Supplementary files:

Appendix A: Reactive solute transport in a filled single fracture-matrix system under

 the unilateral flow.The governing equations of reactive solute transport in the mobile and immobile domains of filled fracture and rock matrix in Eqs.2.1-2.3 should be transformed in dimensionless formats. The dimensionless variables used in the study of the unilateral flow model are as follows:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{mD}}=\frac{c_{m}}{C_{0}} ; \quad \mathrm{C}_{\mathrm{imD}}=\frac{c_{i m}}{C_{0}} ; \mathrm{C}_{\mathrm{kD}}=\frac{C_{k}}{C_{0}} ; \mathrm{x}_{\mathrm{D}}=\frac{x}{b} ; \mathrm{z}_{\mathrm{D}}=\frac{z}{b} \sqrt{\frac{R_{3} D_{m}}{R_{1} D_{d}}} ; \mathrm{t}_{\mathrm{D}}=\frac{D_{m}}{R_{1} b^{2}} t ; \mathrm{Pe}=\frac{v_{m} b}{D_{m}} \\
& \theta_{1}=\theta_{i m} / \theta_{m} ; \theta_{2}=\theta_{k} / \theta_{m} ; \alpha=\frac{R_{1} b^{2}}{D_{m}} ; \alpha_{1}=\theta_{2} \sqrt{\frac{R_{3} D_{d}}{R_{1} D_{m}}} ; M_{f m D}^{\prime}=\frac{M^{\prime} f m}{C_{0} b^{2} \sqrt{\frac{R_{1} D_{d}}{R_{3} D_{m}}}} ; M_{f i m D}^{\prime}= \\
& \frac{M^{\prime} f i m}{C_{0} b^{2} \sqrt{\frac{R_{1} D_{d}}{R_{3} D_{m}}}} ; M^{\prime}{ }_{k D}=\frac{M^{\prime} k}{C_{0} b^{2} \sqrt{\frac{R_{1} D_{d}}{R_{3} D_{m}}}} .
\end{aligned}
$$

In the unilateral flow model, the non-dimensional governing equations (Eqs. (2.1)(2.3)) now are transformed to their dimensionless formats of Eqs. (A1)-(A3):

$$
\begin{align*}
& \frac{\partial C_{m D}}{\partial t_{D}}+\frac{\theta_{1} R_{2}}{R_{1}} \frac{\partial C_{i m D}}{\partial t_{D}}=\frac{\partial^{2} C_{m D}}{\partial x_{D}^{2}}-P e \frac{\partial C_{m D}}{\partial x_{D}}-\lambda_{1} \alpha C_{m D}-\lambda_{2} \theta_{1} \alpha \frac{R_{2}}{R_{1}} C_{i m}+\left.\alpha_{1} \frac{\partial C_{k D}}{\partial z_{D}}\right|_{z D} \underbrace{}_{\substack{\sqrt{3 \beta_{1} D_{m}} \\
R_{1} D_{d}}} \tag{A.1}\\
& \frac{\partial C_{i m D}}{\partial t_{D}}=\frac{\omega \alpha}{\theta_{i m} R_{2}}\left(C_{m D}-C_{i m D}\right)-\lambda_{2} \alpha C_{i m D} \tag{A.2}\\
& \frac{\partial C_{k D}}{\partial t_{D}}=\frac{\partial^{2} C_{k D}}{\partial z_{D}^{2}}-\lambda_{3} \alpha C_{k D} \tag{A.3}
\end{align*}
$$

Applying Laplace transform to Eqs. (A.1)-(A.3) would lead to the following equations:

$$
p \overline{C_{m D}}+p \frac{\theta_{1} R_{2}}{R_{1}} \overline{C_{i m D}}=\frac{d^{2} \overline{C_{m D}}}{d x_{D}^{2}}-P e \frac{d \overline{C_{m D}}}{d x_{D}}-\lambda_{1} \alpha \overline{C_{m D}}-\lambda_{2} \theta_{1} \alpha \frac{R_{2}}{R_{1}} \overline{C_{i m D}}+\left.\alpha_{1} \frac{d \overline{C_{k D}}}{d z_{D}}\right|_{z_{D}=\sqrt{\frac{R_{B} D_{m}}{R_{1} D_{d}}}},
$$

$$
\begin{align*}
& p \overline{C_{i m D}}=\frac{\omega \alpha}{\theta_{i m} R_{2}}\left(\overline{C_{m D}}-\overline{C_{i m D}}\right)-\lambda_{2} \alpha \overline{C_{i m D}}, \tag{A.5}\\
& p \overline{C_{k D}}=\frac{d^{2} \overline{C_{k D}}}{d z_{D}^{2}}-\lambda_{3} \alpha \overline{C_{k D}},
\end{align*}
$$

where p is the Laplace transform parameter in respect to the dimensionless time, t_{D} and overbar means the term in Laplace domain. From Eq. (A.6), one has

$$
\begin{equation*}
\frac{d^{2} \overline{C_{k D}}}{d z_{D}^{2}}=\left(\lambda_{3} \alpha+p\right) \overline{C_{k D}} \tag{A.7}
\end{equation*}
$$

The general solution of Eq. (A7) is

$$
\begin{equation*}
\overline{C_{k D}}=A e^{w z_{D}}+B e^{-w z_{D}}, \tag{A.8}
\end{equation*}
$$

where $w=\sqrt{\lambda_{3} \alpha+p}$.
Recalling boundary condition of rock matrix at infinity (Eq. (2.11)), Eq. (A.8) can be simplified as:

$$
\begin{equation*}
\overline{C_{k D}}=B e^{-w z_{D}} . \tag{A.9}
\end{equation*}
$$

