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ABSTRACT 

Mechanisms of Silencing the Breast Tumor Suppressor Gene Single-minded 2.   

(May 2009) 

Tanya Gustafson, B.A., Tufts University 

Co-Chairs of Advisory Committee: Dr. Weston Porter 

     Dr. Keith Murphy 

 

 

 

 In order to design patient-tailored medicine and better predict patient response to 

treatment and outcome, the mechanisms of altered gene expression in cancer cells must 

be understood.  Recently, Single-minded 2 (SIM2) has been shown to be a breast tumor 

suppressor gene that is down-regulated in approximately 72% of breast cancers, and 

reintroduction of SIM2 into highly metastatic cancer cells decreases their proliferative 

rate and their ability to grow on soft agar.  SIM2 is a member of the basic helix-loop-

helix Per-Arnt-Sim (bHLH/PAS) family of transcription factors, which includes genes 

responsible for maintenance of circadian rhythms (CLOCK and BMAL) and for sensing 

hypoxia (HIF-α) and environmental contaminants (AHR).  Here we have shown that 

SIM2 undergoes progressive epigenetic changes that correlate with loss of expression 

during breast cancer progression in a cell line model.  In addition, NFκB, C/EBPβ and 

the Notch intracellular domain (NICD) act as repressors of SIM2 transcription.  Each is 

able to bind to the SIM2 promoter, demonstrated by chromatin immunoprecipitation 

assay, with the NICD acting through a novel CBF1-independent mechanism.  NFκB is a 

central mediator of SIM2 regulation as it facilitates repression by C/EBPβ and leads to 
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deacetylation of histone 3 associated with the SIM2 promoter, contributing to epigenetic 

changes observed during cancer progression.  SIM2, however, also antagonizes NFκB 

signaling through inhibiting specific NFκB target genes including the ATP-binding 

cassette transporter, ABCB5, and through direct interaction with NFκB.  SIM2, through 

this antagonism of NFκB, increases cancer cell susceptibility to antineoplastic drugs, 

including doxorubicin and 5-fluorouracil.   
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NOMENCLATURE 

 

5-aza-dC  5-aza-2'-deoxcytidine 

5-FU   5-fluorouracil 

5X NFκB-luc  5 NFκB binding sites upstream of the luciferase gene 

ABC    ATP-binding cassette 

AcH3   Acetylated histone 3 

AP-1   Activator protein-1 

AHR   Aryl hydrocarbon receptor 

ARNT   Aryl hydrocarbon receptor nuclear translocator 

bHLH   Basic helix-loop-helix 

CAR   Constitutive active/androstane receptor 

CBF1   C-promoter binding factor 1 

C/EBPβ  CCAAT/enhancer binding protein, beta 

ChIP   Chromatin immunoprecipitation 

c-IAP   Cellular inhibitors of apoptosis 

CME   Central midline element 

CYP   Cytochrome P450 

DAPT   N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl 

   ester 

DMBA  7,12-dimethylbenz[a]anthracene 

DMEM  Dulbecco’s modified Eagle’s medium 
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DNMT   DNA methyltransferase 

DOX   Doxorubicin 

DR5   Death receptor 5 

DSL   Delta/Serrate/lag-2 

E   Embryonic day 

EGF   Epidermal growth factor 

EGFR   Epidermal growth factor receptor 

ERK1/2  Extracellular signal-regulated kinases 1 and 2 

HDAC   Histone deacetylase 

HIF-α   Hypoxia-inducible factor, alpha subunit 

HP1   Heterochromatin protein 1 

HRE   Hypoxia response element 

HSP90   Heat shock protein 90 

IFNβ   Interferon β 

IκB   Inhibitor of kappaB  

IκB-SR   Inhibitor of kappaB super-repressor 

IKK    Inhibitor of kappaB kinase  

LAP   Liver-enriched activating protein 

LIP   Liver-enriched inhibiting protein 

MAPK   Mitogen-activated protein kinase 

MDR1   Multi-drug resistance gene 1 

MMTV  Mouse mammary tumor virus 
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MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NFκB   Nuclear factor-kappaB 

NICD    Notch intracellular domain 

PAS   Per-Arnt-Sim 

PDTC   Pyrollidine dithiocarbamate 

PI3K   Phosphatidylinositol 3′-kinase 

PLZF-RARα  Promyelocytic leukemia zinc finger-retinoic acid receptor alpha 

   fusion 

PML-RARα  Promyelocytic leukemia-retinoic acid receptor alpha fusion 

SAHA   Suberoylanilide hydroxamic acid  

SIM1   Single-minded 1 

SIM2   Single-minded 2 

SIM2s   Single-minded 2, short isoform 

Su(H)   Suppressor of hairless 

TACE   TNFα-converting enzyme 

TCDD   2,3,7,8-Tetrachlorodibenzo-p-dioxin 

TEB   Terminal end buds 

TGFα   Transforming growth factor, alpha 

TSA   Trichostatin A 

XRE   Xenobiotic response element 

Zip   Leucine zipper 
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CHAPTER I 

INTRODUCTION 

 

The American Cancer Society estimated 1,399,790 new cancer cases and 

564,830 cancer deaths in the United States in 2006.  Breast cancer continues to be the 

second leading cause of cancer-related death in women in the United States despite 

improvements in early detection and treatment.  Most pharmacological approaches for 

treating cancer are designed to attack the cells after they have become malignant.  These 

treatments carry serious side effects, and many cancer types still recur after treatment.  

In the mid-1970’s, Dr. Mike Sporn and coworkers proposed that intervention via a 

pharmacological approach, to either inhibit or delay cancer progression, would provide 

an alternative for treating this disease (1).  This concept, termed chemoprevention, 

focuses on disrupting the step-wise progression of a cell from a normal to an invasive 

state by blocking the initial stages of cancer formation; however, for this idea to be 

successful, novel therapeutic approaches and targets are needed.  Patient-tailored 

medicine, or the use of specific treatments based on genetic, genomic and/or proteomic 

analyses of an individual patient, has the potential to greatly reduce the suffering and 

mortality associated with breast cancer.  The efficacy of such an approach depends upon 

our understanding of basic mammary gland biology and how these processes are 

deregulated during tumorigenesis.  Recent advances in targeted medicine in breast  
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cancer treatment focus on inhibition of oncogenic signaling and reactivation of tumor 

suppressor genes (2).  Loss of tumor suppressor gene expression occurs through multiple 

mechanisms including mutations, chromosomal rearrangements, gene deletions, DNA 

methylation, histone modification and direct transcriptional repression (3-5).  With the 

knowledge of which genes are altered in an individual's cancer, and by what 

mechanisms, an oncologist can tailor his or her treatment approach to maximize efficacy 

while decreasing untoward effects. 

 

The bHLH/PAS family of proteins 

 The bHLH superfamily contains diverse transcriptional regulators that function 

in gene expression networks in many fundamental biological processes.  The basic 

region functions in DNA binding and the helix-loop-helix motif is a dimerization 

domain.  Both are necessary for the formation of functional DNA binding complexes.  

bHLH proteins can be divided into three subfamilies: those with the bHLH domain only; 

those with a bHLH domain contiguous with a leucine zipper (Zip); and those with a 

bHLH domain contiguous with a Per-Arnt-Sim (PAS) domain (6).  Both bHLH and 

bHLH/Zip families recognize the classic E-box core enhancer sequence CANNTG.  The 

bHLH/PAS family form heterodimers that recognize sequences that diverge from the 

prototypical E-box, such as xenobiotic response elements (XRE), TNGCGTG, hypoxia 

response elements (HRE), TACGTGC, and central midline elements (CME), TACGTG 

(6).  The PAS domain, which consists of two adjacent degenerate repeats of 

approximately 130 amino acids, is important in mediating the specificity of the 
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dimerization (6).  The bHLH/PAS family of transcription factors includes genes 

responsible for maintaining circadian rhythms (CLOCK and BMAL), and sensing 

hypoxia (HIF-α) and environmental contaminants (AHR) (6).  Activation of signaling 

occurs when one bHLH/PAS protein is converted into a form that is able to dimerize 

with another bHLH/PAS protein, namely ARNT.  DNA binding and modulation of gene 

expression via interaction with the transcriptional machinery then occurs (6).  The AHR, 

the most well characterized member of this family, mediates the molecular response to 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other related halogenated aromatic 

hydrocarbons, which act as AHR ligands.  In the absence of ligand AHR is associated 

with heat shock protein 90 (HSP90) in the cytoplasm.  The AHR binds ligand within its 

PAS domain, and this leads to translocation of the AHR/HSP90 complex to the nucleus 

where HSP90 is exchanged for ARNT (6).  The AHR/ARNT heterodimer activates 

transcription from XREs.  The HIF-α proteins function similarly but are regulated by 

oxygen levels.  In normoxia, the HIF-α proteins are actively degraded by the ubiquitin-

proteasome system.  Under hypoxic conditions, the proteins involved in targeting the 

HIF-α proteins for degradation are inactive, and the HIF-α proteins accumulate.  They 

also dimerize with ARNT in the nucleus and activate gene expression from HREs (6).   

 

The Single-minded proteins 

 SIM1 and SIM2 are unique members of the bHLH/PAS family because they 

function as transcriptional repressors (6, 7).  They are the mammalian orthologs of the 

Drosophila single-minded (sim) gene, which is a master regulator of central midline 
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development (8).  In Drosophila mutations in sim are embryonic lethal, due to fusion of 

the longitudinal axon bundles and collapse of the axon scaffold (9).  Ectopic expression 

of Drosophila sim is sufficient to direct cells of the lateral central nervous system to 

display central midline cell morphology and gene expression patterns (10).  In 

Drosophila the mechanism of sim activity is similar to that of the mammalian AhR.  Sim 

is bound by hsp90 in the cytoplasm, which facilitates its heterodimerization to tango, the 

Drosophila homolog of mammalian Arnt (Figure 1).  The sim::tango heterodimer 

localizes to the nucleus and binds to and activates transcription from CMEs.  Target 

genes, which fail to be expressed in sim mutant embryos in the central midline, include 

breathless, slit, toll, spitz and engrailed (11).  This group of genes, in turn, regulates axon  

 

        

 

 

 

 

 

 

 

 

 

 

Cytoplasm

Nucleus

simsim

tangotango

tango simtangotango simsim

tango simtangotango simsim

Target Genes: spitz, breathless, slit,

engrailed, toll 

hsp90

Central Midline Cell

Figure 1
Model of sim activity in Drosophila central midline.  Drosophila sim is bound by hsp90 
in the cytoplasm which facilitates its interaction with tango.  The sim::tango heterodimer

translocates to the nucleus and binds to CMEs to activate transcription of target genes 
spitz, breathless, slit, engrailed and toll.
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growth and midline crossover.  For example, mutations in slit result in a phenotype very 

similar to that of sim mutants, displaying collapse of axon tracts onto the midline.  Slit is 

the ligand for robo, which is a cell surface protein expressed on central nervous system 

axons (12).  Interaction between slit and robo functions to prevent midline crossing in 

Drosophila axons (12).  Spitz, a homolog of transforming growth factor, alpha (TGFα), 

activates the Drosophila epidermal growth factor receptor and is required for midline 

glial survival (13).  Through these gene targets, sim functions as the master regulator of 

central nervous system development in Drosophila. 

 In Drosophila sim is regulated by several activating and repressive factors, which 

localize its expression to a single row of cells.  Sim-expressing cells make up the 

mesectoderm layer, lying between mesoderm and neuroectoderm (Figure 2).  In 

mesectoderm, sim is transcriptionally activated by factors dorsal, twist and 

notch/suppressor of hairless.  In neighboring mesoderm cells, sim is transcriptionally 

repressed by snail.   

 Mammalian Sim genes also play a role in development of portions of the central 

nervous system.  Murine Sim1 is necessary for development of the paraventricular and 

supraoptic nuclei of the hypothalamus, while Sim2 mutants have a normal hypothalamus 

(14).  Sim1 and Sim2 can heterodimerize with Arnt (15), but Sim1 dimerization with 

Arnt2 is important for development of the hypothalamus (16).  SIM2 is located in the 

Down Syndrome critical region of human chromosome 21 and has been implicated in 

some of the abnormalities associated with Down Syndrome (17).  SIM2 is expressed in 

human fetal brain regions, which correspond to key regions for cognitive processes.   
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Figure 2
Regulation of sim expression in Drosophila embryo.  (A) Cross-section of Drosophila embryo 

showing localization of cell layers.  de = dorsal ectoderm; ne = neuroectoderm; me = mesectoderm; 
mes = mesoderm.  (B) Regulation of sim in mesectoderm and mesoderm cells.  In mesectoderm sim is 

activated by dorsal, twist and notch.  This leads to formation of the sim::tango heterodimer, which leads 

to activation of midline gene transcription and repression of lateral gene transcription.  In neighboring 

mesoderm cells, snail represses sim transcription. 
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SIM2 is expressed in pyramidal and granular cell layers of the hippocampus, in cortical 

cells and in cerebellar external granular and Purkinje cell layers.  These SIM2-

expressing brain regions correspond to altered structures in Down Syndrome patients 

(17).  Overexpression of Sim2 under the control of the β-actin promoter results in mice 

with superficially normal skeletal, brain and heart structures, but mild learning and 

memory deficits, exhibited by a defect in context-dependent fear conditioning and a mild 

defect in the Morris water maze test, consistent with a role in the pathogenesis of Down 

Syndrome (18).  Murine Sim2 is also expressed in several tissues outside the CNS, 

including lung, kidney, skeletal muscle, and mammary gland (19).  Homozygous 

deletion of Sim2 results in various defects that cause perinatal lethality.  Defects include 

cleft secondary palate, malformations of the tongue and pterygoid processes of the 

sphenoid bone, rib protrusions, abnormal intercostal muscle attachments, diaphragm 

hypoplasia and pleural mesothelium tearing.  These abnormalities result in breathing 

difficulty and death, usually within 3 days of birth (14, 20).   

 SIM2 short (SIM2s), a splice variant of SIM2 which lacks the carboxyl Pro/Ala-

rich repression domain encoded by exon 11, is the predominant form of SIM2 expressed 

in mammary tissues.  In a murine model, the effects of Sim2s on transcriptional 

regulation through hypoxia, xenobiotic and central midline response elements differ 

from those of the full length Sim2, although Sim2 and Sim2s both interact with Arnt to 

mediate their effects (19).  Sim2s is less repressive on HREs compared to the full length 

Sim2 but is equally effective at repression of TCDD-induced gene expression.  

Additionally, Sim2s is more effective at activating expression from a CME compared to  
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the full length Sim2 (19).  SIM2 has also been shown to have tumor suppressor activity 

in the breast (21).  This is consistent with epidemiological data showing women with 

Down Syndrome have an extremely low risk of breast cancer compared to a matched 

control group of women (22-24) (Table 1).  SIM2 levels are decreased in approximately 

72% of breast cancers, and its expression inversely correlates with relative invasiveness 

of breast cancer derived cell lines (21).  Reintroduction of SIM2s into highly metastatic 

cancer cells decreases their proliferative rate, anchorage-independent growth and 

invasive potential (21).  Matrix metalloprotease-3, a known mediator of breast cancer 

metastasis, is directly regulated and silenced by SIM2s (21, 25, 26).  In order to develop 

Table 1
Observed and expected site-specific number of cancer cases among 2814 

individuals with Down Syndrome.  Individuals with Down Syndrome have an 
overall low risk of solid tumors and a markedly lower risk of breast cancer (24).

Site Observed Expected

Buccal cavity

Digestive system

Respiratory system

Breast

Female genital organs

Male genital organs

Urinary tract

Skin

Other

Secondary sites

Non-Hodgkins lyphoma

Hodgkin’s disease

All Solid Tumors

0

4

1

0

4

4

4

2

1

3

0

0

24

0

4

1

0

4

4

4

2

1

3

0

0

24

1.04

6.52

4.96

7.32

5.68

2.82

2.97

8.14

4.75

0.92

1.41

0.92

47.77

1.04

6.52

4.96

7.32

5.68

2.82

2.97

8.14

4.75

0.92

1.41

0.92

47.77
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effective therapeutic strategies targeting tumor suppressor gene inactivation during 

cancer progression, it is vital that processes leading to aberrant gene silencing are 

understood.  Therefore, understanding mechanisms contributing to SIM2 silencing in 

breast tissues may provide valuable therapeutic tools to increase survival and reduce 

morbidity in breast cancer patients. 

 

Mouse models of breast cancer 

 The mouse is a particularly useful model for mammary gland biology because 

most development occurs postpartum.  The mammary gland develops in well-defined 

stages: embryonic, prepubertal, pubertal, pregnant, lactating and involuting (27).  The 

gland cycles through the pubertal (virgin), pregnant, lactating and involution stages 

repeatedly with each successful pregnancy (Figure 3).  The gland consists of epithelium 

derived from ectoderm as well as stroma derived from mesoderm of the embryo (27).  In 

the mouse the first morphological signs of mammary structures are lens-like placodes 

that form around embryonic day 11 (E11).  By E12, these placodes have grown into 

bulb-shaped buds that invaginate the underlying dermis (28).  In the female mouse, at 

embryonic day 16 (E16), cells begin to proliferate at the tip of the mammary bud, which 

leads to elongation of the primary duct.  It grows towards what will become the 

mammary fat pad.  The duct invades the fat pad at E17 and forms a small ductal tree.  

