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ABSTRACT 

This work is an investigation of a novel refrigeration method called the Claridge-Culp-

Pate process / cycle (referred to as CCP) that has been developed based on membrane-

enabled dehumidification and cooling. Water is considered to be the primary working 

fluid, considering that water vapor is removed from flowing air, thus drying it. The water 

is then added back in as a liquid in an evaporative cooler, thus cooling the same air 

previously dried. One of the unique features of the CCP is the technology involved with 

transferring a sub-atmospheric water vapor to liquid water at atmospheric pressure in a 

manner that minimizes energy consumption.  

 

The primary focus of this work is to investigate the theoretical performance of this novel 

refrigeration cycle/ process for various configurations of dehumidifiers and evaporative 

coolers and then to compare these results to those of the conventional refrigeration 

method, namely the theoretical vapor compression refrigeration cycle. Theoretical 

models of both the novel and conventional refrigeration systems were developed to 

determine thermodynamic variables and performance parameters while subjecting these 

systems to realistic operational moist air conditions, such as outdoor and indoor air 

temperatures and relative humidity.  

 

The coefficient of performance (COP) as the main performance parameter of interest was 

calculated by using the theoretical models developed herein. In addition to determining 

the COP for different configurations of the Claridge-Culp-Pate (CCP) refrigeration 
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system, the COP of the conventional vapor compression refrigeration cycle was 

determined for two refrigerants, namely water and R-410A, when operating between the 

same temperature conditions as those of the CCP system so that comparisons could be 

made. Using the calculated COPs as the measure of performance, the different 

configurations of the CCP system were compared with each other to determine the 

optimum arrangement of dehumidifiers and evaporative coolers for a range of outdoor 

temperatures and relative humidity. Comparing the above configurations of COPs to the 

calculated COPs for the conventional refrigeration system shows that significant energy 

savings are possible for air conditioning with the CCP system for all climate zones and 

regions. 
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CHAPTER I  

 INTRODUCTION AND PROBLEM STATEMENT 

Background 

The cooling of indoor air spaces to maintain a comfortable environment for humans is an 

essential need for any building in modern society. Typically, the cooling loads of any 

building are met by air conditioners that operate on a conventional vapor compression 

refrigeration cycle by using electricity to run compressors and fans. Presently, the most 

widely used refrigerant for cooling applications in conventional air conditioning systems 

are R-22 and R-410A, with the usage of the latter expanding.  

 

The most important parameter associated with running an air conditioner is the cooling 

capacity relative to the cost of operation, mostly associated with operating the 

compressor. The average cooling load during summer, for a 2000 square foot residential 

unit, in a place like Texas is about 3 Tons. This requires an air conditioner capable of 

cooling at the rate of 36,000 BTU/ hour with an average temperature difference between 

outdoor and indoor air being about 200F during the day. The cost of operation of such an 

air conditioning system can be more than $5 per day when used for 12 hours a day, 

which can add up to more than $1,000 per year. Such high operational costs and 

widespread usage of air conditioning, ranging from residential units to commercial 

buildings and industrial facilities, has created the need for developing more economically 

feasible air conditioners.  
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Dehumidification and Cooling Concept 

A novel refrigeration system called the Claridge-Culp-Pate refrigeration process/cycle, 

based on membrane-enabled dehumidification and cooling, shows promise as a method 

to replace conventional vapor refrigeration systems for dehumidifying and cooling air. 

This new system integrates a membrane dehumidification unit and evaporative cooler 

that essentially uses water as the working fluid or refrigerant. Specially, the membrane 

dehumidification unit dries flowing air (i.e. removes water vapor from moist air) and 

then after condensing the removed water vapor, liquid water is put back into the flowing 

air in an evaporative cooler, where the temperature of moist air drops, creating the ability 

to perform cooling. The concept seems simple and appears straightforward; however, the 

technology to transform this concept to an energy efficient working system is 

complicated. As a starter, the membrane dehumidification unit has the daunting task of 

selectively removing water vapor from a flowing air stream, which obviously requires a 

system that creates a water vapor driving pressure difference across a membrane. 

Furthermore, the water vapor that has been removed from the air through the membrane 

has to be condensed to liquid water for injection into the evaporative cooler. Achieving 

this condensation requires heat removal, a driving temperature difference, a heat sink and 

a pressure change by use of a water vapor compressor to obtain an appropriate saturation 

pressure and temperature. 

 

From a technical standpoint, the dehumidification unit is designed with a membrane that 

has selective permeability so as to allow for the transfer of water vapor from a high-
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pressure region (flowing air) to a low-pressure region (compressor inlet) while air is 

blocked from passing through the membrane. The specific mechanism used by the 

membrane for separating water vapor and gases is beyond the scope of this study, and it 

is sufficient to state that this membrane promotes dehumidification of a flowing air 

stream, meaning the membrane creates an effective way to separate water vapor from air. 

It should be noted that flowing moist air on the upstream side of the membrane system is 

subjected to near-atmospheric pressure conditions, with the partial pressure of water 

vapor in the moist air being significantly less, while the water vapor downstream (across 

the membrane) of this system is subjected to a vacuum pressure between 0.5 - 1.6 kPa.  

A difference across the membrane of water vapor partial pressure drives the 

dehumidification process. 

 

The water vapor extracted by this membrane system is at a vacuum pressure, namely 0.5-

1.6 kPa, and must be pressurized to an outlet pressure of about 4-10 kPa for it to be 

condensed by a conventional condenser. The heat sink temperature sets this compressor 

outlet pressure based on the condenser temperature available for condensation, which is 

usually close to the wet bulb temperature of outdoor air, assuming a cooling tower is 

used. The existence of this high-pressure ratio across the compressor and large water 

vapor specific volume at the inlet caused by low pressure necessitates the requirement 

for a compressor having a high power rating and large sizing, which shows the 

importance of investigating in detail the system performance of the CCP process and 

cycle for a range of outdoor conditions. After extracting water vapor and condensing it to 
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a liquid, the liquid water is sent to an evaporative cooler where the air is cooled to a wet 

bulb temperature as the liquid water evaporates back to a vapor causing humidity of air 

to increase.  

 

 If this combination setup of membrane dehumidifiers and evaporative coolers is 

arranged in a closed system then it forms the Claridge-Culp–Pate cycle while, if arranged 

in-line with each other in a open system with a well defined inlet and exit then it forms a 

Claridge-Culp-Pate refrigeration process. The technology that is being investigated in the 

study reported herein is described in more detail in any of the several PhD and MS thesis 

[1,2,3] and patents [4,5,6,7,8,9] 

 
 

Problem Statement  

The two main parameters that influence the performance of the Claridge-Culp-Pate 

cycle/ process are the water vapor partial pressure conditions on each side of the 

membrane and the condensation of water vapor by the condenser. Of special importance 

is the effect that these parameters have on the compression energy required to pressurize 

the water vapor from the low-pressure membrane conditions to the high pressure 

condenser conditions or low pressure to thigh pressure. In order to extract enough 

moisture from air, so as to take the air to a comfortable indoor condition of about 250C 

and 50% relative humidity, the water vapor partial pressure on the membrane side should 

be at sub-atmospheric conditions of about 0.5 – 1.6 kPa and to effectively condense all of 

the extracted vapor, the condenser pressure or the compressor outlet pressure on the 
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vapor side should be between 4-10 kPa. These conditions can require a compressor with 

a large power rating, making compressor the most power intensive component. 

 

The main parameter that reflects the performance of any cooling and/or dehumidification 

process or cycle is the coefficient of performance (COP). It is defined as the ratio of 

cooling capacity or cooling effect to the energy, which is usually input to a compressor to 

achieve this cooling/dehumidification. If we assume that multiple CCP configurations or 

technologies have similar cooling capacities, meaning they operate between the same 

inlet and exit airside moist air conditions, then the COP is inversely proportional to the 

energy consumed, which in the case of the investigation reported herein is the 

compressor energy or power. One can see that the best performance (i.e. largest COP) is 

achieved by the approach that minimizes the compressor work. 

  

Hence, this work is directed towards a theoretical performance study, based on 

compressor energy of the CCP cycle and process while operating with different 

configurations of dehumidifiers and evaporative coolers for different compressors based 

on isothermal and one/two-stage isentropic assumptions. It is also essential to compare 

the performances of the CCP systems to conventional system with R-410A in order to 

quantify possible performance advantages of this new technology. 
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CHAPTER II  

 DEHUMIDIFICATION AND PSYCHROMETRICS 

Introduction to Membrane Enabled Dehumidification System 

A membrane enabled dehumidification system consists of two main components, which 

are a membrane-enabled dehumidifier and an evaporative cooler.   The performance of 

the membrane dehumidification system can be altered by arranging these two 

components in different configurations.  The simplest configuration of a membrane 

dehumidification system is illustrated in Figure 1 below. 

 

 

Figure 1:Dehumidification system setup 
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The dehumidification system consists of a membrane dehumidifier placed in series with 

an evaporative cooler. Humid air entering the dehumidifier is dried by selective 

absorption of water vapor by the membrane and is then cooled by in an evaporative 

cooler.  This water vapor extracted from the humid air in the membrane dehumidifier is 

then compressed before being sent to the condenser where it is liquefied. This water is 

then stored in a reservoir before being re-circulated to the evaporative cooler, where it is 

vaporized to cool the hot, dehumidified air exiting the membrane dehumidifier.  

The incondensable gases that pass through the membrane are flushed out of the system 

by a vacuum pump located downstream of the condenser.  

 

 

Figure 2: Representation of dehumidification processes on psychrometric chart 
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The process of a membrane dehumidification system can be represented on a 

psychrometric chart (in Figure 2) for better understanding of the thermodynamic state of 

the moist air in the system.  Membrane dehumidification process is represented as a 

constant temperature process, which is a vertical line on the psychrometric chart 

(constant dry bulb temperature) and a constant enthalpy line represents evaporative 

cooling of air until the air reaches its wet bulb temperature. 

 

Basics of Psychrometrics 

A psychrometric chart is a graphical representation of thermodynamic state of moist air 

at a constant pressure, and this chart can be used to illustrate the processes of a CCP 

cycle/process. A typical psychrometric chart is a plot of dry bulb temperature versus 

specific humidity ratio with constant relative humidity, enthalpy and specific volume 

lines shown. Any two properties of most air allow one to determine all of the other state 

points. 

 

A standard psychrometric chart is shown in Figure 3 and the properties of moist air that 

define a particular state point, which are indicated on a psychrometric chart are described 

herein. 

 

Dry bulb temperature forms the X-axis of the psychrometric chart, and it is defined as the 

temperature reading obtained by exposing the thermometer to dry air that is protected 

from direct thermal radiation. [10] 
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Humidity ratio is the ratio of the mass of water vapor to a unit mass of dry air in the 

moist air mixture. This parameter forms the Y-axis of the psychrometric chart and is 

given by the following relation. 

𝜔 =   
𝑚!

𝑚!
 

 

A mixture of two or more gases mutually exerts pressure on each other. The fraction of 

pressure exerted by one substance on another is the partial pressure of that substance.  

Moist air mixture contains air and water vapor and the pressure exerted by water vapor 

on dry air is its partial pressure. This is represented on the Y-axis of the psychrometric 

chart and the following relationships apply. 

P = Pv + Pa  

Pa = P-Pv 

Pv = P - Pa 

 

Dew point temperature is defined as the temperature at which the moisture in the air 

starts condensing. One can find the dew point temperature of moist air by reaching the 

saturation line from the point of interest by following a constant humidity ratio line 

(parallel to x axis) on a psychrometric chart. The dew point temperature remains constant 

for a given humidity ratio. 

𝑇!"# = 𝑇!"#(𝑃!) 
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Wet bulb temperature is defined as the temperature that the air would reach if the 

mixture is cooled until saturation by the evaporation of water [11].  Another view is that 

the wet bulb temperature is reached as moist air is cooled in a constant enthalpy process.  

 

 

Figure 3:Psychrometric chart 
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CHAPTER III  

 CONSTUCTION AND MODELLING A PSYCHROMETRIC CHART 

Construction and Modeling 

Psychrometric representation helps in better understanding of thermodynamic processes 

that involve moist air. Since this study primarily focuses on dehumidification and 

evaporative cooling, representing them on a psychrometric chart is key in graphical 

communications of important processes. Therefore a model to represent the processes of 

the membrane dehumidification process/ cycle on a psychrometric chart has been 

developed using matlab. 

 

A convenient temperature scale between 100C and 450C has been chosen to represent the 

psychrometric processes of the membrane dehumidification system. The steps in 

constructing the psychrometric chart are shown below. 

 

a) Humidity ratio (kgv/kga) was determined for the above temperature range using the 

relationship between saturation pressure and relative humidity. The derivation is shown 

below: 

𝜔 =   
𝑚!

𝑚!
 

Using ideal gas equation for air and vapor: 

𝑃!𝑉
𝑚!

= 𝑅!𝑇 

𝑃!𝑉
𝑚!

= 𝑅!𝑇 
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𝑚!

𝑚!
=
𝑅!𝑃!
𝑅!𝑃!

 

𝑚!

𝑚!
=   

18
28.393

𝑃!
(𝑃 − 𝑃!)

 

𝑚!

𝑚!
= 𝜔 =     0.622

𝑃!
(𝑃 − 𝑃!)

 

 

b) The humidity ratios were plotted against dry bulb temperature for every 10% 

increase in relative humidity until the saturation line (RH=100%). 

 

c) The vapor pressure (kPa) was determined using the following equation: 

𝜔 =     0.622
𝑃!

(𝑃 − 𝑃!)
 

𝜔  (𝑃 − 𝑃!) =     0.622𝑃! 

𝑃! =   
101.325𝜔
𝜔 + 0.622 

These vapor pressures were set to scale on the second Y-axis to the right hand side of the 

psychrometric chart. 

 

d) Constant enthalpy lines were plotted by connecting the enthalpies at 100% relative 

humidity to the enthalpies a 0% relative humidity over the selected temperature range 

[12]. Steps in determining the enthalpy are shown below: 

 

ℎ = 𝑚!𝐶!𝑇! +𝑚!ℎ! 
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Considering specific enthalpy (per kg of air) 

ℎ
𝑚!

= 𝐻 = 𝐶!"𝑇! +   
𝑚!

𝑚!
ℎ!" 

𝐻 = ℎ! +   𝜔ℎ!" 

𝐻 = 1.007𝑇 − 0.026 +   𝜔  (2501+ 1.84𝑇)
𝑘𝐽
𝑘𝑔𝑎 

These aforementioned variables form a background plot, which is used as the reference 

on which the actual processes of the membrane dehumidification cycle are plotted. The 

thermodynamic relationships for some of the common processes in a CCP process/ cycle 

are shown in the next section. 

 

General Energy Equation 

All the equations relating to the psychrometric processes are derived from the general 

energy equation as applied to the control volume shown below. 

 

 

Figure 4: Control volume as applied to general energy equation 
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𝜕𝐸
𝜕𝑡 = 𝑄 −𝑊 +   Σ𝑚!" ℎ! +

𝑉!!

2 + 𝑔𝑧! −     Σ𝑚!"#(ℎ! +
𝑉!!

2 + 𝑔𝑧!) 

 

 

Psychrometric Chart Processes 

1. Sensible heating and cooling (A – B): 
 
Sensible heat addition process in shown by the line A1 – B1 on the psychrometric chart 

and sensible cooling of moist air mixture is shown by the line A2 – B2. The sensible 

heating/ cooling take place at a constant humidity ratio. Meaning, no addition or removal 

of vapor takes place in the system during this process.(∆𝜔=0).  The heat change in this 

process is represented by the following equation: 

𝑄!" = 𝐶!"(𝑇!! −   𝑇_𝐴!) 

𝑄!"# = 𝐶!"(𝑇!! −   𝑇_𝐴!!) 

 
2. Dehumidification process (C- D) 
 
Membrane in the novel dehumidification system separates water vapor from moist air. 

This process is shown by line C-D on the psychrometric chart. This process of addition 

or removal of water vapor is assumed to take place at a constant temperature. The work 

done in removing moisture through this process as follows: 

∆𝜔 = 𝜔! − 𝜔! 

𝑊!" = 𝑚!∆𝜔𝑊!"#$%&''"% 
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3. Constant enthalpy process (E- F) 
 
Constant enthalpy process is shown by line E – F on the psychrometric chart. One of the 

ways of achieving a constant enthalpy process is by evaporative cooling, where water 

that is at a lower temperature is vaporized into a flowing air stream at a higher 

temperature. This results in reduction of temperature of the air with the increase in 

humidity ratio. 

