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ABSTRACT 

 

Electric vehicles require high transient torque to start and accelerate faster. 

Moreover, many industrial drives like those used with weaving machines, conveyors, 

cargo handling, hoists, and printing presses also require high transient torque. This 

dissertation presents the invention of a system reconfiguration and control technique for a 

multiphase motor drive to obtain up to 93% higher torque for acceleration. Wide bandgap 

(WBG) devices enable the next-generation efficient and lightweight motor drives for use 

in industrial, automotive, ship propulsion, aerospace, and rail applications. This 

dissertation provides a comprehensive review of the different major ac motor drive 

applications that would benefit from WBG devices. This dissertation also discusses the 

technical challenges, converter design considerations and design trade-offs in realizing the 

full potential of WBG devices in motor drives. There is a trade-off between high switching 

frequency and other issues such as high dv/dt and electromagnetic interference. The 

problem of high common mode currents, bearing damage and insulation damage caused 

by high dv/dt are discussed. Silicon Carbide (SiC) and Gallium Nitride (GaN) inverters 

are designed, built and tested for motor drive applications and the performance is validated 

with experimental results. 

To achieve transient peak torque higher rated current needs to be forced into the 

motor for short duration. The duration of overload is determined by the magnitude of 

current during overload and the thermal characteristics of the motor. The switching 

devices of power electronics converter cannot be overloaded. Therefore, transient peak 
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torque capability of an electric drive is limited by the power electronics converter. The 

invention presented in this dissertation makes it possible to achieve 93% higher transient 

torque in a multiphase motor drive. The superior acceleration capability of the invention 

is validated with experimental results. SiC and GaN inverters are used to drive an 

induction motor. Both the inverters are able to operate at switching frequency of 200 kHz. 
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1. INTRODUCTION  

 

Significant research efforts have been focused on development of wide bandgap 

(WBG) semiconductor devices [1]-[3] and their applications in power electronics [4], [5]. 

The primary advantages of WBG devices result from their low losses, high switching 

frequency and high-temperature operation capability [3], [4]. Many countries aim to 

reduce air pollution and lower their dependence on fossil fuel vehicles. China, India, 

France, Great Britain and Norway have already announced plans to ban cars with internal 

combustion engines in the coming decades and replace them with vehicles powered by 

clean energy.  Therefore, the demand for both battery electric vehicles (BEVs) and plug-

in hybrid electric vehicles (PHEVs) is expected to increase 10-fold between 2017 and 

2027 [6]. Wide bandgap (WBG) devices are a key technology for vehicle electrification. 

Therefore, WBG semiconductors have great prospects and their market is expected to top 

$10 billion, with majority of the demand coming from the BEV and PHEV sector [6]. 

Silicon Carbide (SiC) and Gallium Nitride (GaN) are the two most prominent 

WBG materials for power devices. Table 1.1 shows some important properties of SiC and 

GaN devices [1], [7]. The higher critical electric field (≥ 200 V/μm) in WBG materials 

enables thinner and highly doped voltage-blocking layers in the devices, which can reduce 

on-resistance by two orders of magnitude relative to Silicon (Si), which has a critical 

electric field of 30 V/μm, in majority carrier devices like  metal oxide semiconductor field  

effect transistors (MOSFETs) [3]. The low intrinsic carrier concentration of WBG 

materials, which is less than 10-9/cm3, results in low leakage currents, even at high 
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temperatures, which enables robust high-temperature performance [3]. The figure of merit 

(FOM) is defined as the product of the on-state resistance and gate charge for a switch, so 

a lower FOM corresponds to better performance [8]. WBG devices have much lower 

FOMs than Si devices. For example, a GaN transistor has three to seven times better FOM 

than a Si MOSFET [8]  

Table 1.1. Properties of wide bandgap devices. 

Property Si GaN SiC 

Bandgap (eV) 1.1 3.4 3.2 

Electron mobility (cm2/Vs) 1450 2000 900 

Critical electric field (MV/cm) 0.3 3.5 3.0 

Electron saturation velocity (107 cm/s) 1.0 2.5 2.2 

Thermal conductivity (W/cm-K) 1.5 1.3 5.0 

Maximum operating temperature (℃) 200 300 600 

Specific heat capacity (J/KgK) 712 490 681 

WBG devices are enabling high power, low-inductance motors that require a high 

switching frequency and a high-bandwidth current regulation strategy to obtain an 

acceptable current ripple, which is typically lower than 5% for many applications [9].  

Along with the recent technological advances in motors, SiC devices are enabling the next 

generation of high-speed, direct-drive medium-voltage drives for megawatt (MW) class 

motors in many critical energy applications [10], [11]. The primary applications are in 

petroleum refining industries, natural gas infrastructure, and other industrial applications 

[12]. The demand for high-speed motors for drilling, milling, grinding, and machining 
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applications, turbo compressors, and flywheels is increasing. WBG-based converters have 

lower losses at the high switching frequencies required for these motors when compared 

to Si-based converters. This makes the system more efficient, lightweight, and compact, 

which is particularly important in portable applications. Another class of electric drives 

benefitting from WBG devices is motor drives operating in high-temperature 

environments. Hybrid electric vehicles (HEVs), sub-sea and down-hole pump 

applications, deep earth drilling, combat electric vehicles, space crafts, and national 

aeronautics and space administration (NASA) probes and landers for space exploration 

are typical examples of drives in high-temperature environment [13]-[15]. To extract 

maximum performance from WBG devices and minimize electromagnetic interference, 

specific hardware design considerations need to be followed. 

Electric drives used in electric and hybrid electric vehicles, electric locomotive 

traction, electric ship propulsion, more-electric aircraft and industrial electric drives used 

in weaving machines, conveyors, cargo handling, hoists, printing presses require short-

term high torque [16], [17]. The variable speed drives (VSDs) for these applications are 

designed to provide short-time overload capability to meet transient torque requirements. 

The time taken to go from 0-60 miles per hour (mph) speed is an important specification 

for an electric car and all car manufacturers are competing to make this time smaller [18]. 

To achieve transient peak torque higher rated current needs to be forced into the 

motor for short duration. The duration of overload is determined by the magnitude of 

current during overload and the thermal characteristics of the motor [19]. The switching 

devices of power electronics converter cannot be overloaded. Therefore, transient peak 
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torque capability of an electric drive is limited by the power electronics converter, which 

needs to be designed with devices rated for higher current. 

Multiphase machines have reduced toque ripple, higher power density than three-

phase motors [20]. Using WBG devices, the inverter can be integrated with the multiphase 

motor thus avoiding use of multiple ac cables, so only two dc link cables will be required. 

Low losses and the high junction temperature of WBG devices make it possible to 

integrate the inverter and the motor.  

For a typical hybrid electric vehicle (HEV) and electric vehicle (EV) driving cycle, 

the drivetrain is lightly loaded most of the time [21]. Therefore, the vehicle-level fuel 

efficiency is significantly reduced by lower light load efficiency of Si insulated gate 

bipolar transistors (IGBTs). SiC MOSFETs, which have high efficiency even at light 

loads, can greatly improve the fuel economy of HEVs and EVs [21]. 

1.1 Wide Bandgap Devices for Motor Drives 

The WBG devices can provide significant benefits for many applications, 

especially low-inductance motors, high-speed motors, and electric drives operating in 

high-temperature environment. Low-inductance motors generally require a pulse width 

modulation (PWM) frequency of 50-100 kHz or higher to keep the current ripple within 

acceptable limits [22]. Current ripple is undesirable because it wastes energy in the motor 

windings and may cause unwanted pulsations in the torque. For low-inductance motors 

rated at a few kilowatts, Si MOSFETs can be used because they can provide the desired 

current ripple by switching at up to 50 kHz [23]. At power levels higher than a few 

kilowatts, Si IGBTs are preferred over MOSFETs, but the switching frequency of a Si 
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IGBT is limited to about 20 kHz [24], [25], which fails to meet the current ripple 

limitations in low-inductance motors. Thus, due to their high switching frequency 

capability, WBG devices enable low-inductance motors rated for high power [26]. 

High-speed electric machines are gaining popularity in industry due to their high 

power density [27]. The worldwide push for electrification of transportation systems is 

also fueling the advance of high-speed machine technologies. The fundamental frequency 

required by high-speed machines can be several kilohertz (kHz). The high switching 

frequency capability of WBG devices enables high-speed machines with a larger number 

of poles, which can reduce the weight and volume. MW-level (>1000 HP), high-speed 

(10,000-20,000 rpm) motors are used in petroleum refining industries, natural gas 

infrastructure, and other industrial applications. Deployment of medium-voltage variable 

speed drives in these MW class motors could provide significant energy savings of up to 

0.7% to 1.8% of the total US electricity consumption [28]. 

The maximum operating temperature of a semiconductor material is determined 

by its bandgap. Therefore, semiconductors with a wider bandgap can operate at higher 

temperatures. However, to this point, the current unavailability of high temperature 

packaging has limited the present SiC modules to 200 °C [29]. Additionally, SiC has a 

higher thermal conductivity than Si, allowing SiC devices to dissipate heat produced by 

losses faster, so SiC devices can operate at much higher power densities than Si devices. 

With the increased demand for high efficiency, high power density, and high-temperature 

capabilities in aerospace and automotive applications, integrated motor drives (IMDs) 

offer a promising solution [30]. IMDs also offer direct replacement for inefficient direct  
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Figure 1.1. US DOE 2022 electric drive system target for an electric vehicle, 

reprinted from [31]. 

on-line motors. Close physical integration of the converter and the machine results in a 

temperature increase in the power electronic components, which limits power levels to 7.5 

kW with Si-based IMDs [30]. WBG devices with their high-temperature capability make  

IMDs feasible for higher power levels. Figure 1.1 shows the 2022 electric drive system 

target set by the United States department of energy (DOE) in its advanced power 

electronics and electric motor research and development program [31]. The high 

efficiency and power density targets are achievable with WBG device-based IMD 

approach. In 2018, Tesla unveiled an electric drivetrain using 650 V, 100 A SiC 

MOSFETs for its Model 3 car. Figure 1.2 shows the main inverter of Tesla Model 3 car, 

which uses 24 SiC MOSFET modules from ST Microelectronics; 4 devices connected in 

parallel for each switch position [32]. The modules are molded modules using copper 

ribbon bonding for MOSFET connections. 
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Figure 1.2. Tesla Model 3 3-phase inverter driving propulsion motor, reprinted from 

[32]. 

To justify the higher cost of WBG devices and fully realize their potential, they 

must be switched at high speeds, but high switching speeds result in additional 

electromagnetic interference (EMI) generation. High dv/dt excites the capacitive coupling 

paths in converter, cables and motor causing substantial common mode (CM) current to 

flow and can damage motor insulation. 

1.2 Control of Multiphase Motor Drives 

An n-phase machine can be represented using n/2 orthogonal subspaces for 

machines with an even number of phases and (n − 1)/2 orthogonal subspaces for machines 

with an odd number of phases using the vector space decomposition approach. The 

orthogonal subspace includes one α–β subspace and several x–y subspaces, and the zero-

sequence components [33]. For a machine with sinusoidal magnetomotive force 

distribution, only the α–β components contribute to torque production, while x–y and zero-

sequence components only produce losses. Generally, zero-sequence components can be 

neglected, since the neutral point of the machine is generally isolated so that the zero-

sequence currents cannot flow. Controlling only the torque and flux producing α–β 
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currents is insufficient and additional controllers are necessary to minimize the x–y 

currents that can flow due to the inverter dead-time effect [34] and asymmetry in converter 

or motor. Among the multiphase machines, machines having multiple three phase 

windings (6, 9 and 12 phases) are most popular. The modular three-phase structures allows 

the use of the well-established three-phase technology. In this dissertation, we are using 

an asymmetrical six-phase machine, which has 30° spatial shift between the two three-

phase stator windings with isolated neutral points. The x–y currents that have physical 

meaning in asymmetrical six-phase machine can be interpreted as the circulating currents 

between the two three phase windings. The currents of harmonic orders 12n±1 

(n=0,1,2,…) appear in α–β subspace, whereas currents of the orders 6n±1 (n=1,3,5,…) 

appear in x-y subspace [34]. Since there is no back-electromotive force in x-y subspace, 

the currents in x-y subspace are only limited by winding resistance and stator leakage 

inductance. Therefore, for relatively small magnitudes of voltages in x-y subspace, 

currents of substantial magnitudes will result. 

