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ABSTRACT

Parallel Program Composition with Paragraphs in Stapl. (May 2012)

Timmie Gene Smith, B.S., Texas A&M University;

M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. Lawrence Rauchwerger

Languages and tools currently available for the development of parallel applications

are difficult to learn and use. The Standard Template Adaptive Parallel Library

(stapl) is being developed to make it easier for programmers to implement a parallel

application.

stapl is a parallel programming library for C++ that adopts the generic pro-

gramming philosophy of the C++ Standard Template Library. stapl provides collec-

tions of parallel algorithms (pAlgorithms) and containers (pContainers) that allow

a developer to write their application without reimplementing the algorithms and

data structures commonly used in parallel computing. pViews in stapl are abstract

data types that provide generic data access operations independently of the type of

pContainer used to store the data.

Algorithms and applications have a formal, high level representation in stapl.

A computation in stapl is represented as a parallel task graph, which we call a

PARAGRAPH. A PARAGRAPH contains a representation of the algorithm’s input data,

the operations that are used to transform individual data elements, and the ordering

between the application of operations that transform the same data element. Just

as programs are the result of a composition of algorithms, stapl programs are the

result of a composition of PARAGRAPHs.

This dissertation develops the PARAGRAPH program representation and its com-
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positional methods. PARAGRAPHs improve the developer’s difficult situation by sim-

plifying what she must specify when writing a parallel algorithm.

The performance of the PARAGRAPH is evaluated using parallel generic algorithms,

benchmarks from the NAS suite, and a nuclear particle transport application that has

been written using stapl. Our experiments were performed on Cray XT4 and Cray

XE6 massively parallel systems and an IBM Power5 cluster, and show that scalable

performance beyond 16,000 processors is possible using the PARAGRAPH.
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CHAPTER I

INTRODUCTION

“Informally, an algorithm is any well-defined computational procedure

that takes some value, or set of values, as input and produces some

value, or set of values, as output. An algorithm is thus a sequence of

computational steps that transform the input into the output.” Cormen

et. al. [1]

The definition provided by Cormen et. al. introduces a sequential view of al-

gorithms, where a single processor executes each step in the sequence one after the

other. Parallel computer architectures that contain multiple processing elements have

been available for decades, and the recent shift by computer processor manufacturers

to multi-core processors has made them ubiquitous [2]. A different mindset is needed

for the development of parallel algorithms that will run efficiently on parallel archi-

tectures. In addition to specifying the operations that will be performed on each data

element a parallel algorithm needs to specify an ordering on the parallel operations to

ensure correctness and have some awareness of data distribution and load balancing

for efficient execution. Many approaches for developing parallel applications exist.

They provide different programming models that address dependence specification,

data distribution, and load balance differently.

A. Existing Approaches

Process-oriented approaches such as MPI [3] implement algorithms as concurrent

sequences of instructions. While some collective operations are provided for syn-

The journal model is IEEE Transactions on Automatic Control.



2

chronization, the main mechanisms for ordering of operations or communication are

point-to-point operations that must be handled explicitly in the algorithm by the de-

veloper. The developer must also address data distribution and load balancing in the

implementation of their algorithm. Finished applications can execute very efficiently

and are portable because the MPI library has ubiquitous on HPC systems. However,

the developer is often focused on the communication required instead of the details of

the algorithm itself. The performance is not always portable either due to differences

in system architectures.

Divide-and-conquer systems such as NESL [4] and Cilk [5] provide a data-oriented

expression of the parallel algorithm whose implementation is focused on split and join

operations. The data locality of the resulting algorithm is good, and load balancing

can be handled implicitly by the runtime system. The difficulty of developing al-

gorithms in these systems is determining when to stop dividing and when to begin

processing the data. It is also difficult to express applications that have complex

dependence patterns between operations using these systems.

Task-oriented systems such as Pthreads [6] and Intel Threading Building Blocks

(TBB) [7] allow the developer to focus on the operations of the algorithm instead

of the processes executing the algorithm. Both systems utilize shared-memory for

communication, making it implicit in the algorithm. Load balancing is handled for

the developer by the operating system for Pthreads, or by the work-stealing scheduler

of the TBB runtime system. Task synchronization (ordering tasks to ensure correct

execution) is either limited or difficult to express. TBB’s limited task synchronization

restricts the dependence patterns that can exist in algorithms implemented using the

library.

Pattern-based systems such as algorithmic skeleton libraries [8] [9] allow develop-

ers to easily develop new algorithms as a composition of parallel patterns, specifying
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the operations that will be performed by the tasks of each pattern when it is instanti-

ated in the code. The degree of extensibility (i.e., the ability to add a new skeleton to

the library) varies, but is usually limited. The forms of composition of the patterns

may be limited as well, which restricts the form algorithms implemented using the

library may take.

Stream-base systems such as Intel Concurrent Collections [10], StreamIt [11], and

the Pipeline skeleton in many algorithmic skeleton libraries, allow a parallel algorithm

to be specified as a set of transformations that are applied in turn to data elements,

which continuously enter the algorithm over time. Expressing the ordering between

the transformations of the algorithm is easy in these systems. Load balancing and

communication is also handled implicitly by the runtime system. The drawback of

such systems is limited applicability, as it may be difficult to express the input to an

algorithm as a stream.

B. Parallel Algorithm Definition

Considering the existing approaches, each with its advantages and difficulties, we

developed the following goals for a developer when expressing a parallel computation:

• able to focus on expressing operations of the algorithm,

• able to specify any ordering between operations that is necessary,

• able to specify the pattern of a parallel algorithm instead of individual opera-

tions,

• able to add a new pattern for a parallel algorithm, and

• able to specify any ordering between or composition of the patterns used to

express a parallel algorithm.
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This set of capabilities leads to the following definition of a parallel algorithm that

captures the necessary information and provides the proper mindset for developing

parallel algorithms.

Definition 1 (Parallel Algorithm) A parallel algorithm is a tuple {O,D} where:

• O is the operations of the parallel algorithm.

• D is the partial ordering of operations that access the same data.

The operations of O can be parallel algorithms themselves, which makes the

definition above recursive, or they can be transformations of individual data elements

that match the transformations on data in the definition by Cormen et. al. that

began this chapter. The elements of O can be thought of as a collection of tasks. The

elements of D provide the information needed to correctly schedule the execution of

the tasks.

The representation of the tasks and their dependences used in this dissertation

is a high level task graph of the computation called a PARAGRAPH. The specification

of PARAGRAPHs at the level of individual tasks and dependencies is a difficult and

error-prone process. This dissertation explores methods to simplify task graph speci-

fication in order to improve the productivity of the programmer developing a parallel

application.

C. STAPL Programming Model

The Standard Template Adaptive Parallel Library (stapl) [12–21] is a parallel pro-

gramming library for C++ that is being developed to address the difficulties of parallel

programming. stapl provides functionality similar to stl, the Standard Template

Library that is part of the ISO adopted C++ standard [22]. stl is a collection of
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containers, iterators, and algorithms that may be used as the building blocks of a se-

quential application. Similarly, stapl provides pContainers for parallel data storage,

pViews to provide uniform data access operations by abstracting away the details of

the particular pContainer being used to store data, and a collection of pAlgorithms

that are parallel implementations of algorithms frequently used in applications.

The programming model in stapl is a task graph representation of the ap-

plication. The application is written as a task graph, called a PARAGRAPH, whose

operations are task graphs themselves. The result is a hierarchical task graph that

captures the entire computation. Hence, in stapl, the pAlgorithms declare one or

more PARAGRAPHs, whose execution performs the desired transformation of the input

data. The implementation of the PARAGRAPH in stapl is the validation of the concepts

presented in this dissertation.

The PARAGRAPH has been used to implement the pAlgorithms and operations of

the pContainers that are presented in [12, 16–21]. A paper that is focused on the

work presented in this dissertation is under preparation.

D. Research Objective and Contributions

Our research objective is to define mechanisms for concise expression of task graphs

and their composition to simplify the development of parallel algorithms and applica-

tions. The PARAGRAPH presented in this dissertation makes several novel contributions.

• The task dependence graph of a parallel application is a hierarchical construct

built through the composition of task dependence graphs of smaller program

units. It is explicit in the application and can be manipulated by the developer.

• Dynamic irregular task graphs can be specified in user-level code.
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• A unified form for the specification of regular and irregular parallelism is pro-

vided.

• A unified form for the expression of data- and task- parallelism is provided.

E. Outline

The remainder of the dissertation is organized as follows. Chapter II summarizes the

related work. Chapter III presents an overview of stapl with a discussion of the

primary components in the library. In Chapter IV we present the mechanisms used

to specify a PARAGRAPH. The means used to compose PARAGRAPHs into larger com-

putations is presented in Chapter V. An experimental evaluation of the PARAGRAPH

implementation is presented in Chapter VI, and includes the performance of individ-

ual stapl pAlgorithms and multiple benchmarks and an application written using

stapl. Finally, in Chapter VII we make our concluding remarks and identify possible

directions for future research based on the work of this dissertation.
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CHAPTER II

RELATED WORK

Several research projects have used task graphs to represent applications. The scope

of a task graph in these projects ranges in scale from loop nests to large workflows

for scientific problems in order to expose parallelism. The review of those efforts is

organized by whether the task graph is constructed automatically, or expressed by

the developer in some form. Research projects in the area of algorithmic skeletons are

then surveyed, as this research area is closely related to the task factory concept

developed in this dissertation.

A. Compiler Constructed Task Graphs

One of the fundamental concepts taught in compiler design courses is that the program

being compiled can be represented by several different graphs. For example a data

flow graph represents the instructions of a program as vertices of a graph with edges

added between an instruction that produces a value and all of the instructions where

the value is read. We are interested in projects that form a graph from the source

code in order to identify instructions that can be executed in parallel.

1. HTG

The Hierarchical Task Graph (HTG) [23] was implemented in the Parafrase-2 com-

piler as an intermediate representation that captured the set of data and control

dependencies of an application in order to enable task parallelism. At each level of

the hierarchy a task is a sequence of instructions. Tasks at the same level in the graph

may be executed in parallel if there is no control or data dependence between them.

HTGs allow nested task parallelism as independent tasks at any level of the graph
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can be executed in parallel. The task graph is extracted from the application source

code, and as such there is no need for dynamic task graph support or allowing user

specification of the task graph that is comparable to our work. The HTG works in

addition to the detection of data-parallel operations (i.e., parallel loops) by additional

passes in the Parafrase-2 compiler, and only supports task parallelism (i.e., MPMD

programming) as a result.

2. Program Dependence Graph

The Program Dependence Graph (PDG) [24] is an intermediate representation that

combines control and data dependences of a program in a uniform representation.

The goal of the work was to aid in the development of optimizations for vectorizing

and parallelizing compilers. The uniform representation allows some optimization

passes, such as vectorization, to be simplified because the control dependences are no

longer treated as special cases. The nesting of control structures in an application

results in a PDG that is hierarchical as well. The hierarchical nature of the PDG

was exploited to produce summaries of code that allowed for rapid querying of a

region during optimization to determine if it needed to be processed, and to simplify

reordering transformations. The PDG representation was intended to be used by all

optimizations of a parallelizing/vectorizing compiler. It is able to expose both task

and data parallelism. Like in the HTG, algorithm developer manipulation of the

graph and dynamic task graph support is unnecessary in this work. The hierarchical

nature of the PDG is similar to the hierarchical task graph representation that we

explore in this dissertation.
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3. Polytope Model

The polytope model [25] is an internal representation of the iterations of a set of nested

for-loops. Each iteration is represented by an iteration vector whose components are

the values of the loop indices for that iteration. A set of inequalities can be formed

to describe the shape of an n-dimensional polyhedron that contains all the points

of the iteration space of the loop nest. Transformations that have been established

in the theoretical basis of the polyhedron can be applied then to change the shape

of the polyhedron to a more regular shape. This allows better analysis of the loop

nest by the compiler, possibly allowing it to be recognized as parallelizable when it

would not have been in its original form. Like the HTG, the polytope is formed by

the compiler during analysis of the application and is not exposed to the user, nor is

dynamic modification of the polytope possible or desirable. The analysis is applied

only to loop nests and thus only enables data parallelism.

B. User Expressed Task Graphs

The task of automatically extracting parallelism from a sequential code is difficult be-

cause the languages used to develop applications rarely allow the developer to include

semantic information about the computation in its implementation. A sequential

language also allows unrelated variables in a function to reuse the same memory and

requires the developer to arbitrarily order independent instructions of a function to

form a sequential execution, further complicating the task. In an attempt to address

these concerns several research projects allow the application developer to express the

computation as a task graph in some form, allowing parallelism to be easily detected

and exploited.
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1. Chimera

The Pegasus [26] Workflow Management System is a tool that coordinates the exe-

cution of large-scale scientific applications across multiple platforms in different loca-

tions. Pegasus performs the same operations as the PARAGRAPH Executor [27] and the

Scheduler of the stapl run-time system. Workflows can be expressed using multiple

tools that differ in their level of abstraction. Pegasus is capable of handling explicitly

specified workflows, Chimera [28] specifications, and CAT [29] specifications. These

three levels of specification correspond loosely to the explicit specification, task fac-

tory specification, and composition of task graphs proposed in this dissertation. The

Chimera system contains a collection of data sets that represent the results of scien-

tific computations. A scientist is able to query the system and specify a new data

set that they need. Chimera uses its knowledge of the results it already has and

the computations that may be performed to transform those results to generate a di-

rected acyclic graph (DAG) of the computations that must be performed on a specific

subset of the results available to obtain the desired result. That DAG can then be

given to Pegasus or another workflow management system to schedule the necessary

computations.

2. Intel Concurrent Collections

Intel Concurrent Collections [10] [30] is a parallel programming model that allows

a high level, dataflow-like description of an application. A domain developer that

writes the application expresses the data to be processed in item collections, the

computation to perform in step collections, and any control dependence between

step collections in tag collections. Each of the preceding concepts is referred to as a

collection to emphasize that it is a set of distinct units. This is important because
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the step instances in a step collection are the minimal execution unit and schedulable

entity, and item instances are the finest grain of communication that can occur in the

application. The result of the domain developer’s work is a model of the application

that is fine-grained.