 

4. Condensation  
 
Saturated mixture of air and vapor is condensed along its saturation pressure line, by 

removing the latent heat of the mixture. The line G – H on the psychrometric chart in 

Figure 5, shows this process.  

 

 
Figure 5: Common CCP cycle processes shown on a psychrometric chart 
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 CHAPTER IV 

AIRSIDE COMPONENTS OF DEHUMIDIFICATION UNIT 

This chapter describes from a thermodynamic standpoint the major components that are 

normally found in the membrane-enabled dehumidification and cooling process and/or 

the equivalent closed cycle (Claridge-Culp-Pate cycle or CCP cycle). 

 

Of special importance is the formulating a CCP cycle thermodynamic model, by 

applying the conservation laws of energy and/or mass and then in turn use it to solve for 

design and analysis. 

 

Components 

The components derived and modeled from a thermodynamic standpoint are 

1. Membrane dehumidification unit  
2. Evaporative cooler 
3. Condenser (chapter 4) 
4. Fan and Pump 
5. Compressor (Chapter 4) 

 

The functions and working of these main components of a dehumidification system is 

described below: 

1. Membrane Dehumidifier: A membrane dehumidification unit separates water 

vapor from a stream of flowing moist air through a special selective absorption property 

of a novel membrane. 
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2. Evaporative Cooler: An evaporative cooler reduces the temperature of a stream of 

dry air by vaporizing cool water into the flowing air stream, thereby increasing the 

humidity content of the air in the process. 

3. Inlet Fan: Inlet fan, supplies the system with outdoor air drawn from the 

atmospheric conditions. 

4. Compressor: Water vapor exiting the membrane at sub atmospheric pressure 

conditions is compressed to a condensable high-pressure vapor in a compressor.  

5. Condenser: A condenser liquefies high-pressure water vapor exiting the 

compressor by extracting heat form it. 

6. Water supply pump: A water supply pump receives water from the condenser and 

supplies it to the evaporative cooler. The pump is also connected to a water reservoir 

where it either sheds excess water received from the condenser or draws makeup water to 

meet the water requirements of the evaporative cooler. 

 

The current chapter focuses on the thermodynamics of the airside components that were 

listed and described above.  

 

The two main airside components that are a part of dehumidification system are the 

membrane dehumidification unit and the evaporative cooler. The governing equations of 

both these systems have been derived from the general energy equation and their 

working is described form a mathematical standpoint herein. 
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Membrane Dehumidification Unit 

As mentioned in the previous chapter, a membrane dehumidification unit separates water 

from moist air with the help of a novel zeolite membrane.  

 

 

Figure 6: Control volume applied to a membrane dehumidifier 
 

 

Figure 6 shows a block diagram with the energy and mass transfers across the control 

volume boundary of a membrane dehumidification unit.  General energy equation can be 

applied to this control volume as follows: 

𝜕𝐸
𝜕𝑡 = 𝑄 −𝑊 +   Σ𝑚!" ℎ! +

𝑉!!

2 + 𝑔𝑧! −     Σ𝑚!"#(ℎ! +
𝑉!!

2 + 𝑔𝑧!) 

 

Neglecting the kinetic and potential energy change across the system, work done in 

separating water vapor from humid air in the membrane system can be determined as 

follows 

𝑊!"# = 0 
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𝑚!" = 𝑚!!!" 

𝑚!"# = 𝑚!!!"# +𝑚! 

Applying these conditions to the general energy equation above, 

𝑊!" +𝑚!!!"ℎ! = 𝑚!!!"#ℎ! +𝑚!ℎ! 

𝑊!" = 𝑚!!!"#ℎ! +𝑚!ℎ! −   𝑚!!!"ℎ! 

𝑊!" = 𝑚!!!"#(𝐶!!! + 𝜔!ℎ!)+𝑚!ℎ! −   𝑚!!!"(𝐶!𝑇! +   𝜔!ℎ!) 

𝑊!" = 𝐶!𝑇!∆𝑚! + ℎ!(  𝑚!!!"#∆𝜔 1− 𝜔! ) 

The isothermal dehumidification process of a membrane dehumidification unit is 

represented on a psychrometric chart in the figure below. 

 

 

Figure 7: Representation of membrane dehumidification on a psychrometric chart 
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Evaporative Cooler 

A block diagram with all the major energy and mass flows into and out of the 

evaporative cooling system is shown below. The general energy equation can be applied 

to the evaporative cooler system as follows: 

Figure 8: Control volume applied to an evaporative cooler 

𝜕𝐸
𝜕𝑡 = 𝑄 −𝑊 +   Σ𝑚!" ℎ! +

𝑉!!

2 + 𝑔𝑧! −     Σ𝑚!"#(ℎ! +
𝑉!!

2 + 𝑔𝑧!) 

Neglecting the kinetic and potential energy change across the system, the mass of vapor 

added into the evaporative cooler can be determined as follows: 

𝑚!!!"ℎ! +𝑚!ℎ! !!" = 𝑚!!!"#ℎ! 

ℎ! = ℎ! 

𝑚!ℎ! !!" =   ∆𝑚!(  𝐶!"𝑇! +   𝜔!ℎ!!) 
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𝑚! =   
∆𝑚!

𝐶!"𝑇!"
(  𝐶!"𝑇! + 𝜔!ℎ!!) 

 

An evaporative cooling process from state A to state B is shown on a psychrometric 

chart below. 

 

 

Figure 9: Representation of evaporative cooling on a psychrometric chart 
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CHAPTER V 

 COMPRESSOR 

Background 

The water-vapor compressor, which operates at sub-atmospheric pressures, is an 

important component of the Claridge-Culp-Pate process/ cycle. This compressor takes 

water vapor extracted from the membrane at low pressure (0.5-1.7kPa) and increases it to 

a higher pressure (6-10kPa) that is suitable for the water vapor to be condensed in a 

standard condensation process. This sub-atmospheric inlet pressure to the compressor 

and high-pressure ratio may require a large size compressor with a relatively high power 

consumption, which makes an analysis of water-vapor compression even more 

important.  

The schematic below shows the placement of the compressor with respect to the other 

two important CCP cycle/process components, namely a dehumidifier unit and an 

evaporative cooler. It should be noted that the CCP refrigeration system allows for 

multiple arrangements of dehumidification units and evaporative coolers, and the 

configuration shown in the schematic is a simple one to illustrate the placement of major 

components. 
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The different state points and properties shown in Figure 10 will be used to derive the 

governing design and analysis equations are presented below: 

 

State – a: Moist air at the membrane dehumidification unit inlet 

• Ta = Dry bulb dehumidifier unit inlet temperature. 

• ha = Dry air specific enthalpy. 

• 𝜔a = specific humidity ratio. 

• ∅a  = Relative humidity. 

 

State – b: Moist air at dehumidifier exit 

• Tb= Dry bulb temperature = Ta 

Membrane 

Dehumidifier 

Evaporative 

Cooler 

 

a b c 

1 

2 

Wc	  	  
	  	  	  	  	  	  	  	  	  Compressor	  
CCompressor 

mv 

Figure 10: CCP process schematic 
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• hb= Dry air specific enthalpy

• 𝜔b= Humidity ratio.

• ∅b  = Relative humidity.

State – c: Moist air at evaporative cooler exit 

• Tc = Saturated cool air at evaporative cooler exit.

• hc = Specific enthalpy of dry air at cooler exit = hb.

• 𝜔c = Humidity ratio at evaporative cooler exit.

• ∅c  = Relative humidity at cooler exit = 100%

States 1 & 2: Water vapor entering and exiting the compressor 

• T1 , P1= Water vapor temperature and pressure at compressor inlet = Ta

• T2 ,P2= Water vapor temperature and pressure at compressor exit.

• PR = Pressure ratio of compressor =
!!
!!

• mV = Mass flow rate of water vapor in the compressor =  ma(𝜔1-𝜔)

To investigate the effects of water-vapor compression on the Claridge-Culp-Pate 

process/cycle, three different types of compressors are theoretically modeled. They are: 

1) Isothermal compression (ΔT = 0) 
2) Single-stage adiabatic compression (ΔS1 = 0) 
3) Two-stage adiabatic compression (ΔS2 = 0) 
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The working principles and thermodynamic relations used in determining the work for 

each of the above mentioned compression processes are discussed, described and 

presented in this section.  

 

General Energy Equation Applied to Compressor 

Starting from the general energy equation, the specific work input for the above 

mentioned compressor types are obtained by applying certain generalizations and 

assumptions.  The general energy equation, as applied to a compressor operating between 

states 1 and 2, is shown in Figure 11 below. 

 

 

Figure 11: Control volume applied to a compressor 
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𝜕𝐸
𝜕𝑡 = 𝑄 −𝑊 +   Σ𝑚!" ℎ! +

𝑉!!

2 + 𝑔𝑧! −     Σ𝑚!"#(ℎ! +
𝑉!!

2 + 𝑔𝑧!) 

The applicable assumptions are: 

• Compression is a steady state process (!"
!"

=0) 

• No work is output from the system (Wout = 0). 

• Mass flow of water vapor into and out of the system is equal. (m1=m2) 

• The change in kinetic and potential energy are neglected (∆𝐾𝐸=∆𝑃𝐸 = 0) 

• No heat transfer into the system (Qin = 0) 

Applying the above assumptions, work input to the compressor can be deduced as: 

𝑊!" = 𝑚 ℎ! − ℎ! +   𝑄!"# 

If the compression process is assumed to be adiabatic, meaning zero heat transfer to the 

surroundings, then the result is: 

𝑊!" = 𝑚(ℎ! − ℎ!) 

Furthermore if an ideal gas assumption is applied, then the change in specific enthalpy 

between exit and inlet of the compressor can be derived expressed as: 

h2-h1 = CP (T2-T1) 

 

Ideal Compressor Work 

The well-known equation for specific work during compression, based on combining the 

first and second law of thermodynamics is 

w = − 𝑣𝑑𝑝
!

!
+
𝑉!! − 𝑉!!

2 + 𝑔(𝑧! − 𝑧!) 
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If the change in kinetic and potential energy is neglected, then the result is 

w = − 𝑣𝑑𝑝
!

!
 

 

Polytropic Process and Specific Work 

Any compression process that can be expressed as a product of fluid pressure and its 

specific volume is called a polytropic process. A polytropic process adheres to the 

following pressure-volume relationship at any state during the compression.  

PVn = Constant 

A polytropic process between state 1 and state 2, results in  

!!
!!

 = (!!
!!
)
!!!
!  

where, n is the polytropic index of a given compression process. It should be noted that 

up to this point no ideal gas assumption has been made. Ideal fluids have polytropic 

index (or polytropic exponent) fixed for a specific compression process, while real fluids 

do not have a fixed polytropic index value.  However, it may be possible to find the 

value of ‘n’ that can approximate real process. If the specific work equation and the 

polytropic equation are combined, the result for specific work is:  

(!
!
) = - 𝑣𝑑𝑝!

! = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡!/!    !"
!!/!

!
!  

and after integrating, 

(!
!
) = !

!!!
(𝑃!𝑣! − 𝑃!𝑣!) 
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This equation can be used to find the work for any value of n except when n=1, and for 

this special case, 

(!
!
) = - 𝑣𝑑𝑝!

! = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 !"
!

!
!  

(!
!
) = 𝑃!𝑣! ln   

!!
!!

 

As emphasized before, using the above polytropic equation for state points and work 

values does not require an ideal gas. Rather, the above equations apply to any fluid  with 

a polytropic exponent. However, they can be modified for the special case of an indeal 

gas as follows: 

Substituting PV with RT as per ideal gas assumption, results in 

(!
!
) = !"

!!!
(𝑇! − 𝑇!) 

The temperature can be found from 

T!
T!
= (

𝑝!
𝑃!
)
!!!
!  

 

then the specific work for any ideal gas with any wxponent n, except n=1 is, 

(!
!
) = !"!!

!!!
[(!!
!!
)
!!!
! − 1] 

For an ideal gas undergoing undergoing isothermal process (n=1) the result is,  

(!
!
) = 𝑅𝑇 ln   !!

!!
 

It is also possible to use the above work equations and results of the energy equaition 

found previously to determine the heat transfer from the compressor as follows: 
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Q = W +m(h2-h1) 

or on a per buit mass basis as 

q = w +(h2-h1) 

again where work (w) is found from the above polytropic process equation. 

 

Isothermal Compressor (𝚫T = 0) 

A PvT chart, which is a plot of pressure versus specific volume with constant 

temperature curves (isotherms), which is used to represent the three polytropic 

compressions considered for the CCP compressor model. 

 

The first compression process described is the ideal gas isothermal process with n=1 as 

noted previously, at least for an ideal gas. As the name suggests, isothermal compression 

takes place at a constant temperature as shown below on a PvT chart, with a polytropic 

index of unity. (n=1).  
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Figure 12: PvT chart representing isothermal compression 

The specific work input to the compressor is a function of gas constant (R), temperature 

(T) and the pressure ratio. To achieve an isothermal process, heat transfer from the 

compressor must exist during the compression process. 

The specific work done in an isothermal process is given by the following relationship. 

wT=0 = RT1 ln  (
!!
!!

) 

As noted previously, the area represented by the symbols T2, T1, P2, P1 in the above PvT 

plot, which is the area to the left of the isotherm is the specific work. 

Single-Stage Isentropic Compressor (𝚫S1 = 0) 

An isentropic process or a variation of it is based on inefficiencies is the most common 

type of compression assumption used to model real-world applications. The polytropic 
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exponent (n) for an ideal gas is the specific heat ratio with n = k = !!
!!

, and for isentropic 

compression of air, the value is 1.4 while for water it is 1.34. Unlike an isothermal 

process, the isentropic process has zero heat transfer inflow or out of the compressor, as 

a result, the temperature of the fluid being compressed is increased in an isentropic 

compression process and the outlet temperature of the compressed fluid is determined as 

per the following relation: 

T2 = T1 (
𝑃2
𝑃1
)
𝑘−1
𝑘  

Figure 13 shows a PvT chart representing a single-stage isentropic compression process 

from point 1 to 2 

 

 

Figure 13: PvT chart representing isentropic compression 
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The compressor specific work done during an isentropic process, assuming zero heat 

transfer and an ideal gas, as found in the CCP process/cycle is calculated by using the 

following relation: 

w∆!!!! = C!(T! − T!) 

As with the isothermal process, the compression work is the PvT chart area to the left of 

the process curve from 1 to 2 . Comparing the areas under the isothermal process line in 

this PvT chart to that of the isentropic curve, one can see a larger area for the isentropic 

case, meaning it requires more specific work to compress isentropically than 

isothermally. 

 

Two-Stage Isentropic Compressor  (𝚫S2 = 0) 

The two-stage isentropic process is a variation of the previous single-stage isentropic 

process, but has the fluid compressed in two-stages instead of one. The advantage of this 

process is that an intercooler cools the fluid being compressed as it proceeds from one-

stage to the second stage resulting in a decrease in overall compression work.  

Specifically, the intercooler allows for reduction of the temperature of the fluid exiting 

the first stage of the compressor to its original inlet temperature before it enters the 

second stage, thereby reducing the overall work input to the system. This lower 

temperature maybe the original inlet temperature or a lower temperature possibly limited 

by a saturated condition. The effect of intercooler on the work input can be seen in the 

PvT chart below where the process from 1 to 2 is compared to the one-stage case 

presented earlier. One can see that the area to the left of the process line in figure 14, 
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which represents specific work, is less for two-stages compared to one-stage 

compression. 

 

 

Figure 14: PvT chart representing two-stage isentropic process 

 

The optimum intermediate pressure, Pi, is determined by the relationship that follows, 

which results in same work input for each of the two-stages and in fact minimizes the 

overall total work for the two-stage process. 

Pi  = 𝑃!  𝑋  𝑃! 

The intermediate temperature, which is also the exit temperature of the first stage, is 

determined by using the following relationship, which is a variation of one-stage 

compression process. 

Ti = T1  (
𝑃𝑖
𝑃1
)
𝑘−1
𝑘  
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The work input to each of the two-stages of the compressor is determined individually 

and the total work input into the two-stage system is the sum of these two work inputs, 

which are the same if the optimum intermediate pressure value is used. 

W1S2=0 = CP (Ti – T1) 

W2S2=0 = W1S2=0 

WS2 = W1S2=0 + W2S2=0 

Where WS2 is the total work input to the two-stage isentropic compressor system. 

 

Theoretical Compression Model for Water and R-410A 

Based on the theory and equations presented earlier in this chapter, a model was 

developed for simulating the ideal gas behavior of water vapor. The model assumes a 

value of n=1 (isothermal) for an isothermal process and n=k=1.34 (isentropic) for an 

isentropic process and is then used to create PvT plots and calculate compressor work. 

