Supplementary files:
Appendix A: Reactive solute transport in a filled single fracture-matrix system under
the unilateral flow.

The governing equations of reactive solute transport in the mobile and immobile
domains of filled fracture and rock matrix in Eqs.2.1-2.3 should be transformed in
dimensionless formats. The dimensionless variables used in the study of the unilateral

flow model are as follows:
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In the unilateral flow model, the non-dimensional governing equations (Eqgs. (2.1)-

(2.3)) now are transformed to their dimensionless formats of Egs. (A1)-(A3):
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Applying Laplace transform to Egs. (A.1)-(A.3) would lead to the following equations:



— 2_ ~ —— —_— ~
PCpp+ P aR, Cinp = d szD —Pe 9Co -4aCp _ﬂ’zela_zcimD +a 1C )
R, dx? dx, dz |, _ b,
R.D,
(A.4)
(0004
pCimD = Q—R(CmD _CimD)_ﬂ'ZaCimD ’ (AS)
im" ‘2
_ dzC_kD _
pCyp = dT—ﬂaaCkD ; (A.6)
D

where p is the Laplace transform parameter in respect to the dimensionless time, #p and

overbar means the term in Laplace domain. From Eq. (A.6), one has
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The general solution of Eq. (A7) is
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where w = ,/A;a+p .
Recalling boundary condition of rock matrix at infinity (Eq. (2.11)), Eq. (A.8) can be

simplified as:
Cup = Be™W7 | (A.9)

Substituting Eq. (A.9) to Eq. (A.6), one can get the following relation:
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Now one has the relation between C,p and C,,p:
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Based on Eq. (A.5), the relation between C,,p and C;,p 1s demonstrated:
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Substituting Egs. (A.12)-(A.13) into Eq. (A.4), the final solutions will be reached in the

Laplace domain.

Converting M s, M sim and M’y in Egs. (2.30)-(2.32) into their dimensionless forms
defined above, the dimensionless mass per unit width stored in the fracture-rock matrix

system of unilateral flow is given as:
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Appendix B: Reactive solute transport in a filled single fracture-matrix system under
the radial flow.

The governing equations (Egs. (2.20)-(2.21)) are transformed to dimensionless
formats. The dimensionless variables used in the study of the radial flow model are defined

as follows:
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Converting the system into the dimensionless format, as done for the unilateral flow

model, with details provided above, one has:
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Applying the Laplace transform to Egs. (B.1)-(B.3) would yield to the following

equations in the Laplace domain:
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From Eq. (B.6), we have:
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At the interacting surface between the rock matrix and fracture:
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So a can be solved as follow:
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Substituting Eq. (B.9) into Eq. (B.7), the relationship between m and C,,p can be

reached:
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From Eq. (B.5), the relation between C;,,p and C,,p is as follow:
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Substituting Egs. (B.10)-(B.11) to Eq. (B.4):
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The Eq. (B.12) is an inhomogeneous differential equation. The general solution is
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Since Bi() — oo, to fulfill the boundary condition below:
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A> has to be zero. Now Eq. (B.13) is
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The boundary condition at the interacting surface of the injection well is given as:
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The parameter 41 can be expressed:
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Now, the solutions in the Laplace domain could be reached.

By using the dimensionless parameters above, the dimensionless masses stored in the

fracture-rock matrix system of radial flow are given as:
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Appendix C: Reactive solute transport in an asymmetrical fracture-rock matrix

system.

The dimensionless variables used in this study are defied as follows:
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With the help of those dimensionless parameters above, the non-dimensional

governing equations (Egs. (3.1)-(3.3)) are transformed to the dimensionless formats:
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After applying Laplace transform to Egs. (C.1)-(C.3), the following equations would be

obtained:
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where p is the Laplace transform parameter in respect to the dimensionless time, zp and

overbar means the term in Laplace domain. From Egs. (C.5)-(C.6), one has:
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The general solutions of the Egs. (C.7)-(C.8) are:

Cip = Ae™® +Be™* | (C.9)

Coo = A™™ +Be ™™, (C.10)
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Recalling the boundary conditions of rock matrix at infinity (Eq. (3.9)), Egs. (C.9)-(C.10)

can be further simplified as:
C,, = Be "™, (C.11)
C,p = Ag"™. (C.12)

After substituting in boundary conditions (Egs. (3.6)-(3.8)), one can acquire:
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Substituting Egs. (C.13)-(C.14) and the first-type boundary condition Eq. (3.10) into Eq.

