INTERNSHIP AT ISOTHERM, INC.

A Record of Study

by

ADNAN HUSSAIN AYUB

Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF ENGINEERING

Chair of Committee,	Michael Pate
Committee Members,	Donald Smith
	N.K. Anand
	Richard Lester
	A. Haji-Sheikh

Coordinator, College of Engineering, Valerie E. Taylor

May 2016

Major Subject: Engineering College of Engineering

Copyright 2016 Adnan Hussain Ayub

ABSTRACT

This record of study involves the intern's experience at Isotherm, Inc. in fulfillment of the requirements for the Doctor of Engineering program at Texas A & M University. A profile of Isotherm and its capabilities were presented. The intern was involved in the design, fabrication and installation of a novel shell and tube type chiller (evaporator) called the SX chiller. This new chiller was put into operation on a test stand in Norway and a fishing trawler in Ecuador.

The European Pressure Equipment Directive (PED) certification was discussed in detail and the in-depth involvement of the intern in the equipment certification process which included intense level of correspondence with the Det Norske Veritas (DNV) officials and the resolution of various serious issues thereof. The intern was successful in certifying Isotherm as an approved manufacturer according to the standards of DNV.

In addition to the SX chiller design, PED and DNV certifications to fulfill the requirements of technical skills development, the intern also gained managerial skills development at Isotherm, Inc. The experiences of Engineering Manager and the Sales & Applications Manager were discussed too. Based on the intern's experience during this tenure he was able to provide recommendations on Isotherm's future business direction.

ii

DEDICATION

I dedicate this record of study to my wife, children, parents, siblings and in-laws. I would not have succeeded without their unconditional love and support. I also want to dedicate this record of study to the late Dr. Arthur Bergles, without whom my family would not have had the opportunities for a better life in the United States.

ACKNOWLEDGEMENTS

I am very grateful to my committee chair, Dr. Michael Pate, for his help and guidance throughout my Doctor of Engineering program. I will never forget the support that he provided.

I also would like to thank the committee members, Dr. Donald Smith, Dr. N.K. Anand, and Dr. Richard Lester for their support and for serving on my advisory committee. I am also thankful to Dr. Haji-Sheikh for serving as the internship supervisor.

Also, I would like to thank Mr. Daniel Cabrera Garay for his guidance, especially in reference to the SX chiller.

I express my sincere gratitude to my father, Dr. Zahid Ayub, who served as the engineering supervisor during my internship at Isotherm. I am also grateful to him for providing me the valuable guidance throughout the program. My father's hard work and unwavering perseverance has truly helped the lives of my family. I also want to thank the late Dr. Arthur Bergles, who acted as a mentor to my father and the rest of my family.

I express my appreciation to my brother Nader for his support and to my sister Shereen for her help and feedback.

I appreciate and love my parents-in-law, sister-in-law and the rest of my wife's extended family for their prayers and belief in me.

iv

Furthermore, I express my deep love and gratitude to my mother Shahnaz for her unconditional love and belief in me, since my birth, as the many sacrifices she directly made provided a better future for my siblings and me.

Finally, I want to show my sincerest, deepest gratitude and love to my wife, Rida, who always believed in and encouraged me, even during the hard times. Without the inspiration from her, I believe that this record of study would not have been accomplished. I am blessed to have two beautiful children, who have also inspired me.

NOMENCLATURE

AI	Authorized Inspector
API	American Petroleum Institute
ASHRAE	American Society of Heating, Refrigerating, and Air-Conditioning
	Engineers
ASME	American Society of Mechanical Engineers
BPVCC	Boiler and Pressure Vessel Code Committee
BV	Bureau Veritas
D. Eng	Doctor of Engineering
DNV	Det Norske Veritas
DX	Direct Expansion
ESR	Essential Safety Requirement
EU	European Union
FT.	Feet
GPM	Gallons per minute
GWP	Global Warming Potential
IIAR	International Institute of Ammonia Refrigeration
IN.	Inches
ITP	Inspection & Test Plan
KG	Kilograms
KW	Kilowatts

LBS	Pounds
M ³ /HR	Cubic Meters per hour
MTR	Material Test Report
NB	Notified Body
NBIC	National Board of Boiler and Pressure Vessel Inspectors
NDE	Non Destructive Examination
NPS	Nominal Pipe Size
OD	Outside Diameter
ODP	Ozone Depletion Potential
P&ID	Piping and Instrumentation Diagram
PED	Pressure Equipment Directive
PMA	Particular Material Appraisal
PQR	Procedure Qualification Record
QC	Quality Control
RFQ	Request for Quotation
RSW	Refrigerated Sea Water
SX	Shell Side DX
TEMA	Tubular Exchanger Manufacturers Association
API	American Petroleum Institute
TR	Tonnage of Refrigeration
WPQ	Welder/Welding Operator Performance Qualification
WPS	Welding Procedure Specification

WPT Weld Production Test

TABLE OF CONTENTS

	Page
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
NOMENCLATURE	vi
TABLE OF CONTENTS	ix
LIST OF FIGURES	xi
LIST OF TABLES	XV
CHAPTER I INTRODUCTION	1
Profile of Isotherm ASME Section VIII, Div. 1 Pressure Vessel Code Final Internship Objectives Technical Managerial.	2 4 10 10 11
CHAPTER II NEW CHILLER DESIGN	12
Flooded Chiller Direct Expansion (DX) Chiller Spray Chiller New Shell Side DX Chiller (SX) Design and Results for SX Chiller in Norway Effect of COP of SX Evaporator vs. Flooded Evaporator Design and Results for SX Chiller in Ecuador Commissioning Process Conclusion.	13 15 16 18 23 28 29 31 37
CHAPTER III PRESSURE EQUIPMENT DIRECTIVE (PED) CERTIFICATION	38

CHAPTER IV	DET NORSKE VERITAS (DNV) CERTIFICATION	46
_ • .	rd	46 52
CHAPTER V	ENGINEERING MANAGER	54
CHAPTER VI	FUTURE OWNERSHIP	62
CHAPTER VII	CONCLUSION	70
Recommend	lations	71
REFERENCES		74
APPENDIX A	ASME SECTION VIII DIV. 1 DOCUMENTATION	76
APPENDIX B	SX CHILLER DOCUMENTATION	81
APPENDIX C	PED DOCUMENTATION	83
APPENDIX D	DNV DOCUMENTATION	100
APPENDIX E	ISOTHERM DOCUMENTATION	109
APPENDIX F	SALES DOCUMENTATION	116

LIST OF FIGURES

FIGURE		
1.1	Aerial view of Isotherm, Inc. in Arlington, Texas	3
2.1	Typical Reverse Rankine Cycle Refrigeration System	13
2.2	A typical Flooded Evaporator design	14
2.3	Fabricated Flooded Evaporator	15
2.4	A typical DX Evaporator design	16
2.5	Fabricated DX Evaporator	16
2.6	A typical Spray Chiller design	17
2.7	Fabricated Spray Chiller	18
2.8	SX Chiller design	19
2.9	Bundle view of SX Chiller without end heads	20
2.10	Fabricated SX Chiller for Norwegian Test Stand	24
2.11	SX Chiller on Test Stand Skid in Norway	25
2.12	Field data of SX Chiller for Norwegian Test Stand	26
2.13	One of the two installed SX chillers on a trawler in Ecuador	30
2.14	Field data of SX Chiller for Ecuador fishing vessel	31
2.15	Danfoss AKVA Valve	33
2.16	P&ID for dual valves Master/Slave AKVA configuration	34
2.17	Correct dual valves AKVA installation on an SX Chiller in a Master/Slave configuration	35

2.18	P&ID for a single valve AKVA configuration	36
2.19	SX Chiller installed at California Wine Plant	37
3.1	CE Nameplate	43
3.2	List for PED QC Data book	44
5.1	Top Level Drawing	55
5.2	Sample page of the ASME Design Calculations in PV Elite	57
5.3	Material Requisition Form	58
6.1	Flooded Evaporator for Cheese Plant	63
6.2	Completed Recirculation Package	65
6.3	Sales Visit Report	67
A.1	Example of Weld Procedure Specification (WPS)	76
A.2	Example of Procedure Qualification Record (PQR) Page 1	77
A.3	Example of Procedure Qualification Record (PQR) Page 2	78
A.4	Example of Welder Performance Qualification (WPQ)	79
A.5	ASME Data Report	80
B .1	Field Data for Norwegian SX Chiller	81
B.2	Field Data for Ecuador SX Chiller	82
C.1	PED Application to Notified Body	83
C.2	Page 1 of Technical Documentation for CE Marking	84
C.3	Page 2 of Technical Documentation for CE Marking	85
C.4	Page 3 of Technical Documentation for CE Marking	86

C.5	Page 4 of Technical Documentation for CE Marking	87
C.6	Page 5 of Technical Documentation for CE Marking	88
C.7	Engineering Calculations approved by Intern	89
C.8	PED Material Stress Analysis Page 1	90
C.9	PED Material Stress Analysis Page 2	91
C.10	PED Hydrostatic Analysis	92
C.11	Fabrication drawing of Spray Chiller	93
C.12	PED approved Particular Material Appraisal (PMA)	94
C.13	Welding Procedure Suitability Checklist	95
C.14	PED Inspection Checklist	96
C.15	Declaration of Conformity	97
C.16	Certificate of Conformity for Spray Chiller	98
C.17	Certificate of Conformity for Condenser	99
D.1	DNV Old Conformity Letter	100
D.2	Inspection & Test Plan for Job 10080	101
D.3	DNV Pre-Production Meeting Report Page 1	102
D.4	DNV Pre-Production Meeting Report Page 2	103
D.5	DNV Pre-Production Meeting Report Page 3	104
D.6	DNV Calculations	105
D.7	DNV Product Certificate of Job 10080	106
D.8	DNV Product Certificate for SX Chiller	107

D.9	Approval of Manufacturer Certificate	108
E.1	Final Inspection Checklist	109
E.2	Inspection Checklist	110
E.3	NDE (Liquid Penetrant) Examination Record	111
E.4	Weld Map Record	112
E.5	Nameplate Drawing	113
E.6	ASME Data Report	114
E.7	Engineering Time Sheet	115
F.1	Quotation Status Template	116

LIST OF TABLES

TABLE		Page
2.1	Norway test SX Chiller design parameters	23
2.2	Norway test SX Chiller size	24
2.3	Norway test results for the SX Chiller	27
2.4	Comparison of refrigerant charges of each chiller	28
2.5	Ecuador SX Chiller design parameters	29
2.6	Ecuador SX Chiller field data	30
6.1	New York Cheese Plant design parameters	63
6.2	Illinois Food Plant vessel design parameters	64

CHAPTER I INTRODUCTION

The need for natural refrigerants has been a major topic of discussion because of Global Warming Potential (GWP) and Ozone Depletion Potential (ODP). Scientists and governmental agencies worldwide have been addressing their concerns regarding these two important issues and have been actively pursuing to device policies to reduce the environmental effects of ever increasing industrial activities. Per Ciconkov and Ayub (2009), one measure is the implementation of Montreal Protocol on January 1, 1989, which requires various synthetic refrigerants, such as R-11 and R-12, be outlawed due to higher ODP levels. In addition to the Montreal Protocol, Ciconkov and Ayub (2009) also specified that the Kyoto Protocol was enforced on February 16, 2005, which stipulated the use of those refrigerants that have a significant effect on the global warming. Thus, the most commonly used refrigerants, such as R-22, R-134a are slowly being phased out. Since January 1, 2010, Europe has imposed stringent rules regarding the use of high GWP refrigerants (Ayub et. al, 2013). Recently, President Obama issued an executive order to adopt practices that would reduce any activities involving greenhouse gas emissions (Taylor, 2015). Although alternative halocarbons, such as R-404a, R-507a, and various others are still being used as refrigerants, Taylor (2015) had mentioned that they will soon be phased out because of their higher GWP values. Currently the most attractive natural refrigerant with ODP and GWP equal to zero is ammonia (Ayub et. al., 2013). Ayub et. al. (2013) also mentioned that ammonia is

readily available at an insignificant cost and has a relatively higher latent heat capability as compared to synthetic refrigerants, which qualifies it to be at the top of the list. The only drawback that Ayub et. al. (2013) had identified about ammonia is its toxicity; however, this aspect can be overcome by innovative system designs that result in minimal charge. Low-charge ammonia systems are being actively explored for industrial refrigeration markets. The intern had the opportunity to design a unique evaporator suited for small or large ammonia refrigeration system. This goal was achieved at Isotherm, Incorporated.

Profile of Isotherm

Isotherm, Inc. is a custom manufacturer of heat exchangers, pressure vessels, and skid based systems. It was founded in 1999 by Dr. Zahid Ayub, P.E., current president and owner. Isotherm has a shop capacity of around 32,000 sq. ft. (Fig, 1.1). The company is known for ammonia enhanced heat transfer systems. As mentioned previously, ammonia is a natural refrigerant that is extensively used due to key features such as, low cost, zero ODP and GWP. Historically, ammonia enhanced heat transfer was not extensively studied as compared to halocarbons. Isotherm's push for ammonia enhanced heat transfer for the design of its equipment, and the industry's interest in utilizing ammonia for its applications gave Isotherm the advantage in the market. With Isotherm's background in advanced concepts in the subject of enhanced heat transfer with ammonia, the company flourished in this aspect of their business by selling equipment to contractors. Marine refrigeration is another major industry that Isotherm

sells its equipment because of its extensive experience and clear advantage over competitors. The company has also been active in other related industries such as food and beverage, cold storage warehousing, pharmaceutical and chemical processing.

Fig 1.1: Aerial view of Isotherm, Inc. in Arlington, Texas

Contractors in industrial refrigeration are moving towards ammonia instead of Freons (halocarbon), such as R-22, due to the reasons mentioned above. But while it is getting common to use ammonia in marine and industrial refrigeration, Freons are still being used in the industries until their phase out. Isotherm also has the background in designing equipment for such systems. The company is also involved in hydrocarbon based refrigeration systems. Propane, a hydrocarbon, is another natural refrigerant that is commonly used in the oil and gas industry, such as amine gas sweetening. Therefore, Isotherm is not limited to any specific refrigeration area utilizing its equipment.

Isotherm has the capability to design, fabricate, and certify its equipment per the ASME Section VIII, Division, Boiler & Pressure Vessel Code (2013 Edition). Not only ASME is used for the design code, Isotherm can design and fabricate units per the

Pressure Equipment Directive 97/23/EC (PED), a European Union standard, and Det Norske Veritas (DNV), a Norwegian standard that has been extensively used for offshore and onshore applications in the oil and gas industries and for refrigeration systems on fishing vessels. Other codes and standards, such as API 660 (7th Edition, 2003), Tubular Exchanger Manufacturers Association (9th Edition, 2007), Canadian Registration (CRN), Australian Standard 1210, and various others are also handled by the company. However, since the majority of equipment is designed and certified to ASME Section VIII, Division 1 Pressure Vessel Code, it is important to understand this particular code and its relevance to Isotherm's equipment.

ASME Section VIII, Div. 1 Pressure Vessel Code

ASME Section VIII seminar (2007) gave the following as the reason for the creation of the ASME Code:

In 1905, an explosion occurred at a shoe factory in Brockton, Massachusetts, resulting in 58 fatalities and 117 injuries. The explosion was a result of an inadequate design and fabrication of a steam boiler. However, this was one of many explosions that were common occurrences between the 1800s to the early 1900s. This explosion was the last of many boiler explosions that occurred during at least a ten year time frame and prompted the Massachusetts government to enact the first steam boiler construction rules in the United States. Thereafter, several states adopted similar regulations for steam boiler construction; though, each state adopted different rules. This prompted the

American Society of Mechanical Engineers (ASME) to compile and unify a set of rules for pressure vessel design. To achieve this Boiler and Pressure Vessel Code Committee (BPVCC) was created to ensure that a uniform code would be adopted for all states, known as the ASME Section VIII, Division 1 Code. While the BPVCC had the responsibility to create a set of rules for pressure vessel design, the National Board of Boiler and Pressure Vessel Inspectors (NBIC) was created to ensure that the rules by ASME were enforced and that the ASME authorized inspector (AI) were qualified by NBIC (2013a). Currently, these two committees still play a vital role in the pressure equipment certification. This code not only serves the requirements of pressure vessel code for United States and Canada, but it has been adopted by several countries around the world as a reputable standard.

The ASME Code (2013c) requires that the manufacturer holds an ASME certificate of authorization to prove that it can produce and ship ASME certified pressure equipment. Besides holding a certificate, the ASME Code (2013c) requires the fabricator to have the following capabilities:

- 1. Knowledge of ASME Section VIII, Division 1
- 2. Adequate shop with qualified personnel, such as welders
- 3. Signed contract with the ASME Authorized Inspection Agency
- 4. Quality Control System approved by the Authorized ASME inspector
- Joint Review every three years with ASME and the Authorized Inspection Agency

The Code also requires that the manufacturer undergoes the following minimum steps in producing pressure equipment:

1. Design

- 2. Procurement of Raw Materials
- 3. Fabrication
- 4. Non-Destructive Testing
- 5. Heat Treatment
- 6. Pressure Testing (ASME, 2013c)

For the design of pressure equipment, the client would provide Isotherm the design pressure, the minimum and maximum design temperatures, the preferred choice of material and the size. The Engineering Department would perform calculations, such as the required thicknesses of various components such as the shell, the end cap, and the nozzles. After completing the design, the ASME approved materials are procured, with the Material Test reports that indicate that the mechanical and chemical tests of the raw material have met the ASME requirements per Section II. Upon receipt of the ASME materials, the production proceeds with fabrication of the Code equipment. However, it is important that the manufacturer have the necessary qualified procedures and personnel prior to production. Thus, another ASME Code that supplements the ASME Section VIII, Division 1 and provides information on qualifications for welding procedure specifications (WPS) and the welding personnel for the construction of pressure vessels, is known as the ASME Section IX (2013 Edition).

As defined in the ASME Section IX (2013d), a "Welding Procedure Specification (WPS) is a written document that provides direction to the welder or welding operator for making production welds in accordance with Code requirements." Furthermore, Section IX (2013d) further states that the manufacturer, such as Isotherm, bears responsibility for the control of production welding based on the approved WPS. An example can be found in Figure A.1 of Appendix A. The WPS is approved if the test coupon used for the WPS complies with the minimum requirements for the intended application (ASME, 2013d). Therefore, a Procedure Qualification Record (PQR) is created as a record of the welding data used to weld a test coupon, as per Section IX (2013).

The required variables are listed in the PQR, and it is obligatory for the manufacturer to prove that those variables meet the minimum requirements of ASME Section VIII Division I (2013c), ASME Section II (2013a) and ASME Section IX (2013d). Variables include, but not limited to, the thickness of the base metal qualified and the welding wire and its properties (ASME, 2013d). Therefore, the successful qualification of the PQR is used to prove that the WPS used for fabrication of the heat exchangers and pressure vessels comply with ASME Section VIII and IX requirements. An example of the PQR can be found in Figures A.2 and A.3 of Appendix A.

Each welder in the fabrication shop has to prove that they are able to perform the welding in accordance with the approved WPS. Therefore, Section IX requires that the manufacturer complete and certify a Welder/Welding Operator Performance Qualification (WPQ) record for each welder (2013d); Fig. A.4 of Appendix A is one

example. The manufacturer is also obligated by Section IX that each welder or operator to perform a test coupon, using the WPS, and that the results from the testing of the coupon prove that the welder/s have met the ASME Code (2013d).

With approved WPS's and with each welder having its approved WPQ, fabrication of ASME certified equipment can proceed. Isotherm maintains the required documentation accordingly. It is important that the designers in the Engineering Department lists the approved WPS's, with approval from the Engineering Manager, on the drawings so that each welder knows the applicable WPS for each project and that the production manager decides on which qualified welder can fabricate the ASME approved heat exchangers and pressure vessels. Having mentioned the fabrication with the required welding documentation and personnel qualifications, ASME Section VIII, Div. 1 (2013c) lists the requirements for non-destructive examination, such as radiography (method of using X-ray for inspection of welding), ultrasonic testing, liquid penetrant, and magnetic particle testing. The non-destructive testing (NDT) rules are covered in ASME Section V (2013b). The required procedures are set in place prior to conducting the tests in the manufacturing shop. Since Isotherm only has an approved procedure for liquid penetrant testing, it is only limited to this type of test. Not only the procedure must be approved by ASME, it also requires qualified personnel conducting the tests, which Isotherm has the documentation necessary to carry out the procedure (2013b). For all other NDT requirements, the company subcontracts qualified subcontractors.

After the non-destructive testing, if the fabricated equipment is to be heat treated it is out sourced to a code approved sub-contractor (ASME 2013c). The majority of Isotherm's equipment does not require heat treatment, thus further discussion is not necessary. Pressure testing of the equipment is also necessary to detect any defects in the material and fabrication. There are two types of tests allowed by ASME: hydrostatic testing and pneumatic testing (2013c). Isotherm has the capability to perform both; however, it mostly performs pneumatic testing since most of the equipment is used for refrigeration application traces of water are undesirable. According to the rules of ASME Section VIII, the pressure test must be witnessed by the ASME authorized inspector (AI) and after successful test witnesses the affixing of the nameplate on the equipment (2013c). After all the necessary steps in design, materials, fabrication, and testing are complete, the ASME Code also necessitates the manufacturer to complete a special form, also known as the data report that provides complete information on materials, operating pressure and temperature and test data as shown in Fig. A.5 of Appendix A. (2013c)

A discussion about the history of ASME and its role for pressure vessels was mentioned, along with the steps to achieve ASME certification of the equipment, which were design, materials, fabrication, non-destructive examination, heat treatment, and pressure testing. With Isotherm being an authorized ASME shop, it is qualified to sell equipment with ASME certification to its clients that require pressure vessels for their refrigeration packages. One of the components of the refrigeration package is the chiller. As previously mentioned, the intern had worked at Isotherm for an internship, as

outlined in the Doctor of Engineering program at Texas A & M, and was primarily involved in the development of a new and unique type of chiller (patent applied for) that is expected to make a major impact in the refrigeration industry. The implementation of the ASME certification to this chiller was necessary prior to having the chiller marketed in the U.S. and other parts of the world. It is important to note that the chiller is not limited to ASME certification only since there are other standards that are required in certain areas of the world, such as the Pressure Equipment Directive (PED) of the European Union, and Det Norske Veritas (DNV), which is commonly used in Norwegian fishing vessels and off shore oil drilling platforms.

Final Internship Objectives

As mentioned above, the intern had the opportunity to work at Isotherm and was involved in the design of the new patent pending ammonia chiller during the internship. As required in the Doctor of Engineering program of Texas A & M, the intern was expected to develop both the technical and managerial skills during the internship. Several months after starting the internship, the intern narrowed the Final Internship Objectives as follows:

Technical

- 1. Enhance technical skills necessary for the design of the new type of chiller
- 2. Develop knowledge of certification of Isotherm's equipment to meet the requirements of the Pressure Equipment Directive (PED)

3. Develop the skills necessary to certify Isotherm's spray chillers and condensers to meet the DNV Rules for Ships, Pt. 4 Ch. 7: Pressure Vessels

Managerial

- 1. Acquire the skills as an Engineering Manager at Isotherm, Incorporated.
- 2. Gain more knowledge necessary for future ownership of Isotherm, Incorporated.

As per the requirements of the Doctor of Engineering degree, this Record of Study is to show that the above mentioned objectives show that the intern gained technical and managerial skills during his internship at Isotherm, Incorporated. While all the above five objectives were important to fulfill, the primary focus in this internship was to develop a new chiller.

CHAPTER II

NEW CHILLER DESIGN

Isotherm's heat exchangers and pressure vessels are utilized in the refrigeration systems that operates under a classical reverse Rankine cycle (Fig. 2.1) consisting of the evaporator (also called chiller), separator (also known as accumulator), compressor, condenser, receiver and the throttling expansion valve. The major focus of the internship is the chiller design. In a chiller, the process fluid is being cooled while the refrigerant is undergoing phase change from liquid to vapor by the heat transferred from the process fluid to the refrigerant. There are three types of chillers that Isotherm, Inc. has traditionally manufactured: Flooded, Direct Expansion (DX) and Spray.

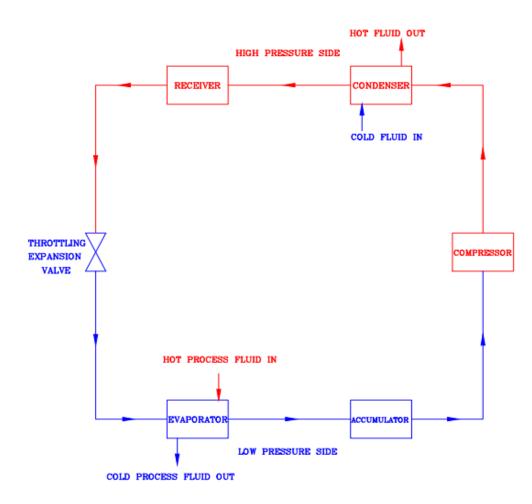


Fig. 2.1: Typical Reverse Rankine Cycle Refrigeration System

Flooded Chiller

A flooded chiller as shown in Figs. 2.2 and 2.3 is where the two-phase refrigerant is in the shell while the process fluid is cooled in the tubes. A horizontal separator vessel is mounted on top of the chiller for liquid-vapor separation. The shell-side of the flooded chiller is 80-90% occupied by a pool of refrigerant so that when the refrigerant is undergoing two-phase flow, vapor flows upward towards the separator vessel. The vapor contains droplets of liquid, thus the separator vessel is designed to ensure that the liquid droplets are not carried over to the compressor. The flooded chiller does not require a pump for refrigerant flow, but a large amount of refrigerant is required in the shell for proper operation, hence increasing the refrigerant cost and increasing the safety hazard in the event of a leak, especially if the refrigerant is either toxic or flammable or both. Large refrigerant inventory also increases the risk of freezing the process side in case of malfunction due to the "thermal inertia" effect.

