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ABSTRACT

Mechanical microenvironment of cancerous tumors plays an important role in the growth,
metastasis and treatment of the tumors. Elevated interstitial fluid pressure (IFP) is an impor-
tant component of the mechanical microenvironment of the tumor and a mechanopathological
parameter of great clinical significance. Interstitial and vascular permeabilities are two other
mechanopathological parameters of soft tissues that are clinically relevant and can provide use-
ful information for cancer diagnosis and prognosis. There are a few invasive techniques that can
measure | FP and the interstitial and vascular permeabilities in tissues but no non invasive imaging
techniques that can assess or quantify them. In this dissertation, | propose novel, non invasive
techniques based on ultrasound poroelastography, which can image these mechanopathol ogical
parameters in cancersin vivo. To achieve the godl, | developed analytical models, novel strain es-
timation techniques and reconstruction method for estimating the Young’'s modulus and Poisson’s
ratio of tumors and normal tissues. | applied my techniques on a few treated and untreated mice
in asmall in vivo study. The reconstructed IFP, interstitial permeability and vascular permeabil-
ity were found to increase in untreated tumors with time, whereas to decrease or remain almost
samein treated tumors with time. These results correlate with the results available in the literature.
Based on the importance of the IFP, interstitial and vascular permeability in diagnosis, prognosis
and treatment of cancers, the proposed methodology may keep important impact in quantitative

cancer imaging.
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NOMENCLATURE

E, Young's modulus of background

E; Young's modulus of inclusion

Hap aggregate modulus of background

Ha; aggregate modulus of inclusion

Uy Poisson’s ratio of background

v Poisson’sratio of inclusion

Ky interstitial permeability of background

k; interstitial permeability of inclusion

Xb microfiltration coefficient of background
Xi microfiltration coefficient of inclusion

Py fluid pressure inside background

p; fluid pressure inside inclusion

Cy gel diffusion constant of background

C; gel diffusion constant of inclusion

o7 volumetric weight of the pore fluid

J, Bessel function of first kind of order n

l, modified Bessel function of first kind of order n
Y, Bessel function of second kind of order n
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(A) B-mode image of the in vivo experimental data for mouse 2. Axial strain
and EPR elastograms estimated from the in vivo experimental RF data by CM are
shownin (Al) and (A2) for mouse 2. Axia strain and EPR elastograms estimated
by AM and DPHS from the same data are shown in (B1) and (B2) and (C1) and
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EPR elastograms are from used gel pad inthe experiment. ..............cooovinenn.

Four steps of Eshelby’s virtual experiment to reach the solution. Here background
isalinear elastic solid of volume V' and surface S. The inclusion is also alinear
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4.6 B-modeimages of untreated mouse #1 at three time points (week 1, week 2, week
3) are shown in (A1), (B1) and (C1). Reconstructed YM and PR distributions at
the same time points are shown in (A2), (B2) and (C2), and (A3), (B3) and (C3),
respectively. B-mode images of untreated mouse #2 at three time points (week 1,
week 2, week 3) are shown in (A4), (B4) and (C4). Reconstructed YM and PR
distributions at the same time points are shown in (A5), (B5) and (C5), and (A6),
(B6) and (C6), respectively. B-mode images of untreated mouse #3 at three time
points (week 1, week 2, week 3) are shown in (A7), (B7) and (C7). YM and PR
distributions at the same time points are shown in (A8), (B8) and (C8), and (A9),
(B9) and (C9), respectively. The YMs for the three cases increase from week 1
to week 3. More specificaly, the YMs for the shown untreated mice are below
50 kPain the first week, around 80 kPa in the second week and more than 90 kPa
in the third week. These results indicate the increasing hardening of the tumor as
the cancer progresses. The PRs do not change significantly at the three time points
G52 1R TS 125

4.7 B-mode images of treated mouse #1 at three time points (week 1, week 2, week
3) are shown in (A1), (B1) and (C1). Reconstructed YM and PR distributions at
the same time points are shown in (A2), (B2) and (C2), and (A3), (B3) and (C3),
respectively. B-mode images of treated mouse #2 at three time points (week 1,
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and (A9), (B9) and (C9), respectively. The YMs for these treated mice are around
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the YM values of the treated mice are significantly lower than that of the untreated
mice, whereasthe PR values of the treated mice are higher than that of the untreated
ones. The reduction/non-increment of stiffness of the treated tumors may be asign
of the efficacy of the treatment in controlling the growth of the cancer. ............... 126

4.8 (Al) Mean YM values for the treated and untreated mice at week 1, week 2 and
week 3. (A2) Mean PR valuesfor the treated and untreated mice at week 1, week 2
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1. INTRODUCTION

1.1 Background of ultrasound elastography

Ultrasonography is a widely used imaging technique for its ease of use, real-time capability,
portability and low-cost in comparison to other imaging modalities available such as MRI, CT
etc [1]. Based on the propagation of ultrasound waves inside tissues, this imaging technique can
reconstruct the morphology of human organs. However, this modality does not provide quantitative
estimates of the mechanical properties of tissue, which are important in diagnosis of different
diseases such as cancer.

Ultrasound el astography isan imaging modality used for assessing the mechanical properties of
biological tissuesin numerousclinical applications[2-5]. Thismethodology originated inthe early
1990s [2] and, over the past few decades, different elastographic techniques have been devel oped.
Theseinclude both quasi-static el astography and dynamic elastography techniques, which typically
rely on shear wave propagation [1].

In quasi-static elastography, the local strains experienced by a tissue due to an external quasi-
static compression are imaged with the intent of obtaining information about the tissues pathol-
ogy [2,3]. Quasi-static ultrasound has the advantage of being inexpensive, portable and easily
implementable in diagnostic ultrasound systems. This imaging modality is being widely used for
diagnosisand prognosis of different diseases such as breast cancer, prostate cancer and others[6,7].

In dynamic elastography, a time-varying force is applied to the tissue, which can be either a
short transient mechanical force or an oscillatory force with fixed frequency. The time-varying
mechanical force creates either acompressional wave, which isvery fast (~ 1500 ms™!) or ashear
wave, whichisrelatively slow (1 —50 ms™!) in solid materials. The speed of the shear wave can be
determined by computing the displacements of ultrasound speckles in tissue caused by the shear
wave propagation, which in turn can be used to estimate the shear modulus of tissue (1 = pV?),

where p is the density of soft tissue (~ 1000 kgm—3) and V; is the speed of the shear wave. In



shear wave imaging techniques, the tissue is assumed to be incompressible, and the stiffness of the

tissue is estimated in terms of Young's modulus (as 3 times the shear modulus).
1.2 Physicsprinciplesin quasi-static elastography

Quasi-static elastography techniques rely on a common protocol: acquire pre-compressed
radio-frequency (RF) data from a sample, apply a compression to it, record post-compressed
RF data and compute the induced axial and/or lateral strain from the pre-compressed and post-
compressed RF data. An elastography experiment has been shown in Fig. 1.1, where we see that
two sets of data are acquired in elastography experiments. The first set is before applying any
compression to the sample (pre-compression) and the second set is acquired after application com-
pression (post-compression). The induced strain in tissue then can be computed by correlating
these two sets of data. Two elastic mechanical parameters, i.e., Young's modulus and Poisson’s
ratio can be determined from the applied compression and strain data. In the assumption that the
tissue behaves as alinear elastic material, the applied stress o, and induced strain ¢, can be related

using the following equation

oy =FE ¢, (1.1

where F is the Young's modulus of the elastic material. The stress-strain relationship in a linear

elastic material isshownin Fig. 1.2. Theinduced lateral and axial strain can be related as

€x = _V€y7 (12)

where v isthe Poisson’s ratio of the material.
1.3 Physicsprinciplesin ultrasound poroelastography

Poroel astography is an elastographic technique, which is based on the same principles of quasi-
static elastography in terms of wave propagation but focuses on the estimation of the temporal

response of tissues to sustained compressions [8, 9]. In poroelastography, a tissue is modeled as
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Figure 1.2: Stress-strain relationship in elastography

a poroelastic compressible material. Poroelastic materials are solid structures comprised of pores
filled with fluid, and their deformation depends on the applied load as well as the fluid flow inside
the pores. The motivation at the basis of the development of poroelastography is that underlying
pathologies such as cancers and lymphedema affect the established interstitial pressure gradients.
These, in turn, alter the tissue’s fluid content and flow patterns [10, 11] and, consequently, its

poroelastic response to a uniaxial sustained compression. Poroelastography techniques aim at



imaging the time-dependent behavior of the local axial strains and the lateral-to-axial strain ratios,
also referred to as effective Poisson’s ratio (EPR) [8,9,12,13].

A block diagram for a poroleastography experiment is shown in Fig. 1.3. In thisfigure, we see
that in a poroleastography experiment, a number of RF datasets are acquired with time, while the
tissue is under compression. The axial and lateral strains computed from these RF datasets result

in strains, which are time-varying in nature.
The equation for the lateral strain in a uniform cylindrical poroelastic sample can be written
as[14, 15]

0o r Ji(an L)
g0 1—-2v (14’1/)(1721/) JO(anE)_ an L OéiHAk?t
E - —Haxt
E 2 * I-v Z 1ty JO(Oén) - §CYnJI(OZn) exp( a? )CXp( AX )

€rr(r,t) = —

n=1 1—v

(1.3)

where H 4, k and x are the aggregate modulus, interstitial permeability and vascular permeability

of the poroelastic material. Here «,, are the roots of the characteristics function, Cy(z) = Jo(z) —

4(1—2v) Jy(z)

30T 0. We can write the time domain expression of the axial strain as[14, 15]

Jo(a,) — L=2v Iulem) 2 H skt
_ o(an) v o exp(— A oxp(— Haxt) |-
oJo(an) — SanJi(an) @

€.x(t) = — %[1—1—2(1—0—1/)2

n=1

(1.4)

From egs. (1.3) and (1.4), we see that the steady state behavior of axial and lateral strainsin
poroelastic sample depends on the Young's modulus and Poisson’s ratio of the sample. On the
other hand, the temporal behavior of lateral and axial strainsin poroelastic material depends on the
interstitial and vascular permeabilities of the sample along with Young's modulus and Poisson’s
ratio. This allows us to estimate all the four mechanical properties (Young's modulus, Poisson’s
ratio, interstitial permeability and vascular permeability) of a poroelastic sample from a poroelas-

tography experiment.
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Figure 1.3: Poroelastography experiment

1.4 Importance of mechanopathological parameters

The mechanical micro environment of the soft tissue tumor plays an important role in its
growth, invasion and malignancy [16-19]. The interstitial fluid pressure (IFP) and solid stress are
two main components of the mechanical micro environment of the tumor [20]. The presence of |FP
inside cancer tumor was proven three decades ago, and the role of IFP in cancer progression and
treatment has been studied extensively both theoretically and experimentally [21-23]. The proof
of the existence of solid stressinside the tumor isrelatively recent and has come from the discovery
that the blood and lymphatic vessels inside the tumor are mechanically compressed [24—-26].

When a solid tumor initially grows, it makes use of existing vasculature, but further of its
growth requires angiogenesis, i.e., formation of new blood vessels. These newly formed blood
vessels are leaky, highly irregular and tortuous [27, 28]. This increases the vascular permeability
of the tumor and decreases its perfusion. The uncontrolled proliferation of cancer cells, increment

of collagen increase the resistance of fluid flow in the interstitium of the tumor, which in turn



decreases the interstitial permeability. The proliferating cells in the growing tumor increases the
microvascular pressure. The ill-conditioned lymphatic system cannot allow the drainage of fluid
and thus reduces fluid movement through the interstitium. All these phenomena causes the ele-
vation of the interstitial fluid pressure in cancer tumors in comparison to the normal tissues [27].
Normally, in experimental models of tumors, the IFP is assumed to be constant along the whole
radius of the tumor and zero at the periphery of the tumor [27]. However, in clinical studies, |IFP
has been found heterogeneous across the radius of the tumor [29]. The mechanopatholgy of a
tumor isshown in Fig. 1.4.

High IFP has been found to be a significant therapeutic problem in several experimental and
clinical studies [30, 31]. First of al, high elevated IFP can cause serious obstacle to success of
chemotherapy, immunotherapy through causing low and hetergeneous uptake of chemical thera-
peutic agents [32, 33]. Secondly, interstitial hypertension caused by the elevated IFP can cause
failure to radiation therapy, which has been shown in severa studies [34,35]. In these studies, the
high IFP has been connected to the poor radiocurability by both hypoxia-dependent and hypoxia
independent mechanisms. Thirdly, the metastatic spread of the cancer tumor can be induced by
the high elevated IFP. The pulmonary and lymph node metastases have been shown connected to
the IFP of the cancer tumor in mice bearing melanoma and cervical carcinoma xenografts [ 36, 37].
Lastly, the elevated IFP can be an independent prognostic parameter for some cases like advanced
cervical carcinoma, where the conventional prognostic factors, such as tumor size, stage, and
lymph node status failed to do so [29, 38, 39].

Theinterstitial and vascular permeabilities of cancer tumor are reported to be important factors
for drug delivery inside the tumor. The values of the convection and consolidation time of the
drug molecules depend on the vascular and interstitial permeabilities inside the tumor [40]. The
values of the permeabilities are also important for determining the treatment type to be used. The
vascular normalization technique is more effective in highly permeable tumor whereas the stress

normalization technique is more effective in less permeable tumors.
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1.5 Previous methodsfor estimation of mechanopathological parameters

There are severa invasive methods to estimate the IFP in cancer tumor: transducer-tipped
catheter and a precision glide needle [41], wick catheter [42—44], modified wick technique (wick-
in-needle technique) [45, 46], servo-micropipette [47] and subcutaneous capsule implantation for
4 — 6 weeks [48] etc. The most popular of these techniques are the wick and needle and micro-
puncture methods, which only measure the IFP in discrete locations inside the tumor [41, 49].
Currently, there is no invasive method available for estimation of the IFV inside the tumor [50].

A noninvasive imaging method for assessment of the IFP and IFV of tumors can be solution to
the limitations of the invasive methods. The possibility of using dynamic contrast-enhanced MRI
(DCE-MRI) has been explored in a limited number of studies [51-54]. But the values obtained
from these studies have been found to have weak or no correlation with the actual values [52, 53,

55].



There are afew invasive and non invasive techniques that can image the interstitial and vascu-
lar permeabilities. Among the invasive ones, the methods proposed in [56-60] are the prominent
ones. Swab et al. [58] used glycosaminoglycan content of tissue to measure its interstitial perme-
ability, whereas Netti et al. used the confined compression to estimate the interstitial permeability
of the tumor tissues [59]. The ‘Miles assay’ is the classical invasive technique for measuring the
vascular permeability [56]. In this technique, the leakage of ‘visible dye’ from the vasculature to
the normal tissuesis estimated spectrophotometrically, by taking the relative vascular permeability
as ratio of extravasated versus intravascular dye. The cannulation of a single microvessel with a
micropipette is another prominent invasive technique to measure the vascular permeability, which
involves the perfusion of capillaries through amicro pipette with a solution of known composition
in which a few human red blood cells are suspended [57]. The techniques proposed in [61-64]
are the important non invasive ones for estimating the vascular permeability. However, these tech-
niques are contrast agent based and requires long time, heavy computation and time consuming

pre-processing of the sample.
1.6 Objective of the dissertation

The main objective of this dissertation is to propose a technique based on ultrasound poroel as-
tography, which is non-invasive and can accurately map cancer mechanopathological parameters,
i.e., IFP, interstitial permeability and vascular permeability inside the tumor. To determine IFP
and the interstitial and vascular permeability inside the tumor, knowledge of Young’'s modulus and
Poisson’s ratio of the tumor is necessary [13]. In this dissertation, we propose a three dimensional
technique to reconstruct the Young's modulus and Poisson’s ratio of tumor accurately. We also
propose a new technique for estimating both the axial and lateral strains efficiently and with high
accuracy, which are required to estimate all these mechanical parameters from the ultrasound elas-
tography data. To validate our methods, we design a novel finite element model of the tumors
considering all the mechanical parameters and IFP. Finally, animal cancer data are collected and

analyzed to prove the feasibility of the methods in vivo.



1.7 Overview of the dissertation

This dissertation is organized as follows. In Section 2, we focus on the analytical models
of poroelastic samples containing inclusions of cylindrical and spherical shapes. The analytical
models have been developed for both stress relaxation and creep experiments. In Section 3, we
describe the methods for accurate estimation of lateral strain from a poroelastography experiment.
In Section 4, a novel method for estimation of Young's modulus and Poisson’s ratio of tumors
embedded inside normal tissues is described. The finite element model of tumors is described in
Section 5. The estimation procedure of the | FP has been described in Section 6. Section 7 presents

concluding remarks.



2. ANALYTICAL MODEL OF ELASTOGRAPHIC PARAMETERS IN CANCERS 1234

2.1 Past related work

The mechanical behavior of biological tissues under small strain compression can be model ed
using poroelastic models [13, 65, 66]. Poroelastic materials can be described using biphasic theo-
ries, which take into consideration the coupling of interstitial fluid flow and solid matrix deforma-
tion [67—70]. When aporoelastic material is subjected to stress relaxation, during the compression
phase, fluid exudation causes the stress to rise above the equilibrium value. 1n the relaxation phase,
no fluid exudation occurs and the internal fluid relocates inside the sample [71]. The stress relax-
ation occurs through a diffusion mechanism also referred to as "gel diffusion”, which controls the
displacement of the solid matrix [14]. The first work reporting theoretical developments on the
stress relaxation analysis of poroelastic materials can be found in [69], where expressions of the
deformation, strain and fluid pressure fields were determined. Based on this theory, Armstrong et
al. [14] developed a complete set of analytic expressions for a uniform cylindrical sample com-
pressed from the top and the bottom with two frictionless plates.

The set of expressionsfor the axial and volumetric strains in ahomogeneous cylindrical sample
under constant compression (both for a constant displacement and for a constant pressure) is first
developed by Armstrong et a. [14]. In this work, the authors reported that, in a homogeneous
cylindrical sample subjected to a creep compression, the rate of fluid exudation controls the rate of

the creep. Immediately after compression, the sample behaves as a nearly incompressible material

lidam, M.T., Chaudhry, A., Unnikrishnan, G., Reddy, JN. and Righetti, R., 2018. An anaytical poroelastic
model for ultrasound elastography imaging of tumors. Physicsin Medicine & Biology, 63(2), p.025031, ©Institute of
Physics and Engineering in Medicine. Reproduced with permission. All rights reserved.

2Reprinted with permission from “An analytical poroelastic model of a non-homogeneous medium under creep
compression for ultrasound poroel astography applications-Part 1" by Islam, M.T., Reddy, J.N. and Righetti, R., 2018.
Journal of biomechanical engineering, doi:10.1115/1.4040603, ©2018 by ASME.

3Reprinted with permission from “An analytical poroelastic model of a non-homogeneous medium under creep
compression for ultrasound poroelastography applications-Part 11" by Ilam, M.T., Reddy, J.N. and Righetti, R., 2018.
Journal of biomechanical engineering, doi:10.1115/1.4040604, ©2018 by ASME.

“Reprinted with permission from “An analytical model of tumors with higher permeability than surrounding tis-
sues for ultrasound elastography imaging" by Islam, M.T., Chaudhry, A., Unnikrishnan, G., Reddy, J. and Righetti,
R., 2018. Journal of Engineering and Science in Medical Diagnostics and Therapy, 1(3), p.031006031006, ©2018 by
ASME.
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with no change in volume, as the fluid cannot instantaneously move out of the material. The
transient phase of the response of the material depends on the interstitial fluid flow through the
solid matrix. At equilibrium, internal fluid flow ceases and the sample behaves as alinearly elastic
solid. While this work marks an important milestone toward the understanding of the mechanical
behavior of tissues that behave as poroelastic materials, it is limited to homogeneous samples of
known geometry.

Thefirst exemplary work on modeling the elastic behavior of an inclusion inside another elastic
medium can be found in [72]. In this seminal work, the author derived the formulations for the
strains inside the elastic inclusion dependently on the geometry of the inclusion and Poisson’s
ratio of the background. For poroelastic materials, Rice et al. [73] reported the displacements,
strains and fluid pressure inside a poroel astic inclusion embedded in a poroelastic material. Later,
the same group published several works dealing with the determination of the shear modulus of
cylindrical and spherical poroelastic inclusions inside another poroelastic material [74, 75]. In
these studies, the mathematical formulation is given in the Laplace domain, and no closed form
analytical solutions are reported in the space and time domains. Additional work on the response
of an inclusion in a porous medium is reported in [76—78]. The behavior of two poroelastic layers
has been analyzed in [ 79], where the authors obtained analytical formulations for the displacement
and fluid pressure fields at the contact of two poroelastic materials.

Mathematical modeling of abnormal tissues such as tumor tissues and cancers has been of
interest to scientists and engineers for the last three decades [18, 21-23, 40, 50, 58, 59, 80-83].
Several models to depict the biomechanical behavior of tumors have been developed. Previous
studiesincorporate fluid transport mechanismsin theinterstitial space[21,84-86]. Growth models,
which account for residual stress of the solid due to volumetric expansion, have also been reported
[87-89]. In [21-23], the authors used a poroelastic model to describe the stress, strains and fluid
pressure behavior of tumors. However, their developments refer only to residual fluid pressure and
stress inside the tumor, and no analysis has been reported for applied stress or strain.

Tumors have often been modeled as cylindrical or circular inclusions inside a uniform back-
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ground [18, 21, 80, 90-92]. Given the fluid transport mechanisms occurring in tissues, a cancer
could be more realistically modeled as a poroelastic inclusion embedded inside another poroelas-
tic material [18, 80,86]. To our knowledge, however, there is no complete work on the determi-
nation of afull set of analytical expressions for the displacements, strains and fluid pressure in a
poroelastic inclusion embedded in a poroelastic background subjected to an external applied strain
or stress. In [15, 93], we develop a cylindrical model of a tumor and present a complete set of
analytical solutions for this model. These analytical expressions can be helpful to understand the
inter-dependence of displacements, strains and fluid pressure to different poroelastic mechanical
parameters. In the literature, a wide range of measured and estimated values of tumor interstitial
permeability has been reported. In many cases the tumor has been considered to be less permeable
than the normal tissue [16, 71, 94] and in many other cases the tumor has been considered to be
more permeable than the normal tissue [18, 21, 50, 58, 59, 80]. Since both these cases are equally
important for applications in cancer imaging and treatment, we have treated the two cases sepa-
rately. Additionally, using a cylindrical model significantly simplifies the analysis because of the
radial symmetry and can be used in the future as the foundation for poroelastic models involving

more complex geometries.
2.2 Poroelastic samplewith cylindrical inclusion in creep experiment
2.21 When inclusion isless permeablethan the background

The poroelastic sample containing an inclusion used for the analysis reported in this paper is
shown in Fig. 2.1. For convenience, the sample has been assumed to have cylindrical shape, and
cylindrical polar coordinates are used throughout the paper. The radia direction is along the r
direction and the circumferential direction is aong the angle 6. The experimental setup that the
model refersto is shown in Fig. 2.2. The cylindrical sample is compressed from the top and the
bottom side is fixed. Two frictionless compressor plates are used for holding up the sample and
exert compression upon it.

The first basic equation for cylindrical symmetric poroelasticity is the continuity equation of
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Figure 2.1: A cylindrical sample of a poroelastic materia of radius b with a cylindrical inclusion
of radius a. Axia direction isalong the z direction, radial direction isaong the r direction and the
circumferential direction is aong the angle 6.

Load
IR
| | ] <
Compressor
plates
i ] <

Figure 2.2: 2D view of the setup of a creep experiment where a poroelastic sample is compressed
between two compressor plates

the pore fluid which can be written as[13] [95, p. 67]

de ) k 62 19
CE+S—p Xp = =

—(=—=+- 2.1
ot fyf<(57"2+7“(57“)’ (21)

where y isthe average microfiltration coefficient, e isthe volumetric strain, p isthefluid pressure, ¢

isBiot's coefficient, S is the storage coefficient, £ is the coefficient of interstitial permeability and

7 isthevolumetric weight of the porefluid. Here, x = xv+ X, with xy = L{;iv and x, = %
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L, and L,;, are the hydraulic conductivities of capillary and lymphatic walls, respectively. % and
i—i are the surface area to volume ratio of the capillary and lymphatic walls, respectively. Based on
the values of the hydraulic conductivities of capillary and lymphatic walls reported in the literature,
xv >> xr [18]. Thisresultsin y ~ xy,, and the microfiltration coefficient becomes the hydraulic
conductivity of the capillary wall (vascular hydraulic conductivity) multiplied by the surface area
to volumeratio. The volumetric strain e isrelated to the radial displacement « by

ou LY _ 1d(ur)

= < - €2z = €2z
or r r or ’

(2.2)

€

wheree,, isthe axial strain.

The second basic equation is the equation of radial equilibrium, which can be expressed as

5arr Orr — 090
+

- 2.3
or r 0, (2.3)

where o, and oy, are the total stresses in the radial and tangential directions. The total stresses

can be separated into the effective stresses and the pore pressure by

Orr = Ufr + Cpa Ogp = 0-59 + gp (24)

The equation of radial equilibrium then can be written as

5arr + Orr — Opg + C@ —0. (25)
or r or
Using eg. (2.2) and the stress-strain relations
. 2 ou
Opp = — (K — gG)E — 2G5_’r” (26)
oty = — (K — ;G)e — 26, 2.7)
T

where K and G are the bulk modulus and shear modulus, respectively, the equation of equilibrium
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can be expressed in terms of the volumetric strain as

4 _ de op
(K +50) =5

(2.8)

Theconstant Hy = K + %G represents the aggregate modulus of the poroelastic material, which

resultseq. (2.8) in
Oe op
Hy— =(—.
Asr Cér
Integrating eq. (2.9) with respect to r, we obtain
Hae=(p+Q
and

(Cp+Q),

)
I

where () is an integration constant.

(2.9)

(2.10)

(2.11)

The remaining of our analysisisfor incompressible fluid and solid for which { = 1 and S = 0.

The fluid of interest in our analysis is assumed to have a unit specific weight, i.e., vy = 1. Taking

S=0,{=1,v; =1, wecanwriteeq. (2.1) as

Oe€ 5p 1(5_p

E%—xpzk(er ).

ror
Using eg. (2.11), we can write eg. (2.12) as

1 dop 1 6Q B p  16p
Tost T e T RGE o)
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which can also be written as

dp  9Q B
E+§+HAXP—C(

0*p  1dp

m + ;(57“)’ (2.14)

where C' = H k. Let us assume two new variables p’ and ¢’ which can be related to the fluid
pressure p and volumetric strain e asp = p'e Haxt ¢ = ¢'e~Haxt, Based on the relationship of
p" and € with fluid pressure and volumetric strain, p’ and ¢ are also fluid pressure and volumetric
strain but in a different time coordinate system than p and . p’ and ¢’ have same spatial dependen-
ciesas p and e. We also assume that () and )’ are functions of time such that % = e‘HAX“S(;—?.
By performing integration by parts, the relationship between  and )’ can be found. As @ isan
integration constant, the relationship between  and @’ is not important for further development
of the theory. We will denote all the variablesrelated to p’ and ¢’ with those variables with a prime.

Replacing p and e with p’ and ¢/, we get from eq. (2.14)

/

0 0Q’ 2y 16y
_HAXp/e—HAxt + ﬁe—HAxt + e—HAXtQ + HApre—HAxt —_ e—HAXtC <_p + _£>’

ot ot or2  ror
(2.15)
which resultsin
5p/ 6@/ B 52p/ 1 5p/
E-i- 50 _C<W+FE : (2.16)
Taking the Laplace transform of eg. (2.16) and putting it in a compact form, we obtain
vy :s% + s%. (2.17)

2211 Analytical solution inside theinclusion

In the following analysis, we will assume that, at steady state, the fluid pressure inside and

outside the inclusion is zero everywhere. This is a common assumption in problems of this kind
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[96]. Inside the inclusion, the radial displacement is finite and material flow is zero in the center
of the sample. These boundary conditions inside the inclusion can be expressed as

iy, (2.18)
or

r =0, u; = finite, (2.19)

r =0,

where p; and u; arethefluid pressure and the radial displacement inside the inclusion, respectively.
The radial displacement, fluid pressure and total radial stress are continuous at the interface
between the inclusion and the background and the total radial stress outside the inclusion is zero,

i.e.,

T=a,0,, = 0y /2 0,u = wy, i = P, (2.20)

Here, p;, 0., and u; are the fluid pressure, total radial stress and the radial displacement outside

rr,b

the inclusion. ¢’

e

is the total radial stress inside the inclusion. Considering the first boundary

condition, the general solution of eq. (2.17) for the fluid pressure can be written as ( [95] p.69)

Vilr,s) =Aio(&r) — Q'i(s), (2.21)

where ¢2 = sC; and ', is the integration constant inside the inclusion. C; is the product of the
aggregate modulus and interstitial permeability insidetheinclusion, i.e., C; = H 4;k;. By using the
relationship between the volumetric strain and fluid pressure shown in eg. (2.11), the volumetric
strain can be written as

1

~H. Ailo(&ir). (2.22)

e_/i(rv S)

Considering the second boundary condition (eq. (2.19)), we can express the radia displacement
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inside the inclusion as ( [95] p. 69)

- I (&) B € .i(s)r

u'i(r, s) ~H. A; 3 5 (2.23)
The radial strain can be determined by taking the derivative of «; with respect to r as
- . (5?2%(7’,5) . 1 Il(gﬂ’) glzz’i<8>
€ rr,l(h S) - Sr _HAi Az [[O (flr) - fﬂ’ - 9 . (224)

The third boundary condition states that ¢/.., = 0 a r = a, which results in a relationship among

)

the fluid pressure, axia strain and radial displacement as [97]

—p/(a,t) +/\i<duli(ra s) i wy(r, ) du'i(r, s)
dr r

dr

+enils))

+24

r=a

0, (2.25)

r=a

where \; and p; are the first and second Lame parameters of the inclusion material. \; and y; are
related to the Young's modulus and drained Poisson’s ratio of the inclusion as \; = W

and p; = ﬁ For the case of k;, >> k;, eg. (2.25) can be written as [97]

5 _/Z, ' _ K _li
A (SUalrs) i) o Y|, S (2.26)
5T r 7 r=a 5T r=a
Asthe volumetric strain, €/;(r, s) = 5&/2(:,5) + i’i(:vs) + ¢...i(s), eq. (2.26) can also be written as
_ ou’;
)\iﬁli (7’, S) + 2M1m =0. (227)

Using the expressions of the volumetric strain from eg. (2.22) and of radial displacement from

eg. (2.23), we can write eq. (2.27) as

1
H y;

Ni—Ailo(§a) + 24 {LAZ (Io(fi@) - [1(€ia)) - E/Zz’i(s)} =0. (2.28)

H 4 &a 2
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Solving this, we get the value of A; as

11i€ 2. (5)
A = (2.29)
H Il(fl )
(67' ) HAz EL

Inserting the expression of A; from eqg. (2.29) in eg. (2.21), we obtain the expression of the fluid

pressure inside the inclusion as

Pilr ) = ;{(:)h&& Io(Er) — Q') (230)

Using the expression of A; from eqg. (2.29) in eg. (2.23), the radial displacement can be derived as

lz (T S) 1 ,Uze_zz 7,(3) Il(fzr) . Te_/zz,i(s). (231)
Hai Io(&a) — 24280 & 2

For an applied uniaxial constant compression, the relationship between the axial pressure and the
axia strain in the Laplace domain can be written as[14]
_ pi€'-2,i(8) (310 (&) — %ﬂ—hgi“))

0'22i(s) = i st 7 (2.32)
( ) Io(fia) — %—Ilé?)

From eqg. (2.32), the equation for the axial strain can be written as

Ly el (o) — 3 B 22
Ezz,i(s - (3I.(Ea) — 8ui Ni(&ia) ( . )
Mz( O(fla) Ha;  &ia )

In our current problem, the applied axial pressure can be definedaso’, ;(t) = —oo H (t), where
H (t) isthe Heaviside step function. Substituting the expression for the axial strain from eqg. (2.33)
in thefirst part of eq. (2.31), we obtain the radial displacement as
- 1 5zz 2($> [1(&7’) g/zzi<3)

1y s) = _pCeil®) 234
wilr, o) Hai 31y (&a) — 8- 1l&a) g T (234

Ha; &ia
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The inverse Laplace transform of (2.34) can be written as

Jl(ang)
1—2v;  (1+u)(1—21) «— anT a2 H gkt
ul(r,t) = 2 >+ : : . exp(——"—5"
0= 7R O oy o P TP
Li(t)
— 2t 2.35
5 (2.35)

where «,, are the roots of the characteristics function, Co(z) = Jo(z) — %AT@ = 0.