This model is also used to calculate the polytropic exponent when the compression 

follows a saturation line, based on the fact that the saturation line forms a limit. The 

saturation limit exists because when the vapor is being compressed and simultaneously 

losses heat, then it is possible that the saturation point is reached and if the temperature 

of the fluid being compressed goes below the saturation temperature, then condensation 

occurs. 

 

It is important to note that only water vapor is treated as an ideal gas with assumed 

values for the exponents in the polytropic process equation. The second fluid, R-410a, 
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that is used in vapor compression refrigeration (VCR) cycle is not an ideal gas and 

therefore, property tables must be used to find the state points during any of the different 

compression process analyzed. It should be noted that for the purpose of this study that 

isothermal R-410A compression process is not used to calculate the work. However, 

once R-410A process is plotted a PvT then an exponent n can be found. 

 

Because the focus of this thesis is on water vapor that is treated as an ideal gas, the 

previous compression work equations can be rewritten for an ideal gas. Therefore, the 

steps involved in modeling ideal gas, along with determining and comparing their 

specific works is shown below: 

 

Isothermal Compression Process 

Isotherms (constant temperature lines) are plotted on the PvT chart by determining the 

specific volume of water vapor at different pressure values by using the ideal gas 

equation.  

v= 
!"
!

 

The theoretical work done during an isothermal compression process is then calculated 

for any of the above determined states by using the following ideal gas relation equation 

based on n=1. 

w = 𝑅𝑇𝑙𝑛
P!
P!
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Isentropic Compression Process 

The specific volume of gas at different pressure conditions in an isentropic process is 

determined by using the polytropic equation, and n=k. In the case of an ideal gas these 

pressure and volume values are plotted on a PvT chart and a curve is fit to get a 

polytropic exponent (n) for the isentropic process. This polytropic exponent is then used 

for calculating specific work as follows: 

w = !
!!!

𝑅  (𝑇! − 𝑇!) 

 

Saturation - Polytropic Compression Process 

Here, the vapor is compressed along its saturation curve, meaning that the compression 

process follows a path such that the vapor remains in its saturated state throughout the 

process. which as discussed previously forms a low temperature unit. 

 

The values of saturation temperature and pressure, along with vapor specific volume, are 

obtained from the property tables. These are then plotted on a PvT chart to fit a curve to 

determine a polytropic exponent (n). The theoretical specific work input to this 

compression process is then determined by using the following relationship, which is 

similar to the isentropic equation with a generic n still to be determined replacing k. 

w = !
!!!

R  (𝑇! − 𝑇!) 
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PvT Plot and Compression Process 

The resulting PvT plots for the two fluids undergoing compression between an inlet 

temperature of 100C to 50OC during an isentropic process and a saturated condition 

process are shown in Figure 15 and 16: 

 

 
Figure 15: Water vapor PvT plot 
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Figure 16: PvT plot for R-410A 

The polytropic indices for the saturated condition process of the two fluids being 

compressed are shown in the plots. These polytropic indices suggest that water, while 

being compressed along the saturation curve follows a near-isothermal process (n=1.06), 

while the saturation compression curve of R-410a largely differs from ideal isothermal 

compression (n=1.145). We may thus conclude that isothermal/ near-isothermal 

compression is realistically achievable with water but not with R-410a.The significance 

of this condition is that a minimum work scenario represented by the isothermal 

compression maybe possible for water vapor but it is not possible for typical refrigerants 

such as R-410A. 

This same conclusion made by focusing on the polytropic exponent values for the 

saturated condition line can also be made by visually comparing the saturated line to the 
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curve for the isentropic and isothermal processes. As discussed previously, the saturation 

line on a PvT plot forms a limit that is for R-410A close to the isentropic compression 

line. In contrast the water vapor saturation line is close to the isothermal line, meaning 

that the saturation line is a possible replacement for isothermal line, vice versa, at least 

for water only. Meaning that isothermal compression for R-410A is impossible. 

 

In the above compression process, saturated water and R-410A vapor at 100C enters the 

compressor. In addition to this compression scenario, a similar compression situation 

was modeled with superheated water vapor at 100C entering the compressor at a lower 

pressure of 0.5 kPa with the results presented in Figure 17. 

 

 

Figure 17: PvT plot for superheated water vapor at 0.5kPa 
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The polytropic exponent (n) for the saturated compression in this case was found to be 

1.042 compared to n=1.06 for the higher pressure saturation case, suggesting that the 

polytropic compression process for the saturation curve may be approaching isothermal 

compression with decreases in inlet vapor pressure. 

The same conclusion can be arrived at by visually comparing the two water-vapor PvT 

plots for saturated and superheated compressor inlet conditions. 

Work Comparison 

As noted, specific work can be calculated by using polytropic equations assuming value 

of n are known. For each of the three cases shown in PvT plot, specific works are shown 

below. In each case, the inlet vapor is at 100C while the exit pressure corresponds to the 

saturation condition at 500C, which are 12.35 kPa for water and 3061.3 kPa for R-410a. 

The cases calculated and presented below are isothermal and isentropic compression, 

along with compression that follows a saturation curve on a PvT plot. In the case of 

water vapor following saturation line, work is determined for two inlet pressures 

representing saturated and superheated condition. 

Water Vapor 

w =298.7 !"
!"

 [n=1 (isothermal compression)] 

w=313.4 !"
!"

 [n=1.042 (saturated vapor compression)] 
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w=319.46 !"
!"

   [n=1.06 (saturated vapor compression)] 

w=406.2  !"
!"

   [n=1.34 (isentropic compression)] 

 

R-410A 

As discussed previously, R-410A work values come from property table rather than from 

polytropic process equations. So they are presented here only for comparison purpose. 

 

w=33.6 !"
!"

   [n=1 (isothermal compression)] 

w=83.22 !"
!"

   [n=1.145 (saturated vapor compression)] 

w=91.16 !"
!"

   [n=1.21 (isentropic compression)] 

 

The specific work for the isentropic compression process is the largest of all the 

processes for both fluids. In addition, the specific work for saturated-vapor compression 

process of water vapor is similar to isothermal work, which is about 60% larger while R-

410a is significantly higher than its respective isothermal compression value being about 

200%.  The significance of this is that one can remove significant amount of heat during 

water vapor compression so that the process follows the saturation line, which is close to 

the isothermal line, resulting in an energy saving over the adiabatic, isentropic 

compression. This energy reduction is not possible for R-410A because the saturation 

condition line is not even close to the isothermal line. 
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CHAPTER VI 

 VAPOR COMPRESSION REFRIGERATION CYCLE 

Introduction 

A vapor compression refrigeration (VCR) cycle involves a refrigerant that transfers 

thermal energy from an evaporator at a low pressure to a condenser that is at a higher 

pressure and temperature. A compressor and a throttle valve separate the high and low-

pressure sides of the system while helping in regulating the refrigerant flow rate. The 

compressor increases the pressure of the refrigerant vapor exiting the evaporator, taking 

it to a more superheated state, while the throttle valve expands the saturated (or 

subcooled) refrigerant exiting the condenser, thereby decreasing the pressure. Figure 18 

shows the major system components and flow paths of the refrigerant and other fluids 

along with the heat and work energy transfers of the vapor compression cycle. 

 

Vapor compression refrigeration is the most widely used refrigeration method and as 

such is considered to be the conventional approach to cooling. Only when the new and 

transformative technology of the membrane dehumidification cycle is compared to the 

conventional vapor compression refrigeration cycle or reference case, can one evaluate 

the validity of this new technology. To achieve this evaluation of the membrane 

dehumidification system, the comparison with the VCR should be based on making 

comparative, parametric estimates of the variables in both these systems. 
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Figure 18: Schematic of vapor compression refrigeration cycle 
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Therefore in this light, a vapor compression refrigeration system was modeled by using 

matlab, and the objective of this model was to accurately estimate the coefficient of 

performance of the vapor compression system with different working fluids.  The 

particular focus of VCR was on water and R410A, with the latter being the working fluid 

of choice for air conditioning. 

 

The thermodynamic states of the refrigerant in a theoretical VCR cycle is shown on a TS 

diagram below: 

 

Figure 19: Representation of vapor compression cycle on a T-S diagram 
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The VCR cycle represented on the TS diagram above depicts an ideal cycle where all the 

processes are locally reversible except for throttling. In addition to this irreversibility 

condition, the theoretical VCR cycle modeled for this study is based on assumptions that 

follow: 

1. The compressors operating between state 1 and 2 follows an ideal isentropic 

process with no heat transfer to the surroundings. 

2. The operating efficiency of the isentropic compressor is 100%. 

3. The pressure in the condenser and evaporator remain constant, without any 

pressure drop across the heat transfer section. 

4. The kinetic and potential energy changes in the cycle processes are neglected. 

5. The difference between the refrigerant temperature and the airside temperature in 

the evaporator and condenser remains constant. 

 

Processes  

The processes of an ideal VCR cycle and their working relations used to determine the 

values of state variables are listed in the following section. 

 

1. An isentropic compressor increases the pressure of saturated (or slightly 

superheated) vapor exiting the evaporator to a more heated state and the work 

done during compression is given by; 

𝑊! = 𝑚!(ℎ! − ℎ!) 
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2. The superheated refrigerant passes through a condenser at a constant pressure to 

reach a saturated (or subcooled) liquid state after losing heat. The heat transfer in 

the condenser is given by the following equation. 

𝑄!"#$%#&%' = 𝑚!(ℎ! − ℎ!) 

 

3. Refrigerant exiting the condenser passes through the throttle valve to a lower 

pressure following a constant enthalpy process until reaching the evaporator. 

ℎ! = ℎ! 

 

4. Liquid refrigerant entering the evaporator gains heat at a constant pressure to 

reach it’s saturated vapor state, and this heat transfer process is represented by the 

equation 

𝑄!"#$%&#'%& = 𝑚!(ℎ! − ℎ!) 

 

COP Definition and Determinations  

The COP of a refrigeration system is defined as the ratio to the useful cooling effect 

produced by the system to the work input into the system. In this case, the cooling effect 

is the heat extracted by the working fluid in the evaporator and the work input is the 

work supplied to the compressor.  

 

COP = !"#$%&  !""#$%&  !""#$%
!"#$%  !"#$  !"#$%  

 = !"#$  !"#$%&#!'  !"#$  !"#$%&#'%&
!"#$  !"#$%  !"  !!!  !"#$%&''"%  
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After plugging in component energy equations derived above, COP is 

𝐶𝑂𝑃 =
𝑚!(ℎ! − ℎ!)
𝑚!(ℎ! − ℎ!)

=
ℎ! − ℎ!
ℎ! − ℎ!

 

 

The temperature of the evaporator and the exit temperature of the condenser are the 

inputs to the VCR model. The numerical model determines the COP of the VCR system 

as follows: 

 

Input:   TEvaporator = TL 

  TCondenser = TH 

State 1:  Temperature = TL   

  Pressure = PLOW 

    h1= hg  (saturated vapor) 

  S1 = Sg 

Process 1 -2: Isentropic Compression 

State 2:  S2 = S1   

  P2 = PHIGH 

Using tables, program finds T2 and h2 

Process 2-3:  Condenser 

State 3:   T3 = TH 

    P3 = Psat (TH) 

    h3 = hf   (saturated liquid) 
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Process 3-4:  Isenthalpic Expansion (Throttling) 

State 4:  T4 = TL 

    P4 = PLOW 

    h4 = h3  

The calculation of COP is the major function of the VCR model presented herein, so that 

the COP values can be compared with that of membrane dehumidification system or 

Claridge-Culp-Pate cycle. If one assumes a cooling capacity (e.g. 10 tons) then one can 

calculate mass flow rate and specific volume of the refrigerant and compressor work for 

a specific cooling capacity. Determining these parameters enables a detailed comparison 

of vapor compression refrigeration system with the membrane dehumidification system. 

Calculating these parameters from the state variables determined in the previous step is 

shown below: 

 

Mass Flow Rate (mr)  

 The mass flow rate of refrigerant is determined by the heat transfer rate required to 

maintain the temperature of the evaporator.  For a given cooling capacity, the mass flow 

rate in the evaporator is calculated as: 

𝑚! =
𝑄!"#$%&#'%&
ℎ! − ℎ!  

 

 

Compressor Work (Wc)  

As presented previously, it is the work supplied to compress the saturated vapor exiting 

the evaporator to a superheated vapor state at a higher pressure. 
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𝑊! = 𝑚!(ℎ! − ℎ!) 

Volume Flow Rate (V)  

The volume of refrigerant entering the compressor per unit time and is the product of 

mass flow rate of refrigerant and its specific volume at the compressor inlet. 

𝑉 = 𝑚!𝑣 

The VCR model was used to analyze R-410A at different condenser and evaporator  

conditions and the results obtained are tabulated below: 

 

Results 

 

Table 1:  Temperature conditions and results of vapor compression cycle 
TH	  (0F)	   105	   95	   115	   110	  
TLOW	  (0F)	   57	   67	   47	   55	  

	   	   	   	   	  
COP	   8.87	   18.17	   5.7	   6.45	  

Mass	  Flow	  
(lb/min)	   29.45	   27.51	   31.89	   30.53	  

	  
Compressor	  

Work	  (BTU/min)	   253.31	   110.04	   382.77	   309.9	  

	  Volume	  flow	  
rate	  (ft3/lb)	   9.97	   7.88	   12.81	   10.7	  

	  Specific	  Volume	  
inlet	  (ft3/lb)	   0.34	   0.29	   0.4	   0.35	  
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The results in the table were validated with previous studies and agreement was found. 

Furthermore, the VCR model was run with water as the working fluid and a comparison 

of performance of the model with water and 410A as working fluids at similar conditions 

were carried out. The results are presented below. 

 

 
Table 2: Comparison of vapor compression refrigeration cycle results for water and R-

410A 
 

TLOW	   THIGH	  
Water	   R-‐410a	   Specific	  

work	  ratio	  

Compress
or	  work	  
ratio	  

P1	  
(Psig)	  

P2	  
(Psig)	   PR	   P1	  

(Psig)	  
P2	  

(Psig)	   PR	   RSW	   0.1*	  RSW	  

	   	   	   	   	   	   	   	   	   	  
34	   97	   0.096	   0.868	   9.04	   120	   320	   2.67	   0.56	   0.056	  
34	   110	   0.096	   1.276	   13.29	   120	   380	   3.17	   0.56	   0.056	  
43	   97	   0.137	   0.868	   6.34	   140	   320	   2.29	   0.55	   0.055	  
43	   110	   0.137	   1.276	   9.31	   140	   380	   2.71	   0.55	   0.055	  
50	   97	   0.178	   0.868	   4.88	   162	   320	   1.98	   0.58	   0.058	  
50	   110	   0.178	   1.276	   7.17	   162	   380	   2.35	   0.57	   0.057	  
65	   97	   0.306	   0.868	   2.84	   200	   320	   1.60	   0.55	   0.055	  
65	   110	   0.306	   1.276	   4.17	   200	   380	   1.90	   0.55	   0.055	  
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CHAPTER VII 

SINGLE-STAGE CCP PROCESS 

System Description 

A schematic of a single-stage membrane dehumidification process is shown in Figure 19. 

As the name suggests, a single-stage membrane dehumidifier system differs from a two-

stage dehumidifier system in the number of dehumidifier units that it houses. Here, a 

single dehumidifying system is used to dehumidify the outdoor air, which is then passed 

through an evaporative cooler where the dry air is cooled to its wet bulb temperature by 

the addition of liquid water that evaporates, drawing energy from air. 

 

A single-stage dehumidification setup requires less energy to operate when compared to 

a two-stage dehumidification system for the same outdoor conditions, because only one 

compressor is required for single-stage. However, the overall cooling effect produced by 

one-stage system is less than the two-stage system, so that the overall effect that each 

system has on the COP is not obvious.  Even with that said, one can make several 

observations, that are described below: 

 

1. It is possible that the energy saved in a single-stage membrane dehumidification 

system when compared to a two-stage membrane dehumidification system more than 

compensates for the reduced cooling capacity of the single-stage.  
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2. Most of the cooling effect in a two-stage system is produced by the first stage 

dehumidification and cooling units. The cooling effect produced by the second-stage 

dehumidification and cooling units is limited. 

 

In a single-stage system, the outdoor air may pass through either one or two different 

evaporative coolers depending on the outdoor humidity conditions. These two possible 

paths, which the outdoor air can take, are designated as path A and path B.  Path A (1-2-

3-4), which has an evaporative cooler upstream of the dehumidifier is chosen for dry 

outdoor conditions while path B (1-Bypass-2-3-4), which bypasses the upstream 

evaporative cooler is chosen for more humid outdoor conditions.  

