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ABSTRACT 

Hydraulic fracturing is high pressure injection of fracturing fluid, in order to 

hydraulically crack open the rock in the area around the wellbore. The fracturing fluid used 

enters the created fractures and essentially propagates fractures away from the wellbore when 

fluid pressure is greater than the fracture pressure. Hydraulic fracturing fluids must include 

thickeners to increase its viscosity, and breakers that degrade consequential fracturing fluid and 

filter cake on fracture faces in order to avoid formation damage and regain fracture conductivity. 

The purpose of this research is to detail the development of a self-breaking temporary 

polymer gel system as a hydraulic fracturing fluid, Poly(vinyl alcohol)-Succinic Acid (PVA-SA) 

+ Cr3+, without addition of internal breakers. First, PVA-SA is synthesized by the reaction of 

PVA [poly(vinyl alcohol)] with SA (succinic anhydride) in Dimethylformamide (DMF), and 

then slightly crosslinked with N, N'-Dicyclohexylcarbodiimide (DCC), catalyzed by 4-

Dimethylaminopyridine (DMAP) to produce PVA-SA-X; this is to increase its molecular weight, 

prior to being crosslinked with a Cr3+ crosslinker to produce PVA-SA-X gel. Second, PVA-SA 

and PVA-SA-X gel are characterized through rheological measurements, and analyzed for 

concentration change response, temperature change response, and shear change response. Both 

PVA-SA and PVA-SA-X gel prove to be shear-thinning fluids capable of proppant 

suspendability and transport in conventional and unconventional hydraulic fracturing treatments, 

respectively, due to its elevated viscosity, and solid-like and water-like behavior. Finally, the 

degradation of PVA-SA-X and PVA-SA-X gel is tested without any internal breakers at different 

temperatures, proving that at high temperatures of 95°C, low concentrations of this polymer 
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system is capable of self-breaking, minimizing formation and proppant-pack damage, post-

hydraulic fracture treatment. 
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NOMENCLATURE 

bpm   Barrels Per Minute 

Cr[III], Cr3+  Chromium (III) Crosslinker 

DCC   N,N'-dicyclohexylcarbodiimide 

DI   Deionized Water 

DMAP   4-(Dimethyl amino)pyridine 

DMF   N,N-Dimethylformamide 

G΄   Storage Modulus 

G΄΄   Loss Modulus 

mL   Milliliter 

MW   Molecular Weight 

NaOH   Sodium Hydroxide 

pH   Negative logarithm of the solution hydrogen ion activity 

ppga   Pounds Per Gallon Added 

ppm   Parts Per Million 

pptg   Parts Per Thousand Gallon 

PVA   Poly(vinyl alcohol) 

PVA-SA  Poly(vinyl alcohol)-Succinic Acid 

PVA-SA-X  Poly(vinyl alcohol)-Succinic Acid Crosslinked with DCC 

PVA-SA-X Gel Poly(vinyl alcohol)-Succinic Acid Crosslinked with DCC and  

Cr3+ crosslinker 

RPM   Rotations Per Minute 
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SA   Succinic Anhydride 
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CHAPTER I  

INTRODUCTION 

The purpose of hydraulic fracturing is to stimulate production via networks of conductive 

fractures around the wellbore. With conductivity being proportional to both proppant-pack 

permeability and fracture width, hydraulic fracture stimulation aims to increase conductivity 

majorly via the latter variable (Davies & Kuiper, 1988). Ultimately, the hydrocarbon producing 

surface area is increased. Hydraulic fracturing can be performed in both vertical and horizontal 

wells, making undeveloped, tight, and unconventional reservoirs economically feasible (Barati & 

Liang, 2014). The first fracturing fluid type, used in the 1940s, was an oil-based fluid consisting 

of gelled hydrocarbons. The very first hydraulic fracturing process occurred in 1947, on the 

Hugoton field in Kansas (Clark, 1949). It was just a simple, vertical, 2-wing well fracture. 