Converting w; to u;, we obtain the expression of the radial displacement inside the inclusion as

] J1 (o %)
ao 1-— 2V1' (]. + 1/1 21/1 an T OL%HAikit

ui(r,t) = —r— + < exp(—
() E; 2 I—v Z - O(Ofn) - gan‘]l(an) ol 2

) exp(—H aixit)

_Eemi(t)

: (2.36)

The equation for the radial strain can be derived by taking the derivative of eg. (2.36) with respect

tor, i.e,
Ji(an?)
oo [1—2v; (14 v)(1—21) > ng) = TanT o2 H pik;t
Errillt) = — 0 + . exp(——2 exp(—H 4;x:t
#(n ) E; 2 1—1/1 z:: (an SonJy (o) p( a2 ) exp(—Haixit)
z22z,1 t
_feeild 2( ) (2.37)

Taking the inverse transform of the Laplace-domain expression of the axial strain from eg. (2.33),

we can write the time domain expression of the axial strain as

[e'e) 7 (Oé ) 1—2v; Jl(an) 2 F[ kt
O-O 0 n 1—v; « « Ailvi
€rpilt) =— — |14+ 2(1 4+ y; E - & exp(—————)exp(—Hxit)|.
,() Ez{ ( )n 1 :ll+lljl 70( n) % n71( n) p( B ) p( AiX )

(2.38)

By integrating eqg. (2.38) with respect to z and using zero displacement (u.. ; = 0) at the bottom of

the sample (z = 0), we obtain the equation for the axial displacement as

00 J(a)_@m 217, Tt
Aol 0\Cn 1—v; " « A
Uszzi(2,t) = — E, [1 +2(1+ ;) Z 1+V7,J (o) = %VanZ(Oén) exp(——2 aQZ ) exp(—Haixit) |-
n=1 v,

(2.39)
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By using the expression of theradial strainfrom eg. (2.37) and of the axial strainfrom eq. (2.38),

the effective Poisson’s ratio (EPR) inside the inclusion can be expressed as

Err,i(ra t)
Tilr,t) = - — 0 (2.40)
1— 21/ (1+4v;)(1—2v;) 00 ‘]O(a"g)_‘]ltic:zinla o2 Haikit
- 1-v; 2 =1 H‘—“’Jo(an)*%ani(an) eXP(_na—2) exp(—Haixit)

J()(Oén)—lim/i Ji(an)
14201+ 1) | ) om
+ ( + Z) Zn:l %Jo(an)*%antjl(an)

exp(—Haixit)

exp(——a%i?ikit)

(2.41)

We will derive the expression for the fluid pressure for two cases: (a) when the radius of
the inclusion is large, i.e., it is comparable to the radius of the overall sample and (b) when the
radius of the inclusion is much smaller than the background, i.e., a << b. In case (a), the fluid
pressure at the boundary of the inclusion can be taken as zero, which resultsin Q’; = —A;Iy(&;a)
in eq. (2.30). Taking theinverse Laplace transform of eq. (2.30) with Q’, = — A;1y(&;a), we obtain

the expression of the fluid pressure inside the inclusion as [96]

Jo(om) — Jo(an k) o2 H g5kt
t _ a _-n
7“ UOZ 14v; JO(Oén %anjl(an) exp( 2

n=1 1—-v;

) exp(—Haixit). (2.42)

In case (b), @’ = 0 in eg. (2.30). Considering Q' = 0 in and taking the inverse Laplace

transform of eq. (2.30), the fluid pressure inside the inclusion can be expressed as

Oé?LHAi kzt
2

Ung)
— 00 Z 1+v,

expl(—
n=1 1-v; JO an anJ1<an> (

) exp(—Haixit)- (2.43)

2.2.1.2 Analytical solution outside the tumor

The equation for the fluid pressure in the outside region of the tumor can be written from

eg. (2.17) as

Ol Loy _ 10wy 10

o2 ror  Cy ot Cp 8t (2.44)
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where p, = pje~Havxet |n [14], it has been reported that, for an applied axial load of Oy =
—ooH(t),att = 0%, thefluid pressurerisesto 3. Thisvalue can be used astheinitial value of the
fluid pressure in the background region of the sample. After application of the axial compression,
the fluid starts to redistribute inside the sample, and a specific fluid pressure p;(a, t) is created at
the interface between the two materials. This can be used as the boundary condition for the fluid
pressure in the background region. The boundary and initial conditions for this problem can then

be written as

p(r, ) =pi(r, t)eaxt r = q t >0, (2.45)
—0.r=b 2.46)

b ) (
:?,t — 0. (2.47)

Our goal isto find asolution of p; that satisfiesthe differential equation eq. (2.44), initial conditions
and boundary conditions expressed by the egs. (2.45)-(2.47). As ()}, is a constant that depends on
initial and boundary conditions, if asolution p; isfound that satisfies the differential equation with
the initial and boundary conditions, (9, becomes zero. Note that the solution to this problem can
be found by finding two independent solutions - one for the initial condition of pj(r, 0) = % with
zerofluid pressure at » = a and r» = b and the other one for the boundary condition at the interface,
py(a,t) = pi(a,t)ef 40Xt with zero initial condition and zero fluid pressure at r = b. For theinitial
condition of p;(r,0) = % with zero fluid pressure at » = a and r = b, the solution can be readily
written as ( [98] p.207)

%0 fur)e P (2.48)
(r,t) = — , .
pb 1 3 Z:l _|_ Jo(ﬁn )

where U (5,,1) = Jo(Bnr)Yo(Bnb) — Yo(Bnr)Jo(5,b). EQ. (2.48) satisfies the condition of zero fluid
pressure at = a, provided that j5,, arethe roots of Cy(z) = Jy(za)Ys(xb) — Yo(za)Jo(xb) = 0.
For the solution of thefluid pressure for boundary condition at theinterface, pj(a, t) = p;(a, t)efaexet,

we refer to ( [98] p.207) and [99]. From ( [98] p.207), we know that, for the following boundary
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and initial conditions

o(r,t) =1,r =a,t >0,
=0,r = b,

=0,t =0, (2.49)

the solution of eg. (2.44) with ¢ as the variable can be written as

o(r;t) =

JO 671 JU ﬁn ) (ﬁnr) *»320171‘/
e, 2.50
Z T3 (Bu) = J3(Bab) € (259
Considering a sum of time decaying exponentia functions i(t) = p;(a, t)efaxvt f(t) at the inter-

face of the inclusion and background, where f(t) is afunction defined as

0,t<0,
f(t) = (251)
1, t >0,

the solution of eg. (2.44) can be determined using the following form of the Duhamel’s integral
[99, 100]

Pho(rt) = /0 5}(;(7)41)(7“,75 —7)dT. (2.52)

T

Use of eg. (2.52) requires that the material properties are independent of the applied strain and
fluid pressure, A(0) = 0 and that the initial fluid pressureis zero. Using eq. (2.50) for ¢(r,t) and
replacing the derivative of h(t) into eg. (2.52) and integrating and considering the boundary con-

ditions stated in egs. (2.45) and (2.46) with zero initial condition, the fluid pressure as a function
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of the radius and time can be found as

2
Ppa(r,t) —GOWZB - Jo(Bna) Jo 5n )ﬁ (ljnr)

I3 (Bna) — J3(Ba
2
0o —(%"C’H-mez'—HAbXb)t _ o BECut
<> 1 Jol@n) x — > ‘ f(t)
o= o dolam) — samdi(am) 820, — (%2 C; + Haxi — Havxo)
1 m (% o
— og Og(T’/b) Z . *]O(a ) e (F2CitHaixi HAbXb)tf(t)‘ (2.53)

log(a/b) &= T2 Jo(am) — 3 1 (0im)

Therefore, the total solution for the fluid pressure outside the inclusion can be written as

7,, t _ UOT{_Z BQJO ﬁna JO 571 )U;’;nr)

J3(Bra) — J3(Bn
i JO(OC ) 6_(0;727271Ci+HAiXi_HAbXb)t _ e BAGH
<0 n x £(#)
A= T do(am) = Semdi(em) 520, — (O;—Q’Scz + Haixi — Hapxs)
log(r/b) Jo(am) —(ﬁC'-I—HA'X'—HAbXb)t
— 0’ 6 a2 1 1A f t
“log<a/b> 2 1+;z To(em) — Sms () )
BQCbt
Z Jo(Bn@)U (Br)e : (2.54)

JO Bna + JO(ﬁn )

Changing to the relevant variable p,,, we obtain

- 6Z<]0 (8na) Jo(B,0)U(Bnr)
5 ;

Pilrf) = ( T2(Bna) — (B

n=1
2
. ol —(Z3CitHaixi—Hapxp)t _ —B2Cyt
c : _ 0(@3) y 62 ~ € f(t)
m=1 1—_VZ<]0(Oém> - §am‘]1 (Oém) Bnob - (a_gmcz + HAlXZ N HAbXb)

ef(zig‘ciJrHAiXi*HAbXb)tf(t)

log(r/b) ¢ Jo(am)
log(a/b) Z_l 2 Jo(m) = 3 0m 1 ()

00 . JO(Bna) (Bnr)e PnCnt —Hapxp
t ST TG hED ) 2
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Simplifying eq. (2.55), we get the expression of the fluid pressure in the background region as

2 Jo(Bna) Jo(B.b)U (B,
b(7,1) —Uoﬂzﬁ 32ﬁ5na A gﬁng :

2
X am .
Jo(aum) e~ (GFCitHaixit _ o—(B7Ch+Hapxs)t

x Cy > X
Z 1+ ZJ (am) — %O‘mjl(am) B2C, — (O;—Q’Q"Cz + Haixi — Havxo)

f(t)

lOg(T’/b) JO(am> —(%C'-I—HA-X-)?E
J— a2 7 1A t
Uolog(a/b) 231 }*l’j Jo(am) — —(szJl((sz)6 /()

0o - J(](/Bna) (ﬁan’)e (B2Cp+H apxp)t
T T B kG

(2.56)

n=1

We will derive the expression of the EPR for the following two different scenarios. (a) when
the radius of theinclusion islarge, i.e,, it is comparable to the radius of the sample, and (b) when
the radius of the inclusion is much smaller than the background, i.e., a << b. In the case (a), for
the solution of the EPR close to the interface between the inclusion and the background, we can

take a genera solution of the radial displacement in the background region as [101]
up(r, ) = rémp(r,t) + Dy(t). (2.57)
Taking the total radia stressin the background region (a < r < b) as zero, we can write [14]
—pp(r,t) + /\b(%%(rub(r, 1) 4 €22p(r, 1)) + 2up€rrp(r, 1) =0, a <1 <b. (2.58)

If we substitute eg. (2.57) in the equation of the radial stressin (2.58) for a < r < b, we obtain the

expression of the radial strain in the background region as

11—y Dy(t
pb(r 1) — Up€rzp(r,t) — 1 bl )

Errb (Ta t) (259)

Ab
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Here, we used the following relationship

10 1, ouy(r,t)
;g(mb(%t))—r(r S

=2€,4(7, ) +

+ uy(r, 1))

Dyt

(2.60)
"

Imposing the condition of continuous displacement at = a, i.e., u;(a,t) = uy(a, t), we get from

eq. (2.57)

1-— D
ui<a» t) = ( prb(a7 t) — Upzzp — W b(t)>a + Db(t)7 (261)
H
which resultsin
1 11—y 1
Dy(t) = ayb — 1( T po(a,t) — vpes,p(a,t) — a%‘(%ﬂ)- (2.62)

The final expression for the radial strain outside the inclusion can be written from eqg. (2.59) as

1—I/b

Err,b(ra t) =

Vyp — 1)7’ HAb

av, 1 -y 1
” Do(7,t) — Vperp(r, t) — ( ° ( bpb(a,t) — UpEsapla,t) — Eui(aa t))

(2.63)

Asthe axial strain close to the interface is mostly controlled by the axial strain induced inside the
inclusion [101], the axia strain outside the inclusion but close to the interface can be approximated
by eg. (2.38).

In this case, the fluid pressure outside the inclusion is very small , i.e, ;::pb(r, t) <<

vpe2 (1, ). Therefore, the expression for the EPR can be written as

Wy(r,t) = " (r,1) = vy —) ( + ;t)u( t)). (2.64)

€z22,b (Vb -1 aezz7b(

In the case (b), when the inclusion is small in comparison to the sample size, we can determine

the EPR in the background region far away from the interface. In this case, the radial strain can be
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written from [97] as

1-— 2Vb (o))
E, po(r,t) + W (2.65)

err,b(ra t) =

The axial strain can be written from [97] as

622,1)(7“, t) = err,b(ra t) - (1 + Vb)z,_(;- (266)

By integrating eq. (2.66) with respect to z and using zero displacement (u..;, = 0) at the bottom

of the sample (» = 0), we obtain the equation for the axial displacement in background region as

Uzz,b(z7 t) =z [@“r,b(h t) - (1 + Vb)za_(;} : (267)

The expression of the EPR can be found by dividing the expression of the radial strain by the axial

strain as

Wy(r,t) = — :’; (r,t)
2z,

_ %pb(r’ t) + Vbz'_(l]: (2 68)
1_E—2b””pb(r, +wg —(L+wm)g

2.2.1.3 \Validation using finite element simulation

The commercial finite element simulation software Abaqus, Dassault Systemes Simulia Corp.,
Providence, RI, USA was used to validate the theory devel oped in thissection. An ‘ effective stress
principleis used in Abagus [102], whereby the total stress acting at a point is assumed to be made
up by the average pressure in the wetting fluid and an * effective stress' on the solid matrix. Both the
inclusion and background of the sample were modeled as a linearly elastic, isotropic, permeable
solid phase fully saturated with fluid.

Four different samples were ssmulated in our study, as explained below. The exact same geom-
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etry and set up shown in Figs. 2.1 and 2.2 were considered. An instantaneous load of 1 kPa was
applied to each sample and then kept constant while the sample was under compression [103]. The
interstitial permeability of the sample was assumed to be independent of the strain and void ratio.
The mesh used to model the sample was CAX4RP with 63,801 elements in the solution plane.
No mesh refinement was applied while meshing the sample geometry in Abagus. We used a 2D
axisymmetric model in Abaqus to represent the 3D cylindrical sample. Asthe used 2D rectangular
geometry isregular without any curvature, mesh refinement was not necessary. A perfect bonding
is assumed between the inclusion and surrounding tissue. A portion of the meshed sample along
with the mesh seeds is shown in Fig. 2.3. The dimension of the solution plane of the sample was
2 cmin radius and 10 cm in height. A zero fluid pressure boundary condition on the right hand
side of the sample was imposed. The specific weight of the fluid was as assumed to be INm~—3 to
match the definitions of interstitial permeability in Abagqus and in the developed model. Under the
assumption of unit specific weight of the pore fluid, the hydraulic conductivity and permeability
become equal [96]. In Abaqus, the microfiltration coefficient (vascular hydraulic conductivity or
permeability) is modeled with the seepage coefficient. The void ratio used in all sampleswas0.4.
The time response of each sample was recorded for 60 second with a 0.3 sampling interval. The
instantaneous load of 1 kPawas applied in the first 0.01 second. This load was then kept constant
for 60.01 s.

The mechanical properties of the samples used in our simulations were chosen following [13,
40]. In &l cases, the Poisson’s ratio was assumed to be 0.49 in the background (normal) tissue
and 0.47 in the inclusion (tumor) [13]. As several values of the Young's modulus for tumors have
been reported in the literature, two cases for the inclusion were considered: a Young's modulus
of 97.02 kPa[13] and a Young's modulus of 40 kPa [104]. The Young's modulus of the normal
tissue was assumed to be in all cases 32.78 kPa [13]. The interstitial permeability of the normal
tissue was always assumed to be 1000 times higher than the interstitial permeability of the tumor
to comply with the assumption of the developed theory. Similar values of interstitial permeability

contrast between tumor and surrounding tissue have been previously considered in the literature
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[16] (supplementary p. 17). Two samples were chosen with an inclusion radius of 4 mm (i.e,,
much smaller than the background) and two samples were chosen with an inclusion radius of
18 mm (i.e., comparable to the background radius). In two samples, the vascular permeability
(hydraulic conductivity) was dominant over the interstitial permeability, while in the other two
samples the interstitial and vascular permeabilities had comparable values. Table 2.1 provides a

detailed description of the samples used for the simulation study.

Table 2.1: Description of the samples used in the ssimulation study

[Sample name | &, (kPa) | £; (kPa) [ ko, ("N —"s—1) [ ("N "5~ [ (P29 D) [xi (P2 ) | v | v [a(mm) [ (mm)]

A 32.78 97.02 3.1x 10~ 11 31x10"™ [1.89x10-%[5.67x 107 [0.49[0.47] 18 20
B 32.78 97.02 3.1x10°8 6.1x10711 | 1.89x 1078 |5.67x 107 |0.49|0.47| 18 20
C 32.78 40 2.1 x 10~11 2.1x1071% [3.33x1077|5.67x10°7|049(047| 4 20
D 32.78 40 3.12 x 1079 3.12x 10712 | 1.80 x 1078 | 5.67 x 10~7 | 0.49 | 0.47 4 20

Figure 2.3: Mesh in selected portion of the 2D rectangular sample plane in Abagus

2.2.1.4 Error analysis

Error analyses were carried out to statistically compare the results obtained using the proposed
theoretical model and the simulation results from Abagus. The following formula was used to

calculate the root mean squared error (RMSE) for the estimation of the effective Poisson’s ratio
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Figure 2.4: EPR at different positions inside the inclusion for sasmple A (A) and sample B (B)
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Figure 2.5: Fluid pressure at different positions inside the inclusion for sample A (A) and sample
B (B)

and fluid pressure.

IS \/ S S ot ) — py(t ) 100 R 259

M xR prf(0+,7’)7

where M isthe total number of time samples considered and R is the number of considered points

along radial direction of the sample. p, isthe EPR/fluid pressure estimated by the analytical model
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Figure 2.6: EPRs at different positions outside the inclusion for sample A (A) and sample B (B)

and p isthe EPR/fluid pressure estimated by the FEM. p (0", r) istheinstantaneous value of p; at
radial position . The RMSE was evaluated on the first 100 samples, i.e., M = 100 and for 4 radial
positions: for the positions inside the inclusion, we used 0.2a, 0.4a, 0.6a, 0.8a for all samples; for
the positions outside the inclusion, we used 1.025a, 1.05a, 1.075a, 1.1a for samples A and B and

3a, 3.3a, 3.6a,4a for samples C and D. Therefore, in eg. (2.69), R=4.
2215 Results

The instantaneous responses of the effective Poisson’s ratio (EPR) and fluid pressure inside
the inclusion can be found using theinitial value theorem in Laplace domain expressions shown in
€gs. (2.34) and (2.30). Taking the derivative of eg. (2.34) with respect to r and dividing by the axial
strain, we can obtain the L aplace domain expression of the EPR. Letting s — oo inthe expression
of sW;(r,s), weget U;(r,0") = Z—:’;(T, t=0") =1[14]. Lettings — ooinsp;(r, s) from (2.30)
with Q; = —A;Iy(;a), we get the instantaneous fluid pressure p;(r,0%) = o¢/3 [14]. Asthe fluid
pressure at outer boundary of the sample is zero, for t > 0s, afluid pressure gradient is created.
The pressure gradient causes fluid exudation and facilitates fluid flow toward the sample boundary.

Asradial stressin the solid matrix of the sample is aong the opposite direction of the fluid flow,

theradial stressin the solid matrix of the sample pulls the tissue back toward the center. Since the
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Figure 2.7: Axia strains at different positions inside and outside the inclusion for sample A (A1)
and sample B (B1). Axial displacements at different positions inside and outside the inclusion for
sample A (A2) and sample B (B2).

interstitial permeability of the background tissue is much higher than the interstitial permeability
of the tissue, the fluid exudes through the outer boundary of the sample in a faster way than the
inclusion. When the solid matrix of the inclusion and background are fully relaxed, the EPRs of
the inclusion and background become the drained Poisson’s ratio of the corresponding materials,
which can be found by letting ¢ — oo in egs. (2.41) and (2.68). Close to the interface of the
inclusion and background, the EPR in background region assumes value higher than the drained

Poisson’s ratio of the background which can be found by letting ¢ — oo in eg. (2.64). The fluid
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Figure 2.8: EPR at different positions inside the inclusion for sasmple C (A) and sample D (B)
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Figure 2.9: Fluid pressure at different positions inside the inclusion for sample C (A) and sample
D (B)

pressure everywhere becomes zero, as expected, and this is demonstrated if we let ¢t — oo in
egs. (2.42) or (2.43) and (2.56).

Next, we show the responses of the inclusion and background in terms of EPR and fluid pres-
sure computed both from the analytical theory and the FEM simulations for different samples. The
EPRs for samples A and B for positions inside the inclusion are shown in Fig. 2.4 (A) and (B).

From these figures, we see that the EPR starts at around 0.5 at ¢t = 0" and goes to the drained
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Figure 2.10: EPR at different positions outside the inclusion for sample C (A) and sample D (B)
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Figure2.11: Fluid pressure at different positions outside the inclusion for sample C (A) and sample

D (B)

Poisson’sratio of the inclusion material at steady state. For sample A, asthe vascular permeability
isdominant over theinterstitial permeability, we seethat thereisno spatial dependence of the EPR.
This is because the vascular walls are distributed throughout the inclusion (asit isthe casein redl
tumors) and, consequently, the fluid flow and pressure are same everywhere inside the inclusion.
In sample B, instead, the EPR varies with the radius. This is due to the fact that, in this sam-

ple, the interstitial permeability is dominant over the vascular permeability. When the interstitial
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Figure2.12: Sample A: (A1), (A2), (A3), (A4), (A5) show the EPR images at different time points
(1s, 2s, 5s, 10s and 15s) as obtained from the developed analytical model; (B1), (B2), (B3), (B4),
(B5) show the corresponding EPR images obtained from the FEM model. Sample B: (C1), (C2),
(C3), (C4), (C5) show the EPR images at different time points (1s, 2s, 5s, 10sand 15s) as obtained
from the developed analytical model; (D1), (D2), (D3), (D4), (D5) show the corresponding EPR
images obtained from the FEM model.
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Figure 2.13: Sample A: (A1), (A2), (A3), (A4), (A5) show the fluid pressure (kPa) at different
time points (1s, 2s, 5s, 10s and 15s) as obtained from the developed analytical model; (B1), (B2),
(B3), (B4), (B5) show the corresponding the fluid pressure (kPa) obtained from the FEM model.
Sample B: (C1), (C2), (C3), (C4), (C5) show the fluid pressure (kPa) at different time points (1s,
2s, 5s, 10s and 15s) as obtained from the developed anaytical model; (D1), (D2), (D3), (D4), (D5)
show the corresponding fluid pressure (kPa) obtained from the FEM model.

permeability becomes dominant over the vascular permeability, the fluid needs to cross a certain

path to exude, which gives rise to non-uniformly distributed fluid flow and pressure fields inside
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the inclusion. This makes the EPR spatialy dependent as the EPR depends on the fluid pressure
inside the inclusion. Thisresult isin agreement with previous literature [13]. The fluid pressures
for samples A and B are shown in Fig. 2.5 (A) and (B) for positions inside the inclusion. The
fluid pressure starts at a value close to 0(/3 a ¢t = 0" and goes to zero at steady state. These
observations are consistent with the results reported in [14]. Similar to the EPR, the fluid pressure
inside theinclusion is spatially constant in sample A and spatially variant in sample B.

The EPRs for samples A and B for positions outside the inclusion are shown in Fig. 2.6 (A)
and (B). From these figures, we see that the EPRs start at a lower value than the Poisson’s ratio
of the background at ¢ = 0" and reach at a higher value than the drained Poisson’s ratio of the
background at steady state. The fluid pressure outside the inclusion in samples A and B iscloseto
zero as these samples have an inclusion of radius comparable to the radius of the overall sample.

The axial strain and displacement inside and outside the inclusion for samples A and B are
shown in Fig. 2.7. We see that the axial strain and displacements at different radius values in
both samples, inside and outside the inclusion, are aimost identical and amost time-invariant. It
should be noted that the axial and lateral shear strains are zero for the analyzed cases according to
both the analytical model and FEM. Axial and lateral shear strains from the analytical model can
be computed by taking derivatives of egs. (2.39) and (2.67) with respect to r and egs. (2.36) and
(2.57) with respect to z, respectively, inside and outside the inclusion.

Samples C and D have inclusions of much smaller radii than samples A and B. The EPR
and fluid pressure at different locations inside the inclusion are shown in Figs. 2.8 and 2.9. Asfor
samples A and B, the EPR starts at avalue closeto 0.5 and goesto the drained Poisson’sratio of the
inclusion in samples C and D. On the other hand, the fluid pressure starts at avalue closeto % and
goesto zero at steady state. In sample C, the vascular permeability is dominant over the interstitial
permeability, and the EPR and fluid pressure have no spatial variance inside the inclusion. EPR
and fluid pressure demonstrate a spatial dependence in the case of sample D, where the interstitial
permeability and vascular permeability are of comparable values.

The EPR and the fluid pressure outside theinclusion in samples C and D are showninFigs. 2.10
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and 2.11. Asthe radius of the tumor in sample C and D is smaller than that of sample A and B,
the fluid pressure should have higher values than that of sample A and B. Thisis seen for sample
C. But since the interstitial permeability in sample D is very high, the fluid exudes within a few
seconds. Consequently, the fluid pressure and EPR go to the steady state within a few seconds as
indicated in Figs. 2.10 (B) and 2.11 (B).

The time evolution of the EPR in samples A and B is shown in Fig. 2.12. From these images,
we see that, for all the samples, at timet = 0", the EPR in the inclusion remains 0.5. However, in
the background, the EPR is not 0.5 rather it has a value lower than 0.5. The EPR in the inclusion
gradually decreases from 0.5 with time and reaches the drained Poisson’s ratio v; of the inclusion
material at very largetime. Onthe other hand, in the background, the EPR starts at lower value than
the drained Poisson’s ratio of the background and, with time, increases to the drained Poisson’s
ratio of the background material, v, in the background region far from the interface and even to a
higher value than the drained Poisson’s ratio close to the interface.

Fig. 2.13 shows the fluid pressure image at different time points for samples A and B. From
these images, we see that, at time ¢ = 07, the fluid pressure remains higher than ¢, /3 in theinclu-
sion, while it isalmost zero in the background because of the high permeability of the background
and quick exudation of the fluid along the right boundary of the sample. The material properties of
the inclusion affect the time taken for the fluid pressure to go to the steady state value (i.e., zero).

Table 2.2 summarizes the results of the error analyses. From this table, we observe that: with
respect to the EPR, the error is below 0.29% in the inclusion and below 0.53% in the background;
with respect to the fluid pressure, the error is below 1.85% in the inclusion while it becomes larger
outside the inclusion, but still below 2.11%. These results demonstrate the correctness of the

proposed theoretical model with respect to an established FEM software.

38



Table 2.2: Root mean squared error computed between the results obtained from the analytical
model and the corresponding FEM results

Sample name Errorin EPR es- | ErrorinEPR es- | Error in fluid | Error in fluid
timation inside | timation outside | pressure  esti- | pressure  esti-
inclusion (%) inclusion (%) mation inside | mation outside

inclusion (%) inclusion (%)

A 0.09 0.45 1.71 NA

B 0.10 0.51 1.64 NA

C 0.02 0.53 1.85 2.11

D 0.29 0.36 151 0.92

2.2.2 When inclusion is more permeable than the background

Following the same reasoning used in first part (inclusion less permeabl e than the background),

we can write the following differential equation for the fluid pressure

L dp 1 4Q 5?p  1dp
Haot | Hy ot =hrls5 o5 2.7
HA5t+HA 5t TP k<(57“2+7~(5r)’ (2.70)
which can also be written as
op  0Q p  16p
ot ot =0z5 -5 2.71
ot * ot + Haxp C((grz T rér)’ (2.71)

where C' = Hak, H, is the aggregate modulus of the poroelastic material. Let us assume that
p = pleaxt ¢ = e~ Haxt, We also assume that () and @’ are functions of time such that
% = e—HAX“Sa—?. By performing integration by parts, the relationship between Q and ' can be
found. As @ is an integration constant and depends on time only, the relationship between ¢ and
@' isnot important for further development of the theory. All the variables related to p’ and ¢’ will
be denoted with a prime. Replacing p and e with p’ and ¢/, we obtain

o Q o, 1o

- P _Haxt —Haxt / —Haxt —Haxt
- H /e Haxt £ e Hax e Hax + H e Haxt — o—Haxty +
AXP T ot * ot AXP ((57’2 r or

), (2.72)
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which resultsin

(5]7/ 5@/ _ 52p/ 1 5p/

E—F ot _C<(57"2 +7"5r ' (2.73)
This equation can be written in terms of the volumetric strain as

o€ 6Q)" 5% 14¢€

5 "ot~ C (57»2 m)’ (274)

where Q" is another constant, which depends on time only. Eq. (2.74) can be written in terms of

the radial strain, circumferential strain (ep,) and axial strain as

0 / / / 5Q” o / / / 1o / / /
E(err + €0 + Ezz) + ot = C(ﬁ(err + €99 + ezz) + ;g(er’r + €99 + 6zz)> . (275)

After taking the integral with respect to r, this equation can be written in terms of the radial

displacement inside the inclusion as [14, 97]

6w 1ou; 1 ou 1 rde...(t) 1 6Q"

or? r or r2 HAzkz ot - HAzkli ot B HAzkz ot ’

(2.76)

We will consider the limiting case where the permeability of the inclusion is much higher than the

permeability of the background, i.e., Z_]Zb << 1[97]. Here the background thickness h = b — a.

Multiplying eq. (2.76) by o’ and neglecting the terms with {72, we obtain

ul 16u. 516
iy 22— 2 () =0, 2.77
or? + ror r2  oOr |:7” or (ruz)} 0 ( )

We can write for the filtration in the background region as

opy)
or’

/ J—
Wypp = — kb

(2.78)

where p;/ is the fluid pressure outside the inclusion associated with p) and €;. For a background

40



of thickness h = b — a, where h << b, the pressure gradient normal to the background is given

by [97]

opy, _ Apy
or  h’

(2.79)

where Ap; = p)(z) — pj(x + h) is the pressure difference between a point at the interface back-

ground/inclusion and a point at external boundary of the sample. Therefore, we can write

k
wy = 2 A, (2.80)

2.2.2.1 Analytical solution inside theinclusion

The solution of eg. (2.77) is given by

wi(r,t) = A(t)r, (2.81)

where A(t) is a function of time only. Taking derivative of eg. (2.81), we find that the radial

strain strain inside inclusion can be written as ¢/

e

(t) = A(t). This shows that under the specified
condition of lower interstitial permeability of inclusion than the background, theradial straininside
the inclusion is uniform.

Using the relationship between the volumetric strain and the fluid pressure [15], we can write
the following equation relating the fluid pressure and radial displacement

0P
or

— ) =o. (2.82)

or? ror  r?

+ Hy; (52% 1oy u’.>

Substituting the expression of the radial displacement from eg. (2.81) in eg. (2.82), wefind that the
fluid pressure inside the inclusion is aso constant with respect to theradius, i.e., p(r,t) = pi(t).

Let us assume that the total radial stress along the radius of the inclusion is zero [50]. This
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resultsin

16 o
) A== (ru) + €. . 2t | — =0. 2.
pz<a7 t) + >\Z ror (TUZ) * GZZ,Z(t):| r=a " fi |: or :|7":a ! ( 83)

Using the zero fluid pressure condition at the outer boundary and the conditions of continuity
of fluid pressure and filtration at the interface between the inclusion and the background, i.e.,

pi(a,t) = py(a,t) and w; ;(a,t) = w,,(a,t), we can write from eq. (2.80)

kb 11 @

%pb (Cl, t) = hp;(a’a t) = w:",i<a7 t) = w;‘,b(a7 t) (284)

For the filtration inside the inclusion, we can write [97]

oui(ryt) -
/ o _ ) 9 0 )
wr,i(a7 t) - ( 5t 2 € 22,1 (t)> T:a- (285)
Using egs. (2.85) and (2.84), we can express %p;(a, t)as
LT L L2 ) (2.86)
h pz (l, - 6t 26 ZZ, T:a- .