1.3 Electric Drives with High Acceleration Capability 

Short-term overload operation is required in traction, aerospace, and machine tools 

applications. All-terrain vehicles and military vehicle drivetrains also have special 

requirements such as hill climbing ability, hard acceleration, and high speed because of 

their harsh operating conditions [15]. The electromagnetic torque in a motor depends on 

the current density and flux density. The machines are designed to operate in deep 

magnetic saturation when supplying peak torque [35]. 

In [36], a fast acceleration method using a delta-star starter has been used for a   
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weaving motor drive system. The delta-star switching method achieves high inrush current 

in order to increase starting torque. At starting, a delta connection is used which applies 

full line-line voltage across the winding. When the speed reaches the desired value, the 

motor winding is switched to a star-connection. Switches with higher current rating are 

used to handle the high starting current, which increases the system cost. Faraday Future 

has demonstrated full-electric vehicles with competitive 0-60 miles per hour acceleration 

times. Faraday Future uses a patented drivetrain control software called “Battery Boost 

Mode” in which the inverter switching frequency is reduced from 10 kHz to 3 kHz to keep 

the switching device’s temperature within acceptable bounds when 25% more motor 

current is forced during acceleration [37]. 

Some methods to change torque-speed characteristics of multiphase motors have 

been reported in literature. One more major advantage of multiphase induction motor 

(MIM) is that they can achieve a wide range of speed torque variation using pole phase 

modulation (PPM). PPM is a continuous pole changing technique for MIMs which is 

achieved by changing the phase of the excitation voltage. PPM can be used to obtain high 

starting torque from a MIM [38]. But, PPM is possible only with certain slot-pole 

combinations for a given multiphase motor, which may not be optimal for good steady 

state performance [38]. 

To get momentary high torque, more than rated current needs to be supplied to the 

motor. The motor can be overloaded for brief duration, but the converter cannot be 

overloaded. Therefore, a drive’s peak torque rating is limited due to the maximum junction 
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temperature of its switching device, which limits allowable current through it [39]. This 

requires the devices to be overrated to increase the drive’s peak-torque rating. 

1.4 Hardware Development for Wide Bandgap Device-Based Converters 

Significant research efforts are reported for designing high performance gate 

drivers [40] - [45], for analyzing the effects of the parasitic inductance and capacitance on 

the converter performance [46] - [49], for integrating the gate driver and the SiC MOSFET 

inside the module to minimize the gate-source parasitic inductance [50], and for designing 

the SiC MOSFET module and dc link bus bar to achieve a low stray inductance [51]. There 

are also a few papers that address the complete design of converters with WBG devices 

[51] - [54]. In [53], an approach based on optimization of the power module, the dc and 

ac bus structures, the gate driver, and the dc link capacitor bank is presented for a 250 kW 

all-SiC three-phase inverter. 

An inverter can be designed on a printed circuit board (PCB), thus cutting down 

the cost of expensive dc and ac bus bars. The power rating of such an inverter is limited 

by the heating of the copper planes caused by currents. In such context, ensuring PCB-

level electromagnetic compatibility (EMC) is crucial to maintain the integrity of the 

measured signals (e.g., line currents in a motor drive). This is especially important in an 

environment with high di/dt and dv/dt, which is typical for WBG devices. The component 

selection, PCB layer stack up, and routing strategy are crucial for ensuring EMC in an 

environment with high dv/dt and di/dt. 

To achieve their full efficiency benefits, it is crucial to drive SiC MOSFETs in a 

way that minimizes conduction and switching losses [55], [56]. The main factors 
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influencing the switching behavior are the turn-on and turn-off energy of the MOSFET, 

gate drive current requirements, and Miller effect [55]. 

Minimizing the parasitic inductance of the commutation loop is crucial because 

the parasitic inductance causes voltage overshoot during the device turn-off. There is a 

tradeoff between the voltage overshoot and the achievable di/dt because the voltage 

overshoot should not exceed the rated voltage of the device. The stray inductances of the 

power module, the dc bus bar, the dc link capacitors, and the high frequency decoupling 

ceramic capacitors constitute the commutation loop inductance [53]. 

1.5 Trade-off Between High Switching Frequency and EMI, and Motor 

Insulation Reliability 

To justify the higher cost of WBG devices and fully realize their potential, they 

must be switched at high speeds, but high switching speeds result in additional EMI. High 

dv/dt excites the capacitive coupling paths in converter, cables and motors, causing 

substantial CM current to flow and this can damage motor insulation. If a high switching 

frequency is used, as required for low-inductance motors and high-speed motors, the 

conducted emissions increase significantly and an EMI mitigation strategy must be 

implemented to comply with EMC standards. SiC-based power devices enable an order-

of-magnitude reduction in switching losses relative to the Si IGBT and diode combination 

presently dominant at 1200 V. However, this comes at the cost of a 20–30 dB increase in 

the high-frequency spectral content of the switching waveforms, and a 5-times increase in 

the dv/dt of the inverter output [57]. In motor drives, especially those with long cables 

between the motor and the drive, the high dv/dt created by PWM voltage source inverters 
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(VSIs) creates excessive voltage stress in the insulation of ac motors due to voltage 

reflection [58]. Bearing currents are caused by high dv/dt of WBG devices and CM 

voltage, and these bearing currents can reduce bearing lifespans. A dv/dt filter placed 

between the drive and the motor can be used to reduce the dv/dt at the motor terminals. 

This allows the inverter to switch at high dv/dt to minimize switching losses while 

avoiding the problems associated with high dv/dt in the motor and cable. 

1.6 Problem Statement 

To get momentary high torque, more than rated current needs to be supplied to the 

motor. The motor can be overloaded for a brief duration, but converter cannot be 

overloaded. Therefore, a drive’s peak torque rating is limited by the maximum junction 

temperature of its switching devices, which limits allowable current through it. This 

requires the devices to be overrated to increase the drive’s peak-torque rating.  

The harmonics of the orders 3, 5 and 7 appear due to dead-time effect in inverters. 

For an asymmetrical six-phase motor, these harmonics map into x-y subspaces. Due to the  

fast rise and fall times of WBG devices, the dead time can be significantly lower than the 

dead time for Si devices. This will reduce the current in x-y subspace. The high switching 

frequency capability of WBG devices allows a high-bandwidth current control, which will 

nullify the currents in x-y subspace. This will eliminate extra controllers required in those 

subspaces.  

The reliability of power converters in an electric drivetrain of a vehicle can be a 

criterion for the comparison of cooling system designs and various control strategies. 

Therefore, reliability prediction is important for design and control of vehicles. This 
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dissertation presents an approach for quantitative evaluation of the reliability of converters 

for multiphase motor drives for EVs, taking driving cycle into account. 

To achieve the maximum benefits from using WBG devices, the converter must 

be designed with appropriate gate drivers than can switch quickly with minimal overshoot 

and losses, with minimal parasitic inductance in the commutation loop, and with fast short-

circuit protection for the WBG switches. The design considerations to capitalize on the 

full potential of WBG devices and to ensure PCB level EMC are illustrated in this 

dissertation.  
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2. MULTIPHASE DRIVE WITH HIGH TRANSIENT TORQUE CAPABILITY 

 

Electric drives used in electric and hybrid electric vehicles (EVs), electric 

locomotive traction, electric ship propulsion, more-electric aircraft and industrial electric 

drives used in weaving machines, conveyors, cargo handling, hoists, printing presses 

require short-term high torque [59], [60]. To get momentary high torque, more than rated 

current needs to be supplied to the motor. The motor can be overloaded for a brief duration, 

but converter cannot be overloaded. The typical torque-speed characteristics and most 

frequent operating points of a traction motor are shown in Figure 2.1. For quick 

acceleration, the electric motor is required to deliver high torque at lower speeds. 

Additionally, hill climbing, reversing at high road gradient and auto-start of the engine 

also require high torque at lower speeds [59]. The torque requirement for acceleration, 

passing, and grade ability of Chevrolet Bolt battery electric vehicle is shown in Figure 2.2 

[61]. 

2.1 Short Term Overload Capability of a Motor 

To get high transient torque, motor is overdesigned and more cooling effort is 

required for converter and motor. The temperature rise inside the motor must not be 

allowed to exceed the rated temperature of insulation during a transient overload. Various 

recognized temperature classifications of insulation systems for electric machines are: 

class 105 ℃ (A), class 130 ℃ (B), class 155 ℃ (F), class 180 ℃ (H), class 200 ℃ (N), 

class 220 ℃ (R), class 240 ℃ (S), class  above 240 ℃ (C) [62]. The rated temperature of 
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insulation should not be exceeded. The motor has sufficient heat capacity, so it can be 

briefly overloaded. The time duration limit of maximum torque depends on the thermal  

Figure 2.1. Typical torque-speed characteristics and most frequent operating points of an 

electric vehicle © 2015 IEEE, reprinted with permission from [59]. 

Figure 2.2. Chevrolet Bolt electric vehicle drive unit axle torque requirement © 2017 

IEEE, reprinted with permission from [61]. 
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of the motor [63]. The dynamic applications require analysis of transient thermal behavior. 

The temperature rise characteristic of a stator-limited induction machine can be divided 

into four modes: subtransient, transition, transient and temperature creep [63]. The first 

mode is the subtransient regime in which the conductor temperature rises linearly. The 

maximum temperature rise occurs in this mode for short-term severe overloads because 

the enamel and insulation have low heat diffusivity. Heat is stored in the conductor’s 

thermal mass. [63]. Therefore, the momentary overload capability of a motor is 

determined by its subtransient time rating (STR) and associated i2t rating. The STR is on 

the order of seconds. 

Mode 2 is called transition regime and it starts when the heat reaches the winding 

surface and starts heating the end space. The maximum temperature rise is reached during 

transition regime for moderate overloads. Therefore, time ratings for moderate overloads 

are defined by transition time rating. The third mode transient regime begins when the 

heat reaches the surface of motor frame and end caps. The time rating in this mode is 

defined as the transient time rating. The fourth mode is observed during constant current 

operation. 

During subtransient regime, the conductors heat adiabatically due to low thermal 

diffusivity of the insulation and slot liner. The temperature rise in this mode is given by: 

𝑑𝑇

𝑑𝑡
=

𝑃𝑙𝑜𝑠𝑠

𝐶𝑡ℎ
(2.1) 

where Ploss is the stator winding loss and Cth is the heat capacity of stator conductors. 

Integrating both sides of (2.1), we get 

 𝛥𝑇(𝑡) =
1

𝐶𝑡ℎ
∫ 𝑃𝑙𝑜𝑠𝑠𝑑𝑡

𝑡

𝑡𝑜
+ 𝛥𝑇0 (2.2) 
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STR can be found by solving equation 2.2, 

 𝑆𝑇𝑅 = 𝐶𝑡ℎ
𝛥𝑇𝑚𝑎𝑥−𝛥𝑇0

𝑃𝑙𝑜𝑠𝑠
  (2.3) 

where 𝛥𝑇0 is the initial temperature rise of the motor and 𝛥𝑇𝑚𝑎𝑥 is the maximum 

allowed temperature rise, which is determined by the insulation class.  