When the domain developer is finished with the model it is passed to what is

referred to as a tuning expert to map the computation on to a system for execution.

The tuning expert – which may be a software analysis tool or a human – is concerned

with the coarsening of items into coarse-grained entities to minimize runtime over-

head, distributing coarsened items across processes, and scheduling coarsened items

for execution within a process [31].

The separation of concerns between the domain developer and tuning expert in

expressing the computation and mapping the computation to a system, respectively,

is similar to the separation of concerns between the PARAGRAPH developed in this

dissertation and the PARAGRAPH Executor developed in [27] for algorithms written

using STAPL. The application developer specifies the data to be processed, the op-

erations to use, and the pattern of the computation as a PARAGRAPH instance. The

PARAGRAPH instance is processed by the PARAGRAPH Executor that instantiates the

tasks of the PARAGRAPH and maps them onto the system for execution and maintains

the dependencies between the tasks to ensure correct execution.

3. Intel Threading Building Blocks graph class

Intel Threading Building Blocks (TBB) version 3.0 update 5 [7] has introduced a task

graph class as a community preview feature. The library now provides a graph class

that can be instantiated and explicitly populated with nodes and edges. The behavior

of a node varies based on its type. There are nodes that execute user functions in

addition to nodes that simplify setting up different communication patterns. After a
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graph is constructed it may be repeatedly executed.

The specification of a TBB graph is explicit and requires the developers to add

individual nodes to the graph and then add the appropriate edges. The usage exam-

ples in the TBB documentation indicate that the scale of the graphs is intended to

be small, which makes its use practical. In Chapter IV we demonstrate that explicit

construction of the tasks in a PARAGRAPH to process the elements of an input pView

would be difficult due to the scale of the graph. Our work proposes using dependence

patterns and task graph composition methods to simplify task graph specification

and raise the level of abstraction used in a stapl application.

C. Algorithmic Skeletons

Algorithmic skeletons [32] [33] are higher-order functions that implement the struc-

ture of a parallel algorithm and accept functions that implement the operations to

be performed within the algorithm as arguments. An example of a skeleton is re-

duce, which can be thought of as a parallel implementation of the STL accumulate

algorithm. The reduce algorithm accepts a functor that implements the operation

to be applied on the elements to form the accumulation. How the code within the

algorithm is parallelized and how the partial results are combined to form the final

answer is hidden from the user. The DatTeL library [34] is a skeleton library for

C++ that implements parallel versions of the STL algorithms as skeletons using this

approach.

The task factories developed in this dissertation are the analog of skeletons.

Indeed, the task factories provided in stapl (map, reduce, prefix scan) were some

of the earliest data parallel skeletons developed. pAlgorithms in stapl use these task

factories to instantiate the PARAGRAPHs they need in order to perform the desired
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computation. While code written using skeletons is portable, the skeleton implemen-

tation usually is not. Skeletons are typically implemented using the native run-time

system or a low level API such as MPI, and the implementation of each skeleton is

independent of the others in a library. The stapl task factories, on the other

hand, all generate tasks of a PARAGRAPH that are independent of the system on which

they will execute and utilize the same components of the stapl run-time system for

execution. By generating tasks of a PARAGRAPH that is executed by the PARAGRAPH

Executor the implementations of the computation patterns are as portable and ef-

ficient as the pAlgorithms that use them. The parallel for, parallel reduce,

and pipeline algorithms in Intel Threading Building Blocks [7] are also examples of

skeletons whose implementations use a common, higher level of abstraction for their

implementation.
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CHAPTER III

STAPL OVERVIEW

stapl [12] is an extensible parallel programming library for C++. It adopts the

generic programming philosophy of the C++ standard template library (stl) [35].

When a developer begins using stapl to develop an application the components she

encounters closely parallel the components provided by stl. Figure 1 illustrates the

similarities in the high level components of the two libraries. stl provides containers

for storing application data, algorithms that implement frequently occurring compu-

tations, and iterators that abstract the containers and provide the algorithms with

a uniform set of data access operations. Developers familiar with these components

will be able to easily map them to their stapl counterparts.

A. Component Overview

When a developer begins writing a program using stapl there are three sets of compo-

nents they begin using immediately. Parallel algorithms (pAlgorithms), distributed

data structures (pContainers [19]), and pViews [21] are the high level building blocks

that can be used to compose an application. The pAlgorithms and pContainers

provided by stapl have interfaces similar to the C++ stl containers and algo-

rithms. pViews provide data access operations while abstracting away the details

of the pContainer on which they are defined, analogous to the way stl iterators pro-

vide access to elements stored in containers independent of the container type. The

pAlgorithm parameters that specify the data to process are pViews, and because the

pViews provide generic data access operations a pAlgorithm is able to operate on

multiple pContainers.
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Fig. 1. Mapping between STL and STAPL components

pAlgorithms declare a set of PARAGRAPHs whose execution will perform the de-

sired parallel operation. A PARAGRAPH is a task graph representing a parallel compu-

tation. The PARAGRAPH, the PARAGRAPH Executor which executes PARAGRAPHs, and

related task concepts used in this dissertation are defined below.

Definition 2 (Task) A Task T is a pair (A,D) where A is an algorithm and D is

the data that represents the inputs and outputs of A.

Definition 3 (Task Graph) A task graph TG is a graph whose vertices are tasks,

and whose edges represent data dependencies between the tasks.

The algorithm performed by a task may itself be expressed as a PARAGRAPH, and

it is implemented in stapl by what we refer to as a work function.

The data to be processed by a task is represented by one or more pViews. The

dependencies in the task graph ensure that a task completes execution before any

of the tasks that depend on the results of its execution are allowed to begin exe-

cution. The shape of the task graph is determined by the task factory provided

to the PARAGRAPH. Processing of a PARAGRAPH is handled by the components of the

PARAGRAPH Executor. The PARAGRAPH Executor performs the creation and mapping

of the tasks of a PARAGRAPH to the system and enforces the dependencies between the
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tasks. Figure 2 illustrates the organization and interaction of the components of

stapl with an application written using the library.

The arrows indicate that the component at the base of the arrow uses the com-

ponent at the end of the arrow (e.g., pAlgorithms use PARAGRAPHs). While there

are no lines shown in the figure to the adaptive framework [15], each component of

stapl may use the adaptive framework to choose between multiple implementations

of a component to improve performance when they are available.

The sets of pAlgorithms and pContainers provided by stapl allow a developer

to develop their application without having to re-implement the algorithms and data

structures commonly used in parallel computing. However, for any application it

is likely that the developer will need domain specific parallel algorithms and data

structures that are not provided by stapl. Composing pContainers (i.e., defining

pContainers of pContainers) may provide the desired data structure very quickly.

In more advanced cases, the stapl Parallel Container Framework (PCF) [19] [36]
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provides components that allow a developer to quickly define a new parallel data

structure.

The stapl components a developer may use to specify new parallel algorithms

are the subject of this thesis. In order to develop a new pAlgorithm the developer

must:

1. specify the pattern of the parallel computation to determine which dependence

pattern to use,

2. specify the operations that will be performed on the data, and

3. specify the data that will be processed by the pAlgorithm.

Completion of the first step allows the developer to decide if one of the task

factories provided in stapl will allow them to construct the PARAGRAPH they desire,

or if they will need to develop a new task factory as well. Completing the second

step allows the developer to write the operations that will be the core of the work

functions used in the tasks of the PARAGRAPH Executor. stapl simplifies this step

by allowing nested parallelism via calls to existing pAlgorithms in the operation.

Completing the third step above will allow the developer to know how many pViews

their new pAlgorithm will accept. The pAlgorithm the developer is writing may

be made up of several PARAGRAPHs that need to interact with one another. stapl

provides a set of composition operators to allow PARAGRAPHs to be composed together

and processed by the PARAGRAPH Executor concurrently.

The following chapter details how to construct an individual PARAGRAPH, and

Chapter V defines the PARAGRAPH composition operators provided to allow more par-

allelism to be exposed as the PARAGRAPH Executor processes the PARAGRAPHs.
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CHAPTER IV

PARAGRAPH SPECIFICATION

PARAGRAPHs are the building blocks of the parallel algorithms and applications devel-

oped using stapl. The PARAGRAPH simplifies the development of a parallel algorithm

by:

• allowing a developer to separate the implementation of the individual opera-

tions of their algorithm from the specification of the dependencies between the

operations,

• allowing a developer to separate the specification of a PARAGRAPH from its map-

ping to and execution on processing locations by the PARAGRAPH Executor,

and

• allowing seamless composition of task graphs.

The PARAGRAPH and task factory concept it uses are defined as follows.

Definition 4 (PARAGRAPH) A PARAGRAPH is a task graph, and is defined as the tuple

{F,O, V } where

• F is a task factory that adds tasks and associated dependencies to the task

graph when invoked by the PARAGRAPH Executor,

• O is a tuple of operations that will be applied by the tasks of the task graph, and

• V is a tuple of pViews representing the data to be processed by the task graph.

Definition 5 (task factory) A task factory is a tuple {SP,DP(O)}, where SP

is a structural pattern and DP is a dependence pattern that is parameterized by the

tuple of operations, O, provided to the PARAGRAPH.
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The structural pattern, SP, defines how many tasks will be generated for a

PARAGRAPH, and which of these tasks can be predecessors of tasks in another PARAGRAPH

through composition. For every point in SP the dependence pattern, DP, generates

a specification of the task that should be created, including the operation from O to

be applied, the set of preceding tasks, and the number of successors.

In the remaining sections of the chapter, PARAGRAPH construction and coarsening

are presented first. The interfaces provided for specification of PARAGRAPHs using task

factories are presented, followed by the interfaces for dynamic task specification.

The chapter concludes with a case study illustrating how to implement a new task

factory for a computation that cannot be expressed with the patterns provided in

STAPL. The case we will examine is a sweep algorithm used in a discrete-ordinates

particle transport code.

A. PARAGRAPH Construction and Coarsening

Specification of a PARAGRAPH instance requires constructing an object that contains

all three elements of the tuple in the definition above. The tuple V of pViews is

provided directly to the specification. These pViews provide access to the individual

elements of the data to be processed. The task factory F is also provided directly.

The operations of O, however, don’t need to be provided directly to the PARAGRAPH

specification.

The operations in O are only invoked during task execution when the PARAGRAPH

is being processed by the PARAGRAPH Executor. Therefore the PARAGRAPH itself

doesn’t need to be aware of the number or type of the operations. The task factory

F does need to know the number of operations and their exact type, because it

is responsible for producing specifications of the tasks in the task graph when the
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PARAGRAPH is processed by the PARAGRAPH Executor, and the specification includes

an instantiation of the operation used by the task. Therefore, a convenient way to

construct a PARAGRAPH instance is to pass the pViews and task factory to the con-

structor, and have the task factory instance store the work functions that are

instances of the operations in O.

The pViews and work functions provided by the developer are fine-grained.

An element of a pView is an individual datum that is processed by a single invo-

cation of a work function. Passing a PARAGRAPH specified with these fine-grained

pViews and operations to the PARAGRAPH Executor for processing would result in a

task graph that is proportional to the size of the input data and whose tasks would

have execution overhead near the cost of the operation execution. The runtime over-

heads in this scenario would negate the benefits of using the PARAGRAPH to express

parallel algorithms. In order to minimize the overhead the PARAGRAPH introduces in

application execution it is coarsened when it is constructed if the task factory used

allows coarsening.

The coarsening of a PARAGRAPH requires transformation of both the operations

and pViews. The transformation applied to the operations produces new operations

that are able to handle multiple elements and return the coarsened result. A simple

example is the coarsening of an operator that is used in the PARAGRAPH that computes

an accumulation of a set of elements in a pView. The original operator could be

std::plus<> from the C++ STL, and the coarsened operator would be similar to

the listing shown in Figure 3. The developer may bypass the operator coarsening

by providing a “coarsened” operator to the PARAGRAPH constructor. The operator

contains an extra type definition to indicate that it is capable of handling multiple

elements. Developer coarsened work functions are used in the implementations of

NAS EP and PDT discussed in Chapter VI.
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template <typename Op>

struct coarse_plus

{

private:

Op m_op;

public:

typedef typename Op::result_type result_type;

coarse_plus(Op const& op) : m_op(op) {}

template <typename View>

result_type operator()(View& view)

{

typename View::value_type result = view[0];

for (int i = 1; i != view.size(); ++i)

result = m_op(result, view[i]);

return result;

}

};

Fig. 3. Coarsened accumulation operator.

The coarsening of the pView is a coarsening of the data that is passed to the

operator of a task in the task graph. The result of data coarsening is a pView of

pViews. Currently in stapl, the coarsening performed when a task factory in-

dicates that it can support coarsening (i.e., work functions that are the coarsened

versions of all operations in O are available) maximizes the size of the coarsened ele-

ment while maintaining data locality on each processing location. The developer may

also precoarsen the data passed to a PARAGRAPH instance. The coarsening produces a

well known pView type that we are able to detect when the PARAGRAPH is instantiated

and bypass the coarsening for that pView.

Data coarsening is the opposite approach of the divide-and-conquer technique

that has been adopted by existing approaches such as NESL [4], Cilk [5], and Intel

TBB [7]. We chose to perform coarsening of the fine-grained computation instead of

dividing a coarse-grained computation because the fine-grained approach exposes the

maximum amount of parallelism to the system during execution. As the amount of

parallelism available in systems continues to increase it will become more important
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to find available parallelism in an application. The fine-grained specification allows a

stapl application to operate at the maximum degree of parallelism available if the

overheads in the system are low enough to make it beneficial.

After coarsening is complete, the task factory of the PARAGRAPH generates

tasks that apply an operation from the coarsened versions of the functions in O

to the elements of the coarsened pViews that were in V . It is important to note that

the behavior of the PARAGRAPH and task factory are the same whether coarsening

was performed or not. The uniform treatment of fine-grained and coarsened pViews

and operations prevents usage of the PARAGRAPH from being limited to one case or

the other. This is demonstrated again in the presentation of a new task factory

for a sweep algorithm in a discrete-ordinates particle transport application. In that

application, the coarsening of the pView and operator is performed by the application

developer before the PARAGRAPH for the sweep is instantiated.

