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ABSTRACT 

 

 

Minimally Invasive Access to the Pericardium for the  

Active and Adjustable Cardiac Support Device. (August 2009) 

Kelly Dianne Sheppard, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. John C. Criscione 

 

 

 According to the American Heart Association, congestive heart failure affected 

5.7 million Americans age 20 and older in 2006, and had an estimated direct and indirect 

cost of $37.2 billion in 2009. Heart assist devices are proving useful in a population 

where the demand for donor hearts is much greater than the supply. These technologies 

have successfully improved heart function, but current devices bypass heart pathways, 

and require invasive surgical methods for placement.  Dr. Criscione proposed the Active 

and Adjustable Cardiac Support Device (AACSD) that allows the heart to maintain some 

intrinsic motion to restore normal function in the myocytes of a failing heart.  

Ventricular recovery follows the uniform application of pressure, working on the 

principle that mechanical stimuli are the key to repairing a mechanical organ. There is a 

need for a less invasive surgical technique to place the AACSD into the pericardial 

space. The Pericardial Access and Support System (PASS) is designed to gain access to 

the pericardium through a 1-2 inch sub-xiphoid incision in ovine models, reducing 

recovery time, trauma, and costs of the surgery. The design process followed FDA 

design controls intended to produce a safe and effective device. This includes forming 

user needs and product function into design input requirements and translating 

requirements into detailed design specifications. Verification plans were made to 

confirm that the specifications are consistent with the requirements. Once a physical 

device is manufactured, validation will ensure that the product satisfies user needs. 
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1. INTRODUCTION 

 

 

Congestive heart failure (CHF) is a debilitating disease that affected 5.7 million 

Americans age 20 and older in 2006, and had an estimated direct and indirect cost of 

$37.2 billion in 2009 (AHA, 2009). In CHF, the pump function of the heart deteriorates 

as a result of abnormal growth and remodeling. Due to a demand for donor hearts that is 

greater than the supply, and a selective waiting list, cardiac assist devices and devices that 

restore normal function in the heart are proving useful. Several cardiac assist devices 

currently exist that can partially repair damaged hearts, but most require invasive surgical 

techniques for placement. CorInnova is in the process of developing a mechanical 

support device to rehabilitate the myocardium in CHF patients. The collapsible device 

uses mechanical stimuli to restore normal motion in a failing heart. However, the 

pericardium must be pulled away from the heart apex and stabilized for successful 

deployment of the cardiac support device. Therefore, a surgical apparatus must be 

developed and tested to meet this need. The objective of this research was to determine 

the preferred design methodology for the pericardial access device, and to design a 

mechanical delivery system for the Active and Adjustable Cardiac Support Device 

(AACSD). It is hypothesized that accomplishment of these aims will enable the cardiac 

support device minimally invasive access into the pericardium, which will decrease the 

risk of infection and reduce recovery time. Once the mechanical delivery system is 

designed using the most favorable method, the heart can be repaired with a device 

deployed through a 1-2 inch incision. 

The limits of the design scope are to obtain access to the pericardial space for the 

deployment of the AACSD through the design of a surgical instrument. Safety, technical 

performance, device quality, user needs, and compatibility with the AACSD were 

considered throughout the design process.  This design research project will not address 

manufacturing methods or disposal after use. 

____________ 

This thesis follows the style of the Journal of Biomechanics.
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2. BACKGROUND 

 

 

2.1  Congestive Heart Failure 

 

 Eighty percent of men and 70 percent of women under age 65 who have heart 

failure will die within 8 years (AHA, 2009). The shortage of donor hearts, increased 

cases of CHF, and an aging population necessitate advancements in methods to treat this 

condition.  In CHF, the heart delivers blood to the body inefficiently. The left ventricle 

changes shape, the heart enlarges, and the walls of the ventricles become thinner. 

Unnatural growth and remodeling creates a feedback mechanism resulting in weakening 

functional performance. Heart failure can develop from a loss of function following acute 

myocardial infarction, as the workload is increased when the elliptical left ventricle 

becomes abnormally large and nearly spherical (Mann, 2005). The normal motion of the 

myocytes is disturbed and continues to decline in performance following the initial 

impairment. Most of the damage caused by a massive myocardial infarction may be 

attributed to an expansion of the affected boundary due to dyskinesis-the lengthening of 

myocytes during systole, when cells should contract and shorten to produce a coordinated 

heart beat (Fossum, 2006). The affected zone must be controlled because the area 

surrounding the initial damage is not contracting but has oxygen needed for the heart to 

do work.  

Motion is a vital element of work; work is force acting through a differential 

distance. Thus, the ordered motion of the myocytes is fundamental to maintaining and 

restoring a functional and efficient heart because work must be done to pump blood 

through the body. Use of cardiac support devices should stabilize the ventricular radius 

and reduce wall thinning. Blom et al. illustrated that myocyte length and volumes were 

reduced by placing a cardiac support device on a heart that recently experienced 

myocardial infarction, likely because the mechanical driving forces of remodeling were 

mitigated (Blom et al., 2005). Aside from the potential of devices as a bridge to transplant 
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for patients awaiting a donor heart, heart assist devices can be used as a bridge to 

recovery, reversing the effects of CHF and leading to ventricular recovery. They can also 

improve the quality of life for patients with comorbid conditions, providing permanent 

mechanical assist as a destination therapy.  

 

2.2 Existing Technologies  

 

 The Left Ventricular Assist Device (LVAD) is a classic offloading heart assist 

device that reduces the work done by the heart by bypassing the organ. It is used as a 

bridge to transplant to replace or partially replace a failing heart. One end connects to the 

left ventricle, and the other to the aorta, with a drive tube passing from the device through 

the skin in most current designs. The mechanical device offloads the heart instead of 

allowing it to perform its own work, and often requires a power pack and computer 

control outside of the body (Bryg, 2009). Since it is a blood-contacting device, there are 

also issues with clotting. 

Acorn Cardiovascular created the CorCap™, which is intended to prevent the 

progression of heart failure by providing circumferential diastolic support to the heart and 

improving the heart’s structure and function. It is a mesh wrap that relieves wall stress to 

decrease left ventricular volumes and limit infarct expansion. This device was tested on 

an animal model with dilated cardiomyopathy, and proved that under the influence of 

Acorn’s device, the heart decreased in volume and improved in function, along with 

reverse remodeling in the ventricular, cellular, and molecular levels of the heart (Acorn, 

2005). 

The Myotech Circulatory Support System is a method to treat acute and chronic 

heart failure by restoring blood flow to normal levels through bidirectional compression. 

The device consists of a flexible polymer cup that takes about 3 minutes to install. The 

pneumatically-activated liner provides support to both ventricles by attaching via vacuum 

on the apical end of the heart. The possible applications of this device include short-term 

cardiac support, rapid resuscitation, and possibly permanent support (Biophan, 2009). 
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Paracor Medical, Inc. created the HeartNet™, a mesh wrap that is permanently 

delivered around the ventricles of a heart experiencing dilated cardiomyopathy to reduce 

the work done per beat. An increase in the potential force of each beat provides for a 

more efficient cardiac cycle. The Nitinol wrap is available in various sizes that have a 

pattern similar to that of a stent (Paracor).  

Several technologies exist that help the heart recover without transplant, but some 

require coupled electrical and mechanical support, as well as invasive surgical techniques 

for implantation. Dr. Criscione’s research and testing has shown that his mechanical 

support device restores regular motion in the myocytes, and encourages a failing heart to 

deliver blood to the body more competently. 

 

2.3  Active and Adjustable Cardiac Support Device 

 

The laboratory of Dr. Criscione has developed the Active and Adjustable Cardiac 

Support Device (AACSD) to reduce heart size and restore efficient function in the failing 

heart. The device works on the principle that in a mechanical organ, mechanical stimuli 

are the key to restoring normal function (CorInnova, 2007). While the device does not 

offload the heart in a classical sense, it does so mechanically by application of pressure 

and decreasing the end-diastolic volume in the heart.  This is similar to the heart doing 

work, which all normal myocytes do during systole. The novel device differs from 

previous CSDs since it is adjustable, and allows the organ to maintain some of its 

intrinsic motion. The AACSD is placed within the pericardial sac and directly contacts 

the heart, creating a vacuum between the device and the organ.  The device chamber fills 

with air, the pneumatic driving force in the chambers, and directly compresses the heart 

on all sides of the organ in order to restore motion in the myocytes and improve cardiac 

output.  The restoration of normal motion is intended to guide cardiac growth and 

remodeling, leading to ventricular recovery.  The main focus of the AACSD is to limit 

the decline in pump function by preventing infarct expansion into the borderzone.  

Thrombosis is not a concern with the AACSD since it does not contact the blood.  The 
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device is a new opportunity to treat CHF and enhance quality of life for patients suffering 

from the disease. Additionally, the collapsible geometry of the device presents the 

opportunity for minimally invasive surgery. Figure 1 shows a prototype of the device in 

two views. 

 

  
Fig. 1. Active and Adjustable Cardiac Support Device. (A) Side view; (B) top view. 

 

 

 

Most patients facing surgical intervention for congestive heart failure will be 

confronted with an invasive procedure that requires an extended hospital stay for patient 

monitoring during recovery. Through 2006, the most frequently-used methods to treat 

cardiovascular diseases included coronary artery bypass grafts, endarterectomies, valve 

replacements, percutaneous coronary interventions, and implantation of pacemakers and 

defibrillators (AHA, 2009). Coronary bypass can be performed minimally invasively, but 

only for cases where no more than two bypasses are needed and the damaged arteries are 

located at the front of the heart. Valve replacement and repair generally requires surgeons 

to divide the breastbone, stop the heart, and pass blood through heart-lung machine. 

However, people can have minimally invasive valve surgery but not if more than one 

valve needs repair, or there is severe valve damage. Although the procedures for 

placement of pacemakers and defibrillators are improving in the level of invasiveness, 

many people still experience open-heart surgery for treatment of severe heart problems. 

A B 
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Surgeons and patients prefer less invasive surgery for implantable devices to reduce 

trauma, recovery time, and costs.  

In order to gain access to the pericardial space, cardiac surgeons use sutures to 

pull the sac away from the heart apex. In a limited working space, a stabilizing device 

would provide a clear passageway for improved visibility for the surgeon, decreased 

surgical time, and systematic placement of the AACSD. A complementary apparatus 

must be developed and tested that limits the level of invasiveness that the AACSD 

requires upon installation, and provides a viewing window for the surgeon.  CorInnova, a 

company founded by Dr. Criscione to bring this technology to the market place, is in the 

process of developing the pericardial access and support system (PASS) for the delivery 

and deployment of the AACSD into the pericardial space. With this device, a 1-2 inch 

sub-xiphoid incision is possible in ovine models, and a small, left-lateral thoracotomy is 

projected when the device is implemented in humans. The midline location of the heart 

apex in ovines allows easy access to the heart for deployment of the device. Previous 

access devices currently exist to restrain the pericardium for entry into the space 

surrounding the heart. 

 

2.4 Previous Access Devices 

 

The HeartNet™ is delivered during a minimally invasive mini-thoracotomy via a 

single-use delivery system. The device is placed onto the epicardial surface of the heart 

after it is pre-loaded into the syringe-like system (Paracor). 

Medtronic has designed the single-use Octopus® Tissue Stabilizer to position, 

stabilize, and access various spaces during beating heart surgery. The Octopus® provides 

clear visibility for the surgeon and has a single, flexible tube leading to the device head to 

decrease any possible obstruction that could result in tissue damage. The system mounts 

onto other surgical devices for use in coronary artery bypass grafting. The Urchin™ and 

Starfish™ are heart stabilizing devices used in conjunction with the Octopus via suction 

to the heart (Medtronic, 2008). 
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Comedicus Incorporated’s PerDUCER® is a passive device that captures the 

pericardial tissue via suction at the tip of a needle enclosed in a tube. The product cuts the 

pericardium and gives access to the space surrounding the heart for placement of a 

guidewire for diagnostic and therapeutic purposes. The device is intended for temporary 

surgical use and does not provide a viewing window for the surgeon, who must use a 

fluoroscope (Hou & March, 2003). 
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3. AIM I PROBLEM STATEMENT 
 

 

To accomplish the goals of a successful pericardial assist device for the AACSD, 

the process was broken down into determining the preferred design methodology for the 

pericardial access device, and designing a mechanical delivery system for the AACSD 

into the pericardial space. It was the goal of the research presented here to design the 

PASS using design methods that would allow a smooth progression from development of 

the PASS to market.  

The first objective was to determine the design methodology for the pericardial 

access device.  The Food and Drug Administration ensures the safety and effectiveness of 

all medical devices in the United States by requiring clearance or approval before most 

devices can be placed on American markets. The Quality System Regulation (QSR) 

states that manufacturers must have a quality system in place for the design and 

production of medical devices (U.S. FDA, 2009). Compliance with QSR design controls 

in the design and development phases of the instrument helps ensure that the device 

performs its intended function and meets user needs. The aim of the research was to 

convert user needs and product function to design input. Using design control methods, a 

delivery system was designed for the AACSD to enter a 1-2 inch sub-xiphoid incision. 

As a result, the device will satisfy the Federal Food, Drug, and Cosmetic Act.  

The primary goals of Aim I in the design of the PASS are: 

• User needs must be made into design requirements. 

