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Supplementary files: 

Appendix A: Reactive solute transport in a filled single fracture-matrix system under 

the unilateral flow. 

The governing equations of reactive solute transport in the mobile and immobile 

domains of filled fracture and rock matrix in Eqs.2.1-2.3 should be transformed in 

dimensionless formats. The dimensionless variables used in the study of the unilateral 

flow model are as follows: 

CmD =
𝐶𝑚

𝐶0
;  CimD =

𝐶𝑖𝑚

𝐶0
; CkD =

𝐶𝑘

𝐶0
; xD =

𝑥

𝑏
; zD =

𝑧

𝑏
√

𝑅3𝐷𝑚

𝑅1𝐷𝑑
; tD =

𝐷𝑚

𝑅1𝑏2 𝑡; Pe =
𝑣𝑚𝑏

𝐷𝑚
 

𝜃1 = 𝜃𝑖𝑚/𝜃𝑚 ; 𝜃2 = 𝜃𝑘/𝜃𝑚 ; 𝛼 =
𝑅1𝑏2

𝐷𝑚
 ; 𝛼1 = 𝜃2√

𝑅3𝐷𝑑

𝑅1𝐷𝑚
 ; 𝑀′𝑓𝑚𝐷 =

𝑀′𝑓𝑚

𝐶0𝑏2√
𝑅1𝐷𝑑
𝑅3𝐷𝑚

 ; 𝑀′𝑓𝑖𝑚𝐷 =

𝑀′𝑓𝑖𝑚

𝐶0𝑏2√
𝑅1𝐷𝑑
𝑅3𝐷𝑚

; 𝑀′𝑘𝐷 =
𝑀′𝑘

𝐶0𝑏2√
𝑅1𝐷𝑑
𝑅3𝐷𝑚

.  

In the unilateral flow model, the non-dimensional governing equations (Eqs. (2.1)-

(2.3)) now are transformed to their dimensionless formats of Eqs. (A1)-(A3):  
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Applying Laplace transform to Eqs. (A.1)-(A.3) would lead to the following equations: 
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where p is the Laplace transform parameter in respect to the dimensionless time, tD and 

overbar means the term in Laplace domain. From Eq. (A.6), one has 
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The general solution of Eq. (A7) is  

D Dwz wz

kDC Ae Be


  ,                    (A.8) 

where 𝑤 = √𝜆3𝛼 + 𝑝 .       

Recalling boundary condition of rock matrix at infinity (Eq. (2.11)), Eq. (A.8) can be 

simplified as: 

𝐶𝑘𝐷 = 𝐵𝑒−𝑤𝑧𝐷 .                                (A.9) 

Substituting Eq. (A.9) to Eq. (A.6), one can get the following relation: 
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Now one has the relation between 𝐶𝑘𝐷 and 𝐶𝑚𝐷:  
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Based on Eq. (A.5), the relation between 𝐶𝑚𝐷 and 𝐶𝑖𝑚𝐷 is demonstrated: 
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Substituting Eqs. (A.12)-(A.13) into Eq. (A.4), the final solutions will be reached in the 

Laplace domain.  

Converting M’fm, M’fim and M’k in Eqs. (2.30)-(2.32) into their dimensionless forms 

defined above, the dimensionless mass per unit width stored in the fracture-rock matrix 

system of unilateral flow is given as: 
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Appendix B: Reactive solute transport in a filled single fracture-matrix system under 

the radial flow. 

The governing equations (Eqs. (2.20)-(2.21)) are transformed to dimensionless 

formats. The dimensionless variables used in the study of the radial flow model are defined 

as follows: 

𝐶𝑚𝐷 =
𝐶𝑚

𝐶0
  ; 𝐶𝑖𝑚𝐷 =

𝐶𝑖𝑚

𝐶0
  ; 𝐶𝑘𝐷 =

𝐶𝑘

𝐶0
 ; 𝑡𝐷 =

𝐴𝑡

𝑅1𝑑2
 ; 𝑟𝐷 =

𝑟

𝑑
 ; 𝑧𝐷 = (

𝑧

𝑑
) √

𝑅3𝐴

𝑅1𝐷𝑑
  ; 𝜏1 =

𝜃2𝑑

𝑏
√

𝑅3𝐷𝑑

𝑅1𝐴
  ; 𝜏 =

𝑑2𝑅1

𝐴
 ; 𝜃1 = 𝜃𝑖𝑚/𝜃𝑚 ; 𝜃2 = 𝜃𝑘/𝜃𝑚 ; 𝑀𝑓𝑚𝐷 =

𝑀𝑓𝑚

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

  ; 𝑀𝑓𝑖𝑚𝐷 =

𝑀𝑓𝑖𝑚

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

 ; 𝑀𝑘𝐷 =
𝑀𝑘

𝐶0𝑑3√
𝑅1𝐷𝑑
𝑅3𝐴

 .  

