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ABSTRACT 

 

The Role of Sim2s in Cell Cycle Regulation and DNA Damage Response. (December 

2010) 

Lauren M. Schilling, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Weston Porter 

 

 Singleminded-2s (Sim2s) is a member of the basic helix- loop-helix Per-Arnt-Sim 

(bHLH-PAS) family of transcription factors.  Members of this family play important 

roles in sensing and responding to environmental changes, controlling circadian 

rhythms, and development.  Previous work in our laboratory found that Sim2s is down-

regulated in human breast cancer patients and cell lines and over-expression of Sim2s in 

highly invasive breast cancer cells blocks their proliferative and invasive potentials.  

Additionally, when Sim2s is knocked-down in MCF7 breast cancer cells, this normally 

relatively non-aggressive cell line becomes highly invasive and metastatic.   

 In the studies presented here, we found that over-expression of Sim2s in MCF7 

cells caused these cells to have a significant decrease in proliferative ability.  Propidium 

iodide flow cytometry showed more Sim2s cells in the G2/M and S phases of the cell 

cycle as compared to Empty controls.  While we observed no changes in cyclin or CDK 

levels between Empty controls and Sim2s cells, the regulatory protein p21 was found to 

be significantly up-regulated in Sim2s cells at both the RNA and protein levels.  

Additionally, we confirmed a cellular senescence phenotype in the Sim2s cells through 
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markers such as β-galactosidase staining, and Western blot analysis of Ki67 and 

H3K9Me2.  Based on these results, we hypothesize that over-expression of Sim2s 

triggers an up-regulation of p21, resulting in cellular senescence and cell cycle arrest.  

We also found that Sim2s cells are more highly sensitized to DNA damage through 

clonogenic survival assays.  Together, these studies support the idea that Sim2s is 

involved in cell cycle control by up-regulation of p21 resulting in cellular senescence 

and the DNA damage response by sensitizing cells to genotoxic reagents.  
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NOMENCLATURE 

 

ARNT Aryl Hydrocarbon Receptor Nuclear Translocator 

ATM Ataxia Telangectasia, mutated 

ATR ATM and RAD3 related 

bHLH basic Helix- loop-Helix  

CDK Cyclin Dependent Kinase 

CDKN1a Cyclin Dependent Kinase Inhibitor 1a (p21) 

ChIP Chromatin Immunoprecipitation 

CNS Central Nervous System 

DSB Double stranded break 

ECM Extracellular Matrix 

IR Irradiation 

MMTV Mouse mammary tumor virus 

PAS Per-Arnt-Sim 

PCNA Proliferating Cell Nuclear Antigen 

Q-PCR Quantitative PCR 

RT-PCR Reverse Transcriptase PCR 

Sim2s Singleminded-2 short 

UV Ultraviolet 

WT Wild-type 

 



 

 

viii 

viii 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE ..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  viii 

LIST OF FIGURES ...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xii 

CHAPTER 

 I INTRODUCTION: CANCER, CELL CYCLE, p21-INDUCED 
SENESCENCE .....................................................................................  1  

   
  Overview of Cancer and Sim2s ......................................................  1 
  Cell Cycle Regulation.....................................................................  9 
  Cellular Response to DNA Damage ...............................................  11 
  Cellular Sensecence ........................................................................  14 
  Mechanism of Oncogene-Induced Senescence ..............................  16 
  Role of p21 in Cellular Senescence ................................................  17 
 
 II MATERIALS AND METHODS .........................................................    22 

   Cell Culture ....................................................................................  22 
   Lentiviral Transduction ..................................................................  22 
   PCR Analysis..................................................................................  24 
   Chromatin Immunoprecipitation Assay (ChIP)..............................  26 
   Western Blot Assay ........................................................................  28 
   β-Galactosidase Staining ................................................................  30 
   Clonogenic Survival Assay ............................................................  30 
   Proliferation Assay .........................................................................  32 
   Flow Cytometry ..............................................................................  33 
   DIC Imaging ...................................................................................  34 



 

 

ix 

ix 

CHAPTER                                                                                                                   Page                           
 
   Statistical Analysis .........................................................................  34
  

III THE ROLE OF SIM2S IN CELL CYCLE REGULATION ...............      35 
 
 IV THE ROLE OF SIM2S IN DNA DAMAGE RESPONSE AND 

CELLULAR SENESCENCE ...............................................................    40 
 
 V CONCLUSIONS ..................................................................................  50 

 
REFERENCES ..........................................................................................................  58 

VITA..........................................................................................................................  64 



 

 

x 

x 

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 1 Cancer incidences for individuals with Down syndrome ...........................  5 
 
 2  Expression levels of Sim2s were surveyed in a panel of human breast  
  cell lines ......................................................................................................  7 
 
 3 Proliferation assay for MDA-MB-435 cells over-expressing Sim2s  
  and Empty controls .....................................................................................  7 
 
 4 Analysis of invasive potential and ECM markers in MCF7 cells with  
  Sim2s knocked down..................................................................................  8 
 
 5 Graphical representation of the cell cycle ..................................................  9 
 
 6  DNA damaging reagents incite cellular response by activating ATM  
  or ATR ........................................................................................................  15 
 
 7 Overview of cellular response to oncogenic stress.....................................  19 
 
 8 Cyclin dependent kinase inhibitor p21 can effect cell cycle arrest at all  
  stages of the cell cycle ................................................................................  20 
 
 9 pLPCX vector map .....................................................................................  23 
  
 10 Proliferation assay on MCF7 pLPCX-Empty and Sim2s cells ..................  36 
 
 11 Propidium iodide flow cytometry of MCF7 pLPCX-Empty and  
  Sim2s cells ..................................................................................................  37 
 
 12 Western blot analysis of major cyclins and CDKs involved in cell cycle ..  38 
 
 13 Real Time PCR assay of expression levels of regulatory protein  
  RNA levels and Western blot analysis of GADD45 ..................................  39 
 
 14 Real Time PCR assay and Western blot analysis of p21............................  41 
  
 15 Over-expression of Sim2s regulates p21 expression in response to DNA 

damage........................................................................................................  42 
 



 

 

xi 

xi 

FIGURE                                                                                                                        Page 

 16 Clonogenic survival assay of MCF7 pLPCX-Empty and Sim2s cells to 
ascertain survival upon exposure to genotoxic stress .................................  44 

 
 17 ChIP analysis of MCF7 pLPCX-Empty and Sim2s cells upon exposure  
  to UV radiation ...........................................................................................  45 
 
 18 DIC images of Sim2s over-expressing MCF7 cells and Empty controls ...  47 
 
 19 MCF7 pLPCX-Sim2s cells have increased β-galactosidase staining as 

compared to Empty controls.......................................................................  48 
 
 20 Western blot analysis of cell proliferation marker Ki67 and apoptotic 
   marker PARP .............................................................................................  49 
 
 21 Proposed role of Sim2s in cell cycle arrest and cellular senescence ..........  57 
 



 

 

xii 

xii 

LIST OF TABLES 

 

TABLE                                                                                                                          Page 
 
 1 Primer sequences for all Real Time PCR reactions....................................  25 
 
 2 Conditions and sequences for ChIP PCR primers ......................................  28 
 
 3 Conditions for antibodies used ...................................................................  31 

 



1 
 

 

1 

CHAPTER I 

INTRODUCTION: CANCER, CELL CYCLE, p21-INDUCED SENESCENCE 

 

Overview of Cancer and Sim2s  

Cancer is the second most common cause of death in the United States, exceeded 

only by heart disease.  In 2009 alone 562,340 Americans were expected to die of 

cancer—nearly 1 of every 4 deaths (1).   

Breast cancer is the second leading cause of cancer-related deaths in U.S. women 

and the fourth leading cause of death in women overall.  In 2009, over 40,000 women 

died from this disease and 192,370 new cases were diagnosed.  While survival rates for 

women with breast cancer have been slowly increasing over the years due to better/early 

detection and improved treatment methods, it is important to further increase survival 

rates by developing better forms of treatment and ultimately preventative measures.  For 

this reason, research on breast cancer is extremely important.  The objective of our 

research with Singleminded2-s (Sim2s) is to ultimately contribute to this research and 

establish additional and improved forms of detection or treatment for breast cancer.  

Before we can reach that step, however, we need to establish how Sim2s functions in the 

breast and its role in cell cycle regulation and DNA damage response. 

 

 

 

This thesis follows the style of Cancer Research. 
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Singleminded2-s (Sim2s) is a member of the basic helix- loop-helix Per-Arnt-Sim 

(bHLH/PAS) family of transcription factors.  This family includes members such as Per, 

Hif1α, and ARNT; factors involved in circadian rhythm, response to environmental 

stressors (hypoxia), and regulation of transcriptional responses to dioxins and polycyclic 

aryl hydrocarbons.  The PAS domain is highly conserved and has many important roles 

in sensing and binding to small molecules such as molecular oxygen, cellular 

metabolites, or polyaromatic hydrocarbons (2).   