Substituting Eq. (A.9) to Eq. (A.6), one can get the following relation:

$$
\begin{align*}
& \overline{C_{m D}}=\left.\overline{C_{k D}}\right|_{z_{D}=\sqrt{R_{3} D_{m}}} ^{R_{1} D_{d}} \tag{A.10}\\
& B=\overline{C_{m D}} e^{\sqrt{2_{3} \alpha+p} \sqrt{\frac{R_{3} D_{m}}{R_{1} D_{d}}}} . \tag{A.11}
\end{align*}
$$

Now one has the relation between $\overline{C_{k D}}$ and $\overline{C_{m D}}$:
$\overline{C_{k D}}=\overline{C_{m D}} e^{\sqrt{h_{3} \alpha+p}}\left(\sqrt{\frac{R_{\frac{2}{2}} D_{m}}{R_{1} D_{d}}}-z_{D}\right)$.
Based on Eq. (A.5), the relation between $\overline{C_{m D}}$ and $\overline{C_{i m D}}$ is demonstrated:

$$
\begin{equation*}
\overline{C_{i m D}}=\frac{\omega}{\frac{\theta_{i m} R_{2} p}{\alpha}+\omega+\lambda_{2} \theta_{i m} R_{2}} \overline{C_{m D}} \tag{A.13}
\end{equation*}
$$

Substituting Eqs. (A.12)-(A.13) into Eq. (A.4), the final solutions will be reached in the Laplace domain.

Converting $M_{f f}^{\prime}, M_{f i m}^{\prime}$ and M_{k}^{\prime} in Eqs. (2.30)-(2.32) into their dimensionless forms defined above, the dimensionless mass per unit width stored in the fracture-rock matrix system of unilateral flow is given as:

$$
\begin{align*}
& M_{f m D}^{\prime}=2 \theta_{m} \sqrt{\frac{R_{3} D_{m}}{R_{1} D_{d}}} \int_{0}^{\infty} C_{m D} d x_{D}, \tag{A.14}\\
& M_{{ }_{f i m D}}^{\prime}=2 \theta_{i m} \sqrt{\frac{R_{3} D_{m}}{R_{1} D_{d}}} \int_{0}^{\infty} C_{i m D} d x_{D}, \tag{A.15}\\
& M_{k D}^{\prime}=2 \theta_{k} \int_{\sqrt{\frac{R_{2} D_{m} D_{1}}{R_{d}}}}^{\infty} \int_{0}^{\infty} C_{k D} d x_{D} d z_{D} \tag{A.16}
\end{align*}
$$

Appendix B: Reactive solute transport in a filled single fracture-matrix system under

 the radial flow.The governing equations (Eqs. (2.20)-(2.21)) are transformed to dimensionless formats. The dimensionless variables used in the study of the radial flow model are defined as follows:
$C_{m D}=\frac{C_{m}}{C_{0}} ; \quad C_{i m D}=\frac{C_{i m}}{C_{0}} ; \quad C_{k D}=\frac{C_{k}}{C_{0}} ; \quad t_{D}=\frac{A t}{R_{1} d^{2}} ; \quad r_{D}=\frac{r}{d} ; \quad z_{D}=\left(\frac{z}{d}\right) \sqrt{\frac{R_{3} A}{R_{1} D_{d}}} ; \quad \tau_{1}=$
$\frac{\theta_{2} d}{b} \sqrt{\frac{R_{3} D_{d}}{R_{1} A}} ; \tau=\frac{d^{2} R_{1}}{A} ; \quad \theta_{1}=\theta_{i m} / \theta_{m} ; \quad \theta_{2}=\theta_{k} / \theta_{m} ; \quad M_{f m D}=\frac{M_{f m}}{C_{0} d^{3} \sqrt{\frac{R_{1} D_{d}}{R_{3} A}}} ; \quad M_{f i m D}=$
$\frac{M_{f i m}}{C_{0} d^{3} \sqrt{\frac{R_{1} D_{d}}{R_{3} A}}} ; M_{k D}=\frac{M_{k}}{C_{0} d^{3} \sqrt{\frac{R_{1} D_{d}}{R_{3} A}}}$.
Converting the system into the dimensionless format, as done for the unilateral flow model, with details provided above, one has:

$$
\begin{align*}
& \frac{\partial C_{m D}}{\partial t_{D}}+\frac{\theta_{1} R_{2}}{R_{1}}\left(\frac{\partial C_{i m D}}{\partial t_{D}}\right)= \frac{1}{r_{D}}\left(\frac{\partial^{2} C_{m D}}{\partial r_{D}^{2}}\right)-\frac{1}{r_{D}}\left(\frac{\partial C_{m D}}{\partial r_{D}}\right) \\
&-\lambda_{1} \tau C_{m D}-\theta_{1} \lambda_{2} \frac{R_{2}}{R_{1}} \tau C_{i m D}+\left.\tau_{1}\left(\frac{\partial C_{k D}}{\partial z_{D}}\right)\right|_{z_{D}=b / d} \sqrt{\frac{R_{3} A}{R_{1} D_{d}}}, \tag{B.1}\\
& \frac{\partial C_{i m D}}{\partial t_{D}}= \frac{\omega \tau}{\theta_{i m} R_{2}}\left(C_{m D}-C_{i m D}\right)-\lambda_{2} \tau C_{i m D}, \tag{B.2}\\
& \frac{\partial^{2} C_{k D}}{\partial z_{D}^{2}}-\frac{\partial C_{k D}}{\partial t_{D}}-\tau \lambda_{3} C_{k D}=0 . \tag{B.3}
\end{align*}
$$