Thus, at birth fifteen to twenty branched ducts are present (27).  The fat pad 

differentiates in an independent process, forming immediately around the epithelium.  It 

differentiates from more deeply placed subcutaneous mesenchymal cells.  The first 
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appearance of the fat pad precursor tissue is E14 in mice (27).  At the onset of puberty, 

at approximately 4 weeks of age, terminal end buds (TEB) develop at the ends of ducts 

in females beginning the ductal phase of mammary development (29).  These are sites of 

intense DNA synthesis that elicits ductal elongation.  Ovarian hormones are released 

during this time, inducing the terminal end buds to grow into the fat pad.  This results in 

a minimally branched mammary ductal “tree” characteristic of the mature virgin gland 

(27).  During pregnancy, lateral buds, which develop along the mature ducts, experience 

outgrowth along with alveolar buds, resulting in lobuloalveolar structures.  This 

lobuloalveolar development is caused by hormonal stimuli during pregnancy, including 

elevated estrogen, progesterone and prolactin levels.  At weaning the gland undergoes 

involution, regressing to the virgin state in a process involving apoptosis (27).   

 

 

 

 

 

 

 

 

 

 Figure 3
Developmental stages of the mouse mammary gland.  Mouse mammary 
gland goes through virgin, pregnant, lactating and involuting stages repeatedly 

with each successful pregnancy.  Arrows point to a terminal end bud in the virgin 
gland and a lobuloalveolar unit in the pregnant gland (29).
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 The development of transgenic mouse models has greatly contributed to our 

understanding of breast cancer over the past several years.  In particular HRAS and c-

MYC transgenic mice have provided key insights into multiple mechanisms of 

mammary tumorigenesis (30).  Ras is a small G-protein that links growth factor/receptor 

interaction to transcription of genes involved in cell cycle progression (Figure 4) (31).  

For example, epidermal growth factor (EGF) binding to epidermal growth factor 

receptor (EGFR) causes its dimerization.  The intrinsic tyrosine kinase activity of EGFR 

allows autophosphorylation, which recruits and activates Ras through SH2-domain 

proteins, which bind phosphorylated tyrosines.  Ras activates Raf-1, which, in turn, 

phosphorylates MEK1/2, which activates extracellular signal-regulated kinases 1 and 2 

(ERK1/2) (31).  ERK1/2 regulates transcription factors c-MYC, c-FOS, c-JUN and 

C/EBPβ through phosphorylation (32).  c-MYC dimerizes with MAX to regulate target 

genes which promote cell cycle progression, including cyclin D1 and cyclin D2 (33).  

Activator protein-1 (AP-1) is a ubiquitous transcription factor formed by Fos and Jun 

family members (31).   

 The oncogenic potential of Ras signaling was identified through recognition of 

the Harvey and Kirsten murine sarcoma virus oncogenes.  In addition, an early model of 

mammary tumorigenesis through the use of the chemical carcinogen 7,12-dimethyl-

benz[a]anthracene (DMBA) results in a high rate of mutations in Hras (31).  In human 

cancer, HRAS is mutated in up to 20% of total cases.  Although mutations in HRAS are 

rare in breast cancers (34), HRAS is significantly activated in approximately 50% of 

breast tumors (35).  HRAS plays an important role in HER2-overexpressing breast  
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Ras signaling pathway.  Growth factor binds to receptor tyrosine kinase, which 
autophosphorylates.  Phosphorylated tyrosines are recognized by SH2-domain proteins 
and recruit Ras, which exchanges GDP for GTP.  Ras-GTP leads to a kinase signaling 
cascade.  This results in activation of transcription factors, including c-MYC, AP-1 and 
C/EBPβ, which contributes to cell cycle progression and survival.  Activated Ras also 
enhances γ-secretase activity, leading to increased activated Notch.
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cancers, which represents 30% of cases (36).  HER2 is a member of the epidermal 

growth factor receptor family.  It heterodimerizes with other family members, including 

EGFR, to initiate Ras signaling.  HRAS-induced tumors are characterized by activation 

of mitogen-activated protein kinase (MAPK) signaling and are cyclin D1-dependent (37, 

38).  By activating potent oncogenic pathways, HRAS overexpression, driven by the 

MMTV promoter, can induce mammary tumors in mice in as little as 5 weeks of age 

(39, 40).  These tumors are estrogen receptor negative and can be histologically 

classified as papillary transitional cell carcinomas (Figure 5A) (29).  Metastasis to the 

lungs is common (41).  The transforming potential of c-MYC was first identified in 

humans through Burkitt’s lymphoma, in which the causative mutation in 90% of cases is 

a reciprocal translocation that moves c-MYC from chromosome 8 to a position close to 

the enhancers of the antibody heavy chain genes on chromosome 14 (31).  c-MYC 

contributes to normal mammary gland development (42) and is amplified in 15-20% and 

overexpressed in approximately 70% of breast cancers (43).  c-MYC overexpression, 

driven by the MMTV promoter, causes spontaneous mammary adenocarcinomas in mice 

that have a longer latency compared to HRAS tumors, occurring within 4 to 8 months 

(30).  These tumors are also estrogen receptor negative, as are most transgenic mouse 

models of breast cancer, excluding the p53 knockout model (41).  c-MYC tumors are 

acinar adenocarcinomas and also produce metastases to the lungs (Figure 5B) (29).  

Interestingly, c-MYC is the most dominant transgene; combination of c-MYC and 

HRAS, or any transgene or knockout, results in tumors with the c-MYC phenotype (41).  

Doxycycline-inducible systems have demonstrated that HRAS- and c-MYC-induced 
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tumors can remain dependent on oncogene expression for growth.  However, some 

tumors fail to regress after doxycycline withdrawal or recur after a variable period of 

latency, indicating changes have occurred in the cell that have not reversed (44, 45).   

 

 

 

 

Notch and C/EBPβ, effectors of Ras signaling 

 Notch and C/EBPβ have recently been shown to be activated by Ras signaling 

and to be critical for Ras-mediated tumorigenesis (46, 47).  Canonical Notch signaling is 

initiated by interaction of the Notch transmembrane receptor with Delta/Serrate/lag-2 

(DSL) transmembrane ligands on neighboring cells (Figure 6).  Notch is first cleaved by 

TNFα-converting enzyme (TACE) in the extracellular domain.  The transmembrane 

domain is then cleaved by γ-secretase activity of a multiprotein complex including 

Presenilins, Nicastrin, APH-1 and PEN-2, releasing the active intracellular domain 

Figure 5
Histology of HRAS and c-MYC transgenic mouse mammary tumors.  (A) HRAS-
induced tumors are papillary transitional cell carcinomas, organized around blood vessels.  
(B) c-MYC-induced tumors are acinar adenocarcinomas that retain a more glandular 
structure (29).
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(NICD).  The NICD then translocates to the nucleus and interacts with CSL transcription 

factors (CBF1 in humans), displacing corepressors and recruiting coactivators.  Thus, 

target genes in the Hairy/Enhancer of Split family, including HES1, HEY1 and HEY2, 

are activated (48).   

 

 

Figure 6

Notch pathway.  Canonical Notch signaling is initiated by interaction of the Notch transmembrane
receptor with Delta/Serrate/lag-2 (DSL) transmembrane ligands on neighboring cells.  Notch is first 
cleaved by TACE in the extracellular domain.  The transmembrane domain is then cleaved by γ-
secretase activity of a multiprotein complex including Presenilins, Nicastrin, APH-1 and PEN-2, 
releasing the active intracellular domain (NICD).  The NICD then translocates to the nucleus and 
interacts with CSL transcription factors (CBF1 in humans), displacing corepressors and recruiting 

coactivators.  Thus, target genes in the Hairy/Enhancer of Split family, including HES1, HEY1 and 
HEY2, are activated. 
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 However, the NICD has been shown to interact with other transcription factors 

including MEF2C (49), NFκB (50) and HIF-1α (51), and there is significant evidence 

for the importance of CBF1-independent Notch function for maintaining cell fate (52).  

Notch was first identified as an oncogene through studies involving MMTV.  The mouse 

Notch homolog, Int-3, is a common integration site for MMTV that leads to mammary 

tumorigenesis (53).  A translocation placing a truncated, activated form of NOTCH1 

under control of the T-cell receptor-beta locus is responsible for approximately 1% of 

human T-cell acute lymphoblastic leukemia cases; however, activating mutations in 

NOTCH1 are present in up to 50% of cases (54).  Increased Notch signaling has also 

been demonstrated in a variety of human breast carcinomas (55).  However, Notch plays 

the opposite role in keratinocytes as a tumor suppressor by promoting differentiation.  In 

a mouse model, loss of Notch1 results in a substantially increased susceptibility to skin 

tumors induced by the carcinogen DMBA (56).  HRAS activates Notch signaling by 

increasing γ-secretase activity (Figure 4), which is required to maintain the transformed 

phenotype in human fibroblast cells (46), and Hras-mediated oncogenesis in mouse 

mammary glands is inhibited by introduction of the Notch antagonist Deltex (57).  

Recently, Notch has been shown to contribute to cancer cell survival by inhibiting p53 

activity, and there is an ongoing effort to identify other tumor suppressor genes targeted 

for inactivation by Notch signaling (58).   

 C/EBPβ  is overexpressed in breast, ovarian and colorectal tumors (59).  A single 

intronless C/EBPβ mRNA can produce three different proteins: full length liver-enriched 

activating protein 1 (LAP1), liver-enriched activating protein 2 (LAP2) and the 
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dominant negative liver-enriched inhibiting protein (LIP).  Alternative translation or 

cleavage events can lead to production of these alternate isoforms in the cell.  The full 

length isoform, translated from the first AUG, contains three N-terminal transactivation 

domains and two regulatory domains, which interact with the transactivation and DNA-

binding domains to inhibit their activities.  LAP2, translated from the second AUG, 

lacks the first 23 N-terminal amino acids but contains intact transactivation domains 

(59).  This difference between LAP1 and LAP2 allows LAP1 but not LAP2 to interact 

with the SWI/SNF chromatin remodeling complex to mediate activation of certain 

myeloid genes in cooperation with Myb (60).  The LIP isoform is translated from the 

third AUG and lacks the N-terminal transactivation domains.  In neonatal liver, LIP can 

be generated through cleavage of LAP1 by calpain-type proteases activated by C/EBPα 

(59).  In the liver, the LAP isoforms function primarily as a transcriptional activators, 

and LIP functions as an antagonist of LAP activity by competing for DNA binding sites 

as a homodimer or a LAP/LIP heterodimer (61).  C/ebpβ-/-
 mice are viable but display 

immune system defects, abnormal brown adipose tissue function, skin irregularities and 

female infertility (59).  Lack of C/ebpβ in the mammary gland leads to impaired ductal 

morphogenesis, resulting in enlarged ducts with decreased branching (62).  C/EBPβ 

plays an important role in the early immune response by inducing expression of acute 

phase proteins, like serum amyloid A, in response to stimulation of cells by specific 

interleukins, in conjunction with NFκB (63).  C/EBPβ also regulates the early steps of 

adipocyte differentiation and is a key inducer of PPARγ, which is the central coordinator 

of the adipogenesis process (64).  The role of C/EBPβ in the mammary gland is less 
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well-defined but seems to be involved in the proliferation of the gland during pregnancy, 

as that is when it is most highly expressed (61).  Also, C/EBPβ regulates expression of 

beta-casein, an important protein in milk (65).  Both LAP2 and LIP isoforms have been 

shown to be involved in transformation of mammary epithelial cells (66, 67).  

Overexpression of LAP2 has been shown to confer anchorage-independent growth and 

invasiveness on MCF10A cells in culture (66), and overexpression of LIP in mammary 

glands of transgenic mice causes increased mammary intraepithelial neoplasias and 

carcinomas (67).  C/ebpβ was also identified as an important mediator of Ras-induced 

tumorigenesis in a mouse skin carcinogenesis model known to cause Hras mutations.  In 

these studies, C/ebpβ
-/-

 mice were completely protected from tumorigenesis following 

7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol 13-acetate treatments 

(47).  Ras-initiated MAPK activity leads to phosphorylation of C/EBPβ on threonine-

235, which contributes to its activation (68).  C/EBPβ also has been shown to cooperate 

with Cyclin D1 to mediate oncogenesis (69).  Both Notch and C/EBPβ pathways, 

therefore, represent significant mediators of mammary tumorigenesis induced by 

activation of Ras. 

 

Epigenetic gene regulation in cancer 

 Epigenetic gene regulation is another crucial mechanism in cancer development 

(70).  CpG islands are genomic regions about one kilobase in length that have a high GC 

content, are rich in CpG dinucleotides and are normally hypomethylated (71).  The 5-

methylation of cytosines within CpG islands in gene promoters is associated with gene 
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silencing and can promote cancer by inactivating tumor suppressor genes
 
(72).  In 

contrast, pericentromeric DNA is compacted into heterochromatin and normally contains 

methylated CpG dinucleotides.  Cancer cell genomes are relatively hypomethylated 

relative to normal cells, especially in repetitive regions.  It is thought that loss of 

methylation at pericentromeric regions contributes to the genomic instability phenotype 

of tumor cells (71).  Three functional DNA methyltransferases have been identified in 

mammals: DNMT1, DNMT3A, and DNMT3B (73).  DNMT1 is a maintenance 

methylase with high affinity for hemimethylated DNA.  DNMT3A and DNMT3B are 

responsible for de novo methylation.  DNMT1 is expressed in proliferating cells, with 

different somatic and oocyte protein isoforms.  DNMT3A and DNMT3B are highly 

expressed in embryonic stem cells but are expressed at low levels in normal adult 

somatic cells (73).  DNMT1 and DNMT3B have been shown to be overexpressed in 

breast cancer at the protein and mRNA levels, respectively, and contribute to 

hypermethylation of tumor suppressor gene promoters (74, 75).  The pathways of 

methylation differ between these two genes, as DNMT1 is associated with global 

hypermethylation, whereas DNMT3B is targeted to fewer CpG’s, suggested by antisense 

depletion studies (76).   

 Posttranslational modification of histone proteins, the building blocks that 

package DNA into repeated nucleosomes, affects both chromatin folding and association 

with non-histone regulatory proteins (77).  Increased histone acetylation is associated 

with gene activation, whereas histone deacetylation represses gene transcription.  

Histones have also been shown to be methylated (on arginines and lysines), 
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phosphorylated (on threonines and serines), ubiquitinated (on lysines), sumoylated (on 

lysines), ADP ribosylated (on glutamates) and deiminated (on arginines), within their N-

terminal tails (78).  Each of these modifications contributes to regulation of transcription 

by affecting contact between histones in adjacent nucleosomes and between histones and 

DNA (Table 2) (78, 79).  For example, dimethylation of lysine 9 of histone 3 is 

catalyzed by the histone methyltransferase Suv39h at silent gene promoters.  This 

modified residue is recognized by heterochromatin protein 1 (HP1), which condenses the 

chromatin through internucleosome dimerization (80). 

 

 

H3 (30-38)

H3, H4

H2B (2)

H2A (126), H2B (6/7)

H2B (120)
H2A (119)

H3 (3, 10, 28), H2A, H2B

H3 (17, 23), H4 (3)

H3 (4, 36, 79)

H3 (9, 27), H4 (20)

H3 (9, 14, 18, 56), H4 (5, 8, 13, 16),

H2A, H2B

Residues Modified

Activation or Repression

Repression

Undefined

Repression

Activation
Repression

Activation

Activation

Activation

Repression

Activation

Effect on Transcription

Proline Isomerization (cis to 
trans)

Deimination (arginines to 
citrullines)

ADP ribosylation
(glutamates)

Sumoylation (lysines)

Ubiquitylation (lysines)

Phosphorylation
(serines/threonines)

Methylation (arginines)

Methylation (lysines)

Acetylation (lysines)

Chromatin Modifications

H3 (30-38)

H3, H4

H2B (2)

H2A (126), H2B (6/7)

H2B (120)
H2A (119)

H3 (3, 10, 28), H2A, H2B

H3 (17, 23), H4 (3)

H3 (4, 36, 79)

H3 (9, 27), H4 (20)

H3 (9, 14, 18, 56), H4 (5, 8, 13, 16),

H2A, H2B

Residues Modified

Activation or Repression

Repression

Undefined

Repression

Activation
Repression

Activation

Activation

Activation

Repression

Activation

Effect on Transcription

Proline Isomerization (cis to 
trans)

Deimination (arginines to 
citrullines)

ADP ribosylation
(glutamates)

Sumoylation (lysines)

Ubiquitylation (lysines)

Phosphorylation
(serines/threonines)

Methylation (arginines)

Methylation (lysines)

Acetylation (lysines)

Chromatin Modifications

Table 2
Classes of modifications identified on histones.  Histones are modified at specific 

residues within their N-terminal tails.  Each of the modifications contributes to the 
regulation of transcription by affecting contact between histones in adjacent nucleosomes

and between histones and DNA (78,79).
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 Mammalian histone deacetylases (HDACs) can be classified into three classes 

based on their homology to yeast proteins: class I consists of HDAC 1, 2, 3 and 8 which 

are homologous to yeast Rpd3 deacetylase; class II consists of HDAC 4-7 and 9-11 

which are homologous to yeast Hda1 deacetylase; and class III consists of SIRT 1-7 

which are homologous to yeast Sirt2 family (81).  These enzymes deacetylate specific 

residues in the N-terminal tails of histones as well as in other promoter-bound 

transcription factors.  The most direct evidence for the role of HDAC activity in cancer 

comes from acute promyelocytic leukemias caused by promyelocytic leukemia-retinoic 

acid receptor alpha (PML-RARα) or promyelocytic leukemia zinc finger (PLZF)-RARα 

fusions.  The PML or PLZF portion of the fusion recruits HDACs, which the RARα 

targets to retinoic acid-inducible genes, resulting in repression of transcription and lack 

of differentiation (82).  HDAC inhibitors can induce differentiation of tumor cells, cause 

cell cycle arrest, initiate apoptosis and enhance tumor sensitivity to other chemo- and 

radiotherapy, and many inhibitors are currently undergoing extensive clinical trials with 

some success in cancer treatment (Table 3) (81, 83).  For example, suberoylanilide 

hydroxamic acid (SAHA) was approved for phase II and phase III clinical trials for the 

treatment of hematological malignancies.  Clinical trials with trichostatin A (TSA) have 

been suspended, however, due to excessive cardiotoxicity and instability in vivo (81).   