Many PAS family members play important roles in regulating development.  In 

Drosophila, Single-minded (Sim) is required for synchronized cell division, proper 

formation of nerve cell precursors, and positive auto-regulation of central midline 

expression—thus making it a master developmental regulator of the CNS (3-4).  In 

mammals there are two different Sim homologs (Sim1 and Sim2).  Null mutations in 

both genes in mice have provided evidence that both genes are important for embryonic 

survival as both Sim1 and Sim2 knock-out mice die shortly after birth (5).  Work in mice 

has shown that Sim1 is required for development of several secretory neurons at the final 

stages of their differentiations (6).  Mice that have had Sim2 knocked-out die within 3 

days of birth due to lung atelectasis and breathing failure.  Additionally, these mice have 

congenital scoliosis, as observed in the unequal sizes of the left and right vertebrae and 

ribs.  The temporal and spatial expression patterns of Sim2 indicate that it could play a 

role in regulating skeletal growth and/or development (7).  

The Sim2 gene has a splice variant referred to as Sim2s.  This variant is missing 

part of exon 11, which contains a carboxyl Pro/Ala-rich repressive domain.  Both Sim2 
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and Sim2s repress Dioxin Response Elements (DREs) equally, however, they have 

differential responses in repressing Hypoxia Response Elements (HREs), with Sim2s 

having a less repressive effect.  Additionally, Sim2s can activate expression from a 

Central Midline Element (CME).  This implies that the Pro/Ala-rich sequence present in 

Sim2 but not Sim2s exerts a negative effect on CME-mediated gene expression (8).   

Our laboratory has previously shown that Sim2s is developmentally regulated in 

the mammary glands of mice and its expression peaks during the first week of lactation 

when the mammary gland is undergoing terminal differentiation.  Precocious expression 

of Sim2s in vivo promotes an alveolar cell phenotype.  Analysis of mammary glands 

from transgenic mice over-expressing  Sim2s under the Mouse Mammary Tumor Virus 

(MMTV-Sim2s) and wild-type (WT) mice found that mRNA levels of milk proteins 

including β-casein (Csn2) and whey acidic protein (WAP) were significantly increased 

in the mice over-expressing Sim2s (9-10).  Further, we hypothesized that Sim2s is 

involved in enhanced mammary gland differentiation because we observed an increase 

in the sodium phosphate transporter Npt2b (shown to be expressed in late pregnant and 

lactating mammary tissues) in transgenic mice (9-10).   

The Sim2 gene is found on Chromosome 21 (in humans) and 16 in mice 

(syntenic to Human Chromosome 21).  Transgenic mice with three copies of Sim2 

exhibit a slight Down Syndrome phenotype (11).  Additionally, these mice die at birth 

from complications due to breathing failure and display rib, vertebral and craniofacial 

abnormalities (7).     
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Due to its location on Chromosome 21 in the Down Syndrome Critical Region, 

Sim2s plays an important role in the etiology of this disorder.  Sim2 mRNA is expressed 

in facial, skull, palate and vertebra primordia in human and rodent embryos and its 

trisomic state is suspected to contribute to the phenotypic features associated with Down 

Syndrome (DS), as well as, the anxiety-related/reduced exploratory behavior and 

sensitivity to pain phenotypes of DS individuals (11-12).  Like many genetic disorders, 

DS has a unique tumor profile.  These individuals have an increased incidence of 

leukemia and ovarian or testicular cancer, but a decreased incidence of solid tumors—in 

particular breast cancer (Figure 1).  In several age-matched control studies, individuals 

with DS were shown to have a significantly decreased incidence of breast cancer (13-

14). 

Because of this dramatically decreased incidence of breast cancer in these 

individuals, our laboratory is investigating the potential role of Sim2s as a tumor 

suppressor gene in the breast.  While Sim2s is shown to be up-regulated in prostate and 

pancreatic cancers, the supposed oncogenic mechanism has not been delineated, and like 

several genes such as KLF4, Sim2s could play a role as an onocogene in one tissue and a 

tumor suppressor in another (4, 16). 

 



5 
 

 

5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Cancer incidences for individuals with Down syndrome.  Adapted 
from (15).  
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  Initially we surveyed Sim2s expression in a variety of human breast cell lines. 

Interestingly, Sim2s levels were high in normal breast cells but severely decreased in 

breast cancer lines (Figure 2) (17).  Additionally, as the invasive potential of the breast 

cancer cell lines increased, Sim2s levels decreased.  To investigate the potential tumor 

suppressor activity, we over-expressed Sim2s in highly invasive MDA-MB-435 cells, 

which resulted in inhibited proliferation and invasive potential (Figure 3). 

Additionally, knock-down of Sim2s in the relatively non- invasive MCF7 breast 

cancer cell line resulted in an epithelial-mesenchymal transition (EMT) characterized by 

a spindled cell morphology with decreased epithelial characteristics and significantly 

elevated mesenchymal markers (Figure 4).  When control and Sim2s-deficient (Sim2i) 

MCF7 cells were injected into the flanks of nude mice, the Sim2i cells resulted in large, 

highly vascularized, estrogen receptor negative tumors.  Together, these results support a 

role for Sim2s as a breast tumor suppressor.  
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Figure 2.  Expression levels of Sim2s were surveyed in a panel of human breast cell 
lines.  Sim2s levels were highly expressed in normal breast epithelial cells but decreased 
in breast cancer cells, with the lowest levels found in the most highly invasive cell lines 
(17). 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.  Proliferation assay for MDA-MB-435 cells over-expressing Sim2s and Empty 
controls.  When Sim2s is over-expressed in the highly invasive MDA-MB-435 cell line, 
the proliferative ability of these cells is decreased as compared to control cells [Adapted 
from (17)].
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Figure 4.  Analysis of invasive potential and ECM markers in MCF7 cells with Sim2s 
knocked down.  A.  When Sim2s is knocked-down in the less- invasive breast cancer cell 
line MCF7 the invasiveness potential of these cells significantly increases.  B.  
Additionally, these cells appear to undergo an epithelial to mesenchymal like-transition, 
with epithelial markers like E-Cadherin becoming down-regulated and mesenchymal 
markers such as N-cadherin and vimentin increasing (18). 
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Cell Cycle Regulation 

Throughout the course of the cell cycle, mammalian cells coordinate several 

different physiological processes, including:  coordinating cell growth, genome 

replication, and cellular division.  There are four major parts of the cell cycle—G1, S, 

G2, and M, and each are regulated by a variety of signaling molecules and other 

proteins, including cyclins and cyclin dependent kinases (Figure 5).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  Graphical representation of the cell cycle.  Major cyclins and CDKs are 
shown, as well as some of the major factors required to push the cell through the 
various phases of the cell cycle.  Hyperphosphorylated Retinoblastoma is required 
to push the cell through the R-point (where it is no longer responsive to mitogenic 
signaling) and into S-phase.   
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Before a cell can begin to replicate its DNA in S-phase, it ―consults‖ its 

extracellular environment and responds to growth stimulating signals.  It is of particular 

note that cells are only susceptible to mitogenic signaling during the G1 phase.  

Mitogenic signaling through receptor tyrosine kinases and G-protein coupled receptors 

activate pathways such as Ras and PI3K to stimulate cell proliferation, growth, and 

survival—pushing the cell through G1.  The Ras-MEK-ERK kinase cascade promotes 

activation of CDK2 by ERK-dependent phosphorylation and stabilization of c-Myc.  

This, in turn, induces expression of cyclin D1 and suppresses CDK inhibitors (19).  The 

PI3K pathway is important for G1 because it activates Akt which inhibits glycogen 

synthase kinase 3-β (GSK3-β) and prevents it from destabilizing cyclin D.  The D- family 

of cyclins (D1, 2 and 3) is involved in regulating G1.  At the beginning of G1, a D-cyclin 

pairs with CDK4 or 6 (two very similar CDKs).  However, as Retinoblastoma (Rb) 

becomes more highly phosphorylated and drives the cell through the Restriction-point 

(R-point) CDK4 and 6 are replaced with CDK2, and cyclin D is replaced by cyclin E.  

After the cell passes through the R-point, it is no longer responsive to mitogenic 

signaling.   

In the beginning of S-phase, cyclin A replaces cyclin E and partners with CDK2.  

These complexes concentrate at the replication foci on chromosomes.  Initiation of DNA 

synthesis at replication origins is triggered by S-Cdks and Cdc7, an additional protein 

kinase.  Cdc7 activity is activated by binding to a regulatory subunit, Dbf4.  These 

protein kinases enable pre-replicative complexes (PRCs) to recruit DNA helicases, 

primases and polymerases (19).  In addition, they enable the PCNA complex to close 
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around the DNA template strand and move freely along it, thus beginning DNA 

replication.  As S-phase continues, cyclin A dissociates from CDK2 and partners with 

CDK1 (also known as CDC2).   

Before the cell can enter mitosis and divide into two cells, it passes through a 

second gap phase, G2.  During this phase the cell prepares itself for entry into mitosis.  

Starting in S-phase, transcription of cyclin B is up-regulated and while initially, in G2, 

cyclin A is bound to CDC2, as the cell moves further through this phase, cyclin A is 

replaced by cyclin B as it moves from the cytoplasm into the nucleus.  When cyclin B 

binds to CDC2 the complex is not activated until CDC2 is phosphorylated on T161 by 

Cdk-activating kinase (CAK).  CDC2 in complex with cyclin B remains active until late 

interphase of mitosis.  At this point, CDC2 is phosphorylated at T14 and Y15 which 

results in an inhibition of its kinase activity.  This phosphorylation activity is controlled 

by Wee1 and Myt1 kinases and Cdc25 phosphatases (20).   

