
DESIGN AND IMPLEMENTATION OF A METASTABILITY TOLERANT

LATCH

A Thesis

by

KINSHUK SHARMA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Sunil P. Khatri
Committee Members, Peng Li

Eun Jung Kim
Head of Department, Miroslav M. Begovic

August 2016

Major Subject: Computer Engineering

Copyright 2016 Kinshuk Sharma

ABSTRACT

Metastability causes unpredictable behavior in circuits, and can cause circuit

failure. Any binary valued circuit element that holds state is vulnerable to metasta-

bility. Although the possibility of metastability cannot be completely eliminated in

a circuit, the goal is to reduce it as much as possible. In this thesis, we discuss the

design of a latch that effectively reduces metastability in circuits.

In today’s SoC designs, different clock domains are often used for different func-

tional units. If the clock domains are not synchronous, synchronizers are required

for data crossing clock domains. A traditional synchronizer consists of 2 regular flip-

flops and is not suited for high frequency operation. In this thesis, we present a new

synchronizer design for high performance applications. The master as well as slave

latches in the first flip-flop of this synchronizer use the metastability reducing latch.

This latch has independent paths for the pull-up and pull-down transitions, thereby

minimizing the possibility of metastability. Experimental results demonstrate a sig-

nificant improvement in signal integrity compared to the traditional synchronizer.

Our synchronizer also achieves an improvement in the worst case clock-to-output

delay.

Metastability in asynchronous designs has not been given significant attention and

metastability resolution is assumed to be handled by the handshaking protocol. How-

ever, metastability might manifest (at the electrical level) in various asynchronous

circuit elements. One such asynchronous circuit element susceptible to metastabil-

ity is the C-element. The C-element is vulnerable to metastability conditions at its

output, for a short overlap in the input values. In this thesis, a robust design of

a C-element is proposed based on our metastability reducing latch. Three popular

ii

circuit topologies for a C-element have been studied and modified with the proposed

approach. Experimental results show significant improvements in signal integrity,

with up to 9× improvement in the metastability window.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Sunil Khatri for his support

and guidance throughout my masters program. He has been a sublime mentor in

the process and I feel lucky to have worked with him. My heartfelt thanks to him

for helping me grow as a better student as well as a better professional. I would

also take this opportunity to thank Dr. Li and Dr. Kim to have agreed to serve as

members in my committee and for their guidance during my discussions with them.

I was also blessed with a very friendly and co-operative research group and would

like to thank all the members of the group to have helped me during my research in

one way or the other. All those thought provoking discussions that we had and the

projects we did together helped me hone my technical skills. I would like to extend

a special thanks to Mr. Monther Abusultan who helped me learn about HSPICE

Simulations, Perl scripts and many other elementary things and was always ready to

help with all my queries.

The ECE Department staff, specially Ms Carda has been very co-operative through-

out my stay at Texas A&M University. I would like to thank them for all the help

with the logistical issues.

I would like to thank my friends who have always motivated me to work for my

research and have helped me get rid of my exasperation multiple times. Lastly, I

would like to thank my family for helping me grow as a better individual each day.

You guys have always made sure that I stay ambitious throughout my academic

career. Mom, Dad and Anuashka, whatever I achieve in life, I owe it to you guys!

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION . 1

2. DESIGN OF A ROBUST SYNCHRONIZER FORHIGH PERFORMANCE
APPLICATIONS . 3

2.1 Overview . 3
2.2 Introduction . 3
2.3 Previous Work . 10
2.4 Our Approach . 12

2.4.1 Figures of Merit . 12
2.4.2 Traditional Synchronizer . 13
2.4.3 Our Synchronizer . 15

2.5 Experiments . 19
2.6 Conclusion . 29
2.7 Summary . 30

3. A ROBUST C-ELEMENT DESIGN WITH ENHANCED METASTABIL-
ITY PERFORMANCE . 31

3.1 Overview . 31
3.2 Introduction . 31
3.3 Previous Work . 37
3.4 Our Approach . 38

3.4.1 Traditional C-element . 39
3.4.2 Modified C-element . 41
3.4.3 Figures of Merit . 44

3.5 Experiments . 45

v

3.5.1 Monte Carlo Simulations for Process Variation 58
3.6 Conclusion . 65
3.7 Summary . 66

4. CONCLUSIONS AND FUTURE WORK 67

4.1 Future Work on Synchronizer Design 67
4.2 Future Work on C-element Design . 67

REFERENCES . 69

vi

LIST OF FIGURES

FIGURE Page

2.1 Synchronizing Data Across Clock Domains 5

2.2 Traditional Synchronizer (Using Two Flip-flops) 6

2.3 A 4x4 Ring Based Network on Chip 7

2.4 Block Diagram of an Asynchronous FIFO 8

2.5 The Flip-flop Used in the Traditional Synchronizer (Referred as RegFF) 14

2.6 Traditional Synchronizer . 15

2.7 Our Synchronizer . 16

2.8 Our Modified Flip-flop Design (Referred as SyncFF) 17

2.9 Response of HSP and LSP Inverter for Switching N Input 18

2.10 Inverter Voltage Transfer Characteristics for Different Beta Ratios . . 19

2.11 Overlay of 15000 Waveforms for Our Synchronizer for Falling D . . . 21

2.12 Overlay of 15000 Waveforms for Traditional Synchronizer for Falling D 22

2.13 Overlay of 15000 Waveforms for Our Synchronizer for Rising D . . . 23

2.14 Overlay of 15000 Waveforms for Traditional Synchronizer for Rising D 23

2.15 Layout of Regular Flip-flop . 28

2.16 Layout of Our Synchronizer Flip-flop 29

3.1 Input Transitions and Metastability in a C-element 33

3.2 Traditional Static C-element . 34

3.3 Traditional Sutherland C-element . 34

vii

3.4 Traditional Van Berkel C-element . 35

3.5 Modified Static C-element . 41

3.6 Modified Sutherland C-element . 42

3.7 Modified Van Berkel C-element . 43

3.8 A Representation of Metastability Window 45

3.9 Overlay of c Waveform for Static C-element with c Initially Set to 0 . 47

3.10 Overlay of c Waveform for Static C-element with c Initially Set to 1 . 47

3.11 Overlay of c Waveform for Sutherland C-element with c Initially Set
to 0 . 48

3.12 Overlay of c Waveform for Sutherland C-element with c Initially Set
to 1 . 49

3.13 Overlay of c Waveform for Van Berkel C-element with c Initially Set
to 0 . 50

3.14 Overlay of c Waveform for Van Berkel C-element with c Initially Set
to 1 . 50

3.15 Description of the Delay of the C-element 53

3.16 Time Window for Computing Power 55

3.17 Overlay of Monte Carlo Waveforms for Static C-element with c Ini-
tially Set to 0 . 61

3.18 Overlay of Monte Carlo Waveforms for Static C-element with c Ini-
tially Set to 1 . 62

3.19 Overlay of Monte Carlo Waveforms for Sutherland C-element with c
Initially Set to 0 . 63

3.20 Overlay of Monte Carlo Waveforms for Sutherland C-element with c
Initially Set to 1 . 63

3.21 Overlay of Monte Carlo Waveforms for Van Berkel C-element with c
Initially Set to 0 . 64

viii

3.22 Overlay of Monte Carlo Waveforms for Van Berkel C-element with c
Initially Set to 0 . 64

ix

LIST OF TABLES

TABLE Page

2.1 Clock-to-Output Delay (Worst Case) Comparison 25

2.2 Setup Margin (for FF22) Comparison 25

2.3 Setup Margin (for FF22) Comparison for 1fs Sweeps 26

2.4 Average Power Consumption over One Cycle Averaged over all Sweeps 26

2.5 Average Power Consumption over One Cycle Maximum over all Sweeps 27

2.6 Peak Power Consumption over One Cycle Averaged over all Sweeps . 27

2.7 Peak Power Consumption over One Cycle Maximum over all Sweeps . 28

3.1 C-element Truth Table . 32

3.2 Metastability Window Comparison 52

3.3 Metastability Window Comparison for 5fs Sweeps 52

3.4 Worst Case Delay Comparison . 54

3.5 Comparison of Average Power Consumption Averaged over Sweeps . 55

3.6 Comparison of Average Power Consumption Maximum over Sweeps . 56

3.7 Comparison of Peak Power Consumption Averaged over Sweeps . . . 57

3.8 Comparison of Peak Power Consumption Maximum over Sweeps . . . 57

3.9 Comparison of
∑

WiLi for C-elements 58

x

1. INTRODUCTION

In digital circuits, metastability is defined as the condition in which a circuit node

holds an unstable state (between logic 0 and logic 1) for an unbounded duration.

A metastable state is considered as an erroneous state because digital circuits are

designed for binary valued logic and do not have a notion of mid-rail voltage value.

Thus, metastability should be avoided at all costs in any digital circuit design. The

reason why metastability is undesirable is because a) it causes an unpredictable

logical behavior in the circuit, and b) may result in large current surges which can

result in a system failure in certain cases.

Any binary valued circuit element that holds state (logic 0 or logic 1) is vulner-

able to metastability while transitioning from one state to the other. Synchronous

circuits use flip-flops or latches to hold state, and are clocked to implement control.

In synchronous designs, timing violations (primarily setup and hold time violations)

that can cause metastability can be avoided by design. However, at clock domain

boundaries, the threat of metastability exists. Synchronizers are used to synchronize

data that is transferred from one clock domain to the other, and minimize the likeli-

hood of metastability. A significant amount of research effort has gone into avoiding

metastability in synchronous circuits. Asynchronous circuits use state holding ele-

ments that operate on events and transitions (instead of clocks). For asynchronous

circuits it is assumed that metastability can be avoided at the protocol level, by

using handshake mechanism between different events. As a result metastability has

not been heavily addressed at the electrical level in asynchronous designs.

In this thesis, we address the metastability issues in clock domain boundaries of

synchronous designs as well in asynchronous circuits. We propose a novel circuit-level

1

design of a latch for avoiding metastability in digital circuits. We then demonstrate

the use of this latch in a synchronizer design, which caters to the need of synchroniza-

tion at high frequencies. In addition, we also use the proposed latch based approach

in designing a robust C-element with improved metastability performance, to be used

in asynchronous circuit design. The design of a synchronizer for high performance

applications is presented in Chapter 2 while a robust C-element design with enhanced

metastability performance is discussed in Chapter 3.

2

2. DESIGN OF A ROBUST SYNCHRONIZER FOR HIGH PERFORMANCE

APPLICATIONS

2.1 Overview

As discussed in Chapter 1, the threat of metastability exists in synchronous cir-

cuits at clock domain boundaries and synchronizers are used for any signal that

crosses clock domains. The conventional technique to synchronize data uses two

flip-flops in cascade, which provides enough time for a signal to settle to a non-

metastable state before it is passed to the receiving clock domain logic. In this

chapter, we discuss the design of a synchronizer circuit which is based on the use of

a specialized flip-flop. This specialized flip-flop uses the latch proposed in the thesis

to avoid metastability. We begin the discussion with an introduction about clock

domains and synchronizers, which is followed by a discussion on the previous work

done to address metastability in synchronizers. We then describe our proposed latch

based flip-flop design with a detailed description of experiments conducted to test

our synchronizer.