 Epigenetic events occur during all stages of tumorigenesis and represent an 

alternative to deletions or mutations for inactivating tumor suppressor genes
 
(70).  The 

tumor suppressors CDH1 and p16
INK4a

 have been shown to be epigenetically silenced in 

cancer.  Loss of E-cadherin is associated with an epithelial-mesenchymal transition,  
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which is a more invasive phenotype (84).  Loss of p16 is among the most frequently 

observed molecular lesions in human cancer and is reported to be hypermethylated in 

31% of breast cancers (85).  A growing number of tumor suppressor genes are being 

identified which demonstrate a correlation between silencing and the epigenetic 

modifications of promoter hypermethylation and hypoacetylation, including genes 

Table 3

Natural and synthetic HDAC inhibitors.  Many classes of HDAC inhibitors have been 
identified (81).  Some of these are undergoing clinical trials for the treatment of cancer in 
humans, with some success (83).
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involved in DNA repair (BRCA1), cell cycle regulation (RB1), cell-cell adhesion 

(TIMP-3) and hormonal regulation (ER and RARβ2) (86, 87). 

 

Problem of chemoresistance 

 Continued efforts to understand these mechanisms of gene repression are 

necessary because despite improvements in early detection and treatment, breast cancer 

is still the second leading cause of cancer-related death in United States women.  

Resistance to chemotherapeutic agents is a leading cause of treatment failure, affecting 

up to 90% of patients with metastatic cancer (88).  In 1973 it was recognized that 

reduced drug accumulation was a major factor in chemoresistance, and this led to the 

discovery of the ATP-binding cassette (ABC) family of transporters (89).  There are 49 

known human ABC genes that function in transport of a variety of endogenous and 

exogenous substances (90).  The first discovered and most well-characterized ABC 

transporter is ABCB1, commonly called multi-drug resistance gene 1 (MDR1).   In vitro 

p-glycoprotein, encoded by MDR1, confers resistance to vinca alkaloids, anthracyclines, 

colchicines, epipodophyllotoxins, and paclitaxel (Table 4) (90).  MDR1 is often highly 

expressed in kidney, liver and colon cancers, but only expressed in leukemias, 

lymphomas and multiple myelomas after chemotherapy and relapse (91).  MDR1 and 

another member of the ABC family ABCG2 have also been used to identify “stem cell” 

populations due to their role in exclusion of Hoechst 33342 dye, which leads to 

formation of a distinct “side population” (92).  ABCG2 was first identified as a gene 

overexpressed in MCF7 cells that confers resistance to mitoxantrone, doxorubicin and  
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daunorubicin, hence its common name breast cancer resistance protein 1 (92).  ABCC1 

is another prominent member of the ABC family, discovered in a small-cell lung cancer 

cell line showing multi-drug resistance without overexpressing ABCB1.  ABCC1 

confers a resistance profile similar to that of MDR1, including vinca alkaloids and 

anthracyclines (91).  The discovery of ABCC1 stimulated the search for homologues, 

leading to the discovery of several closely related ABC transporters, including ABCC2 
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Table 4

ABC transporters and their substrates and inhibitors.  Many ABC genes function in 
the export of antineoplastic drugs and, thus, contribute to resistance of cancer cells.  
Inhibitors are being extensively studied to overcome the problem of drug resistance in 

cancer (91).
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and ABCC6.  ABCC2 contributes to resistance to cisplatin, doxorubicin and 

methotrexate, while ABCC6 primarily has activity on anthracyclines (91).  ABCB5 is a 

recently identified ABC transporter due to its use in identification of progenitor cells 

(93).  It has also been shown to have a role in 5-fluorouracil and doxorubicin resistance 

in melanoma cell lines (94, 95).  There is an ongoing effort to inhibit these efflux pumps 

in order to overcome drug resistance in cancer (90).  Several effective modulators of 

MDR1 are available, including verapamil, cyclosporine and the cyclosporine derivative 

PSC833 (91).  These drugs are undergoing clinical trials to be used in a variety of 

cancers to combat chemoresistance (83).  Only a few inhibitors of ABCC1 have been 

described, including the leukotriene D4 receptor agonist MK571; however, it has limited 

application in vivo due to low bioavailability and toxic side effects (91).  ABCG2 

inhibitors have also been identified.  Fumitremorgin C is a mycotoxin isolated from 

Aspergillus fumigatus, which reverses multi-drug resistance mediated by ABCG2 in 

vitro but is too toxic for in vivo use (91).  A surprising inhibitor of ABCG2 was found to 

be the tyrosine kinase inhibitor imatinib mesylate (Gleevec) (91, 96).  ABCG2 can 

transport other small molecule tyrosine kinase inhibitors, such as erlotinib and gefitinib 

as substrates; however, imatinib mesylate potently reverses ABCG2-mediated resistance 

to camptothecins but is not exported as a substrate (96).  Understanding how members of 

the ABC family are regulated will aid this ongoing search for inhibitors to overcome the 

growing problem of drug resistance in cancer.   
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Role of Nuclear Factor-κB in cancer and chemoresistance 

 NFκB plays a major role in mediating chemoresistance, as inhibition of NFκB 

signaling has been shown to enhance antineoplastic-induced apoptosis (97).  NFκB/Rel 

is a family of transcription factors, which includes five members: p105/p50, p100/p52, 

p65, RelB and c-Rel.  The NFκB/Rel family is characterized by the presence of the Rel 

homology domain, which mediates DNA binding, dimerization and nuclear localization.  

The most abundant heterodimer is between p65 and p50 (98, 99).  In the canonical 

pathway (Figure 7A), the p65/p50 dimer is maintained in the cytoplasm by inhibitor of 

kappaB, alpha (IκBα).  Upon stimulation of cells by proinflammatory cytokines or 

pathogen-associated molecules, the inhibitor of kappaB kinase (IKK) complex, the IKKβ 

subunit predominantly, phosphorylates IκBα, leading to its degradation by the 

proteasome.  NFκB p65/p50 is then free to translocate to the nucleus and to bind to 

promoters of a variety of target genes.  A noncanonical pathway is activated by ligand-

binding to a subset of TNF family receptors, including LTβR, BAFF and CD40L (Figure 

7B).  This leads to processing of the p100 precursor into p52 mediated by NFκB-

inducing kinase (NIK) and IKKα.  The p52/RelB dimer then translocates to the nucleus 

to selectively activate genes involved in the adaptive immune response (98).   

 Although now the role of NFκB in linking inflammation and cancer is well 

established, NFκB was initially described over 20 years ago as a nuclear factor in B cells 

that bound a site in the immunoglobulin κ enhancer (100).  It was shortly discovered that 

NFκB is involved in the response to many immunological stimuli, both exogenous like  
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lipopolysaccharide and endogenous like TNFα.  NFκB is extensively post-translationally 

modified, through phosphorylation, acetylation and dephosphorylation.  Different 

phosphorylation states can determine whether NFκB recruits co-activators or co-

Figure 7
NFκB signaling.  (A) In the canonical pathway, the p65/p50 dimer is maintained in the cytoplasm by 

inhibitor of kappaB, alpha (IκBα).  Upon stimulation of cells by proinflammatory cytokines or pathogen-

associated molecules, the inhibitor of kappaB kinase (IKK) complex, the IKKβ subunit predominantly, 

phosphorylates IκBα, leading to its degradation by the proteasome.  NFκB p65/p50 is then free to 

translocate to the nucleus and to bind to promoters of a variety of target genes (96).  (B) The noncanonical
pathway is activated by ligand-binding to a subset of TNF family receptors, including LTβR, BAFF and 

CD40L.  This leads to processing of the p100 precursor into p52 mediated by NFκB-inducing kinase (NIK) 

and IKKα.  The p52/RelB dimer then translocates to the nucleus to selectively activate genes involved in 

the adaptive immune response (98). 
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repressors to target genes (101).  Also, NFκB is able to interact with other transcription 

factors which determine specificity of promoter or enhancer binding.  C/EBPβ, Jun, Fos, 

CREB and Sp1 are some of the transcription factors which interact with NFκB on 

various promoters.  The most well characterized cooperation occurs on the interferon β 

(IFNβ) enhancer.  IFNβ is induced specifically in response to viral infection by the 

cooperation of NFκB, a Jun/ATF2 heterodimer, IRF proteins and HMG-1 because only 

viral infection induces the full complement of proteins required for IFNβ enhancer 

binding and activation (101).  NFκB also involves epigenetic modifications in its 

regulation of gene transcription.  NFκB has been shown to directly interact with HDAC1 

through the Rel homology domain of p65.  HDAC2 can interact with this complex 

through its association with HDAC1 (102).  Acetylation status of several NFκB target 

gene promoters has been shown to be an important mechanism of their regulation, 

including IL-8 and death receptor 5 (DR5) (102, 103).   

 In many contexts, NFκB can induce genes that promote cell survival, thus 

contributing to cancer progression.  NFκB can induce the expression of cellular 

inhibitors of apoptosis (c-IAP) and members of the anti-apoptotic Bcl-2 family (104).  

NFκB exerts a large part of its regulatory role upon apoptosis through p53.  NFκB can 

induce expression of HDM2, the E3 ubiquitin ligase that induces p53 proteolysis.  Also, 

the NFκB p65 subunit antagonizes p53 transactivation through sequestration of p300 and 

CBP co-activators (101).  These effects of NFκB contribute to its cancer-promoting 

ability; however, NFκB can function in the opposite capacity through cooperation with 

p53.  Both NFκB and p53 can bind to response elements in the pro-apoptotic DR5 
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promoter to activate its expression.  In addition, NFκB can directly up-regulate p53 

expression, leading to sensitization to apoptosis (101).  Through this extensive crosstalk 

between NFκB and p53 pathways, NFκB has the potential to exert an agonistic or 

antagonistic effect on tumor progression in a context-dependent manner.   

 Inhibition of apoptosis is one mechanism by which cancer cells decrease the 

effectiveness of chemo- and radio-therapy.  Also, inflammation and infection have long 

been known to negatively affect xenobiotic metabolism.  NFκB plays a large role in this 

process, antagonizing AHR to suppress induction of cytochrome P450 1A1 (CYP1A1) 

and CYP1A2 and interfering with glucocorticoid receptor-mediated transactivation of 

constitutive active/androstane receptor (CAR) leading to downregulation of CYP3A4, 

glutathione S-transferases, and UDP-glucuronosyltransferases (105).  In addition, NFκB 

induces MDR1 expression in colon cancer cells, contributing to drug resistance, and, 

recently, it has been shown that NFκB regulates ABCA1 expression in macrophages 

(106, 107).  The interactions between NFκB and ABC transporters provide additional 

mechanisms to be targeted to combat drug resistance in cancer. 

 

Mechanisms of silencing SIM2 

 In these studies, epigenetic mechanisms, oncogenic transformation and 

transcriptional repressors, NFκB, NOTCH1 and C/EBPβ, have been shown to contribute 

to silencing the breast tumor suppressor gene SIM2 in cancer cells.  SIM2 undergoes 

progressive epigenetic changes during cancer progression in a cell line model that 

correlate with loss of expression.  By overexpressing DNMT1 in a normal breast 
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epithelial cell line, we have shown that de novo methylation of the SIM2 promoter 

contributes to but is not sufficient for complete silencing.  Overexpression of HRAS and 

c-MYC oncogenes was used as a model to identify alternate pathways of SIM2 

repression.  Using the normal immortalized human breast epithelial cell line MCF10A, 

stable overexpression of HRAS or c-MYC was found to down-regulate SIM2 

expression.  SIM2 mRNA levels were preferentially reduced by HRAS, although both 

HRAS and c-MYC lead to an observed reduction in protein levels.  In Drosophila sim is 

regulated by dorsal, twist, snail and notch signals to narrow its expression to a single row 

of cells in the embryo (108).  Also, NOTCH1, dorsal homolog NFκB, and C/EBPβ 

transcription factors can be activated by HRAS (46, 68, 109).  Each is able to bind to the 

SIM2 promoter, with the NICD acting through a novel CBF1-independent mechanism.  

NFκB is a central mediator of SIM2 regulation as it facilitates the repression by C/EBPβ 

and leads to deacetylation of histone 3 in the SIM2 promoter, contributing to epigenetic 

changes observed during cancer progression.  SIM2, however, also antagonizes NFκB 

signaling through inhibiting specific NFκB target genes including the ATP-binding 

cassette transporter, ABCB5, and through direct interactions with NFκB.  SIM2, through 

this antagonism of NFκB, increases cancer cell susceptibility to antineoplastic drugs, 

including doxorubicin and 5-fluorouracil.  We expect that SIM2 silencing plays an 

important role in progression of a subset of human breast cancer, which is supported by 

analysis of SIM2 expression by immunohistochemistry (21).  Elucidating oncogenic 

pathways and factors involved in SIM2 silencing contributes to the characterization of 

the molecular basis for specific subsets of cancer and thus facilitates development of 
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targeted therapies for human breast cancer.  In addition, we expect that the antagonism 

between SIM2 and NFκB may be exploited to develop new treatment strategies 

countering antineoplastic drug resistance. 
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CHAPTER II 

MATERIALS AND METHODS 

 

Cell line maintenance and drug treatment  

 MCF7 and MDA435 cells were maintained in DMEM supplemented with 10% 

fetal bovine serum and 1% penicillin and streptomycin.  MCF10A cells were maintained 

in DMEM/F-12 supplemented with 5% fetal bovine serum, 1% penicillin and 

streptomycin as well as 20 ng/ml epidermal growth factor, 0.5 µg/ml hydrocortisone, 

100 ng/ml cholera toxin and 10 µg/ml insulin.  For the treatment with the epigenetic-

altering drugs, 10 µM 5-aza-2'-deoxcytidine (5-aza-dC) or vehicle was added to fresh 

media every 24 hours for 3 days.  Trichostatin A (TSA) at 500 nM or vehicle was added 

for the last 24 hours.  For inhibition of NFκB, cells were treated with 300 µM pyrollidine 

dithiocarbamate (PDTC) for 4 hours.  Stably transduced MCF10A and MDA435 cells 

were grown in the presence of 1µg/ml puromycin.  C/ebpβ-/-
 cells (provided by C. 

Zahnow) were maintained in DMEM/F-12 supplemented with 2% fetal bovine serum, 

1% penicillin and streptomycin, 5 ng/ml epidermal growth factor and 5 µg/ml insulin.  

Stably transduced C/ebpβ-/-
 cells were grown in the presence of 1.5 µg/ml puromycin.  