Nowadays, one can perform multiple stages of hydraulic fractures. When oil-based fracturing 

fluids posed some environmental and safety concerns in the 1950s, more environmentally 

friendly water-based fracturing fluids were developed (Veatch, Moschovidis, & Fast, 1989). 

They proved to be cost effective and safe (Li, Al-Muntasheri, & Liang, 2016).   

Components of a hydraulic fracturing fluid typically include thickeners, propping agents, 

and breakers. Other additives include friction reducers to reduce the friction generated as the 

fluid is pumped down the well tubulars, fluid loss additives to minimize leak-off in high 

permeable areas, scale inhibitors to prevent the formation of carbonate and sulfate scales, clay 

stabilizers to prevent fines migration or clay particle swelling when exposed to water-based 

fluids, and many more (Montgomery, 2013). These additives make up to 2% of the fracturing 
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fluid. They each serve a specific, engineered role, as they function to fulfill different purposes for 

different fracturing jobs, while maintaining the integrity of the fluid and formation. 

1.1 Thickeners 

Thickeners (or gelling agents) are responsible for increasing the viscosity of fracturing 

fluids in order to improve proppant transport, increase fracture width so it can accept higher 

proppant concentration, reduce fluid loss to improve fluid efficiency, and reduce friction 

pressure. They include guar and its derivatives, viscoelastic surfactants, and foams. 

1.2 Guar and Its Derivatives 

Guar, originally grown in India and Pakistan, is a natural, branched polysaccharide, used 

for fracturing. Its desirable rheological properties, economic feasibility, and hydration ease make 

it a favorable biopolymer in the oil and gas industry. Common guar derivatives include 

hydroxypropyl guar (HPG), carboxymethyl guar (CMG), and carboxymethyl hydroxypropyl 

guar (CMHPG), however, guar is the most common. Botanically known as Cyamopsis 

tetragonoloba, this natural galactomannan gum is of the legume family. In 2012, approximately 

25,000 tons of guar was used per month at $7.83/lb in the USA (Beckwith, 2012). Crosslinkers 

typically associated with guar include complexes of boron (B3+), titanium (Ti4+), and zirconium 

(Zr4+), however, it is most stable with a sodium thiosulfate stabilizer (Walker, Shuchart, Yaritz, 

& Norman, 1995). The chemical structure of guar consists of a straight chain of D-mannose 

units, linked together by beta (1-4) glycoside linkages; almost every alternate mannose unit has a 

D-galactose unit, joined by an alpha (1-6) glycoside linkage (Chudzikowski, 1971). Guar can be 

readily crosslinked at the cis-hydroxyl groups and broken at the acetyl linkages. Once broken, 

however, guar leaves behind 6% - 10% insoluble residue, which can cause significant damage to 
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the formation and/or the proppant pack. In response, chemically modified guar was created to 

alter the molecular structure of guar and reduce this insoluble residue. HPG is a product of guar 

modified with propylene oxide, while CMP or CMHPG is guar modified with monochloroacetic 

acid. For extreme conditions such as harsh temperatures and high salinity, guar alternatives such 

as carboxymethylcellulose (CMC) and carboxymethylhydroxyethylcellulose (CMHEC) 

crosslinked with metal based agents are used. These polymers are typically transported to the 

field in dry powder form, which hydrate when mixed with an aqueous solution, forming a 

viscous gel. (Barati & Liang, 2014) (Walker, Shuchart, Yaritz, & Norman, 1995) 

1.3 Viscoelastic Surfactants (VES) 

Viscoelastic surfactants are polymer-free and sometimes, breaker-free solutions that 

decrease in viscosity with increasing shear rate, and leave minimal to no residue. VES consists of 

hydrophobic and hydrophilic groups that are arranged to shield non-polar groups. Their 

association of anionic, cationic, or zwitterionic surfactant molecules contribute to increased fluid 

viscosity (Smith & Montgomery, 2015). Viscosity increases via rod-like micelle-formation, with 

increasing concentration forming a mesh of entangled, rod-like micelles. These rod-like micelles 

are broken into smaller, spherical micelles when exposed to organic and hydrophobic fluids like 

oil and gas (Gandossi, 2013). Resultantly, breakers are not typically added to VES systems, 

however in some cases, internal breakers are added to improve fracture conductivity. 