Applying the Laplace transform to Eqs. (B.1)-(B.3) would yield to the following equations in the Laplace domain:

$$
\begin{align*}
& p \overline{C_{m D}}+\theta_{1} \lambda_{2} \frac{R_{2}}{R_{1}} \tau \overline{C_{i m D}}+\frac{\theta_{1} p R_{2}}{R_{1}} \overline{C_{i m D}}=\frac{1}{r_{D}}\left(\frac{d^{2} \overline{C_{m D}}}{d r_{D}^{2}}\right)-\frac{1}{r_{D}}\left(\frac{d \overline{C_{m D}}}{d r_{D}}\right)-\lambda_{1} \tau \overline{C_{m D}}+\left.\tau_{1}\left(\frac{\partial \overline{C_{k D}}}{\partial z_{D}}\right)\right|_{z_{D}=b / d} \sqrt{\frac{R_{3} A}{R_{1} D_{d}}} \tag{B.4}\\
& p \overline{C_{i m D}}=\frac{\omega \tau}{\theta_{i m} R_{2}}\left(\overline{C_{m D}}-\overline{C_{i m D}}\right)-\lambda_{2} \tau \overline{C_{i m D}} \tag{B.5}\\
& \frac{\partial^{2} \overline{C_{k D}}}{\partial z_{D}^{2}}-\bar{C}_{k D} p-\tau \lambda_{3} \overline{C_{k D}}=0 \tag{B.6}
\end{align*}
$$

From Eq. (B.6), we have:

$$
\begin{equation*}
\overline{C_{k D}}=a \times \exp \left(-\sqrt{\tau \lambda_{3}+p} z_{D}\right) . \tag{B.7}
\end{equation*}
$$

At the interacting surface between the rock matrix and fracture:

$$
\begin{equation*}
\overline{C_{m D}}\left(r_{D}, p\right)=\overline{C_{k D}}\left(z_{D}=b / d \sqrt{\frac{R_{3} A}{R_{1} D_{d}}}, p\right)=a \times \exp \left(-\sqrt{\tau \lambda_{3}+p} \times b / d \sqrt{\frac{R_{3} A}{R_{1} D_{d}}}\right) . \tag{B.8}
\end{equation*}
$$

So a can be solved as follow:

$$
\begin{equation*}
a=\overline{C_{m D}} \exp \left(\sqrt{\tau \lambda_{3}+p} \times b / d \sqrt{\frac{R_{3} A}{R_{1} D_{d}}}\right) . \tag{B.9}
\end{equation*}
$$

Substituting Eq. (B.9) into Eq. (B.7), the relationship between $\overline{C_{k D}}$ and $\overline{C_{m D}}$ can be reached:

$$
\begin{equation*}
\overline{C_{k D}}=\overline{C_{m D}} \exp \left[-\sqrt{\tau \lambda_{3}+p}\left(z_{D}-b / d \sqrt{\frac{R_{3} A}{R_{1} D_{d}}}\right)\right] . \tag{B.10}
\end{equation*}
$$

From Eq. (B.5), the relation between $\overline{C_{i m D}}$ and $\overline{C_{m D}}$ is as follow:

$$
\begin{equation*}
\overline{C_{i m D}}=\frac{\omega}{\frac{\theta_{i m} p R_{2}}{\tau}+\omega+\lambda_{2} \theta_{i m} R_{2}} \overline{C_{m D}} \tag{B.11}
\end{equation*}
$$

Substituting Eqs. (B.10)-(B.11) to Eq. (B.4):

$$
\begin{equation*}
\frac{\partial^{2} \overline{C_{m D}}}{\partial r_{D}^{2}}-\frac{\partial \overline{C_{m D}}}{\partial r_{D}}-r_{D} \beta \overline{C_{m D}}=0 \tag{B.12}
\end{equation*}
$$

where $\beta=\left(\tau \lambda_{1}+\tau_{1} \sqrt{\tau \lambda_{3}+p}+p+\frac{R_{2}}{R_{1}} \times \frac{\left(p+\lambda_{2} \tau\right) \theta_{1} \omega}{\frac{\theta_{i m} p R_{2}}{\tau}+\omega+\lambda_{2} \theta_{i m} R_{2}}\right)$.
The Eq. (B.12) is an inhomogeneous differential equation. The general solution is

$$
\begin{equation*}
\overline{C_{m D}}=A_{1} \times \exp \left(\frac{y}{2}\right) A i\left(\beta^{\frac{1}{3}} y\right)+A_{2} \times \exp \left(\frac{y}{2}\right) B i\left(\beta^{\frac{1}{3}} y\right) \tag{B.13}
\end{equation*}
$$

where $\mathrm{y}=\mathrm{r}_{D}+(4 \beta)^{-1}$.
Since $B i(\infty) \rightarrow \infty$, to fulfill the boundary condition below:

$$
\begin{equation*}
\overline{C_{m D}}\left(r_{D} \rightarrow \infty, p\right)=0 . \tag{B.14}
\end{equation*}
$$

