Learning – Every Manager Should Read”.

Forbes. Retrieved 28 Sep 2016.

[11] Siegelmann, Hava; Sontag, Eduardo (1995). “Computational Power of Neural

Networks”. Journal of Computer and System Sciences. 50 (1): 132–150.

doi:10.1006/jcss.1995.1013.

[12] Bennett, James; Lanning, Stan (2007). “The netflix prize”(PDF). Proceedings of KDD

Cup and Workshop 2007.

[13] “Nvidia CEO bets big on deep learning and VR”. Venture Beat. April 5, 2016.

[14] “From not working to neural networking”. The Economist.

[15] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep neural

networks for large-vocabulary speech recognition,” Audio, Speech, and Language

Processing, IEEE Transactions on, vol. 20, no. 1, pp. 30–42, 2012.

[16] Cireşan, Dan; Meier, Ueli; Masci, Jonathan; Schmidhuber, Jürgen (August 2012). “Multi-

column deep neural network for traffic sign classification”. Neural Networks. Selected

Papers from IJCNN 2011. 32: 333–338. CiteSeerX 10.1.1.226.8219.

doi:10.1016/j.neunet.2012.02.023. PMID 22386783.

[17] Grubbs, F. E. (February 1969). “Procedures for detecting outlying observations in

samples”. Technometrics. 11 (1): 1–21. doi:10.1080/00401706.1969.10490657. An

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1986Natur.323..533R
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1038%2F323533a0
https://www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-read/#2a1a75f9323f
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1006%2Fjcss.1995.1013
https://www.cs.uic.edu/~liub/KDD-cup-2007/NetflixPrize-description.pdf
https://venturebeat.com/2016/04/05/nvidia-ceo-bets-big-on-deep-learning-and-vr/
https://en.wikipedia.org/wiki/Venture_Beat
https://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not
https://en.wikipedia.org/wiki/The_Economist
https://en.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.226.8219
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.neunet.2012.02.023
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/22386783
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1080%2F00401706.1969.10490657

43

outlying observation, or “outlier,” is one that appears to deviate markedly from other

members of the sample in which it occurs.

[18] Grubbs 1969, p. 1 stating “An outlying observation may be merely an extreme

manifestation of the random variability inherent in the data. ... On the other hand, an

outlying observation may be the result of gross deviation from prescribed experimental

procedure or an error in calculating or recording the numerical value.”

[19] Peirce, Benjamin (May 1877 – May 1878). “On Peirce’s criterion”. Proceedings of the

American Academy of Arts and Sciences. 13: 348–351. doi:10.2307/25138498. JSTOR

25138498.

[20] Rochim, Adian. (2016). Chauvenet’s and Peirce’s Criterion (literature review).

[21] Lily Lin and Paul D Sherman. Cleaning Data the Chauvenet Way. SESUG 2007: The

Proceedings of the SouthEast SAS Users Group, (c):1–11, 2007

[22] Quoted from the Engineering and Statistics Handbook, paragraph 1.3.5.17,

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm

[23] Chalapathy, Raghavendra & Chawla, Sanjay. (2019). Deep Learning for Anomaly

Detection: A Survey. https://arxiv.org/abs/1901.03407 [cs.LG]

[24] Hendrycks, Dan & Mazeika, Mantas & Dietterich, Thomas. (2018). Deep Anomaly

Detection with Outlier Exposure. https://arxiv.org/abs/1812.04606 [cs.LG]

[25] Aderemi O Adewumi and Andronicus A Akinyelu. A survey of machine-learning and

nature-inspired based credit card fraud detection techniques. International Journal of

System Assurance Engineering and Management, 8(2):937–953, 2017.

https://en.wikipedia.org/wiki/Outlier#CITEREFGrubbs1969
https://en.wikipedia.org/wiki/Benjamin_Peirce
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2307%2F25138498
https://en.wikipedia.org/wiki/JSTOR_(identifier)
https://www.jstor.org/stable/25138498
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
https://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1812.04606

44

[26] Donghwoon Kwon, Hyunjoo Kim, Jinoh Kim, Sang C Suh, Ikkyun Kim, and Kuinam J

Kim. A survey of deep learning-based network anomaly detection. Cluster Computing,

pages 1–13, 2017.

[27] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,

Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van

Ginneken, and Clara I Sanchez. A survey on ´ deep learning in medical image analysis.

Medical image analysis, 42:60–88, 2017.

[28] Almalki, Sami. (2016). Integrating Quantitative and Qualitative Data in Mixed Methods

Research—Challenges and Benefits. Journal of Education and Learning. 5. 288.

10.5539/jel.v5n3p288.

[29] Gosain, Anjana & Bhugra, Maneela. (2013). A comprehensive survey of association rules

on quantitative data in data mining. 2013 IEEE Conference on Information and

Communication Technologies, ICT 2013. 1003-1008. 10.1109/CICT.2013.6558244.

[30] Singh, Karanjit & Upadhyaya, Shuchita. (2012). Outlier Detection: Applications And

Techniques. International Journal of Computer Science Issues. 9.

[31] A. Ghasemian, H. Hosseinmardi and A. Clauset, “Evaluating Overfit and Underfit in

Models of Network Community Structure,” in IEEE Transactions on Knowledge and

Data Engineering, doi: 10.1109/TKDE.2019.2911585.

[32] Chollet, F., & others. (2015). Keras. https://keras.io.

[33] Colaboratory – Google. (2018). Retrieved from

https://research.google.com/colaboratory/faq.html

[34] R. A. Fisher (1936). “The use of multiple measurements in taxonomic problems”. Annals

of Eugenics. 7 (2): 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x. hdl:2440/15227.

https://keras.io/

45

[35] Dua, D., & Graff, C.. (2017). UCI Machine Learning Repository.

[36] de Sousa, G. R. (2017). Haberman’s Survival Data Set. Retrieved from

https://www.kaggle.com/gilsousa/habermans-survival-data-set

[37] P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by

data mining from physiochemical properties. In Decision Support Systems, Elsevier,

47(4):547-553, 2009.

[38] Red Wine Quality. (2017, November 27). Retrieved from

https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009

https://www.kaggle.com/gilsousa/habermans-survival-data-set

