
A STATISTICAL MODEL FOR ESTIMATING MEAN ANNUAL

AND MEAN MONTHLY FLOWS AT UNGAGED LOCATIONS

A Thesis

by

ZUBIN ROHINTON SUKHESWALLA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Civil Engineering



A STATISTICAL MODEL FOR ESTIMATING MEAN ANNUAL
AND MEAN MONTHLY FLOWS AT UNGAGED LOCATIONS

A Thesis

by

ZUBIN ROHINTON SUKHESWALLA

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Francisco Olivera
(Chair of Committee)

Anthony Cahill
(Member)

Raghavan Srinivasan
(Member)

Paul Roschke
(Head of Department)

December 2003

Major Subject: Civil Engineering



iii

ABSTRACT

A Statistical Model for Estimating Mean Annual and Mean

Monthly Flows at Ungaged Locations. (December 2003)

Zubin Rohinton Sukheswalla, B.E., Bombay University, India

Chair of Advisory Committee: Dr. Francisco Olivera

Prediction of flow is necessary for planning and management of water resources. The

objective of this study is to estimate mean annual flows for the USA and mean monthly

flows for the rivers of central Texas based on the precipitation and their watershed

characteristics. Flow varies largely with topographic and climatic parameters and hence

generalization of runoff models is difficult. This model aims at providing a prediction at

ungaged locations with very few parameters that are easily available and measurable.

Scatter in predicted data will be seen at the annual and monthly time scale in the range

selected for each data. This model will work on annual and monthly means to reduce the

scatter and produce better estimates.
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CHAPTER I

INTRODUCTION

Rain is a very important and necessary event for all living beings. Humans, however,

require water for more than just daily essential chores. Water forms an integral part of the

socio-economic structure.

Figure 1. Hydrological Water Balance Model (Narula, 2003)

1Figure 1 refers to the natural process of creation of flow due to rain. A major part of the

rain is lost by evaporation back into the atmosphere. The remaining infiltrates to form

ground water. If the soil gets saturated and cannot take any more infiltration then it

overflows and this overflow becomes surface water or runoff. Surface water also has its

The model journal is The ASCE Journal of Water Resources Planning and Management.
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sources in ground water, which sometimes makes it way back into streams or seas due to

the geology of the area. Some ground water never joins surface water again if it gets

trapped in perched aquifers. The contribution of surface water to our daily needs cannot be

understated. The quantification of surface water based on the contribution that

precipitation makes to it is very useful for planning, management and preservation of this

resource. Therefore, the quantification and estimation of surface water based solely on

precipitation and the geography of the drainage area is the objective of this study.

The amount of flow at any point depends on the meteorological, topographical and

hydrogeological characteristics of that region. Figure 2 is quite similar to Figure 1; only

more in detail about the vertical and lateral processes that occur during the creation of

flow.

Figure 2. Lateral and Vertical Hydrological Processes (Becker et al., 1999)
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The streamflow at any point is the cumulative sum of overland flow, interflow and base

flow (Becker et al., 1999). Overland flow is caused by lateral flow from depression

storage. Interflow is caused by lateral flow from soil water as it vertically percolates

through different soil layers. Base flow is the lateral flow of ground water that joins the

streamflow due to the geology of the area (Becker and Braun., 1999).

Flow is dependent on physical processes like precipitation, evapotranspiration,

groundwater inflow and ground water outflow. These are the primary processes of

physically-based water balance models.

Physically-based models do not apply to monthly and annual time scales because they

overlook the distribution of precipitation over time. Statistical models constitute an

alternative variable. The statistical model will have a dependent variable and independent

parameter(s). The dependent variable will be flow and the independent parameters will be

precipitation and watershed characteristics. The watershed characteristics will be average

slope, average curve number, area, and regulated area of the watershed. The statistical

model will take the following form:

Q = (P, S, CN, A, RA)

where,     Q [L3T-1] = Flow, P [LT-1] = Precipitation, S = Slope, CN = Curve Number, A

[L2] = Area, and RA = Regulated Area

The precipitation is the only parameter varying with time whereas slope, curve number,

area and regulated area are constants for each watershed.
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CHAPTER II

LITERATURE REVIEW

Traditionally, hydrological models have been modelled as physically-based or

conceptual depending on the complexity and extent of completeness of the structure of the

model (Beven, 1989; Refsgaard et al., 1989; Bergstrom, 1990; Refsgaard, 1996,1998). In

physically-based water balance models, all the physical phenomena like precipitation,

evapotranspiration, ground water inflow, ground water outflow and storage need to be

quantified and modeled. This form of modeling is data intensive like the Colorado s

Decision Support Systems  (CDSS) (StateWB model 2001). Models are further classified

into lumped or distributed, based on basin terrain (Bergstrom and Graham, 1998). A

statistical model derives an empirical relationship between flow, precipitation and any

other parameters that are included in the model. The relationship is derived based on

observed data for all the dependent and independent parameters in the model. The best

relationship is identified using suitable statistical parameters.

Becker and Braun (1999), and Wolock and McCabe (1999) stated that large scale

modeling of streamflow could be done efficiently using simple models. These models

maybe lumped or distributed as the case maybe. Distributed models require high

resolutions for efficient modeling like the MIKE SHE model (Ewen et al., 1999) and the

TOPMODEL (Beven et al., 1994). However, for large scales such high resolution is not

always available. Also, distributed models are generally not practical and efficient for

large-scale modeling (Becker and Braun., 1999). Becker and Pfützner (1987) even say that
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statistical lumped models that fulfill large scale modeling requirements of resolution and

computation time are better.

There have been studies performed on the Niger basin (Olivera et al., 1995) using

statistical models that aim at determining the runoff fraction for the basin by comparing

mean annual precipitation and mean annual flow in the basin. Other studies with similar

objectives have been carried out for the San Antonio-Nueces basin of Texas by Saunders

and Maidment (1995) and for the Souss basin of Morocco by Olivera (1995). Results of

such researches focus on trends in a particular basin. Studies that aim at developing a

general relationship between precipitation and flow for numerous watersheds on a multi-

watershed scale are not well represented. This study will try to find a statistical

relationship between flow, precipitation, and watershed parameters (like slope, curve

number, area of watershed and regulated area of the watershed). Each of these parameters

affects the flow in a stream in their own respective way. A related study conducted to

evaluate the water balance model performance for the conterminous US showed that the

central region of USA provided uncertain runoff estimates (Hay and McCabe, 2002).

Hay s study employs a monthly time scale and 44 stations nationwide. The results

motivated this study for a statistical relationship for the conterminous USA and the

Region 12. This study, however, will use 838 flow stations for the conterminous USA and

56 flow stations for Region 12. Hay and McCabe (2002) also evaluated the performance

of the model based on variation in each of the parameters. It was revealed that some

parameters did not drastically affect the model for large changes in their values. The

analysis of this study shall also include a similar investigation into the sensitivity of the
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model parameters. Another study conducted by Wurbs (1999) evaluated the performance

of different hydrologic models for watersheds in Texas. This study dealt with comparing

the author s ratio-based model with more complex hydrologic models like the Soil Water

Assessment Tool (SWAT). In the above study, the results produced by the ratio-based

approach adopted were very similar to those produced by the other models. This study

draws inspiration from Wurbs  (1999) work and deals with further investigation into the

estimation of flows at ungaged locations using a similar model. A study conducted for the

state of Idaho by Hortness and Berenbrock (2001) of the US Geological Survey (USGS)

estimated monthly and annual streamflow statistics at ungaged sites in Idaho. The study

used precipitation as the only variable parameter in the regression equation. The other

parameters were watershed characteristics that are constant for each watershed. The study

linearized a non-linear form of equation for its estimation of streamflow statistics. This

study shall also linearize a non-linear form of statistical equation with precipitation as the

only variable parameter besides watershed characteristics for the conterminous USA. This

study shall also supply a non-linear form of statistical equation with the same parameters

as the linear form.

Modeling strategies can be debated forever if the aim of the modeling is forgotten

(Bergström and Graham, 1998). General opinion is that physically-based models are better

than statistical models because of the exact theoretical representation of physical

phenomena, and hence requiring less calibration or tuning of parameters (Bergström and

Graham, 1998). Statistical models on the other hand, are practical when a compromise

needs to occur between the model s data demands and obstacles in operational application
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of the data (Bergström and Graham, 1998). A strategy needs to chosen that is appropriate

for the problem being solved (Refsgaard, 1998).

We will use a statistical model because work done previously suggest that the annual and

monthly time scales are best represented by them due to the lack of data for high

resolutions.
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CHAPTER III

METHODOLOGY

A. Precipitation and Flow Data

The flow and precipitation datasets were available with two basic files namely,

i. Geographic Location File

ii. Value File

The geographic location file is necessary to know the position of the gaging and recording

stations and to spatially represent them. The value file is used in the latter half of the

project when all the parameters are ready for computation purposes. It should also be

noted that each of the stations has a unique StationID so that later on we can relate the

location file and value file.

The flow data was available in daily, monthly and annual format. Hence, the monthly flow

dataset was readily available and did not require much formatting to make it ready for use.

The flow stations with too small or too large drainage areas were discarded. Exceptionally

large watersheds will not be included due to the large time of concentration. Small

drainage areas will not be included for reasons of inaccuracy in delineation. The flow data

distribution can be seen in Figure 3. Figure 4 shows the area (in sq. miles) per flow station

in each hydrologic region of USA.
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Figure 3. Distribution of Flow Stations

Figure 4. Area per Flow Station for Hydrologic Regions of USA

The precipitation value file obtained from the United States Historical Climatology

Network (USHCN, 2003) was available in a daily format. Figure 5 shows the distribution

of precipitation over USA. Figure 6 shows the area per flow station in each hydrologic

region of USA.
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Figure 5.  Distribution of Precipitation Stations

Figure 6. Area per Precipitation Station for Hydrologic Regions of USA

B. Spatial Analysis

B1. Delineation of Stream Network

A Digital Elevation Model (DEM) was used to model the geography of the study area. A

DEM is a grid of square cells where each cell represents the elevation value at that
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location. The size of each cell determines the resolution of the DEM. Larger the cell

coarser the resolution. For large areas like the conterminous USA coarser resolutions are

preferred over finer resolutions due to lower computational times and availability issues.

The elevation value for each cell is an average over all the elevations inside the cell. The

assumption here is that for the extent of the study area this approximation is not a cause of

a significant error. The user ultimately needs to make a decision regarding the resolution

to be adopted for the DEM for the study area under consideration. In this study, a 500-

meter DEM was used.

The projection of the DEM should be noted so that henceforth all spatial representation is

in the same projection. Therefore, the geographic locations files will be imported into a

GIS and reprojected. The Digital Elevation Model (DEM) was filled using the fill

command in Arc Info Workstation 8.2. The fill command is an automatic method to fill all

depressions that are caused in the elevation surface due to interpolation errors between

surface values (Refer Figure 7).

Figure 7. Creation of Interpolated Depressions

Depression created
due to Interpolation
Error

Measured surface values

Interpolated
Surface

Actual
Surface
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However, depressions can also be a feature of the landscape. The four major depressions

of USA are Salt Lake, Death Valley, Salton Sea and Saline Valley. The latitudes and

longitudes of the lowest elevation in these inland depressions were available at the

aforementioned source. The grid cells with these latitudes and longitudes were then

identified on the DEM grid. These four grid cells were allotted a NODATA cell value. A

NODATA value means the absence of data. In this case its physical meaning is a sinkhole.

A sinkhole is defined as one that is unplugged and drains infinitely. Now, when the DEM

is filled all the other depressions are filled except for the depressions that have been

specifically isolated.

After the DEM is filled, it is ready for use to create a stream network. Firstly, the flow

direction grid is created using the flowdirection command in ArcInfo Workstation 8.2.

The flow direction grid is one where each cell is assigned a value based on the direction in

which it drains. Secondly, the flow accumulation grid is created using the

flowaccumulation command. The flow accumulation grid is one where each cell is

assigned a value based on the area that drains into it. A cell value in the flow

accumulation grid is the number of cells that drain into each cell. The stream network is

created using a threshold value. A threshold value is a condition on the flow accumulation

grid. A threshold value means that only those cells in the flow accumulation grid with cell

values higher than the threshold value will be selected for viewing purposes. The

threshold value is at the discretion of the user. A high threshold value means that a stream

network with only major streams will be viewed. This is generally preferred for studies

with large study areas since small streams create unnecessary clutter in the view. A
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threshold value of zero will create a stream network that shows all the streams big or

small that drain the study area.

B2. Selection of Flow Stations based on drainage area criteria

The flow stations with too small or too large drainage areas will be discarded to ensure

that these watersheds do not cause inaccuracies (viz., extremely large time of

concentration, and inaccuracy in detailing respectively) in the study s results.

Exceptionally large watersheds will not be included due to the large time of concentration

within them. Considering an average flow velocity of 0.3 m/s, for example, the time of

concentration for watersheds greater than 50,000 sq. km. was found to be large enough to

affect the monthly time scale. This means that on a monthly time scale a significant part of

the precipitation in one month could reach the flow station in the next month. For this

reason, large drainage areas were defined as those with 50,000 sq. km. or more area. Also,

small drainage areas are defined as those that have less than 250 sq. km. of drainage area.

Considering the DEM resolution of 500m, 250 sq. km. is only 1000 cells, which is too

small. Because of the large scale of this project, the 500m resolution DEM was used

although 30m DEMs are available for the whole country. The selection of the flow

stations based on the drainage area resulted in the number of flow stations dropping from

1614 to 1230, a 23.8% drop.

B3. Selective Snapping of Flow Stations

Snapping is the process of correcting the location of a flow station so that it coincides with

the delineated stream. In this study, the snapping is automated based on a condition. The
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flow station will be snapped to the stream network grid cell within a radius defined by the

user with the highest drainage area. This method has been devised to make sure that the

flow stations fall directly on the stream network. The radius of this method is incremented

in steps of one cell size of the stream network. The first radius used is the cell size and the

last radius used is ten times the cell size. The drainage areas of the grid cell to which the

flow stations are snapped will be then compared to the documented drainage area

(D.A.doc) of the flow station. The documented drainage area is available at the USGS

website for all USGS gaging stations. If the new drainage area (D.A.obs) is within ± 5% of

D.A.doc then it is assumed that the flow station has been snapped successfully. Figure 8

presents the snapping procedure.

Figure 8. Progressive Snapping
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The criterion has been devised in a way to optimize capturing of all possible flow stations

as they are progressively snapped and transit to greater than 105% of D.A.doc. The

assumption here is that all the flow stations will at some snapping distance appear in the

selection range and get selected. There are a few exceptions when flow stations jump the

selection range from under -5% to over +5%.

ArcInfo Workstation is the snapping environment. Arc Macro Language (AML), shown

below, is used iteratively as a number of steps and commands are involved in preparing

the existent data after snapping.

grid
flwgr500 = snappour(flwalbgr500,fac,500)
one500 = flwgr500 / flwgr500
fac500 = one500 * fac
flow500 = gridpoint(fac500,value)
flwstn500 = gridpoint(flwalbgr500,value)
&return

The above AML is for a snapping distance of 500 meters. The value 500 can be replaced

by any snapping distance the user chooses. The flowalbgr500 is the grid created out of the

flow stations that have made it to the 500-meter snapping radius. The ArcInfo command

used is snappour. Snappour works in a manner that it snaps the grid cell under

consideration to the grid cell with the highest user defined variable within a variable. The

variable is in the form of the value of another grid. In this case, a grid is created out of all

the flow stations that passed through the drainage area selection criterion. The grid is

created using the Theme/Convert to Grid menu tab after the Spatial Analyst is loaded from

the File/Extensions menu tab in ArcView GIS 3.2. The cells in this grid will be snapped
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by the snapping command. The variable grid is the flow accumulation grid. The first

radius of snapping (snapping distance) is 500m. The syntax of the snappour is:

OutputGrid=snappour(GridToBeSnapped,ValueGrid, SnappingDistance)

The snappour command is carried out at the Grid: prompt in ArcInfo Workstation. The

prompt can be changed form Arc: to Grid: by typing grid at the Arc: prompt. Now, the

flow stations (represented by the grid cells) have been snapped to some location within the

snapping radius where the flow accumulation is the greatest. Since the flow accumulation

grid and the output grid are two different layers, we need to transfer the new flow

accumulation value underneath each snapped flow station to the flow station. For this, a

few steps are carried out in Arc Macro Language (AML) and finally a point shapefile is

created from the grid using the command gridpoint. The flow accumulation transferred to

the flow stations is the new drainage area in cell units. D.A.obs can be found by multiplying

the flow accumulation value in cell units by the cell area (500*500 m2.).

Now, this point shapefile is analyzed to see if the D.A.obs is within 5% of D.A.doc. As

described before, the flow stations with D.A.obs > 105% of D.A.doc will be removed from

the flow station shapefile. Also, those stations with D.A.obs within ± 5% of D.A.doc will be

selected and kept aside. The stations with D.A.obs < 95% of D.A.doc will be selected and

those flow stations will be used in the next snapping iteration. The next iteration will have

its radius incremented to twice the cell size. This process will be carried on until the

number of flow stations that make it through the selection criteria is very less or all the

stations are greater than 105% of D.A.doc. The limit in this study was a snapping distance

of 5000m. Finally, all the flow stations that made it through were gathered together and a
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flow station shapefile was created. This flow station shapefile was used henceforth in all

the analysis in the rest of the study.

The snapping of flow stations was an important step in the development of the data. After

the selection procedure, the number of stations dropped from 1230 to 865, a 29.67% drop

(a 46.41% drop from the original number of flow stations). The snapping summary is as

shown in Table 1.