2.2 Introduction

As VLSI designs become more complex, with diverse functionality integrated on

the same System-on-Chip (SoC), the number of related (or unrelated) clock signals in

the system increases. As a result, several clock ”islands” (or clock domains) exist on

the SoC, and sometimes within a single functional unit in the SoC. The clocks of these

domains may be synchronous, mesochronous1, plesiochronous2 or asynchronous.

If the clocks are synchronous, synchronization of data requires a simple flip-flop,

1Mesochronous clocks have the same frequency, but constant unknown phase offset
2Plesiochronous clocks have ”similar” frequency and non-constant, slowly varying phase

3

and the need for a special synchronizer does not exist. The slightly harder case is

when the clocks are mesochronous, since it requires the use of a delay line to cor-

rect for the constant phase offset between the clock domains. The harder case is

plesiochronous timing, with its slowly drifting clocks. Existing solution techniques

are similar to those of mesochronous timing, but require periodic resynchronization.

Asynchronous timing is hardest, since nothing can be assumed about the phase rela-

tionship between the two clocks. If an efficient technique is found for asynchronous

timing, it can be used for mesochronous and plesiochronous timing as well. This

motivates us to study synchronizers for asynchronous systems in our work.

Assume we have data that is driven from a driver in clock domain CLK1 and

needs to be sampled by a receiver in clock domain CLK2 (without loss of generality,

we assume that the driver (receiver) drives (samples) on the rising edge of CLK1

(CLK2). Whenever the rising edges of CLK1 and CLK2 are such that the D2 signal

arrives around the setup time (tsu) of the sampling flip-flop FF2, a non-rail value can

be sampled in the receiving clock domain (Q2), possibly resulting in metastability.

This is illustrated in Figure 2.1. The goal of this thesis is to minimize the likelihood

of metastability when such a signal crosses asynchronous clock domains.

A traditional synchronizer consists of two flip-flops connected back-to-back (as

shown in Figure 2.2). This synchronizer would be used in place of FF2 of Figure 2.1.

There are several comments that can be made about synchronizers, at this point

of the discussion:

• The reason it is undesirable to drive a non-rail value to downstream logic is that

it could cause undesirable power spikes, potentially causing significant damage

to the IC.

• The key idea behind using two flip-flops in this configuration is that the data

4

domain 1
clock clock

domain 2 signal can be
metastable if
arrives at

to downstream
logic

FF1

D1 Q1 D2

CLK2CLK1

Q2

D2

tsu

FF2

Figure 2.1: Synchronizing Data Across Clock Domains

that is driven to the downstream logic in the CLK2 clock domain is less likely

to be metastable, since it goes through 2 back-to-back flip-flops before driving

the downstream logic. This is because even if the first flip-flop produces a

metastable (non-rail) value, the second flip-flop would likely resolve the value

to a rail signal.

• The use of a specialized flip-flop as the first flip-flop in a two flip-flop synchro-

nizer has reportedly been adopted in the industry. However, no literature was

found which discusses the design of such a specialized flip-flop.

• Although the absence of metastability cannot be guaranteed by this (or any

other) synchronizer, the goal of the synchronizer is to present rail values to

the downstream logic, and thereby ensure that the sampled data has a stable

value. The downside of a synchronizer is that it does not guarantee correct

sampling of the signal that crosses clock domains (note that our design does

not guarantee this either).

5

from
clock

domain 1

domain 2
clock

logic

to
downstream

D2

CLK2

Q2
D Q D Q

FF21 FF22

Figure 2.2: Traditional Synchronizer (Using Two Flip-flops)

The drawback of the traditional two flip-flop synchronizer is that it is not suited

for high performance applications where the synchronization happens between two

clocks, at least one of which operates at very high frequencies. This is because at

high frequencies, the Q output of the first flip-flop of the synchronizer (FF21 in

Figure 2.2) gets a very short time to settle to a rail value before the next clock edge,

at which FF22 samples the output of FF21. It is thus important that the Q output

of FF21 settles to a rail value quickly, when the clock CLK2 of Figure 2.2 operates

at a high frequency. There are a wide variety of applications where this condition

would occur in practice.

One such application is for the high speed data links that connect different pro-

cessors in a multi-core microprocessor. Intensive research is being done to speed up

the Network on Chip (NoC) in a Chip Multiprocessor (CMP). In some approaches,

the interconnection network operates at a much higher frequency than the individual

processors. The authors in [19] have proposed the design of a ring-based NoC based

on the principle of resonant clocking. The data links in their design operate at a

6

frequency of about 14 GHz using a resonant standing-wave clock scheme. This is

roughly 7× the frequency of the individual cores (processors) in the CMP. Figure 2.3

shows the design of a ring based NoC. Note that the routers handle the data commu-

nication between different cores and the rings. Since each core and the ring operate

at different frequencies, and their clocks are not synchronous with each other, any

data that goes from the ring clock domain to the core clock domain, and vice versa,

has to be synchronized using a synchronizer embedded in an asynchronous FIFO.

Core Core Core Core

CoreCoreCoreCore

Core Core Core Core

CoreCoreCoreCore

Data Rings

based on

Resonant Clocking

Router

Figure 2.3: A 4x4 Ring Based Network on Chip

Figure 2.4 shows a block diagram of an asynchronous FIFO. Note that in the block

diagram, the data is written to the FIFO in the ring clock domain (R clk) and is read

from the FIFO in the core’s clock domain (C clk). Thus, the read pointer is clocked

by C clk and write pointer is clocked by R clk. The generation of FIFO empty and

FIFO full flags requires the read and write pointers to cross clock domains. The use

7

of synchronizers is thus required. In Figure 2.4, S1 and S2 synchronize data from

C clk to R clk and vice versa respectively. Note that S2 is clocked by C clk (which

is a slower clock) and hence S2 can be realized using two regular flip-flops. However,

S1 is clocked by R clk which is a high speed ring (network) clock. Thus, using the

traditional synchronizer for S1 could result in poor metastability performance.

Gray
Counter

Gray
Counter

EmptyFIFO

FIFO Full

R_clk

R_clk
C_clk

C_clk

C_clk
R_clk

R_clk

C_clk

FF FF FF

FFFFFF

Read_EN

Write_EN

Read_pointer

Write_pointer

FIFO_full_flag

FIFO_empty_flag

S1

S2

Figure 2.4: Block Diagram of an Asynchronous FIFO

For such applications, there is a need to improve the design of a traditional

synchronizer by using specially designed flip-flop cells, such that the synchronizer

can sample non-metastable data at higher frequencies.

Accordingly, the goals of this work are as follows:

8

• To design a custom synchronizer, which has a lower probability of producing

a metastable output compared with the traditional synchronizer mentioned

above.

• The benefit of this synchronizer would be that it will cater to the need of

synchronization between clocks with very high frequencies, used in high per-

formance applications. The metastability performance of the traditional two

flip-flop synchronizer is not good at high frequencies, as discussed above.

The key contributions of this chapter are:

• A novel synchronizer design is presented. This synchronizer consists of two

flip-flops. The master as well as slave latches in the first flip-flop both use

independent paths for the pull-up and pull-down transitions, thereby reducing

the possibility of metastability at its output, which is the input to a regular

flip-flop (the second flip-flop of new synchronizer design).

• The proposed synchronizer includes a custom designed flip-flop that uses a

specialized sampling circuit in both the master and slave latches, reducing the

likelihood of metastability.

• Our experiments show that when compared to the traditional synchronizer

(which uses two regular flip-flops and is commonly used in modern VLSI design

practice), our synchronizer has significantly better signal integrity (metastabil-

ity performance), with reduced clock-to-output delay (by up to 14%).

The remainder of this chapter is organized as follows. Section 2.3 discusses some

previous work in the area of synchronizer design. Section 2.4 describes our new syn-

chronizer design, while Section 2.5 reports the results of experiments we performed

to compare our design with the existing synchronizer (which is based on the use

9

of two regular flip-flops). Conclusions are drawn in Section 2.6. In Section 2.7 we

present the summary of the work presented in this chapter.

2.3 Previous Work

Metastability in synchronizers has been studied extensively over the years, and

several theoretical papers have attempted to create a framework to understand and

model it [28, 5, 3, 11]. These papers present a sound theoretical framework for the

metastability problem, and provide mathematical models to estimate the MTBF in

metastable systems.

Several practical circuit approaches have been presented to mitigate metastabil-

ity in synchronizers. US Patents [13, 4] present a level sensing circuit to detect a

metastable condition inside a sampling circuit, allowing a stable value to be propa-

gated in the event of metastability. Our circuit avoids the use of level sensing, since

this is a sensitive analog operation, and may be hard to complete within a clock

period of a high-speed digital IC. The use of a Schmitt Trigger circuit in the for-

ward path of a master latch in a flip-flop was presented in [24, 8]. The metastable

points for the master and the slave are different. In contrast, our approach uses two

inverters (one with a high switchpoint, and the other with a low switchpoint) in the

forward path of both the master and slave latches of the specialized (first) flip-flop

of our synchronizer. Both these latches are topologically identical in our case, unlike

in [24, 8]. More esoteric approaches appear in [22, 12]. In [22], the authors use a

4-latch synchronizer, with complex internal feedback to resolve metastability. The

author of [12], on the other hand, presents a control circuit which shifts at least

one of the clocks of the two clock domains and generates new clocking signals when

metastability is detected. Both these approaches are intricate in their design, while

our approach focuses on a simple, practical and robust synchronizer design using

10

level-shifted inverters, which are commonly employed in custom IC design.

In [16], the focus is on integrating a jamb latch with a capacitor based charge

pump. This technique is sensitive (on account of the charge pump, which is sus-

ceptible to capacitive coupling from noise in the digital IC), and also requires a

metastability detector. Our approach avoids these circuits. In [29], the authors

sample the signal using multiple flip-flops and use a multiplexer to select one of the

outputs of these flip-flops. Our approach avoids such redundancy.

In a digital system with a data signal that traverses two clock domains, the

clocks of these two domains can be synchronous, mesochronous, plesiochronous or

asynchronous. Synchronization for these scenarios is discussed in [7]. In the first

case, synchronization of data across the two domains is trivial, and just requires

a simple flip-flop. As such, the synchronization problem does not exist since the

two domains are synchronous. When the clocks are mesochronous, the situation is

harder, since it requires the use of a delay line to correct for the constant phase

offset between the clocks. Another approach uses a two-register synchronizer or

a FIFO-based synchronizer [6]. Synchronizers for plesiochronous timing, with its

slowly varying clocks, are harder to design to. Existing techniques in practice are

similar to those of mesochronous timing, but require periodic resynchronization [6].

Asynchronous timing is hardest for a synchronizer, since nothing can be assumed

about the phase relationship between the two clocks. If an efficient technique is

found for asynchronous timing, it can be used for mesochronous and plesiochronous

timing as well. This motivates us to study synchronizers for asynchronous systems

in our work.

The authors in [19] focus on solving the problem of designing a fast scheme

to communicate between different processing elements in the NoC of a multi-core

system. The authors use a high speed clock to design a source-synchronous NoC.

11

An important component in this NoC design is the synchronizer that synchronizes

data to the high speed clock domain. When operating at such high speeds, the

metastability performance of the traditional synchronizer is not good, as we will

demonstrate. For a variety of similar high performance applications, the need for a

special synchronizer is paramount. Hence there is a motivation to come up with a

synchronizer design that reliably samples a signal value when synchronizing at high

frequencies, while minimizing the likelihood of metastability.