To improve the STR, the i2t rating of the stator conductor should be enhanced. The 

approaches are to cool the conductors directly and to allow a higher temperature rise in 

the coils by utilizing a higher temperature insulation class for winding insulation. The heat 

of the conductors can be removed with cooling channels in hollow conductors which 

results in higher heat dissipation and high current capability [64], [65]. 

2.2 Description of Multiphase Motor Drive with High Transient Torque 

Capability  

The invention presented here makes it possible to get high transient torque from a 

multiphase motor drive at low speeds. This invention is valid for motors with N phases 

where N is an even number and greater than or equal to 6. An asymmetrical 6-phase motor, 

as shown in Figure 2.3, is used for illustration of the invention. This motor has 2 sets of 

3-phase windings (abc and xyz) and these two sets are displaced by 30 degree electrical 

angle relative to each other. Legs 1, 3, and 5 of the inverter supply phases a, b and c 

respectively and legs 2, 4, and 6 supply phases x, y and z of motor as shown in Figure 2.4. 

The motor-inverter system along with all the switches is shown in Figure 2.4. WA, WB, 

WC, WD, WE, and WF represent the 6 phase windings. DC+ and DC- represent the dc bus 

terminals. The 6 inverter legs are shown separated for ease in illustrating the system 

reconfiguration. Six single position double throw (SPDT) switches are represented by 
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SPDT1 to SPDT6. The higher torque can be obtained by converting a 6-phase machine 

into a  3-phase machine and connecting two inverter legs in parallel with the help of six 

Figure 2.3. Asymmetrical 6-phase motor winding description. 

switches. To obtain a 3-phase machine, two adjacent phase windings of a 6-phase machine 

are connected in series. For example, for the 6-phase symmetrical motor shown in Figure 

2.4, we connect phase a in series with phase x, phase b in series with phase y and phase c 

in series with phase z. Legs 1 and 2, legs 3 and 4, and legs 5 and 6 are connected in parallel. 

To get high transient torque, up to twice the rated inverter current can be forced at the 

range of speeds for which the value of back-EMF of the motor is low enough to allow this 

much current. This current is forced for a duration determined by the STR of the motor, 

so that the winding temperature remains within the limit imposed by the class of 

insulation. A super-capacitor can be used to supply this short-duration high current. Table 

2.1 shows the contactor position for switching from 6 phase to 3 phase operation and vice 

versa. 
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The switchover of the SPDTs occurs during the operation of the electric drive before a 

transient torque phase. The control circuit deactivates the electric drive currents during the 

switchover from the 6-phase configuration to the 3-phase configuration and vice versa. 

 

 

Figure 2.4. Asymmetrical 6-phase motor-inverter system showing all SPDTs. 
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This ensures that there is no arcing between the contacts of SPDTs and they need 

to be sized for stationary currents only. During the switchover process, no torque is 

produced by the electric drive but the interruption is not noticeable due to the inertia of 

the load. The switchover period can be kept as short as 20-30 ms. The actuator system 

requires a small setup or lead time to switch the contacts of SPDT. The duration of 

interruption of the electric drive can be minimized by delaying the deactivation of motor  

Table 2.1. SPDT positions for 3 and 6-phase operation of the motor drive. 

currents in relation to the actuation system. 

2.3 Control of Asymmetrical 6-Phase Induction Motor 
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Mode of operation SPDT Position 

SPDT1 SPDT2 SPDT3 SPDT4 SPDT5 SPDT6 

3-phase operation 1 1 1 1 1 1 

6-phase operation 2 2 2 2 2 2 
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The transformation matrix T is used to convert 6-phase current/voltage variables 

to 𝛼𝛽𝑥𝑦0+0- components. The 𝛼𝛽 components are then converted to the synchronous 

frame. The vector space decomposition of multiphase motors is discussed in [66]. The 

current control methods for different subspaces of multiphase motors are presented in [67]. 

The parameters for the proportional integral (PI) controllers for the speed and the currents  

in dq and xy frame of 6-phase motor are selected analytically based on motor parameters 

and the control loop bandwidths [68], [69]. 

2.3.1 Speed Control Using Classical Control Methods 

The parameters of the PI controller for speed are selected analytically as given in 

[69]. The controller gains are a function of inertia as well as the desired closed loop 

bandwidth. It has excellent response to reference and load-torque changes. The 

proportional controller gain is given by: 

 𝐾𝑝 = 𝛼𝑠𝐽 (2.4) 

where J is the total inertia of the motor and the load and 𝛼𝑠 is the bandwidth of the closed 

loop controller. The gain of integral controller is given by: 

 𝐾𝑖 = (
𝛼𝑠

2𝛿
)
2

𝐽 (2.5) 

where 𝛿 is relative damping. A value of 0.61 was chosen for 𝛿, which gives a phase margin 

of 60 degrees. 

2.3.2 Current Control Using Classical Control Methods 

The design procedure presented in [69] is used to achieve nearly minimum settling 

time with negligible overshoot for reference changes. The controller gains are given by: 

 𝐾𝑝 = 𝑘𝐿 (2.6) 
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 𝐾𝑖 = 𝑘𝑅 (2.7) 

where L and R are the transient inductance and resistance of the motor respectively for the 

𝛼𝛽 plane and L is the leakage inductance for the xy plane. The optimum value of k is found 

to be approximately 4% of the angular sampling frequency for the 𝛼𝛽 plane [69] and 10% 

of the angular sampling frequency for the xy plane. 
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3. QUANTITATIVE RELIABILITY EVALUATION OF INVERTERS FOR 

MULTIPHASE MOTOR DRIVES FOR ELECTRIC VEHICLES  

 

3.1 Introduction 

Power electronic systems in the drivetrain of an electric vehicle can have adverse 

effect on the reliability of the vehicle [70]. According to data obtained from field 

experience, approximately 35% of adjustable speed drive failures are attributed to failure 

of power electronics [71]. Up to 40% of 3-phase inverter failures in the field are a result 

of power semiconductors failures [71]. Reliability is the probability that the system will 

perform the required function without failure under the stated conditions for a specified 

period of time under given environmental and operational conditions [72]. The inverters 

used in electric and hybrid electric vehicles (HEVs), wind energy conversion systems and 

photovoltaic power generation face randomly varying mission profiles [73], [74]. Due to 

thermal variations, the bond wire and thermal joints of the switching device module can 

fail. Thermally caused failures constitute a significant percentage of all sources of failures 

[75]. Quantitative assessment of reliability is important for comparing different 

topologies, control strategies and components and determining whether the designed 

system meets the specifications. 

In [76], a mission-profile-dependent simulation model based on MATLAB is 

presented for the quantitative assessment of the reliability of 3-phase motor drive of HEVs. 

In [72], existing methods to evaluate the reliability of power electronics converters are 

surveyed. Therefore, multiphase motor drives increase reliability as the motor drive can 
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still operate with reduced capacity. It is important to quantify the reliability of multiphase 

motor drives to study the tradeoff between reliability improvement and the cost and 

complexity added due to the additional phases. 

3.2 Reliability Analysis of Power Electronics Systems 

Mean time between failure (MTBF) is a widely used performance metric for 

comparison of various system designs [72]. The MTBF gives the expected average time 

for which an item operates without failing. A MTBF much longer than the mission 

duration means that the system is highly reliable within the mission duration. Assuming 

that the failure rates of components and subsystems are independent of time, reliability 

can be defined as: 

 Reliability = e-t/MTBF (3.1) 

When the failure rate λ(t) is constant , MTBF is the inverse of the failure rate. 

The IEC TR 62380 empirical reliability model for IGBTs considers the dormant 

modes and effects of the temperature cycles on failure rates and includes data from IGBTs. 

For reliability analysis at the system or sub-system level, the part count model, 

combinatorial model, and Markov models are used [72]. Among these models, only the 

Markov models reflect the details of fault-tolerant systems such as the order of component 

failures, state dependent failure rates, repair process, and reconfiguration. 

3.3 Reliability Evaluation Model of Electric Vehicles  

In this dissertation, a model is built in MATLAB to evaluate the reliability of the-

SiC based inverter for electric vehicles. The block diagram for reliability evaluation is 

shown in Figure 3.1. 
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Figure 3.1. Block diagram of the reliability evaluation model. 

3.3.1 Driving Cycle 

A driving cycle consists of standard temporal sequences of vehicle speeds. The 

driving cycle provides the instantaneous speed and acceleration to the vehicle and motor 

model. This is used to determine the operating conditions of the inverter in the electric 

drive. The LA92 driving cycle is used to simulate the driving scenario in this dissertation 

[77]. 

3.3.2 Vehicle Model 

The vehicle speed and acceleration obtained from the driving cycle model are 

inputs to vehicle model to calculate the instantaneous torque and speed of the traction 

motor. Parameters of the vehicle, such as vehicle weight, front area, and diameter of the 

wheels, are obtained from the Toyota Prius. The rolling resistance coefficient, the 

aerodynamic drag coefficient, and transmission efficiency are obtained from the literature 

[78]. The vehicle parameters are shown in Table 3.1. 

3.3.3 Motor Model 

The motor model is used to obtain stator voltages and currents using traction 

torque-speed characteristics obtained from the vehicle model. The motor used is an 

interior permanent magnet synchronous motor (IPMSM), which is a superior solution for  
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Table 3.1. Parameters of vehicle. 

Parameter Value 

Front area 1.746 m2 

Aerodynamic drag coefficient 0.26 

Rolling resistance coefficient 0.01 

Transmission efficiency 0.9 

Diameter of tire 0.62 m 

Number of gears 5 

Vehicle mass 1243 Kg 

Table 3.2. Parameters of motor. 

Parameter Value 

Number of poles 8 

Maximum speed 10,000  rpm  

Maximum power 70 kW 

Maximum torque 185 Nm 

Maximum current 176.7 A (rms)   

DC-link voltage 360 V   

Stator resistance 16.9 mΩ 

Permanent magnet flux 0.099 Wb 

Nominal d-axis inductance 0.312 mH 

Nominal q-axis inductance 0.606 mH 

EVs because of its efficiency, power density, and wide speed operating range. In an 

IPMSM, torque is determined by both d-axis and q-axis currents. In maximum torque 
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perampere (MTPA) control, the optimal combination of these two current components is 

calculated to produce the desired torque while minimizing current magnitude. In the field-

weakening region, current minimizing solutions are found at the intersection of the torque 

and voltage limit curve. The analytical solution to current for MTPA has been obtained in 

[79] and the same has been used in this dissertation. The EV motor parameters are taken 

from [79] and shown in Table 3.2. The motor can provide a maximum torque of 185 Nm, 

which is sufficient for the considered vehicle and driving cycle. 

3.3.4 Post Fault Control of Motor 

Multiphase motor drives have degrees of freedom that can be exploited during post 

fault operation to control the motor. The two most common optimization criteria for post 

fault control are minimum-loss mode and maximum-torque mode. In this dissertation, 

maximum torque mode is used while keeping the post fault currents below the rated value 

to satisfy thermal limit of the power converter and motor. The detailed procedure to find 

the post fault currents is described in [80]. 