A_{2} has to be zero. Now Eq. (B.13) is

$$
\begin{equation*}
\overline{C_{m D}}=A_{1} \exp \left(\frac{y}{2}\right) A i\left(\beta^{\frac{1}{3}} y\right) . \tag{B.15}
\end{equation*}
$$

The boundary condition at the interacting surface of the injection well is given as:

$$
\begin{equation*}
\overline{C_{m D}}\left(r_{o D}=\frac{r_{0}}{d}, p\right)=\frac{1}{p} . \tag{B.16}
\end{equation*}
$$

The parameter A_{1} can be expressed:

$$
\begin{equation*}
A_{1}=\frac{1}{p} \exp \left(-\frac{1}{2} r_{0 D}-\frac{1}{2}(4 \beta)^{-1}\right) A i^{-1}\left[\beta^{\frac{1}{3}}\left(r_{D}+(4 \beta)^{-1}\right)\right] . \tag{B.17}
\end{equation*}
$$

Now, the solutions in the Laplace domain could be reached.

By using the dimensionless parameters above, the dimensionless masses stored in the fracture-rock matrix system of radial flow are given as:

$$
\begin{align*}
& M_{f m D}=\int_{r_{0 D}}^{\infty} \frac{4 \pi b \theta_{m} \sqrt{R_{3} A}}{d \sqrt{R_{1} D_{d}}} r_{D} C_{m D} d r_{D} \tag{B.18}\\
& M_{f i m D}=\int_{r_{0 D}}^{\infty} \frac{4 \pi b \theta_{i m} \sqrt{R_{3} A}}{d \sqrt{R_{1} D_{d}}} r_{D} C_{i m D} d r_{D} \tag{B.19}\\
& M_{k D}=\int_{\frac{b}{d \sqrt{\frac{R_{D} D_{d}}{R_{3} A}}} \int_{r_{0 D}}^{\infty} 4 \pi \theta_{k} r_{D} C_{k D} d r_{D} d z_{D}}^{\infty} . \tag{B.20}
\end{align*}
$$

Appendix C: Reactive solute transport in an asymmetrical fracture-rock matrix

 system.The dimensionless variables used in this study are defied as follows:

$$
\begin{aligned}
& C_{D}=C / C_{0}, \quad C_{1 D}=C_{1} / C_{0}, \quad C_{2 D}=C_{2} / C_{0}, \quad x_{D}=x / b, \quad z_{D}=\frac{z}{b} \sqrt{\frac{R_{2} D}{R D_{1}}}, \quad t_{D}=\frac{D}{R b^{2}} t, \\
& P e=\frac{v b}{D} \quad, \quad \alpha=\frac{R b^{2}}{D} \quad, \quad M_{D}=\frac{M}{C_{0} \times \mathrm{b}^{2} \times \sqrt{\frac{R D_{1}}{R_{2} D}}}, \quad M_{1 D}=\frac{M_{1}}{C_{0} \times \mathrm{b}^{2} \times \sqrt{\frac{R D_{1}}{R_{2} D}}}, \\
& M_{2 D}=\frac{M_{2}}{C_{0} \times \mathrm{b}^{2} \times \sqrt{\frac{R D_{1}}{R_{2} D}}}
\end{aligned}
$$

With the help of those dimensionless parameters above, the non-dimensional governing equations (Eqs. (3.1)-(3.3)) are transformed to the dimensionless formats:

$$
\begin{align*}
& \frac{\partial C_{D}}{\partial t_{D}}=\frac{\partial^{2} C_{D}}{\partial x_{D}^{2}}-P e \frac{\partial C_{D}}{\partial x_{D}}-\lambda \alpha C_{D}+\left.\frac{\theta_{1}}{2 \theta} \sqrt{\frac{R_{2} D_{1}}{R D}} \frac{\partial C_{1 D}}{\partial z_{D}}\right|_{z_{D}=z_{0 D}}-\left.\frac{\theta_{2}}{2 \theta} \sqrt{\frac{R_{2} D_{2}^{2}}{R D_{1} D}} \frac{\partial C_{2 D}}{\partial z_{D}}\right|_{z_{D}=-z_{0 D}} \tag{C.1}\\
& \frac{\partial C_{1 D}}{\partial t_{D}}=\frac{R_{2}}{R_{1}} \frac{\partial^{2} C_{1 D}}{\partial z_{D}^{2}}-\lambda_{1} \alpha C_{1 D} \tag{C.2}\\
& \frac{\partial C_{2 D}}{\partial t_{D}}=\frac{D_{2}}{D_{1}} \frac{\partial^{2} C_{2 D}}{\partial z_{D}^{2}}-\lambda_{2} \alpha C_{2 D} \tag{C.3}
\end{align*}
$$

After applying Laplace transform to Eqs. (C.1)-(C.3), the following equations would be obtained:

$$
\begin{equation*}
p \overline{C_{D}}=\frac{d^{2} \overline{C_{D}}}{d x_{D}^{2}}-P e \frac{d \overline{C_{D}}}{d x_{D}}-\lambda \alpha \overline{C_{D}}+\left.\frac{\theta_{1}}{2 \theta} \sqrt{\frac{R_{2} D_{1}}{R D}} \frac{\partial \overline{C_{1 D}}}{\partial z_{D}}\right|_{z_{D}=z_{0 D}}-\left.\frac{\theta_{2}}{2 \theta} \sqrt{\frac{R_{2} D_{2}^{2}}{R D_{1} D}} \frac{\partial \overline{C_{2 D}}}{\partial z_{D}}\right|_{z_{D}=-z_{0 D}}, \tag{C.4}
\end{equation*}
$$