After cells have gone through G2, they enter mitosis—which is composed of 

several different phases:  prophase, metaphase, anaphase and telophase.  An extremely 

complex array of proteins and other molecules regulate the cells transition through these 

steps.  After the cells have undergone mitosis, one parental cell results in two new 

daughter cells.   

 

Cellular Response to DNA Damage 

At each of the individual phases of the cell cycle there is a checkpoint to prevent 

the replication of the cell if it has been exposed to DNA damage.  While there are many 
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factors involved in different pathways that can arrest cells at various checkpoints, only a 

few major ones will be discussed in this section.  The G1 checkpoint prevents damaged 

DNA from being replicated, while the S-phase checkpoint functions to monitor cell 

cycle progression and to react to DNA damage by decreasing synthesis.  The G2 

checkpoint is the final checkpoint that can prevent a cell with damaged DNA from 

replicating by suspending the cell cycle before chromosomes segregate.  There are two 

key regulators of the DNA damage pathway, Ataxia telangectasia, mutated (ATM) and 

ATM and Rad3 related (ATR) protein kinases.  These regulators affect cell cycle arrest 

at all three of the cell cycle checkpoints.  Usually, ATM is the primary response when a 

cell undergoes a DNA double strand break (DSB) upon exposure to ionizing radiation 

(IR).  ATR plays the main role in reacting to DSBs caused by UV damage and stalls in 

DNA replication, but also plays a back-up role when cells are exposed to IR. 

The G1 checkpoint is controlled by the ATM/ATR kinases which control the 

actions of p53.  When cells are exposed to ionizing radiation (IR), ATM phosphorylates 

T68 of Chk2 which then phosphorylates S20 of p53.  Phosphorylated S20 in p53 inhibits 

its interaction with MDM2, preventing p53 from being ubiquitinylated (21).  ATM can 

also directly inhibit MDM2 by phosphorylating it at S395, preventing its interaction with 

p53.  When p53 is up-regulated at the G1 checkpoint, it results in the activation of p21—

a cyclin-dependent kinase inhibitor which suppresses the kinase activity of cyclin E/cdk2 

and causes the cell to arrest in G1 (22). 

The S checkpoint is the least well understood of the three.  Some experiments 

have shown that in mammalian cells ATR is responsible for activating Chk1 (although it 
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has also been shown to activate Chk2).  This leads to hyperphosphorylation of Cdc25A 

and inhibition of the CDK2/cyclin E complex.  The result of this inhibition is decreased 

DNA replication origin firing and an activation of DNA repair pathways (23).  However, 

other experiments have shown that IR damage can activate the S-phase checkpoint by 

activating ATM which then phosphorylates T68 of Chk2.  This phosphorylation of Chk2 

targets Cdc25A for ubiquitinylation (by phosphorylating it at S123).  As the normal 

function of Cdc25A is to remove inhibitory phosphorylations (T14 and Y15) from Cdk2, 

without functional Cdc25A the CDK2/cyclin E and CDK2/cyclin A complexes are 

prevented from enabling DNA synthesis (24).   

At the G2 checkpoint in response to IR, UV, and genotoxic reagents, ATM/ATR 

phosphorylate Chk1/Chk2 which then phosphorylate Cdc25C at S216 (Figure 6).  When 

this site is phosphorylated it allows binding of 14-3-3 proteins.  The 14-3-3/Cdc25C 

protein complexes are sequestered in the cytoplasm.  This prevents Cdc25C from 

activating Cdc2 which inhibits Cdc2/Cyclin B1 complex formation and cell cycle 

progression.  This causes the cells to arrest in G2.  In response to damage, p53 

transcriptionally up-regulates expression of GADD45 and p21.  GADD45 is responsible 

for dissociating Cdc2 from cyclin B1 in response to damage and p21 interacts directly 

with Cdc2.  Both of these pathways enable the cell to arrest in G2 (25).  Alternatively, 

p21 can function independently of p53 activation—and can cause cell cycle arrest at all 

phases of the cell cycle.   
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Cellular Senescence

 
 
 
 
 
 
 
 

In 1961 Hayflick observed that diploid cells in serial culture permanently stop 

dividing after approximately 50 passages.  These cells were irreversibly arrested and no 

longer able to divide despite being viable and metabolically active.  This state is known 

as cellular senescence and is characterized by the inability of cells to proliferate despite 

access to abundant nutrients and mitogens (26).  While there is evidence showing that 

cellular senescence in human cells is genetically controlled through telomere shortening, 

it can also be caused in response to loss of tumor suppressors or oncogene activation and 

acts hand- in-hand with apoptosis to limit tumorigenic expansion (27).  The discovery 

that cellular senescence is triggered by multiple activated oncogenes has led to the idea 

that senescence (like oncogene- induced apoptosis) is a critical and cell autonomous  

tumor preventative mechanism (26).  Additional evidence for cellular senescence acting 

as a barrier to cancer exists.  Most tumors contain cells that appear to have evaded 

senescence.  This extended replicative lifespan increases a cell’s susceptibility to 

malignant progression because it permits cell divisions that might acquire successive 

mutations.  Recently, it has been shown that senescence is not just a passive proliferation 

arrest that impacts only the senescent cell.  Instead, these cells influence their 

environment and neighboring cells through an active secretory system—producing 

different growth factors that stimulate the growth of neighboring cells.  For example, 

p21 expression in mammalian development has been localized to narrow zones of 

postmitotic cells which are directly adjacent to proliferative compartments (28-29). 
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Figure 6.  DNA damaging reagents incite cellular response by activating ATM or ATR.  
These proteins can further activate a variety of additional regulatory proteins to result in 
cell cycle arrest at the G2/M phase of the cell cycle.  Other regulatory factors can affect 
arrest at the other stages of the cell cycle.  
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Mechanism of Oncogene-Induced Senescence 

While many different oncogenes and growth regulatory molecules trigger 

senescence, the pathways that have been best described are for mutated oncogenic Ras 

and its effectors.  Chronic signaling through the Ras-Raf-MEK-ERK pathway drives 

senescence through activation of the p38 MAP-kinase-p16 stress response pathway (28, 

30).  There are multiple examples of oncogenes functioning as tumor-suppressors, 

resulting in oncogene- induced senescence (31-34).  

Oncogenic stress induces up-regulation of cyclin-dependent kinase inhibitor p16.  

High level expression of this protein activates Retinoblastoma (Rb), mitogenic signals, 

increases reactive oxygen species (ROS) and elicits a positive feedback of the ROS-

PKCσ signaling pathway (35).  In human somatic cells, once Rb is fully engaged, 

senescent cell cycle arrest becomes irreversible and cannot be revoked by subsequent 

inactivation of Rb and p53.  Interestingly, when Rb and p53 are inactivated, senescent 

cells reinitiate DNA synthesis, but they subsequently fail to complete the cell cycle, 

suggesting that these cells arrest in G2 or M phase (35). 

Additional evidence has shown that senescent cells acquire a specific gene 

expression profile or signature that includes the up-regulation of inflammatory 

cytokines.  This leads to the activation of the innate immune system which can clear a 

tumor, establishing a link between cellular senescence and tumor suppression (27). 
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Role of p21 in Cellular Senescence 

When cells undergo DNA damage, this is accompanied by activation of p53.  

Additionally, the cyclin dependent kinase inhibitor CDKN1a (p21) can be activated in 

both a p53-dependent and –independent manner.  Induction of p21 is a common 

mechanism of growth arrest in cells under different physiological situations.  It is 

transiently induced in the course of replicative senescence, reversible and irreversible 

forms of damage- induced growth arrest, and in terminal differentiation of post-mitotic 

cells (11).  Within 14 hours after p21 induction, cessation of DNA replication and 

mitosis occurs—resulting in cells arresting not only in G1, but also in S and/or G2 phase.  

As Chang et al. showed, p21-9 cells (p21 is rapidly induced in these cells by addition of 

50 μM IPTG) showed morphological and senescence-associated β-galactosidase activity.  

This over-expression of p21 resulted in approximately equal numbers of cells arresting 

in G1 and G2 of the cell cycle through its interaction with and inhibition of CDKs.   

Additionally, p21 interaction with other genes can result in cell cycle arrest.  For 

example, p21 binds to c-Jun amino-terminal kinases and Gadd45 resulting in a p53-

independent G2 cell cycle arrest (36).   

The effects of p21 on cellular gene expression was investigated using cDNA 

arrays determining up- and down-regulated genes associated with over-expression of 

p21 in p21-9 cells.  Forty-three of the 69 down-regulated genes identified in the cDNA 

array were associated with cell cycle progression and DNA repair.  This indicated that 

the p21-mediated inhibition of gene expression and resulting senescence is highly 

selective in nature.  Twenty of 48 genes up-regulated by p21 encode for extracellular 
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matrix (ECM) components, ECM receptors and other secreted proteins.  Over-

expression of ECM proteins, including the p21- induced gene products fibronectin-1, 

plasminogen activator inhibitor 1 (PAI-I), tissue-type plasminogen activator (t-PA), and 

integrin β-3 are hallmarks of replicative senescence in normal fibroblasts (11). 