In this chapter, we propose a novel synchronizer based on the use of a special

flip-flop. The key idea behind our synchronizer is that we sample the incoming signal

by a specialized flip-flop which uses two inverters – one of which is a high switchpoint

(HSP) inverter, while the other is a low switchpoint (LSP) inverter. The outputs of

the HSP (LSP) inverter drives a NMOS (PMOS) driver stage, resulting in a situation

where only one of the MOSFETs of the driver is conducting, thereby significantly

reducing the likelihood of a metastable value being sampled. The output of this

specialized flip-flop is then passed to the second flip-flop of our synchronizer, which

is a traditional flip-flop. This style of synchronizer results in reduced clock-to-output

delay, mainly because the sampled signals are significantly closer to rail values in our

design compared to a traditional synchronizer.

2.4 Our Approach

In this section, we begin the discussion with a brief introduction of the figures of

merit of a good synchronizer. Next, we briefly discuss the traditional synchronizer

design, followed by a description of our synchronizer.

2.4.1 Figures of Merit

The key performance parameters of a sequential element such as a flip-flop are

its setup time (Tsu), hold time (Th) and clock-to-output delay (Tcq). However in

12

synchronizers, since the data is synchronized between two clock domains, the clocks

of which are asynchronous, the setup time and hold time of a synchronizer flip-

flop are not relevant. The clock-to-output delay of a synchronizer is of importance

because it determines the fastest a clock can operate in a particular clock domain.

Another figure of merit of a synchronizer is the setup margin for the second flip-flop

in a synchronizer. In Figure 2.2, the output of flip-flop FF21 sets up to the D input

of flip-flop FF22. Now, if the output of FF21 is metastable, it might not settle to

a stable value before the setup time (tsu) of FF22. This could cause the output of

FF22 to be metastable also, or could cause variations in the clock-to-output delay

of FF22. It it thus important that the output of FF21 provides a comfortable

setup margin for FF22, and hence the setup margin of the second flip-flop of the

synchronizer is important.

In our experiments, therefore, we will compare the clock-to-output delay of both

our synchronizer and the traditional synchronizer. We will also compare the setup

margins for the second flip-flop in both the synchronizers. Other parameters that

will be compared in our analysis will be area utilization and power consumption.

Additionally, we will also qualitatively analyze the waveforms of critical nodes in the

synchronizer and compare their signal integrity.

2.4.2 Traditional Synchronizer

A traditional synchronizer consists of two flip-flops, each of which uses the topol-

ogy shown in Figure 2.5. The operating principle is relatively simple. Since the

output of the first flip-flop (FF21 in Figure 2.2) has the likelihood of being in a

metastable state, its output is driven to the D input of a second flip-flop (FF22).

The output of the second flip-flop has a lower likelihood of being in a metastable

state, since the Miller capacitance associated with the pass-gates of the master latch

13

of FF22 (which pass the D input of FF22 into its master latch) would inject suf-

ficient charge into the D and N signals of the master latch of FF22 when it was

in a metastable state, resulting in an increased likelihood of a 0 or 1 being sampled

and transmitted by the synchronizer output. Another way this can be explained (in

an arguably less sophisticated manner from a circuit point of view) is to say that

the likelihood of the final output of the synchronizer being metastable is based on

the likelihood of the same metastable value being sampled for two clock periods (as

opposed to one clock period for a single flip-flop). The use of two flip-flops reduces

this likelihood significantly. The circuit for a traditional two flip-flop synchronizer

has been shown in Figure 2.6. Note that RegFF in the figure refers to the circuit

shown in Figure 2.5.

CLK b

INV 1

INV 2

CLK b

CLK b

CLK b

QD

CLK

CLK

CLK
CLK

N Z INV 3

INV 4

Figure 2.5: The Flip-flop Used in the Traditional Synchronizer (Referred as RegFF)

For RegFF, consider the signals N and Z shown in Figure 2.5. The signal N is

the node that samples the value of the D input of the synchronizer during the low

phase of the CLK signal. This signal is inverted by inverter INV 1, the output of

which we refer to as Z. The key idea is that as we vary the setup time of the D

signal to the CLK rising edge, we would ideally like Z to never have a metastable

value. If this is ensured, then the Q value can be guaranteed never to be metastable.

14

D2

CLK2

QFF2
Q Q

QFF1
D D

RegFF RegFF

Figure 2.6: Traditional Synchronizer

In practice, however, this cannot be guaranteed. This is the reason we use two flip-

flops back-to-back so that the possibility of metastability at the output of the second

flip-flop is minimized.

The fundamental idea here is to: a) simulate a sweep of D inputs such that the

separation in time domain of the D input and the active clock edge of the flip-flop

is varied in each sweep b) compare metastability characteristics of the output of the

synchronizer, when the D input switches at a time close to the setup time of the

synchronizer cell.

It is useful to restate here that the main reason for the use of synchronizers is

that the data being driven to the downstream logic, for a CMOS design, must always

be driven to rail (logic 0 or logic 1) values in order to guarantee that power spikes

that could be damaging to the design, are averted at all costs.

2.4.3 Our Synchronizer

In this chapter, we propose a novel synchronizer based on the use of a special

flip-flop. The circuit of our synchronizer is shown in Figure 2.7. As opposed to using

two regular flip-flop cells (RegFF) in a traditional synchronizer, our synchronizer

uses a special flip-flop (SyncFF) followed by a regular flip-flop (RegFF). The circuit

of our special synchronizer flip-flop is shown in Figure 2.8.

15

D2

RegFF

CLK2

QFF2
Q Q

QFF1

SyncFF

D D

Figure 2.7: Our Synchronizer

The key idea behind our synchronizer flip-flop (SyncFF) is that instead of using

just one inverter (INV 1 in each of the latches of the traditional flip-flop of Figure 2.5)

to sample the input when the master (or slave) latch of the flip-flop is transparent,

we use two inverters which separately sample the master (or slave) latch input. The

two inverters are chosen such that their values will be different, for a metastable

value of the sampled latch input. One of these inverters is a high switchpoint (HSP)

inverter INV 2, while the other is a low switchpoint (LSP) inverter INV 1 as shown

in Figure 2.8. The output of the LSP and HSP inverters are inputs to a driver

stage consisting of transistors M1 and M2. The HSP (LSP) inverter drives a NMOS

M2 (PMOS M1). For the same non-rail value of the N signal, the HSP and LSP

inverters have different output values on account of their different switchpoints, and

as a result, the output of the driver stage (node Z) is highly unlikely to be in a

metastable condition, since either of M1 or M2 is conducting at any time. Thus the

likelihood of a metastable value being sampled is significantly reduced.

Pull-down Circuit

To understand the need of the extra pull-down structure in Figure 2.8 at the

output of INV 2, refer to the situation described in Figure 2.9. Initially, when the

node N is falling slowly, the HSP inverter switches first while the LSP inverter has

still not switched. This results in a situation where the LSP inverter output is low

16

LSP LSP

HSP HSP

D Q

M1

M3

INV 2

M2

CLK b

CLK b

CLK b

INV 3

CLK b

N Z

CLK

CLK

CLK

CLK

INV 1 INV 4

INV 5

INV 6

Figure 2.8: Our Modified Flip-flop Design (Referred as SyncFF)

while that of HSP inverter is high. This causes transistors M1 and M2 to turn ON

together momentarily. When the node N is rising slowly, the output of the LSP

inverter falls first while the HSP inverter output falls later. This results in a similar

situation as described in the first case, and both transistors M1 and M2 are turned

ON together momentarily. Such a situation will result in a steep momentary increase

in power consumption, which needs to be avoided. To avoid both devices turning ON

together we can either pull up the output of INV 1 (to turn off M1) or pull-down

the output of INV 2 (to turn off M2). Our simulation results with both the options

showed that the pull-down structure results in better response.

High Switchpoint and Low Switchpoint Inverters

The switch point of an inverter is given by Vsw =
Vdd − |Vtp| + Vtn

√

βn
βp

1 +

√

βn
βp

. For

an inverter with the NMOS and the PMOS having equal threshold voltages (in

magnitude), the switchpoint of the inverter depends on the ratio βp

βn
. If this ratio is

more than 1, the switchpoint would be more than Vdd

2
. If this ratio is less than 1, the

switchpoint would be less than Vdd

2
. If the ratio is equal to 1, then the switchpoint

17

0

0

N

Vdd

Vdd

HSP

LSP

LSP Inv.

LSP Inv. = 0

HSP Inv. = 1

HSP Inv.

Low Switchpoint

High Switchpoint

Both M1 and M2 ON !!

Figure 2.9: Response of HSP and LSP Inverter for Switching N Input

of the inverter is Vdd

2
. These β values for an NMOS and a PMOS are defined as

βn = µN ǫ

tox
(WN

LN
) and βp = µP ǫ

tox
(WP

LP
), (where ǫ is the permittivity of the dielectric,

tox is the oxide thickness, µN and µP are the mobilities of charge carriers in the

NMOS and PMOS respectively and WN , LN and WP , LP are the width and length of

the NMOS and PMOS respectively). This has been further explained in Figure 2.10.

The figure shows different voltage transfer characteristics of an inverter with varying

β ratios. Thus, by varying the width and length of the devices in an inverter, we

can tune the switchpoint of an inverter above or below Vdd

2
. When the switchpoint

is above (below) Vdd

2
, we call the inverter an HSP (LSP). In our simulations, we used

an HSP (INV 2 in Figure 2.8) which had a switchpoint 30mV above Vdd

2
and an LSP

(INV 1 in Figure 2.8) which had a switchpoint 30mV below Vdd

2
.

In our experiments, we will study the electrical characteristics of the QFF1 and

QFF2 signals of both synchronizers (see Figures 2.6 and 2.7), and favor the design

which exhibits fewer metastable conditions on these nodes as the setup time of D to

18

Vout

0 VDD
VDD

2

Vin

VDD

LSP

1.25

1.5

0.25

0.5

1

βp
βn

HSP

Figure 2.10: Inverter Voltage Transfer Characteristics for Different Beta Ratios

the rising edge of CLK is varied in very small increments.

2.5 Experiments

We simulated the proposed synchronizer as well as the traditional synchronizer in

HSPICE [26], using a 14nm PTM [27] model card. Extensive sweeps were conducted

to realize the device sizing that was used in the final design for our synchronizer.

Based on these sweeps, the HSP inverter had a switchpoint which was 30 mV above

the nominal, and the LSP inverter had a switchpoint which was 30 mV below the

nominal. The difference in their switchpoint was 7.5% of the circuit supply voltage

of 0.8V.

For each synchronizer, we tested its metastability performance by evaluating its

ability to correctly capture a D signal. Assume that this D signal rose (or fell) T

19

time units before the rising (sampling) edge of the CLK. When the value of T

is less than tsu, the synchronizer would fail to correctly capture the D signal. We

sweep the value of T in extremely fine increments (we used 0.2 fs increments in our

simulations). For values of T that are very close to tsu, we qualitatively as well as

quantitatively evaluated the metastability of the synchronizer internal and output

signals. Based on the reference example of the resonant clock based NoC discussed

in [19], the clock (CLK) had a frequency of 14 GHz in our simulations.

We claim that the output node QFF2 of the synchronizer, and the node QFF1

of the first flip-flop of the synchronizer are critical signals in terms of metastability

performance. Clearly, QFF2 is critical since it is the output of the synchronizer, and

hence its metastability characteristics are critically important. In addition, QFF1 (in

both our synchronizer as well as the traditional synchronizer, see Figures 2.7 and 2.6)

is a signal which is crucial to the metastability performance of the synchronizer.