$$
\begin{align*}
& p \overline{C_{1 D}}=\frac{R_{2}}{R_{1}} \frac{\partial^{2} \overline{C_{1 D}}}{\partial z_{D}^{2}}-\lambda_{1} \alpha \overline{C_{1 D}}, \tag{C.5}\\
& p \overline{C_{2 D}}=\frac{D_{2}}{D_{1}} \frac{\partial^{2} \overline{C_{2 D}}}{\partial z_{D}^{2}}-\lambda_{2} \alpha \overline{C_{2 D}}, \tag{C.6}
\end{align*}
$$

where p is the Laplace transform parameter in respect to the dimensionless time, t_{D} and overbar means the term in Laplace domain. From Eqs. (C.5)-(C.6), one has:

$$
\begin{align*}
& \frac{\partial^{2} \overline{C_{1 D}}}{\partial z_{D}^{2}}=\frac{R_{1}}{R_{2}}\left(\lambda_{1} \alpha+p\right) \overline{C_{1 D}}, \tag{C.7}\\
& \frac{\partial^{2} \overline{C_{2 D}}}{\partial z_{D}^{2}}=\frac{D_{1}}{D_{2}}\left(\lambda_{2} \alpha+p\right) \overline{C_{2 D}} . \tag{C.8}
\end{align*}
$$

The general solutions of the Eqs. (C.7)-(C.8) are:
$\overline{C_{1 D}}=A_{1} e^{w_{1} z_{D}}+B_{1} e^{-w_{1} z_{D}}$,

$$
\overline{C_{2 D}}=A_{2} e^{w_{2} z_{D}}+B_{2} e^{-w_{2} z_{D}},
$$

Where $w_{1}=\sqrt{\frac{R_{1}}{R_{2}}\left(\lambda_{1} \alpha+p\right)}, w_{2}=\sqrt{\frac{D_{1}}{D_{2}}\left(\lambda_{2} \alpha+p\right)}$.
Recalling the boundary conditions of rock matrix at infinity (Eq. (3.9)), Eqs. (C.9)-(C.10) can be further simplified as:

$$
\begin{align*}
& \overline{C_{1 D}}=B_{1} e^{-w_{1} z_{D}} \tag{C.11}\\
& \overline{C_{2 D}}=A_{2} e^{w_{2} z_{D}} \tag{C.12}
\end{align*}
$$

After substituting in boundary conditions (Eqs. (3.6)-(3.8)), one can acquire:

$$
\begin{equation*}
\overline{C_{1 D}}=\overline{C_{D}} \times \exp \left[-\sqrt{\frac{R_{1}}{R_{2}}\left(p+\lambda_{1} \alpha\right)}\left(z_{D}-\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right] \tag{C.13}
\end{equation*}
$$

$\overline{C_{2 D}}=\overline{C_{D}} \times \exp \left[\sqrt{\frac{D_{1}}{D_{2}}\left(p+\lambda_{2} \alpha\right)}\left(z_{D}+\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right]$,
where $k_{1}=\lambda \alpha+p+\frac{\theta_{1}}{2 \theta} \sqrt{\frac{R_{1} D_{1}}{R D}\left(p+\lambda_{1} \alpha\right)}+\frac{\theta_{2}}{2 \theta} \sqrt{\frac{R_{2} D_{2}}{R D}\left(p+\lambda_{2} \alpha\right)}$.
Substituting Eqs. (C.13)-(C.14) and the first-type boundary condition Eq. (3.10) into Eq. (C.4), the final solutions and the diffusion loss under the first-type condition can be reached:

$$
\begin{align*}
& \overline{C_{D}}=\frac{1}{p} \exp \left(\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}\right), \tag{C.15}\\
& \overline{C_{1 D}}=\frac{1}{p} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}-\sqrt{\frac{R_{1}}{R_{2}}\left(p+\lambda_{1} \alpha\right)}\left(z_{D}-\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right], \tag{C.16}\\
& \overline{C_{2 D}}=\frac{1}{p} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}+\sqrt{\frac{D_{1}}{D_{2}}\left(p+\lambda_{2} \alpha\right)}\left(z_{D}+\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right], \tag{C.17}\\
& \overline{q_{1}}=\frac{1}{p} \frac{\theta_{1} D_{1}}{b} \sqrt{\frac{R_{1} D}{R D_{1}}\left(p+\lambda_{1} \alpha\right)} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}\right] \tag{C.18}\\
& \overline{q_{2}}=\frac{1}{p} \frac{\theta_{2} D_{2}}{b} \sqrt{\frac{R_{2} D}{R D_{2}}\left(p+\lambda_{2} \alpha\right)} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}\right] \tag{C.19}
\end{align*}
$$

It is the similar method to solve the problem under the third-type boundary condition Eq. (3.11), the final solutions are:

$$
\begin{equation*}
\overline{C_{D}}=\frac{1}{p} \times \frac{2}{1+\sqrt{1+4 k_{1} / P e^{2}}} \exp \left(\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}\right) \tag{C.20}
\end{equation*}
$$

$$
\begin{align*}
& \overline{C_{1 D}}=\frac{1}{p} \times \frac{2}{1+\sqrt{1+4 k_{1} / P e^{2}}} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}-\sqrt{\frac{R_{1}}{R_{2}}\left(p+\lambda_{1} \alpha\right)}\left(z_{D}-\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right], \\
& \overline{C_{2 D}}=\frac{1}{p} \times \frac{2}{1+\sqrt{1+4 k_{1} / P e^{2}}} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{1}}}{2} x_{D}+\sqrt{\frac{D_{1}}{D_{2}}\left(p+\lambda_{2} \alpha\right)}\left(z_{D}+\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right] \tag{C.21}
\end{align*}
$$

