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ABSTRACT 

The study of reactive transport processes is the basis of characterizing transport 

behaviors in many disciplines. This dissertation mainly investigates the reactive solute 

transport problems in two categories: reactive solute transport in fracture-rock matrix 

system and applications of the coupled depositional-reactive transport of strontium and 

calcium in the deep-sea carbonate sediments during diagenesis.  

Concretely, the following scenarios of reactive solute transport in a single 

fracture are discussed: 1). Many single fractures in the field are filled with sediments, 

and the transport in such filled single fractures has received much less attention up to 

present. This study deals with a coupled three-domain transport problem using mobile 

and immobile domains to characterize a filled single fracture and a matrix domain to 

characterize the rock. 2). When transport properties are asymmetrically distributed in the 

adjacent rock matrixes, reactive solute transport needs to be considered as a coupled 

three-domain problem. Mathematical models are developed for such a problem under the 

first-type and the third-type boundary conditions to analyze the spatial-temporal 

concentration and mass distribution in the system 3). Due to the natural heterogeneity of 

porous media, the fracture dispersivity exhibits to be scale-dependent. This study 

investigated linear-scale and exponential-scale dependent dispersivities against constant 

dispersity.  

The reactive transport modeling is a powerful tool to understand and 

quantitatively analyze the coupled physical, chemical and biological processes of Earth 
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system. A well-designed model has a better potential to describe the interactions 

between different processes over large spatial and time scales. This dissertation focuses 

on the following carbonate diagenesis problems: 1). the model developed in this study 

estimates the recrystallization and precipitation rates of carbonate sediments and further 

reconstructs past chemical conditions in the ocean by matching the present 

measurements of strontium and calcium concentrations in the pore fluids. 2). Mechanical 

compaction and chemical cementation are responsible for the porosity reduction with 

depth in carbonate rocks. This coupled model is applied to distinguish the mechanical 

compaction and chemical compaction and estimate their relative importance on the total 

porosity reduction. 3). The model is further applied to various sites with different 

conditions, such as sedimentation rates and carbonate calcite contents. The general 

relationship between the calcite recrystallization rates and sedimentation conditions will 

be discussed and summarized.   
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1. INTRODUCTION

1.1 Background and goals 

Reactive transport modeling has been considered as an important method to 

understand the complex processes in Earth system. It makes a significant impact on the 

studies of solute transport in fractured media, which have been studied by many scholars 

for more than three decades because of its broad range of applications in different 

disciplines (Grisak and Pickens, 1981; Roubinet et al., 2012). For instance, for dealing 

with problems such as the disposal of radioactive materials, CO2 geological 

sequestration and storage (Pouya, 2012), and groundwater pollution in fractured 

reservoirs (Bodin et al., 2003). Since fractures are much more permeable than the 

surrounding rock matrix (Wilson and Witherspoon, 1970), fractures have the potential 

for being the most effective pathways for solute migration. For this reason, transport in 

the rock matrix is often highly simplified in mathematical models, for instance, limited 

to a diffusion-dominating process (Tang et al., 1981). Specifically, some experiments 

have been designed and conducted to confirm that advective transport in the rock matrix 

can often be ignored but diffusive transport in the rock matrix must be considered in 

most cases (Maloszewski and Zuber, 1993; Roubinet et al., 2012).  

Understanding transport in a single fracture is the foundation of understanding 

transport in fracture networks (Long and Billaux, 1987; Tang et al., 1981). Analytical 

solutions developed at the scale of fracture-matrix systems can be applied directly to 

solute transport in fracture networks. This is the case for the particle-tracking methods 

developed by Dershowitz and Miller (1995) and Cvetkovic et al. (2004) and reviewed by 
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Noetinger et al. (2016). The solutions developed for a single fracture-matrix system can 

also be extended rather straightforwardly to deal with transport in fractured rocks with 

multiple parallel fractures which may or may not have the same apertures, as 

demonstrated in detail by Sudicky and Frind (1982), Zhu et al. (2016), and others.  

There are multiple reasons to explain why investigators are interested in single 

fracture transport. First, this is the simplest possible fracture transport case that may be 

solved using an analytical approach, which can offer insights on various transport 

processes. Such analytical or semi-analytical solutions may serve the purpose of 

benchmarking numerical solutions developed for transport in a fracture-matrix system, 

which may suffer from non-negligible (and often hidden) numerical errors, partially 

because of the sharp differences of fracture and rock matrix parameters (Grisak and 

Pickens, 1981). One may consult Seo and Mittal (2011) for numerical challenges related 

to sharp interfaces (such as along a fracture-matrix boundary). Also, a thin fracture, 

often with an aperture on the order of millimeter or less, requires a very fine grid to 

discretize the fracture in numerical simulations which may not be practical for dealing 

with large-scale field transport problems (Weatherill et al., 2008). Secondly, a single 

fracture offers simple enough setting to test different transport theories related to a 

fracture-matrix system. Thirdly, isolated single fractures exist in real geological settings 

(Moreno et al., 1988; Raven et al., 1988). Because of its importance, significant effort 

has been put into conducting tracer transport experiments in single fractures (Brown et 

al., 1998; Esposito and Thomson, 1999), in addition to the theoretical works that will be 

briefly reviewed in the following parts.  
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Transport behaviors in the aquifer-aquitard system have many similarities as 

those in the single fracture-rock matrix system. The much more permeable 

aquifer/fracture is distributed in the middle tight layers (aquitards/rock matrix) with very 

small permeabilities.   

Thus, my first goal of this dissertation is to refine and extend the related theory 

of solute transport in fracture-matrix and aquifer-aquitard systems. Chapter 2 mainly 

investigates the solute transport in a filled single fracture-rock matrix system under 

unilateral and radial flows. Then, reactive solute transport in an asymmetrical single 

fracture system or aquifer-aquitard system are proposed in Chapter 3. Chapter 4 

investigates the schemes of possible scale-dependent dispersivity in the aquifer-aquitard 

system or fracture zone.  

On the other hand, the reactive transport modeling can be used to investigate the 

early diagenesis of carbonate rocks. The transport of chemical elements in the pore 

fluids are mainly controlled by advection and diffusion. Meanwhile, the chemical 

elements in the pore fluids are interacted with those in the carbonate solid during 

diagenesis. Carbonate calcite slowly dissolves after the carbonate is deposited in the 

ocean. At the same time, secondary calcite is precipitated from the associated pore 

fluids. In this study, strontium, calcium and sulfate in the carbonate calcite are used as 

indicators and tracers of carbonate diagenetic processes. Geochemical analysis 

associated with numerical modeling of strontium, calcium and sulfate in the bulk 

carbonate and pore fluids gives the quantitative descriptions and fundamental 

understanding over various diagenetic processes during their deposition and compaction 
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(Berner, 1980; Fantle and DePaolo, 2006; Richter and Depaolo, 1987, 1988; Richter and 

Liang, 1993). The results of the chemical exchange as well as advective and diffusive 

transport within the carbonate sediments and pore fluids are recorded in the chemistry of 

pore fluids and solids, which can be modeled by the coupled depositional-reactive 

transport model. Records of trace elements, metal ratios and chemical isotopes measured 

in the calcium carbonate minerals and fossilized skeletons were carefully examined and 

compared to simulation results (De La Rocha and DePaolo, 2000; Fantle and DePaolo, 

2005; Shackleton, 1967). By matching the chemical profiles in the solids and associated 

pore fluids, the coupled model could constrain the values of recrystallization rate and 

reconstruct past record of chemical conditions in the ocean.  

Also, the relative importance of chemical compaction and mechanical 

compaction during the deposition of carbonate sediments are argued (Bathurst, 1970; 

Chanda et al., 1977; Weller, 1959). Bathurst (1970) indicated that carbonate sediments 

are not significantly influenced by the mechanical compaction because they undergo 

early and rapid cementation. However, Chanda et al. (1977) examined the compacted 

rocks for characteristics and provided evidence of mechanical compaction during 

lithification by checking the deformation of ooids in the Precambiran Bhander 

Limestone. By integrating the dissolution rate over its depositional history, this study 

allows to give a quantitative evaluation of the relative fractions of mechanical 

compaction and chemical compaction during lithification.  

Thus, my second goal for this dissertation is to characterize the carbonate early 

diagenesis by coupling deposition and reactive transport of chemical elements, which 
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would shed some insight for the quantifying the recrystallization and precipitation during 

carbonate diagenesis. After calibrating against chemical elements concentrations in the 

carbonate bulk, this coupled model can produce the record of the chemical conditions in 

the ocean for the past 40 million years, which is discussed in detail in Chapter 5. Other 

goals of this study demonstrated in Chapter 6 are to investigate the relationship between 

the values of recrystallization rate and sedimentation conditions and distinguish the 

chemical and mechanical compaction during the deposition and compaction. 

1.2 Organization 

This dissertation is organized as follows: in Chapter 2, the models of reactive 

transport in a filled single fracture-matrix system are discussed under both unilateral and 

radial flows. In Chapter 3, reactive solute transport in an asymmetric facture-rock matrix 

system is discussed. The existence of scale-dependent dispersivity in fracture zones or 

aquifer-aquitard system is carefully examined in Chapter 4. A coupled depositional and 

reactive solute transport model is built to explain chemical elements profiles in the 

porewater and reconstruct the paleo history seawater chemical conditions in the Chapter 

5. The discussions of the using such a coupled model to distinguish the chemical

compaction and mechanical compaction in the deep-sea carbonate sediments is 

demonstrated in the Chapter 6. Also, the relations between calcite dissolution rate and 

sedimentation conditions such as sedimentation rates and carbonate content are also 

indicated.  
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2. REACTIVE SOLUTE TRANSPORT IN A FILLED SINGLE FRACTURE-

MATRIX SYSTEM UNDER UNILATERAL AND RADIAL FLOWS 

2.1 Introduction 

A widely-used analytical solution of contaminant transport in a single fracture 

system was proposed by Tang et al. (2005). Chen (1986) also derived an approximate 

solution for radial transport from an injection well into a single fracture. Theoretical 

studies of transport in a single open fracture have been reported by numerous 

investigators, including Moreno et al. (1988), and Esposito and Thomson (1999). In the 

above-mentioned studies, fractures were assumed to be open without infillings. 

However, fracture infillings are commonly observed in real applications (Bradner 

and Murdoch, 2005; Wealthall et al., 2001). Wealthall et al. (2001) conducted an 

investigation of fractures filled with sediments and compared the preferential flow 

pathways in such filled fractures to those in an equivalent open (unfilled) fractures. 

Kemp et al. (2003) evaluated filled fractures in Permo-Triassic sandstones in southwest 

Scotland and presented a sampling method for such fractures. Bradner and Murdoch 

(2005) investigated the gas-phase permeability in sand-filled fractures in a soil vapor 

extraction system.  

A filled fracture usually has a different transport behavior from an open one. For 

instance, Lunati et al. (2003) found that a propagation front was smoother in single 

 Reprinted with permission from “Reactive solute transport in a filled single fracture-matrix system under 

unilateral and radial flows” by Zhou, R. J., Zhan, H. B., Chen, K. W. (2017), Advances in Water 

Resources, 104, 183-194, Copyright [2017] by Elsevier 
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fractures filled with glass beads at extremely low flow velocity, compared to those in 

open fractures. The existence of infilling materials often leads to disconnections or dead-

end water pockets between pore spaces within a fracture, which can be regarded as 

immobile domains (Jodar et al., 2009; Qian et al., 2011). Such a problem cannot be dealt 

with using the advection-dispersion equation (ADE) which is commonly used for 

dealing with transport in homogeneous porous media or open fractures, as done by Tang 

et al. (1981) for unilateral flow, and by Chen (1986) for radial flow. Regarding to 

transport in an open fracture, there is much evidence showing that ADE performs poorly, 

and cannot explain the so-called non-Fickian transport phenomena such as the early 

breakthrough and long tailing of the breakthrough curves (BTCs), that can, however, be 

satisfactorily explained with mobile-immobile models (MIM) as first proposed by van 

Genuchten and Wierenga (1976).  

The objective of this study is to develop new mobile-immobile models for two 

types of transport problems in a filled single fracture-matrix system, which has not been 

attempted before. The following transport processes are considered: advection, 

longitudinal dispersion, first-order reaction, and linear sorption in the fracture; transverse 

molecular diffusion, first-order reaction, and linear sorption in the rock matrix; first-

order mass transfer between the mobile and immobile domains in the filled fracture. The 

first model concerns a unilateral flow; while the second model concerns a radial flow 

caused by an injection/pumping well. 
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2.2 The conceptual model and physical setup 

In this study, a filled single fracture is oriented horizontally with a constant 

aperture 2b and extends sufficiently far from the domain of interest. The fracture is 

bounded by a rock matrix whose permeability is at least several orders of magnitude less 

than that of the fracture. The rock matrix is wide enough so that the effect of the limit 

boundary of the rock matrix can be ignored. This is justified, as the primary transport 

process in the rock matrix is often limited to regions close to the fracture since it is a 

much slower process. 

Fig. 2.1 The conceptual model of unilateral flow. 

In this model, a constant-rate unilateral flow field from left to right is established 

(Fig. 2.1). A Cartesian coordinate system is used with the origin at the intercept of the 

left boundary and the middle of the fracture. The x-axis is along the same direction with 

the unilateral flow, and the z-axis is vertically upward. The y-axis is perpendicular to the 

x-axis and is horizontal as well. A solute source is located at x=0 with a constant

concentration C0 and extends to sufficiently far distance from the domain of interest 

along the y-axis. Thus, the problem can be conceptualized as a two-dimensional (2D) 
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model in the xz plane. Such a simple boundary condition at x = 0 (constant 

concentration) can be relaxed later to accommodate more realistic boundary types, such 

as prescribed time-dependent concentration (first-type), prescribed flux (second-type), or 

Robin (third-type). Two points are notable. First, the fracture aperture is so small that the 

vertical mixing throughout the fracture aperture is completed almost instantaneously, 

thus transverse dispersion in the fracture along the z-axis has no discernible effect on 

transport processes in the fracture-matrix system and is not considered. Roubinet et al. 

(2012) further reported that longitudinal diffusion in the rock matrix affected solute 

transport only when the Peclet number was very low (less than 0.01). Rezaei et al. 

(2016) also investigated the horizontal dispersion in the aquitard (HDA) on reactive 

solute transport in an aquifer-aquitard system, which is similar to the fracture-matrix 

system investigated here except that slow water flow (advection) in aquitard was 

considered by Rezaei et al. (2016) and water flow in matrix is excluded in this study. 

Rezaei et al. (2016) concluded that HDA was negligible for most practical cases of 

transport. Therefore, longitudinal diffusion in the rock matrix is neglected in both 

models of this study. Secondly, despite the fact that the fracture is filled, it could still be 

very porous and very permeable.  
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Fig. 2.2 The conceptual model of radial flow. 

The conceptual model of radial flow is the same as that of unilateral flow but 

with the following exceptions (Fig. 2.2). A radial flow field rather than a unilateral flow 

field is established due to an injection/pumping well with a constant rate Q (positive for 

injection and negative for pumping). Accordingly, a cylindrical coordinate system rather 

than a Cartesian coordinate system is utilized with the radial r-axis horizontally outward 

while the z-axis is vertically upward and along the center of the well, with the origin 

located at the intercept point of the horizontal symmetry plane of the fracture and the z-

axis (see Fig. 2.2). Groundwater flow is driven only by the injection/pumping well, 

without any other regional flow presented for the radial flow model.  

2.3 Mathematical models and solutions 

Based on the conceptual models described above, one can establish the 

mathematical models for both unilateral and radial flows. As two different coordinate 

systems are employed, the mathematical models are quite different. We will start with 
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the unilateral flow model, followed by the radial flow model. Since the investigated 

system is symmetric which respect to the plane of z=0, we will only discuss the half-

plane above z=0 hereinafter. 

2.3.1 Mathematical model and solutions of unilateral flow 

Reactive solute transport in a filled single fracture and rock matrix system can be 

described as three governing equations:  

2

1 1 122 2 2
m im m m m

m im m m m m m m im im

C C C C q
R R D v R C R C

t t x x b
       

   
   




  
 , (2.1) 

2 2 2( )im
im m im im im

C
R C C R C

t
   


  


 ,  (2.2) 

2

3 323 d
k k

k

C C
R D R C

t z


 
 

 
 . (2.3) 

where Cm [M/L3] and Cim [M/L3] are the concentrations in the mobile and immobile 

domains in the fracture, respectively; Ck [M/L3] is the concentration in the rock matrix; b 

[L] is the fracture half-aperture; vm [L/T] is the groundwater velocity in the mobile

domain, which equals 𝑞/𝜃𝑚; 𝑞 [L/T] is the Darcian velocity; λ [1/T] is the decay 

constant which is defined as ln2/t1/2 where t1/2 is the half-life of the radionuclide or 

biodegradable species; θm and θim are the mobile and immobile water contents, 

respectively, and the sum of θm and θim is the total porosity of the fracture; ω [1/T] is the 

first-order mass transfer rate between the mobile and immobile domains; R is the 

retardation factor (constant); the subscripts 1, 2 and 3 of R and λ refer to the mobile 

domain of the fracture, the immobile domain of the fracture, and the matrix, 
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respectively; Dm [L2/T] is the longitudinal dispersion coefficient in the fracture, and it 

can be further expressed as:  

*

m L mvD D  , (2.4) 

where αL [L] is the longitudinal dispersivity while D* [L2/T] is the effective molecular 

diffusion coefficient in the mobile domain, which is usually much smaller than 𝛼𝐿𝑣𝑚 

and can be ignored; Dd [L
2/T] is the effective molecular diffusion coefficient in the rock 

matrix; qm [M/L2T] is the diffusive mass flux between the fracture and the rock matrix, 

and is expressed based on Fick’s law:  

( )k
m k d

z b

D
z

q
C





 


 , (2.5) 

where θk is the porosity of the rock matrix. 

Eqs. (2.1)-(2.3) refer to the governing equations in the mobile domain of the 

fracture, mass transfer between the mobile and immobile domains of the fracture, and 

the governing equation in the rock matrix, respectively.  

There are a few notable points about Eqs. (2.1)-(2.3). First, different decay 

constants are used for the mobile and immobile domains, as well as for the rock matrix, 

which are likely to have different reaction rate constants (Zhu et al., 2016). For example, 

biodegradation would be affected by water temperature, type and content of organic 

compounds, oxygen concentration and other factors (Davis et al., 2013; Johnson and 

Furrer, 2002). Some of these factors could be different in the mobile and immobile 

domains of a fracture and matrix.  
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Secondly, the retardation factors in the mobile and immobile domains of a 

fracture could be different (Parker and Valocchi, 1986; Wierenga and Vangenuchten, 

1989). The retardation factors of the mobile and immobile domains are defined as 

1 1 /m m mR K   ; 2 1 /im im imKR    , where ρm and ρim are the partial bulk densities of 

the mobile and immobile domains, respectively; Km and Kim are the distribution 

coefficients for each domain and represent the mass of solute absorbed per unit volume 

of solid divided by the concentration of the solute in the fracture. Since the bulk density, 

distribution coefficient and porosity in the rock matrix may be different from those in the 

fracture, the retardation factor of the rock matrix could be very different from that of the 

fracture.  

As multiple parameters are involved in the mathematical models illustrated 

above, it is necessary to elaborate on the parameter determination process for model 

application. This will be addressed later. 

Experimental and theoretical efforts have been made by many scholars to 

understand the possible existence of concentration discontinuity at the sharp interface 

between the fracture and the rock matrix (Berkowitz et al., 2009; Leij et al., 1991). Such 

a phenomenon may occur if there are possible mass accumulations when solutes cross 

from one medium to another (Marseguerra and Zoia, 2006). However, no experimental 

evidence of mass accumulation at the sharp interface is available to support this 

conjecture (Zhang et al., 2010). Thus, the concentration discontinuity at the fracture-

matrix interface is not considered in this study. The above equations are supplemented 

with a continuity equation at the fracture-matrix interface and initial and boundary 
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conditions to close the system. At any point on the interface between the fracture and 

rock matrix, the concentration is continuous, thus one has: 

( , ) ( , , )m kC x t C x z b t  . (2.6) 

The fracture-matrix system is assumed to be free from solute at the beginning, thus the 

initial conditions are: 

( , 0) ( , 0) ( , 0) 0m im kC x t C x t C z t      . (2.7) 

The remaining boundary conditions are as follows: 

( , ) ( , ) 0m imx t x tC C    , (2.8) 

0( 0, )m x t CC   , (2.9) 

( , ) 0kC z t  . (2.10) 

Eqs. (2.8) and (2.10) imply that the fracture is infinitely long and the rock matrix is 

infinitely thick, which avoid the effect of the finite boundary. Eq. (2.9) defines a 

constant concentration source in the mobile domain of the fracture at x=0.  

To solve Eqs. (2.1)-(2.10), the Laplace transform will be used to transform the 

problems in the real-time domain to those in the Laplace domain. The benefit of this 

approach is to convert partial differential equations (which are usually difficult to deal 

with) into ordinary differential equations by removing the time-derivative terms from the 

equations. After solving the boundary value problems (BVP), one can obtain analytical 

solutions of the problems in the Laplace domain. After this step, one needs to apply an 
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inverse Laplace transform technique, which has to be numerical for the problems 

addressed here, to finally obtain solutions in the real-time domain.  

Before conducting the Laplace transform, it is helpful to convert the equations 

into their dimensionless forms that have fewer numbers of independent variables and are 

more reflective of the systems involved, as commonly done in dynamic analysis (Bear, 

1972; Simmons et al., 2001). 

The Laplace-domain solutions are obtained as follows while the detailed 

derivations are provided in Appendix A of the supplementary files: 

2
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. (2.13) 

Where the subscript D denotes the terms in dimensionless formats hereinafter, the details 

of dimensionless formats are discussed in Appendix A, 

  2
1 2 1 1 1 3

21
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 

 , and the Peclet 

number (Pe) and all other terms are explained in the supplementary file. 
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For some transport problems, it is possible to obtain steady-state solutions that 

are usually much simpler than the transient solutions. The steady-state solutions will be 

particularly useful for assessing the long-term transport behavior, thus they are 

sometimes required for screening and/or designing long-term monitoring and 

remediation plans. 

To obtain the steady-state solutions for the unilateral flow model, one must fulfill 

the following condition: 

0mD imD kD

D D D

C C C

t t t

  
  

  
. (2.14) 

Eq. (2.14) indicates that concentrations would no longer change with time any more after 

reaching steady state, which simplifies Eqs. (2.1) and (2.2) to ordinary differential 

equations. The steady-state solutions can be reached by substituting Eq. (2.14) into Eqs. 

(2.1)-(2.3), or taking advantage of the following identity: ))((lim)(
0

ppFtf
p

D


 , 

where F(p) is the Laplace transform of f(tD)and )( Dtf is the steady-state solution of 

f(tD). In this case, F(p) corresponds to the solutions in the Laplace domain (Eqs. (2.11)-

(2.13)). Thus, the steady-state solutions of the mobile and immobile domains of the 

fracture and the matrix are derived by calculating the limitations of 𝑝𝐶𝑚𝐷
̅̅ ̅̅ ̅̅ , 𝑝𝐶𝑖𝑚𝐷

̅̅ ̅̅ ̅̅  and

𝑝𝐶𝑘𝐷
̅̅ ̅̅ ̅ as p approaches 0.

The analytical solutions for CmD, CimD and CkD at steady state can be derived as 

follows:  
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(2.17) 

It is interesting to point out that the steady-state solutions of Eqs. (2.15)-(2.17) are all 

exponential decay functions of spatial coordinates, and are closely related to the Peclet 

number (Pe) in the fracture, in addition to other factors. 

2.3.2 Mathematical model and solutions of radial flow 

In the radial flow model, the solute is discharged into a filled fracture-matrix 

system from an injection well at a constant rate Q [L3/T]. r0 [L] is the radius of the well. 