The reason p21 can induce cell cycle arrest (and ultimately senescence) at most 

stages of the cell cycle is due to its ability to operate in many different pathways (Figure 

7).  For example, induction of p21 in G1 results in inhibition of Cdk2, and an overall 

inhibition of the Cdk2/Cyclin E complex.  This inhibits phosphorylation of 

Retinoblastoma and cell cycle progression is halted.  Additionally, up-regulation of p21 

results in activation of p16, another cyclin dependent kinase inhibitor.  Activation of p16 

causes many cells to senesce in G1 phase of the cell cycle.  When cells are in S-phase 

and p21 is induced, the kinase activities of Cdk1 and Cdk2 are inhibited and this blocks 

the actions of the Cdk/Cyclin A complex.  These inhibitory effects result in cell cycle 

arrest and initiation of senescence in the S-phase of the cell cycle.  Finally, in G2 p21 

can either directly interact with Cdk1 to prevent Cdk1/Cyclin B from pushing the cell 

into mitosis, or it can interact with a variety of cell cycle regulatory proteins including 

14-3-3σ and Gadd45.  These regulatory proteins can also prevent the cell from moving 

into mitosis permanently and this can also result in cellular senescence (Figure 8). 
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Figure 7.  Overview of cellular response to oncogenic stress.  This form of stress 
results in activation and up-regulation of p16, p53, and/or p21.  These proteins 
activate several different pathways that ultimately result in cell cycle arrest and 
senescence. 
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Figure 8.  Cyclin dependent kinase inhibitor p21 can effect cell cycle arrest at all 
stages of the cell cycle.  In G1 phase, p21 prevents phosphorylation of Rb, resulting in 
cell cycle arrest.  In S-phase, p21 can inhibit the kinase activity of cdk1 and cdk2 
which prevents the cell from moving into G2 phase.  Similarly, in G2 phase p21 
inhibits the kinase activity of cdk1 which prevents movement of the cell into mitosis. 



21 
 

 

21 

We have shown that Sim2s is down-regulated in human breast-cancer patients 

and breast cancer cell lines.  Re-establishment of Sim2s in highly invasive breast cancer 

cells results in loss of aggressive growth and metastasis.  Alternately, down-regulation of 

Sim2s in normal immortalized breast and non-invasive breast cancer cells results in an 

EMT and increased invasive potential.  Although these results suggest that Sim2s has 

breast tumor suppressor activity, the impact of Sim2s on cell cycle regulation has not 

been determined.  The studies here, we analyzed the impact of Sim2s over-expression in 

MCF7 cells on the cell cycle and DNA damage response pathways.  
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CHAPTER II 
 

MATERIALS AND METHODS 

 

Cell Culture 

MCF7 cells were maintained in DMEM (Invitrogen, 11965118) supplemented 

with 10% fetal bovine serum (FBS, Atlanta Biologicals, S11550) and 5% penicillin-

streptomycin (Invitrogen 1514-0122).  HEK-293 cells were maintained in the same 

media as described above.  Cells were passaged at 70% confluency.    All MCF7 cells 

transduced by viral vectors were maintained in the same media, with an addition of 0.4 

μg/mL puromycin (Amresco J593-25mg).   

 

Lentiviral Transduction 

Lentiviral plasmids (pLPCX, Clontech, Sold as part of Catalog # 631511) (Figure 

9) were transfected into HEK293 cells, stably expressing Amphotrophic envelope 

proteins, referred to as Ampho 293 cells.  Thirty microliters of GeneJuice (Novagen 

70967) was added to one milliliter of OptiMEM (Invitrogen, 31985062) and allowed to 

incubate at room temperature for 5 minutes.  Ten micrograms of DNA (a 3:1 ratio of 

GeneJuice to DNA was used) was added, vortexed, and allowed to incubate at room 

temperature for 15 minutes.  This mixture was added to 10 cm plates of Ampho 293 cells 

at about 75-80% confluency.  Media was changed 24 hours later and the cells were then 

transferred from 37°C to 32°C.  Media was collected at 48 and 72 hours post 

transfection, filtered through 0.45 μM 50 mL Falcon tubes (Millipore SEIM003M00) 
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and polybrene was added to a final concentration of 4 μg/mL.  Viral media was then 

added to target cells.  The target cells were also incubated at 32°C while undergoing 

viral infection to promote viral stability.  After the infection period was finished, fresh 

media was added and the cells were returned to 37°C.  Selection using puromycin was 

started 24 hours later.  A previous kill curve allowed us to determine the optimal 

quantity of puromycin to add was 0.4 μg/mL and selection was continued for seven days.  

 

 

 

 

 

 

Figure 9.  pLPCX vector map.  The pLPCX vector was obtained from Clontech.  Sim2s 
was cloned into the MCS between Bgl II and Not I. 
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PCR Analysis 

RNA Isolation from Cells 

Cells were grown to 50-70% confluency, washed with 1xPBS and harvested for 

RNA using the High Pure RNA Isolation kit (Roche, 11828665001) following the 

Isolation of Total RNA from Cultured Cells protocol.  RNA was eluted in 50 μL of 

elution buffer and stored at -80°C.  

Reverse Transcription 

Depending on the RNA concentration, 0.5-2 μg of RNA was used for reverse 

transcription reactions.  The Transcriptor First Strand cDNA Synthesis kit (Roche, 

04379012001) was used.  One microliter of Anchored Oligo dT and 2 μL of Random 

hex primers were added to RNA in H2O for a total of 13 μL.  The sample was incubated 

at 65°C for 10 minutes, then held at 4°C while 4 μL of TRT 5x Buffer, 0.5 μL RNase 

inhibitor, 2 μL Deoxy Mix, and 0.5 μL Reverse Transcriptase was added to each sample.  

Samples went through the following thermocycler program:  25°C for 10 minutes, 50°C 

for 60 minutes, 85°C for 5 minutes, with a 4°C hold at the end.  cDNA was diluted to 

20-25 ng/μL with H2O and stored at   -20°C for long term, and 4°C for immediate use.  

Real Time PCR 

The following mixture was added to each well of a 96 well plate (Applied 

Biosystems MicroAmp N801-0560): 20.5 μL of SYBR [FastStart Universal SYBR 

Green Master (Rox) (Roche, 04913850001)], 2.0 μL cDNA, and 2.5 μL primer mix.  

Reactions were run according to the following cycle conditions:  95°C for 10 minutes, 

and 40 cycles of 95°C for 10 seconds followed by 60°C for 1 minute.  Analys is was 
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performed using the ΔΔCT method.  Human TATA-binding protein (TPB) was used to 

normalize levels of assayed genes.  Primer sequences can be found in Table 1.  

 

 

Gene Name Sense (5’3’) Antisense (5’3’) 

14-3-3δ CAA AGA CAG CAC CCT CAT CAT G CTC TTC CCC GGC GTT GT 

CyclinD1 TGG GTC TGT GCA TTT CTG GTT GCT GGA AAC ATG CCG GTT AC 

E-cadherin CAC AGA CGC GGA CGA TGA T GAT CTT GGC TGA GGA TGG TGT AA 

FN1 CCA AGA AGG GCT CGT GTG A GGC TGG AAC GGC ATC AAC 

Gadd45 CAA CGA GGA CGC CTG GAA CGG CTC TCC TCG CAA AAC 

GSK-3β CTC ATG CTC GGA TTC AAG CA CAC GGT CTC CAG TAT TAG CAT CTG 

MMP1 CCT CGC TGG GAG CAA ACA TTG GCA AAT CTG GCG TGT ACA 

NOXA CTG CAG GAC TGT TCG TGT TCA GGA ACC TCA GCC TCC AAC TG 

p21 CCT AAT CCG CCC ACA GGA A AAG ATG TAG AGC GGG CCT TTG 

p27 GCT AAC TCT GAG GAC ACG CAT TT CGC ATT GCT CCG CTA ACC 

p53 TCT TTG AAC CCT TGC TTG CA CCG GGA CAA AGC AAA TGG 

PUMA GGG CCC AGA CTG TGA ATC CT CGT CGC TCT CTC TAA ACC TAT GC 

SERBP1 ACG CCT TCA TCT GGG ACA AA CTA AAA TTC TTT TCT TCG GAG TTT CTT 

Sim2s  AAG GTG GGC GGA TCA CCT CAG CTT CTT GGC AGG CTT G 

TBP TGC ACA GGA GCC AAG AGT GAA CAC ATC ACA GCT CCC CAC CA 

 
Note:  All primers were designed based on mRNA reference from NCBI using Primer 
Express software (ABI) and purchased from IDT.  
 