Table 1. Results of Snapping

Snap  Total No. No. of Stations No. of Stations % Selected

Distance  of Stations  Selected  Dropped

0 1230 377 89 30.65
500 764 307 91 40.18

1000 366 72 28 19.67

1500 266 44 30 16.54
2000 192 25 21 13.02
2500 146 15 18 10.27

3000 113 8 17 7.08
3500 88 6 17 6.82
4000 65 6 5 9.23

4500 54 2 52 3.70

5000 41 3 3 7.32

B4. Delineation of Watersheds

The flow stations are now converted to a grid. This grid is used as an input to the

watershed command. The syntax for the watershed command is:

OutputGrid = watershed (FlowdirectionGrid, FlowStationsGrid)

The watersheds can be converted to polygons using Theme/Convert to Shapefile option in

ArcView 3.2.  The watersheds of USA are shown in Figure 9.
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Figure 9. Delineated Watersheds of USA

The watershed grid created will have a few spurious single-celled areas. These single-

celled areas are created during the watershed creation process. A closer look at these areas

will reveal that they share the same ID with one of its neighboring watersheds. This means

that it is in reality a disjoint or broken part of a neighboring watershed. Such spurious

single celled watersheds can be combined with their parent watershed using

View/Geoprocessing Wizard/Dissolve Polygons in ArcView 3.2. The Geoprocessing

Wizard can be loaded from File/Extensions/Geoprocessing Wizard. After this step, the

extensive properties of the watershed like area and perimeter need to be updated. This can

be done using the extension CRWR Vector/Update Feature Geometry.
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B5. Nested Watershed Criterion

In a nested watershed feature, the larger outer watershed polygon engulfs the smaller inner

polygons. However, the areas are computed as per the individual polygons for each of the

flow stations. Hence, the most downstream flow station should have the cumulative area

of all the upstream flow stations plus the area between itself and these stations. This fact is

correctly represented in the DEM Drainage Areas but when it comes to the polygons this

consideration is lacking. For this reason, the polygon areas of downstream outlets in a

watershed need to be corrected manually, since the flow stations that are nested and in the

watershed being considered need to be identified from the view and then corrected

accordingly in the attribute table. This problem of nested watersheds appeared in 208

watersheds. This meant that 208 corrections needed to be done manually before the study

could continue. However, this problem of entering data manually was foreseen to occur in

another case when the precipitation dataset came into the picture. Hence, this portion of

work was temporarily shelved until the stage in which the precipitation stations were also

included in the project.  After that, both the problems can be solved simultaneously saving

time and effort. The shelving of the job at this stage did not affect the process of

converting the precipitation stations into theissen polygons and in the calculation of

weighted precipitation for the watersheds for each time step.

B6. Creation of Theissen Polygons of Precipitation Stations

Precipitation varies over time as well as space. It is therefore intuitive to create surfaces

out of precipitation data. Precipitation data used in this study is in the form of point values

in space. Therefore creation of a surface to fill up all the gaps between any two given
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points can be done by interpolation or by simply assigning proximity neighborhoods. In

this study, the latter method is adopted due to its simplicity. Also, large areas with a few

point values will have interpolated values that may not be anymore accurate than values

produced by neighborhood functions. One of such neighborhood functions is defined by

Theissen polygons. Theissen polygons are defined on the basis of the closest

neighborhood.

The precipitation stations are viewed in ArcView using the Theme/Add Event Theme

option. Alber s Equal-Area Conic is the projection of the DEM and the precipitation

dataset is projected in this projection using the CRWR Vector/Project.

The precipitation data is available over a number of years. A few precipitation stations

will be newer than the others and hence will have a smaller time series. Therefore, for

every year in the time scale, the Theissen polygons will change if the number of

precipitation stations having data for that time changes. Therefore, Theissen polygons will

have to be created for each year. The Theissen polygons can be created using CRWR

Vector/Theissen Polygons. Once the Theissen polygons are created, the precipitation

station data can be transferred to them using the Tables/Join menu tab when the tables are

active in ArcView 3.2. As a result a new shapefile is created which shares the same extent

as the DEM. The attribute table of this file is as shown in Figure 10.
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Figure 10. Location file of Precipitation Stations

Figure 11. Data File of Precipitation Stations
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The Data File of the precipitation stations is then added as a table in ArcView. This table

is shown in Figure 11. The attributes of the projected shapefile are joined to the data file

using the Tables/Join with the Stationid as the key attribute. This new table will now have

the precipitation stations with the year of precipitation, precipitation depth and lat-long

fields including other attributes like name of station, state, etc. as shown in Figure 12.

Figure 12. Merged Location and Data Files of the Precipitation stations

This table is then once again brought into the view using the View/Add Event Theme

option. Then the precipitation stations for each year are queried using the Query tool in

Theme/Properties/Definition. The selected stations are then converted to a separate

shapefile by using the Theme/Convert to Shapefile option in the theme view. This process

is continued for all the years. Thus, if the range of years for the entire precipitation Data

File is say n, then the number of projected shapefiles created are also n.

Now, we have precipitation shapefiles for a range of years. There are cases when, say

1959, may have stations A, B, C, D, E & F, but 1960 might have only A, C, D, E, & F.
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Therefore the Theissen polygons shapefile created from the file for the year 1959 will

have 6 polygons whereas for 1960 there will be only 5 polygons.

So theissen polygons can be created from each year s precipitation station shapefile using

CRWR Vector/Theissen Polygons. The ID value for the theissen polygons is the StationID

of the precipitation station. The attributes of the Theissen polygon shapefile looks like as

shown in Figure 13. The Area is in m2.

Figure 13. Attribute Table of Theissen Polygons

C. Watershed Parameters

C1. Transfer of Precipitation to watersheds

The transfer of precipitation values to flow stations is carried out by transferring the

precipitation from the Theissen polygons to the watershed polygons that drain into the

flow stations. The watersheds and the theissen polygons are two different two-

dimensional layers and hence a watershed may be influenced by many theissen polygons.

The precipitation is transferred to the watersheds using CRWR Vector/Poly to Poly
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Property Transfer. The target polygon shapefile is the watershed shapefile. The source file

is the theissen shapefile for a year. Each set of theissen polygons (for each year) is used to

transfer the values to the watershed polygons. The watershed polygons will therefore have

precipitation values transferred to it for each year. The watershed polygon's modified

attribute table is as shown in Figure 14.

Figure 14. Watershed Polygon Table after First Transfer

of Precipitation Data from Theissen Polygon

The Grid_code attribute, obtained from the flow stations grid, is the StationID of the

respective flow station that is the outlet to each watershed polygon.  This process is

repeated for all the years and the same watershed attribute table is continuously updated.

The watershed attribute table will begin looking like shown in Figure 15 as more and

more years are added.
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Figure 15. Watershed Polygon Table after Multiple Transfers of

Precipitation Data from Theissen Polygons

The precipitation in the watersheds needs a correction for nested watersheds. This is when

the area of the nested watersheds is corrected too. The corrections are carried out

manually. The watershed table as shown in Figure 16 will have one column of the areas

achieved from dissolving the spurious single celled polygons as explained before. It will

also have n columns for n years of precipitation. This table is exported in comma

delimited text format and reopened in Excel.

The Data/Text to Columns feature of Excel is used to get the table back in a database

format. The table is then sorted in an ascending Grid_code arrangement. Simultaneously,

an ArcView 3.2 view window is kept open with the watershed shapefile in the view. Each

watershed from the Excel document is identified in the view and its area is recalculated by

identifying all nested watersheds within it. The area will be the sum of all the nested

watersheds within the parent watershed.

The precipitation on the other hand is calculated by weighing the precipitation. The

weights are the ratios of each nested watershed s corrected area to the area of the parent
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watershed. As can be seen in Figure 16, the outer polygon nests all the other smaller

polygons inside it. Therefore Victoria, TX, has the drainage area of all the flow stations

that drain polygons 1 to 9 plus the area of polygon number 10.

Figure 16. Sub-basins of the Guadalupe River Basin

Shown in Figure 17 are the precipitation stations in purple and the thick black lines that

intersect the view are the theissen polygons created with the precipitation stations as

inputs.



27

Figure 17. Extent of Theissen Polygons Over the Guadalupe Basin

Hence, if the precipitation in polygon F is, say 50 inches, and in polygon A, 45 inches,

then the weighted precipitation of polygon 5 will be given by: -

P5 = {[50*(2A5/3) + 45*(1A5/3)]/A5}     where, A5 = Area of polygon 5

P5 = 48 in.

C2. Transfer of Slope, Curve Number and Area

Slope directly affects the amount of flow (runoff) obtained at the watershed outlet. Lower

the average slope of the watershed, lesser is the flow obtained at the outlet due to higher

losses because of higher travel time through the watershed. The slope will be derived from
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the filled digital elevation model and then the average slope for each watershed will be

calculated based on the watershed shapefile.

Curve number is a measure of the permeability. Curve number is a measure from 1 to 100

where the lower limit represents the most physically permeable soil and the upper limit

represents the least physically permeable soil. Therefore, lower the curve number lesser is

the flow obtained at the outlet. The same can be done for calculating the Average Curve

Number for each watershed from the Blackland Research Labs Curve Number Grid.

Area of the watershed is a physical parameter that varies inversely with flow. The

watershed with larger area will mean that the precipitation has more time to infiltrate

before it reaches the outlet of the watershed. Area is used as the fourth parameter in the

empirical relationship.

The average slope is calculated using CRWR Raster/Average Grid Value over Polygon.

The same menu tab can be used for calculating the average curve number for each

watershed polygon from the Curve Number grid. The average slope and curve number

values are then joined to the watershed table using the Join tool.

C3. Calculation of Regulated Area

Regulated area of the watershed can be defined as the ratio of the cumulative sum of the

drainage areas upstream water bodies present in a watershed to the area of the watershed.

This parameter needs to be included to take into account the effect of human intervention
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on the flow in a watershed during wet and dry seasons. To calculate regulated area, we

will first need to overlay the water body shapefile over the watershed shapefile. Once this

is done, we can calculate the regulated area of the watershed.

To calculate the regulated area, we first need to overlay the waterbody shapefile above the

watershed shapefile. This can be done using Intersect/Geoprocessing Wizard. Once this is

done, we can calculate the regulated area of the watershed. It must be noted that if the

stream encounters two or more water bodies serially then the upstream drainage area for

that combination is the drainage area of the outlet of the water body which comes last in

the series in the downstream direction of the stream. The upstream drainage areas are

calculated for each outlet of the waterbody. The next step is to sum them and divide this

sum by the drainage area of the outlet of the watershed that contains this waterbody. It

must be noted that each of the sub basins will also have a regulated area value if it

contains a water body in it. This regulated area is the sub basin's own value and in this

case it does not arithmetically add up with the other regulated areas to give the final

regulated area for the parent watershed.

C4. Precipitation Correction

A correction will be carried out at this stage on the precipitation values. This requires a

multi-annual average precipitation grid (Daly et al., 1994) for the study area. A ratio shall

be applied to the precipitation values based on the values in the Daly precipitation grid to

each precipitation station. The ratio shall be defined as the average of the precipitation

grid values over each watershed to the grid value at the location of the precipitation
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station. This correction takes into account the areal variability of precipitation over the

watershed by providing better precipitation values for each station.

The precipitation in the watershed table is corrected by applying a ratio derived from the

Daly precipitation grid. The numerator of the ratio is the average precipitation grid value

over each watershed. The precipitation grid is averaged over the watersheds using the

CRWR Raster/Average Grid Value over Polygons option. In this way the watershed table

will contain a new field with average precipitation grid value over each polygon.
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The denominator of the ratio is the precipitation grid value at the point where the

precipitation station lies. This value is obtained by converting the precipitation stations to

a grid and then combining this grid with the 5000m Daly precipitation grid. This is done

using CRWR Raster/Combine Grids. This step will create a new grid with a table that has

four fields, two from each grid. This table is important because each precipitation station

will have a corresponding value from the precipitation grid. The transfer of the calculated

value to the watershed table requires creation of a shapefile from the intersection of the

watersheds with the theissen polygons. This is done using View/Geoprocessing

Wizard/Intersect. The new shapefile will have fields for WatershedIDs (Flow Station IDs),

Precipitation Station IDs, Percentage of Theissen Polygon areas affecting each watershed

and other fields unimportant from the current operation s perspective. The precipitation

Station IDs are used to join the precipitation grid values to the intersected table using the

Join tool. The average precipitation field obtained for the numerator of the correction ratio
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is also joined to this table using the watershed IDs. A new field is created to calculate the

ratio by going to Table/Start Editing. Then after going to Edit/Add Field the new field

name is selected and the required decimal accuracy is specified. After the new field is

created the ratio is calculated for each record in the intersected table using the Field

Calculator tool in Field/Calculate. The ratio will be the average precipitation grid value

field (numerator) divided by the precipitation grid value at the location of the precipitation

station field (denominator). Another field is then created to account for the weight each

ratio has on the final correction figure. This is because each watershed maybe affected by

different theissen polygons and hence the percentage of each theissen polygon affecting

each watershed must be known to weight the individual ratios. These weights were

provided in the form of percentage of area during the watershed-theissen polygon

intersection carried out before. The new field will therefore be the product of the

individual ratios with the percentage field. After this, the intersected table will be stopped

from further editing by going to Table/Stop Editing. This new field will give the

individual weighted ratios which need to be summarized by sum for each watershed. This

can be done by selecting the watershedID header in the table and then by using the

Field/Summarize option. Once inside the Summary Table Definition window the header

for the field with individual weighted ratios is selected and Sum is selected for the

summarize operation to be performed. A new table is then created with the WatershedID

and the precipitation correction ratio for each watershed.

This ratio can then be multiplied with all the precipitation values in the watershed table to

get the corrected precipitation for each time step. However, if the precipitation grid used is
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of a single year or a month then the corrected precipitation calculated from it can only be

used for that year or month respectively. In such a case, the entire process described above

will be repeated for precipitation correction for all the months.

C5. Unit Changes and Data Conformity

Once the precipitation correction is carried out for all the time steps, the next step is to

make sure that all the derived data that will be used in further analysis will be compatible

with each other. The units of flow and precipitation are changed from cfs and inches/yr (or

inches/mth) respectively to mm/yr (or mm/mth).

The flow is converted from cfs to mm/yr by dividing the flow by the area of the watershed

(m2) and multiplying by 918732.533721. If the flow needs to be converted to mm/mth then

the numeric value above is divided by 365 and multiplied by the number of days in the

month. The precipitation is converted from inches/yr to mm/yr by multiplying by 25.4.

The slope (mm/mm), curve number and regulated area (m2/m2) are dimensionless

parameters. Area is in square meters (m2).

The watershed table is now ready for analysis. For the annual analysis, the table will be

summarized for annual mean and for the monthly analysis it will be summarized for

monthly mean. The table is imported to Excel for all statistical and graphical analysis.

Exporting of ArcView 3.2 tables can be done by selecting the target table and then by

selecting the File/Export menu tab.
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D. Analysis of  Mean Annual Flow for USA

A range of 1948 to 1988 was selected since the precipitation station data was available

without gaps for this range. The number of flow stations for this range decreased from 865

to 838.

D1. Analysis of mean annual flow based on hydrologic regions of USA

1. Mean annual flow versus mean annual precipitation

The exported file is sorted in ascending order with the Hydrologic Unit Code as the

sorting criteria in Excel.

Table 2. Hydrologic Regions of USA

Region 01 New England Region 11 Arkansas-White-Red
Region 02 Mid-Atlantic Region 12 Texas-Gulf
Region 03 South Atlantic-Gulf Region 13 Rio Grande
Region 04 Great Lakes Region 14 Upper Colorado
Region 05 Ohio Region 15 Lower Colorado
Region 06 Tennessee Region 16 Great Basin
Region 07 Upper Mississippi  Region 17 Pacific Northwest
Region 08 Lower Mississippi  Region 18 California
Region 09 Souris-Red-Rainy Region 19 Alaska
Region 10 Missouri Region 20 Hawaii

Region 21Caribbean

Graphs will be created for the first 18 regions of conterminous USA. The 21 hydrologic

regions of USA are shown in Table 2. The mean annual precipitation of all the stations in

a region will be plotted against the corresponding mean annual flow. The graphs for

regions 1-18 can be viewed in Appendix A (Figures A-1 to A-18). A summary of the R2

values for the regions are presented in Table 3.
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Table 3. Summary of Annual Flow Versus

Precipitation per Hydrologic Region of USA

Region No.
Sampling

Size Best R2

1 24 7.00E-06
2 64 0.4166
3 115 0.4191
4 15 0.8345
5 65 0.5309
6 25 0.7302
7 93 0.7709
8 13 0.3264
9 9 0.0091

10 84 0.7754
11 59 0.7346
12 69 0.8774
13 5 0.0179
14 17 0.0141
15 8 0.0155
16 8 0.6543
17 113 0.5076
18 52 0.6335

The graphs showed a lot of scatter for all regions except for Regions 4, 6, 7, 10, 11, and

12. Region 4 and 6, however, had only 15 and 25 stations respectively and their results are

not as reliable as in the other regions. Regions 7, 10, 11 and 12 have good sampling sizes

ranging from 59 to 93; and, Region 12 (Texas-Gulf) had the least scatter with a R2 of

0.8774. Regions 17 and 18 have good sampling sizes but produce relatively low R2 values.

Also the plots show more runoff than precipitation. This can be explained because Region

17 and 18 have mountainous terrain and hence the precipitation at higher elevations is not

captured by gauging stations present at lower altitudes (Wolock and McCabe, 1999). A

map of the R2 values over the 18 hydrologic regions can be seen in Figure 18.
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Figure 18. R2 values for the 18 Hydrologic Regions of USA

At this stage the flow stations were divided into blocks based on their drainage areas. The

runoff versus precipitation graphs were recreated for each of these blocks. The frequency

distribution showed that only 46 flow stations had drainage areas in the range of 15,000 -

50,000 sq. km. The results are presented in Appendix A (Figures A-19 to A-27). It is seen

that a general trend of runoff greater than precipitation is found in all the graphs.