Converting the system into the dimensionless format, as done for the unilateral flow 

model, with details provided above, one has: 
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Applying the Laplace transform to Eqs. (B.1)-(B.3) would yield to the following 

equations in the Laplace domain:
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From Eq. (B.6), we have:  

 3kD DC a exp pz     .                 (B.7) 

At the interacting surface between the rock matrix and fracture: 
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So a can be solved as follow: 
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Substituting Eq. (B.9) into Eq. (B.7), the relationship between 𝐶𝑘𝐷  and 𝐶𝑚𝐷  can be 

reached: 
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From Eq. (B.5), the relation between 𝐶𝑖𝑚𝐷 and 𝐶𝑚𝐷 is as follow: 
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Substituting Eqs. (B.10)-(B.11) to Eq. (B.4): 
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where 
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. 

The Eq. (B.12) is an inhomogeneous differential equation. The general solution is 

1 1

3 3
1 2exp exp

2 2
mD

y y
C A Ai y A Bi y 
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,         (B.13) 

where y = r𝐷 + (4𝛽)−1. 

Since 𝐵𝑖(∞) → ∞, to fulfill the boundary condition below:    

 , 0mD DC r p  .                 (B.14) 

A2 has to be zero. Now Eq. (B.13) is 

1

3
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2
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The boundary condition at the interacting surface of the injection well is given as: 
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The parameter A1 can be expressed: 
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Now, the solutions in the Laplace domain could be reached.  

By using the dimensionless parameters above, the dimensionless masses stored in the 

fracture-rock matrix system of radial flow are given as: 
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Appendix C: Reactive solute transport in an asymmetrical fracture-rock matrix 

system.  

The dimensionless variables used in this study are defied as follows: 

0/DC C C  , 1 1 0/D CC C  , 2 2 0/D CC C  , /Dx x b  , 2

1

D

R Dz
z

b RD
  , 
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D

t
Rb

  , 
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D
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D
   , 

2 1
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2
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D
C
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 

   , 1
1

2 1
0

2

b

DM
R

M

D
C

R D






 , 

2
2

2 1
0

2

b

DM
R

M

D
C

R D






  

With the help of those dimensionless parameters above, the non-dimensional 

governing equations (Eqs. (3.1)-(3.3)) are transformed to the dimensionless formats: 

0 0

2 2

1 2 1 1 2 2 2 2

2

12 2
D D D D

D D D D D
D

D D D D Dz z z z

C C C R

D

D C R D C
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 
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 
 

    
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, (C.1)  
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2

2 2 2
2 22

1

D D
D

D D

C D C
C

t D z
 

 
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After applying Laplace transform to Eqs. (C.1)-(C.3), the following equations would be 

obtained: 
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
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
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where p is the Laplace transform parameter in respect to the dimensionless time, tD and 

overbar means the term in Laplace domain. From Eqs. (C.5)-(C.6), one has: 
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1
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1

2

)(D
D

D

R

z R

C
p C 





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
 


.                 (C.8) 

The general solutions of the Eqs. (C.7)-(C.8) are: 

1 1

1 1 1
D Dw z w z

DC Ae B e


   ,                         (C.9) 

2 2

2 2 2
D Dw z w z

DC A e B e


  ,                 (C.10) 

Where 1
1 1

2

( )p
R

w
R

   , 1
2 2

2

( )
D

w p
D

    . 

Recalling the boundary conditions of rock matrix at infinity (Eq. (3.9)), Eqs. (C.9)-(C.10) 

can be further simplified as:  

1

1 1
Dw z

DC B e


 ,                           (C.11) 

2

2 2
Dw z

DC A e .                 (C.12) 

After substituting in boundary conditions (Eqs. (3.6)-(3.8)), one can acquire: 

 1 2
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2 1

expD D D

R R
C C p z

R RD

D
 

  
      

   

 ,           (C.13) 
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2
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where    1 1 1 2 2 2
1 21

2 2
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k p p

RD

D
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D
p

 
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 
     . 

Substituting Eqs. (C.13)-(C.14) and the first-type boundary condition Eq. (3.10) into Eq. 

(C.4), the final solutions and the diffusion loss under the first-type condition can be 

reached: 
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11
e
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 ,            (C.15) 
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1 1 2
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2

2

1
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


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,         (C.17) 
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 




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,        (C.18) 

 
2

2

12 2

2

2
2

1
exp

4

2
D

Pe Pe kD R
q p x

p b R

D

D


 

 
 







.        (C.19) 

It is the similar method to solve the problem under the third-type boundary condition Eq. 