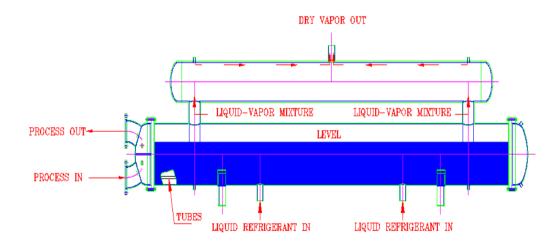


Fig. 2.2: A typical Flooded Evaporator design

Fig. 2.3: Fabricated Flooded Evaporator

Direct Expansion (DX) Chiller

In a DX chiller (Figs 2.4 and 2.5), refrigerant flow is maintained inside the tubes while the process liquid is cooled within the shell. It is important to keep a consistent distribution of the liquid-vapor refrigerant mixture; otherwise, the lack of proper distribution could result in early liquid separation with vapor occupying the upper portion of the tubes, thus larger void fraction. Since vapor has a lower heat transfer coefficient than the liquid, a uniform mixture is necessary for the refrigerant flow inside the tubes. There is no such thing as an ideal mixture; consequently, it is difficult to estimate the magnitude of liquid-vapor mixture that actually occurs within the tubes. The goal of a better design is to strive for the least amount of mal-distribution.

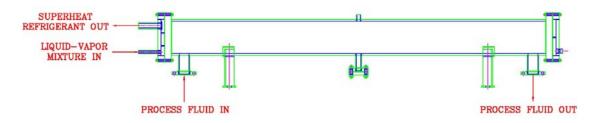


Fig. 2.4: A typical DX Evaporator design

Fig. 2.5: Fabricated DX Evaporator

Spray Chiller

In the spray chiller design as shown in Fig. 2.6, thin-film evaporation is involved, resulting in a relatively higher heat transfer coefficient than that obtained in pool boiling found in flooded evaporators. As compared to the flooded chillers, it requires a lower operating refrigerant charge. However, the shell needs extra space to accommodate a spray header, whose role is to hold the spray nozzles for spraying the refrigerant. To

maintain a positive refrigerant flow in the spray loop, a pump is required. If the pump malfunctions, the spray chiller will either have to shut down or in case of an extra pump has to be switched over to the standby pump. In the food processing industry, two pumps are always required for this reason. Figure 2.7 shows a typical fabricated spray evaporator ready to be installed at a site.

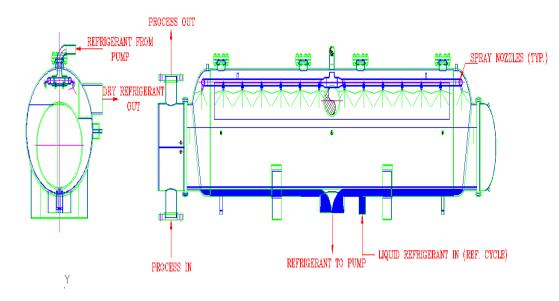


Fig. 2.6: A typical Spray Chiller design

Fig. 2.7: Fabricated Spray Chiller

New Shell Side DX Chiller (SX)

Isotherm has embarked on a new special DX technology that combines the concepts of spray chiller and DX chiller. This new design is referred to as the SX (Shell side DX) Chiller. The key driving features in initiating the concept of SX chiller design were:

- 1. Compact design
- 2. Low refrigerant charge
- 3. Higher efficiency
- 4. Ease of maintenance
- 5. Reduced cost

Under the supervision of the owner the intern was given the task to work out the most optimized new SX chiller. First, the compactness was emphasized. Next, the low charge, as is the case with Spray and DX chillers, is considered. As previously mentioned, the spray chiller utilizes thin film evaporation, which results in a higher heat transfer coefficient than that with flooded chiller. This feature was also considered in the SX chiller design. Consideration of all the above features resulted in a unique design as shown in Fig. 2.8. The following paragraphs describe this new technology taken verbatim from the US Patent (Ayub and Ayub, 2012):

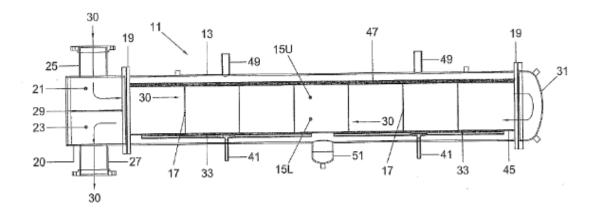


Fig. 2.8: SX Chiller design

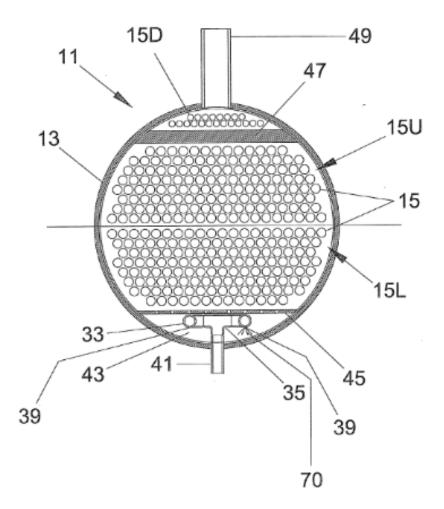


Fig. 2.9: Bundle view of SX Chiller without end heads

As shown in Fig. 2.8 the process fluid goes through the tube side of the SX Chiller via the top nozzle (25), which flows through a body of tubes. The body of tubes is shown in Fig. 2.9 as a side view of the SX chiller without the tube-side heads, as shown as 20 in Fig. 2.8. The process fluid cools before leaving at the bottom nozzle, shown as 27 of Fig. 2.8. The process fluid is cooled by the transfer of heat from the process fluid to refrigerant, which in turn

evaporates into superheated vapor. On the other hand, the refrigerant enters through the bottom side of the shell, through the shell-side nozzle(s), shown as 41. The shell-side nozzle(s) are connected to the refrigerant spray header(s) (35 of Fig. 2.9) located on the bottom inside diameter of the shell-side. The spray headers act as a source of refrigerant distribution on the tubes, which is important for efficient heat transfer. The spray header has small orifices (39 of Fig. 2.9) that are sized for the spray mechanism, depending on the flow rate of the refrigerant. The refrigerant goes through several circuits of vaporization so that it leaves from the refrigerant outlets (49 of Fig. 2.9) as superheated vapor to the accumulator or directly to the compressor. This is important because the compressor cannot have any traces of liquid entering the suction side of the compressor due to incompressibility of liquid; otherwise, the compressor malfunctions. The small orifices in the header directs the refrigerant liquid-vapor mixture to the lower part of the shell where oil is separated and refrigerant hits a perforated plate (45 of Fig. 2.9), which is welded slightly above the refrigerant header. This creates a slight back pressure, resulting in even distribution along the length of the bundle. The evenly distributed two-phase refrigerant then moves upward through the bundle due to the positive lift caused by the compressor suction. This upward flow of two phase mixture creates a thin film of liquid refrigerant that evaporates at the expense of cooling the process fluid in the tubes. This concept makes it different than pool boiling in flooded chillers that require large refrigerant pool to sustain the chilling process. To ensure that there

are no traces of liquid after flowing through the outside of the body of tubes, a separating device in the form of a specially calculated and designed demister pad (47 of Fig. 2.9) is placed above the main body of the tubes so that the mixture will coalesce the liquid back down to the shell where it is evaporated while vapor continues to flow towards the refrigerant outlet. To ensure that the vapor is superheated, an extra body of tubes above the demister pad is placed, known as superheat tubes, as shown as 15D of Fig. 2.9. This is critical since the refrigerant expansion valve, located at the entrance to the shell, modulates via a controller under a pre-set superheat level at the outlet. Lastly, an oil sump is added to the bottom of the chiller for oil drainage purposes (shown as 51 of Fig. 2.8) since oil is carried over with the refrigerant from the compressor. It is very important to have good drainage, especially for ammonia applications because oil and ammonia are immiscible.

The new chiller design has many advantages over contemporary chillers. First, the charge is significantly less than the flooded chiller. This is really important since ammonia is toxic, and the ammonia released into the atmosphere should be minimal. Another benefit is that the new chiller eliminates the need for a pump, unlike the spray chiller because one of the issues with the pump is that it would require spare sealing and that operator is required to maintain the pump concurrently, thus driving potential repair and spare part costs high. Also, a backup pump is needed in the event of the malfunction of the main pump in order to avoid shutting down the refrigeration system. Although the spray chiller requires less charge than the flooded and DX chillers, the new chiller requires even less of a refrigerant charge than the spray chiller. Moreover, the new chiller offers a more compact design for the same refrigeration conditions as compared to all three conventional chillers. Other benefits include simple controls since the refrigerant level controller is not required, less oil due to minimal carryover from the compressor, and easy cleaning of the process tube side. After designing this new technology, the intern received some purchase orders for the new chillers.

Design and Results for SX Chiller in Norway

One project that the intern was involved with was for a test stand in Norway. The design parameters are shown in Table 2.1.

Table 2.1 – Norway test SX	Chiller design parameters	
Parameter	Value	Unit
Capacity	250 (71)	kW (TR)
Seawater Flow rate	180 (793)	m ³ /hr (gpm)
Seawater Inlet Temperature	0.17 (32.3)	°C (°F)
Seawater Outlet	-1.0 (30.2)	°C (°F)
Temperature		
NH ₃ Suction Temperature	-5.0 (23.0)	°C (°F)

Based on the above data, the intern and the engineering supervisor designed a SX chiller as shown in Fig. 2.10 while Fig. 2.11 shows the chiller mounted on the test stand skid at the client's site. The final design characteristics are shown in Table 2.2.

Table 2.2 – Norway test SX Chiller size								
Parameter	Value	Unit						
Outside Diameter	356 (14)	mm (in.)						
Tube Length	3048 (10)	mm (ft.)						
Overall Length	3353 (11)	mm (ft.)						

Fig. 2.10: Fabricated SX Chiller for Norwegian Test Stand

Fig. 2.11: SX Chiller on Test Stand Skid in Norway

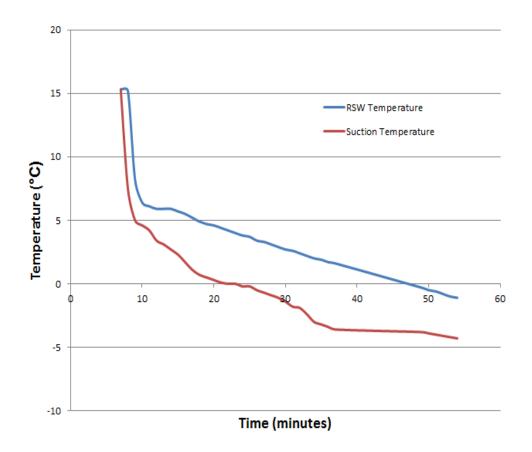


Fig. 2.12: Field data of SX Chiller for Norwegian Test Stand

Figure 2.12 shows a snap shot of data indicating the measured refrigerated sea water (RSW) outlet temperature and suction temperature versus the pull down time from several test runs conducted during a 2-3 month period. An average data from several test runs is shown in Table 2.3.

Table 2.3 – Norway test results for the SX Chiller							
Parameter	Value	Unit					
Seawater Outlet	-1.1 (30.0)	°C (°F)					
Temperature							
NH ₃ Suction Temperature	-4.3 (23.0)	°C (°F)					

The results showed that at the design suction temperature the sea water outlet temperatures were in agreement with the required design conditions. Detailed data showing pull down time versus temperature can be found in Fig. B.1 of Appendix B. The refrigerant charge was approximately 35 kilograms (77 lbs.) which translates to 0.14 kg/kW. According to the current industry standards this is considered to be extremely low. A typical comparative analysis for various other types of chillers was performed as shown in Table 2.4. This shows that the charge required for the same capacity as the Spray, Flooded and Plate and frame is 4, 8 and 10 times more than the SX chiller, respectively. This is considered to be a major breakthrough in the heat exchanger business.

Table 2.4 – Comparison of refrigerant charges of each chiller								
Туре	Charge	Unit						
Shell & Tube SX Chiller	35 (77)	kg (lbs.)						
Shell & Tube Spray Chiller	140 (308)	kg (lbs.)						
Shell & Tube Flooded	280 (616)	kg (lbs.)						
Chiller								
Plate & Frame Flooded	350 (770)	kg (lbs.)						
Chiller (with Surge Drum)								

Effect of COP of SX Evaporator vs. Flooded Evaporator

The effect of this higher efficiency of SX evaporator can be directly observed on the system theoretical overall coefficient of performance (COP). To show this, a comparison was run with a flooded evaporator with exactly similar geometric parameters and similar operating conditions on the sea water side. Assuming same condensing temperature (95°F), it was evaluated that for the flooded evaporator to achieve the same capacity the saturated suction temperature had to be 18.2°F versus 23.0°F for the SX evaporator which therefore resulted in a 10% enhancement in COP for the system. This is primarily due to higher specific volume of ammonia at lower suction temperature in the flooded system that results in higher compressor brake horse power requirement.

Design and Results for SX Chiller in Ecuador

Another project was for a sea water refrigeration system onboard a fishing trawler in Ecuador. The design parameters are shown in Table 2.5.

Table 2.5 – Ecuador SX Ch	iller design paramete	ers
Parameter	Value	Unit
Capacity	250 (71)	kW (TR)
Seawater Flow rate	136 (600)	m ³ /hr (gpm)
Seawater Inlet Temperature	2.2 (36.0)	°C (°F)
Seawater Outlet	1.1 (34.0)	°C (°F)
Temperature		
NH ₃ Suction Temperature	-5.0 (23.0)	°C (°F)

The intern and the engineering supervisor designed an SX chiller based on the above data. The final size turned out to be the same as that for Norway test stand. In this case four chillers were fabricated as the requirement was two chillers per fishing vessel; one for starboard side and another for port side as shown in Fig. 2.13. The refrigerant charge for this chiller was similar to that in the Norwegian test stand unit. The field results turned out to be very promising as shown in Table 2.6. Fig. 2.14 shows the temperature versus pull down time, while Fig. B.2 of Appendix B consists of the table with time and temperature recorded. Based on these two successful installations, the SX chiller proved that it could play a significant role in the industrial refrigeration market especially where low charge systems are either a requirement through regulation or clients' preference.

Table 2.6 – Ecuador SX Chille	r field data	
Parameter	Value	Unit
Seawater Starboard Outlet	0.0 (32.0)	°C (°F)
Temp		
Seawater Portside Outlet Temp	0.0 (32.0)	°C (°F)
NH ₃ Suction Temp	-5.3 (22.5)	°C (°F)

Fig. 2.13: One of the two installed SX chillers on a trawler in Ecuador

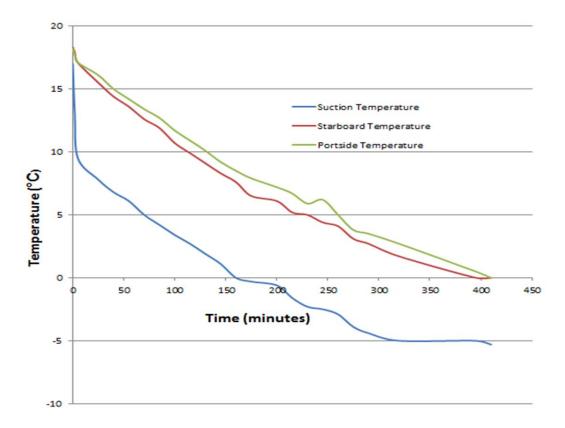


Fig. 2.14: Field data of SX Chiller for Ecuador fishing vessel

Commissioning Process

To date, over eighty SX chillers of various capacities, ranging from 45 to 500 TR have been built and installed worldwide. The commissioning and start-up of early chillers had been a vast learning experience for the entire Isotherm team, including the intern, especially the piping and control aspects. Different types of control valves by various manufacturers were tested. In the end, the electronic pulse valve, AKVA manufactured by Danfoss, resulted in a good match for the efficient performance of SX chiller. A typical AKVA valve is shown in Fig. 2.15. It was also established that chillers over 50 TR required two AKVA valves installed in a master/slave configuration.

Figure 2.16 shows a simple Process and Instrumentation Diagram (P&ID) for a dual valves configuration. A client in Chile and Norway had used this concept on all the chillers supplied to them and had no problem in achieving capacity. Fig. 2.17 shows the proper dual valves installation. On the other hand, a client in Peru did not follow the instructions and used a single AKVA valve configuration as shown in Fig. 2.18 irrespective of the capacity. After checking their control system, Isotherm instructed them to revert to the proper valve configuration. During the trouble shooting process, the intern and Isotherm engineers also found serious piping issues. Almost all the liquid feed lines were undersized, which resulted in flashing of liquid at the valve inlet. This is a highly undesirable phenomenon and is strictly warned against by the valve manufacturer. The valves were also not located at the correct location in relation to the chiller inlet nozzles.

Another recent case was an SX chiller sold to a contractor at a wine plant in California. Although it was mentioned by the contractor and its client that the SX chiller was operating well, the field data have yet to be provided. Fig. 2.19 shows the SX chiller installed at the wine plant.

Fig. 2.15: Danfoss AKVA Valve

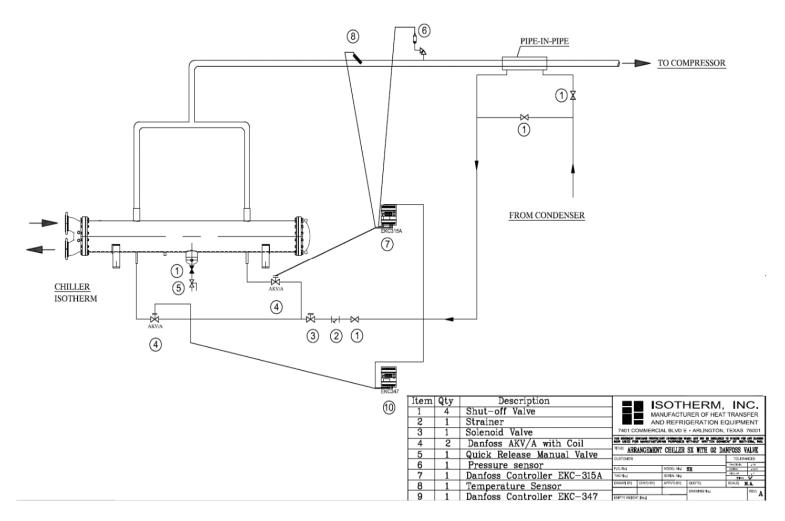


Fig. 2.16: P&ID for dual valves Master/Slave AKVA configuration

Fig. 2.17: Correct dual valves AKVA installation on an SX Chiller in a Master/Slave

configuration

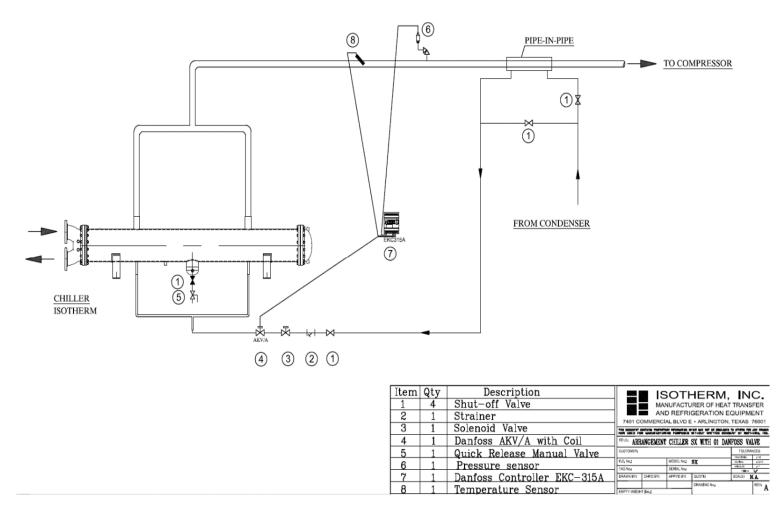


Fig. 2.18: P&ID for a single valve AKVA configuration

Fig 2.19: SX Chiller installed at California Wine Plant

Conclusion

As mentioned previously, the SX chiller was designed and patented to offer a compact design with lower refrigerant charge, easier maintenance, and lower risk of maldistribution than the DX and spray chillers. The two projects in Norway and Ecuador showed promising results, provided that correct piping and controls are implemented. In the Norwegian test stand project, only ASME certification of the chiller was required. But for the same Norwegian client, equipment shipped to them would require certifications other than ASME. Therefore, the intern had to familiarize himself with the requirements of European certification criterion in order to continue selling to European clients.

CHAPTER III

PRESSURE EQUIPMENT DIRECTIVE (PED) CERTIFICATION

At the start of the internship, the intern was given a project consisting of two heat exchangers, a 30 inch Outside Diameter (OD) spray chiller and a 14 inch OD condenser, for a fish processing plant in Norway. These two pieces of equipment required European certification, referred to as Pressure Equipment Directive (PED) certification. Why is PED certification of pressure equipment necessary in the European Union (EU)?

As was the case of each state in the U.S. prior to the adoption of the ASME Code, each member state of the EU had its own regulations, or harmonized standards, for pressure equipment safety, thus complicating free trade among the member states (Bureau Veritas 2009). The Bureau Veritas (BV) seminar stated that the European Parliament adopted the PED to synthesize the harmonized standards of each member state into a new set of standards, known as Essential Safety Requirements (ESRs) to facilitate free trade within the EU member countries (2009). They further mentioned that the manufacturer of the pressure equipment must prove to the EU authorities that the heat exchangers and pressure vessels meet the ESRs (2009). Despite the PED certification requirement for pressure equipment in the EU, they also highlighted that PED does not address the design calculations for the pressure vessels, thus it allows the manufacturer to use any PED approved code, such as ASME VIII Division 1. However, the ASME design is not considered as a harmonized standard to the EU since the PED design addresses additional requirements that ASME does not, such as, but not limited to, the hazardous analysis of the fluids within the pressure vessels and providing operating instructions of the pressure equipment (Bureau Veritas 2009). Moreover, Bureau Veritas had addressed the differences between ASME and PED requirements of pressure vessel certification (2009). They mentioned that the ASME code allows any authorized manufacturer to use its ASME approved quality control manual as a guide for fabrication, whereas the PED requires third party inspection and approval of the design, fabrication, and pressure test for each pressure vessel.

Another difference highlighted is that each standard has different allowable stresses for the pressure bearing materials. PED has additional requirements for third party inspection and approval of the manufacturer's welding procedures, qualifications of each welder, and non-destructive testing, whereas ASME allows the manufacturer to declare conformance of the welding and non-destructive testing in accordance with ASME requirements.

Lastly, the ASME and PED codes have differences in the pressure testing procedures. The hydrostatic test pressure per ASME is the design pressure multiplied by a factor of 1.3, whereas PED's hydrostatic test pressure is the design pressure multiplied by a factor of 1.43. Therefore, due to the differences of fabrication, testing, and hazard analysis and operating instructions, the pressure equipment designed per ASME must be met with additional requirements that satisfy PED.

As mentioned above, it is obligatory for the manufacturer to fulfill the ESRs, such as the classification of fluids (toxicity, hazard, etc.), material restrictions added with ASME certified materials, and pressure testing based on EU standards. The

manufacturer must prove that the ESRs are met by submitting the technical data book to the PED Notified Body (NB), as stipulated by the European Parliament (1997). Three departments within the manufacturer, i.e., Engineering, Procurement, and Fabrication, must prove to the NB that the ESRs have been met (European Parliament, 1997). The Engineering department is required to submit the following to the PED Notified Body:

- 1. The signed application for certification of the equipment
- 2. Technical Documentation for CE marking of Pressure Equipment
- 3. Fabrication Drawings and Design Calculations
- 4. Allowable stress comparison of the materials per ASME requirements with PED requirements.

5. Pressure test calculations based on PED requirements (Bureau Veritas 1997) The documentation from the above list can be found in Appendix C.

The application is a document addressing the overview of the equipment and the level of assessment by the NB for conformance to PED requirements. The Technical Documentation for CE Marking of Pressure Equipment is the document that addresses the information required to prove that the equipment is in compliance with the PED requirements. Examples include, but not limited to:

- 1. Description of the equipment and design calculations and conditions
- 2. Fabrication Drawings
- 3. Fluid hazard categories
- 4. Amount of conformance assessment required by the authorized third party inspection agency

- 5. List of solutions to address the ESRs (Bureau Veritas 2009)
- 6. List of particular material appraisals (PMAs)
- 7. PED approved welding procedures and welder qualifications
- 8. PED approved NDE personnel (Bureau Veritas 2009)

After completing the signed application and the Technical Documentation for CE marking, the complete fabrication drawings and design calculations were also prepared. The allowable stresses calculations and the PED pressure test calculations were also submitted with the first three documents. After the intern submitted the above information, the PED inspector submitted the documentation to the NB in order to process this project as a new job in their system. The intern released the job for fabrication to the procurement department for ordering the materials. Before the materials could be ordered by Procurement, the intern was required to complete the Particular Material Appraisals (PMAs), as shown in Fig. C.11 of Appendix C, which lists the ASME approved material and whether the materials' mechanical and chemical compositions fulfilled the ESRs, as listed in the Technical Documentation for CE marking (Bureau Veritas 2009). Not only were PMAs required, but the Material Test Reports (MTRs) were also necessary with the European Parliament expecting the manufacturer to prove that the MTRs meet European standards and that the material manufacturer is approved by the European body, which is shown in their Quality Assessment certificate (i.e. ISO 9001) (1997). The MTR must show that the material was produced while the manufacturer's quality control procedures were approved by the NB.