Disadvantages include no wall-building characteristic, enabling a high fluid leak-off volume, 

higher cost, and lower stability at elevated temperatures. (Barati & Liang, 2014) (Gandossi, 

2013) (Smith & Montgomery, 2015) 
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1.4 Foams 

Foams are systems consisting of large gas fractions (carbon dioxide or nitrogen), 

surfactant (a foaming agent), and small volumetric water fractions. Mainly used in tight to ultra-

tight formations containing high contents of clay, they reduce damage due to capillary pressure, 

permeability discontinuities, and invaded fluids (Barati & Liang, 2014). Advantages include 

limited amount of water invading the matrix, improved conductivity recovery, and minimal 

sensitive clay-related effects. Disadvantages include operationally handling gas onsite, increased 

costs, and associated energy losses due to friction when increasing pumping capacity and 

horsepower requirements (Edrisi & Kam, 2012). 

1.5 Propping Agents 

Proppants are propping agents usually applied to form a thin layer between fracture faces 

to prop open the fractures at the end of a fracturing job. Ideally, proppant characteristics include 

low density, high resistance to fracture compression, resistance to acid degradation, and the 

ability to maintain high formation permeability at the respective formation pressures. Proppants 

come in a wide range of sizes with densities ranging from nearly buoyant up to 1.75 g/cm3, and 

up to 2.59g/cm3, for unconventional and conventional fracturing purposes, respectively (Liang, 

Sayed, Al-Muntasheri, Chang, & Li, 2016). The most common proppant used is ~85% proppant 

with 20/40 mesh. Other proppant types include high-strength such as sintered bauxite and 

zirconium oxide (which can withstand closure stresses up to 16,000 psi), intermediate-strength 

proppant (which can withstand closure stresses up to 10,000 psi) resin-coated sand, and ceramic 

proppant (Liang, Sayed, Al-Muntasheri, Chang, & Li, 2016).  
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Sintered bauxite spheres with silica are typical proppant materials, ranging from 0.02-0.3 

microns in size. Coated proppant are used to prevent subsequent flow back. The coating usually 

contains a tackifying agent meant to glue the particles within the fracture when under pressure. 

Ceramic particle proppants have a density less than 2.2 g/cm3. Its outer shell can be composed of 

metal oxide, with an inner content of mineral particulates, silicon carbide, and binder. 

Proppants are transported into the fractures by fracturing fluids that also include polymers and 

gels. Research has shown that metal crosslinked fracture fluids have better proppant transport 

characteristics than non-crosslinked fluids. Slickwater, for example, have the least proppant 

transport efficiency which is why it requires high velocity (at least 60 bpm) to prevent proppant 

settling near wellbore or collecting at the fracture bottom, limiting its effective height. Slickwater 

typically contains 0.25-1 ppga of proppant. (Barati & Liang, 2014) (Fink, 2015) (Li, Al-

Muntasheri, & Liang, 2016) 

1.6 Breakers 

Breakers are necessary to breakdown a solution’s viscosity and molecular weight post-

fracturing, to ensure that maximum well production can be achieved. Ideally, breakers are to be 

only activated once pumping stops. There are two main breaker systems, oxidative breakers and 

enzyme breakers, and both are pH and temperature sensitive. Mechanistically, breakers degrade 

polymer chains by cleaving the acetyl linkages in the polymer backbone.  

Common oxidizers include ammonium persulfate, sodium persulfate, and potassium 

persulfate. These persulfates produce free oxygen radicals at temperatures greater than 125°F, 

which attach to the polymer backbone, and break it into its consecutive sugars. However, 

oxidizers negatively impact equipment and the environment. Enzymes are easy-to-handle, 
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environmentally benign, protein molecules with the capability to slice specific polymer backbone 

structures. They are miscible with the fracturing fluid and not as easily consumed as oxidizers. 