2. Ratio of flow to precipitation versus slope and curve number

A new column will be created in the watershed table. The cells of this column will have a

ratio of the flow to the precipitation (both mean annual) for each of the selected flow

stations in USA. This column will be plotted against the slope for each of the 18 regions.

Another set of graphs will be created based on region where the ratio is plotted against the
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curve number. These graphs are available for viewing in Appendix A (Figures A-28 to A-

65).

The results of the slope set depicted the theoretical relationship of slope with flow i.e.,

higher the slope more was the flow for a given precipitation. However, in flatter areas of

the country (Regions 3, 7, 10, 11, and 12) the slope had no definable relationship with the

amount of flow produced with change in precipitation. As can be seen in Figure 19, region

12 is the flattest region of the country and there is no direct relationship between flow and

slope for this region.

Texas-Gulf (Region 12)

y = 0.0756x2 - 0.1815x + 0.1913
R2 = 0.0795
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Figure 19. Flow-Precipitation Ratio versus Average Slope for Region 12

The curve number set of plots was inconclusive in regards to finding a relationship

between curve number and flow.
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3. Calculation of regression coefficients

The watershed table will be now used to carry out multiple linear regressions using the

data available. The mean annual flow will be regressed against precipitation, slope and

curve number. A non-linear form of equation suggested by Wurbs (1999) shall be

converted to its linear form by applying natural Logarithm to both sides of the equation

thereby rendering it linear. The non-linear form suggested is:

32 4
1 2 3 ( 1). . ..... na aa a

nQ a F F F F -= ............................................... 3.2

where, Q is the flow (dependent variable),

Fi are the independent variables, and

ai are constants (or regression coefficients)

This form can be converted to a linear form like shown below:

32 4
1 1 2 3 ( 1 )( . . . . . . . )na aa a

nL n Q L n a F F F F -= . .......................3.3

1 2 1 3 2 ( 1)( ) . ( ) . ( ) ..... ( )n nLnQ Ln a a Ln F a Ln F a Ln F -= + + + + ............. 3.4

If the non-linear form has an exponential term like, 5 4( . )a Fe  then its linear form will

be 5 4.a F . Therefore, if there are n independent variables then there will be 2n

arrangements. The number of arrangements will decrease in the linear form if there are

variables that have zero values in the data. Such a variable (for e.g. F4) can only take on

the form of 5 4.a F and not 5 4. ( )a Ln F . This is because the logarithm of zero is undefined.

A set of linear regressions was carried out with precipitation, slope and curve number as

the only independent parameters. A new set was then created with area added as another
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independent parameter. The sensitivity of the model to the area was observed. The R2

values of the provided by the regression algorithm in Excel were used to choose the best

equation. As can be seen in Table 4, the simple linear form shown in Equation 3.5 had the

highest R2 value.

1 2 3 4. . .estQ a a P a S a CN= + + + ....................................... 3.5

In the second case, seen in Table 5, with area as an extra parameter the same linear form

had the highest R2 value. The form is shown below:-

1 2 3 4 5. . . .estQ a a P a S a CN a A= + + + + ................................. 3.6

However, the change in R2 value was negligible considering another parameter was added

to the linear regression. The R2 value changed from 0.6995 for equation 3.5 to 0.7001 for

equation 3.6.

Table 4 Regression Equations without Area as a Parameter

Equation R2 value Rankings
R = 0.733 * P + 67.9797 * S - 6.7764 * C 0.6696
R = 0.78596 * P + 80.198 * S + 2.1979 * C - 688.837 0.6995 # 1
LogR = 0.0011 * P + 0.0973 * S + 0.0171 * C 0.5695
LogR = 0.000994 * P + 0.0777 * S + 0.0027 * C + 1.1024 0.6242 # 2
LogR = 0.00099 * P + 0.0799 * S + 0.7017 * LogC 0.6215
LogR = 0.00099 * P + 0.0769 * S + 0.2899 * LogC + 0.7595 0.6234 # 3
LogR = 0.0011 * P + 0.6518 * LogS + 0.0196 * C 0.4769
LogR = 0.00098 * P + 0.4877 * LogS + 0.0009 * C + 1.3871 0.5699
LogR = 0.00098 * P + 0.5193 * LogS + 0.7912 * LogC 0.5623
LogR = 0.00099 * P + 0.4809 * LogS - 0.0117 * LogC + 1.4694 0.5697
LogR = 1.012 * LogP + 0.0555 * S - 0.0104 * C 0.5108
LogR = 1.7883 * LogP + 0.0822 * S - 0.00044 * C - 3.0181 0.6388
LogR = 1.6755 * LogP + 0.07005 * S - 1.4736 * LogC 0.6157
LogR = 1.7918 * LogP + 0.0816 * S - 0.1558 * LogC - 2.7726 0.6390
LogR = 1.0584 * LogP + 0.3595 * LogS - 0.0109 * C 0.4790
LogR = 1.7546 * LogP + 0.5169 * LogS - 0.0022 * C - 2.6422 0.5804
LogR = 1.6767 * LnP + 0.4564 * LnS - 1.403 * LnC 0.5693
LogR = 1.7606 * LnP + 0.5123 * LnS - 0.455 * LnC - 1.9801 0.5816
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Table 5. Regression Equations with Area as a Parameter

Equation
R2

value Rank
R = 0.7811 * P + 79.7932 * S + 2.1593 * C - 1.6815E-09 * A - 674.6686 0.7001 # 1
LogR = 0.000973 * P + 0.07598 * S + 0.00258 * C - 7.27286E-12 * A + 1.16365 0.6324 # 4
LogR = 0.00096 * P + 0.07452 * S + 0.00263 * C - 0.1015 * LogA + 2.0829 0.6347 # 2
LogR = 0.000973 * P + 0.07522 * S + 0.2739 * LogC - 7.3204E-12 * A + 0.8388 0.6317 # 5
LogR = 0.0009602 * P + 0.0738 * S + 0.2858* LogC - 0.102 * LogA + 1.7452 0.6340 # 3
LogR = 0.000958 * P + 0.4739 * LogS + 0.000715 * C - 7.2156E-12 * A + 1.4482 0.5778 # 7
LogR = 0.000944 * P + 0.4623 * LogS + 0.000755 * C - 0.10346 * LogA + 2.3858 0.5807 # 6
LogR = 0.000959 * P + 0.4675 * LogS - 0.03134 * LogC - 7.253E-12 * A + 1.5529 0.5777 N/A
LogR = 0.000945 * P + 0.4562 * LogS - 0.0208 * LogC - 0.1038 * LogA + 2.4767 0.5805 N/A
LogR = 1.7518 * LogP + 0.0804 * S - 0.000541 * C - 7.08354E-12 * A - 2.87442 0.6465 N/A
LogR = 1.7293 * LogP + 0.07889 * S - 0.00044 * C - 0.09947 * LogA - 1.92144 0.6489 N/A
LogR = 1.755 * LogP + 0.07988 * S - 0.1621 * LogC - 7.0826E-12 * A - 2.6234 0.6467 N/A
LogR = 1.7325 * LogP + 0.07842 * S - 0.1452 * LogC - 0.0993 * LogA - 1.6962 0.6491 N/A
LogR = 1.7172 * LogP + 0.5028 * LogS - 0.00237 * C - 7.0322E-12 * A - 2.4969 0.5880 N/A
LogR = 1.7231 * LogP + 0.4987 * LogS  - 0.4645 * LogC - 7.0111E-12 * A - 1.8259 0.5891 N/A
LogR = 1.6985 * LogP + 0.4871 * LogS - 0.4484 * LogC - 0.1010 * LogA - 0.8775 0.5919 N/A

E. Analysis of Mean Monthly Flow for Region 12 (Texas-Gulf)

Analysis of annual mean charts revealed that Region 12 had the least scatter and the best

R2 value amongst all the 18 regions. It was decided that the study should be scaled down

to the monthly scale for Region 12 so that it can be studied in more detail. The procedure

explained in this section was adopted for each of the 12 months. This includes 12 sets of

regression equations (both linear and non-linear form) one for each of the 12 months. The

data for each flow station was taken on a monthly time scale and then 12 means, one for

each month, were calculated for each station. These means were the flow and precipitation

data used in further analysis. The flow and precipitation were monthly means for each

station. A range of 28 years was selected from 1968 to 1995. The number of flow stations

dropped from 69 to 56 for this range. 69 is the total number of flow stations available for

Region 12 with historical data for the range of 1948-1988.
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E1. Linear Method

The linear method used in this study is a linear model of a non-linear prototype. Rainfall-

runoff relationships are non-linear in form (Wurbs, 1999). To make it linear will require a

linearizing operation. Natural Logarithm was applied to both sides of the non-linear form

to convert it to a linear form. As evident, the linear form will have different coefficients

from the non-linear form.

Linear regression will be done for each of the linearized forms and the best equation

will be with the least Standard Error of Estimate (SEE). Standard Error of Estimate is

defined in Equation 3.7.

2(1 )SEE SD R= - ....................................... ... 3.7

1. Based on calculation of linear regression coefficients

Linear regression coefficients are calculated for all the 12 months for all the stations in

Region 12. These coefficients are calculated in Excel using the Tools/Data

Analysis/Regression. The Data Analysis option is not preloaded into Excel by default

when it opens and has to be loaded manually using the Tools/Add-Ins/Analysis ToolPak

option. The regression tool in Excel is only a linear regression tool and the coefficients

produced by this algorithm cannot be used for non-linear forms of equations.

These regression coefficients will then be used for estimation of flow for each of the flow

stations. The estimated flow will then be plotted against the observed flow.
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The regression equations are calculated for each of the linear conversions of the non-linear

forms. Regulated area is added to the list of independent parameters. The mean flows per

month are now regressed against the respective mean precipitation, slope, curve number,

area, and regulated area. There will be 25 (=32) different non-linear equations. The

number of linearized equations will be reduced due to the Logarithm situation (Log10 (0)

is undefined). In this case, the regulated area for some stations was zero and hence the

number of different linearized equations dropped to 16 (=24). These 16 linear forms were

evaluated by regression for each of the 12 months and the best equation was selected for

each of the 12 months using the SEE statistic in equation 3.4. The estimated flow was

calculated using the best form of equation. For each of the 12 months, the estimated flow

was plotted against the observed flow.

It was observed that the least Standard Error of Estimate of 0.62 for the linear model was

for the month of April. Table 6 has the SEE arranged in an ascending order.

Table 6. Standard Error of Estimate

table for Linear Model

Month SEE
April 0.619811
May 0.633459
June 0.675045
October 0.686352
March 0.759441
February 0.759733
December 0.768646
September 0.792207
November 0.818877
January 0.825102
August 0.951035
July 1.111472
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Table 7 presents the best equations of each month as per the linear model.

Table 7. Linear Regression Equations for all Months

January LnR = 3.05*LnP + 1.54*S + 2.74*LnCN - 0.107*LnA + 0.243*RA - 20.42
February LnR = 3.54 * LnP + 1.04 * S + 3.6 * LnCN - 0.32 * LnA + 0.597 * RA - 21.2
March LnR = 3.17*LnP + 1.24*S + 0.972*LnCN + 0.045*LnA  0.365*RA - 16.61
April LnR = 4.22*LnP + 0.54*S + 0.644*LnCN - 0.298*LnA + 0.965*RA - 12.68
May LnR = 4.74*LnP + 0.37*S - 0.216*LnA + 0.98*RA - 15.69
June LnR = 3.74*LnP + 0.48*S + 2.16*LnCN - 0.34*LnA + 1.28*RA - 16.81
July LnR = 3.65*LnP + 0.98*S + 3.03*LnCN - 0.419*LnA + 2.03*RA - 18.31
August LnR = 0.045*P + 1.067*S + 0.026*CN - 0.327*LnA + 2.23*RA + 2.61
September LnR = 0.056*P + 1.29*S + 0.003*CN  4.266E-11*A  0.68*RA - 4.84
October LnR = 3.68*LnP + 0.71*S + 0.009*CN + 3.91E-11*A  1.33*RA - 15.5
November LnR = 2.42*LnP + 0.61*S + 0.009*LnCN - 0.324*LnA + 1.075*RA - 2.52
December LnR = 2.92*LnP + 1.46*S + 0.035*LnCN - 0.061*LnA  0.284*RA  11.81

The predicted flow was plotted against the observed flow for each of the months. The

results can be seen in Appendix B (Figures B-1 to B-12).

2. Statistical Analysis

For each month an annual time series of predicted flow was created for each of the

stations based on the linear regression coefficients for that month. These annual flows

were averaged for each month. These averages were compared and plotted against the

averages from the observed flows for that month. The same procedure was adopted to

compare and plot Standard Deviation values of the predicted and observed flows.

The plots of mean predicted v/s mean observed flows for all the months were scattered

around the 450 line. The results can be viewed in Appendix B (Figures B-13 to B-24). The

months of July (Figure B-19), August (Figure B-20), and September (Figure B-21) have a

large amount of scatter unbalanced to one side of the 450 line. July and August are the
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worst months but September seems to be doing better than it actually is. This is due to the

fact that the linear regression coefficients were calculated directly on averaged flow

values as per month whereas the statistical graphs were created by averaging each of the

datasets after the linear coefficients were applied to the data. In short, taking a Logarithm

of a mean value (first case) is not the same as taking the mean of Logarithmic values

(second case).

The plots of Standard Deviation values of predicted flows against observed flows were

inconclusive in showing any relationship. These plots can be viewed in Appendix B

(Figures B-25 to B-36).

3. Zonal Analysis

Hypothetical zones were created for the estimated flow data. The confidence parameter

was denoted as  (alpha). Alpha was used to develop a zone around the predicted data and

then see how many observed data points fell in the interval. This same step was carried

out for a number of intervals. The procedure will be clearer with the illustration shown in

Figure 20. The interval created between alpha =2 and alpha = 0.5 (1/2) is called Zone 2

and the region between alpha = 3 and alpha = 0.333 (1/3) is Zone 3 and so on. Obviously,

Zone 3 also includes Zone 2 as part of it. In Figure 20 the points falling in the interval

created between alpha = 2 and alpha = 0.5 are better estimates than the ones in the interval

created by alpha = 3 and 0.333 and so on.
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Figure 20. Illustration of Zones

The zonal analysis method was carried out for 7 zones. The results are split in to Tables 8,

9, and 10.

Table 8. Zonal Analysis for Zones 1.33 and 1.5

Zone 1.33 Zone 1.5
Month In Out Total In Out Total

January 28 44 72 34 38 72
February 24 48 72 39 33 72
March 30 42 72 39 33 72
April 18 54 72 30 42 72
May 19 53 72 23 49 72
June 18 54 72 23 49 72
July 14 58 72 25 47 72
August 21 51 72 29 43 72
September 25 47 72 33 39 72
October 26 46 72 35 37 72
November 26 46 72 35 37 72
December 23 49 72 33 39 72

Average 23 49  32 41

Table 9. Zonal Analysis for Zones 2, 3, and 4

Zone 2  Zone 3 Zone 4
Month In Out Total In Out Total In Out Total

January 50 22 72 64 8 72 69 3 72
February 57 15 72 63 9 72 70 2 72
March 51 21 72 64 8 72 65 7 72
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Zone 2  Zone 3 Zone 4
Month In Out Total In Out Total In Out Total

April 53 19 72 60 12 72 64 8 72
May 33 39 72 54 18 72 57 15 72
June 37 35 72 50 22 72 54 18 72
July 39 33 72 53 19 72 61 11 72
August 45 27 72 56 16 72 61 11 72
September 49 23 72 62 10 72 66 6 72
October 56 16 72 64 8 72 67 5 72
November 53 19 72 63 9 72 64 8 72
December 48 24 72 64 8 72 71 1 72

Average 48 24  60 12  64 7.9

Table 10. Zonal Analysis for Zones 5, 6, and 7

alpha = 5 alpha = 6 alpha = 7
Month In Out Total In Out Total In Out Total

January 71 1 72 71 1 72 72 0 72
February 70 2 72 71 1 72 71 1 72
March 68 4 72 70 2 72 70 2 72
April 66 6 72 67 5 72 68 4 72
May 59 13 72 62 10 72 65 7 72
June 58 14 72 62 10 72 64 8 72
July 64 8 72 65 7 72 67 5 72
August 64 8 72 67 5 72 68 4 72
September 67 5 72 69 3 72 70 2 72
October 70 2 72 70 2 72 71 1 72
November 68 4 72 70 2 72 70 2 72
December 72 0 72 72 0 72 72 0 72

Average 66 5.6  68 4  69 3

In table 8 it is seen that the months of January, February and March are the best months;

however more than 60% of the values fall outside the zones. In Table 9 there is a large

increase in the number of stations falling within zone 3 from zone 2 for a majority of the

months. Zone 4 includes a majority of the stations for all of the months except May and

June. All the remaining stations for each of the months are scattered and fall in higher

zones. December followed by January is the most compact month since 71 (of 72) and 69

(of 72) stations are within Zone 4 when the Zone 4 average is only 64.



46

E2. Non-Linear Method

The non-linear method was used to portray the rainfall-runoff relationship in another way.

It was used to compare the differences a non-linear form had from its linearized

counterpart. The equation is theoretically more realistic in its portrayal of the rainfall-

runoff relationship (Wurbs, 1999); however, whether in reality it was really superior to its

linearized counterpart needed justification.

In order that a fair comparison could be made, the non-linear model was similar to the

linear model with respect to the independent parameters, time scale and data used. The

non-linear model coefficients for each month were calculated by non-linear regressions.

As previously mentioned, Excel does not support non-linear regression in its Data

Analysis/Regression option; however, Solver in Excel does have the capability of

providing regression coefficients if the model is set up in an appropriate manner. Solver is

not loaded by default when Excel starts. Just like the Analysis ToolPak, it needs to be

loaded manually by going to Tools/Add-Ins and checking the Solver Add-in option. Once

it is loaded, it can be selected from Tools/Solver.