3.3.5 Electro-Thermal Modeling and Loss Model 

For electro-thermal simulations of long driving cycles (about 25 minutes) of EV 

powertrains, the challenge is achieving fast simulation speeds so that simulations can be 

conducted within hours. This challenge exists because thermal simulations need a few 

hours to produce results due to the large thermal time constants of cooling systems. This 

makes coupled electric-thermal simulations very slow. Thermal models developed at the 

National Renewable Energy Laboratory show that if copper is used as the fin material with 

airflow through the micro-channels and the base plate is held at 125 ℃ heat fluxes from  
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Figure 3.2. Foster model of junction to case thermal impedance. 

60 W/cm2 to 180 W/cm2 can be dissipated and it is sufficient to keep the device junction 

temperature within allowed limits [81]. Keeping this cooling technology in mind, the 

baseplate or heat sink temperature is kept constant at 125 ℃. With the base plate 

temperature fixed, we can use a simple thermal equivalent circuit for finding the junction 

temperature of the switching devices and hence avoid a significant computational burden. 

A complete analytical solution for calculating the losses of switching devices of voltage 

source inverter (VSIs) is presented in [82]. In these models, the average current and 

voltage values obtained from the control system of the power converter are used for loss 

calculations assuming a linear loss model, which uses datasheet information. This works 

very well for complex power converters like pulse width modulation (PWM) controlled 

inverters. The loss model used is a good choice for electro-thermal simulations as it has 

high computational efficiency. 

In this dissertation, the partial fraction circuit, also known as Foster model or pi 

model, is used for the thermal equivalent circuit of the device module, as shown in Figure 

3.2 [83], [84]. This circuit is used in datasheets, as the coefficients can be easily extracted 

from a measured cooling curve of the power switch or module. The partial fraction 
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coefficients are provided in datasheets as thermal resistance and thermal time constant 

pairs. The partial fraction coefficients are provided in datasheets as thermal resistance (r) 

and thermal time constant (τ) pairs with τi = rici. The thermal time constant of the SiC 

device package is of the order of hundreds of milliseconds. The thermal impedance curve 

can be written as: 

 𝑍𝑡ℎ𝑗𝑐(𝑡) =  ∑ 𝑟𝑖 ∗  (1 − 𝑒−𝑡/𝜏𝑖)𝑛
𝑖=1  (3.2) 

 𝑇𝑗(𝑡) = 𝑃(𝑡) ∗ 𝑍𝑡ℎ𝑗𝑐(𝑡) + 𝑇𝑐𝑎𝑠𝑒(𝑡) (3.3) 

 

where P(t) is total loss, Tj(t) is junction temperature, Tcase is the base plate temperature and  

Zthjc is the junction to case thermal impedance.  

3.3.6 Failure Rate Model of MOSFET 

The MOSFET failure rate model given in [85] can be expressed as: 

 𝜆𝑀𝑂𝑆𝐹𝐸𝑇 = (𝜆𝑑𝑖𝑒 + 𝜆𝑝𝑎𝑐𝑘𝑎𝑔𝑒 + 𝜆𝑜𝑣𝑒𝑟𝑠𝑡𝑟𝑒𝑠𝑠) ∗
10−9

ℎ
 (3.4) 

 𝜆𝑑𝑖𝑒 = 𝜋𝑆 ∗ 𝜆0 ∗
∑ (𝜋𝑡)𝑖∗𝜏𝑖

𝑦
𝑖=1

𝜏𝑜𝑛+𝜏𝑜𝑓𝑓
 (3.5) 

 𝜆𝑝𝑎𝑐𝑘𝑎𝑔𝑒 = (2.75 ∗ 10−3 ∗ ∑ (𝜋𝑛)𝑖
𝑧
𝑖=1 ∗ (∆𝑇𝑖)

0.68) ∗ 𝜆𝑏  (3.6) 

 𝜆𝑜𝑣𝑒𝑟𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜋𝑖 ∗ 𝜆𝐸𝑂𝑆 (3.7) 

where λdie represents the failure rate of the MOSFET die, λpackage represents the MOSFET 

package failure rate, which is caused by thermal cycling, and λoverstress denotes the effect 

of overvoltage and overcurrent stress on the component failure rate. 

The parameters are further explained as follows. 

λ0 and λb are base failure rates of the die and the package respectively. 
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Figure 3.3. LA 92 driving cycle. 

 

Figure 3.4. Junction temperature of SiC MOSFET for a 6- phase converter in the LA 92 

driving cycle. 

Πs denotes the effect of the voltage stresses and is determined by the ratios of the applied 

collector-to-emitter and gate-to emitter voltages to the corresponding rated voltages.  (πt)i  

represents the effect of junction temperature on the failure of the die in the ith phase of 

mission profile. 

τi is the working time ratio of the MOSFET in the ith phase of the mission profile.  

τon corresponds to the total working time ratio. 
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τoff corresponds to the total dormant time ratio. 

τi, τon, and τoff, represent the effect of the dormant mode on the failure of MOSFETs. 

(ΔT)i is the amplitude of the thermal variation in the ith phase of the mission profile. 

 

Figure 3.5. Flowchart for the calculation of failure rate. 

 

Figure 3.6. Markov model of a 6-phase converter showing states and transitions. 
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(πn)i is the factor that takes into account the annual number of thermal cycles seen by the 

package with the amplitude of (ΔT)i  The unit of the failure rate in the given equation is 

the number of failures per billion (109) hours. 

3.4 Reliability Evaluation and Discussion 

Figure 3.3 shows the speed versus time profile of the LA 92 driving cycle. Figure 

3.4 shows the junction temperature variation of devices of a 6-phase converter supplying 

asymmetrical 6-phase motor for LA 92 driving cycle. Figure 3.5 shows the flowchart for 

the process of quantification of reliability. The Markov model diagram of a 6-phase 

converter supplying asymmetrical 6-phase motor is shown in Figure 3.6. The Markov 

model is based on graphical representation of system states that correspond to system 

configurations, which are reached after a unique sequence of failures and transitions 

between these states. Table 3.3 describes all the possible post-fault states of asymmetrical 

6-phase motor drive used for generating the Markov model. There are 10 post-fault states 

in which motor drive can operate with reduced performance. The model has 14 states 

represented by nodes: S1 to S14. S11, S12, S13 and S14 are absorbing states. The 

transition failure rates as shown in Table 3.4, have been calculated using the method 

presented in this dissertation. The arrows represent transition between states as a result of 

component failures. 𝜆x,y represents the probability of transition from state x to state y. The 

Chapman-Kolmogorov equation is used to analyze Markov model. For illustration, the 

Chapman-Kolmogorov equation for nodes S1 and S2 are given by: 

 
𝑑𝑃𝑆1(𝑡)

𝑑𝑡
= −𝜆1,2𝑃𝑆1(𝑡) (3.8) 

 
𝑑𝑃𝑆2(𝑡)

𝑑𝑡
= −(𝜆2,3 + 𝜆2,4 + 𝜆2,5 + 𝜆2,6)𝑃𝑆2(𝑡) + 𝜆12𝑃𝑆1(𝑡) (3.9) 
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where PSk(t) is the probability of system being in state k at time t. The system has 10 non-

absorbing states: S1 to S10. Therefore, at time t, the system reliability can be expressed 

as: 

 R(t)=∑ 𝑃𝑆𝑘(𝑡)10
𝑘=1  (3.10) 

Table 3.3. Possible post-fault states of 6-phase motor drive for Markov model. 

S.No. State Description Status of phases 

1 P6  All phases healthy All Phases healthy 

2 P5_1 5 phases healthy One of the phases faulty 

3 P4_1 4 phases healthy 30° angle between faulty phases 

4 P4_2 4 phases healthy 120° angle between faulty phases 

5 P4_3 4 phases healthy 150° angle between faulty phases 

6 P4_4 4 phases healthy 90° angle between faulty phases 

7 P3_1 3 phases healthy 3 phases with 120° angle among them healthy 

8 P3_2 3 phases healthy 3 healthy phases with windings at 90° and 120° with first one 

9 P3_3 3 phases healthy 3 healthy phases with windings at 120° and 210° with first one 

10 P3_4 3 phases healthy 3 healthy phases with windings at 210° and 240° with first one 

11 P2_1 2 phases healthy 30° angle between healthy phases 

12 P2_2 2 phases healthy 90° angle between healthy phases 

13 P2_3 2 phases healthy 120° angle between healthy phases 

14 P2_4 2 phases healthy 150° angle between healthy phases 
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Table 3.4. Transition failure rates in Markov model of the motor drive. 

Failure rate  Value (/106 hours) 

State 1 to 2 (𝜆1,2) 1.8000 

State 2 to 3 (𝜆2,3) 0.2200 

State 2 to 4 (𝜆2,4) 0.9370 

State 2 to 5 (𝜆2,5) 

State 2 to 6 (𝜆2,6) 

0.2500 

0.8388 

State 3 to 8 (𝜆3,8) 0.2000 

State 4 to 7 (𝜆4,7) 0.3200 

State 4 to 8 (𝜆4,8) 0.2200 

State 4 to 9 (𝜆4,9) 1.6914 

State 4 to 10 (𝜆4,10) 1.6922 

State 5 to 10 (𝜆5,10) 1.6916 

State 6 to 8 (𝜆6,8) 1.6838 

State 6 to 9 (𝜆6,9) 1.6838 

State 7 to 13 (𝜆7,13) 2.2574 

State 8 to 11 (𝜆8,11) 2.6304 

State 8 to 12 (𝜆8,12) 0.2424 

State 8 to 13 (𝜆8,13) 1.2000 

State 9 to 12 (𝜆9,12) 0.5600 

State 9 to 13 (𝜆9,13) 2.7946 

State 9 to 14 (𝜆9,14) 3.2418 

State 10 to 11 (𝜆10,11) 1.3002 

State 10 to 13 (𝜆10,13) 10.9962 

State 10 to 14 (𝜆10,14) 17.9298 
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4. DESIGN OF INSULATION FOR WBG DEVICE-BASED VOLTAGE SOURCE

INVERTER FED MOTORS 

4.1 Introduction 

Low voltage motors usually have random-wound stators, which consists of round 

magnet wire, phase separator papers, ground wall insulation, and coil separators. Magnet 

wire is a wire insulated with an enamel coating on the wire itself. In a random wound 

motor, each turn can be placed against any other turn, so the word random wound is used. 

Form wound stators are made of insulated coils that have been pre-formed before insertion 

into slots. A typical form wound winding is shown in Figure 4.1. It has a continuous loop 

of rectangular magnet wires shaped into a coil with additional insulation applied over the 

preformed coils. Several coils with 2 to 12 turns in each coil are connected in series. In 

form wound stators, each turn in a coil is adjacent to another turn with the smallest possible 

voltage difference, which makes it possible to have thinner interturn insulation in a coil. 

In large machines, solid copper bars called Roebel bars are used instead of multi-turn coils 

and such motors are called form/bar wound. The motors rated for >700 V rms are generally 

form/bar wound.  

Short circuit failure of a motor stator winding due to aging or insulation damage is 

one of the most prominent causes of motor failure, accounting for 35% of all failures [86]. 

For optimal design of interturn insulation, it is important to evaluate the electric stress that 
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the insulation has to withstand and understand the degradation mechanisms of the 

insulation. Partial discharge is one of the main reasons of premature insulation failure in 

 

Figure 4.1. A typical form wound coil. 

PWM inverter fed motors. The presence of micro-voids inside an insulation is 

unavoidable. The electric field in these gas filled voids is much higher than the 

surrounding insulation medium, so the partial discharge can take place, which can cause 

slow and steady degradation of insulation. The insulation requirements of a PWM 

converter fed motor is different from that of a grid voltage fed motor. 