The velocity of the background regional groundwater flow is ignored. Thus, the steady-

state flow velocity in the mobile zone of the fracture is only caused by the injection well, 

which is expressed as: 
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r

A
vm  , (2.18) 

where
4 e

Q
A

b 
 , and θe is the effective porosity in the fracture, which equals the 

mobile water content θm in this study. 

The flow velocity is steady with time but variable with radial distance from the 

well. The radial hydrodynamic dispersion coefficient Dr [L
2/T] is expressed as (Bear, 

1972): 

r

dA
dvD mr  , (2.19) 

where d [L] is the radial dispersivity. The governing equations in the mobile and 

immobile domains of the fracture can be written as follows:  

2
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
 , (2.21) 

where the diffusive flux between the fracture and matrix, 𝑞𝑚, has the same expression as 

above in Eq. (2.5) in the unilateral flow model and The governing equation for the 

reactive solute transport in the rock matrix is the same as above in Eq.(2.3). The 

boundary conditions of the filled fracture-matrix system in the radial flow model are 

expressed as follows: 

( , ) ( , ) 0m imr t r tC C    , (2.22) 
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0 0( , )mC r r t C  . (2.23) 

The boundary condition for the matrix is the same as Eq. (2.10). Eq. (2.22) specifies that 

the effect of the system boundary is infinite in the r axis. The boundary condition given 

in Eq. (2.23) illustrates that the source concentration at the injection well remains 

constant C0. This boundary condition can be replaced with other boundary types such as 

time-dependent prescribed concentration, flux prescribed (second-type), or Robin (third-

type), if needed. The initial conditions for the fracture and rock matrix are the same as 

Eq. (2.7). At the interface between the fracture and rock matrix, the continuity 

relationship holds (see Eq. (2.6) in the unilateral flow model). 

The solutions in the Laplace domain are obtained as follows while the full 

derivations are provided in Appendix B of the supplementary files: 
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, Ai is the so-called Airy 

function. 

Similar to the derivation of the steady-state solutions of the unilateral flow 

model, to reach the steady state, Eq. (2.14) must be fulfilled. The analytical solutions of 

the concentration distribution in the mobile domain (Eq. (2.27)), immobile domain (Eq. 

(2.28)) and rock matrix (Eq. (2.29)) can be obtained in the real-time domain as follows: 
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2.4 Validation and results 

Now all transient solutions for both models are derived in the Laplace domain. 

Analytical inverse Laplace transforms might result in complex multiple integrations 

which can only be calculated with numerical methods (Chen, 1986; Tang et al., 1981; 
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Zhan et al., 2009a). Therefore, a numerical inverse Laplace transform technique is 

adopted here to compute the spatial-temporal concentration distributions. The de Hoog 

et al. (1982) algorithm, which has been successfully used in solute transport problems 

before (Furman and Neuman, 2003; Wang and Zhan, 2015), is selected to conduct the 

numerical inverse Laplace transform here. It accelerates the convergence of the Fourier 

series resulting from the inversion integral and ensures the accuracy by reducing errors 

(De Hoog et al., 1982). The results obtained from the de Hoog algorithm are then tested 

against other analytical solutions: those from Tang et al. (1981) and Zhu et al. (2016) for 

unilateral flow, and the other from Chen (1986) for radial flow.  

2.4.1 Breakthrough curves (BTCs) analysis 

To better illustrate the above derived solutions, an example is used to analyze 

BTCs of the mobile domain in the fracture. The parameters used in the example are 

taken from previous studies (Schumer et al., 2003; Tang et al., 1981), which dealt with 

similar transport problems without considering fracture infillings. The same parameters 

are used for example calculations of both models: 

2𝑏 = 100 μm; 𝜃𝑘 = 0.01; 𝑡1/2 = 12.35 yrs; 𝑅1 = 1; 𝑅2 = 1; 𝑅3 = 1; 𝐷𝑑 =

1.38 × 10−5 m2/d; 𝛼𝐿 = 0.5 m;  𝑑 = 0.5 m; 𝜔 = 0.9/d; 𝜃𝑚 + 𝜃𝑖𝑚 = 0.9.

In the unilateral flow model, the Darcian velocity (q) of the groundwater in the 

mobile domain of the fracture is 0.01 m/d, which can be used to calculate the flow 

velocity of groundwater (vm). In the radial flow model, the constant injection rate (Q) is 

0.001 m3/d, and the radius of the wellbore (r0) is 0.11 m. The default mobile/immobile 

ratio in the following calculation is set to be 10 (or θm=0.818 and θim=0.0818). For 
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computations involving different mobile/immobile ratios, θm and θim will change 

accordingly with the constraint of constant total porosity (θm+θim=0.9). A sample point 

of (0.5 m, 0 m) is picked in the fracture for the discussion of BTCs. The selection of 

such a point is rather arbitrary, thus the results obtained are general in nature.  

It is worthwhile to note that some related studies use a fixed dispersion 

coefficient (Dm) (Tang et al., 1981; Van Genuchten and Wierenga, 1976) while others 

use a fixed longitudinal dispersivity (αL) (Chen, 1987; Dronfield and Silliman, 1993) for 

analyzing the transport process. As Eq. (2.4) shows, the relationship between Dm and αL 

can be simplified as /m L m L mv qD     , if neglecting the molecular diffusion

coefficient. Figs. 2.3A and 2.3B respectively show BTCs for the unilateral flow model 

with a fixed longitudinal dispersivity of 0.5 m and a fixed dispersion coefficient of 

0.00611 m2/d which is computed with αL=0.5 m, q=0.01 m/d, and θm=0.818. Fig. 2.4A 

shows BTCs for the radial flow model with a radial dispersivity of 0.5 m and an 

injection rate of Q=0.001 m3/d. To distinguish curves which are superposed on a linear 

scale, Fig. 2.4B are plotted on a semi-log scale corresponding to Fig. 2.4A. 

It is also useful to know different time scales associated with the problems in 

order to understand the different transport behavior under unilateral and radial flows. 

These two models are under different conditions: the unilateral flow model refers to an 

ambient condition while the radial flow model corresponds to a forced hydraulic 

condition. The time scale of the radial flow model is about three orders of magnitude 

smaller than that of the unilateral flow model. For the chosen first-order mass transfer 

rate of 9.0 day-1, the time scale for the mass transfer between the mobile and 
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immobile domains is around  1.1/1   days. Now one looks at the imm  / ratios of 10, 

5, and 1 as used in Figs. 2.3A-B for unilateral flow, when the Darcian velocity is kept at 

0.01 m/d and imm   is kept at 0.9, such three imm  / ratios will lead to advective 

transport times to the point of interest (0.5 m, 0 m) to be 40.9 days, 37.5 days, and 22.5 

days, respectively. For radial transport shown in Figs. 2.4A-B, the advective transport 

time needed to a radial distance r from a well with an injection rate of Q is: 

ArT /5.0 2 , where A is defined after Eq. (2.19). One then looks at the imm  / ratios of 

10, 5, and 1 as used in Figs. 2.4A-2.4B and finds that the advective transport times to a 

point of (0.5 m, 0 m) with Q of 0.001 m3/day and imm   of 0.9 will be 0.0642 days (or 

1.54 hrs), 0.0589 days (or 1.41 hrs), and 0.0353 days (or 0.85 hrs), respectively. 

The solutions of Tang et al. (1981) (for unilateral flow) and Chen (1986) (for 

radial flow) can be regarded as special cases of this study by assuming 1m  and

0im . In other words, there is no immobile domain and the fracture is open with a

porosity of 1. The solution of Tang et al. (1981) is included in Figs. 2.3A-B while the 

solution of Chen (1986) is included in Figs. 2.4A-B. As can be seen from these figures, 

excellent agreements are reached for both cases when neglecting the immobile domain 

of the fracture and assigning identical reaction rates and retardation factors for the 

fracture and the matrix. 

In Fig. 2.3A, BTCs in the unilateral flow model are nearly unaffected by the 

mobile/immobile ratios if the longitudinal dispersivity is fixed. This observation can be 

explained as follows. Under a fixed longitudinal dispersivity, the flux terms on the right 
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side of Eq. (2.1) become 
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terms on the left side of Eq. (2.1). The advective transport time scales in Fig. 2.3A (in 

the range of 40.9 days to 22.5 days) are much longer than the mass transfer time scale 

between the mobile and immobile domains (around 1.1 days). Therefore, concentrations 

in the mobile and immobile domains have nearly reached equilibrium, i.e., the rates of
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implies that Eq. (2.1) is now essentially insensitive to the mobile/immobile ratio under 

these conditions. However, one has to be aware that the assumption of a fixed 

longitudinal dispersivity may not always hold if the mobile/immobile ratio is changing. 

This is because a change in the mobile/immobile ratio will inevitably change the pore 

structure and velocity variation which control the longitudinal dispersivity. It suggests 

that the fixed longitudinal dispersivity assumption under various mobile/immobile ratios 

can only be regarded as a simplification of actual problems.

In Fig. 2.3B, the BTCs are plotted with a fixed dispersion coefficient but with 

different mobile/immobile ratios in unilateral flow. In contrast to Fig. 2.3A, one can see 

that the BTCs are moderately sensitive to the mobile/immobile ratios. Since Dm equals 

/L mq  when neglecting the molecular diffusion, thus a fixed Dm is equivalent to state 

that longitudinal dispersivity (αL) is proportional to the mobile water content (θm). This is 

understandable because a greater mobile water content might mean a greater velocity 
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variation in the mobile domain, which leads to a larger longitudinal dispersivity. 

However, the proportionality of αL versus θm is rather idealized and is better treated as a 

simplification of actual problems.  

It is also interesting to compare the influence of the mobile/immobile ratio on the 

BTCs in Fig. 2.3B and Figs. 2.4A-2.4B. Fig. 2.3B shows that the solute moves slower 

under a smaller mobile/immobile ratio in unilateral flow while Figs. 2.4A-2.4B indicate 

that it travels faster with a smaller mobile/immobile ratio in radial flow. The results of 

Figs. 2.3B and 2.4A-B shed light on different perspectives of transport in unilateral flow 

as well as radial flow, and they can be explained as follows. First, from above time scale 

calculation, one can see that for Fig. 2.3B, the time of advective transport to the point of 

interest (0.5 m, 0 m) is much longer than the time scale of mobile/immobile mass 

transfer, thus the mass partition between the mobile and immobile domains has nearly 

reached equilibrium. Therefore, a smaller mobile/immobile ratio simply means a greater 

portion of mass stored in the immobile domain and a larger retardation effect over the 

transport in the mobile domain, which is clearly manifested in Fig. 2.3B. Secondly, quite 

different from Fig. 2.3B, the time of advective transport to the point of interest (0.5 m, 0 

m) in Figs. 2.4A-B is considerably smaller than the mass transfer time scale. In other

words, the mass transfer between the mobile and immobile domains has not yet had 

enough time to reach equilibrium. Therefore, a smaller mobile/immobile ratio means a 

smaller percentage of mass being transferred to the immobile domain, which results in a 

greater concentration in the mobile domain, as demonstrated in Figs. 2.4A-B. 

Furthermore, as the advective transport time for three different mobile/immobile ratios is 
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not much different from each other in radial flow (varying between 1.54 hours to 0.85 

hours) in respect to the mass transfer time scale (around 1.1 days), the results for the 

three imm  / ratios in Figs. 2.4A-B are clustered quite closely. 

Special attention should be paid to Fig. 2.5 for the comparison with Zhu et al. 

(2016), which essentially ignores longitudinal dispersion in the fracture under the 

unilateral flow scenario, in addition to assigning identical reaction rates and retardation 

factors for the fracture and the matrix. Fig. 2.5 clearly shows that a special case of our 

model without longitudinal dispersion coefficient in the fracture yields the same result as 

the analytical solution of Zhu et al. (2016). Furthermore, our model with non-zero 

fracture longitudinal dispersion coefficients produces BTCs that are very different from 

the BTCs produced from Zhu et al. (2016). This suggests that the fracture longitudinal 

dispersion has a significant influence on solute transport in a single fracture-matrix 

system, thus should not be neglected. As seen in Fig. 2.5, a greater fracture longitudinal 

dispersion allows the contaminant solute to migrate faster in the mobile domain of the 

fracture. 
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Fig. 2.3A&B BTCs in the mobile domain of the fracture (0.5 m, 0 m) with a fixed 

Darcian velocity of 0.01m/d in the unilateral flow model (A: fixed dispersivity; B:fixed 

dispersion coefficient).  

Fig. 2.4A&B BTCs in the mobile domain of the fracture (0.5 m, 0 m) with a fixed radial 

dispersivity of 0.5 m and mass transfer rate of 0.9 /d in the radial flow model (A. linear 

scale; B. semi-log scale).
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Fig 2.5 BTCs in the mobile domain of the fracture with/without longitudinal dispersivity 

in the unilateral flow model. 

2.4.2 Stored mass calculation 

As an important indicator of long-term impacts of solute transport in a fracture-

matrix system, solute mass stored in each domain (fracture or matrix) provides very 

useful information. To understand the solute mass transported and stored in each domain 

under the unilateral flow scenario, the following equations are given: 

0
2' fm m mbM dC x



    , (2.30) 

0
2' fim im imb CM dx



    , (2.31) 
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0
' 2k k k

b
CM dxdz

 

    , (2.32) 

where M’fm, M’fim and M’k are the mass stored per unit width in the mobile and immobile 

domains of the fracture and rock matrix, respectively. The actual mass stored in the 

mobile and immobile domains of the fracture and rock matrix over a width of W can be 

easily computed as: Mfm=M’fmW; Mfim=M’fimW; Mk=M’kW. 

Similarly, the mass stored in each domain under the radial flow scenario is given 

as Eqs. (2.33)-(2.35):  

2 2
o

fm m m
r

r b CM dr 


    , (2.33) 

2 2
o

fim im im
r

r b CM dr 


    , (2.34) 

0

4k k k
b r

M r C drdz 
 

    , (2.35) 

where Mfm, Mfim and Mk are the mass stored in the mobile and immobile domains of the 

fracture and rock matrix, respectively, and 2b in Eqs. (2.30), (2.31), (2.33) and (2.34) is 

the fracture aperture. Eqs. (2.32) and (2.35) consider the mass stored in the upper and 

lower rock matrix altogether. The calculation details are included in the supplementary 

files, and all the mass stored ratio figures are plotted under a fixed dispersivity of 0.5 m. 

The following Figs. 2.6-2.8 exhibit different aspects of the stored mass. In 

particular, Figs. 2.6A-2.6B show the mass stored ratios in the matrix 

(  /k fm fim kM MM M  ) under different fracture apertures for both models. Figs. 
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2.7A-2.7B and 2.8A-2.8B are the mass stored ratios in the immobile domain of the 

fracture (  / fm fi kf mm iM M M M  ) under different mobile/immobile ratios and first-

order mass transfer rates for both models, respectively. 

Figs. 2.6A-2.6B indicate that the influence of the fracture aperture is similar in 

both models: the ratio of mass stored in the matrix increases sharply at the beginning, 

and then approaches an asymptotic limit. A smaller fracture aperture corresponds to a 

higher ratio of mass stored in the matrix. The observations from Figs. 2.6A-2.6B can be 

understood as follows. At the beginning of transport, the rock matrix is free of solute, 

thus there is a significant (or nearly infinite) concentration gradient across the fracture-

matrix interface behind the transport front in the fracture, leading to significant diffusive 

mass transport from the fracture to the rock matrix and a relatively rapid increase of 

mass in the rock matrix. When time goes longer, such a concentration gradient across the 

fracture-matrix interface becomes less, resulting in less diffusive mass transport to the 

matrix, thus a slower rate of increase of mass stored in the matrix. A smaller fracture 

aperture means a smaller fracture volume, thus a greater ratio of mass stored in the 

matrix. 

In Figs. 2.7A-2.7B, the ratio of mass stored in the immobile domain surges first, 

after reaching a peak value, it starts to drop slowly and finally approaches an asymptotic 

limit. The mobile/immobile ratio is a key factor for the mass stored in the immobile 

domain of the fracture: a higher mobile/immobile ratio results in a lower ratio of mass 
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stored in the immobile domain of the fracture. Those observations are also 

understandable.  

First of all, one can check the characteristic time scales for mobile-immobile 

mass transfer in the fracture and diffusive transport to the rock matrix. With the use of a 

mobile-immobile mass transfer rate of 9.0 d-1, the characteristic time for mass 

transfer between the mobile and immobile domains will be 1.1/1   d. Using Eq. (19) 

in Zhu et al. (2016), one can estimate the solute penetration depth into the rock matrix L 

to be about 2.7 m, based on Dd of 51038.1  m2/d, a retardation factor of 1, a half-life of 

12.34 years, and a four orders of magnitude of concentration reduction in the rock matrix 

( %01.0/ 0  CCk ). Therefore, the characteristic time for diffusive transport into the 

rock matrix can be estimated to be 
2 5/ (2 ) 2.6 10dL D   d. One can easily see that the

time scale for diffusive transport to the rock matrix is five orders of magnitude longer 

than the time scale needed for mass transfer between the mobile and immobile domains 

of the fracture.  

At the beginning of transport, the immobile domain of the fracture is free of 

solute, thus mass transfer from the mobile domain to the immobile domain in the 

fracture is rapid, resulting in a quick rise of the ratio of mass stored in the immobile 

domain, as shown in Figs. 2.7A-2.7B. When time is greater than the characteristic time 

of mobile-immobile mass transfer (about 1.1 d), mass partition between the mobile and 

immobile domains of the fracture approaches an equilibrium state, and the ratio of mass 

stored in the immobile domain will reach a peak value at a time similar to the 



32 

characteristic time of mobile-immobile mass transfer. This is found to be true. For 

instance, the times corresponding to three peaks in Fig. 2.7A are 0.41 d, 0.63 d, and 1.24 

d, respectively, which are in the same order of magnitude as the characteristic time of 

mobile-immobile mass transfer of 1.1 d.   

Beyond the peak value time, both mobile and immobile domains of the fracture 

will gradually lose mass due to the diffusive transport to the rock matrix. Such mass loss 

will result in the decline of the ratio of mass stored in the immobile domain of the 

fracture. The decline rate of the ratio of mass stored in the immobile domain of the 

fracture becomes smaller with time because the rate of diffusive transport of mass to the 

rock matrix drops with time as well. This is evident in Figs. 2.7A-2.7B. In respect to 

different mobile/immobile ratios, the one with a less mobile/immobile ratio means a 

greater portion of the immobile domain of the fracture, thus a greater ratio of mass 

stored in the immobile domain of the fracture as well, which is clearly the case in Figs. 

2.7A-2.7B. 

 Figs. 2.8A-2.8B show the similar patterns of an increasing limb at the beginning, 

followed by a decreasing limb at the later time for the ratio of mass stored in the 

immobile domain, as those in Figs. 2.7A-2.7B, with the same reasons explained above. 

A minor point to note is that much larger time scales are used in Fig. 2.8A (100 d) and 

Fig. 2.8B (50 d) than those in Figs. 2.7A-2.7B (10 d), thus the plots of Figs. 2.8A-2.8B 

appear differently from Figs. 2.7A-2.7B. Furthermore, as Figs. 2.8A-2.8B demonstrate, a 

greater mass transfer rate will lead to significantly greater mass stored in the immobile 
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domain at early time. However, as time increases, mass partition among different 

domains will reach a nearly equilibrium state, thus the concentration distributions in all 

domains will remain stable (or at quasi-steady state). Under such a quasi-steady state 

condition, the mass distributions among different domains are no longer affected by the 

mass transfer rate, which only plays a role in the transient (or pre-equilibrium) mass 

transfer processes between the mobile and immobile domains. This is the reason why the 

curves for different mass transfer rates in Figs. 2.8A-2.8B merge after a sufficiently long 

time of transport. 

Fig. 2.6A&B The mass stored ratio curves of the rock matrix under different half-

apertures of the fracture with a fixed mobile/immobile ratio of 10 and mass transfer rate 

of 0.9 /d in the unilateral flow model (left, 2.6A) and the radial flow model (right, 2.6B). 



34 

Fig. 2.7A&B The mass stored ratio curves of the immobile domain of the fracture under 

different mobile/immobile ratios with a fixed half-aperture of 5×10-5 m and mass 

transfer rate of 0.9 /d in the unilateral flow model (left, 2.7A) and the radial flow model 

(right, 2.7B). 

Fig. 2.8A&B The mass stored ratio curves of the immobile domain of the fracture under 

different mass transfer rates with a fixed half-aperture of 5×10-5 m and mobile/immobile 

ratio of 10 in the unilateral flow model (left, 2.8A)  and the radial flow model (right, 

2.8B). 
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2.5 Sensitivity analysis 

Fig. 2.9 The normalized sensitivity in the mobile domain of the fracture at (0.5 m, 0 m) 

in the unilateral flow model.  
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Fig. 2.10 The normalized sensitivity in the mobile domain of the fracture at (0.5 m, 0 m) 

in the radial flow model.  

The normalized sensitivity analysis proposed by Huang and Yeh (2007) and 

Kabala (2001) is a useful tool to analyze the influence of the input parameters on the 

output results. The main reason to analyze the sensitivity is to understand the relative 

impact on the output results due to small increments of the input parameters. Normalized 

sensitivity coefficients of the mobile-domain concentration in response to the relative 

changes of the given parameters are expressed as: 

,
i

i j j

j

K X
R

X





 , (2.36) 
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where Ki,j is the normalized coefficient for the j-th input parameter X at the i-th time 

step. The parameter R is a function of the input parameters Xj and t. The partial 

derivative in the above equation is approximated by a forward differencing equation as 

follows:  

  )(
i

j

i j j i j

j

R XR X R X

X X
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



 , (2.37) 

where ΔXj is a small positive increment of the parameter value. In this study, one can 

assume 210j jX X  . 

Several observations can be made from Figs. 2.9 and 2.10. First, as shown in Fig. 

2.9 for unilateral flow, the concentration in the mobile domain of the fracture is most 

sensitive to the longitudinal dispersivity, and nearly insensitive to the first-order mass 

transfer rate and the mobile/immobile ratio. As shown in Fig. 2.10 for radial flow, the 

concentration in the mobile domain of the fracture is most sensitive to the radial 

dispersivity, less sensitive to the mobile/immobile ratio, and least sensitive to the first-

order mass transfer rate. Secondly, the normalized sensitivity curves in both models are 

time dependent: they sharply increase at the beginning; after reaching peak values, they 

decline with time and eventually approach their equilibrium state. Based on the 

sensitivity analysis, it is recommended that great effort should be put on determining the 

dispersivity value for both unilateral and radial flows as the concentration is most 

sensitive to this parameter.  
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2.6 Discussion and conclusions 

Two different models are proposed to study reactive solute transport in a filled 

fracture-rock matrix system: one for unilateral flow and one for radial flow. Diffusion to 

the rock matrix is taken into consideration for both models, in addition to other processes 

such as radioactive decay, retardation associated with a linear sorption isotherm, 

advection and longitudinal dispersion. The investigated system involves coupling of 

transport in three domains: a mobile domain and an immobile domain for characterizing 

the filled fracture, and a rock matrix domain serves as the solute sink. Both models are 

solved using a Laplace transform technique. The developed solutions are proven to be 

robust and accurate and can be used as benchmarks against numerical simulations of 

transport in a coupled three-domain system involving a filled single fracture-matrix 

system.  

BTCs in unilateral flow are nearly unaffected by the mobile/immobile ratio if the 

longitudinal dispersivity is fixed and the dispersion coefficient is inversely proportional 

to the mobile water content (see Fig. 2.3A) while they are moderately affected by the 

mobile/immobile ratio if the dispersion coefficient is fixed and the longitudinal 

dispersivity varies proportionally with the mobile water content (see Fig.2.3B). 

The comparison of the unilateral flow model of this study with the previous study 

of Zhu et al. (2016) suggests that the fracture longitudinal dispersion has a significant 

influence on solute transport in a single fracture-matrix system, thus should not be 

neglected (see Fig. 2.5). 
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For both models, the relative masses stored in the immobile domain of the 

fracture increase first with time to reach maximum values and then slowly decline with 

time to approach equilibrium, which depends on the mobile/immobile ratios (see Fig. 