Solver is an optimization algorithm. Functions may have global minimums and

maximums as well as local minimums and maximums. If the seed value falls between a

local maximum and local minimum then solver will converge to either of these two values

depending on whether solver is set up to maximize or minimize the objective function.

The converged value in such a case is a local maximum or minimum and not the global



47

maximum or minimum. Since the location of global values is unknown using different

seed values iteratively may solve this problem.

Solver is used to calculate non-linear regression coefficients. Solver was run for 16

different non-linear equations for each of the 12 months. Solver is set up to minimize the

sum of squared errors by changing the coefficients of the independent parameters. This

step is repeated with different seed values for the coefficients to take care of the problem

of global and local values. Of the 16 different non-linear forms, the one with the least Sum

of Squared Errors (SSE) is considered the best equation for that month. This same

procedure is carried out for all the months. The Root Mean Squared Error (RMSE) is the

standard statistic generally used but in this case it will not make any difference if the SSE

is used in its place because the number of observations for all the months is the same. It

was observed that the least Sum of Squared Errors (SSE) of 1269.5 for the non-linear

model was for the month of September. Table 11 has the SSE arranged in an ascending

order. The non-linear regression equations for each month are presented in Table 12.

Table 11. Sum of Squared Errors
table for Non-Linear model

Month SEE
September 1269.501
November 1322.227
January 1686.485
February 1802.16
August 1858.371
December 1912.128
July 1952.46
April 2377.996
October 2411.764
March 2904.825
June 3975.693
May 4335.635
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Table 12. Non-Linear Regression Equations for all Months

January R = P2.108. A0.112. e(0.467*S + 0.022*CN - 0.344*RA - 10.16)

February R = P2.54. CN2.14. A0.125. e(0.398*S - 0638*RA - 19.56)

March R = P2.21. A0.142. e(0.335*S + 0.023*CN - 0.31*RA  11.26)

April R = P3.31. A0.144. e(0.267*S + 0.004*CN - 0.178*RA - 15.07)

May R = P3.59. A0.11. e(0.169*S - 0.015*RA - 16.65)

June R = P2.97. CN2.93. A0.07. e(0.543*S  0.204*RA  24.84)

July R = e(0.038*P + 0.78 * S + 0.49 * RA -14.09). CN2.43. A0.13

August R = e(0.045*P + 0.38*RA  8.66). S0.737. CN0.424.A0.276

September R = e(0.056*P + 1.29*S + 0.003*CN + 4.27E-11*A  0.68*RA  4.84)

October R = P2.92. A0.15. e(0.42*S + 0.012 * CN - 1.16*RA  14.93)

November R = P2.07. A0.04. e(0.39*S + 0.027*CN  0.45*RA -9.39)

December R = P1.81. A0.03. e(0.48*S + 0.036*CN  0.51*RA -8.15)

The predicted flow was plotted against the observed flow for each of the months. The

results can be seen in Appendix B (Figures B-37 to B-48). An interesting observation is

that the month of September (Figure B-45) does just as bad for the non-linear model as for

the linear model; however its SSE statistic for the non-linear model is the best from all the

months. When the predicted flows are plotted against the observed flows for both the

models it can be seen that the non-linear model does better than the linear model in most

of the months.

Statistical Analysis

The plots of mean predicted flow v/s mean observed flow showed over-prediction for all

the months except May and November. May had a distinct under-prediction while

November was the only month that was evenly balanced around the 450 line. The standard

deviation plots also showed a high standard deviation of the predicted data than the

standard deviation of the observed data.
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An ACF = 0 means that there is no correlation and an ACF = -1 (or 1) means perfect

correlation. An ACF = 0.3 has an inverse, shifted profile of ACF= -0.3 and hence it does

not say much in terms of which is better. The ACF plots showed that the predicted and

observed values were mainly in the region of -0.4 to 0.4, which means that the predicted

and observed values have a very low degree of correlation within themselves.

The plots of mean predicted flow v/s mean observed flow, in Appendix B (Figures B-49

to Figures B-60), showed over-prediction for all the months except May (Figure B-53)

and November (Figure B-59). May had a distinct under-prediction while November was

the only month that was evenly balanced around the 450 line. The standard deviation plots,

in Appendix B (Figures B-61 to B-72) also showed a high standard deviation of the

predicted data than the standard deviation of the observed data.

An ACF = 0 means that there is no correlation and an ACF = -1 (or 1) means perfect

correlation. An ACF = 0.3 has an inverse, shifted profile of ACF= -0.3 and hence it does

not say much in terms of which is better. The ACF plots in Appendix B (Figures B-73 to

B-84) showed that the predicted and observed values were mainly in the region of -0.4 to

0.4, which means that the predicted and observed values have a very low degree of

correlation within themselves.

F. Analysis of Mean Monthly Flow time-series for Region 12 (Texas-Gulf)

In this analysis, a monthly time series was used for Region 12. Linear and non-linear

models were developed for this method. A watershed constant was included in the non-
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linear model instead of the watershed parameters. The performances of these models were

evaluated.

In this method a mean monthly time series for each flow station was created for the

observed values and a time-series of predicted values was obtained by regression. The

sum of squared errors (SSE) estimate was used in deciding the best regression equation

for each flow station.

F1. Linear Method

The form with the least sum of squared errors is the best linear form for Region 12. It

must be noted here that the linear regressions are carried out for each of the stations

individually. Therefore, each station will have its own best linear equation.

The linear regressions were carried out with different seed values in order that the

objective function was minimized to the global minimum and not to a local minimum.

Since the linear regressions need to be carried out for each of the stations a Visual Basic

macro in Excel was developed to automate the regression procedure for each of the

stations. The macro used Solver as the linear regressor. The macro evaluated each linear

form of equation multiple times with different seed values. Of all the multiple iterations

the calculated coefficients that gave the least sum of squared errors were selected as the

best coefficients for that linear form. This procedure was repeated by the macro for all the

other linear form of equations for that station. The best linear form was the one with the

least sum of squared errors of all the linear forms of equations.
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The prediction of mean flow is carried out on two different premises. The first is where

the standard five independent parameters are used; namely, precipitation, slope, curve

number, area, and regulated area. The second is wherein the previous month s predicted

flow was added as the sixth parameter. This parameter was added after the regression was

carried out with the first premise. It was observed that predicted flow was closely related

to the observed flow in the graphs created for the first premise. The macro created for the

first premise was slightly modified to evaluate the extra parameter in the second premise.

1. Based on precipitation and watershed parameters

Linear regressions were carried out with precipitation and watershed parameters (slope,

curve number, area, and regulated area) as the independent parameters. When the best

linear form was determined, it was applied to estimate a monthly time series for each of

the stations. The estimated time series was plotted against the observed time series for the

stations. There was a distinct, yet indefinite, relationship between the observed values and

the estimated values. The results showed that all the data points were over-predicted

showing that the model calibration was unsuccessful. The results can be viewed in

Appendix C (Figures C-1 and C-2).

2. Based on precipitation, watershed parameters and previous month s prediction

Since the five parameters did not yield good results it was decided to add a sixth

parameter, the previous month s prediction, as one of the independent parameters in the

regression. The macro was altered for inclusion of the new independent parameter. The
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estimated time series was plotted against the observed time series for a few stations to

observe the change from before.

This new model was very sensitive to slight changes in seed values and became unstable

very easily if the combination of seed values made the first month s prediction large. It

required a lot of calibration and the ranges of the seed values were narrowed to attain

stability. The predicted statistics were plotted against the observed statistics and there was

no improvement in the plots considering that a sixth parameter was included in the model.

These plots are presented in Appendix C (Figures C-3 and C-4).

F2. Non-Linear Method

The non-linear method follows the exact same procedure as the linear method. The visual

basic macro is slightly modified to include the new forms of non-linear equations. Besides

using the original five parameters and the addition of the previous month s prediction as

the sixth parameter, a watershed constant substitutes the watershed parameters and the

non-linear method is applied to precipitation and the watershed constant. In this new case,

there is only one independent parameter.

The previous month s prediction is also added to create another case for the non-linear

model to execute on. The first month of each time series will not have any previous

month s prediction. Hence in this case the first month s observed flow is used in place

where the previous month s prediction fits in. The non-linear model will calculate the

predicted flow from this value besides precipitation and watershed parameters or
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watershed constant as the case maybe. The first month s predicted value is used in the

second month s non-linear regression and so on till the end of the monthly time series.

1. Prediction of mean monthly flow based on watershed parameters

Based on precipitation and watershed parameters

The macro was slightly modified to apply the non-linear model to precipitation and the

watershed parameters. The non-linear model required a new set of seed values during the

calibration process. Sum of squared errors was the objective function to be minimized.

The predicted statistics plotted against the observed statistics revealed that it performed

better than the linear model. These plots are presented in Appendix C (Figures C-5 and C-

6). The results showed that nearly all the data points were under-predicted. This

observation was different from the observation seen in the linear model which had over-

prediction.

Based on precipitation, watershed parameters and previous month s prediction

In this case, the macro was modified to include the previous month s prediction. This was

done to compare the performance of the linear method with the performance of the non-

linear method with the six-parameter model. The new non-linear model performed better

than its linear counterpart but it failed to have any marked improvement over the five

parameter non-linear model. The non-linear model with the sixth parameter also had high

under-prediction as can be seen in Appendix C (Figures C-7 and C-8).
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2. Prediction of mean monthly flow based on watershed constant

In this section, the non-linear model was slightly modified to substitute a watershed

constant instead of the watershed parameters. The watershed parameters are constant and

hence it is logical to substitute a watershed constant instead of them. Also, this watershed

constant is used only with precipitation as the only independent parameter. Later on the

previous month s prediction is added to see if its inclusion affects the model in any way.

Theory behind watershed constant

The watershed constant is a simplification of a number of watershed parameters that are

constant over time. Area, slope, curve number, regulated area are a few of the watershed

parameters that can be considered to be constant for a watershed over a short period of

time.

The non-linear form with precipitation and watershed parameters is:

3 5 62 4
1 . . . .a a aa aQ a P S CN A RA= ..................................... 3.8

The watershed constant is substituted for the terms of S, CN, A and RA like shown below:

bQ a P= .......................................... ... 3.9

where, a is the watershed constant and is given as:-

3 5 64
1. . . .a a aaa a S CN A RA=

and, 2b a=

Based on watershed constant, and mean monthly precipitation
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Equation 3.8 is used in this estimation routine. The macro was modified accordingly to

consider only two possible non-linear variations of this non-linear form.  This method

produced SSEs a little greater than the five-parameter model used before. It made the

process of calibration very easy with only one coefficient seed value to calibrate instead of

four. The results of the watershed constant model were quite better to those obtained in

the five parameter non-linear model. The statistical values of mean and standard deviation

showed much less under-prediction with scatter below the 450 line. This process not only

increased processing time and efficiency but also gave good results. The results can be

viewed in Appendix C (Figures C-9 and C-10).

Based on watershed constant, mean monthly precipitation and previous month s

prediction

The previous month s prediction is added to equation 3.8. The new non-linear form is like

below:

1 , 1b c
i iQ a P Q where i-=     > .............................. 3.10

The macro was modified to include all four permutations of this non-linear form.

The watershed constant along with the previous month s prediction was a simpler

alternative to the six parameter non-linear model. The statistical values of mean and

standard deviation showed much lesser under-prediction than the six parameter non-linear

model. The statistical results, in Appendix C (Figures C-11 and C-12), were encouraging

since it was a smarter option over the six-parameter non-linear model. When these results

are compared to the model described in Section (III).(F).(F2).(2).(ii) above it can be
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clearly seen that the additional parameter made the model unstable when it should have

improved the results.

The variation of a, b, and c with respect to slope, curve number and area of the watershed

is presented in Appendix C (Figures C-13 to C-21).  No well-defined relationship is seen

in any of these plots.



57

CHAPTER IV

DATA REVIEW

A. Data Requirements

The data needed for this project and their sources are:

i. Monthly Flow Dataset: US Geological Survey (USGS)

ii. Precipitation Dataset: US Historical Climatological Network (USHCN)

iii. 500m Digital Elevation Model: Source USGS

iv. SCS Curve Number Dataset: Blacklands Research Laboratories, Temple, Texas

v. Inland Water body Shapefile: National Atlas of USA, USGS (2003)

vi. Precipitation Grid: Daly (1994)

B. Precipitation Data

NOTE: This dataset is a part of a larger dataset consisting of maximum and minimum

temperatures, precipitation, snowfall and snowfall depth for all the stations.

Purpose: Developed to help in detection of regional climatic change.

Source: Easterling, D. (2003). United States Historical Climatological Network

(USHCN)

Website: http://lwf.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html#LOGO

Dataset range period: 1900-1996

Form of Raw data: Tab delimited format

Type of Spatial Data: Point Feature Dataset

Total number of Regions in dataset: 48 (contiguous states of U.S.A)

http://lwf.ncdc.noaa.gov/oa/climate/research/ushcn/ushcn.html#LOGO
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Total number of precipitation stations: 1211

Attributes of each station:

1. StnID  a 6 digit unique number

2. Data Indicator field: Indicates the type of data2 with month and year

3. Number of days in month specified in Field 2

4-35. Precipitation values for each day of the month and year specified in Field 2.

NODATA values are represented by 999.

C. Flow Data

Source: Slack et al. (1993)

Website: http://water.usgs.gov/pubs/wri/wri934076/1st_page.html

Form of Raw data: Table format

Type of Spatial Data: Point Feature Dataset

Total number of regions in dataset: 21

Total number of regions in conterminous U.S.A.: 18 (excluding Alaska,

Hawaii, and the Carribean)

Total number of flow stations: 1614

Data considered for each flow station:

1. Yrs  the number of years of acceptable data

2. StnID  a 8 digit unique number

3. Station name - Complete station name including state name

4. D.A.  drainage area in sq. miles

2 Maximum and minimum temperatures, precipitation, snowfall and snowfall depth

http://water.usgs.gov/pubs/wri/wri934076/1st_page.html
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5. Latitude  Latitude of station in northing

6. Longitude  Longitude of station in westings

D. United States 500m Digital Elevation Model (DEM)

Source: U.S. Geological Survey, 500m DEM.  USGS  Metadata for GCIP Reference

data Set (GREDS)

Prepared by the Global Energy and Water Cycle Experiment (GEWEX) for its

Continental-Scale International Project (GCIP) Reference Data Set (GREDS)

Website: http://nsdi.usgs.gov/nsdi/wais/water/gcip.HTML

Purpose: To support the global change research community.

Method of Data Collection:

DEM data is derived by USGS using DLG (Digital Line Graph contours) hypsographic

and hydrographic data.

Data Records:

The DEM file is organized into 3 record types: A, B & C.

Type A record contains general information like name, boundaries, minimum and

maximum elevations, number of B type records and projection parameters. Each DEM has

only one type A record.

Type B record contains elevation profiles. Each profile has a type B record.

Type C record contains statistics about the accuracy of the data.

http://nsdi.usgs.gov/nsdi/wais/water/gcip.HTML
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Data Characteristics:

Type of Spatial Data: Grid

Data Type: Floating Point

Projection Details:

Projection: Albers

Units: meters

Spheroid: GRS1980

1st Standard Parallel: 29 30 0.000

2nd Standard Parallel: 45 30 0.000

Central Meridian: -96 00 0.000

Latitude of Projection s Origin: 23 00 0.000

False Easting (meters): 0

False Northing (meters): 0

Cell/Pixel size: 500m

Grid size: Number of Rows: 6996

      Number of Columns: 12232

Vertical Elevation: meters (whole integer values only)

NOTE: The Data Accuracy and Data Verification information is referenced from the 500-

meter DEM metadata.

Data Accuracy:

The vertical accuracy of the DEM is described using the vertical Root Mean Square

Statistic (RMSE). A selection criterion is an RMSE of one-half of a contour or better.
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The horizontal accuracy of the DEM is mathematically described using the UTM meters.

Data Verification:

· Identification of maximum and minimum values of elevations and comparison with

the maximum and minimum values of the most accurate available contours or spot

elevation map products. The maximum and minimum grid points must be within the

tolerance levels of the contours or spot elevation values.

· Verification of all below sea level elevations with the best available map product of

the area and if it is not available then adjusting it with the surrounding terrain.

E. 5000m Precipitation Grid

Source: Daly, C., Neilson, R.P., and Phillips, D.L. (1994) A Statistical Model for

Mapping Climatological Precipitation over Mountainous Terrain. Journal of

Applied Meteorology, 33, pp. 140-158.

Data Characteristics:

Type of Data: Spatial (Raster)

Data Type: Integer

Time Scale: Monthly Mean (One grid for each month)

Grid Resolution: 5000m

Grid Extent: Texas

Grid Projection Details

Projection: Albers

Units: meters
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Spheroid: GRS 1980

1st Standard Parallel: 27 25 0.000

2nd Standard Parallel: 37 55 0.000

Central Meridian: -100 00 0.000

Latitude of Projection s Origin: 31 10 0.000

False Easting (meters): 1000000.00000

False Northing (meters): 1000000.00000

F. Curve Number

Source: 250m Curve Number Dataset, Blackland Research Labs at Texas A&M

University.

Data Characteristics:

Type of Data: Spatial (Raster)

Data Type: Integer

Grid Resolution: 250m

Grid Extent: Conterminous USA

Grid Projection Details

Projection: Albers

Spheroid: Clarke 1866

1st Standard Parallel: 29 30 0.000

2nd Standard Parallel: 45 30 0.000

Central Meridian: -96 00 0.000

Latitude of Projection s Origin: 23 00 0.000
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False Easting (meters): 0

False Northing (meters): 0

G. Water bodies of USA

Source: U.S. Geological Survey (2002). Streams and Waterbodies of the United States.