Due to surge impedance mismatch of the cable and the motor, an overvoltage 

occurs at the motor terminal due to voltage reflection even if the voltage front is not very 

steep. In [87], the dependency of the surge impedance of a motor on the system parameters 

is discussed; the surge impedance varies with motor’s power rating and number of parallel 

paths in the winding. A high power motor has lower surge impedance. Therefore, the 

overvoltage due to reflection is less for a given cable. If the voltage at the motor terminal 

of a PWM VSI drive has a steep front, the voltage distribution is non-uniform among the 

coils of a winding and among the turns of a coil [88]. In [89], the transient voltage 

distribution in windings of PWM VSI fed motor is modelled. The degree of non-
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uniformity depends on the rise-time of the voltage at the motor terminals and the winding 

or coil-design parameters. In [90], a multi-conductor lossy transmission line model has 

been used to analyze the voltage distribution in a motor winding subjected to a steep 

fronted voltage. A time-domain equivalent circuit is used to represent a multi-conductor 

line, which takes into account the effect of wave propagation and reflection. 

In [91], the reflected wave phenomenon in motor drives using WBG devices is 

discussed. The maximum cable length that produces a given voltage overshoot decreases 

as the voltage front becomes steeper. In [92], the effect of PWM VSI on the voltage 

distribution among the turns and coils of a random wound induction motor is simulated 

using the high frequency distributed-circuit parameters of motor estimated by finite-

element method. 

The dimensions of motor windings become comparable to the wavelength of 

associated electromagnetic field for a fast rise time of 20-100 ns. Therefore, the motor 

terminal voltage is given by the superposition of the forward travelling wave and the 

reflected wave, and it can even reach more than double the applied voltage. The same 

phenomenon also happens in a winding. The winding capacitance gets charged by the 

voltage wave. Standard resin and mica based insulation, used for form wound windings, 

have a relative permittivity equal to 4. The speed of the voltage wave traveling in a 

winding can be determined by 

𝑉𝑤𝑖𝑛𝑑𝑖𝑛𝑔 =
𝑐 

√𝜖𝑟
 (4.1) 

where c is the speed of light and 𝜖𝑟 is the relative permittivity of the medium. The

wavelength λ can then be calculated from the speed of the traveling wave using:
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Figure 4.2. Components of an electric drive and grounding of the components [93]. 

λ=(Vwinding/fmax) (4.2) 

where fmax is the maximum frequency of the input signal. For a PWM VSI, the maximum 

frequency is given by: 

fmax = 1/(trise) (4.3) 

where trise is the rise time of the voltage impulse at the motor terminals. For a rise time of 

50 ns, the shortest wavelength of the travelling wave is 7.5 m. Generally, the voltage 

distribution inside a winding can be assumed to be uniformly distributed for a length less 

than 1/10 of the wavelength. Therefore, for 50 ns rise time, the voltage distribution will 

be uniform for a maximum winding length of 0.75 m. The cable starts behaving like a 

transmission line at smaller lengths for fast switching transitions. 

4.2 Machine Terminal Voltage Arising from Converter Operation 

Figure 4.2 shows the components of an electric drive installation and grounding of 

the components. The voltage appearing at the terminals of a converter fed machine can be 

estimated using international electrotechnical commission (IEC) TS 61800-8 and depends 

on several properties of the electric drive and power distribution system [93]. This 

standard sets the guidelines for determination of the line-line and phase-ground voltages 
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at the converter and the motor terminals. The inverter output voltage can be divided into 

common mode and differential mode. The relationship between parameters like peak 

value, rise time etc. of input and output voltages of different sections of electric drive are 

obtained using suitable gains in common mode and differential mode circuits. The 

amplitude and rise time of voltage at the machine terminals depends on the grounding 

system, the cable connecting motor and inverter, the machine surge impedance and the 

presence of any filters that increase the rise time. The connection to ground using a cable 

is called low frequency grounding. To specify the dynamic voltage behavior in the system, 

the high frequency grounding performance and topology must also be considered. 

In Figure 4.2, VG0 to VG4 are the grounding potentials of different sections that can 

be the same or different than the low frequency based grounding potential. Single point 

grounding has poor high frequency grounding performance as compared to multi-point or 

mesh type grounding. In the case of single point grounding, the VG0 to VG4 may contain 

additional parasitic voltages. The instantaneous values of grounding potential is affected 

by the configuration of drive and the switching state of the active rectifier and inverter.  

The rise time and overshoot of the line-line and line-ground voltage is determined 

by the switching state of inverter and the snubber circuit of the switching device. In this 

dissertation, we do not consider any dv/dt filter to prevent insulation damage due to high 

dv/dt because they add size and cost to the drive and increase losses. Instead, the motor 

insulation system is boosted. A tradeoff study comparing using a dv/dt filter versus 

boosting insulation is out of scope of this dissertation; this dissertation focuses on 

presenting the factors affecting insulation stress and designing the optimal insulation. 
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The maximum line-line voltage at the motor input can be calculated as: 

𝑉𝑙𝑙_𝑚𝑎𝑥,𝑚𝑜𝑡𝑜𝑟 = 𝑉𝑆 ∗ ∏ 𝑘𝐷𝑖
4
𝑖=1  (4.4)

The maximum line- ground voltage at the motor input can be calculated as:  

𝑉𝑙𝑔_𝑚𝑎𝑥,𝑚𝑜𝑡𝑜𝑟 =
𝑉𝑙𝑙_𝑚𝑎𝑥,𝑚𝑜𝑡𝑜𝑟

√3
+ 𝑉𝐺4_𝑚𝑎𝑥   (4.5)

where 𝑉𝐺4_𝑚𝑎𝑥 = 𝑉𝑆 ∗ (∑ 𝑘𝐶𝑖
2
𝑖=0 ) ∗ ∏ 𝑘𝐶𝑖

4
𝑖=3

KDi and KCi are differential mode factors and common mode factors of individual sections. 

Vs is the line-line voltage at the input line section as shown in Figure 4.2. In general, the 

dc link voltage of the active line side rectifier is designed to be at least 5% to 10% higher 

than the peak line-line voltage. Therefore, the dc link voltage is given by: 

𝑉𝑑𝑐 = 1.1 ∗ √2 ∗ 𝑉𝑠 = 1.56 ∗ 𝑉𝑠 (4.6) 

The voltage at the inverter ground terminal is either Vdc/2 or –Vdc/2 with reference to the 

mid-point of the dc link. For a cable with cable characteristic capacitance (C0) and cable 

characteristic inductance (L0), the voltage pulse velocity is given by: 

𝑉 =
1

√𝐿0∗𝐶0
(4.7) 

Critical cable length is defined as the cable length travelled when a voltage pulse travelling 

along the motor cable, returns to power converter after being reflected at the motor. 

Critical cable length is given by: 

𝑙𝑐𝑟 =
𝑉∗𝑡𝑟

2
 (4.8)

where tr is the rise time. The reflection coefficient depending on the impedance mismatch 

between the motor and the cable is given by: 

Ƭ =
𝑍𝑚−𝑍0

𝑍𝑚+𝑍0
 (4.9)
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where Z0 is the cable characteristic impedance and Zm is the motor surge impedance. The 

motor surge impedance is not readily available and difficult to measure. Some typical 

values of motor surge impedance and reflection coefficient are given in Table 4.1. High 

frequency EMI filters are only used as common mode filters to reduce the conducted and 

radiated emissions. The target frequency range is from 150 kHz to 100 MHz. Therefore, 

EMI filters do not affect the insulation design. EMI filters are often used at the input 

terminals of the electric drive and at the inverter output also in some applications. The 

common mode and differential mode gain factors for a cable are given in Table 4.2. The 

common mode and differential mode gain factors for the considered electric drive 

installation with an active rectifier are given in Table 4.3. 

4.3 Motor Insulation 

The most common insulating materials in electric machines are mica, polyester 

films, aramid paper, epoxy or polyester resins. Insulation can be divided into two 

categories: groundwall and conductor. Conductor insulation separates the wires and turns 

Table 4.1. Typical surge impedance and reflection coefficient of a motor. 

Motor power (kW) Surge impedance (Ω) Reflection coefficient 

< 3.7 2000-5000 0.95 

90 800 0.82

355 400 0.6 
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Table 4.2. Cable section gains based on cable length. 

Factors 

Cable length < 

Critical cable length 

Cable length > 

Critical cable length 

Differential mode factor (Kd4) 𝑙𝐶 ∗ Ƭ

𝑙𝐶𝑟
+ 1

1+Ƭ 

Common mode factor (Kc4) 𝑙𝐶 ∗ Ƭ

𝑙𝐶𝑟
+ 1

1+Ƭ 

Table 4.3. Gains of different sections of motor drive. 

Factors 
Input rectifier 

section 

Inverter 

section 

EMI filter 

section 

Cabling and motor 

 section 

Differential mode 

factors  

Kd1=1.56 Kd1=1 Kd1=1 Kd1=1.95 

Common mode 

factors  

Kc1=0 Kc1=+/- 

0.5 

Kc1=1 Kc1=1.95 

of a coil. Groundwall insulation galvanically separates the coil from the iron core of 

machine. The main insulations are slot insulation and phase-phase insulation in the slot 

and the coil end. A polyester film is suitable for slot insulation. If two layers are used, 

aramid paper is used for the inner layer as it has better thermal resistance. In phase-phase 

spacing, flexible, cloth like insulation is used for end windings. For high voltage 

applications, mica is used. Insulation of the conductor is the most demanding task as it is 

closest to the hot copper wire and the thinnest insulation component. The most common 

conductor varnishes used in machines are amide-imides. Polyamide-imide is one popular 

option. The varnish can have several layers. According to the thickness of their coating, 

magnet wires can be divided into three grades: Single (Grade 1), double (Grade 2), triple 
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(Grade 3). Polyimide films and aramid papers can also be used as conductor insulation 

which are wrapped on a wire like tape. However, they are expensive, so they are only used 

for extremely harsh environments. For high voltage machines, above 6 kV, there is also a 

conductive corona protection between the insulation and slot wall. The purpose is to 

prevent partial discharge in voids. IEC standards describe the qualification and quality 

control test of the insulation of type I [94] and type II [95] rotating electric machines fed 

from VSI. 

4.4 Factors Affecting Inter-turn Insulation 

The peak line to line voltage (𝑉̂PP) of a two level inverter is called the jump voltage. 

The pulse repetition frequency (fP) is the same as the switching frequency (fsw) for a two 

level inverter. The jump voltage (𝑉̂PP) occurs at both the rising and falling edges of the 

phase-ground voltage. 

The voltage overshoot is created by reflected waves at the interface between the 

cable and the machine terminals due to impedance mismatch. The jump voltage at the 

impulse repetition rate is important in defining the voltage enhancement that can occur 

across the first few coils in a winding. The voltage enhancement is a function of rise time 

and cable length. Voltages above 2Vdc can be produced by double transitions and also if a 

minimum time is not allowed between successive pulses in PWM. Double transition/jump 

occurs when two phases switch simultaneously and has to be avoided by control. If the 

time between two impulses is matched with the time constant of the cable between inverter 

and machine, an overvoltage greater than 2Vdc can appear at the machine terminals. 

Voltage stress on the interturn insulation is determined by the amplitude and rise time of 
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the jump voltage of the phase-ground, the type of winding, number of coils and the number 

and length of turns. 