However, enzymes are very sensitive to pH and temperature. 

Unfortunately, degradation via oxidative or enzymatic means may occur too quickly at 

high temperatures, lowering the fracturing fluid viscosity before it reaches the target zone. 

Hence, an encapsulated breaker system delays the breaking of the fluid at high temperature 

applications. Encapsulated breakers incorporate high concentrations of breaker in a water-

resistant, semi-permeable coating, preventing premature loss of fluid properties, and is gradually 

released into the formation. Encapsulated breakers control the release rate of the breaker by the 

crushing pressure of the fracture when it closes on the capsule, osmotic rupture, or by diffusion 

of the breaker chemical. (Barati & Liang, 2014) (Fink, 2015) 

1.7 Conventional Fracturing 

Conventional fracturing require hydraulic fracturing fluids with elevated viscosity 

necessary for adequate proppant suspendability and transport, adequate fracture width, and 

minimal leak-off. The viscosity of the fluid can be attributed to a gel (about 20-40 pptg) in fluid, 

resulting from a reaction between a polymer and metal crosslinker. Guar is the most common 

polymer used along with monoborate ions (B(OH)4- ) as the crosslinking species. A benefit of a 

viscous fracturing fluid is its ability to quickly form a layer of filter cake on the fracture face 

under pressure, minimizing further leak-off into the surrounding formation and causing severe 

damage, especially to water-sensitive formations. However, viscous fluids in the formation and 

filter cakes not properly broken at the end of a fracturing job can invade and plug high 

permeability formations, causing undesirable damage to the reservoir. In response, breakers, 



 

7 

 

such as oxidizers or encapsulated breakers are typically added. Oxidizers generate free radicals 

based on thermal decomposition of persulfates, while encapsulated breakers delay the breaking 

of viscous fluid through controlled release, especially at high temperatures. Disadvantages to this 

system include premature breaking of the acetal linkages between the mannose groups of guar, 

before the fracturing fluid is able to properly transport proppant to the target area, and 

incomplete dissociation of the crosslinked gel, causing further damage to the proppant pack and 

diminishing conductivity of hydrocarbons through the proppant pack. Hence, it is important that 

for conventional fracturing, a viscous fracturing fluid capable of breaking down with minimal to 

no residue post-fracturing, is utilized. (Barati & Liang, 2014) 

1.8 Unconventional Fracturing 

Development of unconventional reservoirs, such as tight gas, coalbed methane, and shale 

reservoirs, have increased recently, demanding the advancement of innovative hydraulic fracture 

designs. They consist of deep and narrow fractures while their conventional counterparts have 

shallow and wide fractures. The most recent designs have included slickwater, linear gel, or 

hybrid treatments. 

Slickwater treatment, or waterfrac, utilizes large volumes of water with low 

concentrations (about 10 pptg) of linear gel as friction reducer. As a result, slickwater’s viscosity 

is normally less than 10 cP, which is comparatively lower viscosity than the 50 – 1000 cP 

viscosity range of conventional fracturing fluids at nominal shear rates from 40-100 s-1 (SPE, 

2016). The linear gel or slickening agent, is responsible for reducing the fluid friction within the 

pipe, reducing the horsepower required to pump the fracturing fluid to the target zone. This 

allows for greater production flowrates to be achieved, economically (Al-Sarkhi, 2010). 

Slickwater advantages include lower cost and reduced gel damage within the fracture, compared 
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to a typical crosslinked fracturing fluid. However, slickwater viscosity is too low to ensure 

sufficient proppant suspension and transport, which is necessary for formation-wellbore 

conductivity in a hydraulic fracturing treatment. Following Stoke’s Law shown below, the 

proppant particles settle too quickly, severely limiting the effective fracture length. Assumptions 

associated with Stoke’s Law include the following: static, homogenous fluid; no wall effects; 

smooth, rigid spherical particle; particles must fall in a laminar settling regime; and no particle-

to-particle contact. 