  

 
Figure 20: Schematic of one-stage Claridge-Culp-Pate process 
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Comparison of Path A and B 

The outdoor air entering the system follows one of two aforementioned paths depending 

on the humidity conditions. These two paths and their differences are described in this 

section. 

 

Path A (1-2-3-4) 

This path is chosen if the outdoor air entering the system is dry. Here, the outdoor air is 

humidified before it passes through the membrane dehumidifier by passing the outdoor 

air through an evaporative cooler where it is humidified to the saturation point (i.e. 100% 

relative humidity) meaning, its wet bulb temperature is reached.  To follow this path, the 

air enters the system at state 1 and passes through the first evaporative cooler to state 2.  

Followed by state 3 and 4 at the dehumidifier unit exit and the second evaporative cooler 

exit. 

 

Path B (1-Bypass-2-3-4)   

This path is chosen if the outdoor air condition is humid. Here, the outdoor air enters the 

system and directly undergoes the membrane dehumidification process without having to 

go through the first evaporative cooler. The air enters through the bypass line, and this 

point onwards follows path A to reach the exit. 
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An example of CCP process operating with membrane dehumidification and evaporative 

cooling along path A and B for a single-stage membrane dehumidification system are 

shown on the psychrometric chart in Figure 21 below.  

The example shown in the Figure are for air entering at 350C and 70% relative humidity, 

which could be a typical summer weather condition that is somewhat humid and drier 

than it could be. The exit temperature for path A is lesser than that of Path B at least for 

the inlet conditions assumed. 

 

 

Figure 21: Psychrometric representation of one-stage Claridge-Culp-Pate process 

 

The table that follows provides the values of state variables at each stage of the CCP 

process of the two paths. 
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One can see from table values that the path A exit is slightly cooler that path B being 

19.40C to 21.10C. If the relative humidity of the inlet had been greater than 70% then the 

advantage of path A over path B might disappear. One can also see that the path A exit 

has lower relative humidity ratio compared to path B which means path A is drier. 

 

 
Table 3: Results of one-stage membrane dehumidification process 

Path  A (1-2-3-4) 

	  
T	   RH	   𝜔	   h	   Pv	  

	  
Δ  𝜔	   Δℎ	  	   ΔP	  

	  
(C)	   (%)	   (!"#

!"#
)	   (!"

!"
)	   (kPa)	  

	  
(!"#
!"#

)	   (!"
!"
)	   (kPa)	  

1	   35	   70	   0.025167	   117.61	   3.9403	   1-‐2	   0.002	   0.000	   4.237	  
2	   30	   100	   0.027211	   117.61	   4.2469	   2-‐3	   -‐0.017	   -‐44.034	   1.593	  
3	   30	   37.75	   0.01	   73.576	   1.6032	   3-‐4	   0.004	   0.000	   -‐0.010	  
4	   19.4	   100	   0.01419	   73.576	   	  2.26	  

	   	   	   	   
Path  B(1-2b-3b-4b) 

	   T	   RH	   𝜔	   h	   Pv	   	   Δ  𝜔	   Δh	   ΔP	  

	   (C)	   (%)	   (!"#
!"#

)	   (!"
!"
)	   (kPa)	   	   (!"#

!"#
)	   (!"

!"
)	   (kPa)	  

1	   35	   70	   0.025167	   117.61	   3.9403	   1-‐2b	   0.000	   0.000	   3.930	  
2b	   35	   70	   0.025167	   117.61	   3.9403	   2b-‐3b	   -‐0.015	   -‐38.92	   1.593	  
3b	   35	   28.482	   0.01	   78.693	   1.6032	   3b-‐4b	   0.006	   0.000	   2.495	  
4b	   21.1	   100	   0.015769	   78.693	   2.5053	   	   	   	   	   

 

The outlet temperature (T) and humidity ratio (𝝎) are a measure of performance 

comparison for path A and B, but so is COP, which is defined as the ratio of cooling 

capacity to the work, which can also be a relationship for comparing path A and B 

𝐶𝑂𝑃!
𝐶𝑂𝑃!

=   
(ℎ! − ℎ!)
(ℎ! − ℎ!!)

(𝜔!! − 𝜔!!)
(𝜔! − 𝜔!)
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𝐶𝑂𝑃!
𝐶𝑂𝑃!

=   
44.034
38.917   𝑋  

0.0151
0.0172 = 0.997 

This COP ratio corresponds to less than 1% difference in COPs. The change in 

temperature between inlet and exit in the two cases is about 11%, which is similar to the 

difference in water vapor required by the compressor. 
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CHAPTER VIII 

TWO-STAGE CLARIDGE-CULP-PATE (CCP) PROCESS 

Setup 

A schematic that shows components and flow paths for a two-stage membrane 

dehumidification process is shown in Figure 22. The most extensive flow path for this 

two-stage membrane dehumidification process involves outdoor air passing through all 5 

components namely, 2 dehumidification units and 3 evaporative coolers. As one can see 

in the schematic evaporative coolers are strategically placed at the system inlet and outlet 

along with locations one between the two dehumidifying units. 

 

 
Figure 22: Schematic of two-stage Claridge- Culp-Pate process 
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The two-stage membrane dehumidification process is setup such that the air passing 

through the system, can exit the system downstream of any of the 5 components, thus 

bypassing other components by controlling a series of outlet valves. As a final note, the 

air entering the system can directly enter an evaporative cooler or bypass it similar to the 

one-stage Path A and B as presented in the previous chapter. However for the two-stage 

system these two paths are designated as path X and path Y. 

 

Paths X and Y 

Similar to the single-stage dehumidification system, a two-stage dehumidification system 

follows any one of the two available paths, with the optimum path depending upon the 

outdoor humidity conditions, either humid or dry. 

 

Path X   

This path bypasses the inlet evaporative cooler and is chosen if the outdoor air condition 

is humid, meaning inlet evaporative cooler will have minimal effect, as will be shown 

later. Specifically, The air enters at inlet X and passes through to point B; meaning points 

X and B are at the same condition when let into the membrane dehumidifier. After 

exiting the first membrane dehumidifier, the air follows the path CDE and F, with each 

of these letter designations representing a location where the air can wither be withdrawn 

from the system or continue onward to the next component. 

 

 



 

 59 

Path Y  

This path is chosen if the outdoor air entering the system is dry, meaning that the 

entering relative humidity is on the lower side. With the low inlet humidity, it may be 

worthwhile having the outdoor air pass through an evaporative cooler where it can be 

humidified to the saturation point as the wet bulb temperature is reached.  To follow this 

path, the air enters the system through inlet Y and exits the first evaporative cooler at 

state B. Past this point, air following path Y undergoes the same processes as that of Path 

X, where it passes through points CDE and F.  

 

Effect of Outdoor Conditions 

Simulations for two cases were carried out by using the developed membrane 

dehumidification model and then state variables at each stage of the dehumidification 

process for path X and path Y were determined. The outdoor air temperatures, entering 

the systems for both the cases was fixed at 950F and the inlet relative humidities were set 

at high and low values.  

 

The representation of the two cases has been plotted on psychrometric charts with one 

chart being for case 1 (950C and 40% RH) and the other for case 2 (950C and 70% RH). 

Path X and Y are plotted on each plot so that the air conditions (Temperature and 

humidity) at each location designated by ABCDE and F can be compared. Later these 

state points are tabulated in the tables, showing the effects of inlet conditions and flow 

paths. 
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Case -1: Dry Inlet (950F 40% RH) 

Path X and path Y for an entering outdoor temperature of 950F (350C) and a relative 

humidity of 40% are shown in Figure 22 with the red line representing path X and the 

blue line representing path Y. As can be seen on the psychrometric chart the exit of each 

dehumidifying unit is set at a water vapor partial pressure of 1.5 kPa 

 

 

Figure 23: Psychrometric representation of two-stage Claridge-Culp-Pate process for 950C 
and 40% relative humidity 

 

 

The values of state variables at location A-F for both the paths namely, X and Y are 

shown in the following table. These are the same state values shown earlier in the above 

Figure, which provided an opportunity to visually compare the two paths, specially the 

evaporative cooler and the dehumidification processes. 
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Table 4: Results of two-stage Claridge-Culp-Pate process 

	  
T	   RH	   ω	   h	   Pv	  

	  
Δω	   Δh	   ΔP	  

	  
(F)	   (%)	   (lbv/lba)	   (Btu/lb)	   (Kpa)	  

	  
(lbv/lba)	   (Btu/lb)	   (Kpa)	  

AX	   95	   40.0	   0.014136	   38.394	   2.2516	  
	  

0.014	   38.394	   2.242	  
BX	   95	   40.0	   0.014136	   38.394	   2.2516	  

	  
0.000	   0.000	   2.242	  

CX	   95	   28.5	   0.01	   33.832	   1.6032	  
	  

-‐0.004	   -‐4.562	   1.593	  
DX	   70	   100.0	   0.015769	   33.832	   2.5053	  

	  
0.006	   0.000	   2.495	  

EX	   70	   64.0	   0.01	   27.721	   1.6032	  
	  

-‐0.006	   -‐6.111	   1.593	  
FX	   62	   100.0	   0.011872	   27.721	   1.8978	  

	  
0.002	   0.000	   1.888	  

AY	   95	   40.0	   0.014136	   38.394	   2.2516	  
	  

0.014	   38.394	   2.242	  
BY	   75	   100.0	   0.018756	   38.394	   2.9659	  

	  
0.005	   0.000	   2.956	  

CY	   75	   54.1	   0.01	   28.943	   1.6032	  
	  

-‐0.009	   -‐9.451	   1.593	  
DY	   64	   100.0	   0.012755	   28.943	   2.036	  

	  
0.003	   0.000	   2.026	  

EY	   64	   78.7	   0.01	   26.254	   1.6032	  
	  

-‐0.003	   -‐2.689	   1.593	  
FY	   60	   100.0	   0.011045	   26.254	   1.7678	  

	  
0.001	   0.000	   1.758	  

 

 

Case -2: Humid Inlet (950F 70% RH) 

Similar to dry inlet condition plotted above, the state points for path X and path Y for 

humid inlet conditions are plotted here on a second psychrometric chart The higher inlet 

relative humidity of 70% is obvious on this new chart. 
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Figure 24: Psychrometric representation of two-stage Claridge-Culp-Pate process for 
950C 70% relative humidity 

As before, the state point values shown in Figure 24 are tabulated in table 5 for both Path 

X and Y. 

Table 5: Results of two-stage Claridge-Culp-Pate process 
T	   RH	   ω	   h	   Pv	   𝚫ω	   𝚫h	   𝚫P	  
(F)	   (%)	   (lbv/lba)	   (Btu/lb)	   (Kpa)	   (lbv/lba)	   (Btu/lb)	   (Kpa)	  

AX	   95	   70	   0.025	   50.564	   3.9403	   0.025	   50.564	   3.930	  
BX	   95	   70	   0.025	   50.564	   3.9403	   0.000	   0.000	   3.930	  
CX	   95	   28.5	   0.010	   33.832	   1.6032	   -‐0.015	   -‐16.732	   1.593	  
DX	   70	   100	   0.016	   33.832	   2.5053	   0.006	   0.000	   2.495	  
EX	   70	   63.9	   0.010	   27.721	   1.6032	   -‐0.006	   -‐6.111	   1.593	  
FX	   62	   100	   0.012	   27.721	   1.8978	   0.002	   0.000	   1.888	  
AY	   95	   70	   0.025	   50.564	   3.9403	   0.025	   50.564	   3.930	  
BY	   86	   100	   0.027	   50.564	   4.2469	   0.002	   0.000	   4.237	  
CY	   86	   37.7	   0.010	   31.632	   1.6032	   -‐0.017	   -‐18.932	   1.593	  
DY	   67	   100	   0.014	   31.632	   2.26	   0.004	   0.000	   2.250	  
EY	   67	   70.9	   0.010	   26.987	   1.6032	   -‐0.004	   -‐4.645	   1.593	  
FY	   61	   100	   0.011	   26.987	   1.8318	   0.001	   0.000	   1.822	  
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Discussion of Results 

The results plotted and tabulated above can be analyzed and a number of conclusions can 

be reached regarding component configuration for the CCP system. As one can expect, 

the optimum configuration is a function of outdoor relative humidity and possibly the 

inlet temperature, which was not the focus of this investigation. 

 The analysis of results focus on two aspects  

1) Number of dehumidification units to be used  

2)  The path to be followed (Either X or Y) 

The following are the major results drawn from comparing a one-stage and a two-stage 

membrane dehumidification processes  

• In a two-stage CCP process, the first membrane dehumidifier extracts about twice 

the mass of vapor from moist air than the second membrane unit, which can be seen in 

both the plots and tables. Therefore, it can be said that the work input required for the 

first membrane unit is about twice that of the second membrane unit. 

• The first evaporative cooler has about 3 times more cooling effect than the 

second evaporative cooler in a 2-stage CCP process. 

• The collective cooling effect of 2 evaporative coolers in path X is nearly the same 

as the total cooling effect of 3 evaporative coolers operating in path Y of a two-stage 

CCP – process. 
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CHAPTER IX 

MEMBRANE-ENABLED AND CONVENTIONAL COOLING PROCESS 

COMPARISONS 

Background 

The objective of this chapter is to compare the COP of a conventional air conditioning 

system with that of a novel membrane-enabled cooling system with both of them 

operating between the same low and high temperature reservoirs. The indoor air 

condition (low temperature) is fixed at 250C and 50% relative humidity while the 

outdoor air conditions (high temperature) are varied between 300C and 400C in steps of 

50C. 

 

The psychrometric chart below shows two paths namely, path A and path B where path 

A is followed by a conventional air conditioning system while path B is followed by 

membrane enabled cooling system (CCP system) between a common outdoor condition 

(point 1) and a common indoor condition (point 4A same as point 3B). A more detailed 

description of the two paths is presented in two sentences that follow. 
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Figure 25: Psychrometric representation of a conventional cooling processes and 
Claridge-Culp-Pate cooling process 

Description of Path-A (Conventional System) 

The dotted line in the above psychrometric chart represents path A that is followed by 

outdoor air being cooled by a conventional air-conditioning system to a comfortable 

indoor environment of 250C and 50% relative humidity. 

The conventional air conditioning system processes that are involved in reaching the 

indoor environment condition is presented in Figure 25 and described herein: 

1. Sensible cooling (1 – 2A) :  Outdoor air at state 1 is cooled in the evaporator of

the conventional refrigeration system by removing sensible heat until the dew point is 

reached at state 2A.   
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2. Latent cooling (2A – 3A): Air that is at 100% relative humidity at point 2A is 

further cooled in evaporator until it reaches point 3A, which is the dew point temperature 

for 250C at 100 % relative humidity and vapor partial pressure of 1.5 kPa.  

 

3. Sensible reheating (4A -4): Cool air at 100% relative humidity is reheated until 

the comfort point of 250C at 50% relative humidity is reached. 

 

 

Figure 26: Schematic of conventional cooling 

 

The total work associated with path A is as follows: 

• Work input to vapor compression refrigeration (VCR) compressor with the result 

being sensible and latent cooling of air from state 1 to state 3A (WA1). 

• Thermal energy input to reheat the air from state 3A to 250C 50% relative 

humidity (Qreheat). 

The total work associated with path A is WA1 + Qreheat 
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Description of Path-B (Claridge–Culp–Pate cooling system) 

Path B is the cooling path that is followed by the membrane-enabled cooling system. The 

outdoor air is first dehumidified from state 1 to state 2B, and then, a conventional VCR 

system sensibly cools the dehumidified air to the 250C at 50 % relative humidity (3B). 

This combination of dehumidification and VCR system eliminates the need of latent 

cooling in a VCR system. 

 

 
Figure 27: Schematic of Claridge-Culp-Pate cooling process 

 

The work associated with the membrane cooling system that follows path B is as 

follows: 

• Work input to the dehumidification compressor (WC) 

• Work input to the VCR system through the VCR compressor thus cooling the 

dehumidified air (WB1). 

The total work associated with path B is WC + WB1 

 

The cooling effect produced by both systems, namely the conventional VCR in path A 

and the membrane-enabled in in path B is equal as both systems operate between the 
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same end points, Therefore the cooling load met by these systems for a given mass 

flow rate of air (ma) is: 

𝑄!""# = 𝑚! ℎ!! − ℎ!!  

 

COP for Path A (Conventional System) 

The COP for path A is the ratio of the cooling effect produced by the conventional air 

conditioner to the total work done to produce this cooling effect. 

COPA1 = 
!!""#

!!!!!!!
 

where 

WA1 = ma 
(!!!!!!!)
(  !!!!!!!)