All cells were grown in 5% CO2 at 37
o
C. 
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Construction of plasmids 

 HRAS and c-MYC constructs were provided by Brian and Alana Welm.  HRAS 

was amplified with primers 5′-ATG ACG GAA TAT AAG CTG GT-3′ and 5′-TCA 

GGA GAG CAC ACA CTT G-3′ and cloned onto pCR2.1 TOPO (Invitrogen) and 

subcloned into EcoRI sites in pLPCX (Clontech).  The NICD was amplified with 

primers 5′-ATG TAC GTG GCG GCG-3′ and 5′-TTA CTT GAA GGC CTC CGG-3′ 

and cloned onto pCR2.1 TOPO and subcloned onto pcDNA3 using EcoRI restriction 

sites.  CBF1 was amplified with primers 5′-ATG GCG TGG ATT AAA AGG A-3′ and 

5′-TTA GGA TAC CAC TGT GGC TGT-3′ and cloned onto pCR2.1 TOPO and 

subcloned into pcDNA3 with KpnI and XhoI.  The HES1 promoter was amplified with 

primers 5′-TTG ATT GAC GTT GTA GCC TCC-3′ and 5′-TGT TAT CAG CAC CAG 

CTC CG-3′ and cloned onto pCR Blunt II TOPO (Invitrogen) and subcloned onto pGL2 

Basic (Promega) using KpnI and XhoI restriction sites.  Vectors (pBABEpuro or 

pEFIRESpuro backbones) containing human and mouse C/EBPβ isoforms were 

graciously provided by C. Zahnow and were subcloned as necessary onto pcDNA3 or 

pLPCX with EcoRI.  Human LIP was amplified with primers 5′-ATG GCG GCG GGC 

TTC CC-3′ and 5′-CTA AGC GTA TGC TGG GAC GTC GTA TG-3′ and cloned onto 

pCR2.1 TOPO and subcloned into pcDNA3 using EcoRI.  The full length SIM2 

promoter was amplified in two pieces with primers (5′-ATC TGG GTA ATC CCT TTC 

AAG CC-3′ and 5′-CCT GAG CTC CGA GCA ACC-3′) and (5′-GTG GAC AGC GGA 

GGT GCT-3′ and 5′-CCA AAC CAA ACC AGA ATG C-3′).  Each piece was cloned 

onto pCR2.1 TOPO.  The former fragment was subcloned onto pGL2 Basic into KpnI 
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and XhoI restriction sites.  The latter fragment was then subcloned into SacI and XhoI 

restriction sites to obtain the full length SIM2 promoter on pGL2 Basic.  To generate 

SIM2 deletion constructs, forward primers (5′-GGA CAG GCA GGG GGA GAG C-3′, 

5′-CCT TCC TGG CGC AGG GGA GG-3′, 5′-ACT GCT CCA CGG CTC TGC A-3′, 

5′-TCT GCT CAA GCC GCT GCA-3′ or 5′-ATC TGG GTA ATC CCT TTC AAG CC-

3′) were combined with reverse primers (5′-CCT GAG CTC CGA GCA ACC-3′ or 5′-

GGG AGG ATC GAG CCT TCC GAG GGT-3′).  Fragments were cloned onto pCR2.1 

TOPO and sucloned into KpnI and XhoI restriction sites of pGL2 Basic.  The region 

from -1380 to -1167 was deleted by digestion of the -1380 to +220 fragment on pCR2.1 

TOPO with EcoRV and PvuII, and that fragment was then subcloned onto pGL2 Basic 

into the SmaI site.  DNMT1 full length cDNA was cloned initially onto pCR2.1 TOPO 

cloning vector.  An N-terminally truncated form, DNMT1∆N, was generated by 

cleavage with XbaI and cloned onto the retroviral vector pLPCX.  The ABCB5 promoter 

was amplified with primers 5′-CTC AGT AGA AAG ATT GCC TGC-3′ and 5′-CAA 

AGG AGT AAA CTG ACA GTC-3′ and cloned onto pCR Blunt II TOPO and 

subcloned onto pGL2 Basic using XhoI and HindIII restriction sites.  The NFκB p65 and 

IκB-SR expression vectors and 5X NFκB-luc vector were graciously provided by Dr. 

Yanan Tian and Sui Ke.  IκB-SR was amplified with primers 5′-ATG TTC CAG GCG 

GCC GAG-3′ and 5′-TCA TAA CGT CAG ACG CTG GC-3′, cloned onto pCR2.1 

TOPO and subcloned onto pLPCX using EcoRI restriction sites. IKKβ was amplified 

with primers 5′-CCG ACA GAG TTA GCA CGA CAT-3′ and 5′-ACA TCA TGA GGC 



 35 

CTG CTC CA-3′, cloned onto pCR2.1 TOPO and subcloned onto pLPCX using HindIII 

and NotI restriction sites.  Cloning of SIM2s was described previously (21). 

 

RNA isolation and real time RT-PCR 

 RNA was isolated using a Qiaquick RNeasy Mini kit with Qiashredder columns 

(Qiagen) and DNase digested.  One µg of RNA was reverse transcribed with Superscript 

II Reverse Transcriptase (Invitrogen) with an oligo d(T)12-18 primer.  Relative 

quantitative PCR was performed using Sybr Green master mix and cDNA-specific 

primers.  TBP was used as the internal standard.  Data were collected using SDS 

software,
 
and analyzed by the CT method.  Primers used for real time RT-PCR are 

shown in the table below (Table 5).  

 

                                             

 

 

 

 

 

 

 

 

 
AATGGTCTTACTCTTGGTGGACAGTACCCTCAGTCTTAGCAGGTGTTGABCC2

GGCGTTCCCTGTTGGATTTGCTTGGATTCGCCCTCATAGABCC6

CCCGGCTGTTGTCTCCATAGTCCCAGGAGCCCATCCTABCB1

GTAGGGCCCAAAGGTCTTGTATAAGATCGTCAAGTCCCCACAGAAABCC1

CGTCAGAGTGCCCATCATAAGCGACCTGCCAATTTCAAATABCG2

TTGGCAAATCCAGTCATTGCCCTGATTCTGAGTATTGCTCCAGTACTABCB5

GAATCCGCATGGGCAAACTCGCCTCTCCACAACTTCAGAHEY2

GCGTGCGCGTCAAAGTAACTGACCGTGGATCACCTGAAAHEY1

TTGGGAATGAGGAAAGCAAACTAGGCGGCTAAGGTGTTTGGHES1

GTCAGCTCCAGCACCTTGTGAAGCTGAGCGACGAGTACAAGCebpb

TGCGCACGGCGATGTGCCAAGAAGACCGTGGACAACEBPB

AGAAGCGTGCCACCTCACATCACGTCTTCAGCAGCAAGAASim2

CTGCCACCAAATTTAACCATGTCGCGATGTGGCGTCTGTGADNMT1

CACATCACAGCTCCCCACCATGCACAGGAGCCAAGAGTGAATBP

CCGCATTCCAGTTTGTCCATAGACAAAGCTGAGAACAAACCCTTASIM2

Reverse PrimerForward PrimerTarget Gene

AATGGTCTTACTCTTGGTGGACAGTACCCTCAGTCTTAGCAGGTGTTGABCC2

GGCGTTCCCTGTTGGATTTGCTTGGATTCGCCCTCATAGABCC6

CCCGGCTGTTGTCTCCATAGTCCCAGGAGCCCATCCTABCB1

GTAGGGCCCAAAGGTCTTGTATAAGATCGTCAAGTCCCCACAGAAABCC1

CGTCAGAGTGCCCATCATAAGCGACCTGCCAATTTCAAATABCG2

TTGGCAAATCCAGTCATTGCCCTGATTCTGAGTATTGCTCCAGTACTABCB5

GAATCCGCATGGGCAAACTCGCCTCTCCACAACTTCAGAHEY2

GCGTGCGCGTCAAAGTAACTGACCGTGGATCACCTGAAAHEY1

TTGGGAATGAGGAAAGCAAACTAGGCGGCTAAGGTGTTTGGHES1

GTCAGCTCCAGCACCTTGTGAAGCTGAGCGACGAGTACAAGCebpb

TGCGCACGGCGATGTGCCAAGAAGACCGTGGACAACEBPB

AGAAGCGTGCCACCTCACATCACGTCTTCAGCAGCAAGAASim2

CTGCCACCAAATTTAACCATGTCGCGATGTGGCGTCTGTGADNMT1

CACATCACAGCTCCCCACCATGCACAGGAGCCAAGAGTGAATBP

CCGCATTCCAGTTTGTCCATAGACAAAGCTGAGAACAAACCCTTASIM2

Reverse PrimerForward PrimerTarget Gene

Table 5
Primers for real time RT-PCR.  
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5′ RACE 

 Five µg of RNA was reverse transcribed with Superscript II Reverse 

Transcriptase (Invitrogen) with a primer to the SIM2 promoter: 5′-CCT GAG CTC CGA 

GCA ACC-3′.  The product was purified over a Qiaquick PCR purification column 

(Qiagen).  The TdT tailing reaction of the cDNA was performed with dATP for 1 hour at 

37
o
C.  Two rounds of PCR were performed, first with 5′-GGG AGG ATC GAG CCT 

TCC GAG GGT-3′ and 5′-GAT CAG GAC GTT CGT TTG AGT TTT TTT TTT TTT 

TTT T-3′.  The second round again utilized the former primer and 5′-GAT CAG GAC 

GTT CGT TTG AG-3′. 

 

Bisulfite sequencing 

 DNA was isolated and digested with HindIII.  After purifying through a Qiaquick 

PCR purification column, DNA is eluted in 0.1XTE.  DNA is then treated with a 

denaturation buffer (0.3 N NaOH, 0.23 mg/ml shSSDNA, 8.4 mM EDTA, 6.7 mM Tris-

Cl) at 98
o
C for 5 minutes.  DNA is deaminated with saturated sodium metabisulfite 

containing 1 mM hydroquinone at 50
o
C for 6 hours.  DNA is then purified through a 

Qiaquick PCR purification column and eluted in 50µl of water.  DNA is desulfonated in 

0.36 N NaOH and 0.17 mg/ml shSSDNA at 37
o
C for 15 minutes.  DNA is precipitated 

by ethanol/ammonium acetate and resuspended in 0.1xTE.  The region around the SIM2 

transcriptional start site was amplified with 5′-GTT TAT TTT GTG ATT TTG GTT 

TAG-3′ and 5′-AAA TAA CCC TTC TAC CCT TTC TAT CC-3′, and the region 

encompassing the ATG start site was amplified with 5′-GTT AAG ATT AGG AGG 



 37 

GAG AAG GAA A-3′ and 5′-CCA AAC CAA ACC AAA ATA CAC TAA C-3′ using 

Taq polymerase (Invitrogen).  PCR products were then cloned onto pCR2.1-TOPO and 

transformed into chemically competent DH5α E. coli (Invitrogen).  Plasmid was isolated 

from individual colonies and evaluated for containing an appropriately sized insert.  

Plasmids were sequenced using the M13 (-20) forward primer or the M13 reverse primer 

on an ABI Prism™ 3730xl DNA sequencer by Seqwright (Houston, TX).   

 

Chromatin immunoprecipitation 

 ChIP assays were carried out as described by the manufacturer (Upstate Cell 

Signaling) with a few modifications.  Briefly, cells were fixed with 1% formaldehyde for 

10 minutes.  Crosslinking was stopped by addition of 125 mM glycine.  Cells were 

washed in the presence of protease inhibitors (Complete tablets, Roche), pelleted at 2000 

rpm for 4 minutes at 4
o
C and resuspended in SDS lysis buffer with protease inhibitors 

(Complete tablets, Roche).  Aliquots of 200 µl (1x10
6
 cells) were sonicated for 10 pulses 

of 10 seconds each to shear chromatin to between 200 and 1500 bp.  The supernatant 

was collected and diluted in ChIP dilution buffer to an appropriate amount.  After pre-

clearing twice with salmon sperm DNA/protein A agarose-50% slurry in TE/Na 

azide/0.1% BSA, the supernatant was incubated overnight with antibody at 4
o
C.  

Antibodies used were anti-acetyl histone H3 (5 µg, Upstate), anti-HP1α, clone 15.19s2 

(2.9 µg, Upstate), normal rabbit IgG (1 µg, Upstate), anti-RNA polymerase II, clone 

CTD4H8, (9.4 µg, Upstate), anti-DNMT1 (5 µg, Abcam), anti-Sim2 (10 µg, Chemicon), 

anti-NFκB p105/p50 (10 µg, Abcam), anti-C/EBPβ (20 µg, Santa Cruz), anti-CBF1 (4 
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µg, Upstate), anti-Notch1 (10 µl, Abcam) and anti-HA tag (5 µg, Abcam).  The salmon 

sperm DNA/protein A agarose-50% slurry was then used to collect the antibody 

complexes for 1 hour at 4
o
C.  Agarose was pelleted at 1000 x g at 4

o
C for 1 minute and 

washed consecutively with low salt immune complex wash buffer, high salt immune 

complex wash buffer, lithium chloride immune complex wash buffer and TE buffer.  

The protein complex was eluted with 1% SDS, 0.1 M NaHCO3, and the crosslinking was 

reversed in 200 mM NaCl at 65
o
C for 4 hours.  Ethanol was added to precipitate the 

DNA, which was then resuspended in TE and digested with proteinase K for 1-2 hours at 

45
o
C.  DNA was purified using the Qiaquick PCR purification kit.  PCR was performed 

with primers to the transcriptional start site region (5′-GCC CAC CCT GTG ACC CTG-

3′ and 5′-AAG TGA CCC TTC TGC CCT TTC-3′), primers to the ATG start site region 

(5′-GCC AAG ACC AGG AGG GAG-3′ and 5′-CCA AAC CAA ACC AGA ATG C-

3′), primers to the ABCB5 promoter (5′-TCC TCA ATT TAT GTG TGG CTG-3′ and 5′-

TTA GCC AAA AGG CCG AGA A-3′) and primers to the luciferase gene (5′-TAG 

AGG ATG GAA CCG CTG GA-3′ and 5′-TCA CGA TCA AAG GAC TCT GGT-3′).     

 

Chromatin accessibility assay 

 The assay was based on a protocol described previously with some modifications 

(110).  Briefly, cells were collected and lysed in 1X Reporter Lysis buffer (Promega).  

The cells were washed twice before resuspension in 100µl 1X NEBuffer 2 for 10
7
 

nuclei.  10
6
 nuclei were incubated with 0 or 275 U of MspI for 1 hour at 37

o
C.  Reaction 

was stopped by addition of 0.2mg/ml proteinase K and 0.6% SDS.  DNA was extracted 
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with phenol:chloroform:isoamyl alcohol, ethanol/sodium acetate precipitated and 

resuspended in water.  A constant amount of DNA was ligated to a linker.  The linker 

was made by first phosphorylating the reverse oligo: 5′-CGG CTC AAA CGA ACG 

TCC TGA TC-3′ with T4 kinase (Invitrogen).  The phosphorylated oligo was then 

annealed to its complement: 5′-GAT CAG GAC GTT CGT TTG AGC-3′ (AP2-Msp1) 

to generate a linker with MspI overhangs.  After the ligation, two rounds of PCR were 

performed.  For the transcriptional start site, the first set of primers was AP2-Msp1 and 

5′-TCC CCC CAT TAC ACA CAC A-3′, and the second amplification was done using 

AP2-Msp1 with 5′-AAG TGA CCC TTC TGC CCT TTC-3′.  For the ATG start site, the 

first set of primers was AP2-Msp1 and 5′-CGC GAT GAA GGA GAA GTC CAA 

GAA-3′, and the second set of primers was AP2-Msp1 with 5′-GCC AAG ACC AGG 

AGG GAG AAG-3′.   

 

Western blot 

 Protein was isolated using RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 

1% NP-40, 1% sodium deoxycholate, 0.1% SDS) with protease inhibitors and MG-132 

added.  Protein was loaded and run on an 8% acrylamide gel for 2 hours at 100 V.  

Protein was transferred to a PVDF membrane (Bio-Rad) at 100 mA for 2 hours.  

Membrane was blocked in 5% milk and probed with anti-Sim2 (1:600, Chemicon), anti-

Dnmt1 (1:3000, Abcam), anti-C/EBPβ (1:2500, Santa Cruz), anti-phospho-C/EBPβ 

(1:1000, Cell Signaling), anti-NFκB p65 (1:1000, Abcam) or anti-β-actin (1:8000, 

Sigma).  Membranes were washed in PBS, 0.1% Tween-20 and probed with the 
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appropriate secondary antibody, anti-rabbit (Bio-Rad) or anti-mouse (Santa Cruz), at 

1:5000 for 45 minutes.  Blots were again washed in PBS, 0.1% Tween-20 and developed 

with the ECL Plus Western Blotting Detection System (Amersham).   

 

Methylation-specific PCR 

 Breast tumor samples were obtained from Baylor College of Medicine, under 

Institutional Review Board approval with informed consent obtained from all subjects.  

Bisulfite treatment was performed as described above.  A portion of the second CpG 

island of SIM2 was amplified initially with primers non-selective for methylation status, 

5′-GTT AAG ATT AGG AGG GAG AAG GAA A-3′ and 5′-CCA AAC CAA ACC 

AAA ATA CAC TAA C-3′.  The product was diluted 1:50 and then amplified with a 

primer set specific for methylated DNA, 5′-TAA GTT GTT TTC GTT GTC GTC GG-3′ 

and 5′-AAA ACT CGC TAA CCG TAC GAA CT-3′, and a primer set specific for 

unmethylated DNA, 5′-TAA GTT GTT TTT GTT GTT GTT GG-3′ and 5′-AAA ACT 

CAC TAA CCA TAC AAA CT-3′.   

 

Stable transduction  

 HEK-293T amphotrophic Phoenix cells were transfected with 10 µg retroviral 

vectors (pLPCX or pBabe) with or without insert.  After 24 hours, cells were placed at 

32
o
C.  Viral media was harvested 48 and 72 hours after transfection and used to infect 

cells.  After 24 hours of resting in nonselective media, cells were selected with 

puromycin for 2 days.   
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Transient transfection 

 HEK293T cells were used for all transient transfections except with the ABCB5 

promoter construct which was done in MDA435 cells.  One hundred ng (0.1 µg) of 

plasmid containing transcription factor was mixed with 0.2 µg of plasmid containing 

promoter construct.  Three µl of Genejuice (Novagen) was used per microgram of DNA.  