 

 

 

Stoke’s Law (Daneshy, 1989) 

 

Vs=(ρ
P
-ρ

F
)*

gD2

18μ
 

 

 

 

Where: 

Vs = particle settling velocity 

ρ
P
 = density of the particle 

ρ
F
 = density of the fluid 

g = gravitational acceleration 

D = diameter of the particle 

μ = viscosity of the fluid 
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Stoke’s Law is appropriate for making generalized settling-velocity comparisons of spherical 

proppants at various fluid viscosities, however it is inadequate in predicting the true transport 

and deposition of proppant particles in actual hydraulic fracturing treatment. 

Secondly, the narrow, pumping, fracture widths generated by slickwater are unable to 

accommodate higher pumping proppant concentrations, as well as larger-diameter proppants. To 

help offset this concerns, slickwater is usually pumped at extremely high rates, ranging from 60-

100 bpm, and at pump times that can exceed 6 hours. Treating an unconventional well with 

slickwater will require a slickening agent that can improve its proppant carrying capabilities so 

that resulting pumping fracture widths are wide enough for better conductivity and ultimate 

recovery, while maintaining low tubular friction drag for a more efficient production, and ensure 

breakdown post hydraulic fracturing, restoring proppant pack conductivity. (Barati & Liang, 

2014) (Fredd, McConnell, Boney, & England, 2001) (Palisch, Vincent, & Handren, 2010) 
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CHAPTER II 

PROBLEM STATEMENT & PROPOSED THESIS 

2.1 Problem Statement 

Polymer gels are the most commonly used hydraulic fracturing fluids. Research has 

proven that guar gel usually results in insoluble residue left post-gel degradation, potentially 

causing formation damage (Nasr-El-Din, Al-Mohammed, Al-Fuwaires, & Al-Aamri, 2007). To 

minimize the potential damage to the formation rock and proppant pack, breakers must be added 

to break the polymer gels down. When mixing polymer gels with breakers, premature or 

incomplete breaking is a potential issue as it lowers the fluid’s capacity to carry proppant or 

causes damage to the proppant pack, respectively. Therefore for conventional hydraulic 

fracturing, a system that will delay/control the breaker release while leaving minimal to no 

insoluble remnants, is required. 

For unconventional fracturing, waterfrac treatments are common. However, their low 

proppant carrying capabilities result in narrow fracture widths and high pumping rates. 

Therefore, to increase proppant suspendability while maintaining low pumping requirements, a 

polymer system that will increase fracture fluid viscosity while maintaining low tubular drag, as 

well as ensure hydrocarbon conductivity through the proppant pack and formation, is required. 

2.2 Proposed Thesis 

The aim of this research is to develop a novel self-breaking, temporary polymer gel 

system (PVA-SA with Cr3+), with negligible degradation residue, as an alternative to current 

hydraulic fracturing fluids. Poly(vinyl alcohol) (PVA) is mainly used for various pharmaceutical 

and biomedical applications due to its desirable characteristics. These characteristics include its 
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high degree of swelling in water, its elastic nature, high durability, chemical stability, non-

toxicity, and modification feasibility via its hydroxyl groups. Altering its hydroxyl units to 

carboxyl units is required to ensure crosslinking occurs, making it gel-like and insoluble. 

Succinic anhydride proves to be a great additive to introduce carboxyl groups, enabling three-

dimensional networks to be formed for temporary gel use. (Zain, Suhaimi, & Idris, 2011) 

The proposed PVA-SA [poly(vinyl alcohol)-succinic acid] is a carboxylated polymer and 

will be synthesized by the reaction of PVA with succinic anhydride in DMF. The carboxyl 

groups on PVA-SA can crosslink with multivalent metal ions to result in a 3-D gel. The resultant 

gel is temporarily stable and will self-break, in the absence of any internal breakers, triggered by 

the temperature because the carboxyl groups attached to PVA can be removed through the 

hydrolysis of ester bonds. This new gel system will have the following characteristics: 

 Gelation at typical oilfield water pH 

PVA-SA with Cr3+ will form a strong gel at the pH of normal oilfield brine (pH 7-8). 