1. STAPL Implementation

The declaration of the PARAGRAPH class and its constructor is shown in the list-

ing of Figure 4. The notation for variadic templates, a feature of the latest C++

standard [22], is used to show that any number of pViews can be provided to the

PARAGRAPH. The number of pViews cannot exceed the number of pViews expected by

the task factory.

B. Specification Using Task Factories

Interfaces that would allow for the specification of individual tasks and their de-

pendencies in a PARAGRAPH are too low level to allow for productive development of

parallel algorithms. In order to raise the level of abstraction of populating a task
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template <typename TaskFactory, typename Operations, typename ...Views>

class paragraph

: public task_graph

{

paragraph(TaskFactory const& factory, Operations const& operations, Views const&... views);

paragraph(paragraph const& pr);

};

Fig. 4. Declaration of the PARAGRAPH class and its constructors.

graph, to enable reuse of the code that performs the population, and overlap task

creation and execution, the idea of providing a generative functor to the task graph is

explored. Each functor is parameterized with the operations to be used and is given

the set of coarsened pViews – unless the task factory disallows coarsening – to

process. The functor generates the tasks of a task graph with a particular pattern of

dependencies between the tasks. The generators are instances of the factory method

pattern [37], and we refer to them as task factories.

A task factory captures the computational pattern of a task graph. The

parametrization of the functor with the operations to be performed by the tasks

it generates allows the task factory to be reused to implement a wide range of

algorithms that have the same structure in their task graph. We have found, along

with researchers in the algorithmic skeletons community [8, 38], that there are a few

computation patterns that occur with high frequency in parallel applications. There-

fore, a small number of task factories written by a more advanced developer can

cover a substantial number of parallel applications. Once a task factory is writ-

ten it enables rapid development of efficient and correct parallel algorithms by all

developers.

A task factory is the combination of a structural pattern and a dependence pat-

tern that has been parameterized with the operations of the PARAGRAPH. The struc-
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tural pattern specifies how many tasks will be generated given the size of the input

pViews. For each task specified by the structural pattern the dependence pattern is

responsible for forming the specification of the operation to be applied, the set of

predecessor tasks, and the number of successors. While we believe there are only

a few task factories that need to be implemented to capture the most common

parallel computation patterns, we believe that domain specific patterns will be found

as applications are developed using stapl. The task factory definition provided

above allows for the implementation of structural patterns and dependence patterns

to be separated, simplifying the job of a developer writing a new task factory and

allowing for greater reuse of both types of patterns.

An example that demonstrates the flexibility of the task factory definition

is a comparison of the implementations of the map factory in stapl presented in

Section C and the sweep factory in PDT detailed at the end of this chapter in

Section E.

The map factory generates a set of tasks that will apply the operation provided

to the factory to every element in the input pView. There are no dependences between

the tasks, so the dependence pattern returns a task specification for every point in

the structural pattern that contains the operation, an empty set of predecessors, and

indicates that there are no successors for the task. The structural pattern of the

factory will specify a task for each element of the input pView. The structural pattern

is similar to the pardo construct used in the pseudo-code of [39], so we use pardo as

the name of the structural pattern. The dependence pattern is named independent to

indicate that no dependence information will be specified. The map factory could

be generated by the function shown in Figure 5.

The sweep factory in PDT is responsible for constructing the tasks of a PARAGRAPH

that compute the movement of subatomic particles in a given direction across a spa-
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template <typename Operation, typename View>

map_factory construct_map(Operation& operation, View& view)

{

return pardo(independent(operation), view.size());

}

Fig. 5. Expression of map factory with structural and dependence patterns.

tial domain. The spatial domain is represented as a graph whose cells are discretized

units of space and the edges in the graph represent a shared face between two dis-

cretized spatial units. The edges store a vector normal that indicates the orientation

of the face from the face center to the center of the spatial unit. To determine the

change in particle flow in a direction an operation must be applied to each vertex

of the graph. This single application of the operation to a vertex indicates that the

structural pattern needed is pardo. The dependence pattern of the sweep factory is

such that an operation cannot be applied on a graph vertex until the operation has

been applied to all vertices that have an edge to the current vertex with a vector nor-

mal whose dot product with the sweep direction is positive (i.e., the edge represents

incoming particle flow). The sweep factory and the dependence pattern it uses can

be written using the code shown in Figure 6.

1. STAPL Implementation

a. Task Graph Pattern Requirements

The task factories currently implemented in stapl are classes that have their

structural pattern and dependence pattern explicitly encoded in the implementation.

Full generalization of the factories using the structural and dependence patterns as

defined above is one of the directions for future research.

A task factory instance is a distributed object that is responsible for gener-
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template <typename Operation, typename View, typename Direction>

sweep_factory construct_sweep(Operation& operation, View& view, Direction& direction)

{

return pardo(categorize_edges(operation, direction), view.size());

}

template <typename Index, typename Vertex>

task_specification categorize_edges::operator()(Index& index, Vertex& vertex)

{

vector<int> predecessors;

int num_successors;

for (Edge& e : vertex.edges())

if (dotproduct(e.normal(), direction) > 0)

predecessors.push_back(e.target());

else if (dotproduct(e.normal(), direction) < 0)

++num_successors;

return task_specification(vertex.id(), operation, predecessors, num_successors, vertex);

}

Fig. 6. Expression of sweep factory using structural and dependence patterns.

ating all tasks of a PARAGRAPH when the PARAGRAPH is processed by the PARAGRAPH

Executor. The task factory is constructed outside of a PARAGRAPH and is passed

to its constructor. The PARAGRAPH constructor inserts a task on each processing loca-

tion in the task graph that will invoke the task factory on each location when it is

executed. The task factory is implemented as a dynamic task [27] whose operator

inserts the tasks of the computation into the task graph, possibly through multiple

invocations on each processing location. It is the responsibility of the task factory

implementer to decide how the generation of the tasks will be distributed across the

processing locations and invocations of the task factory tasks on a location to en-

sure that the tasks of the PARAGRAPH are generated correctly. stapl provides helper

functions that assist the developer by providing a partitioning of the coarsened in-

put pViewelements across the processing locations. The task factory tasks on a

particular processing location could then be responsible for generating the tasks that

operate on the pViewelements that are in the subset of the partition on that location.

Section c explains why the generation of the tasks of a computation is necessarily
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done through the repeated execution of the task factory task on each processing

location. The PARAGRAPH may call the reset method of the task factory to allow it

to reset any internal state it may have so the task factory instance may be reused

to execute the PARAGRAPH again (e.g. as part of an iterative algorithm where the

PARAGRAPH is constructed outside of the computation for the iteration).

The task factory must provide a constructor that accepts function objects that

are the operations that will be used as the task operations. For example, the task

factory for the map-reduce pattern in stapl provides a constructor that accepts two

function objects; the first is the map operation to perform on the input elements and

the second is the reduce operation that combines the outputs of the map operations

to form the final result of the computation. The task factory for the map pattern

provides a constructor that accepts a single function object that implements the

operation to be applied to each input element. Table I lists the methods that must

be provided by a task factory implementation.

Table I.: Methods required of a task factory.

Name Purpose Return Type Arguments

Constructor instantiate task factory task factory Task operation functors

finished Report if all tasks generated bool none

reset Reinitialize internal state none none

operator() Generate task specifications none coarsened input pViews

The task factory core structure in stapl simplifies task factory creation

by providing default implementations of the required task factory methods. The

interface of the structure is listed in Figure 7. The class provides implementations

of the finished and reset methods that are appropriate for use in a stateless task

factory that generates all tasks of the task graph in a single invocation of its func-

tion operator. If the task factory performs incremental task generation then it

must override the default behavior by calling the task factory core constructor
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class task_factory_core

: public p_object

{

protected:

bool m_finished;

bool initialized(void) const;

void reset_view_indices();

void set_view_index_iterator(std::size_t idx, view_index_iterator_base* ptr);

std::size_t view_indices_size() const;

view_index_iterator_base*

get_view_index_iterator(std::size_t n) const;

public:

task_factory_core(bool b_incremental_generation=false);

virtual bool finished() const;

virtual void reset();

virtual ~task_factory_core();

};

Fig. 7. Interface of task factory core class.

with b incremental generation set to true, and set the m finished data member

when all tasks on this location have been specified. If a task factory contains in-

ternal state it must redefine the reset method. The interface in Figure 7 contains

several members that are related to incremental task generation, which is described

in Section c.

The task factory core has an additional benefit for the PARAGRAPH implemen-

tation. The task graph is able to refer to the task factory by a pointer to the core class.

This allows the task graph class to be non-templated, which reduces the amount of

code that is generated when a PARAGRAPH type is instantiated during program com-

pilation. The number of invocations of the virtual methods is small compared to the

number of tasks expected in the task graph, and in practice we haven’t observed neg-

ative impact from the overhead of the indirections introduced by the virtual function
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calls. The PARAGRAPH implementation requires that every task factory derive from

this class.

The task factory core class provides the essential interfaces of a task factory

and simplifies the development of basic task factories. The development of task

factories for task graphs that contain dependencies is still a complicated process

as the task factory contains code similar to what is shown in Algorithm 1, which

computes the sum of an arbitrary number of elements using a task graph whose

shape is shown in Figure 8. Algorithm 1 finds the set of the largest powers of two

whose sum is the number of elements to process (e.g., 1345 = 1024 + 256 + 64 + 1).

A balanced binary tree task graph of each of these widths is generated, and tasks to

combine trees are added to complete the task graph. This complexity in what is a

very regular and straightforward computation pattern is the motivation for our future

research direction that will allow the structural and dependence patterns of a task

factory to be specified independently of one another as described in the previous

section.

b. Task Specification

The code in Algorithm 1 used add task functions to insert tasks into the PARAGRAPH

being processed by the PARAGRAPH Executor. These functions are provided by the

task graph access class.

The task graph access class, shown in Figure 9, is used as the base class of task

factories and dynamic work functions to provide methods to insert tasks into the

task graph for mapping and execution as the task graph is processed by the PARAGRAPH

Executor. In the case of task factories, this class and the task factory core are

used as the parent classes of task factory base. The task factory base class

further simplifies the specification of tasks with its consume method that allows the
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Algorithm 1 reduce(ReduceOp& op, View& view)

n ← view.size(), offset ← 0, id gets 0
while n ̸= 0 do
logn ← ⌊log n⌋
width ← 2logn-2

if n = 1 then
width ← 1

end if
for i ← 1 to logn-1 do
if i = 1 then
for j ← 0 to width-1 do
add task(id++, op, view[offset+2*j], view[offset+2*j+1])

end for
else
base ← id - width*2
for j ← 0 to width-1 do
add task(id++, op, consume(base+2*j), consume(base+2*j+1))

end for
end if
width ← width / 2

end for
n← n− 2logn−1

offset← offset + 2logn−1

root ids.push back(id-1)
end while
if root ids.size() > 1 then
count ← 0
for i ← root ids.size()-1 to 1 do
if count = 0 then
if view.size() mod 2 = 1 then
add task(id++, op, consume(root ids[i]), view[offset-1])

else
add task(id++, op, consume(root ids[i-1]), consume(root ids[i]))

end if
else
add task(id++, op, root ids[i-1], id-1)

end if
end for

end if
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2⌊logn⌋

⌈logn⌉

Fig. 8. A task graph to reduce an arbitrary number of elements to a single value.

view specification for the result of a task to be constructed for the task factory.

The interface for the task factory base is shown in Figure 10.

It is clear that the task factory base significantly reduces the burden of writing

a task factory, and the class should be used when new computation patterns are

being expressed as task factories in stapl.

c. Incremental Task Graph Specification

Task factories are generative functors that are parameterized by the input data
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class task_graph_access

{

public:

template<typename WF, typename ...Args>

void add_task(std::size_t task_id, WF const& wf,

std::size_t num_succs,

Args const&... args) const

template<typename WF, typename ...Args>

void add_task(std::size_t task_id, WF const& wf,

pred_list_t preds, std::size_t num_succs,

Args const&... args) const

template<typename WF, typename ...Args>

void add_task(std::size_t task_id, WF const& wf,

Args const&... args) const

template<typename WF, typename ...Args>

std::size_t add_task(WF const& wf,

Args const&... args) const

};

Fig. 9. A class for adding tasks to the current task graph.

that the task graph produced will process. The task graph produced by the functor

will contain tasks whose number is proportional to the size of the coarsened input

data. For example, a reduce task graph that processes 1024 coarsened elements

will contain 2047 tasks (remember that the number of vertices in a balanced binary

tree of width n is 2n − 1). Completely generating a task graph before processing it

would consume memory proportional to, and possibly greater than, the data being

processed. This use of a limited resource in high-performance computing systems

is wasteful and can lead to severe performance degradation. For this reason, the

task graph has been designed to allow for construction and processing of tasks to be

interleaved. This section details the interfaces provided and what a task factory

developer must consider as they design their factory.

The PARAGRAPH Executor facilitates incremental construction of the tasks in the

task graph it is processing by executing the task that invokes the task factory on
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template<typename WFReturn>

struct task_factory_base

: public task_factory_core,

public task_graph_access

{

using task_graph_access::add_task;

//If user codes pattern for incremental generation,

//set m_finished to false so that operator() will be called more than once.

task_factory_base(bool b_incremental_generation = true);

//Construct the view specification using the task graph’s result view

std::pair<result_view_t*, std::size_t>

consume(std::size_t tid) const;

void set_result_tid(std::size_t task_id);

};

Fig. 10. A base class for task factories.

a location only after processing the tasks that were generated by the previous invo-

cation of the task factory or finding that the remaining tasks from that invocation

have outstanding dependencies that prevent their immediate execution. After each

invocation of the task factory it is queried to determine if it has finished generating

tasks on this location, or if a task that will re-invoke the task factory needs to be

inserted into the scheduler of the PARAGRAPH Executor again. This predictability

allows the task factory developer to reason about the state of the task graph at each

call and generate an appropriate number of tasks.

