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ABSTRACT

There is continuous expansion of computing capabilities in mobile devices which

demands higher I/O bandwidth and dense parallel links supporting higher data rates. High-

speed signaling leverages technology advancements to achieve higher data rates but is lim-

ited by the bandwidth of the electrical copper channel which have not scaled accordingly.

To meet the continuous data-rate demand, Simultaneous Bi-directional (SBD) signaling

technique is an attractive alternative relative to uni-directional signaling as it can work at

lower clock speeds, exhibits better spectral efficiency and provides higher throughput in

pad limited PCBs.

For low-power and more robust system, the SBD transceiver should utilize for-

warded clock system and per-pin de-skew circuits to correct the phase difference devel-

oped between the data and clock. The system can be configured in two roles, master and

slave. To save more power, the system should have only one clock generator. The master

has its own clock source and shares its clock to the slave through the clock channel, and the

slave uses this forwarded clock to deserialize the inbound data and serialize the outbound

data. A clock-to-data skew exists which can be corrected with a phase tracking CDR. This

thesis presents a low-power implementation of forwarded clocking and clock-to-data skew

optimization for a 40 Gbps SBD transceiver. The design is implemented in 28nm CMOS

technology and consumes 8.8mW of power for 20 Gbps NRZ data at 0.9 V supply. The

area occupied by the clocking 0.018 mm2 area.
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1. INTRODUCTION

1.1 High Speed Serial Links

Data processing capabilities of computer and mobile systems have tremendously

increased which are primarily enabled by integrated circuit scaling and developments in

multi-core, multi-processor based computer architectures [1]. However, this increase is

not proportionally scaled for the number of I/O pins. The pin count on chip packages is

limited and further hindered by printed circuit board wiring constraints.

High-speed signaling techniques have utilized semiconductor process technology

improvements and achieve high data rates. A typical high-speed electrical link system is

shown below in Figure 1.1.

Figure 1.1: High Speed Electrical Link System1

1*Figure reprinted with permission from CMOS Nanoelectronics: Analog and RF VLSI Circuits by
Krzysztof Iniewski, McGraw-Hill Publishing Co., New York, USA. Copyright c⃝2011 by McGraw-Hill
Education, LLC.
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Low-speed parallel data streams are serialized by a transmitter to overcome the

constraint presented by the count of high-speed pads in chip packages and printed circuit

board (PCB) wiring, which have not siultaneously as the MOSFET transistor. We use

low-swing differential transmitter for better common-mode noise rejection and reduced

crosstalk[2].

The incoming signal is sampled at the receiver side and restored to CMOS levels,

and then deserialized to lower-speeds. The data is synchronized via high-frequency clocks,

which are generated using a phase-locked loop (PLL) based frequency synthesizer at the

transmitter. The clocks used for sampling at the receiver are aligned to the data with the

help of a clock and data recovery system [2].

1.2 Electrical Channel

Figure 1.2: A Typical Electrical Backplane2

Copper-based electrical channels are commonly used in current computing sys-

tem. The lengths of these channels can vary from few inches (e.g. processor-to-memory

2*Figure reprinted with permission from CMOS Nanoelectronics: Analog and RF VLSI Circuits by
Krzysztof Iniewski, McGraw-Hill Publishing Co., New York, USA. Copyright c⃝2011 by McGraw-Hill
Education, LLC.
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interconnection) to several meters (multi-layer backplanes) depending on the required ap-

plication. A typical backplane system showing electrical interconnects is shown in Figure

1.2.

Electrical signals propagate through these copper interconnects. The bandwidth of

electrical channels is restricted by loss at higher freuqencies exhibited by the copper traces,

and the reflections caused from impedance discontinuities and adjacent signal crosstalk[3].

The frequency response of these channels for different channel lengths is shown below in

Figure 1.3.

Figure 1.3: Frequency Response of Channels With Different Lengths3

As seen from the plots, the loss increases with channel lengths. Overall, all chan-

nels exhibit a low-pass characteristic, resulting in a degraded received signal whose energy

is now spread over multiple bit periods.

3*Figure reprinted with permission from CMOS Nanoelectronics: Analog and RF VLSI Circuits by
Krzysztof Iniewski, McGraw-Hill Publishing Co., New York, USA. Copyright c⃝2011 by McGraw-Hill
Education, LLC.
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1.3 Simultaneous Bidirectional Links

As discussed in previous sections, even though process technology advancements

allow for high performance electrical links, the channel forms the bottleneck in the overall

system design limiting the maximum data rate flowing through the interconnects.

Simultaneous bi-directional (SBD) signaling technique is another alternative which,

relative to unidirectional signaling, can work at lower clock speeds, exhibits better spec-

tral efficiency and provides higher throughput in pad limited PCBs. In an SBD transceiver,

each side can transmit and receive data at the same time. An SBD system conceptual dia-

gram is shown in Figure 1.4.

Figure 1.4: Basic Concept of SBD Link System

The transmitter on the left side delivers the outbound signal, V1, on the channel
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and receives the inbound signal, V2, generated by the transmitter of the right side. In the

receiver-end on the left side, the receiving signal is the superposition of V1 and V2, so

the SBD receiver should have the ability to separate the V2 from V1+V2. The separation

needs a Vgen which can produce a replica of the the outbound signal V1 and a subtractor

which can subtract the outbound signal component from the receive-end signal [4][5].

1.4 Research Contribution

The SBD transceiver will be able to achieve lower power and more robustness, if

it utilizes source-synchronous forwarded clock system and per-pin de-skew circuits to to

correct the phase difference developed between the data and clock. This requires the clock

pattern to be sent over the channel. The SBD system can be configured for two roles,

master and slave. The system should have only one clock generator to save power. The

master has the clock generator and shares this clock to the slave through the clock channel,

and the slave uses this forwarded clock to deserialize the inbound data and serialize the

outbound data.

In a forwarded-clock system, the frequency at the slave side is exactly equal to

the frequency at master side. Hence only the phase between clock and data needs to be

corrected which can be achieved with a phase-tracking CDR. This thesis presents imple-

mentation of forwarded clocking and clock-to-data skew optimization for a 40 Gbps SBD

transceiver. Another aim of this thesis is to focus on a low-power implementation of the

overall clocking and skew-optimization for the SBD system.

1.5 Thesis Organization

The thesis is organized as follows. Section 2 summarizes the literature survey for

the SBD transceiver and latest forwarded clock architectures. Section 3 introduces the

5



SBD system and clocking analysis in detail. Section 4 shows the proposed circuit level

implementations. Section 5 discusses the simulation results. Section 6 concludes this

thesis. References used for analysis and comparison are mentioned at the end.
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2. LITERATURE SURVEY

2.1 Source-Synchronous Forwarded Clock Systems

A source-synchronous clock (or a forwarded-clock) in multi-channel system helps

to achieve higher data-rates and allows low to high frequency jitter tracking [6]. This

system is also termed as a mesochronous system and has been used in processor-memory

interfaces like Intel Quick Path Interconnect (QPI) and multi-processor communication

like Hypertransport [7].