DNA and Genejuice were mixed in Opti-MEM media (Invitrogen).  Protein was 

harvested 2 days after transfection, using Reporter Lysis Buffer (Promega).  Luciferase 

activity and total protein were measured as described previously (21).  Luciferase 

activities were normalized to total protein values and are represented as the means ± SE 

for three wells per condition.  For ChIP assays, 5 µg of plasmid containing repressor and 

5 µg of plasmid containing the SIM2 promoter construct were transfected into HEK293T 

cells or MDA435 stably tranduced (pLPCX or IκB-SR) cell lines, where indicated, on a 

10 cm plate.  Chromatin was harvested 2 days after transfection. 

 

Cell proliferation/death assay 

 Control and SIM2-overexpressing MDA435 cells were seeded at 750,000 cells 

per well in 6-well plates.  The next day doxorubicin (1 µM) and 5-fluorouracil (1.5 mM) 

were added in fresh media.  Cells were counted, using a Coulter counter, in triplicate (3 

wells) at the time of treatment and 24 hours intervals thereafter for 3 days.  Doxorubicin 

was too toxic and all cells were dead by day 3, so a count could not be done.   
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MTT assay 

 For the MTT assay, 100,000 cells were seeded in media with or without 

antineoplastic drug in 96-well plates.  The MTT Cell Growth Assay Kit (Chemicon) was 

used, according to manufacturer’s instructions, to measure cell viability 24 to 36 hours 

after seeding for control and SIM2-overexpressing MDA435 cells.   

 

Immunocytofluorescence 

 Cells were seeded on cover slips in 6-well plates or in 4-well chamber slides.  

The following day the cells were fixed in 4% paraformaldehyde and permeabilized with 

0.1% Triton-X.  The cells were blocked in 5% BSA for 30 minutes and then probed with 

anti-Sim2 (1:100 of 1µg/µl stock), anti-NFκB p105/p50 (1:100), or anti-phospho-

C/EBPβ (1:100) for 1 hour at room temperature.  Secondary antibody was anti-rabbit Ig-

Alexa488
 
or anti-rabbit Ig-Alexa568.  Cells were mounted in fluorescence mounting media 

with DAPI.  To demonstrate morphology cells were stained with fluorescein-conjugated 

anti-phalloidin (1:40) 

 

Immunohistochemistry 

 Tissue was deparaffinized at 62
o
C for 30 minutes and washed in xylenes and 

ethanol.  Antigen retrieval was performed by microwaving at high, medium and low 

power for 5 minutes each in 0.01M NaCitrate, pH 6.  Sections were then peroxidase 

blocked and then incubated in blocking solution (PBS 0.1% Tween-20 10% normal 

horse serum) overnight.  Anti-Sim2 (Chemicon) antibody was used to probe at 1:100 
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dilution for 1.5 hours at room temperature.  Secondary antibody, biotinylated anti-rabbit 

IgG (Vector Laboratories), was used at 1:250 for 45 minutes at room temperature.  

Specific recognition was detected using VectaStain ABC reagent and developed with 

freshly prepared DAB solution (Vector Laboratories).  Sections were then counterstained 

with hematoxylin, dehydrated and mounted with Permount.   

 

Co-immunoprecipitation 

 HEK293T cells were transfected with 5 µg of SIM2s and NFκB p65 expression 

vectors, using Genejuice as described above.  Two days later, cells were fixed with 1% 

formaldehyde for 10 minutes.  Crosslinking was stopped by addition of 125 mM glycine.  

Cells were washed in the presence of protease inhibitors (Complete tablets, Roche), 

pelleted at 2000 rpm for 4 minutes at 4
o
C and resuspended in SDS lysis buffer with 

protease inhibitors and incubated on ice for 10 minutes.  The mixture was spun for 10 

minutes at 16000 x g at 4
o
C, and the supernatant was collected and diluted in ChIP 

dilution buffer to an appropriate amount.  After pre-clearing twice with salmon sperm 

DNA/protein A agarose-50% slurry in TE/Na azide/0.1%BSA, the supernatant was 

incubated overnight with antibody at 4
o
C.  Antibodies used were anti-Sim2 (1:100, 

Chemicon), normal rabbit IgG (1:1000, Upstate), and anti-NFκB p65 (1:100, Abcam).  

The salmon sperm DNA/protein A agarose-50% slurry was then used to collect the 

antibody complexes for 1 hour at 4
o
C.  Agarose was pelleted at 1000 x g at 4

o
C for 1 

minute and washed consecutively with low salt immune complex wash buffer, high salt 

immune complex wash buffer, lithium chloride immune complex wash buffer and TE 
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buffer.  The pellet was resuspended in 50 µl of 1X SDS-PAGE loading buffer, boiled for 

5 minutes and 10 µl of sample was run by SDS-PAGE.  Western blotting was performed 

as described above, with anti-Sim2 and rabbit anti-NFκB p65 (1:1000, Abcam) primary 

antibodies.   

 

Flow cytometry 

 MDA435 control (pLPCX) or SIM2s-overexpressing cells were treated with 10 

µM doxorubicin for 30 minutes, washed with 1X phosphate buffered saline, and allowed 

to incubate in DMEM, supplemented with 10% fetal bovine serum, for an additional 3 

hours.  A 0 hour time point, without further incubation without doxorubicin, was also 

collected for comparison.   The cells were washed, trypsinized, counted on a Coulter 

counter, and resuspended in buffer (10 mM HEPES/NaOH, pH 7.4, 140 mM NaCl, 2.5 

mM CaCl2) at one million cells per ml.  Cells were analyzed on a FACSCalibur (Becton 

Dickinson Immunocytometry Systems) flow cytometer, equipped with a 15 mW air-

cooled argon laser, using CellQuest (Becton Dickinson) acquisition software.  

Doxorubicin fluorescence was collected through a 585/42-nm bandpass filter, and list 

mode data were acquired on a minimum of 10,000 events falling within light scatter 

gates set to include cells.  Data analysis was performed in FlowJo (Treestar, Inc.) using 

forward and side light scatter to gate on the cells. 

 

 

 



 45 

CHAPTER III 

RESULTS: EPIGENETIC REGULATION OF SIM2 

 

SIM2 is epigenetically silenced in cancer cell lines 

 SIM2 has recently been identified as a novel tumor suppressor in the breast, and 

is down-regulated in a subset of breast cancers (21).  Given the prevalence of epigenetic 

modifications of tumor suppressors in cancer, we sought to investigate the role of 

epigenetic mechanisms in SIM2 silencing.  We used three cell lines to model stages of 

cancer progression.  SIM2 is highly expressed in normal breast tissue and in the 

immortalized, nontransformed breast cell line, MCF10A (Figure 8A).  Expression is 

partially reduced in the estrogen receptor positive MCF7 breast cancer cell line and is 

substantially abrogated in the estrogen receptor negative, highly invasive MDA435 

cancer cell line.  MCF10A and MDA435 cells were treated with two epigenetic-altering 

drugs, 5-aza-2'-deoxcytidine (5-aza-dC), which is a demethylating agent, and trichostatin 

A (TSA), which is an HDAC inhibitor (Figure 8B and 8C).  The drugs had little effect 

on SIM2 mRNA expression in the normal MCF10A cells.  In MDA435 cells, 

demethylation increased SIM2 mRNA expression 5.4-fold, and acetylation increased 

SIM2 expression 3.4-fold.  Treatment with a combination of the drugs resulted in a 13.9-

fold increase.  This observed increase in SIM2 expression did not approach levels in the 

normal breast MCF10A cell line, which was approximately 3500-fold higher than 

untreated MDA435 levels.  This pattern of increased expression after 5-aza-dC and TSA 

treatment is consistent with partial epigenetic silencing of SIM2 in cancer cells.   
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Methylation within exon 1 of SIM2 correlates with expression 

 Because of the increase in SIM2 expression following treatment with 5-aza-dC, 

methylation of the SIM2 promoter was examined further.  First, it was verified that 

MCF10A, MCF7 and MDA435 cells share the same promoter for SIM2 using 5′ RACE 

(Figure 9A).  Analyzing the promoter using the online program MethPrimer 

(http://www.ucsf.edu/urogene/methprimer/index1.html) identified CpG islands in the 

SIM2 promoter and exon 1, and primers were designed to amplify deaminated DNA 

within these islands.  Methylation-specific PCR, using primers designed within exon 1, 

was used to analyze the SIM2 promoter.  SIM2 was found to be unmethylated in the 

MCF10A cell line, in contrast to being completely methylated in the MDA435 cell line 

in this region (Figure 9B).  For bisulfite sequencing both the region surrounding the 

ATG start site in exon 1 and another around the transcriptional start site were chosen for 

analysis (Figure 9C).  Unexpectedly, a high level of methylation was observed at the 

transcriptional start site in all three cell lines (Figure 9D).  At the ATG start site, 

however, methylation level inversely correlated with expression level in the three cell 

lines, suggesting that methylation within exon 1 is playing a regulatory role.   

 

Histone modifications have a role in silencing SIM2 

 SIM2 re-expression in MDA435 cells after TSA treatment implies that histone 

modification is a mechanism of SIM2 silencing.  Chromatin immunoprecipitation was 

used to evaluate the levels of histone 3 (H3) acetylation and heterochromatin protein 1 

(HP1) associated with SIM2 at the transcriptional start site and ATG start site.  Presence  
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Figure 9

Methylation of SIM2 in normal breast-derived and cancer-derived cell lines. (A) 5′ RACE of SIM2 
gene in MCF10A, MCF7 and MDA435 cell lines.  (B) Methylation-specific PCR analysis of SIM2, using 
primers designed within exon 1, in MCF10A and MDA435 cell lines. (C) CpG island analysis of SIM2 

promoter and 5′ end using MethPrimer. (D) Frequency of methylation of SIM2 in three cell lines, as 
determined by bisulfite sequencing.  Circles represent CpG dinucleotides; filled-in circles indicate 

methylation.
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of RNA polymerase II was also evaluated to determine the effect of these alterations on 

transcription initiation and elongation.  High levels of acetylation were observed in the 

MCF10A and MCF7 cell lines at the transcriptional start site, but the MDA435 cell line 

had no acetylation of H3 (Figure 10A).  HP1 showed the opposite pattern, being present 

at high levels in the MDA435 cell line and low to absent in the MCF7 and MCF10A cell 

lines at the transcriptional start site.  Levels of RNA polymerase II at the transcriptional 

start site correlated well with expression, demonstrating the differences are due to a lack 

of transcriptional initiation.  At the ATG start site, a similar chromatin state was 

observed (Figure 10B).  One major exception was a lack of H3 acetylation and slightly 

higher levels of HP1 in MCF7 cells.   

 

Epigenetic alterations correlate with changes in chromatin structure 

 Increasing DNA methylation and histone hypoacetylation in the MCF7 and 

MDA435 cancer cells suggests a silenced chromatin structure that is typically tightly 

compacted and inaccessible to various transcriptional activators but also associated with 

repressors that maintain the inactive state (111).  As a measure of the accessibility of the 

SIM2 gene, nuclei isolated from MCF10A, MCF7 and MDA435 cells were treated with 

the restriction enzyme MspI (Figure 11).  A PCR detection method was utilized as 

previously described (110).  A single product indicates complete digestion and, 

therefore, accessibility, while multiple products and no product indicate decreased and a 

lack of accessibility, respectively.  This assay revealed increasing changes in the SIM2 

gene through increasingly malignant cancer cell lines, with the DNA being highly  
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accessible in the MCF10A cell line, less accessible in the MCF7 cell line and only 

slightly accessible in the MDA435 cell line at both the transcriptional start site and ATG 

start site.  These results correlate well with the results of the HP1 chromatin 

immunoprecipitation assay.   

 

 

 

+1 +1246

MspI Sites MspI Sites

Linker

Linker Linker

Linker

Linker

Mock 275U MspI

L M
C
F10

A

M
C
F7

M
D
A
43

5

M
C
F10

A

M
C
F7

M
D
A
43

5

Mock 275U MspI

L M
C
F10

A

M
C
F7

M
D
A
43

5

M
C
F10

A

M
C
F7

M
D
A
43

5

A

B C

Figure 11
Chromatin accessibility assay using MspI restriction enzyme. (A) Diagram of MspI-based 

accessibility assay showing positions of restriction sites, linker and PCR primers on SIM2 promoter. 

(B) Transcriptional start site accessibility. (C) ATG start site accessibility.



 52 

DNMT1 overexpression contributes to SIM2 silencing 

 To explore the role of methylation of the SIM2 promoter that we observed in the 

cell lines, a truncated form of the maintenance DNA methyltransferase, DNMT1∆N, was 

overexpressed in MCF10A cells.  The N-terminally truncated form was used because it 

has previously been shown that this region encodes a destruction domain, and to achieve 

high expression levels, this domain must be deleted (74).  DNMT1 overexpression was 

verified by real time RT-PCR and Western blot (Figure 12A and 12C).  SIM2 expression 

was also analyzed by real time RT-PCR and was found to be repressed approximately 

50% by passage 10 (Figure 12B).  This correlated with a reduction in SIM2 protein 

levels by Western blot (Figure 12C).  Further passaging did not lead to greater 

repression.  By bisulfite sequencing analysis, methylation was analyzed at the ATG 

region in MCF10A cells stably transduced with vector control (pLPCX) and DNMT1∆N 

(Figure 12D).  Surprisingly, the control transduction resulted in increased methylation 

compared to the parent cell line.  DNMT1 overexpression increased methylation levels 

further from 23% in the control cells to 49% in the DNMT1∆N-transduced cells.  

However, we did not observe a detectable loss of acetylation of histone 3 at passage 5 or 

at passage 20 in the DNMT1-overexpressing MCF10A cells (Figure 12E).  To confirm 

that DNMT1 was directly interacting with the SIM2 promoter, we performed ChIP 

analysis and found DNMT1 bound to the ATG region in MCF10A cells overexpressing 

DNMT1∆N (Figure 12E).   
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Methylation of SIM2 does not correlate with expression in breast cancer 

 As an alternative method to analyze the role of methylation in SIM2 expression, 

a sampling of human breast tumor tissue was utilized.  By methylation-specific PCR, 

SIM2 was determined to be partially methylated in 53% of breast tumors in the CpG 

island within exon 1 (Figure 13A).  SIM2 was down-regulated in 43% of breast cancer 

samples; however, expression did not correlate with methylation status (Figure 13B).  

This result is consistent with the minimal effect of methylation on SIM2 expression seen 

in the MCF10A cells overexpressing DNMT1.   
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Figure 13
Methylation and expression of SIM2 in breast tumor samples. (A) Methylation-specific PCR 

analysis of ATG start region of SIM2.  (B) Representative Western blot for SIM2 and β-actin in breast 
tumor samples. 
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CHAPTER IV 

RESULTS: RAS-NOTCH-C/EBPβ PATHWAY 

 

Oncogenic transformation decreases SIM2 expression 

 Since epigenetic mechanisms were not sufficient for SIM2 silencing, we sought 

to identify other pathways leading to SIM2 down-regulation.  To model different tumor 

types, the normal immortalized breast cell line, MCF10A, was stably transduced with an 

empty vector control, an HRAS or a c-MYC expression construct.  The HRAS- and c-

MYC-transduced cells rapidly underwent a change in morphology.  Normal MCF10A 

cells are large and primarily ovoid cells; however, after introduction of HRAS, the cells 

became small and irregularly-shaped (Figure 14A).  c-MYC overexpression, on the other 

hand, resulted in a spindle-shaped morphology.  The control MCF10A cells also retain 

contact inhibition, whereas HRAS- and c-MYC-overexpressing MCF10A cells easily 

grow over one another.  HRAS-overexpression was associated with a larger decrease in 

SIM2 mRNA compared to c-MYC (Figure 14B), although both led to decreased protein 

levels as determined by Western blot (Figure 14C).  The reduced SIM2 protein levels 

were confirmed by immunofluorescence in the HRAS-overexpressing cells (Figure 

14D).    