Data and Metadata Website: http://www.nationalatlas.gov/hydrom.html

Purpose: These data are intended for geographic display and analysis at the

national level, and for large regional areas.

Available Formats: Shapefile, and

                                Spatial Data Transfer Standard (SDTS)

Map Scale: 1:2,000,000

http://www.nationalatlas.gov/hydrom.html
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CHAPTER V

CONCLUSION

Flow was estimated from five independent parameters at different time scales. The annual

scale was adopted for the entire conterminous USA while the monthly scale was used for

Region 12 (Texas-Gulf). It was observed that on the annual scale Region 12 performed the

best. Region 12 displayed the least scatter and was the most coherent. The R2 value  of

0.8774 was far better than the other regions of USA. On the annual scale it was observed

that the area of the watershed hardly improved the prediction of flow considering that a

whole new parameter was added to improve prediction. It was observed that slope had a

very strong effect on the amount of flow produced; the effect of curve number was

undeterminable.

The monthly scale was adopted for Region 12. The monthly scale was applied in two

formats. One format was where the flow was predicted for each month. In this case each

station has only one value per month. Flow was predicted first using a linear model and

then using a non-linear model. It was observed that the non-linear model performed better

than the linear model justifying that rainfall-runoff relationships are non-linear in form

(Wurbs, 1999). The month of April performed the best in the linear model whereas the

month of September performed the best in the non-linear model. The sum of squared

errors (SSE) statistic was used to determine the best month for the non-linear model.

When the R2 values of the months were compared for the non-linear model it turned out

that April was the best month in the non-linear model too. This result was more in line

with the result of the linear model. This showed that the SSE method is not the right
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statistic for determining the best month. This is because for the dataset is bivariate i.e.,

each time interval has two measurements, precipitation and flow. The SSE statistic can be

applied only to univariate data. The SSE method can be used to decide the best non-linear

form of all the 16 non-linear forms for each of the months. It cannot be used to deduce the

best month of the 12 months. Univariate data is that which has only one measurement for

each time step. The R2 statistic can be used to compare the months because it can be used

on bivariate data. This explains why R2 is the appropriate statistic for determining the best

month for the non-linear model.

The second format of applying the monthly time scale was where the monthly time series

was predicted for each station using a linear model and a non-linear model. The non-linear

model proved to better than the linear model because of lower SSEs. Calibration for both

these types of models was carried out. The non-linear model had four formats; with and

without the previous month s prediction as an extra parameter and with and without the

watershed constant. It was seen that the models with the watershed constant were easier to

calibrate in terms of computer downtime and number of seed values to initialize. Also, the

non-linear model with the watershed constant performed exceedingly well than its five

parameter equivalent. The previous month s prediction was a very unstable parameter and

it made all the models that it was included in unstable.

In conclusion, Region 12 performed very well on the annual time scale; however at the

monthly time scale the predicted values for the monthly time series models (both linear

and non-linear) were too high and irregular. For Region 12, the mean flow per month
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model performed well in estimation of mean flows for some months, particularly April.

The non-linear model performed better than the linear model.

It is recommended that evapotranspiration be included as a parameter in the model. As per

the results obtained it can be suggested that curve number and regulated area be excluded

from the model as their effects were uncharacteristic and undefined. Another valuable

comment would be to include watersheds with drainage areas of less than 10,000 sq. km.

only in the study. This condition might eliminate errors caused by inclusion of large

drainage areas.
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APPENDIX A

Graphs of analysis for the conterminous USA

A. Graphs of Mean Annual Flow based on hydrologic regions of USA

A1. Mean Annual Flow versus Mean Annual Precipitation

New England (Region 1)
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Figure A - 1

Mid-Atlantic (Region 2)
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Figure A - 2
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South Atlantic-Gulf (Region 3)
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Figure A - 3

Great Lake s (Region 4)
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Figure A - 4

Ohio (Region 5)
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Figure A - 5
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Tenne ssee (Region 6)
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Figure A - 6

Upper Mississippi (Region 7)
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Figure A - 7

Lowe r M ississippi (Region 8)
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Figure A - 8
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Souris-Re d-Rainy (Region 9)
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Figure A - 9

M issouri (Region 10)
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Figure A - 10

Arkansas-White -Re d (Region 11)
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Figure A - 11
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Te xas-Gulf (Region 12)
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Figure A - 12

Rio Grande (Re gion 13)
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Figure A - 13

Uppe r Colorado (Re gion 14)
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Figure A - 14
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Lower Colorado (Re gion 15)
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Figure A - 15

Gre at Basin (Region 16)
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Figure A - 16

Pacific Northwe st (Region 17)
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Figure A - 17
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California (Region 18)
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Figure A - 18

A2. Flow versus Precipitation Graphs based on Drainage area
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(< 350 sq. km.)
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Figure A - 19

Mean Annual Runoff v/s Mean Annual Precipitation
(350-500 sq. km.)
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Figure A - 20

Mean Annual Runoff v/s Mean Annual Precipitation
(500-750 sq. km.)
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Figure A - 21

Mean Annual Runoff v/s Mean Annual Precipitation
(750-1000 sq. km.)
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Figure A - 22

Mean Annual Runoff v/s Mean Annual Precipitation
(1000-1350 sq. km.)
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Figure A - 23

Mean Annual Runoff v/s Mean Annual Precipitation
(1350-1900 sq. km.)
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Figure A - 24

Mean Annual Runoff v/s Mean Annual Precipitation
(1900-3000 sq. km.)
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Figure A - 25

Mean Annual Runoff v/s Mean Annual Precipitation
(6000-15000 sq. km.)
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Figure A - 26

Mean Annual Runoff v/s Mean Annual Precipitation
(15000-50000 sq. km.)

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600
Mean Annual Precipitation (mm/yr)

M
ea

n 
A

nn
ua

l R
un

of
f

(m
m

/y
r)

Figure A - 27

A3. Ratio of Flow to Precipitation versus Slope and Curve Number

1. Ratio of Flow to Precipitation versus Slope

New England (Region 1)
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Mid-Atlantic (Region 2)
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Figure A - 29

South Atlantic-Gulf (Region 3)
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Figure A - 30

Great Lakes (Region 4)
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Ohio (Region 5)
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Figure A - 32

Tennessee (Region 6)
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Figure A - 33

Upper Mississippi (Region 7)
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Lower Mississippi (Region 8)
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Figure A - 35

Souris-Red-Rainy (Region 9)
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Figure A - 36

Missouri (Region 10)
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Figure A - 37
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Arkansas-White-Red (Region 11)
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Figure A - 38

Texas-Gulf (Region 12)
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Rio Grande (Region 13)
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Figure A - 40



85

Upper Colorado (Region 14)
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Figure A - 41

Lower Colorado (Region 15)
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Great Basin (Region 16)
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Pacific Northwest (Region 17)
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Calfornia (Region 18)
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Figure A - 45

Conterminous USA (without Regions 17 and 18)
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2. Ratio of Flow to Precipitation versus Curve Number

New England (Region 1)
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Mid-Atlantic (Region 2)
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South Atlantic-Gulf (Region 3)
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Great Lakes (Region 4)
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Ohio (Region 5)
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Tennessee (Region 6)
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Upper Mississippi (Region 7)
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Lower Mississippi (Region 8)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

Avg Curve Number

A
ct

ua
l/P

ot
en

tia
l

Figure A - 54

Souris-Red-Rainy (Region 9)
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Missouri (Region 10)
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Arkansas-White-Red (Region 11)
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Texas-Gulf (Region 12)
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Rio Grande (Region 13)
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Upper Colorado (Region 14)
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Lower Colorado (Region 15)
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Great Basin (Region 16)
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Pacific Northwest (Region 17)
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California (Region 18)
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Entire Dataset
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APPENDIX B

Graphs of analysis for mean flow for Region 12 (Texas-Gulf)

A. Graphs of predicted flow with linear method

A1. Based on linear regression coefficients
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Predicted v/s Observed (March)
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Predicted v/s Observed (April)
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Predicted v/s Observed (May)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s Observed (September)
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Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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Figure B - 12

A2. Statistical Analysis

1. Mean
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Predicted v/s Observed (February)
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Predicted v/s Observed (May)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s Observed (September)
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Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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2. Standard Deviation
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Predicted v/s Observed (April)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s Observed (September)
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Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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B. Graphs of predicted flow based on non-linear method

B1. Based on non-linear regression coefficients
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Predicted v/s Observed (February)

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Observed Runoff (mm/yr)

Pr
ed

ic
te

d 
R

un
of

f (
m

m
/y

r)

Figure B - 38

Predicted v/s Observed (March)
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Predicted v/s Observed (April)
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Predicted v/s Observed (May)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s Observed (September)
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Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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B2. Statistical Analysis

1. Mean
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Predicted v/s Observed (February)
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Predicted v/s Observed (March)
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Predicted v/s Observed (April)
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Predicted v/s Observed (May)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s  Observed (September)

0

50

100

150

200

250

0 50 100 150 200 250
Observed Q

Pr
ed

ic
te

d 
Q

Figure B - 57



114

Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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2. Standard Deviation
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Predicted v/s Observed (February)

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160
Observed Q

Pr
ed

ic
te

d 
Q

Figure B - 62

Predicted v/s Observed (March)
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Predicted v/s Observed (April)
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Predicted v/s Observed (May)
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Predicted v/s Observed (June)
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Predicted v/s Observed (July)
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Predicted v/s Observed (August)
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Predicted v/s Observed (September)
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Predicted v/s Observed (October)
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Predicted v/s Observed (November)
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Predicted v/s Observed (December)
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3. Autocorrelation
Predicted ACF vs Observed ACF for Lag 1 (January)
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Predicted ACF vs Observed ACF for Lag 1 (February)
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Predicted ACF vs Observed ACF for Lag 1 (March)
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Predicted ACF vs Observed ACF for Lag 1 (April)
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Predicted ACF vs Observed ACF for Lag 1 (May)
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Predicted ACF vs Observed ACF for Lag 1 (June)
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Predicted ACF vs Observed ACF for Lag 1 (July)
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Predicted ACF vs Observed ACF for Lag 1 (August)
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Predicted ACF vs Observed ACF for Lag 1 (September)
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Predicted ACF vs Observed ACF for Lag 1 (October)
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Predicted ACF vs Observed ACF for Lag 1 (November)
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Predicted ACF vs Observed ACF for Lag 1 (December)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Observed ACF

Pr
ed

ic
te

d 
A

C
F

Figure B - 84



123

APPENDIX C

Analysis for mean monthly flow time-series for Region 12 (Texas-Gulf)

A. Graphs of predicted flow with linear method

A1. Based on precipitation and watershed parameters
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2. Standard Deviation

Predicted Std. Dev. v/s Observed Std. Dev. (Linear, Qpred excluded)
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A2. Based on precipitation, watershed parameters and previous month s prediction

1. Mean

Mean Predicted Runoff v/s Mean Observed Runoff
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2. Standard Deviation

Std. Dev. of Predicted Runoff v/s Std. Dev. Of Observed Runoff
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B. Graphs of predicted flow with non-linear method without watershed constant

B1. Based on precipitation and watershed parameters
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2. Standard Deviation

Std. Dev. of Predicted Runoff v/s Std. Dev. Of Observed Runoff
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B2. Based on precipitation, watershed parameters and previous month s prediction

1. Mean

Mean Predicted Runoff v/s Mean Observed Runoff

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80
Mean Observed Runoff (mm/mth)

M
ea

n 
Pr

ed
ic

te
d 

R
un

of
f

(m
m

/m
th

)

Figure C - 7

2. Standard Deviation

Std. Dev. of Predicted Runoff v/s Std. Dev. Of Observed Runoff
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C. Graphs of predicted flow with non-linear method with watershed constant

C1. Based on precipitation and watershed constant
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2. Standard Deviation

Std Dev. of Predicted Runoff v/s Std. Dev. of Observed Runoff
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C2. Based on precipitation, previous month s prediction, and watershed constant
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2. Standard Deviation

Std Dev. of Predicted Runoff v/s Std. Dev. of Observed Runoff
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C3. Relationship of a, b, and c values with respect to slope, curve number and watershed

area.
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a v/s Area
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b v/s Area
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c v/s Slope
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c v/s Area
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APPENDIX D

Flow Station Data

StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

1010000 1010001 600.67 963.88 1.26 65.46 3336.00
1010500 1010001 611.54 968.98 2.18 69.75 6671.75
1011500 1010001 586.54 896.57 3.29 69.14 1370.50
1014000 1010001 593.29 932.73 2.17 69.07 14495.75
1021500 1050002 717.36 1117.47 1.03 57.96 1186.75
1022500 1050002 755.14 1044.78 1.36 59.74 583.00
1023000 1050002 666.76 1040.56 1.67 68.1 365.75
1030500 1020003 626.84 1025.65 1.01 66.46 3630.50
1031500 1020004 736.07 1033.96 2.39 68.03 757.00
1035000 1020005 612.71 1035.29 1.67 67.62 764.50
1038000 1050003 610.45 1103.05 1.45 72.22 381.75
1047000 1030003 732.83 1115.4 4.71 65.52 909.25
1048000 1030003 685.08 1120.08 3.62 67.4 1265.50
1052500 1040001 786.06 1107.97 5.54 65.48 397.50
1060000 1060001 668.32 1116.04 1.11 61.19 354.50
1064500 1060002 855.41 985.17 7.68 51.89 982.25
1074500 1070001 1019.64 927.67 9.78 61.52 282.00
1075000 1070001 926.85 954.83 9.07 53.21 482.50
1076500 1070001 757.47 945.14 6.37 50.92 1589.75
1086000 1070003 574.68 1016.28 3.43 54.8 367.75
1119500 1100002 621.09 972.2 1.97 56.6 316.00
1144000 1080105 588.35 926.38 5.65 67.69 1804.00
1176000 1080204 576.49 1069.05 1.65 65.29 385.00
1321000 2020002 756.8 1033.04 4.13 68.42 1246.50
1329000 2020003 766.45 1058.04 6.84 65.3 375.25
1329500 2020003 567.18 966.51 4.73 69.58 970.50
1334500 2020003 660.33 928.66 5.59 70.81 1290.75
1350000 2020005 683.71 1066.2 6.71 70.28 596.50
1372500 2020008 502.17 1018.78 2.11 69.47 469.50
1373500 2020008 488.19 1054.43 2.7 66.01 482.25
1379500 2030103 585.87 1214.63 1.07 72.75 263.75
1387500 2030103 669.57 1254.82 2.86 72.75 321.00
1411500 2040206 499.14 1102.27 0.11 74.29 294.50
1413500 2040102 647.77 1083.4 6.93 73.09 421.50
1420500 2040102 785.9 1122.41 4.55 70.02 616.25
1421000 2040102 783.73 1143.29 6.24 71.47 2009.50
1423000 2040101 602.05 1013.35 4.65 73.7 869.25
1426500 2040101 587.81 1042.62 4.6 72.55 1544.50
1437000 2040104 846.7 1202.75 3.52 70.82 573.50
1443500 2040105 543.1 1216.11 2.29 71.92 315.00
1463500 2040105 704.96 1248.6 2.3 72.14 17199.25
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StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

1491000 2060005 401.99 983.92 0.11 66.63 299.75
1498500 2050101 516.55 1016.54 3.32 72.02 434.25
1503000 2050101 544.36 1018.41 3.21 71.92 5606.25
1518000 2050104 405.67 862.48 3.19 76.15 724.50
1520000 2050104 340.4 907.33 3.31 76.83 783.75
1532000 2050106 456.02 894.92 3.64 76.2 561.25
1534000 2050106 490.68 1039.69 2.75 77.3 1009.75
1539000 2050107 605.1 1033.7 3.42 74.26 704.50
1541000 2050201 620.93 1101.49 2.24 70.41 786.00
1543500 2050202 574.62 1066.33 4.03 62.9 1798.50
1555500 2050301 482.68 1021.3 3.58 69.85 414.00
1556000 2050302 474.41 1070.74 4.32 66.75 764.25
1558000 2050302 593.11 1005.64 4.32 64.06 576.00
1560000 2050303 461.94 1088.38 3.51 69.18 455.00
1562000 2050303 418.81 1073.22 3.9 68.03 1946.50
1564500 2050304 419.04 1009.31 3.75 65.89 552.50
1567000 2050304 409.62 997.05 4.27 67.8 8348.99
1568000 2050305 499.74 1006.22 3.98 67.55 512.25
1574000 2050306 389.1 1012.28 1.33 77.64 1325.75
1601500 2070002 473.09 1172.67 5.15 67 654.50
1604500 2070002 271.63 1168.02 4.09 73.44 587.00
1608500 2070001 324.93 951.45 6.23 67.64 3816.25
1610000 2070003 375.99 1041.69 4.21 70.97 8122.00
1611500 2070003 312.9 823.62 4.71 67.06 1738.00
1613000 2070004 359.8 997.7 3.55 67.04 10635.75
1614000 2070004 298.47 907 2.72 70.92 601.25
1631000 2070005 332.64 749.97 3.62 72.03 4220.25
1632000 2070006 330.22 734.29 5.72 68.19 554.25
1634000 2070006 272.47 741.92 2.97 73.1 2028.00
1639500 2070009 370.57 1052.77 1.13 69.13 269.75
1644000 2070008 337.12 868.94 1.98 67.7 886.75
1645000 2070008 352.92 1050.19 0.93 57.29 267.75
1646502 2070008 353.07 925.92 2.02 71.8 30065.00
1667500 2080103 390.44 821.31 2.88 71.86 1204.00
1668000 2080104 354.79 804.56 1.82 72.2 4155.50
1674000 2080105 318.03 827.56 0.46 66.78 641.00
2013000 2080201 363.77 905.9 6.33 62.33 425.75
2014000 2080201 423.17 920 7.13 62.24 399.75
2015700 2080201 461.79 810.41 5.32 61.14 281.50
2018000 2080201 412.82 899.77 6.42 61.56 865.00
2027800 2080203 395.69 785.25 3.24 65.91 379.25
2030500 2080203 345.07 840.14 0.71 63.25 569.50
2035000 2080205 386.57 845.14 3.79 66.83 16230.00
2046000 3010201 346.74 871.84 0.3 60.01 276.00
2047000 3010201 336.99 908.09 0.31 64.66 3542.00
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StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