A task factory that incrementally generates its set of tasks must override the

finished method of the task factory core shown in Figure 7. The task graph

avoids unnecessary calls to the task factory on a processing location by querying

the method and only calling the function operator of the task factory if the method

returned false. The finished method is also used in the termination detection algo-

rithm of the executor processing the task graph. A task specified on one location may

be mapped to another processing location for construction and execution (see [27] for

details of the task placement algorithm). Therefore the default termination condition
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provided by the PARAGRAPH Executor for a task graph is that all tasks have been pro-

cessed and the task factory on each processing location reports that it is finished

generating tasks.

A task factory implementing incremental task specification will likely have

internal state to track the input elements for which tasks have been specified. If a

task graph is re-executed then it is necessary for the task factory to reinitialize its

state to allow the entire task graph to be regenerated as if it had not been executed

previously. The task factory must provide the reset method for this purpose.

The method is only called at the point where the task graph begins re-execution,

immediately before the function operator of the task factory is invoked for the

first time in the processing of the task graph. All of the task factories provided

in stapl for regular computation patterns perform incremental task generation by

specifying a fixed percentage (e.g., 10%) of the task graph on each invocation of the

factory’s function operator. In the future, this value will be adaptable based on the

conditions of the processing location as reported by the stapl run-time system.

C. Regular Task Graphs

There are computation patterns that arise frequently in the development of algo-

rithms. The simplest of these patterns is the application of a function f to an element

v to produce a new element w.

w = f(v)

Extending the pattern such that it accepts a set of input elements V and produces a

set of output elements W of equal size results in the map pattern.

W = f(V ) = {f(vi) | vi ∈ V, 0 ≤ i < n}
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template<typename Operation, typename ...Views>

DataFlowView<typename Operation::result_type>

map_func(Operation& op, Views...& views)

Fig. 11. Map func function interface.

The task graph for this pattern is a degenerate graph that contains only vertices and

no edges.

A set of commonly occurring task graph patterns has been explored and im-

plemented in stapl. The patterns provided are map, reduce, and scan. We have

anecdotal evidence in our work implementing parallel equivalents of STL algorithms

and the NAS benchmarks that with these three patterns a significant number of al-

gorithms can be written. Exceptions are the PDT sweep presented at the end of the

chapter and algorithms for graph traversal that use the dynamic task graph creation

interfaces described in the next section.

1. Map

The map pattern implemented in stapl has been generalized beyond what was pre-

sented above by extending the function to accept multiple input sets that are all of

the same size.

W = f(X, Y, Z, . . .) = {f(xi, yi, zi, . . .) | xi ∈ X, yi ∈ Y, zi ∈ Z, . . . , 0 ≤ i < n}

The interface of this pattern is realized in stapl as shown in Figure 11. The

name of the pattern in stapl is map func instead of map because the C++ stl

has used the name map for an associative container that associates a value with the

specified key value.

A single view over the output values is produced regardless of the number of input
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views. The view returned is a data flow view, which is a pView whose container is

an edge container [27]. The edge container stores the results of tasks in the task

graph as they finish executing. It forwards the result of each task to all processing

locations that are waiting to execute tasks that require the result as an input.

The data flow view allows map func to construct the PARAGRAPH for the com-

putation, pass it to the PARAGRAPH Executor for processing, and return to the user

code before execution of the PARAGRAPH begins. When a data element that is not yet

available in the data flow view is accessed by the user code its computation will block

until the task that produces the desired value is executed. If there is enough com-

putation to do, it is possible that all elements of the data flow view will be available

and the execution of the task graph produced with map func will have been executed

concurrently with the rest of the application.

There are no dependences between the tasks in the task graph. The task graph

can assign arbitrary ids to the tasks, and there is no dependence information required

in the specification. The task factory used to produce the map task graph can

then use the fourth add task method shown in Figure 9. The implementation of the

map function and the function operator of the map factory are shown in the listing

in Figure 12.

2. Reduce

The reduce task factory implemented in stapl accepts a single coarsened pView of

elements as input along with the operator that will be used to combine the fine-grain

elements. The interface to construct a PARAGRAPH to perform the reduce operation is

shown in Figure 13.

The task graph outputs a pView over a single element that is the result of the

reduction of all elements. The reduce factory extends the algorithm shown in Algo-
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template<typename MapOperator, typename ...Views>

DataFlowView<typename MapOperator::result_type>

map_func(MapOperator& op, Views...& views)

{

// The function operator passes the PARAGRAPH to the PARAGRAPH Executor

// for processing and returns the DataFlowView that will be populated

// with the results of the execution.

return paragraph<WorkFunction, Views...>(wf, views)();

}

template<typename MapOperator>

template<typename ...Views>

void

map_factory<MapOperator>::operator()(Views...& views)

{

if (!m_initialized)

{

// define a iterator over the elements of each view, iter0...iter(n-1)

// determine the maximum number of tasks generated on each call

// and store_this in m_tasks_per_call.

}

//partition the id set of the views

std::size_t task_cnt = 0;

for (; task_cnt < m_tasks_per_call && !iter0->at_end(); /*increment all id sets*/)

{

add_task(m_wf, /* deref of all id sets */);

}

if (iter0->at_end())

this->m_finished = true;

}

Fig. 12. Map function and factory function operator implementation.

rithm 1 with logic to perform incremental task generation. As with the map task

factory, the reduce task factory computes the number of tasks that should be

specified by a processing location on each invocation. The amount of state needed to

implement this is significantly more than what is needed in the case of the map task

factory.

In the map task factory the internal state was the set of iterators to the par-

titioned input pViews that indicated which elements did not yet have tasks specified

for them. In the reduce task factory it is possible to reach the maximum number

of tasks at any point in specifying one of the binary trees or the tasks to combine the
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template<typename ReduceOp, typename View>

typename DataFlowView<ReduceOp::result_type>

reduce(ReduceOp& op, View& view)

Fig. 13. Reduce function interface.

template<typename SumOperator, typename typename View>

DataFlowView<typename View::value_type>

scan(BinaryOp& op, View& view)

Fig. 14. Scan function interface.

results of the trees. Since the trees are specified one level at a time the state must

include the tree the factory is currently specifying, the level within the tree, and the

offset within the level.

3. Prefix Scan

The prefix scan pattern, referred to as scan in the algorithmic skeletons literature [8]

[40], accepts a coarsened pView of elements, I, as input and returns a coarsened data

flow view of the same size and type, O, whose fine-grain elements are defined as:

O = scan(I) = {o0, o1, ..., on−1} = {ok | ok = Σj=k
j=0ιj, 0 ≤ k < n}

The operator used to perform the summation for each output element is provided as

a parameter to algorithm. The interface for the scan is shown in Figure 14.

While it is possible to compute every output element independently that would

require on average n/2 applications of the op function for each output element, which

is suboptimal in terms of the work to be done. Since the input data is distributed, this

approach would require a large amount of communication to provide the necessary

elements to each processing location, with the last processing location receiving a full
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copy of the input data. This amount of memory usage on each processing location is

also wasteful.

A work optimal parallel algorithm presented in [41] performs the combination of

two elements and uses that result as the input to other combinations. The pattern

of this algorithm has been implemented as a task factory in stapl. The task

graph for the scan of eight elements is shown in Figure 15. The input elements are

represented by the array at the bottom of the figure, and the elements of the data flow

view returned as output are represented by the array at the top. The lines represent

the flow of values from the input view at the bottom to the inputs of the tasks, and

from the outputs of the tasks up to the output view at the top of the figure.

Reduce Task

Output View

Input View

Identity Task

Fig. 15. Task graph for prefix scan of eight elements.

The task graph generated for a number of elements that is not a power of two

follows the approach used by the reduce task graph. The largest powers of two that

sum to the number of elements is found and a scan tree is generated for each. The

result of the combine task that contains all elements of a tree is applied to all the

smaller trees. This pattern can be seen in Figure 15 as well. The result of the
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task that contains the sum of the first four elements is applied to each element to

the right. For larger trees this broadcast of the value affects the scalability of the

algorithm negatively, and in the implementation in stapl it has been replaced by

a set of identity tasks that form a broadcast tree to reduce the number of messages

that a given processing location must send.

There are two types of tasks in the task graph. The reduce tasks apply the

summation operator provided to two input values and the output is forwarded on to

the tasks that depend on it. The identity task is needed to copy the first element of

the input view to the first element of the output data flow view and to implement

the internal broadcast trees.

In the cases of map and reduce, the tasks whose results formed the elements of

the data flow view returned were easily defined. The tasks whose results form the

data flow view are the identity task, the reduce tasks that make up the left half of

the leftmost tree, and the final combine tasks that combine the result of the leftmost

tree with the elements of the smaller trees.

D. Dynamic Task Graphs

The previous section presented computation patterns for which the specification of

the task graph needs only to know the number of elements in the input views. The

structures of the task graphs are regular and do not depend on the values of the data

being processed.

There are algorithms whose behavior does depend on the values of the input

elements. Consider the example of an algorithm to traverse a graph beginning from

a specified set of vertices. The task graph of the algorithm would contain a vertex for

each vertex of the input graph, and the dependencies would mirror the connectivity
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struct dynamic_wf

: public paragraph_impl::task_graph_access

{

using task_graph_access::add_task;

};

Fig. 16. A structure to facilitate dynamic work function implementation.

of the input graph. It is clear that the construction of the task graph requires per-

forming a computation that is similar in structure to the computation the task graph

represents.

Algorithms whose task graph structure depends on the values of the input are

referred to as irregular algorithms since the task graph isn’t known a priori to contain

any regular pattern. Expressing these algorithms as task graphs can be done by

providing the ability to add tasks to the task graph dynamically from within the

execution of a task of the task graph.

The previous section explained how implementing a task factory is simplified

by deriving from the task graph access class shown in Figure 9. This class adds

a task to the currently executing task graph. A task in a task graph can access

the same interfaces if the function object implementing its operation inherits from

the task graph access class. stapl attempts to make this facility more visible by

providing the dynamic wf structure shown in the listing of Figure 16.

A developer writing a parallel dynamic algorithm can have the operators of their

algorithm derive from dynamic wf and have immediate access to the add task func-

tions of task graph access as members of their own function object. The developer

would only need to write a simple task factory that would generate the initial tasks

of the task graph.
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E. Case Study: Specifying a PARAGRAPH for sweeps in PDT

We demonstrate the process of developing a task factory for a parallel algorithm

whose computational pattern doesn’t match any of the task factories provided by

stapl in this section. The application is a discrete-ordinates particle transport [42]

code from the nuclear engineering field.

The problem solved by discrete-ordinates transport applications can be briefly

described as follows:

Given:

1. a N-dimensional(2-D or 3-D) spatial domain made of known materials,

2. an initial flow of particles through the domain at a starting time,

3. an initial set of sources generating particles inside the domain, and

4. knowledge about the behavior at the domain boundary.

Compute: the flow of particles at a later point in time for every point in the

spatial domain.

In addition to a position in the spatial domain, the particles also have a specific

energy level and are traveling in a specific direction. A discrete-ordinates transport

application must discretize the spatial domain, energy domain, direction domain, and

time domain in order to be able to produce a system of algebraic equations modeling

the production and loss of particles in the problem domain. The discretized units of

the spatial, energy, and direction domains are referred to as cells, energy groups, and

angles, respectively.

Once the problem has been discretized its solution can be approximated through

computation. The problem can be represented as a large system of coupled equations
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in the general form Aψ = q, and can be solved using direct or iterative methods

depending on its size.

The class of problems of interest to the researchers working on a parallel discrete-

ordinates particle transport code that is being implemented using stapl are too large

to solve with direct methods. In fact, the size of the matrix is too large to explicitly

form in memory. The implementation is a matrix-free implementation. The unknowns

of the vector ψ are stored in the elements of the cells of the spatial discretization,

one for every energy group. The number of elements within a cell depends on the

spatial discretization method that was used. The effect of the different directions is

an additive effect, so the same set of unknowns in a cell can be used for all directions.

Matrix-vector multiplications in the iterative methods are performed by applying

a transport operator to the vector that performs the action of the matrix. This is

implemented in the code – which is named PDT – as an ordered traversal (sweep) over

the cells in the spatial domain for each direction, and the sweeps are repeated for every

energy group. Unless reflective boundary conditions are present, the directions are

completely decoupled and the sweeps for all directions can be performed concurrently.

Figure 17 illustrates the discretized spatial, energy, and direction domains for a

simple two-dimensional example. The cells of the spatial domain are numbered with

a unique id that will correspond to the id of the task that processes the cell in the

task graph that represents a sweep. The directions are assigned Latin letters that are

used to refer to their task graphs. The energy discretization doesn’t impact the task

graphs formed because the full set of task graphs will be executed for each element

in the energy discretization.

The discretized spatial domain is represented by a stapl pGraph in PDT. The

pGraph is weighted, undirected, and non-multi-edge. This means that between two

vertices there are two edges, one in each direction. Each cell is a vertex in the graph,
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Fig. 17. Discretized domains of a 2D discrete-ordinates particle transport problem.

and the shared surface between two cells, known as the face, is represented by edges

in the graph. The weights on the edges include a face normal to indicate the direction

of particle flow across a face and the id of the other edge associated with the face

(i.e., the “sister” edge). The pGraph uses an adjacency list implementation and edges

are stored with the vertex that is their source. The id of the “sister” edge allows a

computation on a vertex to call a method on an edge to which it doesn’t have direct

access.

Figure 18 is the pGraph that represents the discretized spatial domain in the

2D example of Figure 17. The normals stored on the edge are only shown for four

edges. The normals for all edges with the same direction are the same. Note that the

normal stored on an edge is the opposite of the direction of the edge (e.g., the edge

from vertex 1 to vertex 2 has a normal with a negative x component). This is because

the flow of particle information is in the opposite direction of the graph edge.