Using the expression of p/(a, t) from eq. (2.86), we obtain from eq. (2.83),

k‘ﬁ |:élrr,i<t)a + %é/zz,i (t):| + (QAZ + 2Mi)6/7”7"7i(t) + /\ielzzﬂ'(t) = 0. (287)
b

AS2); + 2p; = 22, dividing eq. (2.87) by 2; + 2y;, we obtain

h(l—uv) |- 1.
% |:€/rr,i(t) + §€/zz,i(t):| + EIMJ‘(t) + sz,zz,i(t) = 0. (288)
1 _ ah(l—u,) .
Teking 7.; = “; ., we can write
. 1. / /
Te| €rrilt) + 56’%7@-(15) + € ri(t) + vi€ ,.i(t) = 0. (2.89)
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The axial normal stress ¢’

22,1

(t) acting on the loading platesis given by [97]

U;z,i(t> . p;(t) 2v; /

HA - HA + 1 — v err,i (t) + 6Zz,i (t) (290)
To get the fluid pressure, we use eg. (2.83), which gives
/ HAi / /
—p;(a,t) + T V,Erm'(t) + Aie,,;(t) = 0. (2.91)

7

Asthefluid pressure does not depend on the radial position, i.e., p;(t) = pi(a,t), thefluid pressure

can be written as

Pi(t) _ 6;’7’,7:(1:) + Vielzz,z‘(t)

= 2.92
HAi 1-— V; ( )
Using eg. (2.92) in eg. (2.90), we get the expression of the axial normal stress as
0.:(t) 1-2y
= L) =€ (1)]. 2.
S I (0 - e 299)
For a creep compression experiment with applied load o, ; = —ooH(t), where H(t) is a
Heaviside step function, eq. (2.93) yields
) P L N (2.94)
i\ = T oy T, il '
If we substitute the expression of axial strain from eqg. (2.94) into eg. (2.89), we obtain
3 . ’ I/Z(l - Vi) o))
—Tei€rri(t) + (1 + l/i)erm»(t) - =0. (2.95)

2 1—2u; Ha

This ordinary differential equation is to be solved subjected to the initial condition of zero volu-
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metric strain, which resultsin

1—1/') (o))
26, (07) + . s(0F) = 8¢, ,(01) — L= %0 2.
Err,z(o )+€ZZ,1(O ) 3Err,7,(0 ) 1_2Vz HAi 0 ( 96)
The solution is given by
1—2I/z‘ t (o))
) = (v - & 2.97
il <UZ+ 3 ol m)) E;’ (290

where

37c;  3ah(l—21)

o0 — - 2.98
o 2(1 + VZ') QEZ]% ( )
Converting to ¢, ;, we obtain the expression of the radial strain inside the inclusion as
1— 2y
€rr,z‘(t) <Vz‘ + 3 v exp (— - HAz‘Xz't)> % (299)

To write eq. (2.99) from eq. (2.97), we have used the fact that €,,.;(c0) = €, ;,(c0) = %22, Using

the expression of the radial strain from eg. (2.99) in eq. (2.81), the lateral displacement inside the

inclusion can be written as

1— 2
Vi . HAZ-Xit)> % (2.100)

wilr,t) = ( + exp (=

o,

Using egs. (2.99) and (2.94), we obtain the expression of the axial strain as

By integrating eg. (2.101) with respect to = and using zero displacement (u..; = 0) at the bottom



of the sample (» = 0), we obtain the equation for the axial displacement as

1— 2y 200

B (2.102)

exp (—

0,0

t
uzz7i(za t) = - (1 - - HAzth)>

Using egs. (2.99) and (2.101), the volumetric strain inside the inclusion for the creep compression

can be expressed as

ei(t) = 2erms(t) + €snilt) = —(1 — 20,) (1 — exp (—: -~ Haxit) - (2.103)

By using the expressions of the radial and axial strainsin eqg. (2.92), the fluid pressure inside the

inclusion can be expressed as

t

Using the expressions of the radial strain from eg. (2.99) and axial strain from eqg. (2.101), the EPR
can be expressed as

o € vi + 2% exp (— == — Hxit)
() = —"2(t) = o .
( ) Ezz,i( ) 1-— % exXp (_7-L - HAzth)

(2.105)

2.2.2.2 Analytical solution outside the inclusion

Thedifferential equation for the fluid pressure outside theinclusion can bewritten from eg. (2.73)

oy Lop, _ 1 op, | 16(Q)

- = 2.106
o2 rér Gy, ot G, ot ( )
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where we have assumed that p, = pje H4x!. The ‘gdl diffusion’ constant C, can be written

as[105]

Cy = Haks,. (2.107)

It has been reported in [14] that, for an applied axia load of o, , = —ooH(t), at = 07, the
fluid pressure rises to 2. This value can be used as the initial value of the fluid pressure in the
background region of the sample. After application of the axial strain, the fluid startsto redistribute
inside the sample, and a specific fluid pressure p;(a, t) is created at the interface between the two
materials. This can be imposed as the boundary condition for the fluid pressure in the background

region. The boundary and initial conditions for this problem can be written as

py(r,t) =pi(r,t)et Xt —a, t >0, (2.108)
=0, r =0, (2.109)
=2 t=0. (2.110)

The solution can be constructed by setting up the following individual solutions for each one of

the conditions and then adding them up:

(Dh1> Pho) =(pi(t)e"4X¢"0), 1 = a, (2.111)
=(0, %), t=0, (2.112)
=(0,0), r =b. (2.113)
If we construct a solution as
Py(r,t) = 1 (1) + P o (1, 1) (2.114)

46



and p;, , and p;, , satisfies eg. (2.106) with @, = 0, the resulting fluid pressure satisfies eq. (2.106)

along with the initial condition and all the boundary conditions.

We introduce the function
U(Br) = Jo(Br)Yo(5b) — Yo(Br)Jo(5b).
This function vanisheswhen r = a, provided that 3 isroot of
Jo(Ba)Yo(Bb) — Yo(Ba)Jo(5b) = 0.

Py @nd py, , can be expressed as[106, p. 634], [107], [98, p. 207], [108, p. 623]

1
) e(_a—HAZ‘XrFHAbXb)t _ o BRCht

B2C, — $ — Haixi + Hanxo |

/ UO 52J0 ﬁna JO ﬁn )U<ﬁn7'
307 Z T2 (Bua) — T2(Bub)

JO ﬁna ) _/BQCt

The total solution can then be written as

% —Haixi+Ha o
) i 3 BB ) T i
b7 3 b £ JE(Bna) — JE(B,b) 5201; 1 HAZXZ i HAbXb

JO ﬁn ) BQCt
Z JO Bn +J0<5n ) ‘

The solution for p,(r, t) can be written as

1 s
r)e S~ HaoxitHapxe)t o~ B30t

wirit) = (= o S B2 Fa) (50

J§ (Bna) — J3(Bn p2Cy, — # — Haixi + Hapxep

n=1

+20
3 Jo(Bna) + Jo(Bab)
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Pnb)

™ i Jo(ﬁna)U(ﬁnr)eﬁ%Ct)e_HAbxbt.
= Jo(bna)

(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)



Simplifying eg. (2.120), we obtain

o t) =~y S > LaTol B BV (o) e o AN et
7 3 — J§(Bua) = J5(Bud)  BIC, - ﬁ — Huixi + Havxo

+@ﬂ- i JO(5na)U(/Bnr)ef(ﬁicb+HAbXb)t

2121
372 Jo(Bua) + Jo(Bd) (2121
Taking thetotal radial stressat a < r < b as zero, we can write
146
—pp(r,t) + /\b(;ﬁ(rub(r, ) + €226(r, 1)) + 2pp€rrp(r, 1) = 0. (2.122)

Following the expression of the radial displacement inside the inclusion as shown in eg. (2.81), we

take a general solution of the radial displacement in the background region as

up(r,t) = reqp(r,t). (2.123)

Following the same derivation used for the radial strain inside the inclusion, we can write the radial

and axial strainsin the background region as

1— 2y 0
€rpp(r, 1) = 5 S pu(r, t) + ybE(; (2.124)
and
00
€x20(r 1) = €rp(rit) = (1 4+ 1) - (2.125)
b

By integrating eq. (2.125) with respect to z and using zero displacement (u..;, = 0) at the bottom

of the sample (» = 0), we obtain the equation for the axial displacement as

uZZ,b(Tv 2, t) =z [Err,b(ra t) - (1 + Vb) 2_(;)} . (2126)
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The expression of the EPR can be found by dividing the expression of the radial strain by the axial

strain as

Uy(r,t) = — 0 (1)

€220

o 17E‘2bl/bpb(7", t) + I/bz,—?7 (2 127)
() e — (L4 1) 3

2.2.2.3 \Validation using finite element simulation

Abaqus has been used to validate the analytical formulations developed in this section. The
sample was compressed from the top and the bottom side was kept static. An instantaneous load of
1 kPawas applied to the sample instantaneously and kept constant thereafter. The permeability of
the sample was assumed to be independent of the strain and void ratio. The mesh used to model the
sample was CAX4RP with 63,801 elements in the solution plane. The dimension of the solution
plane of the sample was 2 cm in radius and 10 cm in height. The zero fluid pressure boundary
condition on the right hand side of the sample was imposed. The time response was recorded
for 60 second in interval time steps of 0.3 s. The total analysis is done in two steps. In the first
step of duration 0.01 second, an instantaneous load of 1 kPais applied. In the second step, the
load is kept constant for 60.01 s. The specific weight of the fluid was as assumed to be INm~3 to
match the definitions of interstitial permeability in Abaqus and in the developed model. Under the
assumption of unit specific weight of the pore fluid, the hydraulic conductivity and permeability
become equal [96]. In Abaqus, the microfiltration coefficient (vascular hydraulic conductivity or
permeability) was modeled with the seepage coefficient. The void ratio used in all samples was
0.4.

The material properties of the three samples A, B and C used in the simulation were chosen
based on previous literature [13, 40]. Some of the properties were then adjusted to create dif-
ferent scenarios, i.e., dominance of vascular permeability (hydraulic conductivity) or interstitial

permeability or to bring the responses within a fixed time scale. The Poisson’s ratio of both the

49



background and inclusion was assumed to be 0.47. The Young's moduli of the inclusion and
background were assumed to be 32.78 kPa and 50 kPa, respectively. In all cases, the interstitial
permeability of the inclusion was assumed to be 1000 times higher than the interstitial permeabil-
ity of the background. In all cases, the radius of the inclusion was assumed to be 18.75 mm. The
properties of the samples are described in Table 2.3.

We note that, in sample A, inside the inclusion, the interstitial permeability is dominant over
the vascular permeability. In sample B, interstitial permeability is comparable to the vascular

permeability. In sample C, the vascular permeability is dominant over the interstitial permeability.
2.2.2.4 Error analysis

Error analyses were carried out to statistically compare the results obtained using the proposed
theoretical model and the simulation results from Abagus. Eq. (2.69) was used to calculate the
RMSE for the estimation of the effective Poisson’s ratio and fluid pressure. For producing the
error values in Table 2.4, we used the first 100 samples, i.e.,, M = 100 and considered 4 radial
positions, i.e., 0.2a, 0.4a, 0.6a, 0.8a inside the inclusion and 1.015a, 1.03a, 1.045a, 1.06a outside

theinclusion for all the samples, which impliesthat R = 4.

Table 2.3: Description of the samples used in current study

[ Samplename [ B, (kPa) [ E; (kPa) [ ky (TN~ Ts™ 1) Tk (mTN"Ts~ 1) Ty, (Pas) ™) [xi (Pas)™ ) [ v [ v [a(mm)[b (mm)]

A 32.78 50 1x 10~ 1T 1x10~8 1.41 x 10~8[6.67 x 10-%]0.47]0.47 | 18.75 20

B 32.78 50 1x10-11 1x 108 1.41 x 10~7 | 6.67 x 107 | 0.47 | 0.47 | 18.75 20

C 32.78 50 1x 1012 1x 1079 1.41 x 1077 | 6.67 x 10~7 | 0.47 | 0.47 | 18.75 20
2.2.25 Results

The instantaneous response of the fluid pressure and the EPR can be found from the developed
formulations. Putting ¢ — 0 in the equation of the fluid pressure in eg. (2.104) and eg. (2.121),
we obtain the fluid pressure inside the inclusion and outside the inclusion as oy /3 a ¢t = 0". The

EPR inside and outside the inclusion at t = 0" can be found from eg. (2.105) and eq. (2.127) as
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0.5 by inserting ¢ — 0. At the steady state, we find the fluid pressure inside and outside the

inclusion as zero if we put t — oo ineg. (2.104) and eg. (2.121). The EPRsin the inclusion and

background region can be found as v; and v, at the steady state by putting ¢ — oo in eqg. (2.105)

and eq. (2.127).
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Figure 2.14: EPR inside the inclusion of sample A (A), sample B (B) and sample C (C)
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Figure 2.15: Fluid pressure inside the inclusion of sample A (A), sample B (B) and sample C (C).
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Figure 2.16: EPRs outside the inclusion of sample A (A), sample B (B) and sample C (C).
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Figure 2.17: Fluid pressure outside theinclusion of sample A (A), sample B (B) and sample C (C).

In this section, evaluations of the developed analytical expressions of the EPR and fluid pres-
sure are provided for the three samples A, B and C with FEM comparison. Fig. 2.14 (A), (B) and
(C) shows the EPR with time at different positionsinside the inclusion for samples A, Band C. In
these figures, we see that at timet = 07, the EPR is 0.5 and goes to the drained Poisson’s ratio
of the material at steady state for all the samples which is consistent with [14]. The time required
for the EPR to go to the steady state differs from sample to sample. For sample A, the EPR goes

to steady state around 10 second. Asin sample A, the effect of interstitial permeability is much
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Figure 2.18: Axial strain (A) and displacement (B) at different positions inside and outside the
inclusion for sample A.
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(B2) (B3) (B4)

0.45 0.46 0.47 0.48 0.49 0.5

Figure 2.19: EPR at different timepointsof 1 s,5 s, 10 sand 15 sfrom devel oped analytical model
areshownin (Al), (A2), (A3), (A4) and from FEM in (B1), (B2), (B3), (B4) for sample A.

stronger than the effect of vascular permeability, this response can be assumed to be the result from

the exudation of the fluid through the interstitium and the fluid flow through vasculatures can be
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Figure 2.20: EPR at different timepointsof 1 s,5 s, 10 sand 15 sfrom devel oped analytical model
areshown in (A1), (A2), (A3), (A4) from FEM in (B1), (B2), (B3), (B4) for sample B and from
developed analytical model in (C1), (C2), (C3), (C4) and from FEM in (D1), (D2), (D3), (D4) for
sample C.

assumed to play insignificant role in determining the tempora behavior of EPR inside the inclu-
sion in sample A. For sample B, we see that the EPR goes to steady state around 6 second, which
is much faster than sample A. This is because in sample B, the effect of interstitial permeability
and vascular permeability are comparable and their impacts add up to dictate the behavior of EPR

inside the tumor. For sample C, the vascular permeability dominates and we see that the EPR goes
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Figure 2.21: Fuid pressures (in kPa) at different time pointsof 1 s, 5 s, 10 sand 15 s from
developed analytical model are shown in (A1), (A2), (A3), (A4) and from FEM in (B1), (B2),
(B3), (B4) for sample A.

to the steady state around 12 s. For all the samples, A, B and C, the EPRs inside the inclusion are
gpatially constant, which corroborate with the results found in [13,97]. Fig. 2.15 (A), (B) and (C)
shows the fluid pressure with time at different positions inside the inclusion for samples A, B and
C. Thefluid pressureis o, /3 at t = 0", which goesto zero at steady state. The temporal response
of the fluid pressure also matches with the temporal behavior of the EPR for all the samples.

Fig. 2.16 (A), (B) and (C) showsthe EPR with time at different positions outside the inclusion.
Attimet = 0", the EPR outside theinclusion is close to 0.5, and goes to the drained Poisson’s ra-
tio of the material at steady state. The EPR outside the inclusion is seen as spatially dependent for
all the samples, whereas we saw that the EPR inside the inclusion is independent of the spatial po-
sition. Thisis because of the zero fluid pressure condition at the periphery of the sample. Fig. 2.17
(A), (B) and (C) showsthe fluid pressure with time at different positions outside theinclusion. The

fluid pressure is less than 0/3 at ¢t = 0%, which goes to zero at large time. The reduced value
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Figure 2.22: Fuid pressures (in kPa) at different time pointsof 1 s, 5 s, 10 sand 15 s from
developed analytical model are shown in (A1), (A2), (A3), (A4) from FEM in (B1), (B2), (B3),
(B4) for sample B and from developed analytical model in (C1), (C2), (C3), (C4) and from FEM
in(D1), (D2), (D3), (D4) for sample C.

of the fluid pressure from o, /3 at t = 0" is because of the additional term in eq. (2.121), which
incorporates the impact of the fluid pressure inside the inclusion region on fluid pressure in the
outside region. The fluid pressure outside the inclusion is also spatially dependent like the EPR
outside the inclusion.

The axial strain and displacement inside and outside the inclusion for sample A are shown in
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Fig. 2.18. Inthisfigure, it isdemonstrated that the axial strain and displacements at different radius
values of the sampleinside and outside theinclusion are ailmost identical and almost time-invariant.
A small deviation between the results from the analytica model and the FEM for the axial strain
and displacement can be observed outside theinclusion. It should be noted that the axial shear and
lateral shear strains are zero (or negligible) both inside and outside the inclusion for the analyzed
cases.

Fig. 2.19 and Fig. 2.20 showsthetime evolution of the EPR for each of the samplesdescribed in
Table 2.3. From these images, we see that for all the samples, at timet = 01, the EPR remains 0.5
in the inclusion and background regions and assumes the value of drained Poisson's ratio at large
time. The time evolution of fluid pressure for analytical model and FEM are plotted for samples
A, B and Cin Fig. 2.21 and Fig. 2.22. The fluid pressure starts at /3 in the inclusion region and
less than /3 in the background region and goes to zero at steady state. The temporal nature of
the EPR and fluid pressure images are dependent on the material properties of the inclusion and
background of the sample.

Table 2.4 summarizes the results of the error analyses. From this table, we observe that, with
respect to the effective Poisson’s ratio, the error is below 0.03% in the inclusion and below 0.46%
in the background. With respect to the fluid pressure, the error is below 0.11% in the inclusion
while it becomes larger outside the inclusion, but still below 0.54%. These results demonstrates

the correctness of the proposed theoretical model with respect to an established FEM software.

Table 2.4: RMSE results

Sample name Errorin EPR es- | ErrorinEPR es- | Error in fluid | Error in  fluid
timation inside | timation outside | pressure  esti- | pressure  esti-
inclusion (%) inclusion (%) mation inside | mation outside

inclusion (%) inclusion (%)

A 0.02 0.43 0.09 0.44

B 0.02 0.46 0.11 0.53

C 0.03 0.45 0.05 0.54
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2.2.3 Poroelastic samplewith cylindrical inclusion in stressrelaxation experiment

2.2.3.1 Wheninclusion isless permeable than the background
The analytical expression for the radial effective Poisson’s ratio inside the inclusion can be

written as[101]

x_Jolan) — 2 {Jo(@ng) - Aonad 4 Jlgjjn>} P H
X exp(—"—;l), (2.128)
a

where ¢, isthe applied strain, «,, aretherootsof .J; (z) — 11:2”1295(]0(:70) =0, Jp and J; arethe Bessel

functions of zeroth and first order. The fluid pressure inside the inclusion can be expressed as

J() CYn ) Oz%HAikZit
MzEOZ () — F(an) exp(———

), (2.129)

where ; isthe shear modulus of the inclusion.

The solution for the fluid pressure outside the inclusion can be written as

Jo(Bna) Jo(Sr n
— i €QT Z OJf (Bna) : ﬁjgwfnﬁ;)

o(

C’ t e*ﬁQCbt

S Jo(0tm) o
" mzzl 1_1yi Jo(am) = ami(om) PG f(t)
og(r/8) & (o) e
+ szo (a/b) Z (o) — com T2 (o) e 2 ()
Jg Bn ) —B2Cyt
+ pp€oT Z Jo Bn JO(ﬁn ) , (2.130)

where 1, is the shear modulus of the background, 3, are the roots of C'(z) = Jy(xa)Yy(xb) —
Yo(za)Jo(xb) = 0. Yy is the modified Bessel function of first order. C, = Hapky, Hap and k;

are the aggregate modulus and interstitial permeability of the background and b is the radius of the
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Table 2.5: Description of the simulated cylindrical media (where inclusion has lower permeability
than the background) used in the study

| Sample name| E, (kPa) | E; (kPa) [k, (M'N~'s™ 1) [k; (m'N s ) [ 1, | 14 [a(mm)|b (mm)]

A 1 1.29 1.37 x 1078 1.37 x 107" ]0.3]0.3] 10 20
B 1 1.29 1.37 x 1078 1.37 x 107 10.3|0.3| 8 40
C 1 2 1.37 x 1078 1.37 x 107 ]0.2|0.2| 8 40

sample.

We can write the expression for the effective Poisson’s ratio outside the inclusion as

€rrp(T,1) avy 1
v _ o —y— 2 (-, 2.131
b(r7 t) € Uy (Vb _ ].)T’ (Vb aeo UZ(G, t)) ) ( 3 )
where v, is the Poisson’s ratio of the background and u; is the displacement inside the inclusion.
This equation demonstrates that temporal behavior of the effective Poisson’s ratio in the back-

ground region is controlled by the radial displacement at the interface of the inclusion and the

background.
05 \ \ 0.5 \ \ 0.5q \ \
—analytical r=2mm —analytical r=2mm 2 —analytical r=2mm
0.45 o FEMr=2mm o FEMr=2mm o FEMr=2mm
' —analytical r=4mm —analytical r=4mm —analytical r=4mm
o FEM r=4mm o FEM r=4mm o FEM r=4mm
¢ 04 —analytical r=6mm|| —analytical r=6mm|| —analytical r=6mm
o o FEMr=6mm o o FEMr=6mm o o FEMr=6mm
w w w
0.35
03 03 "'u.fftff;,,, S — | oy D
0.25 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Time (second) Time (second) Time (second)
@ (b) (©

Figure 2.23: Effective Poisson’s ratio inside the inclusion at different positions for sample A (A),
sample B (B) and sample C (C).
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Figure 2.24. Fluid pressure inside the inclusion at different positions for sasmple A (A), sample B
(B) and sample C (C).
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Figure 2.25: Effective Poisson’sratio outside the inclusion at different positions for sample A (A),
sample B (B) and sample C (C).

Results The effective Poisson’s ratios for samples A, B and C at 3 different radial positions
inside the inclusion are shown in Figs. 2.23 (A), (B) and (C). In these figures, we see that the
effective Poisson’s ratios computed by the analytical model (solid lines) and measured from the
corresponding finite element method (FEM) simulations (dotted lines) start at 0.5 at ¢ = 0% and
reach the drained Poisson’sratio of the material at steady state. The detail of FEM simulations can

be found in [101]. The corresponding fluid pressures predicted by the analytical model and those
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computed by the FEM simulations for samples A, B and C are shown in Figs. 2.24 (A), (B) and
(C). Thefluid pressures start at a value slightly higher than ;¢ a ¢t = 0" and reach zero at steady
state. These observations are consistent with [14] for uniform poroelastic cylinders.

Figs. 2.25 (A), (B) and (C) show the results obtained for the effective Poisson’s ratio in the
background (i.e., outside the inclusion) for samples A, B and C. Specificaly, the figures show the
effective Poisson’sratio predicted by the theoretical model (solid lines) and the effective Poisson’'s
ratio from the corresponding simulations (dotted lines) at 3 different radial distances. In all cases,
the effective Poisson’sratio is at its lowest value at ¢+ = 0" and then reaches the drained Poisson’s

ratio value of the material at steady state (¢ = 00).
2.2.3.2 When inclusion is more permeable than the background

The equation for the effective Poisson’sratio (EPR) inside the inclusion can be written as[109]

Cexp (——), (2.132)

1-v;
where . ; = 1“1( vi)

Aipls

The fluid pressure inside the inclusion can be determined as

E,; ¢ t

TS €0 exp (— E’Z‘) = pi€gexp (— >

pilt) = ). (2.133)

The solution for the fluid pressure outside the inclusion can be written as
B2 Jo(Bna) Jo( ﬁn VU(Bar) e 7ei — e~ BR0M
7“ t J€0T
= Wi€o Z J3(Bra) — J3(B.b) g =

Jo ﬁ a)U(Bnr)e —BrCit
+ub607rz ACAES AT A (2.134)

61



Table 2.6: Description of the cylindrical samples (where inclusion has higher permeability than
the background) used in the current study

Sample name| £, (kPa) | E; (kPa) | ky (m*N~1s™1) |k (m*N~ts Y| v, | v; [a(mm)|b(mm)
F 32.78 4228 | 1.875x 10713 | 1.875 x 1071 |0.30|0.30| 3.6 4
G 32.78 4228 | 1.875 x 10713 | 9.375 x 10712 |0.20|0.20| 3.6 4
H 32.78 65.56 | 1.875 x 1071 | 3.75 x 10712 [0.30/0.30| 3.6 4

The equation for the EPR in the background region can be written as

Err,b(t) 1-— Vy
Uy (t) = =+ po(r,t). (2.135)
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Figure 2.26: EPR inside the inclusion at different positions for sample F (a), sample G (b) and
sample H (c).

Results Fig. 2.26 shows the EPR as afunction of time at different positions inside the inclusion
computed from the developed analytical model and FEM for samples F, G and H. Theinclusionin
sample F has 1000 times higher interstitial permeability than the background, whereastheinclusion
in sample G has 50 times higher interstitial permeability than the background and the inclusion in

sample H has 20 times higher interstitial permeability than the background . Samples F and H
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Figure 2.27: Fluid pressure inside the inclusion at different positions for sample F (), sample G
(b) and sample H (c).
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Figure 2.28: EPR outside the inclusion at different positions for sample F (), sample G (b) and
sample H (c).

have Poisson’s ratio of 0.3 and sample G has Poisson’s ratio of 0.2 for both the background and
the inclusion. Young's modulus contrast between the inclusion and background is 1.29 in sample
Fand G and 2 in sample H. In Fig. 2.26, we see that, for both the analytical model and FEM, the
EPR inside the inclusion does not vary spatially, and we obtain the same time profiles of EPR for
all the radial positions. From these curves, we also see that at time ¢ = 07, the EPR is 0.5 and

tendsto the drained Poisson’sratio of the material at steady state, which is consistent with previous

63



literature [14].

Fig. 2.27 showsthefluid pressure asafunction of time at different positionsinside theinclusion
from the analytical model and FEM. We see from this figure that the fluid pressure is also spatially
invariant, and fluid pressures at different radial positions inside the inclusion change in the same
manner with time. We also observe that the fluid pressure is p;¢0 a ¢ = 0+ and goes to zero at
steady state for each sample. Fig. 2.28 shows the EPR as a function of time at different positions
outside theinclusion. Attimet¢ = 0", the EPR outside the inclusion is 0.5 and tends to the drained
Poisson’s ratio of the material at steady state. The time profile of the EPR outside the inclusion is
dependent on theradial position. Fig. 2.29 showsthe fluid pressure asafunction of time at different
positions outside the inclusion. The fluid pressure is lower than y,eq a ¢ = 0 and goes to zero as
time increases. The fluid pressure is lower than 1,60 at t = 01 because of the additional term in
eg. (2.134), which incorporates the impact of the fluid pressure inside the inclusion region on the
fluid pressure in the outside region. The time profile of the fluid pressure outside the inclusion is

also spatially variant.
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Figure 2.29: Fluid pressure outside the inclusion at different positions for sample F (a), sample G
(b) and sample H (c).



2.3 Poroelastic samplewith spherical inclusion in creep experiment
2.3.1 Analytical model

The poroelastic sample with a spherical inclusion inside it used in the analysis of this paper is
shown in Fig. 2.30. In thisfigure, we see that sample is of cylindrical shape, where the inclusion
inside the sampleis of spherical shape.

Based on the theory of Eshelby, the applied uniaxia stress (o) from the top of the sample in
an elastography experiment (see Fig. 2.30) isinflicted over the full outer surface of the spherical
inclusion (tumor) [110]. Therefore, when we areinterested in the analysis of strains, fluid pressure
inside the tumor, the problem can be thought as one of a poroelastic sphere under a uniform com-
pressive stress (o) over its outer surface. The stress o over the sphere can be computed using
Eshelby’s theory from the applied stress o, geometry and Young's modulus and Poisson’s ratio of
the tumor. In such case, the volumetric strain and fluid pressure become functions of only R and ¢
inside the poroelastic tumor [111]. Consequently, the problem can be simplified from cylindrical
coordinate system to spherical coordinate system. Based on that, we derive the formulations for

different parameters inside the inclusion in spherical coordinate below.

Figure 2.30: A schematic of acylindrical sample of a poroelastic material with a spherical poroe-
lastic inclusion of radius a.

Thefirst basic equation for spherical symmetric poroelasticity is the continuity equation of the
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pore fluid which can be written as [13, 93]

a— + 5=+ x(p)

(2.136)

where € is the volume strain, p is the fluid pressure, « is Biot's coefficient, & is the coefficient of

permeability, v, is the volumetric weight of the pore fluid and S is the storage coefficient. Here

L3V and x, = L2852, [, and L,;, arethe permeabilities of the capillary

X = Xv+xL, Withxy =
and lymphatic walls. 5% and 2 are the surface areato volume ratio of the capillary and lymphatic

walls. The storage coefficient S is defined as
S =y9Cs+ (o — )T, (2.137)

where v is porosity, C is the compressibility of the fluid, and C; is the compressibility of the
solid particles. In the case of incompressible constituents, S = 0 and o = 1. It should be noted
that eg. (2.136) can be written for the fluid pressure inside the inclusion, only if the interstitial
permeability of the inclusion is much lower than the interstitial permeability of the background,
when the interstitial permeability has comparable or dominant effect as the vascular permeability
on the mechanical behavior of the inclusion. Eq. (2.136) is applicable in al conditions when the
vascular permeability is dominant over the interstitial permeability inside the inclusion.
The volumetric strain ¢ isrelated to the radia displacement « by

du  2u 1 d(uR?)
— _|_ = —

=R TR ® 4R (2.138)

€

The second basic equation is the equation of radial equilibrium, which can be expressed as

dorr ORR — OTT
2 = 2.1
iR + 7 0, (2.139)

where ozr and o are the total stressesin radial and tangential directions.
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The total stresses can be separated into the effective stresses and the fluid pressure by
ORR — O—Q%R + ap, OoTr = O—C/FT + ap. (2140)

The equation of radial equilibrium can be written now as

daﬁ%R O-;%R - O'/TT dp
9 a _y, 2141
ar T %R (2.141)

Using eg. (2.138) and the stress-strain relations

, 2 du

opp =— (K — §G)€ - QGH%’ (2.142)
, 2 u
Orp = — (K - gG)E - 2G}—2, (2143)

the equation of equilibrium can be expressed in terms of the volume strain as

4 de dp

(K ‘|‘ —G)ﬁ = Oéﬁ,

3 (2.144)

where K is the compression modulus of the poroelastic material in fully drained conditions, and
G istheits shear modulus.

Let the aggregate modulus be /4 = K + 3G [14]. So, we can write from eg. (2.144)

de dp
— —a—. 2.14
4R ~"dR (2149
Integrating with respect to R,
HAG :Oéﬁ + PT
1

e =—/(ap+ Pr), (2.146)

Hy

where Pr is an integration constant. Using S = 0, « = 1, the continuity equation in eg. (2.136)
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can be written as

de kE(dp 2dp
L e A A ) 2.147
it~ (dR2 * RdR) x(p) (2147)

If we replace the volumetric strain with the fluid pressure using eg. (2.146), we obtain

1 dip+Q) d*p  2dp
TR (2L 220 2.14
H, dt " ame T rag) @) (2.148)
which resultsin
dp+Q) d*p 2 dp
—a H 4k iR? + RAR Hax(p). (2.149)

Let usassumethat p = p'e 14Xt Q = Q'e Xt ¢ = e~ Hax! Using these new variables, we get

d*p 2d
_HAX( +Q) HAXt —HAXt (p Q) +HAXp G_HAxt — HAkie_HAxt( + __p)

dt dR*>  RdR
(2.150)
Simplifying this equation, we obtain
de’ d*¢ 2 dé
—HaxQ' + P HAk(d_RQ + Eﬁ) (2.151)

In this equation, Q" is aconstant which depends on the boundary condition. If it is possible to find

a solution for the volumetric strain, which satisfies

d’¢ 2 dé 1 de
Bk B 2.152
<dR2 M RdR) Hak di (2152)

and all the boundary and initial conditions, ' becomes zero. Eq. (2.152) is comparable with
eg. (14) of supplementary material of [16], eg. (2) of [18] and eqg. (1) of [22].