Converting the mass stored in each domain (Eqs. (3.32)-(3.34)) into corresponding dimensionless formats defined above, the dimensionless mass per unit width stored in each domain is given as:

$$
\begin{align*}
& M_{D}=2 \theta \sqrt{\frac{R_{2} D}{R D_{1}}} \int_{0}^{\infty} C_{D} d x_{D} \tag{C.23}\\
& M_{1 D}=\int_{\sqrt{\frac{R_{2} D}{R D_{1}}}}^{\infty} \int_{0}^{\infty} C_{1 D} \times \theta_{1} d x_{D} d z_{D} \tag{C.24}\\
& M_{2 D}=\int_{-\infty}^{-\sqrt{\frac{R_{2} D}{R D_{1}}}} \int_{0}^{\infty} C_{2 D} \theta_{2} d x_{D} d z_{D} \tag{C.25}
\end{align*}
$$

For the back-diffusion problem, the water starts flushing the system after t_{0}. The diffusion coefficients after water flushing may change to $D_{1 b}, D_{2 b}, D_{b}$:

$$
\begin{equation*}
D_{1 b}=a_{1} D_{1}, \quad D_{2 b}=a_{2} D_{2}, D_{b}=a D \tag{C.26}
\end{equation*}
$$

For the back-diffusion process, the governing equations are similar as:

$$
\begin{equation*}
\frac{\partial C_{D}}{\partial t_{D}}=a \frac{\partial^{2} C_{D}}{\partial x_{D}^{2}}-P e \frac{\partial C_{D}}{\partial x_{D}}-\lambda \alpha C_{D}+\left.\frac{\theta_{1} a_{1}}{2 \theta} \sqrt{\frac{R_{2} D_{1}}{R D}} \frac{\partial C_{1 D}}{\partial z_{D}}\right|_{z_{D}=z_{0} D}-\left.\frac{\theta_{2} a_{2}}{2 \theta} \sqrt{\frac{R_{2} D_{2}^{2}}{R D_{1} D}} \frac{\partial C_{2 D}}{\partial z_{D}}\right|_{z_{D}=-z_{0 D}} \tag{C.27}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial C_{1 D}}{\partial t_{D}}=a_{1} \frac{R_{2}}{R_{1}} \frac{\partial^{2} C_{1 D}}{\partial z_{D}^{2}}-\lambda_{1} \alpha C_{1 D} \tag{C.28}\\
& \frac{\partial C_{2 D}}{\partial t_{D}}=a_{2} \frac{D_{2}}{D_{1}} \frac{\partial^{2} C_{2 D}}{\partial z_{D}^{2}}-\lambda_{2} \alpha C_{2 D} \tag{C.29}
\end{align*}
$$

Following the similar method, the solutions during back diffusion are:

$$
\begin{align*}
& \overline{C_{D}}{ }^{\prime}=-\frac{1}{p} \exp \left(\frac{P e-\sqrt{P e^{2}+4 k_{2} a}}{2 a} x_{D}\right), \tag{C.30}\\
& \overline{C_{1 D}}=-\frac{1}{p} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{2} a}}{2 a} x_{D}-\sqrt{\frac{R_{1}}{a_{1} R_{2}}\left(p+\lambda_{1} \alpha\right)}\left(z_{D}-\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right], \tag{C.31}\\
& \overline{C_{2 D}}{ }^{\prime}=-\frac{1}{p} \exp \left[\frac{P e-\sqrt{P e^{2}+4 k_{2} a}}{2 a} x_{D}+\sqrt{\frac{D_{1}}{a_{2} D_{2}}\left(p+\lambda_{2} \alpha\right)}\left(z_{D}+\sqrt{\frac{R_{2} D}{R D_{1}}}\right)\right], \tag{C.32}
\end{align*}
$$

where $k_{2}=\lambda \alpha+p+\frac{\theta_{1}}{2 \theta} \sqrt{\frac{R_{1} D_{1} a_{1}}{R D}\left(p+\lambda_{1} \alpha\right)}+\frac{\theta_{2}}{2 \theta} \sqrt{\frac{R_{2} D_{2} a_{2}}{R D}\left(p+\lambda_{2} \alpha\right)}$.
The overall final solutions are:
$C=\left\{\begin{array}{cc}f(x, z, t) & t \leq t_{0} \\ f(x, z, t)+g\left(x, z, t-t_{0}\right) & t>t_{0}\end{array}\right.$,
where $f(x, z, t)$ is the solution (Eqs. (C.15)-(C.17)) before water flushing, $g(x, z, t)$ is the solution (Eqs. (3.30)-(3.31)) during water flushing time period.

Appendix D: Reactive solute transport in a fully coupled asymmetric stratified system, comparison of scale dependent and independent dispersion schemes.