• Design specifications should be comprehensive and clearly defined. 

• Develop concepts for the device design. 

• Develop distinct design criteria. 

• Select concept for PASS using design criteria. 
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4. DESIGN PROCESS 
 

 

A design builds upon decisions, deliverables, and progress of the previous design 

phase.  Design output for one phase becomes the design input for the next step. The 

design should maintain functional performance based on user needs as a verified and 

validated device throughout the product life cycle. Verification ensures that the design 

specifications developed as a result of the design input are met; and validation tests that 

the produced device fulfills the design requirements, intended uses, and user needs. 

Careful review at all levels of the process is critical to good design and quality assurance. 

Reviews can identify design inconsistencies and defects early in the design cycle, saving 

money and time. The natural feedback mechanisms in the design process are discussed in 

the FDA design controls, which is the framework used for designing the PASS. The 

following diagram, figure 2, illustrates the iterative nature of the design process.  

 

 

 

  
Fig. 2. Waterfall design process (U.S. FDA, 1997). 
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A quality product is more easily generated when the design process is followed 

diligently, and a quality system is introduced. Assessing user needs and expectations is 

the most fundamental and critical component for the design team. The developers should 

elicit customer input to ensure the design is focused on user needs, which are the basis for 

product specifications. Translating user needs into manageable requirements is the first 

step in the design process. Device specifications are a dynamic set of functional 

requirements and constraints that the device must satisfy. After the initial specifications 

become the first design output, they feed into the next step as design input, and the 

process continues. 

Elements and ideas for this project were obtained from research and development, 

prior work in access devices, brainstorming sessions, and contact with a surgeon and 

AACSD developers. Each design concept considered in the final concept selection 

process fulfilled the functional requirements. Design criteria were developed without bias 

towards any of the alternatives. Mandatory criteria were established that the device must 

meet for a design concept to be considered for the final design. Other characteristics that 

would benefit device function or ease of use factored into the selection of a design 

concept as design goals.  

The design and development plan laid out what would be developed, with a task 

breakdown, deliverables and a timeline. Regardless of the creation of a design plan, the 

design process is not successful without executing the goals and objectives set in a timely 

manner. The design and development plan for the PASS is discussed below. 
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5. DESIGN AND DEVELOPMENT PLAN 
 

 

The pericardial access device will be designed using FDA Design Controls to 

meet pre-determined design requirements. After alternate designs are created, the three 

design concepts considered to best meet the criteria will be further developed and 

illustrated in SolidWorks for final consideration. The final concept will be chosen using a 

Pugh chart based on durability, effectiveness, safety, efficiency, and ease of use for the 

introduction and deployment of the AACSD into the pericardial space. Re-use is not a 

necessary design consideration since the pericardial access device will be a single-use 

device. The selected device will proceed to the manufacturing phase with CorInnova 

staff. Table 1 depicts the design and development plan for the PASS. 

All design processes in the development plan are subject to QSR requirements. 

The major tasks include creating design specifications based on the user needs and design 

requirements, developing design concepts, choosing a concept, and creating Computer-

Aided Design (CAD) documents of the final concept. A change in the SolidWorks 

drawings demanded an additional week to be added to this task. The projected 

completion dates set for each task were met, and all deliverables were produced.  
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Table 1 

Design and development plan for the PASS. 
Design Tasks Prerequisite 

Information

Duration (wks) Projected Date 

of Completion

Personnel Required Deliverable Constraints

AIM I Outline design process QSR 1 Aug-08 GSI Design and 

development plan

QSR 

Develop design inputs QSR 2 Oct-08 GSI Design inputs QSR 

Develop design outputs QSR 4 Feb-09 GSI Design outputs QSR 

AIM II Research previous devices None 4 Oct-08 GSI Device 

summaries

QSR 

Review R&D prototypes Notes from 

efficacy studies

4 Nov-08 GSI R&D Summary QSR 

Define user needs Surgeon input 

and general 

anatomy

1 Dec-08 GSI, Dr. Criscione User needs QSR 

Define functional 

requirements and 

constraints

AACSD 

dimensions, user 

needs, research

2 Dec-08 GSI, Dr. Crisione, 

John Mims

Functional 

requirements and 

constraints

QSR 

Translate requirements into 

intial specifications

Requirements 3 Jan-09 GSI, Dr. Criscione Design 

Specifications

QSR 

Verify that specifications 

meet requirements

Design 

specifications

2 Feb-09 GSI Verification QSR 

Develop Concepts User needs, 

R&D,  

specifications

4 Mar-09 GSI Concepts QSR 

Develop design criteria Initial design 

input

2 Mar-09 GSI Design criteria QSR 

Concept Selection Design criteria 1 Apr-09 GSI, Dr. Criscione Final concept QSR 

Determination of materials Research 

materials in 

previous devices

2 May-09 GSI, Dr. Hyman, Dr. 

Criscione

Materials 

selected

QSR 

SolidWorks drawings with 

dimensions

Design 

specifications

4 May-09 GSI Drawings QSR 

Method of Sterilization Research 

successful 

sterilizatio 

methods

1 May-09 GSI Sterilization 

method selected

QSR 

Verify that final 

specifications meet 

requirements

Final 

specifications, 

device 

requirements

2 Future work CorInnova Staff Verification QSR 

FMEA Types of failure 

modes

2 May-09 GSI FMEA 

spreadsheet

QSR 

Design History File All documents 

and drawings

5 Jul-09 GSI DHF QSR 

Validation of device 

prototype

Initial production 

unit, user needs, 

requirements

10 Future work CorInnova Staff Validated Device QSR 

Final Design Review Validation 1 Future Work CorInnova Staff Completion QSR  

  
 
 

The work of this design research project was completed after the verification 

methods were laid out for the final verification.  Once the final design is converted into a 

physical prototype meeting all specifications and materials chosen, verification will take 

place through benchtop studies and ovine efficacy studies.  A design history file was 
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compiled to document the design, including design assessment meeting agendas and 

action items, all schematics and device sketches, and documents that led to the design 

development. 
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6. DESIGN INPUT 
 

 

Device design begins with evaluating user needs, device requirements, and 

constraints. The surgeon is the primary user, so his/her preferences are highly regarded, 

and any suggestions or criticisms he/she offers are valuable. In addition, the developers 

should consider the design scope, desirable and undesirable features, and any 

compatibility issues that they may face in the design process.  

According to the FDA, design input includes the physical, functional, and safety 

requirements (U.S. FDA, 2009). The desired and required properties of the instrument 

must be determined either quantitatively or qualitatively. In device design, it is important 

to establish sufficient requirements as a foundation for a safe and effective product as 

early as possible. The input requirements are converted to more detailed design 

specifications that reflect customer needs. These specifications represent the first design 

output of the design process. Design output, section 820.30 (d) of the QSR, is a 

documented product of each design phase and the final design process with acceptance 

criteria to illustrate that the output meets the input requirements of safety and function for 

the device (U.S. FDA, 2009). The specifications are considered to be a design output 

because they are continuously updated and modified throughout the design process. 

Before a project advances to the next phase, it is essential for the design output to meet 

the design input.  

The design will focus on technical performance, risk management and human 

factors. The device must be capable of accessing the pericardial space without unintended 

consequences. It should be designed to assure that the user is able to achieve the device 

purpose consistently, safely, and with relative ease. It is the responsibility of the designer to 

protect the patient and the surgeon against preventable errors. Close communication with a 

surgeon was maintained throughout device development to increase efficiency and 

concentrate on user and patient needs. The device must be sterilized initially prior to 

placement in the pericardium. The product must be constructed at a reasonable cost with 
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considerable quality control; however determination of manufacturing procedures does not 

fit into the scope of this project. 

The device will be used in a hospital environment at approximately standard room 

temperature and in low humidity. The device must be compatible with the AACSD for 

deployment. The design input requirements were reviewed and approved by Dr. Criscione in 

March 2009. Preliminary design specifications were reviewed by Lewis Harrison, 

CorInnova Engineer, and Dr. Criscione. 

 

6.1 Quality System Regulation Requirements 

 

According to the Design Controls in the Quality System Regulations, Section 

820.30(c), design input should be “appropriate and address the intended use of the device, 

including the needs of the user and patient” (U.S. FDA, 2009). The first design inputs are 

the design requirements constraining the device. More specifically, they are the 

foundation of the device, covering the device purpose, device operation, device 

compatibility requirements, research and development work, and the device life cycle. 

Comprehensive requirements ensure that all assumptions, problems, and other 

considerations are exposed upfront to save time and money on the design efforts. These 

requirements launch the design and development plan, and make the designer aware of 

the goal of the design process. Design input is a continuous process beginning with the 

feasibility phase and continuing to the physical design stage (U.S. FDA, 2009). Although 

design input usually includes labeling, packaging, manufacturing, installation, 

maintenance, and servicing requirements, these processes are not contained within the 

scope for this project. 

Thorough review ensures that the requirements are complete and not repetitive 

before final approval and documentation. Design evaluation meetings were held to assure 

device reliability, and to assess the compatibility of the pericardial access device with the 

cardiac support device. These discussions allowed early recognition of issues and ensured 

that the requirements of the device were met in its current form. In most cases, the “reviews” 
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were informal assessments of the design. Design concerns were presented to reviewers for 

corrections, requirements and constraints were evaluated and approved, and action items 

were managed by the Graduate Student Investigator (GSI). These materials were distributed 

to Lewis Harrison via email due to his location for suggestions and approval. Meetings were 

held periodically with Dr. Criscione for approval of the design at the appropriate design 

phases. When vital design issues arose as a result of the meetings, Dr. Criscione and the GSI 

identified necessary corrective actions to follow, such as updating specifications, 

researching options, or making design changes. Design assessment meetings were 

documented in the design history file to track modifications and the evolution of the design 

for future reference. 

 

6.2 Device Life Cycle 

 

After device production, packaging, and sterilization, the PASS is ready to use. The 

PASS and AACSD must be removed from their separate packaging directly before use. 

Then, the AACSD suture loops should be placed over the PASS scaffold guide wires with 

the AACSD concave cup surface facing upward, as it will approach the heart apex. The 

AACSD should be collapsed inside of the shaft of the pericardial access device prior to entry 

into the incision. In order to fit into the 1-2 inch sub-xiphoid incision, the deployment guide 

wires should be held together at their tips to prevent any tissue damage. The ends of the 

guides should be placed into the incision, and the PASS should advance into the pericardial 

space until the shaft flare is enclosed by the pericardium. The guide wires should be released 

so they stabilize and support the pericardium, pulling it away from the heart. Next, the 

suture loops should be slipped off of the guide wires of the PASS so that the AACSD 

deploys around the heart. Once proper placement of the AACSD has been achieved, the 

PASS can be removed slowly, ensuring no damage to the body. As a single-use device, the 

device must be discarded after removal from the pericardium. The diagram below, figure 3, 

depicts the steps of the device life cycle. 
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Fig. 3. Device life cycle of PASS. 
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6.3 User Needs 

 

Before concept generation begins, user needs were analyzed to lay out the design 

requirements. The developer must interpret the user needs in terms of the capabilities of 

the device to decide what must be achieved, and how to approach the objective. The 

designer must consider the patient on the operating table as well as the surgeon using the 

device for access to the pericardium for placement of a cardiac support device. The PASS 

must accommodate the surgeon needs and preferences as the primary user by making a 

simplified surgery possible with a product that will be beneficial. If the implant 

mechanism appears to be an obstacle rather than an aid, the desire to use the product 

diminishes. 

The pericardium is not rigid enough to maintain the desired position away from 

the heart once the incision is made.  Thus, the current procedure requires that the surgeon 

use sutures in combination with the PASS to manipulate the flexible pericardium away 

from the heart. The device designed aims to provide an easier surgery, but it is yet to be 

determined if suturing the pericardium can be removed from surgical tasks.  The 

objective is to design a device that is capable of providing a sufficient viewing window 

for the cardiac surgeon, and supporting the pericardium well enough to maintain a 

distance from the heart for the AACSD to fit around the organ. The benefit of using a 

pericardial access device is less complicated entry of the AACSD into the sub-xiphoid 

incision that will reduce surgery and recovery time for the surgical team and the patient. 

Table 2 below lays out the user needs for the PASS. 
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Table 2 

 Practical application of user needs in design of PASS. 

Category Need 

Technical Performance Delivers and deploys AACSD 

 Minimally-invasive 

 Must withstand forces of deployment 

 Does not interfere with AACSD function 

  

Patient Safety Sterilized device 

 Biocompatible materials 

 Prevents abrasion to cardiac tissue 

  

Ease of Use Accessibility to pericardial space 

 Simple operation 

 Provides fast, smooth deployment 

 Allows unobstructed view of heart 

  

Quality Assurance Follows QSR design controls 

  Manufactured to specifications 

 

 

The PASS must be designed for technical performance and lack of unintended 

consequences. The device is intended for the minimally-invasive delivery and deployment 

of the AACSD, and should not interfere with the placement or function of the AACSD in 

repairing heart motion. The stabilization system must be durable enough to withstand the 

forces exerted on it by the surgeon during entry into the incision and deployment of the 

AACSD without deformation. 