  

Ras activates Notch in MCF10A cells 

 Notch is an important mediator of RAS-induced tumorigenesis in the mammary 

gland (46, 57).  To confirm whether Notch was activated in HRAS-overexpressing  
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MCF10A cells, we evaluated the expression of several Notch target genes, including 

HES1, HEY1 and HEY2 (Figure 15A-C).  Levels of these Notch targets were elevated in 

the HRAS-overexpressing cells, indicating Notch activation.  To determine whether 

SIM2 was a Notch target, chromatin immunoprecipitation (ChIP) was used to assay 

Notch binding to a region near the transcriptional start site of the SIM2 promoter (Figure 

15D).  Interestingly, increased NOTCH1 binding to this region of the SIM2 promoter 

was detectable in HRAS-overexpressing cells.   
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Notch represses SIM2 through a CBF1-independent mechanism 

 The association between HRAS overexpression, increased NOTCH1 binding to 

the SIM2 promoter and decreased SIM2 expression led us to further investigate a role 

for Notch signaling in SIM2 repression.  An expression construct containing the coding 

region of activated NOTCH1 (NOTCH1 intracellular domain or NICD) was constructed 

and tested for the ability to activate expression from a HES1 promoter-controlled 

reporter.  As expected (112), reporter activity was increased in cells co-transfected with 

either NICD or NICD plus CBF1, but not in CBF1 cells alone (Figure 16A).  Transient 

transfections were performed using various SIM2 promoter constructs upstream of a 

luciferase reporter.  The full length construct contained the SIM2 promoter from -1380 

to +1805, relative to the transcriptional start site.  Various deletion constructs of the 

SIM2 promoter were made and tested for activity in cells co-transfected with the NICD.  

Activated NOTCH1 repressed the activity of all SIM2 promoter constructs analyzed 

(Figure 16B).  Coupled with our ChIP results, these data suggest that NICD represses 

SIM2 expression through direct interactions with the SIM2 promoter.  This was 

confirmed by ChIP analysis of transiently transfected cells receiving the full length 

SIM2 reporter construct plus NICD or vector control (Figure 16C).  The NICD was 

found to bind directly to the transfected SIM2 promoter, consistent with the observed 

binding in the HRAS-overexpressing MCF10A cells.  Attempts to overexpress the NICD 

in MCF10A cells were unsuccessful, consistent with previous reports (113), preventing a 

direct evaluation of the effect of elevated Notch signaling on SIM2 expression.   
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Figure 16
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 Canonical Notch signaling acts through CBF1 and functions to direct 

developmental pathways (114).  Recently, CBF1-independent mechanisms of Notch 

signaling that contribute to cell fate determination have been identified (52).  To explore 

which mechanism Notch utilizes to silence SIM2 expression, we co-transfected CBF1 

and the full length SIM2 promoter into HEK293T cells with and without NICD (Figure 

16D).  Introduction of CBF1 had no effect on SIM2 promoter activity, suggesting a 

CBF1-independent mechanism of SIM2 repression by NOTCH1.  Further, we noted the 

absence of CBF1 on the SIM2 promoter in either the HRAS-overexpressing or control 

cells by ChIP (Figure 16E).  Sufficient PCR cycles were added until a band in the IgG 

control was detected to make sure that no CBF1 binding was being overlooked.  CBF1 

was clearly detectable on the HES1 promoter in the HRAS-overexpressing cells as a 

positive control (Figure 16F).  CBF1 was not detected on the HES1 promoter in vector 

control cells, most likely due to the more compacted chromatin state in the absence of 

HRAS-driven NOTCH1 activation (115). 

 

C/EBPβ is activated in HRAS-overexpressing MCF10A cells 

 SIM2 expression was partially restored in HRAS-transformed MCF10A cells 

treated with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester 

(DAPT), an inhibitor of Notch proteolysis and subsequent nuclear translocation (data not 

shown).  Since inhibition of Notch cleavage was insufficient to restore SIM2 expression 

to control levels, other effectors of Ras signaling seemed likely to be involved in SIM2 

regulation.  C/EBPβ is known to play an important role in mammary development and 
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has recently been shown to be a critical mediator of Ras-induced tumorigenesis (47, 62).  

We first evaluated the expression of C/EBPβ in the control and HRAS-overexpressing 

MCF10A cell lines (Figure 17A).  C/EBPβ mRNA expression was slightly but 

significantly (p = 0.02) elevated in HRAS-overexpressing cells.  Western analyses 

revealed similar levels of LAP in control and HRAS-overexpressing cells; however, 

increased levels of LIP were present in HRAS-overexpressing cells (Figure 17B).  

HRAS also mediates activation of C/EBPβ at the post-translational level (68); thus, 

levels of C/EBPβ phosphorylated at threonine-235 were analyzed by Western blot and 

immunofluorescence.  These results indicated that phosphorylated C/EBPβ levels were 

elevated in the HRAS-overexpressing cells compared to control cells (Figure 17B and 

17C).   

 To further investigate the role of C/EBPβ in SIM2 gene silencing in HRAS-

overexpressing cells, we analyzed C/EBPβ binding to the SIM2 promoter by ChIP.  

Similar to NOTCH1, C/EBPβ associated with the SIM2 promoter near the 

transcriptional start site in HRAS-overexpressing MCF10A cells but not in control 

MCF10A cells (Figure 17D).   

 

C/EBPβ represses SIM2 promoter activity 

 A single C/EBPβ mRNA can be translated into three different proteins: full 

length liver-enriched activating protein 1 (LAP1), liver-enriched activating protein 2 

(LAP2) and the dominant negative liver-enriched inhibiting protein (LIP).  An initial 

transient transfection with the full length SIM2 promoter revealed that LAP1 and LAP2  
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repressed SIM2 promoter activity while LIP had little effect (Figure 18A).  Western blot 

confirmed successful expression of each isoform (Figure 18B).   
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C/EBPβ is activated in HRAS-overexpressing MCF10A cells.  (A) C/EBPβ
expression in HRAS-overexpressing and control (pLPCX) MCF10A cells by real time 

RT-PCR. Asterisk, C/EBPβ levels were significantly higher in HRAS-overexpressing
cells compared to control (p = 0.02). (B) Western blot for phosphorylated C/EBPβ and 

total C/EBPβ in MCF10A cells stably transduced with HRAS or vector control.

(C) Immunofluorescence for phospho-C/EBPβ in HRAS-overexpressing MCF10A cells 

and control cells. (D) ChIP analysis for C/EBPβ on the SIM2 promoter in HRAS-
overexpressing cells compared to control (pLPCX). 
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C/EBPβ binds and represses SIM2 promoter. (A) Luciferase activity after transient transfection of 

three C/EBPβ isoforms on full length SIM2 promoter construct compared to pcDNA3 control.  Asterisk, 

SIM2 promoter activity is significantly reduced by LAP1 and LAP2 compared to control (p ≤ 0.001).

(B) Western blot for phospho-C/EBPβ and β-actin in cells transiently transfected with C/EBPβ
isoforms. (C) Luciferase activities after transient transfections of LAP1 and LAP2 on various SIM2 

promoter constructs.  (D-E) ChIP for transfected HA-tagged C/EBPβ isoforms on co-transfected SIM2 
promoter constructs diagrammed above.
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 Further investigation found differing activities of LAP1 and LAP2 on the SIM2 

promoter truncations (Figure 18C).  LAP1 was able to repress the SIM2 promoter, 

except when the region from -765 to -572 was deleted (Figure 18C).  LAP2 activated the 

promoter truncations containing sequence only between -1071 to +220 but repressed the 

promoter constructs which extended either further 5′ or 3′ (Figure 18C).  This suggests 

that C/EBPβ isoforms have different activities on the SIM2 promoter, which may 

involve interactions with different cofactors.  To explore these differences further, we 

performed ChIP analyses of transfected promoter constructs.  On the -765 to +220 

promoter construct, LAP1 repressed while LAP2 activated reporter activity.  However, 

both C/EBPβ isoforms were able to bind to this construct (Figure 18D).  On the -572 to 

+1065 promoter construct, LAP2 repressed reporter activity and LAP1 had no effect.  

Despite this difference, both isoforms showed reduced binding to the -572 to +1065 

promoter construct (Figure 18E).  These studies demonstrate that both of these C/EBPβ 

isoforms repress the SIM2 promoter but operate through distinct mechanisms.   

 

Stable overexpression of C/EBPβ isoforms represses SIM2 expression in MCF10A 

cells 

 To confirm the effect of C/EBPβ on endogenous SIM2, we generated MCF10A 

cell lines stably overexpressing LAP1 and LAP2 (Figure 19A and 19C).  SIM2 

expression was reduced in both cell lines compared to vector control as determined by 

real time RT-PCR and Western blot (Figure 19B and 19C).  We also performed ChIP 

analysis of the SIM2 promoter in the LAP1 and LAP2 overexpressing MCF10A cell 
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lines compared to the vector only control.  LAP1 was able to bind to the endogenous 

SIM2 promoter, while LAP2 binding was undetectable (Figure 19D).  This was not due 

to experimental error since we observed LAP2 on the c-FOS promoter as a positive 

control (Figure 19E).   
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LAP1 and LAP2 repress SIM2 expression when overexpressed in MCF10A cells.
(A-B) Expression by real time RT-PCR in MCF10A cells stably transduced with LAP1, LAP2 or pBabe

vector control.  Asterisk, C/EBPβ expression is significantly elevated in LAP1- and LAP2-transduced 

cells compared to control (p ≤ 0.0002). Double asterisk, SIM2 levels are significantly reduced in 
LAP1- and LAP2-transduced cells compared to control (p ≤ 0.0002). (C) Western blot for SIM2 and 

phospho-C/EBPβ isoforms in stably transduced MCF10A cells. (D) ChIP analysis for C/EBPβ on 
endogenous SIM2 promoter in MCF10A cells stably overexpressing LAP1 or LAP2 (HA-tagged) 
versus control MCF10A cells (pBabe).  (E) ChIP analysis for LAP2 on c-FOS promoter as positive 

control.  Diagrams above show promoters and primer positions for reference.
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C/ebpβ represses Sim2 in vivo 

 C/ebpβ-/-
 mice are viable but display immune system defects, abnormal brown 

adipose tissue function, skin irregularities and female infertility (59).  Lack of C/ebpβ in 

the mammary gland leads to impaired ductal morphogenesis, resulting in enlarged ducts 

with decreased branching (62).  We found that Sim2 is overexpressed in C/ebpβ-/-
 mouse 

mammary glands (Figure 20A).  Immunostaining for Sim2 demonstrated that Sim2 is 

expressed in a punctate pattern within the luminal epithelium in wild-type glands, while 

its expression is higher and more uniform in C/ebpβ-/-
 glands (Figure 20B).  Two cell 

lines were established from C/ebpβ-/-
 mouse mammary epithelial cells based on their 

phenotype in culture.  One line is morphologically similar to normal mammary epithelial 

(flat) cells in culture; the second line forms foci in culture (unpublished data).  Sim2 

levels were found to be extremely elevated in the C/ebpβ-/-
 flat cells compared to the 

foci-forming cells (Figure 20C).  The effect of reintroducing each of the three C/ebpβ 

isoforms on Sim2 expression in the C/ebpβ-/-
 flat cells was analyzed.  Real time RT-PCR 

and Western blot confirmed that each isoform of C/ebpβ was being expressed in the 

cells (Figure 20D and 20F).  However, there was some mLIP detected by Western blot in 

each of these cell lines.  This could be due to cleavage either in vivo or in vitro during 

protein preparation (116).  Sim2 expression was reduced in each of the cell lines in 

which C/ebpβ expression had been re-established at the RNA and protein levels (Figure 

20E and 20F).  It was surprising that the murine LIP isoform repressed Sim2 expression 

and was the most effective isoform as no Sim2 protein was detected in the C/ebpβ-/-
 cell 
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line overexpressing mLIP.  This is in contrast to the human cell lines, in which the 

dominant negative LIP had no effect on SIM2 promoter activity.   
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Figure 20
C/ebpβ represses Sim2 in a mouse model. (A) Sim2 expression in C/ebpβ-/- mammary glands by real 

time RT-PCR.  (B) Immunohistochemistry for Sim2 expression in C/ebpβ-/- mammary glands compared 

to wild-type glands. (C) Expression of Sim2 in flat cells and foci-forming cells derived from C/ebpβ-/-

mammary glands by real time RT-PCR. (D) Expression of C/ebpβ in C/ebpβ-/- flat cells in which mLAP1, 
mLAP2 or mLIP has been stably transduced by real time RT-PCR.  Asterisk, C/ebpβ levels are 

significantly higher in flat cells transduced with mLAP1, mLAP2 and mLIP (p ≤ 0.001). (E) Expression of 
Sim2 in C/ebpβ-/- flat cells in which mLAP1, mLAP2 or mLIP has been stably transduced by real time RT-

PCR.  Asterisk, Sim2 levels are significantly lower in flat cells transduced with mLAP1, mLAP2 and mLIP

(p ≤ 0.001). (F) Western blot for C/ebpβ isoforms and Sim2 in C/ebpβ-/- flat cells in which mLAP1, 
mLAP2 or mLIP has been stably transduced.
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CHAPTER V 

RESULTS: INTERACTIONS BETWEEN NFκB AND SIM2 

 

SIM2s-overexpressing MDA435 cells show increased drug sensitivity 

 We have identified SIM2 as a tumor suppressor gene, actively down-regulated by 

several mechanisms in breast cancer.  We thus sought to better characterize the 

biological impact of loss/gain of SIM2 on cancer cells.  Chemoresistance is a major 

barrier to successful tumor treatment, causing failure in as many as 90% of cases of 

metastatic cancer (88).  To explore the effect of expression of SIM2 on chemoresistance, 

MDA435 cells overexpressing SIM2s or vector control were treated with 1.5 mM 5-

fluoruracil (5-FU) or 1 µM doxorubicin (DOX).  Cells were counted on the day of 

treatment (day 0) and for three days thereafter.  SIM2s-overexpressing MDA435 cells 

were significantly more sensitive to 5-FU after two days (p = 0.01) and by the third day 

SIM2s-overexpressing cells had half the number of control cells (p = 0.0004) (Figure 

21A).  Similarly, SIM2s-overexpressing MDA435 cells showed increased sensitivity to 

DOX after two days (p = 0.03).  By the third day, SIM2s-overexpressing and control 

cells were all dead, so cell counts were not done.  To confirm these results, an MTT cell 

viability assay was conducted.  After 24 hours of doxorubicin treatment, MDA435 

SIM2s-overexpressing cells were significantly less viable compared to control cells (p <  

0.0007) (Figure 21B).  5-Fluorouracil treatment resulted in decreased viability in 

MDA435 SIM2s-overexpressing cells compared to control cells after 36 hours (p < 

0.002). 
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Figure 21
MDA435 cells overexpressing SIM2s show increased sensitivity to antineoplastic drugs.  (A) Cell 

counts in MDA435 control cells and cells overexpressing SIM2s treated with 1.5 mM 5-fluorouracil or 1 µM 
doxorubicin on the day of treatment (day 0) and each day thereafter indicated. Asterisk, Cell number was 

significantly lower in SIM2s-overexpressing cells compared to control after 2 days of treatment with 5-
fluorouracil (p = 0.01).  Double asterisk, Cell number was significantly lower in SIM2s-overexpressing cells 
compared to control cells on day 3 of treatment with 5-fluorouracil (p = 0.0004).  Triple asterisk, Cell number 
was significantly lower in SIM2s-overexpressing cells compared to control on day 2 of treatment with 

doxorubicin (p = 0.03).  (B) MTT cell viability assay in control MDA435 cells and MDA435 SIM2s-

overexpressing cells after treatment with 1.5 mM 5-fluorouracil or 1 µM doxorubicin. Asterisk, Cell viability is 
significantly reduced in SIM2s-overexpressing cells compared to control cells treated with 5-fluorouracil after 

36 hours (p < 0.002). Double asterisk, Cell viability is significantly reduced in SIM2s-overexpressing cells 
compared to control cells treated with doxorubicin after 24 hours (p < 0.0007) and, triple asterisk, after 36 
hours (p = 0.00002).  