This is because QFF1 directly interfaces with the second flip-flop, and hence any

metastability problems on QFF1 could propagate further towards the synchronizer

output, QFF2.

In Figures 2.11, 2.12, 2.13 and 2.14 we plot the overlay of the Q and D waveforms

obtained over all our HSPICE sweeps of the value of T . These sweeps were conducted

in 0.2 fs increments. We chose a window of 3ps around the setup time of the first flip-

flop of both the traditional synchronizer (RegFF) and our synchronizer (SyncFF).

We then swept the arrival of input signal D in 0.2 fs increments in that window.

Thus, each sweep had 15000 simulations, each corresponding to a different D input

signal. The window size, number of simulations and the sweep increments were kept

same for both the synchronizers.

Figures 2.11 and 2.12 correspond to a falling D input being captured by the

first flip-flop of the synchronizer. Figure 2.11 shows the overlay of waveforms for our

20

synchronizer and Figure 2.12 shows the overlay of waveforms for the traditional syn-

chronizer. Each figure illustrates (from top to bottom) the voltage waveform of the

CLK signal (CLK), the D input, the output of the first flip-flop of the synchronizer

(Q FF1), and the output of the synchronizer (Q FF2).

Figure 2.11: Overlay of 15000 Waveforms for Our Synchronizer for Falling D

Note that our synchronizer shows a significantly tighter band of QFF1 signals in

the sweep, with all signals demonstrating a very high slewrate. The traditional syn-

chronizer has a much wider band of QFF1 signals, many with extremely poor output

slewrates. For this reason, the possibility of the second flip-flop in the traditional

synchronizer sampling a metastable value at its input is high. This can result in high

variation in the clock-to-output delay of the second flip-flop.

21

Figure 2.12: Overlay of 15000 Waveforms for Traditional Synchronizer for Falling D

Figures 2.13 and 2.14 correspond to a rising D input being captured by the

first flip-flop of the synchronizer. Figure 2.13 shows the overlay of waveforms for

our synchronizer and Figure 2.14 shows the overlay of waveforms for the traditional

synchronizer. Again, each figure illustrates (from top to bottom) the voltage wave-

form of the CLK signal (CLK), the D input, the output of the first flip-flop of the

synchronizer (Q FF1), and the output of the synchronizer (Q FF2).

22

Figure 2.13: Overlay of 15000 Waveforms for Our Synchronizer for Rising D

Figure 2.14: Overlay of 15000 Waveforms for Traditional Synchronizer for Rising D

23

We can again observe that for our synchronizer, the QFF1 signal settles much

before the rising edge of the CLK signal, compared to the traditional design, which

shows several examples in which the QFF1 signal stays at a metastable value, for a

significant duration. The second flip-flop in our synchronizer, in contrast, samples

a stable value for all the sweeps. Note the variation in clock-to-output delay of the

second flip-flop of the traditional synchronizer (Figure 2.14).

Note that in all the figures discussed above, both synchronizers sometimes sample

”wrong” values, which is because when the D input undergoes a transition very close

to the setup time of the first flip-flop of the synchronizer, it can get sampled either as

a logic 0 or a logic 1. No synchronizer can avoid this situation. The key requirement,

however, is that a synchronizer needs to ensure that its output is close to the power

rails.

In the six tables that follow, we report a quantitative comparison of the clock-

to-output delay, the setup margin (for the second flip-flop of the synchronizer) and

the average and peak power consumptions of the traditional synchronizer and our

proposed synchronizer. Note that the absolute values reported in all these tables are

specific to the sweep parameters we chose in our simulations (sweep of D input in

a window of 3ps in 0.2fs increments). These numbers will change when the sweep

increment is different from 0.2fs. The key thing is that even with the change in the

sweep increment value, the trend of improvement in metastability performance of

the proposed design is maintained, as we show later.

Table 2.1 reports, over all our sweep simulations, the worst case clock-to-output

delay for both the traditional synchronizer and our synchronizer. We note that our

synchronizer is faster (by about 0.1% and 14% when the D signal that is being

captured is falling and rising respectively). This is because the input to the second

flip-flop in our synchronizer is stable much before the setup time of the second flip-

24

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 5.56 ps 5.57 ps 0.18%

Setup to 1 10.21 ps 11.90 ps 14.20%

Table 2.1: Clock-to-Output Delay (Worst Case) Comparison

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 4.19 ps -8.94 ps 146.9%

Setup to 1 16.57 ps -15.23 ps 208.8%

Table 2.2: Setup Margin (for FF22) Comparison

flop. The second flip-flop of the traditional synchronizer samples many non-rail

values, which increase the worst case delay of the traditional synchronizer.

Table 2.2 reports, over all our sweep simulations, the setup margin for the second

flip-flop of the traditional synchronizer and our synchronizer. The setup margin is

defined as the difference of the setup time of the second flip-flop of the synchronizer

and the time τ , which is the latest time that any of the 15000QFF1 signals crosses 90%

of VDD (if it is rising) or 10% of VDD (if it is falling). As discussed in the beginning of

Section 2.4, the setup margin for the second flip-flop of a synchronizer is a good figure

of merit for a synchronizer. We note that our synchronizer is much better in terms

of setup margin which ensures the second flip-flop of our synchronizer comfortably

samples a logic 0 or a logic 1 value. Whereas for the traditional synchronizer, the

setup margins are negative which poses the threat of capturing a non-rail value by

the second flip-flop of the traditional synchronizer.

As mentioned earlier, the absolute values of setup margin are specific to our

experimental setup. Since setup margin is the metric that best represents the im-

provement of the proposed design of synchronizer over the traditional design, we also

25

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 15.50 ps -5.85 ps 364.9%

Setup to 1 17.10 ps -10.30 ps 266.0%

Table 2.3: Setup Margin (for FF22) Comparison for 1fs Sweeps

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 13.66 µW 6.58 µW -107.6%

Setup to 1 13.38 µW 8.68 µW -54.1%

Table 2.4: Average Power Consumption over One Cycle Averaged over all Sweeps

computed the value of setup margin for a different sweep increment (1fs). We report

these numbers in Table 2.3. It must be noted that all the other simulation parame-

ters except the sweep increment were kept same as that of the original experimental

setup. Note that even for a sweep increment of 1fs, our scheme shows a significant

improvement in setup margin.

We next present four tables which report power consumption comparisons. Note

that for each of these tables, we compare the power consumption of our synchronizer

with the traditional synchronizer.

To present the results of Table 2.4, we first compute, for each of the sweeps, the

averaged circuit power P over one clock cycle. Now, this P value is averaged across

all the sweep simulations, and reported in Table 2.4, for both the traditional and our

synchronizer. We note that the averaged P value is more for our synchronizer (by

about 2× and 1.5×) when the D signal that is being captured is falling and rising

respectively.

To present the results of Table 2.5, we first compute, for each of the sweeps, the

averaged circuit power P over one clock cycle. Now, the maximum value Pmax across

26

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 25.19 µW 9.34 µW -169.7%

Setup to 1 20.26 µW 11.02 µW -83.8%

Table 2.5: Average Power Consumption over One Cycle Maximum over all Sweeps

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 99.39 µW 38.21 µW -160.1%

Setup to 1 78.02 µW 34.58 µW -125.6%

Table 2.6: Peak Power Consumption over One Cycle Averaged over all Sweeps

all the sweep simulations is reported in Table 2.5, for both the traditional and our

synchronizer. We note that for our synchronizer, the value of Pmax is more (by about

2.7× and 1.8× when the D input is falling and rising respectively) when compared

to the traditional synchronizer.

From Tables 2.4 and 2.5, we can see that our design consumes more power. This

is because our design uses extra transistors in the first flip-flop of the synchronizer,

which contribute to the increased average power consumption when the circuit nodes

are switching.

To present the results of Table 2.6, we first compute, for each of the sweeps, the

peak circuit power R over one clock cycle. Now, the average R value is found across

all the sweep simulations, and reported in Table 2.6, for both the traditional and our

synchronizer. We note that the averaged R value is more for our synchronizer (by

about 2.6× and 2.2× when the D signal that is being captured is falling and rising

respectively).

To present the results of Table 2.7, we first compute, for each of the sweeps, the

peak circuit power R over one clock cycle. Now, the maximum value Rmax is found

27

Our Synchronizer Traditional Synchronizer Impr.

Setup to 0 100.5 µW 42.05 µW -139.0%

Setup to 1 89.99 µW 39.11 µW -130.0%

Table 2.7: Peak Power Consumption over One Cycle Maximum over all Sweeps

across all the sweep simulations, and reported in Table 2.7, for both the traditional

and our synchronizer. Again, the value of Rmax is more for our synchronizer (by

about 2.4× and 2.3× when the D input is falling and rising respectively).

The peak power consumption in our circuit is more because as discussed earlier

in Section 2.4, the transistors M1 and M2 are on together for a very short time.

During this time, the power consumption is momentarily high.

We also generated layouts of both our modified synchronizer flip-flop (Figure 2.16)

and the regular flip-flop (Figure 2.15). These layouts were generated using the TSMC

250nm Bulk CMOS process design rules. Based on the layouts shown, the area

utilization of our synchronizer is higher than that of the traditional synchronizer by

26%, owing to the extra devices we use in the special flip-flop of our synchronizer.

Figure 2.15: Layout of Regular Flip-flop

28

Figure 2.16: Layout of Our Synchronizer Flip-flop

As reported in this section, our proposed synchronizer circuit uses extra area and

consumes extra power as compared to the traditional synchronizer. However, the

metastability performance of our synchronizer is significantly superior, as seen from

the waveforms and the results for setup margin and clock-to-output delay. Consider-

ing the importance of capturing a non-metastable value by a synchronizer, and given

that there are a relatively small number of synchronizer cells in an SoC, the chip-

level area and power penalties are lower. The superior metastability performance far

outweighs these penalties for high-speed designs.

2.6 Conclusion

In today’s IC designs, there are many instances where data signals cross clock

domains. The most challenging clock domain crossing is one in which the two clocks

are asynchronous. The traditional approach to synchronizing data in such a case

uses two flip-flops. However it has been seen that the metastability performance

of a traditional synchronizer is not good when the data has to be synchronized to

a clock domain operating at a very high frequency. In this chapter we present a

novel flip-flop based synchronizer. The circuit topology of our flip-flop uses two

independent sampling paths for the data signal, so as to minimize the likelihood of

29

the output being metastable. Our synchronizer flip-flop design ensures that the data

being sampled settles to a rail value quickly, allowing the synchronizer to operate

at high frequencies. Such a design is suitable for a variety of high performance

applications. Our synchronizer exhibits a significantly better setup margin (to the

second flip-flop) in comparison to the traditional synchronizer (4.19 ps (16.57 ps)

vs -8.94 ps (-15.23 ps) for a setup to 0(1)). The maximum clock-to-output delay is

reduced with our synchronizer (by up to 14%), mainly because the sampled signals

are significantly closer to rail values in our design when compared to a traditional

synchronizer. Our synchronizer achieves better metastability performance with an

area and power consumption overhead.