Once complying with the above requirements, the Procurement department ordered the materials and upon arrival, production of the equipment is started. The PED inspector is required to be present at the shop for the weld startup. Therefore, the intern, the QC manager, and production were responsible for scheduling the PED inspector's visit to the shop. The PED inspector verified if the welding by the qualified personnel is done per the PED approved welding procedures. A document, known as the welder suitability checklist, outlines the qualifications of the welders and the procedures involved (Bureau Veritas 2009). Figure C.12 of Appendix C shows an example of this document. The PED inspector had to complete the inspection checklist to show as proof of his witness of the welding and documentation verification. After that, the production continued and was completed so that the NDE and the hydrostatic testing were to be done. While the PED inspector was not required to witness the NDE provided it was done by the PED approved operators, the hydrostatic test had to be witnessed and verified in the Inspection checklist, as shown in Fig C.13 of Appendix C (Bureau Veritas 2009)

After completion of the hydrostatic test, the European Parliament requires the CE Nameplate, as shown in Fig. 3.1, to be mounted on the equipment in the PED inspector's presence, which shows the equipment has been stamped to PED certification (1997).

		MANUFACTURER: ISOTHERM, INC. OMMERCIAL BLVD. EAS lington, Texas 76001
NOTIFIED BODY No.		YEAR BUILT
SERIAL NUMBER	a state of the set of the set of the set of the	APPLICATION
DATE OF PRESSURE TEST	an a	TYPE
PERFORMANCE	kW	WEIGHT k
		(TARE)
WORKING TEMP. (max./min.)	TS	3 ∘ (282 - 18
DESIGN PRESSURE	PS	Bar
TEST PRESSURE	PT	Bar
VOLUME	γ .	Ltr.
PRODUCT GROUP		

Fig. 3.1: CE Nameplate

After the PED inspector completed the witness points, the equipment was successfully completed and shipped to the client. The intern had to complete the Declaration of Conformity as part of the requirements by the PED inspector and the client, as shown in Fig. C.14 of Appendix C (Bureau Veritas 2009). This document confirms the description of the equipment, as outlined in the Technical Documentation for CE Marking, and it has the statement of verification that the equipment is in compliance with the PED. The intern was required to sign and date it. After completing the Declaration of Conformity, the PED inspector required the QC data book consisting of the technical documentation that backs the Technical Documentation for CE Marking. Not only the documentation mentioned previously was compiled, but additional documents were required for the data book, as shown in Fig. 3.2.

7401 Commercial Bivd. E * PO Box 172370 * Arlington, Texas 76003 * Ph (817) 472-9922 * Fax (817) 472-5878

Pressure Equipment Directive

Technical File

Table of Contents

- A. Application to the Notified Body
- B. Technical Documentation for CE Marking
- C. Detail Shop Drawings
- D. Calculations
- E. Inspection Checklist
- F. Calculation Formula and Results, Hydro Analysis, Stress Allowable Analysis per EC/97/g, Annex I, Paragraph 7.1.2
- G. WPS/PQR
- H. Welder List and Certificates
- I. NDE Personnel List and Certificates
- J. Answer to PED/Essential Safety Requirements
- K. Analysis of Hazards See Sect. B
- L. Operating Instructions
- M. Declaration of Conformity
- N. CE Label and Marking (Copy of Nameplate)
- O. Material Specifications and Certification
- P. PMA Certificates
- Q. Test Report (Gage Certs. with Serial Number)
- R. Lab Certificates
- Copies of NDE Reports

Fig. 3.2: List for PED QC Data book

When the data book is completed and submitted to the PED inspector, it is checked and submitted to the NB for a final check and if approved, then the NB issues a Certificate of Conformance. The intern successfully received the documents from the NB for the spray chiller and condenser, as shown in Figs C.15 and C.16 of Appendix C. Based on the experience of the above project, the intern further got involved in other projects that successfully got PED certification, including the SX chillers that were sold to the same client. But while the same client required PED certification of Isotherm equipment, the majority of that client's equipment required DNV certification; therefore, the intern had the opportunity to get involved in the DNV certification of Isotherm's products.

CHAPTER IV

DET NORSKE VERITAS (DNV) CERTIFICATION

The next objective in the record of study is related to the certification of Isotherm heat exchangers and pressure vessels according to DNV classification. What is DNV and why is it important for Isotherm? Originally DNV started as an insurance organization that established rules for Norwegian ships in the mid-eighteen hundreds (Det Norske Veritas 2015). During that time, fishing was the main source of income for Norway, thus Norwegian ships were flourishing throughout the country (Heritage, n.d.) However, it was important for the country to set forth safety regulations for ships that operated in Norwegian waters, i.e., part of the North Sea (Det Norske Veritas 2015). After the industrial boom and two world wars, oil and gas were discovered in the North Sea, resulting in DNV's preparation of safety standards in the marine area, which eventually turned into a major third party insurance agency for both marine and oil applications (Det Norske Veritas, 2015)

Way Forward

Isotherm has a major client in Norway, who purchases heat exchangers and installs them on packages that are sold to the owners of the fishing ships around the world. Isotherm's Quality Control (QC) Manager was leaving the company within two weeks at the time the intern arrived. The outgoing QC Manager informed the intern that DNV only required the witness of the Weld Production Test (WPT) coupon of the heat exchanger. This WPT coupon would ensure that the welders were meeting the requirements of the DNV approved WPS's. Besides the WPT coupon, the DNV surveyor's witness of the pressure testing of the equipment is also an essential requirement. Additionally, DNV informed the outgoing QC Manager that as long as the heat exchangers are designed and fabricated to ASME Section VIII, Division 1, and that if the company provides a conformity letter, similar to that of the Declaration of Conformity as required by PED rules as shown in Fig D.1 of Appendix D, then DNV will approve the heat exchangers and issue a Product Certificate. The Product Certificate is important since Isotherm's client needs this certificate for their marine refrigeration package to show the DNV surveyors at the site that all the components of the package comply with DNV rules.

The intern was informed by one engineer from the DNV office in Houston that DNV requires that materials, such as pipes, flanges, fittings, plates, must be from DNV approved mills (2015). Most of the materials received from the mills were not approved by DNV, thus more correspondences from DNV were required in regards to dealing with non-DNV approved materials. After several discussions, the intern understood that the materials must undergo traceability, which requires a surveyor to attend the facility in which a piece of material from the one ordered by Isotherm shall be stamped by the surveyor to prove that the material at the suppliers match with the MTR. The surveyor then writes a report confirming the traceability. After the stamping of the material, DNV expects the material sample must undergo chemical and mechanical tests (such as yield stress, tensile stress, Charpy impact tests) from a DNV approved testing laboratory

(2015). If the tests meet DNV Rules, the material with the specific heat number, as shown in the MTR, will be DNV approved and can be used for fabricating any DNV certified equipment. Based on the above requirements for DNV approved materials, the intern had to ensure that all these materials are acceptable for DNV. Because most of the correspondences with DNV have been conducted by email and only based on the availability of the DNV contacts, the intern realized the necessity to meet the DNV contacts in the Houston office. Both the intern and the new QC manager took a trip to Houston to clarify the procedures of certification with the DNV contacts. Based on the meeting, the following was concluded:

- 1. Design per ASME Section VIII, Division 1
- Procurement of materials shall be from DNV approved mills. If material is from non-DNV approved mills, it must undergo traceability and testing in the presence of the DNV surveyor
- Weld Production coupon test shall be done at Isotherm in the presence of the DNV surveyor
- After fabrication, the DNV surveyor shall witness the pressure test of the equipment in which Isotherm can use the ASME requirements for pneumatic test (dry nitrogen test) since DNV Rules only covers hydrostatic (water) testing

The intern, with the help and coordination of the new QC Manager, conducted the first three steps for a project that required full DNV approval. The job reference is designated as Job 10074. During the pressure test phase, the DNV surveyor was informed that the raw plate materials used for fabrication did not meet DNV Rules for Ships, despite the materials being ordered from DNV approved mills. The surveyor suggested that each plate required an additional DNV approved certificate, which is referred to as an NV certificate (Det Norske Veritas 2015). This NV certificate is to prove that the plate material undergoing the production process was witnessed and approved by the DNV surveyor. This was the first time that the issue of a NV certificate for plate materials was addressed to Isotherm, at a time when the vessels in question were already built. Since no further information about the NV certificate was provided by DNV and the delivery of equipment was near, both the intern and the QC manager took the risk of proceeding with the shipment of the equipment because the requirements as mentioned above were the only ones that the intern and Isotherm were aware at the time.

After the shipment of Job 10074, it was informed by the Norwegian client that two shipped projects, Jobs 10045 and 10046, did not have the DNV certificates and that Isotherm must inform DNV Houston about the status of these certificates. The intern had to push DNV Houston about the status and was informed by DNV Houston that no design approval was conducted by DNV. As mentioned previously, DNV had informed Isotherm that as long as the equipment is designed and built to ASME Section VIII, Division 1, along with procurement of materials from DNV approved mills, weld production coupon testing and pressure testing in presence of the DNV surveyor, then it would meet DNV requirements, provided that a letter of conformity mentioning the above is submitted to DNV Houston. A new requirement was first addressed to

Isotherm, thus compelled the intern to start the procedure by submitting the drawings and calculations for Jobs 10045 and 10046. The DNV surveyor who reviewed the project required that the intern submit a QC data book of the shipped projects. After several discussions with the intern having to show that some of the DNV rules were complied, it was concluded that the projects can proceed forward, provided that the verification by the DNV Quality Assessment team was done at the site. After several months of intense deliberations, the DNV approved Jobs 10045 and 10046. However, Job 10074, as mentioned above, was already completed and shipped before new correspondences about non-compliance of DNV were addressed. The intern had to convince all of the personnel in DNV Houston and in the main headquarters in Oslo about the miscommunication in the beginning and that 10074, along with 10045 and 10046, would be the last projects that would be designed to only ASME Section VIII, Division 1. After many months of discussions, Job 10074 was finally approved by the DNV Quality Assessment team, thus the DNV certificate was also issued.

Based on the above experiences the intern was compelled to return back to Houston to discuss with the DNV office about a new job (referred as Job 10080) so that in the future, no new surprises are presented during the production phase. The intern created an Inspection & Test Plan (ITP) to present to DNV Houston (see Fig. D.2 of Appendix D) based on Isotherm's procedures of design, procurement, fabrication, and testing and with the previous correspondences and project experiences with DNV. After the meeting, it was agreed that the following shall be done prior to issuing a DNV Product Certificate for Isotherm equipment:

- 1. Submission of fabrication drawings to DNV Houston
- Calculations to be per DNV Rules for Ships, Pt. 4 Ch. 7, not ASME Section VIII, Division 1; however, ASME can be used if specific designs are not covered in DNV Rules
- Material procured shall be from DNV approved mills with the appropriate certificates. If no certificate, then the DNV surveyors shall be present for the stamping of the material coupon
- Material coupon shall be tested mechanically and chemically in the presence of the DNV surveyor at a DNV approved laboratory
- 5. WPT coupon shall be made in the presence of DNV surveyor at Isotherm factory
- 6. Radiography shall be done and reviewed by DNV surveyor
- Magnetic particle testing of completed equipment and hydrostatic testing shall be done in presence of DNV surveyor
- 8. DNV surveyor shall stamp on the nameplate the reference number which will be on the DNV Product certificate
- Isotherm shall compile the QC data book including all the above listed and submit to the DNV surveyor

The draft of the meeting can be found in Figs D.3 - D.5 of Appendix D. As

mentioned above, DNV requires that the calculations of the heat exchangers shall be per

DNV Rules instead of ASME Section VIII, Division 1. Therefore, the intern had to

create the calculations per DNV Rules, which is found in Figs D.6 – D.8 of Appendix D.

Following the above procedures, the intern applied the steps necessary for Job 10080. After careful assessment and coordination with the Production and Quality Control and DNV, the project successfully met DNV Rules and a product certificate was issued, as shown in Fig. D.9 of Appendix D. This was a major achievement for the company and the intern was highly lauded by the management.

Result

Based on the previous experience of non-compliance for Jobs 10045, 10046, and 10074, along with the compliance of Job 10080, the intern was able to achieve an understanding of DNV certification of Isotherm equipment for future projects. In fact, the Norwegian client issued a purchase order in 2012 for the patented SX chiller that was to be certified by DNV for the first time and successfully received the product certificate for that SX chiller, as shown in Figure D.10 of Appendix D. After the experiences of working with DNV to get the product certificates of Isotherm equipment, the intern successfully got Isotherm to be a DNV approved manufacturer, as shown in Figure D.11 of Appendix D. The intern was able to get Isotherm to offer DNV equipment which proved to be useful since another client in the Northwest U.S. asked for DNV approved equipment which the intern successfully completed. This entire exercise also proved useful since it will now pave way for opening business opportunities with other organization such as the U.S. Coast Guard or US flag fishing vessels that need to be built per DNV rules (Bernton, 2015)

This chapter and the previous two proved that the intern was able to get involved in the technical aspect of the internship, such as the design of the patented SX chiller, the PED and DNV certifications of Isotherm equipment. While the intern had the opportunity to gain technical knowledge from the internship as required by the Doctor of Engineering program, the intern also had the opportunity to achieve management experience at Isotherm to fulfill the managerial requirement of the Doctor of Engineering program. This aspect will be discussed in the next chapters.

CHAPTER V

ENGINEERING MANAGER

The intern took the responsibility of Engineering Manager at Isotherm, Inc. as part of the first step of gaining managerial experience. As outlined in Isotherm's quality control manual, the Engineering Manager is responsible for the following:

- Initiating engineering folders for new jobs that include information such as job number, serial number and the National Board number
- Assigning the jobs to the mechanical designers for producing fabrication drawings
- Approving all drawings, design calculations, and material specifications in accordance with ASME Section VIII, Division 1 and other applicable codes and standards
- 4. Coordinating with clients regarding approval of drawings
- 5. Reviewing fabrication drawings and material requisitions prior to releasing the jobs for fabrication.

When the intern came to Isotherm, three mechanical designers were part of the engineering team. After receiving new jobs from the sales department, the intern would review the correspondences between the Sales department and the clients. If anything beyond the standard practices of Isotherm were noticed, the intern as an Engineering Manager would list the extra requirements in the sales and engineering folders. Upon the receipt of new jobs, the intern assigned a job number, serial number, and a national board number for each job followed by assigning each mechanical designer the responsibility of creating top level (general arrangement) drawings as shown in Fig. 5.1 below.

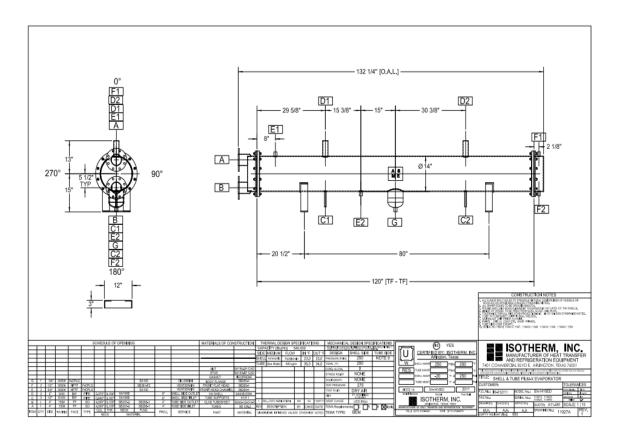


Fig. 5.1: Top Level Drawing

The intern had to submit the top level drawing for approval to the client and contact the client frequently for either full approval or any requested changes from the client. If the client requested changes, the intern was responsible for immediately communicating with the responsible mechanical designer regarding the revisions of the drawing. After the client fully approved the drawing, the intern required the mechanical designer to generate detailed fabrication drawings. Upon completion of the fabrication drawings, the intern reviewed and approved the drawings. The intern then instructed the mechanical designers to release the jobs for fabrication. As required by Isotherm's QC Manual, the fabrication drawings were to be filed in the fabrication folder and stamped as "Shop Dwgs". Another set of drawings were to be stamped as "Office Dwgs", and were to be kept in the engineering folder, along with the design calculations, which were performed in the software called PV Elite or Compress by the intern as shown in Fig. 5.2.

A green folder was to be kept in the engineering folder, which serves as a fabrication traveler. This traveler consisted of the final inspection checklist, inspection checklist for the QC manager and the ASME authorized inspector (AI), a top level drawing (letter size) that serves as a weld map, the NDE (Liquid Penetrant) examination record, and the nameplate drawing; see Figs E.1 – E.5 of Appendix E. The last document required is the material requisition list. A typical sample is shown in Fig. 5.3.

Table of Contents

Internal Pressure Calculations :	2
Element and Detail Weights :	4
Nozzle Calcs. : D1/D2	7
Nozzle Calcs. : C1/C2	17
Nozzle Calcs. : E	22
Nozzle Calcs. : G	27
Nozzle Schedule :	32
Nozzle Summary :	34
Tubesheet,	36
MDMT Summary :	61

PV Elite 2014 Licensee: ISOTHERM INCORPORATED FileName : 15020A Step: 7 3:36p Apr 6,2015 Element and Detail Weights :

Element Thickness, Pressure, Diameter and Allowable Stress :

	1	nt. Fress	t.	Nominal	t	Total Corr	e į	Element	I.	Allowable	1
From To	1.+	Liq. Hd	Ē	Thickness	1	Allowance	T	Diameter	1	Stress(SE)	Ŧ
0	1	psig	I.	in	1	in	1	in	1	pei	I
					-						-
Shell	11	250.000	1	0.37500	1	0.039000	1	24.0000	L	12410.0	I.

Element Required Thickness and MAWP :

1		1	Design	1	M.A.W.P.	1	M. A. P.	1	Minimum	1	Required	1
From	To	1	Pressure	ţ,	Corroded	1	New & Cold	1	Thickness	I	Thickness	I.
1		i	psig	E	psig	1	psig	E	in	1	in	l
31		1	250.000	i.	201.887	1	343.062	1	0.92810	1	0.27881	1

Summary of Heat Exchanger Maximum Allowable Working Pressures :

Note: For ASME UHX designs, the following values include MAWPs that consider the tubesheet, tubes, tube/tubesheet joint etc. These values were determined by iteration. Review the tubesheet analysis report for more information.

Shell Side MAWP = 250.000 psig Shell Bide MAPnc = 250,000 psig

Internal Pressure Calculation Results :

ASME Code, Section VIII, Division 1, 2013

Cylindrical Shell From 30 To 40 SA-53 E/B , UCS-66 Crv. B at 200 °F

Shell

Fig. 5.2: Sample page of the ASME Design Calculations in PV Elite

MATERIALREQUISITION/TABULATION

CUST: QUOTE: A12-238 DELIVERY: 02/22/13 DATE: 01/17/13 JOB #: 12095A MODEL #: ZE-806D SERIAL #: 12212X QTY: 1

SHELL ASSEMBLY

QTY.	MATERIAL DESCRIPTION	MATERIAL	VENDOR	ISO P.O.	ITEM	IDENTIFICATION	PRICE	ORD.DATE	SCH. DEL.	REMARKS
1	8" x S/20 x 69 3/4" LG	SA53B-ERW								
	ANGLE: 3" x 7" x 1/4" THK x 9" LG	SA36								
	STD ASME NO BRKT, 2" STAND-OFF	SA36								
1	1" x S/80 x 7" LG	SA106B								
1	3/4" x S/80 x 7" LG	SA106B								
2	3/4" x 3000#, NPTF F-CPLG	SA105								

TUBESHEET & BUNDLE ASSEMBLY

QTY	MATERIAL DESCRIPTION	MATERIAL	VENDOR	ISO P.O.	ITEM	IDENTIFICATION	PRICE	DATE	SCH. DEL.	REMARKS
2	PL: 13 1/2" OD x 1" THK	SA516-70								SEE DRAWING
42	Ø3/4" x 16 ga x 72" LG	SA214-ERW								
4	PL: 7 7/8" OD x 1/8" THK	A1011								
3	TIE ROD: Ø1/2" x 57 1/4" LG	SA36								
1	TIE ROD: Ø1/2" x 43 1/4" LG	SA36								

HEAD ASSEMBLIES

QTY	MATERIAL DESCRIPTION	MATERIAL	VENDOR	ISO P.O.	ITEM	IDENTIFICATION	PRICE	DATE	SCH. DEL.	REMARKS
2	8", 150# ASME RFSO FLANGE	SA105								
1	8" x S/20 x 7 7/8" LG	SA53B-ERW								
1	PL: 7 7/8" OD x 3/8" THK	SA516-70								
1	PL: 7 7/8" W x 1/4" THK x 7 5/8" LG	SA36								
1	8" x STD WT, WELD CAP	SA234-WPB								
2	3" x S/40 x 7" LG	SA106B								
2	3/4" x 3000#, NPTF F-CPLG	SA105								
1			1							

MISCELLANEOUS

QTY	MATERIAL DESCRIPTION	MATERIAL	VENDOR	ISO P.O.	ITEM	IDENTIFICATION	PRICE	DATE	SCH. DEL.	REMARKS
1	STD ASME NAMEPLATE	SA240-304								SEE DRAWING
2	STD 8" BACKING RING	SA109								
1	FRT GSKT: 10 5/8" OD x 8 3/4" ID x 1/8" THK	G-2900								
1	RR GSKT: 10 5/8" OD x 8 3/4" ID x 1/8" THK	G-2900								
16	STUDS: Ø3/4" x 4 1/4" LG	SA193-B7								
32	NUTS: Ø3/4", H-HEX	SA194-2H								

Fig. 5.3: Material Requisition Form

The intern was responsible to check if the material requisition consisted of the correct materials as listed in the fabrication drawings. Completion of the above tasks entailed completion of engineering work for the said job; however, the intern was at all times responsible for providing any clarifications to the production regarding the fabrication drawings. Near the completion of the equipment, the intern was responsible for creating the data report, which serves as a certificate of the ASME equipment with the description and tests that have been conducted. The intern and the QC manager had to ensure that the AI signs off the data reports prior to the required submission to the National Board. The signed data reports are necessary for the clients at the field when providing the required documentation to their clients or site authorities; see Fig. E.6 of Appendix E. These skills were applied for the creation of approval and fabrication drawings for the SX chiller.

As shown in Fig. 5.1, the designer made the top level drawing of the SX chiller in AutoCAD, which was done by the designer and approved by the intern (initialed as A.A.) and the intern was responsible to verify if the chiller met the operational requirements, such as distribution pipe design and the location of the refrigerant inlets and outlets based on the client's thermal design requirements. While the intern had the above responsibilities of assigning jobs, along with approving, releasing, and creating the required paperwork for each job, he also had the opportunity to manage the engineering department, for example tracking the progress of each mechanical designer (Fig. E.7 of Appendix E shows the Engineering Time Sheet). He was also responsible for providing training to any new designers and checking the drawings for accuracy and

compliance with ASME and Isotherm's standard practices. The intern had the opportunity to keep track of the performance of each designer. During the year, the intern had the opportunity to discuss with each designer their progress and steps needed for improvement. The intern also interacted with the Production Department if any changes had been incorporated by the client during the production phase.

The intern also got involved in employees' conduct issues. One experience involved a designer who made frequent mistakes that resulted in the issuance of a warning letter by the intern to the employee. Another case was with a different designer who, despite being skilled in the Auto-CAD software, had not been cooperative in regards to the intern's requirements for work and had made issues regarding company policy, in spite of his signed acknowledgment of the policy. As a result, the intern had to release him for misconduct. The fired employee filed for unemployment so the intern had the opportunity to discuss at length his case with the Texas Workforce Commission regarding the termination of the said employee. A well-presented case with all the written evidences resulted in a judgment in favor of the company. Another experience involved an employee who left the company to take up a job with a competitor. The reason for his leaving was his feeling of not being rewarded for his skills, despite his unwillingness to discuss with the intern during his tenure. This was a learning experience from a human aspect point of view and thus compelled the intern to be more careful in dealing with employees, both professionally and emotionally. The intern hired a new design engineer who had diverse management skills. From the get go, the new

design engineer and the intern agreed to setting up a skilled engineering team with ample experience in pressure equipment design.

Based on the above experiences, the intern was able to manage technical matters and also develop a grasp on human management skills. The intern's position as an Engineering Manager lasted for about three years until he moved on to the Sales and Applications Manager position, which is one more stepping stone to becoming an effective owner of the company.

CHAPTER VI

FUTURE OWNERSHIP

The last objective is acquiring the responsibilities for future ownership, which involves the responsibilities of sales and applications. After completing the stint as Engineering Manager, the intern had the opportunity to change to Sales and Applications Manager. This experience was necessary for future ownership since the current ownership had been involved in this area since the start-up. The following responsibilities as Sales and Applications Manager are listed below:

- Receive RFQ's from clients and offer Isotherm's products based on clients' requirements
- 2. Follow up on RFQ's
- 3. Attend trade shows
- 4. Travel to existing and potential clients
- 5. Keep track of the financial matters

With the first responsibility of receiving RFQ's, the intern received the quotation requests from the clients for pressure vessels and heat exchangers. The intern performed the calculations and the pricing, based on the proprietary software, and generated the quotation to the clients. One example was the case of a shell and tube flooded chiller for a cheese plant in New York. The client requirements are shown in Table 6.1.

Table 6.1 – New York Cheese Plant design parameters								
Parameter	Value	Unit						
Flow Rate	68 (300)	M3/h (gpm)						
Capacity	176 (50)	kW (TR)						
Brine Inlet Temperature	-2.2 (28)	°C (°F)						
Brine Outlet Temperature	-4.4 (24)	°C (°F)						
NH ₃ Suction Temperature	-6.7 (20)	°C °F						

The intern successfully closed the contract for a 22" shell diameter by 12 ft. tube length chiller (with 12" NPS integral accumulator on top), as shown in Fig. 6.1.