  (ℎ!! − ℎ!!) 

The second work term (WA2), which represents reheating work is to convert work energy 

and thermal energy to a similar cost level because, the actual COP definition is useful 

energy transfer (cooling effect) over the cost of energy in terms of energy, so that COP 

can be non-dimensional. Therefore 0.33 is an approximation that is based on an electrical 

work unit produced by a power plant requiring 3 times as much energy or 3 thermal 

units. It is similar to assuming 33% power plant efficiency. 
 

WA2 = 
!
!
 Qreheat  = 0.33 x ma (h4A – h3A) 

It should be noted that the above thermal energy, replaced by a work term might be 

supplied by combustion of a fossil fuel that contributes to energy cost. However, another 
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possibility is that no reheat occurs or the warmer outdoor air through a heat exchanger 

provides it. Either way reheat, WA2 is taken out of the COP equation. 

 

COP of path A has been calculated for two conditions namely, with reheat and without 

reheat. COPA1 represents the COP of the cycle with one third of reheat work accounted to 

calculate the COP.  The second condition COPA2 does not account for this work for 

reheating the air from state 3A to 4A (WA2 = 0). This case assumes that the outdoor air 

supplies enough work to reheat the cooled air from state 3A to 4A. Therefore the COP 

without accounting for reheat is: 

COPA2 = 
!"##$
!!!

 

WA1 = ma 
(!!!!!!!  )
(  !!!!!!!)

  (h2r – h1r) 

 

 

 

COP of Path B 

The COP of path B is calculated for two cases as presented below.  

 

Case - B1 (Decoupled membrane dehumidification and VCR systems) 

The first case is when the membrane dehumidification unit and vapor compression unit 

are disconnected and no interaction is observed between the two units. 
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COP in this case is calculated as the ratio of cooling capacity (which is same as path A) 

to the total system work; that is combined membrane dehumidifier work (WC) and the 

VCR cycle work (WB1) as shown in the previous Figure. 

COPB1  = 
!!""#

!!!!!!
 

where, the CCP work is 

WC = ma ∆𝜔w 

WB1 = ma 
(!!!!!!!)
(  !!!!!!!)

  (h2R – h1R) 

 

Case- B2 (Coupled System) 

The second case under consideration is the use of water vapor from the dehumidification 

membrane to cool the air exiting the dehumidifier. Here the dehumidification membrane 

is coupled with the conventional cooling system (VCR) such that the water vapor leaving 

the dehumidification membrane is first condensed to liquid water at its dew point 

temperature, and this water is then used to reduce the temperature of outdoor 

dehumidified air. Doing so helps reduce the cooling load and hence the net work input 

required by the conventional vapor compression system (VCR). The COP for this case is 

determined as, 

COPB2  = 
!!""#

!!!!!!
 

Where 

WC = ma ∆𝜔W 
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WB1 = ma 
(!!!!!!!)
(!!!!!!!)

  (h1B – h3B) 

 

Presentation of Results and Plots 

The COP of both these paths  (A and B) were determined and compared for each of the 

aforementioned conditions under two circumstances, as follow: 

1. Ideal heat exchanger scenario (∆T=0) 

2. Real-world heat exchanger scenario (∆T≠0).    

The assumed temperature differences for the real-world heat exchanger were 50C 

between the airside and the condensing fluid, 80C difference between the airside and the 

evaporator refrigerant for a conventional VCR cycle, and finally a 30C difference for the 

compressor condenser in case of the membrane dehumidifier. 

The calculated COPs are represented in the table for each of the two cases, namely path 

A and B and subcases, namely ∆𝑇 = 0 or ∆𝑇 ≠ 0 for a real word heat exchanger. 
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Table 6: : Conventional and membrane enabled cooling comparison for  ∆T=0 
TOUT	   phi	   𝚫T	   Qcool	   Work-‐Path	  A	   Work	  -‐	  Path	  B	   COP(A)	   COP(B)	  

	   	   	   	   A2	   A1	   B1	   B2	   A1	   A2	   B1	   B2	  

(	  C	  )	   %	   (	  C	  )	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	  
	   	   	   	  

30.00	   40.00	   0.00	   6.97	   1.20	   5.00	   0.08	   	   1.39	   5.80	   84.74	   	  
30.00	   60.00	   0.00	   20.88	   2.11	   5.91	   0.96	   0.62	   3.53	   9.88	   21.71	   33.76	  
30.00	   80.00	   0.00	   35.02	   3.04	   6.84	   2.25	   1.90	   5.12	   11.52	   15.57	   18.46	  
30.00	   100.00	   0.00	   49.42	   3.98	   7.78	   3.86	   3.86	   6.35	   12.41	   12.78	   12.79	  
35.00	   40.00	   0.00	   21.16	   2.78	   6.58	   0.86	   0.43	   3.22	   7.61	   24.64	   48.76	  
35.00	   60.00	   0.00	   39.92	   4.38	   8.18	   2.91	   2.17	   4.88	   9.11	   13.71	   18.38	  
35.00	   80.00	   0.00	   59.11	   6.02	   9.81	   5.53	   5.06	   6.02	   9.82	   10.70	   11.69	  
35.00	   100.00	   0.00	   78.76	   7.70	   11.50	   8.80	   8.80	   6.85	   10.23	   8.95	   8.95	  
40.00	   40.00	   0.00	   38.02	   5.44	   9.23	   2.58	   1.62	   4.12	   6.99	   14.76	   23.49	  
40.00	   60.00	   0.00	   63.17	   8.20	   12.00	   6.40	   5.11	   5.26	   7.70	   9.86	   12.35	  
40.00	   80.00	   0.00	   89.09	   4.73	   8.52	   11.41	   10.62	   10.45	   18.85	   7.81	   8.39	  
40.00	   100.00	   0.00	   115.83	   14.00	   17.79	   17.16	   17.16	   6.51	   8.28	   6.75	   6.75	  

 

 
 

Table 7: Conventional and membrane enabled cooling comparison for  ∆T= 3/5/8 
TOUT	   phi	   𝚫T	   Qcool	   Work-‐Path	  A	   Work	  -‐	  Path	  B	   COP(A)	   COP(B)	  

	  	   	  	   	  	   	  	   A2	   A1	   B1	   B2	   A1	   A2	   B1	   B2	  

(	  C	  )	   %	   (	  C	  )	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   	  	   	  	   	  	   	  	  
30	   40	   5	   6.97	   1.57	   5.37	   0.14	   	  	   1.30	   4.44	   51.38	   	  	  
30	   60	   5	   20.88	   2.76	   6.55	   1.42	   1.11	   3.19	   7.57	   14.71	   18.88	  
30	   80	   5	   35.02	   3.96	   7.76	   3.13	   2.84	   4.51	   8.83	   11.19	   12.32	  
30	   100	   5	   49.42	   5.19	   8.99	   5.19	   5.19	   5.50	   9.51	   9.52	   9.52	  
35	   40	   5	   21.16	   3.58	   7.38	   1.18	   0.72	   2.87	   5.91	   17.93	   29.40	  
35	   60	   5	   39.92	   5.64	   9.44	   3.80	   3.00	   4.23	   7.07	   10.51	   13.29	  
35	   80	   5	   59.11	   7.76	   11.55	   7.00	   6.47	   5.12	   7.62	   8.45	   9.13	  
35	   100	   5	   78.76	   9.92	   13.71	   10.88	   10.88	   5.74	   7.94	   7.24	   7.24	  
40	   40	   5	   38.02	   6.99	   10.78	   3.44	   2.26	   3.53	   5.44	   11.05	   16.85	  
40	   60	   5	   63.17	   10.44	   14.24	   8.25	   6.51	   4.44	   6.05	   7.66	   9.70	  
40	   80	   5	   89.09	   14.08	   17.87	   14.28	   13.30	   4.98	   6.33	   6.24	   6.70	  
40	   100	   5.	   115.83	   17.82	   21.62	   21.10	   21.10	   5.36	   6.50	   5.49	   5.49	  
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Observations of the results tabulated above, shows that the membrane enabled 

dehumidification and cooling produces COPs higher than conventional VCR air 

conditioning systems for nearly all outdoor air conditions of temperature and humidity. 

Specifically one can see that the COP (B) is larger than COP(A) for cases 1and 2 and for 

∆𝑇 = 0 or ∆𝑇 ≠ 0. 

 

The path A and path B COP ratios are divided into two categories to observe the effect of 

using the dehumidifier condensed water to cool the VCR condensed air, referred to as 

coupling. The two categories shown thus are coupling and decoupling. In each plot a 

series of 4 subplots are plotted representing ∆𝑇 = 0 and ∆𝑇 ≠ 0 either with or without 

reheat. 

 

Additional insight regarding performance differences between path A (conventional) and 

path B (membrane dehumidification) can be gained by forming the ratio of COP(B)  and 

COP(A) so that if the value of this ratio is greater than unity  then the novel cooling 

system outperforms the conventional VCR system. Plotting these ratios for various 

conditions and parameters can then be used to analyze results. 
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Path A and B Comparison – Reusing Condensed Water 

 

 

 

 

Figure 28:COP ratio of membrane enabled cooling to conventional cooling without 
coupling between systems 
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Figure 29: COP ratio of membrane enabled cooling to conventional cooling with 

coupling between the two systems 
 

 

Analysis of Results 

The tables and plots presented in this chapter are analyzed and compared in order to 

provide insight into how the novel membrane dehumidification system (Path B) behaves, 

compared to the conventional VCR system (path A). Of particular importance are 

insights provided by the plots of COP ratio. Major observations of the results are 

presented below.  
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For the range of humidities investigated (40% to 100%), the COP ratio decreases as the 

outdoor the relative humidity increases. This trend indicates that at outdoor conditions 

where the relative humidity is high, the advantage of operating a membrane 

dehumidification cooler decreases against the VCR cooler. The rate of decrease of this 

ratio is found to be a maximum between 40 and 60 % relative humidity and the gradient 

being reduced with increase in relative humidity. 

 

This behavior of decreasing ratio as the relative humidity increases can be accounted for 

by looking at the COP trends of conventional VCR cooler and the CCP cooler. Referring 

to values in the table, the COP of the conventional cooler increases with the increase 

with relative humidity of outdoor air while the COP of the CCP cooler decreases, owing 

to an increase in the compressor power required to compress additional moisture 

extracted from humid air. 

 

The COP values in the table also show that COP of the CCP cycle decreases with 

increase in outdoor temperature because the water vapor compressor requires more work 

to compress vapor to a higher temperature, while the COP of conventional VCR 

increases with an increase in temperature. The result of these opposing effects, the ratio 

decreases as the outdoor temperature rises, meaning the advantage of the membrane 

dehumidifier system over the VCR system decreases. Even still, the ratio is greater than 

unity, in fact, even larger than 5, which is the maximum value shown at the highest 

outdoor temperature of 400C. 
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It can also be seen in the ratio plots that the existence of reheat in the VCR system 

magnifies the advantage of the membrane dehumidification system. Specifically, for all 

other conditions being the same the ratio for VCR system with reheat is found to be the 

highest. 

 

Another observation from the ratio plots is for all other conditions being similar, 

coupling increases the ratio. In other words, the advantage of path B is magnified over 

the path A (VCR air conditioning system) if the liquid water produced by the membrane 

dehumidification system is added to the VCR system that cools the dry air. Specifically, 

this liquid water evaporatively cools to the wet bulb temperature, the outdoor air used to 

remove the heat from the VCR condenser.  

 

A final observation from the ratio plot is to compare cases representing ideal heat 

exchanger to cases with real-world heat exchangers. The plots show that the assumed 

temperature difference only have a minor effect on the COP ratio, meaning that the 

analysis is somewhat independent on the accuracy of ∆𝑇 assumptions. The reason for 

this maybe that the COPs are affected similarly if  ∆𝑇 assumptions are applied equally to 

path A and B. With this said, there is a slight increase in the ratios as real-world heat 

exchanger with non-zero temperature difference between air and the fluid are assumed. 
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CHAPTER X 

CLARIDGE-CULP-PATE REFRIGERATION CYCLE MODEL 

Background of CCP Cycle 

A new cooling cycle has been developed based on configuring membrane-enabled 

dehumidification in a closed loop with an evaporative cooler. This novel approach is 

known as the Claridge-Culp-Pate refrigeration cycle (CCP).  

 

This cycle works by using moist air and water as the refrigerants, transporting heat 

between two heat exchangers. A stream of dry air is created as moist air flows through 

the membrane dehumidification unit by transferring water vapor through the membrane 

to a low-pressure region. The low-pressure water vapor is compressed to a higher 

pressure where it can be condensed by transferring heat to an evaporatively cooled 

outdoor air or cooling tower water. 

 

The liquid condensed water is injected into an evaporative cooler and dry air exiting the 

membrane dehumidifier decreases the temperature to the wet bulb value while increasing 

the humidity of the air. This cool, humid air is passed through a heat exchanger to 

complete the cycle. The above components and fluid flow paths that make up the CCP 

cycle are shown in Figure 29. 
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Figure 30: Schematic of a theoretical Claridge-Culp-Pate refrigeration 
cycle 

 

 

CCP Cycle State Points 

The performance of the CCP cycle is affected by the properties of dry air and water 

vapor mixture at certain critical locations in the cycle, which are inlet and exit points of 

each component. The schematic of the CCP cycle shows these critical locations, and they 
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are marked by a series of numbers and letters. A brief description of the thermodynamic 

and physical conditions of both air and water vapor at these locations is presented below.  

 

Air Conditions and States 

1a - Warm Humid Air: Warm humid air exits the heat exchanger after providing a useful 

cooling effect (i.e. removing heat from a fluid being cooled). This warm air mixture is 

represented as point 1 on a CCP cycle psychrometric chart and by state 1a on the Figure.  

 

2a - Warm Dry Air: Warm air entering the dehumidifier at state 1a losses water vapor 

and exits the dehumidifier at 2a on the schematic and is represented by state 2 on a 

psychrometric chart of a CCP cycle. 

 

3a  - Saturated Cool Air: After warm dry air at state 2a is cooled to its wet bulb 

temperature by an evaporative cooler the resulting cool saturated air exits the evaporative 

cooler at 3a on the schematic and is represented on the psychrometric chart.  

 

Water Vapor Conditions and States 

1w – Extracted water vapor: As hot humid air passes through the membrane 

dehumidifier, water vapor is transferred through the membrane while, the stream of  dry 

air passes through the air side of the membrane unaffected (2a). The water vapor that is 

separated from air goes to the low-pressure side of the membrane and is shown in state 

1w. 
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2w - Compressed vapor – The water vapor separated from the moist air mixture is 

compressed from low pressure point 1w to high-pressure point at 2w by the compressor. 

The temperature of water vapor at 2w depends on the compression process, however the 

state is superheated vapor. 

 

3w – The compressed vapor at 2w is passed through a condenser where it is condensed to 

a liquid with the condensation temperature corresponding to the saturation pressure. This 

condensed cool water exiting the condenser is represented by state 3w, which is typically 

a saturated liquid, but can also be in its subcooled state. 

 

4w -The liquid water exiting the condenser is where it is collected and then pumped to 

the atmospheric pressure at state 4w and then injected into an evaporative cooler.  

 

Components of CCP Cycle 

The function and operation of each component in the Claridge-Culp-Pate cycle is listed 

and described below along with associated energy or mass flow parameters and 

appropriate assumptions. 

 

Membrane-dehumidification Unit 

 This CCP cycle component separates water vapor from a flowing moist air stream, 

hence drying the air stream, by transferring water vapor through the membrane subjected 

to different pressure conditions on either side. The result is that warm humid air enters 
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the unit and a drier air with a reduced humidity ratio exits.  This process of air and water 

vapor separation is assumed to take place in an isothermal process. 

 

Evaporative Cooler 

Warm dry air that exits the membrane dehumidifier needs to be cooled before it can be 

passed through the sensible heat exchanger. An evaporative cooler brings about this 

cooling of hot dry air by vaporizing liquid water injected into the stream of warm dry air. 

As a result of this process, exiting the evaporative cooler is cool air that has been 

saturated to its wet bulb temperature. The process of evaporative cooling is assumed to 

take place at constant enthalpy. 

ℎ!! = ℎ!! 

 

Heat Exchanger (sensible) 

Cool moist air exiting the evaporative cooler is passed through a sensible heat exchanger 

where the air – vapor mixture absorbs heat from fluid B, which could be either air or 

water. This heat gain, which represents the cycle’s cooling capacity, is assumed to take 

place in the sensible region, meaning that heat gained during this process does not alter 

the phase of either of the mixture components but only increases the temperature of the 

air-vapor mixture. The vapor content of moist air is assumed to stay constant, which 

corresponds to a constant humidity ratio process. The heat gained by the vapor-air 

mixture is determined as: 

𝑄!" = 𝑚!𝐶!(𝑇!"# − 𝑇!") 
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Compressor 

The water vapor extracted from the moist air by the membrane in the membrane 

dehumidifier is sent to a compressor where it is pressurized. Pressurizing the vapor plays 

a key role in determining the COP of the CCP cycle as the work done in running the 

compressor dominates the energy input into the cycle and the COP is assumed as 

follows. 