Patient safety is a major concern for any medical device design team. The PASS 

must be capable of entering the pericardial space without abrasion to the surfaces of the 

pericardium or the heart. Although it is intended as a temporary delivery system, it must 

also be comprised of biocompatible materials and sterilized prior to use. A quality device 

will be designed by following the design process laid out in the FDA Quality System 

Regulations. Manufacturing processes will adhere to the design specifications. 
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Aesthetically, the device must not appear too complicated. That is, the user should 

preferably be able to look at the device and have an idea of its purpose and how it couples 

with the AACSD for device delivery and deployment to the heart apex inside of the 

pericardium. The PASS must be designed so that the user is confident and capable of 

using the device consistently and safely for its intent without recurring error. Ease of 

entry into the pericardial space is an important instrument in convincing the surgeon to 

use the device, because one prefers a mechanism that does not obstruct the necessary 

surgical space or add to patient time on the operating table. In order to aid the surgeon in 

placement of the cardiac support device for an easier operation, the device should allow 

the surgeon to maintain a clear view of the anatomy and AACSD. 

 

6.4  Research and Development Summary 

 

The original design concept was motivated by clinical need and through research and 

development. The PASS has improved rapidly through extensive prototyping to provide 

easier access to the pericardial space. The delivery and deployment of the AACSD began 

with suction, advanced to sutures, and most recently has become a rigid tunnel with Nitinol 

guides to stabilize the pericardium away from the heart. The process has been a 

collaborative effort with John Mims and the CorInnova staff to develop ideas and 

manufacture mechanical devices based on these ideas.  

The necessary device dimensions for the pericardial access device were obtained by 

using the previous PVC tube introducer that was inserted into the sub-xiphoid incision 

during the first ovine efficacy trials.  This testing is demonstrates the safety of the device, 

and for proof of concept. The tube was inserted into the incision until it reached the apex of 

the heart, and the points were measured from apex to surface of the incision.  The depth of 

the tube was 4.5 inches, with a 1.6-inch inner diameter, and a 1.9-inch outer diameter.  Thus, 

these are the upper limits of the PASS since the PVC tube was a snug fit into the surface 

incision. 
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PASS Prototype 1 

The 2006 device (see Figure 4) consisted of 12 rigid polyethylene tubes connected to 

12 hypodermic metal tubes glued to a ¼-inch thick brass ring with a 1.5-inch outer diameter. 

The countersink holes in the brass ring were intended to attach to the pericardium via 

suction. The middle 6-inch diameter ring and the top 10-inch diameter ring were connected 

to the rest of the device with T-connectors and tubing. A 45-degree angle of flare created a 

significant viewing window for the surgeon from the brass ring to the 6-inch diameter ring, 

while remaining within the boundaries of the 2-inch incision. The piece of the device that 

contacts the pericardium at the heart apex was large enough for the collapsible AACSD to fit 

into the pericardial space. The brass ring proved too rigid to maintain the suction between 

the heart and the device, so the device only maintained contact with the organ during 

diastole-when the heart is most deformable. A compliant material and increased surface area 

of suction on the base would enhance the device efficiency. 

 
 
 

 
  Fig. 4. PASS prototype 1. Picture shows how the device appears looking  

down at the heart apex from the surgeon’s viewpoint during use. 

 
 
 

PASS Prototype 2 

In June 2007, a thin wall PVC tube with a flared base was used to provide a surface 

to support the pericardium and pull the thin tissue away from the heart (shown in Figure 5). 

A 1 ¼-inch inner diameter tube was attached to a 1 ½-inch tube with PVC solvent, and the 
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joint was sanded down to create a smooth surface and prevent tissue damage. The flare was 

produced with a lathe, and eight pairs of holes were drilled at 45-degree angles just above 

the joint for sutures to enter and exit the tube from the pericardium. The angle was selected 

to prevent the PVC from cutting or wearing the sutures. Application of the device revealed 

that the flared surface could not hold the sac away from the heart sufficiently.  Also, the 

suture weaving method was more of an obstacle than an aid, as it added unnecessary time 

and work for the surgeon. 

 
 
 

 
Fig. 5. PASS prototype 2. (A) Suture holes shown in delivery process in ovine 

 efficacy study; (B) fully inserted into pericardial space with sutures laced. 

 
 
 
PASS Prototype 3 

A new device was tested in January 2008 and is shown in Figure 6.  It was 

constructed of soldered brass and 1 ½-inch Teflon (PTFE) tubes. The length was maintained 

from the last study to allow the surgeon to access the pericardial space with enough excess 

length to remain outside of the sheep’s cavity. The device body consisted of 6 brass struts 

curved into a brass ring that entered the pericardial space at the heart apex. The Nitinol wires 

curved to avoid bending since the struts guiding the wire were perpendicular to the brass 

ring at the bottom of the device. A Teflon ring at the top of the pericardial access apparatus 

reinforced the struts. Nitinol wire is laced through the struts with enough additional wire at 

the top of the device for grips to direct the 6 loops into the pericardial space. To use, the 

A B 
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device operator pushes the Nitinol wire from the top of the apparatus to force the wire 

through the struts and form the 6 loops to stabilize the pericardium. 

   
 
 

 
Fig. 6. PASS prototype 3. (A) Scaffold guide wires deployed in top view; 
(B) surgeon’s view of device during placement into the pericardial space 

 
 
 

PASS Prototype 4 

In May 2008, a similar device was tested, which is depicted in Figure 7. The 

supports guiding the device to the heart apex ring were the same material, and the 

manufacturing method used was identical. However, the struts were bowed so that the 

surgeon could position the device under the sternum and direct it to the heart apex. With a 

15-inch radius of curvature, the device can access the heart apex on the sheep, which faces 

away from the spine and slightly downwards towards the pelvis. Upon application, the curve 

of the device fit into the incision better, and gave less-obstructive access to the pericardial 

space. The curve on the shaft of the device made it more difficult for the Nitinol wires to 

slide inside of the brass, so the surgeon had to use more force to push the handles 

downwards. Improvements can be made by placing a solid cylinder inside the device shaft 

so that the cardiac support device is not stopped by any of the brass struts, and the CSD will 

not enter one of the spaces between brass columns. 

 
 
 

A 
 

B 
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Fig. 7. PASS prototype 4. (A) Full view of prototype with guide wires deployed; 

(B) device during placement into pericardial space at May 2008 ovine efficacy study. 

 
 
 

PASS Prototype 5 

In the same May sheep study, a pericardial access device without the curvature of 

the previous instrument was tried. A flared, foam piece that resembled a suction cup was 

attached to the end of the device to replace the 6 stays and provide the contact surface at the 

heart apex. This device offered a clear view of the heart apex for the cardiac surgeon, but 

required a larger incision. Without a larger opening into the body, the device can cut or rip 

the tissue at the incision, which would create a disordered cut that takes longer to heal. See 

Figure 8. 

   
 
 

 
Fig. 8. PASS prototype 5. (a) Side view; (B) device on model ovine heart before use. 

    
 
   

A 
 

B 
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PASS Prototype 6 

Figure 9 illustrates the device used in the November 13 trial, which maintained the 

curvature of prototype 4, but curved only at the heart-contacting end of the device. This 

change was made to provide the surgeon with a better view of the heart apex and pericardial 

space while preserving the same approach into the space. The design returned to the Nitinol 

wire guide wires at the heart apex, as this method stabilized the pericardium better than any 

previous technique. The shaft of this version was 1.5-inches in diameter and 7 inches long 

when deployed. A new method of cardiac support delivery was employed. The cardiac 

support device was attached to a deployment instrument to fit into the pericardial access 

mechanism. The deployment system had 6 longer Nitinol loops that were threaded into the 

corner of the guide wires of the cardiac support device. The devices were much more 

difficult for the surgeon to operate. Entry through the sternum into the pericardial space was 

challenging with the curvature isolated to the end of the device. Finally, the two devices for 

delivery of the AACSD interacted negatively. The deployment stays wove themselves into 

the rounder guide wires of the access device, and were unable to retract. Prototype 4 was 

used during this trial when prototype 6 was too large. 

 
 
 

 
 

 
Fig. 9. PASS prototype 6. (A) Full view;   

(B) extended scaffold guides; (C) deployment device. 

  
 

 

A 
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PASS Prototype 7 

A combined stabilizer and deployment jig was studied on November 14, 2008 to 

provide a less intricate mechanism of placing the cardiac support device into the pericardial 

space. Nitinol wires were woven together to make 6 stays, reinforced with Nylon thread on a 

PVC tube, and adhered to the PVC with electrical tape. Suture loops were sewn on the 6 

chambers of the AACSD to secure the CSD to the stabilizer stays. To deploy the device, the 

surgeon pushed the stays to a single point, the support device collapsed inside the access jig, 

and the sutures attached the pericardium were pulled away from the heart apex to open the 

space. Once the point of the deployment apparatus had fully entered the pericardial space, 

the Nitinol wires were released to open the space around the heart. Finally, the cardiac 

support device was pushed away from the stabilizer and onto the heart apex with an 

aluminum tube. Dr. Nelson, the cardiac surgeon on the project, reported that the combined 

device was a faster and easier method to place the cardiac support device on the heart. The 

device could be improved with less pointed tips because there was a concern with the 

abrasion on the heart and pericardium. Figure 10 depicts the device from a top and side view 

with flared guides.  

 

 

  
Fig. 10. PASS prototype 7. (A) Top view; (B) side view of flared guides. 

 

A 
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7. DESIGN SPECIFICATIONS 

 

 

There are two types of requirements to consider when designing and engineering a 

device: functional requirements, or what the device has to do, and constraints, or how the 

device will perform its function. Functions are satisfied by subsets of the product through 

operation, and constraints are satisfied by properties of the entire product (Otto & Wood, 

2000). For the PASS, the requirements were established during the initial design input phase 

to lay the groundwork for concepts developed to meet these requirements. The ovine studies 

tested the prototypes during the research and development phases, which helped in the 

conversion of the requirements into specific design specifications. As changes were made to 

the cardiac support device during the studies, ideas for the PASS evolved to maintain 

compatibility with the device geometry and size. Also, Dr. Nelson, the surgeon who 

performed the operations using the prototypes, provided suggestions that helped the PASS 

developer create a device that is easier to use, and reduces deployment time, while 

preserving aspects of the device that allow a minimally invasive surgery.  

The specifications are a dynamic collection that transforms to become a detailed and 

quantifiable file that the design must be verified to meet. The necessary specifications are 

prioritized over the desired specifications, but all should be met and verified by the design. 

The verification status is documented as proposed, confirmed, modified, satisfied, or 

verified as the design process proceeds. The verification methods shown in the specification 

table below are representative of the intended use of the PASS. When design input 

requirements are finalized and accepted in engineering terms as piece of the device master 

record, they become the product specification (U.S. FDA, 2009). Table 3 shows the design 

specifications established for the PASS. 

 

 

 



 

 

28 

Table 3 

 Design Specifications. 
Necessary (N) 

# 
Desired     (D) 

Requirement Verification Method 

Functional Requirements 

1 Necessary (N) Provide non-interfering path for Active 
Adjustable Cardiac Support Device into 
pericardial space 

Develop prototype of AACSD and PASS 
and  test compatibility and interface in 
efficacy study 

2 Necessary (N) Must not alter shape or function of cardiac 
support device 

Develop prototype of AACSD and PASS 
and test compatibility and interface in 
efficacy study 

3 Desired     (D) Should not require surgical attachment from 
device to sheep anatomy (i.e. via sutures) 

Create stand alone design and 
manufacture prototype for efficacy tests 

Constraints 

4 Necessary (N) Fit into 1-2 inch sub-xiphoid incision and 
pericardial incision at heart apex 

Verify with engineering drawings 

5 Necessary (N) Approximately same diameter as deflated 
cardiac support device (maximum deflated 
support device volume is <1% end diastolic 
volume) 

Develop prototype of AACSD and PASS 
and test in benchtop study 

6 Necessary (N) Length should be at least and not much 
greater than distance from heart apex to  
sub-xiphoid incision (to outside of sheep 
anatomy) 

Research distance in average ovine in 
literature and confirm with PASS 
engineering drawings 

7 Necessary (N) Must smoothly move into and out of the 
pericardial space 

Develop prototype of PASS and test in 
efficacy study 

8 Necessary (N) Must withstand forces exerted by 
pericardium elastically 

Develop prototype of PASS and test in 
efficacy study 

9 Necessary (N) Must withstand force applied by cardiac 
surgeon to open device into pericardial 
space 

Develop prototype of PASS and test in 
efficacy study 

10 Necessary (N) All materials used are legacy grade implant 
materials 

Documented FDA approval and previous 
biomedical use without major issues 

11 Necessary (N) Materials chosen should not be abrasive or 
increase healing time at incision (alter 
anatomy)-surface roughness 

Check with medical device literature 

12 Necessary (N) Mechanical failure must not occur during 
use; device is not to be re-used 

Manufacture final design prototype and 
test in benchtop study until failure 

13 Necessary (N) Meets FDA and CDRH requirements FDA documentation 

14 Necessary (N) Shelf life meets FDA and packaging 
requirements 

QSR 

15 Desired     (D) Scaffold length 1:1 aspect ratio with shaft 
diameter; should not extend length of heart 
from apex to base 

Verify with engineering drawings 

16 Necessary (N) Shaft < 1/16" thickness Verify with engineering drawings 
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 The PASS and AACSD developers worked together to maintain consistency with 

the specifications required by the AACSD, which fall mostly under the functional 

requirements. The interaction between the two devices was evaluated before 

specifications were established, because the two devices must coordinate efforts to 

rehabilitate the heart.  As the mandatory specifications state, the device must provide an 

unobstructed passageway for the AACSD into the pericardial space without altering the 

shape or performance of the assist device. This includes the restriction of a shaft 

thickness of less than 1/16” to allow as much space as possible inside of the tube for the 

collapsed AACSD. The inner diameter of the PASS should be approximately the same 

diameter, or larger than the deflated AACSD, which has a maximum deflated volume of 

<1% of end diastolic volume. It is preferred that the PASS not entail attachment to the 

ovine anatomy to function, because it is ideal that the device will minimize the work 

required of the surgeon. 