 Appropriate degradation activation 

Gel will be stable and gel breakdown does not occur prior to the termination of a fracture job, 

which last approximately 2 days, because no internal breakers will be added. 

 Self-breaking without any internal breakers 

Gel can self-break down to a low, water-like viscosity fluid, triggered by ester bond 

hydrolysis, therefore, a breaker system isn’t necessary, nor is there any concern about 

residual gel in the formation. 

The key objectives of this research are: 

1. To synthesize PVA-SA by the reaction of PVA with SA in DMF, and then slightly crosslink 

PVA-SA with DCC/DMAP in order to increase its molecular weight. 
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2. To provide evidence that PVA-SA gel with Cr3+, can be developed, similar to guar gel. 

3. To comprehensively quantify viscosity dependence of PVA-SA and its various polymer 

systems’ rheology; rheological properties will be demonstrated as functions of temperature, 

polymer concentration, and crosslinker concentration. 

4. To analyze PVA-SA and its various polymer systems’ behavior by fitting it to a power law 

model. 

5. To further demonstrate optimal operating/practical conditions of the system at various 

desired reservoir conditions. This will be achieved by varying polymer and crosslinker 

concentration at various temperatures and evaluating viscosities decrease over time. 

6. To study self-breaking of the PVA-SA gel with Cr3+ at different temperatures. 

 

Although the scope of this thesis is limited to a proof of concept view of the application 

of PVA-SA as a hydraulic fracturing fluid, consideration may also be given to the ultimate end 

goal of developing a system that is cost-effective, efficient, and easy to deploy in the field. 
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CHAPTER III 

PROPOSED PROCEDURE 

In this study, the initial formulation of PVA-SA stock is proposed by Dr. Huili Guan, 

who is well versed in PVA-SA preparations. Minor changes are made to the initial formula to 

best accommodate this study. In detail, PVA-SA is synthesized by the reaction of PVA with SA 

in DMF at 60ºC, shown in Figure 1. The resultant PVA-SA is slightly crosslinked with DCC in 

the presence of DMAP as a catalyst in DMF in order to increase its molecular weight, shown in 

Figure 2. Chromium crosslinker will then be introduced in the form of a chromium complex, 

chromium (III) chloride hexahydrate, at varying concentrations, to provide the desired 3-D 

network, as shown in Figure 3. The gel will then be characterized by the following tests: 

1) Viscosity measurements of varying PVA-SA gel concentrations at different incubation 

temperatures. 

2) G΄ and G΄΄ calculations of varying PVA-SA gel concentrations at different incubation 

temperatures via rheological measurements. 

3) Gel degradation (bottle test method and viscosity profile over time) of varying PVA-SA gel 

concentrations at different incubation temperatures. Gel self-breaking mechanism is shown in 

Figure 3. 
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Figure 1. Synthesis of PVA-SA 

 

 

 

 

  

Figure 2. Synthesis of Slightly Crosslinked PVA-SA with DCC 
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Figure 3. Gelation and Gel Self-Breaking 
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CHAPTER IV 

SYNTHESIS 

4.1 Objective 

The objective of this section is to detail the preparation of a novel hydraulic fracturing 

linear polymer gel capable of crosslinking, and capable of increasing the viscosity of a hydraulic 

fracturing fluid. This will ensure proppant suspendibility while maintaining low pumping 

horsepower requirements and low drag effects, as the hydraulic fluid is pumped towards the 

target zone in both conventional and unconventional reservoirs. This section describes the 

synthesis of poly(vinyl alcohol)-succinic acid, poly(vinyl alcohol)-succinic acid crosslinked with 

DCC, and poly(vinyl alcohol)-succinic acid crosslinked with DCC and Cr3+ crosslinker also 

referred to as poly(vinyl alcohol)-succinic acid gel. For simplicity, from henceforth PVA-SA 

crosslinked with DCC will be referred to as PVA-SA-X, and PVA-SA-X crosslinked with Cr3+ 

will be referred to as PVA-SA-X gel. 