2.7) but appear to be independent of the first-order mass transfer rates (see Fig. 2.8). 

Based on the sensitivity analysis of both models (see Figs. 2.9-2.10), it is 

recommended that great effort should be put on determining the dispersivity value for 

both unilateral and radial flows as the concentration is most sensitive to this parameter. 
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3. REACTIVE SOLUTE TRANSPORT IN AN ASYMMETRICAL FRACTURE-

ROCK MATRIX SYSTEM 

3.1 Introduction 

The first widely used analytical model of solute transport in a single fracture-

rock matrix was proposed by Tang et al. (1981), who compared the solutions with and 

without the fracture dispersion. This analytical model provided valuable insight into the 

mechanism of solute transport in a single fracture-rock matrix system. Sudicky and Frind 

(1982) then extended the solutions of Tang et al. (1981) to a fracture-matrix system with 

identically parallel fractures. They also concluded that it was necessary to consider the 

longitudinal dispersion of the fracture in assessing the long-term fate of solute transport. 

Maloszewski and Zuber (1990) argued that the influence of rock matrix diffusion cannot 

be negligible and concluded that the matrix diffusion can even be the dominant process 

in some cases. Bodin et al. (2003) reviewed the laboratory experiments and theoretical 

studies over last three decades to emphasize the advection, hydrodynamic dispersion, 

channel effects, matrix diffusion and sorption reactions as fundamental processes which 

should be integrated together. Roubinet et al. (2012) developed a two-dimensional model 

for the transport of a conservative solute in a single fracture-rock matrix system. They 

concluded that the impact of transverse dispersion in the fracture and longitudinal 

 Reprinted with permission from “Reactive solute transport in an asymmetrical fracture–rock matrix 

system” by Zhou, R. J., Zhan, H. B. (2018), Advances in Water Resources, 112, 224-234, Copyright 

[2018] by Elsevier 
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diffusion in the rock matrix can be neglected in standard models of a single fracture-rock 

matrix.  

All the studies mentioned-above about the fracture-rock matrix system are based on 

the assumption that the rock matrix has identical transport properties on both sides of the 

fracture. For a single fracture with parallel and flat surfaces, the problem becomes 

symmetric in respect to the middle plane of the fracture, thus can be simplified to a half-

plane problem (Zhou et al., 2017; Zhu et al., 2016). However, if the rock matrixes on 

both sides of the fracture have different transport properties such as molecular diffusion 

coefficient and porosities (Carrera et al., 1998; Xu et al., 2001), they cannot be 

simplified into a half-plane problem and must be considered as three coupled domains 

including the fracture and two rock matrixes with different transport properties. For 

example, the unconformity can be considered as a preferential pathway with high 

permeability and porosity like a fracture (Zimmerman and Sassen, 1993). The rock 

formations above and below the unconformity could be formed under very different 

environments at different ages, thus have different transport properties and should be 

treated separately. Cipollari and Cosentino (1995) investigated Miocene unconformities 

in the Central Apennines area. Their field-based observations suggested that the angular 

unconformity between Middle Miocene and Upper Miocene separated the lower 

shallow-water limestone, and upper glauconitic arenaceous marls, which was condensed 

deposition. Thus, the upper and lower layers have significantly different transport 

parameters and would not be treated as a symmetric case. Also, Caine et al. (1996) 

proposed that a brittle fault zone was lithological heterogeneity and would act as a 
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conduit for fluid flow and solute transport. The rock blocks on two sides of the fault 

would have different lithology due to the fault movement. Similar field observations 

were also reported by Chester and Logan (1986) at Punchbowl fault zone at the juncture 

of San Gabriel Mountains and the Mojave Desert. The Punchbowl fault zone is located 

between the Punchbowl Formation and basement with sharp and distinct contacts. The 

Punchbowl Formation is mainly composed of conglomerate, sandstone, and siltstone. 

Meanwhile, the basement is primary composed of igneous rocks that are rich of felsic 

minerals with some thin mafic-mineral layers inside. In summary, the assumption of the 

symmetric distribution of transport parameters could not stand in above-mentioned 

examples, and an asymmetric model of the fracture-rock matrix system is required.  

It is also important to note that solute transport in an asymmetric fracture-rock 

matrix system has a broad scope of applications and the results obtained in this study can 

be applied to dealing with many other mass or heat transport problems in the subsurface. 

For instance, the system investigated here can be directly applied to solute and/or heat 

transport in a thin aquifer bounded by two aquitards deposited under different geological 

times with different sedimentary environments, thus very likely to have very different 

physical and chemical properties (Zhan et al., 2009a; 2009b). Therefore, one has to use 

the asymmetric model of this study to deal with such an aquifer-aquitard system. 

Similarly, solute and/or heat transport in vadose zone-aquifer-underlying materials often 

time requests an asymmetric model as well. For example, when studying the thermal 

effect of climate change on groundwater-fed ecosystems in volcanic Medicine Lake 

highlands in California, USA, Burns et al. (2017) pointed out that an asymmetric heat 
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transport model was inevitable because thermal properties can differ distinctively 

between the vadose zone, aquifer, and underlying materials. 

The main goal of this study is to develop a new analytical model for reactive 

solute transport in a fracture-rock matrix system with asymmetric distribution of 

transport parameters of the rock matrix. A finite-element numerical simulation is also 

developed with COMSOL Multiphysics (COMSOL Inc., Burlington, MA, USA) for the 

comparison with our solutions. The results under the first-type (constant concentration) 

and the third-type (constant mass flux) boundary conditions at the fracture inlet are 

compared. Both tracer flushing and water flushing processes are investigated. With the 

obtained solutions, one could compute the dynamic partition of mass at three coupled 

domains, and the matrix diffusion and back-diffusion issues are specifically taken into 

consideration. The analysis of mass partition would be very helpful for risk and 

environment impact assessments of contaminant transport in a fracture-matrix system 

with asymmetric transport properties of rock matrix. The problem can be applied to deal 

with transport in an unconformity straightforwardly.   

3.2 Conceptual model and physical setup 

In this study, we consider a thin fracture (or an unconformity) situated 

horizontally with a constant aperture 2b. The rock matrixes with different properties are 

distributed above and below the fracture. Use of a horizontal fracture here is simply for 

the sake of illustration. In fact, the fracture can be in any orientation as the gravity is not 

a concern here. The permeability values of the surrounding rock matrixes are several 

orders of magnitude less than that of the fracture, which is assumed to extend 
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sufficiently far from the domain of interest. The rock matrixes are wide enough in the 

horizontal direction perpendicularly to the groundwater flow direction in the fracture, 

thus the problem can be simplified as a two-dimensional one. The matrixes are also 

assumed to be sufficiently thick, thus the rock matrix boundaries away from the fracture 

will not affect the transport process and can be regarded as infinitely far.  

Fig. 3.1 The conceptual model of the single fracture-rock matrix system. 

A schematic diagram of three coupled domains including an upper rock matrix, a 

fracture, and a lower rock matrix is shown in Fig. 3.1. A two-dimensional Cartesian 

coordinate system is established with the origin at the crossing point of the left boundary 

and the middle of the fracture (Fig. 3.1). The x-axis is from left to right while the z-axis 

is vertically upward. The groundwater flow only occurs in the fracture from left to right 

and has a constant velocity. Groundwater in the upper and lower rock matrixes is 

immobile. A contaminant source exists at the origin of the fracture, and the system is 

free from contamination at the start of transport. Two boundary conditions at x = 0 are 
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considered separately: first-type (Dirichlet or constant concentration) and third-type 

(Robin or constant mass flux) boundary conditions.  

Several assumptions about the geometry and transport properties of the system 

are made as follows. Firstly, the fracture has a very small aperture, which allows the 

transverse mixing throughout the fracture aperture to occur almost instantaneously. 

Therefore, the influence of transverse dispersion in the fracture is not taken into 

consideration. Also, Rezaei et al. (2016) investigated longitudinal dispersion in the rock 

matrix and concluded that longitudinal dispersion in the rock matrix can be ignored for 

most practical cases. Secondly, the permeability values of the upper and lower rock 

matrixes are so small that transport in the rock matrix is dominated by molecular 

diffusion. These two assumptions provide the basis that the mass flux direction in the 

rock matrix is perpendicular to the fracture-matrix interface. The following processes are 

considered: Advection, longitudinal dispersion, molecular diffusion, adsorption and 

radioactive decay in the fracture; transverse molecular diffusion, adsorption and 

radioactive decay in the upper and lower rock matrixes.  

3.3 Mathematical models and solutions under first-type boundary condition and 

third-type boundary conditions 

Reactive solute transport in the fracture-rock matrix system can be described as the 

following governing equations: 

21
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,                          (3.3) 

where the subscripts 1 and 2 represent the upper and lower rock matrixes, respectively. 

The symbol without subscript represents the fracture hereinafter. C [M/L3] is 

concentration; b [L] is the fracture’s half-aperture; t [T] is the time; R is the constant 

retardation factor; v [L/T] is the groundwater velocity in the fracture; λ [1/T] is the decay 

constant which can be further expressed as (ln2)/t1/2 where t1/2 is the half-life time; θ is 

the porosity; D [L2/T] is the longitudinal dispersion coefficient in the fracture, which 

equals *

LD v D  where αL [L] is the longitudinal dispersivity, D* [L2/T] is the 

molecular diffusion coefficient in the fracture; D1 [L
2/T] and D2 [L

2/T] are the transverse 

molecular diffusion coefficients in the upper and lower rock matrixes, respectively; q1 

and q2 [M/L2T] are the diffusive mass fluxes across the fracture-rock matrix interfaces, 

and can be further expressed as: 

1
1 1 1

z b

C
Dq

z



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
  ,                                  (3.4) 
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z b
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z
q 






 .       (3.5) 

The concentration gradients 1 /C z   and 2 /C z  at both interfaces are obtained from 

Eqs. (3.2) and (3.3). A minor point to note is that negative and positive signs are used in 

Eqs. (3.4) and (3.5), respectively, as positive 1 /C z   and 2 /C z   will result in 

downward and upward mass fluxes across the upper and lower fracture-matrix 

interfaces, respectively.  
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The existence of possible mass accumulations at the sharp interface between the 

fracture and rock matrix has been reported in a number of investigations before 

(Berkowitz et al., 2009; Leij et al., 1991; Marseguerra and Zoia, 2006), which could 

cause concentration discontinuity across the interface. Such concentration discontinuity 

is not considered here as this issue is still debatable and has not been widely accepted 

because of a lack of convincing experimental evidence. Therefore, we assume the 

concentration continuity at the fracture-matrix interface in this study, as commonly done 

in numerous previous investigations of flow and transport in a fracture-matrix system 

(Zhang et al., 2010). Bearing this in mind, above governing equations are supplemented 

with the following conditions: 

1( , , ) ( , )C x z b t C x t  ,  (3.6) 

2 ( , , ) ( , )C x z b t C x t   .   (3.7) 

It is worthwhile to point out that besides the continuity of concentration at the 

fracture-matrix interface, the continuity of vertical mass flux across the fracture-matrix 

interface is also honored here. However, the continuity of vertical concentration gradient 

at the fracture-rock matrix interface is not maintained here because the essence of the 

governing equations such as Eq. (3.1) is mass balance, not the concentration gradient 

balance. The continuity of vertical mass flux is done through the use of two flux terms of 

q1 and q2 in Eq. (3.1) above. Since the fracture aperture is usually so small as compared 

with the scale of transport in the fracture, the mass flux entering the fracture from the 

matrix is assumed to be uniformly distributed over the entire aperture of 2b 

instantaneously. That is why the terms q1/2b and q2/2b are incorporated into Eq. (3.1), 
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instead of being treated as a boundary condition at the fracture-matrix interface. Such an 

instantaneously-mixed model has been used as a standard approach for numerous studies 

in flow and transport in fracture-matrix systems (Sudicky and Frind, 1982; Tang et al., 

1981) and/or aquifer-aquitard systems (Zhan and Bian, 2006) because it simplifies the 

governing equation in the fracture and/or aquifer by reducing a two-dimensional 

problem into a one-dimensional problem. This approach is proven to be robust and 

sufficiently accurate for fracture-matrix systems owing to the very small apertures as 

compared to the scales of transport. However, for transport in an aquifer-aquitard system 

where the aquifer thickness is not sufficiently thin as compared to the scale of transport, 

the instantaneously-mixed model may be problematic, as documented by some previous 

investigations (Zhan et al., 2009a; 2009b), because the mass flux into the aquifer from 

the aquitard cannot be mixed across the entire aquifer thickness quickly. For such a case, 

one cannot use the above Eq. (3.1) to deal with the transport in the aquifer anymore. 

Instead, one has to consider both longitudinal and vertical dispersions in the aquifer and 

specifically honors both the continuities of concentration and vertical mass flux at the 

aquifer-aquitard interface (Zhan et al., 2009a; 2009b). Nevertheless, the mathematical 

treatment is much more complex for doing so. Being aware that continuity of mass flux 

at the aquifer-aquitard interface even for this non-instantaneously-mixed case will not 

lead to the continuity of vertical concentration gradient at the aquifer-aquitard interface 

because the vertical hydrodynamic dispersion coefficients in the aquifer and aquitard are 

usually very different from each other. In summary, regardless of using an 

instantaneously-mixed model or a non-instantaneously-mixed model, continuities of 
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concentration and mass flux at the fracture-matrix or aquifer-aquitard interface are 

always maintained, but the continuity of vertical concentration gradient at such an 

interface is not a concern.  

The entire system is assumed to be free of solute at 0t  , thus the initial 

conditions are: 

1 2( , 0) ( , , 0) ( , , 0 0)C x t C x z t C x z t     .  (3.8) 

The fracture is assumed to be infinitely long, and the rock matrix is infinitely thick, thus 

one has: 

1 2, ) , ) , )( ( ( , 0,C x C x z C zt t tx       .                         (3.9) 

In this study, two different boundary conditions at the fracture inlet are 

considered separately: the first-type and third-type boundary conditions. For the first-

type boundary condition, the concentration at fracture at 0x   keeps constant at C0:  

0( 0, )C x t C  .  (3.10) 

The first-type boundary condition assumes that the concentration cross the inlet 

boundary continuously. Its validity stands if the entrance reservoir is directly connected 

to the fracture. However, it is not practical for the tracer experiments where the solute is 

added at a specified rate (Vangenuchten and Parker, 1984). 

The third-type boundary condition has also been used frequently, which can be 

expressed as: 

0

0x

C
vCD

x
vC



 
 
 





 ,  (3.11) 
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where 0x   indicates that the estimation is built for the inside profile of the inlet

boundary. The Robin boundary condition stands valid for the following case: the fracture 

is connected to an entrance contaminant source and the molecular diffusion and 

dispersion in the fore section ( 0x  ) is ignored (Vangenuchten and Parker, 1984).  

The solute convective-dispersive flux component along the x direction is given as 

follow (Batu and Vangenuchten, 1990; Freeze and Cherry, 1979):  

x

C
vC D

x
F  


 


. (3.12) 

In Fig. 3.2, the convective-dispersive flux components for the first-type and third-type

boundary conditions are plotted at x = 0. The results clearly indicate that the flux for the 

first-type boundary condition (Fx) drops over time and approaches steady state at the 

value of vC0 . However, the convective-dispersive flux for the third-type boundary

condition at the inlet boundary keeps constant at 𝐹𝑥 /(𝜃𝐶0) = 𝑣 all the time. After a 

couple of days, both convective-dispersive flux components reach the same value. 
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Fig. 3.2 The temporal distribution of Fx/θC0 at x = 0 m for the first-type and third-type 

boundary conditions. 

Converting the equations into their dimensionless forms is usually helpful 

because of fewer independent variables left and more reflective of the systems involved, 

as some previous studies have demonstrated (Bear, 1972; Simmons et al., 2001). All the 

definitions of the dimensionless variables are listed in Appendix C of the supplemental 

files. Besides that, Laplace transform is adopted to transform the problem from real-time 

domain to Laplace domain for Eqs. (3.1)-(3.11). Thus, the analytical solutions under 

both boundary conditions can be derived in Laplace domain.  
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Under the first-type boundary condition, the analytical solutions of the fracture 

and the upper and lower rock matrixes in Laplace domain are obtained as follows. More 

details of derivations are provided in Appendix C of the supplementary files. 

2
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xpD D
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C x
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where the overbar stands for terms in Laplace domain, and the subscript D stands for 

dimensionless terms, p is the Laplace transform parameter, Pe is Peclet number (see 

Appendix C of the supplementary files for its definition), and 
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1 21
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The analytical solutions of the fracture, the upper and lower rock matrixes under 

the third-type boundary condition in Laplace domain are obtained as follows as well: 
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As shown in Eqs.(3.13)-(3.18), the solutions under the third-type boundary 

condition differ from those under the first-type boundary condition by multiplying a 

factor of  2/(1 + √1 +
4𝑘1

𝑃𝑒2
) . A larger Peclet number (Pe) will lead to a smaller 

difference between those two solutions. 

The steady-state solutions are particularly helpful for addressing the long-term 

estimations. Also, they are usually much simpler than the transient solutions. Thus, the 

steady-state solutions are widely used for estimating the long-term effect and for 

designing the remediation plans. To fulfill the requirements of the steady-state solutions, 

one must meet the following equation: 

021 














t

C

t

C

t

C DDD .  (3.19) 

As indicated in Eq. (3.19), after reaching steady state, the concentration in the 

system would reach equilibrium and no longer change with time. The steady-state 

solutions can be derived by using the following equation: 𝑓(𝑡𝐷 → ∞) = lim
𝑝→0

(𝑝𝐹(𝑝)),

where F(p) refers to the solution in Laplace domain. Thus, the steady-state solutions can 

be easily derived by calculating the limitations of 𝑝𝐶𝐷, 𝑝𝐶1𝐷, 𝑝𝐶2𝐷 as p approaches 0 

from Eqs. (3.13)-(3.18). The analytical steady-state solutions under the first-type 

boundary condition are obtained as follows: 
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where the subscript D implies steady-state dimensionless terms, and 
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The analytical steady-state solutions under the third-type boundary condition are 

as follows: 
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3.4 Results and validations 

The transient solutions are now derived analytically in Laplace domain. To 

obtain the final solutions in real-time domain, the technique of inverse Laplace transform 

will be applied. Specifically, the method of de Hoog numerical inverse Laplace 

transform (De Hoog et al., 1982) is selected here for addressing the spatial-temporal 
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concentration distribution, which has been used in other similar studies (Wang and Zhan, 

2015; Zhou et al., 2017). This numerical method successfully accelerates the 

convergence of the Fourier series obtained from the inversion integral using the 

trapezoidal rule. The results are then tested against the two-dimensional finite element 

models built by COMSOL Multiphysics and proven to be robust and accurate.  

3.4.1 Penetration depth 

Estimating the final plume size is useful to evaluate the long-term environment 

impact and risk assessment. This could be done with the help of analytical steady-state 

solutions developed above. For a concentration reduction  or 0/C C  , where  is

much less than 1 (such as 10-3 or 10-4), the penetration depth is defined as Lφ for the 

maximum horizontal penetration depth in the fracture, and L1φ and L2φ for the maximum 

vertical penetration depths in the upper and lower rock matrixes, respectively. Lφ refers 

to the farthest horizontal distance between the origin to the point where the concentration 

is φC0, while L1φ and L2φ demonstrate the farthest vertical distances between the original 

to the point where the concentration is φC0 in the upper and lower rock matrixes, 

respectively. A sufficiently small value of φ refers to the scenario that the concentration 

has dropped to a negligible level, for instance, φ=10-4 as used in many studies (Tang et 

al., 1981). Substituting the definition of φ into Eqs. (3.20)-(3.25), one can obtain the 

penetration depths Lφ, L1φ and L2φ. For the first-type boundary condition, the penetration 

depths are: 
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The penetration depths Lφ, L1φ and L2φ for the third-type boundary condition are: 
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3.4.2 Breakthrough Curves (BTCs) and concentration distribution analysis 

The following values of parameters are used in the example study: 

v=1 m/d; b=0.005 m; θ1=θ2=0.01; θ=1; λ=λ1=λ2=1.54×10-4 1/d; R=R1=R2=1; D=0.5 m2/d; 

D1=D2=1.38×10-5 m2/d.  It is worthwhile to point out that transport parameters in the 

upper and lower rock matrixes are given the identical values as a symmetric reference 

case. After that, we will run the model with asymmetric distribution of diffusion 

coefficients. 
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In the finite-element method with COMSOL, a two-dimensional model with a 

domain of 15 meters wide and 6 meters deep is developed to compare with the semi-

analytical solutions of this study. The depth and width of the system is large enough to 

ignore the effect of limit boundaries during the time periods of interest. Fig. 3.3 shows 

the segments of mesh used in the numerical simulation. There are 30,928 triangular 

elements generated in COMSOL, which automatically refines the elements within the 

fracture and near the interfaces. The maximum and minimum element sizes are 1.01 m 

and 0.0045 m, respectively. The time step increases linearly with a total simulation time 

of 500 days.  

Fig. 3.3 The grid mesh of the fracture-rock matrix system with the finite-element method 

in COMSOL Multiphysics program. 

Without losing generality, three observation points are picked arbitrarily to 

analyze BTCs of the system (shown in Fig. 3.1): P1 (0.5 m, 0 m) in the fracture, P2 (0.5 

m, 0.1 m) in the upper rock matrix and P3 (0.5 m, -0.1 m) in the lower rock matrix, 

respectively. BTCs at P1 (0.5 m, 0 m) under the first-type and third-type boundary 
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conditions are plotted in Fig. 3.4. The solid lines represent the semi-analytical solutions 

derived in this study. The dashed lines in the figure represent the numerical solutions of 

COMSOL. As can be seen, excellent agreements are reached for both boundary 

conditions between the semi-analytical solutions and finite-element results. It is 

worthwhile to point out that the difference between solute transport under the first-type 

and the third-type boundary conditions are obvious at early time. After that, it becomes 

smaller when approaching steady states. This is primarily because the first-type 

boundary condition refers to a situation that the solute flux at the inlet boundary 

decreases with time while the solute flux for the third-type boundary condition remains 

constant as shown in Fig. 3.2. Since the solute flux for the first-type boundary condition 

is larger than that for the third-type boundary condition at early time, greater solute mass 

enters the fracture for this kind of boundary condition, which is clearly indicated in Fig. 

3.4. When approaching their steady states, the first-type and the third-type boundary 

conditions have about the same flux value, leading to nearly the same results after a 

lapse of enough time.  
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Fig. 3.4 BTCs at P1 (0.5 m, 0 m) comparison between the semi-analytical solutions and 

numerical solutions under the first-type and third-type boundary conditions.  

Fig. 3.5 shows the effects of transverse molecular diffusion coefficients on 

BTCs. BTCs at P2 (0.5 m, 0.1 m) in the upper rock matrix and P3 (0.5 m, -0.1 m) in the 

lower rock matrix are plotted as black lines with the same value of transverse molecular 

diffusion coefficient at 1.38×10-5 m2/d. After relative adjusting the values of transverse 

molecular diffusion coefficients at 𝐷1: 𝐷2 = 10: 1 and 50:1 without changing the sum of 

𝐷1 + 𝐷2, BTCs at P2 (0.5 m, 0.1m) and P3 (0.5 m, -0.1 m) are plotted with blue and red 

dash lines, respectively. Those two molecular diffusion coefficient ratios are selected 

arbitrarily to represent the geological media with different transport properties in the 

upper and lower rock bodies. A lower transverse molecular diffusion coefficient in the 
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upper rock matrix means a lower diffusion term (𝐷1
𝜕2𝐶1

𝜕𝑧2
) on the right-hand side of 

Eq.(3.2) and a weaker diffusive effect. Since diffusion is the dominating transport 

process in the rock matrix, the concentration at P2 (0.5 m, 0.1 m) is less than the 

concentration at P3 (0.5 m, -0.1 m).  

The effects of diffusion coefficient in the rock matrix are further discussed in Fig. 