The geometric device constraints were developed for the pericardial access device by 

placing a PVC tube into the incision and taking measurements. The device must fit into a 1-

2 inch sub-xiphoid incision, and a 1-2 inch pericardial incision at the heart apex. The shaft 

should be long enough to reach from the heart apex to the outside of the sub-xiphoid 

incision, but must not extend so far as to interfere with the procedure. It is a desirable trait 

for the length of the deployment guides to maintain a 1:1 aspect ratio with the outer diameter 

of the shaft. The guide wires should not span the length of the heart from apex to base. The 

size and shape limits of the device should aid in smooth movement into and out of the 

confined surgical area to prevent tissue damage. 

Mechanical failure testing will be completed during verification to ensure that the 

PASS does not fail during use. The pericardial access device must withstand forces applied 

by the surgeon and the ovine anatomy. The magnitude of the force varies with the strength 

of the surgeon, as well as how well the operator adapts to using the device. Finally, the 

device must be easy to use and well understood with minimal reading of a manual or 

requiring further explanation beyond initial training. 
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8. CONCEPT GENERATION 

 

 

Innovative concepts must be created and sketched to meet the customer needs. 

Before a concept can be selected, all aspects of the design must be understood, and 

various competing alternatives should be drafted. All ideas should be produced on the 

front end of the design process as possible solutions for the need, and eventually 

narrowed down to concepts from which to choose the final design. Initial consideration of 

a wide array of ideas prevents design changes later that would force the developer to 

incur additional costs. The design of a surgical instrument should be kept simple and 

unnecessary features or accessories should be avoided.  

 

8.1 Foundation for Concept Development 

 

The ideas were generated based on the design input, particularly the research and 

development results. Extensive research and development and device versions were 

tested in efficacy studies in animals. The research and development phase revealed 

various advantages and disadvantages of options for each part, as well as potential 

problems with the device. 

The central component of the device is the shaft. The shape determines the effort 

required by the surgeon to place the PASS through the incision under the sternum. It must 

be large enough to permit entry by the cardiac support device without demanding more 

invasive surgery that would defeat the device purpose. The ideal radius of curvature for 

the prototype apparatus was established by considering the anatomy of the sheep, the 

ability of the surgeon to examine his work throughout the procedure, and the difficulty 

required to direct the device to the heart apex. Distributing the curve throughout the shaft 

of the device proved challenging, because it was more difficult to manufacture, and 

extensive curvature could interfere with surgical observation. On the other hand, the 

curved shaft simplified entry into the sheep by allowing the surgeon to get under the bone 
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without excessive force. The view of the heart through the device is important because 

the surgeon must locate the apex before placing the cardiac support device. A straight 

cylinder provides a direct view of the anatomy and makes the path of the support device 

through the tube easier. However, it is not as easy to maneuver to the heart.  The brass 

supports that form the shaft in certain iterations of the device allow the user to identify 

precisely where the support device sits at all times, but the AACSD could enter the 

passages between the supports. The tunnel-like view through the PVC tube was adequate 

as long as the cardiac support device can be placed at the end of the tunnel before the 

access device enters the body. At one point, the PASS included separate stabilizer and 

deployment mechanisms used together to place the AACSD, but this method was 

abandoned because of the difficulty Dr. Nelson had with placement and the time it added 

to the process. The most recent design combined delivery and deployment, and also did 

not require that the AACSD travel the length of the PASS shaft. The design that advances 

to prototype manufacturing will feature this combined system, because the surgeon 

reported that it was much easier to use. Furthermore, the system will not have multiple 

pieces that must enter the pericardial space and potentially interfere with the progress of 

the surgery. 

The thin and adaptable tissue of the pericardium is easy to pull away from the 

heart, but must be held in place once the desired position is found. Several of the previous 

efficacy studies demonstrated that a flared end on the device was effective in providing 

an additional method of maintaining control of the pericardium and opening the heart 

space. It has also been demonstrated that more contact with the inside of the pericardium 

provides a more stabile system that does not have to be periodically corrected during 

surgery. This can be seen when comparing the results of the flared PVC tube to the 

Nitinol stays.  The looped stays have a larger surface area than the PVC and the 

pericardium remained separated from the heart without much trouble. The angle of flare 

also was increased with the Nitinol, so space for the AACSD to enter the pericardium 

was much greater. Different guide lengths will be tested to pinpoint the one that will 

engage properly with the pericardial sac. The retractable deployment guides introduced 
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with the Nitinol made the device much easier for the surgeon to direct into the pericardial 

space. A movable guiding system provides increased user control of the instrument, and 

allows for gradually opening and flaring. On the other hand, moving parts add to the 

potential of mechanical failure and could increase deployment time.  

In order to gain new perspective for device concepts, a brainstorming session was 

held with members of the development and construction team for the AACSD. All 

contributors previously observed efficacy studies using PASS prototypes, but were not 

involved in the creation of these prototypes. The procedure at the meeting was for each of 

the five attendees to create original ideas with knowledge of the device intent and 

research and development work. After 10 minutes to sketch and annotate drawings, each 

person passed their sketch to the next person for comments and additions, and this task 

was repeated until each person had the paper they started with. The process was 

beneficial in concept generation because it offered original ideas to contemplate that 

otherwise would not have surfaced with a limited design team. The collaborative effort 

also raised compatibility issues between the PASS and AACSD that needed to be 

recognized and overcome early in the design process to prevent unnecessary costs. The 

results of the meeting are in the design history file for the PASS. 

Another facet of concept generation was analysis of similar access devices used in 

the medical setting. This was advantageous in development of the PASS design, because 

the products have been used in the field, and it is possible to combine previous ideas with 

one’s own to create a successful product. A combination of ideas from brainstorming 

sessions, research and development, precedent devices, and frequent interaction with the 

lead user contributed to concept generation for the PASS design.  

 

8.2 Design Concepts 

 

 The concepts were sketched after dividing the device into its separate functions 

and their requirements. With this method, various combinations could be made with the 

ideas to carry out each function, provided there are not compatibility issues. Also, if 
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multiple functions can be carried out by a single part solution without compromising 

performance or safety of the product, more concepts are possible for consideration. The 

PASS must enter the sub-xiphoid incision and be moved to the heart apex without 

damaging any tissue along the way. It also must enter the pericardial space and stabilize 

the sac away from the heart to allow space for AACSD entry. Finally, it must 

successfully deploy the AACSD for placement around the heart.  

 Original drawings from the first rounds of concept generation are shown in 

Appendix A.  Sketches became more refined with each iteration as the generation process 

advanced. Three concepts were eventually drafted to advance to concept selection. The 

ideas incorporated previously accepted models throughout the research phase of the 

process. The first design concept has a solid, curved shaft with a 1.5” outer diameter at 

the end that does not contact the heart (the bottom), and a flared top. The scaffold guide 

wires are in their deployment position set on the flared tip of the device shaft. There are 

six guides in an approximate oval shape that come to a rounded tip. The guides are fixed 

on the device shaft, and must be held together by the surgeon to enter the pericardium. 

The device will hold the collapsed AACSD inside of the shaft, with suture loops 

extending over the guides to maintain control of the placement of the cardiac support 

device prior to deployment. Concept 1 is shown in figure 11 below.  
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Fig. 11. Design concept 1. 

 
 
 

 The second idea has a solid, straight shaft with a 1.5” outer diameter at the bottom 

to maintain classification as a minimally-invasive device. The end of the shaft has a short  

flare where the six guide wires are attached. The guides are more rounded than the 

previous design, forming an almost parabolic shape at the ends. When the device is 

delivered inside the pericardial space, the guides must be held together by the surgeon for 

deployment of the AACSD.  The cardiac support device will be positioned in the top end 

of the PASS, temporarily connected to the guides as they pass through the incision. 

Design concept 2 is shown below in figure 12.  
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Fig. 12. Design concept 2. 

 
 
 
 The third device concept has six metal struts with guides inside of them that will 

open and flare after pericardial entry. The guides are directed by small cylindrical knobs 

at the opposite end of the struts. There is a solid ring bracing the struts that runs parallel 

to the ends of the instrument before the struts begin to curve. The curve of the struts is a 

safety feature to prevent abrasion and allow a smoother entry into the pericardial space 

for the PASS as the guides are pushed out to support the pericardium.  Also, since the end 

of the device shaft does not flare, the curve allows the guides to extend away from the 

heart. The guides are shorter than the previous concepts but fully line the inner wall of 

the pericardium in what looks like a rounded pinwheel form.  The AACSD will require a 

separate deployment instrument to travel through the straight shaft of the PASS for the 

concept because there is no attachment mechanism.  The surgeon will push the AACSD 
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through the center of the PASS for placement after the pericardium has been stabilized 

with the rounded guides.  The third idea is shown in figure 13 below. 

 
 
 

 

Fig. 13. Design concept 3. 
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9. CONCEPT SELECTION 

 

 

9.1  Concept Selection 

 

  A systematic evaluation of the concepts was needed to narrow down the ideas to 

one final design. This prevented unnecessary bias from entering the picture and allowed 

the most effective idea to surface. The engineering and manufacturing required for each 

alternative was considered before evaluation. It was important for everyone involved in 

the decision-making process to agree on the design criteria upon which the concepts were 

rated. To select the concept, consensus criteria was developed without any uncertainties, 

the three ideas were understood well and to the extent of detail permitted at this stage of 

the design process, and the concepts were ranked based on the criteria.  

 

9.2  Design Criteria 

 

  The design criteria are based on the ability to meet user needs, manufacturing 

capability of the design, compatibility with the total system, safety, and technical 

performance. More specifically, the design criteria for the PASS cover the needs of the 

patient and surgeon, production, and the limits of the less-invasive surgery. Some 

criterion is more important than others to the success of the device, but all criteria will 

distinguish the proposed ideas from one another. A drafted list of the criteria was made 

based on the engineering specifications as the first design output, and all of the design 

inputs. Modifications to the list were made to prevent overlapping criteria, and to ensure 

that all necessary items were taken into account. 

  An important factor in choosing the most favorable model is the surgeon’s needs. 

The device must allow the surgeon to see his/her work as he/she places the PASS and 

deploys the AACSD. As the device approaches the heart, it is important that the surgeon 

maintain a field of view through the device shaft to avoid hitting the heart apex. This is 
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an important criterion in the selection process, because a less-invasive surgery gives the 

surgeon a smaller area to work with, so he/she must not be further limited by the device. 

Also, all parts of the device must be strong enough to withstand forces exerted by the 

surgeon. Serious problems could arise if the device failed during the delivery and 

deployment process, so the PASS must be strong enough to be maneuvered upon entry 

into the sub-xiphoid incision. Device functionality is covered by the ability of the 

scaffold guide wires and the shaft to enter the pericardial space easily and without extra 

force from the surgeon. The PASS must deploy the AACSD faster and better than the 

surgeon could do on his/her own. A device with moving parts, or one that requires 

twisting and working with the anatomy too much is not appealing as an instrument.  

The PASS must be compatible with the AACSD geometry when collapsed. It 

must also provide smooth deployment of the cardiac support device around the heart by 

pulling the pericardium away from the heart. The level of support that the pericardium 

receives is essential to successful AACSD deployment, because the pericardial sac must 

be held away from the heart. The inner surface of the shaft must not have any pieces that 

could cut through the outer membrane of the AACSD, or in other way inhibit device 

performance. 

Criteria concerning safety of the device include rounding all corners of the 

deployment guides, and ensuring that the outside of the shaft has a smooth finish. Also, 

the shaft must be sturdy enough so that it does not buckle, causing failed deployment or 

tissue damage. Finally, as a medical instrument, the materials used must be short-term 

biocompatible. 

  The design criteria cover user needs, compatibility, safety, and functionality. This 

reflects the design input. It is also important to consider the manufacturing process for the 

PASS. Manufacturability must be honestly looked upon during the selection process, 

because cost and the ability of the parts to come together to form a device is what allows 

the concept to advance to practical use. 
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9.3 Pugh Chart 

 

Each of the three design concepts had advantages and disadvantages in durability, 

feasibility of implementation, effectiveness, ease of use, and size. An isometric view of 

each alternative was drawn to scale, and the most effective design was chosen based on 

criteria developed by the GSI. Each criterion was considered for all concepts before the 

next criterion was visited, to allow consistent definition of the criteria. Criteria must be 

prioritized if two alternatives have close outcomes on the Pugh chart. 

The first alternative was selected as the datum for the Pugh chart. This means that 

it received “0” for every design criterion. This idea was chosen for the datum above the 

others because it was predicted to be the best design. Next, if the design variant was 

deemed worse than the datum for the criteria, it received a negative value, and 

alternatives that performed better than the datum received a positive value. The Pugh 

chart for the design selection is shown in Table 4 below. 