4.5 Form Wound Motor with Minimum Inter-turn Insulation Stress 

In random wound stator windings (also called mush windings), the position of each 

turn inside the slot varies randomly, making it impossible to determine the exact winding 

parameters like interturn capacitances and mutual inductances. Therefore, the insulation 

of a machine is often designed based on the worst-case scenario that is typically a 

neighboring location of the first and last turn of the coil. For bar wound or form wound 

windings, the location with respect to the other turns of the coil inside the stator slot is 

fixed and precisely known. This makes it possible to determine the exact values of the 

winding parameters and allows an easier optimization of the coil insulation system to 

withstand the fast transient voltages created by PWM VSI. In traction applications, bar-

wound construction improves the motor performance, especially in the low to medium  

speed range. [61]. High conductor fill for the same slot area, reduced effective thermal 

resistance between the copper bar, the laminations and reduction in cost due to easier 

assembly and decreased copper wire insulation costs are the main inherent advantages of 

bar-wound stators. In [61], the design of bar wound motor for Chevrolet Bolt electric 

vehicle has been described. Winding layout is optimized to minimize voltage between 

conductors within the slot, which increases slot fill factor by allowing minimum insulation 

between conductors. 
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4.6 Calculation of Electrical Stress on Different Insulations in a Motor 

The voltages for which different motor insulations must be designed and tested are 

given by: 

Table 4.4 Value of parameters for insulation design. 

Insulation PD 

safety 

factor 

Temperature 

factor 

Ageing 

factor 

Phase/Phase 1.25 1.3 1.2 

Phase/Ground 1.25 1.1 1.2 

Interturn 1.25 1.3 1.2 

Phase − phase voltage = (𝑉𝑑𝑐 + 2 ∗ 𝑉𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡) ∗ 𝐾𝐴𝑔𝑒𝑖𝑛𝑔 ∗ 𝐾𝑃𝐷𝑆𝑎𝑓𝑒 ∗

𝐾𝑃𝐷𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (4.10) 

Phase − ground voltage = 0.7 ∗ (𝑉𝑑𝑐 + 𝑉𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡) ∗ 𝐾𝐴𝑔𝑒𝑖𝑛𝑔 ∗ 𝐾𝑃𝐷𝑆𝑎𝑓𝑒 ∗

𝐾𝑃𝐷𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (4.11) 

Interturn voltage = (𝑉𝑑𝑐 + 2 ∗ 𝑉𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡) ∗ 𝐾𝑑𝑣/𝑑𝑡 ∗ 𝐾𝐴𝑔𝑒𝑖𝑛𝑔 ∗ 𝐾𝑃𝐷𝑆𝑎𝑓𝑒 ∗

𝐾𝑃𝐷𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (4.12) 

The worst case values for the parameters are given in Table 4.4. 

VInverterOvershoot is the overshoot in the voltage at motor terminals and depends on rise time 

and cable length. KAgeing takes the thermal aging of insulation into account. The ageing 

factor depends on the service temperature and the temperature class of the insulation. 

KPDSafe is to take into account the factor by which the PD test voltage should be increased. 

An increase in winding temperature from 25 ℃ to 155 ℃ typically causes the partial 

discharge inception voltage to fall by 30%. Kdv/dt takes into account the non-uniform 

voltage distribution due to fast rise time. For a random wound motor with a rise time of  
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50 ns at the motor terminals, 90% of the jump voltage can occur as inter-turn voltage in 

the worst case [96]. Therefore, Kdv/dt for a random wound motor is 0.9. For a form wound 

motor, the voltage distribution is found among the coils of a winding and turns of a coil 

and is used for voltage stress calculation. 

4.7 Advantages of High Voltage Motors 

Along with the recent technological advances in motors, SiC devices are enabling 

the next generation of high-speed, direct-drive Medium-Voltage (MV) drives for MW 

class motors in a wide variety of critical energy applications [97]. Higher voltage means 

lower current, so smaller conductors can be used to feed motors. The efficiency of a 

medium voltage (MV) motor may be lower than that of a low voltage (LV) motor because 

of lower slot-fill, but lower currents reduce the stress and heating on electrical distribution 

system which increases reliability. Form/bar wound coils for MV motors require more 

insulation. Therefore, larger slots are required in MV motor designs as compared to LV 

motor designs. The cost comparison of high voltage and low voltage electric drives 

depends on many factors. Typically, the largest impact on cost is the reduced size of 

conductors at high voltage. If feeders to distribution equipment or motors in the field are 

long, the cost savings will be much higher. Generally, the cost of the distribution system 

outweighs the small difference in the efficiency of motor. One example of very high-

voltage motor is ABB’s 40 kV synchronous motor driving a compressor at an air 

separation plant in Sweden [98]. This 6.5 MW motor connects directly to a 42 kV bus 

without an intervening transformer and dramatically cuts the plant's energy losses. 
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4.8 Investigation of the Voltage Distribution in Form Wound Windings Due to 

Steep-Fronted Voltage 

The voltage distribution is simulated using an equivalent π-section lumped circuit 

model based on parameters determined by finite element method (FEM). This model is 

found to have a close agreement with the experimental voltage distribution results [99]. 

The most recommended model for studying voltage distribution in winding is the multi-

conductor transmission line (MTL) model, which takes into account the mutual inductance 

between turns. Equivalent resistor-inductor-capacitor (RLC) circuits are used to represent 

the turns of the coils of a winding. The stator winding of each phase has several phase 

groups and each phase group consists of several coils connected in series. Each turn is 

made of a number of conductors and preformed. The number of turns and the conductor 

area obtained from MATLAB code are used in simulations. A 2-D FEM model is built up 

based on the winding configuration. Magnetic steady state FEM is used to determine the 

self- and mutual-inductance and resistance in each turn of the coil. Electrostatic 2-D FEM 

simulation is used to find the capacitances between the winding turns and the turn and the 

grounded stator. The frequency of the simulation is determined from the voltage step rise 

time. For simplicity, it has been assumed that the location of turn near the slot wedge or 

near the stator yoke does not influence the parameters. The interaction of different phases 

is neglected. It is assumed that all coils have the same parameters irrespective of their 

position in the series winding connection. Figure 4.3 and Figure 4.4 show the copper fill 

factor for random wound and form wound motors respectively. The copper fill factor of a 

slot has been defined as the volume of copper divided by the combined volume of copper 
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and inter-turn insulation. The copper fill factor shown here is for the slot in which the first 

coil is located, as this will determine the area of the slot required for the motor. 

Figure 4.3. Copper fill factor for a random wound motor. 

Figure 4.4. Copper fill factor for a form wound motor. 
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5. HARDWARE DEVELOPMENT FOR WIDE BANDGAP DEVICES

This chapter presents the design of SiC and GaN-based multiphase inverters. To 

extract maximum performance from WBG devices and minimize electromagnetic 

interference, hardware needs to be designed in a specific way. The main aspects 

influencing the switching behavior are the turn-on and turn-off energy of the MOSFET, 

gate drive current requirements, and the Miller effect. 

5.1 Gate Driver Design Considerations  

To achieve their full efficiency benefits, it is crucial to drive WBG devices in a 

way that minimizes conduction and switching losses [100]. A good gate driver must 

decrease the switching power losses, have protection features, and be electromagnetically 

compatible. The main aspects influencing switching behavior are the dependence of turn-

on and turn-off energy of the switching device on the gate resistance, gate drive current 

requirements, and Miller effect [101]. The peak gate current available during the switching 

transient is critical in achieving rapid switching transitions [101], [102]. Preventing gate 

voltage overshoot and ringing following a switching transition is necessary to ensure 

reliability of the gate insulation [102]. The parasitic inductance of the gate-source loop 

needs to be minimized because there is a trade-off between the gate voltage overshoot and 

the switching speed [102].  

The gate driver integrated circuit (IC) used to drive the high side switch in a half 

bridge configuration must have a high CM transient immunity (CMTI). The CMTI is 

defined as the maximum slew rate of voltage between two isolated grounds. Insufficient 
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CMTI can cause malfunction of the gate driver. The CM current injection in the control 

circuit through the coupling capacitor of an isolated power supply or through the parasitic 

capacitance of the isolation in gate driver IC can corrupt control signals on primary side. 

Isolated power supplies with coupling capacitance as low as few pF are available, which 

ensures high dv/dt noise immunity. The CM current can be minimized by using a CM 

choke if the coupling capacitor is not small [52].  

SiC MOSFETs and GaN high electron mobility transistors (HEMTs) have 

relatively low gate-source threshold voltages of around 2.5 V and 1.3 V, respectively, 

which decrease with the junction temperature [103]. These low threshold voltages make 

them immune to dv/dt noise [104]. Therefore, it is crucial to design the gate driver circuit 

with low impedance. The fast switching can cause high dv/dt, which causes displacement 

current to flow through the Miller capacitance of the power switch and can lead to an 

unintended dynamic turn-on of the switch in the off-state in a half-bridge configuration 

[103]. This is called the Miller effect or crosstalk. A Miller clamp circuit can sink the 

Miller current across a low impedance path in a high dv/dt situation. If the gate driver IC 

does not have an active Miller clamp feature, an optimum ratio of turn-on and turn-off 

path resistances and the use of a negative supply voltage during turn-off can provide 

protection against spurious turn-on. 

The high di/dt and dv/dt in WBG devices can cause very high voltage overshoot 

and oscillations due to the presence of parasitic inductance in the converter layout and any 

parasitic capacitance in the load [105], [106]. 
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Figure 5.1. Parasitic inductances in a 3-phase inverter layout. 

5.2 Power Circuit Design Considerations 

The stray inductances of the power module, the dc bus bar, the dc link capacitors, 

and the high frequency decoupling ceramic capacitors constitute the commutation loop 

inductance [107]. As shown in Figure 5.1, the inductances Lp1 to Lp7 constitute the stray 

inductances of the power module and are optimized by the device manufacturer. Stray 

inductances in the dc side of the loop, Lp1 and Lp2, should reduce the commutation loop 

inductance. The Lp1 and Lp2 inductances can be minimized by using the dc bus bar, the 

dc link capacitors, and the high frequency decoupling ceramic capacitors with minimum 

equivalent series inductance (ESL). If discrete devices are used, then it is the responsibility 

of the designer to minimize the interconnection inductances of the devices. Minimizing 

the parasitic inductance of the commutation loop is crucial because the parasitic 

inductance causes voltage overshoot during the device turn-off. There is a tradeoff 
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between the voltage overshoot and the achievable di/dt because the voltage overshoot 

should not exceed the rated voltage of the device.  

Cost, voltage-blocking capability as a function of temperature, capacitance 

stability as a function of temperature and voltage, root mean square (rms) ripple current 

capability, reliability, life expectancy, footprint, volume, weight, equivalent series 

resistance (ESR), ESL, and thermal resistance from hotspot to case each influence the 

selection of the optimal dc-link capacitor [107]. Film capacitors have best overall 

performance except that their capacitance per unit volume is small [107]. For electrolytic 

capacitors, the limiting factor for the dc link capacitors is the rms current ripple 

requirement because electrolytic capacitors have relatively high ESR, requiring the 

parallel connection of many capacitors [108]. However, for film capacitors, the 

determining factor is the capacitance required for the voltage ripple requirements because 

film capacitors have a low ESR [108]. For film capacitors, the required capacitance 

decreases as the switching frequency increases up to an optimal frequency where the 

capacitance cannot be reduced any further due to the rms current rating requirement. This 

optimal frequency can be as high as 100 kHz, as simulated in [108]. Thus, the high 

switching frequencies of WBG devices can result in a smaller dc link film capacitor than 

that required with Si devices. 

5.3 Description of the Designed SiC and GaN Inverters 

Figure 5.2 shows the designed 4-layer SiC inverter PCB. A two-level inverter has 

been designed for a motor drive with a 400V dc-link voltage and 20A line currents. The 

main components are the inverter legs, gate driver circuit, dc link capacitors, hall current  
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Table 5.1. Main components of SiC inverter. 