2.7 Summary

In this chapter, we describe the design of a novel synchronizer based on a special-

ized metastability reducing latch, which is used in the first flip-flop of a two flip-flop

synchronizer. The design of this specialized flip-flop leverages the idea of using differ-

ent switchpoint inverters in the latch, to avoid metastability. Our experiments show

significant improvement in metastability performance with our synchronizer, with a

nominal area and power overhead. In the next chapter, we will use the proposed

metastability reducing latch to design a metastability tolerant C-element.

30

3. A ROBUST C-ELEMENT DESIGN WITH ENHANCED METASTABILITY

PERFORMANCE

3.1 Overview

In this chapter, we discuss metastability issues that exist in the C-element, which

is a state holding element in asynchronous circuit design. As mentioned in Chap-

ter 1, any binary valued state holding element is vulnerable to metastability when

transitioning between states. We propose a circuit-level scheme (based on the ap-

proach presented in Chapter 2) to improve the metastability performance (at the

electrical level), of three popular C-element implementations. The discussion begins

by a description of the C-element, and different existing implementations to real-

ize its functionality. An in-depth analysis of the metastability performance of three

traditional designs and our modified designs of C-element follows.

3.2 Introduction

The asynchronous circuit design style is often preferred for high performance and

low power applications. This is because the signals in an asynchronous circuit do not

need to wait for a clock edge in order to propagate, making it a faster design style.

Also, asynchronous circuits consume lower power compared to synchronous circuits

because in synchronous circuits, a clock has to toggle all or most of the time, which

consumes power. Clocking often comprises 45-70% of the total power consumption

of contemporary synchronous designs [14]. In recent times, globally asynchronous

and locally synchronous (GALS) [15] designs have gained popularity because of the

benefits of asynchronous circuits.

The C-element is a popular state holding element which is heavily used in asyn-

chronous circuits. The C-element is a logic element that computes the AND function

31

on the events at its inputs. Here, an event is classified as a logic 0-1 or a logic 1-0

transition. The behavior of a C-element is such that the output matches the inputs if

all the inputs are in the same logic state. If the states of the inputs are different the

output holds its previous state. The behavior of a 2-input C-element is represented

in Table 3.1.

Input a Input b Output cn+1

0 0 0

0 1 cn

1 0 cn

1 1 1

Table 3.1: C-element Truth Table

As discussed earlier in Chapter 1, any state holding element is vulnerable to

metastability while transitioning from one state to another. Hence, the output of C-

element is also subject to a metastable condition. In the case of a very small overlap

in the input values, the output of the C-element can begin to flip its state, but may

not complete the transition to the new state. This is the primary electrical cause

of metastability in the C-element. One set of input transitions that could result in

metastability in a C-element is shown in Figure 3.1.

In the figure, initially the input a was a stable logic 0 and the input b was a

stable logic 1. The output c was holding its last state which happened to be a logic

0. Now, a transitions to a logic 1 and the output c starts to rise (because both the

inputs are logic 1). However, after a short period, and before the output completely

transitions to a stable high value, the input b falls. The output c can now get stuck

in a metastable state. Several other combinations of initial output state and input

32

error

b

a

c

correct

Figure 3.1: Input Transitions and Metastability in a C-element

transitions can cause metastability in the C-element. As a result, there is a need for

a technique that avoids metastability in the C-element.

Over the years, various circuit-level implementations have been proposed to real-

ize the functionality of the C-element. Three most popular implementations are the

Static C-element (Figure 3.2), the Sutherland C-element (Figure 3.3) and the Van

Berkel C-element (Figure 3.4). There are other gate-level implementations of the

C-element that use standard cell based design to implement a C-element as well. In

our work, we will focus on the circuit-level implementations of the Static, Sutherland

and Van Berkel C-elements. A detailed discussion on the traditional and proposed

circuits for these C-element implementations follows in Section 3.4.

33

c

b

a

M1

M2

M3

M4

N
INV 1

INV 2

Figure 3.2: Traditional Static C-element

c

a b

ba

a

b M1

M2

M3

M4

INV 1

M5 M6

M7 M8

M9

M10

N

Figure 3.3: Traditional Sutherland C-element

34

c

c

c

a

b

b

a

b

a

a

b

M1

M2

M3

M4 M8

M7

M6

M5

INV 1
N

M9

M10

Figure 3.4: Traditional Van Berkel C-element

C-elements are used in self-timed circuits where every functional block produces

an event (a transition on a signal) upon completion of its task. As discussed ear-

lier in this section, the C-element can go into a metastable state for certain timing

conditions on its inputs. In asynchronous designs, it is hard in general to coordi-

nate events in such a way that they do not overlap briefly. The key thing to note

here is that none of the C-element implementations mentioned above address the

issue of metastability electrically. Additionally, no literature is found that presents

an effective scheme to avoid metastability at the output of these C-elements. The

importance of C-elements in asynchronous designs demands a deeper look into the

circuit-level metastability behavior of C-elements.

Accordingly, the goals of our work are as follows:

35

• To compare the metastability performance of three popular circuits to realize

C-elements, namely the Static, Sutherland and Van Berkel C-elements.

• Propose a new circuit-level approach which can be adopted for all the im-

plementations of the C-element mentioned above, to reduce the possibility of

metastability at the output of the C-element.

• Qualitatively as well as quantitatively analyze the metastability behavior of

the proposed solutions, and compare it with the traditional designs.

• It is important to note that our design does not guarantee the absence of

metastability (no other design guarantees this either). The goal is to minimize

the likelihood of metastability as far as possible.

In this chapter we propose a circuit-level approach that minimizes the metasta-

bility conditions in a C-element. Our approach is based on the circuit of the latch

described in Section 2.4 which uses two independent paths to sample a potential

metastable signal with two inverters that have different switchpoints. Based on our

simulations, the proposed approach achieves up to 9× improvement in the metasta-

bility window, and up to 6× improvement in the worst case delay of a C-element.

The remainder of this chapter is organized as follows. Section 3.3 discusses pre-

vious research in C-elements and metastability in asynchronous designs. Section 3.4

explains our approach in designing a metastability tolerant C-element, while Sec-

tion 3.5 describes our experiment setup and reports the results of our experiments

we conducted to compare our modified C-element implementations with the existing

traditional C-element implementations. Conclusions are drawn in Section 3.6 while

Section 3.7 presents a summary of the chapter.

36

3.3 Previous Work

Metastability conditions in synchronous circuits have been extensively addressed.

However, metastability has not received similar attention in asynchronous circuits.

Asynchronous circuits, with their handshake based control flow, are assumed to not

suffer from metastable conditions. However, this is only true at the protocol level. In

the work presented in this chapter, we address the metastability issues in Muller C-

element, which is a fundamental building block in asynchronous circuit design. The

authors of [21], elaborate eight possible combinations of transitions on the inputs of

a two input C-element that could cause metastability. The effort in their work is to

characterize metastability in a C-element using a late transition detection scheme.

The authors of [9] show, with an example of a fault-tolerant clock generation scheme,

that metastability can exist in asynchronous systems in the presence of a few fault

effects.

Different circuit-level implementations have been proposed to realize the func-

tionality of the C-element. A comparison of three most popular implementations has

been presented in [23]. The authors compare the performance of a Static (referred

to as Martin’s), Sutherland and Van Berkel C-element in terms of their propaga-

tion delay, energy consumption and area utilization. In our work, we also choose

these three implementations to analyze and compare the metastability performance

of different C-elements. However, our analysis is focused on the metastability be-

havior of different C-element implementations. The design of a latch based speed

independent C-element is proposed in [20]. Different circuit implementations of C-

elements are compared in [1] on the basis of their robustness to the effects of Single

Event Upsets (SEUs). A comparison is made between C-elements implemented in

Bulk CMOS technology and SOI technology. The key parameters compared are the

37

delay, and the static and dynamic power of the different C-elements. However, the

work in [20, 1] does not address metastability issues in C-elements. We compare the

robustness of different C-elements under metastability-prone conditions at the elec-

trical/timing level and then propose a circuit-level approach to design a more robust

version of these C-elements. The authors of [30] propose a design for a multi-input

C-element which has fewer restrictions on the number of inputs as compared to the

traditional implementations. The work in [18] is focused on further improving the

design presented in [30]. The authors of [18] discuss the possible race conditions at

the output of the C-element when the inputs to the C-element arrive close to one

another. In our work, we show how such situations can result in metastability at the

output. The authors in [2] provide a quantitative estimate of the probability of error

at the output of C-element depending on the error probabilities at the inputs.

A key observation is that metastability in C-elements has been acknowledged,

studied and characterized. However, a circuit-level effort to reduce metastability in

C-elements has not been made. Sutherland, in his discussion about micropipelines,

lists various modules that provide the logical combination of transition events [25].

The C-element is one such module that provides the logical AND of transition events

at its inputs. Its heavy use in asynchronous pipeline control motivates us to study

C-element and propose a reliable design that is metastability tolerant.

3.4 Our Approach

In this section, we discuss the circuit-level implementations of 3 C-elements, and

describe our approach to design a robust version of these C-elements with enhanced

metastability performance. We first compare 3 traditional implementations of C-

element and then discuss how our approach minimizes metastability in all these

implementations.

38

3.4.1 Traditional C-element

The three popular traditional circuit-level implementations for a C-element that

we will analyze are shown in Figures 3.2, 3.3 and 3.4. Let us begin with a brief

explanation of the simplest C-element implementation, the Static C-element (shown

in Figure 3.2). Assume both the inputs a and b are at logic 0. In this case, the

transistors M1 and M2 are turned on and the node N is pulled up to logic 1. This

drives the output to a logic 0 (same as both the input values). Now, without loss of

generality, if b transitions to a 1, the transistors M2 and M4 are on, and the node N

stays at its last value (logic 1). The output state is maintained through the feedback

inverter INV 2. The output changes state only when both the inputs transition to

a logic 1, in which case transistors M3 and M4 turn on and the node N is pulled

down, which drives the output high.

The other two implementations of the C-element (Sutherland and Van Berkel)

work in a similar way. The difference between these two implementations and the

Static C-element is the way the feedback structure is implemented. In the Static

C-element, the feedback inverter INV 2 is a weak inverter (implemented with long

channel devices), which allows the transistors M1-M4 to drive the node N when the

output is changing state. Depending on the timing of a and b this type of feedback

can result in a race condition, when the weak feedback inverter INV 2 and the input

transistors (M1-M4) try to drive conflicting values to node N . Thus, the relative

strength of the feedback inverter has to be carefully selected. The Sutherland and

the Van Berkel implementations of the C-element avoid such a situation by designing

their feedback structure differently.

Consider the operation of the Sutherland C-element (Figure 3.3). Assume a and

b are logic 1, which causes N to be driven to logic 0, and c to be driven to logic 1.

39

Now, transistor M10 turns on as a result of c being at logic 1. As long as one of

M7 or M8 are turned on (i.e as long as either a or b stay at logic 1), the node N is

kept at logic 0 (through the transistor M10 and one or both of M7 and M8). This

implements the ”hold” functionality of the C-element. Only when both a and b are

driven low, is this feedback broken. The analysis for the condition when c is logic 0

is symmetrical.

Finally, let us consider the operation of the Van Berkel C-element. When a and

b are logic 1, the node N is driven to logic 0, and c is driven to logic 1. Now, as long

as a stays at logic 1, the node N stays driven to logic 0 through the devices M7-

M10-M4. Similarly, if b stays at logic 1, the node N stays driven to logic 0 through

M3-M10-M8. Only when both a and b are driven to logic 0, is this feedback broken.