Once the datum was selected as the final concept based on the design criteria, the 

device was evaluated for design refinement. Also, the negative rankings were looked into 

further for the concepts that would not be pursued to establish what feature of the ideas 

earned them the poor rating. Though there are design trade-offs, positive aspects of other 

devices can be combined with the chosen alternative to create an improved concept. 
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Table 4 

 Pugh chart for concept selection. 

   1 2 3 

  Curved 
shaft, fixed 
scaffold 

Straight 
shaft,  fixed 
scaffold 

Straight 
shaft, 
retractable 
scaffold 

Ease of shaft entry into pericardial space 0 -1 -1 

Ease of scaffold entry into pericardial space 0 0 -1 

Amount of moving parts 0 0 -1 

Buckle-resistant scaffold 0 0 0 

Ease of AACSD deployment from PASS 0 0 -1 

Field of vision for surgeon 0 1 1 

Deployment time 0 -1 -2 

Support level for pericardium 0 0 -1 

Roundness of scaffold tip (scaffold safety) 0 0 0 

Ease of manufacturing 0 0 -1 

Tube width for entry into sub-xiphoid incision 0 0 1 

Compatibility with AACSD geometry 0 0 0 

Smoothness of shaft inner surface 0 0 -1 

Smoothness of shaft outer surface 0 0 -1 

Ability to withstand forces exerted by surgeon 0 0 0 

D
es

ig
n

 C
ri

te
ri

a 

Biocompatibility 0 0 0 

 ∑ 0 -1 -8 

 

 

During the research and development process, the curved shaft proved to be more 

effective than the straight tube, because it entered the incision and advanced to the heart 

more normally. Thus, a curved shaft is beneficial in the design because it requires less 

work for the surgeon, and is less harsh than moving through the anatomy toward the heart 

with a straight tube. The straight shaft on the second and third design variants makes the 

devices harder for the surgeon to manipulate into the pericardial space, so it was decided 

that they performed worse than the datum for that criteria. The straight shaft of the 

second concept also increases delivery time to the pericardium because it is more difficult 

for the surgeon, and does not slide in as smoothly as the curved shaft does. The two 

alternatives achieve a better field of vision for the surgeon because the straight shaft 

provides an unobstructed view. 

The third alternative has a retractable scaffold that makes entry of the guides into 

the pericardial space more difficult, creates a problem when deploying the AACSD 
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unattached through the shaft, and increases deployment time greatly. The retractable 

deployment guides controlled by the handles on the opposite end contribute to the 

complexity of the device. It was thought that this extra control for the surgeon would 

prevent him/her from having to hold the scaffold together at the end when it enters the 

pericardium. With the guides built into the struts, and no flare at the shaft end, the shaft 

has a smaller maximum outer diameter for entry into the sub-xiphoid incision, making the 

surgery less invasive. However, the moving parts make failure modes more likely to 

occur, and also increase the difficulty of manufacturing the concept into a practical 

device. The struts create additional problems with device compatibility with the body and 

the AACSD, because their surface is not as smooth, and could harm the patient or 

puncture the AACSD active bladder. 

The support level of the pericardium is determined by the flare of the scaffold 

guides and the presence of a flared end of the device shaft. The device flare ensures 

stabilization of the pericardium where the incision is made once the PASS is in place. 

Stabilization of the pericardium is the main function of the PASS, and the third concept 

received a negative here because its features do not maintain contact with the pericardium 

as well as the other two variants. The following sections cover the device embodiment, 

where the size, arrangement of parts relative to one another, and materials were 

established. 
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10. AIM I FUTURE CONSIDERATIONS 
 

 

Section 820.30(f) of the QSR states that verification is to “confirm that the design 

output meets the design input requirements” (U.S. FDA, 2009). Each design specification 

also has a planned verification method to demonstrate that the input requirements were 

met. Methods were devised as acceptance criteria to verify that the instrument meets 

these specifications, and to confirm that the manufacturing process does not alter the 

safety or effectiveness of the device. The verification methods include ovine efficacy 

studies and benchtop tests with a prototype for performance, compatibility, and 

mechanical properties. Safety specifications, such as the shelf-life and biocompatibility of 

materials will refer to the FDA for standards. The verification and validation processes 

will be performed with the constructed access mechanism in ovine studies, as the current 

model was designed for this animal heart size and surgical access point. Once performed, 

documentation of the verification and validation results and methods will be found in the 

design history file. 

In order to complete the design process following FDA regulations, all of the 

results from the design assessment meetings go into the DHF to document decision 

making and activities within the project. All sketches, procedures and design control 

records for the pericardial access device will be made accessible in the DHF to maintain 

quality standards and device competency. A Device Master Record (DMR) for the PASS 

will contain all specifications and procedures for the device, including drawings of every 

component and a description of device composition. Device records become a reference 

instrument for the manufacturer once the product is transferred to production. 

 



 

 

43 

11. AIM II PROBLEM STATEMENT 
 

 

The second objective of the GSI was to design a mechanical delivery system for 

the AACSD into the pericardial space. Since the heart is a mechanical organ and 

mechanical factors influence its growth and remodeling, it is important that the AACSD 

contacts the myocardium directly to modulate the strain and restore normal motion to the 

heart.  The pericardium is thin and flaccid, so it forms around the heart and maintains 

close contact through the pericardial fluid, which creates a challenge when trying to pull 

the pericardium away from the heart apex. In fact, the pericardium and the pericardial 

fluid act as a barrier between the heart and the rest of the body, so the heart would not be 

able to feel the full pressure applied by the device if it were placed outside the 

pericardium. Thus, access to the pericardial space surrounding the heart must first be 

obtained in order for the cardiac support device to be successfully deployed around the 

damaged heart. The mechanism for this action is a device placed in the pericardial 

incision that allows placement of the CSD between the heart and the pericardium. The 

PASS is needed to deliver the collapsible AACSD to the heart, and to deploy the support 

device into the heart space so that a failing heart can be mechanically repaired. The 

research and development prototypes have proved useful in access of the pericardial 

space and deployment of the AACSD without creating obstacles for the surgeon. Unlike 

previous devices, this pericardial access method is purely mechanical, does not require 

suction, and gives the surgeon a viewing window of the heart for introduction of the CSD 

and use of surgical instruments. The PASS also permits a minimally invasive surgery to 

reduce trauma, time, and costs associated with heart surgery. 

It is hypothesized that the PASS will reduce the time and effort required by the 

surgeon to deliver and deploy the AACSD into the heart space. The initial design 

characteristics for the PASS were that it includes a rigid, hollow tube as a viewing 

window to allow the surgeon to maintain clear sight of the heart and AACSD, and a 

supportive, but adjustable scaffold to enter the pericardial space and support the 
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pericardium.  The tube must not collapse under the forces applied by the surgeon or ovine 

anatomy because it would then not be able to deploy the AACSD in this state.  

Although the device is intended as a single-use device, it must be biocompatible 

and sterilized before that use. With functionality as the primary concern, the primary 

goals of the second objective are: 

• The PASS should be able to withstand, without plastic deformation, the forces 

applied by the surgeon in placement of the AACSD. 

• The scaffold must adjust to the needs of the surgeon, but be strong enough to 

hold the pericardium away from the heart. 

• The AACSD must be positioned inside of the PASS shaft, and be deployed 

through the guides by suture attachment to the scaffold. 

• The final design should be refined and described with full dimensions in 

SolidWorks to meet specifications. 

• A method must be chosen that makes the device biocompatible and sterilized 

before use. 

• Risk analysis and device evaluation through failure modes and effects analysis 

must be performed. 

• Scope does not include on labeling, packing, shipping, service/maintenance. 
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12. MATERIAL SELECTION 
 

 

All materials that will be considered for the design of the PASS are legacy 

biomaterials used in FDA-approved and FDA-cleared devices on the market. Within this 

domain, materials are anatomical site specific and device specific, so the material choice is 

driven by the application. With biomedical devices that require access through the skin, 

thrombosis can become a problem. Since the PASS is intended for temporary use during 

surgery to place the AACSD, clotting is not a concern for the design. 

Materials can dictate design because of the interactions involved with the device, the 

patient, and the surgical team.  In some cases, patient characteristics and compliance with 

doctor instructions factor into the success of the device. The biomaterial mass, surface 

conditions, and physical form, as well as the location, application, and the individual 

receiving the care with the device all effect how the device and patient react to the use of the 

biomedical device. Doctor preference over the type of materials used can factor into whether 

they would feel comfortable using a device. Also, the surgeon’s technical skill and handling 

of the device can alter device performance. Finally, at the device level, material properties, 

device design and fabrication all work together to form the final properties and function of 

the device. For the PASS, patient compliance with restricted activity is not an issue, but the 

necessary material integrity depends upon surgeon and staff use of equipment, overall 

design of parts and compatibility of parts, material selection, and quality control. 

The PASS is a design that is durable, relatively light-weight, and safe for use in 

ovine models. There is a rigid metal shaft with a metal scaffold to enter the pericardial 

space.  In order to determine the best material, biomedical applications of materials were 

researched and each was rated against the other for the particular application.  The device 

does not have to be sterilized multiple times since the PASS is a single-use device, but the 

materials considered must be capable of maintaining form through one sterilization process.  
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12.1  Material Considerations 

 

Degradation can lead to the unintended loss of properties and performance 

depending on the level the material degrades.  Polymer degradation can result in bond 

changes, changes in cross-linking, loss of additives, and adsorption, all of which lead to 

alterations in chemical properties and function. The combination of mechanical and 

chemical degradation is called mechanochemical degradation.  Corrosion-accelerated 

fatigue occurs once stress foci are created.  Wear-accelerated corrosion is a concern if the 

metal is dependent on surface finish, such as stainless steel. However, the tube will not 

require surface treatment since the device is only inside of the body cavity for 

approximately 10 minutes.  

The size and geometry of the device, as well as the type of material used in 

manufacturing effect the possibility of deformation. In ovine efficacy tests, forces applied 

to the materials are minimal, but material properties are an important topic of discussion 

in this context. Manufacturability, cost, and availability of materials are other practical 

considerations in production of a device on its way to market. 

 The ultimate strength, yield strength, and stiffness of the material are important 

mechanical properties of interest in consideration of a material for device delivery and 

deployment into the pericardial space. Stiffness is a function of modulus and geometry. 

The ratio of uniaxial stress to uniaxial strain, also known as the modulus of elasticity or 

Young’s modulus, applies in the elastic range of the material before the material reaches 

yield strength.  A material with a high modulus of elasticity is said to be stiff. Yield 

strength is the stress where the material reaches plastic deformation. Ultimate strength is 

a measure of the stress at fracture of a material under an applied load.  
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12.2  Materials Alternatives 

 

Metal Tube 

Although polyvinyl chloride and brass were used for the shaft in research and 

development, a biocompatible material is needed that allows for the correct device 

geometry. Plastics would have to be made with thicker walls than is desired for the 

device, so metals will be compared for practical use. Metals can be cast in a mold, or 

wrought. Machining is less expensive than having a mold created for a particular part, so 

if a component can be wrought, it is preferred over casting. Material properties are in part 

a function of how the component is made. The instrument will be outsourced for 

manufacturing. 

 ASTM standard F 138 is a standardized orthopedic stainless steel made of the 

elements in table 5. Mechanical properties, illustrated in table 6, are best with cold-

worked stainless steel.  

 

 

Table 5. 

ASTM F 138 Composition. The 
requirement should meet:   
% Cr + 3.3 x % Mo ≥ 26.0. As from 
MatWeb (ASTM F 138, 2008). 

Element Composition (%) 

Carbon 0.030 max 

Manganese 2.00 max 

Phosphorous 0.025 max 

Sulfur 0.01 max 

Silicon 0.75 max 

Chromium 17.00-19.00 

Nickel 13.00-15.00 

Molybdenum 2.25-3.00 

Nitrogen 0.10 max 

Copper 0.50 max 

Iron balance 
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Table 6 

 The mechanical properties of F 138 stainless steel. Taken from ASTM 
 Standards (ASTM F 138, 2008). 

Property Value 

Ultimate Tensile Strength, min, psi (Mpa) 125000 (860) 

Yield Strength (0.2% offset), min, psi (Mpa) 100000 (690) 

Elongation, min, % 12 

   

 

 Since titanium alloys are lighter than most other biocompatible metals, they are 

widely used in joint replacements, and other medical devices. Titanium alloy has much 

higher ultimate and yield strengths than stainless steel. The modulus of elasticity for 

titanium alloy is substantially lower than that of stainless steel, i.e. it is less stiff.  This 

means that under the same applied load, stainless steel would change its shape less than 

titanium. The device shaft should maintain its shape while the surgeon pushes it through 

the incision so that it is stabile as a delivery and deployment apparatus.  

In order to maximize the working space within the device shaft, a metal that can 

be manufactured with a thin wall is necessary. The desired property is a wall thickness of 

less than 1/16” for a larger surgeon viewing window, and more space for the collapsed 

AACSD. This increased degrees of freedom between the AACSD and PASS will provide 

for better deployment. This is the primary reason F138 stainless steel was chosen over 

any titanium alloy. 

The moderate yield stress of stainless steel gives it an ability to bend, which is a 

mandatory trait for the tube of the PASS when entering and exiting the sub-xiphoid 

incision around delicate organs. The metal is ductile and easily manufactured as well. 