3.6A.  BTCs of P3 (0.5 m, -0.1 m) in the lower rock matrix with variable diffusion 

coefficients in the lower rock matrix are plotted with a fixed value of diffusion 

coefficient in the upper rock matrix (𝐷1 = 1.38 × 10−5m2/d). The values of diffusion

coefficients are representatives of some geological media (Golubev and Garibyants, 

1971) from relatively unconsolidated sediments to more consolidated sediments. Similar 

to the results in Fig. 3.5, a lower diffusion coefficient corresponds to a slower diffusive 

transport process and less concentration in the rock matrix. Fig. 3.6B shows the effects 

of retardation factor on solute transport in the rock matrix. The retardation factor of the 

upper rock matrix is fixed at 1 for all cases, which indicates no sorption involved. BTCs 

at P3 (0.5 m, -0.1 m) in the lower rock matrix under different values of retardation 

factors are plotted. A greater value of retardation factor in the lower rock matrix means 

more sorption happened, which will decrease the concentration in the aqueous phase 

there. Changing the retardation factor in the lower rock matrix will not significantly 

affect solute transport in the upper rock matrix. 

The concentration profiles alone the z-axis are indicated in Fig. 3.7. The solid 

lines in Fig. 3.7 refer to the cases of symmetric distribution of transport parameters for 

50 and 500 days, which lead to symmetric distributions of concentration alone the z-axis. 
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With a higher molecular diffusion coefficient in the upper rock matrix, the solute 

migrates further than that in the lower rock matrix.  

Fig. 3.5 BTCs at P2 (0.5 m, 0.1 m) and P3 (0.5 m, -0.1 m) in the rock matrix with 

variations of transverse molecular diffusion coefficients under the first-type boundary 

condition (D1 + D2= constant). 
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Fig. 3.6A&B BTCs at P3 (0.5 m, -0.1 m) in the lower rock matrix under the first-type 

boundary condition: A. with variations of molecular diffusion coefficients in the lower 

rock matrix (D1=1.38×10-5 m2/d). B. with variations of retardation factors in the lower 

rock matrix (R1=1). 

Fig. 3.7 The concentration distribution alone the z-axis with symmetric and asymmetric 

distribution of effective molecular diffusion coefficients.  



63 

3.4.3 Back diffusion of mass by water flushing 

To study the back diffusion of contaminant mass in the rock matrix, a water 

flushing phase (with a zero-contaminant mass concentration) is imposed on the inlet 

boundary of the system after a certain time (t0) of tracer flushing. The back diffusion 

from the upper and lower rock matrixes (where concentrations are higher) into the 

fracture (where concentrations are lower) would occur during the water flushing process. 

Mathematically, water flushing is done by assuming another contaminant source with a 

concentration of -C0 at the inlet boundary of the fracture after time t0 while keeping the 

original source with a concentration of C0 undisturbed. We have tested this mathematical 

approximation rigorously through extensive numerical exercises and conclude that the 

overall consequence is nearly the same as that of water flushing with some negligible 

differences at a very short period of time immediately after t0.  

The results of semi-analytical solutions derived in this study at different points 

are compared with the solutions with the finite-element method in COMSOL for the 

water flushing phase starts at after t0 of 2 days (Fig. 3.8). An excellent agreement is 

reached between these two solutions, confirming the accuracy and robustness of the new 

solution. The plotted curves in Fig. 3.8 refer to BTCs at the points of (0.5 m, 0 m), (2 m, 

0 m), and (4 m, 0 m), respectively. The point (0.5 m, 0 m) is the closest to the inlet 

boundary, thus experiencing immediate concentration changes after the water flushing. 

In Fig. 3.8, the advective front of solute just reaches the point (2 m, 0 m) when the water 

flushing starts. As a result, the concentration at point (2 m, 0 m) still increases with time 

for a short period even though the tracer flushing has stopped and the water flushing has 
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started. When the water flushing starts, the concentration at point (4 m, 0 m) is still at a 

relatively low level because this point is still way ahead of the tracer advective front. 

The peak concentration is observed at about 4 days. Since there is extra time for the 

mixture of solute and water (or dispersion) before reaching this point, the concentration 

drops at a slower rate at this point than at other two points.  

By comparing BTCs among various locations, several points are notable. Firstly, 

dilution caused by water flushing will affect the concentration peak value, meaning that 

the point further down-gradient from the entrance will has a lower peak concentration. 

Secondly, dispersion (or mixture of solute and water) before reaching the point of 

interest will slow down the decreasing rate after the peak value. If the point of interest is 

further away from the entrance, it will take longer time to reach the peak value and 

decrease slower after that.  

Compared to solute transport in the fracture, transport in the rock matrix has a 

time lag after water flushing. The characteristic time for diffusive transport into the rock 

matrix is inversely proportional to the effective molecular diffusion coefficient. In Fig. 

3.9, the blue solid lines refer to BTCs at points P2 and P3 with identical molecular 

diffusion coefficient (symmetric case). For the asymmetric case of 𝐷1: 𝐷2 = 10: 1 and 

50:1 while keeping the summation of D1 and D2 the same as the symmetric case, the 

solute reaches point P2 faster than before.  
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Fig. 3.8 BTCs at points (0.5 m, 0 m), (2 m, 0 m) and (4 m, 0 m) with the semi-analytical 

solution and finite-element method (water flashing starts at t0 = 2 days). 
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Fig. 3.9 BTCs at P2 (0.5 m, 0.1 m) and P3 (0.5 m, -0.1m) in the upper and lower rock 

matrixes with the identical and different molecular diffusive coefficients (water flashing 

starts at t0 = 2 days). 

3.4.4 Diffusive mass exchange between the fracture and matrix 

The diffusive mass exchange terms q1 and q2 in Eqs. (3.4)-(3.5) refer to the mass 

fluxes crossing the interfaces of the fracture and the upper and lower rock matrixes, 

respectively. The influence of asymmetric distribution of transport parameters is 

investigated in this section. During the tracer flushing phase, mass is diffused from the 

fracture into the rock matrix while during the water flushing phase, mass is diffused back 

from the rock matrix into the fracture, except for a very short period of time right after 

the water flushing.  
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Fig. 3.10 shows that the diffusive mass exchange between the fracture and the 

rock matrix have similar patterns and characteristic distances at which the diffusive mass 

exchange term equals to zero are about the same for all the sceneries of concern. The 

positive value represents the diffusive mass transport from the fracture toward the rock 

matrix and vice versa. The diffusive mass exchange term sharply increases and reaches 

its positive peak value, and then starts to decrease. After water flushing starts, the 

diffusive exchange term sharply drops to negative and reaches its negative peak value. 

After that, the back-diffusion rate slowly decreases and approaches zero after a long 

time. To explain this pattern, one needs to understand that the diffusive mass exchange is 

directly determined by the concentration gradient crossing the fracture/rock interfaces. A 

greater concentration difference (or gradient) between the fracture and rock matrix 

would lead to a greater diffusive mass exchange. In this case, the contaminant solute 

migrates to 0.5 meters mainly by advection for about 0.5 days, which corresponds to the 

maximum vertical concentration gradient and the greatest positive diffusive mass 

exchange at the advection front. With the increasing of solute concentration in the rock 

matrix, the diffusive mass exchange decreases as the result of declining concentration 

gradient across the fracture/matrix interface. If water flushing time is sufficiently long, 

the concentrations of the fracture and the rock matrix would be very close to each other 

and the solute diffusion between the fracture and rock matrix would be close to zero.  

The profile of diffusive mass exchange versus the x coordinate is also useful to 

understand the solute exchange between the fracture and the rock matrix during the 

water flushing process. In Fig. 3.11, the curves of the diffusive mass exchange along the 
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x-axis toward the upper matrix under different time are plotted. It is interesting to check

the characteristic distance which is the location at which the concentration in the fracture 

equals to that in the rock matrix, thus the diffusive mass exchange stops. Without 

consideration of dispersion, the advection front of water flushing is (𝑡 − 𝑡0) , which is 

also the characteristic distance for this hypothetical case. There are two factors which 

would affect the characteristic distance shifting from the advection front of water 

flushing to a new location: the longitudinal dispersion in the fracture and the transverse 

diffusion in the rock matrix. As the diffusion coefficient is several orders of magnitude 

smaller than the dispersion coefficient, the dispersion plays a more important role here 

for the shifting of characteristic distance. Thus, the characteristic distance is not sensitive 

to the asymmetric distribution of diffusion coefficients. After 10 days, the zero value of 

diffusive mass exchange occurs at 7.9 meters down gradient from the inlet boundary 

(x=7.9 m), which is very close to the advective front of 8 meters. After 30 days, the zero 

value of diffusive mass exchange term is about x=26 m, which is slightly shorter than the 

advective front of water flushing at x=28 m. At 𝑡 = 50 days, the zero value of diffusive 

mass exchange is about x=44 m, while the advective front of flushing water is at x=48 m. 

From above analysis, one can see that a longer time allows for more dispersion, 

especially at the contact area, thus results in a shorter characteristic distance (or the 

location of zero diffusive mass exchange) than those without the consideration of 

dispersion.  
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Fig. 3.10 The relationship between q1, q2 with the time at x = 0.5 m (water flushing starts 

at t0=2 days). 
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Fig. 3.11 The q1 distribution alone x-axis at various time with symmetric distribution of 

effective molecular diffusion coefficient (water flushing starts at t0=2 days). 

3.4.5 Mass stored calculation 

The amount of mass stored in each domain of the system provides vital 

information for the long-term influence of solute transport. The following equations are 

used to calculate the mass stored in each domain: 

0
2b CM dx


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where M, M1 and M2 are the masses stored per unit width in the fracture, the upper rock 

matrix and the lower rock matrix, respectively.  

As an example, the calculations of mass stored ratios are under the first-type 

boundary condition (see Appendix C of supplementary materials for details of 

calculation), where the mass stored ratios are calculated by dividing the mass stored in 

each domain over the peak value of mass stored in the entire system, which corresponds 

to the mass stored in the system just before water flushing. In Fig. 3.12, the curves of the 

mass stored ratios in the fracture and the rock matrix are plotted for the cases of 

symmetric versus asymmetric diffusion coefficients. Both cases indicate a similar 

pattern: the mass stored in the fracture is the major part of the total mass and it is more 

sensitive to water flushing. After 2 days, the mass stored in the fracture decreases 

sharply. However, the mass stored in the rock matrix continues to increase but at a 

slower rate even after the stop of tracer flushing or start of water flushing. The mass 

stored in the fracture is only slightly affected by the diffusion coefficient of the rock 

matrix, as can be seen from comparing Fig. 3.12A (symmetric case) and Fig. 3.12B 

(asymmetric case). With a greater diffusion coefficient, the upper rock matrix is able to 

store more mass, and the difference between the masses stored in the upper and lower 

rock matrixes becomes larger over time.  
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Fig. 3.12A&B Mass stored ratio in the fracture and rock matrixes in the system with 

symmetric (left: 3.11A) and asymmetric (right: 3.11B) transport parameters.  

3.5 Discussion and conclusions 

A striking aspect of this study is that it honors the asymmetric nature of diffusion 

in the upper and lower portions of the rock matrixes. This new advancement over the 

classical symmetric model makes it possible to deal with transport in fissures separating 

different rock types or unconformity. However, this study also has its limitations that 

require further attention. Firstly, in this study, all the parameters are assumed to be 

independent of scale and time. In reality, the dispersivity or dispersion coefficient could 

be scale-dependent (Gao et al., 2010; Logan, 1996; Pickens and Grisak, 1981a). The 

fracture apertures and dispersion can even be time-dependent if the stress-strain 

condition of the fracture-matrix is a concern.  Secondly, this study relies on a 

presumption that advection-dispersion equation (ADE) is the correct governing equation 

of transport in the fracture and diffusion equation is the correct governing equation of 

transport in the matrix. Such governing equations may be subject to debate as some other 

investigators have adopted different types of approaches such mobile-immobile model 
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(Zhou et al., 2017), fractional ADE (Benson et al., 2000a; Benson et al., 2000b) or 

continuous time random walk (CTRW) (Berkowitz and Scher, 1997, 1998) to study 

transport in the fracture. If flow in the matrix is also a concern, then the diffusion 

equation of transport in the matrix also must be revised to accommodate the advective 

transport in the matrix (Rezaei et al., 2016; Zhan et al., 2009a). Thirdly, the study is 

focused on a single, idealized fracture. It may be extended to multiple paralleled 

fractures, following the procedures used by Zhu et al. (2016) for symmetric cases. 

However, if the single fracture has a torturous and irregular trajectory, one may need to 

either use a totally different approach or to substantially revise the present model of this 

study. In general, the problem becomes a three-dimensional rather than a two-

dimensional for a torturous and irregular fracture. Fourthly, the possible complexity at 

the fracture-matrix interface is not considered. Such complexity may include the 

discontinuity of concentration at such an interface, among other factors. 

One problem of this study is that there is no direct field data to validate the 

proposed model, despite the obvious importance of studying asymmetric fracture-rock 

matrixes and/or aquifer-aquitard systems, as documented by abundant evidences present 

in the introduction. Lack of experimental studies on the subject may come from a host of 

reasons. Firstly, it is usually much more difficult to obtain concentration and mass 

information directly from rock matrixes and/or aquitards, rather than from fractures and 

aquifers which are much more permeable. In the future, innovative experimental designs 

have to be devised to measure, preferably non-invasively, concentration and mass in the 

rock matrixes and/or aquitards. Secondly, for a long time, hydrologists have focused 
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their attention on studying flow and transport in permeable media such as fractures and 

aquifers, and have tried to avoid less permeable media such as rock matrixes and 

aquitards. Such a mindset has resulted in much less attention paid to designing 

instrumentations specifically targeting the rock matrixes and aquitards over many 

decades. Thirdly, because of the lack of theoretical models on asymmetric systems, 

models of symmetric systems have been routinely used to interpret data for transport in 

aquifer-aquitard systems without knowing that whether the systems investigated are 

truly symmetric or not. It is our hope that the theoretical study of this work may help 

reinvigorate the interests of experimental study of rock matrixes and aquitards for mass 

and heat transport in the fracture-matrix and aquifer-aquitard systems.    

In summary, general solutions have been developed for reactive solute transport 

in a fracture-rock matrix system with asymmetric transport properties in the upper and 

lower rock matrixes. Advection and dispersion along the single fracture, diffusion in the 

rock matrix and radioactive decay and adsorption in the entire system are considered in 

this model. The corresponding steady-state solutions and penetration depth are also 

provided for the long-term evaluation of environment impact. A comparison between the 

first-type and the third-type boundary conditions are made and explained in terms of 

solute flux from the entrance source. The following conclusions can be made: 

1). The case studies indicate that the asymmetric case would cause a very 

different solute distribution in the rock matrix as compared to the symmetric case. 

However, reactive solute transport in the fracture seems to be less affected by the 

asymmetry of diffusion in the rock matrix (see Figs. 3.5-3.7). 



75 

2). During the water flushing phase which occurs sometime later after the tracer 

flushing, the flushed water significantly dilutes the contaminant in the fracture, leading 

to a sharp drop of concentration in the fracture. However, the rock matrix responses to 

water flushing in a much slower fashion. The characteristic time of the peak 

concentration in the rock matrix is inversely proportional to the effective molecular 

diffusion coefficient. 

3). The patterns of diffusive mass exchange between the fracture and rock matrix 

are also studies. During the water flushing phase, solute in the fracture is quickly diluted 

and the back diffusion happens from the rock matrix to the fracture. With more 

dispersion involved, there would be greater difference between the characteristic 

distance (with dispersion) and the characteristic distance for the hypothetical case 

(without dispersion), where the characteristic distance is defined as the distance at which 

the diffusive mass exchange between the fracture and the rock matrix becomes zero.  

The relative amount of mass stored in each domain is studied, and the mass 

stored in the fracture is the major part of the total mass, which is more sensitive to water 

flushing. A greater diffusion coefficient in the rock matrix means the ability to store 

more mass within the same time. 
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4. REACTIVE SOLUTE TRANSPORT IN A FULLY COUPLED ASYMMETRIC

STRATIFIED SYSTEM: COMPARISON OF SCALE DEPENDENT AND 

INDEPENDENT DISPERSION SCHEMES 

4.1 Introduction 

Since fractures and porous strata such as sand layers are much more permeable 

than the matrix, they are usually treated as effective conduits in systems for transporting 

water and solutes (Maloszewski and Zuber, 1993; Sudicky and Frind, 1982). For this 

reason, the transport problems in the fracture zones or stratified layers could be 

conceptualized as a similar system: advection and dispersion in the more permeable 

conduit (fracture or porous layer) and diffusion between more permeable and less 

permeable domains.  

However, all studies above believe that a single value of the dispersivity 

parameter for an entire porous media is accurate enough to characterize the transport 

process, which may not be true. Gelhar et al. (1979) analyzed the dispersive process in a 

stratified heterogeneous porous medium with stochastic techniques. The results showed 

that the scale-dependent dispersivity problem was associated with the vertical variances 

of hydraulic conductivity in a horizontally stratified system, confirmed by field-

measured hydraulic conductivity profile. In particular, the large values of longitudinal 

Macrodispersivity were caused by nonuniformities in the hydraulic conductivity profile 

persisting over long distances. Furthermore, Guven et al. (1984) derived analytical 

solutions of solute transport in a stratified aquifer with several idealized hydraulic 

conductivity profiles (parabolic, linear, step function, and cosine profiles), the simulation 
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results indicated that the variation of longitudinal macrodispersivity throughout the 

transient processes was time-dependent. Gelhar (1986) summarized the stochastic 

analysis of subsurface flow and transport, considering a heterogenous porous media that 

can be described by an autocorrelated hydraulic conductivity field, and he further 

provided a review of field-scale dispersion in aquifers collected from the observations of 

59 different field sites and developed a series of classical plots (Gelhar et al., 1992). 

Now it is generally accepted that the scale-dependent dispersion may prevail over a wide 

range of scales because of the natural heterogeneities. The data from field tracer tests 

indicated an overall increasing trend of longitudinal dispersivity (Gelhar et al., 1992; 

Pickens and Grisak, 1981a, b). The empirical relationships between travel distance and 

dispersivity have been summarized by Pickens and Grisak (1981a) as linear, exponential, 

parabolic, and asymptotic functions. These relationships can be directly incorporated 

into advection-dispersion equation (ADE) for simulation and prediction purpose, and 

they have been tested by both laboratory and field experiments (Gelhar et al., 1992; 

Neuman, 1990; Pang and Hunt, 2001; Vanderborght and Vereecken, 2007). On the basis 

of above mentioned scale-dependent dispersivity functions, many analytical models have 

been proposed. For example, Yate (1990, 1992) derived analytical solutions for one-

dimensional solute transport with linear and exponential functions.  

Schulze-Makuch (2005) tested and compared the longitudinal dispersivity data 

compiled from 109 authors for various types of porous media. He proposed a 

relationship between longitudinal dispersivity and travel distance using a regression line 

with the equation for unconsolidated media and stated that this universal scale law could 
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be used to describe transport behavior of any given porous media at any scale. You and 

Zhan (2013) developed new models for solute transport in a finite column with 

consideration of dispersivity as both scale-dependent and time-dependent parameters. 

Gao et al. (2010) incorporated distance-dependent dispersivity into a mobile-immobile 

model to reinterpret the tracer tests in two 12.5 m long columns, which were 

documented in detail by Huang et al. (1995). Zech et al. (2015) have revisited the 

analysis of Gelhar et al. (1992) by carefully reexamining the reliability of the 59 datasets 

included in Gelhar et al. (1992), and also included the nearly reported tracer test results 

since Gelhar et al. (1992). Their results indicated that transport in heterogenous porous 

media was formation-specific, and cannot be relegated by a unique scaling law, as 

acclaimed by Neuman (1990) and others. Instead, transport requires characterization of 

aquifer properties such as spatial distribution of hydraulic conductivity, and 

macrodispersivity of a specific heterogeneous aquifer exhibits its own constant 

asymptotic value. It is evidence that despite many decades of research, intensive debate 

still exist on the issue of scale-dependency of transport, as can be seen from the vastly 

different findings of Zech et al. (2015) and Neuman (1990), Gelhar et al. (1992), and 

others. 

Despite the numerous studies on scale-dependent dispersion, disputes and 

sometimes counter arguments on the issue of scale-dependency of dispersion are also 

broadly reported. For instance, Jury et al. (1982) found no apparent increase in 

dispersivity with depth to 1.8 m in their bromide tracer tests. In a different set of 

experiments, Butters and Jury (1989) observed that dispersivities at 1.2 m and 1.8 m in 



79 

 

depth were even less than that measured at 0.9 m. They also reported that dispersivity at 

travel distance of 4.5 m was less than those at 0.9 m, 1.8 m and 3.0 m. Porro et al. (1993) 

did a set of experiments on solute transport through large uniform soil columns. Their 

results displayed no clear relationship between the dispersivity and scale of the 

experiments. Bromly et al. (2007) examined the relationship between soil physical 

parameters, experimental parameters and dispersivity from 291 saturated laboratory 

column experiments reported in the literature by multiple stepwise regression analysis. 

Their results indicated that dispersivity was sensitive to the clay content and column 

diameter. No apparent scale effect of the dispersivity was observed in those tracer tests.  

In addition to above mentioned experimental evidences, some theoreticians 

argued that the so-called scale-dependency of dispersion was merely an artifact of using 

the Fickian-based local transport theory such as ADE (Morales-Casique et al., 2006). 

Instead, many transport theories are proposed. The classical dual-porosity modeling for 

the solute transport in fractured rocks was first proposed by Barenblatt and Zheltov 

(1960). Van Genuchten and Wierenga (1976) further divided the liquid phase of 

chemical in the porous media into two phases: mobile and immobile phases. The 

advection process only happened in the mobile phase. The mass was transferred from 

mobile region to immobile region by diffusion only, which was proportional to the 

concentration difference between mobile and immobile phases. Cvetkovic et al. (1999) 

investigated the reactive tracer transport in a single fracture by developing a Lagrangian 

probabilistic model. In their model, the advection and diffusion transport processes were 

related in a dynamic manner with the assumption of two Lagrangian random variables. 
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Berkowitz and Scher (1995) pointed out the intrinsic inadequacy of imbedding a time-

dependent dispersivity into the conventional ADE function. Instead, Berkowitz et al. 

(2001) proposed the Continuous Time Random Walk (CTRW) method to analyze the 

tracer tests and proposed solutions that could be used for a variety of dispersive 

behaviors for conservative tracer tests. 

In this study, we will examine whether dispersion in the permeable layer is scale-

dependent or not, using a newly reported tracer test data set in a 4-m long box as 

reported by Swami et al. (2014) and Swami et al. (2016). Furthermore, we will examine 

whether the molecular diffusions into the less permeable layers are independent of time 

or not over the time scale of transport. As far as we know, such issues have never been 

explored for transport in an asymmetric stratified system before.  

4.2 Mathematical models and solutions 

Similar to the model in Chapter 3, reactive solute transport in the fracture-matrix 

system can be characterized by Eqs. (3.1)-(3.3). The model is governed by the same 

initial and boundary conditions as Eqs. (3.8)-(3.9). The difference here is longitudinal 

dispersivity (α) in the middle permeable layer is no longer a constant. Dispersion 

coefficient is a function of dispersivity: 0( )x DD v  , where α(x) [L] is dispersivity

and D0 [L
2/T] is the molecular dispersion coefficient.  

The scale dependency of dispersivity is usually considered as linear or 

exponential function of travel distance. The linear distance-dependent dispersivity 

coefficient is: 

( )x kx  ,             (4.1) 
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where k represents the slope of the dispersivity-distance relationship, which is a 

dimensionless parameter. The exponential distance-dependent dispersivity coefficient is 

expressed as: 

1( ) (1 )
k x

x a e 
  ,    (4.2) 

where a [L] is the asymptotic dispersivity value at infinity, k1 [1/L] is a constant 

reflecting the rate of dispersivity approaching its asymptotic value.  