Fig. 6.1: Flooded Evaporator for Cheese Plant

Another example is a vertical recirculation pressure vessel for a food plant in Illinois. This vessel's function is to separate liquid from a liquid/vapor stream and circulate liquid refrigerant through the evaporator coils in the cold rooms. This is also commonly known as a pump recirculator vessel since the pump is required to facilitate the recirculation effect. However, the client required that Isotherm provide the complete vessel package instead of a bare vessel. The intern coordinated with the client and received the following information as shown in Table 6.2:

Table 6.2 – Illinois Food Plant vessel design parameters							
Parameters	Values	Unit					
Capacity	120 (34)	kW (TR)					
Recirculation Ratio	3:1						
Suction Temperature	-10 (14)	°C (°F)					
Flow Rate	1.6 (7)	m3/h (gpm)					
Type of Pumps, Quantity	Nikkiso, 2						

Using this information provided by the client, the intern calculated and offered a recirculator package comprising a 20"shell x 8 ft. overall height. The entire package also included all the necessary piping, valves, pumps, and various other components. The control panel was not included since the client intended to use its own PLC based control at the site. Fig. 6.2 shows the completed package upon shipping. Per confirmation from the client, the package is operating well.

Fig. 6.2: Completed Recirculation Package

There were several other quotations that the intern worked on for clients, where some were awarded to the intern and some were not, but to keep the list less exhaustive, the above two examples proved the intern's involvement in the application side of the business, which is one of the requirements for future ownership. The intern had another responsibility that was to aggressively follow-up on quotations still in progress. The intern experienced cases where the follow-ups resulted in purchase orders. One example was a quotation for a heat exchanger for a brine under-floor warming application in North Carolina where the intern was awarded the purchase order due to frequent reminders to the client. There were cases where purchase orders were not awarded to the intern. The reasons include, but not limited to, the project being cancelled by the end user, the intern's offered price and/or delivery did not satisfy the clients' requirements, or the client's lack of confidence in taking a risk in dealing with the intern. Figure F.1 of Appendix F shows a quotation status template that the intern developed to keep track of the status of the quotes. Despite the success and failures, the intern still worked on the quotations for different clients and assessed what problems had occurred that resulted in losing the project.

It was also important for the intern to interact with the clients to understand their expectations of the equipment for their refrigeration packages. This resulted in the intern attending various trade shows, such as Institute of Industrial Ammonia Refrigeration (IIAR). Various clients from U.S., Canada, and the rest of the world attend this show. The intern attended the show as an exhibitor representing Isotherm, Inc. Various questions were asked by the clients at the show, such as delivery times for high pressure receivers, Isotherm's experience in ammonia and carbon dioxide applications, and other related questions. The intern had the opportunity to discuss with clients about the advantages of SX chiller and how it could help meet their needs, such as lower charge, high efficiency, simple controls and easy oil management compared to other types of chillers as discussed in Chapter II. This resulted in various clients consequently asking for quotations on SX chillers. In fact, a client in California placed an order for cooling wine that resulted in two SX chillers being designed, fabricated and shipped to the client, as shown in Fig. 2.18. Both chillers are operating at full capacity and the end user is extremely happy, but the operational data had yet to be provided. The intern

visited the site in October 2015 and met the contractor and the end user. While the intern met current clients at trade shows and offices, he also met new clients and visited their offices. After visiting the clients, the intern completed a sales visit report, as shown in Fig. 6.3 to keep track of the discussions between the intern and the client. These visits at trade shows or at clients' offices proved useful for the company since they opened new opportunities for Isotherm in regards to more business.

Visit Report

Visit by	
Visit Date	
Client	
Client Personnel Met	
Agenda	
Discussion	
Action Plan	
Miscellaneous	

Fig. 6.3: Sales Visit Report

One such case was a client from Canada who despite attending the IIAR trade shows in the past had not heard of Isotherm, Inc. The client discussed their issues with Isotherm's competitors, in terms of delivery, thus the intern had the opportunity to meet

the client in Canada several months later. This opened the doors for new business,

especially in oil and gas projects, as the intern was pushing to move Isotherm into that area. After several discussions, the intern worked on a quotation consisting of several pressure vessels and heat exchangers worth over \$1,500,000. The intern successfully received the purchase order from the Canadian client and the equipment was shipped several months later.

During the course of the internship, the intern also had the opportunity to explore marketing strategies and to review the financials of Isotherm in order to prepare him for eventual ownership. This required the intern to review the balance sheets, the pending invoices of clients, and the invoices from suppliers. The intern also had the opportunity to call clients about past due invoices. Besides client invoices, the intern coordinated with accounting about past due invoices with the suppliers and to confirm whether payments had been made. Based on understanding the company books, the intern had the opportunity to keep track of the clients' payment track history. One case was a client based in the Eastern part of the U.S., who was delinquent on payments, despite the original terms of payment as Net 30. Another client had not done business in the past and had failed to provide credit references, thus compelling the intern to offer 50% down payment and remaining balance before shipment. The intern also had the opportunity to track the amount of sales booked each month. Monthly sales figures gave the intern an idea as to how to strategize and increase the booking volume. For example, if sales were low for the current month, the intern reviewed and decided as to how many clients he had to visit and discuss about new opportunities.

With the experience of generating quotations, attending trade shows, meeting new and current clients, and tracking the financials of Isotherm, the intern had acquired the knowledge necessary for future ownership.

CHAPTER VII CONCLUSION

During the course of this record of study, the intern had the opportunity to work at Isotherm, Inc. to fulfill the internship requirement for the Doctor of Engineering program at the Texas A & M University. The main technical portion of the internship that the intern took part in was the design of the SX chiller. Under the direction of Isotherm, Inc.'s engineering supervisor, the SX chiller was designed so that it would work at a reduced refrigerant charge and at the same time be economical compared to what is currently available in the market. With two successful operations in Norway and Ecuador, the SX chiller proved to be the next generation solution to greatly sought-after low charge systems.

Besides the SX chiller, the intern accomplished in getting Isotherm's equipment certified according to the PED and DNV classifications. Not only they are helpful for continuing business with the existing valuable client in Norway, Isotherm can penetrate further into the European markets that require pressure vessel equipment with these certifications. With the above mentioned experiences, the required technical skills development was fulfilled.

In addition to working on technical skills, the intern also worked on developing the managerial skills as required by the program. Specifically, the intern earned the position of Engineering Manager for three years in which he managed a group of

designers and engineers and was responsible for reviewing and approving the engineering design of various types of equipment.

After the experience gained as Engineering Manager, the intern was assigned to a position of Sales and Applications Manager, which consisted of sales management and marketing opportunities, to start the path for future ownership.

Recommendations

Since Isotherm is a small private company, resources are limited. For example, the intern was the only person who frequently followed up on projects with clients, whereas the previous protocol had been that the project would be awarded only if the quotation had generated the client's interest. Consequently, opportunities for more business are impeded due to the limited amount of sales personnel; hence, this area could definitely improve by hiring new employees to the sales department.

Furthermore, within most contracting companies, there are certain individuals who knew Dr. Zahid Ayub for many years, thus business generation is dependent on those individuals. For example, one project engineer working at a contracting company in the Eastern U.S. knew Dr. Ayub since they always met at the ASHRAE conference annually, whereas the rest of the project engineers within that same contracting company did not know Dr. Ayub nor about Isotherm's capabilities. For this reason, relationship building and marketing of Isotherm's products and services are important for new business opportunities. In fact, the case of the new Canadian client, who had no relationship with Isotherm in the past, is one example of how important it was to build

new relationships for future opportunities. Moreover, the engineering supervisor and the intern were the only employees familiar with sales and applications, which can be a weakness since timely offers to clients are critical; therefore, more employees within the Sales and Applications department should be considered.

The SX chillers were sold for marine refrigeration applications, as were the cases for the Norway test stand and the Ecuador fishing boats. It is important to penetrate other markets, especially in food and beverage industries. In the food and beverage plants, the most common chiller is a plate and frame-type chiller due to more compact design compared to shell and tube-type heat exchangers; however, the SX chiller can be a viable alternative to plate and frame as it offers less refrigerant charge, as indicated in Table 2.4. This aspect is critical because low refrigerant charge is an important factor for food and beverage industries. Based on feedback from clients who were offered the SX chillers for their applications, the food and beverage industry was not ready to adopt the new SX chiller in lieu of the plate and frame chiller due to their concern regarding limited operational history. Thus, upon availability of operational data for the SX wine chiller the apprehensions of adopting the SX chiller in the food and beverage industries can potentially be alleviated.

While working as the Engineering Manager, the intern observed that most of the designers were not engineers. This limited the performance of engineering, particularly in relation to ASME calculations. As a result, projects could not be completed and released for fabrication without the intern's review and approval. While reviewing and approving the drawings and calculations, intern was also dealing with the clients with

regards to the approval of drawings. In addition, the intern was also dealing with clarifying the questions and comments that the production personnel had in regards to the fabrication drawings. Subsequently, a design engineer was hired in order to assist in the ASME calculations and drawing reviews; however, the engineer lacked the initiative and was not up to the task. Consequently, the intern continued to review and approve the engineering documentation.

It should be noted that a number of additional improvements not mentioned above could in fact have been discussed, so the ones focused on are just examples. To summarize, as a potential owner of Isotherm, Inc., this internship had an eye-opening experience that will pave the way to recognizing areas of company's strengths and weaknesses and therefore, establishing key long-term goals for Isotherm, Inc.

REFERENCES

- American Petroleum Institute, April 2003. *Shell-and-tube Heat Exchangers for General Refinery Services: API Standard 660*, 7th Ed. Washington DC: API Publishing Services.
- ASME, 2013a. ASME Boiler and Pressure Vessel Code, Section II: Materials. New York: ASME.
- ASME, 2013b. ASME Boiler and Pressure Vessel Code, Section V: Nondestructive Examination. New York: ASME.
- ASME, 2013c. ASME Boiler and Pressure Vessel Code, Section VIII: Rules for Construction of Pressure Vessel, Division I. New York: ASME.
- ASME, 2013d. ASME Boiler and Pressure Vessel Code, Section IX: Welding, Brazing, and Fusing Qualifications. New York: ASME.
- Ayub, Zahid Hussain, and Adnan Hussain Ayub. May 17, 2012. Thin Film Evaporator. US20120118545A1.
- Ayub, Zahid, M. Sultan Khan, Amir Jokar, Tariq S. Khan, and Niels Hayes. 2013. Recent Developments in Plate Exchangers - Ammonia/Carbon Dioxide Cascade Condensers. *Heat Transfer Engineering (Taylor and Francis Group, LLC)* 34 (5-6): 401-408.
- Bernton, Hal. June 20, 2015. Bills seek to modify fishing-vessel safety law. Seattle Times. http://www.seattletimes.com/seattle-news/puget-sound/fishing-industryseeks-to-alter-costly-2010-vessel-safety-law/.
- Bureau Veritas. 2009. Introduction to the Pressure Equipment Directive. Dallas.
- Ciconkov, Risto, and Zahid H. Ayub. 2009. New Technologies in Ammonia Refrigerating and Air-Conditioning Systems." *Heat Transfer Engineering* 30 (4): 324-329.
- Det Norkse Veritas. July 2014. Rules for Classification of Ships / High Speed, Light Craft and Naval Surface Craft: Fabrication and Testing of Ships: Pt. 2 Ch. 3. Norway: Det Norske Veritas AS.

- Det Norske Veritas. 2015. Our History. https://www.dnvgl.com/about/in-brief/ourhistory.html.
- Det Norkse Veritas. January 2014. Rules for Classification of Ships / High Speed, Light Craft and Naval Surface Craft: Metallic Metals: Pt. 2 Ch. 2. Norway: Det Norkse Veritas AS.
- Det Norske Veritas. January 2012. Rules for Classification of Ships / High Speed, Light Craft, and Naval Surface Craft: Pressure Vessels: Pt. 4 Ch. 7. Norway: Det Norske Veritas AS.
- European Parliament. September 1997. Directive 97/23/EC of the European Parliament and of the Council on the Approximation of the Laws of the Member States regarding Pressure Equipment." *Official Journal of the European Communities* L(181).
- European Route of Industrial Heritage. 2015. Industrial History. <u>http://www.erih.net/industrial-history/norway.html</u>. Accessed 31 August 2015
- Taylor, Charles R. 2015. The Changing Climate in Refrigeration. *Proceedings of the RETA Convention 2015*. Milwaukee.
- The National Board of Boiler and Pressure Vessel Inspectors. 2013a. *National Board Inspection Code Part 1: Installation*. Ohio: The National Board of Boiler and Pressure Vessel Inspectors.
- The National Board of Boiler and Pressure Vessel Inspectors. 2013b. *National Board Inspection Code Part 2: Inspection*. Ohio: The National Board of Boiler and Pressure Vessel Inspectors.
- The National Board of Boiler and Pressure Vessel Inspectors. 2013c. *National Board Inspection Code Part 3: Repairs and Alterations*. Ohio: The National Board of Boiler and Pressure Vessel Inspectors.
- Tubular Exchanger Manufacturers Association, Inc. 2007. *Standards of the Tubular Exchanger Manufacturers Association*, 9th Ed. Tarrytown, New York.

APPENDIX A

ASME SECTION VIII DIV. 1 DOCUMENTATION

QW-482 SUGGESTED FORMAT FOR WELDING PROCEDURE SPECIFICATION (WPS) (See QW-201.1, Section IX, ASME Boiler and Pressure Vessel Code)

Weiding Procedure Specification No. 30 Date: 3/19/13 Supporting PQR No.(s) 30.A. & 308 Revision No. 1 Date 10/(/14 Mackine Weiding Procedure Specification No. 5AW Type (s) Mackine Joint Design See Note Balow (Adarwate, Hanal, Mathie or Servichanate) (Adarwate, Hanal, Mathie or Servichanate) Diversion 1/8 +-1/16" (Adarwate, Hanal, Mathie or Servichanate) Outer is in Nacong and the Mathie of the parts to be weight. Where applicable, the root spacing and the details of weid groove may be specified. FIG & (BUT JOINT) FIG & (COMER JOINT) </th <th>Company Name</th> <th>Isotherm Inc.</th> <th>By:</th> <th>Warren Patte</th> <th>rson</th>	Company Name	Isotherm Inc.	By:	Warren Patte	rson
Welding Process(es) SAW Type (s) Medias JOINTS (QW-402) See Note Below (Adornati: Meanie Mathies See Note Below (Adornati: Meanie Mathies See Note Section See Notes Spacing) Defails Backing (Ver 2) x (Ver 1) Weld Meanie Defails Defails Command (Ver 1) Weld Meanies) (Ver 1) Weld Meanies) (Ver 1)	Welding Procedure Specification N	No. <u>30</u> Date:	3/19/13Sup	porting PQR No.(s)	30A & 30B
JOHTS (QW-402) Johnset, Maxeu, Mark, M	Revision No. 1		Date 10/6/14	ł	
JOINTS (QW-402) Joint Design See Note Below Details Root Spacing 1/8 + 1/16" Weld Metai Image: See Note Below Image: See Note See Note See Note See Note Note Note Note Note Note Note No	Welding Process(es)	SAW	Type (s)		
Joint Design See Note Below Root Specing 1/8 + 1/16" Backing (Yes) (Not Weld Metail (Wet to tom backing and retainers) (Metail (Other (Metail (Other (If to tom backing and retainers) FIG A (BUTT JOINT) FIG A (BUTT JOINT) FIG A (BUTT JOINT) Sketches, Production Drawings, Weld Symbols or Written Description should show the general arrangement of the parts to be welded. Where specified. It the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures, for multiple process procedures etc.)] Other If grue A ID Figure B ID Figure C Diffigure D ID Figure E * BASE METALS (QW-003) Figure A ID Figure B ID Figure C Diffigure D ID Figure E * BASE METALS (QW-003) Figure A ID Figure B ID Figure C Diffigure D ID Figure B OR Specification type/grade or UNS number ID Group No. OR Specification type/grade or UNS number ID Group No. OR Specification type/grade or UNS number ID Group No. OR Specification type/grade or UNS number ID Group No. Dothen 'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	10INTS (0W-402)				mi-Automatic)
Backing (Yes) X (No Weid Metal Backing Material (Type) (Weid Metal (Weid Metal (Weid Metal) (Weid Meta) (Weid Metal) (Weid M				~	
Backing Material (Type) Weld Metal (refer to bit basing and relations) Image: Statistical Statistica				\geq	0
Construction (vpc) (vpc) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Betal Bornmetalic	Backing Material (Type)				4
Image: Construction of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be specified. Image: Construction of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be specified. Image: Construction of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be specified. Image: Construction of the manufacturer, sketches may be attached to illustrate to prove the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be welded. Where applicable, the value of the parts to be attached to illustrate to parts. The parts to be parts to be the value of the parts to be parts. The parts to be the parts to be parts to be parts to be parts. The parts to be parts to be parts to be parts. The parts to parts the parts to parts. The parts to parts the parts to parts the parts to parts. The parts to parts the parts to parts. The parts the parts to parts the parts to parts. The parts the parts the parts to parts the parts. The parts to parts the parts to parts the parts to parts. The parts the parts the parts the parts to parts. The parts the parts the parts to parts. The parts the parts the parts to parts the parts the parts the parts the parts. The parts the parts. The parts the pa	⊠Metal □		í V		\checkmark
Sketches, Production Drawings, Weld Symbols or Written Description should show the general arrangement of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be specified. Image: Constraint of the parts to be welded. Where applicable, the root spacing and the details of weld groove may be stackhed to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures for multiple process procedures etc.)] Image: Constraint of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures etc.)] Image: Constraint of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures etc.)] Image: Constraint of the parts to be welded. Where applicable is the constraint of the parts to procedures, for not houghness procedures etc.)] Image: Constraint of the parts to parts t			ETC A (BUTT 101		ETG C (EDGE 101NT)
should show the general arrangement of the parts to be welded. Where specified. [At the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures etc.)] Other (Describe) C Figure A I Figure B I Figure C Figure D Figure E *BASE METALS (QW-403) P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number to Specification type/grade or UNS number OR C Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: G Group No. 1 State S			110 X (0011 301		
should show the general arrangement of the parts to be welded. Where specified. [At the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures etc.)] Other (Describe) C Figure A I Figure B I Figure C Figure D Figure E *BASE METALS (QW-403) P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number to Specification type/grade or UNS number OR C Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: G Group No. 1 State S	Sketches, Production Drawings, W	Ield Symbols or Written Descripti	00		
applicable, the root spacing and the details of weld groove may be specified. [At the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures, for multiple process procedures etc.)] □ other (Describe) □ oth					
IAt the option of the manufacturer, sketches may be attached to illustrate joint design, weld layers and bead sequence (e.g., for notch toughness procedures, for multiple process procedures etc.)] Image: Figure A (Image: Figure B (Image: Figure D (Image: Figure D (Image: Figure B (I					
joint design, weld layers and bead sequence (e.g., for notch toughness procedures, for multiple process procedures etc.)] □ Other (Describe) □ Figure A	specified.		No.		
joint design, weld layers and bead sequence (e.g., for notch toughness procedures, for multiple process procedures etc.)]	[At the option of the manufacture	r, skatches may be attached to il	luetrate 🔨		\sim
Procedures, for multiple process procedures etc.]] Pid D (LAP JOINT) Pid E (TEE JOINT) Other (Describe)			ness 🗸		
Base METALS (QW-403) Figure A S Figure B S Figure C Figure D Figure E *BASE METALS (QW-403) 0 1 Group No. 1 & 2 OR 1 Group No. 1 & 2 to P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number			FIG D	(LAP JOINT) FI	G E (TEE JOINT)
Base METALS (QW-403) Figure A S Figure B S Figure C Figure D Figure E *BASE METALS (QW-403) 0 1 Group No. 1 & 2 OR 1 Group No. 1 & 2 to P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number					
*BASE METALS (QW-403) P-No. 1 Group No. 1 & 2 to P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number	Other (Describe)				
*BASE METALS (QW-403) P-No. 1 Group No. 1 & 2 to P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number		🛛 Figure A 🖾 Figure	e B 🛛 Figure C 🖾 Figure	D 🛛 Figure E	
P-No. 1 Group No. 1 & 2 to P-No. 1 Group No. 1 & 2 OR Specification type/grade or UNS number	*BASE METALS (OW-403)				
OR Specification type/grade or UNS number to Specification type/grade or UNS number		Group No. 1 & 2	to P-No.	1 Group No. 1	& 2
Specification type/grade or UNS number to Specification type/grade or UNS number OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove * If Impact Tested 0.625 [±] - 1.5 [±] Maximum Pass Thickness <-1/2 inch (13 mm)					
to Specification type/grade or UNS number OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove *0188"-1.5" Other * If Impact Tested 0.625" - 1.5" Maximum Pass Thickness <-1/2 inch (13 mm)					
OR Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove *It Impact Tested 0.625" - 1.5" Maximum Pass Thickness <-1/2 inch (13 mm)					
Chem. Analysis and Mech. Prop. to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove * If Impact Tested 0.625" - 1.5" Maximum Pass Thickness <-1/2 inch (13 mm)		JNS number			
to Chem. Analysis and Mech. Prop. Thickness Range: Base Metal: Groove *0.188"-1.5" Base Metal: Groove *0.188"-1.5" Fillet Unlimited Other * If Impact Tested 0.625" - 1.5" Maximum Pass Thickness <-1/2 inch (13 mm)	OR				
Thickness Range: Base Metal: Groove *0.188"-1.5" Fillet Unlimited Other * If Impact Tested 0.625" - 1.5" Fillet Unlimited Maximum Pass Thickness <-1/2 inch (13 mm)					
Base Metal: Groove *0.188"-1.5" Fillet Unlimited Other * If Impact Tested 0.625" - 1.5" (No) Maximum Pass Thickness <-1/2 inch (13 mm)	to Chem. Analysis and Mech. P	rop.			
Other * If Impact Tested 0.625" - 1.5" Maximum Pass Thickness <-1/2 inch (13 mm)	Thickness Range:				
Maximum Pass Thickness <-1/2 inch (13 mm) (Yes) (No) *FILLER METALS (QW-404)			Fillet	Unlimited	
FILLER METALS (QW-404) Spec. No. (SFA) 5.17 AWS No. (Class) EM12K F-No. 6 A-No. 5.17 Size of Filler Metals 3/32" Filler Metal Product Form Solid Supplemental Filler Metal None Weld Metal None Thickness Range: 0-1.5" Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882 Consumable Insert N/A Other No Alloy Elements	Other * If Impact Tested	1 0.625" - 1.5"			
Spec. No. (SFA) 5.17 AWS No. (Class) EM12K F-No. 6 A-No. 5 Size of Filler Metals 3/32" Filler Metal Product Form Solid Supplemental Filler Metal None Weld Metal None Thickness Range: 0-1.5" Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements	Maximum Pass Thickness <=1/2 in	nch (13mm) (Yes) 🛛	(No)		
Spec. No. (SFA) 5.17 AWS No. (Class) EM12K F-No. 6 A-No. 5 Size of Filler Metals 3/32" Filler Metal Product Form Solid Supplemental Filler Metal None Weld Metal None Thickness Range: 0-1.5" Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements					
Just Status EM12K Image: Constraint of the state st		6.17	I		
6 Image: Second Secon					
A-No. 3/32" Size of Filler Metals 3/32" Filler Metal Product Form Solid Supplemental Filler Metal None Weld Metal None Thickness Range: 0-1.5" Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements					
Solid Solid Supplemental Filler Metal None Supplemental Filler Metal None Weld Metal None Thickness Range: 0-1.5" Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements					
Supplemental Filler Metal None Weld Metal Inickness Range: Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements	Size of Filler Metals	3/32"			
Weld Metal Thickness Range: Groove 0-1.5" Fillet Unlimited Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements	Filler Metal Product Form	Solid			
Thickness Range: Groove 0-1.5" 0-1.5" Fillet Unlimited 0 Fillet Unlimited 0 Electrode-Flux (Class) F7A.6 0 Flux Trade Name Lincolnweld 882* 0 Consumable Insert N/A 0 Other No Alloy Elements 0		None			
Groove 0-1.5" Fillet Unlimited Electrode-Flux (Class) F7A6 Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements					
Fillet Unlimited Image: Construct of the system Electrode-Flux (Class) F7A6 Image: Construct of the system Flux Trade Name Lincolnweld 882* Image: Consumable Insert Consumable Insert N/A Image: Consumable Insert Other No Alloy Elements Image: Consumable Insert		0-1.5"			
Electrode-Flux (Class) F7A6 Image: Class (Class) F7A6 Flux Trade Name Lincolnweld 882* Image: Class (Class) Image: Class (Class (Class) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Flux Trade Name Lincolnweld 882* Consumable Insert N/A Other No Alloy Elements					
Consumable Insert N/A Other No Alloy Elements	. ,				
*Neutral Flux	Other	No Alloy Elements			
	*Neutral Flux				

*Each base metal-filler metal combination should be recorded individually.