The coarsening of the views of the spatial, angular, and energy domains is cur-

rently dictated by the PDT user. Part of the input passed to PDT during exe-

cution is the grouping of angles into angle sets, energy groups into energy group

sets, and cells into cellsets. The coarsening of cells into cellsets is done using the

hierarchical view of stapl defined on the pGraph. The hierarchical view de-
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fines a vertex for each grouping of cells into cellsets and associates an id with it as

well. The hierarchical view allows edges to be added between these coarse vertices

that stores the average normal of the cell faces that is represented by the coarsened

face. The result is that in the description of the problem above cells and cellsets can

be used interchangeably. The PARAGRAPH is unaware of coarsening and represents the

tasks of the computation and their dependencies uniformly whether the operations

and the pViews they are applied to are coarsened or not.

The sweep operation over a pGraph can be described as:

1. Given an angle set from the coarsening of the discretized direction space find

the set of cellset vertices that have no incoming edges whose normal is in the

same direction (i.e., the dot product of the normal on the edge with the average

angle of the angle set is positive).

2. Compute the particle flow information for each cell in each of these cellsets

(applying this same algorithm on the cells within a cellset), returning the flow

information across the faces of the cell.

3. Find the set of vertices whose incoming edges with a normal that produces a
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positive dot product with the angle have all had their base vertex processed.

4. Repeat Steps 2 and 3 for the set of vertices that have just had their base vertices

processed until there are no vertices left to process.

Implementation of this process as a task factory in stapl is straightforward.

Each processing location will construct the tasks for the cells that are stored locally.

Each task created will be assigned a task id that matches the vertex id it is processing.

The edge information contains the source and destination vertex ids, so for each

vertex iterating through the set of edges that are rooted at the vertex, computing a

dot product with the angle given, and building a list of the edge destination vertex

ids for all edges with a positive dot product will produce the set of predecessor task

ids for the task being created. The constructor and function operator of the task

factory are listed in Figure 19. In order to keep the code focused on the creation of

the task graph, the task factory listing does not perform incremental task graph

construction. The code assumes that the dotproduct function has been implemented

for the structure used to represent angles. Given the four angles in the direction space

in our example and instantiating four task graphs, one for each sweep, produces the

set of task graphs shown in Figure 20.

In the example above the cells and cellsets of the spatial domain are convex.

When working with arbitrary discretizations of the spatial domain or with deformed

discretizations the cells may not be convex. These cells are referred to as “reentrant”

becase a sweep crossing through the nonconvex region would enter a cell multiple

times. The task dependence graph in this case contains a cycle because the task

processing the nonconvex cell would be a predecessor and successor of the cell that

occupies the nonconvex region. These cycles must be broken in order to allow the

PARAGRAPH to execute to completion. This is usually done by performing a cycle



47

detection algorithm [43] and removing the edge in the cycle that is closest to parallel

with the sweep direction from consideration by the sweep task factory. An edge

parallel with the sweep direction represents a face parallel to the sweep where few

particles traveling in the sweep direction would cross. Removing the edge from the

task dependence graph allows a task to process a cell using outdated information and

allows the sweep computation to complete. In PDT, cycle detection is performed on

the pGraph of the spatial domain before the sweep PARAGRAPHs are instantiated.
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template<typename CellSetOperator, typename Angle>

pdt_sweep_factory::pdt_sweep_factory(CellSetOperator const& op, Angle const& a)

: m_operator(op), m_sweep_angle(a)

{}

template<typename CellSetOperator, typename Angle>

template<typename HierarchicalGraphView>

void

pdt_sweep_factory<CellSetOperator, Angle>

::operator()(HierarchicalGraphView const& cellset_graph)

{

//Scan the local set of vertices.

typename GraphView::vertex_iterator vi = cellset_graph.vertices.begin();

for(; vi != cellset_graph.vertices.end(); ++vi)

{

std::vector<std::size_t> predecessors;

std::size_t num_successors = 0;

//Scan the set of edges associated with this cell.

typename GraphView::edge_iterator ei = (*vi).begin();

for(; ei != (*vi).end(); ++ei)

{

//Check if the edge provides information to the task

double dotprod = dotproduct((*ei).property().facenormal(), m_sweep_angle);

if (dotprod > 0)

{

//This edge is input for the task

predecessors.push_back((*ei).target());

}

else if (dotprod < 0)

{

//The task will write particle flow information to the sister edge.

++num_successors;

}

}

//Add task with the vertex’s id as task id.

switch (predecessors.size())

{

case 0: // no predecessors

add_task((*vi).descriptor(), m_operator, num_successors,

std::make_pair(&cellset_graph, (*vi).descriptor()));

break;

case 1: // one predecessor

add_task((*vi).descriptor(), m_operator, num_successors,

std::make_pair(&cellset_graph, (*vi).descriptor()),

consume(predecessors[0]));

break;

case 2: // two predecessors

add_task((*vi).descriptor(), m_operator, num_successors,

std::make_pair(&cellset_graph, (*vi).descriptor()),

consume(predecessors[0]), consume(predecessors[1]));

break;

// The number of cases required is equal to the maximum number of faces

// of a cell that can be exposed to a sweep direction.

// E.g., for regular hexahedra three would be required.

}

}

}

Fig. 19. task factory constructor and function operator for PDT sweeps.
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CHAPTER V

PARAGRAPH COMPOSITION

The previous chapter demonstrated how a developer can express a simple parallel

algorithm as a task graph using the PARAGRAPH. Parallel applications, and some par-

allel algorithms for tasks such as sorting, are made up of multiple calls to these basic

algorithms. Each PARAGRAPH used in these more complex parallel algorithms and ap-

plications can be seen as a task that performs a computation. In order to provide a

consistent development environment and expose the maximum amount of parallelism

available in an application we have implemented composition operators for PARAGRAPH

sequences and a loop construct that allow the developer to think of each PARAGRAPH

as a task in a higher level task graph.

A. Sequence Composition

The composition of sequences of PARAGRAPHs differs from the composition of a se-

quential function in that independent PARAGRAPHs should be executed concurrently

instead of in the arbitrary order that they were written in the code of the application.

Only when PARAGRAPHs have a producer-consumer relationship between them should

their execution be restricted. Full sequential ordering – requiring that all tasks of a

PARAGRAPH producing a result be executed before any task of the PARAGRAPH consum-

ing the result – is over-constraining the execution in most cases. Figure 21 shows the

dependencies that are needed between the tasks of two PARAGRAPHs performing map

computations that have a producer-consumer relationship.

In Figure 21 it is clear that a task in the PARAGRAPH that squares each element

of the input view should only wait on the value to be produced by a single task

in the PARAGRAPH generating random elements. This task-wise specification of the
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Application Code

random_number_generator <double> rand(seed);
square_number<double> square;
View numbers = map_func(rand, counting _view(0,n,1));
View squared = map_func(square, numbers );

Effect of Sequential Composition of Task Graphs

Generate
Task Graph

Square
Task Graph

Fig. 21. Composition of two task graphs that have a producer-consumer relationship.

sequential composition allows for more flexibility in scheduling the tasks of the two

task graphs and only constrains the execution order where it is absolutely necessary

for correctness.

In cases where the PARAGRAPHs are independent computations the ordering pro-

vided by the code implementing the parallel algorithm is an artifact of the expression

of the application in a sequential programming language, which requires a function

to be written as a sequence of instructions. The composition framework only needs

to make both PARAGRAPHs available for processing by the PARAGRAPH Executor.

The sequence composition operators we provide are implicit. A producer-consumer

relationship between two PARAGRAPHs is specified by passing the data flow view re-

turned by the producing PARAGRAPH as an argument to the consumer PARAGRAPH.

If a PARAGRAPH is not passed the data flow view of another PARAGRAPH then the

PARAGRAPHs are independent and can be executed concurrently.
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A possible future extension of these sequence composition operators is the ability

to specify that two PARAGRAPHs should be executed atomically with respect to one an-

other. Atomic processing of PARAGRAPHs that share a producer-consumer relationship

would result in the full sequential composition that was referred to at the beginning

of the section as over-constraining. Atomic processing of independent PARAGRAPHs

only prevents the interleaving of the tasks of the two PARAGRAPHs, it does not specify

which of the PARAGRAPHs would be executed first.

1. STAPL Implementation

There are two key aspects of the PARAGRAPH implementation in stapl that make the

implicit composition of PARAGRAPHs possible. First, the PARAGRAPH function operator

is non-blocking, and allows for multiple PARAGRAPHs to be made available to the

PARAGRAPH Executor. Second, the function operator returns a data flow view,

which is a pView whose domain may be known but whose elements are not available

when the data flow view is returned from the PARAGRAPH.

The implementation of the PARAGRAPH’s non-blocking function operator creates

an initial task that will invoke the task factory with the pViews that were pro-

vided to the PARAGRAPH constructor. It then adds the PARAGRAPH to the set of avail-

able PARAGRAPHs for the PARAGRAPH Executor. The function operator then exits,

returning a data flow view that will contain the results of the computation as they

become available, and execution of the code continues in the function that called the

PARAGRAPH function operator. The prototypes of the PARAGRAPH function operator

are shown in Figure 22.

The optional integer parameter of the function operator is used to specify the

priority of the PARAGRAPH relative to any other PARAGRAPHs in the parallel application,

and is used when a priority scheduling policy has been specified for the PARAGRAPH
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// Return is the type of element populating the df_view.

// The type is computed when the paragraph is instantiated.

df_view<Return>::reference

operator()(int priority = 0);

template<typename Scheduler>

df_view<Return>::reference

operator()(Scheduler scheduler, int priority = 0);

Fig. 22. Prototype of the PARAGRAPH function operator.

Executor, or for any executor processing nested PARAGRAPHs. The scheduler parame-

ter accepted by the second function operator interface allows the developer to specify

the scheduling policy to be applied between the tasks of the PARAGRAPH instance. The

PARAGRAPH function operator constructs a single executor instance that will be re-

sponsible for processing the tasks of the PARAGRAPH. This single executor instance

is in turn what is processed by the PARAGRAPH Executor using the priority parameter

provided to the function operator.

The PARAGRAPH Executor contains an executor that is a persistent object that

processes PARAGRAPHs it has been given according to a scheduling policy that was

specified when the PARAGRAPH Executor was initialized. The policies available in

the current system are a round-robin scheduler and a priority scheduler. When the

executor is entered it invokes the function operator of a single executor object for

each available PARAGRAPH according to the scheduling policy in effect. The PARAGRAPH

Executor is entered by an explicit call to its drain method, when a scheduling point

in the run-time system is encountered (e.g., when waiting for the result of a remote

method invocation), or when the threshold on the number of PARAGRAPHs that are

being processed by the PARAGRAPH Executor is reached.

The data flow view returned by the PARAGRAPH function operator may be fully

specified from the point of view that its container, operations, mapping function, and
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domain are all known. What is unique in this situation is that the elements the data

flow view represents may not exist when it is used to create a PARAGRAPH. If the

domain of the data flow view is not known the coarsening of the pViews in the

PARAGRAPH is deferred and the task factory task of the PARAGRAPH detects that the

elements of the pView are not ready and therefore the task factory task cannot

be executed yet. In this case the composition of the PARAGRAPHs is such that one

PARAGRAPH will completely execute before any PARAGRAPH consuming its result. This

over-constrained case is the exception, and is one that we have yet to encounter in

practice. In most cases the domain of the data flow view produced by a PARAGRAPH

can be deduced from the input pViews of the PARAGRAPH and the task factory used

(e.g. a PARAGRAPH applying a map operation on pViews of size n returns a data flow

view whose domain is [0, n)).

If the domain of the data flow view is known, the task factory task of a

PARAGRAPH can execute and generate tasks that use the elements of a data flow

view as parameters to the task’s work function. The data flow view is queried to

determine if the value of the element is available. If it is, then the task is created

with only the dependence information from the PARAGRAPH of which it is part. If the

data flow view element is not available, then the task has additional predecessor

information added to it. When the value becomes available in the data flow view

the task will be notified, at which time it can be made available for execution if all of its

other predecessors have finished execution. The data flow view allows specification

of the exact dependencies between two PARAGRAPHs by allowing individual tasks of

a PARAGRAPH to depend only on the element of the data flow view that they need,

which is generated by a single task in the PARAGRAPH that produces the data flow

view.
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2. Case Study: Specification of NAS CG

The utility of the implicit composition operators described above is demonstrated

here by considering the body of the conjugate gradient function of the NAS CG

benchmark [44] with its loop removed. The sequence of operations is shown in Fig-

ure 23.

z = 0

r = x

ρ = rT r

p = r

q = Ap

α = ρ/(pT q)

z = z + αp

ρ0 = ρ

r = r − αq

ρ = rT r

β = ρ/ρ0

p = r + βp

||r|| = ||x− Az||

Fig. 23. Simplified sequence of operations from NAS CG.

Each mathematical operation in the sequence is represented by a PARAGRAPH.

For example, rT r is implemented using the stapl pAlgorithm inner product and

passing the pView of r to both arguments of the pAlgorithm. This creates and

executes a PARAGRAPH that is a map-reduce that returns a data flow view over the

value of the inner product. Figure 24 is the composed task graph of the operations.
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Each node in the graph is labeled with the operation the task performs, and the

edges between the nodes show the dependencies that will be enforced by the data

flow views in the implementation of the sequence.

z = 0

r = x

ρ = rTr

p = r

q = Ap

t = pTq

α = ρ/t

z = z + αp

ρ0 = ρ

r = r - αq

ρ = rTr

β = ρ/ρ0

p = r + βp

r = x - s

s = Az

||r||

Fig. 24. Task graph of the simplified NAS CG sequence.

The graph in Figure 24 shows that after the copy of the elements of x in to pView

r there is some parallelism between the tasks, but the computation is dominated by

the flow of values from that copy down through the middle of the figure and ending



57

with the computation of the euclidean normal of the elements of r. The number of

producer-consumer relations and the large variance in the distance along the critical

path from producer to consumer (e.g., the consumers of the first task that produces p

as a copy of r) reinforce the decision to use implicit composition operators to compose

sequences of PARAGRAPHs into a higher level task graph.