We now define the following dimensionless variables,

2
t
Byt (2.153)
a

= - Huk
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With help of these dimensionless variables, we can write for the volumetric strain from eqg. (2.152)

! 2 1 !
oc _ (af + 3a—f). (2.154)
i \oR? RdR

To remove the partial derivativein R, we introduce

¢(R1) = %w(ﬁz, ). (2.155)
Based on this, eg. (2.154) simplifiesto
2
% = 8_zb (2.156)
ot OR?

Taking Laplace transform of eq. (2.156), we obtain

d*y

dR2

— st = 0. (2.157)

In this equation, ) denotes the Laplace transform of « and the initial condition w(ﬁ’, 0) = 0 has

been used. The general solution of eq. (2.157) can be written as

— A

(R, s) = A(s) cosh(v/sR) + B(s)sinh(v/sR). (2.158)

Therefore using eg. (2.155), expression for the volumetric strain E(R, s) can be written as

é(R,s) = A](;) cosh(v/sR) + BJ(;) sinh(v/sR). (2.159)
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2.3.2 Solution insidetheinclusion

The first boundary condition for the volumetric strain inside the inclusion can be written as

[111]

R=1, «a(l,d)=-— Tiso. (2.160)

where v, is the lateral to axial strain ratio inside the tumor, FE. is the effective Young modulus
calculated inside the tumor by taking ratio of o to axia straininside thetumor and o isaconstant
normal traction measured per unit bulk area of the surface of the inclusion. The second boundary

condition states that the volumetric strain is not infinite at the canter of theinclusion, i.e.,

R=0, |e(0,1)] < o0,i>0. (2.161)

Using egs. (2.160) and (2.161), we can write for the volumetric strain inside the inclusion from

eq. (2.159) as[111]

A

(R s) = _or (14 v)(1 —2v) sinh(y/sR)
GBS T T T — v)s + 2(1 — 20, sinh(vs) — 2(2 — 20.) Vs cosh(v3E)Y B
(2.162)
Theinverse Laplace transform of this equation can be written as [111]
PP 3(1 - 2v,) ( 4 & (1—2ve)(1+ ve) sinh(Ry/T,,) exp (—xnf)>
Ri)=-—— = .
() A G ; R0+ ve)(1— 2v0) — (1 — ve)2s] | Rsinh(\/zy) ’
(2.163)
where z,, are the roots of of the characteristics function
C(r) = tan(v/z) — 201 = 2ve) V' : (2.164)

2(1 — 2v,) — (1 — ve)x]

The characteristics function and the roots are shown in Fig. 2.31. Using (2.153), (2.163) can be
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written in time variable ¢t and space variable R as

/ _ _or 4 & (1—2ve)(1+ve) sinh(£,/z,,) exp (—a,, Zadkil)
mn == < (143 2 B 2w) — (1 ] Tty ) (2389

where K, = ﬁ Eshelby’s inclusion formulation can be used to calculate o, and K, i.e., E,

and v, [72] from applied load oy, the Young's moduli and Poisson’s ratios of the inclusion and

background.
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Figure 2.31: The characteristics function and roots

By changing the variable from ¢’ to ¢, in true variable, the equation for the volumetric strain

can be written as

_or 4 (1 —2v.)(1 + 1)
ci(R,1) = X (1 + ; 201+ ve) (1 = 2ve) — (1 — ve)?a,]

sinh(%,/xn) exp (—xn%)

& sinh(y/z,)

exp (—HAixt)> : (2.166)
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Figure 2.32: The 2D solution plane for the three dimensional sample shown in Fig. 2.30. The
sample is compressed between two compressor plates.

2.3.3 Finiteeement simulation

A commercial finite element simulation software namely ABAQUS, Abaqus Inc, Providence,
RI, USA has been used to verify the analytical theories developed in this paper. An “effective
stress' principle is used in ABAQUS [102]. In this principle, the total stress acting at a point is
assumed to be made up of an average pressure stress in the wetting liquid and an “ effective stress”
on the solid matrix. Both the inclusion and background of the sample were modeled as a linearly
elastic, isotropic, incompressible, permeable solid phase saturated with an incompressible fluid.
The sampleis compressed from the top and the bottom side was kept static. An instantaneous |oad
of 1 kPahas been applied and kept constant after that. The permeability of the sample was assumed
independent of strain and void ratio. Because of cylindrical and spherical symmetry of the sample
and inclusion, a 2D solution plane has been analyzed in ABAQUS, which is shown in Fig. 2.32.
In this figure, the method of applying compression is also shown. We see that the compression is
applied from top and the bottom side is fixed. Two frictionless compressor plates have been used
for holding up the sample and exert compression upon it.

The mesh used to model the sample was CAX4RP and has 20718 elements in the solution
plane. The dimension of the sample was 20 mm in radius and 40 mm in height. The radius of
the spherical inclusion was 7.5 mm. The zero fluid pressure boundary condition on the right hand
side of the sample isimposed. The vascular permeability was modeled using seepage coefficient
as described in[112].
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Nine samples were chosen with different material properties for examining the theories devel -
oped in this paper, which are described in Table 2.7. Young's modulus of the normal tissue was
chosen as 32.78 kPabased on previous literature [13,40]. Asthe tumors can have a broad range of
Young's moduli [113, 114], we chose up to ten inclusion-to-background contrasts. The Poisson’s
ratio is reported in the literature to have a range of values between 0.2 — 0.49 for both tumors
and normal tissues [16, 115, 116]. Poisson’s ratio values of 0.4, 0.45 and 0.47 for the tumors and
normal tissueswere used. Based on previous literature (Netti et al. [59], [94]), the tumors can have
a broad range of interstitial permeability. We used different values of inclusion-to-background
permeability contrast (1, 10, 1000) for the different samples. It should be noted that, in most of
the literature, the tumor is assumed to be at least five times more permeable than the normal tis-
sue[18,21-23,40,58,59,80]. Swartz et al. [94] providesalist of values of interstitial permeability
for different types of tumor and normal tissue with a contrast between the interstitial permeability
of tumor and the interstitial permeability of the normal tissue of the order of 0 to 3. Jain et al. [50]
assumed an equal value of interstitial permeability in the tumor and normal tissue. The vascular
permeability of the tumor and normal tissue was chosen based on the reported valuesin [13,40].

The time response was recorded for 300 second for each 1 second time step. The total analysis
isdone in two steps. In the first step, an instantaneous displacement/load is applied which is con-
stant for the next step. Thefirst stepisof 1 sand the second step continues upto 300 s. The specific
weight of the fluid was taken as 1Nm ~3 to match the definitions of permeability in ABAQUS and

in our developed theory.
2.3.4 Error analysis

An error analysis has been done to find the error in results from the devel oped analytical model
in comparison to the results from FEM. The following formula has been used for calculation of

root mean squared error (RM SE) in computed volumetric strain from the analytical model.

SIS walt,r) — vt )2 100X R
RSE = \/ TxR S0, (100, 1) (2.167)

T

73



where 7' is the total number of time samples considered and R is the number of point along radial
direction of the inclusion. v, is the volumetric strain estimated by the analytical model and vy is
the volumetric strain estimated by the FEM. For producing the error valuesin Table 2.8, we used
the first 100 samples, i.e,, 7' = 100 and considered 3 radial positions, i.e., 0.8,2.4 and 4.0 mm

inside the inclusion, which impliesthat R = 3.
235 Results

To get the instantaneous value of the volumetric strain from the developed analytical model,
we use the initial value theorem on the Laplace domain expression shown in eg. (2.163). Putting
s — oo in eq. (2.163), we get ¢;,(t = 07) = 0. The instantaneous values of total radial and
circumferential stresses inside and outside the inclusion become zero at the instant the strain/load
isapplied for which the volumetric strain becomes zero. But the effective stress on the solid matrix
is not zero, which initiates the recoiling behavior. The recoiling nature of the solid phase induces
a pressure gradient which helps the fluid exudation. When the solid matrix is fully relaxed, the
volumetric strain depends only on the bulk modulus of the inclusion and applied strain, which
can be found by putting ¢ — oo in egq. (2.166). The volumetric strain at steady state can be
found as 0./ K.. Based on this, we can say that at timet = 07, the solid inside the inclusion acts
like aincompressible solid with Poisson ratio of 0.5 and at steady state, the inclusion works as a
compressible solid with Poisson ratio of its solid matrix.

Results are provided for all the nine samples with FEM comparison in Figs. 2.33, 2.34 and
2.35. Figs. 2.33-2.35 (A)-(C) show the time evolution of volume strain inside the inclusion of
samples I-Q. From these figures, we see that for all the samples, at time ¢ = 07, the volumetric
strain inside the tumor remains 0. With time, the negative volumetric strain increases and reaches
to a value that is dependent on the elastic bulk modulus of the tumor and applied compression
on the sample. Matching between the results from FEM and developed analytical model can be
clearly seen for al the samples.

In Table 2.8, the error in computed volumetric strain from the developed analytical model

in comparison to the FEM results are shown. From this table, we see that the error is overall
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Table 2.7: Description of the samples used in current study

’ Sample name\ E, (kPa) \ E;(kPa) \ ky (m*N—1s71) \ k; (m*N—1s™h) \ xb» (Pas)™1) \ xi (Pas)™1) \ v \ v; ‘

[ 3278 [ 9702 | 1.125x107° [ 1125 x 1072 | 9x 1077 5x 1079 [0.47[0.45
J 3278 | 97.02 | 3189 x107° | 3.189 x 10712 | 1.89 x 1078 | 5.67 x 10~® |0.47|0.45
K 3278 | 97.02 | 1.276 x 10710 | 1.276 x 103 | 1.89 x 10~% | 5.67 x 10~% |0.47|0.45
L 3278 | 16390 | 3.189 x 1072 | 3.189 x 1012 | 1.89 x 108 | 5.67 x 10~8 |0.47|0.40
M 3278 | 32780 | 3.189 x 1072 | 3.189 x 10712 | 3.78 x 10~® | 5.67 x 10~8 | 0.45|0.40
N 3278 | 97.02 | 1.276 x 10~ | 1.276 x 10~1* | 1.89 x 10~7 | 5.67 x 107 | 0.47|0.45
0 3278 | 97.02 | 0.742x107° | 0.742x 1072 | 594 x 1072 | 3.3 x 107Y |0.47|0.45
P 3278 | 97.02 | 254 x 107 | 1.27x107* | 594 x107% | 2.83 x 1077 |0.47|0.45
Q 32.78 | 163.90 | 6.38 x 107 6.38 x 10712 | 3.78 x 107® | 1.134 x 10~7|0.47|0.40

very small which proves the correctness of the proposed model. The error increases inside the

samples, where the inclusion and background has higher contrast in values of Young's modulus

and/or Poisson’s ratio.
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Figure 2.33: Volumetric strain inside the tumor at different positions for sample | (A), sample J

(B) and sample K (C).

2.4 Conclusion

Closed-form analytical expressions are developed for the strains inside a cylindrical/spherical

poroelastic inclusion embedded inside a cylindrical poroelastic sample under constant pressure.

These model can be thought of general models for the solid tumor embedded inside normal tissues
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Figure 2.34: Volumetric strain inside the tumor at different positions for sasmple L (A), sample M
(B) and sample N (C).
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Figure 2.35: Volumetric strain inside the tumor at different positions for sample O (A), sample P
(B) and sample Q (C).

in an elastography experiment. Thus, the developed models can be useful in extraction of the
material properties of tumor tissue, which can be helpful in diagnostics and treatment of cancer.
Although the models have been developed for application in ultrasound poroel astography, it can
be used in fields like rock mechanics, ceramic engineering, soil and petroleum engineering, where

such scenario of a poroelastic inclusion embedded inside a poroel astic material frequently rises.
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Table 2.8: Root mean sgquared error between results from analytical model and FEM

Sample name Error in volumetric
strain estimation
inside tumor (%)

2.05

2.52

1.22

2.93

6.84

2.17

2.08

2.19

291

OQUVozZzr X« —
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3. ESTIMATION OF LATERAL STRAIN?

3.1 Background

The majority of the poroelastography works retrievable in the literature refers to axial strain
rather than lateral strain. In the past decade, many methods have been proposed to estimate and
image the axial strains experienced by atissue due to compression. These methods can be divided
into two main categories. direct strain estimators [117, 118] and gradient-based strain estima-
tors [119-122]. In direct strain estimation methods, a stretch factor is obtained by minimizing a
cost function, and the strain is measured directly from the stretch factor. In gradient-based strain
estimation methods, a displacement map is obtained first, and the strain is then computed as the
gradient of the displacement. Gradient-based estimation methods include: correlation-based tech-
niques, cost function minimization techniques and block matching algorithms.

Correlation-based techniques [ 123, 124] are by far the most widely employed strain estimation
methods in ultrasound elastography. These techniques, however, are limited in resolution by the
choice of the cross-correlation window, which also affects the resulting signal-to-noise ratio, and
they are very sensitive to tissue motion [125].

Prominent cost function minimization techniques for strain estimation include the ones pro-
posed by [119, 120, 126]. The general problem of these techniques is the high computational cost.
In [119], DPE is proposed to speed up the process of strain estimation. In DPE, a 2D strain map
is estimated through the minimization of a cost function using dynamic programming. The cost
function incorporates similarity of the pre- and post-compressed radio frequency (RF) data and
displacement continuity. Since tissue deformations are smooth, the incorporation of the smooth-
ness into the cost function results in reduced decorrelation noise. DPE provides integer axial and
lateral displacements only. Estimation of subsample displacements is possible but at the expense

of additional computational time [119].

1©2018 |IEEE. Reprinted, with permission, from Islam, M.T., Chaudhry, A., Tang, S., Tasciotti, E. and Righetti,
R., A new method for estimating the effective Poisson’s ratio in ultrasound poroelastography, |EEE transactions on
medical imaging, May 2018.
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Block matching algorithms [121, 127, 128] also require a high number of computations. Addi-
tionally, they typically provide elastograms with lower spatial resolution than those obtained using
cross-correlation methods. Recently, an optical flow estimation technique has been proposed to
refine the results of block matching algorithms, which is also robust against noise and decorrela
tion [121]. In [121], the authors propose a block matching algorithm to obtain the coarse axial
strain estimates followed by the Lucas-Kanade technique to refine the coarse axial strain mea-
surements. Other two-step technigques have been described in [129-134] and [122]. In [134], the
authors used a HS-based technique on B-mode data of hypertensive rat carotid to obtain the axial
and lateral displacement fieldsin the first step and the strain fields in the second step. However, the
lateral strain fields obtained using this method are reported to be unreliable. 1n [129] and [130],
the coarse estimates of strain fields are obtained using cross-correlation as applied to the RF data,
and subsequently a cross-spectrum phase gradient method is used to construct the strain fieldswith
higher spatial resolution. In [131], the axia strains inside discontinuous tissues are estimated us-
ing cross-correlation as applied to B-mode data based on a pyramidal processing approach in the
first step and on RF data in the second step. 1n [133], a numerical optimization method based on
the Quasi-Newton algorithm is adopted in the second step to improve the displacement and strain,
which are estimated in the first step using cross correlation. In a two-step technique described
in [122], the authors used HS-based optical flow estimation method in both the first step and the
second step. However, the method is shown to be suitable for very small displacements (2.3%
maximum strain) only and does not consider lateral strain while warping the pre-compressed data
by the strains (axial normal and axial shear) estimated in the first step. In the aforementioned
two-step methods, various techniques have been employed to improve the quality of axial strain
estimation, but little or no attention has been dedicated to the lateral strain or EPR estimation.

Prior work on lateral strain estimation can be found in [120, 135-141]. In [135], the authors
estimated the lateral strain by using a priori assumptions about the tissue’'sincompressibility. This
method cannot be used for poroelastic materials, which are, by definition, compressible [14].

Correlation-based lateral strain estimation methods such as the one described in [136] are compu-
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tationally intense and prone to noise [142]. In [137], the authors combined elements of multi-level
correlation and phase-zero search to achieve the noise tolerance of the former and the speed of the
latter. In[120], the authors computed both the axial and lateral strains. While computationally very
fast, the method proposed by [120] provideslateral strain estimations of significantly lower quality
than the corresponding axial strain ones. Similar to [120], the method proposed in [139] isbased on
optimizing a nonlinear cost function that incorporates similarity of RF dataintensity and prior in-
formation of displacement continuity. In[138], the authors proposed an improved speckle tracking
algorithm where axial and lateral motion estimations are simultaneously performed. In [141], the
authors employed a multi-level block matching algorithm for estimating lateral strain along with
axial and shear strains, where displacements tracked at coarser levels are interpolated to initialize
the search region location at finer levels. Different post processing techniques have been proposed
to improve the accuracy of lateral strain estimation, such asiterative interpolation aong the lateral
direction [136] or local affine transformation [143]. Beam forming techniques have also been pro-
posed for improving the resolution of lateral strain [144, 145]. Recently, our group has proposed
a new method for accurate and reliable estimation of EPR using multiple transducers [142]. Al-
though this method allows lateral strain estimation with image quality and accuracy close to those
obtainable for axial strain estimation, it is currently difficult to implement in clinical applications.
At the present time, methods to obtain lateral strain and EPR elastograms of clinically acceptable
quality are still elusive.

In [146], we propose a new two-step processing method, where DPE [119] is first used to
obtain integer axial and lateral displacement estimates. This step is then followed by a motion
compensation procedure and HS optical flow estimation to obtain subsample estimates of both the
axial and lateral displacements. The axial and lateral displacements from the two steps are then
added to obtain complete axial and lateral displacements. Axial and lateral strains are calculated
from the axial and lateral displacements using a Kalman filter-based least square estimation [120].
The EPR elastogram is obtained by dividing the lateral strain elastogram by the corresponding axial
strain elastogram [71]. This two-step method maintains the advantages offered by DPE and HS
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and is computationally very fast. Thus, it is expected to provide EPR estimates with significantly

higher quality than those obtained using methods previously proposed for poroelastography.
3.2 Proposed method

Theblock diagram for the proposed method isshownin Fig. 3.1. The pre- and post-compressed
data are used to determine the integer axial and lateral displacements by DPE. The pre-compressed
datais compensated in motion by using the integer values of lateral and axial displacements. The
motion-compensated pre-compressed and the post-compressed data are then entered into the HS
method to determine the sub-sample axial and lateral displacements. Integer axial and latera dis-
placement val ues obtained from DPE and subsample axial and lateral displacement values obtained
from the HS method are added to obtain the complete axial and lateral displacement estimations.
Axia and lateral strains are calculated from axial and lateral displacements. The EPR elastogram
is obtained by point-by-point division of the lateral strain by the corresponding axial strain. Details

of each of the step of the proposed method are given bel ow.

4‘ Pre-compressed dam‘ ‘Posl-comprcsscd data

Y

Estimation of integer axial and
lateral displacements by
dynamic programming elastography

Yy Y
Motion compensation > Horn-Schunck method for
of pre-compressed data estimation of subsample axial
and lateral displacements

¢

Axial and lateral
displacements

Y

| Axial and lateral strains |

Y

[Effective Poisson's ratio]

Figure 3.1: Block diagram for the proposed method.
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3.2.1 Dynamic programming elastography

We consider a single column 5 in the pre-compressed ultrasound data I; of size r x ¢, where
r and ¢ are the number of row and column of 7;. Here, r corresponds to the number of samples
along one single RF-line and ¢ corresponds to the number of RF-line. Let a; and [; be the integer
axial and lateral displacements of the i** sample in the j'* RF-line. In DPE [119], displacement
continuity is assumed based on which aregularized cost function is created. This cost function has
two terms - a regularization term consisting of prior of displacement continuity and an amplitude

similarity term. For the j'* column, the cost function can be written as

Cj(ai, iy i) = [11(4,§) — L(i + a;, j + 1))+

{ Cj(da, dl, 17— 1) + Cj_l(da, dl, Z)
da,d; 9

T Rj<ai,zi,da,d,>}, 3.1)

where [, isthe post-compressed dataand d,, and d; are the temporary displacements along the axial
and lateral directions, which are varied to minimize the term in the braces. The regularization term

R; can be written as
Rj(aia li, dg, dl) = aa(ai - a¢—1)2 + al(li - li—l)Qa (3-2)

where «, and «; are the axial and lateral regularization weights, respectively. The computation
process of eg. (3.1) is initialized by taking the displacement as zero at i« = 1 for al j and the
cost function C;_, is taken as zero when j = 1. The minimization of the regularization term in
the cost function while minimizing the cost function forces the displacements (a; and a;_1, [; and
l;—1) of two consecutive samples (i and  — 1) similar to each other. After calculating C; for all
i=2,...,m,C;isminimized for i = m producing the displacements at m*" sample, a,, and [,,,.
Thevaluesof a; and [;, i = 1,...,m — 1, those minimize the cost function C; are remembered
in the process, which are the cost minimized displacementsat i = 1,...,m — 1 samplesin the

j-th line. The displacement maps are obtained for al the RF-lines in the same manner to get the
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complete axial displacement D, and lateral displacement D, [119].
3.2.2 Horn-Schunck method

The optical flow is the apparent motion of brightness patterns of the image [147]. To estimate
the optical flow, Horn and Schunck proposed thefirst variational approach [148], where the optical
flow is computed as the solution of a minimization problem. The constraint equation of optical
flow is derived based on the assumption of no change of the pixel intensities over time. This
eguation relates the optical flow with the derivatives of the image. The solution of this problem
becomes ill-posed because there can be an infinite number of vector fields that satisfy this optical
flow constraint. To overcome this problem, an additional regularity condition is introduced by
Horn and Schunck that restricts the number of possible solutions. The HS method minimizes both
the optical flow constraint and the magnitude of the variations of the flow field, producing smooth
vector fields. As the optical flow constraint holds only for smaller (sub-sample) displacements,
this technique can be used to estimate smaller displacements. Let /(z, y,t) be a stack of motion-
compensated pre-compressed data /; and post-compressed data I, where ¢ is the time index, i.e.,
I(x,y,1) =11 and I(x,y,2) = L.

For large displacement fields, the optical flow equation can be written in a non-linear formula-

tion as[149]
I(X) = L(x+w) =0, (3.3

wherew = (u,v) isthe optical flow vector and x denotes the space vector, i.e., X = (x,y). This
equation still assumes the brightness constancy, but w can be any large value.

The energy functional can be written as [149]

B(w) = /Q (F(0) — Lo(x+w))? + (|| Val? + [[V][2)dx. (3.4)
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The minimization of this energy functional yields the following Euler-Lagrange equations

0= —(I](X) = (X 4+ W))Ioa (X + W) — B*(Au), (3.5)

0= —(I](X) — Ly(X +W)) L, (X + W) — B*(Av). (3.6)

These equations are nonlinear in w because of the warping /5(x + w). Using the first order Taylor

expansion, we can write

L(x + W) = L(x +wW") + VI (x +w") (W —w"), (3.7)

where n denotes the iteration index and difference between the values of w® and w**! is very
small.
For obtaining alinear system of equations, we replace the nonlinear termsin the Euler-Lagrange

eguations by their Taylor expansions to obtain

0= —(I{(x) — B(X + W") =T L (X + W) (W — w"))
X Iop (X +W") + B7(Au™), (3.8)
0= —(I{(X) = B(X + W") =V L(x + W) (W — w"))

x Loy (X + W) + B2(Av™). (3.9)

These equations can be solved in two steps. In the first step, a multi-scale approach can be taken
to reduce the distance between w” and w"*! and in the second step, at each scale, w" can be
iteratively made to converge to w**t. The main idea behind using a multi-scale strategy is to
create a coarse-to-fine structure. One way to acheive thisis to create a pyramid of down-sampled
images[149]. The pyramid is created by reducing the images by afactor of n € (0,1). A Gaussian

smoothing is applied before the down-sampling. To transfer the values from a coarse scale (s) to a



fine scale (s — 1), the flow field is updated as
s—1 1 S
W H(X) = EW (nX). (3.10)

The details on the numerical implementation of the pyramidal approach of the HS method for

recovering large displacements are discussed in [149].
3.2.3 Displacement reconstruction and strain estimation

The final axial displacement D,, and lateral displacement D,,; are obtained as

Dax - Da+va

Dlat = Dl + u. (311)

In our proposed algorithm, the estimation of the lateral and axial strains from the displacement
datais performed using Kalman filter-based least square estimation [120].

In thefirst step of Kalman filter-based | east square estimation, anoisy strain imageis generated
by performing the least squares regression along the axial direction for each RF-line. Thisis done
by fitting a line to the displacement estimates in a window of length 2k + 1 around a sample 1,
i.e., from samplei — k to ¢ + k. The slope of thefitted line is the noisy strain measurement p; ; at
sample:. This step ensures the prior of strain continuity along the axial direction.

In the second step, a Kalman filter is applied in the lateral direction for obtaining a denoised

strain image. For this, we write the noisy strain measurement as [150, 151]

Zij = Zij-1 71 Tij (3.12)

Pij = Zij + Gijs (3.13)

where z; ; is the underlying true strain field, r; ; and g; ; are Gaussian process and Gaussian mea-

surement noise. Assuming z; ; and z; ; the a priori estimate of the strain before step ; and a
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posteriori estimate of the strain after step j, we can write the measurement update equations as

follows [120]
. _ i _
i = g+ (ps; — 7)), 3.14
Ri,j = Rij qm+03 (p J ZJ) ( )
. ij _
o=(1- 3.15
Gi,g ( %ﬁgg)% (3.15)

where z; ; = 2; ;1 and 02 isthe variance of the measurement noise g. ¢; ; and g; ; are the variances

of Z; ; and z; ; and are related through

Tij = Gij—1 + 07, (3.16)
where o2 is the variance of the process noise r. §; ;1 is taken as zero when j = 1. o2 has been
determined using o = (u;—1 — p;)%, where p;_; and yu; are the mean values (calculated using
a Gaussian kernel of standard deviation of 0.6) of strainsin 3 x 3 square blocks around samples
(4,7 — 1) and (i, j), respectively. o isthe variance of the noisy strain values p; ; over the whole
image and is a constant in the entire strain elastogram. It should be noted that the second step of
the method ensures the prior of strain continuity along the lateral direction.

The above mentioned method of strain estimation is applicable for estimating both the axial
and lateral strains. For estimating lateral strain elastogram, lateral displacement matrix needsto be
transposed before applying thefirst step of the method to obtain the gradient along lateral direction.
The resulting strain matrix from the second step of the method needs to be transposed again in the

end to obtain the lateral strain elastogram.
3.3 Experiments
3.3.1 Simulation models

From the governing equations of poroelastography [71], a weak-form Galerkin finite element
model (FEM) was devel oped with fluid pressure and displacement treated as the primary variables.

The formulation was coded with an in-house finite element program [152]. An axisymmetric
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model was used in this study. The model consisted of a cylindrical domain 40 mm tall and 40 mm
in diameter. For the fluid phase in the domain, free flow boundary conditions (pressure = 0) were
prescribed at the edges of the domain, and for the solid phase, stressfree boundary conditions were
prescribed at the edges of the domain. Two finite element models were used in the study. In the
first model, called the “inclusion model”, an inclusion of radius 7.5 mm with material properties
distinct from the peripheral region was created at the center of the domain. In the second model, the
“uniform model”, we simulated a uniform tissue sample with asingle set of poroelastic properties.
For both models, we simulated an unconfined stress relaxation test between impervious surfaces.
The displacement at the base of the domain was constrained along the vertical direction. The
entire domain was meshed using linear quadrilateral elements. For the inclusion model used in our
simulations, only a background/inclusion permeability contrast was considered, i.e., no Poisson’s
ratio or Young's modulus contrast was simulated. The permeability of the inclusion was set to
1.95 x 10~m*/N.s and the permeability of the background was set to 1.95 x 10~®*m*/N.s. The
Young's modulus (E), and the Poisson’s ratio () of the solid matrix of both the inclusion and
background were set to 1.74 kPa and 0.25, respectively. In the case of the uniform model, the
Poisson’s ratio was assumed to be equal to 0.2, the Young's modulus equal to 1.74 kPa and the
interstitial permeability equal to 1.95 x 10~?m?*/N.s. The choice of these mechanical parameters
is based on previous work from our lab [153, 154]. It should be noted that the inclusion-model
used in this simulation study is meant to represent the case of atumor, which has the same Young's
modulus and Poisson’s ratio but different permeability than the background (normal tissue). Even
though tumors may differ with respect to the surrounding tissue in terms of multiple mechanical
parameters, this model is suitable to study the effect that a range of permeability contrasts may
have on the generated EPR elastograms [ 71].

3.3.2 Phantom experiments

A non-homogenous phantom was created using tofu (Banyan foods, Houston, TX) as the back-
ground and gelatin-agar as the inclusion similarly asin [8,142]. The size of the background was

80mm x 60mm x 40mm with acylindrical inclusion of 15 mm in diameter. The inclusion was cre-
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ated by mixing 5% porcine gelatin (Sigma-Aldrich, USA) with 3% agar (Sigma-Aldrich, USA) as
in[155]. The experimentswere performed using our Sonix RP system (Ultrasonix, Richmond, BC,
Canada) with a38-mm linear array transducer, which operates with a center frequency of 6.6 MHz,
bandwidth 5 — 14 MHz and beamwidth equal to 1 mm at the focus. Compression was applied from
the top using a compressor plate attached to the transducer face. The experimental setup is shown

in Fig. 3.2. A multi-compression protocol was used for data acquisition [142, 156-158].

Transducer

Compression
apparatus

Compressor

Figure 3.2: The experimental setup for poroelastic experiments.

3.3.3 Invivo experiments

In vivo experiments were performed on five mice with triple negative breast cancer. The can-
cers were created by our collaborators at the Houston Methodist Research Institute by injection
of the cancerous cells beneath the mouse’'s mammary fat pad [159]. In vivo data acquisition was
approved by the Houston Methodist Research Institute, Institutional Animal Care and Use Com-
mittee (ACUC-approved protocol # AUP-0614-0033).

The elastography experiments were performed using a 38-mm linear array transducer (Sonix
RP, Ultrasonix, Richmond, BC, Canada) with a center frequency of 6.6 MHz, 5 — 14 MHz band-
width. To compensate for the surface geometry as well as improve the focus inside the fairly

superficial tumors, an agueous ultrasound gel pad (Aquaflex, Parker Laboratories, NJ, USA) was
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placed between the compressor plate and the animal. Creep compression experiments were per-
formed on the anesthetized animals, and the ultrasound RF data acquisition was synchronized to
the compression. Datawere acquired for up to 1 minute with asampling rate of 0.1 second/sample.
The total duration of each experiment was approximately 5 minutes, which resulted in up to 5 RF

data acquisitions at different locations around the tumors.
3.34 Elastographic processing parameters

The simulated pre- and post-compression temporal ultrasound RF datawere generated from the
mechanical displacements (at atime interval 10 s) using a convolution model [160]. Bilinear inter-
polation was performed on the input mechanical displacement data prior to the computation of the
simulated RF frames [9]. The simulated ultrasound transducer had 128 elements, frequency band-
width between 5 — 14 MHz, a6.6 MHz center frequency, and 50% fractional bandwidth at —6 dB.
The transducer’s beamwidth was assumed to be dependent on the wavelength and to be approxi-
mately 1 mm at 6.6 MHz [8]. The sampling frequency was set at 40 MHz and Gaussian noise was
added to set the SNR at 40 dB. From the same sets of simulated RF data, three different methods
were used to create the axial, lateral and EPR elastograms. In addition to the proposed two-step
method (DPHS) elastograms were also created using a cross-correlation method (CM) [71] and
analytic minimization (AM) [120]. This alowed us to compare the performance of the proposed
two-step method with more accepted and widely used elastographic methods. An explanation of
the processing parameters used for the implementation of the three methods is provided below.