The governing equation of solute transport in the permeable layer is as follow:
$\theta R \frac{\partial C}{\partial t}=\theta \frac{\partial}{\partial x}\left[D(x) \frac{\partial C}{\partial x}\right]-\theta v \frac{\partial C}{\partial x}-\theta \lambda R C-\frac{q_{1}}{2 b}-\frac{q_{2}}{2 b}$.
The terms q_{1} and q_{2} refer to the diffusive mass entering the less permeable layers, which are expressed as:

$$
\begin{align*}
& q_{1}=-\left.\theta_{1} D_{1} \frac{\partial C_{1}}{\partial z}\right|_{z=b} \tag{D.2}\\
& q_{2}=\left.\theta_{2} D_{2} \frac{\partial C_{2}}{\partial z}\right|_{z=-b} . \tag{D.3}
\end{align*}
$$

A contaminant source at constant concentration is placed at the left boundary condition, which is also called the first type boundary condition and is expressed as:
$C(x=0, t)=C_{0}$.
The governing equations of solute transport in the upper layer (layer 1) and lower layer (layer 2) are respectively:

$$
\begin{align*}
& R_{1} \frac{\partial C_{1}}{\partial t}=D_{1} \frac{\partial^{2} C_{1}}{\partial z^{2}}-\lambda_{1} R_{1} C_{1}, \tag{D.5}\\
& R_{2} \frac{\partial C_{2}}{\partial t}=D_{2} \frac{\partial^{2} C_{2}}{\partial z^{2}}-\lambda_{2} R_{2} C_{2} . \tag{D.6}
\end{align*}
$$

The entire system is free of solute at beginning:
$C(x, t=0)=C_{1}(x, z, t=0)=C_{2}(x, z, t=0)=0$.

The permeable layer is considered as infinitely long and the less permeable layers are considered as infinity thick. Thus, we have:

$$
\begin{equation*}
C(x \rightarrow \infty, t)=0, \quad C_{1}(x, z \rightarrow \infty, t)=0, C_{2}(x, z \rightarrow-\infty, t)=0 . \tag{D.8}
\end{equation*}
$$

The concentrations at the interfaces of different layers are continuous:

$$
\begin{equation*}
C_{1}(x, z=b, t)=C(x, t), \quad C_{2}(x, z=-b, t)=C(x, t) . \tag{D.9}
\end{equation*}
$$

The technique of Laplace transform is adopted here. Eqs. (D.1), (D.5) and (D.6) are then transformed into Laplace domain as:

$$
\begin{align*}
& D(x) \frac{d^{2} \bar{C}}{d x^{2}}+\left[\frac{d D(x)}{d x}-v\right] \frac{d \bar{C}}{d x}-\Psi \bar{C}=0 \tag{D.10}\\
& R_{1} \overline{C_{1}}=D_{1} \frac{\partial^{2} \overline{C_{1}}}{\partial z^{2}}-\lambda_{1} R_{1} \overline{C_{1}} \tag{D.11}\\
& R_{2} \overline{C_{2}}=D_{2} \frac{\partial^{2} \overline{C_{2}}}{\partial z^{2}}-\lambda_{2} R_{2} \overline{C_{2}} \tag{D.12}
\end{align*}
$$

where $\Psi=p R+\lambda R+\frac{\theta_{1}}{2 b \theta} \sqrt{\left(p+\lambda_{1}\right) R_{1} D_{1}}+\frac{\theta_{2}}{2 b \theta} \sqrt{\left(p+\lambda_{2}\right) R_{2} D_{2}} \quad, p$ is the Laplace transform parameter and the over bar means the terms in Laplace domain.

With the consideration of continuous concentration at interfaces of layers (Eq. (D.9)), Eqs.
(D.11)-(D.12) can be solved as follows:

$$
\begin{align*}
& \overline{C_{1}}=\bar{C} \times \exp \left[-\sqrt{\frac{p R_{1}+\lambda_{1} R_{1}}{D_{1}}}(z-b)\right], \tag{D.13}\\
& \overline{C_{2}}=\bar{C} \times \exp \left[\sqrt{\frac{p R_{2}+\lambda_{2} R_{2}}{D_{2}}}(z+b)\right] . \tag{D.14}
\end{align*}
$$

For the case of a linear scale-dependent dispersivity, one has: $D(x)=\alpha(x) \times v+D_{0}$, where $\alpha(x)=k x$. Substituting this relationship into Eq. (D.10), we have:

$$
\begin{equation*}
\left(k v x+D_{0}\right) \frac{d^{2} \bar{C}}{d x^{2}}+[k v-v] \frac{d \bar{C}}{d x}-\Psi \bar{C}=0 \tag{D.15}
\end{equation*}
$$

Defining a new variable $\xi_{1}=\sqrt{k v x+D_{0}}$, then the equation above turns to:

$$
\begin{equation*}
\xi_{1}^{2} \frac{d^{2} \bar{C}}{d \xi_{1}^{2}}+\left[1-\frac{2}{k}\right] \xi_{1} \frac{d \bar{C}}{d \xi_{1}}-\left(\frac{2}{k v}\right)^{2} \xi_{1}^{2} \Psi \bar{C}=0 . \tag{D.16}
\end{equation*}
$$