2051500 3010204 310.85 963.61 0.73 63.38 1399.00
2053800 3010101 343.64 957.67 3.86 67.37 291.50
2054500 3010101 314.95 952.37 4.81 72.59 687.25
2058400 3010101 367.83 886.86 1.79 64.62 924.50
2061500 3010101 353.44 834.38 2.5 67.24 797.00
2064000 3010102 299.31 839.34 0.9 69.57 449.00
2070000 3010103 427.54 971.91 1.55 64.3 275.50
2070500 3010103 401.52 1023.45 2.25 63.57 669.00
2074500 3010103 334.32 880.68 1.17 65.72 303.00
2083000 3020102 318.23 1145.97 0.46 61.04 1427.25
2085500 3020201 324.45 1094.73 0.75 68.6 374.00
2092500 3020204 394.95 1295.26 0.16 55.35 414.00
2102000 3030003 352.8 1154.73 0.62 61.36 3864.75
2105500 3030005 345.52 1135.75 0.58 60.4 13030.25
2107000 3030006 377.45 1202.18 0.21 60.45 1004.00
2110500 3040206 373.63 1272.86 0.12 61.23 2732.00
2116500 3040101 438.96 1168.15 2.47 66.11 5933.75
2117500 3040102 381.12 1163.85 1.58 66.38 260.00
2132000 3040202 355.02 1183.02 0.51 59.28 2692.25
2135000 3040204 385.93 1195.39 0.24 60.57 7084.75
2136000 3040205 278.97 1196.1 0.21 66.64 3094.50
2147500 3050103 342.53 1211.57 0.86 66.88 492.50
2154500 3050105 620.8 1362.67 2.61 65.27 314.25
2156500 3050106 501.11 1285.12 1.8 66.01 7204.75
2165000 3050109 532.45 1260.88 0.91 70.58 591.00
2173000 3050204 366.37 1168.33 0.69 56.39 1872.50
2173500 3050203 400.91 1196.03 0.7 50.17 1783.75
2174000 3050205 392.58 1191.53 0.23 64.73 4562.75
2175500 3050207 343.16 1191.71 0.38 61.89 891.75
2176500 3050208 307.83 1230.84 0.2 59.72 503.50
2177000 3060102 1106.14 1854.76 5.2 60.41 522.00
2192000 3060104 427.73 1366.39 1.03 63.72 3698.25
2193500 3060105 302.48 1222.36 0.75 60.27 759.00
2196000 3060107 248.18 1179.64 0.63 59.69 1398.50
2197830 3060108 329.85 1267.42 0.69 51.66 1223.25
2198000 3060108 333.79 1209.39 0.47 56.53 1666.00
2202000 3060202 308.63 1170.32 0.54 61.38 5010.75
2202500 3060202 298.69 1208.53 0.35 66.12 6964.00
2203000 3060203 289.49 1207.79 0.44 59.36 1463.50
2206500 3070103 382.51 1229.47 0.86 64.44 348.25
2213500 3070103 381.86 1280 0.83 61.96 484.75
2217500 3070101 463.51 1417.65 1.05 65.25 1070.75
2218500 3070101 433.31 1363.13 0.94 63.16 2807.00
2219500 3070101 439.39 1277.12 0.73 64.51 1147.25
2225500 3070107 306.46 1191.98 0.52 58.33 2882.25
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StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

2226000 3070106 347.47 1207.37 0.68 60.35 35399.50
2227500 3070202 281.82 1244.11 0.24 64.61 1655.75
2228000 3070201 292.72 1242.8 0.24 65.68 7519.25
2232500 3080101 286.35 1335.49 0.05 67.51 3932.75
2240000 3080102 313.56 1331.68 0.22 52.06 2999.75
2246000 3080103 396.71 1319.46 0.27 58.92 467.50
2296750 3100101 267.58 1352.46 0.18 65.14 3525.25
2313000 3100208 201.86 1354.07 0.19 58.37 4506.00
2317500 3110202 267.96 1206.31 0.39 63.96 3484.25
2320500 3110205 315.4 1269.23 0.23 57.75 20888.25
2321500 3110206 269.18 1341.3 0.17 59.77 1460.00
2324000 3110102 332.83 1346.46 0.08 49.73 951.25
2327100 3120003 667.62 1572.11 0.1 56.69 274.00
2327500 3120002 308.57 1205.89 0.45 65.64 1450.25
2329000 3120003 319.18 1330.51 0.57 60.4 2869.75
2331000 3130001 966.26 1494.15 4.2 57.29 407.50
2331600 3130001 893.48 1573.95 2.22 61.81 820.25
2333500 3130001 825.28 1532.1 3.65 60.84 377.50
2337000 3130002 472.87 1307.94 0.9 64.17 620.25
2339500 3130002 482.09 1228.19 1.06 62.58 9145.50
2341800 3130003 453.69 1317.1 1 51.18 905.25
2342500 3130003 456.76 1324.25 0.79 54.49 848.25
2347500 3130005 421.84 1302.98 0.82 63.02 4785.25
2349500 3130006 419.91 1300.33 0.89 59.17 7419.75
2350600 3130007 375.82 1387.28 0.94 61.4 505.00
2353500 3130009 425.48 1259.67 0.53 62.31 1673.25
2356000 3130008 359.26 1182.68 0.4 63.89 19526.25
2357000 3130010 303.86 1218.58 0.27 68.7 1226.75
2358000 3130011 439.97 1315.88 0.74 58.52 44712.25
2359500 3140101 1510.76 1542.59 0.55 32.73 314.50
2361000 3140201 461.03 1321.19 0.81 48.82 1833.75
2366500 3140203 533.52 1416.71 0.59 58.64 11484.00
2368000 3140103 612.56 1520.23 0.53 65.25 1692.25
2369000 3140103 771.87 1570.81 0.53 55.65 1170.25
2371500 3140301 427.56 1322.15 0.68 68.18 1264.25
2375500 3140305 542.68 1463.82 0.69 66.63 9901.75
2376500 3140106 644.22 1618.97 0.5 53.31 999.00
2379500 3150102 777.46 1550.85 3.86 64.52 335.00
2380500 3150102 767.22 1545.47 4.49 65.18 638.25
2383500 3150102 638.51 1470.76 2.01 66 2213.75
2387500 3150103 617.51 1470.21 2.39 67.08 4159.00
2389000 3150104 893.79 1545.44 2.93 66.35 288.25
2392000 3150104 691.37 1504.51 2.04 66.19 1609.00
2397500 3150105 476.07 1347.18 1.08 65.01 297.00
2398000 3150105 647.9 1440.9 2.36 61.31 508.00
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StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