To compute the elastograms with DPE, the range of variation of axial displacement was limited
to 0 to —100 (negative for compression) data points, the range of variation of lateral displacement
was set to —4 to 4 data points (negative corresponds to the left and positive to the right) and the seed
RF-line where the displacement calculation starts from was set to half of the number of RF-lines
used in the ssimulation. The regularization weights along the axial and lateral directions, o, and «;
were set to 0.15. For estimating the elastograms by the HS method, the trade-off (regularization)
parameter 3 in (3.4) was set to 1. The number of pyramid levels wastaken as 4, and the maximum

number of warping per pyramid level was set to 3. A bi-cubic interpolation was used both for
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warping and up-scaling from coarse to fine scales. To compute the temporal elastograms at agiven
time using correlation, the pre-compression frame was correl ated with the post-compression frame
corresponding to that time after compression [8]. The length of the correlation window, both for
the pre- and post-compression signals, was fixed at 1.5 mm with an 80% overlap between adjacent
windows. A 5 x 5 pixels median filter was applied to the axial and lateral displacement estimates
prior to the computation of the strains. To compute the elastograms using the AM method, the axial
regul arization weight was taken as 5, two lateral regularization weights were taken as 10 and 0.005.
Thethreshold of theiteratively reweighted least squares algorithm was set to 0.2 and the frequency
dependent attenuation coefficient was taken as 0.63 dB/cm/MHz. The processing parameters for
the CM method are chosen based on prior work from our lab [71,154]. The parametersfor the AM
method are chosen based on the values suggested by [120]. The parametersfor the newly proposed
two-step method are chosen based on values suggested in [119] for the DPE part and in [149] for
the HS part.

Each EPR elastogram was computed as the ratio between alatera strain elastogram and corre-
sponding axial strain elastogram [8]. EPR poroelastograms were obtained as temporal sequences
of EPR elastograms.

3.3.5 Imagequality analysis

Image quality of EPR elastograms and poroelastograms was quantified using three elasto-
graphic quality factors, which are typically used for elastographic studies: SNR (signal-to-noise
ratio), CNRe (elastographic contrast-to-noise ratio) and RM SE (root mean square error). The SNR
is defined as

SNR = £Z (3.17)

OFE
where i and o are the mean and standard deviation of the EPR elastogram. The SNR is defined
for homogeneous phantoms. The CNRe, instead, is defined for non-homogenous phantoms and
gives ameasure of the maximum achievable elastographic contrast for a given underlying mechan-

ical contrast. CNRe differs from image contrast because image contrast depends only on the ratio
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Figure 3.3: Ideal axial displacement (A1) and lateral displacement (B1) maps. Axial displacement
(A2) and lateral displacement (B2) estimated by using the HS method (for large displacement).
Axial displacement (A3) and lateral displacement (B3) estimated at the first step of the two-step
proposed method (i.e., DPE). Axial displacement (A4) and lateral displacement (B4) estimated at
the second step of the two-step proposed method (using standard HS). Axial displacement (A5)
and lateral displacement (B5) estimated at the second step of the two-step proposed method (using
HSfor large displacement). All displacement maps are shown in unit of [mm].
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of the means while CNRe depends also on the standard deviations of the noise. The EPR CNRe

has been defined as [161]
2(vy — )2

2 2
O-ut + be

CNRe = : (3.18)

where v; is the mean EPR in the target and v, is the mean EPR in the background and oﬁt and
afb are the corresponding variances. In elastography, the CNRe is typically defined for the axial
strain [162], but it can also be defined in an analogous manner for other elastographic parameters,
including the EPR [161]. It should be noted that, in general, when dealing with poroelastic media
under sustained compression, both the background and target may show the presence of poroe-
lastic patterns in the corresponding elastograms. Therefore, before computing the CNRe, each
elastogram was detrended by subtracting from it the corresponding ideal strain image (generated
directly from the mechanical displacement models) [9]. However, detrending is done only for the
EPR elastograms resulting from simulated data (not from controlled/in vivo experimental data),
because knowledge of the ideal elastogram is required for applying this technique. Detrending
is often used in signal processing so that time-varying processes can be analyzed using statistical
methods that assume stationarity [163].
The RMSE is defined as

Zr 1Zc ((Ve(r,e) — (1, 0))?
RMSE = \/ e !

100 x Rx C
X =R c ,
Z’I“Zl ZC:l Vf(r’ c)

(3.19)

where v, isthe estimated EPR elastogram and v/ is the true EPR map from the FEM. R and C' are

the number of rows and columnsin the estimated EPR elastogram.
3.4 Results
3.4.1 Incluson model

Figs. 3.3-3.8 show selected results obtained from the inclusion model. Fig. 3.3 shows the

ideal axial and lateral displacements (A1, B1) at atime point of 10 s during compression with
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Figure 3.4: Axia strain and EPR at time point of 10 sfor 2.2% applied strain compression from
FEM for the inclusion model are shown in (A1) and (A2). Axial strain and EPR estimated by CM
at time point of 10 sfor 2.2% applied strain compression for the inclusion model are shownin (B1)
and (B2), axia strain and EPR estimated by AM are shown in (C1) and (C2) and axial strain and
EPR estimated by DPHS are shown in (D1) and (D2).

2.2% applied strain along with the displacement estimates obtained by the HS method (for large
displacement) alone (A2, B2), the displacement estimates obtained using the DPE method (first
step of DPHS) (A3, B3) and the displacement estimates obtained at the second step of the DPHS
method with both standard (A4, B4) and large displacement HS (A5, B5). In all cases, no averaging
was used. Note that the estimates obtained using the HS method alone have no similarity with the
ideal displacements. The integer axial displacement from the DPE method (A3) is close to the
ideal axial displacement but the lateral displacement (B3) is ailmost zero everywhere. Due to the
high axial resolution of the ultrasound transducer, small axial displacements can still be detected.
Along the lateral direction, instead, most of the motion/displacement is a fraction of a single pixel
due to the limited lateral resolution. From Fig. 3.3 (A4), (A5), (B4) and (B5), we see that the axial
sub-pixel displacements from both types of HS methods are similar but the estimates of sub-pixel

lateral displacement for large displacement HS method is better than the standard HS method.
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Figure 3.5: EPR elastograms at different time points of 1s, 10s, 110s, 260s and 360s from finite
element modeling (FEM) for theinclusion model for applied strain compression of 2.2% are shown
in (A1), (A2), (A3), (A4), (A5). EPR elastograms at different time points of 1s, 10s, 110s, 260s
and 360s estimated by CM for 2.2% applied strain compression for the inclusion model are shown
in (B1), (B2), (B3), (B4), (B5), estimated by AM are shown in (C1), (C2), (C3), (C4), (C5) and
estimated by DPHS are shown in (D1), (D2), (D3), (D4), (D5).

Axid strain and EPR elastograms obtained using CM, AM and DPHS aong with the FEM
predictions for the simulated inclusion model are shown in Fig. 3.4. These elastograms represent
singleredlizations (i.e., no temporal and spatial averaging) and refer to simulated data at time point
of 10 sfor 2.2% applied strain compression. Thefirst column (A) correspondsto theideal axial and
EPR maps from FEM, the second (B), third (C) and forth (D) columns show the elastograms from
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CM, AM and DPHS, respectively. Thefirstrow (A1, B1, C1, D1) showstheaxial strain results. All
methods seem to perform well when estimating the axial strains, even if AM and DPHS appear to
outperform CM. When observing C1 and D1 in Fig. 3.4, both AM and DPHS appear to accurately
estimate the axia strains. This is due to the fact that the accuracy of sub-sample estimation of
axial strain by the AM and HS methods are very similar. However, the elastogram from DPHS
appears slightly smoother than the elastogram from AM probably due to the nature of optical flow
estimation. The second row (A2, B2, C2 and D2) in Fig. 3.4 shows the EPR elastograms obtained
from the three methods as well as the ideal EPR map from FEM. In this case, only the DPHS

produces aresult that has some similarities with the FEM result.
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Figure 3.6: Centra lines of the estimated EPRs by CM, AM and DPHS aong with the FEM
prediction for theinclusion model at time point of 10 safter application of 2.2% strain compression.

Fig. 3.5 shows examples of simulated EPR poroel astograms obtained from the inclusion model
for applied strain compression of 2.2% using different methods and averaging results from fifty
independent redlizations. In Fig. 3.5, each row represents results by different methods (from top
to bottom: FEM, CM, AM and DPHS). Each column corresponds to temporal EPR elastograms
obtained at different time points. Thefirst column (A1, B1, C1, D1) showsthe EPR elastograms at
time point of 1 s. The next columns (2, 3, 4, 5) show EPR elastograms corresponding to 10, 110,

260, and 360 srespectively. In al cases, we note that no poroelastic contrast isvisible immediately
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after compression. As time progresses, fluid starts to translocate at a rate that depends on the
local permeability and the boundary conditions. Since fluid flow can occur from the sides of the
phantom only (due to the imposed boundary conditions), the inclusion may appear elliptical in the
elastograms. Since no underlying contrast of Young's modulus or Poisson’s ratio exists between
target and background, any poroelastographic contrast observed in the axial strains or EPRs is
caused by the differencein the rate of fluid clearance in the background and in the inclusion. Fluid
movement ceases when the equilibrium is reached. If we qualitatively compare the performances
of the different estimation methods, we observe that the results from DPHS are the closest to the
FEM ones. At 1 s(A1, B1, C1, D1), every method estimates the EPR close to 0.5 [96]. At other
time points, resultsfrom AM seem to be more accurate than the corresponding ones obtained using
CM. Overadl, the results from DPHS are smoother than those obtained using AM and CM and have
a better correspondence with the FEM ideal maps at all time points.

The central horizontal profiles of the 10 s EPR elastograms (shown in Fig. 3.5) for the various
methods are shown in Fig. 3.6. The EPR profile from the DPHS elastogram matches closely the
FEM result. The EPR profile from the CM elastogram is the noisiest and does not reach the true
EPR value in the inclusion region. The EPR profile from the AM elastogram has a better smooth
rise and fall at the boundary of the inclusion than CM but appears to be nosier and less accurate
than DPHS.

Fig. 3.7 shows EPR elastograms estimated by the various methods for different strain com-
pressions at time point of 10 s. First row shows the FEM results. The second row shows the CM
results, the third row the AM results and the last row the DPHS results. Each EPR elastogramisan
average over fifty realizations. The first column (1) represents the EPR elastograms obtained with
an applied strain of 0.2%. The second to fifth columns (2, 3, 4, 5) represent the EPR elastograms
obtained with applied strains of 1.2%, 3.2%, 4.2% and 6.2%, respectively. These results show that,
at avery low compression, all methods perform poorly, and the resulting EPR elastograms have
low similarity with theideal FEM EPR maps. In general, the performances of all methods improve

as the applied strain increases (up to 4.2%). At 6.2%, the performances of all methods degrade
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Figure 3.7: EPR elastograms for the inclusion model for applied strain compressions of 0.2%,
1.2%, 3.2%, 4.2% and 6.2% at time point of 10 sfrom FEM are shown in (A1), (A2), (A3), (A4),
(A5). EPR elastograms for the inclusion model for applied strain compressions of 0.2%, 1.2%,
3.2%, 4.2% and 6.2% at the same time point estimated by CM are shownin (B1), (B2), (B3), (B4),
(B5), estimated by AM are shown in (C1), (C2), (C3), (C4), (C5) and estimated by DPHS are
shownin (D1), (D2), (D3), (D4), (D5).

dightly, most likely due to out of plane motion. As for the previous results, DPHS outperforms
CM and AM in terms of image quality and accuracy.

Results of the CNRe and RM SE for the inclusion model for application of different strain com-
pressions at time point of 10 sareshown in Figs. 3.8 (a) and (b). The proposed method outperforms

the CM and AM methods with respect to these two quality factors. The classical ‘strain filter’ be-
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Figure 3.8: (a) CNRe and (b) RMSE for different methods for the inclusion model at different
strain compressions at time point of 10 s.
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Figure 3.9: (a) SNR and (b) RM SE for different methods for the uniform model for different strain
compressions at time point of 10 s.

havior is observable for all methods [125]. According to the ‘strain filter’ theory, for very low
compression, the performance of the strain estimator deteriorates because of the dominance of the
electronic noise of the ultrasound imaging system. On the other hand, for large compression, the
performance of the estimator degrades because of the out-of-plane motion (decorrelation noise).
For arange of applied compression between the small and large compression, the estimator pro-

vides the best performance. If SNR or CNRe is plotted against the applied compression, the graph
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Figure 3.10: Axia strain and EPR elastogram estimated by CM are shown in (A1) and (A2) for
the experimental data. Axial strain and EPR elastograms estimated by AM and DPHS for the same
dataare shownin (B1) and (B2) and (C1) and (C2), respectively.

looks like a bandpass filter [125]. In Fig. 3.8 (a), the CNRe for DPHS is around 2.5 times higher
than the CNRe of CM and 2 times higher than the CNRe of AM for most applied strains. From
the plot of RMSE shown in Fig. 3.8 (b), we see that CM has higher RMSE for all applied strains
in comparison to the other two methods. DPHS has the lowest RMSE for al applied strains with
very small standard deviation values. The RMSE of AM is much lower than the RM SE of CM and

closer to the one of DPHS.
3.4.2 Uniform mod€

The RMSEs and SNRs of EPR elastograms obtained using the different methods for the uni-
form model for different strain compressions at time point of 10 sare givenin Fig. 3.9 (a) and (b).
From these figures, we see that DPHS shows better performance in terms of both SNR and RMSE
in comparison to CM and AM for all the applied strain compressions. The SNR of DPHS isamost
two times higher than the SNR of AM and four times higher than the SNR of CM. In terms of
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Figure 3.11: (A) B-mode image of the in vivo experimental data for mouse 1. Axial strain and
EPR elastograms estimated from the in vivo experimental RF data by CM are shown in (A1) and
(A2) for mouse 1. Axia strain and EPR elastograms estimated by AM and DPHS from the same
data are shown in (B1) and (B2) and (C1) and (C2), respectively. The blue colored parts on top of
the tumor in axial strain and EPR elastograms are from used gel pad in the experiment.

RMSE, RMSE of DPHS is one-fourth the one of AM and one-tenth the one of CM for most of the

strain compressions.
3.4.3 Phantom experiments

Fig. 3.10 shows selected experimental results obtained from our tofu/agar phantom. To obtain
each elastogram, we averaged all data collected up to 100 s. In thisfigure, the first column (A1 and

A2) corresponds to the results of obtained using CM. The second (B1 and B2) and third columns
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Figure 3.12: (A) B-mode image of the in vivo experimental data for mouse 2. Axial strain and
EPR elastograms estimated from the in vivo experimental RF data by CM are shown in (A1) and
(A2) for mouse 2. Axial strain and EPR elastograms estimated by AM and DPHS from the same
dataare shownin (B1) and (B2) and (C1) and (C2), respectively. The blue colored parts on top of
the tumor in axial strain and EPR elastograms are from used gel pad in the experiment.
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(C1 and C2) show the results obtained using the AM and DPHS methods. From these preliminary
results, we observe that AM and DPHS methods have similar performance with respect to the axial
strain estimation, far better than CM. Since tofu and gelatin have different poroelastic properties,
theinclusionisclearly visiblein the EPR elastograms[142]. In the EPR elastogram obtained using
DPHS, theinclusion borders are better defined and the inclusion/background contrast appearsto be
higher than in the EPR elastograms obtained using both AM and CM. The CNRe calculated from
the EPR elastograms of the tofu/agar phantom by CM, AM and DPHS are shown in Table 3.1.
We see from this table that the EPR elastogram from the DPHS has the highest CNRe (4.91),
whereas the EPR elastograms from the other two methods AM and CM have CNRe of 1.93 and

0.52, respectively.

Table 3.1: CNRe computed from EPR elastograms of controlled experiment

Sample CM | AM | DPHS
Tofu-agar phantom | 0.52 | 1.93 | 4.91

3.4.4 Invivo experiments

The in vivo results obtained from two mice experiments are shown in Figs. 3.11 and 3.12.
Axial strain elastograms and EPR elastograms obtained using the CM, AM and DPHS methods
along with the B-mode images are shown for both cases. From these results, we observe that
AM and DPHS methods have similar performance with respect to the axial strain estimation (even
if the axial strain resulting from the DPHS appears to be smoother). With respect to the EPR
estimation, DPHS outperforms AM providing a better definition of the tumor borders and higher
tumor/background contrast. Axial and lateral strains estimated using CM were found significantly
noisier when compared to AM and DPHS. These resultswere consistent for al in vivo experiments
performed in this study. The SNR and CNRe computed from the EPR elastograms obtained from
in vivo experiments using CM, AM and DPHS are shown in Table 3.2. SNR values are cal culated

102



from the EPR elastograms in the background tissue, away from the tumor. From Table 3.2, we see
that the values of SNR and CNRe for the EPR elastograms from DPHS are higher than the SNR

and CNRe values of the EPR elastograms from AM and CM in all fivein vivo cases.
3.5 Discussion and futureworks

EPR of poroelastic materials is an important mechanical parameter, which has been linked
to a number of pathological and physiological conditions of tissues. In the field of ultrasound
elastography, prior studies have shown that the image quality of EPR elastograms is significantly
compromised by poor lateral strain estimation. This would reduce the usefulness of these images
in clinical scenarios where uncontrollable factors may further deteriorate image quality and only

limited averaging may be possible.

Table 3.2: SNR and CNRe computed from EPR elastograms of in vivo experiments

SNR CNRe
CM | AM |DPHS | CM | AM | DPHS
Mousel | 043 | 1.49 | 2.23 153|481 | 7.12
Mouse?2 | 1.13 | 1.98 | 3.14 | 0.44 | 2.03 | 2.90
Mouse3 | 095 | 273 | 289 | 0.82 | 3.82 | 5.22
Mouse4 | 1.29 | 3.19 | 352 | 059 | 2.78 | 3.93
Mouse5 | 0.71 | 1.59 | 1.98 | 0.73 | 1.89 | 5.12

Sample

In this paper, we propose a new method to obtain high quality EPR estimates in ultrasound
poroel astography experiments in vivo. The proposed method uses DPE to estimate large integer-
pixel motion displacements between pre- and post-compression RF data and HS to estimate the
residual sub-pixel displacements using optical flow. The novelty of the proposed method lies in
the combined use of these two established methods while maintaining their own distinct benefits.
Although each of the method on its own has been previously investigated, the combination is novel

and especially relevant for the poroel astography applications.
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DPE is a robust and computationally fast method for integer axial and lateral displacement
estimation [119], whereas the HS method isfound to be agood choice for estimation of sub-sample
axial and lateral displacements[164,165]. Specifically, the HS method has certain advantages over
other optica flow based methods such as Lucas-Kanade (LK) [164] and sub-pixel displacement
recovery methods [166]. In the LK method, a matrix needs to be inverted to obtain the flow field.
The matrix may not be defined for many conditions, such as flat regions where the derivatives
are zero and lines where x and y derivatives are linearly correlated. In the HS method, these
problems are solved by imposing an additional constraint on the flow field: spatial smoothness,
i.e., adjacent pixels should move together as much as possible. As discussed in [164], the HS
method displays abetter convergence for displacement estimation in comparison to the LK method.
With increasing displacements between image frames, the HS technique shows constantly better
performance, especialy in the motion boundary region with respect to LK method. The HS method
also generates sharper motion boundaries and offers higher robustness within deformation regions
with respect to LK method. The HS method is aso found to possess higher spatial resolution
than the LK method. Therefore, overall, the HS method is expected to perform better than the LK
method in ultrasound poroel astography applications.

Our proposed two-step method was tested with simulated and experimental data. Our results
show that the proposed method can generate accurate EPR elastograms in a variety of time and
applied compression conditions.

The performance of the proposed method was qualitatively and statistically compared with the
performance of CM [136] and AM [120] agorithms. We chose these two comparative benchmarks
for the following reasons. CM is the most widely used technique for strain estimation in elastog-
raphy [124, 167]. AM is based on DPE but with sub-sample axial and lateral strain estimation
capability. The better performance of DPHS in comparison to AM clearly shows the effectiveness
of using HS to improve the quality of the strain images, especially that of EPR elastograms. Most
of the available displacement estimation methods work well for estimating the axial displacement

but perform poorly for lateral displacement estimation. Due to inherently poor lateral sampling
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in standard ultrasound imaging, it is important to use a method that can very efficiently estimate
sub-pixel lateral displacements, such asthe HS[164]. Our study shows that HS produces accurate
estimates of both sub-pixel axial and lateral displacements and the estimation of sub-pixel axial
strain from HS is smoother than that of other methods. Although estimated axial strains from
various methods look similar, the performance of DPHS in the EPR estimation appears to be sig-
nificantly better than that of AM and CM because of the more accurate lateral strain estimation and
of the smoother axial strain estimation. This is demonstrated in simulations as well as controlled
and in vivo experiments.

By using the parameter estimation methods on the acquired in vivo ultrasound poroel asto-
graphic experimental data, the mechanical parameters such as Young's modulus, interstitial per-
meability and vascular permeability of tumor and normal tissues could be extracted with help of
a proper analytical model [13]. All these parameters are known to be of great clinical value for
cancer diagnosis, treatment and prognosis [27, 168]. However, for determination of these param-
eters, accurate estimations of the EPR and axial strain are necessary. As DPHS has been proved
efficient in both controlled and in vivo experiments in our study, DPHS can be an essential tool in
parameter estimation and imaging in ultrasound poroel astography in clinical settings.

The main limitation of the proposed method is the estimation of EPR for high axial compres-
sion levels. In our simulations, we have observed that, when the applied strain is larger than 7%,
the results from DPHS begins to degrade presumably due to the limited performance of the HS
method in estimating large displacements. In our simulations, AM and correlation methods were
found to begin to deteriorate at around 9% applied strain. However, it should be noted that applied
strains above 5% are not typical inin vivo ultrasound elastography studies.

In terms of computational time, current implementation of the proposed method requires about
29 second in a 3.8 GHz Core i5 CPU with 8 GB RAM to produce a EPR elastogram using for pre-
compressed and post-compressed data of size 2078 x 128 pixels. Further improvement in speed
can be obtained using multi-processors and is left for future work.

Given the results presented in this paper, we believe that the availability of the proposed DPHS
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method can have a significant impact in novel applications of elastography dealing with EPR esti-
mations, for the assessment of different strain time constants, and, in general, in ultrasound applica-
tionsrequiring lateral displacement information such as shear strain imaging and 3D elastographic
imaging.

3.6 Conclusion

In this paper, we propose a novel technique to estimate the time varying EPR of biological
tissues. Our simulation results demonstrate that the proposed method can provide better quality
EPR estimates than those obtainable using standard methods such as correlation-based technique
or analytic minimization method. Experimental datais used to validate the method with real data.
Availability of the proposed method may be helpful for future elastographic studies requiring ac-

curate and reliable lateral displacement and strain estimations.
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4. ESTIMATION OF YOUNG'SMODULUS AND POISSON’SRATIO

4.1 Background

There are only afew non-invasive imaging modalities that are capable of generating Y M maps
of tissues in vivo, while there are no available methods to non-invasively image the PR in com-
plex biological tissues. Ultrasound elastography (USE) [3], ultrasound shear wave elastography
(SWE) [169] and magnetic resonance el astography (MRE) [170] technigues have shown to be able
to provide YM images, under the assumption that the tissue behaves as a linearly elastic incom-
pressible solid (i.e., as PR of 0.5) [171-176]. Recent studies have demonstrated the feasibility of
imaging the lateral-to-axial strain ratio also referred to as “effective PR” (EPR) in tissues using
elastography [96], [153], [10, 177], but not the actual, underlying PR of the tissue.

There are two main approaches that can be used for reconstructing the YM distribution in
tissues - a direct approach and an iterative approach. In the direct approach, a partia differential
equation devel oped using the equations of equilibrium for linear elastic solidsis used for estimating
the YM [178-181]. The limitation of the direct approach is that it implicitly assumes continuity
of the stress and strain in the tissue. Therefore, it is not directly applicable to cases where the
distribution of the YM can vary sharply such as at the interface of atumor and surrounding tissue.

The iterative methods utilize forward and backward solutions of the differential equations of
equilibrium for linear elastic solids and attempt to minimize their differences[171,172]. Generally,
the iterative methods are more robust than the direct approaches but have other limitations. Firstly,
these methods are computationally intensive [182, 183]. Secondly, they require a regularization
term, which is often difficult to choose. The regularization parameter is used to reduce the noise
and preserve the contrast of the reconstructed YM image. Inability to select a proper value of the
regularization parameter can result in incorrect and noisy estimates of Y M.

In most of the works pertinent to medical elasticity imaging retrievable in the literature, the

Y M of thetissueisreconstructed with two fundamental assumptions: 1) that the tissue (tumor and

107



surrounding tissue) behaves as a perfectly linearly elastic solid, and 2) that the tissue isincompress-
ible or nearly incompressible [171-176, 184]. It is now widely believed that tissues can be more
realistically represented using poroelastic models instead of linearly elastic models. Thus their
strain response under loading varies with time. In that case, the YM and PR should be determined
by the strain response at steady state, when the materia is fully relaxed [185]. The YM esti-
mated from the instantaneous response of soft tissue in place of steady state response can be much
higher (2-4 times) than the true value as shown in Bayat et a. [186]. In al the above-mentioned
works [171-176, 184], the PR of the tissue, which is needed to correctly estimate the YM of the
tissue, is not estimated. Rather, it is assumed to be a given value, typically 0.495/0.499995/0.45.
Moreover, it has been demonstrated by a number of studies that the PR of tissues (including tu-
mors) may have avalue much lower than 0.495. In the works of Stylianopouloset al. [16], M pekris
et al. [115] and Fung [116], the PR of normal tissue was assumed 0.2 and that of cancer was as-
sumed 0.2 (compressible)/0.45 (incompressible) in works of Stylianopoulos et al. [16], Roose et
al. [187] and Netti et al. [59]. Recently, Nia et al. [185] assumed a PR value for the soft tissue
and tumor of 0.1 to compute the residual stress inside the tumor. In some other works [188-191],
the authors reported or used values of PR for the soft tissue ranging between 0.3 and 0.45. Given
the broad range of PR values for soft tissue and tumors that has been reported in the literature, the
assumption that the PR is constant and equal to 0.5 or avalue to close to 0.5 is not only unreal-
istic but can aso lead to incorrect reconstructed YM values. Accurate determination of the PR is
crucia to obtain accurate estimates of YM. In addition, a correct knowledge of the YM and PR
is essential for the quantification of other poroelastic parameters such as vascular and interstitial
permeability, which are known to be of great clinical value [13]. Finally, it is reasonable to expect
that the PR itself may change with the onset of many diseases [10] asiit is directly related to the
compressibility of the tissue, and thisinformation could prove useful clinically.

The estimation of the mechanical properties of tumors is inherently athree-dimensional prob-
lem. While afew three dimensional YM reconstruction methods have been reported in the liter-

ature [176,192], in most of the prior YM reconstruction studies, the models are two dimensional

108



and based on the common assumption of plane strain/plane stress [171, 172, 193-195]. Further-
more, most of the above mentioned methods assume specific boundary conditions such as total
uniformity of the background, stress-free lateral boundaries etc., which are rarely true in complex
cancer environments. Most of these methods perform well for tumors of specific shapes such as
disk (2D)/sphere (3D) [171,192, 194, 195] but have poorer performance in tumors of other shapes
such as ellipse. These methods aso perform poorly when the YM contrast between the tumor
and normal tissue is larger than 10 and are not applicable to the case of tumors softer than the
background [195]. In many cases, the tumor is assumed to be very small so that certain ratios
such as ratios of sample radius to tumor radius, compressor radius to tumor radius and distance
between applied force and tumor to tumor radius are greater than a predefined value [192, 194].
Determination of heterogeneous distribution of YM inside the tumor and normal tissue is another
challenge [196]. Most of these methods fail to reconstruct the YM accurately in case of non uni-
form axial compression, which occurs frequently in elastography experiments.

In this section, we present a three dimensional YM and PR reconstruction method based on
Eshelby’s inclusion formulation [110,197]. Our proposed method overcomes the aforementioned
limitations of current Y M reconstruction methods. It allows simultaneous quantification and imag-
ing of the YM and PR in both atumor and surrounding tissue irrespective of the complex boundary
conditions and/or the shape of the tumor and for a wide range of tumor/background Y M contrasts
(0.1 — 50). In our approach, the tumor and normal tissues are assumed to behave as poroelastic
materials, and the YM and PR are reconstructed from knowledge of the strain responses at steady
state. The proposed method is based on a cost function minimization technique, and the cost func-
tion is developed utilizing the formulations of eigen strain described in works of Eshelby [110] and
Mura[197].

4.2 Materialsand methods

The local stress and strain inside and outside an inclusion due to the remote stress have been
determined by Eshelby [110] using the superposition principle and Green’s function. The remote

stressis the applied stress that creates a uniform stress over the entire background. This was done

109



using a virtual experiment, which is summarized in Fig. 4.1. The virtual experiment is composed

by the following steps:

1. Isolate the inclusion from the background (Fig. 4.1(A)). Consequently, the inclusion is
strained because of the loss of constraint imposed by the background. This strain is denoted

aseigenstrain (¢*).

2. Apply traction 7" to bring theinclusion in its original shape (Fig. 4.1(B)). The strain induced

inside the inclusion should compensate the eigenstrain.
3. Insert the inclusion back in the background (Fig. 4.1(C)). Thetraction forceisstill 7.

4. RemovetheappliedtractionT” (Fig. 4.1(D)). Thisisthe same scenario asstep 1 (Fig. 4.1(A)).
Theremoval of the traction force from step 3 to step 4 is equivalent to applying a body force

of —T to the surface of the inclusion.

These four steps can be written mathematically in terms of the Green’s function of the elastic

body. The strain and stress inside the inclusion can be written as[110, 176]

e=€e"+85:€ (4.2)

o=0"+C" [S—1]: €, (4.2

where €? istheremote strain, €* isthe eigenstrain, o isthe remote stress, C? isthe stiffnesstensor
of the background, I isthe identity tensor and S is the Eshelby’stensor. €°, €* and o are vectors
of three components (axial, lateral and elevational). Based on the axisymmetric assumption, the
lateral and elevational components are equal. The relationship between the remote stress o° and

€Y can be expressed as

o =C": €. (4.3)

The Eshelby’stensor .S isafunction of the geometry of theinclusion and the PR of the background.
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© ®

Figure 4.1: Four steps of Eshelby’s virtual experiment to reach the solution. Here background is a
linear elastic solid of volume V" and surface S. Theinclusionisaso alinear elastic solid of volume
Vo and surface Sy. (A) Theinclusion is removed from the background. (B) A surfacetraction 7' is
applied to return Vj inits original shape. (C) Put the inclusion back to the matrix and (D) remove

the applied traction.
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In egs. (4.1) and (4.2), the eigenstrain can be written as ( [197] eg. 22.13)

e=(S+A)": (B:e-¢€, (4.4)

where ¢! is a prescribed eigenstrain (zero for our current problem), and the fourth-order mismatch

stiffness tensors A and B can be defined as

A=[C-C"t.C° (4.5)

B=[C-C""'.C, (4.6)

where C' isthe stiffnesstensor in the inclusion. The expression of A isrelevant to our problem. A
is determined in [198].

Let usindicate e* ineg. (4.1) ase] and €* ineq. (4.4) as ;. In the expression of €7, only the
Eshelby’s tensor S is involved. This requires knowledge of the tumor (inclusion) geometry and
the PR of the normal tissue (background). In the expression of €3, the YM and PR of the tumor
and normal tissues are involved.

A cost function can be defined as

J(EI, l/i> = (Jl(E“ Vi))2 + (JQ(EZ, l/i>>2, (47)

where

Ji(Ei,vi) = €1(1) — (1), J(Ei,v;) = €](2) — €5(2) (4.8)

and by minimizing this cost function .J, we can obtain the YM (E;) and PR (v;) of the tumor. The
YM and PR of the normal tissue can be determined by using eqg. (4.3). Theexpressionsof €} and €
for elliptic (prolate, oblate) and spherical tumor (inclusion) are shown in [198]. The expressions of

the Eshelby’s tensor .S for cylindrical, flat elliptic, penny-shaped tumors are given in [198]. Using
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these S in equations of €} and € for elliptic tumor, €7 and € for these shapes can be determined

(and therefore YM and PR).
4.2.1 Controlled experiments

For the controlled experiments, we used the breast phantom model 059 from Computerized
Imaging Reference Systems (CIRS), Inc., Norfolk, VA, USA. As provided by the manufacturer, in
this phantom, the Young's modulus of each inclusion massis around 50 kPa, while the background
has a Young's modulus of 20 + 5 kPa[199, 200]. The PR of both inclusions and background of
this phantom is 0.5 [201]. The applied compression was evaluated using a graphical user interface
monitoring the force sensor. The axial and lateral strain was estimated using the pre- and post-

compressed ultrasound radio frequency data acquired in the elastography experiments.
4.2.2 Invivo experiments

Experiments on nineteen mice with triple negative breast cancer cells injected in the mammary
fat pad were carried out on a weekly basis for three consecutive weeks. The cancers were cre-
ated at the Houston Methodist Research Institute by injection of the cancerous cells beneath the
mouse's mammary fat pad [159]. In vivo data acquisition was approved by the Houston Methodist
Research Institute, Institutional Animal Care and Use Committee (ACUC-approved protocol #
AUP-0614-0033). Seven mice were kept untreated and twelve mice were treated by injecting them
intravenously with one of the following drugs: 1. Epirubicin alone, 2. Liposomes loaded with
Epirubicin and 3. Liposomes loaded with Epirubicin and conjugated with Lox antibody on the
particle surface. The dose of each drug was 3 mg/kg body weight once aweek. Prior to ultrasound
data acquisition, each mouse was anesthetized with isoflurane. Each data acquisition session was
5 minutes long, and severa RF data acquisitions could be performed during this period (for relia-
bility purposes).