Figure 2.1: Conventional Forwarded Clock System1

1*Figure reprinted with permission from CMOS Nanoelectronics: Analog and RF VLSI Circuits by
Krzysztof Iniewski, McGraw-Hill Publishing Co., New York, USA. Copyright c⃝2011 by McGraw-Hill
Education, LLC.
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A block diagram of a conventional forwarded clock system is shown in Figure

2.1. An extra channel is used in the source-synchronous architecture to send a fixed clock

pattern from transmitter side to the receiver. A replica transmitter drives a fixed pattern

like 1,0,1,0 which results in a clock pattern at the output of this transmitter and is fed onto

this extra channel. This ensures maximum jitter correlation between data and clock. A

clock amplifier is used at the receiver side to account for any channel loss and distribute

the clock.

The clock and data channel will exhibit a mismatch in time-delay due to differ-

ent driver strengths, loading or trace lengths. This will degrade the overall system timing

margins and limit the effective jitter tracking. Moreover, as the frequency of the data jitter

changes from low to moderate frequencies, the phase shift becomes larger and the dif-

ferential jitter between the data path and clock path increases[8]. The following equation

defines a relation between the normalized differential jitter JNOR and the skew ∆T caused

by different signal propagation delay [8],

|JNOR(ω)| = |1− e−jω∆T | (2.1)

Figure 2.2 plots the above expression for different jitter frequencies. We can easily

see that the normalized differential jitter changes proportionally with clock-to-data skew.

Large skew causes jitter gain > 1.

Also, higher frequency jitter has higher gain at the same skew value. Hence a low-

pass filter is needed which can filter out high frequency jitter[8]. Also, for a given jitter

frequency, skew between data and clock also affects the jitter tracking bandwidth as shown

in Figure 2.3.

Commonly used de-skew mechanisms which reduce the skew between incoming

data and clock and help in sampling the data pattern at the optimal point include Delay-
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Figure 2.2: Normalized Jitter vs Skew

Figure 2.3: Normalized Jitter vs JTB

locked loops (DLL) or Phase-locked Loops (PLL) with Phase interpolators(PI), or an

Injection-Locked Oscillator. A frequency domain model is shown below in Figure 2.4.

Including the jitter transfer function HCR(jω), from the de-skew circuitry [8], the nor-
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malized differential jitter equation (1) is modified as shown below:

|JNOR(ω)| = |1− e−jω∆T |HCR(ω)|| (2.2)

Figure 2.4: Frequency Domain Model for Forwarded Clock Link2

A DLL with a PI shows an all-pass characteristic as shown in the table below and

hence cannot filter the amplified high-frequency jitter. A PLL with a PI has inherent low-

pass characteristics but implementations of PLLs which have high bandwidth and consume

low power are not easy to implement and consume significant silicon area [6]. Moreover,

PLL designs typically involve stability concerns. An ILO based de-skew circuit exhibits

high jitter tolerance at a low complexity level when compared with other topologies [8].

For different skew elements, the following table plots the jitter transfer function

and the jitter tolerance transfer function:

For comparison of different de-skew architectures, The following parameters were

used for modelling:
2*Figure reprinted with permission from "Receiver Jitter Tracking Characteristics in High-Speed Source

Synchronous Links" by Ahmed Ragab, Yang Liu, Kangmin Hu, Patrick Chiang, and Samuel Palermo, 2011.
Journal of Electrical and Computer Engineering, vol. 2011, Article ID 982314, Copyright c⃝2011 by
Hindawi Publishing Corporation.
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Transfer Function PLL-PI ILO DLL-PI

HCR(jω) 1

1+j f
fp

1

1+j f
fp

1

JTOL 0.5UI−Q∗σrms

1−ejω∆T |HCR (f)|
0.5UI−Q∗σrms

1−ejω∆T |HCR (f)|
0.5UI

1−ejω∆T |HCR (f)|

Table 2.1: Transfer Function and JTOL For Different De-skew Elements

• 20Gb/s data rate, 5GHz clock frequency

• PLL

– 3-dB bandwidth f3dB = 150MHz

– 2nd order PLL jitter TF:

H(s) =
2ζωn + ω2

n

s2 + 2ζωn + ω2
n

(2.3)

– ζ = 1.2 (Damping factor)

– σ = 0.2ps @ BW > 10 MHz

• DLL

– All pass TF

• ILO

– K = 0.5 (injection strength)

– For a ring oscillator topology

A =
n

2ωosc

sin(
2π

n
) (2.4)

– n = 4 for 4 delay stages ring oscillator
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– ωosc = free running frequency which can be adjusted to achieve desired output

phase shift

– σ = 0.2ps @ K = 0.025, σ = 0.1ps @ K = 0.2, σ = 0.08ps @ K = 0.35

The jitter tolerance expression for different de-skew architectures as mentioned in

Table, is plotted for different skew values, assuming the above parameters in Figure 2.5.

The plots confirm that DLL with PI has no low-pass filter characteristics and the jitter

tolerance for the high skew is worst at high frequency. PLL jitter tracking bandwidth is

required to be smaller than 10 times of the reference frequency, thus exhibiting an inherent

limitation. Moreover PLLs are susceptible to power-supply noise and have loop stability

concerns which need to be addressed carefully.

An ILO inherently will perform a low-pass filtering on the received clock signal.

ILOs too are susceptible to power-supply noise but the severity is topology dependent [8].

The jitter tracking bandwidth of an ILO is a function of injection strength K and free-

running frequency, and shows a wider BW range and thus ILO seems to a better choice for

de-skew in forwarded clock systems. Recent forwarded-clock systems as in [9][10][11]

also select ILO as an appropriate de-skew element.

Recent Literature also has used ILO as an optimal solution for de-skewing in for-

warded clock system as seen in [9][10][11][12]. The theoretical de-skew range for an ILO

is ±90◦. Multiple ILOs can be configured to achieve a complete deskew range of 360◦.

However, unlike PI based systems, ILO face issues when it approaches the outer bounds

of this range, resulting in a more complex architecture as seen in [10]. Moreover, if the

clock architecture is quarter-rate, this range is relaxed to ±45◦ and ILOs can achieve this

range easily with more degrees of freedom like injection-strength tuning to get better jitter

tolerance.