2414500 3150109 550.87 1356.88 1.23 66.21 4311.25
2431000 3160101 580.75 1396.38 0.59 67.33 1659.75
2433000 3160101 608.75 1409.52 0.93 67.35 901.00
2436500 3160102 544.71 1399.57 0.48 70.49 1662.50
2437000 3160101 585.16 1419.18 0.51 69.72 5111.25
2439400 3160103 599.57 1420.34 1.12 65.6 2058.50
2440000 3160104 411.18 1375.65 0.58 63.79 414.00
2440500 3160104 510.01 1394.33 0.41 67.1 1304.75
2441000 3160104 533.38 1405.84 0.43 70.86 2508.75
2441500 3160101 547.05 1406.68 0.45 68.66 11802.00
2448000 3160108 497.53 1410.28 0.58 68.37 1972.25
2450000 3160109 646 1443.98 1.06 68.65 959.25
2456500 3160111 560.73 1453.97 1.55 65.26 2259.00
2467000 3160201 532.83 1400.93 0.92 63.6 40019.75
2467500 3160202 464.09 1412.72 0.74 65.45 1620.25
2474500 3170005 514.82 1455.07 0.62 65.05 1587.00
2479000 3170006 519.23 1469.75 0.66 65.88 17117.50
2479300 3170007 672.87 1518.44 0.56 60.7 1146.50
2486000 3180002 428.46 1355.81 0.5 67.53 8114.75
2488500 3180003 472.21 1437.01 0.61 68.68 12804.25
2489500 3180004 528.28 1456.33 0.68 65.46 16843.25
2490500 3180005 545.49 1500.92 0.5 75.46 1289.00
2492000 3180005 554.51 1526.68 0.49 74.31 3119.00
3010500 5010001 583.01 1015.96 3.51 61.55 1407.50
3011020 5010001 590.55 990.03 3.65 66.41 4146.00
3032500 5010006 583.88 1072.92 1.9 72.83 1350.00
3042000 5010007 661.92 1106.38 2.19 64.39 481.75
3049000 5010009 488.34 992.2 1.62 74.76 361.50
3069500 5020004 838.14 1253.27 5.55 70.35 1788.00
3075500 5020006 780.67 1201.91 1.97 76.48 330.25
3080000 5020006 761.16 1106 2.91 67.28 310.00
3106000 5030105 440.59 968.76 1.45 74.24 935.25
3109500 5030101 367.08 961.26 1.26 78.17 1223.00
3116000 5040001 316.98 916.03 0.67 81.32 432.25
3132000 5040002 353.71 898.67 0.91 82.72 361.75
3137000 5040003 361.58 926.17 0.76 82.88 1121.25
3144000 5040004 373.29 985.04 1.17 80.24 373.25
3161000 5050001 734.29 1259.66 4.06 63.8 505.25
3164000 5050001 592.34 1156.79 4.15 65.42 2893.75
3167000 5050001 386.87 976.99 3.29 72.8 664.25
3167500 5050001 487.31 1101.81 2.76 70.3 687.00
3170000 5050001 411.52 1009.83 2.32 69 782.25
3173000 5050002 375.29 961.53 5.4 68.39 764.25
3175500 5050002 477.95 965.58 7.47 65.98 590.25
3179000 5050002 407.17 1002.68 3.59 72.41 1001.50
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3180500 5050003 683.15 1166.65 4.81 69.2 346.25
3182500 5050003 575.32 980.08 5.35 67.71 1380.50
3183500 5050003 502.23 942.23 4.65 68.59 3426.50
3186500 5050005 931.22 975.33 6.89 70.68 328.50
3193000 5050006 503.68 1010.88 4.26 70.62 21416.50
3198500 5050009 473.92 1025.41 5.78 71.72 1020.25
3202000 5090101 366.68 1016.76 1.18 67.2 1448.00
3204500 5070102 410.51 1044.61 2.46 69.13 656.75
3234500 5060002 314.8 959.26 0.54 80.32 13823.00
3237500 5090201 401.68 1061.02 1.14 76.75 976.00
3248500 5100101 434.07 1141.97 2.16 62.94 350.75
3252500 5100102 418.93 1138.33 0.61 83.58 1582.25
3253500 5100101 430.84 1129.2 1.51 72.53 8356.00
3265000 5080001 307 919.59 0.19 84.46 1249.00
3266000 5080001 316.75 918.62 0.26 84.79 1609.50
3269500 5080001 325.61 941.32 0.46 82.28 1211.75
3274000 5080002 320.45 949.08 0.46 82.73 9118.00
3275000 5080003 380.93 992.91 0.41 80.18 1325.00
3281500 5100203 514.47 1226.57 3.31 56.89 1903.75
3285000 5100205 500.9 1195.76 1.25 75.56 826.75
3298000 5140102 431.44 1131.25 0.72 83.36 375.25
3301500 5140103 488.29 1226.85 1.36 75.86 3354.75
3307000 5110001 555.47 1288.97 0.97 77.41 489.50
3310300 5110001 462.87 1269.72 0.54 77.19 917.50
3320500 5110006 510.6 1269.25 1.23 74.93 510.00
3326500 5120103 313.49 949.1 0.15 84.28 1789.00
3334500 5120107 341.13 974.43 0.23 80.73 618.00
3335500 5120108 317.88 931.96 0.23 80.02 18402.50
3339500 5120110 343.49 1004.24 0.21 81.82 1287.00
3340800 5120108 349.75 1028.01 0.37 80.98 343.75
3345500 5120112 279.9 906.33 0.25 76.7 4054.25
3346000 5120112 284.75 929.44 0.32 76.96 809.00
3351500 5120201 341.82 980.76 0.18 82.32 459.50
3360500 5120202 364.28 1025.04 0.54 79.35 12716.00
3373500 5120208 390.17 1057.32 0.69 77.12 12393.75
3374000 5120202 380.47 1043.78 0.46 80.02 27394.25
3379500 5120114 279.69 904.48 0.25 75.18 2918.75
3380500 5120115 302.83 942.61 0.36 78.14 1213.75
3381500 5120114 297.07 941.64 0.32 80.93 8065.75
3416000 5130105 618.36 1446.44 3.96 67.51 276.75
3434500 5130204 515.87 1322.55 1.23 68.92 1682.25
3436000 5130206 480.65 1286.9 0.8 75.2 483.00
3438000 5130205 515.04 1282.45 0.52 79.4 615.25
3439500 6010105 1228.64 1373.12 4.84 59.21 272.50
3448000 6010105 878.95 1378.39 4.25 63.62 1751.50
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3451500 6010105 745.14 1316.14 6.23 65.71 2457.00
3453000 6010105 338.44 1107.05 6.42 62.02 424.00
3454000 6010105 515 1054.97 7.31 64.29 332.75
3465500 6010108 591.57 1207.05 7.6 62.18 2045.75
3473000 6010102 552.32 1107.64 5.22 70.42 778.25
3488000 6010101 470.04 968.05 6.1 70.24 569.75
3497300 6010201 887.12 1123.49 9.2 58.76 272.50
3500000 6010202 951.66 1896.68 6.73 60.27 368.75
3512000 6010203 945.52 1189.35 10.01 56.05 484.25
3518500 6010204 843.34 1571.44 6.8 56.61 301.50
3524000 6010205 468.41 989.92 4.63 70.07 1338.75
3528000 6010205 480.95 1057.82 4.4 68.09 3735.50
3532000 6010206 580.97 1153.16 4.83 72.12 1855.50
3540500 6010208 678.95 1452.65 2.77 63.68 1897.00
3550000 6020002 832.53 1716.02 7.08 58.19 275.00
3558000 6020003 960.91 1521.07 4.56 57.66 436.00
3574500 6030002 757.86 1424.81 5.76 69.36 809.75
3575000 6030002 578.76 1404.72 0.91 78.07 864.25
3586500 6030005 560.08 1311.29 0.66 72.55 424.75
3592500 6030006 620.83 1329.08 1.12 68.39 1693.75
3603000 6040003 582.15 1375.81 1.13 67.88 6622.25
3604000 6040004 600.13 1366.51 1.13 63.34 1144.00
3604500 6040004 592.98 1367.85 1.56 59.41 1840.75
4010500 4010101 291.84 795.64 1.96 67.15 1587.25
4025500 4010301 498.94 763.83 0.78 42.14 305.00
4033000 4020102 364.77 800.7 0.75 58.53 425.00
4071000 4030104 277.19 772.22 0.56 49.31 1743.75
4081000 4030202 279.85 759.93 0.67 60.83 667.25
4085200 4030102 233.05 784.38 0.64 79.98 343.50
4087000 4040003 225.32 778.31 0.6 78.63 1748.25
4093000 4040001 310.25 929.03 0.29 83.27 335.00
4128000 4070004 378.81 783.11 1.31 40.82 530.50
4142000 4080101 339.73 780.28 0.73 51.04 856.75
4173500 4090005 214.03 816.87 0.41 70.27 330.50
4198000 4100011 291.06 922.31 0.21 83.04 3080.00
4212000 4110004 413.77 968.37 0.52 69.97 1489.25
4221000 4130002 469.45 948.38 2.95 74.49 752.25
4221500 4130002 421.94 891.29 3.56 72.89 794.75
4293500 2010007 664.35 1016.3 4.31 63.91 1219.25
5057200 9020203 8.04 455.46 0.2 81.57 1750.50
5062500 9020108 75.15 630.25 0.47 67.09 2262.25
5064900 9020109 18.43 508.79 0.32 82.42 402.75
5066500 9020109 24.64 500.54 0.27 79.56 3178.25
5078000 9020305 119.03 627.39 0.34 59.08 1288.00
5078500 9020305 88.12 614.36 0.25 72.68 3690.75
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5099300 9020313 22.59 458.77 0.4 81.87 7582.50
5099600 9020313 24.28 453.48 0.79 79.36 8483.00
5107500 9020314 85.32 527.76 0.13 56.57 3004.00
5275000 7010203 135.73 722.52 0.29 66.45 1546.75
5280000 7010204 120.83 701.23 0.28 77.59 6661.25
5286000 7010207 178.82 728.09 0.24 66.96 3523.75
5300000 7020003 53.6 621.3 0.35 76.86 2607.50
5320500 7020011 152.5 778.22 0.28 78.57 2809.50
5333500 7030001 303.5 745.44 0.57 44.37 4093.00
5336700 7030003 298.57 767.58 0.4 61.22 2265.25
5340500 7030005 270.13 745.93 0.42 61.36 16206.50
5362000 7050004 305.21 812.16 0.5 64.81 1544.00
5374000 7040004 169.93 753.1 0.74 76.71 2976.00
5376000 7040003 171.76 845.41 0.92 76.68 267.50
5379500 7040005 236.62 823.32 1.42 67.72 1671.50
5381000 7040007 273.73 810.52 0.48 78.37 1933.50
5383000 7040006 234.18 797.64 1.8 62.82 1049.00
5384000 7040008 198.9 790.69 0.89 75.09 1589.75
5385000 7040008 193.5 805.65 1.58 71.17 3215.50
5387500 7060002 220.98 827.54 0.71 76.65 1317.50
5397500 7070002 227.3 807.67 0.43 63.05 975.00
5399500 7070002 267.42 813.38 0.5 81.77 597.25
5405000 7070004 210.24 813.18 1.54 73.13 1528.75
5410490 7070006 252.11 814.42 2.11 67.84 1769.25
5412500 7060003 226.13 834.45 0.91 76.51 3886.00
5413500 7060003 216.92 822.99 1.22 76.26 694.25
5414000 7060003 243.1 832.09 1.28 76.42 376.25
5418500 7060006 240.01 841.11 0.76 76.47 3957.25
5419000 7060005 257.47 837.2 1.18 76.01 625.50
5421000 7080102 214.87 831.92 0.41 76.75 2678.00
5422000 7080103 236.5 841.81 0.53 76.36 6029.50
5430500 7090001 202.29 820.5 0.52 75.7 8712.50
5431486 7090001 225.55 822.19 0.44 77.36 509.25
5432500 7090003 235.46 857.82 1.04 77.41 708.75
5433000 7090003 231.65 860.68 1.33 76.54 568.00
5434500 7090003 244.96 859.81 1.09 77.83 2680.00
5435500 7090003 241.58 855.84 0.84 77.75 3452.25
5436500 7090004 237.58 855.3 0.94 75.88 1347.75
5440000 7090006 241.46 803.04 0.37 77.66 2853.50
5440500 7090006 185.84 754.3 0.32 77.99 306.25
5444000 7090005 242.95 793.58 0.67 77.75 366.50
5446500 7090005 232.51 819.99 0.52 76.84 25458.73
5451500 7080208 192.11 820.67 0.4 77.5 3891.25
5454500 7080209 128.68 770.95 0.67 76.28 8123.49
5455500 7080209 226.96 869.85 0.73 77.9 1506.50
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5457000 7080201 174.37 792.64 0.27 77.06 1087.00
5457700 7080201 233.31 851.03 0.32 77.03 2772.75
5458000 7080201 198.04 823.62 0.4 77.19 832.25
5458500 7080201 200.73 809.49 0.44 76.27 4401.00
5459500 7080203 183.82 794.16 0.38 78.4 1319.00
5464000 7080205 203.33 814.6 0.42 77.4 13129.75
5464500 7080205 206.29 826.61 0.52 76.77 16673.00
5465500 7080209 135.93 666.57 0.54 76.87 31982.73
5470500 7080105 243.18 843 0.37 77.92 541.50
5472500 7080106 205.73 878.44 0.71 78 1882.50
5474000 7080107 209.98 864.31 0.54 78.43 11012.24
5481300 7100004 144.31 761.8 0.31 78.13 14638.75
5482500 7100006 158.35 774.1 0.33 77.83 4101.25
5484000 7100007 163.03 791.83 0.81 78.09 2561.25
5484500 7100006 165.45 787 0.4 77.91 8747.74
5486490 7100008 169.63 848.23 0.94 76.97 1311.50
5489000 7100009 202.36 902.37 0.82 81.39 983.75
5490500 7080107 124.87 769.55 0.74 78.94 36735.24
5495000 7100009 235.79 898.2 0.58 79.05 1043.75
5497000 7110002 230.78 912.63 0.61 81.62 1158.25
5498000 7110002 238.9 915.3 0.62 81.66 1001.75
5500000 7110003 226.88 916.29 0.49 79.88 1578.00
5501000 7110004 242.69 918.43 0.54 71.52 932.00
5506500 7110006 247.07 947.01 0.5 78.37 885.00
5514500 7110008 228.87 921.7 0.51 69.01 2380.25
5520500 7120001 326.26 963.89 0.2 74.39 5678.99
5525000 7120002 286.01 896.18 0.18 74.84 1744.25
5527500 7120001 307.9 901.63 0.18 75.31 13296.49
5542000 7120005 257.04 788.21 0.16 78.36 1158.50
5546500 7120006 229.41 845.98 0.63 77.73 2231.25
5555300 7130002 296.9 844.94 0.21 77.18 3079.00
5555500 7130002 195.33 771.32 0.5 78.75 3257.75
5556500 7130001 247.82 786.34 0.39 77.65 505.00
5567500 7130004 232.35 812.96 0.29 77.67 2015.50
5568000 7130004 213.11 808.61 0.48 76.97 2779.00
5569500 7130005 233.19 803.7 0.43 79.81 2764.00
5570000 7130005 236.14 811.5 0.49 80.21 4235.25
5571000 7130006 248.57 839.99 0.25 77.65 941.00
5572000 7130006 256.82 861.89 0.21 77.63 1460.75
5585000 7130010 221.09 840.94 0.44 79.2 3340.00
5592500 7140202 241.06 862.71 0.26 76.98 5104.25
5593000 7140202 225.8 855.9 0.27 75.53 7149.00
5595000 7140204 218.22 848.86 0.3 75.98 13442.75
5596000 7140106 304.64 908.13 0.34 77.43 1287.75
5597000 7140106 306.17 910.17 0.37 80.33 2004.50
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6019500 10020003 119.95 409.67 5.83 60.85 1348.75
6061500 10030101 84.97 292.93 6.63 57.02 517.25
6078500 10030104 484.79 338.19 9.36 61.51 688.00
6090500 10030105 179.8 392.31 8.26 57.9 930.25
6131000 10040105 7.08 310.92 0.93 62.05 6599.75
6169500 10050015 16.41 300.74 1.09 71.31 830.00
6177500 10060002 7.68 320.78 0.9 77.1 1478.50
6186500 10070001 483.24 519.99 6.5 45.43 2642.75
6188000 10070001 453.75 473.63 9.65 56.02 1720.00
6191000 10070001 378.14 465.71 6.07 46.91 518.25
6191500 10070002 418.04 500.51 7.23 54.81 6850.25
6192500 10070002 371.04 488.05 10.23 60.79 9281.00
6209500 10070006 491.6 618.11 12.98 61.75 318.75
6214500 10070007 215.25 488.62 5.26 60.65 30683.00
6224000 10080001 547.43 272.82 11.62 62.17 490.25
6280300 10080013 486.05 322.88 14.84 59.61 802.00
6298000 10090101 295.49 272.95 5.56 67.94 504.75
6318500 10090206 163.01 324.1 6.92 62.18 320.50
6331000 10110102 15.3 370.45 0.66 73.17 2318.25
6334500 10110201 21.64 367.01 0.85 55.17 4851.25
6335500 10110203 22.59 372.08 0.92 60.81 11652.75
6337000 10110205 22.98 375.3 1.23 57.94 21240.00
6339100 10130201 36.44 444.02 0.92 68.3 533.50
6340500 10130201 27.62 436.6 0.84 70.06 6002.00
6344600 10130202 39.09 423.8 0.61 73.86 404.75
6350000 10130204 27.96 422.75 0.55 76.26 1573.00
6353000 10130205 20.1 416.11 0.61 75.52 4391.00
6354000 10130206 22.47 404.84 0.8 74.19 10401.75
6356500 10130302 13.33 393.32 1.05 59.74 3598.75
6359500 10130306 16.42 384.42 0.81 56.58 6712.50
6425500 10120111 14.74 435.45 1.49 63.83 1413.75
6426500 10120201 4.8 356.44 0.71 64.37 4179.00
6431500 10120203 106.95 401.84 3.77 61.59 439.75
6441500 10140102 18.25 438.68 0.85 59.31 7712.50
6452000 10140204 18.41 439.15 0.92 58.08 26946.50
6454500 10150002 7.09 410.19 0.74 60.62 3555.50
6464500 10150006 24.24 500.98 0.55 65.55 2801.50
6466500 10170101 66.01 629.43 0.79 73.88 1187.00
6483500 10170204 90.85 660.6 0.45 77.92 4083.00
6485500 10170203 47.69 610.9 0.47 78.06 20779.25
6600500 10230002 95.58 671.2 0.54 78.06 2313.50
6620000 10180001 106.26 514.57 4.16 61.8 3707.75
6635000 10180004 28.36 266.33 1.62 64.12 6114.75
6658500 10180010 175.64 396.2 5.48 62.05 755.25
6710500 10190002 105.79 371.59 7.78 65.36 424.25
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6783500 10210005 17.3 613.35 0.75 70.34 1852.75
6791500 10210010 75.88 621.76 0.42 48.62 2013.74
6798500 10220001 56.2 601.15 0.33 56.18 5788.00
6808500 10240002 154.76 812.93 0.89 77.97 3382.50
6809500 10240003 161.26 821.52 0.88 77.98 2324.25
6810000 10240004 152.96 828.45 0.84 77.91 7255.99
6811500 10240006 129.8 826.42 0.7 72.47 2079.00
6813000 10240005 164.96 890.78 0.87 77.95 1259.75
6814000 10240007 158.72 852.55 0.77 69.11 734.75
6853800 10250016 40.72 666.03 0.56 73.51 575.00
6864500 10260006 20.54 608.08 0.54 71.65 19476.50
6868000 10260009 39.7 584.83 0.84 66.03 4970.00
6869500 10260010 43.45 612.79 0.79 70.36 7521.50
6876900 10260015 55.31 611.52 0.62 72.67 17588.75
6878000 10260008 98.86 792.99 0.59 75.38 797.25
6883000 10270206 51.79 659.7 0.18 77.05 2541.00
6884200 10270207 107.21 769.41 0.58 79.09 896.25
6884400 10270207 72.18 730.54 0.44 77.78 8349.25
6884500 10270207 83.89 703 0.68 79.69 8827.25
6885500 10270205 133.8 844.33 0.64 69.92 1055.25
6886000 10270205 89.27 743.58 0.39 78.2 23531.25
6888500 10270102 198.97 903.61 1.12 75.83 846.25
6889200 10270102 219.35 920.73 0.75 67.56 401.00
6890500 10270103 158.99 923.1 0.69 72.57 2381.25
6891500 10270104 175.08 929.76 0.75 80.16 1110.25
6892000 10270104 226.65 961.47 0.7 76.4 1024.25
6894000 10300101 284.73 961.3 0.74 78.75 493.25
6898000 10280102 183.26 855.94 0.84 80.1 1882.75
6903700 10280201 237.75 934.65 0.56 78.93 437.50
6907000 10300103 231.39 977.12 0.68 78.65 1524.25
6908000 10300104 239.02 978.78 0.58 77.09 2929.75
6910500 10300102 233.99 1001.55 0.84 77.85 1409.00
6911500 10290101 191.33 936.26 0.51 71.74 280.75
6913500 10290101 171.25 926.64 0.63 72.33 3255.50
6914000 10290101 228.55 984.33 0.51 70.84 874.25
6917000 10290103 261.37 1032.03 0.68 74.23 766.50
6917500 10290104 224.41 998.22 0.56 77.53 1038.25
6928000 10290201 253.36 999 1.18 69.88 3263.50
6933500 10290203 307.37 1060.38 1.25 66.9 7368.25
7013000 7140102 252.73 1057.41 0.93 66.37 2117.25
7016500 7140103 277.02 1025.9 0.88 73 2001.75
7018100 7140104 324.01 1017.53 1.29 68.18 1945.00
7018500 7140104 326.6 1013.61 1.15 71.9 2375.25
7019000 7140102 290.66 1012.24 1.29 62.47 9750.25
7021000 7140107 428.15 1118.95 1.15 59.77 1097.00



144

StationID Cataloging
Unit

Runoff
(mm/yr)

Precipitation
(mm/yr) Slope Curve

Number Area (km2)

7029500 8010208 569.71 1326.57 0.63 67.1 3765.50
7049000 11010001 365 797.94 2.49 71.83 701.75
7050500 11010001 382.6 834.19 2.91 69.66 1367.75
7056000 11010005 419.69 837.38 4.63 66.79 2146.75
7057500 11010006 440.57 1038.45 1.15 65.96 1486.25
7061500 11010007 422.45 1118.75 2.16 62.51 1283.00
7066500 11010008 393.4 1029.16 1.4 62.91 3334.50
7067000 11010008 408.82 1074.31 1.65 57.98 4353.75
7068000 11010008 470.34 1079.03 1.34 59.05 5349.00
7069500 11010010 401.36 896.08 1.07 60.05 3026.25
7071500 11010011 336.33 1004.02 0.99 64.75 2025.50
7072000 11010011 352.85 991.06 1.04 62.94 2893.25
7074000 11010012 353.53 871.15 0.96 58.85 1195.75
7075300 11010014 549.56 873.24 3.09 68.55 386.25
7095000 11020001 35.83 257.19 5.05 56.99 840.50
7144200 11030012 89.13 745.52 0.21 75.25 3367.50
7145200 11030015 111.57 663.78 0.35 75.48 1618.50
7147070 11030017 150.39 854.88 0.25 68.51 1133.00
7147800 11030018 156.89 862.71 0.32 64.92 4856.00
7148350 11060002 38.32 642.06 0.66 64.17 2121.00
7149000 11060003 54.45 650.22 0.7 66.55 2437.25
7161000 11050003 25.7 546.34 0.61 69.78 46310.50
7167500 11070102 213.06 882.9 0.93 69.23 325.00
7172000 11070106 202.56 954.2 0.88 73.32 1119.00
7176000 11070105 163.07 898.1 0.65 71.58 16832.25
7180500 11070202 170.49 869.96 0.4 62.78 275.50
7183000 11070204 171.53 889.51 0.53 72.2 9863.25
7184000 11070205 275.27 1063.93 0.33 70.26 510.50
7186400 11070207 305.35 1103.14 0.5 81.74 607.50
7187000 11070207 312.77 1020.93 0.66 77.73 1137.75
7189000 11070208 305.43 894.94 1.18 67.75 2209.75
7195000 11110103 306.21 825.92 0.68 76.46 349.25
7196500 11110103 318.48 889.07 1.32 69.96 2420.50
7211500 11080003 7.35 411.78 3.65 67.83 7220.00
7216500 11080003 37.83 421.54 6.53 58.57 705.25
7221000 11080004 15.41 404.99 3.08 65.84 2904.75
7222500 11080005 6.05 349.86 2.08 66.89 1310.75
7229300 11090202 121.72 876.87 0.58 72.61 503.25
7234000 11100201 6.43 420.83 0.47 67.81 20499.25
7247000 11110105 363.21 968.46 2.26 68.3 528.25
7247500 11110105 353.3 1094.11 2.36 67.43 329.00
7250000 11110104 410.38 930.66 3.15 71.43 1138.75
7252000 11110201 491.17 830.07 5.09 68.96 973.00
7257000 11110202 504.35 828.43 5.67 70 718.00
7258500 11110204 346.93 870.51 2.04 66.24 626.00
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7261500 11110206 444.32 940.37 2.88 68.84 1079.25
7268000 8030201 570.99 1392.41 0.51 69.85 1359.50
7289500 8060201 433.08 1358.31 0.59 66.69 3777.75
7290000 8060202 474.38 1418.45 0.48 75.14 7102.50
7290650 8060203 473.76 1472.23 0.72 70.75 1694.25
7299670 11130101 17.73 629.8 0.38 79.93 813.50
7304500 11120303 53.42 631.82 0.51 73.42 1398.00
7311500 11130203 83.09 703.36 0.37 66.49 1603.75
7311700 11130204 22.86 628.64 0.61 68.86 2428.25
7332500 11140102 201.44 997.31 0.52 70.13 1215.75
7339000 11140108 560.39 935.02 2.33 69.68 2068.25
7339500 11140109 555.87 978.81 1.23 69.51 473.25
7340000 11140109 474.98 1048.59 1.42 67.16 6813.75
7340500 11140109 610.06 986.89 1.89 67.02 963.50
7342500 11140301 267.08 1064.03 0.34 69.33 1377.50
7346000 11140306 243.54 1150.95 0.65 66.93 2300.75
7349430 11140205 336.08 896.43 0.43 71.54 599.25
7349500 11140205 327.09 1060.25 0.2 63.45 1361.00
7352000 11140208 343.24 1294.51 0.64 66.63 379.25
7363300 8040203 388.46 898.6 0.42 68.38 533.25
7363500 8040204 425.89 922.64 0.74 65.81 5446.25
7365800 8040206 336.74 1109.35 0.47 68.24 480.75
7375500 8070205 618.67 1572.63 0.45 75.67 1698.75
8010000 8080201 707.45 1480.62 0.05 73.39 347.00
8013000 8080203 503.91 1482.34 0.35 62.37 1251.00
8013500 8080203 505.25 1483.13 0.16 62.04 1925.50
8015500 8080203 502.71 1481.57 0.29 66.68 4536.00
8029500 12010005 318.39 1391.87 0.66 50.88 329.50
8030500 12010005 274.4 1174.91 0.49 66.54 24072.50
8032000 12020001 193.63 975.86 0.67 60.97 2905.25
8033500 12020003 188.58 1081.25 0.64 65.02 9317.50
8033900 12020004 254.59 1196.96 0.82 61.72 414.50
8041000 12020003 218.23 1103.53 0.64 62.98 20522.00
8041500 12020006 323.9 1312.92 0.47 58.34 2144.50
8041700 12020007 487.88 1387.75 0.08 62.43 868.50
8042800 12030101 48.83 808.25 0.63 74.44 1769.50
8055500 12030103 72.68 853.82 0.61 72.77 6338.50
8061540 12030106 279.57 1060.46 0.5 85.19 311.25
8064700 12030201 167.88 1010.89 0.44 64.26 382.25
8064800 12030201 168.95 960.07 0.65 48.48 517.00
8065800 12030202 219.56 1080.46 0.32 68.39 858.00
8066200 12030202 224.75 1297.69 0.65 61.48 371.50
8068520 12040102 163.95 1106.25 0.28 65.68 1056.75
8070000 12040103 219.55 1275.52 0.52 60.56 873.25
8080500 12050004 5.98 479.29 0.43 72.14 22307.50
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8084800 12060103 24.83 647.48 0.35 81.47 1210.25
8085500 12060104 16.79 612.55 0.64 75.14 10243.00
8095000 12060204 55.61 789.64 0.84 68.05 2519.00
8095300 12060203 148.54 875.36 0.66 67.07 477.50
8101000 12070202 61.76 751.77 0.96 66.97 1189.25
8104900 12070205 131.15 747.79 0.89 67.18 336.00
8109700 12070102 77.84 1003.92 0.52 63.89 622.75
8109800 12070101 83.67 1019.46 0.53 67.23 644.25
8111700 12070104 215.84 1075.05 0.63 71.61 988.25
8126500 12090101 3.32 403.42 0.36 66.4 43919.00
8128000 12090102 22.14 567.34 0.57 55.2 1055.75
8128400 12090103 2.38 413 0.44 61.75 6362.25
8129300 12090102 11.08 510.33 0.71 56.86 1091.25
8130500 12090102 25.53 590.1 0.71 59.06 590.25
8134000 12090104 5.42 505.77 0.76 63.52 3215.50
8144500 12090109 14.62 574.91 0.58 55.22 2917.00
8146000 12090109 20.91 614.2 0.7 61.4 7747.25
8150000 12090204 33.56 684.22 0.89 53.9 4765.00
8150700 12090204 35.76 726.54 1.09 58.07 8368.50
8150800 12090204 28.75 690.67 1.26 59.88 564.75
8151500 12090204 30.88 679.46 0.96 69.81 10940.75
8152000 12090201 62.58 705.05 1.59 66.96 905.50
8153500 12090206 71.73 827.57 1.09 66.26 2311.50
8159000 12090205 91.2 855.49 0.98 69.27 793.25
8163500 12100101 143.1 960.34 0.57 69.95 273.75
8164000 12100101 137.17 972.89 0.38 71.27 2139.50
8164300 12100102 150.42 977.56 0.55 70.46 902.50
8165300 12100201 90.49 917.39 0.88 55.35 441.25
8165500 12100201 98.2 900.59 1.14 55.53 764.00
8166000 12100201 71.91 825.12 0.92 57.25 298.50
8167000 12100201 86.72 836.93 1.48 63.79 2186.50
8167500 12100201 94.97 841.41 1.48 64.94 3437.25
8171000 12100203 133.22 879.81 1.34 70.48 926.50
8171300 12100203 130.03 921.78 1.32 61.96 1104.50
8172000 12100203 156.41 872.11 0.68 68.68 2188.75
8175000 12100202 84.98 911.05 0.45 64.8 1450.50
8176500 12100204 94.29 831.45 0.63 68.63 13604.50
8177500 12100204 47.89 669.62 0.39 72.72 1292.50
8179000 12100302 119.74 832.27 1.82 58.98 1259.00
8186500 12100303 54.84 880.32 0.44 70.1 595.00
8189500 12100406 60.89 775.37 0.32 64.89 1797.25
8190000 12110101 74.19 709.07 1.84 56.64 1900.00
8190500 12110102 20.58 632.49 1.15 56.7 1776.00
8192000 12110103 27.44 633.7 1.24 57.34 4825.75
8194200 12110105 44.95 629 0.42 50 1228.25
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8194500 12110105 17.69 597.98 0.4 60.4 21168.50
8195000 12110106 106.95 829.79 2.16 56.17 1040.00
8196000 12110106 98.88 768.38 1.88 56.66 312.50
8205500 12110106 13.97 749.25 0.83 63.99 8941.00
8206700 12110109 28 803.91 0.37 66.42 1931.50
8210000 12110111 18 655.04 0.39 63.81 40160.25
8276500 13020101 24.97 320.03 4.96 57.77 24782.50
8283500 13020102 219.81 299.32 6.02 57.64 1010.50
8289000 13020102 53.53 492.68 4.26 56.02 1047.00
8324000 13020202 56.49 449.43 5.85 57.52 1219.75
8378500 13060001 171.17 430.13 9 55.21 466.25
9081600 14010004 623.68 285.26 14.46 60.61 433.25
9132500 14020004 278.31 292.29 9.62 61.04 1353.25
9147500 14020006 193.65 470.74 9.88 58.74 1119.00
9165000 14030002 456.63 536.47 10.52 61.49 283.75
9223000 14040107 279.92 345.58 4.48 56.53 322.25
9239500 14050001 267.29 532.6 6.21 61.34 1525.25
9241000 14050001 515.2 514.46 7.92 57.85 559.75
9251000 14050002 158.29 523.31 4.42 62.55 8511.25
9256000 14050003 110 325.89 3.33 59.42 846.25
9278500 14060003 438.99 416.71 9.7 44.06 319.50
9299500 14060003 356.04 187.41 9.04 38.91 281.25
9304500 14050005 287.26 476.82 7.54 63.36 1942.00
9330500 14070002 129.16 333.99 7.55 67.96 274.00
9350500 14080101 157.37 374.33 7.2 62.01 5213.75
9361500 14080104 393.01 489.69 11.68 58.99 1820.25
9364500 14080104 212.41 429.59 4.11 60.75 3577.75
9378700 14080201 15.1 337.67 5.63 59.1 539.75
9384000 15020001 11.14 371.51 2.88 56.56 1929.50
9415000 15010010 15.71 309.93 4.72 55.81 13075.00
9430500 15040001 30.16 347.41 4.11 62.75 4768.75
9431500 15040002 26.91 332.9 4.35 55.59 7191.50
9444500 15040004 28.1 371.63 5.46 59.7 7261.50
9471000 15050202 14.15 314.08 2.55 66.62 3149.00
9498500 15060103 70.27 372.52 4.35 60.9 11207.00
9508500 15060203 34.46 276.02 3.27 59.04 15367.50