Component Manufacturer Part Number 

SiC MOSFET Cree C3M0120090D 

SiC Schottky diode Cree C3D16065A 

Gate driver Infineon 1EDI40I12AHXUMA1 

DC link film capacitor Panasonic EZP-E50117MTA 

Gate drive isolated supply Murata MGJ2D121505SC 

Current sensor LEM LTS 25-NP 

Table 5.2. SiC MOSFET datasheet parameters. 

Parameter Value Units 

Rated drain-source voltage, VDS 900 V 

Continuous drain current at 25 ℃ case temperature 23 A 

Maximum junction temperature 150 ℃ 

On state resistance 120 mΩ 

Junction-to-case thermal resistance 1.3 ℃/W 

sensors, and associated signal-processing circuit. There are 8 inverter legs on this PCB so 

that it is able to drive multiphase motors. The PCB is a 4-layer PCB. The gate-driver and 

the power circuits are on the same PCB. SiC MOSFETs in TO-247-3 packages and anti-

parallel SiC Schottky diodes in TO-220-2 packages are used. Table 5.1 shows the part 

numbers of the main components in the SiC inverter. Table 5.2 shows the most important 

parameters of the SiC MOSFET. Figure 5.3 shows the PCB layer stack-up. The outputs of 

the Hall current sensors are voltage signals proportional to the current, so they are very 
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sensitive to noise. Therefore, the outputs of the Hall current sensors and the analog 

grounds are routed on the top layer so that the ground plane on the first internal layer 

provides protection from switching noise. As shown in Figure 5.4 and Figure 5.5, the 

power ground plane is routed on the first internal layer, and the positive dc bus plane and 

power tracks are on the second internal layer and bottom layer. There is a power ground 

plane beneath the entire positive dc bus plane, as shown in Figure 5.4 (b) and Figure 

5.5 (a). Having positive and negative planes of the dc bus on two consecutive layers of the 

PCB minimizes the dc link inductance. A similar layer stackup strategy is used for the 

GaN inverter. 

Figure 5.2. 8-phase SiC inverter PCB showing important components. 
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Figure 5.3. PCB layer stackup. 

Figure 5.4. Routing on (a) top and (b) first internal layer of the PCB. 

Figure 5.5. Routing on (a) second internal layer and (b) bottom layer. 
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In the designed SiC MOSFET and GaN inverters, separate turn-on and turn-off 

paths and a negative gate bias voltage are adopted during the off time. The negative gate 

bias voltage helps in overcoming the Miller effect and reducing the turn-off energy. 

Therefore, a negative bias voltage of -5 V is used for SiC and -3 V is used for GaN. In the 

designed PCB, there is a ground plane on the bottom layer beneath all of the gate signal 

tracks, as shown in Figure 5.5 (b) for the designed SiC inverter, which minimizes the 

inductance of the gate-source circuit. Minimizing the area of the gate-source loop also 

makes it less susceptible to the surrounding noise. 

The 1EDI40I12AHXUMA1 gate driver IC from Infineon Technologies, which has 

peak source and sink capabilities of 10A and 9.4 A, respectively, is used to drive the SiC 

MOSFETs. This gate driver IC has a CMTI of 100 kV/us. The SI8271AB-IS gate driver 

IC from Silicon Labs, which has peak source and sink capabilities of 1.8 A and 4 A, 

respectively, is used to drive the GaN transistors. This gate driver IC has a CMTI of 200 

kV/µs. The selection of this IC for GaN was driven by its under voltage lockout threshold, 

considering that the gate drive voltage for GaN is +6 V/-3 V. Both gate driver ICs separate 

paths for turn-on and turn-off, and can be supplied with a bipolar voltage supply, so a 

negative gate bias voltage can be used during off time. The MGJ2D121505SC isolated 

supply from Murata Power Solutions has been used to supply the gate driver for the SiC 

MOSFETs with a bipolar voltage of +15 V/-5 V. This power supply has an extremely 

small isolation capacitance of 2.9 pF, which ensures high dv/dt noise immunity. The 

R05P209S isolated power supply from Recom Power has been used for the GaN gate 

 driver. The 9 V output of this supply is split into +6 V and -3 V supply externally. The 
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Figure 5.6. SiC-based 3-phase motor drive using 3-phase module from Wolfspeed (Top 

and bottom view). 

RxxP2xx series of power supply has a very low isolation capacitance in the range of 1.5 

pF to 10 pF. 

A SiC-based 3-phase motor drive was also developed using CCS050M12CM2. 

The top and bottom view of the PCB is shown in Figure 5.6. Figure 5.7 shows the 6-pack 

module from Cree, which has a stray inductance of 30 nH between dc bus terminals. The 

recommended gate-source voltage for this module is +20 V/-5 V. 
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Figure 5.7. All-SiC 6-pack module from Cree (CCS050M12CM2). 

Figure 5.8. Top view of the 6-phase GaN-based motor drive. 
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Figure 5.9. Bottom view of the 6-phase GaN-based motor drive. 

Figure 5.10. Top view of the phase leg unit of the GaN-based motor drive. 
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Figure 5.11. Bottom view of the phase leg unit of the GaN-based motor drive. 

For the SiC inverter, the dc link consists of several 110 uF metallized 

polypropylene film capacitors connected in parallel. Each capacitor has a voltage rating 

of 500 V, an rms current rating of 18.5 A and an equivalent series resistance of 4.4 mΩ. 

The total dc link capacitance of 770 uF is used. The exact sizing of the dc link capacitance 

can be found in [109]. This particular design for the dc link has the advantages of a flat dc 

link capacitor and very low equivalent series resistance and inductance, which helps 

reduce the commutation loop inductance. In addition to the Panasonic dc link capacitors, 

a 0.22 µF class X2 metallized polypropylene film capacitor is placed across the dc link 

close to each inverter leg for high frequency decoupling. 

Figure 5.8 and Figure 5.9 show the GaN-based integrated motor drive (IMD). 

Table 5.3 shows the part numbers of the main components of the GaN IMD. Table 5.4 

shows the most important parameters of the GaN HEMT. The IMD has a compact form  
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Figure 5.12. Cross section view of GaN package and thermal dissipation path, reprinted 

from [110]. 

factor and can be mounted in the end plate region of the motor. The IMD consists of main 

board and phase-leg boards. The main board has current/voltage sensing circuits, a 

microcontroller and PCB mounted dc link capacitors. The phase-leg board has GaN 

devices, a gate drive circuit and overcurrent protection on it. The top and bottom views of 

the phase leg board are shown in Figure 5.10 and Figure 5.11. The phase-legs can be easily 

plugged in and out of the main board, which allows easy replacement in case of device 

failure. The phase-leg board is a 4 layer PCB and the main board has 6 layers. 

It uses 650 V, 30 A enhancement mode GaN high electron mobility transistors 

(HEMT) GS66508B. The proprietary packaging of GaN Systems enables low inductance 

and low thermal resistance in a small package. The GS66508B is a bottom-side cooled 

transistor that offers very low junction-to-case thermal resistance for demanding high 

power applications. It has reverse current capability and zero reverse recovery loss. The 

bottom side cooling with a heat sink via PCB is the recommended cooling method [110]. 
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 Table 5.3. Main components of GaN inverter. 

Component Manufacturer Part Number 

GaN HEMT GaN Systems GS66508B 

SiC Schottky diode Rohm SCS220AJTLL 

Gate driver Silicon Labs SI8271AB-IS 

DC link film capacitor KEMET 

C4AEHBW5400A3LJ 

Gate drive isolated supply Recom Power R05P209S 

Current sensor LEM LTS 25-NP 

Table 5.4. GaN transistor datasheet parameters. 

Parameter Value Units 

Rated drain-source voltage, VDS 650 V 

Continuous drain current at 25 ℃ case temperature 30 A 

Maximum junction temperature 150 ℃ 

On state resistance 50 mΩ 

Junction-to-case thermal resistance 0.5 ℃/W 

The majority of heat, generated in the die, flows down to the thermal pad and then transfers 

to the PCB. The copper planes on the PCB spread the heat and 0.3 mm diameter thermal 

vias filled with thermally conductive material provide a low thermal resistance path from 

the top copper to the bottom side of PCB. A heatsink is attached to the bottom copper 

plane, as shown in Figure 5.12, via a thermal interface material and dissipates the heat to 

the ambient environment. 
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6. EXPERIMENTAL RESULTS

6.1 Details of Experimental Setup 

The designed SiC and GaN inverters are tested driving an induction motor. The 

Figure 6.1 and Figure 6.2 show the experimental setup, which shows the induction motor 

connected in 6-phase configuration. The squirrel cage induction motor is coupled to a dc 

generator, which is used to apply the desired load torque. The dc generator is controlled 

by an ABB DCS800 dc drive. The measurement setup includes a Keysight DSO-X 3024T 

oscilloscope with 200 MHz bandwidth, Keysight 100 MHz differential voltage probes and 

Fluke current probes with a 100 kHz bandwidth. A TI TMS320F28379D microcontroller 

is used to implement the indirect field oriented control of the induction motor. 

The motor has wires coming out from all the 36 slots and can be connected as an 

asymmetrical 6 pole 6-phase or a 6 pole 3-phase motor. The details of the motor are given 

in Table 6.1. The motor winding layout for the connection of the motor as a 6-phase motor 

is shown in Figure 6.3 and Figure 6.4. The 3-phase motor is obtained by connecting two 

phases in series that have 30 degree electrical angle between them i.e. phase A and D, 

phase B and E, and phase C and F are connected in series. The motor is connected in star 

in both 3-phase and 6-phase configurations for testing. The SiC inverter is tested with both 

the 3-phase and 6-phase motor configurations. The GaN inverter is tested with the 3-phase 

motor configuration. 
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Figure 6.1. Experimental setup for testing of motor drives. 

Figure 6.2. Layout of experimental setup for testing of motor drives. 

Figure 6.3. Winding layout for the 6-phase motor. 
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Table 6.1 Motor details. 

Type Quantity Value 

NAMEPLATE Rated Power 

Rated Speed 

Rated Voltage 

Poles 

3 HP 

1200 RPM 

460 V 

6 

STATOR Number of Slot 

Number of Parallel Paths 

Turns per Slot 

Winding layers 

Thermocouples 

Magnet wire used 

Search coils 

Phase Separator 

Slot insulation 

36 

1 

44 

1 

3, one in each phase a, b and c 

GPMR 200 (Heavy build, 200 ℃) 

Back Iron Flux, Tooth Flux, Coil A1 

flux, Coil D1 Flux 

VAR-H Glass Cloth Class H (180 ℃) 

DMD (Dacron Mylar Dacron), 

Class F (155 ℃), DM 5-5-5 

EQUIVALENT CIRCUIT 

(3-phase motor) 

EQUIVALENT CIRCUIT 

(6-phase motor) 

Number of Bars 

Lm 

Lls 

Rs 

Llr 

Rr

Lm 

Lls 

Rs 

Llr 

Rr

36 

0.132 H 

10.43 mH 

3.18 Ohm 

10.43 mH 

1.55 Ohm 

0.0729 H 

6.46 mH 

2.2 Ohm 

6.46 mH 

3.05 Ohm 
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Figure 6.4. Winding layout for the 6-phase motor with coil in and out slots. 

6.2 Digital Implementation of the Motor Control Loop 

A block diagram of the indirect field oriented control (IFOC) of the 6-phase 

asymmetrical induction motor (IM), which is implemented in a F28377 digital signal 

processor (DSP), is shown in Figure 6.5. The control block diagram of the 3-phase IM is 

well known and is not discussed in this dissertation. Speed is sensed using an encoder. 