Elastography was carried out using a 38-mm linear array transducer (Sonix RP, Ultrasonix,
Richmond, BC, Canada) with a center frequency of 6.6 MHz and 5 — 14 MHz bandwidth. To

compensate for the surface geometry as well as facilitate positioning the focus inside the superfi-

113



cial tumors, an agueous ultrasound gel pad (Aquaflex, Parker Laboratories, NJ, USA) was placed
between the compressor plate and the devel oped tumor. It should be noted that such use of gel pad
does not change the stress distribution inside the sampl e significantly and thus does not change the
estimated parameters. This has been proved in [198]. A force sensor (Tekscan FlexiForce) was
inserted between the gel pad’stop surface and the compressor plate to record the applied force dur-
ing the compression. Creep compression was performed manually on the animals and monitored
using the force sensor, with the duration of each compression being one minute. Duration of the
experiment was selected based on the temporal behavior of the soft tissue and tumor reported in
the literature [202] and to ensure that both the tumor and surrounding tissues reached steady state
conditions. Ultrasound radio-frequency (RF) data acquisition was synchronized to the application
of the compression. The sampling period of the datawas set at 0.1 s. The axial and lateral strain
data were calculated at steady state, when both the tumor and normal tissues behave as elastic
materials [203]. An expert radiologist is employed to segment the in vivo axial strain elastograms

in Matlab for determining the tumor areas.
4.2.3 Calculation of stress

FlexiForce OEM Development Kit manufactured by Tekscan, Inc., South Boston, MA, USA-
02127 was employed to inspect and adjust the applied compression in both the controlled and
in vivo experiments. A Microsoft Windows based interface software is provided with the sensor
and can be used to observe and record the applied force. A temporal curve showing the applied
compression in one of the in vivo experiments is reported in Fig. 4.2. The sensor used in the kit
ismodel #A 201, which senses aforcerange 0 — 4.4 N in ascale of 0 — 255. The diameter of the
sensing areaof the sensor is9.53 mm. Theareaof the sensing areaiscalculated as7.1331 x 107> m?

(A, = 7r?). The applied pressurein Pais calculated using

 Fyx44

255 x A, (4.9)

0o
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where F,. is the mean force reading obtained from the sensor during the experiments. It should
be noted that o is the axial component of o in eq. 4.3 and other two components (lateral and

elevation) of o are zero.
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Figure 4.2: Reading from the force sensor in an in vivo elastography experiment.

4.2.4 Estimation of axial and lateral displacementsand strains

To computethe axial and lateral strainsin both the ssmulated and experimental data, atechnique

recently developed in our lab [146] was used.
425 Estimation of YM and PR

For FE and ultrasound simulation data, we select a square region of 5 x 5 pixels in the left
corner of the axial and lateral strain elastograms (128 x 128 pixels). The mean strains of this area
are assumed to be representative of the axial and lateral strains of the background region. For the
in vivo and controlled experiments, we choose a square region of 10 x 10 pixels in the normal
tissue/background region and compute the mean values of the strainsin that region. For estimation
of YM and PR using the proposed method, non linear least square optimization by ‘trust-region-
reflective’ algorithm in MATLAB (The MathWorks, Natick, MA) is used to minimize the cost
function J in eq. 4.7, where the maximum number of iteration is set to 100. Complex shapes

such as tetragon, pentagon and hexagon are approximated with ellipses, and the cost function for
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the elliptical tumor has been used for these shapes. The approximation of these complex shapes
with ellipses are shown in Fig. 4.3. The lower and higher limits for the YM are set to 0.1 x 2
and 100 x 2¢ inside the tumor. The lower limit of PR in the cost function minimization process
isset to —0.8 x Z— and the higher limit is set to 0.495. Here, ¢, and ¢, are axia and lateral
strains, respectively. For reconstruction using the 3DB method, the method described in [192] is
used while for 3DS method, the method described in [176] is used. When computing the YM by
3DB, the Poisson’s ratios of both inclusion and background are assumed 0.495 in al cases. The
correctness of the implementations of these methodsis verified by matching the results obtained by

our implementations with the results reported in their papers for the same simulation conditions.

N (B) ©

Figure4.3: Approximation of different shapeswith ellipses (A) tetragon (B) pentagon (C) hexagon.
It has been assumed that in the imaging plane the tumors are of these shapes and if the plane is
revolved around the center line, the shape remains samein all other planes (axisymmetry).

4.2.6 Calculation of RMSE of estimated YM and PR

Calculation of RMSE for the estimated YM and PR of the inclusion was performed using the

following formula [146].

C[EN(Ae(n) = A(n))? 100 x N
RMSE = \/ N X Zg At<n)’ (4.10)
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where A, isthe vectorized (reshaped from 2D to 1D) YM or PR of the inclusion from YM and PR
images estimated by different methods and A, isthe vectorized true YM or PR of theinclusion. NV

isthe total number of pointsinside the inclusion of the estimated YM or PR image.
4.2.7 Calculation of surface area and solidity of thetumors

The surface area of the tumor, A, is calculated in cm? as

1
A, = w16 (4.11)

Uz

where n,, is the pixel number inside cancer tumor and n, is the total number of pixels in the
elastogram.

The solidity of the tumor is calculated as

S = —, (4.12)

Cq

where a isthe areaand ¢, is the convex area of the tumor.
4.2.8 Simulation procedures

The methods of FE and ultrasound simulations for the results in this section are discussed in

detail in[198].
4.2.9 Specifications of the samples

The material propertiesof all samplesare chosen based on values of YM and PR for tumorsand
normal tissues available in the literature [13, 16,40, 115, 116]. In samples A-M, the normal tissues
have YM equal to 32.78 kPa. A, D, E and F have tumorswith YM equal t0 97.02 kPa. B, C, H, I, J,
K, L and M have tumors with YM equal to 50, 163.90, 491.7, 819.5, 1639, 3278, 16.39, 6.556 and
3.78 kPa, respectively. The PR of normal tissuesin A, B and C isequal to 0.49, in D isequa to
0.45 and in E-M isequal to 0.2. The PR of tumor isequal to 0.4 in A-C,0.45inDandE, 0.3inF,
0.45in G-Jand 0.3 in K-M. These mechanical parameters are shown in tabulated form in Table 4.1

in the supplementary material.
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Table4.1: YM and PR of samples A-M used in the FEA and ultrasound simulations

Samplename | E, (kPa) | E; (kPa) | 1 v
A 32.78 97.02 | 0.49 | 0.40
B 32.78 50.00 | 0.49 | 0.40
C 32.78 163.90 | 0.49 | 0.40
D 32.78 97.02 | 045 | 0.45
E 32.78 97.02 | 0.20 | 0.45
F 32.78 97.02 | 0.20 | 0.30
G 32.78 491.70 | 0.20 | 0.45
H 32.08 819.50 | 0.20 | 0.45
I 32.78 | 1639.00 | 0.20 | 0.45
J 32.78 | 3278.00 | 0.20 | 0.45
K 32.08 16.39 | 0.20 | 0.30
L 32.78 6.556 | 0.20 | 0.30
M 32.78 3278 | 0.20 | 0.30

For samples Z1-7Z8, H1-H3, B1-B3 and R1-R4, the YM and PR of tumor are set to 97.02 kPa
and 0.3, whereas the YM and PR of the normal tissue are set to 32.78 kPa and 0.2. For samples
X1-X9, the YM and PR of tumor are set to 97.02 kPaand 0.45 and the YM and PR of the normal
tissue are set to 32.78 kPaand 0.2.

All the samples simulated are of 4 cm height and 2 cm width in an axisymmetric setup. In
samples A-M and X1-X9, the radius of the spherical inclusionis0.3 cm. In sample Z1, the radius
of theinclusionis0.3 cm, thelengths of elliptical axesalong lateral and axial direction ininclusions
of samples Z2 and Z3 are 0.2 cm and 0.5 cm and 0.5 cm and 0.2 cm, respectively. The radius
and height of the cylindrical inclusion of sample Z4 are 0.3 cm and 0.55 cm. The radius of the
penny-shaped inclusion of sample Z5is 0.5 cm and the height is 0.05 cm. The length of each side
of tetragonal, pentagonal and hexagonal inclusions in samples Z6, Z7 and Z8 are 0.45 cm. The
dimensions of the inclusions and boundary conditions of samples B1-B3, H1-H3 and R1-R4 are

described in detail in supplementary material.
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Figure4.4: (A) Percent root mean squared errors (RM SE) of estimated YM imagesand (B) RMSEs
of estimated PR images from three different methods for samples A-M using ultrasound simulated
data. RMSEs greater than 100% have been masked to 100%. PM stands for: proposed method.
Samples A-J are with tumors harder than the surrounding normal tissue, and K-M are with tumors
softer than the surrounding normal tissue. RMSE is higher in case of samples with soft tumors.
The RMSEs for 3DB and 3DS method are less than 5% for Sample C, whereas the RMSEs are
more than 60% for sample L. RM SE for the proposed method is below 3% for sample C and below
6% for sample L. Sample C and sample L have 5 and % contrast of YM between the tumor and
normal tissue. For hard tumors, RM SE in estimating the YM for all three methods increases as the
contrast of YM between the tumor and normal tissue increases. The RMSE in estimating the YM
by the proposed method is the lowest in al casesin comparison to the other two methods.

4.3 Results
4.3.1 Simulations

The YM distributions in samples with different mechanical properties reconstructed using the
proposed method were compared with the results obtained using two other 3D reconstruction meth-
ods, which arereferred to as”“ 3DB” [192] and “3DS’ [176]. Eight samples of different shapes (Z1-
Z8), nine samples of different inclusion/background YM contrasts (fixed inclusion/background PR
contrast) (X1-X9), three samples with different boundary conditions (B1-B3), three samples with
different YM heterogeneity percentages (H1-H3), four samples with different non-uniform load-
ings (R1-R4) and thirteen samples of different inclusion/background YM and PR contrasts (A-M)
were simulated and analyzed.

The percent root mean squared errors (RMSE) occurring when reconstructing the YM distri-
bution in tumors of different shapes using the 3 approaches are shown in Table 4.2. We observe

that, within the results obtained using the proposed approach, the highest RM SE is observed when
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the shape of the tumor is cylindrical (9.91%) and the lowest (0.8%) when the shape of the tumor
is spherical. In comparison, the RM SE associated to the other two Y M reconstruction approaches
are much higher than the one associated to the proposed method and typically higher than 20%
for tumors of all shapes. The RM SEs occurring when reconstructing the PRs using the proposed
approach are also shown in thetable, and they are found to belessthan 9% in all simulated samples.

The RM SEs computed for the three methods in the case of tumors having different YM con-
trast (CTYM) with respect to the background are reported in Table 4.3. We see that the RMSE
associated to the proposed approach is below 5% for contrast of 0.1 — 100, whereas the RMSESs
for the 3DB and 3DS approaches are higher than 20% in most cases.

A typical problem of elastography-based reconstruction methods is the effect of boundary con-
ditions on the reconstructed mechanical parameters. The RM SEs computed when the YM of the
tumor is reconstructed using data obtained with different boundary conditions are shown in Ta-
ble 4.4. We see that, even in the case of very complex boundary conditions, the proposed approach
can reconstruct the YM with about 90% accuracy. The other two reconstruction methods, instead,

show larger RM SEs for all boundary conditions when compared to the proposed one.

Table 4.2: RMSEsin estimating the YM of inclusions of different shapes using different methods
when the YM inclusion/background contrast (CTYM) is 3. RMSEs in estimating the PR in the
same inclusions using the proposed method (PM) are shown in parentheses.

|Sample|  Shape [3DB (%)|3DS(%)| PM (%) |
Z1 | spherica | 1695 | 238 | 0.8(05)
Z2 prolate 26.86 3.28 2.69 (2.31)

Z3 oblate 56.00 | 27.06 | 5.01 (2.66)
Z4 | cylindrical | 2157 | 22.18 | 9.91(8.88)
Z5 penny 62.95 | 129.73 |8.29 (12.67)

Z6 | 3D tetragon| 27.39 | 43.00 | 9.39 (7.04)
Z7 | 3D pentagon| 21.34 | 24.75 | 8.55(7.31)
Z8 | 3D hexagon| 41.73 | 46.42 | 8.12(6.75)

Effect of heterogeneity inthe YM distribution inside the tumor on the reconstructed parameters
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Table 4.3: RMSEs in estimates of YM of spherical shaped inclusions by different methods for
different CTYM values. RMSEs in estimating the PR in the same inclusions using the proposed
method (PM) are shown in parentheses.

| Sample| CTYM |3DB (%) [3DS (%)| PM (%) |
X1 0.1 | 888.97 | 885.69 | 3.54(0.34)
X2 0.2 4759 | 393.18 |2.25(0.19)
X3 05 454 97.71 [1.34(0.08)
X4 3 22.77 | 26.60 |0.56(0.05)
X5 5 23.77 | 26.35 [0.64(0.39)
X6 15 24.58 252 [1.71(0.94)
X7 25 2453 | 36.54 | 2.34(3.36)
X8 50 25.15 | 98.72 [3.85(11.98)
X9 100 | 2459 | 115.81 | 4.75(2.41)

has been investigated, and the results are reported in Table 4.5. Sample H3 has the highest hetero-
geneity, where YM reduces by 30% from the center to the periphery of the tumor. The proposed
method is capable of reconstructing the YM of the tumor with high accuracy (> 94%) in all cases
analyzed in this study whereas the other two approaches introduce more than 14% error in most
cases.

The results related to the non-uniform compression conditions are shown in Table 4.6. Once
again, the proposed method is robust to load variations, as opposed to the other two methods.

InFig. 4.4(A), wereport the RM SEs of the estimated Y M images using the three reconstruction
techniques for thirteen samples A-M when using ssimulated ultrasound data, and the RM SEs of
the estimated PRs in the same samples using the proposed technique are shown in Fig. 4.4(B).
We see from Fig. 4.4 that the error incurred in all the reconstruction methods increases as the
inclusion/background YM contrast increases. However, the RMSE for the proposed method is
below or around 15% for inclusion/background Y M contrasts up to 50 (sample H). The RMSE for
the estimated PR also increases as the inclusion/background YM contrast increases but remains
around 10% evenin case of aYM contrast of 100 (sample J). The other two methods can introduce
errorsgreater than 25% evenin case of acontrast aslow as 3 (sample E). The RM SE for all methods

increases for the samples with a soft inclusion (samples K-M). However, the error is significantly
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Table 4.4: RMSEs in estimating the YM of spherically shaped inclusions with a CTYM of 3 by
using different methods for different complex boundary conditions. RMSEs in estimating the PR
in the same inclusions using the proposed method (PM) are shown in parentheses.

| Semple| Boundary condition |3DB (%)[3DS (%)| PM (%) |

gL | . ZAg-zagsiffer 1925 | 21.82 | 7.74(8.32)
tissue in background

gy | adfferentshaped | 5,00 | 301 (1004 (367)

inclusionsin background

B3 stripof hardtissie | e 05 | 1994 | 09(2.14)
on top of the tumor

pg | Mulilelyersottisue | ) 5s | 1467 | 506(5.02)
on top of the tumor

ps | Mutiplelayersoftissie |, oo | o4 15 | 555 (6.37)
on top of the tumor

Table 4.5: RMSEs in estimating the YM of the spherical shaped inclusions of CTYM of 3 by
different methods for different heterogeneity conditions. RMSEs in estimating the PR in the same
inclusions using the proposed method (PM) are shown in parentheses.

| Sample| Heterogeneity (%) | 3DB (%) |3DS (%)| PM (%) |

H1 10 16.12 | 18.98 | 2.27(4.13)
H2 20 1479 | 16.78 | 3.1 (5.25)
H3 30 13.95 | 1491 [6.22(11.45)

lower for the proposed method in comparison to other two techniques. For sample M, where the
inclusion is 10 times softer than the background, the RM SEs are higher than 100% for 3DB and
3DS methods, while the RM SE for the proposed technique is below 10%. These results prove that
the proposed approach is more accurate, more precise and more robust than previously proposed
3D YM reconstruction methods and has the advantage to provide estimates of both the YM and

the PR distributions.
4.3.2 Controlled experiments

Fig. 4.5 shows selected results from controlled experiments performed on a breast-mimicking
phantom containing different spherical inclusions simulating incompressible tumors with similar

stiffness. In Fig. 4.5, the estimated axial strain, lateral strain, reconstructed YM and PR distri-
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Table 4.6: RMSEs in estimating the YM of spherical shaped inclusions with CTYM of 3 by dif-
ferent methods under non-uniform loading. RMSEs in estimating the PR in the same inclusions
using the proposed method (PM) are shown in parentheses. In these cases, the load isincreased or
decreased from the center to the periphery of the compressor plate.

| Sample| Non-uniformity of loading (%) | 3DB (%) | 3DS (%) | PM (%) |

R1 20% reduction 31.84 35.54 |9.47(1.89)
R2 10% reduction 24.68 28.26 |5.24 (1.02)
R3 20% increment 7.94 10.86 |9.52(3.20)
R4 10% increment 12.96 1594 |6.45(3.32)

butions for one of the inclusions inside the breast phantom are shown. The mean and standard
deviation values of the reconstructed YM and PR distributions as obtained from this experiment
can be found in Table 4.7. According to the manufacturer’s specifications for this breast phan-
tom [199, 200], the YM of the background is 20 + 5 kPawhile the YM in the inclusion is approx-
imately 50 kPa. The PR is approximately 0.5 both in the inclusion and in the background [201].

Thus, our reconstructed YM and PR have errors less than 7% and 15%, respectively.

-0.01 60E3 0.5
0.06
40E3 0.3
~ | |-0.02
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(A1) (A2) (A3) (A4)

Figure 4.5. Estimated axia strain (Al), lateral strain (A2), YM image (A3) and PR image (A4)
from the controlled experiment (CEL1). This figure shows results for applied compression of
0.97 kPa. The estimated YM is in the range of 45 — 55 kPa in the inclusion and in the range
of 17 — 21 kPain the background region. The estimated PR is around 0.44 in the inclusion region
and 0.43 in the background region.

4.3.3 Invivo experiments

B-mode images and reconstructed YM and PR distributions obtained from data acquired from

three untreated mice at three different time points (week 1, week 2 and week 3) are shown in
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Table 4.7: Mean and standard deviation of the reconstructed Y M and PR distributionsin controlled
experiment

[ Exp no [ Applied load (kPa) [ Est YM of inclusion (kPa) | Est PR of inclusion [ Est YM of background (kPa) | Est PR of background |
[CEL | 0.97 [ 46.72 £3.59 [ 0432£0.02 | 1927 £1.61 [ 0427+003 |

Fig. 4.6 (A1-A9, B1-B9 and C1-C9). We see from this figure that, in general, the YM increases
significantly fromweek 1 (A2, A5, A8) toweek 3 (C2, C5, C8) in the untreated mice, whilethe PR
values are around 0.25 to 0.35. Based on prior literature on elastography, we expect most cancers
to be dtiffer than the normal tissue. However, to the best of our knowledge, our results are the
first ones to experimentally demonstrate the actual increase of YM as the cancer progresses using
ultrasound elastography.

B-mode images and reconstructed YM and PR distributions obtained from data acquired from
three treated mice at three different time points (week 1, week 2 and week 3) are shownin Fig. 4.7
(A1-A9, B1-B9 and C1-C9). We see from thisfigure that, in most treated mice, the Y M decreases
or does not change with time. Also, the YM contrast between cancer and background tissue is not
as high as in the case of the untreated mice. The PR values are in the range 0.3 — 0.4 in most of
the cases. However, the PR appears to increase in the first or second week and then to decrease
in the third week in most of the cases. Once again, to our knowledge, these YM and PR trendsin
tumors following a treatment have not been experimentally investigated using elastography prior
to this study.

The YM mean values with the corresponding standard deviations for twelve treated mice and
seven untreated mice at the three different time points (week 1, week 2 and week 3) are shown
in Fig. 4.8 (A1). In the first week, the mean YM in the untreated tumors was found to be below
50 kPa. In the second week, the mean Y M in the untreated tumors increased significantly ( above
60 kPa) and in the third week was found to be above 75 kPa. The mean YM in the treated tumors
at the three different weeks was found to be close to 25 kPa, which is a value close to the one
measured for the YM in the normal tissue (background).

The mean values of PR with the corresponding standard deviations for all the treated and un-
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Figure 4.6. B-mode images of untreated mouse #1 at three time points (week 1, week 2, week
3) are shown in (A1), (B1) and (C1). Reconstructed YM and PR distributions at the same time
points are shown in (A2), (B2) and (C2), and (A3), (B3) and (C3), respectively. B-mode images
of untreated mouse #2 at three time points (week 1, week 2, week 3) are shown in (A4), (B4) and
(C4). Reconstructed Y M and PR distributions at the same time points are shown in (A5), (B5) and
(C5), and (A6), (B6) and (C6), respectively. B-mode images of untreated mouse #3 at three time
points (week 1, week 2, week 3) are shown in (A7), (B7) and (C7). YM and PR distributions at
the same time points are shown in (A8), (B8) and (C8), and (A9), (B9) and (C9), respectively. The
Y Msfor the three casesincrease from week 1 to week 3. More specifically, the Y Msfor the shown
untreated mice are below 50 kPa in the first week, around 80 kPa in the second week and more
than 90 kPain the third week. These results indicate the increasing hardening of the tumor as the
cancer progresses. The PRs do not change significantly at the three time points (= 0.3).

treated mice at the three different time points (week 1, week 2 and week 3) are shown in Fig. 4.8
(A2). In adl these time points, the treated mice were found to have higher PR than the untreated
ones. For both the treated and untreated mice, the mean PR does not appear to change significantly
at the different time points.

Fig. 4.8 (A3) shows the tumor/background YM contrast for the twelve treated and seven un-
treated cancers, while Fig. 4.8 (A4) shows the tumor/background PR contrast (CTPR) for the
twelve treated and seven untreated cancers. In Fig. 4.8 (A3), we see that the CTYM for untreated
cancers is higher than that for the treated ones in all three weeks, which confirms previously re-

ported findings [204].
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Figure 4.7: B-mode images of treated mouse #1 at three time points (week 1, week 2, week
3) are shown in (A1), (B1) and (C1). Reconstructed YM and PR distributions at the same time
points are shown in (A2), (B2) and (C2), and (A3), (B3) and (C3), respectively. B-mode images
of treated mouse #2 at three time points (week 1, week 2, week 3) are shown in (A4), (B4) and
(C4). Reconstructed Y M and PR distributions at the same time points are shown in (A5), (B5) and
(C5), and (A6), (B6) and (C6), respectively. B-mode images of treated mouse #3 at three time
points (week 1, week 2, week 3) are shown in (A7), (B7) and (C7). Reconstructed YM and PR
distributions at the same time points are shown in (A8), (B8) and (C8), and (A9), (B9) and (C9),
respectively. The YMsfor these treated mice are around 20 kPafor all time points, and the PRs are
around 0.35 for all time points. Overall, the YM values of the treated mice are significantly lower
than that of the untreated mice, whereas the PR values of the treated mice are higher than that of
the untreated ones. The reduction/non-increment of stiffness of the treated tumors may be a sign
of the efficacy of the treatment in controlling the growth of the cancer.

Mean surface areas of the tumors with the corresponding standard deviations for all the treated
and untreated mice at the three time points are shown in Fig. 4.9 (A1). The mean surface area of
the treated tumors does not change significantly with time, whereas the mean surface area of the
untreated tumors increases with time.

The solidity of the tumor isameasure of the regularity of the shape of the tumor, and the mean
values of solidity for all the tumors at the three time points are shown in Fig. 4.9 (A2). Solidity is
higher in the case of the treated tumors than in the case of the untreated tumors at al time points.

In a previous study, lower values of solidity have been associated to malignancy [205].
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Figure 4.8: (A1) Mean YM values for the treated and untreated mice at week 1, week 2 and week
3. (A2) Mean PR values for the treated and untreated mice at week 1, week 2 and week 3. (A3)
Mean YM contrast between tumor and normal tissue for treated and untreated mice at week 1,
week 2 and week 3. (A4) Mean PR contrast between tumor and normal tissue for treated and
untreated mice at week 1, week 2 and week 3. n.s. means not statistically significant. One, two
and three stars correspond to p-value less than 0.05,0.01,0.001, respectively. The mean values
of YM and CTYM of the tumors increase from week 1 to week 3 for untreated mice and remain
almost constant for the treated ones. Mean values of PR and CTPR of the tumors are consistently
higher for the treated tumors than the untreated ones.

4.4 Discussion

In this paper, we propose a hew, non-invasive, three dimensional method for reconstructing
both the YM and PR in tumors. The YM is a mechanical parameter that has been investigated as
a marker for cancer diagnosis, prognosis and treatment monitoring and planning. PR is another
mechanical parameter, whose role in cancer assessment has not been fully elucidated yet, but it
has been shown to have potentials in cancer-related diseases such as lymphedema[10, 177]. Both
these parameters are needed to estimate other important properties of a tumor such as interstitial
permeability and vascular permeability [13].

The proposed method has many advantages compared to previously proposed reconstruction

techniques, which are currently used in elastography. It can accurately reconstruct the YM and

127



Il Untreated Il Untreated
[ ITreated [ ITreated

n.s. 15F

* %k

n.s. n.s.

%

>

]
Solidity

Surface area (cm2)
w
ok
1

n

ob

Week 1 Week 2 Week 3 Week 1 Week 2 Week 3

(A1) (A2)

051

Figure 4.9: (A1) Mean surface areas of the tumors for the treated and untreated mice at week 1,
week 2 and week 3. (A2) Mean values of solidity for all treated and untreated mice at week 1,
week 2 and week 3. n.s. means not statistically significant. One, two and three stars correspond
to p-value less than 0.05,0.01, 0.001, respectively. The mean value of surface area of the tumors
increases from week 1 to week 3 for untreated mice and remains almost constant for the treated
ones. Mean value of solidity of the tumors is consistently higher for the treated tumors than the
untreated ones.

PR of atumor for a wide range of tumor/background YM contrast, in many complex boundary
conditions and independently of the shape of the tumor. The proposed method is aso robust
to practical experimental conditions that may deviate from the ideal ones such as non-uniform
loading and when the YM inside the tumor is heterogeneous. Thus, the proposed method has the
potential to significantly improve the way the YM of tumorsis currently imaged and quantified as
well asto provide a new means to image and quantify the PR of tumors and normal tissuesin vivo.

Based on our in vivo animal results, YM in the untreated tumors was found to be increasing
with time, whereas the YM in the treated ones did not change significantly with time. In most of
the cancers (both treated and untreated), we found out that the PR is higher in the tumor than in
the soft tissue. The values of PR found in this study match well with those previously reported in

the literature as estimated using invasive techniques [16, 115, 116, 187, 206]. The shape regularity
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index (solidity) and surface area of the tumors were also used to further characterize the in vivo
results.

It isacommon assumption in many studies reported in the literature pertaining elastography to
treat tumors and soft tissues as incompressible elastic solids [19, 171-176]. Our study shows that
such assumption can lead to significant errors in the reconstructed YM values (Table 4.3 sample
X4) even in the case of small YM tumor/background contrasts, and that this error increases as
the YM tumor/background contrast increases. Thus, accurate estimation of the PR is not only
important because of its potential to provide new clinical information but also to obtain accurate
estimates of the Y M distribution.

There are several factors that can affect the accuracy of the reconstructed YM and PR values
using the proposed approach. The first one is the quality of the axial strain and lateral strain esti-
mates. The proposed method is able to reconstruct YM and PR with an error of below 5% for a
tumor/background Y M contrast of 0.1 — 100, when the estimations of the axial and lateral strains
are error- and noise-free such asthose directly obtained from FE simulations. However, it isknown
that lateral strain estimation in elastography is typically noisier than axial strain estimation [120].
We have recently proposed a new method capable of providing high quality latera strain estima-
tions[146]. Thismethod has been used in the study reported in this paper. Another important factor
affecting reconstruction isthe YM contrast between the tumor and the background. The axial strain
ratio and lateral strain ratio between the tumor and normal tissue saturate for very small or large
contrast of YM between the tumor and normal tissue (discussed in [198]), which is a fundamen-
tal limitation also referred to as “contrast transfer efficiency” in elastographic problems dealing
with non-uniform materials [176, 195]. Because of this fundamental limitation, all elastographic
reconstruction algorithms including the proposed one fail to accurately determine the YM and PR
when the YM contrast is very small or large. In this paper, we demonstrate that our method can
estimate the YM and PR with moderate accuracy (error around 15%) for YM tumor/background
contrasts in the range of 0.1 — 50, even in the presence of ultrasound noise (Fig. 4.4 (A)). We

believe that this range should cover practical cancer imaging scenarios [104] and denotes a far
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superior performance with respect to previously reported reconstruction methods.

When a compressor of finite sizeis used to excite atissue, the applied stressis the highest near
the top boundary and decreases with depth in the sample [192,195]. This ' stress decay’ leadsto an
overestimation of the reconstructed YM in the bottom part of the sample. This problem has been
previously observed in elastography and has been referred to as ‘target hardening effect’ [2,207].
Using our current experimental setup, we found this effect to be insignificant on the reconstructed
results as proven in [198].

Asthe proposed method to estimate the YM and PR requires optimization of a cost function in
every pixel inside the tumor, the computation time for the proposed technique is higher in compar-
ison to previously reported 3DB and 3DS methods. The present configuration of the simultaneous
reconstruction of YM and PR requires 1.7 s on average in an Intel Xeon 3.5 GHz PC with 32 GB
RAM for each pixel inside the tumor and less than 1 s for all the pixels outside the tumor (with
FE ssmulation axial and lateral strain data for the computational setup described in the Methods

section), whereas the competing two methods require less than 1 sfor the whole image.
45 Conclusion

In this paper, we have devel oped athree dimensional reconstruction method based on Eshelby’s
formulation for materials with inclusion. Our proposed method can accurately estimate and image
both the PR and YM of tumors and surrounding tissue in vivo and is robust to changes of complex
boundary conditions of the tumor environment and the shape of the tumor. Simulations and con-
trolled ultrasound elastography experiments unequivocally demonstrate that the proposed method
is capable of reconstructing these parameters accurately in many experimental scenarios of clinical
relevance. Based on the potential role of YM and PR as markers for cancer diagnosis, prognosis
and treatment efficacy, the proposed method can have a significant impact in the assessment of

cancers and, in general, in the field of elasticity cancer imaging.
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5. FINITEELEMENT MODEL OF TUMOR'?

5.1 Background

Elevated interstitial fluid pressure (1FP) inside cancers has been identified as one of the major
barriers to cancer treatments [30, 31]. In chemo- and immunotherapy, interstitial fluid flow from
the center to the periphery of the tumor induced by the IFP prevents the drug molecules to reach
the central portion of the tumor and thus affects the efficacy of drug delivery [32, 33,50]. Inter-
gtitial hypertension caused by the IFP can cause failure to radiation therapy [34, 35]. Interstitial
fluid flow due to the IFP may also promote metastasis by applying shear stress to cancerous cells
and forcing them to move toward the lymphatic system adjacent to the solid tumor [50, 208]. It
has been shown that many cancers exhibit elevated values of IFP in comparison to normal tissue,
where the measured IFP is in the range of —0.5 — 3 mmHg. These include: breast carcinoma
(6-24 mmHgQ) [209, 210], metastatic melanoma (19-47 mmHg) [209, 211], head and neck carci-
noma (4-33 mmHg) [212], cervical carcinoma (3-48 mmHg) [213] and colorecta carcinoma (9-33
mmHg) [209]. It is aso known, from previous studies, that the IFP in cancersis spatially uniform
throughout the tumor but drops steeply at its periphery [214,215]. The actual mechanisms causing
the IFPin cancers are not completely clear but it has been hypothesized that blood-vessel leakiness,
lymph-vessel abnormalities, interstitial fibrosis and a contraction of the interstitial space mediated
by stromal fibroblasts may be the primary factors affecting this parameter [31]. Despitetheclinical
relevance of the |FP, methods to assess this parameter non-invasively and in vivo are still lacking.