12



Figure 2.5: Jitter tolerance v/s Jitter Frequency Plots For Different Clock Skew Values

2.2 Clock and Data Recovery Circuits

A clock and data recovery (CDR) is a closed-loop system which samples the in-

coming data to extracts clocking information from it and reconstructs the original transmit-

ted bit-stream at the receiver. The clocks from the CDR should have an effective frequency

equal to sample the incoming data and a proper phase relationship with the data for enough

timing margins and desired bit-error-rate (BER).
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The eye-diagram which is shown in the Figure 2.6 below is constructed by super-

imposing consecutive data-bits onto a single-bit time. The arrow shows the optimal sam-

pling point. The main aim of the CDR is to produce clocks which can sample the data

at this indicated point, resulting in as few errors as possible or in other words, the lowest

bit-error rate [13].

Figure 2.6: Optimal Position for Sampling Data

The data transitions apparently seem to wander in position. This can be caused by

either a deterministic phase offset between the TX and RX clocks or a timing uncertainty

also known as jitter. The CDR design should be able to overcome these issues in order to

achieve correct data reconstruction at the receive side [13].

The CDR design also depends on what clocking architecture is used in I/O system

viz. common clocking, forward clocking or embedded clocking. In common clocking

is synchronized hence there is no active de-skew. Frequency in forwarded clocking is

14



exactly equal at the TX and RX side, which implies CDR has to take care of a determin-

istic skew between data and clock caused by driver strength and loading mismatches and

trace mismatches. In embedded clocking, both frequency and phase are unknown at the

receiver side. Here CDR design is complex and involves extracting frequency and phase

information. Moreover the skew has a random component which implies continuous phase

correction between data and clock.

Jitter refers to the timing uncertainty in the phase of clock edges caused by noise

(device noise, thermal and power supply variations) in the system. The jitter can be either

deterministic (DJ) or random (RJ). The common types of DJ found in real systems are data

dependent jitter, duty cycle distortion (DCD), and uncorrelated (to the data) bounded jitter

such as supply noise induced jitter[13]. The dominant source of DJ is from inter-symbol

interference (ISI). Thermal noise and flicker noise from active and passive components

basically contribute to the RJ. Often these jitter components are uncorrelated and should

be filtered by the CDR. [13]

2.2.1 Types of CDR

CDRs can be either analog or digital. Another classification is either a single-loop

or a dual-loop CDR. Analog PLL-based CDRs are the most prevalent timing recovery

systems both in industry and research. The block diagram of an analog CDR is shown in

Figure 2.7.

A PLL-based CDR consists of a phase detector (PD), that characterizes the phase

difference between data and clock, a charge-pump, which converts the output of phase

detector into current, an analog loop filter which extracts averages of the phase-detector

output and sets the CDR bandwidth. The last stage shown is the voltage controlled oscil-

lator (VCO) which will adjust its frequency based on the loop filter to optimally sample

the data in the middle of the eye[14].
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Figure 2.7: (a) Embedded Clocking and (b) Forwarded Clocking Architecture3

Digital CDRs replace the charge-pump and analog loop filter with their digital

3*Figure reprinted with permission from CMOS Nanoelectronics: Analog and RF VLSI Circuits by
Krzysztof Iniewski, McGraw-Hill Publishing Co., New York, USA. Copyright c⃝2011 by McGraw-Hill
Education, LLC.
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Figure 2.8: Analog PLL-based CDR

counterparts which can be a digital accumulator with phase mixers/interpolator[15]. A

common architecture is shown below in Figure 2.9. Digital CDRs offer reduced data

dependent jitter caused by loop filter and offsets due to current mismatches in the charge-

pump. Digital CDRs support supply scaling and its loop dynamics is PVT invariant.

Figure 2.9: Digital CDR
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2.2.2 CDRs in Forwarded-Clock I/O Systems

In a forwarded clock system, the clock is sent on a separate channel. Hence effec-

tively, the frequency of data and sampling clock are exactly equal and correlated. However,

due to different strengths and routing, there will be deterministic skew between data and

clock which needs to be corrected. A low-overhead CDR can accomplish this. Implemen-

tations in [28]-[29] are analog DLL based CDRs. These CDRs are process-sensitive and

consume large area. In [16][17][18] digital CDRs have been implemented with are process

invariant, consume less area and compatible with supply-scaling.

Reference Reutemann Loke Mansuri Li
JSSC 2010 JSSC 2012 ISSCC 2013 VLSI 2014

CDR Type Analog PLL Analog DLL Digital Digital

Data-Rate 3.2-6.4 0.4-8.0 6.0-9.0 2.4-6.4

Area(mm2) 0.16 - 0.025 0.36

Energy Efficiency4(pJ/b) 4.5 @ 6.4Gb/s 1.95 @ 6.4Gb/s 1.02 0.56

Table 2.2: Comparison Between Digital and Analog CDRs

2.3 Existing Simultaneous Bi-directional Link Architectures

A SBD transceiver can double the data rate per pin compared to a conventional

uni-directional transceiver since it transmits and receives data on the same channel[19]-

[20]. At the receiver-end in the SBD transceiver, some mechanism is needed to extract

the incoming signal. From the literature survey, the SBD transceivers achieved this either

by changing the comparator reference voltage according its output data [19]-[21][22] , or

4*Estimation includes complete receiver.
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adapted switched-capacitor hybrid (SCH) to subtract the outbound signal generated by the

replica driver [4][5], or used resistor-transconductor (R-gm) hybrid [20]. The analysis of

the data-path implementation is outside the scope of this thesis.

While SBD has better spectral efficiency when the performance is compared to

uni-directional signaling, this does not imply that it should be used for all the high-speed

systems. The major interference or uncertainty in the separated signal is the replica driver

mismatch, the long channel and the echoes introduced by the channel discontinuities which

restrict SBD aggregate rate [5]. As the chip-to-memory I/O transceivers designs target

short channels, low power and high pin density, a SBD signaling based transceiver can

achieve higher aggregate data rate.

2.4 Clocking Scheme in Existing SBD Links

For low-power and more robust system, this SBD transceiver should utilize for-

warded clock system and per-pin de-skew circuits to correct the phase difference devel-

oped between the data and clock. References [19]-[23][21][22][20] focus on the data-path

implementation of the SBD system and do not mention any clocking scheme for their

proposed SBD system. In [24], a forwarded-clock system with analog-type PLL is im-

plemented for correcting clock-to-data skew. Plesiochronous clocking with a PI-based

clocking-recovery system is used in SBD link described in [4].

As seen in the Figure 2.10, transmit and receive sides do not share the clock gen-

erator, resulting in a higher overall power. The complexity of the clock-recovery system is

also higher since it needs to determine frequency of the clock and correct phase between

data and clock. The power reported is. A similar clocking implementation is also found in

[25]. In SBD link of [5], uni-directional clocks are forwarded from both sides on separate

channels, which implies use of two dedicated channels for clock which is also not power

efficient. Multiphase clocks are generated using a Delay-Locked Loop and clock-to data
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skew is corrected using a phase interpolator.