Fig A.1: Example of Weld Procedure Specification (WPS)

QW-483 SUGGESTED FORMAT FOR PROCEDURE QUALIFICATION RECORDS (PQR)
(See QW-200.2, Section IX, ASME Boiler and Pressure Vessel Code)
Record Actual Conditions Used to Weld Test Coupon

Company Name			Isotherm, Inc.	
Procedure Qualification Record No	0. 30A	Date		
WPS No.			30	
Welding Process (es)	ter contratta		SAW	
Types (Manual, Automatic, Semi-	Automatic)		Machine	
JOINTS (QW-402)				
JUINIS (QW-402)				
	Greene Design of Ted	+ Courson (chot	tch, figure or reference)	
(For combination qualifications, the	e deposited weld metal thicknes	ss shall be reco	orded for each filler metal and process used.)	
BASE METALS (QW-403)			POST WELD HEAT TREATMENT (QW-407)	
Material Specification	SA516		Temperature N/A	
Type or Grade or UNS Number	65/70		Time	
P No. 1 Group No.1/2	to P No. 1 Group N	Vo1/2	Other	
Thickness of Test Coupon	3/4"			
Diameter of Test Coupon	N/A			
Maximum Pass Thickness	1/4"			
Other	Ht# E3A070			
			GAS (QW-408)	
			Percent Composition	
FILLER METALS (QW-404)			Gas (es) (Mixture) Flow Ra	te
Layer (combination welds)	1 2	3	Shielding N/A	
CEA Constitution				
SFA Specification	5.17		Trailing N/A	
AWS Classification	5.17 EM12K		Trailing N/A Backing N/A	
AWS Classification Filler Metal F No. Weld Metal Analysis A No.	EM12K 6		Backing N/A	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal	EM12K		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form	EM12K 6 3/32" Solid		Backing N/A Other ELECTRICAL CHARACTERISTICS (QW-409)	_
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal	EM12K 6 3/32" Solid None		Backing N/A Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC	=
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification	EM12K 6 3/32" Solid None F7A6		Backing N/A Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP	=
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type	EM12K 6 3/32" Solid None F7A6 Neutral		Backing N/A Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP Amps 475-575 Volts 27-30	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld		Backing N/A Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other No Alloy Elements	EM12K 6 3/32" Solid None F7A6 F7A6 Neutral Lincolnweld 882 3/4"		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u	EM12K 6 3/32" Solid None F7A6 F7A6 Neutral Lincolnweld 882 3/4"		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP Amps 475-575 Yolts 27-30 Trungsten Electrode Size N/A Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> <u>Recrushed slag not u</u> POSITION (QW-405)	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP Amps 475-575 Yolts 27-30 Trungsten Electrode Size N/A Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhil	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current Current DC Polarity EP Amps 475-575 Volts 27-30 Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in TECHNIQUE (QW-410) Travel Speed 15-25 ipm 15-25 ipm	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhil	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current Current DC Polarity EP Amps 475-575 Volts 27-30 Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in TECHNIQUE (QW-410) Travel Speed String or Weave Bead 15-25 ipm	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhi Other	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current Current DC Polarity EP Amps 475-575 Volts Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in TECHNIQUE (QW-410) Travel Speed Travel Speed 15-25 ipm String or Weave Bead String Oscillation None	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhil	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed.		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP Amps 475-575 Volts Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in TECHNIQUE (QW-410) Travel Speed Travel Speed 15-25 ipm String or Weave Bead String Oscillation None Multipass or Singles Pass (per Multiple	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other No Alloy Elements Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhi Other PREHEAT (QW-406)	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed. 1G		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current Current DC Polarity EP Amps 475-575 Volts 27-30 Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in Travel Speed String or Weave Bead String Oscillation None Multiplass or Singles Pass (per Multiple	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other <u>No Alloy Elements</u> Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhi Other PREHEAT (QW-406) Preheat Temperature	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed. 1G I)N(A		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current DC Polarity EP Amps 475-575 Volts 27-30 Tungsten Electrode Size N/A Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in TECHNIQUE (QW-410) Travel Speed 15-25 ipm String or Weave Bead String Oscillation None Multiplass or Singles Pass (per Multiple side) Single or Multiple Electrodes	
AWS Classification Filler Metal F No. Weld Metal Analysis A No. Size of Filler Metal Filer Metal Product Form Supplemental Filler Metal Electrode Flux Classification Flux Type Flux Trade Name Weld Metal Thickness Other No Alloy Elements Recrushed slag not u POSITION (QW-405) Position of Groove Weld Progression (Uphill, Downhi Other PREHEAT (QW-406)	EM12K 6 3/32" Solid None F7A6 Neutral Lincolnweld 882 3/4" sed. 1G		Backing N/A Other Other ELECTRICAL CHARACTERISTICS (QW-409) Current Current DC Polarity EP Amps 475-575 Volts 27-30 Transfer Mode for GMAW (FCAW) N/A Other Heat input per pass: 56,117 J/in Travel Speed String or Weave Bead String Oscillation None Multiplass or Singles Pass (per Multiple	

Fig A.2: Example of Procedure Qualification Record (PQR) Page 1

QW-483 (Back)

PQR No. 30A

hickness	Fensile Test (QW-150 Area	Ultimate Total Load	Ultimate Unit Stress	Type of Failure & Location
			(psi or MPa)	
.713"	.5362"	42,301	78,900	WM
.703"	.5294"	42,275	79,900	WM

Guided Bend Tests (QW-160)

Type and Figure No.	Result
QW 462.2 Side Bend	Passed

Specimen Number	Notch Location	Specimen Size	Test Temperature	Impact Values Drop			Drop Weight Break
	200			Ft-lb or J	% Shear	Mils (in.) or mm	(Yes/No)
1	CVN HAZ	10mmX10mm	-60F	73			No
2	CVN HAZ		-60F	121	· · · · ·		No
3	CVN HAZ		-60F	90			No
1	CVN WELD	10mm X 10mm	-60F	82			No
2	CVN WELD		-60F	76			No
3	CVN WELD		-60F	79	0	5	No

Comments

Fillet Weld Test (QW-180)

Result- Satisfactory: Yes	No	Penetration into Parent N	1etal: Yes	No
Macro - Results				
		Other Tests		
Type of Test Deposit Analysis		Impact		
Other	Visual E	xamination (QW-194) Satisfactory	Vickers Hardness	1
Welders Name		Clock No. N	A Stamp N	р. К
Tests Conducted by		Laboratory Test	Number 130	40020,13040021,13040212,13040373
We certify that statements made in Requirements of Section IX of the A			epared, welded, a	nd tested in accordance with the
		Manufacturer or Contractor		Isotherm Inc.
Date 04/02/13	Certified By			

(Detail of record of tests are illustrative only and may be modified to conform to the type and number of tests required by the code.)

Fig A.3: Example of Procedure Qualification Record (PQR) Page 2

Welders Name	Identification	
Test Descriptio		No. STAMLK
Identification of WPS followed 30	_	pon 🗌 Production weld
Specification and type/grade or UNS number of base metal(s) <u>SA</u>	516 GRADE 65/70 T	Thickness: 3/4 "
Testing Conditions and Quali	ification Limits	
Welding Variables (QW-350)	Actual values	Range qualified
Welding process (es)	SAW	SAW
Type (i.e., manual, semi-auto) used	Semi-Automatic	Semi Auto/Automatic
Backing (metal, weld metal, double-welded, etc.)	with backing	with backing
Plate Pipe (enter diameter, if pipe or tube)	3/4"	2 7/8"OD and >
Base metal P- or S-Number to P-or S-Number	Pl to Pl	P1-P11, P34, P41-P49 .
Filler metal or electrode specification(s) (SFA) (info only)	SAW SFA 5.23	
Filler metal or electrode classification(s) (info only)	SAW EM12K	
Filler metal F-Number(s)	SAW F6 Root and Cover	F6 w backing
Consumable insert (GTAW or PAW)	N/A	N/A
Filler type (solid/metal or flux cored/powder (GTAW or PAW)	N/A	N/A
Deposit thickness for each process Process 1: SAW 3 layers minimum X Yes No	1"	Maximum to be welded
Process 2: 3 layers minimum Yes No	23	
Position qualified (2G, 6G, 3F, etc.)	1G	F
Vertical progression (uphill or downhill)	Flat	Flat
Type of fuel gas (OFW)	N/A	N/A
Inert gas backing (GTAW, PAW, GMAW)	N/A	
Transfer mode (spray/globular or pulse to short circuit –GMAW)	N/A	N/A
GTAW current type/polarity (AC, DCEP, DCEN)	N/A	N/A

QW-48	4A – SUGGESTED FORMAT A FOR WELDER PERFORMANCE QUALIFICAT (SEE QW-301, SECTION IX, ASME BOILER AND PRESSURE VESSEL COD	
ers Name	Identification No.	STAMP

		RESU	ILTS		
Visual Examination	of Completed Weld	(QW-302.4)		Satisfactory	
Transverse root/fac	e bend tests[QW-462.3	(a)]; Longitudinal r	oot/face bend tests[Q	W-462.3 (b)]; 🛛	Side bend tests (QW-462.2)
					stant overlay [QW-462.5 (d)];
	Macro test for fusion		Macro test fo		
Tuno	Result	Turno	Result	Tuno	Result
Туре		Туре	Result	Туре	Result
Side	Satisfactory				
Side	Satisfactory				
Alternative radiogra	phic examination re	sults (QW-191)			
Fillet we	ld Fracture test (QW-180) N/A	Length and perc	ent of defects	N/A
	Plat	e [QW-462.4(b)]	Pipe [QW-462.4(c)		
Macro examination	(QW-184) N	A Fillet size (in.): N/A X N/A	Concavity/co	nvexity (in.): N/A
Other tests			N/A	-	· · · · <u> </u>
Film or specimens e	evaluated by	N/A	Compan	y .	Isotherm Inc.
Mechanical testing	by:		Laboratory	Test Number	13040020,13040021, 13040212

accordance with the requirements of Section IX of the ASME Code. - ---

		Organization:	Isotherm Inc.	
Date:	4/8/2013	By:		

FORM U-1A MANUFACTURER'S DATA	REPORT FOR PRESSURE VESSELS
-------------------------------	-----------------------------

(Atternative Form for Single Chamber, Completely Shop or Field Fabricated Vessels Only) As Required by the Provisions of the ASME Boiler and Pressure Vessel Code Rules, Section VIII, Division 1

(bite first units: grad) (bits if bits: m) (bits: bits: bits													
2. Manufactured for	1. Manufactured an	d certif	ied by Isoth	erm, Inc., 7	401 Commerce								
<t< td=""><td>2. Manufactured for</td><td></td><td></td><td></td><td></td><td>¢N</td><td>ame and addr</td><td>ess of mark</td><td>dacturer)</td><td></td><td></td><td></td><td></td></t<>	2. Manufactured for					¢N	ame and addr	ess of mark	dacturer)				
I. Type Vertical (13153V (13153V (13153V) (13153V) <t< td=""><td>2</td><td></td><td></td><td></td><td></td><td>(Name</td><td>and address o</td><td>of purchaser</td><td>9</td><td></td><td></td><td></td><td></td></t<>	2					(Name	and address o	of purchaser	9				
	3. Location of Insta	ation	Not Known				this may and a						
By Decode a week (as) (Instructure) (Note Note 1 and 1 an	4 Turne Vert	Ical		131631/					w 1		1086		2013
CODE: The design, construction, and workmanship conform to ASME Rules, Secton VIII, Dekidon 1 2010 to 2011 Concerns and the sector of the sector VIII (Sector Sector VIII) (Sector Sector VIIII) (Sector Sector VIIIII) (Sector Sector VIIIII) (Sector Sector VIIIIII) (Sector Sector VIIIIII) (Sector Sector VIIIIIII) (Sector VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(Horizontal or	vertical, tar	rk) (Manufa	cturer's serial nur				Orawing numb	xer)		al Board numbe		(Year built)
(win) (July Collection numbers) 6. Shelt SAS16-70 (Markel spectrumbers, yrais) (Control Series, yrais) (Control Ser													•
6. Sheft <u>9446</u> 945 - 70 <u>0.500⁺</u> 0.10 <u>9⁺ 4.500⁺</u> 0.00 <u>9⁺ 4.500⁺</u> <u>Lang Jourd 1</u> (one take, yaw) <u>(Constants, yaw)</u> <u>(Constants)</u> <u>Bried Servery</u> <u>Lang Jourd 1</u> Lang Jourd 1 Lang Lang Lang Lang Lang Lang Lang Lang	0002. 110.00							-					
(Material counter, grad) (Densit blocking) (Densit blocking) <td></td> <td>(Code (</td> <td>Case numbers)</td> <td></td> <td></td> <td>(Special Service pe</td> <td>rUG-120(d))</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		(Code (Case numbers)			(Special Service pe	rUG-120(d))						
Sngl Butt, Type 1 None 70% Sngl Butt, Type 1 None 70% 1 B. Headst (a) Material SASI Butt, Type 1 None PDX (b) Material PDX (c) Material PDX (c) Material Cpan. Fac. 10 (c) Material (c) Material (c) Material Cpan. 10 (c) Material (6. Shell:												
[Long, billes, dit, inj, Ling, bill] R.J. (Specified, Bill) R.J. (Specified, Bill) The (P) [Dent, bills, Bill, Bi						from and	~)			N			
Contion (Top, Botton, End (Top, Botton, End) Concretion Incidence Concretion Memory Advance Concretion Concrete Market Concretion Radue (Sec End, park) Concrete Radue (Sec End, park) Concrecrete Radue (Sec End, park) Concret	[Long. (w	dided, dbl.	sigl, lap, buttl			(H.T. temp)	Time (hr)	(Gath. (well	ded, dbl, sngl, leg,				No. of Courses
Loadion (flog, Botton, End) Minimum Thickness Contrain Contrain Multiple Eligical Rated Angle Contrain (and Angle Side to Pressure (Convex or Contraint) (a) Top 0.460° 0 N/A N/A N/A N/A N/A (b) B ottom 0.460° 0 N/A N/A N/A N/A Concave (b) B ottom 0.460° 0 N/A N/A N/A N/A Concave (b) M/WP 65/250 N/A at max.temp. 200 °F N/A 9. M/WP 85/250 N/A at max.temp. 200 °F N/A 9. M/WP 85/250 N/A at 85/250 Hydro, pneu., or comb. test pressure PNEU. at 275 psl Proof test 0. Nozztes, hispection and sately valve openings: Nozzte Nozzte <td>8. Heads: (a) Mate</td> <td>erial</td> <td></td> <td></td> <td></td> <td></td> <td>(b) Materi</td> <td>ial</td> <td></td> <td></td> <td></td> <td></td> <td></td>	8. Heads: (a) Mate	erial					(b) Materi	ial					
Ends Theires Advance Angle Redus Dannel Concave (a) Top 0.460° 0 N/A N/A N/A N/A N/A Concave (b) Bittom 0.460° 0 N/A N/A N/A N/A N/A Concave Ifremovable, bolts used (describe other fastenings) N/A N/A N/A N/A N/A Concave 0.MAVP 85/250 N/A all max. formp. 200 °F N/A (bitmit) (bitmit) 0.Model 85/250 N/A all max. formp. 200 °F N/A (bitmit) 0.Nozzle Thiciness Raindor on the state sta													
(a) Top 0.460* 0 N/A N/A N/A N/A N/A N/A N/A Concave (b) B ottom 0.460* 0 N/A N/A 2:1 N/A N/A N/A Concave (b) B ottom 0.460* 0 N/A 2:1 N/A N/A N/A Concave (b) B ottom 0.460* 0 N/A 2:1 N/A N/A N/A Concave (b) (b) 0.460* 0 N/A 2:1 N/A N/A N/A Concave (c) (c) (c) 0.460* 0 N/A 2:1 N/A N/A Concave N/A (c) 0.400* (c) 0.075* (c) N/A 0.075* (c) N/A N/A <td></td> <td>don,</td> <td></td> <td></td> <td>Crown Radius</td> <td>Knuckle Radius</td> <td>Elliptical Ratio</td> <td></td> <td></td> <td></td> <td>Side to P</td> <td></td> <td>stives or</td>		don,			Crown Radius	Knuckle Radius	Elliptical Ratio				Side to P		stives or
Bit 0 N/A N/A N/A N/A N/A Concave Iftermovable, bolts used (describe other fasterings) N/A N/A N/A N/A Concave 0.40000 85250 N/A at max. temp. 200 * F N/A 0.40000 0/bimulp 0/bimulp 0/bimulp 0/bimulp 0/bimulp 0.40000 6/bimulp 0/bimulp 0/bimulp 0/bimulp 0/bimulp 0.40000 at 85/250 Hydro, pneu, or comb. test pressue PNEU, at 27.5 psi Proof test - - - - - 0.40000 Size Type Matrial Nozzle Reinforcement Attachment Details Location (http://bit.attachee.test.attacheet.test.attacheet.test.attacheet.	(a) Top	+			N/A	N/A	2:1		N/A	N/A			-
Q. MAWP BSZED N/A at max. temp. 200 °F N/A Weind ges: number, finds site, numore, siteresthest site, finds site, numore, finds site, numore, s		+	0.460*	0	N/A	N/A	2:1	N/A	N/A	N/A		Concave	
9. MAVVP BS/250 N/A at max. temp. 200 * F N/A Min. design metal temp. -50/20 at B5/250 Hydro, pneu, or comb. test pressure PNEU. at 275 psi Proof test	If removable, bolts u	used (de	escribe other	fastenings)				-					
Min. design metal temp. -50/20 at 85/250 Hydro, pneu, or comb. test pressure PNEU. at 27.5 psi Proof test 0. Nozzke, hspection and salvely valve openings: 0. Name Matorial Nozzke Rainforcement Attachment Details Location (http://docs.org/line.com/docs.or						atr		rial spec. num		rber)			
Proof lest Image: Control of the state of the stat	9. MAYVP						nax. emp.						
Proof lest 0. Nozzles, isspection and salety valve openings: Purpose (Mist Cudiet, No. Diameter or Type Material Nozzle Thickness Reinforcement Attachment Details Location (Insp. Daria, etc) I and the state of the cudiet is the state of th	Min. design meta	I temp.	-50/20	at	85/250		Hydro, pne	u.or com	b. test pressur		PNEU.	t 275 ps	4
Purpose (Het, Oufset, Dain, etc.) No. Diameter or Size Type Maturial Nozzle Reinforcement Attachment Datails Location (Insp. Open.) Initet 1 12" WE SA3B-ERW 0.375" 0 Inherent Nazzle Flange Open.) Initet 1 12" WE SA3B-ERW 0.375" 0 Inherent Welded 0 Outlet 1 14" WE SA3B-ERW 0.375" 0 Inherent Welded 0 Pump Suction 2 5" WE SA1068 0.200" 0 Inherent Welded 0 Level Column 2 1114" WE SA1068 0.200" 0 Inherent Welded 0 Level Column 2 1114" WE SA1068 0.200" 0 Inherent Welded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Proof test												
Dran, etc.) NAL Size Type Nozzle Flange Nom. Corr. Matrial Nozzle Flange Con., with the size Inlet 1 12' WE SA338-ERW 0.375' 0 Inherent Welded	10. Nozzles, inspect	ion and	salety valve	openings:									
Outro Biol Size No 22e Hange Nor. Corr. Normalia Norza Fange Open.j Inlet 1 1 12° WE SA 538-ERW 0.375° 0 Inherent Welded	Purpose (Inlet, Outlet,	No.		Type			+						
Outlet 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>		-				Range		_			Flange	0	xin.)
Pump Suction 2 5" WE SA1068 0.258" 0 Inherent Welded Liquid Make-up 1 11/2" WE SA1068 0.200" 0 Inherent Welded Level Column 2 1.11/4" WE SA1068 0.191" 0 Inherent Welded Add/boral/Nazzks - See Affached U-4 1 Supports: Skint No Lugs 4 Ohm NA Affached Welded to Item 6 (Vienter) (Vienter) (Vienter) Ohm NA Affached Welded to Item 6 (Vienter) (Vienter) Ohm NA Affached Welded to Item 6 (Vienter) (Vienter) Ohm NA Affached Welded to Item 6 NA (Vienter) (Vienter) (Vienter) (Vienter) Inspection openings per UG 46 (a) UG 22 (a) only considered in design. June 17, 2014 Model: VPR-5412 for non-corrosive, non-lethal servi.ce. Pre		<u> </u>				<u> </u>						 	
Level Column 2 11M* WE SA 1068 0.191* 0 Inherent Welded Additional/Nozzka - See Attached U-L. .	Pump Suction	2	5'	WE				0	Inherent	Welded			
Add/Bona/Nozzks - See Atlached U-4 Integer 1 Integer 2 Integer 2 <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td>		<u> </u>						<u> </u>					
1. Supports: Skirt No Lugs Legs 4 Other NA Attached Widded to Item 6 1. Supports: Skirt No Lugs 4 Other NA Attached Widded to Item 6 2. Remarks: Manufacturer's Partial Data Reports properly identified and signed by Commissioned Inspectors, have been furnished for the following items of the report N/A (Innee and Item 1000) 2. Remarks: Manufacturer's Partial Data Reports properly identified and signed by Commissioned Inspectors, have been furnished for the following items of the report N/A N/A (Name of part, tem number, Manufacturer's name and identifying stamp) Model : VPR-5412 for non-corrosive, non-lethal service. Pressure relief devices by others. No Inspection openings per UG 46 (a). UG 22 (a) only considered in design. Indesign. We certify that the statements made in this more correct and that all datas of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization Na. 31095 expires June 17, 2014 Date 11/22/2013 Co. name isotherm, inc. Signed Watware form. Vessel constructed by kontem, inc. at 7401 Commercial Bird. East, Adington, Texes, 76001 U the undersigned, holding a valid commission issued by The National Board of Boiler and Pressu				WE	SA106B		0.191"	0	Inherent	Welded			
(Yes of nig) (Yumber) (Yumber) (Describe) (Where and how) 2. Remarks: Manufacture's Partial Data Reports properly identified and signed by Commissioned Inspectors, have been furnished for the following terms of the report N/A N/A (Name of part, term number, Manufacture's name and identifying stamp) Model : VPR-5412 for non-corrosive, non-lethal service. Pressure relief devices by others. No inspection openings per UG 46 (a). UG 22 (a) only considered in design. CERTIFICATE OF SHOP/FIELD COMPLIANCE We confly that the statements made in this report are correct and that all datals of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No. 31095 Lune 17, 2014 Date 11/22/2013 Ca. name Botherm, Inc. Signed Warver Extension" CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by Botherm, Inc. Signed Warver Extension" Under 11/22/2013 Ca. name Botherm, Inc. Signed Certificate reliable of boliaer and Pessure Vessel Signed of Constructed by Lune 17, 2014 Under 11/22/2013 Ca. name Botherm, Inc. at 7401 Commeridal Bird. East, Adington, Texas, 76001						Obr			4.	stad	101-0-1	and the Barrow	
N/A (lame of pirt, tem number, Manufactura's name and identifying stamp) Model: VPR-5412 for non-corrosive, non-lethal service. Pressure relief devices by others. No inspection openings per UG 46 (a). UG 22 (a) only considered in design. CERTIFICATE OF SHOP/FIELD COMPLIANCE We carily that the statements made in this report are correct and that al details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization Na. 31095 septres June 17, 2014 Date 11/22/2013 Co. name isotherm, inc. Signed Warver C. Difference CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by isotherm, inc. Signed Warver C. Difference Under file a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province (EXAS) A difference of the best of my knowledge and belief, the Manufacturer has constructed this formation described in this Manufacturer's Data Report on December 8, 2013 and state that, to the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND Pressure Vessel, 2013 and state that, to the best of my knowledge and bel	n. ougonis, oran					Conta	Ø		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1080			
(Name of pirt, ten number, Manufactura's name and identifying stamp) Model: VPR-5412 for non-corrosive, non-lethal service. Pressure relief devices by others. No inspection openings per UG 46 (a). UG 22 (a) only considered in design. CERTIFICATE OF SHOP/FIELD COMPLIANCE We carily that the statements made in this report are correct and that al datals of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No31095 Lune 17, 2014 Date 11/22/2013 Co. name isotherm, Inc. Signed Warver E_Extension CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by June 17, 2014 Date 11/22/2013 Co. name isotherm, Inc. Signed Warver E_Extension CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by Isotherm, Inc. at 7401 Commercial Bhd. East, Adington, Texas, 76001 L the undersigned, holding a valid commissionissued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province EXAB Manufacture's Data Report on December 8, 2013 and state that, to the best of my knowledge and beliet, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section		rer's Parti	ial Data Reports	properly identif	ied and signed by (Commissioned Insp	pectors, have b	een fumishe	d for the following	items of the	report		
CERTIFICATE OF SHOP/FIELD COMPLIANCE We certify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No. 31095 expires June 17, 2014 Date 11/22/2013 Co. name Bootherm, Inc. Signed Work E CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by Bootherm, Inc. at 7401 Commercial Bhd. East, Adington, Texas, 76001 L the undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province EXAS and state that, bit the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this conflictate nether the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel is a loss of any kind arising from or connected with this inspection.	N/A				(Name of part, ben	n number, Manufactur	rer's name and id	entifying stamp	p)				
CERTIFICATE OF SHOP/FIELD COMPLIANCE We certify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No. 31095 expires June 17, 2014 Date 11/22/2013 Co. name Bootherm, Inc. Signed Work E CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by Bootherm, Inc. at 7401 Commercial Bhd. East, Adington, Texas, 76001 L the undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province EXAS and state that, bit the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this conflictate nether the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel is a loss of any kind arising from or connected with this inspection.	Model: VPR-	5412	for non-c	orrosive,	non-lethal	service.	Pressure	relief	devices by	others	. No		
We carify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No. 31095 expires June 17, 2014 Date 11/22/2013 Co. name	inspection	openi	ngs per U	G 46(a).	UG 22 (a) on	ly conside:	red in de	sign.					
We carify that the statements made in this report are correct and that all details of design, material, construction, and workmanship of this vessel conform to the ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. "U" Certificate of Authorization No. 31095 expires June 17, 2014 Date 11/22/2013 Co. name				CERTI			MDUANCI						
Date 11/22/2013 Co. name Isotherm, Inc. (NamAscurer) Signed Warm & Epitteria CERTIFICATE OF SHOP/FIELD INSPECTION Vessel constructed by Isotherm, Inc. (Representative) (Representative) Undersigned, holding a valid commission issued by The National Board of Boller and Pressure Vessel Inspectors and/or the State or Province EXAS and state that, to the best of my knowledge and belief, the Manufacturer has constructed the pressure vessel in accordance with ASME BOLER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel discribed in this Manufacturer's Data Report on Describer vessel discribed in this Inspector on his/her employer makes any warranty, expressed or implied, concerning the pressure vessel discribed in this Manufacturer's Data Report.	We certify that the st	latern enti	s made in this r	report are corre	ct and that all det	ails of design, mat	terial, construct	ction, and w	orkmanship of th	is vessel co	nform to the	ASME BO	LER
(Manufacturer) (Representative) CERTIFICATE OF SHO PIFIELD INSPECTION Vessel constructed by Isofherm, Inc. at 7401 Commercial Bird. East, Adington, Texas, 76001 L the value of the National Board of Boiler and Ptessure Vessel Inspectors and/or the State or Province EXAS and empty option Exast or Company, of Lym, MA have inspected the component descabed in this Manufacturer's Data Report on December 8, 2013 and state that, to the best of my knowledge and belie I, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1, By signing this conflicate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel dia in this Manufacturer's Data Report, Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this inspection.	AND PRESSURE VI	ESSEL C	ODE, Section	VIII, Division 1.	"U" Certificate of	Authorization No.	31095	expires					
CERTIFICATE OF SHOPIFIELD INSPECTION Vessel constructed by Isofherm, Inc. at 7401 Commercial Bird. East, Adington, Texas, 76001 L the undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province EXAS and employed by	Date 11/22/2013		Co. name						Signed				~
Vessel constructed by Isofherm, Inc. at 7401 Commercial Bird. East, Adington, Texas, 76001 L the undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province EXAS and employed by OneCIS Insurance Company, of Lym, MA have inspectors and/or the State or Province EXAS December 6, 2013 and state that, to the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal lingury or property damage or a loss of any kind arising from or connected with this inspection.							IELD INSP	ECTION		(Represent	(anve)	
undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province <u>EXAS</u> and employed by <u>OneCIS Insurance Company</u> , of Lym, MA <u>December 8, 2013</u> and state that, to the best of my knowledge and belief, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate netther the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this/inspection.						E OF BROTH							
end employed by <u>OreCIS Insurance Company, of Lymn, MA</u> have inspected the component described in this Manufacturer's Data Report on December 8, 2013 and state that, to the best of my knowledge and belief, the Manufacturer has constructed this pressure vesselin accordance with ASME BOILER AND PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel described in this Manufacturer's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this/inspection.	undersigned, holding	avaid	commission iss	ued by The Na	tional Board of Bo	aller and Pressure	Vessel Inspe	mmercial B	the State or Pro	in, texas, 7	6001 \\$		L the
PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning the pressure vessel described in this Manufacture's Data Report. Furthermore, neither the Inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this inspection.	and employed by O	neCIS In	surance Compa	any, of Lynn, N	A av knowledge and		have inspe	ded the con	mponent describ	ed in this Ma	anufacturer's		
the pressure vessel described in this Manufacture's Data Neport. Furthermore, namer the inspector nor his/her employer shall be liable in any manner for any personal injury or property damage or a loss of any kind arising from or connected with this inspection.	PRESSURE VESSE	L CODE	Section VIII, D	livision 1. By s	igning this certific	ate neither the Ins	spector nor his	wher employ	yer makes any w	manty, exp	ressed or imp	plied, conc	erning
	the pressure vessel	describer	d in this Manufa	acturer's Data I	Report. Furtherm	ore, namer the In	spector nor his	wher employ	yer shall be liable	in any man	nerforanyp	ersonaling	uryor
Date 12/06/2013 Signed / Advance Vacuum Commissions 9441A													
L (Authorized Grispector) (Fistional Board (incl. endorsements), State, Province and number)	0818 120	Jor 2013	sign	~ ~ (Autorized Japa	ctor)	commissions .	0	iational Board (Incl.			ce and numb	er)