The limitation of the linear scale-dependent dispersivity model is obvious, as it 

assumes that dispersivity will keep increasing with the travel distance without an upper 

bound. The linear or nonlinear increase of dispersivity with scale without bounds has 

been proposed in some previous studies such as Wheatcraft and Tyler (1988) and 

Neuman (1990), particularly in so-called self-similar (fractal) hierarchy heterogeneous 

systems. The field data collected by Gelhar et al. (1992) and  Vanderborght and 

Vereecken (2007) also indicated the increasing trend of longitudinal dispersivity with 

observation scale. However, such a simple scale-dependent dispersivity model is 

probably not likely to hold in some field applications (Pickens and Grisak, 1981a). In 

contrast to such a scale-dependent model without an upper bound, the dispersivity is 

likely to increase with scale and eventually reaches an asymptotic value at a sufficiently 

large scale. This is the rationale of using the exponential scale-dependent dispersivity 

model.   

Similarly, the technique of Laplace transform will be adopted to convert the 

problem to Laplace domain by removing the time-derivative terms and converting the 

partial differential equations to ordinary differential equations. Supplementing with the 
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boundary and initial conditions, the analytical solutions under the exponential distance-

dependent dispersion coefficients could be derived in Laplace domain. The detailed 

derivations and definitions of the dimensionless variables are provided in the 

supplementary document. 

For the case with the linear distance-dependent dispersivity, the analytical 

solutions of solute concentrations in an asymmetric stratified system are derived in 

Laplace domain as follows: 
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      , ( )K x is the second kind of 

modified Bessel functions with the order  ,  p is the Laplace transform parameter, and 

the over bar implies the term in Laplace domain hereinafter. 

For the case with the exponential distance-dependent dispersivity, the analytical 

solutions of solute concentrations in an asymmetric stratified system are derived in 

Laplace domain as follows: 
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 As shown in Eqs.(4.3)-(4.8), the upper and lower less permeable layers are 

considered separately as they might have different transport properties. All solutions are 

now successfully derived analytically in Laplace domain. The technique of the 

numerical inverse Laplace transform is employed to obtain solutions in real-time 

domain. Specifically, the de Hoog’s numerical inverse Laplace algorithm (De Hoog et 

al., 1982) is used in this study. This algorithm has been widely used in other similar 

studies to obtain accurate spatiotemporal concentration distributions (Wang and Zhan, 
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2015; Zhou et al., 2017). It provides better results in accuracy and computational speed 

than many other methods by accelerating the Fourier series’ convergence.  

Above solutions are for the phase of injection of a continuous source with a 

constant concentration at the x = 0. If necessary, these solutions can be used to develop 

the solutions for the phase of leaching when the source is terminated after a finite 

duration of source injection, T. This is done straightforwardly using the following 

relationship of ( ) ( ) ( )L I IC t C t C t T   , when t > T, where CL and CI are the 

concentrations in either the middle, or upper, or lower layer for the leaching phase and 

injection phase, respectively. In the experiment of Swami et al. (2016), the duration of 

solute injection T is set to be 2880 minutes. Both solute injection and leaching phases are 

included in the following analysis in Sections 3 and 4. More detailed discussion about 

the leaching phase can be found from Zhou and Zhan (2018). 

4.3 Validation against previous solutions 

The newly derived solutions are then compared to Zhu et al. (2016) and Zhou 

and Zhan (2018) for validation purpose, which could be regarded as special cases of this 

study. A closed-form analytical solution for solute transport in the fracture-rock matrix 

system proposed by Zhu et al. (2016) did not consider dispersive process in the fracture, 

while the investigation from Zhou and Zhan (2018) about reactive solute transport in an 

asymmetrical fracture-rock matrix assumes a constant dispersivity in the fracture.  

For the case of exponential scale-dependent dispersivity, when the value of k1 is 

large enough, 1k x
e
  will approach zero even at a small travel distance, which makes the 

value of dispersion coefficient very close to a constant at 0
av D . Therefore, by 
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assuming k1 at a large value (equals to 1000 /cm in this study), the newly derived 

solutions should yield the same results of constant dispersivity as the former studies. 

We compare the new solution of exponential scale-dependent dispersivity when 

k1 = 1000 /cm and a = 0 cm to solution of Zhu et al. (2016). The solution with k1 = 1000 

/cm and a = 38 cm is also compared to solution of Zhou and Zhan (2018) with a constant 

dispersion coefficient at 4.6 cm2/min (
0

av D ). The excellent agreements in Fig. 4.1 for

both cases show that the new solutions of this study are robust and reliable, at least for 

these two special circumstances. One point to note is that BTCs analyzed in the rest 

paper use the dimensionless concentration (normalized by the source concentration C0) 

for the sake of illustration.  

Fig.4.1 BTCs at a travel distance of 200 cm by different methods. 
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4.4 Result analysis 

4.4.1 The diffusive mass exchange between layers and its impact on transport 

The mass exchanges between the middle permeable layer and its surrounding less 

permeable layers could be important mechanisms of retarding the solute transport in the 

permeable layer. This study builds a fully coupled model of the entire stratified system 

with the consideration of mass exchanges by diffusive transport among different layers. 

The simulation results with various values of effective diffusion coefficients and 

observed results at different travel distances as reported by Swami et al. (2016) are 

plotted in Figs. 4.2-4.4. When D1 = D2 = 0, there is no mass exchange among layers, and 

solute would only migrate within the middle permeable layer. This is a special case and 

serves as a reference to examine the impact of different diffusions in the upper and lower 

layers. Since diffusions in the upper and lower layers are the major factors of the mass 

loss in the middle layer, higher values of diffusion coefficients in those layers will result 

in lower peak concentration values in the middle layer. During the leaching phase, 

diffusions in the upper and lower layers are the main factors that control the amount of 

mass which diffuses back toward the middle permeable layer. Thus, high diffusion 

coefficients in those layers correspond to higher concentrations in the middle layer in the 

leaching phase.  

As shown in Figs. 4.2-4.4, the effect of diffusions in the upper and lower layers is 

more obvious in a larger scale of transport, manifested by greater concentration gaps 

among the cases of different diffusion coefficients. Specifically, the difference of 

dimensionless peak concentrations between the cases without diffusion and with D1 = D2
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= 5 × 10-4 cm2/min is 0.05 at 50 cm, and such a difference increases to almost 0.4 at 400 

cm. All simulated and observed results indicate that the diffusions in the upper and lower

layers have significant impact on the concentration distribution in the stratified system, 

which should not be ignored. 

Fig. 4.2 The comparison of the cases with various values of effective diffusion 

coefficients in less permeable layers at 50 cm. 
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Fig. 4.3 The comparison of the cases with various values of effective diffusion 

coefficients in less permeable layers at 200 cm. 
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Fig. 4.4 The comparison of the cases with various values of effective diffusion 

coefficients in less permeable layers at 400 cm. 

4.4.2 Impact of scale-dependent dispersivity on transport 

In this section, we will examine the impact of scale-dependent dispersivity on 

transport. The linear function of scale-dependent dispersivity uses a constant coefficient 

k to characterize the increasing rate of dispersivity with travel distance. A larger value of 

k responds to a larger value of dispersivity. As shown in Fig. 4.5, the concentration 

distribution will spread out over a wider range with a lower peak value at a larger k 

value. Also, the concentration is higher at a given early time and its peak value arrives 

earlier with a larger k value. This is caused by the greater dispersive process due to a 

greater value of k. The exponential function of scale-dependent dispersivity uses 
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constant coefficients a and k1 to characterize the increasing rate of dispersivity with 

travel distance. The effects of parameters a and k1 in case of the exponential scale-

dependent dispersivity are demonstrated in Figs. 4.6A-4.6B. Increasing a and k1 will 

lead to greater dispersivities. Similarly, BTCs spread out more widely with lower peak 

values, and the peaks arrive earlier when a and k1 are greater. 

Fig.4.5 BTCs of linear scale-dependent dispersivity with various k values at 200 cm. 
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Fig. 4.6A&B BTCs of exponential scale-dependent dispersivity with various k1 values at 

200 cm (a = 30 cm) on the left (4.6A) and with various a values at 200 cm (k1 = 

0.05/cm) on the right (4.6B).  

4.4.3 Validate against laboratory tracer test in a stratified system 

Swami et al. (2016) conducted a laboratory tracer test for a stratified porous 

media. Comparing to previous laboratory tracer tests for a stratified system, such as the 

conservative trace test by Sudicky et al. (1985) and the reactive tracer test by Starr et al. 

(1985), the scale of test in Swami et al. (2016) is much greater (4 m) than those of 

Sudicky et al. (1985) and Starr et al. (1985) (1 m). The large scale of test in Swami et al. 

(2016) makes it particularly suitable for examining the scale-dependent transport 

theories in which sufficient distance can be encompassed by the solute plume to fully 

reveal the possible scale-dependency of dispersion, if it truly exists.  

In the experimental setup of Swami et al. (2014) and Swami et al. (2016), a thin 

sand layer is placed in the middle and two thick layers of natural soil are packed as the 

upper and lower layers. The hydraulic conductivity of natural soil is at an order of 10-6 

m/day, which is 5 orders of magnitude less than that of sand. A much higher hydraulic 

conductivity allows easier fluid flow within the sand layer. Therefore, the sand layer is 
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treated as an effective conduit of solute transport in the system while the soil layers are 

regarded as immobile domains. A chemical source is placed at the inlet boundary of the 

thin permeable layer. Sampling points at different distances in the sand layer are picked 

at 50 cm, 200 cm and 400 cm in the direction of flow. The whole experimental system 

has 4 m in length, and 1 m in width and depth. Each natural soil layer is set to be 48 cm 

in width, while the middle sand layer is 4 cm in width. The natural soil is obtained from 

different sites with a mean grain size of 0.055 mm. The fine sand is collected from the 

upper bank of river Ganga with a mean grain size of 0.75 mm. Both natural soil and sand 

media are free of any contaminant and well-sorted. The input physical parameters are 

measured experimentally: the natural soil and sand have porosities of 0.4 and 0.32, 

respectively. The seepage velocity is 0.121 cm/min.  

A solute leaching phase continues after the 2880 min solute injection phase. The 

effective diffusion coefficients of the upper and lower layers are estimated as 5×10-5 

cm2/min by curve-fitting the peaks of the breakthrough curves (BTCs) at the travel 

distance of 200 cm by the investigators of this study. The theoretical coupled model 

proposed above is able to address the transport problems with asymmetric distribution of 

transport parameters. Since the experiments of Swami et al. (2016) used the same 

material for the upper and lower soil layers, identical values of D1 and D2 are adopted in 

this section. The values of other transport parameters were obtained by Swami et al. 

(2016) who fitted the observed BTCs of their experiments. The values of the transport 

parameters are summarized in Table 4-1.  
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Table 4-1 Values of transport parameters in the tracer test. 

         Parameter Symbol Value 

Half-thickness of the permeable layer b 2 cm 

Flow velocity in the permeable layer  v 0.121 cm/min 

Porosity in the permeable layer θ 0.32 

Porosity in the upper layer θ1 0.4 

Porosity in the lower layer θ2 0.4 

Effective diffusion coefficient of the upper layer D1 5×10-5 cm2/min 

Effective diffusion coefficient of the lower layer D2 5×10-5 cm2/min 

Retardation factor of the permeable layer R 1.2 

Retardation factor of the upper layer R1 1 

Retardation factor of the lower layer R2 1 

First-order reaction rate constant in the permeable layer λ 0 

First-order reaction rate constant in the upper layer λ1 0 

First-order reaction rate constant in the lower layer λ2 0 

Duration of solute injection time T 2880 min 

 

In this experiment, the stratified system is saturated with water and free of solute 

at first. After fully saturated, the tracer (fluoride) starts to enter the system through the 

sand layer only. As a much more permeable layer, the sand layer provides advection and 

dispersion zones for solute transport in the entire system. As the upper and lower soil 

layers are treated as immobile domains, the mass exchanges among the middle sand 

layer and two soil layers are conducted by transverse diffusion. To prevent the influence 

from direct sunlight, samples are kept in air-tight bottles after labeling and testing. The 

SPADNS method is used to measure concentrations by a spectrophotometer. The 

SPADNS method is based on the reaction between fluoride and a zirconium-dye pool, 

which dissociates a portion of it into a colorless complex anion (ZrF6
2-). 

For the simulation, the dispersivity related parameters are calibrated by the best 

fitting of the root-mean-square-error (RMSE) at 200 cm, and RMSE is expressed as 
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  , where Cio and Cie are the observed and estimated 

dimensionless concentrations from experiment and simulation, respectively. N is the 

number of observed data points. A smaller value of RMSE represents a better fitting 

between the theoretical model and the experimental data.  

Using the measured BTCs at 200 cm, the value of best fitted constant dispersivity 

is 35.8 cm, which yields RMSE of 0.0237. The linear scale-dependent dispersivity 

reaches RMSE of 0.1287 at k = 0.1843. When a = 39.24 cm and k1 = 1.69 /cm, RMSE of 

the exponential scale-dependent dispersivity model is 0.0282.  Since such a dispersivity 

value is about one order of magnitude greater than the local dispersivity value of a 

strictly homogeneous sand layer with similar grain sizes (which is usually around 0.1 to 

1 cm), it implies that the sand layer used in the experiments of Swami et al. (2016) is 

likely to include minor or moderate degrees of heterogeneity. However, such an issue 

has not been explicitly stated in Swami et al. (2016) . 

The best-fitted parameters simulated from BTCs at 200 cm are then used to 

predict BTCs at an upstream location of 50 cm and a downstream location of 400 cm. 

Such theoretically calculated BTCs are then tested against the experimentally obtained 

BTCs at those two locations. The rationale to choose an upstream point and a 

downstream point is to examine whether the obtained parameter values are robust or not 

for predicting the concentration at a downstream location and hindcasting the 

concentration at an upstream location. The results are plotted in Figs. 4.7-4.9, and the 

corresponding RMSE values are listed in Table 4-2.  
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As shown in Table 4-2 and Figs. 4.7-4.9, the linear distance-dependent 

dispersivity model has the worst prediction performance. It tends to shift BTCs to the 

right and overestimates the dispersive effect. This analysis somewhat disapproves the 

use of the linear scale-dependent model for the experimental data discussed here. 

Clearly, RMSE for the constant and exponential scale-dependent dispersivity models are 

comparable with each other and they are considerably smaller than that of the linear 

scale-dependent dispersivity model. Meanwhile, Figs. 4.7 and 4.9 indicate that the 

performances of the constant dispersivity model and the exponential scale-dependent 

dispersivity model are very similar to each other. The characteristic of exponential 

dispersion function depends on its constants k1 and a. There may be non-unique 

solutions for the similar effective dispersion coefficient, as pointed out by Joshi et al. 

(2015). This may be one of the reasons why it is difficult to differentiate exponential 

dispersion and constant dispersion schemes. In summary, the constant dispersivity 

model, albeit simpler than the exponential scale-dependent dispersivity model, works 

reasonably well here for best fitting the experimental BTCs. 
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Fig. 4.7 BTCs with constant dispersivity, linear scale-dependent dispersivity, and 

exponential scale-dependent dispersivity in log-log scale at 50 cm. 
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Fig. 4.8 BTCs with constant dispersivity, linear scale-dependent dispersivity, and 

exponential scale-dependent dispersivity in log-log scale at 200 cm.  



98 

Fig. 4.9 BTCs with constant dispersivity, linear scale-dependent dispersivity, and 

exponential scale-dependent dispersivity in log-log scale at 400 cm. 

Table 4-2 Simulated results at 50 cm, 200 cm and 400 cm. 

Sampling distance 50 cm 200 cm 400 cm 

Constant dispersivity 

(d=35.8 cm) 

RMSE=0.1265 RMSE=0.0237 RMSE=0.0517 

Linear scale-dependent 

dispersivity (k=0.1843) 

RMSE=0.1547 RMSE=0.1287 RMSE=0.1047 

Exponential scale-dependent 

dispersivity (a=39.25 cm, k1=1.69 

/cm) 

RMSE=0.1218 RMSE=0.0282 RMSE=0.0542 

To further examine the effect of scale-dependent dispersivity in a stratified porous 

media, the observed BTCs at 50 cm, 200 cm and 400 cm are best fitted individually 

using the constant dispersivity model, and the results are shown in Fig. 4.10. The best 
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fitting results between the experimental and simulated BTCs demonstrate that the mean 

values of dispersivity at 50 cm, 200 cm, and 400 cm are 21.5 cm, 38.5 cm, and 35 cm, 

respectively. One striking feature is that the best fitted dispersivity at 400 cm is slightly 

less (instead greater) than that at 200 cm with roughly 10% discrepancy. The simulated 

BTCs at 50 cm and 400 cm perform less satisfactorily as compared against the 

experimental BTCs in several aspects, as shown in Fig. 4.10. First, the predicted peak 

concentration at 50 cm is higher than the observed one, while the predicted peak 

concentration at 400 cm is lower than the observed one. Second, the predicted BTC at 

400 cm during the injection phase is lower than the observed BTC, while the predicted 

BTC at the same location of 400 cm during the leaching phase is higher than the 

observed BTC.  

Based on above observation and analysis, the effect of scale-dependent 

dispersivity does not appear to be evident in this set of experiments in a stratified porous 

media.  
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Fig. 4.10 Predicted BTCs with best fitting of dispersivities and observed data at 50 cm, 

200 cm, and 400 cm (D1=D2=5×10-5 cm2/min). 

4.4.4 Evidence of dynamic molecular diffusions in the less permeable layers 

As the simulated peak values failed to fit the observed data in Fig.4.10, this study 

also conducts the best fitting of diffusion coefficients for the less permeable (soil) layers, 

based on the observed BTCs at 50 cm, 200 cm and 400 cm in the sand layer. The 

constant dispersivity model is used in this section with a fixed dispersivity value of 38.5 

cm. Since the upper and lower soil layers are packed with the same type of porous

media, these two layers are assumed to have identical diffusion coefficients. However, 

one must be aware that although the upper and lower layers consist of the same type of 

porous media, they may still exhibit different physical properties such as permeability 



101 

and diffusion, if the packing of these two layers does not follow the same procedure. 

Nevertheless, without any further information about the packing provided, it is 

reasonable to assume that these two soil layers have the identical properties including 

diffusion coefficients.  

As the results shown in Fig. 4.11, allowing the diffusion coefficients of the 

surrounding layers to be fitting parameter can significantly improve the fitting results for 

both injection and leaching phases. The diffusion coefficient in either soil layer is 

simulated as 8.4 × 10-5 cm2/min using observed BTC at 50 cm with RMSE of 0.126. If 

using observed BTC at 200 cm, the best-fitted diffusion coefficient in either soil layer is 

3.2 × 10-5 cm2/min with RMSE of 0.019. To obtain the best fitting of observed BTC at 

400 cm, the diffusion coefficient in either soil layer is 1.7 × 10-5 cm2/min with RMSE of 

0.041. Above analysis suggests that with the increasing of travel distance, the best-fitted 

diffusion coefficient in either soil layer drops from 8.4 × 10-5 cm2/min at 50 cm to 3.2 × 

10-5 cm2/min at 200 cm, and then further decreases to 1.7 × 10-5 cm2/min at 400 cm.

When the advective velocity keeps constant, a larger travel distance corresponds to a 

longer advective time, which corresponds to a lower value of diffusion coefficient.  

One may recall that the diffusion coefficient in the soil layer can be express as: 

01D D , where D0 is free-water diffusion coefficient, τ is a tortuosity factor, which is 

ranged from 0 to 1 and depends on how well the pores are connected to each other. An 

increasing tortuous pathway for diffusion corresponds to a smaller value of tortuosity 

factor, which would lead to a lower diffusion coefficient. Therefore, the simulated result 

in Fig. 4.11 appears to suggest that the “apparent” diffusion coefficient in the soil layer 
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could be dependent on the advective time in the permeable layer, or more specifically, it 

decreases with such an advective time. The diffusive transport in the soil layer has to 

take place in more tortuous pathways at late times, as the easy (or convenient) pathways 

and large pores have been taken and occupied by solutes through diffusive transport at 

the early times.  

We must point out that above speculation has not been tested in a rigorous 

theoretical sense, thus can only be regarded as a possible explanation of the observed 

phenomenon discovered in the best fitting exercises. The instantaneous mixing 

assumption used in this study may be partially responsible for the observation of such an 

apparent diffusion coefficient, an issue that deserves further scrutiny in the future. A 

Multi-Rate Mass Transfer (MRMT) model or mass transfer approach may justify the 

tailing of BTCs better, especially in one-dimensional system. However, using these 

models would induce new parameters, which are not always easy to quantify for 

practical work.  

Interesting enough, above hypothesis about the existence of a dynamic (or 

advective time-dependent) diffusion in the less permeable layer is not without evidence 

from investigations in other disciplines in which diffusion is of concern. For instance, 

Latour et al. (1994) observed that time-dependent diffusion of water occurred in 

biological model systems, such as biological tissues. Sen (2004) provided a tutorial to 

obtain the information such as fluid type, surface relativity and macro-length by 

investigating the time-dependent diffusion coefficient at short and long times. Olayinka 

and Ioannidis (2004) used a random-walk simulation to study the relationship between 
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surface-enhanced relaxation and time-dependent diffusion with a three-dimensional 

stochastic model. They used this model to recover the tortuosity of pore space and 

analyze the average pore surface-to-volume ratio. However, as far as we know, the 

physics of dynamic or time-dependent diffusion in porous media is still poorly 

understood (Reynaud, 2017), thus requires some great attentions in the future studies.   

Fig. 4.11 Predicted BTCs with best fitting of effective diffusion coefficients and 

observed data at 50 cm, 200 cm, and 400 cm (D = 4.66 cm2/min). 

4.5 Discussion and conclusions 

Solute transport in a stratified system is a classical problem in subsurface 

hydrology. The system investigated in this study includes a much permeable layer (such 

as a fracture or an aquifer) bounded by two much less permeable layers (such as rock 
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matrixes or aquitards). Transport in an asymmetric stratified system is a fully coupled 

three-domain problem. The scale dependency of dispersion in such a system has never 

been examined before. This study constructs new transport models to describe reactive 

solute transport in such a stratified system and rigorously derives the semi-analytical 

solutions of these models. Furthermore, with the help of the new transport models and 

recently reported experiments conducted by Swami et al. (2016), we want to find out if 

the scale-dependent dispersion has to be considered or not. The following conclusions 

can be drawn from this study. In addition, the possible existence of dynamic or time-

dependent diffusion in the less permeable layers is discussed with the support of 

experimental data and simulation results. Given the similarity of solute and heat 

transport in the subsurface, the newly established models can be applied to study heat 

transport in a stratified system by simply replacing the solute transport properties with 

the corresponding heat transport properties. The potential applications of this study 

include risk assessment of high-level nuclear waste disposal and the development of hot-

dry-rock geothermal energy, among others. 

The comparisons between the cases with and without transverse diffusions in the 

less permeable layers (Figs. 4.2-4.4) demonstrated the importance of diffusive processes 

in those layers for redistributing the mass of solute among different layers. Thus, 

diffusions in the less permeable layers should not be ignored for transport in a stratified 

system, especially at the later times. Without considering mass exchanges among 

different layers, BTCs will be overestimated considerably and fail to fit the transport 

parameters in the permeable layer accurately.  
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The linear scale-dependent dispersivity model is not a good choice for the 

stratified system due to its own limitations. The constant dispersivity model works 

almost equally well as the exponential scale-dependent dispersivity model, based on the 

tracer test experiments reported by Swami et al. (2016). Thus, we conclude that there is 

no obvious scale-effect of dispersivity for solute transport in the stratified porous media 

in Swami et al. (2016). 

The diffusion coefficients in the less permeable layers appear to be dependent on 

the advective time in the permeable layer. More specifically, such diffusion coefficients 

decline with the advective time when the dispersivity of the permeable layer is assumed 

to be a constant. Further theoretical and experimental works are required to explain this 

phenomenon. 

However, this study has some limitations that need discussion and further 

research. First, although the existence of dynamic (or time-dependent) diffusions in the 

less permeable layers appears to be convincing, one has to be aware that the evidence 

comes from the best fitting exercises only. To confirm this finding, further experiments 

specially designed to tackle this issue must be carried out. In addition, physically based 

theoretical works are also necessary to understand why such a phenomenon exists in a 

stratified system.  