Figure 2.10: SBD Link Architecture with plesiochronous clocking.5

Figure 2.11: SBD Link Architecture for with uni-directional clocks forwarded in both
directions.6

5*Figure reprinted with permission from "A 1-Gb/s bidirectional I/O buffer using the current-mode
scheme" by Jae-Yoon Sim, Young-Soo Sohn, Seung-Chan Heo, Hong-June Park and Soo-In Cho, 1999.
IEEE Journal of Solid-State Circuits, vol. 34, Copyright c⃝1999 by IEEE.

6*Figure reprinted with permission from "An 8 Gb/s Simultaneous Bidirectional Link with On-die Wave-
form Capture" by B. Casper, A. Martin, J. E. Jaussi, J. Kennedy, and R. Mooney, 2003. IEEE Journal of
Solid-State Circuits, vol. 38, Copyright c⃝2003 by IEEE.
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3. SIMULTANEOUS BIDIRECTIONAL TRANSCEIVER ARCHITECTURE

The design goal is to build a 40 Gb/s simultaneous bidirectional source-synchronous

transceiver which implies 20 Gb/s flowing in each direction simultaneously between the

2 chips. The transceiver should support operation over the 6 channel with 12dB loss at

the 10GHz Nyquist frequency. Figure 3.1 shows the insertion loss and return loss of the

target channel. A source-synchronized (forwarded clock) architecture should be utilized

for lower power consumption. A key objective is excellent power-efficiency, power target

< 0.5pJ/b.

Figure 3.1: Frequency Response for 6" FR4 Channel

A proposed system-level block diagram is shown below in Figure 3.2. The sys-

tem can be configured as master or slave by the settings. The master side has its own

clock source which is a bring-in quarter-rate clock in this project, and it forwards the syn-
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chronized differential quarter-rate clock through the clock channel to the slave side as the

standard forwarded clock system. In order to save a clock generator, the slave should re-

utilize the forwarded clock source as the transmitter clock, but the skew between data and

clock in the master will dramatically increase to 2X channel propagation time.

Figure 3.2: System-Level Diagram for Proposed SBD Link

As shown in the system-level block diagram of the entire SBD transceiver archi-

tecture, both sides have identical blocks since any side can be configured as master or

slave. Random PRBS pattern generated at 1.25Gbps rate is multiplexed using master-side

clock and a 16:1 multiplexer to transmit 20Gbps data from master to slave. This data at

the slave-side is separated using a subtractor for further equalization and de-multiplexing.

A separate channel forwards differential quarter-rate clock from master to slave. The slave

receives and buffers the clock and feeds it to a de-skew circuit which aligns the clock to

sample the incoming data optimally. A first-order CDR based on edge-rotation [18] helps

to track phase drifts due to PVT variations.

Another random stream of data is generated at slave-side which is multiplexed

using the forwarded-clock to simultaneously transmit 20Gbps data to the master-side. This
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slave-side data is separated using a subtractor circuit, equalized and de-multiplexed with

the master-side clock. Thus, simultaneous data transmission from master to slave occurs

on a single channel.

Figure 3.3: Data Transmission from Master-to-Slave: Skew ~0

Figure 3.3 shows a typical skew scenario in a conventional master-slave based SBD

link. When the data is transmitted from master to slave as shown above, skew is small since

driver strengths and trace distances are similar.

However, a critical path transpires when data is received from slave to the master as

shown in Figure 3.4, since the skew is quite large due to different trace lengths and loading

(> 2 trace delays). We have a 6 FR4 channel whose propagation delay is 180ps/inch [26].

With this estimate, the skew is larger than 2160ps.
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Figure 3.4: Data Transmission from Slave-to-Master: Skew > 2*trace delay (~2160ps)
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4. PROPOSED CLOCKING SCHEME

The forwarded clock path is unidirectional as compared to data path which is bidi-

rectional. This path can be broadly broken down into the following blocks: Clock Gener-

ation, Forwarded-Clock Transmitter, Clock Buffering, De-Skew Circuit. These blocks are

described in detail in the following sections:

4.1 Multiphase Clock Generation

Quarter-rate transceiver architecture is the preferred choice in recent literature

[9][27][10][11] as it provides higher timing margins for the samplers at the receive side

even though the average C.V 2.f power is approximately similar to half-rate architectures.

Also quarter-rate clocks allow higher fan-out for buffers leading to lower clock distribu-

tion power. For the above mentioned reasons, we have selected quarter-rate architecture

for this project. However, for correct serialization and deserialization of data, quadrature

phase spacing is critical and requires additional circuitry for calibration as seen in [11].

A 40 Gb/s SBD transceiver is sending 20 Gbps data from both directions on the

same channel. Hence, quarter-rate clock frequency for this system is 5GHz. The clock is

uni-directional and forwarded from master to slave. Any side can be configured as master

or slave.

At the master side, a differential 5 GHz clock from an external source is injected

into an injection-locked oscillator (ILO) to generate four phases to multiplex outgoing

data [27]. As shown in the figure below, clocks are injected into a two-stage differen-

tial injection-locked oscillator using AC-coupled inverters with resistive feedback. The

schematic of the ILO is shown in Figure 4.1 below.

The output phases are balanced by adding dummy injection buffers. The drive

strength of the injection buffers’ are controlled using a 3-bit digital control and it helps in
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optimizing the locking range. The ILO employs cross-coupled inverter delay cells which,

relative to current-starved delay cell-cells [9], generate a rail-to-rail output swing with

better phase spacing over a wide frequency range[27]. The ILO’s frequency is controlled

using the voltage signal EN-VCTL externally. This helps to finely tune frequency of the

ILO by adjusting strength of the pull-down transistor in the delay-cell[27].

Figure 4.1: Injection-Locked Oscillator for IQ Generation1

Accurate quadrature phase spacing is important for transmitter to achieve proper

data serialization. Injecting the clock with same input frequency into the ILO as the output

frequency will lead to phase inaccuracies[12]. A simple solution is to inject all four phases

into the ring of the ILO, which would lead to additional clock routing and significant power

consumption.

Hence, for quadrature-error calibration of IQ gen phases, a Quadrature Locked

Loop or QLL [11] is added to the system. The QLL is a closed-loop system which takes
1*Figure reprinted with permission from "An 8-to-16Gb/s 0.65-to-1.05pJ/b, Voltage-Mode Transmitter

With Analog Impedance Modulation Equalization and Sub-3 ns Power-State Transitioning" by Y. Song,
et.al., 2014. IEEE Journal of Solid-State Circuits, vol. 49, Copyright c⃝2014 by IEEE.
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the consecutive clock phases (i.e. I and Q) as inputs. A XOR-XNOR based quadrature-

phase detector generates UP or DN signal based on the quadrature error between these

clocks. This error is averaged by a simple charge pump and a loop filter, and is used to

adjust the oscillator’s free-running frequnecy. In this way, the loop is complete and will

minimize any differences in the injected frequency (finj) and inherent natural frequency

(fo|) of the oscillator. The loop locks when the difference of |finj-fo| close to zero. The

block diagram of the closed-loop QLL is shown below.