Analytical and numerical models of tumors provide atool to better understand the way cancers
develop and their response to drugs and treatments [83, 216-219]. Analytical models have some
advantages with respect to numerical models asthey allow to assess and extract individual material
properties. Typicaly, it is not possible to extract individual material properties of poroelastic

materials using FE methods alone because it requires minimizing multiple equations along with

lidam, M.T., Reddy, JN. and Righetti, R., 2018. A model-based approach to investigate the effect of elevated
interstitial fluid pressure on strain elastography. Physics in Medicine & Biology, 63(21), p.215011, ©lInstitute of
Physics and Engineering in Medicine. Reproduced with permission. All rights reserved.
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satisfying the boundary and initial conditions. These issues often result in non-convergence of
the numerical algorithms and erroneous local minima estimates [220]. In many cases, however,
developing analytical models of tumorsis not possible because of the complexity of the geometry
and physics of the problem and the testing conditions. In such cases, numerical modeling may be
the only option to obtain insights into the behavior of these tissues.

Thefirst works on numerical modeling of cancers can befound in [21-23]. In these studies, the
authors used a single dimensional poroel astic model to describe the stress, strainsand fluid pressure
inside the tumor. Three dimensional numerical modeling of cancers can be found in [221, 222],
where the authors considered the effect of IFP and blood and lymphatic drainage on the drug
delivery to the tumors. Zhao [223] studied the impact of inhomogeneous material properties of
the tumor on fluid transport and drug delivery inside the tumor. Several other models have been
proposed to study fluid transport mechanisms in the interstitial space of the tumor [21, 86, 224—
226]. The importance of tumor shape, size and tissue transport properties on drug delivery has
been studied in [227-230]. The spatial dependence of the IFP has been studied extensively using
numerical modelsin [21, 21-23, 224]. While strains and displacements occurring inside a cancer
due to the IFP have been analyzed in works retrievable in the literature, no analysis has been
reported yet for the case of an externally applied load, which istypically the case for elastography
techniques.

A few works on analytical and FE modeling of tumor/soft tissues for application in elastogra-
phy have been reported [13, 101]. In [13], the authors incorporated both interstitial and vascular
permeabilities in the model to show their effect on the poroelastic behavior of atumor. However,
|FP inside the tumor was not considered in this work. In our previous works related to analytical
modeling of tumors [15, 93, 101, 109], we developed expressions for the displacements, strains
and fluid pressure inside and outside a cylindrical tumor under different testing conditions, but
did not incorporate the IFP in these models. In a preliminary FE model study from our group,
the effect of the IFP on the axial normal and axial shear strains in atumor has been qualitatively

evaluated [231]. However, this study was limited to considering the elastographic parameters at
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t = 0% s(i.e., immediately after the application of compression) only, while the temporal behavior
of the strains and steady state response of the tissue due to the IFP were not investigated. The
effect of vascular permeability of the tumor and normal tissue on their strain response was also not
included in this study.

In this section, we design and implement a FE model, which incorporates relevant mechani-
cal properties of the cancer, including Young's modulus, Poisson’s ratio, interstitial permeability,
vascular permeability and the IFP under the testing conditions typical for ultrasound elastogra-
phy experiments. The model is developed using ABAQUS. The sample consists of a spherical
inclusion, which represents the tumor, embedded in a background with different mechanical prop-
erties, representing normal tissue. The model is then used to assess the effect of |FP on various

elastographic parameters and images.
5.2 Geometry of the model

A schematic of the poroelastic sample containing a spherical inclusion used in the study re-
ported in this section is shown in Fig. 5.1 (A). The sample is assumed to be of cylindrical shape,
whereasthe inclusion inside the sampleis of spherical shape of radius a. Because of the cylindrical
and spherical symmetry of the sample and the inclusion, a 2D axisymmetric solution plane for this
problem can be assumed as shown in Fig. 5.1 (B). The sample is compressed from the top, and the
bottom side is fixed. Two frictionless compressor plates are used for holding up the sample and
exert compression upon it.

The boundary conditions for a poroelastic sample in an elastography experiment are: 1) on the
bottom plane of the sample, thereis no axial displacement, i.e., the axial normal component of the
displacement vector is zero; 2) on the right edge of the sample, there is zero fluid pressure [96]
and 3) a constant uniaxial stress is present at the top boundary of the sample, i.e., only the axial
normal component of the stress vector is non-zero and equal to the applied uniaxial stress. Other
components of the stress vector are zero at the top boundary of the sample. Perfect bonding as
well as continuous stress, fluid pressure and displacement between cancer and normal tissue should

also be considered [23,50]. Currently, no analytical solution is available for strains/fluid pressure
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Figure 5.1: (A) A cylindrical sample of a poroelastic material with a spherical inclusion of radius
a. (B) The 2D solution plane for the three dimensional sample.

inside a spherical poroelastic inclusion due to the complexity of the boundary conditions and the
incorporation of the IFP inside the inclusion [101]. Therefore, finite element simulations remain
the only option to examine the impact of the IFP on the displacements and strainsin the inclusion

(tumor) and background (normal tissue).

Table 5.1: Mechanical parameters of samples A-F. Here, F/, v and k& denote the Young's modul us,
Poisson’s ratio and interstitial permeability and y = LL{/S L, is the vascular permeability and
% is the surface area to volume ratio of the capillary walls. P, is the IFP and o depends on
the ratio of interstitial and vascular permeability and the radius of the tumor. The parameters
corresponding to the background region are denoted with subscript b and the parameters without
subscript correspond to the inclusion region.

sample| E, (kPa) | E (kPa) | vy | v | Ky (MIN—1s~1) |k (miN—1s-1) |y, (Pag)~1 | x (Pag)~1 (mZ}l}g) (m’nP;Hg) a
A 3278 | 5499 [049[03] 6.4 x 10~ 17 3.1x 1071 [54x10°8]2.79 x 10~ © 0 0 711
B | 3278 | 5499 [049/03] 64x10-7 | 31x10-1% [54x10-5[279x10=°| 0 5 711
C [ 3278 | 5499 [049]03] 64x10-7 | 31ix10-7 [54x10-F[279x10°°] 0 0 [71L
D | 3278 | 5499 [049]03| 62x10=° [627x10-T [5.4x 10279 x10-°] 0 5 5
E [ 3278 | 5499 (04903 156 x 10~ | 156 x 10~1" [5.4x 107 [2.79 x 10=7| 0 5 1
F | 3278 | 5499 [049/03] 156 x 10~ | 156 x 10-10 54 x 107|279 x 10=5| 0 5101

5.3 Finiteelement smulations

A commercia finite element simulation software namely ABAQUS, Abaqus Inc, Providence,
RI, USA is used for our problem [232]. For our analysis, we have used the ‘ coupled pore fluid

diffusion and stress analysis module of ABAQUS. Details of this simulation module along with
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necessary equations can be found in the documentation provided by ABAQUS [232, 6.7.1]. In
brief, a poroelastic material saturated with afluid is modeled in ABAQUS as a biphasic material
(consisting of asolid phase and afluid phase) and an effective stress principleisadopted to describe
its behavior. The material is modeled by attaching the finite element mesh to the solid phase, and
fluid can flow through the mesh. The mechanical part of the model is based on the effective
stress principle, which can be described as, “the total stress acting at a point, o, is assumed to be
made up of an average pressure stress in the wetting fluid, p, called the *wetting fluid pressure’
and an ‘elastic stress' o, on the solid matrix". The effective stress principle can be expressed

mathematically as[232, 2.8.1]

o.=o0+pl. (5.2)

The model also uses a continuity equation for the mass of wetting fluid in a unit volume of the

poroelastic material,

1

Jt-i—At

(Jpwnw)t] dV + At/ op [i . (pwnw'vw)} av =0, (5.2
v o Lde tH AL

/ [5p(<pwnw>t+m -

where p,, is the density of the fluid, n,, = %’ V,, is the volume of the wetting fluid, v,, is the
average velocity of the wetting liquid relative to the solid phase and J isthe ratio of the material’s
volume in the current configuration to its volume in the reference configuration J = ;% ~ 1+
div(u), where u is the solid phase displacement vector [232, 2.8.1]. The constitutive behavior
for the pore fluid flow in the above-mentioned biphasic model is governed by Darcy’s law stated

as[232, 6.7.1]
NV = —— VP, (5.3)

where £ and -y, are the interstitial permeability of the solid phase and volumetric weight of pore

fluid, respectively.
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Six samples (described in Table 5.1) with different material properties and IFP are simulated
to examine the response of the tumor in elastography experimental conditions. Both the inclusion

and background of the samples are modeled as linearly elastic, isotropic, permeable solid phases

fully saturated with afluid.

(A) (B) ©)
Figure 5.2: (A) Proposed model with rectangular partitions created inside the inclusion and back-

ground. Mesh structure in ABAQUS (B) inside inclusion (C) at the interface between inclusion
and background.

The sample is compressed from the top with a load of 4500 Pa. Given the properties of the
samples, this compression creates an approximate mean axial strain of ~ 10% in the inclusion
region. Although this value of strain is high comparing to the strain values normally used in
elastography experiments (2 — 6%), this value is within the range of strain values typical for a
ultrasound poroel astography experiment [13,154,233]. In poroel astography experiments, the strain
between two successive frames can be very low (< 0.1%) even the applied load/strain is high (>
10%). Asin the poroelastography experiments, the strain value at any time point can be estimated
as the cumulative sum of strain values between successive frames upto that time point, large value
of applied strain can be used in poroel astography experiments without compromising the quality of
strain images [146]. The permeability of the sample is assumed to be independent of the strain and
void ratio. Following [96], a 2D plane of the 3D cylinder is modeled in ABAQUS. The solution
plane of the sampleis 2 cm in radius and 4 cm in height. The radius of the spherical inclusion is

0.75 cm. The quadrilateral pore pressure mesh element CAX4RP is used to model the sample with
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Figure 5.3: Axia strainsat timepointsof 1.8 s,4.8s,9s, 18 sand 57.6 sfor samplesA, B and C

are shown in (A1-A5), (B1-B5) and (C1-C5), respectively.

81, 799 elementsin the solution plane. We have used quadrilateral elements CAX4RP to model our
sampl e since high order approximations such as the quadratic approximation lead to smaller errors
in the solution of finite element problems in comparison to the linear approximation. A zero fluid
pressure boundary condition is imposed on the right hand side of the sample following [96]. A
perfect bonding condition between the inclusion and background has been assumed in all samples.
Perfect bonding conditions between cancers and normal tissue have been assumed in most of the

studies regarding poroelastic/elastic modeling of cancers retrievable in the literature and match

well with experimental observations[16, 21, 22].

The model used in ABAQUS is shown in Fig. 5.2 (A). The particularity of the model is the
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Figure 5.4: Radia strainsat timepointsof 1.8 s,4.8s,9 s, 18 sand 57.6 sfor samplesA, B and C
are shown in (A1-A5), (B1-B5) and (C1-C5), respectively.

use of rectangular partition inside and outside the tumor. Such partition is necessary since square
mesh elements (quadrilateral mesh elements with aspect ratio of 1) of same size inside the tumor
(inclusion) and normal tissue (background) are required due to the following reason. The vascular
permeability in the inclusion and background is modeled through the seepage coefficient. Asthe
seepage coefficient is defined for each mesh element in ABAQUS, the length of each square mesh
element must be same to achieve the same vascular permeability in the whole inclusion or whole
background. Generally, in ABAQUS, the size of the mesh element is determined based on the
geometry of the region. Without imposing any rectangular partition in the model, typically, in

a rectangular region with partition of a spherical inclusion, the aspect ratio of the quadrilateral
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Figure 5.5: EPRs at time pointsof 1.8 s, 4.8 5,9 s, 18 sand 57.6 s for samples A, B and C are
shown in (A1-A5), (B1-B5) and (C1-C5), respectively.

mesh element is not kept to 1 and the lengths/widths of these mesh elements become highest at
the center of the inclusion and reduce towards the periphery of the inclusion. Similarly, in the
background region, the mesh elements are smaller closer to the inclusion while they increase in
size away from the inclusion. This creates a non uniform mesh inside and outside the inclusion.
However, with the imposition of rectangular partition, the partitioned rectangles are considered
independent by ABAQUS, i.e., ABAQUS does not consider the outer geometry while meshing
the rectangle. As rectangles are regular geometry (geometry without curve and discontinuity),
ABAQUS can assign square mesh elements of the same length (length prescribed by the user) to

all therectangles. The meshinside theinclusion of the FE model isshownin Fig. 5.2 (B), wherethe
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uniform rectangular shaped mesh elements inside the spherical inclusion can be clearly seen. To
ensure the uniformity of mesh sizein the inclusion and background region, we measured the mesh
element size at different points by measuring the distance between border pixels along vertical
and horizontal directions in a mesh element in MATLAB, Mathworks Inc., Natick, MA, USA
after importing the meshed model as an image from ABAQUS. We aso show the mesh structure
close to the interface between the inclusion and background in Fig. 5.2 (C), where a number of
non-uniform mesh elements can be seen.

We have used reduced integration to calculate the element stiffness matrix in our FE analysis.
Reduced integration is more appropriate when second-order elements are used, as it gives more
accurate results and is less computationally expensive than full integration [232, 9.1.3]. We have
used implicit integration techniques as our problem is dynamic in nature, and implicit integration
techniques are reported to be more accurate than explicit techniques in solving dynamic problems
[232, 2.4.1].

The spatial mesh resolution in the finite element model has been determined based on a mesh
convergence study. As a part of the mesh convergence study, a mesh refinement analysis was
performed and the resulting strain/fluid pressure response of the samples analyzed with increment
of the mesh density. We found that changesin the output strains and fluid pressure are insignificant
if the mesh density is increased (even up to 20 times) from the value used to generate the results
reported in this paper. The temporal time step of the analyses was determined in such a way that
important events can be clearly observable.

The poroelastic response was recorded for 60 s with a 0.6 s time step for samples A, B and
C. For sample D, the total time of analysis was 30 s at 0.3 s step and for sample E, the total
analysistimewas 10 sat 0.1 sstep. The total analysis was done in two steps. In the first step, an
instantaneous load of 4500 Pa was applied which is constant in the next step. The duration of the
first step was of 0.01 s, while the second step lasted up to 60.01 s, 30.01 sor 10.01 s depending
on the sample. The specific weight of the fluid was taken as INm~—3 to match the definitions of

permeability in ABAQUS and in the poroelastic theory [101]. The void ratio in all the samples
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used was set to 0.4.
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Figure 5.6: Volumetric strains at time pointsof 1.8 s, 4.8 s,9's, 18 sand 57.6 sfor samples A, B

and C are shown in (A1-A5), (B1-B5) and (C1-C5), respectively.

In aporoelastic sample, the fluid pressure generated by the applied compression becomes zero

after a certain time interval. After that time, the poroelastic sample behaves as a perfectly linear

elastic material [15]. However, the IFP exists inside the tumor independently of the experimental

protocol or applied compression. The IFP does not change during or because of the experimental

procedure. Moreover, as IFP is an isotropic stress [20] and works in the opposite direction to

the solid stresses, we applied an isotropic stress equal to —p, to model the IFP. The isotropic
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Figure 5.7: Fluid pressure (Pa) at time pointsof 1.8 s,4.8 5,9 s, 18 sand 57.6 sfor samples A, B
and C are shown in (A1-A5), (B1-B5) and (C1-C5), respectively.

stress is created in ABAQUS by a predefined initial stressfield (available in CAE), which has six
components. Following the definition of isotropic stress, the values of the first three components
(axia, radial and tangential) are set to —p, and the other components are set to zero to create an
isotropic stress of —p,. The IFP is assumed to be uniform over the tumor radius (p(R) = P.) and
falls abruptly to zero at the boundary [36, 214].

When an initial stressisgiven asinput in ABAQUS, the initial stress state may not be an exact
equilibrium state for the finite element model. Therefore, an initial step should be included to
allow ABAQUS to check for equilibrium and iterate, if necessary, to achieve equilibrium [232,

27.2.1]. We have included a small step of 0.01 s for this purpose in our simulations. After this
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Figure 5.8: Time profiles of the axial strain at different radii inside the tumor of samples A, B and
C areshownin (Al), (B1) and (C1). Time profiles of the radia strain at different radii inside the
tumor of samples A, B and C are illustrated in (A2), (B2) and (C2). Time profiles of the EPR at
different radii inside the tumor of samples A, B and C are shown in (A3-C3).

first step, the solution of stress and fluid pressure in equilibrium is achieved based on the applied
compression and initial stress given as input. The solution of the stress, fluid pressure and strain

for successive time depends on the computed stress and fluid pressure after the first step. The total
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Figure 5.9: Time profiles of the volumetric strain at different radii inside the tumor of samples A,
B and C are shown in (A1), (B1) and (C1). Time profiles of the fluid pressure at different radii
inside the tumor of samples A, B and C are illustrated in (A2), (B2) and (C2).

axial, radial and tangential components of stress (computed as sum of elastic stress component and
fluid pressure [15]) inside the tumor after first step become the total stress components created by
the applied stress from the top of the sample minus the negative IFP (assuming the applied stress
is negative). The fluid pressure inside the tumor after first step becomes the fluid pressure created
by the applied stress minus the IFP. As 1) the initial isotropic stress given as input impacts the
solution of thefirst step only, 2) ABAQUS finds an equilibrium solution at the end of the first step
and 3) the solution for rest of the experimental duration depends on the first step, continuity of
fluid pressure and stress at the interface of inclusion and background is satisfied at all time points
after first step.

The material propertiesof cancersand normal tissues are reported in the literature to have broad
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ranges. Young's modulus of the normal tissue in al samples is chosen as 32.78 kPa, based on
previous literature [13,40]. Asin the literature, the cancers are reported to have Young's modulus
of 1.1 — 20 times the Young's modulus of normal tissue, the tumors in the samples are assumed
to have a Young's modulus equal to 54.99 kPa (1.67 times the Young's modulus of normal tissue)
[113,114]. The Poisson’sratio is reported in the literature to have arange of values between 0.2 —
0.49 for both tumorsand normal tissues[13,16,115,116]. We assume the normal tissueto be almost
incompressible with Poisson’s ratio of 0.49 and the tumor to be compressible with Poisson’s ratio
of 0.3 based on[16,116,191]. It should be noted that the main goal of our study isto investigate the
effect of the |FP and the spatial parameter of IFP o on the mechanical response of the cancer [59]. «
canbeexpressedasa = a\/%iﬁ, where L,, isthe vascular permeability and % isthesurfaceareato
volumeratio of capillary walls. Therefore, the values of Young’'s modulus and Poisson’sratio inthe
tumor (inclusion) and normal tissue (background) were kept fixed in al samples. Only the values
of IFP and «, which depends on theinterstitial permeability and vascular permeability, were varied
in this study to assess their effect on the strain parameters. Interstitial and vascular permeability
of the normal tissue were chosen following [13,59]. In many tumors, vascular permeability is
reported to be dominant over interstitial permeability [59]. However, interstitial permeability can
be dominant with respect to the vascular permeability intumorsat initial stages of cancer formation
and after drug administration [50, 81]. Based on these observations, in our study, we varied both
the vascular permeability and the interstitial permeability and considered both cases when vascular
permeability is dominant over interstitial permeability and opposite cases and created different
values of « [40]. Two values of IFP (5 and 10 mmHg in samples B and C (see Table 5.1))) were
chosen following [16]. Four different values of «, namely 711, 5, 1 and 0.1 in samples A-C, D, E
and F (see Table 5.1), respectively, were chosen. The surface areato volume ratio % in calculation
of o was set at 200 cm~! [40,58].

We analyze and report the effective Poisson’sratio (EPR), i.e., radial to axial strain ratio in all
samples [8, 10, 146]. At steady state, when the poroelastic material behaves as a perfectly linear

elastic material, the EPR becomes the Poisson’s ratio if the poroelastic material is uniform. If the
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poroelastic material is not uniform, the steady state EPR value is related to the actual Poisson’s
ratio in amore complex manner [110]. We also report the volumetric strain in the results section of
this study. In the axisymmetric model, the tangential component of the strain may be assumed to
be equal to the radial component. Thus, the volumetric strain is computed as the sum of the axial

strain and two times the radial strain.
5.4 Results

Although we analyzed the 2D axisymmetric solution plane (one half plane from the center line)
of the samplein ABAQUS, wewill display afull 2D plane of the 3D cylindrical sampleto visuaize
the results applying the angular symmetry of the sample with respect to the center line. According
to the angular symmetry condition, the right half of any 2D plane along the center of the sampleis
same asitsleft half. Inthisway, the displayed results are similar to practical elastography images,
where alinear transducer is used to image a 2D plane.

The axial strain elastograms corresponding to different time points for sample A, B and C are
shown in Fig. 5.3. From this figure, we see that the magnitude the axial strain at different time
points inside the tumor reduces as IFP increases in sample A, B and C, and, consequently, the
axial strain contrast between tumor and normal tissue increases as |FP increases. For sample A,
in which IFP=0 inside the tumor, we see that, at steady state, the difference between the axial
strain in the tumor and the axial strain in the normal tissue is very small. However, at the same
time point, in sample B and sample C, which have IFP inside the tumor equal to 5 and 10 mmHg,
respectively, the differences between axial strains of the tumor and normal tissues are much larger.
This observation confirms that |FP can affect the axial strain intensity and distribution inside the
tumor.

Radial strain elastograms at time points of 1.8 s, 4.8 5,9 s, 18 sand 57.6 s are shown for
samples A, B and C in Fig. 5.4. Unlike the axia strain case, the radial strain contrast between
tumor and normal tissue decreases as the |FP inside the tumor increases. In Fig. 5.5, we see that,
as the IFP increases, the EPR inside the tumor at steady state increases and becomes close to 0.5.

In general, immediately after compression, a poroelastic material behaves as an incompressible

146



material with EPR closeto 0.5. Astime progresses, EPR decreases to reach the steady state value,
which, for a poroelastic material, is by definition lower than 0.5. However, our results show that,
in the presence of high IFP (sample C), the tumor behaves as an incompressible material even at
steady state manifesting a EPR closeto 0.5 at al time points.

Volumetric strain elastograms at different time points for samples A, B and C are shown in
Fig. 5.6. In sample A, we see that, since |FP is zero, the volumetric strain contrast between tumor
and normal tissue is large at steady state. The volumetric strain contrast at steady state decreases
in samples B and C. This effect is a direct consequence of the fact that the tumor tends to behave
more as an incompressible material when its IFP is high. Note that the volumetric strain contrast
issmal at ¢t = 0" in al samples, since immediately after compression both the tumor and normal
tissue behave as incompressible materials.

Fluid pressure maps at different time points for the sasmples A, B and C are shown in Fig. 5.7.
As the IFP increases, the fluid pressure inside the tumor reduces. In sample A, fluid pressure is
higher than 1000 Paat t = 0", whereas in sample C, which is the sample with highest IFP in the
tumor (10 mmHg), the fluid pressureisalmost zero at ¢t = 0. In all the samples, the fluid pressure
becomes zero at infinity.

The temporal profiles of the axial strainsin samples A, B and C for different radii of the tumor
are shown in Fig. 5.8 (A1-C1). From this figure, we see that the axial strain of sample A starts
with a value of 9.4% and saturates around 20 s at value of 10.2% (Fig. 5.8 (A1)). For sample B,
the axial strain starts at 9.4% and goes to 9.8% at steady state (Fig. 5.8 (B1)). For sample C, the
axial strain does not change with time significantly (Fig. 5.8 (C1)). Note the decrease in value of
the axial strain at steady state as | FP increases.

Time profiles of theradial strains at different radial positionsfor samples A, B and C are shown
inFig. 5.8 (A2)-(C2). Notetheincreasein value of theradial strain at steady state as | FP increases.

The time profiles of EPR for different samples are shown in Fig. 5.8 (A3-C3). The EPR starts
at 0.5 for all samples and reaches 0.38 in sample A, 0.43 in sample B and 0.49 in sample C, which
shows increased EPR at steady state for increased values of IFP.
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The temporal behavior of the volumetric strains inside the tumor for samples A-C are shown
in Fig. 5.9 (A1-Cl). Decreasing values of volumetric strain with higher values of IFP are seen
a different radii inside the tumor. If we quantify the change in volumetric strains due to IFP
(po(R) = P.), we find out that the volumetric strain decreases by an amount of 1.3% and 2.5%
in samples B and C, which are close to %, where K isthe compression modulus of the tumor in
samples B and C. For both these samples, K isequal to 45.825 kPa.

The time profiles of the fluid pressure at different radial positionsinside the tumor for the sam-
plesA, B and C areshowninFig. 5.9 (A2-C2). It can be seen from thisfigure that the instantaneous
fluid pressure in sample A is 1500 Pa, whereas in sample B and sample C the instantaneous fluid
pressures are 700 Paand 100 Pa, respectively. The fluid pressure goes to zero at the steady statein
all the samples.

The EPRs, volumetric strains and fluid pressures for samples D, E and F at five different time
points are shown in Figs. 5.10 and 5.11. Assamples D, E and F have the same | FP and mechanical
properties except the interstitial and vascular permeabilities inside the tumor, the EPRs and volu-
metric strains at steady state areidentical. However, at different time points, spatial distributions of
the EPR, volumetric strain and fluid pressure inside the tumor are different. Thisis because of the
different o values, which is related to the ratio of vascular permeability to interstitial permeabil-
ity. In sample D, the effect of interstitial permeability and vascular permeability are comparable
whereas, in sample E and F, the effect of interstitial permeability is dominant. The radial depen-
dence of the EPRs, volumetric strains and fluid pressuresin samples D, E and F is also in contrast
with the lack of such spatial dependence in samples A, B and C, where all the mechanical fields
are radialy constant. With lower values of «, i.e., the dominance of vascular permeability over
interstitial permeability reduces and the mechanical fields become more radially dependent (sam-
ple D-F). For the vascular permeability dominant cases (samples A-C), the fluid flows through the
capillary wallsindependently of the geometry of the tumor or the normal tissue and the mechanical
field does not show any radial dependence. For the cases where interstitial permeability isimpor-

tant (sample D-F), instead, the fluid needs to pass the interstitium and, depending on the boundary
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conditions, different fluid pressure gradients are created at different radial positions resulting in
radially dependent mechanical fieldsinside the tumor. Thisfinding isin agreement with the results
reported in [13].

The spatial dependence of the EPR, volumetric strain and fluid pressure for samples D-F can be
clearly seenintheradial profiles of thesefield parameters at different time points, which are shown
in Fig. 5.12. In Fig. 5.12 (A1)-(A4), (B1)-(B4) and (C1)-(C4), we see that, at al time points, as
the value of « increases, the fluid pressure, volumetric strain and EPR become more flat along the
radial positioninside the tumor. For o = 711, theradia distributions of the EPR, volumetric strain
and EPR become almost constant throughout the whole radius, whereas for o = 0.1, these field

parameters consistently reduce in magnitude as the radial position increases.
5.5 Discussion

In this section, we propose a new FE model for cancers surrounded by normal tissuesin atyp-
ical elastography imaging experiment. While several FE models have been proposed in the past to
study the mechanical behavior of cancers, to our knowledge, thisis the first FE model applicable
to poroel astography that takes into consideration the contribution of the IFP in the cancer. In addi-
tion, the proposed model includes both the interstitial permeability and the vascular permeability
of the tumor, which isincorporated through the seepage coefficient in the established FE software
ABAQUS. IFPisaparameter of great clinical relevance. While in normal tissues, the IFP remains
close to the atmospheric pressure, the IFP in tumors is typicaly elevated. This elevated value of
| FP has been found to be the major impediment to drug delivery therapies, amajor cause of failure
of radiation therapy and one of the causes of cancer metastasis. The parameter that defines the
gpatial distribution of the IFP is o, which depends on the ratio between the vascular permeabil-
ity and the interstitial permeability, and that in itself may be a diagnostic or prognostic marker of
malignancy and cancer progression [50, 224]. Therefore, the ability to measure IFP and « in can-
cers using a non-invasive imaging method as ultrasound elastography could have alarge impact in
cancer diagnosis, prognosis and treatment.

The proposed FE model is then used to assess the effect of the IFP inside the a tumor on the
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axial, radial and volumetric strains and EPR created by external loading. Our results show: (1)
in the presence of the increasing IFP, the magnitude of the steady state axial strain decreases and
the magnitude of the steady state radial strain increases; (2) the volumetric strain inside the tumor
reduces by the value of IFP divided by the compression modulus of the tumor; (3) as|FP increases,
the volumetric strain of the tumor decreases and the EPR increases, i.e., the tumor behaves more as
an incompressible material; and (4) as the ratio between the vascular permeability and interstitial
permeability increases, the strains become less space-dependent and for very large values of this
ratio, they become almost spatially invariant inside the tumor.

It is clear from these results that knowledge of the effects of IFP in the strain elastogramsiis of
great importance for a correct interpretation of the results and for a correct reconstruction of the
underlying mechanical properties of atissue. For example, if IFP is not considered in the model,
the reduction of steady state axial strain would result in the determination of an incorrect (higher)
Young's modulus value, asit has also been observed by [234].

Interstitial permeability and vascular permeability are two important mechanical parameters,
which have a significant impact on the mechanical microenvironment of atumor [16]. As demon-
strated by our results in the spherical tumor model, the dominance of the interstitial permeability
over vascular permeability creates spatial dependent strains. Thisis contrasted with the case where
vascular permeability dominates leading to spatially invariant strain fields. These observations
may have important implicationsin cancer diagnosis and prognosis as the dominance of interstitial
or vascular permeability determined from the spatial profile of the strains obtained from an elas-
tography experiment may provide information to assess cancer stage and help in the identification
of suitable treatments [50, 235].

Our results demonstrate that, as IFP increases, the effective volumetric stress (because of ex-
ternal stress) and volumetric strain inside the tumor decrease. When the effective volumetric stress
isequal to the IFP inside the tumor, the volumetric strain becomes zero, the EPR becomes 0.5 and
the axial and radial strain become constant with time. At this point, the tumor works as a perfectly

incompressible material. If the IFP is higher than the effective volumetric stress, volumetric strain
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remains zero, the EPR remains 0.5 and the axial and radial strains remains constant. Therefore,
any value of IFP higher than the effective volumetric stress does not produce appreciable changes
in the strains inside the tumor and may not be measurable using elastography. Thus, the upper
limit of measurable IFP in an elastography experiment is given by the effective volumetric stress
inside the tumor, which depends on the applied stress as well as the stiffness of the tumor and nor-
mal tissue. To trandlate this statement into numbers, we can consider the following hypothetical
examples. Assuming a tumor with a Young's modulus contrast of 20 with respect to the normal
tissue and assuming that the applied stressis 1 — 6 kPa, the effective volumetric stress inside the
tumor is around the range 0.67 — 4 kPa. Thus, the highest measurable |FP would be in the range
5 — 30 mmHg. If the Young's modulus contrast between tumor and normal tissue is lower, the
effective volumetric stress decreases. Therefore, the highest measurable IFP would be lower. For
example, for a Young's modulus contrast between tumor and normal tissue of 2, the measurable
upper limit of the IFP would be 19.2 mmHg for an applied stress of 6 kPa. Therefore, the upper
limit of the measurable | FP depends on the the applied stress and underlying mechanical properties
of the tumor and normal tissue.

Based on the results from our finite element simulation study, the axial strain changes by 1%,
when an IFP of 10 mmHg is ssimulated inside the tumor. The change in the axial strain would be
higher for higher values of IFP. Such strain changes should be detectable by current elastographic
strain estimation techniques, which have theoretically very high sensitivity and can easily detect
strain changes as low as 0.05% [146].