The d-axis current command is fixed and q-axis current command is generated by the 

speed control loop. The x-axis and y-axis current commands are set to zero because these 

currents just cause losses. The zero sequence voltage references are set to zero. The control 

algorithm is implemented using TI’s IQmath libraries. The switching signals are generated 

using space vector PWM. 
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Figure 6.5. Block diagram of the indirect field oriented control of 6-phase asymmetrical 

induction motor implemented in F28377 DSP. 

6.3 Experimental Results Demonstrating Performance of SiC-based Induction 

Motor Drive 

The design and performance of the SiC inverter is validated by driving the 

induction motor connected in the 3-phase and 6-phase configurations. The switching 

waveforms of the SiC MOSFETs are shown in Figure 6.6 and Figure 6.7. It can be seen 

that the rise time of the drain-source voltage is around 24 ns and the fall time is 22 ns, and 

the overshoot in the drain-source voltage is 10% for a dc link voltage of 200 V. 
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Figure 6.6. Drain-source and gate-source voltage of SiC MOSFET showing rise time in 

the SiC-based induction motor drive. 

Figure 6.7. Drain-source and gate-source voltage of SiC MOSFET showing fall time in 

the SiC-based induction motor drive. 

Figure 6.8. Drain-source voltage of both switches of a phase leg in the SiC-based 

induction motor drive. 
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Figure 6.9. Stator currents of the motor in SiC-based 3-phase induction motor drive. 

It can be seen that in Figure 6.6, the spike in the gate-source voltage during off-

state due to Miller effect is well below the threshold voltage of 2.1 V for SiC MOSFET. 

Also, the gate-source voltage overshoot or undershoot does not exceed the dynamic rating 

(-8/+19 V) of the gate-source terminal. The results shown in Figure 6.8 verify the 

operation of the inverter at 200 kHz to demonstrate the high switching frequency 

capability of the designed SiC inverter. The stator currents of the SiC-based 3-phase motor 

drive are shown in Figure 6.9 with motor running at 317 r/min. The motor is able to run 

in closed loop in steady state, without abnormal high-frequency current ripple, which 

further confirms the effectiveness of the inverter design. 

Figures 6.10 to 6.13 show the rise and fall times of both the switches in a phase 

leg recorded at the positive peak of the current waveform at different dc link voltages and 

line currents. Figures 6.10 to 6.11 and Figures 6.12 to 6.13 show the rise and fall times for 

two different line currents at dc link voltages of 35 V and 150 V respectively. It can be 

seen that the turn-off speed of a switch depends on the magnitude of the current being 

commutated and the dc link voltage. The switch turns off faster at higher values of current 
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for a given dc link voltage, as shown in Figure 6.10 and Figure 6.11 for 35 V dc link 

voltage, and in Figure 6.12 and Figure 6.13 for 150 V dc link voltage, for two different 

values of currents. The turn-off process of a switch will take longer for a higher dc link 

voltage at a given current as shown in Figure 6.12 and Figure 6.13 for 2.1 A current at two 

different dc link voltages of 35 V and 150 V. The inverter is operated with a dead time of 

100 ns after recording the switching times at different operating conditions. Figure 6.14 

shows the switching times at a 200 V dc link voltage and a 4.5 A rms current. 

Figure 6.10. Rise and fall times of both the switches of a phase leg in the SiC-based 3-

phase induction motor drive at 35 V, 1.31 A rms current (motor speed of 86 rpm). 

Figure 6.11. Rise and fall times of both the switches of a phase leg in the SiC-based 3-

phase induction motor drive at 35 V, 2.1 A rms current (motor speed of 56 rpm). 
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Figure 6.12. Rise and fall times of both the switches of a phase leg in the SiC-based 3-

phase induction motor drive at 150 V, 2.1 A rms current (motor speed of 334 rpm). 

Figure 6.13. Rise and fall times of both the switches of a phase leg in the SiC-based 3-

phase induction motor drive at 150 V, 5.31 A rms current (motor speed of 175 rpm). 

Figure 6.14. Rise and fall times of both the switches of a phase leg in the SiC-based 3-

phase induction motor drive at 200 V, 4.5 A rms current (motor speed of 274 rpm). 
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Figure 6.15. Torque response of SiC-based 3-phase induction motor drive showing 

output of torque meter and 3-phase currents (torque reference changed from 5 Nm to 10 

Nm at 290 rpm). 

Figure 6.16. Stator currents of the SiC-based 6-phase asymmetrical induction motor 

drive running at 352 rpm (All 3 currents of first 3 phase set shown on first 3 channels 

and first current of second 3 phase set shown on channel 4: 30 degree phase shift shown 

between channel 1 and 4). 

Figure 6.15 shows the response of 3-phase IM switching when the torque is ramped 

from 5 Nm to 10 Nm. Figure 6.16 shows the motor currents of the SiC-based 6-phase IM 

drive and Figure 6.17 shows the response when the speed is ramped from 75 rpm to 150 

rpm. 
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6.3.1 Advantage of WBG Devices for Multiphase Motor Drives 

For studying the effect of the dead time of inverter on the currents in the x-y 

subspace of multiphase motor drives, the SiC inverter is operated at a switching frequency 

of 20 kHz that is typical for Si IGBT-based drives. The currents in x-y or zero sequence 

subspaces are not controlled. Generally, a dead time of 2 us or higher is used for Si IGBT-

based drives. Figure 6.18 shows the current waveforms of an asymmetrical 6-phase motor 

for different values of dead time of the inverter. It can be seen that the current waveform 

has significant distortion for a dead time of 2 us or higher. The distortion is due to 

harmonic currents of the order of 5, 7 and higher, which are caused due to effect of dead 

time. For a dead time of 500 ns or lower, that are possible only with WBG device-based 

drives, the current waveform is very close to sinusoidal. Thus, WBG device-based drives 

do not require control of currents in x-y subspace if there is no asymmetry in the converter 

or motor. 

6.4 Experimental Results Demonstrating the Performance of GaN-based 

Induction Motor Drive 

Figure 6.19 shows the switching waveform of a GaN switch in a 3-phase IM drive, 

which exhibits excellent switching performance. The motor currents are shown in Figure 

6.20. Figure 6.21 shows the torque response when the torque is ramped from 3.75 Nm to 

7.5 Nm and then back to 3.75 Nm. Speed control response is shown in Figure 6.22 when 

the speed is ramped from 75 rpm to 150 rpm. 
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Figure 6.17. Speed control response of the SiC-based 6-phase asymmetrical 

induction motor drive (Speed reference change from 75 rpm to 150 rpm at 6.75 Nm 

torque, all 3 currents of first 3 phase set shown on first 3 channels and first current of 

second 3 phase set shown on channel 4). 

Figure 6.18. Current waveforms of an asymmetrical 6-phase motor for different values 

of dead time of the inverter (Motor running at 280 rpm, 2.7 A rms current, one from 

each 3-phase set is shown). 
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Figure 6.19. Switching waveform of the GaN switch in a phase leg captured the peak of 

the current in the GaN-based 3-phase induction motor (rise time=37.12 ns and fall 

time=6.31 ns at 200 V dc bus voltage 4.6 A rms current). 

Figure 6.20. Stator currents of the GaN-based 3-phase induction motor drive. 

Figure 6.21. Torque response of the GaN-based 3-phase induction motor drive showing 

output of torque meter and 3-phase currents (Torque reference sequence at 150 rpm: 

3.75 Nm->7.5 Nm ->3.75 Nm). 
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Figure 6.22. Speed control response of the GaN-based 3-phase induction motor drive 

showing a signal proportional to speed and 3-phase currents (Speed reference change 

from 75 rpm to 150 rpm at 6.75 Nm torque). 

Figure 6.23. Torque increase from 3 Nm to 6 Nm with twice the current during 3-phase 

operation. 
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6.5 Experimental Validation of the Higher Short-term Torque Capability of the 

Invention 

The increase in torque and the time rating of the induction motor with twice the 

rated current are presented. 

6.5.1 Torque of the Asymmetrical 6-Phase Motor in 3-Phase Configuration With 

Twice the Rated Current 

Figure 6.23 shows the 3-phase currents and the torque of the motor in 3-phase 

configuration; the dark line shows the torque. The torque increases from 3 Nm to 6 Nm 

when twice the torque producing component of current is forced. 

6.5.2 Temperature Rise of the Induction Motor With Twice the Rated Current  

The induction motor is totally enclosed type with power rating and current rating 

of 3 HP and 4.4 A respectively. The GPMR magnet wire of the motor is rated at 200 °C. 

The phase separator insulation is class H insulation, which is rated at 180 °C. The slot 

liner is class F insulation, which is rated at 155 °C. The winding temperature is measured 

using a K-type thermocouple that is placed in the end winding, which is considered the 

hottest part of the winding. For finding the time rating for twice the rated current, the 

motor is run at rated current for 4 hours till a steady temperature of 133 °C is reached. 

After that, the motor current is rapidly increased to 8.8 A that is twice the rated current. 

The winding temperature increased from 134 °C to 151 °C in 17 s as shown in Figure 

6.24. The lowest temperature class insulation used in this motor is slot liner, which is rated 

for 155 °C. The hot spot temperature is generally 10 °C higher than the average 

temperature in a winding. Therefore, the winding temperature must not exceed 145 °C that 
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is reached in 12 s. Therefore, we can conclude that the time rating of the motor for twice 

the rated current is 12 s. 

Figure 6.24. Temperature rise of the induction motor with twice the rated current. 
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7. CONCLUSION AND FUTURE WORK

WBG devices enable the next generation of efficient and lightweight motor drives 

for use in various applications. WBG devices are an enabling technology for many motor 

drive applications and especially beneficial for low-inductance motors, high-speed motors 

and high-temperature applications. However, to achieve the maximum benefits from using 

WBG devices, the converter must be designed with appropriate gate drivers that can 

switch quickly with minimal overshoot and losses, with minimal parasitic inductance in 

the commutation loop, and with fast short-circuit protection for the WBG switches. 

The trade-off between high switching frequency and other issues such as high dv/dt 

and electromagnetic interference needs to be considered. The challenges in designing 

WBG device-based converters are discussed and design considerations are illustrated with 

developed SiC and GaN-based motor drives. The performances of the developed motor 

drives are demonstrated with experimental results, which proves the effectiveness of the 

designs. The problem of insulation damage due to high dv/dt in WBG device-based 

inverters is discussed in detail and the insulation design considerations are presented. The 

system level benefits and energy savings due to the high efficiency obtained using SiC 

devices can offset their high cost. WBG devices are key technologies for vehicle 

electrification and can be expected to make EVs more efficient and economical in the near 

future. 

The invention of a system reconfiguration and control technique for a multiphase 

motor drive to obtain up to 93% higher torque for applications requiring high transient 
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torque is presented. This invention can exploit the peak rating of the motor by 

incorporating the thermal time ratings of the motor in control strategies. The feedback of 

the motor temperature will help in getting maximum performance from this invention. 

The WBG devices have multiple advantages for multiphase motor drives. The 5th 

and 7th harmonics in the voltage due to dead time in an inverter can be reduced 

significantly with WBG devices. This will result in a reduction in currents in the xy 

subspace, which cause heating in windings. The high bandwidth current control, enabled 

by the high switching frequency capability of WBG devices, in higher subspaces of 

multiphase motor drives makes it possible to significantly reduce the currents in those 

subspaces. These benefits of WBG devices for multiphase motor drives can be quantified 

and more benefits can be explored for different multiphase motors. 
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