Figure 4.2: Quadrature Locked Loop for Phase Correction

The following plots verify the functionality of the Quadrature Locked Loop. The

injected clock frequency is 5 GHz. The control voltage of the ILO settles to 504 mV after

50ns and frequency of oscillation is 5 GHz.

The four clock outputs from the ILO are fed into a 16:1 MUX to transmit 20Gbps

data from master to slave.

4.2 Forwarded Clock Transmitter

TX driver used in the SBD link is a low-swing NMOS cross-coupled driver with

100-200mV pk-to-pk programmable swing, similar to the one used in [9]. The schematic
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Figure 4.3: ILO Control Voltage v/s Time.

Figure 4.4: ILO Frequnecy v/s Time.

for the output driver is shown below. Output clock driver at the TX side to forward differ-

ential clock-phases is similar to the data-path output driver to maximize jitter correlation

between the data and clock paths.

Compared to the transmitter on the data-channel, clock transmitter does not need

16:8 and 8:4 serializer, since the data is re-timed at the last-stage serializer, and this last

stage contributes maximum to the jitter. Hence, quarter-rate differential clock pattern is

forwarded onto a separate channel via the output TX driver by serializing a fixed pattern
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Figure 4.5: Low Swing Output Driver for Clock Transmitter

(1,1,0,0 in this case) at the last stage 4:1 serializer. Since, any side can be configured as

master or slave, the TX on slave side is disabled and provides the required 50Ω termination.

4.3 Receiving Clock Buffer

The loss at 5GHz is approximate 6dB for 6 FR4 channel. The forwarded unidirec-

tional differential clock is first amplified at the slave side using a CML buffer. The buffer

provides 8-10 dB of gain. The output from the buffer is converted to full CMOS levels

before being distributed to the ILO. The schematic of the buffer is shown below. The IQ

Gen at the slave side is similar to the one at the slave side to generate four phases from the

differentially injected clock.
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Figure 4.6: Receiving Clock Buffer and CML-to-CMOS Converter at Slave Side

4.4 De-Skew Circuit

The aim of the de-skew circuit is to reduce the skew between data path and clock

such that the clock samples the data at an optimal point. Phase shifting mechanism in

high-speed I/Os should exhibit the following properties [10]:

1) It should exhibit fast and coherent stop and restart

2) It should have a one-to-one monotonic relationship between the digital code and

the output phase for gradual and continuous transfer curve

3) It should be able to cover complete 360◦ range.

Considering low-power targets and based on the analysis shown in section 2.1, we

can initially planned to use injection-locked oscillator (ILO) to align data and clock at the

slave side for optimal sampling. The required deksew range in quarter-rate ILO is 90◦

(±45◦). However, with a single de-skew ILO, the wrap-around is not smooth and there

is a jump in phase when the code reaches the edge of the deskew range. The ILO takes

significant time ( 350ps) to adapt to this sudden change while tracking the phase, as shown
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below:

Figure 4.7: Adaptation of ILO while tracking phase. Aqua curve: I output (CLK 0) at
fixed position (−45◦). Indigo curve: I output (CLK 0) varying with code (−45◦to+ 45◦)

As seen in the plot above, after 4ns, code jump (0->31) occurs with frequency

(1.25 GHz) and indigo curve (−45◦ position) should be able to track the phase of aqua

curve immediately. However, there is a delay of 345ps in this adaptation which can result

in loss of bits. Multiple ILOs can be used to extend the de-skew range as in [10], but

this jump in phase cannot be avoided while the CDR tracks the phase. Moreover, there is

an additional need of a replica ILO to calibrate tuning range and leads to more area and

stability overhead. Hence a single ILO cannot be used as de-skew element for continuous

(360◦) in a CDR circuit.

Therefore the de-skew circuit is modified to adapt Phase-interpolator as a de-skew

element in the CDR architecture, which satisfies all the criteria mentioned above for high-

speed I/Os. The block diagram of the proposed de-skew circuit is shown below in Figure

4.9.

The four-phases generated by the IQ Gen are given as inputs to a low-overhead

5/4X first-order phase tracking CDR, which reduces power consumption by reducing the
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number of samplers from eight to five [2]. The logic in this CDR rotationally selects two

consecutive data samples via a 4:2 MUX and the corresponding edge-clock (and hence the

edge-sample) via a 4:1 MUX. The three sampled outputs are fed into a bang-bang phase

detector(BBPD). The BBPD output is deserialized and sampled by a digital accumulator

with programmable depth. The 7-bit output of this digital accumulator is used by phase

interpolator based CMOS phase rotators, which can rotate (360◦), and independently pro-

vide appropriate de-skewed clocks to the samplers.

Figure 4.8: ILO based Phase Rotator as described in2

An oversampling static CMOS phase interpolator follows these phase rotators,

which generates the equally spaced clocks for the quarter-rate data and edge samplers. De-

lay adjustable buffers precede all the samplers to compensate any static phase-mismatches.

The SBD data at the slave side is extracted and reconstructed using an R-gm based subtrac-

2*Figure reprinted with permission from "A 3.2-GHz 1.3-mW ILO phase rotator for burst-mode mobile
memory I/O in 28-nm low-leakage CMOS" by M. Aleksic, 2014. Proceedings of European Solid State
Circuits Conference, Copyright c⃝2014 by IEEE.
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Figure 4.9: Proposed Deskew Circuit

tor, and is equalized using a CTLE. Details of data extraction, reconstruction and equal-

ization are beyond the scope of this thesis. The data is sampled at quarter-rate by 4 data

samplers and one edge-sampler using the de-skewed clocks from the CDR. All the com-

ponents used in the CDR are described in detail in further sections below.

4.4.1 CDR Loop Dynamics

Due to the forwarded clock architecture, the clock frequency at the RX side is

exactly equal to the TX side frequency. Only the phase of the received clock needs to be

corrected. Hence, the proposed first-order 5/4X CDR is a suitable choice. The linearized
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Figure 4.10: Proposed Block Diagram for a Edge-Rotating CDR

model is shown below:

Figure 4.11: Closed-Loop Diagram for the CDR

Here, KPD : Phase Detector Gain, KV : Decimation Gain, K1: Phase update gain,

KPI : Digital to Phase Converter (DPC) Gain. Here KPD,eff = KPD.KV . There is an

additional term, z−NEL, which models the total delay due to buffers or analog circuitry

which falls under the control path of the DPC [15].
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To track PVT variations, we have set a maximum target of 1 MHz for phase track-

ing bandwidth. We need to determine appropriate gain values to achieve this targeted

bandwidth. The transition density (TD) for random data is 0.5 In 5/4X CDR, for every 4

data samples we have only 1 edge sample. Hence TD = 0.5 . 1
4

or 0.125. The effective

KPD is 0.86 per UI for unidirectional signaling and 0.52 per UI for bidirectional signaling.