B. Repetition Composition

The map task factory presented in the previous chapter provides the application of

a function to each element in a pView, which can be seen as the repeated execution

of the function over data. The function applied is implemented as a basic work

function [27], and any PARAGRAPHs in the function are applied to the limited scope

of the individual elements of the input pViews, resulting in nested parallelism. The

repetition composition operator presented in this section differs in that it implements

the repeated execution of PARAGRAPHs over time on the entirety of the input pViews.

As such, the iterations of the repetition logically run across all processing locations

instead of on a single pView element on a single processing location.

The repetition operator we provide handles PARAGRAPH composition when the

bounds of the repetition are known. A set of statements that can include PARAGRAPHs

is set to be executed a fixed number of times, and the execution of the set may depend

on the value of the variable that represents the current iteration.

1. STAPL Implementation

The current implementation of the loop construct uses the sequence composition op-

erators from the previous section. The interface is shown in Figure 25. The work

function that represents the body of the for loop accepts the current iteration value
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template <typename BodyWorkFunction, typename ...Views>

auto

do_loop(int iterations, BodyWorkFunction& body, Views&... views)

-> decltype(body(iterations, views));

Fig. 25. Prototype of the for loop composition operator

and the set of input pViews. The work function returns a tuple of data flow views

the represent the modified input pViews. The execution of the construct effectively

unrolls the loop completely, making all PARAGRAPHs in the loop available for sequen-

tial composition. The threshold on the number of PARAGRAPHs that can be in the

PARAGRAPH Executor limits the amount of memory consumed by the construct.

Our future work includes implementing the loop and other control constructs

(e.g. switch and conditional repetition) as PARAGRAPHs.

C. Case Studies

When discussing the composition of PARAGRAPHs to form a parallel application a

graphical representation is useful. National Instruments Labview [45] influenced our

choice of composition operators, and Intel Concurrent Collections’ [10] use of a “white-

board representation” of the different collections they provide has emphasized its

importance. We do not have a tool to translate from the graphical representations

presented below like Labview and Concurrent Collections provide. Our graphical rep-

resentation is merely to facilitate discussion at this point. Future work may include

the development of a tool that allows graphical development of stapl applications.

In our representation, a function is represented by a simple rectangle with the

name of the function in it. These simple boxes can be used inside other boxes,

and then defined as a larger box that itself uses other boxes as its implementation.

Figure 26 demonstrates this with a function named foobar whose implementation is
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the sequence of foo and bar.

foobar

Input:Zing
Output: Zoom

foobar

Input: Zing
Output: Zoom

foo

Input: Zing
Output: Zang

bar

Input: Zang
Output: Zoom

Fig. 26. Graphical representation of function and its definition.

The pViews accepted by the function as input and the pView returned as output

are named in the small rectangle that decorates the top right corner of the function’s

box. In the definition of Figure 26 we can determine that the foo and bar functions

will be composed using the sequence operator because bar accepts as input the pView

Zang that is produced as the output of foo. The pViews are named in the figure for

illustrative purposes only. In the implementation of a generic programming library

such a stapl a function or PARAGRAPH names its inputs as it deems appropriate and

doesn’t explicitly name its output. The producer-consumer relationship is established

when an instance of a data flow view is passed from the output of a PARAGRAPH

instance to the input parameters of another PARAGRAPH instance.
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The graphical representations of the repetition composition operator is shown in

Figure 27.

Iteration Count, 
pViews

Loop Body
Work Function

Fig. 27. Graphical representation of the repetition composition operator.

The repetition composition operator uses an ellipse with an arrow on it in the

sidebar on the left to indicate that the operator is a repetition operator. The operator

shows the work function representing the loop body as a process rectangle inside the

main area of the operator’s figure. The operator in Figure 27 shows its inputs of the

iteration count and the pViews of the data to be processed in the rectangle in the

top right corner of the figure.

Finally, PARAGRAPHs that use the task factories provided in stapl are represented

by the process blocks shown in Figure 28.

When discussing the composition of a parallel algorithm, a unique representa-

tion for each PARAGRAPH using a particular task factory is useful because the task

factory being used defines the size of the output data flow view. You can see

that Figures 28(a) and (c) accept either a set of views (noted by the plural use of

pViews) or a single pView, respectively, and return a data flow view whose size is

the same. Figures 28(b) and (d), on the other hand, accept a set of pViews or a single

pView, respectively, and produce a data flow view of a single element as a result.

The factories in use by each PARAGRAPH are map (a), map-reduce (b), scan (c), and
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Map Operation

Input: pViews
Output: pView

(a)

Map Operation

Reduce Operation

Input: pViews
Output: pView

(b)

Reduce Operation

Input: pView
Output: pView

(c)

Reduce Operation

Input: pView
Output: pView

(d)

Fig. 28. Graphical representation of PARAGRAPHs using the task factories provided in

stapl.

reduce (d). The difference in the symbol used for map-reduce and reduce is the

map-reduce symbol as long parallel lines at the top leading into the binary reduction

tree. These lines represent the execution of the map operation, as the long parallel

lines on the left of Figure 28(a) do for map.

Like the repetition composition operator in Figure 27 the operation performed

by the PARAGRAPH process is shown in the center of the process block. In the case of

map-reduce two operators are provided. Each of these operators is the fine-grained

operation of the computation. Coarsening is performed on the input pViews if the

task factory allows it. In these cases the operators provided by the code executing

the PARAGRAPH are transformed appropriately to match the data coarsening. The

code calling the PARAGRAPH is unaware of this transformation.
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//A priority for each sweep direction is computed on each location.

//A sweep paragraph will have different priorities on different

//locations in the system.

//AngleSet is an aggregation of the discretized directions

//All angles in an angle set can use the same sweep.

for (AngleSet& angleset : anglesets)

{

//sweep_factory_type is an instantiation of the factory described in

//Section 4.5 with the spatial discretization (solver) method to use and

//the type of the graph.

//

//cellset_view_type is a coarsened view of the graph that allows each task

//in the sweep to process several cells. This is explicit pView coarsening.

paragraph<sweep_factory_type, cellset_view_type>* sweep =

new paragraph<sweep_factory_type, cellset_view_type>

(sweep_factory_type(energy_level, angleset.primary_direction,

problem_input, problem_kind),

cellset_view)(priority);

}

Fig. 29. Concurrent execution of independent sweeps in PDT

1. Composition of Independent Sweeps in PDT

Chapter IV Section E introduced the PDT parallel application for particle transport

that is written using stapl. In that section we demonstrated how a PARAGRAPH for

individual sweeps of the spatial domain can be expressed by developing a new task

factory that specifies the dependencies between the tasks of a sweep PARAGRAPH

based on the connectivity of the discretized spatial domain. It was noted there that

unless the spatial domain has a reflective boundary on the spatial domain the indi-

vidual sweeps are independent and can be processed concurrently.

The discretized direction information is replicated across all processing locations.

Concurrent execution of the sweeps is achieved using the implicit parallel composition

operator described in Section A of this chapter. The code is shown in the listing in

Figure 29.

The sweep PARAGRAPHs in Figure 29 use the function operator that accepts the

priority to be used when scheduling the different sweep PARAGRAPHs in the PARAGRAPH
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Executor. The PARAGRAPH Executor assumes ownership of the PARAGRAPHs as part

of the implementation of their non-blocking semantic. When a sweep PARAGRAPH has

finished execution the PARAGRAPH Executor will destroy it.

2. NAS CG

Figure 23 provided a listing of the operations of the NAS CG benchmark with the

loops removed to illustrate the sequence composition. The full set of operations

including loops is shown in Algorithm 2.

Algorithm 2 NAS CG(λ, iterations)

{All vectors are of size n}
x = 1
for i = 1 to iterations do
z = 0
r = x
p = r
ρ = rT r
for j = 1 to 25 do
q = Ap
α = ρ/pT q
z = z + αp
r = r − αq
ρ0 = ρ
ρ = rT r
β = ρ/ρ0
p = r + βp

end for
||r|| = ||x− Az||
ζ = λ+ 1/xT z
x = 1/||z|| ∗ z

end for

An implementation of the conjugate gradient method used in a production appli-

cation would replace the inner for loop with a loop until convergence. The benchmark

was designed to fix the number of operations required by the benchmark in order to

make comparison of timing results across platforms easier. Using operator overloading



64

to define matrix-vector multiplication and vector scaling operations we can express

the set of operations above very easily using the constructs presented in this chapter.

NAS CG
Input: lambda, iterations, n

return 1

In: counting_view(0, n, 1)
Output: x

In: niters, x
Output: zeta 

Inverse Power
Method Iteration

Print zeta

Form matrix A

Fig. 30. The NAS CG benchmark main body.

Figure 30 shows the block representation of the main body of the CG benchmark

and Figure 31 shows the work function of the loop it contains. Examining the inputs

and outputs specified for the steps of the main body one can determine that the

sequential composition operator will be used to completely order the execution of the
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Fig. 31. The loop body work function of the loop in the NAS CG main body.

benchmark. In the work function of the iteration there are three computation steps

that can be further expanded.

Figure 32, Figure 33 and Figure 34 show the representation of the conjugate

gradient method, the work function used in its iteration, and the representation of

the computation needed to find the euclidean norm of the residual vector, respectively.

Figure 35 provides the graphical representation of the matrix-vector multiplica-

tion and inner product operations that are needed by the benchmark. The matrix-

vector operation is an example of nested parallelism in our representation. Each task
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Conjugate Gradient

return 0

In: counting_view(0, n, 1)
Output: z

Input: x
Output: ||r||, z

return x

In: x
Output: r

return r

In: r
Output: p

inner product

Input: r, r
Output: rho

In: 25, z, r, p, rho
Output: z, r, p, rho

Conjugate 
Gradient Iteration

Compute ||r||

Input: x, z
Output: ||r||

Fig. 32. The NAS CG conjugate gradient implementation.
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Fig. 33. The NAS CG conjugate gradient loop work function.
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Compute ||r||

Input: x, z
Output: ||r||

matvec

Input: z
Output: temp

euclidean norm(x – temp)

Input: x, temp
Output: ||r||

Fig. 34. The NAS CG method to compute ||r||.

matvec

Input: A, x
Output: y

inner product

Input: A.row, x
Output: y

(a)

inner product

Multiplies

Plus

Input: x, y
Output: xy

(b)

Fig. 35. Matrix-vector multiplication and inner product PARAGRAPHs.

of the map operation the matvec PARAGRAPH performs uses an instance of the inner

product PARAGRAPH, which is a map reduce operation.

The listing of the main body of the implementation is given in Figure 36.

The implementation of the conjugate gradient method and its loop are shown in

Figure 37.

The implicit composition of the sequences allow the bodies of each loop to exe-

cute with as much task parallelism as possible. The dependence graph in Figure 24

shows that there are three parallel tasks that can be executed concurrently. The ini-
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template<typename MatrixView>

struct ip_loop_wf

{

MatrixView& A;

double lambda;

int n_iters;

ip_loop_wf(MatrixView& a, double const& l, int iters)

: A(a), lambda(l), n_iters(iters)

{ }

template<typename IterRef, typename View1D, typename ZetaRef>

auto operator()(IterRef it, View1D x, ZetaRef) const

-> decltype(make_tuple(x, lambda + 1.0 / inner_product(x, x)))

{

auto cg_ret = conjugate_gradient(A, x);

auto norm_r = get<0>(cg_ret);

auto z = get<1>(cg_ret);

auto zeta = lambda + 1.0 / inner_product(x, z);

print_iteration(it + 1, n_iters, norm_r, zeta);

if (it == n_iters - 1)

return make_tuple(x, zeta);

auto new_x = 1.0 / euclidean_norm(z) * z;

return make_tuple(new_x, zeta);

}

}; // struct ip_loop_wf

void stapl_main(int argc, char** argv)

{

// read input for benchmark traits

// setup matrix A and vector x

ip_loop_wf<view_t> wf(A, traits.lambda);

auto zeta = get<1>(do_loop(traits.niter,1, wf, x, 0.0));

runtime::anonymous_executor.drain();

//print results and exit

}

Fig. 36. Implementation of the main body of the NAS CG benchmark

tialization of r and z can execute concurrently. Then the computation of ρ can overlap

with the sequence of operations from the initialization of p down the computation of

α where ρ is needed.
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template<typename View2D, typename View1D>

struct cg_loop_wf

{

private:

View2D& A;

int n_iters;

public:

cg_loop_wf(View2D& v1, int iters)

: A(v1), n_iters(iters)

{ }

template<typename IterRef, typename VecView, typename RhoRef>

auto

operator()(IterRef n, VecView z, VecView r, VecView p, RhoRef rho) const

-> decltype(make_tuple(z, r, p, rho))

{

auto q = A * p;

auto alpha = rho / inner_product(p, q);

auto new_z = z + alpha * p;

if (n == n_iters - 1 )

return make_tuple(new_z, r, p, rho);

auto new_r = r - alpha * q;

auto new_rho = inner_product(new_r, new_r);

auto beta = new_rho / rho;

auto new_p = new_r + beta * p;

return make_tuple(new_z, new_r, new_p, new_rho);

}

}; // struct cg_loop_wf

template<typename View2D, typename View1D>

auto conjugate_gradient(View2D& A, View1D& x)

-> decltype(make_tuple(euclidean_norm(x), x))

{

// set initial values of loop variants

auto z = vector_fill_n(0.0, x.size());

auto r = x;

auto p = r;

auto rho = inner_product(r, r);

cg_loop_wf<View2D, View1D> wf(A, x);

// run loop and extract z output value

auto final_z = get<0>(do_loop(25, wf, z, r, p, rho));

// compute ||r|| = ||x - Az||

return make_tuple(

euclidean_norm(x - A * final_z),

final_z

);

}

Fig. 37. Implementation of the conjugate gradient method of NAS CG
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CHAPTER VI

EXPERIMENTAL EVALUATION

We evaluate the performance of our implementation of the PARAGRAPH and under-

lying PARAGRAPH Executor [27] using several benchmarks of increasing complexity.