Corrosion is common with stainless steel, causing a major reduction in the use of the 

metal in joint repair, now solely for fracture repair instead of joint replacement. If the 

metal is scratched, one part becomes anodic and loses ions, leading to corrosion. It does 

have a history of corrosion in vivo, which can be prevented by surface treatment, design, 

and minimizing handling. The transient use of the surgical instrument limits corrosion as 

a concern for the design of the PASS. 
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Scaffold Guide Wires 

Scaffold guide wires should be flexible and elastic so that when the surgeon 

presses the guides together for entry into the pericardial space and releases them; they 

will spring back to their flared position and hold the pericardium away from the heart.  

ASTM standard stainless steel 316L is easy to deform, which is not a desirable 

characteristic for the flare of the PASS. It would be preferable to have a material that is 

flexible and springs back to shape.  

ASTM F2063 is a wrought nickel-titanium alloy used for medical devices and 

surgical implants in orthopedics and dentistry, such as self-expanding stents. Nickel 

titanium, more commonly known as Nitinol, is a shape memory alloy. Mechanical 

working and heat treatment can drastically change the properties of Nitinol. One of the 

unique properties of this particular choice is a transition temperature below room 

temperature that will allow it to work inside of the body. The shape of the wire is set 

upon cooling. Above the transition temperature, super-elastic properties are exhibited, 

and the metal will recover its previous shape after being bent and twisted.  Flexibility is 

about 20 times greater in Nitinol than in stainless steel (Duerig, Pelton, & Stockel, 1997). 

The Nitinol used during research and development of the PASS has the ability to be 

strained 8-10 times more than spring steel without plastic deformation (Small Parts, 

2008). This flexibility and resistance to permanent deformation will allow for more 

durable scaffold guide wires to maintain the initial flare and hold the pericardium away 

from the heart for deployment of the AACSD. An example of a positioning and 

deployment device using Nitinol is Mitek’s Homer Mammalok, which is used to mark the 

location of a breast tumor. The Nitinol wire hook in the Mammalock allows a much 

smaller radius of curvature at a larger wire diameter than stainless steel, and returns to its 

original configuration after experiencing approximately 8% strain inside the stainless 

steel cannula (Duerig, Pelton, & Stockel, 1997). With the limited space available inside 

the body for a minimally invasive surgery, such elasticity is invaluable. Finally, 

placement of the AACSD in animal efficacy studies illustrated a clear fluoroscopy image 
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with Nitinol, so a more precise deployment is possible. The typical composition of 

Nitinol is shown in table 7. 

 

 

Table 7 

 ASTM F 2063 Composition. Taken from ASTM 
Standards (ASTM F 2063, 2008). 

Element Composition (%) 

Nickel 54.5-57.0 

Carbon 0.050 max 

Cobalt 0.050 max 

Copper 0.010 max 

Chromium 0.010 max 

Hydrogen 0.005 max 

Iron 0.050 max 

Niobium 0.025 max 

Nitrogen plus Oxygen 0.050 max 

Titanium balance 

 

 

The mechanical properties for super elastic Nitinol are in table 8 below. 

 

 

Table 8 

 The mechanical properties for F 2063 Super Elastic Nitinol. Taken from 
 MatWeb Material Properties (MatWeb F2063). 

Property Value 

Ultimate Tensile Strength, psi (Mpa) 155000 (1070) 

Yield Strength (after transition), psi (Mpa) 118000 (814) 

Elongation at Break, % 8 

 

 

Securing Ring 

For the ring to secure the Nitinol wires onto the stainless steel tube, a rigid plastic 

is desired. Plastic is preferred over metal here to allow more degrees of freedom for the 

Nitinol guidewires. A stabilizer can be added to limit cross-linking that might be caused 
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by radiation sterilization. Cross-linking increases modulus, ultimate strength and yield 

strength, changing the properties of the material. 

Polysulfone, ASTM F702-98a, has good radiation stability that is 200 times that 

of polypropylene, almost 700 times that of polyacetals, and 10 times polycarbonate 

(Sterigenics, 2009).  It is often used to replace polycarbonate, but is more expensive. 

Polyacetal was briefly researched for use as the ring material, but it was discarded due to 

low radiation tolerance and the likelihood of embrittlement after sterilization (Sterigenics, 

2009). Polypropylene has a superior fatigue life when compared to other biomedical 

polymers. The material is used in intravenous drip chambers and syringes. Also, the flex 

of the material allows wide biomedical use as a hinge in clamps.  A stabilizer must be 

added when gamma irradiation is used for sterilization to limit degradation because the 

polymer becomes brittle (Sterigenics, 2009). The high mold shrinkage and water 

absorption found with polypropylene made it unappealing for the ring as accurate 

dimensions are needed for a precise fit on the guide wires (MatWeb polypropylene). 

PEEK (polyetheretherketone) was researched and is used for more involved engineering 

applications than a ring with grooves would require. The Young’s modulus for PEEK is 

substantially higher than polycarbonate, and such a degree of stiffness is not a desired 

property for a ring passing through the pericardium. 

Polycarbonate (F 997-98a) has less mold shrinkage than polysulfone and is 

cheaper, which was the basis for choosing this thermoplastic. It is a more effective 

material option for a single-use device. It is also easy to machine, has good strength and 

stiffness. Since water absorption is low for polycarbonate, it can provide high 

dimensional accuracy, which is important in securing the Nitinol guide wires. The 

polycarbonate will be molded to create the grooves on the inner surface of the ring. Table 

9 shows the mechanical properties for gamma radiation-resistant polycarbonate. 
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Table 9 

 The mechanical properties for F 997-98a Gamma Radiation Resistant Polycarbonate. 
Properties were found on MatWeb (MatWeb F 997-98a). 

Property Value 

Ultimate Tensile Strength, psi (Mpa) 7250-18000 (50-124) 

Yield Strength, psi (Mpa) 5370-27700 (37-191) 

Elongation at Break, avg., % 79.4 

Modulus of Elasticity, ksi (Gpa) 261-1100 (1.8-7.58) 

Water Absorption, avg., % 0.227 

Linear Mold Shrinkage, avg., cm/cm 0.00583 

 

 

Heat-Shrink Tubing 

The heat shrink tubing is Teflon®, a form of polytetrafluoroethylene (PTFE) 

commonly used for fabric vascular grafts. This PTFE thin-walled tubing is ASTM 

standard D 3295. It has a 2:1 shrink ratio, and in order to fit the 1/8” tubing, a ¼” outer 

diameter tube will be used. The tubes will slide over each of the six guides to envelope 

the wires. They have a high operating temperature, so when heat is applied, they will 

shrink to half of their size, forming a tight fit around the guides. The tubes will provide a 

smoother entry for the guides inside the pericardium because of the low coefficient of 

friction of PTFE. Table 10 below illustrates the material properties of D 3295 PTFE 

tubing.  

 

 

Table 10 

 The mechanical properties for D 3295 PTFE tubing. Taken from 
Lenntech (Lenntech, 2008). 

Property Value 

Ultimate Tensile Strength, psi (Mpa) 34000 (23) 

Elongation, % 325 

Flexural modulus, ksi (Gpa) 85000 (600) 

Upper Service Temperature °C (°F) 204 (400) 
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13. FINAL DESIGN AND PART DESCRIPTION 

 

 

13.1 Description 

 

The shaft must extend outside of the body cavity where the sub-xiphoid incision 

is made, but must also be short enough so that the curvature does not block the view of 

the AACSD for the surgeon. The shaft curvature was optimized during research and 

design at a 15-in. radius of curvature to maintain a viewing window for the surgeon while 

conforming to the ovine anatomy as well as possible. 

The flare of the device shaft provides better support for the pericardium than the 

scaffold alone, because the material of the shaft is more rigid than the scaffold material. 

Also, a flared end encourages and accommodates the AACSD to flare around the heart 

upon deployment. The angle of flare was calculated using a circle of the same diameter as 

the outer diameter of the bottom of the shaft, which is 1.5 inches. A cone was made by 

cutting a 90° sector out of this circle and folding the edges of the remaining parts of the 

circle into a cone. The perpendicular height of the right circular-based cone was 

controlled by the maximum outer diameter of the top of the shaft that would first enter 

the sub-xiphoid incision in the ovine model.  To remain below the 1.9-inch outer 

diameter constraint of the tube, the flare diameter was set to 1.8 inches. This left 0.15 

inches for the radius of the base of the cone, with the shaft flare starting at the 1.5 inch 

diameter of the remaining shaft. The calculation of the perpendicular height of the cone, 

using the angle of flare is shown in Appendix B. These dimensions were needed to 

convert the design sketch into a 3-dimensional SolidWorks design. The collapsed 

AACSD will fit well within the limits of the 6-inch tube. 

The desired aspect ratio between the shaft outer diameter and the length of the 

scaffold extension past the shaft is 1:1. The scaffold pieces should be equally spaced to 

support the pericardium around the heart. To determine the width of the pieces, the 

AACSD suture loop size and the circumference of the shaft flare top were taken into 
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account. The circumference is 5.7 inches, which allows 0.95 inches for each of the 6 

scaffold guides. The scaffold guide wires extend straight up from the flared shaft end 1.5” 

and are 1/8” wide, until the rounded top, which has a 1/16” radius of curvature. The 

sutures used to slide the AACSD on the guide wires are 3/16” long before being sewn 

into loops to go over the scaffold ends. Although the guide wires are thinner than those 

used in the efficacy study prototypes, the strength of the scaffold guides coupled with the 

shaft flare extending into the pericardial space will provide sufficient support of the 

pericardium. Figure 14 below shows the device presented in SolidWorks. 

 
 
 

 
Fig. 14. PASS design in SolidWorks. (A) Top view; (B) isometric view. 

 
 
 
Once the device is placed, it sets the path for the cardiac support device, but does 

not have the ability to change in form or size. The device is not capable of flexible 

movement around the site, but this is not necessary for the specific application with the 

cardiac support device. Upon entry into the pericardial space, the scaffold guide wires 

will be manually held together so they do not snag the pericardium, and released once 

they completely clear the pericardial sac. The stabilizing apparatus opens into the space 

A B 
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when the scaffold is released, forming a cup around the heart apex. Then the surgeon can 

pull the pericardium away from the heart and the suture loops will slide off of the 

scaffold guide wires for the deployment of the AACSD.  

 

13.2 Refinements 

 

At this point in the design process, the concept sketch depicted maximum 

dimensions of the device for clearance into the incision, the deployment path of the 

AACSD through the shaft, and the layout of the components relative to each other. 

Ranges of the variables of shaft length, flare angle, scaffold length, and materials were 

listed before each parameter was precisely established to work best together. Any 

simplifications that could be made to the device while meeting functional requirements 

and constraints were made. 

Once a final design was chosen, the GSI consulted Dr. Criscione, the creator of 

the AACSD and CEO of CorInnova for necessary design refinements.  The ends of the 

scaffold guides were rounded further to prevent abrasion to the heart and pericardium, 

and to provide for smoother entry into the pericardial space. All edges were filleted to 

prevent abrasion as well. Also, a securing ring was added to attain increased bonding 

between the scaffold wires and the device shaft outer surface. The ring will slide over the 

shaft at an angle to reduce the cross-sectional area of the shaft entering the incision so 

that the additional piece does not require a more invasive entry. This way, the diameter of 

the shaft will only be the outer diameter plus one thickness of the ring, instead of two, 

which would be the case if the ring were parallel to the top of the shaft.  Of course, the 

flare at the top of the device will be of larger diameter than any other part of the PASS, so 

the securing ring remains less than the diameter of the top of the flare. 

To prevent tangling of the AACSD Nitinol frame and the PASS Nitinol guide 

wires upon deployment, heat-shrink tubing was placed over the guide wires and activated 

to create a 1.35” long thin film between the guides on each of the six scaffold pieces. 

This way, if the AACSD frame hits the PASS deployment guides, it will deflect off 
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instead of interlacing. Teflon® heat-shrink tubing will further prevent abrasion to the 

heart. Further discussion and illustrations for the design change can be found in Appendix 

C. Figure 15 below shows how the tubing fits over the Nitinol guide wires. 

 
 
 

 
Fig. 15. Scaffold of device in SolidWorks. Heat-shrink tubing fits over a single guide. 
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13.3 Bill of Materials and Assembly 

 

Table 11 below is the bill of materials with all parts, their function, materials, and 

dimensions. 