This equation has the form of the following Bessel equation:
$\xi_{1}{ }^{2} \frac{d^{2} \bar{C}}{d \xi^{2}}+[1-2 \gamma] \xi_{1} \frac{d \bar{C}}{d \xi_{1}}+\left(-\delta^{2} \eta^{2} \xi_{1}^{2 n}+\gamma^{2}-\gamma^{2} \eta^{2}\right) \bar{C}=0$,
where $\gamma=\frac{1}{k}, \delta=\frac{2}{k v} \sqrt{\Psi}, \eta=1$. It have been proven that $\xi_{1}^{\gamma} I_{\gamma}\left(\delta \xi_{1}^{\eta}\right)$ and $\xi_{1}^{\gamma} K_{\gamma}\left(\delta \xi_{1}^{\eta}\right)$ are two independent special solutions of the equation, where $I_{\gamma}(x)$ and $K_{\gamma}(x)$ are the first and second kinds of modified Bessel functions with the order γ. Therefore, the general solution of this equation is:
$\bar{C}=\xi_{1}^{\gamma}\left\{A_{1} K_{\gamma}\left(\delta \xi_{1}\right)+B_{1} I_{\gamma}\left(\delta \xi_{1}\right)\right\}$,
where A_{1} and B_{1} are two constants. According to the boundary condition (Eq. (D.8)), when $\xi_{1} \rightarrow \infty, \bar{C}$ is finite. Thus, B_{1} equals to zero. The solution could be simplified as: $\bar{C}=\xi_{1}^{\gamma} A_{1} K_{\gamma}\left(\delta \xi_{1}\right)$.

After substituting in boundary condition $\bar{C}(x=0, p)=\frac{C_{0}}{p}$, one can acquire:

$$
\begin{equation*}
A_{1}=\frac{1}{p} \frac{C_{0}}{\left(\sqrt{D_{0}}\right)^{\gamma} K_{\gamma}\left(\delta \sqrt{D_{0}}\right)} . \tag{D.20}
\end{equation*}
$$

The final solution in Laplace domain can be derived now as:
$\bar{C}=\xi_{1}^{\gamma} \frac{1}{p} \frac{C_{0}}{\left(\sqrt{D_{0}}\right)^{\gamma} K_{\gamma}\left(\delta \sqrt{D_{0}}\right)} K_{\gamma}\left(\delta \xi_{1}\right)$.
For the case of an exponential scale-dependent dispersivity, the dispersivity can be expressed as: $\alpha(x)=a\left(1-e^{-k_{1} x}\right)$. Thus, the governing equation could be rewritten as:

$$
\begin{equation*}
\left[a\left(1-e^{-k_{1} x}\right) \times v+D_{0}\right] \frac{d^{2} \bar{C}}{d x^{2}}+\left[a k_{1} v e^{-k_{1} x}-v\right] \frac{d \bar{C}}{d x}-\Psi \bar{C}=0 . \tag{D.22}
\end{equation*}
$$

Defining two variables: $\xi_{2}=H e^{k_{1} x} \quad, H=1+D_{0} /(a v)$, Eq. (D.22) can be expressed as:
$\xi_{2}\left(1-\xi_{2}\right) \frac{d^{2} \bar{C}}{d \xi_{2}^{2}}-\left(1-\frac{1}{a k_{1} H}\right) \xi_{2} \frac{d \bar{C}}{d \xi_{2}}+\frac{1}{\operatorname{Havk}_{1}^{2}} \psi \bar{C}=0$.
The above equation has the form of the following Gauss hypergeometric equation:
$\xi_{2}\left(1-\xi_{2}\right) \frac{d^{2} \bar{C}}{d \xi_{2}{ }^{2}}+[Q-(1+m+n)] \xi_{2} \frac{d \bar{C}}{d \xi_{2}}-m n \bar{C}=0$,
where $Q=0, m=\frac{1}{2 a k_{1} H}\left[-1+\sqrt{1+\frac{4 a H}{v} \psi}\right]$, and $n=\frac{1}{2 a k_{1} H}\left[-1-\sqrt{1+\frac{4 a H}{v} \psi}\right]$.
As $1 \leq \xi_{2} \leq \infty$, the solution can be written in terms of the hypergeometric function as follows:
$\bar{C}=A_{2} \xi_{2}^{-m} F\left(m, m+1 ; m-n+1 ; \xi_{2}^{-1}\right)+B_{2} \xi_{2}^{-n} F\left(n, n+1 ; n-m+1 ; \xi_{2}^{-1}\right)$,
where $F\left(m, m+1 ; m-n+1 ; \xi_{2}^{-1}\right)$ and $F\left(n, n+1 ; n-m+1 ; \xi_{2}^{-1}\right)$ are the Gauss hypergeometric functions.

In terms of the outlet boundary condition (Eq. (D.8)), the concentration remain finite when $\xi_{2} \rightarrow \infty$. Thus, the B_{2} must equal zero as n is less than zero. The solution can be simplified as:
$\bar{C}=A_{2} \xi_{2}{ }^{-m} F\left(m, m+1 ; m-n+1 ; \xi_{2}{ }^{-1}\right)$.

After substituting $\bar{C}(x=0, p)=\frac{C_{0}}{p}, A_{2}$ could be solved as:

$$
\begin{equation*}
A_{2}=\frac{C_{0}\left(1+\frac{D_{0}}{a v}\right)^{m}}{p F\left(m, m+1 ; m-n+1 ;\left(1+\frac{D_{0}}{a v}\right)^{-1}\right)} . \tag{D.27}
\end{equation*}
$$

The final solution is then derived as:

$$
\begin{equation*}
\bar{C}=\frac{C_{0}\left(1+\frac{D_{0}}{a v}\right)^{m}}{p F\left(m, m+1 ; m-n+1 ;\left(1+\frac{D_{0}}{a v}\right)^{-1}\right)} \xi_{2}^{-m} F\left(m, m+1 ; m-n+1 ; \xi_{2}^{-1}\right) \tag{D.28}
\end{equation*}
$$