The details for KPD are mentioned in section 4.5.2 The early/late information from

the BBPD will be fed into the digital accumulator. To make sure the digital circuits meet

proper timing margins, the clock frequency is to the accumulator is decimated to 1.25

GHz. Hence there is an associated gain of 0.25 represented by KV .

We need to input 5-bits to the phase rotators which will translate to a resolution of

2.8◦(90◦/32) or 0.03 UI. Using the KPD value and reasonable gain values the bandwidth

is estimated to be 667 kHz for unidirectional signaling and kHz for bidirectional signaling

as shown below in the table:

Constant Description Value

KPI Digital to Phase Converter (DPC) Gain 2−5 UI/bits

KPD Phase Detector Gain 2.06 per UI

K1 Proportional Gain 2−3

NEL Loop Delay 2.06 per UI

TD Transition Density 0.125

Kv Decimation Gain 0.25

Table 4.1: Loop Parameters for 5/4X CDR

The corresponding closed-loop transfer function is shown below:
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Figure 4.12: Transfer Function for the CDR

4.4.2 Sampler

A sampler or the comparator is the decision-making circuit in a high-speed re-

ceiver. The highest data-rate of the receiver is constrained by the sampler’s decision-

making time period. Also, the samplers gain and noise performance are significant con-

tributors in the system sensitivity and the maximum channel loss the receiver can handle

without bit errors.

Commonly used comparator topologies include strong-arm, and its modified ver-

sion as mentioned in [28] or a CML-type comparator. While strong-arm comparators, and

modified double-tail versions (Schinkel) exhibit no static power consumption and smaller

aperture time with CMOS levels outputs when compared to CML-type comparators, they

have larger delays and low gain due to a missing regeneration stage. We have used a re-

generative latch which consists of two-stage dynamic amplifier, with an additional third

stage connected in parallel for regeneration[28] as shown in figure below.

The latch proposed in [28] has smaller resolution voltage and has smaller aperture
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Figure 4.13: Double-Tail Sampler with Regenerative Latch

time than the Schinkel latch.

Figure 4.14: Latch Resolution Comparison for two Double-Tail Comparators
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Figure 4.15: Impulse Sensitivity Function Comparison for two Double-Tail Comparators

4.4.3 Phase Rotator

A phase interpolator (PI) is a digital-to-phase-conversion unit [15]. Two clock

phases are used as inputs and the output clock is a weighted sum of these inputs. A phase

rotator uses phase interpolator to achieve complete 360◦ rotation is phase. Implementa-

tions of phase interpolator circuits include CML-based analog-type interpolators, which

consume static power consumption and significant area. CMOS inverter based digital in-

terpolators are suitable for a low-power phase interpolator.

Digital phase interpolators either use multiple copies of inverters, MUX based or

multiple-switch based implementations. The schematic of the proposed CMOS PI based

phase rotator is shown in Figure 4.17.

Two 90◦ spaced clocks are selected from the IQ Gen outputs by the 4:2 MUX, and

fed into the interpolator. The clocks pass through a 5-bit slew-rate control inverter to en-

able analog-type smooth mixing of the clocks. Inverter following the slew-rate controlling

inverter is the mixing stage. 31 NMOS-PMOS pair control the current flowing through

the inverter which interpolates the output clock between the two clocks. The Table 4.2
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Figure 4.16: Schematic for Proposed Phase Rotator

illustrates the control bits for the two invertors in the phase rotator.

One UI interval or 90◦ is covered by mixing consecutive two quarter-rate clocks

(like I and Q) providing a resolution of 2.81◦. The 4:2 MUX will switch to the next 90◦

quadrant by selecting the next two consecutive 90◦ spaced clocks when the digital code

overflows. The table below presents an input-output combination for selecting the two 90◦

clocks in the phase rotator.

4.4.4 Oversampling Clock Generator

A CDR needs to interpret data transitions to extract clocking information from the

incoming data. To achieve this, we sample data and edge information using samplers.

Ideally, data and edge information is spaced 0.5 UI apart as shown in Figure 4.19. To

obtain this information, we need clocks which are 0.5 UI spaced apart. Hence, we use a

static phase interpolator to generate these clocks.

In the proposed UI system, edge clocks are being rotated. Hence output of phase
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SELI<31:0> SELQ<31:0>
0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111
0000 0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110
0000 0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100
0000 0000 0000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000
0000 0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000
0000 0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000
0000 0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000
0000 0000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000
0000 0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000
0000 0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000
0000 0000 0000 0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000
0000 0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000
0000 0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000
0000 0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000
0000 0000 0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000
0000 0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000
0000 0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000
0000 0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0000
0000 0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000
0000 0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000
0000 0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000
0000 0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0000 0000
0000 0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000
0000 0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000
0000 0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000
0000 0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0000 0000 0000
0000 0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000 0000
0000 0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000
0000 1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000
0001 1111 1111 1111 1111 1111 1111 1111 1110 0000 0000 0000 0000 0000 0000 0000
0011 1111 1111 1111 1111 1111 1111 1111 1100 0000 0000 0000 0000 0000 0000 0000
0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000

Table 4.2: Digital Code Table for 5-bit Phase Rotator

rotators are edge clocks which are named CLK0, CLK90, CLK180, CLK270. The data

clocks viz. CLK45, CLK105, CLK225, CLK 315, are interpolated from these clocks. The

phase spacing between all the 8 clocks should be exactly 0.5 UI or 25ps for 20Gbps Data.
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Selection Inputs <1:0> Clock Phases Selected

00 I and Q

01 Q and IB

10 IB and QB

11 QB and I

Table 4.3: Selection Code and Corresponding Clock Outputs for 4:2 MUX in Phase Rota-
tor

Figure 4.17: Edge Rotation and Need for Oversampling Clocks

Statically-tuned delay-adjustable buffers with 4-bit digital control are inserted in every

path to account for any phase mismatches. The schematic is shown below in Figure 4.18.

4.4.5 Phase Detector

A CDR is a modified PLL with a changed phase detection mechanism which can

extract both data and phase information. There are two types of phase detector circuits,

linear [29] which provides phase error’s sign and magnitude, or non-linear binary [30]

whose output is the phase errors’s sign information.