 70 

SIM2s inhibits ABCB5 expression 

 Inflammation was linked to cancer formation as early as 1863 by Rudolf 

Virchow (117).  More recently, alterations in drug metabolism and chemoresistance have 

been linked to inflammatory processes (105).  Particularly, the ABC family of 

transporters plays a significant role in drug resistance.  To identify whether ABC 

transporters were contributing to the increased chemosensitivity observed in SIM2s-

overexpressing MDA435 cells, expression of a selection of ABC genes known to be 

involved in drug resistance was evaluated in control and SIM2s-overexpressing cells 

(Figure 22A).  ABCB5 expression was found to be reduced by SIM2s expression in 

MDA435 cells.  ABCB5 expression has recently been shown to contribute to 

chemoresistance to 5-fluorouracil and doxorubicin in human malignant melanoma cell 

lines (94, 95).  Because NFκB is a major link between inflammation, chemoresistance 

and regulation of xenobiotic metabolism genes, we explored the regulation of the 

ABCB5 promoter by NFκB and SIM2.  A region of the ABCB5 promoter from -2486 to 

+513 was cloned upstream of the luciferase reporter gene and co-transfected with NFκB 

p65, SIM2s or both (Figure 22B).  NFκB activated this promoter construct (p = 0.04), 

whereas SIM2s had no effect by itself but did prevent activation by NFκB (p = 0.01).  To 

explore the interaction between SIM2 and the ABCB5 promoter, we performed ChIP 

analysis of the ABCB5 promoter in MDA435 control cells and SIM2s-overexpressing 

cells.  SIM2 was found to be present at the ABCB5 promoter and present at much higher 

levels in the cells overexpressing SIM2s (Figure 22C).   
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Figure 22
SIM2s inhibits ABCB5 expression.  (A) Expression in MDA435 control cells and cells overexpressing

SIM2s by real time RT-PCR. Asterisk, ABCB1 expression is significantly reduced in MDA435 cells 
overexpressing SIM2s compared to control (*p < 0.02).  Double asterisk, ABCC2 expression is significantly 

elevated in the MDA435 cells overexpressing SIM2s compared to control (**p < 0.02).  Triple asterisk, 

ABCB5 expression is significantly reduced in MDA435 cells overexpressing SIM2s compared to control (***p 

< 0.04). (B) ABCB5 promoter activity in MDA435 cells co-transfected with the ABCB5 promoter cloned 

upstream of the luciferase gene and NFκB p65 and/or SIM2s.  Diagram of ABCB5 promoter construct 
shown above for reference.  Asterisk, NFκB significantly activates ABCB5 promoter activity compared to 

control (p < 0.04).  Double asterisk, SIM2s significantly reduces activation of the ABCB5 promoter by NFκB

compared to ABCB5 promoter activity in the presence of NFκB alone (p = 0.01). (C) ChIP for SIM2 on 
ABCB5 promoter in MDA435 control cells and SIM2s-overexpressing cells.  (D) Flow cytometry for 

doxorubicin fluorescence of MDA435 control (pLPCX) cells and SIM2s-overexpressing cells treated with 10 

µM doxorubicin for 30 minutes, washed and incubated for 0 or 3 hours to allow doxorubicin efflux. Median 
fluorescence is labeled above each peak.  
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 To determine the role of SIM2s-mediated repression of ABCB5 in the observed 

increase in sensitivity to doxorubicin, MDA435 cells were dosed with 10 µM 

doxorubicin for 30 minutes and then incubated for 0 or 3 hours to allow for doxorubicin 

efflux.  Flow cytometry was used to measure doxorubicin content after no efflux and 3 

hours of efflux (Figure 22D); however, no difference was observed between MDA435 

control cells and SIM2s-overexpressing cells, suggesting that other mechanisms were 

involved in the increased chemosensitivity to doxorubicin.    

 

NFκB signaling activates ABCB5 expression 

 Since NFκB activated the ABCB5 promoter in transient transfection assays, 

MDA435 cells were stably transduced with the inhibitor of kappaB superrepressor (IκB-

SR), and ABCB5 expression was analyzed by real time RT-PCR (Figure 23A).  ABCB5 

expression was decreased in MDA435 cells overexpressing IκB-SR.  Inhibition of NFκB 

signaling was confirmed by immunofluorescent staining for NFκB p50, which showed 

reduced nuclear staining in MDA435 cells overexpressing IκB-SR compared to control 

MDA435 cells (Figure 23B).  NFκB was bound to the ABCB5 promoter in control 

MDA435 cells by ChIP and was lost when NFκB signaling was inhibited by IκB-SR 

overexpression (Figure 23C).  Interestingly, SIM2 overexpression resulted in an equal 

loss of NFκB from the ABCB5 promoter (Figure 23C).   
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Figure 23
NFκB activates ABCB5 expression.  (A) ABCB5 expression in MDA435 control cells and cells 

overexpressing IκB-SR by real time RT-PCR.  Asterisk, ABCB5 expression is significantly reduced by 

overexpression of IκB-SR compared to control (p < 0.005).  (B) Immunofluorescence for NFκB in 
MDA435 cells stably transduced with control vector (pLPCX) or IκB-SR.  (C) ChIP for NFκB on 

ABCB5 promoter in MDA435 control cells, IκB-SR-overexpressing cells and SIM2s-overexpressing 

cells.  
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NFκB represses SIM2 expression 

 To explore this possible relationship between SIM2 and NFκB, MDA435 cells 

were treated with the metal chelator and antioxidant pyrollidine dithiocarbamate 

(PDTC), which is a potent inhibitor of NFκB activation.  PDTC treatment reduced 

nuclear NFκB levels by immunofluorescence (Figure 24A), and, at the same time, 

expression of SIM2 increased approximately 20-fold (p = 0.0003) (Figure 24B).  To 

study the ability of NFκB to regulate SIM2 more specifically, the SIM2 promoter 

upstream of the luciferase gene was co-transfected with increasing amounts of NFκB 

p65.  A dose-dependent repression of promoter activity was observed (Figure 24C).  

This was not a dominant negative effect as co-transfection of IκB-SR reversed the effect 

(Figure 24D).  By chromatin immunoprecipitation analysis, NFκB p65 was found to 

bind to the SIM2 promoter around the transcriptional start site (Figure 24E).   

 We also assayed SIM2 levels in the MDA435 cells overexpressing IκB-SR and, 

as expected, found them to be elevated compared to control cells (Figure 25B).  

MCF10A cells are a normal immortalized breast epithelial cell line and express high 

levels of SIM2.  The NFκB pathway was activated in MCF10A cells by stable 

transduction of inhibitor of kappa kinase beta (IKKβ) and increased nuclear staining for 

NFκB p50 was observed (Figure 25A).  SIM2 levels were depressed in MCF10A cells 

overexpressing IKKβ compared to control cells by real time RT-PCR (Figure 25C).  

Decreased SIM2 protein levels were also verified in the MCF10A IKKβ-overexpressing 

cells by Western blot and immunofluorescence (Figure 25D and 25E).  
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NFκB represses SIM2 promoter activity.  (A) Immunofluorescence for NFκB with or without treatment 

of MDA435 cells with pyrollidine dithiocarbamate (PDTC).  (B) SIM2 expression in MDA435 cells treated 
with PDTC compared to untreated cells.  Asterisk, SIM2 expression is significantly elevated in cells 

treated with PDTC compared to control (p = 0.0003).  (C) SIM2 promoter activity in HEK293T cells co-

transfected with SIM2 promoter upstream of the luciferase gene and increasing amounts of NFκB p65.  

(D) SIM2 promoter activity after co-transfection of promoter with control vector (pcDNA3), NFκB p65, 

and/or IκB-SR.  (E) ChIP assay for NFκB binding after transient transfection of SIM2 promoter with NFκB
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NFκB regulates SIM2 expression in MDA435 and MCF10A cell lines. (A) Immunofluorescence for NFκB in 
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NFκB binds to endogenous SIM2 promoter 

 To verify that the binding of NFκB observed on the transiently transfected SIM2 

promoter was biologically relevant, ChIP analysis for NFκB p50 was performed on the 

SIM2 promoter in MDA435 cells treated with PDTC compared to untreated cells (Figure 

26A).  NFκB was present on the SIM2 promoter in untreated MDA435 cells but not 

detectable above normal IgG in cells treated with the NFκB inhibitor PDTC.  In 

addition, NFκB p50 binding was assessed in the MDA435 IκB-SR-overexpressing cells 

and the MCF10A IKKβ-overexpressing cells compared to control cells (Figure 26B and 

26C).  Binding was again present in the MDA435 control cells but absent after inhibition 

of NFκB by IκB-SR.  In contrast, no binding was observed in control MCF10A cells but 

was present in cells overexpressing IKKβ.   

 

NFκB activation leads to deacetylation of the SIM2 promoter  

 NFκB has previously been shown to interact with HDAC1 to regulate target 

genes (102).  Therefore, to determine if deacetylation was playing a role in the NFκB-

mediated repression of SIM2, we determined relative levels of acetylated histone 3 at the 

SIM2 promoter in MDA435 cells treated with PDTC compared to control cells, and, at 

the same time, we assayed binding of HDAC1 to the SIM2 promoter (Figure 27A).  

Acetylation of histone 3 was undetectable in MDA435 cells with or without PDTC 

treatment; however, HDAC1 was observed bound to the SIM2 promoter in control cells 

and was lost from the promoter after PDTC treatment.  This suggests that activation of 

NFκB contributes to the recruitment of HDAC1 to the SIM2 promoter.  To study this  



 78 

 

 

effect more specifically, we again assayed acetylated histone 3 levels and HDAC1 

binding in the MDA435 and MCF10A stable cell lines (Figure 27B and 27C).  In the 

MDA435 IκB-SR-overexpressing cell line, increased acetylation of histone 3 was 

observed accompanied by a loss of HDAC1 on the SIM2 promoter compared to control 

cells.  In the MCF10A IKKβ-overexpressing cells, acetylation of histone 3 was reduced 

but HDAC1 was difficult to detect above background.  These data show that 

deacetylation of the SIM2 promoter plays a role in the mechanism of NFκB-mediated 

repression. 
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promoter in MDA435 control cells or cells treated with PDTC.  (B) ChIP for 
NFκB on SIM2 promoter in MDA435 control cells or cells overexpressing IκB-
SR.  (C) ChIP for NFκB on SIM2 promoter in MCF10A control cells or cells 
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Figure 27

Mechanism of NFκB-mediated repression involves deacetylation of SIM2 
promoter and recruitment of HDAC1.  (A) ChIP for acetylated histone 3 (AcH3) and 
histone deacetylase 1 (HDAC1) on SIM2 promoter in MDA435 control cells or cells 

treated with PDTC.  (B) ChIP for AcH3 and HDAC1 on SIM2 promoter in MDA435 
control cells or cells overexpressing IκB-SR.  (C) ChIP for AcH3 and HDAC1 on SIM2 

promoter in MCF10A control cells or cells overexpressing IKKβ.
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SIM2s antagonizes NFκB activity through a direct interaction 

 We have found that NFκB transcriptionally represses SIM2 expression, but SIM2 

also inhibits binding of NFκB to the ABCB5 promoter.  To investigate whether this was 

a specific effect for the ABCB5 gene or a general antagonism between NFκB and SIM2, 

we co-transfected a 5X NFκB binding site upstream of the luciferase gene (5X NFκB-

luc) with NFκB p65 and SIM2s (Figure 28A).  As expected, NFκB strongly activated the 

reporter construct (p < 0.01).  SIM2s attenuated activation by NFκB (p = 0.03), 

indicating a more general inhibition of NFκB by SIM2.  To determine the mechanism of 

this inhibition, the transfection was repeated with a SIM2s expression construct with the 

repression domain deleted (SIM2s∆R) (Figure 28B).  This construct still attenuated the 

activation of the 5X NFκB-luc construct by NFκB, demonstrating that the inhibition of 

NFκB signaling is independent of the C-terminal repression domain of SIM2.  To 

determine whether binding to the 5X NFκB-luc construct was involved, cells were co-

transfected with SIM2s and NFκB p65, and a ChIP assay was performed (Figure 28C).  

Interestingly, both NFκB p65 and SIM2s were found to interact with the construct.  To 

further explore this interaction, a ChIP assay was performed after transfection of SIM2s 

and the 5X NFκB-luc construct into MDA435 control and IκB-SR-overexpressing cells 

(Figure 28D).  SIM2s was found to bind to the 5X NFκB-luc construct in the control 

cells but not in the cells in which NFκB activity was inhibited.  This suggests that SIM2s 

requires NFκB p65 to interact with NFκB binding sites to prevent their activation.  To 

demonstrate whether there was an interaction between SIM2s and NFκB p65, co- 
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SIM2s antagonizes NFκB activity through direct interaction.  (A) Luciferase activity in HEK293T cells co-

transfected with 5X NFκB binding site upstream of the luciferase gene (5X NFκB-luc) and NFκB p65 and/or 

SIM2s.  Diagram of promoter construct is shown above for reference.  Asterisk, NFκB significantly increases 
promoter activity compared to control (p = 0.0006).  Double asterisk, SIM2s significantly attenuates the 
activation of the promoter construct by NFκB (p = 0.04).  (B) Luciferase activity in HEK293T cells co-

transfected with 5X NFκB-luc and NFκB p65 and/or SIM2s with its repression domain deleted (SIM2s∆R).  

Asterisk, NFκB significantly increases promoter activity compared to control (p = 0.00007).  Double asterisk, 
SIM2s∆R significantly attenuates the activation of the promoter construct by NFκB (p < 0.00008).  (C) ChIP
analysis of binding of NFκB p65 and SIM2 to NFκB binding sites after co-transfection of the 5X NFκB-luc

construct, NFκB p65 and SIM2s into HEK293T cells.  (D) ChIP analysis of binding of SIM2 to NFκB binding 
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immunoprecipitation analysis was utilized, which confirmed the interaction (Figure 

28E).   

 If SIM2s could interact with NFκB p65, then we hypothesized that this might 

alter localization of NFκB.  Immunofluorescent staining was utilized to explore 

localization of NFκB in MDA435 control and SIM2s-overexpressing cells.  Results 

showed reduced NFκB p50 nuclear staining in MDA435 cells overexpressing SIM2s 

compared to control MDA435 cells (Figure 28F).  This suggests another means by 

which SIM2 inhibits NFκB signaling by preventing its nuclear translocation, likely 

through binding and sequestration in the cytoplasm. 

 

NFκB necessary for repression by C/EBPβ but not Notch 

 It is interesting to note that both NOTCH1 and C/EBPβ have been shown to 

directly interact with NFκB.  The NICD interacts with NFκB p50 to increase its nuclear 

retention in activated peripheral T cells (50).  Also, through complexes formed with p50 

and c-Rel, the NICD directly regulates interferon-γ expression (50).  In addition, 

C/EBPβ interacts with NFκB p50 and p65 (118, 119).  The Rel homology domain of p50 

and the leucine zipper motif of C/EBPβ are important for this interaction (119).  The 

inflammatory Mediterranean fever gene promoter is regulated by NFκB p65 and C/EBPβ 

binding at separate sites, but their interaction synergistically activates the promoter 

(118).  To identify cooperation among C/EBPβ, NICD and NFκB p65 on the SIM2 

promoter, MDA435 control (pLPCX) cells and IκB-SR-overexpressing cells were co-

transfected with the SIM2 promoter, C/EBPβ and NICD.  As expected the SIM2  
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promoter showed greater activity in the cells overexpressing IκB-SR (Figure 29A and 

29B).   NICD was able to repress the SIM2 promoter in both cell lines, although 

increased repression was observed when NFκB p65 was added to the IκB-SR-

overexpressing cells (Figure 29A).  C/EBPβ, however, did not repress the SIM2 
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Interactions of repressors on SIM2 promoter.  (A) Luciferase activity in MDA435 control (pLPCX) 

cells and IκB-SR-overexpressing cells co-transfected with the SIM2 promoter and vector control 
(pcDNA3), NICD or NFκB p65. Asterisk, SIM2 promoter activity is significantly reduced by NICD 
compared to vector control in MDA435 control cells and IκB-SR-overexpressing cells (p < 0.03).
Double asterisk, SIM2 promoter activity is significantly reduced by p65 and NICD compared to NICD 
alone (p = 0.04).  (B) Luciferase activity in MDA435 control and IκB-SR-overexpressing cells co-

transfected with the SIM2 promoter and control vector, LAP1 or NFκB p65. Asterisk, SIM2 promoter 
activity is significantly reduced by LAP1 compared to vector control in MDA435 control cells (p < 
0.009). Double asterisk, SIM2 promoter activity is significantly reduced by p65 and LAP1 compared 
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promoter in the IκB-SR-overexpressing cells, but repression was rescued by co-

transfection of NFκB p65 (Figure 29B).  These data show that NFκB is necessary for 

repression of SIM2 by C/EBPβ but not NICD.  ChIP analysis after transient transfection 

showed that NICD was bound to the SIM2 promoter in MDA435 control cells and cells 

overexpressing IκB-SR (Figure 29C), but C/EBPβ was bound only in the control 

MDA435 cells with normal NFκB activity (Figure 29D).  Therefore, NFκB facilitates 

repression of SIM2 by C/EBPβ by mediating its binding to the SIM2 promoter.   

 

Mammalian homologues of snail do not repress SIM2 

 In Drosophila sim is regulated by dorsal, twist, snail and notch signals to narrow 

its expression to a single row of cells in the embryo (108).  Drosophila sim then 

activates CNS midline gene expression and activates repressive factors to inhibit lateral 

CNS gene expression in midline cells (120).  The mammalian homolog of dorsal, NFκB, 

was found to regulate SIM2, and NOTCH1 also plays a role in SIM2 repression.  

However, the mammalian homologues of snail, SNAI1 and SNAI2, did not repress 

SIM2 promoter activity in transient transfections (Figure 30).   
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Mammalian homologues of Drosophila snail do not repress SIM2.  
Luciferase activity in HEK293T cells co-transfected with SIM2 promoter 
and SNAI1 or SNAI2 expression constructs.  No significant difference was 

observed in SIM2 promoter activity after SNAI1 transfection or SNAI2 
transfection compared to vector control (pcDNA3) transfection (p > 0.08).  

Diagram of promoter construct is shown above for reference.  Difference 
between promoter activity in the presence of SNAI1/SNAI2 and control 
(pcDNA3) was not significant (p > 0.08). 
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CHAPTER VI 

CONCLUSIONS 

 

 Metastatic breast cancer is currently treated with combination chemotherapy, 

including anthracyclines followed by cyclophosphamide, methotrexate and 5-

fluorouracil.  Taxanes may also be used in combination with anthracyclines in some 

protocols (121).  These treatments are often limited by their severe side effects, 

including suppression of the bone marrow, causing increased risk of infection.  