The first set of experiments evaluate the performance of individual PARAGRAPHs used

to implement parallel generic algorithms in stapl, all of which are parallel equiva-

lents of stl algorithms. The second set of experiments evaluates the performance

of the stapl implementations of EP and CG, two benchmarks of the NAS Parallel

Benchmarks [44]. The CG implementation allows us to demonstrate the performance

capabilities of the PARAGRAPH composition operators and the data flow view that

makes it possible. Finally, we evaluate the implementation of the sweep operation of

PDT in the case of non-reflective boundary conditions.

The results of the string matching experiment presented in this chapter were

originally published in [21].

A. Experimental Setup

Our experiments are conducted on three parallel machines with different processor

architectures and network interconnects. These machines include a 32,288 core Cray

XT4(CRAY 4) [46] and a 153,216 core Cray XE6(CRAY 6) [47], both of which are

available at NERSC. We also employed a 832 core Power5 Cluster(POWER 5) [48]

available at Texas A&M University.

The CRAY 4 has 9,572 compute nodes, each with one quad-core AMD ’Bu-

dapest’ processor running at 2.3 GHz. Each node has 8 GB of DDR3 800 MHz

memory with 7.38 GB usable by the user application, allowing 1.85 GB of memory

per core when the node is fully utilized. The compute nodes run the “Cray Linux
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Environment” that supports a limited number of system calls and disallows the use of

dynamically loaded libraries. The system interconnect forms a 3D torus that utilizes

a SeaStar2 router with compute nodes connected through Hypertransport.

The CRAY 6 has 6,384 compute nodes each with two twelve-core AMD ’Magny-

Cours’ processors running at 2.3GHz and total of 32GB of memory. These compute

nodes are also connected with a 3D torus via Cray’s ’Gemini’ interconnect. The

system also runs the “Cray Linux Environment” on the compute nodes.

The POWER 5 has 52 compute nodes, each with 8 dual-core IBM Power5+

cores running at 1.9 GHz. Forty-nine of the nodes have 32 GB of DDR2 533MHz

memory with 25 GB available for user applications, allowing 1.56 GB of memory per

core when the node is fully utilized. The compute nodes run IBM’s AIX operating sys-

tem. Forty-eight of the nodes are connected together by a two-plane high-performance

switch interconnect.

In all experiments, a location contains a single processor core, and the terms can

be used interchangeably.

The experiments for the parallel generic algorithms and the PDT application are

conducted using weak scaling. In this setup the number of elements to be processed

by a core is kept constant as the number of cores is increased. This results in the size

of the problem being solved increasing in proportion to the number of cores being

utilized.

The specification of the NAS benchmarks provides several different sizes of input

data for each benchmark in the suite. After selecting the input to use in an experiment

the size of the input is fixed regardless of the number of cores utilized to solve the

problem. This is referred to as strong scaling.
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B. Parallel Generic Algorithms

A large percentage of the algorithms set forth in the standard for the C++ stl can be

implemented using a single PARAGRAPH that makes use of one of the task factories

provided in stapl (see Chapter IV Section C). Table II gives the percentage of stl

algorithms that can be expressed with either a task factory stapl provides or as

a combination of multiple task factories.

Table II.: Computation patterns used in stl algorithms

Pattern Name Percentage of stl covered Example algorithms

map 21% for each, transform, replace

map reduce 36% find, count, inner product

prefix scan 3% partial sum

combination 40% sort, partition, unique

The performance of pAlgorithms that use the map task factory to generate

their task graph is shown in Figure 38(a). The experiments were run on the CRAY

4. There are 200 million integer elements on each processing location stored in a

pArray in these weak scaling experiments. The difference in execution time between

two pAlgorithms on a given processor count is due to the difference in the execution

time of their operators. Each pAlgorithm results in a task graph with the same

number of tasks and dependencies as it is processed by the PARAGRAPH Executor.

Figure 38(b) shows the results for the same scaling experiment conducted on the

CRAY 4 where the map reduce task factory is used by the pAlgorithms.

Each data point in the lines of Figure 38(a) and Figure 38(b) are the mean of

ten runs executed in a single batch job submission and the associated 95% confidence
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Fig. 38. Weak scaling of (a) map and (b) map-reduce pAlgorithms on CRAY 4.

interval.

The algorithms scale well as the number of cores is increased from 4 to 16,384.

The difference in execution time of the 4 and 16,384 core experiments is less than

2% for the map reduce based pAlgorithms. The execution time of the map based

pAlgorithms have a difference between the 4 core and 16,384 core execution time of

approximately 1%. Part of the increase can be attributed to the termination detection

algorithm that is run to ensure all tasks of the PARAGRAPH Executor have executed

before control is returned to the calling code. Current work with the composition

operators should remove the time needed by the termination detection from the crit-

ical path by allowing control to return to the caller as the results are available on a

location instead of waiting on all processing locations to receive the result. The ter-

mination detection and destruction of the PARAGRAPH instance of the computation are

already handled by the PARAGRAPH Executor, which could defer these activities on a

processing location until there are no tasks of a PARAGRAPH available for processing.

A final example of a generic algorithm using the stapl PARAGRAPH is an imple-
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struct strmatch {

const string& S;

strmatch(const string& s): S(s) {}

template<typename View>

bool operator()(View v) const {

return equal(S.begin(),S.end(),

v.begin());

}

};

void stapl_main(int argc, char** argv)

{

typedef stapl::p_array<char>

p_string_type;

typedef stapl::array_1D_view

<p_string_type> pstringView;

...

result=stapl::count_if(

stapl::overlap_view(text,

1,0,pattern.size()-1),

strmatch(pattern));

...

}

Fig. 39. stapl implementation of substring matching

mentation of string matching. Our implementation calls the stapl implementation

of count if that accepts a pView and a caller-defined predicate. In order to obtain

the behavior of substring matching the pView passed to the pAlgorithm has to be

defined such that each element is a substring that the map operation will process. In

this case, given a pattern of length M , we create an overlapped pView over the text

whose elements will contain multiple characters. We declare the pView with a core

of length 1, left overlap of size 0 and right overlap of size M − 1. This will produce a

pView whose elements are all the substrings of size M of the input text. The code il-

lustrating the implementation of the PARAGRAPH operator and the construction of the

overlapped pView is shown in Figure 39. In Figure 40, a MPI version of the program

is shown. This case shows the additional complexity of the MPI code with respect

to the stapl version. The MPI programmer must explicitly handle the boundary

regions where a string spans multiple processors by replicating the string. This is a
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int main(int argc, char** argv) {

...

MPI_Comm_size(MPI_COMM_WORLD, &P);

N=N/P;

std::vector<char> V(N);

int M=S.length();

for (int i=0; i <= N-M+1; ++i)

if (equal(S.begin(), S.end(),

V.begin()+i)) ++cnt;

if (pid>0)

MPI_Send((&V[0]), M-1, MPI_CHAR,

pid-1, 1, MPI_COMM_WORLD);

if (pid<P-1) {

vector<char> BUFF(2*(M-1));

copy(V.begin()+N-M+1, V.end(),

BUFF.begin());

MPI_Recv( &BUFF[M-1], M-1, MPI_CHAR,

pid+1, 1, MPI_COMM_WORLD,

&status );

for (int i=0; i <= M-1; ++i)

if (equal(S.begin(), S.end(),

BUFF.begin()+i )) ++cnt;

}

int res;

MPI_Reduce ( &cnt, &res, 1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD );

...

}

Fig. 40. MPI implementation of substring matching
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special case of the use of ghost nodes, a well known technique in parallel processing

[49,50]).

Figure 41 shows that performance of the two versions is comparable. In the

best case the substring to match is not part of the text, which allows the comparison

operator to return immediately after comparing the first character of the string. The

first character of the string is always stored on the location where the task is executed,

so no communication results from the operation. In the worse case, both text and

substring are composed of the same character, maximizing the number of occurrences

and the amount of work and communication that the map operations of the task

graph must perform.

C. NAS Parallel Benchmarks

The experiments evaluating the performance of individual pAlgorithms in Section B

are meant to demonstrate the scalability of the components used to represent and

process a single PARAGRAPH instance. In this section we evaluate the performance of

stapl implementations of the EP and CG benchmarks of the NAS Parallel Bench-

marks [44]. The implementation of EP demonstrates the power of the PARAGRAPH’s

ability to accept user-defined functions as its operations. The stapl implementation

is able to express the computation as a single map reduce PARAGRAPH while the FOR-

TRAN reference implementation requires three successive calls to the MPI allreduce

function to compute the solution. The CG implementation makes extensive use of

the composition operators presented in Chapter V. The result of the composition

allows the PARAGRAPHs of the entire benchmark to be available for processing by the

PARAGRAPH Executor.
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1. Embarrassingly Parallel – EP

The Embarrassingly Parallel benchmark begins by generating n pairs of random num-

bers that represent points in the 2D plane. The algorithm used to generate the num-

bers is provided by the specification of the benchmark and is a deterministic uniform

random number generator. Each pair is checked to see if it is a Gaussian pair. A pair

(x, y) is a Gaussian pair if x2 + y2 ≤ 1. If the pair is a Gaussian pair then each of

its components are included in a pairwise global summation (i.e., the x components

of each pair are summed together, and the y components of the pairs are summed

together). The benchmark also accumulates data about which of ten annulus rings

the pair lies within. The array of annulus counts is also globally accumulated. All of

the steps above are part of the timed section of the benchmark. The specification pro-

vides various problem sizes that allow for a strong scaling study to be performed on

platforms ranging from desktop development systems to massively parallel systems.

a. Implementations

The implementation provided by NAS (referred to as npb in the figures below) is a

Fortran-MPI code. There are two interesting features of the reference implementation.

First, each processor blocks its work into sets of 216 elements. The processor generates

the elements for a block and stores them in an array. It then scans the array to find

the Gaussian pairs and includes their values in the local portions of the data to be

accumulated. The second interesting implementation detail is that three successive

calls to mpi allreduce() are required to perform the global accumulations needed

to form the final results.

The stapl implementation is a single call to the map reduce() function. The

operation provided for the map is a user coarsened work function that generates and
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evaluates a point for each element in the counting view it accepts as input. The

map work function returns an instance of deviate info, a structure that contains

the contributions of the task to the component sums of the Gaussian pairs and the

annulus counts. The reduce operator specified for the PARAGRAPH is stapl::plus

instantiated with the deviate info, which calls operator+ that we have defined on

the deviate info structure. The primary difference between the npb implementation

and the stapl implementation is that the stapl implementation is able to perform

all of the global accumulations in a single PARAGRAPH. By combining the work of the

three distinct accumulations required in the benchmark the stapl version achieves

significant scalability improvements over the npb implementation at higher processor

counts.

b. Evaluation

Experiments were run on the POWER 5 and CRAY 4. The compiler used for the

stapl implementation was gcc 4.5.2 on both systems. The gfortran compiler was

used to compile npb. In all compilations -O3 was used as the optimization level.

For these experiments, and the CG experiments in the next section, 30 runs of both

implementations were performed at each processor count in order to compute the

95% confidence interval for the results.

Figure 42 shows the scalability of the stapl and npb implementations on the

POWER 5 using the class B input (n = 230). Figure 43 shows the execution times

of both implementations. The stapl implementation has sequential overhead of

approximately 21% compared to npb. Our investigations of the usual causes of the

“abstraction penalty” (e.g., lack of inlining) have not identified the cause. The amount

of work performed by both implementations is the same and there is no fundamental

reason the stapl implementation should not be as fast as npb. A timer placed around
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Fig. 44. NAS EP Class D Scalability on CRAY 4

the code identifying Gaussian pairs and computing the local sums reveals that the

difference is in the core of the benchmark. We suspect that there is a difference

in the language that enables additional optimization to be performed by the GNU

FORTRAN compiler.

The scalability of the stapl implementation is good, though improvement is still

possible through customization or removal of the PARAGRAPH termination detection

from the critical path.

The feature of interest in the graphs for the POWER 5 is the loss of scalability of

npb beyond 256 processors. Removing the three mpi allreduce() calls pull the exe-

cution time of npb back in line with the observations made up to 256 processors. We

think the reduction in scalability caused by the successive calls to mpi allreduce()

may be due to process skew [51].

Figure 44 shows the scalability of the stapl and npb implementations of EP on
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Fig. 45. NAS EP Class D Time on CRAY 4 (logarithmic in both axes)

the CRAY 4 using the class D input (n = 236). Figure 45 is the plot of the execution

times for each implementation.

The sequential overhead of the stapl implementation when compared to npb

has increased to 47% on this platform. We believe the causes are the same as those

mentioned in the discussion of the results of the P5-cluster. The same rapid drop off in

performance in npb that we observed on the P5-cluster is seen in npb as the number of

cores is increased from 12,288 to 16,384. The scalability of the stapl implementation

decreases slightly in that range as well in a manner that we would expect from a map

reduce computation with termination detection. While the scalability of the stapl

implementation could be improved, the run-to-run variability is very low with very

tight confidence intervals at the higher processor counts.
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2. Conjugate Gradient – CG

The Conjugate Gradient benchmark estimates the largest eigenvalue of a symmetric

positive definite sparse matrix with a random patten of nonzeros using the inverse

power method. One step of the method requires solving Az = x. This is done using

the conjugate gradient iterative method. The intended purpose of the benchmark is

to measure the performance of random communication between processors.

The steps of the benchmark were presented in Algorithm 2 in Chapter V Sec-

tion 2. The specification of the benchmark sets the number of rows in the matrix

using the parameter n and the number of iterations of the inverse power method using

the parameter niter. The number of iterations of the conjugate gradient method per-

formed in each iteration of the inverse power method is fixed at 25 by the benchmark

specification.

a. Implementation

The implementation provided by NAS (referred to as npb in the figures below) is

a Fortran-MPI code. It uses a two-dimensional processor layout and block matrix

distribution for the matrix A. The matrix-vector multiplication operation in the

conjugate gradient method is implemented as a row-wise reduction of the results from

each processor in the processor column, followed by a transposition of the vector to

redistribute it so the vector-vector operations in the method work on data that is local

to the processor. This complex use of MPI demonstrates that the npb implementation

is not a naive implementation, but has been optimized for scalability.