Linear phase detectors are not suitable for higher data-rates as they require high

speed XOR gates and also exhibit dead-zones[33]. Non-Linear phase detectors alleviate

this problem as they provide equal width pulse for data and phase information and only

resolve sign information [31].
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Figure 4.18: Oversampling Clock Generator

Figure 4.19: Linear Hogge Phase Detector

Non-linear binary or bang-bang or Alexanders phase detector is often abbreviated

as BBPD. The basic principle of BBPD involves subtracting two pulses generated from a
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XOR to resolve the phase sign information.

Figure 4.20: Non-Linear Alexander Phase Detector

The first condition is to ascertain if a data transition occurred. The next step is to

determine if the edge sampler is same as the first bit(early) or the second bit(late). The gain

of BBPD is undefined, which makes CDR analysis difficult. We assert that high-frequency

noise due to jitter will linearize the BBPD transfer function[13].

This transfer function can be estimated for unidirectional and bi-directional sig-

naling by transmitting random data over the proposed SBD model and averaging enough

early/late information from the BBPD to know if the sampling phase is early or late. The

transfer curve is shown below:

The same values for the BBPD gain have been used in the CDR analysis discussed

in section 4.4.1.

4.4.6 Digital Filter and FSM

A 4:1 MUX exists in the edge-sampler clock-path which selects clock for edge-

sampler. The MUX introduces an extra delay ( 9ps) in the clock path. Hence, a dummy

MUX is added in the data-sampler clock-path to compensate this delay. Now all the sam-
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Figure 4.21: BBPD Transfer Function for Unidirectional 20Gbps Data

Figure 4.22: BBPD Transfer Function for Simultaneous Bidirectional Data

plers receive equally spaced clocks. The CDR logic rotationally selects two consecutive

data samples using a 4:2 MUX. The three samples are fed into the bang-bang phase detec-

tor. The early and late information from the BBPD output is further deserialized by a 1.25
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GHz clock to collect enough information for the digital circuit. The digital circuitry runs

at a sub-rate clock frequency of 1.25 GHz. The early/late information is being averaged

by a digital filter which provides a 7-bit output to control the phase rotators. The structure

of the digital filter is shown below:

Figure 4.23: Block Diagram of Digital Filter

The CDR is of first-order nature, since we have a forwarded clock system which

guarantees the frequency to be exactly equal at the transmitter and receiver side. Hence

the filter only requires one accumulator which basically is an integrator. The accumulator

should have enough resolution or dither bits [15] so as not be a significant source of noise.

The total depth of the accumulator is 15 bits. The top 7 MSB bits constitute the output

of the filter and the rest 9-bits serve as the dither bits as shown below in the Fig. These

dither bits are programmable. Also, from our transfer function, we arrive at the conclusion

that the minimum dithering of 3-bits should be provided, which gives a gain of 23 in the

system to effectively lock. Hence we have a range of dither bits from 3-bit to 9-bits.

The output of the digital accumulator is stored in 7-bit registers. This value is used

by the phase rotator; 2 MSB bits used by select lines in the 4:2 MUX rest of the 5-bits are

used to interpolate the clock.

The basic idea of the 5/4X CDR is based on rotating the edge, thus reducing num-

ber of samplers and save power. The FSM performs the following tasks:
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Figure 4.24: Illustration of Digital Filter Depth

1. It increments a two-bit counter, which controls the select lines of 4:2 MUX for

selecting data samples. The same select lines also select the corresponding edge

clock via the 4:1 MUX.

2. It provides an option to correct each of the four clock phases independently. This

allows to tolerate noise due to duty-cycle distortion in the data as mentioned in [18].

The FSM will correct phase for the first clock phase and the resultant code is stored

in the 7-bit register. As the FSM rotates, the next clock phase is corrected. The

registers hold the codes and provide the ability to independently tune the phase of

each data-sampler clock. There is an option to update all the clock phases with the

same digital code.

3. The FSM also provides a mechanism to reset codes stored in the registers.

4. It also disables the CDR loop for manual code update and bypass-clock path.

The code for the digital filter and FSM is written using Verilog and synthesized in 28nm

process with Synopsis Place and Route tool.

4.4.7 Bypass Clock Path

To enable independent transmitter and receiver testing, an alternate bypass clock

path has been provided in the chip. The block diagram of the bypass clocking is shown
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below in the figure:

Figure 4.25: Bypass Clock Path

The bypass clock path takes 10 GHz differential clock as input and use CMOS

dividers to generate 5 GHz 4 phase clocks. These clocks bypass the IQ Generator and are

distributed to the Transmitter. At the receive side, the clock from the dividers, bypasses

receive side IQ Generator and are given input to the phase rotators. In bypass mode, CDR

loop is disabled and codes for de-skew are given manually via digital control circuitry. A

5-bit duty-cycle and quadrature error correction DAC precedes the transmitter and receiver

for manual tuning of the four phases of the clocks.
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4.5 Layout

The chip layout of the SBD transceiver is shown below in the Figure 4.27, which

is fabricated in TSMC 28nm CMOS HPC process. This chip contains two data lanes, one

clock lane, and common part circuitry. Each data lane has a transmitter, a receiver and

a CDR. The transmitters serializer and driver are placed close to the I/O pads. Behind

the TX driver, the SBD receiver has the R-gm followed by the CTLE and samplers. The

CDR is beside to the samplers to provide required clocks for minimizing the critical clock

distribution.

At the right side of the chip, clock lane includes a driver same as the data lane and

a clock receiver. The bring-in reference clock is input from the left side of the chip to the

clock buffer which is followed by the IQ generator, and the 4 phase clocks are distributed

to each lane. The circuitry on the top side of the chip is the common part including on-chip

resistor calibration, termination impedance control, and current and voltage bias.

The layout has been zoomed to highlight the clocking portions as shown below in

the Figure 4.28. The fabricated die photo is shown below in Figure 4.29.
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Figure 4.26: Layout of the Fabricated Chip

49



Figure 4.27: Layout of the Chip showing CDR
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Figure 4.28: Die Photo of the Fabricated Chip
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5. SIMULATION RESULTS

5.1 Ideal Model Simulations

An ideal model of the 5/4X CDR (as shown in Fig. 20) using the gain values from

the table was formulated in Verilog-A. The AMS simulation is run for 150ns. The input

data is ideal PRBS pattern. The eye diagram when the CDR is locked with ideal input data

is shown below:

Figure 5.1: Eye Diagram showing Ideal CDR Lock Position

The digital filter output will increase/decrease based on early/late information from

the BBPD. The CDR will lock when the edge clock samples the middle of the data tran-

sition. Depending on the accumulator’s depth, the code will be either stable at one value

or jump between two fixed codes. The ideal model is also simulated with PRBS data after
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passing through 2" channel (no equalization) to verify the depth of the accumulator. With

3-bit filtering, the clock locks between 2 codes. With 6-bit filtering, the clock locks with a

unique code.