 

 

Table 11 

 Bill of materials 

Part # Part Name QTY Function Material Dimensions 

1 1.1 Shaft 1 Provide viewing tunnel 
for surgeon and pathway 
for AACSD into 
pericardial space 

F 138             
Stainless Steel 

1.5" OD, 1.4" ID, 
15-in radius of 
curvature, 6" long 

 1.2 Shaft flare 1 Aid in holding pericardial 
sac open and away from 
the heart 

F 138               
Stainless Steel 

0.12" height, 1.8" 
OD, 1.7" ID 

2 2.1 Scaffold 
guide wires 

6 Stabilize pericardium 
away from heart; open 
heart space for AACSD 
entry 

F 2063          
Nitinol 

0.025" Diameter, 
1.5" above tube for 
1:1 aspect ratio 
with tube diameter, 
1/8" width, equal 
spacing (every 60 
degrees) 
 

3 3.1 Heat-
shrink 
tubing 

1 Cover gap between guide 
wires to prevent 
entanglement; better 
stabilization of 
pericardium 
 

D 3295      
Teflon 

1/4" Diameter, 
1.35" length 

4 4.1 Securing 
Ring 

1 Secure scaffold pieces to 
tube 

F 997-98a 
Polycarbonate 

1.5" ID, 1.6" OD,                           
0.9" height, 0.025-
in radius on 12 
groove arcs 
corresponding to 
scaffold guides 
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If the shaft of the tube were straight and did not have a radius of curvature, a lathe 

could be used for machining the part because of the rotational axis of symmetry. A lathe 

will allow accurate dimensions to be attained, and smoothing of the inner and outer 

surfaces of the device. However, a wall thickness of 1/16” is needed for the shaft, so 

machining the part this way would waste material. Also, the curvature of the shaft makes 

it more difficult to machine, so it will likely be outsourced for production. Once the part 

is gradually curved to meet specifications for the radius of curvature, all edges will be 

rounded for safety. The polycarbonate securing ring will be injection molded for a close 

tolerance and a tight fit to prevent the deployment guides from slipping or dislodging 

during the procedure.  The angle of the securing ring, the curvature of the shaft, and the 

grooves in the ring make molding a better option than machining the part. The 

temperature will be closely monitored during the molding process to prevent decline in 

mechanical properties of the polycarbonate. Once the part is created, it slides onto the 

shaft at the base, fitting just below where the flare begins. Nitinol wire will be heated and 

shaped in a small tube to obtain the correct curvature and length. Once the six 

deployment guides are made, they will fit securely into the ring grooves, flaring outward 

and upward from the center of the tube. Heat-shrink tubing will be pulled over the each 

deployment guide to the top of the shaft flare, and activated to form sleeves over the 

guides. 

The device was finalized with dimensions, as illustrated in figure 16 below. 
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Fig. 16. Pericardial Access and Support System with dimensions.  
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14. STERILIZATION 

 

 

Before each use, medical devices should undergo sterilization. The newest 

medical device sterilization techniques were considered for efficient and inexpensive 

sterilization of the PASS.  The methods researched were first checked for material 

compatibility with the chosen metals and polymers for the device. Also, since radiation 

and ethylene oxide sterilization are priced according to such aspects as product density, 

dose, and turnaround time, these factors were taken into account in the decision-making 

process. 

Although it kills microbial organisms effectively and inexpensively, steam 

sterilization is not often used for commercial sterilization of medical devices because 

cycles are run at temperatures of 121°C for 15 minutes or 134°C for 3-4 minutes, which 

“can melt acrylics and styrene, distort PVC, and corrode some metals” (Rogers, 2006). 

During research and development, steam sterilization was attempted with a prototype 

containing hypodermic tubing, and the device shape was altered. Thus, it will not be used 

for sterilization on the product in the market. Reducing the required temperatures in 

steam sterilization allows more plastics to undergo the process. However, there are 

superior sterilization methods available that would be better for the PASS. 

Products undergoing EtO sterilization, especially certain plastics, will absorb 

ethylene oxide (Leventon, 2002). Stainless steel is more resistant to this absorption, but 

the plastic ring in the PASS would still be a concern with released EtO. The device would 

need to be aerated to remove harmful residuals prior to use in the procedure, so the post-

sterilization efforts would add to overall time and cost. Also, it would be difficult for the 

EtO gas to reach the Nitinol wires under the plastic securing ring, so the device would 

possibly require partial disassembly for full sterilization. A more hazardous alternative 

would be to increase the gas concentration in the sterilization chamber, but this would 

obvious result in more side effects and EtO residuals (Leventon, 2002).  
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Electron-beam sterilization sometimes requires dosimeters to confirm that the 

product received a sufficient dose because the electron beam has issues with reaching all 

parts of some devices (Leventon, 2002). Since electrons have mass, the penetration 

distance of the beam may only be half of the distance reached by gamma radiation 

(Leventon, 2002). The orientation of the device can be changed and run through the 

sterilization process multiple times. Although e-beam radiation has low penetration and 

high dosage rates, the shorter exposure time can reduce the breakdown of polymers, such 

as polypropylene (Sterigenics E-beam, 2009). The shorter penetration distance could 

become a concern, and the alternative is more sufficient. 

Gamma irradiation successfully kills microorganisms with deep penetration at 

low dose rates and little temperature effect (Sterigenics Gamma, 2009). The product will 

not become radioactive after sterilization, and no residues are created during the process. 

Radiation sterilization has the potential to change mechanical properties of polymers, 

such as increasing the cross-linking causing a stiffer material that can be brittle and have 

a lower strain to failure. In contrast to ethylene oxide sterilization, gamma sterilization 

can be done on a larger scale, once the device is already packaged and ready for 

shipment. Gamma penetrates all parts of any design configuration, making it appealing as 

a sterilization method for the PASS. For all polymers used in medical devices, close 

attention should be paid to the dose tolerance level to prevent simultaneous reactions of 

chain scission and cross-linking. Chain scission reduces tensile strength and elongation of 

the polymer, while cross-linking increases tensile strength and reduces elongation 

(Sterigenics, 2009). All polymers react differently to radiation sterilization. For example, 

high molecular weight polymers retain longer molecules and uphold their strength after 

irradiation, while thin components allow more oxygen into the sterilization process and 

lead to polymer degradation (Sterigenics, 2009). It is possible to inhibit the effects of this 

sterilization on the polymer by adding stabilizers, antioxidants and additives. They can 

absorb the radiation energy to prevent interaction with the polymer, or act as reactants, 

combining with radiation-generated free radicals in the polymer (Sterigenics, 2009).  
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Johnson & Johnson developed the Sterrad System, which is a low-temperature 

hydrogen peroxide gas plasma sterilization, as an alternative to other sterilization 

methods available. The 75 minute cycle uses hydrogen peroxide vapor and low-

temperature gas plasma, leaves no residue, has low humidity, and requires no aeration 

procedure after sterilization since oxygen and water are the main byproducts (Feldman & 

Hui, 1997). Liquid peroxide is inserted into the evacuated chamber, and once the 

peroxide evaporates during the diffusion phase, it fills the chamber and sterilizes the 

device materials; then, the radio-frequency plasma discharge starts and hydrogen 

peroxide vapor separates into reactive species, such as free radicals (Feldman & Hui, 

1997).  However, the reaction does not penetrate as well as gamma irradiation, so it 

cannot be done after packaging. It will take the vapor longer than the cycle lasts to 

penetrate long and narrow lumens. This is a problem when considering use for the PASS, 

because although the device shaft has a diameter that is wide enough for full diffusion, 

the heat-shrink tubing covering the deployment guide wires would likely make a tunnel 

too narrow for the vapor to pass through. 

After conducting research on the most commonly used methods and the newest 

developments in sterilization, it was concluded that gamma irradiation will ultimately be 

used to sterilize the PASS. This method is capable of penetrating all parts of the device 

shaft and scaffold, and can reach into the small area between the Nitinol guides under the 

Teflon heat-shrink tubing. Gamma will also leave no residue behind following 

sterilization, can be executed in large scale after packaging, and will not deteriorate or 

otherwise damage any of the materials used in manufacturing the product. 
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15. DESIGN EVALUATION 
 

 

15.1 Failure Modes and Effects Analysis 

 

A Failure Mode and Effects Analysis (FMEA) is a method for investigation of 

possible types of failure within a design or process, and the effect of the potential failures 

on a system.  Benchtop studies and efficacy tests are expensive to perform, so a FMEA 

was completed by listing potential results of device failure and the controls in place to 

prevent them. Failures can be caused by any errors or defects in the design or process that 

could affect the user, and thus, their consequences but be analyzed. A FMEA must be 

performed on the PASS to yield a safe and reliable product, and to ensure that failure 

modes and their effects have been considered. Reducing the risk of failure will prevent 

costly mistakes in the system. One FMEA considers the product design and 

manufacturing as potential causes of failure, while the second enumerates possible 

failures resulting from the user or user errors.  

Each part and its function, as listed in the device Bill of materials, were taken into 

consideration for FMEA. For success, the device must perform as intended and according 

to specifications made to meet the user needs. Thus, a potential failure mode was 

considered from incorrect operation to partial or complete failure of the part. Causes of 

failure for the PASS include operator error and manufacturing error. Since all designs 

must have controls in place to prevent these failures, the controls were set and 

documented as well. The severity of the potential failure was rated on the scale shown in 

table 12.  
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Table 12 

FMEA Severity Rating 

1 Insignificant (undetected by customer) 

2 Very Minor 

3 Minor (average customer will notice; a few 
customers annoyed) 

4-6 Moderate (reduced performance and 
convenience) 

7-8 High (loss of primary function, dissatisfied 
customers) 

9-10 Hazardous (inoperative product, unsatisfied 
customers, risk of injury or death) 

 

 

The likelihood of failure occurrence was rated using the scale in table 13. 

 

 

Table 13 

FMEA Probability of Occurrence 

1 No Effect 

2-3 Low (relatively few failures) 

4-6 Moderate (occasional failures) 

7-8 High ( repeated failure) 

9-10 Very High (likely failure) 

 

 

The chance for detection prior to device failures was rated using table 14 below. 

 

 

Table 14 

FMEA Probability of Detection 

1 Almost Certain 

2 High 

3 Moderate 

4-6 Moderate (customers annoyed) 

7-8 Low 

9-10 Remote to absolute uncertainty 

 

 



 

 

65 

The Risk Priority Number (RPN) was calculated to help determine the failure 

modes that required the most immediate action. It was calculated by multiplying the 

severity rating by the probability of occurrence and the probability of detection. Thus, the 

failure modes with the highest RPN are given the priority for recommended actions. The 

actions to reduce the possibility of failure are also included in the FMEA table below.  

This is the part of the analysis where plans for design improvements or changes in 

components are documented and acted upon accordingly. The user failure modes and 

effects analysis in table 15 below presents the capabilities and possible limitations of the 

surgeon performing the surgery to place the AACSD using the PASS. 
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Human factors issues are addressed through the user FMEA to demonstrate what 

could fail within the user-device interface. This is the evaluation of the tasks that the 

surgeon must perform, as discussed in the device life cycle, and how the PASS 

accommodates to user performance. Most of the potential failure modes relate to 

handling of the device, user training, and adherence to the instruction manual. For 

example, the device should be placed with the shaft curving upwards out of the sub-

xiphoid incision in ovines, and the guide wires must be held together for entry into the 

pericardial incision before they are released. If either of these directions is not observed, 

tissue damage could occur that would result in a longer healing time for the patient, or 

worse. This is a concern because the patient is already in poor health, so any additional 

difficulties relating to the surgery could become intolerable. The device should attempt 

to make the surgery easier and safer, so if these issues arise, the PASS has failed to 

perform the main function. As long as the PASS is carefully handled after it is removed 

from packaging so that there are no scratches, kinks, or inappropriate curves in the 

device, failure can be prevented.  

The highest risk priority number is associated with a scratch on the shaft surface. 

The stainless steel would become very abrasive and cause tissue damage. Further 

efficacy tests for ergonomics can be performed for this failure mode. If the surgeon uses 

excessive force with the PASS, the guide wires could become detached from the 

securing ring or kinked. Both would result in an inoperative product that could lead to 

injury or death of the patient. However, the problem is easily detected before the 

accident, and there is a low possibility of occurrence. The device does not require much 

force to travel to the pericardium, or to be placed into the pericardial space. The ring 

should certainly not be pulled on, but benchtop studies can be performed to test the 

limits. The device carries its own potential failure modes, which must also be analyzed 

for prevention and detection. Table 16 below illustrates the failure modes and effects 

analysis for the PASS. 
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The sterilization and biocompatibility of the device carries little concern because 

they are easy to control. Also, most of the potential failure modes for the device relate to 

manufacturing the product to specifications. Thus, provided the manufacturer follows 

specifications for shaft size, degree of flare, length and curvature of the device, it should 

properly adapt to the ovine anatomy. To ensure the safety of the PASS, all edges are 

filleted on the model, which should be followed by manufacturing. Also, the inner and 

outer shaft surfaces must be smooth to prevent abrasion, tissue damage, or puncturing of 

the active bladder of the AACSD. Damage to the AACSD carries a high risk priority 

number because it would lead to loss of the primary function of the device, which is to 

restore motion in the heart. The device would be unable to apply as much pressure as is 

needed to heal a patient with congestive heart failure. Simple quality control measures 

would prevent this failure mode. Detachment of the scaffold guide wires would be very 

hazardous, because the part could become loose in the pericardial space. The surgeon 

would have to search for the piece and remove it with other surgical instruments that 

could potentially damage the heart or pericardial tissue. Also, since the PASS is intended 

to reduce deployment time for the PASS and make it easier for the surgeon, the device 

would not meet user needs under these conditions. However, there is little chance for 

occurrence of this failure mode, and detection of the detached part is almost certain.  

Another potential event is the entanglement of the AACSD Nitinol framework 

with the PASS Nitinol guides. The guides would delay delivery of the AACSD and the 

surgeon would have to manually untangle the wires and attempt to deploy the cardiac 

support device again. There is a possibility of the guides piercing the active bladder of the 

AACSD, making it inoperative. This problem is currently managed by the heat-shrink 

tubing creating a solid film between the guides where the AACSD cannot pass through. If 

the shaft becomes bent or the guide wires kink prior to use, the device should not be used 

because the geometry would become a concern. It is almost certain that the majority of 

the potential failures would be detected, and the risks can be prevented or reduced prior 

to entry of the PASS into the pericardial space. For example, if the suture loops that slide 



 

 

76 

over the guide wires become detached or loose, or there was a hole in the tubing, the 

surgeon would see the problem before placement.  