The analysis for the case when c is logic 0 is symmetrical.

In the traditional C-element implementations, when the output is at a metastable

value, a mechanism to rapidly drive the output to a rail value does not exist. Assume

the output c in Figure 3.2 is stuck at a metastable value. This will cause both the

devices (NMOS and PMOS) of INV 2 to turn on and the voltage at N will be a

mid rail value (if the inputs a and b have different values). This in turn causes both

devices of INV 1 to be on. Thus, the metastable voltage loops through the feedback

path, and the time to resolve the metastable voltage is unknown. A similar problem

exists in the Sutherland and Van Berkel C-element implementations. However, the

superior feedback structure in these two implementations makes them less prone to

metastability. In our experiments, we show that when the overlap in the value of

inputs is small, all the traditional C-element implementations are liable to get stuck

at a metastable state which is resolved after an unpredictable amount of time.

40

3.4.2 Modified C-element

In this work, we present a circuit-level approach which works with all the 3

implementations of the C-elements discussed above, and minimizes the possibility of

metastability at the output of the modified C-element. Our proposed modification

for the 3 implementations of the C-elements is shown in Figures 3.5, 3.6 and 3.7. For

the sake of discussion, let us consider the design shown in Figure 3.5 (the modified

Static C-element). As we can see, our design replaces INV 1 of the Static C-element

of Figure 3.2 with a structure that uses independent paths for falling and rising

transitions on the output of the C-element. The working of the metastability reducing

structure is similar to the latch used in our synchronizer design (Chapter 2), which

is discussed in detail in Section 2.4.

c

LSP

HSP

a

b M1

M2

M3

M4

M5

M6

N

INV B

INV A

INV C

M7

replaces

INV 2

replaces

INV 1

Figure 3.5: Modified Static C-element

41

With the use of our metastability reducing latch, a finite resolution time is

achieved in our design depending on the delay of the pull-down structure. This

cannot be ensured in a traditional design since there is no mechanism to actively

resolve a metastable value and pull it to a stable high or low rail value. Since our

metastability reducing latch is non-inverting, the feedback structure (which replaces

INV 2 of the Static C-element of Figure 3.2) consists of a pair of regular inverters.

b

a

a b

a b

c

LSP

HSP

M1

M2

M3

M4 M7 M8

M10

M9

M6M5

N

M11

M12

INV A

INV B

INV 3

INV C

replaces

INV 1

M13

Figure 3.6: Modified Sutherland C-element

The metastability reducing latch discussed for the Static C-element (Figure 3.5)

is effective for the other two C-elements as well. We use a similar structure in the

Sutherland C-element (Figure 3.6) and the Van Berkel C-element (Figure 3.7).

In the Sutherland C-element, we replace INV 1 (see Figure 3.3) with our metasta-

bility reducing latch. Since this latch is non-inverting, an inverter INV 3 is intro-

42

duced in the feedback path, as shown in Figure 3.6. In the Van Berkel C-element,

our metastability reducing latch replaces INV 1 (see Figure 3.4). Our experimental

results, which are discussed in the next section, show that our modified Sutherland

and Van Berkel C-element resolves metastability much faster than the traditional

design.

c

c̄

LSP

HSP

a

b

b

a

a

ba

b

c̄

c̄

M1

M2

M3

M4 M8

M7

M6

M5

M11

M12

INV A

INV B

INV 3

INV C

INV 1

replaces

M9

M10

M13

Figure 3.7: Modified Van Berkel C-element

As discussed in Section 2.4, we achieve different switchpoints for inverters by

varying the width and length of the PMOS and the NMOS transistors in an inverter.

In our design of C-element, we used an HSP inverter which had a switchpoint 30 mV

above V DD/2, and an LSP inverter which had a switchpoint 30 mV below V DD/2.

43

3.4.3 Figures of Merit

We now discuss a few figures of merit which are key metrics to evaluate the

performance of a C-element. We will compare our modified designs with the 3

traditional designs of a C-element based on these metrics. The common performance

parameter for any combinational or sequential circuit element is its worst case delay

from the input to the output. We will compare the worst case delay of our designs

with the traditional designs. The other common parameters that we compare are

the area utilization and the power consumption of the circuits.

In addition to these traditional metrics, we define another metric that quantifies

the metastability performance of a C-element. This new metric, the metastability

window, quantitatively measures the metastability performance of any C-element. A

representative picture has been shown in Figure 3.8. In this figure, the input a goes

through a transition from a high state to a low state at a fixed time. The input b

goes through an opposite transition and the time of transition is swept. The output

c, which happened to be at the high state initially, either transitions to a low state or

stays high, depending on when the transition on b happens, relative to the transition

on a. This has been shown in the figure. The metastability window is defined as

the time from which the outputs in our sweep start a transition and reach 50% of

the Vdd value, to the time when all the outputs from the sweep have settled within

10% of the power rail values. The metastability window for Figure 3.8, as defined

above, would be either W1 or W2, whichever is larger. The metastability window

is a representation of how long the output of the C-element stays in a metastable

condition.

Other than the above metrics, we will also qualitatively analyze the signal in-

tegrity of the output of the C-element in our simulations of the circuit. Based on

44

0

0

VDD

VDD

c VDD

2

a b

W2

W1

0.1VDD

0.9VDD

MW = max(W1,W2)

(fixed) (varied)

Figure 3.8: A Representation of Metastability Window

the qualitative and quantitative analysis, we will choose the better design.

3.5 Experiments

To compare the metastability performance of the 3 traditional C-element imple-

mentations and the 3 modified implementations proposed, we simulated the proposed

designs as well as the traditional designs in HSPICE [26], using a 14nm PTM [27]

model card.

To simulate the metastable condition in the C-element, we fixed the time of

transition of one of the inputs (a) and swept the time of transition of the second

input (b). This caused a short overlap in the input values (as shown in Figure 3.1).

To observe metastability, sweeps of the b signal were conducted (as illustrated in

Figure 3.8) in very fine increments of 1fs. This input waveform set was connected

to all the inputs of all the (6) implementations (3 traditional C-elements and 3 of

45

our modified C-elements). The signal integrity at the output of each C-element was

then compared. We simulated two cases:

• The output c was initially set to 0 and the transitions on the inputs marginally

triggered the output to rise

• The output c was initially set to 1 and the transitions on the inputs marginally

triggered the output to fall

To sweep the transition of input b while the time of transition of input a is fixed,

we chose a window of 140ps around the time of transition of a. For some of these

sweeps, the output held its previous state, for other sweeps, the output went through

a complete transition, flipping to the opposite stable state, and for the remaining

sweeps, the output got stuck at a metastable value. A total of 140,000 sweeps were

performed.

Figures 3.9 and 3.10 show the overlay of all the swept waveforms of the inputs

a and b, the output of the traditional Static C-element and our modified Static C-

element. Figure 3.9 shows the case when the output c was initially set to 0 and

Figure 3.10 shows the case when c was initially set to 1. Note that since our design

is inverting, the output is the compliment of a traditional C-element in all cases.

Each figure shows, from top to bottom, the input a, the input b, the output of a

traditional C-element (c reg), and the output of our proposed C-element (c mod).

We see from Figures 3.9 and 3.10 that the output resolves to a rail value much

faster in our design as compared to the traditional Static C-Element for both the

cases. The metastability window is smaller by a factor of about 3× and 9× for our

design. The traditional Static C-element has the risk of the output being stuck at

a metastable value for a long time (up to 460ps in our experiments), which could

cause unpredictable behavior in the combinational logic that follows the C-element.

46

Figure 3.9: Overlay of c Waveform for Static C-element with c Initially Set to 0

Figure 3.10: Overlay of c Waveform for Static C-element with c Initially Set to 1

47

Figures 3.11 and 3.12 show the overlay of waveforms of the inputs a and b, and

the output of the traditional Sutherland C-element and our modified Sutherland C-

element, for all our sweeps. Each figure shows, from top to bottom, the input a,

the input b, the output of a traditional C-element (c reg), and the output of our

proposed C-element (c mod).

We see that the traditional Sutherland C-element has much better metastability

performance than the traditional Static C-element. This is because of the difference

in the feedback structure between the two C-elements. In the Static C-element,

the feedback and the input drivers may be active at the same time, trying to drive

conflicting values at node N (see Figure 3.2). The Sutherland C-element avoids

such a condition, which prevents a conflicting value being driven from two separate

drivers. This makes the output much less metastable.

Figure 3.11: Overlay of c Waveform for Sutherland C-element with c Initially Set to 0

48

However, the traditional Sutherland C-element, when compared to our modified

version, is worse in terms of resolving metastability. We see that our design of

Sutherland C-element reduces the metastability window by about 3× and 2× as

compared to the traditional Sutherland C-element.

Figure 3.12: Overlay of c Waveform for Sutherland C-element with c Initially Set to 1

Figures 3.13 and 3.14 show the overlay of waveforms of the inputs a and b, and

the output c of the traditional Van Berkel C-element and our modified Van Berkel

C-element, for all our sweeps. Each figure shows, from top to bottom, the input

a, the input b, the output of a traditional C-element (c-reg), and the output of our

proposed C-element (c-mod).

As can be seen, the metastability performance of a Van Berkel C-element is

similar to that of a Sutherland C-element and much better than a Static C-element.

The reason for this is similar to the one given for Sutherland C-element.

49

Figure 3.13: Overlay of c Waveform for Van Berkel C-element with c Initially Set to 0

Figure 3.14: Overlay of c Waveform for Van Berkel C-element with c Initially Set to 1

Additionally, we can also see from Figures 3.13 and 3.14 that our design for Van

50

Berkel C-element is better than the traditional Van Berkel C-element in resolving

metastability. We achieve about 2× and 3× reduction in the metastability window.

The key merit of our proposed design is the fast resolution of metastability at the

output of the C-element. As opposed to the traditional design, where the time needed

to resolve the metastable output to a logic 0 or 1 is large, our design makes sure that

the output is resolved to a stable rail value quickly whenever it is metastable. This

can be seen in Table 3.2 where we report, across all our sweeps, the metastability

window for different circuit implementations of C-elements for both, the traditional

designs and our modified designs.

Recall from the discussion in Section 3.4 that the metastability window is mea-

sured from the time when the output starts to switch and reaches 50% of the rail

value, to the time when all the outputs from our sweeps have settled within 10% of

the rail values. As seen in Table 3.2, our design resolves the metastable output much

quicker as compared to the traditional C-element implementations. We achieve im-

provement in the metastability window (by 2.3× to 9×) compared to the traditional

implementations. This makes our design significantly more robust. We see that our

design is consistently better than the traditional design for all the three styles of

C-elements studied in our work.

As discussed above, the key merit of our proposed design for different C-element

implementations is the fast resolution of metastability at the output. This merit is

quantified by the metastability window which we reported in Table 3.2 for the exper-

iment setup we used. To demonstrate that the improvement in metastability window

follows the same trend for a different sweep increment (of input b), in Table 3.3, we

additionally report the metastability window for all the C-element implementations

for a different simulation where we chose the sweep increments to be 5fs. All the

other simulation parameters were kept same as that of the original simulation setup.