Figure 5.2: Eye Diagram showing CDR Lock Position for 3-bit dither bits

Figure 5.3: Eye Diagram showing CDR Lock Position for 6-bit dither bits
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5.2 Clocking Simulation Results

The ILO free-running frequency is 5GHz for Control Voltage = 504mV. The schematic

simulation results are shown below:

Figure 5.4: Free-running ILO at 5GHz @ Control Voltage of 504 mV

Figure 5.5: Free-Running Frequency v/s Control Voltage for ILO

The free-running curve of the ILO is plotted by disabling injection and sweeping

the voltage of the ILO from 200mV to 900mV. The clocks from IQ Gen are used in the
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clock transmitter to serialize a fixed 1,1,0,0 pattern to give a 5GHz clock pattern at the

output of the TX as shown below:

Figure 5.6: Output of Forwarded Clock Transmitter

Figure 5.7: Output of CML to CMOS Buffer at clock RX side

The clock is forwarded onto the channel and received at the slave side. Then it is
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passed through a CML Buffer and then amplified to full-swing via a CML to CMOS buffer

circuit as shown in the figure above. The clock are injected into a similar IQ Gen block at

the slave side. The four phase clocks are given input to the phase rotators. The transient

response for the phase rotator for all code values is shown below:

Figure 5.8: Phase Rotator Transient Output for all code values

The phase transfer curve of this phase rotator is shown below:

Figure 5.9: Phase Transfer Curve for Phase Rotator
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The Dynamic Non Linearity (DNL) curve for 1 UI period is shown below. From the

curve we see that -0.55 LSB < DNL< 1 LSB. Hence the phase transfer curve is monotonic.

Figure 5.10: Dyanmic Non-Linearity Curve for Phase Rotator for 1UI

The output of the oversampling clock circuit is shown below. The spacing between

all the eight phases is 25ps.

Figure 5.11: Output of 2X Oversampling CLK Generator
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The CDR is first operated in open-loop to verify the functionality of the digital

filter. The BBPD output is always early resulting in increasing digital code.

Figure 5.12: Output of Digital Filter for Always Early Clock

When the clock is operated such that it is always late, the digital codes were always

decreasing.

Figure 5.13: Output of Digital Filter for Always Late Clock
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The schematic level implementation of the complete closed-loop CDR is simulated

with ideal PRBS pattern to verify the functionality.

Figure 5.14: Schematic Level Simulation 5/4X CDR with Ideal PRBS Data

The schematic level CDR is also tested with PRBS data after passing through 2"

channel with 6-bit LSB dithering as shown below:

Figure 5.15: Eye Diagram for Schematic-Level CDR using 2" Channel and 6-bit LSB
filtering
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The digital code is stable between two code values (27 and 28) after 50ns as shown

below in the figure:

Figure 5.16: Digital Filter Code Convergence

The power summary for the schematic-level CDR is shown in the table below:

Component Power @ 0.9 V

Oversampling CLK generator 1.7 mW

Phase Rotator (PI + 4:2 MUX + 2:4 Encoder) X4 3.4 mW

4:1 MUX 20 µW

4:2 MUX 30 µW

BBPD + DeSer 323 µW

Digital Accumulator + CDR Logic 600 µW

IQ Gen + QLL 2 mW

Data Samplers 800 µW

Total 8.8 mW

Table 5.1: Power Summary of the CDR
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The table above shows a comparison between previous CDR implementations in

literature and this work.

Metric Li [18] Mansuri[32] This Work

VDD 0.8V 1.08V 0.9V

Process 65nm 32nm 28nm

Data Rate 14Gbps 16Gbps 20Gbps

Clock Rate 3.5 GHz 4 GHz 5 GHz

Energy Efficiency 0.56 pJ/b 1.02 pJ/b 0.44 pJ/b

Table 5.2: Comparison of Digital CDRs

5.3 Link Performance

Unidirectional 20 Gbps data is simulated with half-rate bypass 10 GHz clocks. The

clocks are divided to get quarter-rate clocks for transmitting data at the master side.

Figure 5.17: Eye Diagram for 20Gbps Unidirectional Data After 6” FR4 Channel
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Figure 5.18: Eye Diagram for 20Gbps Unidirectional Data After CTLE

20 Gbps Data is simultaneously sent over the 6" channel. The phase rotators are

manually adjusted to get the optimal sampling point. The eye diagram is shown below:

Figure 5.19: Eye Diagram for 20Gbps Bidirectional Data After CTLE and FIR Echo Can-
cellation
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The TX and RX are individually verified with PRBS15 Checker as shown below.

This verifies that clock is sampling at the ideal position.

Figure 5.20: PRBS15 Data is serialized and checked by PRBS15 Checker at TX Output

Figure 5.21: 20 Gbps PRBS15 Data is sent over the channel and checked by PRBS15
Checker at Sampler Output
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5.4 Proposed Test Plan

The test-plan procedure is shown below which can optimize the system settings

before starting the SBD signaling. The first step before turning on the system is to auto-

calibrate the on-chip resistor by the outside reference 400Ω resistor. The second step is to

control the termination impedance based on the calibrated on-chip resistor. Then, in order

to compensate the device mismatch and process variation, RX offset and R-gm needs to be

calibrated by achieving the 1 and 0 balance of the samplers output. When RX is ready to

receive the data and the forwarded clock, the CDR receives the uni-directional clock and

data and starts to track the phase by receiving uni-directional signaling. Finally, the echo

cancellation tap will auto adapt the tap weights by outputting uni-directional signaling.

After above procedure, SBD system can start simultaneous bi-directional signal on the

channel.

Figure 5.22: Proposed Test Plan for SBD Link using CDR
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6. CONCLUSION

This thesis describes a low-power implementation of clocking and skew optimiza-

tion mechanism for a source-synchronous simultaneous bi-directional link system. For-

warded clocking architecture allows for maximum jitter correlation between data path and

clock path. Also as the effective clock frequency is equal, only the phase between clock

and data needs to corrected which results in a simple first-order CDR implementation.

The proposed SBD transceiver with forwarded clock system can be configured in

master and slave roles. The master has quarter-rate clock source and forwards the clock to

the slave through the clock channel. The slave utilizes the forwarded clock as both receiver

and transmitter clock source. The impact of high frequency jitter caused by the skew of 2X

channel propagation time is analyzed by JTF and JTOL, and the analysis shows the JTOL

is still larger than 0.2UI. The transceiver was implemented in 28nm CMOS technology.

The power efficiency is 1.4 pJ/b at 40 Gbps, with CDR contributing to approx. 8.8 mW

of power at 0.9 V supply. The forwarded clock TX consumes 5 mW of power, which

is amortized over the two data channels. The IQ Gen consumes this much power and is

amortized over 3 channels (2 data, 1 clock). CDR occupies 0.018mm2 of the chip area.

Overall area occupied by clocking is 0.024mm2
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