Second, despite the fact that this study acknowledges the possible scale-

dependency of longitudinal dispersion in the permeable layer, this work assumes 

instantaneous mixing of solute in the vertical direction in the permeable layer. Therefore, 

the results obtained here are only suitable for a stratified system when the thickness of 
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the permeable layer is a few orders of magnitude smaller than the scale of transport 

(such as a single fracture or a thin aquifer). The vertical dispersion in the permeable 

layer should be taken into consideration if the well-mixing concept cannot be used 

(when the thickness of the permeable layer is comparable with the scale of transport).  

Third, groundwater in the less permeable layer is assumed to be immobile in this 

study, which is only true when the hydraulic conductivity of the less permeable layer is 

at least two orders of magnitude smaller than that of the permeable layer, and cross-

formation flow is not a concern. If this is not true, advective and mechanically dispersive 

transports in the less permeable layer must be considered, in addition to the diffusive 

transport there.  

Fourth, concentration continuity is maintained at the interfaces among different 

layers in this study. The possible complexity and concentration discontinuity at the 

interfaces may be investigated in the future. 

Fifth, the bottom line of the approach here is the validation of ADE, a Fickian 

based local transport theory. It will be valuable to investigate the same experimental data 

set (Swami et al., 2016; Swami et al., 2014) using other non-local transport theories such 

FADE and CTWR, and to compare the results of different theories to gain new insights 

of transport in a stratified system.  
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5. DEPOSITIONAL AND REACTIVE TRANSPORT COUPLED MODEL FOR

CARBONATE DIAGENESIS 

5.1 Introduction 

As a rich natural laboratory, the deep-sea sediments are usually used for the 

study of early marine diagenetic processes. The chemical records of sediments and 

associated pore fluids are the results of the balance between supply and removal 

(Coggon et al., 2010). As the result, the chemical interactions such as dissolution and 

precipitation of certain minerals are captured by the chemical composition of the 

sediments and pore fluids. Many factors would impact seawater chemistry, such as 

tectonic activities, biological and depositional activities. Those activities are thought to 

affect global climate by influencing the carbon dioxide in atmosphere (Elderfield and 

Schultz, 1996; Wilkinson and Algeo, 1989). Thus, reconstructing the records of ocean 

chemistry in the past will be helpful to achieve better understanding of such 

biogeochemical carbon cycle processes and their influence on global climate changes.  

Strontium (Sr) and calcium (Ca) are conservative chemical species in the ocean. 

Their concentrations in seawater are uniform anywhere at any one time. Several main 

geological processes would control the concentrations of Sr and Ca in seawater. The 

major supplier of Ca in the ocean includes the dissolve river input, the weathering of 

continents and the hydrothermal exchange at mid-ocean ridge. The consumption of Ca in 

the ocean is mainly caused by calcium carbonate deposition. Sr has similar fluxes into 

the ocean: 1). Sr is carried to the ocean by rivers from continents; 2). Sr is supplied by 
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hydrothermal alteration of seafloor basalt; 3). Sr is affected diagenesis of carbonate 

sediments in the ocean.  

Since the Sr fraction in pore fluids is much smaller than that in calcite sediment, 

a small amount of calcite recrystallization would cause a significant change of Sr 

concentration in the pore water (Baker et al., 1982; Delaney, 1989). The partition 

coefficient of Sr between calcite solid and porewater is considered to be directly related 

to Ca in the form of strontium calcium (Sr/Ca) ratio (Morse and Bender, 1990; Richter, 

1996). By this means, the strontium calcium ratio is widely used as a proxy for 

investigating the diagenesis and determining the paleo records of seawater conditions 

(Coggon and Teagle, 2011; Hampt and Delaney, 1997). Many efforts have been made to 

study the diagenetic processes and calcite recrystallization by using the Sr/Ca ratios of 

bulk carbonate and pore fluids as geochemical tracers (Fantle and DePaolo, 2006; 

Richter, 1993, 1996; Richter and Depaolo, 1987, 1988). Specifically, Richter and 

Depaolo (1987) applied the Sr budget model to Deep Sea Drilling Project (DSDP) Site 

590B and concluded that the exchange rate decreases dramatically over depth. The near 

surface value of exchange rate at DSDP Site 590B was about 10% per million years. 

However, this rate dropped to 1% per million years below 200 m. Richter (1996) further 

considered the influence of sulfate whenever the pore fluids were saturated with celestite 

and provided an newly improved model by coupling strontium and sulfate budget 

models. Fantle and DePaolo (2006) evaluated the calcite recrystallization rate for Ocean 

Drilling Program (ODP) Site 807 and provided an evidence of the rapid rise of 

Magnesium (Mg) concentration in seawater over the last 10 million years. Many these 
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studies also pointed out that the calcite recrystallization rate is an exponential function of 

age or depth of sediments (Fantle and DePaolo, 2006; Richter, 1996; Turchyn and 

DePaolo, 2011). The recrystallization rate is large at the top of sediments but rapidly 

decreases over age or depth of sediments.   

Efforts also have been made to reconstruct past seawater chemical conditions in 

multiple methods: Graham et al. (1982) and Delaney et al. (1985) attempted to 

reconstruct the strontium calcium ratios with planktonic foraminifera. Their results 

showed high variations and considerable scatter because of vital effects. Elderfield et al. 

(2000) analyzed the strontium calcium ratios on eight planktonic foraminifera species, 

which were collected from a core top transect of North Atlantic. The measured results 

from different species indicated significant differences. Lear et al. (2003) used the 

samples of benthic foraminifera preserved in the deep-ocean core samples from various 

sites of DSDP and ODP core data to construct the Cenozoic seawater Sr/Ca ratios. Other 

than experimental methods, Stoll and Schrag (1998) analyzed the variations of Sr and Ca 

concentrations at shelf carbonates over Quaternary sea level cycles with a simple box 

model. Their model predicts that Sr/Ca ratios in the ocean varied 1 to 2 percent over 

Quaternary sea level changes. Coggon et al. (2010) estimated past oceanic Mg/Ca and 

Sr/Ca ratios from the Mid-Ocean calcite carbonate veins that precipitated in both cool 

and warm ocean ridge flank basalts. However, their constructions underestimated the 

chemical concentration in history and indicated a large discrepancy against with 

experimental measurements. 
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In this study, we developed a coupled numerical model with the consideration of 

advection, diffusion, and the recrystallization (dissolution and precipitation) between 

bulk carbonate and pore fluids in the processes of deposition and compaction. By 

matching the chemical records of pore water, we are able to quantitatively estimate the 

recrystallization rates and analyze the diagenetic processes during the carbonate 

deposition. Furthermore, comparing the simulation results with Sr/Ca ratios allows us to 

reconstruct the past chemical conditions in the ocean.  

5.2 Geological background and site descriptions 

The Sites 803 (3410 m), 805 (3188 m), 806 (2520 m) and 807 (2805 m) are 

selected for this study to provide a nearly continuous record of calcareous pelagic 

sediments deposited at different water depths on the Ontong Java Plateau, which is a 

broad, shallow and mid-oceanic submarine plateau and located in the western equatorial 

pacific (Kroenke et al., 1991). Leg 130 (Sites 803-807) was drilled into the basement on 

the northeaster margin of the Ontong Java Plateau (3°36.42 Ń, 156°37.49 É). It covers a 

complete record of Neogene, Paleogene and Late Cretaceous history (Fantle and 

DePaolo, 2006).  

For these four sites, the carbonate sections are deposited on 113 to 117 Ma 

oceanic crust with a thickness of 40 km. The calcite content of the sediment averages 

more than 90%. Well 807C indicates that the depth to basement in Site 807 is near 1380 

mbsf. Age assignments are made using a linear fit to the biostratigraphic control points 

identified by Kroenke et al. (1991). The sedimentation rates can be calculated from the 

age assignments and depths of the sediments before compaction. Decompaction is 
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conducted based on the method described in section 5.3. The sedimentation rates are 

reversely correlated with water depths of the sites. Site 803 with the largest water depth 

has the slowest sedimentation rate, and Site 806 has the smallest water depth and the 

largest sedimentation rate. 

The studied sites are believed to be free of major disturbances in the sediment 

columns. Most of the sediments are homogeneous nannofossil-foraminiferal oozes 

composed of low magnesium calcite. Most have not been exposed to subaerial 

diagenesis and meteoric waters during sea level lowering or tectonic uplifts, nor have 

they been subjected to tectonic deformation that would alter their petrology and physical 

properties. Site 804 is not selected for this study because this site was affected by mass 

movement. Seismic profiles exhibit irregular seismic reflections and show evidence of 

wedging. Physical properties profiles in Site 804 reflect these major sediment 

disturbances (Kroenke et al., 1991). 

There is no evidence of a significant flux of modern seawater into the 

sedimentary section at the studied sites (Fantle and DePaolo, 2006), which limits the 

transport of aqueous species to diffusion. Therefore, the results from this study are 

applicable to deep sea environments with low energy and minimum external 

disturbances, which are referred to as closed systems in some references (Bjørlykke and 

Jahren, 2012).  

5.3 Mathematical model  

This section outlines the procedures used in developing the coupled 1D 

depositional and reactive transport model, using the data from deep sea drilling site 807 
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as an example. The model is capable of modeling deposition and compaction of the 

sediments, advection and diffusion of chemical species in pore fluids, and reactions 

between sediment minerals and pore fluids. The model starts with no sediments or pore 

fluids above the base rock. In each time step, one layer of sediment and associated pore 

fluid is added. The pore fluid would inherit the composition of seawater at deposition as 

it initial condition. The Sr/Ca ratios in newly deposited sediments are set up in a way 

that the modeled post-diagenesis Sr/Ca ratios in the bulk solid matches the measured 

values in the sediments today. Diffusion and reactions are calculated based on the 

governing equations and parameters listed below. The advection and vertical flow in the 

sediments are not considered in the study of ODP Sites 803-807 as the advection caused 

by sediments’ compaction is relatively minor and not critical to the final results (Richter, 

1993). Currently, there is no evidences of Sr isotopes and concentrations that can 

confirm the exitance of significant vertical flow at these sites.  

The recrystallization rate of calcite in the sediments is essentially constrained by 

matching the Sr concentrations in pore fluids. Sr concentration in the fluid generally 

increases with depth in sea sediments due to its higher concentration in the solid phase 

than in seawater. As calcite dissolves, Sr is released from the solid phase to pore fluids 

in sediments, and this is balanced by the incorporation of Sr in the solid phase during 

calcite precipitation, diffusion and advection at steady state (Morse and Bender, 1990; 

Richter, 1996). 

In order to simulate the pore fluid Sr concentrations correctly, sulfate and 

calcium concentrations are required. The history of sulfate concentration in pore fluids is 
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needed to evaluate whether the pore fluid is saturated with celestite, in which case the Sr 

concentration is modeled based on celestite equilibrium. The partition of Sr between the 

pore fluid and solid is based on Sr/Ca ratios, therefore requiring the Ca concentration 

history. The Sr concentration in the pore fluid is modeled after both calcium and sulfate 

concentrations are matched. 

5.3.1 Deposition and compaction 

The data from Site 807 (age, depth, porosity, etc.) is first interpolated on to a 

uniform 1m grid. The mass fraction of solid (m) at each grid point is calculated using the 

relation between volume fraction of fluid φ and sub-bottom depth z (Richter and 

Depaolo, 1987): 

 

 

1
( )

1

c

c f

m z
 

  




 
,    (5.1) 

where ρc and ρf are the densities of carbonate solid and porewater. The 1 m intervals are 

uncompacted to a uniform solid mass fraction m(0) which results in a new thickness h 

for each interval: 

( ) / (0)h m z m .  (5.2) 

The unevenly spaced uncompacted data is used to construct a new uniform 1 m 

grid. The new 1 m layers are the units deposited at the appropriate time in the 

calculation. Every time a new layer is added, the total thickness of sediment has to be 

calculated by requiring that the mass of solid is conserved consistent with the porosity-

depth relation. If the total thickness before deposition is H, and H + ∆H after deposition, 

we must require that: 
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H HH

m z dz m z dz m


   . (5.3) 

Finding the unknown ∆H involves repeating the integration until the correct value is 

found to sufficient accuracy. After decompaction, the sedimentation rates of studied site 

are plotted in Fig. 5.1.  

Fig. 5.1 Sedimentation rates in the studied sites from uncompacted depth and age. 

5.3.2 Sulfate and organic carbon budget models 

The equations for porewater sulfate used here are taken from the Sulfate budge 

model (Berner, 1980). The rate of change of the sulfate concentration, [𝑆𝑂4
2−], and

utilizable organic carbon, G, in constant porosity porewaters are governed by: 
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where 𝐷[𝑠𝑜4
2−] is the sulfate ion diffusion coefficient, which is assumed to be same value

as strontium diffusion coefficient in this study, L is a stoichiometric coefficient 

corresponding to the number of sulfate ions reduced for every carbon oxidized, and 

𝑘[𝑠𝑜4
2−] is the carbon oxidation rate constant. The stoichiometric constant, L, is taken to

be 1/2. v is velocity in the pore water. 

5.3.3 Calcium reactive transport 

The pore fluid calcium concentration [Ca2+] can be modeled using an equation 

similar to Eq.(5.4):  
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where net d pR RR   , Rd is the dissolution rate of calcite, and Rp is the precipitation rate 

of calcite. [Ca2+]s is the concentration of calcium in carbonate solid, in unit of mole/g. fc 

is the fraction of calcite in the total sediment, and M is the mass ratio of solid to fluid 

( ) /(1
s f

    ). The diffusion coefficient for Ca in solution 
2[ ]Ca

D


(m2/Myr) is 

considered as a function of temperature T (in kelvin) (Boudreau, 1997; Fantle, 2015): 

 2[ ]
3.60+ 0.179  (T-273.15)   525.6

Ca
D


  . The seawater Ca concentration (mM) is 

varied with time (Myr). The estimation of historical Ca concentration in the ocean from 
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Antonelli et al. (2017) is adopted as the initial conditions of Ca concentration in the pore 

water: 
2[ ] 10.62 + 0.161seawater tCa    .

5.3.4 Strontium reactive transport 

The conservation equations for the pore fluid [Sr2+] and solid [Sr2+]s strontium 

are descripted as follows: 

2

2 2 2 2
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where KSr is the effective equilibrium partition coefficient for Sr between calcite solid 

and porewater; V is the velocity of solid due to compaction. It is worthwhile to note that 

the velocities of the pore fluid and solid at ODP leg 130 are very small, which can be 

ignored (Fantle and DePaolo, 2006, 2007). The diffusion coefficient for Sr in solution 

2[ ]Sr
D


 (m2/Myr) is considered as a function of temperature T (in kelvin) (Boudreau, 

1997; Fantle, 2015):  2[ ]
3.69+ 0.169  (T-273.15)   525.6

Sr
D


  . The concentration of 

strontium in pore fluid is also affected by celestite. We assume that the precipitation of 

celestite is instantaneous; therefore, the strontium concentration is calculated from 

celestite equilibrium whenever the product of strontium and sulfate concentrations 

exceeds saturation. The apparent solubility of celestite (𝐾𝑠𝑝
celestite) is obtained by fitting

the measured [𝑆𝑟]𝑓[𝑆𝑂2−]𝑓 with depth at depths below 200 meters, where the pore fluid

is saturated with regard to celestite. 
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The DuFort-Frankel finite difference algorithm is adopted to overcome the 

stability problems of the simple FTCS and Richardson methods. It is unconditional 

stable with the Von Neumann-stability analysis. Eqs. (5.7)-(5.8) are written in the forms 

as follows: 
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where Cf  and Cs refer to the strontium concentration in the pore fluid 
2([ ])Sr 

 and 

carbonate solid (
2[ ]sSr 

), the subscription j and superscription n are the step numbers of 

depth and time, respectively.  

Below we list the values of input parameters used in the simulation in Table 5-1. 

The porosity functions with depth are from Bassinot et al. (1993). The net dissolution 

rate of calcite is obtained by fitting the measured calcium-depth profile with Eq.(5.6). 

The seawater calcium concentration ([𝐶𝑎2+]𝑠𝑤) is assumed as a function of time in the 

geological history, based on estimations in Antonelli et al. (2017). The pore fluid sulfate 

concentration is modeled using Eq.(5.4) by assuming the seawater sulfate concentration 

([𝑆𝑂4
2−]𝑠𝑤) also as a function of time (Algeo et al. (2015). Strontium concentrations in 

fluid and solid are modeled with Eqs. (5.7)-(5.8), but the pore fluid strontium is also 

subject to saturation with celestite.  
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The equilibrium partition coefficient of strontium in calcite KSr is a function of 

temperature. In-situ temperature is the studied sites are measured by temperature logging 

tools (Sawyer et al., 1994). The empirical relation between KSr and temperature T (in 

kelvin) is adopted: 

3 5 21ln 4.38 1.7 .0 101 / 4 22 /SrK T T     .  (5.11) 

We find that the pore fluid Sr concentrations cannot be fit with the calculate KSr no 

matter how we tune the value of Rd and can only be fit reasonably well when all KSr 

values are decreased by 0.006. This indicates the value of KSr might have been 

overestimated before. In any case KSr generally increases with temperature and therefore 

depth of the sediment. The range of calculated KSr values (after subtraction by 0.006) are 

listed in Table 5-1 and 5-2. 

It is worthwhile to point out the initial conditions of this system. As a large 

reservoir of dissolved Sr, the ocean supplies the initial conditions of the system. At each 

time step, it created the initial pore fluids with equal Sr and Ca concentrations to the 

contemporaneous seawater. The Sr/Ca ratio in the initially deposited carbonate bulk was 

related to seawater by an effective partition coefficient, which is assumed to be a 

constant parameter over time and keep identical among all Leg 130 sites (Fantle and 

DePaolo, 2006). In this study, the value of the effective partition coefficient between 

carbonate bulk and seawater would be adjusted until the simulated seawater at t = 0 

matches modern oceanic compositions, which equals to 0.194.  
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Table 5-1 Parameters of calcium, sulfate and strontium models at Site 807. 

Parameter Value (Site 807) 

Porosity (ϕ) 0.696×e-0.00051z 

Sedimentation Rate (S) [m/Myr] 30.4 

Rnet [Myr-1] 2×10-5

[Ca]sw [mM] 10.3+0.1556×t 

G0 [mM/kg] 11  

𝑘[𝑆𝑂4
2−] [Myr-1] 0.3 

[𝑆𝑂4
2−]𝑠𝑤 [mM] 28-0.15×t

𝐾𝑠𝑝
𝑐𝑒𝑙𝑒𝑠𝑡𝑖𝑡𝑒 [mM2] 20.73-0.003557×z 

𝐾𝑆𝑟  0.0177 - 0.0221 

Rd [Myr-1] 0.019×e(-z/400) 

Table 5-2 Parameters of coupled models at Sites 803, 805 and 806. 

Parameter Site 803 Site 805 Site 806 

ϕ 0.686×e-0.00075z 0.702×e-0.00076z 0.692×e-0.00045z 

S [m/Myr] 16.9 26.0 36.9 

Rnet [Myr-1] 2×10-4 2×10-4 5×10-5

[Ca]sw [mM] 10.3+0.1556×t 10.3+0.1556×t 10.3+0.1556×t 

G0 [mM/kg] 19  19  34  

𝑘[𝑆𝑂4
2−] [Myr-1] 0.28 0.35 0.17 

[𝑆𝑂4
2−]𝑠𝑤 [mM] 28-0.15×t 28-0.15×t 28-0.15×t

𝐾𝑠𝑝
𝑐𝑒𝑙𝑒𝑠𝑡𝑖𝑡𝑒 [mM2] 20.7-0.0014×z 16 18.7-0.0007×z 

𝐾𝑆𝑟  0.0177 - 0.0199 0.0181 - 0.0225 0.0185 - 0.0201 

Rd [Myr-1] 0.018×e(-z/120) 0.038×e(-z/150) 0.03×e(-z/400) 

5.4 Results analysis and validation 

5.4.1 Chemistry species profiles in the solid and porewater 

Initially, the oceanic Sr concentration is assumed to be a constant over time. This 

produces current Sr/Ca ratios in the bulk solid that are different from the measured 

ratios. The Sr concentrations in the depositional sediment are then modified and iterated 
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until the modeled solid Sr/Ca ratios match the current measurements to adequate 

accuracy. The corresponding Sr concentrations in seawater are also modified since the 

carbonate calcite was initially deposited with a certain partition coefficient from 

seawater.   

Fig.5.2 presents the initial Sr/Ca ratios in sediments before diagenesis (yellow 

line) that produce the post diagenesis Sr/Ca ratios (blue line) that best match the 

measured data. The shift of the Sr/Ca ratios in the bulk sediment is larger in deep 

sediments because they have been through more diagenetic changes, while the top 

sediments are less heavily modified. Diagenesis generally reduces the Sr/Ca ratios in the 

sediments because the release of Sr by calcite dissolution is larger than the incorporation 

of Sr by reprecipitation. The shift can be as high as 0.3 mM/M. 
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Fig. 5.2 The Sr/Ca ratio in bulk carbonate before and after diagenesis, compared with 

measured data of solid samples. 

The pore fluid Ca concentration in Site 807 can be matched reasonably well with 

a constant 
52 10netR   , which is much smaller than the estimated Rd (0.019 at the top 

of the sediments). This confirms that calcite is close to equilibrium with the pore fluid, 

and the net reaction rate is extremely small compared to the dissolution rate. The 

measured pore fluid concentrations of calcium can therefore be assumed as equilibrium 

values for calcite. 

Another approach to model the evolution of calcium concentration in pore fluids 

is to formulate the net reaction rate as  2

2 2

net Ca eq
R k Ca Ca



         , where 2Ca
k

  is the 
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reaction rate constant, and  2 2

eq
Ca Ca        is how far the pore fluid Ca is from the 

equilibrium value. 2

eq
Ca 
   is obtained by fitting the current Ca concentrations in pore

fluids as a function of depth. In the geological past when the seawater Ca concentration 

was higher, 2

eq
Ca 
   is modified by the ratio of paleo Ca concentration to current Ca 

concentration in seawater. Therefore, the only tunable parameter in the Ca model is 

2Ca
k

 . The parameters used to model Ca, sulfate, and Sr listed in Table 5-2. 

Figs. 5.3-5.5 present the fitting of our model to the measured pore fluid 

concentrations of sulfate, calcium and strontium. The historical concentrations are also 

presented for illustrative purposes. Because the sediments grow upward during 

geological history, the upper boundary of the concentration profiles moves up with the 

top of the sediments. These upper boundaries of sulfate and calcium, when connected, 

record the paleo seawater concentrations, which are assumed to be linear functions of 

geological time. The concentration of Sr in seawater is calculated from the Ca 

concentration and the Sr/Ca ratio in seawater recorded in the bulk solid as in Fig.5.2. 

The best fitting of Sr concentration in pore fluids is achieved by tuning the value of Rd, 

which provides the recrystallization rates of calcite needed for this study. 
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Fig. 5.3 Modeled evolution of sulfate concentration in the pore fluid compared with 

measured concentrations in samples. 
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Fig. 5.4 Modeled evolution of calcium concentration in the pore fluid compared with 

measured concentrations in samples. 
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Fig. 5.5 Modeled evolution of strontium concentration in the pore fluid compared with 

measured concentrations in samples. 