(3.11), the final solutions are:   

2

1

2

1

4

4

1 2
exp

21 1 /
D D

Pe Pe k

k
C x

p Pe

 
  
 



 
,            (C.20) 
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 
2

1 1 2
1 1

2
2 11

4

4

1 2
exp

21 1 /
D D D

k DPe Pe R R
C x p z

p R RPek D


  
           


 ,                 

(C.21) 

 
2

1 1 2

2
1

22

21

4

4

1 2
exp

21 1 /
D D D

k DPe Pe D R
C x p z

p D RPek D
 

  
           


 .    

   (C.22) 

Converting the mass stored in each domain (Eqs. (3.32)-(3.34)) into corresponding 

dimensionless formats defined above, the dimensionless mass per unit width stored in each 

domain is given as: 

2

0
1

2D D D

R D
C

RD
M dx



  ,              (C.23) 

2

1

1 1
0

1R

RD

DD D D DCM dx dz
 

   ,                      (C.24) 

2

1

0
2 2 2D D D D

RD

DR

M C dx dz
 


   .                      (C.25) 

For the back-diffusion problem, the water starts flushing the system after t0. The 

diffusion coefficients after water flushing may change to D1b, D2b, Db: 

1 1 1bD a D , 22 2bD a D , bD aD .               (C.26) 

For the back-diffusion process, the governing equations are similar as: 

0 0

2 2

1 1 2 1 1 2 2 2 2 2

2

12 2
D D D D

D D D D D
D

D D D D Dz z z z

C C C R D C R D C
a Pe C

t x x RD z R z

a a

D D

 


 
 

    
   

 


  
 , 

                    (C.27) 
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2

1 2 1
1 1 12

1

D D
D

D D

C R C
a C

t R z


 
 

 
,                (C.28) 

2

2 2 2
2 2 22

1

D D
D

D D

C D C
a C

t D z
 

 
 

 
.              (C.29) 

Following the similar method, the solutions during back diffusion are: 

2

2
1

' p
2

4
exD D

Pe Pe a
C

p

k
x

a

 
  
 
 

 ,           (C.30) 

 
2

2 1 2
1 1

1 2 1

1
' exp

4

2
D D D

Pe Pe a R R
C x p z

p a a R RD

k D


  
          


 ,    (C.31) 

 
2

2 1 2
2

2 2 1

2

1
' exp

4

2
D D D

Pe Pe a D R
C x p z

p a a D RD

k D
 

  
          


 ,    (C.32) 

where    1 1 1 1 2 2 2 2
1 22

2 2

R a R a
k p p

RD

D D
p

RD

 
   

 
     . 

The overall final solutions are: 

0

0 0

( , , )

)( , , ) ( , ,

f x z t t t
C

f x z t g x z t t t t


 

  
 ,  (C.33) 

where f (x,z,t) is the solution (Eqs. (C.15)-(C.17)) before water flushing, g (x,z,t) is the 

solution (Eqs. (3.30)-(3.31)) during water flushing time period. 
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 Appendix :: Reactive solute transport in a fully coupled asymmetric stratified 

system, comparison of scale dependent and independent dispersion schemes. 

The governing equation of solute transport in the permeable layer is as follow:  

21( )
2 2

q qC C C
R D x v RC

t x x x b b
   

    
         

.               (D.1) 

The terms q1 and q2 refer to the diffusive mass entering the less permeable layers, which 

are expressed as:  

1
1 1 1

z b

C
Dq

z







   ,                     (D.2) 

2
2 2 2

z b

C
D

z
q 






  .                   (D.3) 

A contaminant source at constant concentration is placed at the left boundary condition, 

which is also called the first type boundary condition and is expressed as:  

0( 0, )C x t C  .                    (D.4) 

The governing equations of solute transport in the upper layer (layer 1) and lower layer 

(layer 2) are respectively:  

2

1 1
1 1 1 1 12

C C
D R C

t z
R 
 

 
 

 ,                 (D.5) 

2 2
2 2 2 2

2

2 2

C C
D R C

t z
R 

 
 

 
.                    (D.6) 

The entire system is free of solute at beginning: 

1 2( , 0) ( , , 0) ( , , 0) 0C x t C x z t C x z t      .             (D.7) 
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The permeable layer is considered as infinitely long and the less permeable layers are 

considered as infinity thick. Thus, we have: 

,( ) 0C x t  , 1( , 0, )C x z t  , 2 0( , , )C x z t  .         (D.8) 

The concentrations at the interfaces of different layers are continuous: 

1( , , ) ( , )C x z b t C x t  , 2 ( , , ) ( , )C x z b t C x t   .            (D.9) 

The technique of Laplace transform is adopted here. Eqs. (D.1), (D.5) and (D.6) are then 

transformed into Laplace domain as: 

2

2

( )
( ) 0

d C dD x dC
D x v C

dx dx dx

 
    
 

,           (D.10) 

1

2

1 1 1 121 1

C
R D R

z
C C


 


,               (D.11) 

2

2

22 2 2 2 2 2

C
R D R

z
C C


 


,              (D.12) 

where 1
1 1

2
22 21( ) ( )

2 2
R R p R

b
p D Dp R

b

 
  

 
       , p is the Laplace 

transform parameter and the over bar means the terms in Laplace domain. 