10128500 16020101 462.96 423.02 10.42 60.72 417.25
10174500 16030001 110.2 387.17 3.47 60.28 839.25
10296000 16050302 507.03 602.57 9.82 57.8 470.00
10308200 16050201 458.29 611.36 10.59 57.07 721.75
10312000 16050202 103.59 446.1 5.82 60.12 3676.75
10329500 16040109 76.73 193.02 4.97 56.72 454.25
10352500 16040201 51.17 242.04 4.43 50.32 569.00
10353500 16040201 11.08 228.73 3.97 61.98 2798.25
10371500 17120007 204.97 387.99 3.59 55.95 635.50
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10393500 17120002 76.39 274.03 3.08 62.91 2379.25
11025500 18070304 38.78 495.3 6.43 71.39 291.50
11113001 18070102 165.73 333.42 10.3 57.91 655.25
11138500 18060008 57.03 329.76 9.63 54.01 719.75
11149900 18060005 182.6 303.12 5.12 66.92 550.25
11151300 18060005 20.94 300.06 5.7 60.41 619.25
11152000 18060005 241.39 403.03 9.64 70.65 624.00
11176400 18050004 98.02 385.48 6.91 53.66 337.50
11186001 18030001 330.21 227.4 11.49 60.17 2100.50
11187000 18030001 298.04 237.59 11.89 59.86 2516.50
11189500 18030002 89.82 204.55 7.58 58.47 1434.75
11206501 18030007 624.59 269.49 16.72 56.46 265.25
11209900 18030007 461.78 290.71 11.89 59.56 1077.00
11210500 18030007 336.29 246.84 11.6 57.99 1334.75
11213500 18030010 526.35 180.92 14.67 59 2447.50
11215000 18030010 717.07 138.71 8.31 39.73 464.50
11221700 18030008 124.58 284.43 8.05 61.83 322.50
11222000 18030012 360.27 173.1 9.6 57.64 4346.75
11226500 18040006 871.9 528.37 12.07 58.87 648.00
11264500 18040008 690.68 544.26 10.39 54.77 474.00
11266500 18040008 687.62 547.8 11.11 57.58 832.50
11274500 18040002 43.12 396.84 6.91 60.31 357.00
11342000 18020005 974.73 665.02 10.52 62.91 1109.25
11355500 18020003 329.2 431.15 5.66 53.76 413.75
11367500 18020004 933.06 643.57 4.73 56.02 913.00
11368000 18020004 990.95 670.45 9.74 55.9 1508.50
11371000 18020112 651.33 707.49 10.96 62.17 294.25
11372000 18020112 643.89 736.26 9.15 59.55 579.75
11382000 18020103 553.75 412.47 11.02 54.63 521.50
11383500 18020103 575.84 536.8 7.55 56.73 556.25
11401500 18020122 266.53 493.64 7.13 58.13 1868.75
11402000 18020122 525.91 595.26 7.06 66.89 479.00
11403000 18020122 352.14 619.54 11.48 65.35 1220.25
11413000 18020125 1093.47 960.09 10.27 57.69 666.75
11427000 18020128 850.12 874.6 9.53 61.36 871.50
11465200 18010110 728.09 741.19 6.41 57.22 435.50
11468000 18010108 601.12 706.72 6.45 56.7 801.00
11472200 18010103 898.15 713.74 5.11 58.74 412.50
11473900 18010104 765.42 601.58 9.44 56.33 1894.75
11475800 18010106 1258.84 745.09 7.29 56.28 621.50
11476500 18010106 1280.12 752.27 7.58 58.63 1382.50
11477000 18010105 923.86 701.38 9.19 59.11 7982.00
11478500 18010105 1371.53 798.36 8.99 66.15 572.00
11482500 18010102 1324.09 862.82 10.17 59.73 696.75
11497500 18010202 214.77 354.82 3.28 55.67 1362.25
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11519500 18010208 362.06 549.61 8.89 62.43 1705.75
11521500 18010209 1240.3 872.13 11.83 62.71 316.00
11522500 18010210 894.88 909.89 13.97 56.78 1963.25
11523200 18010211 962.18 665.03 11.91 64.92 387.25
11525500 18010211 947.99 724.39 10.84 61.59 1889.50
11528700 18010212 662.61 749.81 8.76 59.4 1988.00
11530000 18010211 803.28 797.86 12.3 59.66 7375.25
11532500 18010101 2266.61 1166.27 10.88 63.32 1558.50
12020000 17100103 1785.61 1195.48 6.14 67.14 283.50
12027500 17100103 1125.26 1198.88 3.25 61.22 2209.75
12039500 17100102 3900.55 1396.78 15.09 86.75 686.50
12040500 17100102 3376.58 2490.25 8.98 73.26 1146.50
12048000 17110020 890.76 673.87 15.44 66.41 401.00
12134500 17110009 2616 1816.21 16.62 59.33 1406.75
12144500 17110010 2475.57 2310.05 14.41 60.38 1014.25
12186000 17110006 2652.93 1092.55 18.92 57.28 396.50
12189500 17110006 2166.08 990.95 16.78 58.3 1867.50
12303000 17010101 443.63 499.52 11.76 55.55 26513.50
12306500 17010105 435.42 528.27 10.41 57.92 1474.50
12318500 17010104 436.43 510.81 10.39 57.61 34242.25
12322000 17010104 440.42 511.52 8.57 64.15 34679.25
12354500 17010204 250.89 360.47 8.21 56.27 27040.00
12355000 17010206 742.81 424.32 10.2 55.64 1136.75
12355500 17070206 687.56 428.63 11.2 57.06 4034.50
12358500 17010207 907.04 389.38 14.05 57.53 2931.50
12359800 17010209 686.66 375.72 12.58 58.84 3050.25
12370000 17010211 621.59 406.44 9.06 57.95 1780.75
12390700 17010213 463.86 741.92 11.5 54.14 460.75
12401500 17020002 246.17 418.02 7.51 54.08 5570.75
12404500 17020002 270.92 455.27 9.86 56.06 9672.75
12413000 17010301 748.83 772.16 9.17 55.07 2324.50
12413500 17010303 763.94 766.91 11.16 56.83 3127.25
12414500 17010304 813.19 766.93 10.45 55.45 2652.75
12415000 17010304 446.6 674.27 5.2 58.15 1130.75
12442500 17020007 235.32 525.3 9.35 56.7 8934.50
12445000 17020006 145.23 470.53 7.22 58.7 18760.00
12447200 17020006 128.97 436.23 7.21 58.81 20875.25
12449500 17020008 429.89 486.63 12.91 56.05 3489.50
12449950 17020008 304.08 446.86 9.71 56.6 4664.50
12451000 17020009 1576.33 794.02 20.01 53.68 832.25
12452800 17020010 639.25 664.76 15.09 32.42 530.00
12454000 17020011 1875.61 875.56 19.5 55.78 375.00
12455000 17020011 1859.59 900.14 14.98 55.2 698.25
12457000 17020011 1423.3 813.6 13.51 43.13 1396.25
12458000 17020011 1190.21 586.25 17.56 55.17 497.75
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12459000 17020011 1113.26 648.91 12.09 55.91 2434.00
12462500 17020011 865.01 562.09 10.76 58.28 3228.00
13023000 17040103 508 367.39 10.4 59.15 1166.75
13063000 17040207 166.95 389.77 5.53 56.12 866.25
13073000 17040208 127.67 323.44 4.41 66.66 1480.50
13075000 17040208 89.74 348.2 4.71 71.15 924.75
13082500 17040211 27.67 281.78 4.26 55.16 1628.75
13120500 17040218 253.92 230.65 10.83 57.38 1158.75
13139510 17040219 271.26 248.43 11.15 57.42 1621.00
13161500 17050102 110.49 276.14 6.09 57.13 1005.25
13168500 17050102 52.01 264.96 2.76 54.87 6648.75
13178000 17050108 156.86 288.58 4.43 66.19 1115.50
13185000 17050112 532.82 456.18 10.78 65.42 2155.50
13186000 17050113 434.59 413.84 10.39 66.44 1667.25
13200000 17050112 258.57 459.11 7.25 30.29 983.00
13295500 17060201 530.24 271.67 8.41 58.61 1277.25
13296500 17060201 461.28 277.9 8.58 55.27 2042.50
13298500 17060201 313.24 261.46 11 59.48 4511.75
13305000 17060204 108.62 236.68 7.59 59.55 2341.00
13306500 17060203 168.73 222.68 10.49 59.98 1340.50
13307000 17060203 167.81 236.27 9.31 62.25 16100.75
13309000 17060205 623.91 442.24 5.95 55.87 494.00
13317000 17060209 305.6 347.62 11.85 60.89 35182.50
13319000 17060104 202.45 355.42 4.49 55.77 1749.50
13331500 17060105 657.03 389.67 12.9 56.78 625.25
13334700 17060103 157.21 428.17 6.82 62.36 446.25
13336500 17060302 709.55 341.83 12.39 59.66 5103.00
13337000 17060303 877.02 345.7 10.76 50.12 3038.00
13338000 17060305 369 492.78 7.51 58.55 2225.00
13338500 17060305 323.8 526.25 3.72 77.04 3088.75
13339000 17060306 619.18 400.33 8.7 60.84 11969.75
13340000 17060306 570.23 427.85 4.64 68 13743.00
13340500 17060307 982.74 626.96 9.96 48.34 2573.75
13340600 17060307 887.61 714.33 11.51 43.8 3520.00
13342500 17060306 591.99 602.05 6.21 63.67 24174.50
13348000 17060108 112.34 612.2 1.33 78.15 336.50
14020000 17070103 603.95 371.58 9.13 56.23 346.75
14042500 17070202 265.71 345.44 2.83 56.76 311.25
14044000 17070203 180.78 351.4 6.07 58.89 1327.75
14046500 17070204 141.29 340.54 5.82 59.45 13143.25
14048000 17070204 102.39 338.7 5.28 64.54 19866.25
14101500 17070306 363.7 642.96 4.88 57.99 1099.50
14113000 17070106 448.25 559.71 4.83 58.9 3358.50
14150300 17090001 1199.41 1492.72 9.32 63.63 303.50
14154500 17090002 1002.44 1250.11 10.27 63.43 533.50
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14159000 17090004 1860.53 1339.54 7.3 60.28 877.00
14178000 17090005 1677.75 1530.69 9.23 61.41 558.25
14179000 17090005 1906.15 1707 11.75 64.43 271.25
14185000 17090006 1685.31 1536.67 10.21 65.09 462.50
14185900 17090006 2319.78 1604.99 10.87 62.87 258.00
14188800 17090006 1568.22 1389.83 6.96 68.71 286.25
14208000 17090011 1306.41 1638.95 6.74 60.52 355.00
14222500 17080002 2108.02 1332.73 8.38 60.63 314.50
14232500 17080004 1469.35 933.35 12.11 55.53 827.00
14233400 17080004 1591.76 1097.96 12.93 56.14 2670.25
14245000 17080005 1234.82 1168.22 7.23 55.43 313.75
14301000 17100202 1417.14 1260.5 4.66 57.2 1750.50
14301500 17100203 2532.14 1465.51 9.16 56.05 401.50
14303600 17100203 2019.61 1768.15 6.52 56.26 452.00
14306400 17100205 1651.89 1476.05 6.21 68.75 296.25
14306500 17100205 1591.21 1357.05 7.08 65.75 837.25
14307620 17100206 1240.82 1277.03 5.15 68.34 1518.25
14307700 17100302 723.7 1156.15 9.15 58.16 386.00
14308000 17100302 820.04 1130.93 9.36 57.2 1153.75
14318000 17100301 911.76 932.4 8.62 57.66 469.00
14321000 17100303 741.9 1079.17 7.47 64.23 9425.25
14325000 17100305 1715.2 916.47 8.8 67.15 448.75
14338000 17100307 611.08 1125.03 8.22 56.81 339.00
14359000 17100308 571 908.88 5.96 61.4 5428.75
14362000 17100309 719.29 824.58 12.45 68.72 559.25
14377000 17100311 1344.06 1032.22 8.82 64.51 956.25
14377100 17100311 1187.46 913.81 9.2 59 957.50
14400000 17100312 2954.83 1287.79 11.06 69.11 700.50
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