The nature of medical device instruments is low risk, because they should be 

aiding in ease and safety of the operation, not adding to the possible hazards. Controls in 

place to detect potential failures, and steps taken to prevent these failures prove the safety 

of the device, which is of utmost importance in the design of any medical device. The 

recommended action for the failure modes with high risk priority numbers will be 

followed to improve the quality of the design. For most of the potential failure modes, 

this includes benchtop testing and further efficacy studies. After the actions are executed, 

the severity, occurrence and detection levels within the FMEA will be reassessed. 

Problems may still arise late in the design process during production due to the 

differences seen between a laboratory-built prototype and a manufactured product made 

on an assembly, for example. For this reason, the design and production teams will 

maintain open and consistent communication when the PASS first reaches production. 
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16. AIM II FUTURE CONSIDERATIONS 
 

 

The device can be advanced further by including a component to aid in the initial 

grasping of the pericardium for entry of the stabilization mechanism. The surgery 

requires the surgeon to make the incision into the pericardium at the apex and thread 

sutures, equally-spaced around the incision to seize the pericardium and gain control of 

the flaccid tissue. This means that to put the PASS into the incision at this point, the user 

must use one hand to hold the sutures coming out of the pericardium taut, and the other 

to hold the scaffold deployment wires. Research and design demonstrated that an 

increased surface area of the PASS guides contacting the inside of the pericardium leads 

to better pericardial support. A future design improvement would be to extend the idea 

of the heat-shrink tubing creating the film across the guides by creating thin plastic film 

sections between each of the six guides connecting it to the next. This could prove to 

stabilize the pericardium better than the current design method, achieving this end 

similar to a kite collecting air in the taut sections.  Nylon, a polyamide, would be a good 

material choice for these pieces because it would create smooth, thin sheets to contact 

the pericardium that are relatively resistant to abrasion by the Nylon and Nitinol 

framework of the AACSD.  

The more minimally invasive the surgery, the better the likely outcome and 

recovery time for the patient. Thus, if the access device can be reduced further in size, 

along with the AACSD, a smaller incision can be made. Of course, the surgeon would 

still need enough room to work inside of the pericardial space to place the AACSD and 

maneuver the PASS, and compatibility with the cardiac support device must be 

maintained. 

Validation, in section 820.30(g), is the “confirmation by objective evidence that 

the particular requirements for a specific intended use can be consistently fulfilled” (U.S. 

FDA, 2009). The validation proves that the device is reproducible in technical 

performance and meeting user needs. The methods defined for validation should mimic 

how the produced device will be used in practice in order to determine that the device is 



 

 

78 

ready for market. As with verification, all methods, and other documentation should go 

into the design history file. Before the device can be used in a practical setting on 

humans, it must go through rigorous animal testing, and the results must be analyzed for 

safety and efficacy. Results of the testing and FMEA are compared with the design 

specifications for quality assurance purposes. 

After the final design output is made, the design will be transferred to the 

production specifications as per section 820.30(h) of the QSR, which will reflect any 

necessary design changes made throughout the process after the efficacy studies and 

clinical trials are completed (U.S. FDA, 2009). All design changes made throughout the 

design process, particularly after aspects of the design have been verified and accepted, 

will be documented and will reflect section 820.30(i) of the QSR. The design history file 

is a collection of records that depicts the entire history of the device throughout the 

design and development process, which should follow the approved design plan, as per 

QSR section 830.40(j) (U.S. FDA, 2009). It will consist of the R&D summary, design 

and development plan, design review meeting agendas and action items, all sketches and 

computer-aided design drawings, specifications, and verification and validation plans 

and results. The file exists to prove that a design plan that follows the QSR was created 

and followed. The design history file was produced, but will be continuously updated as 

the design progresses to market. 

The PASS will be labeled as a single-use device. Also, the packaging will 

contain a brief description of the intended use of the product in conjunction with the 

AACSD to deter off-label use. Discussion of device installation will be found in the 

AACSD instruction manual under delivery and deployment.  

The PASS was motivated by a human need for the device in patients 

experiencing congestive heart failure. The final step in making the PASS available for 

use to move from sheep studies to human trials once the human design is finalized.  This 

includes altering the depth and orientation of the device for a human heart and mini-

thoracotomy point of entry, as well as the size and geometry. The cross-section of the 

PASS shaft will assume more of an ellipse for entry into the human anatomy. Thus, once 
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the device has been validated and production specifications are made for ovine models, 

the design will move to clinical trials, which will test the safety and efficacy of use in 

humans.  
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17. SUMMARY 
 

 

The incidence of congestive heart failure cases is increasing, as are the costs 

related to treatment of the disease. As the population grows, and the lack of donor hearts 

available remains a problem, cardiac assist devices and devices that remodel the heart 

back to normal function are proving useful. The need for the pericardial access and 

support system (PASS) surfaced after ovine model studies with the Active and 

Adjustable Cardiac Support Device (AACSD).  The cardiac support device proved 

difficult to insert into a small incision for the surgeon without a device to aid in delivery. 

The PASS deploys the AACSD into the pericardial space surrounding an infarcted heart.  

The instrument allows unobstructed access for the AACSD, without altering its 

performance.   Previous methods of restoring motion in the myocytes do not use a 

stabilizing device to shorten recovery time, but this innovative apparatus allows a 

minimally invasive surgery, which will reduce recovery time and medical costs.  

The design process for the device followed the design controls in the quality 

system regulations laid out by the FDA. A design and development plan was created to 

list the tasks necessary to design the device. The first design inputs included reviewing 

the device life cycle, user needs, and the research and development prototypes to 

determine what the device would need to accomplish and how it would be implemented. 

The design focused on technical performance, patient safety, ease of use, and quality 

assurance. Once the design requirements were itemized, the more detailed and 

comprehensive design specifications became the first design output.  

Three design concepts were developed and sketched for consideration. The 

designer chose design criteria as a basis for the design decision, and used a Pugh chart 

for selection.  The criteria included ease of entry and deployment of the AACSD, view 

for the surgeon, support of the pericardium, manufacturability, and compatibility with 

the cardiac support device. Once a single design concept was favored, the concept was 

checked against the design specifications to ensure that the device structure fulfilled all 
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of the functional requirements before the product began its iterative progression to 

concrete form. 

Design embodiment continued with the selection of biocompatible materials. 

Mechanical properties of the materials were researched to determine which materials 

would perform best in vivo for the particular application. It was decided that the shaft of 

1.5” outer diameter would be stainless steel, with a flared end to aid in pericardial 

stabilization, and a 15” radius of curvature to better accommodate the surgeon and the 

body. Six super-elastic Nitinol guide wires extend 1.5” up from the shaft flare, and open 

once they have entered the pericardial space to support the pericardium. Teflon heat-

shrink tubing will cover the guide wires to prevent tissue abrasion and entanglement of 

the PASS with the AACSD Nitinol frame. Finally, gamma radiation-resistant 

polycarbonate will form a ring over the Nitinol guides to hold them in place, and prevent 

any parts from lodging into the pericardial space.  

The device is intended for single-use, but will be sterilized using gamma 

irradiation after packaging. Risk assessment was completed by performing failure modes 

and effects analyses for the device and the user. It was concluded that the failure modes 

with high risk priority numbers were unlikely of occurring and could be easily detected, 

but further efficacy studies and benchtop testing will take place for quality control 

purposes. Verification and validation of the device must be performed to ensure that 

specifications, user needs, and functional performance standards were met before the 

PASS advances to production. The PASS will eventually undergo clinical trials to bridge 

the gap between ovine studies and human use. 
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APPENDIX A 
  

 

               Rough sketches were made of several concepts before they were eventually 

narrowed down to the three alternatives used in the Pugh chart for concept selection. The 

concepts were discussed with Dr. Criscione to find the most beneficial features, and 

those that could be left on the drawing table before moving onto the next round of 

decision-making. The shaft outer diameter on all concepts is 1.5 inches. Figure 17 

depicts one of the original concepts following research and development. 

 
 
 

 
Fig. 17:  Sketch of original design concept 1. 
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             There are springs to connect the top ring and the guides for flexibility. However, 

this addition could make entry into the pericardium messier, because there are more 

components that could potentially grab the pericardium. The guides in this concept 

should allow less interference with the pericardium because they are less flared than 

previous ideas. Instead of one guide entering and exiting different struts as in some of 

the research and development prototypes, each guide enters where it exits for this 

alternative. The scaffold guides are controlled by thin wires connecting to larger control 

arms at the bottom of the device. The smaller wires will slide through the struts down the 

length of the shaft, and open into the guide wires at the top of the PASS. This is what 

allows the scaffold to be retractable and allows more control for the surgeon overall. 

Nitinol and stainless steel were suggested for the materials at this point. Concept 2 

maintains the same retractable scaffold as concept 1, but the shape of the guide wires is 

much different. The wires will follow the end of the shaft curvature to curve into the 

pericardial space, but they are now single wires capped with small spheres to prevent 

abrasion. The concept is shown below in figure 18. 
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Fig. 18.  Sketch of original design concept 2. 

 
 

 
Both beads or various polymers were discussed for the tips with this design. 

Original design concept 3 features a curved shaft that will use the same radius of 

curvature of 15 inches as the research and development prototypes. The scaffold will be 

held together for entry into the pericardial space as in prototype 7. There is a solid, 

hollow shaft, which will hold the AACSD at the top on the guide wires for the surgeon 

to place the device. There are also deep grooves on the bottom of the shaft for the 

surgeon to put the sutures sewn through the pericardium. These will give the surgeon a 

free hand without the need of more instruments once the pericardium is pulled away 

from the heart. Figure 19 depicts the described device below. 
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Fig. 19. Sketch of original design concept 3. 

 

 

              The idea for the ring to secure the guide wires was first introduced with original 

design concept 4, which is shown in figure 20 below. 
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Fig. 20.  Sketch of original design concept 4. 

 

 

The scaffold guides will be held by the surgeon before they pass into the 

pericardium, and released once they have entered the pericardial space to stabilize the 

tissue. Thus, the scaffold is not retractable, but simply rests on the straight, hollow shaft. 

It was also proposed with this idea that a slightly larger solid tube could go over the shaft 

and guide wires to hold them together for the surgeon, but the diameter of the shaft 

would need to be reduced to allow more components to enter the limited space. The 

shaft includes a flared end to increase the level of support for the pericardium. It is 

proposed that the flare reach an angle of 45 degrees in relation to the rest of the shaft. 
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Variations of this design can be made by changing the angle of flare or using a flared 

shaft.  

Original concept 5 is similar in simplicity to the previous concept, but the shaft 

does not flare at the tip. The scaffold guides will be held by the surgeon for deployment, 

once again. This method allows the AACSD to be placed on the heart apex end of the 

PASS via sutures, instead of traveling through a system with a retractable scaffold. The 

AACSD collapses inside of the device scaffold. The cardiac support device will take on 

the shape of the shaft that it is placed in, so a flared end may be better than this idea 

because it encourages and accommodates for the device to flare around the heart. Figure 

21 shows design concept 5 before concept selection alternatives were made. 

 

 

 
Fig. 21.  Sketch of original design concept 5. 
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              Aside from less interference with the pericardium and the AACSD, another 

benefit of the non-retractable guide is manufacturability.  
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APPENDIX B 

 

 

The perimeter of the cone after removing a 90° sector was set equal to the 

perimeter of a new circle as follows: 

 

1.5*pi*r1 = 2*pi*r2 

r2  = 0.75* r1 

Angle of flare = Arcsin(3/4) = 0.848062 radians 

Degree in radians = 0.848062  * (180°/п) = 48.59° 

Tan(0.848062) = 1.133893 = (0.15in./perpendicular height)  

Perpendicular height of cone = (0.15/1.133893) = 0.132288in. 
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APPENDIX C 

 

 

The design concept selected was drafted in SolidWorks, as shown below in 

figure 22. 

 

 

 
Fig. 22.  PASS selected in SolidWorks. (A) Isometric view; (B) top view;(C) side view. 

 

 

Design changes were made because although the calculated flare angle was 

correct, the height of the cone used to create the flare was extended too high. This made 

A B 

C 
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the diameter of the PASS shaft that first entered the pericardial space too large. The top 

of the flare diameter was 1.90 inches and needed to be reduced to 1.80 inches to meet the 

requirements of the device more soundly. The material thickness of 0.05 inches made the 

inner diameter 1.7 inches for the new design. Also, the deployment guide wires were to 

be made by two wires extending straight out from the outer flare surface, with an arc for 

the rounded tip to prevent abrasion. Additionally, a securing ring was placed around the 

base of the scaffold guides to secure them to the shaft as a control for one of the most 

severe potential failure modes. Heat-shrink tubing was also added as a design change to 

prevent entanglement of the AACSD frame in the guides. The changed design concept is 

shown below in figure 23. 

 

 

 
Fig. 23. PASS after design changes. (A) Isometric view; (B) front view; (C) top view. 

 

A B 
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