51

Static C-element

Our Design Traditional Design Impr.

c = 0 82.5 ps 315.5 ps 3.8×
c = 1 49.4 ps 460.5 ps 9.3×

Sutherland C-element

Our Design Traditional Design Impr.

c = 0 46.5 ps 160.5 ps 3.4×
c = 1 65.9 ps 154.8 ps 2.3×

Van Berkel C-element

Our Design Traditional Design Impr.

c = 0 63.2 ps 161.4 ps 2.5×
c = 1 56.9 ps 157.7 ps 2.8×

Table 3.2: Metastability Window Comparison

Static C-element

Our Design Traditional Design Impr.

c = 0 57.8 ps 315.5 ps 5.4×
c = 1 34.5 ps 308.6 ps 8.9×

Sutherland C-element

Our Design Traditional Design Impr.

c = 0 37.7 ps 100.8 ps 2.7×
c = 1 40.2 ps 102.9 ps 2.6×

Van Berkel C-element

Our Design Traditional Design Impr.

c = 0 63.2 ps 98.7 ps 1.6×
c = 1 39.4 ps 123.8 ps 3.1×

Table 3.3: Metastability Window Comparison for 5fs Sweeps

We notice that even with the change in the sweep increment, our proposed designs

have a significantly smaller metastability window as compared to the traditional

implementations.

The worst case delay of a C-element is critical in asynchronous circuit design.

In Table 3.4, we report the worst case delay for all the implementations of the C-

element, both for our modifications and the traditional designs. In all our sweeps, we

52

simulate the C-elements in such a way that always the transition on the output c is

caused by a transition on the input a. Thus we measure the worst case delay from the

transition on the input a to the transition in the output c. This has been illustrated

in Figure 3.15. Note that we compute the delay from the time when the transition

on a crosses 50% of Vdd to the time when the output c has settled down within 10%

of the rail values. We do not use the conventional definition of delay (50% value

of a to 50% value of c) because when the output c is metastable, it reaches 50% of

VDD quickly, but often stays there for a long time. In such cases, the conventional

definition of the delay would not be a true representation of the actual delay of the

C-element.

VDD

0

b

c

a (varied)
(fixed)

VDD

VDD

delay

50%

10%

Figure 3.15: Description of the Delay of the C-element

We can see from Table 3.4 that the worst case delay is better for our modified

designs of a C-element (by 2× to 6×) compared to the traditional designs. The worst

case delay is better for our designs for all the implementations of the C-element. This

53

Static C-element

Our Design Traditional Design Impr.

c = 0 157.8 ps 345.7 ps 2.2×
c = 1 80.2 ps 481.8 ps 6.0×

Sutherland C-element

Our Design Traditional Design Impr.

c = 0 78.8 ps 176.8 ps 2.2×
c = 1 83.7 ps 168.8 ps 2.0×

Van Berkel C-element

Our Design Traditional Design Impr.

c = 0 83.7 ps 171.4 ps 2.0×
c = 1 69.4 ps 168.9 ps 2.4×

Table 3.4: Worst Case Delay Comparison

enables designers to design faster circuits using our design of a C-element.

In the next four tables we report the power consumption of different circuit

implementations for C-elements, both for the traditional designs and our modified

designs. To compute power, we define a time window (PW), which is shown in

Figure 3.16. We chose the time window in which the output (c) of a C-element

goes through two different transitions. The first transition is the one where c is

initially set to 1 and the sweep of transitions on one of the inputs (b) causes the

output to transition to 0 for some sweeps and stay at 1 for the other sweeps. In all

these sweeps we witness many cases when the output is stuck at a metastable state.

The other transition on the output in our window PW is the opposite of the first

transition we just described. Thus, we include both the possible metastability cases

while computing power consumed by a C-element. The size of PW window for our

simulations was 4ns. Figure 3.16 is a representative figure of our simulation setup

for computing power.

To present the results of Tables 3.5 and 3.6, we first compute the average power

(A) consumed by different C-element implementations being compared, for each

54

sweep

b

a

c

PW = 4ns

Figure 3.16: Time Window for Computing Power

Static C-element

Our Design Traditional Design Impr.

0.765 µW 0.317 µW −2.4×

Sutherland C-element

Our Design Traditional Design Impr.

0.365 µW 0.155 µW −2.3×

Van Berkel C-element

Our Design Traditional Design Impr.

0.41 µW 0.178 µW −2.3×

Table 3.5: Comparison of Average Power Consumption Averaged over Sweeps

sweep. This average power is measured over the time window PW described above.

In Table 3.5, we report, across all our sweeps, the average value of A. It is to

be noted that the average value of A for our proposed designs is more than the

traditional designs (by up to 2.4×) for all the implementations of the C-element.

In Table 3.6, we report, across all our sweeps the maximum value (Amax) of all

the A values. Again, Amax is larger for our designs as compared to the traditional

C-element (by up to 4×), over all the implementations of the C-element.

55

Static C-element

Our Design Traditional Design Impr.

2.077 µW 0.513 µW −4.0×

Sutherland C-element

Our Design Traditional Design Impr.

0.808 µW 0.263 µW −3.0×

Van Berkel C-element

Our Design Traditional Design Impr.

0.999 µW 0.281 µW −3.6×

Table 3.6: Comparison of Average Power Consumption Maximum over Sweeps

The average power consumption for our design is more than the traditional design

of a C-element as seen in Tables 3.5 and 3.6. This is because our modifications of

the C-element have extra devices that contribute in resolving metastability at the

output. The power consumed by these extra devices adds to the average power

consumption.

To report the results of Tables 3.7 and 3.8, we first compute the peak power P

(for each sweep) consumed by the different implementations of the C-element over

the time window PW described earlier in this section.

In Table 3.7, the average value of P is reported across all our sweeps. We see

that the average P value is more for our design (by up to 3.2×) compared to the

traditional design.

To report the numbers in Table 3.8, we compute the maximum value Pmax of P

from all our sweeps. We see that the maximum P value is more for our design (by

up to 2.8×) compared to the traditional design.

The peak power consumed by our design is more than the traditional design for

all the implementations of the C-element because of the fact that in our design, the

NMOS and PMOS of the output driver are momentarily on together. During that

time, the peak power consumption is high.

56

Static C-element

Our Design Traditional Design Impr.

107.05 µW 41.43 µW −2.6×

Sutherland C-element

Our Design Traditional Design Impr.

113.28 µW 35.67 µW −3.2×

Van Berkel C-element

Our Design Traditional Design Impr.

131.31 µW 42.11 µW −3.1×

Table 3.7: Comparison of Peak Power Consumption Averaged over Sweeps

Static C-element

Our Design Traditional Design Impr.

110.68 µW 48.20 µW −2.3×

Sutherland C-element

Our Design Traditional Design Impr.

116.17 µW 41.68 µW −2.8×

Van Berkel C-element

Our Design Traditional Design Impr.

135.02 µW 53.80 µW −2.5×

Table 3.8: Comparison of Peak Power Consumption Maximum over Sweeps

An important point to note about all the absolute numbers for metastability

window, delay and power comparisons presented in this section is that all these

values are obtained using our simulation setup. These numbers will change with

the change in simulation parameters (sweep window and sweep increment value).

However, the improvement in metastability performance of our proposed design of

C-element is maintained for different values of sweep increments.

The product of width (W) and length (L) of a transistor is a representative

number for the on-chip area it occupies. In Table 3.9 we report the summation of

the product (W*L) for all the devices (
∑

WiLi) used in implementing different circuit

implementations for the traditional and our C-elements. Is is to be noted that our

57

Static C-element

Our Design Traditional Design Impr.

0.0284 µm2 0.0157 µm2 −1.8×

Sutherland C-element

Our Design Traditional Design Impr.

0.0259 µm2 0.0132 µm2 −1.9×

Van Berkel C-element

Our Design Traditional Design Impr.

0.0259 µm2 0.0132 µm2 −1.9×

Table 3.9: Comparison of
∑

WiLi for C-elements

C-element design uses more on-chip area (by about 1.9×) when compared to the

traditional design.

We observe that our design needs more area and consumes more power as com-

pared to the traditional design. However, these overheads usually do not impact

the overall area and power consumption of an IC significantly. This is because the

number of C-elements in an IC is usually limited. Robust operation of a C-element

is a significantly bigger concern, as it affects the functionality and yield of an IC.

3.5.1 Monte Carlo Simulations for Process Variation

Since our design uses high switchpoint and low switchpoint inverters with fine-

tuned switchpoints, it is necessary to check the robustness of the design against

process variations, to ensure that the metastability performance is not affected. To

validate the metastability performance of our circuit with process variations taken

into account, we performed Monte Carlo simulations in HSPICE.

To simulate the circuit behavior with process variation effects, it is necessary to

first identify the set of variation sources. The authors in [32] show that the threshold

voltage (Vth) and the channel length (L) are the primary sources of variations in

circuit behavior. For 14nm FinFETs, the ratio of standard deviation to mean for

58

channel length (σL) is 1.3% [17]. The variations in threshold voltage are caused by

short channel effect and random dopant effect, and the total standard deviation of

threshold voltage variation is a summation of the deviation caused by short channel

effect and random dopant effect, since both these effects are independent sources of

fluctuations [17]. However, in a sub-45nm FinFET device, if the channel doping is

smaller than 1e17cm−3, the variation in Vth is immune to random doping concentra-

tions [31]. In our analysis, we thus accounted for variations in Vth caused by short

channel effect. The ratio of standard deviation to mean is 3.2% for variations in Vth

caused by short channel effect [17].

We adjusted the Vth variation depending on the length and width of the device,

as explained in [10]. The authors in [10] explain that the standard deviation of the

threshold voltage σVth
is a function of the square root of the width of the device. They

also state that the standard deviation of the threshold voltage is lower-bounded by

half the σVth
of a minimum sized device. The relation between σVth

and the width

W of a device as given in [10] is:

σVth
(W) = max{σVth

(Wmin)
√

Wmin

W
,
σVth

(Wmin)

2
}

To take both the length and width of the device into account, we used the fol-

lowing formula to calculate the effective σVth
of a device having length (L) and width

(W) different from the minimum values (Wmin, Lmin):

σVth
(W,L) = max{σVth

(Wmin, Lmin)
√

WminLmin

WL
,
σVth

(Wmin,Lmin)

2
}

The 3-sigma deviation in gate length for a FinFET device with gate length of

16nm is shown to be 0.7nm in [17]. However, the absolute deviation in gate length

due to process variations remains constant for a given process. Thus, the ratio

of standard deviation to mean (σL) for devices with gate length other than 16nm is

different than the σL for a device with gate length 16nm. Therefore, we also adjusted

the standard deviation in length (σL) for a device with channel length (L) using the

59

following formula:

σL(L) = σL(16nm){16nm
L

}

Due to run time limitation of simulations, we varied the channel length and

threshold voltages of selected devices in the traditional and our modified C-elements.

We took process variations into account in the devices that contributed in the latching

action in a C-element, since the latching mechanism significantly affects the metasta-

bility performance. As a result, the devices that were not varied in the Monte Carlo

simulations are as follows:

• For the Traditional Static C-element (Figure 3.2) and the Traditional Suther-

land C-element (Figure 3.3), the devices M1, M2, M3 andM4 were not varied.

• For the Modified Static C-element (Figure 3.5), the devices M1 to M7 and the

devices in INV C were not varied.

• For the Modified Sutherland C-element (Figure 3.6), the devices M1 to M4,

M11, M12, M13 and the devices in INV C were not varied.