The proposed model was derived under the assumption of a spherical model of the tumor,
which is not always true in practical cases. However, we expect the observations regarding the
effects of IFP and « on the strains and EPR to qualitatively hold also for tumors of shapes such as
ellipse and cylinder. We also have assumed that the tumor and background tissue are poroelastic
and isotropic, and they behave as linearly elastic solids at steady state. These two assumptions
- gpherical model and poroelastic isotropy - have been used in numerous studies reported in the

literature [16, 21, 22, 40]. These models have aso been found to provide results correlating well
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with experimental observations. A limitation of our model is that we have not considered the
lymphatic drainage inside the tumor. However, based on reported valuesin theliterature, lymphatic
permeability inside the tumor is very small and typically negligible in comparison to the value of
vascular permeability [16]. In addition, in our proposed model, we have assumed that IFP and
its spatial parameters o are independent of each other. In reality, with decrements of «, the peak
value of the IFP reduces, but the spatial nature of the IFP does not change much [224]. Since our
observations do not depend on the peak value of the | FP, this assumption does not change the major
observations obtained from this study.

We divided the inclusion and background in rectangular regions having all the same mesh
element length. However, as the inclusion has curved geometry, in small regions in proximity of
the inclusion boundary, it was not possible to maintain a uniform mesh element length and, as
such, uniform vascular permeability. However, such regions are very small compared to the size
of the inclusion and can be neglected. Hourglass effect may arise if reduced integration elements
are used in solving a finite element problem [236]. However, this effect was not present in our
analysis as we used the mesh refinement. Our observation that the results were same with and
without reduced integration elements also proved that.

We could not directly validate the finite element model because of the difficulty in fabricat-
ing controlled phantoms with elevated | FP and desired values of interstitial/vascular permeability.
Since our work is very new and the IFP is a parameter that has been completely neglected in elas-
tography so far despite its enormous clinical significance, there is very limited literature that can
be used to corroborate our simulation results. I1n [234], a study of Young's modulus estimation by
shear wave elastography in the presence of IFP has been performed, and it has been found that
the measured Young's modulus increases in the presence of IFP. The increment of Young's mod-
ulus implies a reduction of the axial strain in elastography experiment, which would validate our
observations of reduced axia strain in the presence of |FP. It should also been noted that, as our ob-
servations are based on finite element simulations incorporating practical experimental conditions

and experimentally obtained mechanical properties of the samples, we can expect the observations
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to hold in elastography experiments. However, experiments directly linking the IFP and strains
would require an in vivo animal study and availability of invasive methods to assess IFP, which is
beyond the scope of this paper and left for future work.

In all our smulated samples, we have assumed that the normal tissue and the tumor are poroe-
lastic and isotropic and behave as linearly elastic solids at the steady state. If the tumor islinearly
elastic but not isotropic, the incompressible behavior will be same as the one observed for the
poroelastic case. Thus, our observation that tumors exhibit increased incompressibility if they have
high IFP would still hold. However, in these anisotropic tumors the material properties (Young's
modulus/Poisson’s ratio) are different along different directions [237] leading to strain responses
much more complicated than those reported in this study. On the other hand, if the material is
not linearly elastic, the stress/strain behavior in the material would be different than that reported
for the materials analyzed in this study, but we still expect the ratio between radia to axial strain
(i.e., EPR) toincrease as |FP increases (i.e., the tumor would become more incompressible as IFP
increases).

Based on the work of Leiderman et al. [13] and some of our recent works [15, 93], if the vas-
cular permeability is dominant over the interstitial permeability inside the tumor, then the time
constant of the axial strain, radial strain and fluid pressure can be computed as ﬁ where H 4
is the aggregate modulus and x is the microfiltration coefficient (product of vascular permeability
and 5) of the tumor. However, when the interstitial permeability cannot be neglected with respect
to the vascular permeability, the expression of the time constant of the strains and fluid pressure
becomes much more complex. We have derived aformulation for cylindrical tumors[15,93], but a
formulation for spherical tumorsis not currently available. Technically, the duration of data acqui-
sitionin apractical poroelastography experiment depends on the mechanical properties (aggregate
modulus/vascular permeability) of the tumor/tissue. However, these parameters are often unknown
in vivo and change from tissue to tissue. Thus, in most cases, preliminary experiments are required
to have a rough estimate of the strain time constants in the tissue of interest and successive ac-

quisitions can be based on these preliminary data or values previously reported in the literature (if
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available). Based on previous studies [202] and recent experiments performed on mouse tumors
in our lab [198], a data acquisition time interval of one minute is sufficient for in vivo tumorous

tissues to reach steady state.
5.6 Conclusion

In this section, we have proposed a FE model for imaging of cancers using elastography, which
incorporates the effect of IFP inside a tumor. Using this model, we have investigated the impact
of the IFP and its spatial parameter o on the strain responses inside the tumor. The developed
model and results reported in this paper may be helpful to understand the effect of I1FP and related
parameters in the elastographic images and may lead to new methods to assess this parameter with

potentially important implicationsin cancer diagnosis, prognosis and treatment.
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Figure 5.10: EPRs at time pointsof 0.6 s, 1.2 s, 2.4 s, 4.5 sand 28.8 sfor sample D are shown in
(A1-A5). EPRsat time pointsof 0.2 s,0.4 s, 0.8 s, 1.5 sand 9.6 sfor sample E and F are shown
in (B1-B5) and (C1-C5). Volumetric strains at time pointsof 0.6 s, 1.2 s, 2.4 s, 4.5 sand 28.8 sfor
sample D are shown in (D1-D5). Volumetric strains at time pointsof 0.2 s, 0.4 s, 0.8 s, 1.5 sand
9.6 sfor sample E and F are shown in (E1-E5) and (F1-F5).
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Figure 5.11: Fluid pressure (Pa) at time pointsof 0.6 s, 1.2's, 2.4 s, 4.5 sand 28.8 sfor sample D
are shown in (A1-A5). Fluid pressure (Pa) at time pointsof 0.2 s,0.4 s, 0.8 s, 1.5 sand 9.6 sfor
sample E and F are shown in (B1-B5) and (C1-C5), respectively.
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Figure5.12: Theradia profiles of the EPR, volumetric strain and fluid pressure are shown in (A1),
(B1) and (C1), respectively in samples A, D, E and F at time point of 0™ s. The radia profiles
of the EPR, volumetric strain and fluid pressure are shown in (A2-A4), (B2-B4) and (C2-C4),
respectively in samples A, D, Eand F at time point of 1,3 and 7 s.
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6. ESTIMATION OF IFP

6.1 Methods
6.1.1 Estimation of IFP

From the devel oped analytical model of poroel astic mediawith spherical inclusion (see Section

2), we can write for the volumetric strain inside atumor with IFP P,

or — P, 4 (1 —2u.)(1 + 1)

. ) = — 1 =
(R, t) K. X ( + 3 ; 201+ v)(1 = 2ve) — (1 — ve)2ay,] X
sinh( £ /7, exp (—r, )

A sinh(y/zy)

exp (_HAiXit)) :

where o is the applied effective volumetric stress inside the tumor, P, isthe IFR, K, and v, are
the effective compression modulus and Poisson’'sratio, H 4;, x; and k; are the aggregate modul us,
microfiltration coefficient and interstitial permeabilities inside the tumor, respectively. =z, is the
root of the tangent characteristics function (see Section 2) and « is the radius of the tumor. This

eguation in steady state for spatially dependent elevated fluid pressure can be written as

For the |FP, we can write
P.(R) = K.¢;(R) + o7.

or iscomputed as K.e¢;(a), where ¢;(a) is the volumetric strain at the radial boundary. In radia

boundary, thereisno IFP.
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6.1.2 Time constant elastograms

The equation for the axial strain can be written as

ey(r, 2,t) = f(r, 2) exp(—é), (6.2)

where f(r, z) isthe spatial function that determines the spatial variation of the fluid pressure and

T isthe effective time constant of the relaxation of the poroelastic tumor defined as

Q 1

T H pik; * Huxi

(6.2)

Here, 2 is aconstant which depends on the volumetric weight of the pore fluid, Poisson’s ratio of
the solid material and geometry of the sample, i.e., fluid path [13]. In thiscase, 2 = % Here,
Xi = Xv + x5, With xyy = L%S and y; = % L,and L,;, are the hydraulic conductivities of
capillary and lymphatic walls, respectively. SVV and SVL are the surface area to volume ratio of the
capillary and lymphatic walls, respectively. Based on the values of the hydraulic conductivities
of capillary and lymphatic walls reported in the literature, xy >> x, [18]. Thisresultsin y; ~
xv, and the microfiltration coefficient becomes the hydraulic conductivity of the capillary wall

(vascular hydraulic conductivity/permeability) multiplied by the surface areato volume ratio.
6.1.3 Interstitial fluid velocity (IFV)

The parameter V. isthe IFV with respect to the solid and can be expressed as [14]

dP.(R,z)

‘/e R7 = _k 9
a(£,2) AR

(6.3)

where k; isthe interstitial permeability of the tumor.
The parameter V. isthe axial fluid velocity with respect to the solid and can be expressed as

dP(R, )

Vez Ra =—k
(R, 2) 7

(6.4)
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6.1.4 Determination of theratio between theinter stitial and vascular permeabilities

For the elevated | FP inside tumor, we can write

B sinh(aR)
P.(R)=P.,(1- Rsinh(R))’ (6.5)
where
a=a i—fé (6.6)

Here P,, isthe effective vascular pressure inside the cancer tumor. L, and k; are the vascular and
interstitial permeabilitiesand S/V isthe ratio of cross-sectional areato volume of the tumor [40].

Using curve fitting technique, we determined the value of «. We choose at least 5 different
lines from the center to periphery inside the tumor and fit eg. 6.5 onto the IFP curve to estimate «.

The obtained 5 o values are then averaged to compute mean value of «.
6.1.5 Determination of interstitial and vascular per meabilities

We know from the model that
1 k;
- = Hai(xi + I1§), (6.7)

which can be written as

ki
HAiT = Oék’i + $1?' (68)

The equation of the interstitial permeability can be written as

1
k.

= . 6.9
HAiT(Oé‘i‘%) ( )
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The expression for vascular permeability can be written as

«

v
—_— A
SHAZT(OZ‘F%)’ (6 O)

where é IS the surface area to volume ratio inside the tumor, which is determined using theory

developed in [238].
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Figure 6.1: Estimation of mechanopathological parameters from a poroel astography experiment

6.1.6 Invivoexperiments

Experiments on nineteen mice with triple negative breast cancer cellsinjected in the mammary
fat pad were carried out on a weekly basis for three consecutive weeks. The cancers were cre-
ated at the Houston Methodist Research Institute by injection of the cancerous cells beneath the
mouse's mammary fat pad [159]. In vivo data acquisition was approved by the Houston Methodist
Research Institute, Institutional Animal Care and Use Committee (ACUC-approved protocol #
AUP-0614-0033). Seven mice were kept untreated and twelve mice were treated by injecting them
intravenously with one of the following drugs: 1. Epirubicin alone, 2. Liposomes loaded with

Epirubicin and 3. Liposomes loaded with Epirubicin and conjugated with Lox antibody on the
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particle surface. The dose of each drug was 3 mg/kg body weight once aweek. Prior to ultrasound
data acquisition, each mouse was anesthetized with isoflurane. Each data acquisition session was
5 minutes long, and several RF data acquisitions could be performed during this period (for relia-
bility purposes).

Elastography was carried out using a 38-mm linear array transducer (Sonix RP, Ultrasonix,
Richmond, BC, Canada) with a center frequency of 6.6 MHz and 5 — 14 MHz bandwidth. To
compensate for the surface geometry as well as facilitate positioning the focus inside the superfi-
cial tumors, an aqueous ultrasound gel pad (Aquaflex, Parker Laboratories, NJ, USA) was placed
between the compressor plate and the devel oped tumor. It should be noted that such use of gel pad
does not change the stress distribution inside the sampl e significantly and thus does not change the
estimated parameters. This has been proved in [198]. A force sensor (Tekscan FlexiForce) was
inserted between the gel pad’s top surface and the compressor plate to record the applied force dur-
ing the compression. Creep compression was performed manually on the animals and monitored
using the force sensor, with the duration of each compression being one minute. Duration of the
experiment was selected based on the temporal behavior of the soft tissue and tumor reported in
the literature [202] and to ensure that both the tumor and surrounding tissues reached steady state
conditions. Ultrasound radio-frequency (RF) data acquisition was synchronized to the application
of the compression. The sampling period of the datawas set at 0.1 s. The axial and latera strain
data were calculated at steady state, when both the tumor and normal tissues behave as elastic
materials [203]. An expert radiologist is employed to segment the in vivo axial strain elastograms

in Matlab for determining the tumor areas.
6.1.7 Estimation of axial and lateral displacementsand strains

To compute the axial and lateral displacements and strains from ultrasound simulation and in

Vivo experiment data, DPHS technique developed in our lab is used [146].
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6.1.8 Computation of Young's modulus and Poisson’sratio

We used our previously devel oped technique to reconstruct the Young's modulus and Poisson’s

ratio simultaneously from axial and lateral strain elastograms as described in [198].
6.2 Resaults

We performed in vivo poroelastography experiments on six untreated and nine treated mice
and reconstructed the IFP, IFV and interstitial and vascular permeabilities inside the tumor using
our developed technique. The important images along with statistical analyses are shown and
discussed below.

The reconstructed IFP, IFV aong with the interstitial and vascular permeabilities and B-mode
images for two untreated mice are shown in Figs. 6.2 and 6.3. The B-mode images for the first
untreated tumor at three time points are shown in Fig. 6.2 A1, B1 and C1. From these images,
the increment of size of the tumor with time can be clearly seen. The estimated IFP images for
this tumor at week 1, 2 and 3 are shown in Fig. 6.2 A2, B2 and C2. The peak IFP is very low
(around 0.5 kPa) inside the tumor in the first week. The IFP increases in the second week and its
peak value becomes more than 1 kPa. The IFP can aso be seen at multiple locations inside the
tumor at this time point. In third week, the IFP becomes highest and is al over the tumor. The
peak value of the IFP at this time point is more than 2.5 kPa. The estimated | FPs inside the tumor
in this untreated tumor by our technique are similar to the values of IFP in untreated tumors of
rodents reported by [239]. The consistent increment of the estimated IFP with cancer progression
also matches with the resultsin [16].

ThelFVsfor thefirst untreated tumor are shownin Fig. 6.2 A3, B3 and C3. In thesefigures, we
see that with increment of the magnitude of the IFP, the IFV also increases in subsequent weeks.
In the first two weeks, the IFV is prominent around the periphery of the tumor. However, in the
third week, the IFV increases at most of the pointsinside the tumor. The IFV values obtained using
our technique corroborate with the reported values (in scale of 1076/10~" ms™!) in the literature

[82,224]. The IFVs seem increasing in the periphery regions of this tumor shown in subsequent
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Figure 6.2: Ultrasound B-mode images of the first untreated tumor at three time points (week 1,
week 2 and week 3) are shown in A1, B1 and C1, respectively. IFP images at these time points
are shownin A2, B2 and C2. IFV images inside the tumor of the same mouse at three time points
(week 1, week 2 and week 3) are shown in A3, B3 and C3, respectively. Interstitial permeabilities
of the same tumor at three time points (week 1, week 2 and week 3) are shown in A4, B4 and
C4, respectively. Vascular permeabilities of the same tumor at three time points (week 1, week
2 and week 3) are shown in A5, B5 and C5, respectively. The IFPs and IFVs are in scales of
kPa and ms~!. The interstitial and vascular permeabilities are in the scales of m* N~! s~ and
m(Pa s)~!. The IFP, IFV and interstitial and vascular permeabilities in the untreated tumor are
all seen increasing in consecutive weeks. In the first week, both the IFP and IFV are ailmost zero
everywhere inside the tumor. In the second week, the IFP and IFV increase at different locations
inside the tumor and in the third week, both the IFP and IFV seem to spread al over the tumor
with high values. Theinterstitial permeability seemsto increase by 5 timesfrom first to third week,
whereas the vascular permeability increases by almost 10 times from first to third week.

weeks. This observation also matches with the reported profiles of IFV [50,224].
The interstitial permeabilities for the first untreated tumor are shown in Fig. 6.2 A4, B4 and

C4. We see from these images that the interstitial permeability of this tumor increases with time.
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Figure 6.3: Ultrasound B-mode images of the second untreated tumor at three time points (week
1, week 2 and week 3) are shown in A1, B1 and C1, respectively. IFP images at these time points
are shownin A2, B2 and C2. IFV images inside the tumor of the same mouse at three time points
(week 1, week 2 and week 3) are shown in A3, B3 and C3, respectively. Interstitial permeabilities
of the same tumor at three time points (week 1, week 2 and week 3) are shown in A4, B4 and
C4, respectively. Vascular permeabilities of the same tumor at three time points (week 1, week 2
and week 3) are shown in A5, B5 and C5, respectively. The IFPs and IFVs are in scales of kPa
and ms~!. The interstitial and vascular permeabilities are in the scales of m* N~! s=! and m(Pa
s)~L. Similar to the first untreated tumor, the IFP, IFV and interstitial and vascular permeabilities
in the untreated tumor are all seen increasing in consecutive weeks. In the first week, both the IFP
and IFV are aimost zero inside the tumor. 1n the second and third week, the IFP and IFV increase
almost everywhere inside the tumor. The interstitial permeability seems to increase by 6 times
from first to third week, whereas the vascular permeability increases by almost 8 times from first
to third week.

At first week the interstitial permeability remains much below 1 x 1072 m* N~! s7!, whereasin
third week, theinterstitial permeability becomes morethan 5timesof it,i.e., 5x 10712 m* N~ s,

The estimated values of the interstitial permeability correlate with the reported values (in scale of
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10712 m*N~! s71) obtained by invasive estimation methods [59]. The increment of the interstitial
permeability with cancer progression is expected as it is known that the interstitial permeability
increases in tumors in comparison to the normal tissue [40, 240].

The vascular permeability of thefirst untreated tumor at three time points are shownin Fig. 6.2
A5, B5 and C5. Like the interstitial permeability, the vascular permeability of the tumor also
increases with time. In the first week, the vascular permeability of the tumor is much below than
0.5 x 10~ m(Pas) !, whereas the vascular permeability becomes more than 10 times of thisvalue
inthethird week, i.e., > 5 x 10~ m(Pas)~!. The obtained values of the vascular permeability are
in the range of values (in scale of 10~ m(Pas)~!) reported in the literature [11,40]. Similar to the
interstitial permeability, the increment of vascular permeability in tumor tissuesin comparison the
normal tissues has been shown in many studies [40, 240], which corroborates with our results.

Similar scenarios for the IFP, IFV, interstitial and vascular permeabilities for the first untreated
tumor are seen in case of the second untreated tumor, which are shown in Fig. 6.3. The IFP for this
tumor is almost zero everywhere at the first week, which increases to about 0.5 kPa in the second
week and further increases to about 0.8 kPa at the third week. The IFV is zero everywhere for
this tumor is the first week but increases mostly around the periphery in the next two weeks. The
interstitial and vascular permeability increases by 6 and 8 times in this tumor from first to third
week as shown in Fig. 6.3 (A4-B4) and (A5-B5).

The estimated IFP, IFV, interstitial and vascular permeabilities of the first treated tumor along
with the B-mode images are shown in Fig. 6.4 for three time points (week 1, 2 and 3). In the first
week, we see that the IFP is zero inside the tumor and then it increases to 0.4 and then 1 kPain
second and third week. The spatial nature of the IFP for this tumor is different from the IFP of
the untreated tumor. In this case, the IFP is radially decreasing, whereas for the untreated tumor,
the IFP was constant throughout or at some locations inside the tumor. In this case, the IFP is
highest at the center of the tumor and then goes down at the periphery. This may be because of the
lower value of the spatial parameter «.. This observation matches with results found in [50, 224]

and means less metastatic nature of the tumor. The IFP in the treated tumor is also less than the
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untreated tumors. Thisreduction of the |FP because of application of drug matcheswith the results
reported in [239].

The IFV for the treated tumor is shown in Fig. 6.4 (A3, B3, C3). We see that the IFV isagain
high at the periphery of the tumor in all three time points of the tumor. The interstitial permeability
of the tumor at three time points are shown in Fig. 6.4 (A4, B4, C4). We see that in contrast to
the untreated tumors, the interstitial and vascular permeabilities both goes down for the treated
tumors. Theinterstitial permeability of thistumor isaround 5 x 10712 m* N~1s™! at the first week,
which becomes around 0.5 x 10712 m* N ~1s~! in the third week. On the other hand, the vascular
permeability of thistumor isaround 5 x 10712 m(Pas)~* at the first week, which becomes around
0.1 x 1072 m(Pas)~! in the third week. Therefore, the reduction of the interstitial permeability
is around 10 times, where the reduction in vascular permeability is around 50 times from first to
third week. This reduction of vascular permeability with treatment corroborates with the results
reported in the work of Goel et al. [241].

The IFP, IFV and interstitial and vascular permeabilities of the second treated tumor aong
with the B-mode images are shown in Fig. 6.5 at three time points. The IFP for this tumor is
almost zero in the first week, which becomes around 1 kPain the third week. The IFV seems also
increasing and becomes almost 10 times from the first to third week. The interstitial and vascular
permeabilities for this tumor reduce consistently from first to third week. In the third week, both
interstitial and vascular permeabilities of thistumor becomes very small i.e., < 0.5 x 1072

The summary of all the results obtained in our in vivo experiments can be seen in the bar plots
of mean values of IFP (A1), interstitial permeability (A2), vascular permesability (A3), « (Bl),
Young's modulus (B2) and surface area (B3) shown in Fig. 6.6. In Fig. 6.6 (A1), we see that the
IFP is much higher for the untreated tumors than the treated ones. The |FP increases with time for
both the treated and untreated tumors. The mean value of « inside the untreated tumors is higher
than that inside the treated onesin all three weeks, but is much higher in the third week. The mean
values of « for the treated tumors do not change much with time. These observations match with

the results obtained beforehand in invasive studies reported in the literature [50]. The interstitial
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Figure 6.4: Ultrasound B-mode images of the first treated tumor at three time points (week 1,
week 2 and week 3) are shown in A1, B1 and C1, respectively. IFP images at these time points
are shownin A2, B2 and C2. IFV images inside the tumor of the same mouse at three time points
(week 1, week 2 and week 3) are shown in A3, B3 and C3, respectively. Interstitial permeabilities
of the same tumor at three time points (week 1, week 2 and week 3) are shown in A4, B4 and C4,
respectively. Vascular permeabilities of the same tumor at three time points (week 1, week 2 and
week 3) are shown in A5, B5 and C5, respectively. The IFPs and IFVs are in scales of kPa and
ms~!. Theinterstitial and vascular permeabilities are in the scales of m* N=! s=! and m(Pa s)~!.
Starting from zero in the first week, both the IFP and IFV increase in subsequent weeks for the
treated tumor. However, the IFP never becomes more than 1 kPa. The interstitial permeability for
this tumor isaround 5 x 10712 m* N=! st in the first week, which reduces by almost 10 timesin
the third week. The vascular permeability reduces by 50 times from the first to third week.

permeability is higher for the treated tumors in all three weeks than the untreated ones. This can
be the direct impact of the treatment on the reduction of cell proliferation in the interstitium of the
tumor. However, the interstitial permeability seems decreasing for the treated tumors with time,

whereas the interstitial permeability of the untreated tumors seems to decrease by a small amount
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Figure 6.5: Ultrasound B-mode images of the second treated tumor at three time points (week 1,
week 2 and week 3) are shown in A1, B1 and C1, respectively. IFP images at these time points
are shownin A2, B2 and C2. IFV images inside the tumor of the same mouse at three time points
(week 1, week 2 and week 3) are shown in A3, B3 and C3, respectively. Interstitial permeabilities
of the same tumor at three time points (week 1, week 2 and week 3) are shown in A4, B4 and C4,
respectively. Vascular permeabilities of the same tumor at three time points (week 1, week 2 and
week 3) are shown in A5, B5 and C5, respectively. The IFPs and IFVs are in scales of kPa and
ms~!. Theinterstitial and vascular permeabilities are in the scales of m* N=! s=! and m(Pa s)~!.
The IFP and IFV are very small in both first and second week in this case. In third week, as the
tumor becomes much smaller, the IFP and IFV increase at some |locations inside the tumor. Unlike
other tumors, the interstitial and vascular permeabilities increase at first to second week and then
decrease at the third week.
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from the first to second week but increases from second to third week. The vascular permeability
for the treated tumors seems decreasing, whereas for the untreated tumors seems increasing with
time as shown Fig. 6.6 (A3). The mean vascular permeability of the untreated tumors at third week

is much higher than that at first and second week and can be high by one or two scale. We aso
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report the Young's modulus and surface area of these tumorsin (B2) and (B3) to support the results
of IFRP, IFV and permeabilities obtained with the progression of cancer. Both of them increase
consistently in case of the untreated tumors with time, which proves the consistent progression of
cancers in the untreated tumors. On the other hand, for the treated tumors, the Young's modulus
and surface area of the tumor seem at the same level in all three weeks, which proves that because

of the drugs, the progression of cancer may have been halted or the cancer has been cured.
6.3 Discussion

In this section, we propose a novel noninvasive technique to image important mechanopatho-
logical parameters of cancers. IFP, IFV and interstitial and vascular permeabilities using ultra-
sound poroel astography. Based on developed analytical model, the IFP has been estimated from
the estimated volumetric strain at steady state and the interstitial and vascular permeabilities have
been estimated using a curve fitting technique on the temporal profile of the axial strain. The pro-
posed technique incorporates all the advantages of ultrasound based imaging techniques such as
cost-effectiveness, no radiation, user friendly, less time consuming etc.

The estimation of the IFP isimportant for cancer diagnosis, prognosis and treatment. 1FP can
be used as a strong marker to diagnose the malignancy of the tumor [242]. The image of IFP
values inside the tumor can help the physicians to estimate the progression of tumor and decide
the required treatment. For tumors with high IFP, the chemotherapy and immunotherapy may not
be the good choice because the IFP creates hindrance for the therapeutic agents to enter into the
tumor and thus reduces the effect of the treatment significantly [32,50]. The value of IFP can
also be helpful in assessing the efficacy of the treatment used. Decrement of |FP with application
of drugs has been used as a indicator of the efficacy of the drugs in treating cancers in many
works [243,244].

The IFV is an important parameter in drug delivery. High IFV inside the tumor indicates
the higher possibility of the drug to penetrate inside the tumor. We observed in many cases, in
the untreated tumors, the IFV is higher inside the tumor and the drug has higher chance to enter

into the tumor. This effect is called ‘enhanced permeability and retention’ (EPR) and has been
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thoroughly investigated in the literature [245]. EPR effect increases the chance of drug penetration
to tumor tissue than the normal tissue and has been been exploited to facilitate delivery of high-
molecular-weight drugs to the cancer sites. We also observed extremely low IFV in some treated
cases, which means that with increasing effect of drug, the further probability of successful drug
delivery reduces. This phenomenon has been discussed in [50].

The interstitial and vascular permeabilities are effective diagnostic markers and important in-
formation for the decision of treatment type to used. High value of vascular permeability is con-
nected with metastasis and cancer progression [40]. Interstitial permeability is also shown to
change in tumors in comparison to the normal tissue [58]. In our study, we found out that the
interstitial and vascular permeabilities of the untreated tumors increase, whereas of the treated tu-
mors decrease with time. To our knowledge, thisisthefirst report of change in values of interstitial
and vascular permeabilities with cancer progression and with time after application of drug.

For the results of second treated tumor (Fig.6.5), the interstitial and vascular permeabilities
are seen increasing from the first to second week and then decreasing from second to third week,
which is different from the other tumor shown and the general trend shown in Fig. 6.6. However,
theincrement of theinterstitial permeability from thefirst week to second week and then decrement
from second to third week can bejustified by the change in both Young's modulus and surface area
of the tumor. The Young's modulus of this tumor increases from 29.05 to 35.93 kPa and then
decreases to 21.24 kPa in the third week. Similarly, the surface area of the tumor increases from
0.945 to 1.616 cm? from first to second week and then decreases to 0.664 cm? in the third week.
Therefore, for this tumor, it can be stated that from the first week to second week, the drug could
not control the cancer progression but the drug became effective after second week and was able
to control the cancer growth and reduce the tumor area, stiffness and permeabilities significantly.

In some treated cases, we found out that the | FP image has moderate values (=~ 0.6 kPa) in sec-
ond and (=~ 1.2 kPa) inthird week (Fig. 6.5). The Young's moduli of thistumor at three subsequent
week are 23.39,22.99 and 16.58 kPa. We see that although the size and Young's modulus of this

tumor are decreasing and values of Young's modulus are close to the Young's modulus of normal
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tissues, the IFP inside the tumor is never zero and hasincreasing values in consecutive weeks. This
phenomena can be an indicator of possible recurrance of the cancer. This also proves that the IFP
can be an independent diagnostic and prognostic marker when the Young's modulus and size of
the tumor fail to provide any information about the cancer progression.

Based on the results shown in Fig. 6.6, the mean Young's modulus and surface area increase
consistently for the untreated tumors with time, but remain almost same for the treated tumors.
Therefore, these markers may fail to show the impact of the drug on many treated tumors, whereas
the mean values of the IFP, interstitial and vascular permeabilities are clearly seen to change for
application drugs with time. Based on these results, it can be stated that these mechanopathological
parameters may be more effective markers than the stiffness/surface area to show the treatment
efficacy inside cancer tumor.

While estimating the IFP in this section, we did not consider the effect of the solid stress
inside the tumor. There are two reasons behind that. Firstly, the solid stress value is generally
much lower than the IFP inside the tumor [18, 185]. Secondly, the solid stress (both radial and
circumferential stress) is normally uniform over the tumor and goes to zero far outside of the
tumor [18]. Therefore, the value of solid stress can be assumed to be same at the inside and at the
periphery of the tumor. Asin our technique, IFP is estimated by subtracting the volumetric stress
(created because of applied external stress) values inside the tumor from the volumetric stress of
periphery, the volumetric solid stress (sum of radial and circumferential solid stress) would affect
both of them equally and will be nullified because of subtraction. Therefore, the estimated | FP by
our technique would be same even if the solid stressis considered and as aresult our measurement
of IFP isindependent of presence of solid stress inside the tumor.

Although we have validated our technique through finite element and ultrasound simulations,
we could not validate it experimentally and in vivo. The reason behind thisis the lack of suitable
phantom available with interstitial and vascular permeabilities and IFP inside it. We aso believe
that if the tumor is brought outside and the IFP measured invasively, the obtained result may

not represent the accurate values of IFP. The presence of the normal tissue around the tumor is
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important for obtaining the correct values of IFP. This observation has recently been verified by
Niaet al. for solid stress inside the tumor [185]. It should be noted that the IFP and solid stress
work inside the tumor and create expansive stress inside the tumor [20]. The main difference
between them is that the IFP creates a isotropic stress, whereas the solid stress creates different
stress along axial and lateral directions.

The main limitations of the proposed approach are the assumptions taken for developing the
theory, i.e., the tumor and normal tissues have uniform mechanical properties and the tumor is
of spherical shape. Although these assumptions are used frequently in cancer tumor modeling,
they may not hold strictly in practical scenarios always. However, the obtained values of the
mechanopathological parameters still would be accurate to a moderate degree and the proposed

technique can be an attractive replacement for the time-consuming, costly invasive techniques and

biopsy.
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Figure 6.6: (A1) Mean IFP inside the tumors of the treated and untreated mice at week 1, week 2
and week 3. (A2) Mean interstitial permeability (1P) inside the tumors of the treated and untreated
mice at week 1, week 2 and week 3. (A3) Mean vascular permeability (VP) inside the tumors
of the treated and untreated mice at week 1, week 2 and week 3. (B1) Mean values of « inside
the tumors of the treated and untreated mice at week 1, week 2 and week 3. (B2) Mean Young's
moduli of the tumors of the treated and untreated mice at week 1, week 2 and week 3. (B3) Mean
surface areas of the tumors of the treated and untreated mice at week 1, week 2 and week 3. n.s.
means not statistically significant. One, two, three and four stars corresponds to p-value less than
0.05,0.01,0.001, 0.0001, respectively.
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7. CONCLUSION

In this dissertation, | demonstrated a non invasive technique for imaging the IFP, IFV and
interstitial and vascular permeabilities inside cancer tumor based on ultrasound poroel astography.
Based on the importance of these parameters in cancer treatment, diagnosis and prognosis and
widespread popularity and low expense of ultrasound imaging systems, the developed method

may be the preferable technique for imaging these parameters to the clinicians and researchers.
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