 

 

 

 

Table 1.  Primer sequences for all Real Time PCR reactions 
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Chromatin Immunoprecipitation Assay (ChIP) 

Chromatin Harvest 

Formaldehyde (Sigma F1635) was added to a final concentration of 1% to fresh 

culture media.  Cells were incubated in this media at room temperature for 10 minutes 

with gentle rocking.  To stop crosslinking, glycine (Sigma G8898) was added to a final 

concentration of 125 mM and then rocked at room temperature for an additional five 

minutes.  Cells were then washed in ice-cold 1x PBS twice and then scraped in cold PBS 

containing 25x Complete protease inhibitors (CPI Roche 11-697-498-001) and 

phosphatase inhibitors [0.05M sodium orthovanadate (Sigma, S6508), 0.25 M sodium 

molybdate (Aldrich, 243655), 0.5 M sodium fluoride (Sigma, S6776)].  To pellet the 

cells, they were spun at 805xg for 4 minutes using an Eppendorf 5810R centrifuge 

chilled to 4°C.  To resuspend cells, Nuclear Lysis buffer was added (50 mM Tris pH 8.1, 

10 mM EDTA, 1% SDS, 25x Complete protease inhibitors) and then the cells were 

incubated on ice for 10 minutes.  DNA was sheared in 10 second pulses, 10 times, with a 

one minute pause on wet ice to allow the cells to cool after every 2 pulses.  To pellet the 

cellular debris, the cellular lysate was spun at 16,100 x g in an Eppendorf 5415D 

centrifuge for 10 minutes at 4°C.  Chromatin was stored at -80°C in 60 μL aliquots. 

Standard ChIP Assay 

ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM 

Tris pH 8.1, 167 mM NaCl, 25x Complete protease inhibitors) was added to one aliquot 

of chromatin to dilute it 5- fold.  To pre-clear the samples 80 μL of salmon sperm 

DNA/Protein A Agarose (Upstate 16-157) was added and the samples were rocked at 
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4°C for 30 minutes.  Beads were pelleted by spinning at 200 x g for 1 minute in an 

Eppendorf centrifuge.  This step was repeated to complete the pre-clearing.  Ten percent 

of the sample was saved back for input control while the remainder of the sample was 

split for addition of an antibody and a no antibody control.   

The following day, 60 μL of agarose beads were added for 1 hour at 4°C with 

rocking.  Samples were spun at 2000 x g for 1 minute and supernatant was removed.  

Beads were washed consecutively for 10 minutes in each solution:  Low Salt Wash 

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.1, and 150 mM NaCl), 

High Salt Wash (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0 and 

500 mM NaCl), Lithium Chloride Wash (0.25 M LiCl, 1% NP-40, 1% sodium 

deoxycholate, 1 mM EDTA, and 10 mM Tris pH 8.0) and twice in TE buffer (10 mM 

Tris pH 8.0 and 1 mM EDTA).  All washes were completed at 4°C except for the TE 

washes, which were done at room temperature.  Immune complexes were eluted from 

the beads by the addition of 250 μL Elution buffer (1% SDS and 0.1 M NaHCO3) 

vortexing, rocking at room temperature for 15 minutes, then spinning at 14,000 x g for 3 

minutes in an Eppendorf centrifuge.  Supernatant was removed to a fresh tube, and the 

process was repeated on the beads for a final volume of elute of 500 μL.  NaCl was then 

added to a concentration of 0.3 M with 1 μL of 10 mg/mL RNAse-A.  Elutes were then 

incubated at 65°C for 4-5 hours to reverse formaldehyde cross- links.  To precipitate the 

DNA, 2.5 volumes of 100% ethanol was added to each sample and they were placed at -

20°C overnight.  On the third day, DNA was pelleted by spinning at 14,000 x g in an 

Eppendorf centrifuge for 10 minutes.  Supernatant was removed and the pellet was 
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resuspended in 100 μL H2O.  To each sample the following were added:  2 μL 0.5 M 

EDTA, 4 μL Tris, pH 6.5, and 1 μL 20 mg/mL Proteinase K (Sigma 93161722).  

Samples were incubated at 45°C for 1 hour, then purified using a Qiagen PCR 

purification kit (Qiagen 28106).  DNA was eluted in 50 μL elution buffer (supplied in 

kit).  PCR was performed according to conditions listed in Table 2.  

 

 

Target Strand Sequence Anneal °C 

5’ Region of p21 
Sense CCAGGTCTTGGATTGAGGAA 50 

Antisense TGTTAAGGTGGTGGCATTGA 50 

p53 Response 

Element of p21 

Sense ACATTGTTCCCAGCACTTCC 50 

Antisense ACACAAGCACACATGCATCA 50 

TATA region of 

p21 

Sense TCTAGGTGCTCCAGGTGCTT 50 

Antisense ACATTTCCCCACGAAGTGAG 50 

Exon 3 Start site of 

p21 

Sense GTCCGTCAGAACCCATGC 50 

Antisense CAGGTCCACATGGTCTTCCT 50 

Stop region of p21 
Sense CCAAGAGGAAGCCCTAATCC 50 

Antisense ACAAGTGGGGAGGAGGAAGT 50 

 
 

Western Blot Assay 

Protein Isolation 

Cells were washed once with ice-cold 1X PBS and scraped in 2 mL 1X PBS.  

Cells were pelleted by spinning at 2000 x g for 4 minutes in an Eppendorf centrifuge.  

Supernatant was removed and Lysis buffer [20 mM Tris-Cl pH 8.0, 137 mM NaCl, 10% 

Table 2.  Conditions and sequences for ChIP PCR primers 
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glycerol, 1% NP-40, 2 mM EDTA, 25x protease inhibitors, and phosphatase inhibitors 

was added to resuspend cells.  Cells were agitated at 4°C for 30 minutes.  Debris was 

pelleted by spinning in a cooled Eppendorf centrifuge at 14,000 x g for 10 minutes.  

Aliquots were stored at -20°C, unless they were to be used immediately, in which case 

they were stored at 4°C.  An RC/DC Protein Assay kit (BioRad 500-0120) was used to 

ascertain protein concentration. 

Standard Analysis 

After determining the amount of protein to add for a certain concentration, 

samples were QS’d to 30 μL with H2O and 6 μL of 6x SDS loading buffer (60% 

glycerol, 0.3 M Tris pH 6.8, 12 mM EDTA, 12% SDS, 6% β-mercaptoethanol, 0.5% 

bromophenol blue) was added and samples were boiled for 5 minutes, followed by 5-10 

minute incubation on wet ice.  Acrylamide gels ranging from 8-12% were cast for 

analysis.  Gels were run at 110 mV (constant V) for 1-2 hours and transferred to PVDF 

membranes for 2 hours at 110 mA (constant mA).  Depending on antibody conditions 

membranes were blocked in either PBS-T + 5% milk (BioRad 170-6404) or TBS-T + 

5% milk.  All primary antibodies were incubated at 4°C over night, while gently rocking.  

See Table 3 for antibody sources and incubation conditions.  Proteins were visualized 

with the Amersham ECL Plus western blotting detection reagent (GE Healthcare RPN 

2132) on film (HyBlot CL Autoradiography film, Denville Scientific, L3018).  Films 

were developed on a Kodak M35a X-omat film processor.  All films were scanned using 

a Dell All- in-One scanner. 
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β-Galactosidase Staining 

Cells were plated in six-well plates two to three days prior to use.  Cells to be 

treated with UV or sham were treated, and then six hours later stained for β-

galactosidase [Senescence beta-Galactosidase Staining kit (Cell Signaling, 9860)].  The 

cells were washed with 1X PBS twice; then treated with the 1X Fixative solution for 15 

minutes at room temperature.  After incubation, cells were washed with 1X PBS twice, 

and then treated with the 1X Staining solution as described in the kit protocol.  The 

Staining solution was equilibrated to pH 6.0 and the cells were incubated at 37°C 

overnight in a ProBlot 6 Hyb oven.  Cells were imaged on SteREO Discovery.V12 

microscope at various magnifications.  

 

Clonogenic Survival Assay 

Plating Cells 

To plate equal numbers of cells, cellular media was removed, cells were rinsed 

with 5 mL 1X PBS, and 2 mL 0.5% trypsin-EDTA was added.  Cells were re-suspended 

in 8 mL media to neutralize trypsin.  Cells were vigorously pippetted to break up 

clumps, then 100 μL of this solution was added to 20 mL isotonic solution to be counted 

on a Beckman Coulter Z1 Coulter Particle Counter.  Cells were plated at 5000 cells/well 

in a 6-well plate.  Cells were allowed to settle and adhere to the plate for 2 hours, at 

which point they were treated with 2000 μJ/m2 UV.  Cells were incubated at 37°C for 6 

hours, then fixed and stained. 
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Antibody Company/Cat. # Dilution Amt. protein Washes/Milk Secondary Company/Cat. # Dilution 

Rb α ACH3 Millipore/06-599  (1:2000) 10 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Ms α B-Actin  Sigma/A5441 (1:7000) 10 0.05% PBS-T/PBS-T 5% milk IgG α Ms Upstate/12-349  (1:4000) 

Rb α cdc2  Millipore/15-120 (1:1000) 50 See product information Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb P-cdc2 Santa Cruz/12340-R (1:500) 50 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:4000) 

Rb α cdc25A  Santa Cruz (1:500) 150 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α Cyclin A Santa Cruz/sc-596 (1:800) 50 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Ms α Cyclin B1 Millipore/15-120 (1:1000) 50 See product information IgG α Ms Upstate/12-349  (1:4000) 

Rb α Cyclin E Neomarkers/RB-012-PO (1:1000) 50 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α cleaved caspase 9 Cell Signaling/9501 (1:500) 75 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α Gadd45α Santa Cruz/SC-797 (1:500) 10 0.05% PBS-T/PBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α GSK3B Cell Signaling/9323 (1:1000) 150 0.05% PBS-T/PBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Ms α H3K9Me2 AbCam/ab1220 (1:500) 75  0.05% PBS-T/PBS-T 5% milk IgG α Ms Upstate/12-349   (1:4000) 