• For the Modified Van Berkel C-element (Figure 3.7), the devices M11, M12,

M13 and the devices in INV C were not varied.

In this section, we present the results of our Monte Carlo simulations for process

variations, in the form of superimposed waveforms of inputs a and b, and the out-

put c of the traditional C-element and our modified C-element, for all our Monte

Carlo simulations, similar to the waveforms presented earlier in this section. These

waveforms were obtained from a fine sweep of the transition time of b (refer to the

beginning of this section) in increments of 40 fs in each sweep. For each unique b

signal, we ran 100 Monte Carlo sweeps with different values of channel length (L)

and threshold voltage (Vth) for the devices chosen for variation in our Monte Carlo

60

simulations. The variation in values of L and Vth was taken to be ±3σ from the mean

value. We chose a window of 140 ps around the transition time of input a of the C-

element, and swept the transition time of input b in that window in 40fs increments.

Thus, each set of sweeps had 350,000 simulations (3500 unique b signals and 100

Monte Carlo sweeps for each for each unique b signal). The run time for simulations

held us from doing more Monte Carlo simulations with a sweep increment finer than

40fs.

Figure 3.17: Overlay of Monte Carlo Waveforms for Static C-element with c Initially Set
to 0

Figures 3.17 and 3.18 show the overlay of 350,000 waveforms for the Static C-

element for the case when the output c is respectively set to 0 and 1 initially. Fig-

ures 3.19 and 3.20 show similar waveforms for the Sutherland C-element and Fig-

ures 3.21 and 3.22 show the overlay of waveforms for the Van-Berkel C-element. All

61

of these figures show, from top to bottom, the input a, the input b, the output c

of the traditional C-element (c reg.) and the output c of our modified C-element (c

mod.).

Figure 3.18: Overlay of Monte Carlo Waveforms for Static C-element with c Initially Set
to 1

62

Figure 3.19: Overlay of Monte Carlo Waveforms for Sutherland C-element with c Initially
Set to 0

Figure 3.20: Overlay of Monte Carlo Waveforms for Sutherland C-element with c Initially
Set to 1

63

Figure 3.21: Overlay of Monte Carlo Waveforms for Van Berkel C-element with c Initially
Set to 0

Figure 3.22: Overlay of Monte Carlo Waveforms for Van Berkel C-element with c Initially
Set to 0

64

As can be qualitatively seen from all the figures (Figure 3.17 to 3.22), the modified

design of all the C-element implementations shows significantly better metastability

performance with process variations taken into account. The output signals in the

modified design settle much faster to a rail value as compared to the traditional

implementation of the C-element. This shows that the proposed design is robust

against process variation effects.

3.6 Conclusion

Asynchronous circuits are preferred for low power and high performance appli-

cations. Unlike synchronous circuits, metastability has not been heavily addressed

in asynchronous circuit design. In this work, we study the metastability characteris-

tics of the C-element, which is a fundamental building block in asynchronous circuit

design. C-elements are used in implementing the control in an asynchronous design.

The output of the C-element is prone to metastability when the input values overlap

briefly. We compare the metastability response of three popular circuit implemen-

tations of the C-element. Additionally, we propose a novel circuit-level design of

a robust C-element which drastically reduces the likelihood of a metastable value

at the output. Our approach uses independent paths with different switchpoint in-

verters for rising and falling transitions on the output. Experimental results show

that the proposed design achieves a significantly better metastability response as

compared to the traditional design of a C-element (with up to 9× improvement in

metastability window). With the improved metastability response, the worst case

delay for our design is also reduced because the output of our C-element is closer to

the rails. The improved metastability response is achieved at the cost of area and

power consumption.

65

3.7 Summary

In this chapter, we compare the metastability performance of three different im-

plementations of C-element (Static, Sutherland and Van Berkel C-element) and pro-

pose our metastability reducing latch based scheme to improve the design of all the

three C-element implementations being compared. With a nominal overhead of area

and power consumption, we drastically reduce the possibility of metastability at the

output of the C-element.

66

4. CONCLUSIONS AND FUTURE WORK

In this thesis, we propose the design of a metastability tolerant latch which uses

two independent paths to sample a metastable signal. These independent paths con-

sist of inverters with different switchpoints, such that their response to a metastable

signal is different. This ensures that metastability is resolved in a short duration.

The use of this special latch based approach is demonstrated in two different circuits;

in the design of a synchronizer (which is used at clock domain boundaries in syn-

chronous circuit design) and in a C-element (which is a fundamental building block

in asynchronous circuit design). Our experimental simulations demonstrate a signif-

icant improvement in the metastability performance of both the circuits mentioned

above.

4.1 Future Work on Synchronizer Design

This thesis addresses the issue of synchronization of data between clocks operat-

ing at high frequencies. Our proposed design of the synchronizer (with a specialized

flip-flop as the first flip-flop of the synchronizer) achieves better metastability per-

formance, providing significantly better setup margin to the second flip-flop of the

synchronizer. The use of two specialized flip-flops may be explored in the future, to

allow synchronization at a higher frequency than demonstrated in our experiments,

with an added area and power overhead.

4.2 Future Work on C-element Design

Metastability issues in asynchronous circuits have also been addressed in this

thesis, using the widely used C-element circuit as a reference candidate. Our modified

designs for three popular circuit-level implementations of a two input C-element show

67

notable improvement in the metastability window of the C-element. Future work in

this area would be to extend the use of this approach to design multi-input C-elements

(with more than two inputs) and achieve similar metastability response.

68

REFERENCES

[1] Z Al-Tarawneh, G Russell, and A Yakovlev. An analysis of SEU robustness

of C-element structures implemented in bulk CMOS and SOI technologies. In

International Conference on Microelectronics, ICM ’10, pages 280–283, Cairo,

Egypt, 2010. IEEE.

[2] P Balasubramanian and HR Arabnia. Computation of error resiliency of Muller

C-element. In International Conference on Computational Science and Com-

putational Intelligence, CSCI ’14, pages 179–180, Las Vegas, NV, USA, 2014.

IEEE.

[3] S Beer and R Ginosar. A model for supply voltage and temperature variation

effects on synchronizer performance. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 23(11):2461–2472, October 2015.

[4] M Conrad, K Guttag, J Schabowski, D Roskell, J Carey, and B Shore. Syn-

chronizer circuit with dual input. US Patents and Trademarks Office, October

1985. US Patent 4,544,851.

[5] G Couranz and D Wann. Theoretical and experimental behavior of synchro-

nizers operating in the metastable region. IEEE Transactions on Computers,

24(6):604–616, June 1975.

[6] W Dally. Synchronizer design. Stanford University, November 1998.

http://cva.stanford.edu/books/dig sys engr/lectures/l14.pdf.

[7] W Dally and J Poulton. Digital Systems Engineering. Cambridge University

Press, New York, NY, USA, June 1998.

69

[8] G Dukes. High speed data synchronizer. US Patents and Trademarks Office,

July 1992. US Patent 5,132,990.

[9] G Fuchs, M Fugger, and A Steininger. On the threat of metastability in an

asynchronous fault-tolerant clock generation scheme. In 15th IEEE Symposium

on Asynchronous Circuits and Systems, ASYNC ’09, pages 127–136, Chapel

Hill, NC, USA, 2009. IEEE.

[10] R Garg and SP Khatri. A variation tolerant combinational circuit design ap-

proach using parallel gates. In Analysis and Design of Resilient VLSI Circuits,

pages 153–171. Springer, 2010.

[11] R Ginosar. Fourteen ways to fool your synchronizer. In Proceedings of the 9th

International Symposium on Asynchronous Circuits and Systems, ASYNC ’03,

pages 89–96, Vancouver, BC, Canada, 2003. IEEE Computer Society.

[12] G Goldrian. Synchronizing logic avoiding metastability. US Patents and Trade-

marks Office, August 1998. US Patent 5,793,227.

[13] K Guttag and J Carey. Synchronizer circuit. US Patents and Trademarks Office,

September 1984. US Patent 4,469,964.

[14] G Keeler. Optical interconnects to silicon CMOS using densely-integrated op-

toelectronics. Integrated Optoelectronics: Proceedings of the First International

Symposium, 2002(4):209–236, September 2002.

[15] M Krstić, E Grass, F Gürkaynak, and P Vivet. Globally asynchronous, locally

synchronous circuits: Overview and outlook. IEEE Design & Test of Computers,

24(5):430–441, September 2007.

[16] Y Li, P Chuang, A Kennings, and M Sachdev. Voltage-boosted synchronizers. In

Proceedings of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI

70

’15, pages 307–312, Pittsburgh, Pennsylvania, USA, 2015. ACM.

[17] Y Li, CH Hwang, and HW Cheng. Process-variation-and random-dopants-

induced threshold voltage fluctuations in nanoscale planar MOSFET and bulk

FinFET devices. Microelectronic Engineering, 86(3):277–282, March 2009.

[18] S Lu. Improved design of CMOS multiple-input Muller-C-elements. Electronics

Letters, 29(19):1680–1682, September 1993.

[19] A Mandal. Efficient Design and Clocking for a Network-on-Chip. PhD thesis,

Texas A&M University, College Station, TX, USA, May 2013.

[20] JP Murphy. Design of latch-based C-element. Electronics letters, 48(19):1190–

1191, September 2012.

[21] T Polzer and A Steininger. Metastability characterization for Muller C-elements.

In 23rd International Workshop on Power and Timing Modeling, Optimization

and Simulation, PATMOS ’13, pages 164–171, Karlsruhe, Germany, 2013. IEEE.

[22] B Sandhu. Synchronizer circuit and method for reducing the occurrence of

metastability conditions in digital systems. US Patents and Trademarks Office,

April 1996. US Patent 5,510,732.

[23] M Shams, JC Ebergen, and MI Elmasry. A comparison of CMOS implemen-

tations of an asynchronous circuits primitive: the C-element. In International

Symposium on Low Power Electronics and Design, ISLPED ’96, pages 93–96,

Monterey, CA, 1996. IEEE.

[24] R Sowell and R Pieters. Finite metastable time synchronizer. US Patents and

Trademarks Office, April 1989. US Patent 4,820,939.

[25] IE Sutherland. Micropipelines. Commun. ACM, 32(6):720–738, June 1989.

71

[26] Synopsys. HSPICE. http://www.synopsys.com/tools/Verification

/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx. Ac-

cessed: 10/07/2013.

[27] Arizon State University. Predictive Technology Model. http://ptm.asu.edu.

Accessed: 10/21/2013.

[28] H Veendrick. The behaviour of flip-flops used as synchronizers and prediction

of their failure rate. IEEE Journal of Solid-State Circuits, 15(2):169–176, April

1980.

[29] J Walker and A Cantoni. A new synchronizer design. IEEE Transactions on

Computers, 45(11):1308–1311, November 1996.

[30] TY Wuu and SBK Vrudhula. A design of a fast and area efficient multi-input

Muller C-element. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 1(2):215–219, June 1993.

[31] W Zhao and Y Cao. Predictive technology model for nano-CMOS design explo-

ration. ACM Journal on Emerging Technologies in Computing Systems (JETC),

3(1):1–17, April 2007.

[32] W Zhao, F Liu, K Agarwal, D Acharyya, SR Nassif, KJ Nowka, and Y Cao.

Rigorous extraction of process variations for 65-nm CMOS design. IEEE Trans-

actions on Semiconductor Manufacturing, 22(1):196–203, February 2009.

72