With the consideration of continuous concentration at interfaces of layers (Eq. (D.9)), Eqs. 

(D.11)-(D.12) can be solved as follows: 

1 1 1
1

1

exp ( )
RpR

z bC C
D

 
   






  ,            (D.13) 

2 2 2
2

2

exp ( )
RpR

z b
D

C C
 

  






 .              (D.14) 
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For the case of a linear scale-dependent dispersivity, one has: 

0(( ) )x vD x D   , where ( )x kx  . Substituting this relationship into Eq. (D.10), we 

have:  

 
2

0 2
( ) 0

d C dC
kvx D kv v C

dx dx
     .            (D.15) 

Defining a new variable 1 0kvx D   , then the equation above turns to: 

22
2 2

1 1 12

1 1

2 2
1 0

d C dC
C

d k d kv
  

 

   
      
   

.           (D.16) 

This equation has the form of the following Bessel equation: 

   
2

2 2 2 2 2 2 2

1 1 12

1

1 2 0nd C dC
C

d d
        

 
       ,        (D.17) 

where 
1

k
    ,

2

kv
     , 1   . It have been proven that 1 1( )I 

    and 

1 1( )K 

    are two independent special solutions of the equation, where ( )I x   and 

( )K x  are the first and second kinds of modified Bessel functions with the order   . 

Therefore, the general solution of this equation is: 

 1 1 1 1 1( ) ( )C A K B I

     ,              (D.18) 

where A1 and B1 are two constants. According to the boundary condition (Eq. (D.8)), 

when 1   , C  is finite. Thus, B1 equals to zero. The solution could be simplified as: 

1 1 1( )C A K

  .                 (D.19) 

After substituting in boundary condition   00,
C

C x p
p

  , one can acquire:   
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 
0

1

0 0

1

( )

C
A

p D K D


 
 .                (D.20) 

The final solution in Laplace domain can be derived now as: 

 
0

1 1

0 0

1
( )

( )

C
C K

p D K D







 


 .            (D.21) 

For the case of an exponential scale-dependent dispersivity, the dispersivity can 

be expressed as: 1( ) (1 )
k x

x a e 
  . Thus, the governing equation could be rewritten as: 

1 1

2

0 12
(1 ) 0

k xk x d C dC
aa e v k ve v C

dx dx
D

            .       (D.22) 

Defining two variables: 1

2

k x
He   , 01 / ( )H D av   , Eq. (D.22) can be expressed as: 

2

1

2

2 1

2

2 2 2

2

1 1
(1 ) 1 0

d C dC
C

d ak H d Havk
   

 

 
     

 
.         (D.23) 

The above equation has the form of the following Gauss hypergeometric equation: 

 
2

2 2 22

2 2

(1 ) 1 0
d C dC

Q m n mnC
d d

  
 

         ,         (D.24) 

where 0Q  , 
1

1 4
1 1

2

aH
m

ak H v


 
    

 

 , and 
1

1 4
1 1

2

aH
n

ak H v


 
    

 

. 

As 21     , the solution can be written in terms of the hypergeometric function as 

follows: 

   1 1

2 22 2 2 2, 1; 1; , 1; 1;m nC A F m m m n B F n n n m              ,   (D.25) 
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where  2

1, 1; 1;F m m m n       and  2

1, 1; 1;F n n n m       are the Gauss 

hypergeometric functions.  

In terms of the outlet boundary condition (Eq. (D.8)), the concentration remain 

finite when 2   . Thus, the B2 must equal zero as n is less than zero. The solution 

can be simplified as: 

 1

2 22 , 1; 1;mC A F m m m n      .            (D.26) 

After substituting   00,
C

C x p
p

  , A2 could be solved as: 

0

2 1

0

0 1

, 1; 1; 1

m
D

C
av

A
D

pF m m m n
av



 
 

 
  

        

 .             (D.27) 

The final solution is then derived as: 

 

0

2 21

1

0

0 1

, 1; 1;

, 1; 1; 1

m

m

D
C

av
C F m m m n

D
pF m m m n

av

 


 

 
 

    
  

        

.    (D.28) 

 

 