Ms α Hsp90 Stressgen/SPA-830 (1:500) 50 0.1% TBS-T/TBS-T 5% milk IgG α Ms Upstate/12-349   (1:5000) 

Rb α Ki67 Neomarkers/RM-9106 (1:500) 50 0.05% PBS-T/PBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Ms α p21 Dako Cytomation/9286 (1:700) 150 0.05% PBS-T/PBS-T 5% milk IgG α Ms Upstate/12-349   (1:4000) 

Gt α p53 R&D/1355 (1:1000) 10 0.1% TBS-T/TBS-T 5% milk Dk α Gt Santa Cruz/sc-2033 (1:4000) 

Rb α P-p53 Cell Signaling/9286 (1:1000) 100 0.05% PBS-T/PBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α PARP Cell Signaling/9541 (1:1000) 50 0.1% TBS-T/TBS-T 5% milk supplied in kit 

 

  

Rb α Retinoblastoma Santa Cruz/sc-50 (1:500) 150 0.1% TBS-T/TBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Rb α Sim2s Millipore/AB4145 (1:700) 150 0.05% PBS-T/PBS-T 5% milk Dk α Rb Santa Cruz/sc-2313 (1:5000) 

Table 3.  Conditions for antibodies used  
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Fixing and Staining Cells 

The cell media was removed and cells were rinsed with 1X PBS.  Two millileters 

of 3.0% gluteraldehyde and 0.5% crystal violet was added to each well of the six-well 

plates and plates were incubated for 60 minutes at room temperature.  The 

gluteraldehyde/crystal violet mixture was removed from each well and plates were 

carefully rinsed by immersing in a sink filled with room temperature tap water.  Plates 

were turned upside down and allowed to dry at room temperature over-night.   

Analysis 

ImageJ 1.42q was used to analyze stained cells.  After tak ing pictures of the cells 

on a SteREO Discovery.V12 microscope, images were opened in Image J.  

ProcessBinaryMake Binary edited the pictures to black and white.  

AnalyzeAnalyze particles allowed the program to count individual cells.  Pixel size 

had to be adjusted to the smallest size allowable for the program to count, this number 

was maintained for all images counted at the same magnification.  

 

Proliferation Assay 

Cells were counted as mentioned above and then plated 5000/well into the wells 

of 6-well plates.  Cells were counted from one well each day for 7 days.  The count was 

done in triplicate each day.   
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Flow Cytometry 

Preserving Cells 

Falcon tubes (15 mL) were filled with 4.5 mL of ice-cold 70% EtOH and kept on 

ice.  Cells were harvested at 75-80% confluency using 0.5% Trypsin-EDTA.  Cells were 

centrifuged at 250xg for 3 minutes, the supernatant was removed, and the cells were 

resuspended in 500 μL 1X PBS.  The resuspended cells were vortexed vigorously to 

break up any cell clumps, and transferred to the chilled tubes of 70% EtOH and vortexed 

vigorously again.  Cells were stored at -20°C until use. 

Staining Cells 

Because MCF7 cells break down and clump so easily, a propidium idodide (PI) 

solution containing no detergent was optimized.  A hypotonic solution containing 

sodium citrate allowed the propidium idodide to incorporate into the nucleus without 

over-damaging cells.  The stock solutions used to create the PI solution are as follows:  

Sodium citrate (11.76 mg/mL), Propidium idodide (1.0 mg/mL), RNaseA (2.0 mg/mL).  

The final concentrations required in the PI solution are as follows:  Sodium Citrate (4 

mM), PI (50 μg/mL), RNaseA (200 μg/mL). 

Preserved cells in 70% EtOH were spun down at 500xg for five minutes, and the 

supernatant was removed.  Cells were rinsed in 1X PBS, allowed to rest for 60 seconds, 

then spun at 500xg for five minutes.  The supernatant was removed again and the cells 

were resuspended in one millileter of the PI solution.  Cells were vortexed vigorously to 

prevent clumping, and incubated at RT for 20 minutes.  Cells were then placed on ice 

and transported to the Flow Cytometer.  
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Analysis 

Cells were run on a FACSCalibur (Becton Dickinson Immunocytometry 

Systems) and then analyzed using ModFit LT, version 3.2 for Macintosh (Verity 

Software House, Topsham, MA). 

 

DIC Imaging 

Differential interference contrast images of MCF7 pLPCX-Sim2s and –Empty 

cells were captured with a Zeiss Stallion Dual Detector Imaging System with Intelligent 

Imaging Innovations Software (Carl Zeiss Inc., Thornwood, NY).   

 

Statistical Analysis 

 Results referred to in the remaining text are expressed as mean ± SEM.  Data 

were analyzed by Student’s t test.  P values of <0.05 were considered significant.  
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CHAPTER III 
 

THE ROLE OF SIM2S IN CELL CYCLE REGULATION 
 
 

Our laboratory has previously shown that over-expression of Sim2s in MDA-

MB-435 cells results in decreased proliferative and invasive potential of this normally 

highly invasive breast cancer cell line.  Additionally, when Sim2s is knocked down in 

the less invasive MCF7 breast cancer cell line it increases their invasive and proliferative 

potential and creates an EMT-like phenotype (18). 

To further investigate the role of Sim2s as a tumor suppressor, we over-expressed 

Sim2s in MCF7 cells using a lentiviral system.  Similar to the MB-MDA-435 cells, we 

found that Sim2s decreased cell proliferation (Figure 10).   

Because of this decreased proliferation we investigated the possibility that these 

cells were arresting at a particular stage of the cell cycle by performing propidium 

idodide flow cytometry.  The results show that there is significant accumulation of cells 

in G2/M and S phases of the cell cycle in MCF7-Sim2s cells compared to Empty 

controls (Figure 11).  Western blot analysis of the cyclins and CDKs involved at these 

cycle checkpoints found no differences in expression levels (Figure 12).   

Because we observed no differences at this level, we looked at RNA expression 

levels of regulatory factors involved in monitoring cell cycle regulation.  We surveyed 

several regulatory proteins involved in arrest at G2/M including 14-3-3δ, GSK3-β, and 

GADD45.  While there was no change in 14-3-3σ or GSK3-β, GADD45 mRNA was up-

regulated.  However, Western blot analysis showed no up-regulation at the protein level 

for GADD45 (Figure 13).  As a control we measured p27 mRNA levels (a protein 
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involved in regulating cell cycle arrest at the G1 stage) and found no change in 

expression of this gene. 

Figure 10.  Proliferation assay on MCF7 pLPCX-Empty and Sim2s cells.  
Sim2s cells are less proliferative than their control counterparts.  
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Figure 11.  Propidium iodide flow cytometry of MCF7 pLPCX Empty and Sim2s 
cells.  Significantly more Sim2s over-expressing MCF7 cells are found in the G2/M 
and S phases of the cell cycle.  Columns represent mean recorded cells, (n=18); bars, 
SEM, *, P<0.003. 
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 Figure 12.  Western blot analysis of major cyclins and CDKs involved in cell cycle.  

Because MCF7 cells over-expressing Sim2s arrest in G2/M and S phase, cyclins and 
CDKs involved in these phases of the cell cycle were surveyed.  Equal amounts of 
protein were loaded and subjected to immunoblotting.  There was no discernable 
change in expression levels of any of these cell cycle proteins between Empty and 
Sim2s cells.  Figure is representative of three separate trials.  
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A 

B 

Figure 13.  Real Time PCR assay of expression levels of regulatory protein RNA 
levels and Western blot analysis of GADD45.  A. Cell cycle regulatory proteins from 
the G2/M phase of the cell cycle were surveyed to investigate if up-regulation of Sim2s 
resulted in concomitant up-regulation of these proteins.  Only GADD45 showed 
significant up-regulation with over-expression of Sim2s, but was not up-regulated at 
the protein level.  As a control, p27, a regulatory protein involved in G1 arrest was 
surveyed.  No change was noted between Sim2s and Empty controls.  B.  Western blot 
analysis of Gadd45 showed no change between Empty and Sim2s.  For all Real Time 
PCR analyses, expression levels are relative to TBP expression, (n=3); bars, SEM; *, 
P<0.05.  For Western blot analysis, equal amounts of protein were loaded and 
subjected to immunoblotting.  Figure is representative of three separate trials.  
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CHAPTER IV 

THE ROLE OF SIM2S IN DNA DAMAGE RESPONSE AND CELLULAR 

SENESCENCE 

 

In addition to being closely linked with the G1 checkpoint, p21 is also involved 

in regulating several other checkpoints in the cell cycle, including the G2/M and S 

phases.  To determine if the G2/M arrest observed in MCF7 cells over-expressing Sim2s 

is associated with changes in p21, we analyzed p21 expression levels.  The results show 

that over-expression of Sim2s significantly increased p21 basal levels at both the RNA 

and protein levels, suggesting that the G2/M arrest may be p21 dependent (Figure 14). 