Therapies targeted to an individual’s cancer biology have improved patient survival in 

recent years.  Hormonal therapy with tamoxifen or aromatase inhibitors improves 

efficacy and disease-free survival in women with high risk estrogen receptor positive 

cancer (121).  Herceptin (trastuzumab), which targets growth factor receptor HER2, is 

the first molecular targeting agent approved for treatment of metastatic breast cancer 

(122).  HER2 is overexpressed in about 20% of breast cancers, and trastuzumab is now a 

common component of treatment protocols for women whose tumors overexpress HER2 

(121).  Further progress in elucidation of specific pathways altered during breast cancer 

may allow for more patient-tailored medicine to maximize therapeutic efficacy while 

minimizing toxicity on an individual basis.   

 

HRAS and c-MYC lead to SIM2 silencing 

 Since Single-minded 2 expression is lost in a large percentage of breast cancers 

and has tumor suppressive activity in mammary tissues (21), we sought to elucidate 
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pathways targeting it for down-regulation during carcinogenesis.  By transforming 

normal immortalized MCF10A breast epithelial cells with HRAS and c-MYC, we 

identified these oncogenic signals as mechanisms of SIM2 silencing.  HRAS-

overexpression led to a greater decrease in SIM2 mRNA levels, but both oncogenes 

decreased SIM2 protein levels.  Although HRAS gene amplification is not associated 

with breast cancer, the oncogene plays an important role in 50% of breast cancer due to 

its relation to kinase signaling pathways (30).  c-MYC contributes to normal mammary 

gland development (42) and is amplified in 15-20% and overexpressed in approximately 

70% of breast cancers (43).  These percentages are consistent with the observed 

frequency of loss of SIM2 in breast cancers (21).   

 

Notch is a transcriptional repressor of SIM2 

 Recently, Ras transformation of mouse mammary glands has been shown to 

require Notch (57).  Ras activates Notch signaling by increasing γ-secretase activity, 

which leads to increased release of the active NICD (46).  Given that notch signaling 

also regulates sim expression in Drosophila, we postulated that NICD may be a 

repressor of SIM2.  The NICD was demonstrated to bind to the SIM2 promoter 

following HRAS overexpression and function as a transcriptional repressor of SIM2. 

 The NICD interacts with CBF1 to activate target genes like HES1 in canonical 

Notch signaling (48).  However, the NICD has been shown to interact with other 

transcription factors including MEF2C (49), NFκB (50) and HIF-1α (51), and there is 

significant evidence for the importance of CBF1-independent Notch function for 
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maintaining cell fate (52).  This study, however, is the first to demonstrate a direct tumor 

suppressor gene target of CBF1-independent Notch signaling.  The relationship between 

SIM2 and Notch also suggests a role for SIM2 in assigning cell fate.  In the mammary 

gland, Notch signaling regulates stem cell self-renewal (123).  This implies that SIM2 

plays a role in directing cells away from “stemness.”    

 

C/EBPβ transcriptionally represses SIM2 

 All three isoforms of C/EBPβ have been shown to be overexpressed in breast 

cancer (124-126), and C/ebpβ was identified as an important mediator of Hras-induced 

tumorigenesis in a mouse skin carcinogenesis model known to cause Hras mutations 

(47).  This study is the first report to identify a direct tumor suppressor gene target of 

C/EBPβ.  Although both of the longer isoforms of C/EBPβ have an intact transactivation 

domain, there is increasing evidence for functional differences between the LAP1 and 

LAP2 isoforms (60, 66, 127, 128).  For example, human LAP1 and LAP2 differ by 23 

amino acids at the N-terminus, which allow LAP1, but not LAP2, to interact with the 

SWI/SNF complex and effect chromatin remodeling (60).  In the studies presented here, 

both LAP1 and LAP2 were able to repress SIM2 when both transiently and stably 

introduced into MCF10A cells; however, it is interesting that only the full length LAP1 

was found to repress SIM2 expression through binding to the SIM2 promoter.  Binding 

of C/EBPβ to the SIM2 promoter also occurred in the HRAS-overexpressing cells.  

Binding of LAP1 was found to be mediated by NFκB, which was necessary for 

repression of SIM2 expression.  Repression by LAP2 more likely involves sequestration 
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of specific coactivators, as binding to the SIM2 promoter was not required for it to 

repress SIM2 expression.  The role of C/EBPβ in SIM2 repression was well 

corroborated by our in vivo mouse studies, which also demonstrated a role for C/ebpβ in 

mediating Sim2 repression.  The murine LIP isoform was a strong suppressor of Sim2 

expression, consistent with its role in mammary proliferation in mouse models (67).  

Human LIP, however, did not repress SIM2 promoter activity.  Since human and mouse 

LIP share significant sequence homology at the DNA and protein levels, this difference 

is more likely due to differences in the mouse and human Sim2 promoters, which show 

greater sequence divergence.   

 In the liver, LAP functions primarily as a transcriptional activator, and LIP 

functions as an antagonist of LAP activity by competing for DNA binding sites as a 

homodimer or a LAP/LIP heterodimer (61).  In other cases, LAP and LIP show different 

relationships.  In thyrocytes, LAP has been shown to repress the sodium iodide 

symporter (NIS) promoter activity, while LIP had no effect (129).  In contrast, in human 

endometrial stromal cells LIP cooperates with progesterone receptor B to enhance 

activation of a progesterone response element, but LAP does not and instead interacts 

cooperatively with progesterone receptor A on C/EBPβ response elements (130).  Since 

human SIM2 expression is repressed by the activating forms of C/EBPβ, which do not 

interact with a C/EBPβ binding site directly to mediate repression, perhaps it is not 

surprising that LIP does not function in its traditional role on the SIM2 promoter.   

 Data suggests that C/EBPβ also plays a role in cell fate determination, based on 

altered expression of a number of molecular markers in C/ebpβ-/-
 mammary glands 
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(131).  It is of interest that two proteins involved in cell fate decisions independently 

regulate SIM2.  This suggests that SIM2 plays a role in cell fate, probably directing cells 

toward differentiation.  Future studies utilizing a Sim2
-/-

 mouse mammary gland model 

should better elucidate the function of SIM2 in cell fate determination.   

  

NFκB is a transcriptional repressor of SIM2 

 Inflammation is linked to cancers in various tissues, including hepatocellular 

carcinoma associated with hepatitis B and hepatitis C viral infection, colorectal cancer 

linked to chronic inflammatory bowel disease, and mesothelioma associated with 

chronic injury caused by asbestos fibers (99, 132).  It is now known that NFκB is a 

major contributor to the underlying mechanism for this link.  NFκB not only contributes 

to cancer progression by stimulating proliferation and preventing apoptosis but also 

contributes to drug resistance by activating transcription of members of the ABC family 

of transporters, like MDR1 (99, 104, 107).  In addition to proinflammatory cytokines or 

pathogen-associated molecules, deregulation of Ras signaling, PI3K signaling and 

MAPK activity can participate in the activation of NFκB (109).   

 In Drosophila, dorsal, the NFκB homolog, contributes to regulation of sim 

expression in the central midline.  These studies have demonstrated SIM2 is also 

regulated, specifically repressed, by NFκB.  Inhibiting NFκB signaling in MDA435 

cancer cells through overexpression of IκB-SR led to increased expression of SIM2; 

whereas, activation of the NFκB pathway by overexpression of IKKβ subunit in the 
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MCF10A cells led to repression of SIM2 expression.  The mechanism of NFκB-

mediated repression involves deacetylation of the SIM2 promoter by HDAC1.   

   

SIM2 is epigenetically regulated 

 These studies demonstrate that epigenetic changes to SIM2 occur during tumor 

progression, but these mechanisms are only partially responsible for silencing SIM2. In 

the cancer cell line model, loss of expression of SIM2 was associated with increased 

DNA methylation within exon 1.  In contrast, methylation was prevalent around the 

transcriptional start site, irrespective of expression level.  While this was somewhat 

unexpected, CpG islands often extend into the first exon and methylation within exon 1 

has been associated with silencing of other tumor suppressor genes, including RASSF1A 

and RB1 (133, 134).  In gastric cancer cell lines, ERα is hypermethylated near its ATG 

start codon and silenced (135).  In our cell line model, methylation at the ATG start site 

was predictive of expression and, since 5-aza-dC partially reactivated SIM2 expression 

in the MDA435 cells, contributed to some extent to silencing.   

 Analysis of the chromatin structure of the 5′ SIM2 gene also showed epigenetic 

modifications.  The normal breast epithelial cell line MCF10A maintains an open, 

acetylated chromatin structure which is consistent with its high level of SIM2 

expression.  The MCF7 cells represent an intermediate stage in the silencing of SIM2, 

with expression being approximately 7-fold lower than that in the MCF10A cells.  The 

chromatin is more compacted as shown by MspI accessibility, and these modifications 

are further advanced within exon 1 than at the transcriptional start site, since 
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deacetylation of histone 3 has occurred within exon 1, while the promoter region 

remains acetylated.  The MDA435 cells display a completely epigenetically silenced 

SIM2 gene, with high levels of DNA methylation, complete deacetylation of exon 1 and 

the promoter region and greatly compacted, inaccessible chromatin.  Overall epigenetic 

modifications at the ATG start region better correlate with SIM2 expression in cancer 

cell lines.  However, even the combination of 5-aza-dC and TSA only increased SIM2 

levels by 14-fold in the MDA435 cells, compared to the 3500-fold higher levels in the 

normal breast epithelial MCF10A cells, and had no effect in the MCF7 cells (data not 

shown).  These results suggest a high level of complexity in the regulation of SIM2.   

 We modeled the specific role of DNA methylation in silencing the SIM2 tumor 

suppressor gene by overexpression of DNMT1 in the MCF10A cell line.  

Overexpression of DNMT1 did lead to approximately 50% repression of the SIM2 

mRNA accompanied by a doubling of methylation with exon 1.  Acetylation, however, 

was not affected.  Therefore, this increase in methylation is insufficient to cause further 

epigenetic modification and complete silencing.  Similar to this result, a recent 

publication has shown that demethylation was insufficient for reestablishing a 

euchromatic environment for silenced tumor suppressor genes, including MLH1, in 

colorectal cancer (136).  These data support a role for transcriptional repressors in 

promoting histone modifications that contribute to a completely epigenetically silenced 

locus, as represented by the MDA435 cells.  One such repressor has been identified as 

NFκB.  NFκB regulates SIM2 expression through recruitment of HDAC1 and changes in 

promoter acetylation, demonstrated in both normal immortalized breast epithelial 
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MCF10A cells and highly invasive MDA435 cancer cells.  In contrast to direct 

methylation of the SIM2 promoter, activation of NFκB leads to histone modification of 

the SIM2 promoter.  These combined data suggest that specific transcriptional repressors 

play the major role in silencing SIM2 expression.   

To determine how well the cell line model reflected human cancer, breast tumor 

tissue was analyzed for SIM2 methylation and expression.  In the breast tumor samples 

studied, 53% showed partial methylation in the first exon of SIM2.  Interestingly, 

methylation did not correlate with protein expression of SIM2 in these breast tumor 

samples.  This supports the complexity of the regulation of SIM2, consistent with the 

modest effect of overexpression of DNMT1 in MCF-10A cells.  This suggests that 

methylation contributes to regulation of SIM2 but other factors, such as the activation of 

specific oncogenes, like HRAS, C/EBPβ and NOTCH1, can play a major role in 

determining SIM2 expression independently of epigenetic changes.  For example, 

MCF10A cells overexpressing HRAS show no change in acetylation of histone 3 in the 

SIM2 promoter despite the observed repression (Figure 31). 

 Methylation is thought to be an early event in cancer progression.  Support for 

this model comes from key epigenetic changes, such as hypermethylation of p16, that 

occur early in mammary tumorigenesis (137).  DNA methyltransferase activity also 

increases incrementally during colon cancer progression (138).  The data presented here 

demonstrate that methylation does contribute to tumor suppressor gene silencing, but 

was insufficient to initiate heterochromatin formation and lead to complete silencing.  

One possibility is that a greater level of methylation, such as that seen in MDA435 cells,  
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is necessary for complete silencing.  Targeted, rather than global, methylation and 

demethylation strategies would be extremely useful in elucidating the exact role of 

methylation in gene silencing and heterochromatin formation.   

 The benefit of epigenetic silencing to cancer treatment is its reversibility, and 

these studies suggest it may be possible to target SIM2 for reactivation in breast cancer.  

A strong caveat to this possibility, however, is that altering the epigenetic status of the 

SIM2 locus changed expression very little (14-fold) in comparison to the difference in 

expression between normal epithelial cells and cancer cells (3500-fold).  Complete 

reactivation cannot be assumed by targeting epigenetic processes alone for tumor 

suppressor genes such as SIM2 which are also heavily regulated by specific 

transcriptional repressors.   
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Repression of SIM2 by HRAS does not involve deacetylation of the 
SIM2 promoter.  ChIP assay for acetylated histone 3 (AcH3) at SIM2 
promoter in HRAS-overexpressing MCF10A cells compared to control 

(pLPCX).  Diagram of promoter and primer position is shown above for 
reference.
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Implications of SIM2 expression for chemoresistance 

  Resistance to chemotherapeutic agents is a leading cause of treatment failure, 

affecting up to 90% of patients with metastatic cancer (88).  In 1973 it was recognized 

that reduced drug accumulation was a major factor in chemoresistance, and this led to 

the discovery of the ABC family of transporters (89).  NFκB plays a major role in 

mediating chemoresistance, as inhibition of NFκB signaling has been shown to enhance 

antineoplastic-induced apoptosis (97).  These studies have identified ABCB5 as an 

additional drug metabolism gene regulated by NFκB.  We have also identified a novel 

role of SIM2 in inhibiting NFκB activity and, thus, increasing sensitivity to the 

antineoplastics doxorubicin and 5-fluorouracil.  SIM2 can interact directly with NFκB, 

preventing activation of NFκB enhancer elements and preventing NFκB nuclear 

translocation.  SIM2 also binds to specific promoters, like ABCB5, and antagonizes 

NFκB binding.  ABCB5 has recently been shown to have an important role in 5-

fluorouracil and doxorubicin resistance in human melanoma (94, 95).  However, no 

difference in doxorubicin efflux was observed between control MDA435 cells and cells 

overexpressing SIM2s.  In the MDA435 cell model, it is apparent that antagonism of 

NFκB signaling by SIM2 plays a greater role in increasing chemosensitivity than the 

repression of certain ABC-transporters.  The NFκB targets contributing to the increased 

chemosensitivity remain to be elucidated.  We expect that the relationship between 

NFκB and SIM2 may be exploited to develop new treatment strategies targeting NFκB 

and countering antineoplastic drug resistance. 
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Model of SIM2 silencing in breast cancer 

 In these studies we have characterized epigenetic mechanisms, oncogenic 

transformation and transcriptional repressors, NFκB, NOTCH1 and C/EBPβ, which 

contribute to silencing SIM2 in cancer cells (Figure 32).  Ras activation has previously 

been shown to increase cleavage of Notch, releasing the active NICD (46).  At the same 

time, Ras-initiated MAPK signaling leads to phosphorylation of C/EBPβ (68).  Ras can 

also activate NFκB by triggering MAPK or PI3K activity in certain cell types (109).   

 The NICD interacts with CBF1 to activate certain target genes, like HES1, but 

also acts through a CBF1-independent mechanism to target SIM2 for silencing.  Since 

NICD cannot directly interact with DNA and does not require NFκB for repression of 

SIM2, in contrast to C/EBPβ, it is assumed that the NICD is interacting with as yet 

undetermined cofactors to bind to the SIM2 promoter.  C/EBPβ binds to the SIM2 

promoter through interaction with NFκB p65 in order to repress SIM2 expression, as 

repression and binding were prevented by inhibition of NFκB activity.   

 NFκB binds to the SIM2 promoter around the transcriptional start site to mediate 

repression, which involves deacetylation of histone 3.  SIM2, however, if expressed, 

inhibits NFκB signaling by a direct interaction which prevents activation of NFκB 

enhancer elements and NFκB nuclear translocation.  SIM2 can also bind to the promoter 

of NFκB target ABCB5, which may also play a role in inhibiting binding of NFκB.  We 

do not suggest that these are the only mediators of SIM2 repression in breast cancer.  By 

evaluating SIM2 expression in other oncogene-driven models of breast cancer, such as 

HER2 and WNT1, it is likely that other signaling pathways mediating SIM2 repression  
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p65, preventing its nuclear localization and its activity on NFκB binding sites.  Also, SIM2 directly binds 
to the promoter of the NFκB target ABCB5 and antagonizes NFκB binding.  

HDAC1

H3

AcAc

κB

NFκB   

Target Genes

SIM2

NFκBNFκB

SIM2

NICD



 98 

will be revealed.  We expect that SIM2 silencing plays an important role in progression 

of a subset of human breast cancer, which is supported by analysis of SIM2 expression 

by immunohistochemistry (21).  Elucidating oncogenic pathways and transcriptional 

repressors involved in SIM2 silencing contributes to the characterization of the 

molecular basis for specific subsets of cancer and thus aids the development of targeted 

therapies for human breast cancer.   
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