The stapl implementation uses the same two-dimensional processor organization

and block matrix distribution. The developer of the benchmark is isolated from the

details of the communication pattern because the results of each task are forwarded
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to the appropriate processing location due to the PARAGRAPH sequence composition

operator. The result of stapl’s higher level of abstraction allows the benchmark to

be implemented in 322 lines, while the npb implementation is over 1, 000 lines. The

stapl implementation of the inverse power method was shown in Figure 36. The

implementation of the conjugate gradient method was shown in Figure 37.

b. Evaluation

The benchmark was evaluated on the POWER 5 and CRAY 6 systems. The Class

B problem (n = 75000, niter = 75) was used on processor counts ranging from 1

to 256. The Class D problem (n = 1500000, niter = 100) was used to continue the

evaluation of the scalability of both implementations from from 256 to 16,384 cores

on the CRAY 6 system. For these experiments 30 runs of both implementations were

performed at each processor count in order to compute the 95% confidence interval

shown in the figures below.

The scalability and execution time of the Class B problem from 1 to 256 cores

on CRAY 6 are shown in Figure 46 and Figure 47, respectively.

The sequential overhead of the stapl implementation compared to the npb is

8% on 1 processor, and the difference in the execution times remains at 8% with the

exception of the 64 core data point where it is 15%. The results show that the stapl

implementation with its high level of abstraction is able to perform comparably to

an optimized FORTRAN-MPI implementation.

Figure 48 shows the continuation of the scalability study on the CRAY 6 from

256 cores and out to 16,384 cores using the class D input. Figure 49 is the plot of the

execution times for both implementations.

In Figure 49 we see that the stapl implementation is able to perform just as

well as its FORTRAN counterpart on 1,024 and 4,096 cores, but doesn’t see the same
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Fig. 46. NAS CG Class B Scalability on CRAY 6
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Fig. 48. NAS CG Class D Scalability on CRAY 6
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Fig. 50. NAS CG Class B Scalability on POWER 5

improvement in execution time as the npb implementation when run on 16,384 cores.

Figure 50 shows the scalability of the stapl and npb implementations onPOWER

5, and Figure 51 shows the execution time across the processor counts for the exper-

iment. The sequential overhead on one processor is 6%. This is a reasonable number

considering that the class B problem requires 11,624 PARAGRAPHs to be created and

processed by the PARAGRAPH Executor. The difference between the execution time

of the two implementations remains the same until 256 processors. At 256 processors

the stapl implementation improves less than the npb implementation, which causes

the scalability to suffer.

The behavior of the stapl implementation for the Class B problem on POWER

5 and the Class D problem on CRAY 6 is similar. The stapl implementation is

able to match the performance of the npb implementation on the lower core counts

before the npb implementation achieves better performance on the last data point.
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Fig. 51. NAS CG Class B Time on POWER 5 (logarithmic in both axes)

One possibility we are investigating is that the promiscuous MPI mode used by the

stapl communication library’s implementation to check for incoming RMI requests

negatively affects the execution time on larger core counts. Our preliminary experi-

ments indicate that matching the MPI sends and receives, as the npb implementation

does, will reduce the difference in execution time between the npb and stapl imple-

mentations. The positive aspect of the stapl implementation using PARAGRAPHs in

this case is that the benchmark implementation and PARAGRAPH itself will be unaf-

fected by any change in message processing behavior of stapl run-time system. A

similar change in the npb implementation would require the developer to rewrite the

benchmark itself.
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D. PDT

Chapter IV Section E presented the high level overview of the problem solved by

the PDT discrete-ordinates particle transport application and presented the task

factory passed to the PARAGRAPH in order to construct the task graph to perform

the sweep computation for a single set of directions. Chapter V Section 1 demon-

strated how the individual sweep PARAGRAPHs can be composed using the composition

operators presented in Chapter V in the case of non-reflecting surfaces on the spa-

tial domain boundaries of the input being solved. In this section we evaluate the

performance of the implementation of this composition using PARAGRAPHs.

1. Evaluation

We have designed an artificial input for PDT that allows us to perform a weak scaling

study. We are interested in the performance of the sweep computations as that

consumes a majority of the execution time in other applications solving the same

problems, and this is where the independent composition of PARAGRAPHs using the

custom task factory for the sweep is exercised.

Table III lists the values specified in the input file for each processor size in

our experiment on the CRAY 4. “Cell Agg.” in the table is the number of cells

aggregated into a single cellset along a particular dimension. The input file format

for the problem specifies everything related to the spatial domain in terms of the

number of items in each dimension. For example, the input is a 3D spatial domain so

the number of cells that make up the entire space is specified as the number of cells

in the x-, y-, and z-dimensions. The processor layout is specified in the same way

because the problem is parallelized by distributing the spatial domain.

The discretizations of the energy, direction, and time are kept constant across all
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processor counts. The input performs 5 time steps, solving the steady state problem

in each one. For each steady-state computation the direction domain is discretized

into 80 angles that are aggregated into 8 angle sets, one originating from each octant

of the direction domain. The energy domain is discretized into 10 energy groups that

are aggregated into a single energy group set.

Table III shows that the processor arrangement is restricted to a two-dimensional

layout. This results in a KBA partitioning [52] of the 3D spatial domain. The KBA

partitioning produces a 2D regular grid of cell columns.

Table III.: Values used in PDT study on CRAY 4

Processor Count 1 2 4 8 16 32 64 128 256 512 1024 2048

Cells in X 8 16 16 16 32 32 32 64 64 64 128 128

Cells in Y 8 8 16 16 16 32 32 32 64 64 64 128

Cells in Z 32 32 32 64 64 64 128 128 128 256 256 256

Processors in X 1 2 2 4 4 8 8 16 16 32 32 64

Processors in Y 1 1 2 2 4 4 8 8 16 16 32 32

Processors in Z 1 1 1 1 1 1 1 1 1 1 1 1

Cell Agg. in X 8 8 8 4 8 4 4 4 4 2 4 2

Cell Agg. in Y 8 8 8 8 4 8 4 4 4 4 2 4

Cell Agg. in Z 2 2 2 2 2 2 2 2 2 2 2 2

The growth of the spatial domain occurs in all three dimensions. For each dou-

bling in the processor count the spatial domain is doubled in one dimension in a cyclic

order (x, y, and then z). The result is that for every 8-fold increase in the number

of processors the number of cells in the z-dimension on each processing location is

doubled.
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The result of increasing the processors in two dimensions while increasing the

number of cells in all dimensions is that the number of cells in a cellset – i.e., the

number of cells processed by a task in the sweep task graph – is reduced as the

number of processors increases. The number of tasks performed by each processor

for a given sweep direction increases as the size of the tasks is reduced as well. The

experimental design keeps the number of unknowns the computation is solving for

on each processor fixed at 1.31 × 107 across all processor counts, but the number of

messages sent increases along with the overhead that comes from invoking a larger

number of tasks as the task graph is processed in the PARAGRAPH Executor. The end

result is that the execution time of an experiment in this study must increase as the

number of processors increases instead of remaining constant as expected in other

weak scaling studies.

A simple model of the sweep execution has been developed. It uses the sweep time

of a sequential execution to find the amount of time needed to solve for an unknown.

The number of unknowns per core is constant, so the execution time per unknown

(i.e., grind time) provides the base execution time. The number of double-precision

values that are communicated between cores during the sweep is also known. The

model takes this information and a specification of the system interconnect latency

(i.e., the constant overhead of sending a message) and the time to send a single double

as inputs. Timing information from the 1, 2, 4, and 8-core experiments is collected to

determine the time required to construct a task in the task graph as it is processed by

the PARAGRAPH Executor, and the overhead of invoking a task. The communication

information combined with the task information and base execution time produces a

simple estimate of the execution time needed for the sweeps in a computation. This

estimate is a best-case scenario that assumes a message is processed by a location the

instant it arrives.
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Fig. 52. Weak scaling of PDT on the CRAY 4

Figure 52 shows the execution time of the weak scaling PDT experiment on the

CRAY 4 using a single core per node and the estimated execution time produced from

the model. All cores on a node were not utilized because the application saturates

the memory subsystem when a node is fully utilized. The base execution time is

computed from the single processor execution result. The communication parameters

we supplied to the model are 6000 nanoseconds latency and 1.14 nanoseconds to

transmit a double. These values were obtained from the study of a CRAY XT4

system published in [53].

The execution times we observe deviate from the model, but the execution time

differs from the predicted execution time by less than 10% at 2,048 cores. Table IV

lists the percent by which the execution time differs from the predicted execution

time at each core count. In the table we see four groupings – 1-4 cores, 8-32 cores,

64-256 cores, and 512-2048 cores – where the percentage the execution time varies
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from the predicted time of the model is similar.

Table IV.: Percentage difference between actual and

predicted execution times on CRAY 4

Processors 1 2 4 8 16 32 64 128 256 512 1024 2048

Difference (%) 0% 1% 2% 4% 4% 4% 5% 5% 7% 8% 8% 9%

Recall that every eight-fold increase in the problem size and processor count

results in a doubling of the number of cells in the z-dimension on each core. This

causes the number of tasks produced on each core for a sweep PARAGRAPH to double,

cuts the number of cells processed by each task in half, and doubles the number of

messages sent by a location during the sweep. Increasing the size of the task graphs

produced for the sweep PARAGRAPHs in such a way increases the overhead of PARAGRAPH

processing. The results in Figure 52 show that the overhead of processing the sweep

PARAGRAPHs is low compared to the time of the computation being performed, and the

amount it increases as the sizes of the PARAGRAPHs grow is limited. The results also

indicate that the model needs further refinement to properly capture the overheads

of increasing the problem size in this manner.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Recent changes by computer processor manufacturers have made parallel architec-

tures ubiquitous. Multicore processors are emerging in smartphones and tablets as

core counts continue to increase in personal computers. At the same time the number

of processing elements and their diversity in massively parallel systems continues to

grow and redefine high performance computing. The implication for software devel-

opers is that more of them are expected to develop parallel applications. Developers

working on HPC systems find that the difficulty of developing efficient applications

using existing techniques is increasing as the problem complexity increases, and the

performance of the algorithms they produce is not portable (i.e., the algorithms have

to be tuned or rewritten for each new system).

stapl, a library for parallel programming in C++, is being developed to address

the difficulties of writing parallel algorithms that achieve portable performance. This

dissertation presents the PARAGRAPH, a component of the library we have developed

to allow natural development of a parallel application. The PARAGRAPH allows the

developer to specify the necessary information in a manner that isolates the con-

cerns of each component from the others and simplifies the development of all the

components.

The components a developer specifies are:

• the input pViews that represent the data to be transformed by the algorithm,

• the work functions that implement the operations to be applied to the indi-

vidual elements of the input pViews, and

• the task factories that capture the shape of the parallel computation and
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generate the specifications of the tasks of the task graph as it is executed.

We began our discussion of the PARAGRAPH by demonstrating how basic parallel

algorithms can be expressed simply. In the implementation section we presented

the task factories provided by stapl that capture computation patterns that

occur frequently in parallel applications, and demonstrated how the developer can

extend the library with new domain-specific task factories when necessary. We

also showed how the PARAGRAPH supports the dynamic generation of irregular task

graphs as they are processed to facilitate graph traversal algorithms and other dy-

namic programming problems. Finally, in the presentation of how the operators of a

PARAGRAPH are developed we showed that the operators can use PARAGRAPHs in their

implementation, enabling nested parallelism. It is clear from our work that the de-

velopment of a new task factory is the most difficult activity when implementing

a parallel algorithm using PARAGRAPHs. Future work in this area would simplify the

development of the task factory by separating the expression of the dependence

pattern from the structural pattern of the computation.

In the description of PARAGRAPH composition we demonstrated how multiple

PARAGRAPHs can be processed concurrently by the PARAGRAPH Executor, and how

producer-consumer relationships are established using data flow views to specify

dependencies between the PARAGRAPHs when they occur. We also developed a loop

construct that allows more PARAGRAPHs of an algorithm to be processed concurrently

when parallel algorithm includes iteration. We demonstrated the capabilities of the

composition operators by showing how they enable more parallelism in the stapl

implementations of the NAS CG benchmark and the sweep operation of a discrete-

ordinates particle transport code.

We have performed an analysis of the PDT particle transport code and deter-
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mined that more PARAGRAPHs could be considered for processing by the PARAGRAPH

Executor and their executions optimized if the composition operators included equiv-

alents of the control structures found in imperative sequential programming lan-

guages. Future work in this area will include the development of composition op-

erators that allow selecting between PARAGRAPHs and their conditional repetition.

Additionally, a composition operator that allows the atomic operation of PARAGRAPHs

in a sequence may be of interest in some applications. Finally, simplifying the de-

velopment of parallel applications written using stapl by providing a graphical de-

velopment environment for stapl applications based on the depictions of the task

factories and composition operators presented in this dissertation is another large

area of potential future work.

We demonstrated the performance capabilities of the PARAGRAPH with exper-

imental evaluation of applications and algorithms developed using the PARAGRAPH

in stapl. Our results show that the processing of PARAGRAPHs by the PARAGRAPH

Executor is scalable to a large number of processing elements. We also show that

the overhead of PARAGRAPH processing is small, allowing the stapl implementations

of the NAS benchmarks and the particle transport code to achieve execution times

comparable to implementations written using lower level techniques.

The performance of the PARAGRAPH and its resource utilization can be improved

further still by future work that explores increasing the amount of information cap-

tured in a PARAGRAPH instance and communicated to the PARAGRAPH Executor and

the stapl run-time system. We have identified how the generation of task specifi-

cations can be improved using information about the system load from the run-time

system, and information about the relationship between PARAGRAPHs captured by the

composition operators could allow the operations of the PARAGRAPHs to be merged.

The termination detection required to determine when the PARAGRAPH Executor has
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finished processing a PARAGRAPH can be modified or eliminated in cases where the

composition patterns of the PARAGRAPHs are known.

As the need for improved parallel programming paradigms continues to increase

with the number and size of parallel systems we believe that the techniques devel-

oped by the PARAGRAPH provide a promising path forward to reduce the difficulty of

implementing parallel applications and achieving portable performance.
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