Previous studies have shown that down-regulation of Sim2s in MCF7 cells by 

shRNA (Sim2si) induces an EMT characterized by increased proliferation and invasion 

both in vitro and in vivo (18).  Analysis of p21 expression in control and Sim2si MCF7 

cells showed that loss of Sim2s corresponds to a decrease in basal p21 expression at the 

RNA and protein levels (Figure 15). This trend is also observed in response to DNA 

damage in the form of doxorubicin exposure: Scr cells show a significant increase in 

p21, while Sim2si show little response.  In contrast, exposing Empty and Sim2s cells to 

UV radiation dramatically increases p21 expression.   

In addition to p21, changes in p53 levels were investigated to ascertain whether 

the differences in p21 expression required activation of p53.  When Sim2s is knocked-

down in MCF7 cells, p53 protein (but not RNA) levels increase dramatically, regardless 

of exposure to DNA damage.  However, in MCF7-Sim2s cells, while active p53 levels 
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increase upon exposure to DNA damage, the change is no different from that of Empty 

control cells.  There is no dramatic difference in phospho-p53 levels with Sim2s over-

expression, suggesting that the up-regulation of p21 by Sim2s is p53- independent 

(Figure 15).   

 

A 

Figure 14.  Real Time PCR assay and Western blot analysis of p21.  A.  Expression 
levels of p21 were also analyzed and found to be significantly up-regulated in Sim2s 
cells at both the RNA and protein levels.  B.  Real Time PCR analysis, expression 
levels are relative to TBP expression, (n=3); bars, SEM; *, P<0.05.  Western blot 
representative of three separate trials.  
 

B 
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Figure 15.  Over-expression of Sim2s regulates p21 expression in response to DNA 
damage.  A.  MCF7 cells over-expressing Sim2s have significantly higher p21 RNA 
levels than Empty control cells.  This trend continues with exposure to 5000uJ/m2 UV.  
B.  Previous work in our laboratory has shown that knock-down of Sim2s results in 
almost complete ablation of p21 RNA expression.  C.  In MCF7 cells that have had 
Sim2s over-expressed, protein expression of p21 is greater, regardless of both exposure 
to DNA damage, and phospho-p53 levels as compared to Empty control cells.  D.  
Western blot confirms that p21 expression is not seen in Sim2si cells, even though 
there is increased p53 expression.  UV=5000 μJ/m2, Sham=sham irradiation, 
VH=DMSO, DOX=treatment with 1 μM doxorubicin for 12 hours.  For all Real Time 

PCR analyses, expression levels are relative to TBP expression, (n=3); bars, SEM; *, 
P<0.05.  For Western blot analysis, equal amounts of protein were loaded and 
subjected to immunoblotting. 
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Our lab previously demonstrated that basal and DNA damage induced p21 

expression is Sim2s dependent (Figure 15).  Because p21 plays such a major role in 

response to genotoxic stress, we exposed MCF7 Empty control and Sim2s cells to 

1000μJ UV and measured changes in proliferation using a clonogenicity assay.  As 

expected, MCF7-Sim2s cells grew at a slower rate compared to controls and this 

response was further exacerbated in response to UV irradiation (Figure 16). 

This loss of clongenicity has been shown previously with up-regulation of p21.  

Chang et al. showed that over-expression of p21 from an inducible promoter resulted in 

a senescent- like growth arrest in a human fibrosarcoma cell line.  After release from this 

growth-arrest, cells re-entered the cell cycle but showed growth retardation, cell death, 

and decreased clonogenicity (37). 

Because Sim2s is a transcription factor we performed a Chromatin 

Immunoprecipitation (ChIP) assay to determine if Sim2s binds the p21 gene.  Chromatin 

was harvested from WT MCF7 cells treated with either 5000 μJ UV or sham and pulled 

down using a Sim2s antibody.  Using primers located across the p21 gene we looked to 

see if Sim2s was bound at any of the locations (5’ region of the gene, p53 Response 

element, TATA region, ATG start of exon 3, or the Stop region) surveyed.  In response 

to UV radiation, Sim2s binds to p21 at the 5’ region of p21, the p53 Response element, 

and the ATG start site of exon 3 (Figure 17). 
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Figure 16.  Clonogenic survival assay of MCF7 pLPCX-Empty and Sim2s cells to 
ascertain survival upon exposure to genotoxic stress.  A.  Crystal violet staining.  The 
same number of cells was plated for both Sim2s and Empty controls and then treated 
with 1000μJ UV.  After seven days, cells were fixed, and stained with crystal violet.  
B. Cells were analyzed using ImageJ to determine how many cells had survived the 
initial genotoxic stress.  Sim2s cells are less proliferative overall, but appear to be 
more sensitive to UV treatment.  Cell count analysis (n=3); bars, SEM; *, P<0.005, **, 
P<0.0009. 
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Figure 17.  ChIP analysis of MCF7 pLPCX-Empty and Sim2s cells upon exposure to 
UV radiation.  Because p21 is often up-regulated in response to DNA damage, MCF7 
cells were treated with 5000μJ/m2 UV.  ChIP assay shows that Sim2s binds to the p21 
gene at the 5’ region, p53 Response Element, and to a small extent at the ATG start 
site of Exon 3.  This binding is only seen with UV treatment.  
 



 

 

46 

46 

 In addition to arresting cells at various stages of the cell cycle, p21 also plays an 

important role in promoting cellular senescence.  Because of the significant inhibition of 

proliferation observed in Sim2s over-expressing cells, we needed to determine if the 

cells were not only arresting, but actually undergoing cellular senescence.  Our initial 

observations of morphological differences showed that Sim2s over-expressing cells had 

the characteristic ―fried-egg‖ appearance of senescent cells (Figure 18).   

Additionally, we performed a β-galactosidase stain to confirm senescence and the 

increased β-galactosidase activity observed in the Sim2s cells is a positive indication of 

senescence (Figure 19).  To further confirm the senescence phenotype, we analyzed 

changes in Ki67, a nuclear marker highly expressed in actively proliferating cells, but in 

lower levels in cells undergoing senescence; and H3K9Me2, a histone marker often 

found in higher quantities in sesescent cells, but not in cells actively proliferating.  

Western blot analysis shows that Sim2s cells had decreased levels of Ki67 and an 

increase in H3K9Me2 levels—further confirming that these cells are undergoing 

senescence   (Figure 20).  Additionally, we found that Sim2s cells increased levels of 

cleaved Poly (ADP-Ribose) polymerase (PARP) a protein associated with apoptosis.   
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Figure 18.  DIC images of Sim2s over-expressing MCF7 cells and Empty controls.  
Sim2s cells (on the right) show classic ―fried-egg‖ appearance characteristic of 
senescence.  
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Figure 19.  MCF7 pLPCX-Sim2s cells have increased β-galactosidase staining as 
compared to Empty controls.  This is seen with no treatment (top two panels), sham 
treatment (middle two panels), and 5000μJ UV treatment (bottom two panels).  This 

increased staining is seen by the dramatic, deep blue color seen in the Sim2s cells.  
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Figure 20.  Western blot analysis of cell proliferation marker Ki67 and apoptotic 
marker PARP.  A.  Empty cells have higher levels of the nuclear marker Ki67 
indicating a higher level of proliferative activity as compared to Sim2s cells.  PARP 
levels are higher in Sim2s cells however, indicating that these cells are also 
undergoing increased apoptosis—in addition to their increased cellular senescence.  B.  
A different Western blot shows the histone marker H3K9Me2, generally associated 
with decreased activity (decreased proliferation) is seen to be up-regulated in MCF7 
cells over-expressing Sim2s.  Equal amounts of protein were loaded and subjected to 
immunoblotting.  Results shown are representative from two trials in A, but only one 
trial in B. 
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CHAPTER V 

CONCLUSIONS 

 

In Drosophila, the Singleminded gene is responsible for cell fate determination in 

central nervous development and during embryogenesis (3, 38).  Because of its location 

in the Down Syndrome Critical Region of Chromosome 21 and the decreased incidence 

of breast cancer seen in these individuals, our laboratory was interested in determining 

the role Sim2 plays in breast cancer.  We were the first to determine the role of the short 

isoform of Sim2, Sim2s, in normal development of the mammary gland and the 

requirement of Sim2s in maintaining epithelial cell fate in breast cancer cells (18).  

Additionally, we have shown that precocious expression of Sim2s in vivo promotes an 

alveolar epithelial cell phenotype with an increase in a subset of milk protein genes (9).  

Based on these studies, we hypothesized that Sim2s has tumor suppressive activity and 

that over-expression of Sim2s in MCF7 cells will result in cell cycle arrest and 

sensitization to DNA damaging reagents.  

 To test this hypothesis, we used a lentiviral vector to over-express Sim2s in 

MCF7 cells.  We have previously reported that over-expression of Sim2s in MDA-MB-

435 cells resulted in decreased proliferation.  This was also observed with over-

expression of Sim2s in MCF7 cells (Figure 9).  To determine if this decreased 

proliferation is the result of a cell cycle arrest, propidium iodide flow cytometry was 

performed and significantly more Sim2s over-expressing cells were found in G2/M and 

S phase of the cell cycle (Figure 10).  After characterizing the cyclin and CDK activity 
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for Sim2s over-expressing cells and Empty controls we found that there were no changes 

in expression of critical cell cycle regulations (Figure 11) which led us to conclude that 

Sim2s is not causing cell cycle arrest by directly influencing expression levels of the 

cyclins and CDKs involved in S and G2/M phase (cyclin A, E and B1 and CDK1).  