5.4.2 Reconstruction of past chemical conditions in the ocean 

After matching the measured data of strontium, calcite and sulfate concentrations 

in the pore fluid and the carbonate bulk, the paleo Sr/Ca ratios in seawater can be 

produced. The simulation is validated against the experimental measurements in 

foraminiferal by Lear et al. (2003). The Sr/Ca ratio measured in planktonic foraminiferal 

has been considered for a while in the study of seawater Sr/Ca ratios (Delaney et al., 

1985; Graham et al., 1982; Martin et al., 1999). However, the results showed 

considerably large variation. Compared to Planktonic foraminiferal, benthic foraminifera 

are usually better preserved in deep sea core with excellent age control. Therefore, 
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benthic foraminifera are considered as an outstanding indicator for paleo record of 

seawater Sr/Ca ratios. Lear et al. (2003) carefully picked the well-preserved foraminifera 

to minimize the influence of post-depositional diagenesis. Samples were crushed and 

cleaned with ultra-sonication treatments and other solutions. They are dissolved in 0.075 

M HNO3 and analyzed with Inductively Coupled Plasma Atomic Emission Spectroscopy 

(ICP-AES) after leaching with a weak acid. The measurements were then converted to 

the seawater Sr/Ca ratio with effective partition coefficients. Thus, the experimental 

work done by Lear et al. (2003) is considered to provide an accurate and reliable 

measurements on past oceanic chemical conditions. 

Both simulated results from Leg 130 (Sites 803, 805, 806 and 807) and measured 

data from Lear et al. (2003) are plotted with different markers in Fig 5.6. The simulated 

results from four sites are in good agreement with each other and show narrow variations 

compared to the experimental measurements. The modeled results disagree with Coggon 

et al. (2010) estimations from the compositions of calcite veins in oceanic crust. This 

discrepancy is mainly attributed to the uncertain biogenic carbonate-Sr partition 

coefficient in their study.  

The measured data points from Lear et al. (2003) are intensively distributed in 14 

Ma to present and 50 Ma to 30 Ma. Many details are missing due to availability of 

benthic foraminifera samples from 30 Ma to 14 Ma. The simulation results from this 

study could replenish this gap and provide the detailed variations within 30 Ma to 14 

Ma. As indicated in Fig. 5.6, Sr/Ca ratios between 26 Ma to present were lower than 

modern ocean. There are several Sr/Ca ratios cycles from 40 Ma to present: from 40 Ma 
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to 26 Ma (Eocene to Oligocene), seawater Sr/Ca ratios gradually increased from 6.5 

mM/M to 10 mM/M; from 26 Ma to 8 Ma (Miocene to Pliocene), it decreased at first 

and then increased to 8.5 mM/M in a short term and followed by a slightly decreasing to 

7 mM/M; from 8 Ma to present, Sr/Ca ratio in the ocean increased from 7 mM/M to 10 

mM/M. The temporal changes in Sr/Ca ratio represent the fluxes variations of Sr in and 

out the ocean. River usually plays the most important role of supplier of Sr into 

seawater. Carbonate production and diagenesis are the main sinks for Sr and Ca 

concentrations. The short-term changes of Sr/Ca ratio in the ocean are the result of the 

sea level variations, which cause exposure of diagenesis of shelf carbonates.  

Fig. 5.6 Reconstructed paleo Sr/Ca ratios in the ocean and the experimental measured 

data from Lear et al. (2013).   
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5.5 Discussion and conclusions 

This study couples the depositional and compactional processes, advective and 

diffusive transport, and recrystallization processes (dissolution and precipitation) in the 

deep-sea carbonate sediments. Strontium, calcium and sulfate concentrations of ODP 

core data at Sites 803, 805, 806 and 807 are used to support our model. The effect of 

celestite precipitation on Sr budge is also taken into consideration: when the pore fluid is 

saturated with celestite, the Sr concentration is controlled by the apparent solubility of 

celestite.  

As important proxies to reconstruct the historical ocean conditions and 

investigates the early diagenesis of carbonate sediments, the simulated concentrations of 

Sr and Ca are carefully compared to the ODP measured data. By matching the profiles of 

both chemical elements in carbonate bulk and pore fluids, this coupled model can 

simulate the calcite diagenetic processes, reconstruct past 40 million years seawater 

Sr/Ca ratios and provide a quantitative estimations of calcite recrystallization rate in the 

deep-sea sediments. After the validation against the experimental measurements from 

benthic foraminifera, our estimations are proven to be reliable and robust: the simulated 

results from ODP Sites 803, 805, 806 and 807 show a narrow variation and a good 

agreement with the experimental measurements. It replenishes the missing 

measurements with more details and data points during 30 Ma to 14 Ma in Fig.5.6: the 

experimental results from Lear et al. (2003) indicated a slowly decreasing trend of Sr/Ca 

ratios in the ocean from 30 Ma to 14 Ma due to its own limitations (missing samples of 

this time period). However, our modeled results provide more information and show that 
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the Sr/Ca ratios rapidly increased from 30 Ma to 26 Ma, and then gradually dropped 

from the peak value at 10 mM/M at 26 Ma to 7 mM/M at 14 Ma. The modeled past 

seawater strontium cycles can be used to other relevant research areas, such as the ocean 

circulations, paleo climate and the chemical evaluation of the ocean.  

This coupled model has some obvious advantages than the experimental 

measurements: the model is very efficient to make estimations without long-time 

preparation works and does not require the investigation of samples’ eligibility. Lear et 

al. (2003) selected benthic foraminiferal calcite for the best performance. Coggon et al. 

(2010) used the composition of calcite veins formed in the oceanic crust to reconstruct 

past oceanic Sr/Ca ratios. However, our model can directly use the measurements from 

ODP core data.    

However, the study still has some limitations for future improvement: Firstly, to 

reconstruct past seawater chemical history, this coupled model requires reliable 

measurements of Sr/Ca ratio in the carbonate bulk and porewater. The Sr concentration 

in the pore fluid is very sensitive to the calcite recrystallization rate. Thus, an inaccurate 

measurement of Sr concertation in the pore fluid would result to unreliable estimations 

of recrystallization rates. The time scale of solid chemical data also limits the time scale 

of reconstruction. The reconstruction of oceanic conditions can only be tracked up to the 

earliest time of the solid data. Secondly, this one-dimensional coupled model considers 

the vertical advection and diffusion in the solid and pore water and ignores the 

horizontal transport processes, which may also affect the chemical conditions and can be 

added in the future study. Thirdly, this coupled model requires relatively consistent 
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sedimentation environment without major sediment disturbances or tectonic activities. 

Thus, the sedimentation history and depositional age profile would be carefully checked 

before simulation. 
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6. CHEMICAL AND MECHANICAL COMPACTIONS IN CARBONATE

SEDIMENTS DURING EARLY MARINE DIAGENESIS 

6.1 Introduction 

Carbonate geologists have been trying to understand the various diagenetic 

pathways through which carbonate sediments become lithified for decades. It was 

believed for a long time that carbonate sediments compact very little mechanically 

(Bathurst, 1970; Weller, 1959). Bathurst (1970) stated that most ancient micrites and 

biomicrites showed no sign of having been compacted. Delicate tests were uncrushed, 

thin skeletal structures had not been broken because of grain-to-grain movement. The 

conclusion is that cement was precipitated in the pores in sufficient quantity to form a 

resistant framework before the overburden was great enough to cause detectable 

compaction. 

Evidence for mechanical compactibility emerged later (Chanda et al., 1977; 

Shinn et al., 1977). Several experiments were conducted after that on compaction of 

carbonate sediments (Bhattacharyya and Friedman, 1979), which provided certain 

constraints on the parameters of the compaction process. The approach to study 

compaction in natural settings, however, was mostly limited to examining compacted 

rocks for characteristics and evidence of compaction. Quantitative evaluation of the 

relative fractions of mechanical compaction and chemical cementation during 

lithification is challenging from just examining the rocks after compaction. 

Another question that bothers geologists for a long time is the source of the 

calcite cement (Bathurst, 1970). Because the concentration of calcium in the pore fluid is 
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much lower than in the solid, it requires thousands of pore volumes to precipitate the 

amount of calcite observed in the rocks today. Consensus has been reached now that 

pressure solution provides calcite for all the cement precipitated during burial diagenesis 

of carbonate ooze in some deep-sea cores (Matter, 1974; Schlanger and Douglas, 1974). 

Pressure solution is defined as a process by which grains dissolve at intergranular or 

intercrystalline contacts. This process is presumably related to the higher solubility 

under non-hydrostatic stress at the contacts than at free grain surfaces. The process often, 

although not always, is accompanied by reprecipitation at adjacent free grain surfaces. 

Therefore, the dissolution of carbonate sediment itself provides the source for calcite 

precipitation and does not require transport of thousands of pore volumes of fluid. 

The assumption that local pressure solution provides the calcite for cementation 

allows us to calculate the relative fraction of chemical compaction and mechanical 

compaction in reducing porosity in deep sea cores. It is observed that the dissolution rate 

of calcite in deep sea cores is slow, but significant, and decreases with depth in the 

sections (Fantle and DePaolo, 2006). If chemical compaction is mediated by dissolution 

on the vertical direction where stress is high, and precipitation on the horizontal 

directions, the vertical deformation of sediments can be assumed equal to the amount of 

calcite dissolution. By integrating the dissolution rates of carbonates during the 

depositional history, one can estimate the porosity loss caused by chemical compaction. 

The porosity today, when compared with depositional porosity, provides the total 

porosity loss by both chemical compaction and mechanical compaction. Therefore, we 
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can quantitatively evaluate the importance of each component in reducing porosity 

during carbonate lithification. 

The deep-sea cores selected for this study come from the Ocean Drilling Program 

(ODP), Site 803, 805, 806, and 807. During Leg 130, nearly 4800 m of pelagic 

calcareous sediments were recovered from 16 holes drilled at 5 sites (803-807) on a 

depth transect located in the northeastern part of the Ontong Java Plateau (Kroenke et 

al., 1991). Based on DSDP and ODP data, numerous studies have been conducted on 

changes of porosity with depth of burial and age in pelagic calcareous sediments 

(Bassinot et al., 1993; Hamilton, 1971). 

Hamilton (1971) derived the empirical polynomial equations of porosity and 

density over depth for various types of deep-sea sediments (pelagic clay, radiolarian 

ooze, diatomaceous ooze, and calcareous ooze). These generalized equations give an 

approximate idea of how porosity evolves with depth of burial. Bassinot et al. (1993) 

used shipboard laboratory porosity values where sedimentological analyses (such as 

carbonate content) were performed on the same sample and fit the porosity-depth 

profiles with regression curves for the same sites chosen for this study. They show that 

the porosity can be fit reasonably well with exponential equations. Their regression 

equations are used in this study as the true porosity of the sediments today. 

Based on DSDP data, Schlanger and Douglas (1974) proposed a diagenetic 

model for calcareous sediments. In this model, two stages are present in the reduction of 

porosity with depth of burial: (1) an early dewatering stage in the upper 200 mbsf, in 

which porosity is reduced from about 80% to 60% and the dominant mechanism is 
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mechanical compaction; (2) a slower dewatering stage in which porosity is reduced from 

about 65% to 40% between 200 and 1000 mbsf and the dominant mechanism is 

cementation. Later studies show that the initiation of cementation through solution-

precipitation mechanisms may occur more rapidly (after burial of a few tens of meters) 

in the calcareous sedimentary column, with cement reaching about 25% of the solid 

volume at the ooze-chalk transition (Wetzel, 1989). For Leg 130 sites, Bassinot et al. 

(1993) concluded that chemical compaction was of minor importance in ooze and chalk 

samples from Sites 803 and 807, and mechanical compaction is most likely the major 

process acting throughout the entire ooze-chalk sections studied. 

In this study, we re-evaluate the conclusion in Bassinot et al. (1993) by 

numerically modeling the depositional history of the carbonate sediments in these four 

sites, considering compaction of the sediments, reactions between carbonate solid and 

pore fluids, and transport of aqueous species by diffusion. The measured pore fluid 

strontium concentrations are used to constrain the rates of calcite recrystallization. The 

reaction rates are then integrated through the depositional history which provides the 

estimation of porosity loss by the chemical compaction. The results indicate that neither 

chemical compaction nor mechanical compaction dominates the total porosity loss, but 

both contribute significantly throughout the sections. 

6.2 Site descriptions and analytical methods 

This study adopts the coupled depositional and reactive transport model in the 

previous chapter. The processes of advection, diffusion, and reaction of strontium and 

calcium, and the organic carbonate related budget model of sulfate are coupled with the 
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sediments deposition and compaction processes. The simulation results are supported by 

the ODP data, which includes the major geochemical data and core descriptions. The 

ODP Leg 130 (Sites 803, 805,806 and 807) data is used mainly for the discussion of 

chemical and mechanical compaction in carbonate sediments. The detailed site 

descriptions are mentioned in Section 5.2. This coupled model is also applied to some 

other sites of ODP data (Sites 925, 926, 927, 928, 984, 1082, 1085, 1119 and 1239) for 

the discussion of the relationship between the calcite recrystallization rate and sediments 

conditions, such as the carbonate content ratio and sedimentation rate.  

ODP Sites 925-928 (Leg 154) are located on the Ceara Rise, which is a 

bathymetric high formed at the Mid-Atlantic Ridge. The sites positions are located 

northeastward of South American coast and the Amazon Delta. The high terrigenous 

influx from Amazon River delivered relatively moderate to high sedimentation rates 

(from 18.9 m/Myr to 25.9 m/Myr). The dominant sediments are the nannofossil oozes, 

nannofossil clays and some terrigenous silt. ODP Site 984 (Leg 162) is situated on the 

Bjorn Drift in about 1650 m water depth. It is in the North Atlantic, southwest of 

Iceland. The major sediments of ODP Site 984 are terrigenous and fine-grained from 

Holocene to late Pliocene. The sediments were accumulated from the detrital flow along 

the southwest edge of the Reykjanes Ridge at a very high sedimentation rate (163 

m/Myr). The carbonate fraction of ODP Site 984 at about 8%, mainly contributed by 

authigenic carbonate minerals and calcareous nannofossil ooze. ODP Sites 1082 and 

1085 are from Leg 175, which is located off western coast of Africa. Sedimentation rates 

at Leg 175 are relatively high: Site 1082 has an average sedimentation rate at 118 
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m/Myr, Site 1085 has an average sedimentation rate at 53.6 m/Myr. Site 1082 sediments 

are mainly composed of nannofossil and foram-rich and diatom-rich clays. Site 1085 is 

composed of nannofossil ooze and various amounts of silts and clay. ODP Site 1119 is 

located about 93 km offshore from eastern South Island (New Zealand) at about 395 m 

water depth on the upper continental slope. The sedimentary materials are shed eastward 

or southward from Southern Alps into eight major river systems. These rivers delivered 

a larger amount of terrigenous sediments to the east coast area, which would finally 

transport northward and enter the ocean environment. Thus, the sedimentation rate at 

this site is very high (195.8 m/Myr). ODP Site 1239 (Leg 202) is situated about 120 km 

off the Ecuador coast, near the eastern crest of Carnegie Ridge at about 1414 m water 

depth. Sediments at Site 1239 are dominated by foraminifer-bearing diatom nannofossil 

oozes and occasional ash layers. It has an average relatively high sedimentation rate of 

82 m/Myr.  

6.2.1 The rates of calcite recrystallization and mechanical compaction 

The recrystallization rates of calcite obtained in this study are defined as the 

fraction of calcite dissolved per million years. The results are around 2-4 percent per 

million years at the top of the sediments and decrease exponentially with depth (Table 5-

2). The total compaction rate can be calculated from the decrease of porosity with age as 

the following: 

)(1
total

R
t








 , (6.1) 
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where ∆t is the age of the sediment, and ∆ϕ is the change of porosity from depositional 

porosity, which is assumed be to the same as the porosity of the top sediments today. 

Bassinot et al. (1993) uncompacted the porosity in the four studied sites to the original 

depositional porosity using site-specific empirical regression equations and found that 

the depositional porosity was rather constant (their figure 6). Therefore, we could 

calculate the total compaction rate from the rate of porosity decrease per unit time from 

its original value. The results are around 3-5 percent per million years at the top of the 

sediments and decrease with depth/age (Fig. 6.1). 

The difference between total compaction rate and calcite recrystallization rate 

gives the rate of mechanical compaction. Our first order conclusion is that the total 

compaction rate is generally less than twice the value of chemical compaction rate at the 

top of the sediments, therefore the mechanical compaction rate is smaller than the 

chemical compaction rate. As the depth becomes larger, both compaction rates decrease, 

but the total mechanical compaction rate becomes more than twice the value of the 

chemical compaction rate, and in some cases is more than 10 times larger. Therefore, the 

main mechanism responsible for porosity reduction in deep sections is mechanical 

compaction. 

If one compares only Site 803, 806, and 807, the mechanical and chemical 

compaction rates are related to sedimentation rate. Slow sedimentation rate (Site 803) is 

associated with smaller compaction rate, both chemical and mechanical, while high 

sedimentation rate (Site 806) has larger compaction rates. Site 805 has abnormally high 

compaction rates although its sedimentation rate is intermediate. It seems that the 
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chemical rate is related to mechanical compaction rate. When the mechanical 

compaction rate is high, chemical compaction follows. 

6.2.2 The relative importance in reducing porosity  

Integrating the compaction rates with time gives the cumulative effect of each 

component on porosity reduction. For a given amount of calcite dissolution RdΔt, the 

porosity change caused by chemical compaction can be calculated as:  

 1-c dR t    .   (6.2) 

Because both chemical and mechanical compaction rates decrease with depth (therefore 

age) exponentially, the reduction in porosity is mainly controlled by the compaction 

rates in the first few million years. In shallow sediments, the reduction of porosity by 

mechanical and chemical compaction is almost equal because the rates are similar for 

Site 803. In deeper sections, both mechanical and chemical compactions still contribute 

to porosity reduction, but the mechanical compaction rate becomes larger than the 

chemical compaction rate. Therefore, the relative fraction of porosity loss by mechanical 

compaction becomes larger with depth. The fraction of chemical compaction in total 

porosity loss is about 1/4-1/3 in the deepest section. This is smaller than the fraction of 

mechanical compaction but is still significant. In the cases of Site 805 and 807, chemical 

compaction contributes more to porosity reduction than mechanical compaction in 

shallow sections. This relation is reversed in deeper sections, but in Site 806 chemical 

compaction contributes more throughout the whole section. 

The relative contribution of chemical compaction to porosity reduction is related 

to sedimentation rate of the site, which is expected due to the correlation between 
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compaction rates and sedimentation rates. Site 803 has the slowest sedimentation rate 

(16.9 m/Myr), and the relative importance of chemical compaction is smallest in Site 

803 compared to in other sites. Site 806 is the opposite. Site 805, although with 

extremely high compaction rates, also falls into this order. 

Our quantitative estimation of the compaction rates and their contributions to 

porosity reduction disagrees with previous conclusions in Bassinot et al. (1993) and 

Schlanger and Douglas (1974) in two perspectives: 1) Mechanical compaction is not the 

dominant process in the upper section; chemical compaction contributes an equal 

amount or even more to porosity reduction. 2) Chemical compaction becomes relatively 

less important in deep sections compared to in shallow sections, not more important. 

The estimation of chemical compaction in this study is based on the assumption 

that all calcite dissolution occurs in the vertical direction along grain contacts. Therefore, 

the chemical compaction rate is equal to the calcite recrystallization rate, which is 

constrained by the pore fluid Sr concentrations. However, it is also possible that calcite 

dissolution occurs horizontally which also releases Sr into the pore fluid, which does not 

cause chemical compaction. In that case the chemical compaction rate is smaller than the 

calcite recrystallization rate estimated based on Sr profiles. Therefore, our calculation in 

this study provides the upper limit of chemical compaction in contributing to porosity 

reduction. 
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Fig. 6.1 Recrystallization rates of calcite inferred from strontium concentrations in the 

pore fluid of Sites 803-807, compared with compaction rates of sediment. 
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Fig. 6.2 Fractions of mechanical compaction and chemical compaction in contributing to 

porosity reduction. 

6.2.3 Recrystallization rate and depositional conditions 

To fully analyze the calcite Sr/Ca ratios in terms of carbonate diagenesis and 

oceanic evolution history, it is required to distinguish the influence of changes in ocean 

conditions and different mixes of calcite-depositing organisms as contributors on deep-

sea sediments during diagenetic calcite recrystallization. In this section, the impact of 

sedimentation conditions on calcite recrystallization process would be summarized and 

discussed.  

By matching Sr and Ca concentrations in pore fluids, the reaction rate can be 

estimated. The reaction rates of calcium in carbonate sediments are concluded as an age-



142 

dependent parameter in previous studies (Fantle and DePaolo, 2006; Richter and Liang, 

1993): the dissolution rate (Rd) of carbonate sediments decreases with age. However, the 

relationship between the depositional conditions (such as carbonate content ratio and 

sedimentation rate) and the dissolution rate (Rd) has never been discussed yet.  

This coupled model is applied to more sites (Sites 803-807, 925-928, 984, 1082, 

1085, 1239 and 1119) with various sedimentation conditions. Those chosen sites here 

have relatively stable sedimentation conditions. The previous studies of reaction rates 

(Sites: 590B, 575, 575B, 594, 305, 516 and 289) are also summarized (Richter and 

Liang, 1993). The simulation results of strontium and calcium and measured data from 

ODP are plotted in Figs. 6.3-6.4. The modeled values are listed in Table. 6-1.  

It is worthwhile to point out that more precipitation than dissolution is observed 

in the ODP Sites 984, 1082, 1085, 1119 and 1239. To better characterize the exchange 

processes of Sr and Ca between carbonate solid and pore fluids during precipitation of 

calcite from aqueous solutions, a kinetic model of trace element fractionation proposed 

by DePaolo (2011) is adopted here to quantify Ksr for sites with more precipitation: 

1 1

f

sr

fd

p eq
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R K


 

   
 

 , (6.3) 

where Kf  is the forward kinetic fractionation factor for Sr/Ca ratio in the precipitation 

reaction, Keq is the equilibrium Sr/Ca partition coefficient when the precipitation is 

extremely slow, the value of Keq can be acquired by the activity coefficient of dissolved 
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SrCO3 in calcite. In this study, we adopt their values (Kf  = 0.24, Keq = 0.025) from 

DePaolo (2011).  

The relationships between calcite dissolution rates at the top of sediments and the 

carbonate content ratio and average sedimentation rate are carefully examined and 

plotted in Figs. 6.5-6.6. The carbonate content ratio is from a very low value of 8% at 

Site 984 with an initial calcite dissolution rate of 0.002 Myr-1 to a relative pure carbonate 

site of 92.4% with initial calcite dissolution rate of 0.019 Myr-1 at Site 807. Most of our 

investigated sites are within the range of 60% to 90%. As shown in Fig. 6.5, the higher 

the carbonate content, the more thoroughly sediments would be cemented. The 

exponential regression of all data sets between carbonate content (fc) and calcite 

dissolution rate (Rd) is: 
0.0328

0.002 cf

d eR  . The upper bound is 
0.0328

0.002 3cf

d eR  

while the lower bound is 
0.0328

0.002 3/cf

d eR  . All the data points are within the range 

between the lower and upper bounds. Based on the modeled results and collected data, 

for sites with low average carbonate contents in sediments, their calcite dissolution rates 

appear to be slower. It suggests that large composition of noncarbonate sedimentary 

components, such as terrigenous sediments or biogenic silica, has suppressed calcite 

recrystallization at these sites. 

The average sedimentation rates (corrected for decompaction) of modeled sites 

has the value from 5.4 m/Myr at Site 305 (Rd = 0.0181 Myr-1) to 195.9 m/Myr at Site 

1119 (Rd = 0.005 Myr-1). Most of them are deposited at the rate between 10 m/Myr to 40 

m/Myr. In Fig. 6.6, the empirical exponential regression between the average 

sedimentation rate (SR) and calcite dissolution rate (Rd) is: 
0.0120.0338 SR

dR e  . The 
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upper and lower bounds are 
0.0120.0338 6SR

d eR    and 
0.0120.0338 / 6SR

d eR   . The 

sites with lower sedimentation rates during deposition would have more extensive 

dissolution rates. The calcite dissolution would benefit from low sedimentation rate at 

those sites. 

 

Fig. 6.3 Simulation results of Sr concentration in the pore fluid at Sites (925, 926, 927, 

928, 984, 1082, 1085, 1119 and 1239) from ODP data.  
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Fig. 6.4 Simulation results of Ca concentration in the pore fluid at Sites (925, 926, 927, 

928, 984, 1082, 1085, 1119 and 1239) from ODP data. 