1864024 exe: v6.2.66

Figure A.5: ASME Data Report

APPENDIX B

SX CHILLER DOCUMENTATION

Per ClockTime (min)RSW Temp Out Suction Temp10:37:33715.315.310:38:33815.27.510:39:3398.2510:40:33106.44.610:41:33116.14.210:42:33125.93.410:43:33135.93.110:44:33145.92.710:45:33155.72.310:46:33165.51.710:47:33175.21.110:48:33184.90.710:49:33194.70.510:50:33204.60.310:51:33214.40.110:52:33224.2010:55:3323340.210:55:33253.7-0.210:55:33263.4-0.510:57:33273.3-0.710:58:33283.1-0.910:59:33292.9-1.111:00:33332.2-2.411:01:33312.6-1.811:02:33351.9-3.211:05:33351.9-3.211:05:33351.9-3.211:05:33351.9-3.211:05:33351.9-3.211:05:33351.9-3.211:05:33351.9-3.211:10:3335-0.5	Dar Clark	Time (min)		Custion Tame
10:38:338 15.2 7.5 $10:39:33$ 9 8.2 5 $10:40:33$ 10 6.4 4.6 $10:41:33$ 11 6.1 4.2 $10:42:33$ 12 5.9 3.4 $10:43:33$ 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2	Per Clock	Time (min)		
10:39:3398.25 $10:40:33$ 10 6.4 4.6 $10:41:33$ 11 6.1 4.2 $10:42:33$ 12 5.9 3.4 $10:43:33$ 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:56:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:19:33$ 49 -0.3 -3.8 $11:22:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2		-		
10:40:33 10 6.4 4.6 $10:41:33$ 11 6.1 4.2 $10:42:33$ 12 5.9 3.4 $10:43:33$ 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -33 $11:06:33$ 36 1.7 -3.4 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2				
10:41:33 11 6.1 4.2 $10:42:33$ 12 5.9 3.4 $10:43:33$ 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 36 1.7 -3.4 $11:06:33$ 36 1.7 -3.4 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2				
10:42:33 12 5.9 3.4 $10:43:33$ 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 00 $10:53:33$ 23 4 00 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 -0.5 -3.9 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2				
10:43:33 13 5.9 3.1 $10:44:33$ 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 00 $10:53:33$ 23 4 00 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -33 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2			-	
10:44:33 14 5.9 2.7 $10:45:33$ 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:55:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -3 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2				
10:45:33 15 5.7 2.3 $10:46:33$ 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2				
10:46:33 16 5.5 1.7 $10:47:33$ 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 -0.5 -3.9 $11:20:33$ 50 -0.5 -3.9 $11:20:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2				
10:47:33 17 5.2 1.1 $10:48:33$ 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2				
10:48:33 18 4.9 0.7 $10:49:33$ 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 35 -0.5 -3.9 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:22:33$ 53 -1 -4.2				
10:49:33 19 4.7 0.5 $10:50:33$ 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2				
10:50:33 20 4.6 0.3 $10:51:33$ 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:06:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 53 -1 -4.2				
10:51:33 21 4.4 0.1 $10:52:33$ 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:49:33	19	4.7	
10:52:33 22 4.2 0 $10:53:33$ 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:50:33	20	4.6	0.3
10:53:33 23 4 0 $10:54:33$ 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:55:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:51:33	21	4.4	0.1
10:54:33 24 3.8 -0.2 $10:55:33$ 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:52:33	22	4.2	0
10:55:33 25 3.7 -0.2 $10:56:33$ 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:53:33	23	4	0
10:56:33 26 3.4 -0.5 $10:57:33$ 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:54:33	24	3.8	-0.2
10:57:33 27 3.3 -0.7 $10:58:33$ 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:03:33$ 35 1.9 -3.2 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 51 -0.6 -4 $11:22:33$ 53 -1 -4.2	10:55:33	25	3.7	-0.2
10:58:33 28 3.1 -0.9 $10:59:33$ 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -3 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:56:33	26	3.4	-0.5
10:59:33 29 2.9 -1.1 $11:00:33$ 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -33 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:21:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:57:33	27	3.3	-0.7
11:00:33 30 2.7 -1.4 $11:01:33$ 31 2.6 -1.8 $11:02:33$ 32 2.4 -1.9 $11:03:33$ 33 2.2 -2.4 $11:04:33$ 34 2 -3 $11:05:33$ 35 1.9 -3.2 $11:06:33$ 36 1.7 -3.4 $11:07:33$ 37 1.6 -3.6 $11:19:33$ 49 -0.3 -3.8 $11:20:33$ 50 -0.5 -3.9 $11:22:33$ 51 -0.6 -4 $11:22:33$ 52 -0.8 -4.1 $11:23:33$ 53 -1 -4.2	10:58:33	28	3.1	-0.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10:59:33	29	2.9	-1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11:00:33	30	2.7	-1.4
11:03:33332.2-2.411:04:33342-311:05:33351.9-3.211:06:33361.7-3.411:07:33371.6-3.611:19:3349-0.3-3.811:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:01:33	31	2.6	-1.8
11:04:33342-311:05:33351.9-3.211:06:33361.7-3.411:07:33371.6-3.611:19:3349-0.3-3.811:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:02:33	32	2.4	-1.9
11:05:33 35 1.9 -3.2 11:06:33 36 1.7 -3.4 11:07:33 37 1.6 -3.6 11:19:33 49 -0.3 -3.8 11:20:33 50 -0.5 -3.9 11:21:33 51 -0.6 -4 11:22:33 52 -0.8 -4.1 11:23:33 53 -1 -4.2	11:03:33	33	2.2	-2.4
11:06:33361.7-3.411:07:33371.6-3.611:19:3349-0.3-3.811:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:04:33	34	2	-3
11:07:33371.6-3.611:19:3349-0.3-3.811:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:05:33	35	1.9	-3.2
11:19:3349-0.3-3.811:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:06:33	36	1.7	-3.4
11:20:3350-0.5-3.911:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:07:33	37	1.6	-3.6
11:21:3351-0.6-411:22:3352-0.8-4.111:23:3353-1-4.2	11:19:33	49	-0.3	-3.8
11:22:3352-0.8-4.111:23:3353-1-4.2	11:20:33	50	-0.5	-3.9
11:23:33 53 -1 -4.2	11:21:33	51	-0.6	-4
	11:22:33	52	-0.8	-4.1
11:24:33 54 -1.1 -4.3	11:23:33	53	-1	-4.2
	11:24:33	54	-1.1	-4.3

Per clock	Time (min	Suction T	Star T	Port T
10:50	0	17	18.3	18.2
10:52	2	13	17.9	17.7
10:55	5	9.5	17.1	17.1
11:15	25	7.8	15.5	16.1
11:30	40	6.8	14.4	15
11:45	55	6.1	13.6	14.2
12:00	70	5	12.6	13.4
12:15	85	4.2	11.9	12.7
12:30	100	3.4	10.7	11.7
12:45	115	2.7	9.9	10.9
13:00	130	1.9	9.1	10.1
13:15	145	1.1	8.3	9.2
13:30	160	0	7.6	8.5
13:45	175	-0.3	6.5	7.9
14:00	200	-0.6	6.1	7.2
14:15	215	-1.6	5.2	6.7
14:30	230	-2.3	5	5.9
14:45	245	-2.5	4.4	6.2
15:00	260	-2.9	4.1	5
15:15	275	-3.9	3.1	3.8
15:30	290	-4.4	2.7	3.5
16:00	320	-5	1.7	2.7
17:15	395	-5	0	0.5
17:30	410	-5.3	0	0

Fig B.2: Field Data for Ecuador SX Chiller

APPENDIX C

PED DOCUMENTATION

Application To: Bureau Veritas UK Limited for Certification in accordance with UK Legislation implementing Relevant European Directives

Applicant details:

Applicant Name:	lsotherm, Inc.
Applicant Address:	7401 Commercial Blvd., East Arlington, TX 76001
Responsible Person:	Adnan Ayub

We hereby request that Bureau Veritas UK Limited carry out the Conformity Assessment procedure and certification of the below mentioned equipment.

Description of Equipment:

Shell & Tube Spray Evaporator - Drawing # 11034A - Serial # 11051X

Applicable Regulations

Machinery	Lifts	Pressure Equipment	Transportable PV
		\boxtimes	

Service Required:

Initial/Re-Assessment	Modification	Existing BV Ref No.	
-----------------------	--------------	---------------------	--

Review Technical File and issue Certificate of Adequacy		Carry out EC type examination and issue EC type examination certificate (Module B)	
Carry out Design Examination and issue EC Design Examination Certificate (Module B1)		Carry out monitoring of final assessment (Module A1)	
Carry out Conformity to Type with random checking (Module C1)		Carry out Final Inspection of equipment: Product Verification (Module F)	
Carry out Unit Verification (Module G)	X	Carry out additional design examination and special surveillance of final assessment as per Module H1	
Review the Quality Management Syste	em and p	erform required surveillance	
Full Quality Assurance Module H (H1) Production Quality Assurance Module D (D1) Product Quality Assurance Module E (E1)			
Complete only if approval of QMS is requested). We are in possession of quality system certification issued by an Accredited Certification Body Current Certification is: Name of Certification Body: Date of expiry of Certification			

We hereby declare we have not lodged the same application with any other Notified Body

Signed: Old carb

Date: 04/21/2011

Bureau Veritas UK Limited. "Parklands", Wilmslow Road, Didsbury, Manchester M20 2RE

IND 1620 rev 2

Fig. C.1: PED Application to Notified Body

Technical Documentation for CE Marking of Pressure Equipment

Pressure Equipment: Shell and Tube Evaporator Technical File No. 11034A

Rev No. 0

General Description of Pressure Equipment						
Shell and Tube Spray Evaporator Ø762 mm x 3658 mm long, for a refrigeration system. Pressure relief device will be installed by user at no more than 110% of stamped MAWP.						
Operating conditions						
	MAP 17.2 bar MAT 93.3°C Min T -28.9°C				-28.9°C	
Contents:	Fluid Group 1 (Gas)					

Drawings and Diagrams		
Document No.	Rev No.	Description
11034A	1	Top Level Drawing
11034A1	1	Shell Assembly
11034A2	1	Tube Sheet Layout & Machining Details
11034A3	1	Bundle Assembly
11034A4	1	Spray Header Assembly

Calculations/Test Results				
Document No.	Rev No	Source	Description	
11034A_asme	1	PV Elite 2011	ASME Code Section VIII, Division 1	

Description for Understanding of Drawings		

Potential Hazards Due to Pressure
Potential Loading: Excessive nozzle load, over pressurization
Possible Failure Modes: Pressure/temperature exceeded
Operating Conditions: Opening while under pressure, failure due to damage
Foreseeable Misuse: Human error
Other Relevant Directives: None

Page No 1 of 5 Form TDE Rev No. 7

Fig. C.2: Page 1 of Technical Documentation for CE Marking

Technical Documentation for CE Marking of Pressure Equipment

Pressure Equipment: Shell and Tube Evaporator

Technical File No. 11034A

Rev No. 0

Responsible Person				
Who is Responsible for:	Hazard Analysis	Engineering		
	Design for adequate strength	Engineering		
	Operational Design	Engineering		
	Safety Design	Engineering		
	Material Selection	Engineering/Purchasing Department		
	Manufacture & Testing	Quality Control Department		
Responsible Person is:	Adna	n Ayub		

Hazard Category				
Determine hazard category	Fluid Group – Dangerous 1, Others 2?	1		
	Nature of Fluid Gas/Liquid?	Gas		
	Fired/heated, steam, s/heated water?	Gas		
	Pressure Bar?	17.2 bar (max)		
	Volume/DN?	1194 L		
	Table No.	1		
Ha	zard category	4		

	Conformity Assessment Module					
Cat	Conventiona	al Inspection	Quality Ass	urance		
	Single prod	Series prod	Single prod	Series prod		
I	A	A*				
	A1	A1*	D1 or E1	D1 or E1		
III	B1+F	B+C1	B1+D or H*	B+E or H*		
IV	G	B+F	H1	B+D		
	mity Assessment M		G			
Global	Conformity of Asse	embly	N/A			
Appl	ication to Notified B	ody	Yes			

 One off production of vessels and equipment in Category III, referred to in Article 3 § 1.2 (fired or otherwise heated pressure equipment) manufactured under module H, the Notified Body performs the final assessment. (Ref. Article 10 § 1.8)

	Harmonized standards used in full or part			
Standard No.	Issue	Applicable to		
None				

Page No 2 of 5

Form TDE Rev No. 7

Fig. C.3: Page 2 of Technical Documentation for CE Marking

Technical Documentation for CE Marking of Pressure Equipment

Pressure Equipment: Shell and Tube Evaporator

Scantling

Operational Design

Safety Design

Design

Technical File No. 11034A

Rev No. 0

Design (Solutions adopted) Applicable? ESR Solution* Yes Per ASME VIII Div 1 Calculations 22 Design for adequate strength 2.6 Corrosion and Chemical attack No 2.7 Wear No 7.1 Within Max membrane stress No 7.2 Joint Efficiencies Per ASME VIII Div 1 Requirements Yes Pneumatic Testing Per ASME Sec. II Part D Hydro-test pressure No 7.4 7.5 Material Characteristics Yes Requirements IOM Manual Refer to drawings Safe handling and operation Means of examination Yes Yes 2.3 2.4 2.5 Couplings provided for vent/drain Draining and Venting Yes 2.9 Filling and discharge Yes See Drawing 11034A 3.4 Operating Instruction Yes IOM Manual Protection against exceeding 2.10 Yes Provided by end user allowable limits 2.11/7.5 Pressure not exceeds 1.1 PS Yes Safety Valve By End User

	2.12	External fire	No	
Manufacturing	3.1	Manufacturing Procedures	Yes	ASME VIII, Div. 1
	3.1.1/2	In-process inspections	Yes	Inspection Checklist
	3.1.4	Heat Treatment	No	
	3.1.5	Material Traceability	Yes	Per ASME VIII Div 1 Requirements
	3.2.1	Internal/External Examination	Yes	Per ASME VIII Div 1 Requirements
	3.2.2	Proof Test	No	
	3.3	Marking & Labelling	Yes	Article 15 Annex 6
Fired	5	Specific requirements for fired	No	
Equipment		equipment		
Piping	6	Specific requirements for	No	
		piping		
	Approval b	y Notified Body		0041
	Approval b	y Notified Body		0041

Provide reference numbers and use additional sheets where applicable

Hazard Analysis Reconciliation							
Hazard identified	Solution adopted	Residual					
Overpressure	Safety Valves by end user	None					

Page No 3 of 5

Form TDE Rev No. 7

Fig. C.4: Page 3 of Technical Documentation for CE Marking

Technical Documentation for CE Marking of Pressure Equipment

Pressure Equipment: Shell and Tube Evaporator

Technical File No. 11034A

Rev No. 0

Materials												
			ESR			Applicable /		Solu	ution*			
Materials	4.1 a	Appro	opriate proper	ties		Yes	In accordance with ASME Section II					
	4.1.b		iently chemic			Yes	In accordance with ASME Section VIII					
	4.1.C		ignificantly aff			Yes			SME Section			
	4.1 d		ble for intende			Yes			SME Section			
	4.1 e	Comp	patible with ad	ijacent mate	erials	Yes	In accord	lance with A	SME Section	VIII		
ESR 4.2 & 4	.3											
				Sou	urce			Certif	ication			
Ma	aterial		Harm Std	EAM	PI Ref	Νο.	3.1	CofC	QA Approval	3.2		
SA516-70	N		None		sa516	-70n-1	х					
SA106B			None)6b-1	х					
SA106B			None		sa10	6b-2	X					
SA105	05 None sa10		05-1	х								
SA105			None		sa1	05-2	х					
SA234-Wi	PB		None		sa234	-wpb-1	х					
PM/	As Appro	oved by	/ Notified Bo	dy	00	41		1	JL			

		Joini	5
Approvals	Procedures	Tested to:	WPS 21, 26
	1	EN 288/	
		ISO 15614	
	Personnel	Tested to:	Welder Stamp K, J, Y, P, L
		EN 287	
		ISO 9606	
	Properties	Impacts?	None
	as base material	Weld	
		HAZ	
PQR & WPS approved by NB (Cats II, III & IV)			Yes, NoBo 0041

NDE					
Personnel NDE	RT		None		
Approvals for	UT	RTPO	None		
Cats III & IV)	MT	Approved	Yes, Subcontractor approved by RTPO BINDT		
	PT	1	None		

Page No 4 of 5

Form TDE Rev No. 7

Fig. C.5: Page 4 of Technical Documentation for CE Marking

Technical Documentation for CE Marking of Pressure Equipment

Pressure Equipment: Shell and Tube Evaporator

Technical File No. 11034A

Rev No. 0

Administration					
	EC Design/Type Certificate from NoBo (B, B1 & H1)	NA			
	Certificate of Conformity from NoBo (F& G)	Module G			
	D of Cs of incorporated parts	None			
	D of C of pressure equipment or Assembly	Yes			
	CE Marking	Yes			

Comments

Serial Number 11051X

Signed:

an an

Date: 04/21/2011

Position: Engineering Manager

Page No 5 of 5

Form TDE Rev No. 7

Fig. C.6: Page 5 of Technical Documentation for CE Marking

Table of Contents

PV Elite 2011 SPI Licensee: ISOTEERM INCORPORATED FileName : 11034a Internal Pressure Calculations ; Step: 5 4:44p Apr 27,2011

Element Thickness, Pressure, Diameter and Allowable Stress :

Internal Pressure Calculations :
Nozzle Calcs. : D
Nozzle Calcs. : J
Nozzle Calcs. : L1-L4
Nozzle Calcs. : C
Nozzle Calcs. : Hannahanna 52
Nozzle Calcs. : F
Nozzle Calcs. : K1/K2
Nozzle Calcs. : M/N
Nozzle Schedule :
Nozzle Summery :
NDM7 Summery :
91

1 1 2	nt Press	I	Nomina)	I	ToLal Corr	r II	Elément	Allowable
From To +	Lig Hó	I	Thickness	I	Allowance	I	Diameter	Btress (SE)
1 1	psig	ł.	in	I	វរា	١	in	psi
						•••		
Prt Channe	250,000	I	0,37500	I	13	L	20.0000	14535.0
Frt HD	250,000	I	0.37500	I	331	I	30.0000	17000.0
Hx Shell	250,000	l	0,37500	I	597	Ł	30.0000]	14000,0
RV HD	250,000	L	0,37500	I	<i></i>	ł	30,0000	17000.0
Rr Shell S	250,000	I,	0,37500	ļ	žě.	I	20,0000	14535.0

Element Required Thickness and MAWP :

From To			M.A.F.				
1 1	'psig	psig	paig	in	I	in	

Frt Channe	250.000	No Calc	No Calc	0.32800	I	0.17082	
Frt HD	250.000	No Calc	No Calc	0.34000	1	0.21771	
Hx Shell	250,000	No Calc	No Calc	0.37500	ſ	0.26596	
Rr HD	250.000	No Calc	No Calc	0.34000	I	D.21771	
Rr Shell S	250,000	No Cale	No Cale	0,32800	I	0.37082	

Approved by: ADNAN AYUB AT ENGINEERING MANAIGER Ced Cent G/21/2011

Summary of Heat Exchanger Maximum Allowable Working Pressures :

Note: For ASME UHX designs, the following values include MAWPs that consider the tubesheet, tubes, tube/lubesheet joint etc. These values were determined by iteration. Review the tubesheet analysis report for more information,

Fig C.7: Engineering Calculations approved by Intern

PED Comparison of Stress Values per EC 97/23, Annex I, Paragraph 7.1

ASME Code of Construction:	Section VIII Division 1
Vessel/Equipment Manufacturer:	Isotherm Inc.
Vessel or Equipment ID:	Shell & Tube Refrigerant Condenser
Maximum Design Temperature:	300 F
Job No.:	11034B
Date:	4/24/2011
Notified Body No.:	0041

For Ferritic Steels w/o exceptions 7.1.2 1st indent

Material	Material	ASME Section II, Part D Sallow	Ultimate Strength @ < 100 F
Description	Specification	at Room Temp (<100 deg. F)	From ASME Sect. II, Part D, Table 1A(Current Ed. & Add.)
		(psi)	(ksi)(R _{m/20})
HX SHELL, NOZZLES	SA106B	17100	60000
TUBESHEET BASE MAT'L	SA516-70	20000	70000

For Austenitic Steels per Annex I, 7.1.2, 2nd indent, sub 1st indent (Elong. > 30%)

Material	Material	ASME Section II, Part D Sallow	Ultimate Strength @ < 100 F
Description	Specification	at Room Temp (<100 deg. F)	From ASME Sect. II, Part D, Table 1A(Current Ed. & Add.)
		(psi)	(psi)(R _{m/20})

Fig. C.8: PED Material Stress Analysis Page 1

S _{allow} @ Max Design Temp.	PED 5/12 of	Yield Stress @ Max. Design	2/3 of Yield	Stress Allow. (2)		
From ASME Sect. II, Part D, Table 1A(Current Ed. & Add.)	Ultimate Strength @ Room	Temp(ksi) (R _{e/t})	p(ksi) (R _{eft}) Strength (Sy) or (R _{eft}) to be used			
(ksi)	Temp.(ksi) (R _{m/20})	(*) (psi)	at MAT(psi)	in Calculations (psi)		
17100	25000	31500	21000	17,100		
20000	29167	34200	22800	20,000		
	0		0	0		
	0		0	0		
	0		0	0		
	0		0	0		
	0		0	0		

(See Conclusion Note)

(1)- If used as Cplg, no calc. required for info only.

S _{allow} @ Max Design Temp.	Column Not Used	Yield Stress @ Max. Design	2/3 of Yield	Stress Allow. (2)	
From ASME Sect. II, Part D, Table 1A(Current Ed. & Add.)		Temp(ksi) (R _{e/t})	Strength (R _{e/t})	to be used	
(psi)		(*) (psi)	at MAT(psi)	in Calculations(psi)	
			0	0	
			0	0	
			0	0	
			0	0	
			0	0	
			0	0	

Fig. C.9: PED Material Stress Analysis Page 2

Hydrostatic Testing Analysis per EC 97/23, Annex I, Paragraph

Vessel/Equipment Manufacturer:	lsotherm Inc.
Vessel or Equipment ID:	Shell & Tube Refrigerant Condenser
Maximum Design Temperature:	300 F
Job No.:	11034B
Date:	4/24/2011
Notified Body No.:	0041

Material Specification	Sroom	S _{des.temp}	MAP	ASME Multiplier	ASME Multiplier	PED Multiplier	PED Std. Multiplier	ASME Hydro	PED Hydro(1.25)	PED Hydro Std. 1.43x	ASME Sect. & B31.1/3	ASME	ASME VIII
				(per Sect. VIII)	(per B31.3)	(Using Stress Multiplier)		Pressure(B31.3)	(w/ Stress Mult.)		Hydro(x1.5)	Hydro(x1.3)	Hydro(1.3 x
								(w Multiplier)			(No Multiplier)	(Sect. VIII)	Stress Multi.)
SA516-70	20000	20000	250	1.3	1.5	1.25	1.43	375	313	358	375	325	325
SA106B	17100	17100	250	1.3	1.5	1.25	1.43	375	313	358	375	325	325
	1112			1.3	1.5	1.25	1.43	#DIV/0!	#DIV/0!	0	0	0	#DIV/0!
				1.3	1.5	1.25	1.43	#DIV/0!	#DIV/0!	0	0	0	#DIV/0!