However, to fully determine if this is the case, a survey of phosphorylated cyclins and 

CDK or a kinase activity assay should be done.   

Before examining this further, we investigated whether Sim2s over-expression 

influenced expression of regulatory proteins.  The key regulatory G2/M proteins 14-3-3σ 

and GADD45α play roles in influencing a G2/M arrest (39).  Upon activation, 14-3-3σ 

binds to Cdc25c, sequestering it in the cytoplasm, thus inhibiting subsequent binding to 

Cdc2, ultimately preventing the cell from moving through G2 into M phase.  Activation 

of GADD45α causes cell cycle arrest at the G2/M phase by directly interacting with 

Cdc2 and causing it to dissociate from Cyclin B.  Additionally, GADD45α can directly 

interact with p21, inducing cell cycle arrest via p21 interaction with cell cycle proteins.  

Because all of these regulatory proteins work by merely causing dissociation, but not 

down-regulation of the cell cycle proteins, we hypothesized that the effects of Sim2s on 

cell cycle arrest was due to interaction with one or more of these regulatory proteins.  

We surveyed mRNA levels of these three major regulatory proteins and found no 

difference in expression between MCF7 Empty control and Sim2s cells, suggesting that 

other pathways are required to mediate Sim2s-dependent cell cycle arrest.  However, to 

truly ascertain differences in expression, since G2 arrest is caused by protein activation, 

not necessarily up-regulation of gene expression, Western blot analysis of all three 
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regulatory proteins will need to be done.  GADD45α was analyzed via Western blot, and 

no significant difference in protein levels between Sim2s and control cells was observed.  

The cyclin-dependent kinase inhibitor p21 plays an essential role in DNA 

damage response, by inducing cell cycle arrest, inhibiting DNA replication and by 

regulating key apoptotic processes.  The ability of p21 to interact with a number of 

proteins involved in these processes is extremely important.  We found that over-

expression of Sim2s results in up-regulation of p21 and we hypothesize that either 

individually, or in direct interaction with p21 results in the observed G2/M cell cycle 

arrest.  However, to investigate this hypothesis we will need to perform a CoIP and/or 

ChIP to show interaction between p21 and Sim2s. 

In contrast to the up-regulation of p21 observed with over-expression of Sim2s in 

MCF7 cells, previous work in our lab has shown that in cells that have had Sim2s 

knocked down (Sim2si cells), p21 expression is ablated—even in response to DNA 

damage, which is usually a strong stimulus for p21 activation (40) (Figure 13).  Because 

DNA damage usually results in p53 activation, we were interested in determining p53 

expression in the case of Sim2s knock-down and over-expression.   

In Sim2si cells levels of p53 increased regardless of DNA damage (UV 

radiation).  However, this was not accompanied with increased p21 expression.  In 

contrast, in the Sim2s over-expressing cells, p53 levels only increased in response to 

DNA damage, whereas p21 levels were significantly higher in all cells over-expressing 

Sim2s (Figure 15).  In both cases, the p21 response appears to be p53- independent.  The 

p53 response observed in the Sim2si cells is extremely interesting and we hypothesize 
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that Sim2s could play a role in activating or interacting with p53 in addition to p21.  

Because of the role p53 and p21 both play in cellular response to DNA damage through 

arrest or apoptosis, it is important to further delineate the mechanism through which 

Sim2s affects the observed cellular senescence.   

 To investigate if over-expression of Sim2s and the resulting up-regulation of p21 

affected cells viability, we exposed MCF7 cells to UV radiation.  We hypothesized that 

Sim2s-mediated up-regulation of p21 would result in sensitization to genotoxic reagents 

and thus a decrease in cell proliferation/survivability.  After exposure to 1000 μJ of 

radiation, cells were grown for one week and stained to assay clonogenicity.  In support 

of our hypothesis, Sim2s over-expressing cells were indeed sensitized to DNA damage 

(Figure 14).  This result was interesting because of the role p21 plays in ce ll cycle arrest.  

To investigate this process further we wanted to determine if p21 was playing a role in 

inducing cellular senescence and causing the observed cell cycle arrest.  First, however, 

we performed a ChIP analysis to determine if Sim2s can interact with p21.  Using five 

sets of primers spread across the p21 gene, we assayed for Sim2s binding in normal 

MCF7 cells.  We found that Sim2s does bind to p21at the 5’ region of the gene, TATA 

box region, and at the ATG start of Exon 3 (Figure 15).  This observation was only 

detected when cells had been exposed to DNA damage (UV radiation).  This suggests 

that Sim2s can bind the p21 promoter and potentially induce activation of this gene in 

response to DNA damage resulting in the observed cell cycle arrest. 

 The observed cell cycle arrest was further investigated to determine if the cells 

were undergoing senescence.  DIC imaging was used to compare gross morphology.  
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This confirmed what was observed under less magnification: cells over-expressing 

Sim2s are larger with frilled edges—resembling the ―fried-egg‖ appearance 

characteristic of senescent cells (Figure 16).  To confirm senescence we performed 

several different assays.  Sim2s over-expressing cells and Empty controls were stained 

for β-galactosidase activity and a significant increase in this activity (indicative of 

cellular senescence) was noted in Sim2s over-expressing cells (Figure 17).  Other 

markers that are indicative of a senescence status were also evaluated.  Ki67 (a nuclear 

antigen found in actively proliferating cells) expression is found in higher levels in 

Empty controls as compared to Sim2s over-expressing cells.  Additionally, we looked at 

the histone marker H3K9Me2 which is generally associated with a closed conformation, 

indicative of decreased transcriptional activity and cell proliferation.  Western blot 

analysis shows that Sim2s over-expressing cells have increased levels of this repressive 

histone marker, compared to Empty controls (Figure 18).  Based on these assays, we 

concluded that Sim2s cells are indeed undergoing senescence; most likely due to the up-

regulation of p21 as a result of over-expression of Sim2s.  In addition to induction of 

cellular senescence, we observed an increase in cleaved PARP expression in Sim2s over-

expressing cells.  Due to this up-regulation, we conclude that not only are these cells 

undergoing senescence, but are also undergoing increased apoptosis—which is perhaps 

indicative of their increased sensitivity to DNA damaging reagents.  The increased 

observed cellular senescence is interesting when tied back to DS, as this genetic disorder 

is associated with many signs of premature tissue aging including T-cell deficiency, and 

increased incidence of early Alzheimer type (41).  Increased cellular senescence has 
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been tied to aging, including disorders such as Alzheimer’s and Parkinson’s disease (42) 

and cancer (43).  

 These results suggest a model in which over-expression of Sim2s regulates the 

cell cycle regulatory protein, p21, causing an arrest in the G2/M phase of the cell cycle.  

Additionally, up-regulation of p21 results in increased cellular senescence as shown by 

β-galactosidase staining and decreased Ki67 and increased H3K9Me2 expression in 

Western blot analysis.  In addition to this senescence there is an increase in apoptosis, 

and an increased sensitivity to DNA damaging reagents.  Thus, over-expression of 

Sim2s promotes a decrease in cellular growth, and decreased viability when treated with 

genotoxic reagents (Figure 21). 

Because the work presented here will be used as a foundation for future studies, 

several issues need to be addressed.  First, confirmation of up- or down-regulation of 

Sim2s by Western blot needs to be optimized.  While Real Time PCR shows an up-

regulation of the RNA (with over-expression), it is the stabilization of the protein that 

needs to be observed.  Secondly, cells over-expressing Sim2s are also seen to arrest in S-

phase.  Unfortunately we were unable to investigate this unique finding here, but future 

work will be done in this direction.  Thirdly, an alternative control (un-transduced MCF7 

cells) could have been used to fully verify these findings.  Finally, several of the assays 

presented here need to be repeated—especially Western blot analysis of H3K9Me2, as 

the findings are intriguing (with no observable expression in control cells and extreme 

up-regulation in Sim2s cells).  These results need to be further verified.  
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Additionally, future work will delineate the mechanism by which Sim2s is 

activated by DNA damage and how this activation results in up-regulation of p21.  The 

role Sim2s plays in interacting with both p53 and p21 will be further clarified.  While we 

observed that p21 was induced in a p53- independent fashion, p53 was induced in MCF7 

cells in which Sim2s has been knocked-down across the board, while p53 was only 

active in Sim2s over-expressing cells in response to DNA damage.  The possible 

interaction with p53 is an extremely important aspect to examine.  Future work will also 

involve observing whether Sim2s is capable of directly interacting with p21 via ChIP 

and CoIP analysis.  Ultimately, understanding the mechanistic role Sim2s plays in 

response to DNA damage and cell cycle arrest will help us better understand its role as a 

potential tumor suppressor in the mammary gland.  
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Figure 21.  Proposed role of Sim2s in cell cycle arrest and cellular senescence.  
DNA damage results in induction of p21—perhaps by the transcription factor 
Sim2s.  Over-expression of Sim2s results in up-regulation of p21—which results 
in cell cycle arrest and cellular senescence.  In addition to this observed 
senescence, cells over-expressing Sim2s are sensitized to DNA damaging reagents, 
possibly through a similar mechanism that results in cellular senescence.  
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