Table 6-1 Simulated parameters of various sites. 

Site Average 

sedimentation 

rate (m/Myr) 

Average 

carbonate 

content (%) 

Rd (Myr-1) Rnet (Myr-1) 

925 26 66.4 0.013×exp(-z/600) 0.00015×exp(-z/600) 

926 22.6 61.9 0.012×exp(-z/600) 0.00008×exp(-z/100) 

927 25.9 58 0.011×exp(-z/300) 0.00001×exp(-z/100) 

928 18.9 57.5 0.012×exp(-z/500) 0.00002×exp(-z/100) 

984 163 8 0.002×exp(-z/25) -0.0385×exp(-z/23.5)

1082 118 44.9 0.013×exp(-z/600) 

+ 0.0008

-0.025×exp(-z/10) +

0.00008

1085 53.6 65.9 0.0095×exp(-z/110) -0.0035×exp(-z/15)

1119 195.9 15.5 0.005×exp(-z/50) -0.037×exp(-z/10)

1239 82 59 0.028×exp(-z/100) -0.0037×exp(-z/22)
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Fig. 6.5 Relationship between dissolution rate (Myr-1) and carbonate content (%). 

Fig. 6.6 Relationship between dissolution rate (Myr-1) and average sedimentation rate 

(m/Myr). 
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6.3 Discussion and conclusions 

This study models the Sr and Ca exchange processes in the deep-sea carbonate 

sediments with respect to the rates of dissolution and precipitation. The calcite 

recrystallization rates are large at the top of sediments ant dramatically decreased with 

depth or the age of the sediments. Also, our coupled numerical models of chemical 

compaction in four calcite cores (Sites 803, 805, 806 and 807) indicate that chemical 

compaction could contribute significantly to total porosity loss, in some cases even more 

than mechanical compaction does. Previous studies attempt to divide the carbonate core 

into shallow and deep sections and to identify the dominant compaction process for each 

section. We believe that both mechanical and chemical compaction contributes 

significantly to porosity reduction throughout the core and their relative fractions change 

smoothly with depth. Neither process is too small to be ignored in either shallow or deep 

sections. This conclusion is drawn mainly based on numerical modeling of pore fluid Sr 

and other components, which provide constraints on the recrystallization rates of calcite. 

Potentially this can be compared with petrographical studies, if available, where the 

fraction of authigenic carbonate can be measured. 

In addition, by matching the chemical profiles of Sr and Ca, this numerical model 

can calculate the calcite dissolution rate in other more sites with various sedimentation 

conditions. Combined with other data in previous studies, the study could shed some 

insight for the general relationship between the calcite dissolution rate at the top of 

sediments and sedimentation conditions. It can be summarized as follows: the sites with 

higher carbonate content would have higher diagenetic potential; the sites with quicker 
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sedimentation rate usually have lower dissolution rate. The regression results could be 

used to make reasonable prediction of calcite recrystallization prediction when the 

sedimentation conditions are known.   

There are some ideas I would like to point out for the future study: 1). 

Experimental work would be helpful to support our numerical simulations. The fractions 

of authigenic and secondary carbonate from experimental measurements would be the 

direct evidence for the study in this area. 2). To draw a convincing conclusion of the 

quantitate relationship between the sedimentation conditions and the calcite dissolution 

rates at the top of sediments, more data points would be helpful.  
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APPENDIX A 

DERIVATION OF REACTIVE SOLUTE TRANSPORT IN A FILLED SINGLE 

FRACTURE SYSTEM UNDER UNILATERAL FLOW 

The governing equations of reactive solute transport in the mobile and immobile 

domains of filled fracture and rock matrix in Eqs.2.1-2.3 should be transformed in 

dimensionless formats. The dimensionless variables used in the study of the unilateral 

flow model are as follows: 

CmD =
𝐶𝑚

𝐶0
;  CimD =

𝐶𝑖𝑚

𝐶0
; CkD =
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𝐶0
; xD =

𝑥

𝑏
; zD =

𝑧

𝑏
√

𝑅3𝐷𝑚

𝑅1𝐷𝑑
; tD =
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𝑅1𝑏2 𝑡; Pe =
𝑣𝑚𝑏

𝐷𝑚

𝜃1 = 𝜃𝑖𝑚/𝜃𝑚; 𝜃2 = 𝜃𝑘/𝜃𝑚; 𝛼 =
𝑅1𝑏2

𝐷𝑚
; 𝛼1 = 𝜃2√

𝑅3𝐷𝑑
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. 

In the unilateral flow model, the non-dimensional governing equations (Eqs. 

(2.1)-(2.3)) now are transformed to their dimensionless formats of Eqs. (A1)-(A3): 
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Applying Laplace transform to Eqs. (A.1)-(A.3) would lead to the following equations: 
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where p is the Laplace transform parameter in respect to the dimensionless time, tD and 

overbar means the term in Laplace domain. From Eq. (A.6), one has 

 
2

32

kD
kD

D

d C
p C

dz
    ,  (A.7) 

The general solution of Eq. (A.7) is 

D Dwz wz

kDC Ae Be


  ,   (A.8) 

where 𝑤 = √𝜆3𝛼 + 𝑝 .  

Recalling boundary condition of rock matrix at infinity (Eq. (2.11)), Eq. (A.8) can be 

simplified as: 

𝐶𝑘𝐷 = 𝐵𝑒−𝑤𝑧𝐷 . (A.9) 

Substituting Eq. (A.9) to Eq. (A.6), one can get the following relation: 

3

1

m
D

d

R DmD kD
z

R D

C C


 , (A.10) 

3
3

1

m

d

R D
p

R D

mDB C e
 

 . (A.11) 

Now one has the relation between 𝐶𝑘𝐷 and 𝐶𝑚𝐷: 
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3
3

1

m
D

d

R D
p z

R D

kD mDC C e
 

 
   

  . (A.12) 

Based on Eq. (A.5), the relation between 𝐶𝑚𝐷 and 𝐶𝑖𝑚𝐷 is demonstrated: 

2
2 2

imD mD
im

im

C C
R p

R




  





 

.  (A.13) 

Substituting Eqs. (A.12)-(A.13) into Eq. (A.4), the final solutions will be reached in the 

Laplace domain. 

Converting M’fm, M’fim and M’k in Eqs. (2.30)-(2.32) into their dimensionless forms 

defined above, the dimensionless mass per unit width stored in the fracture-rock matrix 

system of unilateral flow is given as: 

3

0
1

2 m
fmD m mD D

d

R D
M C dx

R D




   , (A.14) 

3

0
1

2 m
fimD im imD D

d

R D
M C dx

R D




   , (A.15) 

3

1

0
2

m

d

R DkD k kD D D

R D

M C dx dz
 

    . (A.16) 
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APPENDIX B 

DERIVATION OF REACTIVE SOLUTE TRANSPORT IN A FILLED SINGLE 

FRACTURE SYSTEM UNDER RADIAL FLOW 

The governing equations (Eqs. (2.20)-(2.21)) are transformed to dimensionless 

formats. The dimensionless variables used in the study of the radial flow model are 

defined as follows: 

𝐶𝑚𝐷 =
𝐶𝑚

𝐶0
; 𝐶𝑖𝑚𝐷 =

𝐶𝑖𝑚

𝐶0
; 𝐶𝑘𝐷 =

𝐶𝑘

𝐶0
; 𝑡𝐷 =

𝐴𝑡

𝑅1𝑑2
; 𝑟𝐷 =

𝑟

𝑑
; 𝑧𝐷 = (

𝑧

𝑑
) √

𝑅3𝐴

𝑅1𝐷𝑑
 ; 𝜏1 =

𝜃2𝑑

𝑏
√

𝑅3𝐷𝑑

𝑅1𝐴
; 𝜏 =

𝑑2𝑅1

𝐴
; 𝜃1 = 𝜃𝑖𝑚/𝜃𝑚; 𝜃2 = 𝜃𝑘/𝜃𝑚; 𝑀𝑓𝑚𝐷 =

𝑀𝑓𝑚

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

 ; 𝑀𝑓𝑖𝑚𝐷 =

𝑀𝑓𝑖𝑚

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

 ; 𝑀𝑘𝐷 =
𝑀𝑘

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

 .  

Converting the system into the dimensionless format, as done for the unilateral flow 

model, with details provided above, one has: 

3

1

2

1 2

2

1

2
1 1 2 1

1 /

1 1

D
d

mD imD mD mD

D D D D D D

kD
mD imD

R AD z b d
R D

C C C CR

t R t r r r r

CR
C C

R z



    



        
       

        

 
    

 

,      (B.1) 

  2

2

imD
mD imD imD

D im

C
C C C

t R


 




  


,    (B.2) 

2

32
0kD kD

kD

D D

C C
C

z t


 
  

 
.   (B.3) 
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Applying the Laplace transform to Eqs. (B.1)-(B.3) would yield to the following 

equations in the Laplace domain:

3

1

2

2 1 2
1 2 2

1 1

1 1

/

1 1
+ + = 

D
d

mD mD
mD imD imD

D D D D

kD
mD

R AD z b d
R D

d C dCR pR
pC C C

R R r dr r dr

C
C

z


  

 



   
   

   

 
   

 

,   (B.4) 

  2

2

imD mD imD imD

im

pC C C C
R


 


   ,   (B.5) 

2

32
0kD

kD kD

D

C
C p C

z



  


.    (B.6) 

From Eq. (B.6), we have: 

 3kD DC a exp pz     .    (B.7) 

At the interacting surface between the rock matrix and fracture: 

  3 3
3

1 1

, / , exp /mD D kD D

d d

R A R A
C r p C z b d p a p b d

R D R D


   
            

   
.   (B.8) 

So a can be solved as follow: 

3
3

1

/mD

d

R A
a C exp p b d

R D


 
    

 
.   (B.9) 

Substituting Eq. (B.9) into Eq. (B.7), the relationship between 𝐶𝑘𝐷 and 𝐶𝑚𝐷 can be 

reached: 

3
3

1

exp /kD mD D

d

R A
C C p z b d

R D


  
      

   

. (B.10) 
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From Eq. (B.5), the relation between 𝐶𝑖𝑚𝐷 and 𝐶𝑚𝐷 is as follow: 

2
2 2

imD mD
im

im

C C
pR

R




  





 

 .          (B.11) 

Substituting Eqs. (B.10)-(B.11) to Eq. (B.4): 

2

2
0mD mD

D mD

D D

C C
r C

r r


 
  

 
,         (B.12) 

where 
 2 12

1 1 3
21

2 2
im

im

pR
p p

pRR
R

   
   


  



 
 

      
  
 

. 

The Eq. (B.12) is an inhomogeneous differential equation. The general solution is 

1 1

3 3
1 2exp exp

2 2
mD

y y
C A Ai y A Bi y 

      
         

      
,     (B.13) 

where y = r𝐷 + (4𝛽)−1. 

Since 𝐵𝑖(∞) → ∞, to fulfill the boundary condition below:    

 , 0mD DC r p  .          (B.14) 

A2 has to be zero. Now Eq. (B.13) is 

1

3
1 exp ( )

2
mD

y
C A Ai y

 
  

 
.         (B.15) 

The boundary condition at the interacting surface of the injection well is given as: 

0 1
,mD oD

r
C r p

d p

 
  

 
 .        (B.16) 

The parameter A1 can be expressed: 
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    
1

1 11 3
1 0

1 1 1
exp 4 4

2 2
D DA r Ai r

p
  

 
  

     
   

. (B.17) 

Now, the solutions in the Laplace domain could be reached. 

By using the dimensionless parameters above, the dimensionless masses stored in the 

fracture-rock matrix system of radial flow are given as: 

0

3

1

4

D

m

fmD D mD D
r

d

b R A
M r C dr

d R D

 

  , (B.18) 

0

3

1

4

D

im

fimD D imD D
r

d

b R A
M r C dr

d R D

 

  , (B.19) 

0

1

3

4
D

d

bkD k D kD D D
r

R D
d

R A

M r C dr dz
 

   . (B.20) 
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APPENDIX C 

DERIVATION OF REACTIVE SOLUTE TRANSPORT IN AN ASYMMETRIC 

FRACTURE SYSTEM 

The dimensionless variables used in this study are defied as follows: 

0/DC C C , 1 1 0/D CC C , 2 2 0/D CC C , /Dx x b , 2

1

D

R Dz
z

b RD
 , 

2Dt
D

t
Rb

 , 

Pe
vb

D
  ,

2Rb

D
  , 

2 1
0

2

b

DM
RD

D
C

R

M

 

  , 1
1

2 1
0

2

b

DM
R

M

D
C

R D






, 

2
2

2 1
0

2

b

DM
R

M

D
C

R D






 . 

With the help of those dimensionless parameters above, the non-dimensional 

governing equations (Eqs. (3.1)-(3.3)) are transformed to the dimensionless formats: 

0 0

2 2

1 2 1 1 2 2 2 2

2

12 2
D D D D

D D D D D
D

D D D D Dz z z z

C C C R

D

D C R D C
Pe C

t x x RD z RD z

 


 
 

    
   

 


  
,  (C.1) 

2

1 2 1
1 12

1

D D
D

D D

C R C
C

t R z


 
 

 
,   (C.2) 

2

2 2 2
2 22

1

D D
D

D D

C D C
C

t D z
 

 
 

 
.  (C.3) 

After applying Laplace transform to Eqs. (C.1)-(C.3), the following equations would be 

obtained: 

0 0

2 2

1 2 1 1 2 2 2 2

2

12 2
D D D D

D D D D
D D

D D D Dz z z z

d C C C C
pC C

d R D

D

R D
Pe

dx dx RD z RD z

 


 
 

 
  





 , (C.4) 
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2

2 1
1 1 12

1

D
D D

D

R

R

C
p

z
C C


 


,   (C.5) 

2

2 2
2

1

22 2

D
D D

D

D C
pC C

D z
 


 


,   (C.6) 

where p is the Laplace transform parameter in respect to the dimensionless time, tD and 

overbar means the term in Laplace domain. From Eqs. (C.5)-(C.6), one has: 

2

1
1 12

1

2

)(D
D

D

R

z R

C
p C 





,   (C.7) 

2

2
22

1
2

2

)(D
D

D

C D
p C

Dz
 


 


.   (C.8) 

The general solutions of the Eqs. (C.7)-(C.8) are: 

1 1

1 1 1
D Dw z w z

DC A e B e


   ,   (C.9) 

2 2

2 2 2
D Dw z w z

DC A e B e


  , (C.10) 

Where 1
1 1

2

( )p
R

w
R

   , 1
2 2

2

( )
D

w p
D

    . 

Recalling the boundary conditions of rock matrix at infinity (Eq. (3.9)), Eqs. (C.9)-

(C.10) can be further simplified as: 

1

1 1
Dw z

DC B e


 , (C.11) 

2

2 2
Dw z

DC A e . (C.12) 

After substituting in boundary conditions (Eqs. (3.6)-(3.8)), one can acquire: 

 1 2
1 1

2 1

expD D D

R R
C C p z

R RD

D
 

  
      

   

 , (C.13) 
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 1
2

2
2

2 1

expD D D

D R
C C p z

D RD

D
 

  
      

   

 , (C.14) 

where    1 1 1 2 2 2
1 21

2 2

R R
k p p

RD

D

RD

D
p

 
   

 
     . 

Substituting Eqs. (C.13)-(C.14) and the first-type boundary condition Eq. (3.10) into Eq. 

(C.4), the final solutions and the diffusion loss under the first-type condition can be 

reached: 

2

11
e

2

4
xpD D

Pe Pe
C x

k

p

 
 
 
 

 , (C.15) 

 
2

1 1 2
1 1

2 1

1
exp

2

4
D D D

k DPe Pe R R
C x p z

p R RD


  
       








, (C.16) 

 
2

1 1 2
2

2

2

1

1
exp

2

4
D D D

k DPe Pe D R
C x p z

p D RD
 

  
       








,    (C.17) 

 
2

11 1 1
1 1

1

1
exp

4

2
D

Pe Pe kD R
q p x

p b R

D

D




 
 







, (C.18) 

 
2

2

12 2

2

2
2

1
exp

4

2
D

Pe Pe kD R
q p x

p b R

D

D


 

 
 







. (C.19) 

It is the similar method to solve the problem under the third-type boundary condition Eq. 

(3.11), the final solutions are: 

2

1

2

1

4

4

1 2
exp

21 1 /
D D

Pe Pe k

k
C x

p Pe

 
  
 



 
, (C.20) 
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 
2

1 1 2
1 1

2
2 11

4

4

1 2
exp

21 1 /
D D D

k DPe Pe R R
C x p z

p R RPek D


  
           


 ,

(C.21) 

 
2

1 1 2

2
1

22

21

4

4

1 2
exp

21 1 /
D D D

k DPe Pe D R
C x p z

p D RPek D
 

  
           


 .

   (C.22) 

Converting the mass stored in each domain (Eqs. (3.32)-(3.34)) into 

corresponding dimensionless formats defined above, the dimensionless mass per unit 

width stored in each domain is given as: 

2

0
1

2D D D

R D
C

RD
M dx



  , (C.23) 

2

1

1 1
0

1R

RD

DD D D DCM dx dz
 

   , (C.24) 

2

1

0
2 2 2D D D D

RD

DR

M C dx dz
 


   . (C.25) 

For the back-diffusion problem, the water starts flushing the system after t0. The 

diffusion coefficients after water flushing may change to D1b, D2b, Db: 

1 1 1bD a D , 22 2bD a D , bD aD . (C.26) 

For the back-diffusion process, the governing equations are similar as: 



177 

0 0

2 2

1 1 2 1 1 2 2 2 2 2

2

12 2
D D D D

D D D D D
D

D D D D Dz z z z

C C C R D C R D C
a Pe C

t x x RD z R z

a a

D D

 


 
 

    
   

 


  
, 

(C.27) 

2

1 2 1
1 1 12

1

D D
D

D D

C R C
a C

t R z


 
 

 
,   (C.28) 

2

2 2 2
2 2 22

1

D D
D

D D

C D C
a C

t D z
 

 
 

 
. (C.29) 

Following the similar method, the solutions during back diffusion are: 

2

2
1

' p
2

4
exD D

Pe Pe a
C

p

k
x

a

 
  
 
 

 , (C.30) 

 
2

2 1 2
1 1

1 2 1

1
' exp

4

2
D D D

Pe Pe a R R
C x p z

p a a R RD

k D


  
          


 , (C.31) 

 
2

2 1 2
2

2 2 1

2

1
' exp

4

2
D D D

Pe Pe a D R
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k D
 
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          


 , (C.32) 

where    1 1 1 1 2 2 2 2
1 22

2 2

R a R a
k p p

RD

D D
p

RD

 
   

 
     . 

The overall final solutions are: 

0

0 0

( , , )

)( , , ) ( , ,

f x z t t t
C

f x z t g x z t t t t


 

  
 , (C.33) 

where f (x,z,t) is the solution (Eqs. (C.15)-(C.17)) before water flushing, g (x,z,t) is the 

solution (Eqs. (3.30)-(3.31)) during water flushing time period. 
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APPENDIX D 

DERIVATION OF REACTIVE SOLUTE TRANSPORT IN A STRATIFIED SYSTEM 

WITH SCALE DEPENDENT DISPERSIVITY 

The governing equation of solute transport in the permeable layer is as follow: 

21( )
2 2

q qC C C
R D x v RC

t x x x b b
   

    
         

.  (D.1) 

The terms q1 and q2 refer to the diffusive mass entering the less permeable layers, which 

are expressed as:  

1
1 1 1

z b

C
Dq

z







   ,   (D.2) 

2
2 2 2

z b

C
D

z
q 






  .  (D.3) 

A contaminant source at constant concentration is placed at the left boundary condition, 

which is also called the first type boundary condition and is expressed as: 

0( 0, )C x t C  . (D.4)

The governing equations of solute transport in the upper layer (layer 1) and lower layer 

(layer 2) are respectively:  

2

1 1
1 1 1 1 12

C C
D R C

t z
R 
 

 
 

 ,  (D.5) 

2 2
2 2 2 2

2

2 2

C C
D R C

t z
R 

 
 

 
.  (D.6) 

The entire system is free of solute at beginning:

1 2( , 0) ( , , 0) ( , , 0) 0C x t C x z t C x z t      .    (D.7) 
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The permeable layer is considered as infinitely long and the less permeable layers are 

considered as infinity thick. Thus, we have: 

,( ) 0C x t  , 1( , 0, )C x z t  , 2 0( , , )C x z t  .   (D.8) 

The concentrations at the interfaces of different layers are continuous: 

1( , , ) ( , )C x z b t C x t  , 2 ( , , ) ( , )C x z b t C x t   .   (D.9) 

The technique of Laplace transform is adopted here. Eqs. (D.1), (D.5) and (D.6) are then 

transformed into Laplace domain as: 

2

2

( )
( ) 0

d C dD x dC
D x v C

dx dx dx

 
    
 

, (D.10) 
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, (D.11) 
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, (D.12) 

where 1
1 1

2
22 21( ) ( )

2 2
R R p R

b
p D Dp R

b

 
  

 
      , p is the Laplace 

transform parameter and the over bar means the terms in Laplace domain. 

With the consideration of continuous concentration at interfaces of layers (Eq. (D.9)), 

Eqs. (D.11)-(D.12) can be solved as follows: 

1 1 1
1

1

exp ( )
RpR

z bC C
D

 
   


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  , (D.13) 

2 2 2
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z b
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C C
 
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


 . (D.14) 
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For the case of a linear scale-dependent dispersivity, one has: 

0(( ) )x vD x D   , where ( )x kx  . Substituting this relationship into Eq. (D.10), we 

have: 

 
2

0 2
( ) 0

d C dC
kvx D kv v C

dx dx
     . (D.15) 

Defining a new variable 1 0kvx D   , then the equation above turns to: 

22
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. (D.16) 

This equation has the form of the following Bessel equation: 

   
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2 2 2 2 2 2 2

1 1 12

1

1 2 0nd C dC
C

d d
        

 
       , (D.17) 

where 
1

k
   ,

2

kv
   , 1  . It have been proven that 1 1( )I 

  and 1 1( )K 

 

are two independent special solutions of the equation, where ( )I x  and ( )K x are the 

first and second kinds of modified Bessel functions with the order  . Therefore, the 

general solution of this equation is: 

 1 1 1 1 1( ) ( )C A K B I

     , (D.18) 

where A1 and B1 are two constants. According to the boundary condition (Eq. (D.8)), 

when 1  , C is finite. Thus, B1 equals to zero. The solution could be simplified as: 

1 1 1( )C A K

  . (D.19) 

After substituting in boundary condition   00,
C

C x p
p

  , one can acquire: 
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 
0

1

0 0

1
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C
A

p D K D
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The final solution in Laplace domain can be derived now as: 
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For the case of an exponential scale-dependent dispersivity, the dispersivity can 

be expressed as: 1( ) (1 )
k x

x a e 
  . Thus, the governing equation could be rewritten as: 

1 1
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0 12
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k xk x d C dC
aa e v k ve v C

dx dx
D
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Defining two variables: 1

2

k x
He  , 01 / ( )H D av  , Eq. (D.22) can be expressed as: 
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The above equation has the form of the following Gauss hypergeometric equation: 
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where 0Q  , 
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1 4
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As 21    , the solution can be written in terms of the hypergeometric function as 

follows: 

   1 1

2 22 2 2 2, 1; 1; , 1; 1;m nC A F m m m n B F n n n m              , (D.25) 
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where  2

1, 1; 1;F m m m n     and  2

1, 1; 1;F n n n m      are the Gauss 

hypergeometric functions. 

In terms of the outlet boundary condition (Eq. (D.8)), the concentration remain 

finite when 2  . Thus, the B2 must equal zero as n is less than zero. The solution 

can be simplified as: 

 1

2 22 , 1; 1;mC A F m m m n      .  (D.26) 

After substituting   00,
C

C x p
p

  , A2 could be solved as: 
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The final solution is then derived as: 
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