𝐶𝑂𝑃 =   
𝑄!""#
𝑚!𝑊!

 

where compressor work (WC) is determined either for an isothermal or for single and 

double-stage adiabatic cases. 

 

Condenser 

The high-pressure water vapor exiting the compressor is condensed in a heat exchanger 

condenser, which is at a saturation temperature corresponding to the compressor exit 

pressure. The heat removed is transferred to either water or air at a lower temperature 

that is approximately the wet bulb temperature of the outdoor. In the case of cooling fluid 

being water, it comes from a cooling tower and in case of air it comes from evaporative 

cooler. 

 

Pump 

Condensed water leaving the low-pressure condenser is pumped back to atmospheric 

pressure to the evaporative cooler.  The work supplied to the pump is negligible when 
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compared to work supplied to run the compressor and is neither a part of COP nor the 

theoretical system model. 

Fan 

A fan in the closed air loop circulates the moist and dry air through the three major 

components, namely membrane dehumidifier, evaporative cooler and sensible heat 

exchanger. In that order, the work supplied to the fan has thus been neglected, assuming 

to be small compared to work supplied to run the compressor. The work input to fan us 

not included in the theoretical CCP model herein. 

Special Considerations for the CCP Cycle 

Similar to a vapor compression cycle, the COP of the membrane dehumidification cycle 

is the ratio of the useful cooling effect produced to the total work input to produce this 

cooling effect. 

COP = !"#$%&  !""#$%&  !""#$%
!"#$%  !"#$  !"#$%  

 

However, determining the COP of the Claridge-Culp-Pate cycle is not as straight forward 

as in the case of conventional vapor compression cycle (VCR) because of the following 

reasons: 

1) Work input in case of vapor compression cycle (VCR) is the work done in

compressing the refrigerant. However, in case of the Claridge-Culp–Pate cycle, the total 
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work input into the system is the sum of work done in running the membrane 

compressor, the fan used to circulate air in the closed loop and the pump that is used to 

circulate the condensed water. However, with that said, just as the theoretical VCR 

model neglected air fan work or water pump work in the case of chilled water, so does 

the theoretical CCP model that is the focus of this chapter. 

 

2) The water vapor extracted from the dehumidification membrane is compressed, 

condensed and then re-circulated to the evaporative cooler in order to reduce the 

temperature of the working fluid (i.e. dry air) increasing its humidity ratio. It is essential 

to consider the effect of re-circulation of condensed water on the COP of the system. 

Similarly, the different processes taking place in the three major components of the 

airside also affect the COP. The bottom line is that the CCP model is more complicated 

than the VCR model and requires more assumptions. 

 

3) In case of a vapor compression system, the refrigerant is treated as a pure 

substance whereas in CCP cycle, the working fluids are a mixture of air and water vapor, 

pure water and dry air or at least close to it at the dehumidifier exit.  This necessitates the 

study of operations at different humidity ratios and its effect on the performance of the 

cycle. Simply out, the VCR cycle has multiple working fluids. 
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Representation of CCP Cycle on a Psychrometric Chart 

The CCP cycle is a closed loop system that that was shown on Figure 29 schematic and 

can also be shown on a psychrometric chart as in Figure 30. The representation of the 

airside loop of the CCP cycle can be plotted on a psychrometric chart; however, this 

chart is not applicable to the waterside loop. The working of a CCP cycle in terms of air-

loop processes and state points on a psychrometric chart are described below: 

Figure 31: Representation of Claridge-Culp-Pate cycle on a psychrometric chart 

Warm humid air at a high humidity ratio, starts off the cycle at point 1, when the air 

enters the dehumidifier. The outdoor air temperature limits the temperature at point 1; 

meaning that the outdoor air is a maximum temperature point. However the actual 

temperature at point 1 is dependent on the entering temperature of the fluid being cooled 

in the heat exchanger. 
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Air exits the membrane dehumidifier at point 2, which a preset vapor pressure or 

assumed depending on the waterside compressor inlet pressure. Specifically, the vapor 

pressure at point 2 must be higher than the compressor inlet so that the water vapor can 

be transferred through the membrane driven by a pressure difference. For the theoretical 

model, the assumptions are, a minimum partial pressure and zero pressure difference. 

 

This dry air at point 2 is then cooled to its wet bulb temperature using an evaporative 

cooler. This is represented by point 3 in the above psychrometric chart. 

 

Saturated cool air from point 3 is then sent to a sensible heat exchanger where it gains 

heat to reach it’s original temperature, reducing the relative humidity in the process. 

 

Of special importance, as can be seen on the psychrometric chart, the partial pressure and 

hence humidity ratio is determined by the wet bulb temperature at point 3. The process 

from point 3 to 1 on the chart is a horizontal line because the moist air increases its 

temperature along a constant humidity ratio process through the sensible heat exchanger. 

The change in moist air enthalpy from point 3 to 1 represents the CCP cooling capacity 

of the CCP cycle. The major work input into the cycle is the compressor work, which is 

used to operate the compressor that functions to dehumidify the air from point 1 to point 

2. This compressor work is dependent on the inlet partial pressure, which is dependent on 

point 1and on the water vapor mass passing through the membrane, which is dependent 
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on the humidity ratio difference between points 1 and 2 shown on the psychrometric 

chart. 

 

As one can see from the above discussions, it is essential to determine all the state points 

of this cycle based on assumed properties and conditions along with an air-side 

component process and behaviors before proceeding with the developing the model to 

determine the COP of the cycle.  

 

Procedure for Determining State and Process Variables 

The theoretical CCP cycle model is based on using the component model to solve for 

state and process variables depending on inputs and available assumptions. The 

equations used to determine the actual state points and process variables are derived and 

presented below. The theoretical CCP model is based on point 2 being known after 

values for temperature and pressure are assumed. Once state 2 is defined, then states 1 

and 3 are on the airside as can be seen on the psychometric chart. Specifically state 2 air 

passes through the evaporative cooler then it exits at T3 or the wet bulb temperature. 

Next, the intersection of horizontal line and T2 defines state 1. 

 

 The steps below describe the procedure to be followed by the CCP cycle model in 

determining the numerical values of state points. 

Input:  PV2 and T2 

State 2:  𝜔2   = 
!.!""  !  !!!
!"!.!"#!!!!
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                     𝜙2  = 
!"!.!"#  !  !!  

!!"#!  (!.!""!  !!)
 

ℎ! = 1.007𝑇! − 0.026 + 𝜔!(2501+ 1.84𝑇!) 

 

State 3:   h3 = h2 

  𝜙3 = 1 

  PV3 = Psat3 

  Model finds T3 from tables using the relation h3=h2 and PV3 = Psat3 

  ℎ! = 1.007𝑇! − 0.026 + 𝜔!(2501+ 1.84𝑇!) 

  𝜔3   =   
!.!""  !  !!!
!"!.!"#!!!!

 

State 1: 𝜔1 = 𝜔3 

T1=T2 

                  𝜙1  = 
!"!.!"#  !  !!

!"#$!  !  (!.!""!  !!)
 

ℎ! = 1.007𝑇! − 0.026 + 𝜔!(2501+ 1.84𝑇!) 

 

Process Variables 

In addition to the above state points, the process variables can also be found. 

Specifically, the energy transfer (Qin) and mass transfer (ma,mv) for the major 

components can be calculated based on energy and mass balance, as was shown in earlier 

chapters. The results were 

𝑚! = 𝑚!∆𝜔 
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𝑄!" = 𝑚!𝐶!(𝑇!"# − 𝑇!") 

𝑄!" = 𝑚!𝐶!(𝑇!"# − 𝑇!"!!"#$!!%) 

It is essential to determine other process variables of the cycle such as a compressor 

work by using equations presented in the earlier chapter.  

 

COP of CCP cycle 

Work input for compressors and the assumed cooling capacity is used to calculate COPs 

for CCP cycle. A total of three COPs can be calculated for any assumed state 2 and 

outdoor air condition; one COP for each compressor type. The COP is determined by 

using the following relation: 

COP = 
!

!!    !  !!
 

The procedure described above was used to develop a benchmark model, which is used 

in calculating the CCP cycle COP for all the cases of this work.  

 

A validation check was also done to determine the accuracy of the described model by 

comparing it with manual calculations. The outdoor condition for this verification was 

assumed to be 350C and 60% relative humidity. The state 2 inlet temperature is also 350C 

and the partial pressure for the membrane outlet is assumed to be 1.5 kPa. These values 

were chosen as they represent the mid-range of input conditions that were used in an 

extensive analysis of CCP cycle performance in the next chapter.  
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Figure 32: Representation of membrane enabled cooling cycle on a psychrometric chart 
 
 
 

Sample CCP Cycle Performance Calculation 

The CCP cycle model presented above was programmed and solved by matlab. Once it 

was programmed, the only input required to solve for all state points and process 

variables was the numerical values for state 2 partial pressure and temperature, in other 

words, one must assume a value for the dehumidification exit water vapor partial 

pressure and the temperature of air entering and leaving the dehumidifier. 

 

As a check on computer model assumption, a hand calculation was performed as 

presented below, using all the equations presented earlier. 
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Calculations of State Variables 

As a first step on calculating the performance variables, the dehumidifier exit 

temperature and partial pressure conditions of 350C and 1.5 kPa are assumed. State 2 

with these assumed values can be seen in the psychrometric chart shown in Figure 32. 

Input: T2 = 350C  PV2= 1.5kPa 

 Psat2 = 5.629kPa 

 

State 2 

• Humidity Ratio 

𝜔! =   
0.622  𝑃!!

101.325− 𝑃!
=

0.622  𝑋  1.5
101.325− 1.5 = 0.009364

𝑘𝑔!
𝑘𝑔!

 

 

• Enthalpy 
ℎ! = 1.007𝑇! − 0.026 + 𝜔!(2501+ 1.84𝑇!) 

ℎ! = 1.007  ×  35− 0.026 + 9.34×10!!(2501+ 1.84×35) 

ℎ! = 59.2
𝑘𝐽
𝑘𝑔 

• Relative Humidity 

∅! =   
101.325𝜔!

𝑃!"#!(0.622+   𝜔!)
= 26.6% 

 

 

State 3 

The constant enthalpy process in the evaporative cooler along with the assumption that 

that the moisture exits at a saturated relative humidity (i.e.100%) fixes state 3 as follows: 
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ℎ! =   ℎ! = 59.2
𝑘𝐽
𝑘𝑔    ,∅! = 1 

• Temperature 
𝐹𝑟𝑜𝑚  𝑇𝑎𝑏𝑙𝑒𝑠  ;𝑇! = 21!𝐶 

 

• Humidity Ratio 

ℎ! = 59.2 = 1.007𝑇! − 0.026 + 𝜔!(2501+ 1.84𝑇!) 

𝜔! = 0.015  
𝑘𝑔𝑣
𝑘𝑔𝑎 

• Vapor Pressure 

𝑃!! =   
101.325𝜔!
𝜔! + 0.622

= 2.4  𝑘𝑃𝑎 

 

State 1 

The sensible heat is a constant humidity ratio process with flowing air absorbing heat 

until its temperature reaches T2 such that T1=T2 , with the result being 

𝑃!! = 𝑃!!2.4  𝑘𝑃𝑎  ;𝑇! = 35!𝐶  ;   𝜔! = 𝜔! = 0.015
𝑘𝑔𝑎
𝑘𝑔𝑎 

• Enthalpy 

ℎ! = 1.007𝑇! − 0.026 + 𝜔! 2501+ 1.84𝑇!  

ℎ! = 73.4
𝑘𝐽
𝑘𝑔 

• Relative Humidity 

∅! =   
101.325𝜔!

𝑃!"#!(0.622+   𝜔!)
= 42.3% 
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The above-calculated state variables are summarized in the table shown below and 

compared to computer program values. Also shown are the percentage differences 

between calculated and program values with differences being typically less than 1%. 

 

Table 8: Validation of state variables by manual comparison 
State	   T	  (	  C	  )	   h	  (kJ/kg)	   Phi	  (%)	   W	  (kgv/kga)	   Pv	  (kPa)	  
	  	   Calc	   Prog	   Calc	   Prog	   Calc	   Prog	   Calc	   Prog	   Calc	   Prog	  
1	   35	   35	   73.4	   74.2788	   42.3	   43.01	   0.015	   0.0152	   2.4	   2.421	  
2	   35	   35	   59.2	   59.1961	   26.6	   26.65	   0.0093	   0.0093	   1.5	   1.5	  
3	   21	   20.556	   59.2	   59.1961	   100	   100	   0.015	   0.0152	   2.4	   2.421	  

	   	  	   	  	   	  	   	  Percent	   	  Errors	   	  	   	  	   	  	   	  	   	  	  
Error%	   0.000	   1.183	   1.651	   1.316	   0.867	  

	  	   0.000	   0.007	   0.188	   0.688	   0.000	  
	  	   2.160	   0.007	   0.000	   1.316	   0.867	  

	   	   	   	   	   	   	   	   	   	   	   

Calculation of Mass Flow Variables 

Just as state 2 numerical values were assumed, a value for cooling capacity rate is also 

assumed. As a result, mass flow rate of both water and air can be calculated along with 

compressor power and their COPs. For this calculation, a cooling capacity of 1 ton is 

selected. 

𝑄!"# = 1  𝑇𝑜𝑛 = 3.516  𝑘𝑊;   ∆ℎ = ℎ! − ℎ! = 14.3  
𝑘𝐽
𝑘𝑔𝑎 

And knowing that 

𝑄!"# = 𝑚!ℎ∆𝜔 

And rearranging, the dry air mass flow rate is calculated as follows 
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𝑚! =   
𝑄!"#
∆𝜔 =

3.516  𝑘𝑊

5.65×10!! 𝑘𝑔𝑣𝑘𝑔𝑎×2564.5
𝑘𝐽
𝑘𝑔𝑣

 

𝑚! = 0.2458
𝑘𝑔𝑎
𝑠𝑒𝑐  

𝑚! = 𝑚!∆𝜔 = 0.2458
𝑘𝑔𝑎
𝑠𝑒𝑐 = 5.65×10!!

𝑘𝑔𝑣
𝑘𝑔𝑎 

𝑚! = 0.0014
𝑘𝑔𝑣
𝑠𝑒𝑐  

 

Calculation of Compressor Work and COP 

The previous state point calculations were for the closed cycle air-loop, represented by 

three state points 1-3, with additional assumptions about outdoor air required to solve for 

work and COP. The reason is because ultimately heat is rejected to the outdoor from the 

condenser located downstream of the compressor. An additional assumption is that the 

temperature of the condensing water vapor must be greater than the fluid removing 

condenser heat so a temperature difference ∆𝑇 is assumed, which ultimately determines 

the compressor outlet pressure and the pressure ratio. 

• Assumed Conditions for outdoor air 

T!"#$!!% = 35!C;   ∅!"# = 60%  ;T!" = 28!C 

∆T = 4!C  ;T!"#$%#&%' = T!" +   ∆T = 32!C 

 

• Compressor and Condenser Pressure Conditions 

P! = P!"# condenser =   P!"# 32 =   4.4  kPa 
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Compressor  Pressure  Ratio =   
P!"#
P!"

4.4
1.5 = 2.93 

Intermediare  pressure =   P! =    P!P!= 2.57 kPa 

Pressure  ratio  for  2  stages =   PR!" =   1.713 

 

Isothermal Compressor Work  

W∆! = RT  ln
P!
P!

 

W∆! =
308K×  8.314  ×10!

18  

W∆! = 153  
kJ
kg 

 

One-stage Adiabatic Compressor Work (n=k=1.34) 

• Outlet Temperature 

T! = T! PR
!!!
!  

T! = 308  (2.93)
!.!"
!.!" 

T! = 404.6  K 

 

• Work 

W∆! =   C!(∆T) 

W∆! = 2
kJ
kg 404.6− 308 K 
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W∆! = 193.2  
kJ
kg 

 

Two-stage Adiabatic Compressor Work 

• Intermediate and outlet temperatures 

T!"#$ = T! PR
!!!
!  

 

T!"#$ = 308 1.713
!.!"
!.!" = 353K 

 
T!!" = T!"# T! =   T!"# 35 =   26.3!C 
 

T! = 26.3+ 273 1.713
!.!"
!.!" 