(C.4), the final solutions and the diffusion loss under the first-type condition can be

reached:
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It is the similar method to solve the problem under the third-type boundary condition Eq.
(3.11), the final solutions are:
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Converting the mass stored in each domain (Egs. (3.32)-(3.34)) into corresponding
dimensionless formats defined above, the dimensionless mass per unit width stored in each

domain is given as:
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For the back-diffusion problem, the water starts flushing the system after #. The
diffusion coefficients after water flushing may change to D1s, D2p, Dp:
D,=aDb,, D, =a,D,,D,=aD. (C.26)
For the back-diffusion process, the governing equations are similar as:
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Following the similar method, the solutions during back diffusion are:
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The overall final solutions are:
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where f (x,z,¢) is the solution (Egs. (C.15)-(C.17)) before water flushing, g (x,z¢) is the

solution (Egs. (3.30)-(3.31)) during water flushing time period.
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Appendix D: Reactive solute transport in a fully coupled asymmetric stratified
system, comparison of scale dependent and independent dispersion schemes.

The governing equation of solute transport in the permeable layer is as follow:

HR@=9£{D(x)§}—9v§—9/mc-&—q—z. (D.1)
ot OX OX OX 2b 2b

The terms g1 and ¢ refer to the diffusive mass entering the less permeable layers, which

arc expressed as:
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A contaminant source at constant concentration is placed at the left boundary condition,
which is also called the first type boundary condition and is expressed as:

C(x=0,t)=C,. (D.4)
The governing equations of solute transport in the upper layer (layer 1) and lower layer

(layer 2) are respectively:
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The entire system is free of solute at beginning:

C(x,t=0)=C,(x,2,t =0)=C,(x,z,t=0)=0. (D.7)
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The permeable layer is considered as infinitely long and the less permeable layers are
considered as infinity thick. Thus, we have:

C(x >, t)=0, C/(X,z—>mo,t)=0,C,(X,Z—> —oo,t)=0. (D.8)
The concentrations at the interfaces of different layers are continuous:
C,(x,z=b,t)=C(x,t), C,(x,z=-b,t)=C(x,t). (D.9)
The technique of Laplace transform is adopted here. Egs. (D.1), (D.5) and (D.6) are then

transformed into Laplace domain as:
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where ‘I’:pR+ﬂ,R+%1/(p+ﬂj)R1Dl+2i—29,/(p+/12)R2D2 , p 1s the Laplace

transform parameter and the over bar means the terms in Laplace domain.
With the consideration of continuous concentration at interfaces of layers (Eq. (D.9)), Egs.

(D.11)-(D.12) can be solved as follows:
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For the case of a Ilinear scale-dependent dispersivity, one has:
D(X) = a(x) xv+ D,, where ar(x) = kx . Substituting this relationship into Eq. (D.10), we
have:

dC dC
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Defining a new variable & =./kvx+ D, , then the equation above turns to:
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This equation has the form of the following Bessel equation:
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where }/=E , 5=k—\/‘1’ ,n=1. It have been proven that &~ |7(5(§1”) and
Vv

&K, (08") are two independent special solutions of the equation, where 1 (X) and
K, (x) are the first and second kinds of modified Bessel functions with the order .
Therefore, the general solution of this equation is:

C=¢&"{AK,(65)+B (55)} . (D.18)
where 41 and B are two constants. According to the boundary condition (Eq. (D.8)),

when & > | C is finite. Thus, B1 equals to zero. The solution could be simplified as:
C=¢&"AK (6). (D.19)

e I~ C .
After substituting in boundary condition C (X =0, p) =—2 one can acquire:
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A=t Co . (D.20)
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The final solution in Laplace domain can be derived now as:
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For the case of an exponential scale-dependent dispersivity, the dispersivity can
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be expressed as: a(x)=a(l—e™"). Thus, the governing equation could be rewritten as:
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Defining two variables: &, = He** , H =1+D,/(av) ,Eq. (D.22) can be expressed as:
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The above equation has the form of the following Gauss hypergeometric equation:
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As 1< &, <o | the solution can be written in terms of the hypergeometric function as

follows:

C=A&F(mm+Lm-n+L& " )+BE "F(nn+Ln-m+1&7), (D.25)
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where  F(mm+Lm-n+L&™") and F(nn+Ln-m+L&") are the Gauss

hypergeometric functions.
In terms of the outlet boundary condition (Eq. (D.8)), the concentration remain

finite when &, = oo . Thus, the B> must equal zero as 7 is less than zero. The solution

can be simplified as:

C=AL"F(mm+Lm-n+1L&"). (D.26)

After substituting E(X =0,p)= G , A2 could be solved as:
p
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The final solution is then derived as:
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