Hydro Pressure, from the table is based on the max of any one material per the category of the hydro basis, meaning the multiplier whether it is ASME or on of the two PED methods. Then that is compared to the other two methods and the worse case prevails.

Conclusion:

Fig. C.10: PED Hydrostatic Analysis

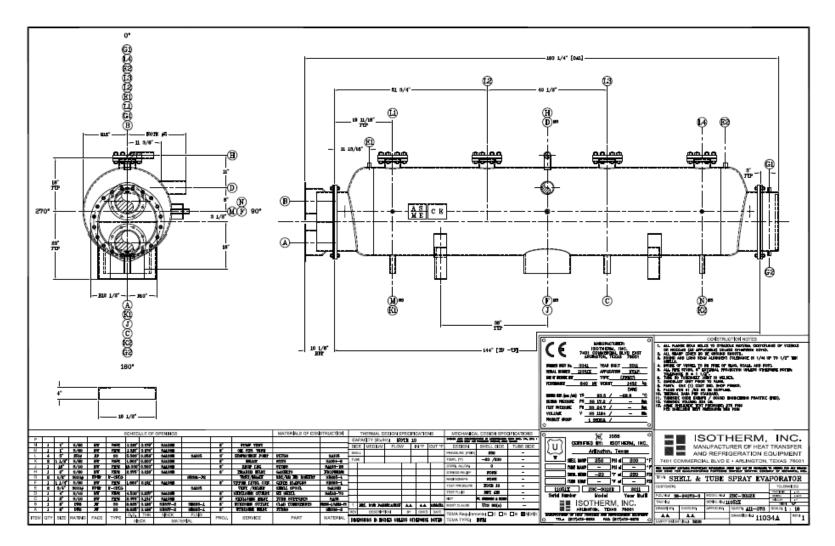


Fig. C.11: Fabrication drawing of Spray Chiller

Particular Material Appraisal

	Isother	m Inc.	
PMA Ref. No. sa234 wpb-1	Rev.	Material Group: Per ASME Section IX: P No. 1 Group 1	
Material specification including date: ASME SA234 2004 Ed. Or later	Grade: WPB	Delivery condition: Seamless fittings	
Application: Main Pressu	ure bearing pa	rts of pressure equipment	
Applicable Design Code: ASME Section VIII Div. 1		Dimension range: All NPS from 1/2" - 12" (Schedules 40 & 80)	
Maximum allowable temperature: 650 °F		Minimum allowable temperature: -20 °F	

Property	Requirement	Details of Compliance
Appropriate properties (Annex I - 4.1(a)) (Assured by material manufacturer)	Proof strength/Yield strength (at appropriate temperature) UTS Creep data	The Minimum stress allowable to be used is either specified in ASME Section II Part D or Stress allowable per PED Annex 1, par. 7.1.2 indent 1.
Sufficiently ductile (Annex I - 4.1(a)) (Annex I - 7.5)	In steel; min 14%	Min. Longitudinal : 22% Min. Transverse: 14%
Sufficiently tough (Annex I - 4.1(a), Annex I - 7.5)	e.g. in steel; 27J at 20 °C or lowest operating temperature.	Material shall fulfill PED impacts or in lieu of impact testing, material shall satisfy UCS 66 Curve B (w/ MDMT of - 20 deg F) of ASME Section VIII Division 1 and the below chemical restrictions
Not significantly affected by ageing	Appropriate selection. Suitable composition (e.g. for non alloy steel Al/N ≥ 2)	Not subject to significant aging at intended operating temperatures.
Test programme	Not a	oplicable
Results of test programme	Not as	plicable

The named material specification may be used for the construction of pressure equipment intended for use within the stated limits and subject to the following restrictions:

Restrictions:

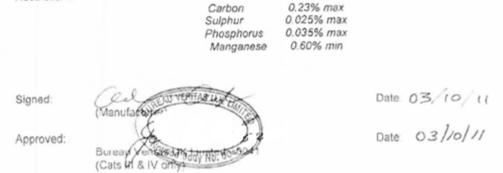


Fig. C.12: PED approved Particular Material Appraisal (PMA)

	Welding	Procedure Suitability Checklist	Page: 1 of 1
Client: Isotherm	Inc.	Ref. Nos: 671/BSN/11, 672	2/BSN/11
Manufacturer: Isotherm Inc.		Code: ASME Section IX	
Procedure: As indicated below		Special Requirements: EN	15614-1

Suitability of proposed Joining Procedures

A STATE AND AND A STATE AND A	Specification numbers							
WPS	21	21	26					
Qualified by PQR No.	21A	21B, 21C	26A					
Welding Qualification Standard	Section IX	Section IX	Section IX					
Process	GMAWS/ GMAW	GMAWS/ GMAW	SAW					
Metal transfer	Spray/S.C.	Spray	N/A					
Electrical Details	DCEP	DCEP	DCEP					
Mechanisation	Yes	Yes	No					
Material Grouping	P1 Gr.182	P1 Gr.182	P1 Gr.182					
Consumable	ER70S-3/6	ER705-3	EM12K					
Joint type	Single Vee	Single Vee	Single Vee					
Thickness	3/4	1.5	1.5"					
Diameter	No	No	No					
Heat input	61,714 J/in	73,143 J/in	82,759 J/in					
Heat treatment	No	yes/ho	No					
Tests required by hEN	Yes	Yes	Yes					
Impact testing	Yes	Yes	Yes					
Approved by NB/RTPO	Yes	Yes	Yes					
Application Std.	ASME IX	ASME IX	ASME IX					
25.13.17	15614-1	15614-1	15614-1					
Suitable	Yes	Yes	Yes					
Qualified	Yos	Yes	Yes					

Suitability of welding personnel

	Welding Per	rsonnel Suit	tability/Appro	val	Area Street	2.5.2
WPS	21	21	26	I		-
Initials/No	L.	P,L	J		10 1 1 No.	100
Welding Qualification Standard	Section IX	Section IX	Section IX			
Process	GMAW	GMAW	SAW			-
Metal transfer mode	Spray/S.C.	Spray	N/A			
Mechanisation	None	None	None			
Material Grouping/F #	6	6	6			-
Joint type/backing	with & w.o.	with	With			
Thickness	See WPS	See WPS	See WPS			
Diameter	No	No	No			
Position	1G/2G	1G/2G	1G			-
Current/Polarity	DCEP	DCEP	DCEP			
Gas	Ar/Co2/O2	Ar/02	N/A			-
Validity	6/06-6/11 9/10 -9/12	W10-9/12; 9/10-9/12; 9/10-9/12;	9/16-5/12			_
Qualified	Yes	Yes	Yes			
APPROVAL STATUS	Approved					_

N.B. For each WPS used on the pressure equipment the Inspector should check the boxes to indicate that the parameter is within the scope of approval of the PQR. Actual values are not required

		nts	

Name:		
Signed:	Date:	
		IND 1675-5e rev 2

Fig. C.13: Welding Procedure Suitability Checklist

(C) 6704709	Inspection	Checklis	st	Page: 1 of 1		
Manufacturer: ISOTHER	M, Inc.		671/BSN/11			
	ell & Tube Spray Evaporat	lor		: 11034A		
Volume: Shellside=1,194	Ltrs. DN:		Tare Wt.	1,452 Kgs.		
Item/Serial No.: 11051X			Cat: IV	CA Module: G		
Date(s) of inspection: Ju	ne 9 & 21,2011		243.04004-300	Carl Children Children		
Module A1, Review of Technical Documentation	For Module C1 - Module B Certificate Number	For Module F or B1 Certifica		Module G - Approval of technica documentation Ref		
Not Applicable	Not applicable	Not appl	licable	CE-0041-PED-G-ISM-003- 11-USA		
Inspectio			Detail			
Statement that the same ap lodged with any other notifi		Satisfactory				
Visual internal and external ex	Satisfactory					
Dimensions geometry and tole	Satisfactory					
Conformance to drawings and	technical documentation	Drg No. 1103	4A rev.1			
Source of material ; PMA, EAM	PMA					
Conformance to material spec	ification and restrictions, if any	Satisfactory				
Traceability on receipt and thr	Heat Number	s Marked on	Materials.			
Material manufactures certifica	tion (Scope/EU Comp Body)	Satisfactory				
Materials: source, type of cert affirmation	Satisfactory					
Items for assembly have CE n	harking	Not applicable				
Joining procedures suitable fo	or application	WPS #s 21 and 26.				
Joining procedure specificatio PQR & approved by Compete		Satisfactory; C	Dualified by N	loBo 0041		
Joining personnel qualification	s are appropriate and valid.	Welder I.D. : *	Г			
Heat treatment records.		Not Applicable				
NDE - Personnel Qualification	 (RTPO for Cats III & IV) 	Satisfactory				
NDE - required extent and ac	ceptance	Satisfactory MT only.				
Destructive testing		Test Report No. Not Applicable				
Manufacturer performed requi	red inspection and tests	QP No. 11034A Satisfactory				
Witness of pressure test	Date: June 21, 2011	P=24.7 bar,	Duration : 6	0 mins		
		P=	bar, Du	ration mins		
Calibration and suitability of pr	essure gauge(s).	Expiry: 05/10/	2012 Rang	e: 0 ~ 68.94 bar No. CP70465		
Proof test or burst-test (experi		Not Applicable	10 m			
Safety accessories, suitability	and conformance.	Not supplied				
Marking		Satisfactory				
Comprehensive Instructions		Satisfactory				
Other tests to demonstrate co	nformance with ESRs	Not Applicable				
	1 inspection visit, (Modules' A1,			Not applicable		

U VE DITAS UT Sign Body No

Date: June 21, 2011

Assessment Engineer

IND 1671-1 rev 3 draft

Fig. C.14: PED Inspection Checklist

ISOTHERM, INC.

7401 Commercial Blvd. E. • P.O. Box 172379 • Arlington, Texas 76003 • Ph: (817) 472-9922 • Fax: (817) 472-5878
Declaration of Conformity

Manufacturer:

Isotherm, Inc. 7401 Commercial Blvd. East Arlington, Texas 76001

> We herby declare that the pressure equipment specified below has been designed, manufactured and tests in accordance with the requirements of the Pressure Equipment Regulations 2002 [European Directive 97/23/EC]

Description of Pressure Equipment:

Shell & Tube Spray Evaporator Ø762 mm x 3658 mm long

Drawing: 11034A Rev. 1 Model: ZSC-3012E Serial Number: 11051X

Conformity Assessment Procedure Followed:

EC Unit Verification, Category IV, Module G (Shellside Only). Tubeside is SEP.

The Notified Body has issued the following EC certificates:

EC Certificate of Conformity: CE-0041-PED-G-ISM-003-11-USA Notified Body:

The Notified Body that carried out the inspections: 0041

Bureau Veritas UK Limited Parklands Wimslow Road Didsbury Manchester M20 2RE United Kingdom

Harmonized Standards Applied: None

Other Technical Standards and Specifications Used:

ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 (2010 Edition)

Other Community Directives Applied: None

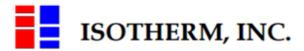
Signed: Old Cert Engineering Manager

Date: 6/21/2011

Manufacturer of Heat Transfer & Refrigeration Equipment e-mail: info@iso-therm.com • www.iso-therm.com

Fig. C.15: Declaration of Conformity

Bureau Veritas UK Limited	Notified Body 0041
	VERITAS
	ICATE OF CONFORMITY ure Equipment Directive 97/23/EC
N° CE-004	I-PED-G-ISM-003-11-USA
We hereby certify that the design, manufacture and applicable Essential Safety Requirements of the Pr Directive 97/23/EC).	d testing of the below pressure equipment complies with the ressure Equipment Regulations 1999 (EC pressure Equipment
Manufacturer (name):	Isotherm, Inc.
Address:	7401 Commercial Blvd. E. Arlington, Texas 76001 UNITED STATES OF AMERICA
EQUIPMENT	
Item :	Model # ZSC-3012E
Description :	Shell & Tube Spray Evaporator.
TESTS CARRIED OUT	
Final tests:	Reviewed Client PED Application, Drawings, Calculations, PMA's, Permanent Joining WPS's & WPQ's; RTPO NDE Personnel Qualifications & MT Tests Reports; Hydrostatic Pressure Gauge Calibration Status; Witnessed Hydrostatic Pressure Test; conducted an Interior and Exterior Visual Examination; Witnessed CE Nameplate Attachment.
Remarks -List of enclosures:	Drawing # 11034A Rev.1 ; Tubeside = SEP
INFORMATION	
Trading name of the manufacturer:	Isotherm, Inc.
Trading name of the authorized representative:	NA
Marking :	CE 0041 (BVIL notified body number)
Nature and location of the affixing of the markin the equipment:	g of CE Nameplate welded to bracket on Shell.
Year of manufacture :	2011
Serial number :	11051X
Essential maximum/minimum allowable limits :	
 Maximum allowable pressure; 	17.2 Bar
- Minimum/maximum allowable temperature:	-28.9 deg. C / 93.3 deg. C
© Bureau Veritas UK Limited BVIL 1686 rev 01	Contract No : 05009-005167.03 / 671/BSN/11 1/2 Annexe G http://www.bureauveritas.com/ped


Fig. C.16: Certificate of Conformity for Spray Chiller

Bureau Veritas UK Limited	Notified Body 0041
	VERITAS
	FICATE OF CONFORMITY sure Equipment Directive 97/23/EC
N° CE-004	41-PED-G-ISM-004-11-USA
We hereby certify that the design, manufacture and applicable Essential Safety Requirements of the to Directive 97/23/EC).	nd testing of the below pressure equipment complies with the Pressure Equipment Regulations 1999 (EC pressure Equipment
Manufacturer (name):	Isotherm, Inc.
Address:	7401 Commercial Blvd. E. Arlington, Texas 76001 UNITED STATES OF AMERICA
EQUIPMENT	
Nem :	Model # ZC-1410D
Description :	Shell & Tube Refrigerant Condenser.
TESTS CARRIED OUT	
Final lests:	Reviewed Client PED Application, Drawings, Calculations; PMA's; Permanent Joining WPS & WPO's; RTPO NDE personnel Qualifications & MT Test Report; Hydrostatic Pressure Gauge Calibration Status; Witnessed Hydrostatic Pressure Test; Conducted an Interior & Exterior Visual Examination; Witnessed CE Nameplate Attachment.
Remarks -List of anclosures:	Drawing # 11034B Rev.1; Tubeside = SEP.
INFORMATION	
Trading name of the manufacturar:	Isotherm, Inc.
Trading name of the authorized representative:	NA
Marking :	CE 0041 (BVIL notified body number)
Nature and location of the affixing of the markit the equipment:	ing of Ce Nameplate weided to bracket on shell.
Year of manufacture :	2011
Serial number :	11028X
Essantial maximum/minimum allowable limits :	
 Maximum allowable pressure: 	17.2 Ber
 Minimum/maximum allowable temperature: 	-28.9 deg. C / 149 deg. C.
© Bureau Veritas UK Limited BVIL 1686 rev 01	Contract No : 05009-005167.03 / 672/BSN/11 1/2 Annexe G http://www.bureauveritas.com/ped

Fig. C.17: Certificate of Conformity for Condenser

APPENDIX D

DNV DOCUMENTATION

7401 Commercial Blvd, E. • P.O. Box 172379 • Arlington, Texas 76003 • Ph: (817)472-9922 • Fax: (817)472-5878

November 16, 2005

DNV Houston, Texas

Ref: Shell and Tube Condensers for RSW Application

We are an ASME Code Shop carrying "U" and "UM" stamps. All our exchangers and pressure vessels are designed, fabricated and tested according to the Rules of ASME Section VIII, Div. 1. We have an inspection agreement with Authorized Inspection Agency, IB&M RE, Inc. Our ASME certificate numbers are as follows:

U: 31,095 expires June 17, 2008 UM: 31,096 expires June 17, 2006

We designed, fabricated and tested two shell and tube ammonia condensers for a customer in Norway who will install them in a fishing vessel. The condenser will not be part of propulsion loop. They will be integral part of the refrigeration system on board. They have asked us for DNV approval and per my phone discussion with you today our understanding is that the following information about the equipment suffices this requirement.

Condenser Model: ZC-1612D (16" dia x 12' tube length) Material of construction: All carbon steel except for clad titanium tube sheets and titanium tubes. Design Working Pressure Shellside/Tubeside: 250 / 150 psig Design Working Temperature Shellside/Tubeside: -20 / 200 "F Test pressure Shellside/Tubeside: 275/165 psig Test Medium: Dry Air MDMT Clause: UCS 66(a), UNF 65, UHA 51 (d) (1) (a) Serial Nos:: 05124X and 05125X National Board Nos: 637 and 638 Documentation: ASME U1 forms

Thank you for your help. If there is anything else required of us please let us know since we are to ship these two units to Norway on November 18, 2005. We will appreciate acknowledgement to this memo so we can file it in the job file.

Regards

hope

Zahid Ayub, Ph.D., P.E. President Isotherm, Inc. Arlington, Texas 76001

Fig D.1: DNV Old Conformity Letter

Inspection and Test Plan

Job N	lo: 10080A	Doc. No: 1008	DA	Rev: 1					1
Custo	omer Tag#:								
Equip	ment Description: Spra	y Chiller							Date: 7/27/11
Item	Activity	Inspection/ Test	Procedure	Acceptance Criterion	Verifying Document	Isotherm	Al-	DNV	Remarks
1	Documentation								
а	Design/Calcs/Dwgs	Design/verify		ASME/DNV	DVR or TAC Cert.	м		R	
b	ITP	DNV Approval		DNV Approval	ITP	м		R	
с	WPS/PQR	DNV Approval	10, 21, 23, 24, 25	ASME Section IX	ITP Sign-off	м	R	R	WPS/PQR already approved
2	Mat. Purchasing								
а	Order Materials	Verify	QCM	ASME/DNV	Purchase order	м			
b	Witness & Hard stamp	Visual		DNV	Survey Report	м		w	Sample to be hard-stamped
с	Witness Testing	Visual		DNV	Survey Report	м		w	Sample to be tested
3	Mat. Receiving								
а	Inspection	Verify	QCM	Comply/PO	Dwg	м			
b	Identification	Verify	QCM	Comply/PO	MTR	м			
с	Certs.	Review	QCM	Comply/PO	MTR, Survey Rep.	м	R	R	
4	Fabrication								
а	Weld seam of shell	Visual	WPS	ASME	Survey Report	м	R	w	
b	Stencil openings	Verify dims		Dwgs	ITP Sign-off	м			
с	Tack nozzles	Visual	WPS	ASME	ITP Sign-off	м			
đ	Weld nozzles	Visual	WPS	ASME	ITP Sign-off	м	R		
е	Tack Hd-Shell	Visual	WPS	ASME	ITP Sign-off	м			
f	Weld Hd-Shell	Visual	WPS	ASME	ITP Sign-off	м			
g	NDE (Radiography)	Visual	3rd Party	ASME Section V	NDE Report	м			
h	*WPT Coupon	Visual	WPS	ASME	Survey Report	м		w	* To be stamped by DNV
i.	WPT Testing	Visual	3rd Party	DNV	Survey Report	м		w	
i	Drill tubesheet/suppts	Visual	Design	ASME	ITP Sign-off	м			
k	Attach tubes-tbst	Visual	Design	ASME	ITP Sign-off	м			
1	Weld Legs	Visual	WPS	ASME	ITP Sign-off	м			
m	Ck Dims	Re-ck		Dwgs/DNV	As Bit dwgs	м		R	
n	Visual inspection	Visual	WPS	Dwgs/DNV	ITP Sign-off	м		w	
5	Testing								
а	NDT (Mag Part.)	Defect Ck	3rd Party	ASME Section V	NDT Report			R	
b	Pressure test	Leak ck		ASME, DNV	Survey Report	м	w	•w	*DNV Test Pres. = 1.3 x MAW
с	Final insp.	Vessel Cmplt		Complete	ITP Sign-off	м			
đ	Stamp nameplate			ASME/DNV	Photo copy	м	R	w	NV Stamp
e	Attach nameplate	Check			ITP Sign-off	м	R		
-	Data report	Complete		ASME, NB	MDR	м	R		
9	Data Book	Complete		DNV	Data Book	м		R	
h	Product Certificate	Complete		DNV	Product Cert.	м			

M = manufacturer inspector; R = review of inspection report SW (spot) = random or interim inspection by DNV W = Witness (hold point)

* OneCIS Ins. Company - A Bureau Veritas Company DNV: Det Norsk Veritas

Note: NDT and other pertinent requirements per spec. will be administered accordingly

Fig D.2: Inspection & Test Plan for Job 10080

Document No.: ANMUS467/PPXXXX/skel /2011-7-27-A

DNV Project No.:		PPXXXX		Manufacturer:	Isotherm	, Inc.	
Vessel / Rig I.D. (Name):	Ν	4S Kings Bay	y /	Location:	Arlington, Te	xas USA	
NB PM-F (DNV):		TBA		NB Yard / Location:	No	rway	
NPS System Ref.:		TBA		Purchase Order Ref.:	Purchase Order Ref.: TBA		
NPS Component Ref.:		TBA		Tentative Delivery Date:	31 Decembe	er, 2011	
Equipment Description:		C. Qty. 2: Se	, Seawater flow awater Condens	ch with a capacity of min. 1300 k 9000 m3/h. ers, each with a capacity of min. r inlet temperature, seawater flow	1760 kW at 30 C, it		
Equipment Identification: Model No ZSC 4214E, Serial No.'s - 10164X & 10165X Model No ZC 1614D, Serial No.'s - 10166X & 10167X							
Pre-Production Meeting Date: 27 July, 2011							
DNV CMC Project Mana	ger:		e-mail:				
Customer / Manufacturer Adnan Ayub: adnan@iso-therm.com Contact: (Q.A. Manager): Warren Patterson e-mail: warren@iso-therm.com							
Manufacturers Quality P Inspection & Test Plan:	lan/	1		, dated 2011-7-27 80B, dated 2011-7-27			
		APP	PROVAL BAS	SIS DOCUMENTS			
DNV Standar	d / Rule		Revision	Normative Code	/ Standard	Revision	
DNV Rules for Ships, Pt. 4	, Ch. 7		July 2011	ASME Section VIII, Divi	ASME Section VIII, Division 1 (reference) 20		
DNV Rules for Ships, Pt. 2	, Ch. 2		July 2011	ASME Section IX		2010 Ed.	
DNV Rules for Ships, Pt. 2	, Ch. 3		July 2011	ASME Section II, Parts A	& B (reference)	2010 Ed.	
NOTE : DNV Rules for S Code for these (ers	TRACTORS			
Name		Loc	ation	Equipment / Component	Separate Pre- Meeting R		
			Texas USA	NDT (Radiography and Magnetic Particle)	No		
		1	Texas USA	Mechanical, Chemistry and Impact Testing	No		

PRE-PRODUCTION MEETING REPORT

Page 1 of 3

Fig D.3: DNV Pre-Production Meeting Report Page 1

(Continued)

		CMC SI	JRVEY AND	PLAN		ROVAL POINTS		
	Activity	Req.'d	D-Code]		Activitiy	Req.'d	D-Code
1.	Receipt of Plan Approval Documents	Yes]	12.	Witness Gas Testing	No	
2.	Review of Plan Approval Documents	Yes	DVR]	13.	Witness Drift Testing	No	
3.	Material Traceability Verification	Yes	"NV Cert's"]	14.	Witness Functional / Performance Testing	No	
4.	Review of WPS / PQR	No	WPR]	15.	Witness Load / Lift Testing	No	
5.	Witness Weld Start-up		"See 17"]	16.	Witness Assembly	No	
6.	Review of Welder Qualifications	Yes	SL		17.	Witness WPT Test Coupons (Pt. 4, Ch. 7, Sec. 8, D401)	Yes	SR
7.	Review of NDT Personnel Qualifications	Yes	SL		18.	Review of Final Equipment Data Books	Yes	PC
8.	Witness or Review NDT (MT, PT, UT, etc.)	Yes	SR		19.	Hard Stamp of Vessels (with DNV "NV" Stamp)	Yes	
9.	Verify Dimensions (Pt. 4, Ch. 7, Sec. 8, B300)	Yes	SL		20.			
10.	Review of M&TE Calibration Records	Yes	SL		21.			
11.	Witness Hydrostatic Testing	Yes	SR		22.			
			DELIVER	RABLE	s/C	ODES		
	Document		Code		2	Document		Code
Des	ign Verification Report		DVR	1	Weld Procedure Review Letter			WPR
Type Approval Certificate TAC		TAC		Surv	ey Activity Log		SL	
Surv	vey Report		SR					
Proc	duct Certificate		PC					
CG	3 Certificate		CG3					
2,22	2/2.7-1 Certificate		LAC]				