 

• Work 

W∆! = C! ∆T  

W! = 2 !"
!"

353− 308 k = 90!"
!"

 

W! = 2 !"
!"

353− 299.3 k = 87.4!"
!"

 

W∆!! = W! +W! = 177.4 

 

Calculation of COP (Cycle Performance) 

COP =   
Q!"#

m!W!"#$%&''"%
=
3.516  𝑘𝑊
0.0014  𝑊!

 

Substituting for compressor works each of the 3 cases 

Isothermal  COP =   COP∆!!! =   16.41 

Isentropic  COP   1  stage = COP∆!!!! = 13 
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Isentropic  COP   2  stage =   COP∆!!!! =   14.18 

 
 

The above calculated process and performance variables are summarized in table 10 and 

also compared with program values. 

 

Table 9: Validation of Process variables of Claridge-Culp-Pate process 
	  	   Calc	   Prog	   %Error	  

ma(kg/sec)	   0.24	   0.235	   1.911	  
mv(kg/sec)	   0.0014	   0.0013	   1.156	  

W_dt	   153	   152.59	   0.269	  
Wds1	   193.2	   192.67	   0.275	  
Wds2	   177.4	   177.05	   0.198	  
COP_dt	   16.41	   16.46	   0.296	  
COP_ds1	   13	   13.03	   0.268	  
COP_ds2	   14.18	   14.18	   0.034	  
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CHAPTER XI 

CASE 2 – PERFORMANCE COMPARISON OF CCP AND VCR CYCLES 

Background 

The CCP cycle model developed in the previous chapter and used to calculate the state 

variables, compressor work and the coefficient of performance (COP) for one set of 

conditions is now used for studying the performance of CCP cycles for a wide range of 

conditions. Specifically, the output of the CCP cycle model for a range of input 

variables, form the basis for an analysis of how the cycle performance varies with 

outdoor and state 2 conditions. These results will be useful for developing the operating 

conditions of the CCP cycle, for setting the state 2 conditions, and for identifying 

locations and outdoor weather conditions conducive to use of the CCP cycle technology.  

 

The modeling and analysis in this chapter assumes that the outdoor temperature and the 

state 1 and 2 temperatures are equal, hence coupled. This assumption is referred to as 

Case 1 in contrast to the Case 2 modeling and analysis presented in the next chapter 

where the outdoor temperature is decoupled from the state 1 and 2 temperatures. Coupled 

temperatures in Case 1 and as presented in this chapter are where outdoor conditions and 

state 1 and state 2 temperatures are all equal, which can occur if the sensible heat 

exchanger cooling the outdoor air is 100% effective so that the airside outlet of the heat 

exchanger equals, but can not exceed, the inlet temperature of the fluid being cooled. 

 



 

 100 

As mentioned in the earlier section, vapor compression is the most widely used 

refrigeration technology that is presently in use. Hence a detailed comparative study of 

the CCP cycle and VCR cycle is made and presented for a range of outdoor conditions 

and, in case of the CCP cycle, for a range of state 2 conditions.  

 

The COP of two different cycles is compared for two different working conditions. With 

the first called Case 1A assuming an ideal CCP and VCR cycle, meaning a zero 

temperature difference exists between two fluids in the heat exchangers. The second 

working condition, called, case – 1B assuming the heat exchangers operate in real-world 

conditions of non-zero heat exchanger temperature differences between two fluids.  

 

Assumed Case-1 Model Conditions 

As was discussed in the first section, case 1 is when the outdoor temperature along with 

the state 1 and 2 temperatures are coupled, meaning equal to each other. As noted, the 

CCP cycle model is solved for a range of variables with the outdoor temperature varying 

between 200C and 400C in steps of 50C and the humidity ratio of the outdoor air varying 

between 40 and 80% in steps of 20% for each of these outdoor temperatures. Based on 

coupling, T1=T2 follows the above outdoor temperature values and increments. The 

vapor pressure at the exit of the membrane dehumidifier varies between 0.5kPa and 

1.5kPa in steps of 0.5kPa for the outdoor temperature of 200C with this range being 

gradually increased for other temperatures until reaching 0.5kPa  - 3kPa for an outdoor 

temperature of 400C. 
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Case -1: Airside State Points for the Ideal CCP Cycle ( TOUTDOOR = T1 = T2) 

As a first step in comparing the theoretical Claridge-Culp-Pate cycle with a typical 

theoretical vapor compression cycle, psychrometric plots for the airside of the CCP cycle 

operating at the aforementioned assumed conditions were developed. Specifically each 

chart represents a CCP cycle working at a different membrane dehumidifier exit, water-

vapor partial pressure and specific outdoor temperature, which is also equal to the inlet 

and exit temperatures of the membrane dehumidifier.  

 

Each point on the psychrometric chart also represents an airside state point, either 1,2 or 

3 as was discussed in the previous chapter. These state points correspond to inlets and 

exits of the three major airside components making up the CCP cycle, namely the 

dehumidification unit, the evaporative cooler and the heat exchanger as was shown in the 

Chapter 10 cycle schematic. 
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Figure 33: CCP cycle for different dehumidifier exit conditions at 200C 
 

 

 

Figure 34: CCP cycle for different dehumidifier exit conditions at 300C 
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Figure 35: CCP cycle for different dehumidifier exit conditions at 250C 
 

 

Figure 36: CCP cycle for different dehumidifier exit conditions at 350C 
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Figure 37: CCP for different dehumidifier exit conditions at 400C 
 
 

A common theme that can be observed in all of the above psychrometric charts is that as 

the water vapor partial pressure is decreased from 3.5 kPa to 0.5 kPa, then the CCP 

airside temperature of the air entering the heat exchanger decreases. For example, the 

chart shown in Figure 36, namely, a 400C outdoor temperature,  this temperature 

decreases from 300C at the highest pressure to 170C at the lowest pressure. Another 

example is the lowest outdoor temperature of 200C where the temperature range varies 

from 200C to 100C .  

 

The above psychrometric charts, based on the CCP model, were used to find the 

humidity range change (∆𝜔), through the dehumidifier and enthalpy change for the 
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sensible heat exchanger as described in detail in the previous chapter, These two 

parameters are in turn used in sections that follow to find the airside flow and then the 

water vapor flow rate through the membrane. All of the state point variables shown in the 

above psychrometric chart are tabulated in Table 10, based on psychrometric chart 

values. 

 

 
Table 10: Results of Claride-Culp-Pate cycle for different membrane operating 

temperatures and membrane exit conditions 

T1	  =	  T2	   PV2	   𝝎1	  =	  𝝎3	   𝝎2	   𝚫𝝎	   T3	   h1	   h2	   𝚫h	   𝚫h/𝚫𝝎	  

(	  0C	  )	   (kPa)	  
(
𝒌𝒈𝒗
𝒌𝒈𝒂

)	   (
𝒌𝒈𝒗
𝒌𝒈𝒂

)	   (
𝒌𝒈𝒗
𝒌𝒈𝒂

)	   (	  0C	  )	   (
𝒌𝑱
𝒌𝒈𝒂

)	   (
𝒌𝑱
𝒌𝒈𝒂

)	   (
𝒌𝑱
𝒌𝒈𝒂

)	   (
𝒌𝑱
𝒌𝒈𝒂

)	  

20	   0.5	   0.00735	   0.00308	   0.00426	   9.4	   38.77	   27.99	   10.77	   2525.97	  
20	   1	   0.00920	   0.00620	   0.00300	   12.8	   43.46	   36.06	   7.40	   2467.06	  
20	   1.5	   0.01105	   0.00935	   0.00170	   15.6	   48.14	   43.58	   4.57	   2688.04	  
25	   0.5	   0.00854	   0.00308	   0.00546	   11.7	   46.90	   33.26	   13.64	   2499.59	  
25	   1	   0.01027	   0.00620	   0.00407	   14.4	   51.31	   40.48	   10.83	   2661.28	  
25	   1.5	   0.01231	   0.00935	   0.00296	   17.2	   56.49	   48.49	   8.01	   2705.87	  
30	   0.5	   0.00954	   0.00308	   0.00646	   13.3	   54.58	   37.50	   17.08	   2643.92	  
30	   1	   0.01187	   0.00620	   0.00567	   16.7	   60.53	   46.81	   13.72	   2418.50	  
30	   1.5	   0.01370	   0.00935	   0.00435	   18.9	   65.19	   53.73	   11.47	   2636.79	  
30	   2	   0.01577	   0.01253	   0.00324	   21.1	   70.49	   61.28	   9.21	   2838.78	  
35	   0.5	   0.01105	   0.00308	   0.00796	   15.6	   63.55	   43.58	   19.98	   2509.42	  
35	   1	   0.01322	   0.00620	   0.00702	   18.3	   69.13	   51.94	   17.19	   2449.24	  
35	   1.5	   0.01523	   0.00935	   0.00588	   20.6	   74.28	   59.33	   14.95	   2542.69	  
35	   2	   0.01751	   0.01253	   0.00498	   22.8	   80.13	   67.42	   12.70	   2550.40	  
35	   2.5	   0.02009	   0.01574	   0.00435	   25.0	   86.75	   76.31	   10.44	   2398.35	  
40	   0.5	   0.01231	   0.00308	   0.00922	   17.2	   71.94	   48.49	   23.45	   2543.32	  
40	   1	   0.01419	   0.00620	   0.00799	   19.4	   76.79	   55.55	   21.24	   2657.79	  
40	   1.5	   0.01633	   0.00935	   0.00698	   21.7	   82.30	   63.28	   19.01	   2722.91	  
40	   2	   0.01876	   0.01253	   0.00623	   23.9	   88.54	   71.76	   16.78	   2692.99	  
40	   2.5	   0.02151	   0.01574	   0.00577	   26.1	   95.62	   81.08	   14.54	   2519.24	  
40	   3	   0.02380	   0.01898	   0.00482	   27.8	   101.53	   88.69	   12.84	   2662.87	  
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Case-1: CCP Cycle Process Variables  

The CCP cycle model used to find the airside state points (1-3), as displayed on the 

above psychrometric charts and Table 11, is now used to compute process variables such 

as mass flow rates, energy transfers, and COPs. The process variables including the COP 

performance variable is determined for both the CCP cycle and a conventional VCR 

cycle operating with R-410a and water. Furthermore, the COP of the CCP cycle and 

VCR cycle is determined for two separate situations. The first situation (case - 1A) 

represents an ideal heat exchanger condition (∆𝑇 = 0) for the VCR and the CCP cycles 

and the second situation (case – 1B) represents the real-world working condition of heat 

exchangers in both the cycles (VCR and CCP) operating with temperature differences 

between the two fluids. 

 

Case -1A: Description 

This situation assumes ideal heat transfer for the evaporator and condenser, meaning 

∆𝑇 = 0, and compressor efficiencies of 100% for both cycles.  

In this regard, these assumptions are mathematically described for the VCR cycle as 

follows: 

 

1. The difference between the airside temperature and the refrigerant temperature of  

the VCR condenser is zero. [∆TCondenser = 0] 

2. The difference between airside temperature and the refrigerant temperature of 

VCR evaporator is zero. [∆TEvaporator = 0] 
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3. The compressor functions ideally, meaning that the pressure on the high side of 

the compressor (P2)is the saturation pressure (PSAT) of the outdoor dry bulb temperature.   

Similar to item 3, above for the VCR compressor, the CCP cycle compressor outlet is at 

the saturation pressure of the outdoor wet bulb temperature. 

 

Case -1B: Description 

The second situation, designated as B, assumes more realistic conditions that represent 

the real-world situation with non-zero fluid temperature differences.  

As before, only the VCR model assumptions are presented because the CCP cycle 

conditions were presented in a previous chapter. These VCR assumptions maybe 

mathematically described as follows: 

1. The difference between airside temperature and the refrigerant temperature of the 

VCR condenser is 50C. [∆TCondenser = 50C] 

2. The difference between airside temperature and the temperature of VCR 

evaporator is 80C. [∆TEvaporator = 80C] 

3. The pressure on the high side of the VCR compressor ( P2) is the saturation 

pressure (PSAT) of the refrigerant temperature that is slightly above (30C) outdoor dry 

bulb temperature.  

For situation B, an important assumption is that the CCP cycle compressor outlet is the 

water-vapor saturation pressure for a temperature that is 30C higher than the outdoor wet 

bulb temperature. 
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Determining COP 

Each outdoor temperature condition, which is also equal to the airside state 1 and 2 

temperature (T1	  =	  T2)	  shown previously in Table 10 was used to determine the 

compressor work for the CCP cycle for three assumptions namely, isothermal, two-stage 

isentropic and single-stage isentropic (𝑊ΔT=0, WΔS2=0 and WΔS1 = 0). These three 

compressor works for the CCP cycle were in turn used to determine COPs for each of 

three compressors, for each outdoor temperature with four preset relative humidity 

values of 40%, 60%, 80% and 100%. 

 

The VCR cycle model was also simulated for each temperature condition shown in Table 

10, with the high side temperature being the outdoor temperature These simulations were 

repeated for two different working fluids, namely water and R-410A, so that the COPs 

for both water and R-410A can be compared to the CCP cycle COP values.  

 

A table containing all the results pertaining to this case (case 1) is presented in the 

appendix. 

 

Determining COP Ratios 

The performance of the CCP cycle was compared to that of the conventional VCR cycle 

by forming COP ratios of the CCP to VCR cycles at the same condition. At each outdoor 

condition, a total of 5 COPs were determined, with 3 representing the COPs of the 

membrane dehumidification cycle for each of the 3 compressor assumptions and the 
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remaining 2 representing the VCR system COPs operating with water and R-410 as the 

refrigerants. 

 

A ratio value greater than unity signifies a better performance for the CCP cycle 

compared to the VCR cycle. 

 

The 6 COP ratios based on COPs for the CCP cycle (3 COPs) and the COP of VCR 

cycle (2 COPs) were determined for each outdoor temperature and relative humidity. 

These ratios can be classified in two groups, one for water as the working fluid and the 

second for R-410A as the working fluid. 

 

Case -1: Results and Analysis 

Plots of COP ratios against the outdoor temperature were made for each CCP compressor 

assumption and the plots were sorted based on the relative humidity values. On each plot, 

lines of constant water-vapor partial pressure at the dehumidifier exit (Point 2), which is 

the same as the CCP compressor inlet, are created. The plots obtained are shown below 

with the CCP cycle performance referenced to R-410A presented first and then water as 

the VCR refrigerant presented second. 
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Case -1A: Plots for R-410A as VCR Working Fluid 

 
 

 
Figure 38: Single-stage adiabatic COP ratio for R410A with ideal condenser assumption 
 

 



 

 111 

 

 
 
 

Figure 39:  Double-stage adiabatic COP ratio for R410A with ideal condenser assumption 
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Figure 40:  Isothermal COP ratio for R410A with ideal condenser assumption 
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Case 1A - Plots from Water as VCR Working Fluid 

 
 

 
 

Figure 41: Single-stage adiabatic COP ratio for water with ideal condenser assumption 
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Figure 42: Double-stage adiabatic COP ratio for water with ideal condenser assumption 
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Figure 43: Isothermal COP ratio for R410A with ideal condenser assumption 
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Case-1A: Discussion 

A number of important observations regarding the CCP cycle performance, relative to 

the conventional VCR cycle performance, can be made by analyzing the results in the 

ratio plots. These observations pertain to R-410A refrigerant only, which is presently 

used in actual systems. These important observations are: 

 

1. The single-stage isentropic compressor requires the largest specific work and 

produces the lowest COP among the 3 COPs calculated for the CCP system, and as 

evidenced by the plots, the lowest ratio values. In contrast the isothermal water-vapor 

compressor for the CCP cycle has the highest ratios, with ratio values usually being 

greater than unity and sometimes much greater than unity. As discussed in the earlier 

chapter, it is possible for a water vapor compressor to operate isothermally but 

impossible for R410-A compressor, because the saturation condition is close to the 

isentropic process line.  

2. It can be seen that the performance of the CCP cycle decreases or stays constant 

with outdoor temperature, and in most cases it outperforms the VCR system, meaning 

ratios are greater than unity even at higher temperatures.  

3. It can be seen from the ratio plots that the CCP cycle performs best, based on 

high ratio values at lower outdoor relative humidities, similar to real-world conditions. 

At the lowest value of 40%, the COP ratio is 2 or greater even at the  highest outdoor 

temperature of 400C for certain specified partial pressures. Only at the highest relative 

humidities of 80% and 100% does the CCP cycle have a reduced performance. 
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4. As shown in the plots, it is desirable to operate the CCP cycle at higher water 

vapor partial pressures. It may reduce the ability of the cycle to achieve lower 

temperatures, as was seen on the airside state points shown on the psychrometric charts 

presented in the previous section, but it still results in COP ratios greater than unity.  

 

Case -1B: Results and Analysis 

All the COP ratios and plots presented in the previous section were repeated for the non-

ideal, real-world situation (Case 1-B) of the heat exchangers operating with temperature 

differences between the two fluids, discussed at the beginning of this section. All of the 

results pertaining to this subsection are provided in the Appendix, similar to case 1A.  

 

Plots of COP ratios versus the outdoor temperatures for various partial pressures, relative 

humidities, compressor assumptions and VCR refrigerants are presented below for the 

case 1B situation. 
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Case-1B: Plots for 410A 

Figure 44: Isothermal COP ratios for R-410A 
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Figure 45: Single-stage adiabatic COP ratio for R410A 
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Figure 46: Double-stage adiabatic COP ratio for R410A 
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Case 1B -Plots for Water 

Figure 47: Single-stage adiabatic COP ratio for water 
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Figure 48: Double-stage adiabatic COP ratio for water 
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Figure 49: Isothermal COP ratio for water 
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Case -1B: Discussion 

A comparison of ratio plots for the ideal (A) and real-world (B) temperature differences 

presented have shown that the performance of the CCP cycle is significantly increased 

for the situation of real-world heat exchanger conditions. Some of the observations 

presented below are similar to the previous case of the ideal heat exchanger (A) but 

many are significantly different. 

 

1. The COP of the CCP cycle is found to be the highest when operating with an 

isothermal compressor and the lowest when operating with a single-stage adiabatic 

compressor. 

 

2. Across the spectrum of conditions, the COP ratio for the real world condition (B) 

is significantly larger than in the ideal heat exchanger situation (A), with the ratios here  

being mostly above unity for all except the lowest water-vapor partial pressure of 0.5 

kPa. 

 

3. The COP significantly increases with the decrease in outdoor temperature, yet the 

performance of the CCP cycle is still better than the VCR cycle at the higher outdoor 

temperature conditions. 
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4. Unlike the ideal heat exchanger case, the CCP cycle for the non-ideal heat 

exchanger outperforms the VCR cycle for all humidities; even larger relative humidities 

of 80% and 100%. 
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CHAPTER XII 

CASE 2- CYCLE COMPARISON WITH DECOUPLED AIRSIDE AND OUTDOOR 

TEMPERATURE 

Background  

The previous chapter dealt with the comparisons of the two cycles namely, CCP cycle 

and VCR cycle, with the membrane operational temperature assumed to be equal to the 

outdoor temperature. However, in applications of cooling indoor air or in real-world 

situations where it is not possible to cool outdoor air with a heat exchanger effectiveness 

of 100%, which would result in T1=T2= Toutdoor, then, the airside temperature exiting the 

sensible heat exchanger is usually less than the outdoor air temperature. 

 

Therefore in this chapter, the membrane dehumidifier operational temperature (T1=T2) is 

decoupled from the outdoor temperature, meaning, the membrane operates at a 

temperature lower than the outdoor temperature, which is a scenario applicable to most 

real-world cooling situations.  

 

Assumed Model Conditions 

The membrane operational temperature and the outdoor conditions were set to represent 

real-world working situations for a hot day. The outdoor temperature conditions being 

varied between 300C and 400C in steps of 50C while the membrane operational 

temperature of T1=T2 was varied between 200C and 300C in steps of 50C.  As one can see 

the airside operational temperature of the CCP cycle is up to 200C less than the outdoor 
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temperature. The relative humidity of outdoor air was varied between 40% and 100% in 

steps of 20% for all these cases, similar to chapter 11. 

 

Case-2: Airside State Points for Decoupled CCP Cycle Temperature 

The airside conditions of CCP cycles working with decoupled temperature differences 

for specified cases are shown on the psychrometric charts below. 

 

 

Figure 50: Claridge-Culp-Pate cycle for decouple outdoor conditions of 300C and 
membrane temperature of 200C 
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Figure 51: Claridge-Culp-Pate cycle for decouple outdoor conditions of 350C and 
membrane temperature of 200C 

 

 

 

Figure 52: Claridge-Culp-Pate cycle for decouple outdoor conditions of 400C and 
membrane temperature of 200C 
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Figure 53: Claridge-Culp-Pate cycle for decouple outdoor conditions of 300C and 
membrane temperature of 250C 

 

 

 

Figure 54: Claridge-Culp-Pate cycle for decouple outdoor conditions of 350C and 
membrane temperature of 250C 
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Figure 55: Claridge-Culp-Pate cycle for decouple outdoor conditions of 400C and 
membrane temperature of 250C 

 
 

 
Figure 56: Claridge-Culp-Pate cycle for decouple outdoor conditions of 300C and 

membrane temperature of 300C 
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Figure 57: Claridge-Culp-Pate cycle for decouple outdoor conditions of 350C and 
membrane temperature of 300C 

 

 
 

 

Figure 58: Claridge-Culp-Pate cycle for decouple outdoor conditions of 400C and 
membrane temperature of 300C 
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The obvious difference between the above case 2 psychrometric plots and the coupled 

plots of case 1 in the previous chapter is that here a much lower temperature can be 

achieved at state 3, witch is the inlet to the sensible heat exchanger. In many cases, these 

low temperatures of the CCP cycle approach 100C, which again is lower than case 1 

temperatures. 

 

Table 11 shows the important state variables obtained from simulating the CCP cycles as 

per the stated conditions. 
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Table 11: Claridge-Culp-Pate cycle results for decouple outdoor conditions 

T1	  =	  T2	   PV2	   TC	   𝝎1	  =	  𝝎3	   𝝎2	   𝚫𝝎	   hA	   hB	   𝚫h	   𝚫h/𝚫𝝎	  

(	  C	  )	   (kPa)	   (	  C	  )	   (𝒌𝒈𝒗
𝒌𝒈𝒂

)	   (𝒌𝒈𝒗
𝒌𝒈𝒂

)	   (𝒌𝒈𝒗
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒂

)	   ( 𝒌𝑱
𝒌𝒈𝒗

)	  

20	   0.5	   9.4	   0.00735	   0.00308	   0.00426	   38.77	   27.99	   10.77	   2525.97	  
20	   1	   12.8	   0.00920	   0.00620	   0.00300	   43.46	   36.06	   7.40	   2467.06	  
20	   1.5	   15.6	   0.01105	   0.00935	   0.00170	   48.14	   43.58	   4.57	   2688.04	  
20	   2	   18.3	   0.01322	   0.01253	   0.00069	   53.66	   51.94	   1.72	   2480.38	  
25	   0.5	   11.7	   0.00854	   0.00308	   0.00546	   46.90	   33.26	   13.64	   2499.59	  
25	   1	   14.4	   0.01027	   0.00620	   0.00407	   51.31	   40.48	   10.83	   2661.28	  
25	   1.5	   17.2	   0.01231	   0.00935	   0.00296	   56.49	   48.49	   8.01	   2705.87	  
25	   2	   20.0	   0.01470	   0.01253	   0.00218	   62.59	   57.42	   5.17	   2377.10	  
25	   2.5	   22.2	   0.01691	   0.01574	   0.00117	   68.21	   65.33	   2.88	   2458.31	  
30	   0.5	   13.3	   0.00954	   0.00308	   0.00646	   54.58	   37.50	   17.08	   2643.92	  
30	   1	   16.7	   0.01187	   0.00620	   0.00567	   60.53	   46.81	   13.72	   2418.50	  
30	   1.5	   18.9	   0.01370	   0.00935	   0.00435	   65.19	   53.73	   11.47	   2636.79	  
30	   2	   21.1	   0.01577	   0.01253	   0.00324	   70.49	   61.28	   9.21	   2838.78	  
30	   2.5	   23.3	   0.01812	   0.01574	   0.00239	   76.50	   69.57	   6.94	   2908.01	  
30	   3	   25.6	   0.02079	   0.01898	   0.00181	   83.32	   78.67	   4.65	   2570.84	  
35	   0.5	   15.6	   0.01105	   0.00308	   0.00796	   63.55	   43.58	   19.98	   2509.42	  
35	   1	   18.3	   0.01322	   0.00620	   0.00702	   69.13	   51.94	   17.19	   2449.24	  
35	   1.5	   20.6	   0.01523	   0.00935	   0.00588	   74.28	   59.33	   14.95	   2542.69	  
35	   2	   22.8	   0.01751	   0.01253	   0.00498	   80.13	   67.42	   12.70	   2550.40	  
35	   2.5	   25.0	   0.02009	   0.01574	   0.00435	   86.75	   76.31	   10.44	   2398.35	  
40	   0.5	   17.2	   0.01231	   0.00308	   0.00922	   71.94	   48.49	   23.45	   2543.32	  
40	   1	   19.4	   0.01419	   0.00620	   0.00799	   76.79	   55.55	   21.24	   2657.79	  
40	   1.5	   21.7	   0.01633	   0.00935	   0.00698	   82.30	   63.28	   19.01	   2722.91	  
40	   2	   23.9	   0.01876	   0.01253	   0.00623	   88.54	   71.76	   16.78	   2692.99	  
40	   2.5	   26.1	   0.02151	   0.01574	   0.00577	   95.62	   81.08	   14.54	   2519.24	  
40	   3	   27.8	   0.02380	   0.01898	   0.00482	   101.53	   88.69	   12.84	   2662.87	  

 

 

 

 

 



 

 134 

Case - 2: CCP Cycle Process Variables for  

Similar to case 1 in the previous chapter, the simulated data for this case (case 2) is used 

to obtain the mass flow rates of water vapor for each condition, which is then used in 

determining the COP of the CCP cycle as presented in the earlier chapter. Also similar to 

before, COPs of the CCP cycle and the VCR cycle are determined for two separate 

situations. The first situation (case - 2A) represents an ideal heat exchanger condition 

while the second situation (case – 2B) represents the real-world heat exchangers with 

fluid temperature differences in both cycles (VCR and CCP). 

 

Case 2A Description 

This situation assumes an ideal working situation for the evaporator and condenser 

detailed in the previous chapter. All of the discussions and descriptions in the previous 

chapter apply here to the decoupled temperatures. 

 

Case 2B Description 

A second set of assumptions (case -2B) that represent more realistic heat exchanger 

conditions usually seen in the real-world are applied here. These conditions again are the 

same as for the previous chapter, Chapter 11, namely: (a) a temperature difference of 50C 

between the airside and the refrigerant side on the condenser of the VCR cycle, (b) a 

temperature difference of 80C between the airside and the refrigerant side on the 

evaporator of the VCR cycle and (c) a high side pressure of the VCR cycle compressor 

corresponding to the saturation pressure of the above condenser.  
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As before for case 1B in Chapter 11, the CCP cycle compression side is at a saturation 

pressure corresponding condenser temperature, which is to 30C above the outdoor wet 

bulb temperature. 

 

Determining COPs and COP Ratios 

The same procedures described previously in detail, in the corresponding sections of 

Chapter 11 are applied to the decoupled temperature analysis here in chapter 12. One 

exception is that rather than presenting results for all 3 compressor assumptions, only the 

case with highest work input, which is the one-stage isentropic compressor, is presented. 

 

Results and Analysis 

The COP ratio versus the membrane operational temperature of T1=T2 are plotted and 

presented in the ratio plots for a range of outdoor temperature and relative humidities, 

with varying water-vapor partial pressure also being shown. As noted, only the one-stage 

isentropic compressor results are presented. In addition to the ratio plots shown below, a 

table containing all of the results pertaining to this case is presented in the appendix. 

 

 

 

 

 

 



 

 136 

Case -2A: Results 

Case- 2A: Plots for R-410A as VCR Working Fluid 

Figure 59: Single-stage adiabatic COP ratio for R410A under ideal condenser condition 

for outdoor temperature of 350C 
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Figure 60: Single-stage adiabatic COP ratio for R410A under ideal condenser condition 
for outdoor temperature of 400C 
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Case -2A: Plots for water as VCR Working Fluid 

Figure 61: Single-stage adiabatic COP ratio for water under ideal condenser 

condition for outdoor temperature of 300C 
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Figure 62: Single-stage adiabatic COP ratio for water under ideal condenser condition for 
outdoor temperature of 350C 
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Figure 63: Single-stage adiabatic COP ratio for water under ideal condenser condition for 
outdoor temperature of 400C 
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Case-2B: Results 
Case--2B: Plots for R-410A as VCR Working Fluid 

 

Figure 64: Single-stage adiabatic COP ratio for R410A at outdoor temperature of 300C 
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Figure 65: Single-stage adiabatic COP ratio for R410A at outdoor temperature of 350C 
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Figure 66: Single-stage adiabatic COP ratio for R410A at outdoor temperature of 400C 
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Case - 2B: Plots for Water as VCR Working Fluid 

Figure 67: Single-stage adiabatic COP ratio for water at outdoor temperature of 300C 
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Figure 68: Single-stage adiabatic COP ratio for R410A at outdoor temperature of 350C 
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Figure 69: Single-stage adiabatic COP ratio for R410A at outdoor temperature of 400C 
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Case-2B: Discussion 

It should be noted that for a given outdoor temperature, the cycle operation temperatures 

(T1 and T2) do not vary with the relative humidity of the outdoor environment. 

 

Similar to the previous case in Chapter 11, the COP ratios are found to decrease with the 

increase of outdoor temperature. Also, similar to the previous case, the ratio increases 

with water-vapor partial pressure increases and outdoor relative humidity decreases.  

 

The plots show that the ratios are only weakly affected by the airside operational 

temperatures T1 and T2. 

Of special importance, there is always a partial pressure set point that results in the CCP 

cycle performing better than the VCR cycle, meaning the COP ratio is greater than unity, 

and oftentimes it is significantly greater, having a 2 or 3 times better performance.  
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CHAPTER XIII 

CONCLUSIONS 

 
A detailed study of the theoretical performance of a novel membrane-enabled 

dehumidification and cooling system, known as the Claridge-Culp-Pate refrigeration 

process/cycle has been performed for a range of outdoor temperatures and relative 

humidities that could be encountered in any climatic zone/region. This study investigated 

and compared the performances of several different arrangements of the two major 

components making up the novel system, namely a membrane dehumidification unit and 

an evaporative cooler. These components and processes were configured in an open 

system and as a cycle in a closed system A performance comparison was also made with 

a conventional vapor compression refrigeration system operating under similar 

conditions, with two different working fluids, namely water and R-410A.  

 

The main conclusions drawn from this study are presented below. 

 

1. A comparison of water vapor compression and compressing a typical refrigerant 

such as R-410A shows that an isothermal compression assumption can be approached for 

water vapor but not R-410A. This result means that water-vapor compression can be 

designed with lower energy consumptions, at least relative to using typical isentropic 

compressors. In contrast, it is impossible to operate a R-410A system isothermally 

because of the temperature going below the saturation temperature for any given 

pressure. 



 

 149 

2. For an open system configuration, the Claridge-Culp-Pate process consisting of an 

airside membrane dehumidification unit taking in air from either the outdoors or an 

indoor space and an evaporative cooler in series produces cooling with a higher COP 

than a conventional VCR system operating at similar conditions. This better performance 

of CCP cooling process over the conventional VCR cooling system applies to nearly all 

temperature and humidity conditions. 

 

3. Any number of dehumidification unit and evaporative cooler combinations and 

configurations are possible with each arrangement having its’ own performance. 

However, the advantage of having a second membrane dehumidification unit in line with 

a first one, to achieve better cooling of outdoor air, might have diminished returns, owing 

to the very low dehumidification and vapor removal rate associated with the second 

membrane dehumidification unit. Another demerit of adding a second downstream 

dehumidification unit is that a second compressor increases the work input to the system, 

at least relative to the increase in cooling capacity, so that there can be a reduction in the 

overall COP. 

 

4. The COP of the novel Claridge-Culp-Pate cycle was found to be higher than the 

COP of the conventional vapor compression refrigeration cycle, with both being closed 

systems, for all climatic zone conditions of outdoor temperatures and relative humidities. 

However, it is necessary to find the optimum membrane-side water-vapor partial 

pressure, which is the compressor inlet pressure, because below a threshold vapor 
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pressure value the COP of the novel system decreases below the conventional VCR 

system in some cases. This slipping in the relative performance of a CCP cycle can be 

accounted for by the fact that the work input to the compressor increases as the vapor 

pressure at the membrane exit or the compressor inlet pressure decreases. This threshold 

vapor pressure is a function of relative humidity and increases with increased relative 

humidities because of the wet bulb temperature that is associated with the CCP cycle 

condenser increases, which in turn increases the condenser saturation temperature and 

pressure. 
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