Page 2 of 3

Fig D.4: DNV Pre-Production Meeting Report Page 2

Document No.: ANMUS467/PPXXXX/skel /2011-7-27-A

		(Continued)					
CON	MENTS:						
1.	Reference – P.O. to Iso-Therm, Inc. – No. – 149647 / 19309						
2.	Iso-Therm's Inspection and Test Plans (ITP) were "marked up" during this Pre-Production Meeting, and are to be revised / re-submitted to DNV after comments have been incorporated.						
3.	Nozzle Reinforcement Calculations can be according to ASME Section VIII, Division 1 as allowed by DNV Rules for Ships - Pt. 4, Ch. 7, Sec. 4, D103						
4.	WPS's, PQR's and Welder Qualifications may be qualified according to ASME Section IX, as allowed by DNV Rules for Ships - Pt. 2, Ch. 3						
5.	Isotherm, Inc.'s - WPS No.'s	- 10, 21, 23, 24 and 25 have been previously DNV reviewed and approved.					
Sigr		Date: 2011-7-27					
	Principle Surveyor						
Dist	ribution:	E-mail Address:					
Isoth	erm, Inc. – Adnan Ayub	adnan@iso-therm.com					
Isoth	erm, Inc Warren Patterson	warren@iso-therm.com					

Page 3 of 3

Fig D.5: DNV Pre-Production Meeting Report Page 3

DNV Calculations

	American Units	SI Units
Outside Vessel Diameter	42 in.	1066.8 mm
Proposed Shell/Head Thickness	0.5 in.	12.7 mm
Inside Vessel Diameter	41 in.	1041.4 mm
Max. Design Temperature	200 F	93.33333 C
MDMT	-20 F	-28.8889 C
Design Pressure	250 psig	1723689 Pa
Height of Liquid	6 in.	0.1524 m
Density of Liquid Refrigerant	40.29 lbm/cu ft	0.645384 t/cubic m
		645.3838 kg/cubic m
std acceleration of gravity		9.81 m/s ²
Calculating pressure		
1st Value		1723689 Pa
		1723.689 kPa
		17.23689 bar
2nd Value		1672.943 kPa
		16.72943 bar
Greater Value required for Calcula	ating Pressure	17.23689 bar

B500 Nominal Design Stress

In this case: Use for those pressure vessels operating at a temperature higher than 50 C

MIN

(ReH/1.8, Ref/1.6, Rm/2.7, Rm/100000/1.6)

For Shell and Heads: Material properties shall be from that of NV460-1FN (SA516-70)

Ret		
R _{et}	-	
Rm		
R _{m/100000}		
	American Units	
σ,		

Shell Thickness

For carbon and low alloy-steel, shell thickness shall not be less than

Fig D.6: DNV Calculations

Ĵå
DNV

DET NORSKE VERITAS

Certificate No HOU-11-8302

CERTIFICATE FOR PRESSURE VESSEL

Manufacturer:	Isotherm Inc., Arlington, Texas USA			
Manufacturer's order No.:	10080A			
Purchaser:				
Purchaser's order No.:				
The product is intended for				
Yard:	·····			
Yard No.:	52, 53			
Name of vessel:				
DNV ld. No.:				
THIS IS TO CERTIFY:				
that the product:	Two (2) Spray Chillers with capacity of min. 1300kW at -5°C with a LMTD of 4.5°C. Seawater flow 9000 m3/h.			
Type designation:	Model No ZSC-4214E			
Pressure vessel class:	Class I Class II Class III			
Design pressure (bar):	Shell side: 17.24 Tube side: n/a			
Design temperature max/min (degC):	Shell side: 93.3 / -29 Tube side:			
Serial No(s):	10164X & 10165X			
Intended for the following service:	NH3 (Ammonia)			
Has been built and tested in accordance with the rele	evant requirements of:			
DNV Rules for Classification: Ships	HSLC Naval Offshore			
Other standards:				
Remarks (if more than one line, use page 2):				
The product was marked: HOU-11-8302 (NV Stamp)	On: Name plate of Vessel			
This field is only to be filled in when the certification is based on Manufacturing Survey Arrangement (MSA).	on a This Certificate is only valid when signed by a DNV surveyor.			
The undersigned manufacturer declares that the product/syste	em has			
been built and tested in accordance with the specification/star stated above and the conditions referred to in	2 4000 5			
Manufacturing Survey Arrangement No: Quality Statem Castificate No:	E Location: DNV Houston, USA			
Quality System Certificate No:	For Det Norske Veritas AS			
For Manufacturer:				
Place:	Place: Houston, USA			
Date:	Date: 2012-03-14			
(name)				
(title)	Surveyor			
If any person suffers loss or damage which is proved to have been caused by an person for his proved direct loss or damage. However, the compensation shall n	ny negligent act or emission of Cier Norske Verlaa, fren Der Norske Verlaa skal pay compensation to such on scrued an an anount equal to las timast the tee charged for the service in quastice, provided that the maximum tertaaf skall mean the Foundation Det Norske Verlaa as well as all its subskilaries, directors, efficers,			
compensation shall never exceed USD 2 million. In this provision "Det Norske Ve employees, agents and any other acting on behall of Det Norske Veritas.	eritas" shall mean the Foundation Det Norske Veritas as well as all its subsidiaries, directors, officers,			
DET NORSKE VERITAS AS, Veritagveien 1, NO-1322 Havik, Norway,	TeL: +47 67 57 99 00, Fax: +47 67 57 99 11, Org.No. NO 945 748 931 MVA www.dnv.com			

DET NORSKE VERITAS AS, Ventiasvelen 1, NO-1322 Heve, Norwey, TeL: +47 67 57 99 00, Fax: +47 67 57 99 11, Org.No. NO 945 748 931 MVA www.dmx.com Form No.: 74.03a Issue: April 2010 Page 1 of 2

Fig D.7: DNV Product Certificate of Job 10080

DET NORSKE VERITAS

Certificate No HOU-13-02567

CERTIFICATE FOR PRESSURE VESSEL

Manufacturer:	Isotherm Inc., Arlington, Texas USA			
Manufacturer's order No.:	12098A&B			
Purchaser:	-			
Purchaser's order No.:				
The product is intended for				
Yard:	Unknown			
Yard No.:	Unknown			
Name of vessel:	"STOCK"			
DNV Id. No.:				
THIS IS TO CERTIFY:				
that the product:	Two (2) Shell & tube refrigerant condenser			
Type designation:	Model No. SX-2210E & SX1812E			
Pressure vessel class:	Class I Class II Class III			
Design pressure (bar):	Shell side: 17.2 Tube side: 1			
Design temperature max/min (degC):	Shell side: 93.3 / -9.4 Tube side: -			
Serial No(s): Intended for the following service:	12156X & 12157X NH3 (Ammonia) / Seawater			
intended for the following service.	NH3 (Ammonia) / Seawater			
Has been built and tested in accordance with the relev	vant requirements of:			
DNV Rules for Classification: Ships	HSLC Naval Offshore			
Other standards:				
Remarks (if more than one line, use page 2):				
remarks (in more manone inc, use page 2).				
The product was marked: HOU-13-02567 (NV Stamp)				
This field is only to be filled in when the certification is based on Manufacturing Survey Amangement (MSA).	n a This Certificate is only valid when signed by a DNV surveyor.			
The undersigned manufacturer declares that the product/system	m has a K P			
been built and tested in accordance with the specification/stand stated above and the conditions referred to in	Hard			
Manufacturing Survey Arrangement No: Quality System Certificate No:	Spring Date: 5/12/2013			
	For Det Norske Veritas AS			
For Manufacturer:				
Place:	Place: Houston, USA			
Date:	Date: 2013-05-12			
(name)				
(title)	Surveyor			
parano for his proved direct loss or demons. Linearer, the company size shall not	y negligent act or omission of Det Norske Verlas, then Det Norske Verlas shall pay compensation to such It exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum			
compensation shall never exceed USD 2 million. In this provision "Det Nonske Ver employees, agents and any other acting on behalf of Det Nonske Veritas.	e score an ancust equal to service the second point of the service in question, provide that the maximum ritat [®] shall mean the Foundation Det Norske Veritas as well as all its subsidiaries, directors, officers,			

DET NORSKE VERITAS AS, Veritaivelen 1, NO-1322 Heve, Norway, Tet.: +47 67 57 99 00, Pax: +47 67 57 99 11, Org.No. NO 945 748 931 MVA www.dnw.com Form No.: 74.03a Issue: April 2010 Page 1 of 2

Fig D.8: DNV Product Certificate for SX Chiller

DET NORSKE VERITAS

APPROVAL OF MANUFACTURER CERTIFICATE

CERTIFICATE NO. T-1545

This is to certify that the Manufacturer

Isotherm Inc. ARLINGTON TX, United States

is approved for the Manufacture of Welded Pressure Vessels, Class I & II

The approval is granted on condition that Det Norske Veritas' Rules for Classification of Ships

are complied with in all respect

Høvik, 2012-10-04 This Certificate is valid until for Det Norske Veritas AS 2016-12-31 0 • NOLOC ren with A. Giørgio Saia Head of Section Vishnumurthi Ragavendhra Rao DNV local office: Houston - QA Services Surveyor Uche This Dertificate is subject to terms and conditions ovariant. Any significant change in production fluctifies and methods may render this Certificate involut. If any person suffers loss or damage which is preved to have been causaid by any negligent at or or oriestion of Det Norske Vertias, then Det Norske Vertias shall pay comparison to such person for his proved direct the or damage. However, the comparison invited on anount equal to too times the damage direct terms and in out exceeding and the comparison to such persons for his proved direct too the comparison toot Norske Vertias' shall make the Foundation Det Norske Vertias as well as all its subsidiaries, directors, officers, employees, general order acting on behalf of Det Norske Vertias' shall make the Foundation Det Norske Vertias as well as all its subsidiaries, directors, officers,

Fig D.9: Approval of Manufacturer Certificate

APPENDIX E

ISOTHERM DOCUMENTATION

	FI	NAL INSF	PECTIO	N
		11027A		
	SERIAL NO:	11041)	(
SHELL SIDE:		7 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -		(REF.)/REMARKS:
A	NOZZLE LOCATION AN	ND ORIENTATIO	N V	(FAB. DWG)/
В	SUPPORT LOCATION		\square	(FAB. DWG) /
C	NP BRACKET LOCATIO	ON	\checkmark	(FAB. DWG) /
D	WELD CLEAN-UP	Release	Hold	(VISUAL)/
E	SANDBLAST	Yes	No	(CUST. SPEC.)/
F	NAMEPLATE AFFIXED		Í	(S/N MATCH)/
G	NITROGEN CHARGE	Yes	No	(CUST. SPEC.)/
TUBE SIDE:				(REF.)/REMARKS:
A	HEAD LOCATION			(FAB. DWG)/
В	NOZZLE LOCATION A	ND ORIENTATIO	DN 🗌	(FAB. DWG)/
С	WELD CLEAN-UP	Release	Hold	(VISUAL)/
D	SANDBLAST	Yes	No	(CUST. SPEC.)/
E	COATING	Yes	No	(CUST. SPEC.)/
F	NITROGEN CHARGE	Yes	No	(CUST. SPEC.)/
OVERALL:				
A	PAINT TYPE	Primer	Other	Describe:
В	PAINT QUALITY			
С	SHIPPED	As is	Other	Describe:
REMARKS:	<u> </u>	_		
INSPECTION P	ERFORMED BY:	7-[9-]] (Dat	uP te, Initial)	AN

Fig E.1: Final Inspection Checklist

INSPECTION CHECKLIST

JOB N	IUMBER: 1027A	DESIGN SPECIFICATIONS:			
SERIA	L NUMBER: 11042X	SHELL SIDE	TUBE SIDE		
N	CAPACITY (cu.ft) if stamped UM				
в	DESIGN PRESSURE (psig)	260			
N	DESIGN TEMPERATURE (deg F)	200			
	MAT'LS OF CONSTRUCTION MDMT Clause:	UCS66(2)			

No	INSPECTION POINT TYPE*	Q.C.	Date	A.I.	Date
1	DESIGN CALCULATIONS	up	5-6-11	N	10-64
2	MILL TEST REPORTS	WP	7-11-11	C	I
3	MATERIAL IDENTIFICATION STAMPING OF THE BELOW LIST	TED			
3a	FLAT HEAD CHANNEL COVERS (if applicable)	N/A			
3b	ELLIP. CHANNEL and/or SHELL COVERS (if formed plate)	NIA			
3c	FLANGES (If machined plate)	N/A			
3d	TUBESHEETS (if applicable)	up	7-11-11		
3f	SHELLS (if rolled plate)	N/A			
4	OPENINGS	WP	7-11-11		
5	FILLET WELD SIZE	up	7-15-11		
6	WELD SEAM REINFORCEMENT	NA			
7	FIT UP /INTERNAL	up	7-11-11		
8	OVERALL WELD QUALITY:(Visual Insp.) (PT) (RT- 1, 2, 3)	4)			
9	WELDER IDENTIFICATION STAMPING (list):	up	7-15.11		
10	TUBE TO TSHT JT: WELD QUALITY (if applicable)	N/A			
11	TUBE TO TSHT JT:TUBES EXPANDED @ ft-lbs of	of TORQUE			
12	UNIT IDENTIFICATION STAMPING (serial number)				
13	Pneu / Hydro PR. TEST on S/S @ 275 psig.	up	7-19-11		
14	Pneu / Hydro PR. TEST on T/S @ EXEMPT psig.				
15	NAMEPLATE INFORMATION	wp	7-11-11		
	MANUFACTURERS DATA REPORT	UP	7-19-11		

Fig E.2: Inspection Checklist

ISOTHE	RM, INC.		LIQUID PEI	NETRANT	EXAMIN	NATION R	ECORD	
PROCEDURE USED:				ISO-PT 1	REVA			
PRODUCTS USED:			к	CI, INC. W	ELD SHIELD)		
CLEANER:			ND	T FAULT CHI	ECK CLEAN	ER		
PENETRANT:			NDT	FAULT CHEC	K PENETR	ANT		
DEVELOPER:			NDT	FAULT CHE	K DEVELO	PER		
NAME OF EXAMINER:	,			DATE	7-19	-1)	TIME	2:00
LIGHT SOURCE:				2-D CELL N	1AG-LITE			
DRAWING NUMBER:	110	27A	SERIA	L NUMBER		11	041X	
	RECORE	OF INDIC	ATION (DESCR	IPTION AN	D/ OR LO	CATION)		
NON-REJECTABLE	THICKNESS	MAT SPEC.	LOCATION	REJEC	TABLE	THICKNESS	MAT. SPEC	LOCATION

Fig E.3: NDE (Liquid Penetrant) Examination Record

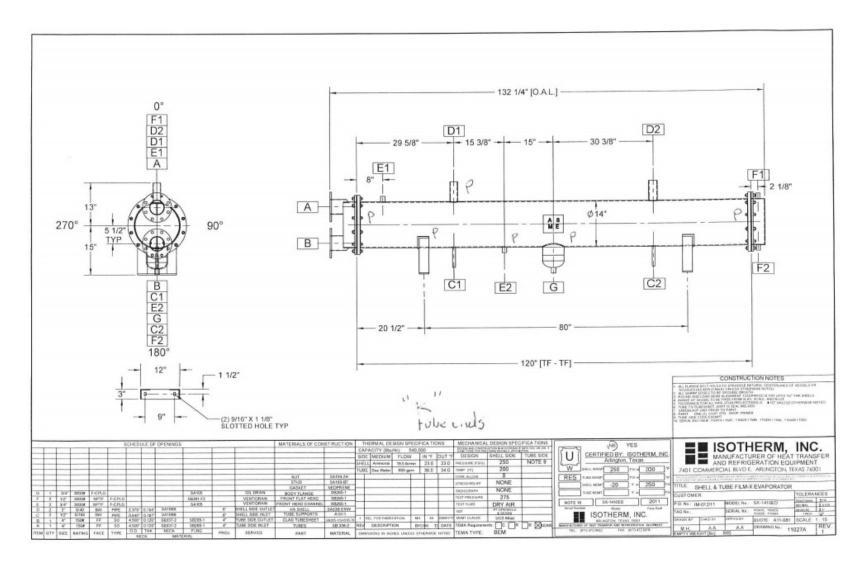


Fig E.4: Weld Map Record

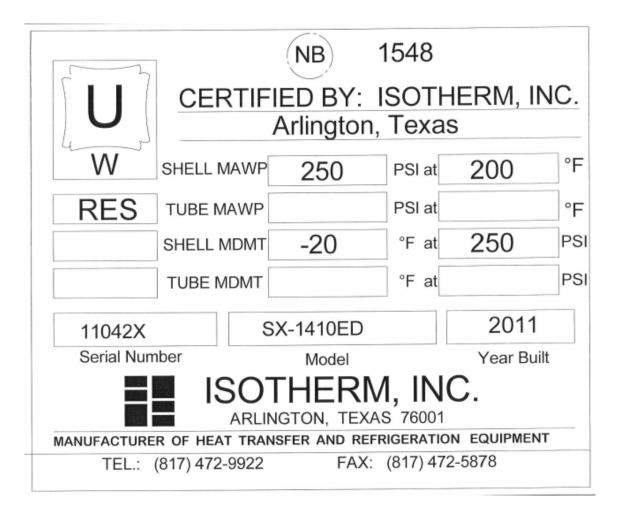


Fig E.5: Nameplate Drawing

FORM U-1A MANUFACTURER'S DATA	REPORT FOR PRESSURE VESSELS
-------------------------------	-----------------------------

(Atternative Form for Single Chamber, Completely Shop or Field Fabricated Vessels Only) As Required by the Provisions of the ASME Boiler and Pressure Vessel Code Rules, Section VIII, Division 1

1. Manufactured an	d certif	ed by Isoth	ierm, Inc., 7	401 Commerce								
2. Manufactured for					61	ame and addr	ess of manuf	acturer)				
					(Name	and address of	of purchaser)					
3. Location of Insta	ation	Not Known				(Name and a	without (
4. Type Verti	Ical		13163 V				3070A, Rev	. 1		1986		2013
(Horizontal or v	ertical, ta	rk) (Manufa	acturer's serial num		(CRIN)		Drawing number	r)		al Board numbe		(Year built)
The chemical a CODE. The de								2010	ER AND P	2011 PRESSURE		
0000. 11000								(/687)		den da, if applica		
	(Code	Case numbers)			(Special Service pe	rUG-120(r))						
6. Shel: SA516-70				.500"	0 in		4" 5.000" (OD)			9' 4.250"		
	(Material spec, number, grade)			nal thickness)	(Corr. allow.)		(Imer diameter)			Longt	h (overall))	
		Type 1	R.T.(Spot or F	70% EI(%)	(H.T. temp)	Time (hr)		utt, Type 1		one otor Mil	70% EI(%)	No. of Courses
8. Heads: (a) Mate			54	516-70						SA516-70		
(-)	-			no, grade)					(Spec. no			
Location (Top, Bo	tion,	Mnimum	Corrosion Crown Radius		Knuckle Radius Elliptical Rati		Conical Apex Hemispherical					onvex or
Ends)		Thickness	Allowance				Angle	Radius	Diameter		Concave)	
(a) Top	\rightarrow	0.460*	0	N/A N/A	N/A N/A	2:1	N/A N/A	N/A	N/A		Concave	
(b) Bottom		0.460*	0	N/A	NIA	2:1	N/A	N/A	N/A		Concave	
If removable, bolts u	ised (de	schoe other	tastenings)			OAte		NVA er, grade, size, mur	(ber)			
9. MAWP	85/2	50		N/A	at r	nax. temp.		200 °F		N/A		
	(inter	nal)		(External)				(İnternal)		(External)		
Min. design metal	I temp.	-50/20	at	85/250		Hydro, pne	u, or comb	. test pressur		PNEU. a	at 275 ps	i .
Proof test												
10. Nozzles, inspect	on and	satety valve	openings:									
Purpose (Inlet, Outlet,	No.	Diameter or	Туре		torial	Nozzle Thic		inforcement		ent Details		on (Insp.
Drain, etc.)	1	Size 12"	WE	Nozzle SA53B-ERW	Flange	Nom. 0.375"	Corr.	Material Inherent	Nozzle Welded	Flange	- 9	xen.)
Outlet		16"	WE	SA53B-ERW SA53B-ERW	<u> </u>	0.375"	-	Inherent	Welded		 	
Pump Suction	2	5"	WE	SA 1068		0.258"	-	Inherent	Welded		 	\neg
Liquid Make-up	1	1 1/2"	WE	SA 106B		0.200"	0	Inherent	Welded			
Level Column	2	1 1/4"	WE	SA 106B		0.191"	0	Inherent	Welded			
Additiona/Nozzies - Se	Ne Attaci	ed U-L.										
11. Supports: Skirt	(Yes o		(fumber)	(iunber)	Other		N/A (excribe)	Att	ached		ed to item ere and how)	
12. Remarks: Manufactur					Commissioned Insp			for the following	items of the			
N/A												
Medel - Imp					number, Manufactur							
Model: VPR- inspection	openi	ngs per U	G 46(a).	UG 22 (a) on	ly consider	red in de	sign.	sevices by	others	. NO		
				FICATE OF SH								
We certify that the st AND PRESSURE VE	atement ESSEL C	a made in this r COE, Section	eport are corre VIII. Division 1.	ct and that all det	alls of design, mat Authorization No.	terial, construx	ction, and wo expires		is vessel co une 17, 20		ASME BO	LER
-						31095					#	
Date 11/22/2013 Co. name Isotherm, Inc. Signed Warve C. Patterson (Manufacturer) (Representative)										\sim		
					EOF SHOP/F	IELD INSP	ECTION					
Versel constructed by			koho	m loc		# 7/01.04	monorial Shu	d East Minak	Tarra 7	6001		1.64
Vessel constructed by Isotherm, Inc at 7401 Commercial Bivd. East, Arlington, Texas, 76001 the undersigned, holding a valid commission issued by The National Board of Boiler and Pressure Vessel Inspectors and/or the State or Province												
and employed by OneCIS Insurance Company, of Lynn, MA have inspected the component described in this Manufacturer's Data Report on December 8, 2013 and state that, to the best of my knowledge and belie (, the Manufacturer has constructed this pressure vessel in accordance with ASME BOILER AND												
PRESSURE VESSEL CODE, Section VIII, Division 1. By signing this certificate neither the Inspector nor his/her employer makes any warranty, expressed or implied, concerning												
 the pressure vessel of property damage or a 	describe	d in this Manufa	acturer's Data F	Report. Furthermo	ore, neither the In	spector nor his	sheremploy	er shall be liable	in any man	nerforanyp	ersonaling	uryor
			-									
Date 12/0	8/2013	3 Signa	™ (Jection Ka	ctor)	Commissions	04	ition al Bioland (Incl.)	9441. endarsemants		ce and numb	er)
										-		

1864024 exe: v6.2.66

Fig E.6: ASME Data Report

Form and version: U1A-17

BACK TO MAIN

Engineering Time Sheet Week of 7/5/13

Job #	Assigned to	Date Assigned	ate Assigned Completed		Next Job #	Comments
13055A	J.B.	6/28/2013	7/2/2013	2	13035B	
13035B	J.B.	7/2/2013	7/2/2013	1	13035C	
13035C	J.B.	7/2/2013			13024B	Even though SX-1410ED was made before, old design was given; modifications required to reflect current design
13024B	J.B.	3/12/2013	See Notes		13024A	Detail dwgs are complete and have been all approved by TR for proceeding for fabrication; setup of brown folder and data reports are pending.
13024A	J.B.	4/8/2013			13024A	Was originally assigned to AKH; detail dwgs to be checked by AA; due date to be sent to client: 7/3/13; dwgs in SI units req'd
13035D	W.K.	7/2/2013			13035E	Use 13055B for reference; to be released
13035E	W.K.	7/2/2013				Use 13054B for reference; to be released
13048A	J.C.	7/1/2013			13056A	Was originally assigned to J.B. on 6/24/13; given to J.C. 7/1/13; working on detail dwgs
13056A	J.C.					Waiting for client to respond about old dwg made during Thermofluid
13041A	A.M.	7/2/2013			13042A	Project on urgent basis; shall use 11038A as reference, with few changes; recently received changes in thermal design by ZA on 6/28/13
13042A	A.M.	7/2/2013			13024C	Project on urgent basis; shall use 11045A as reference, w/ few changes; recently received changes in thermal design by ZA on 6/28/13
13024C	A.M.	4/8/2013				Was originally assigned to AKH; detail dwgs to be checked by AA; due date to be sent to client: 7/3/13; dwgs in SI units req'd
13040A-D	A.G.					

Fig E.7: Engineering Time Sheet

APPENDIX F

SALES DOCUMENTATION

Date of Inquiry	Date Quoted	Quote #	Туре	Qty	Rev.	Price	Status	If Lost, Why?
12/23/2014	1/6/2015	AA15-001	ZKU, ZEX	2	0	\$73,430	Lost	Project dead
1/5/2015	1/9/2015	AA15-002	ISO	1	0	\$5,700	Open	
12/12/2014	1/12/2015	AA15-003	ZFC	1	0	\$77,899	Lost	End user cancelled
1/10/2015	1/12/2015	AA15-004	Vess	6	0	\$89,546	Won	
1/8/2015	1/14/2015	AA15-005	ZKU	1		\$76,890	Hold	
1/9/2015	1/15/2015	AA15-006	ZKU	1	0	\$112,470	Hold	
1/7/2015	1/16/2015	AA15-007	Retest, Retube	2	0	\$4,000	Won	
1/15/2015	1/22/2015	AA15-008	Vess	1	0	\$6,513	Lost	Project dead
		AA15-009				\$28,895		
1/26/2015	1/30/2015	AA15-010	Vess					
1/29/2015	2/4/2015	AA15-011	ZEX, ZKU, ZEU	7	0	\$620,232	Lost	
1/29/2015	2/6/2015	AA15-012						
1/28/2015	2/6/2015	AA15-013	ZE	2	0	\$13,972	Lost	Although client did not get job, we were higher than competitor

Fig F.1: Quotation Status Template