4.2 Material and Methods 

Several attempts were made at establishing an ideal recipe for PVA-SA-X and PVA-SA-

X gel. The procedures detailed below proved to be the most successful of all attempts made. All 

components of the synthesis can be seen in Table 1. Poly(vinyl alcohol)-succinic acid synthesis 

components can be found in Table 2; PVA-SA-X synthesis components can be found in Table 3. 

PVA-SA-X gel synthesis components can be found in Table 4. 

The Brookfield DV2T Viscometer and M5600 HPHT Rheometer were used to measure 

the viscosity of varying concentrations of PVA-SA, PVA-SA-X, and PVA-SA-X gel at different 
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polymer concentrations (1.0%, 1.6%, and 2.5%), and at three different temperatures (25°C, 

65°C, and 80°C). 

Table 1. List of Reagents 

Reagents Function Structure Supplier 

Mowiol/Poly(vinyl alcohol) (PVA) Polymer Sigma-Aldrich 

Succinic Anhydride, 99% Polymer Modifier Alfa Aesar 

N,N-Dimethylformamide (DMF) Solvent Sigma-Aldrich 

DI Water Solvent H2O - 

Chromium III Chloride Hexahydrate Crosslinker Cl3Cr*6H2O Sigma-Aldrich 

N,N'-dicyclohexylcarbodiimide (DCC) Mild Crosslinker Sigma-Aldrich 

4-(Dimethyl amino)pyridine (DMAP) Catalyst Sigma-Aldrich 

Sodium Hydroxide pH balance NaOH Sigma-Aldrich 

4.3 Experimental Equipment 

Viscosity measurements were made with both a Brookfield DV2T Viscometer, and 

M5600 HPHT Rheometer manufactured by Grace Instrument. It should be noted that viscosity 

measurements above 1000 cP indicates a gel that cannot be accurately measured by the 
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viscometer, due to the bob’s inability to properly grip the gel. Therefore, viscosity values above 

or equal to 1000 cP have been constrained to a 1000 cP limit in the plots generated from the 

viscometer presented in the thesis. The viscometer can be seen in Figure 4 and the rheometer can 

be seen in Figure 5. 

 

 

 

 

Figure 4. Brookfield DV2T Viscometer 
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4.4 Synthesis of PVA-SA 

The objective of this synthesis is to create the necessary functional group required for 

crosslinking on the PVA polymer, by converting the hydroxyl group on PVA to a carboxyl group 

with SA. This is important because this will enable the polymer to crosslink with multivalent 

metal ions, contributing to an increased hydraulic fracturing fluid viscosity. This will aid in 

Figure 5. M5600 HPHT Rheometer manufactured by Grace Instrument 
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suspending the proppant that will be transported to keep fractures widths open for adequate 

hydrocarbon conductivity. 

 

 

 

Table 2. Synthesis Reagents for PVA-SA 

Reagents Details Amount, g wt.% 

Mowiol/Poly(vinyl alcohol) (PVA) 

MW ~130,000 

86.7-88.7 mol% 

hydrolysis 

4.05 6.87 

Succinic Anhydride (SA)  0.91 1.54 

N,N-Dimethylformamide (DMF)  54.02 91.59 

 

 

 

The following is the procedure for preparing 8.41% Poly(vinyl alcohol)-Succinic Acid. The 

overall procedure is represented schematically in Figure 6, below: 

 

 

 

Figure 6. Schematic Representation of Preparation of PVA-SA 
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Add PVA and DMF to round bottom flask. Attach water condenser to round bottom flask with 

joint plastic clamp clip and place the round bottom flask–water condenser system in an oil bath 

while stirring at 150 rpm. Heat the oil bath to 100°C and stir for 24 hours. Reduce oil bath 

temperature to 60°C and once the solution is cooled to ~70°C, carefully add succinic anhydride 

to the solution. Place the round bottom flask-water condenser system in oil bath while stirring at 

150 rpm, for 24 hours. All solids should be dissolved in the flask within this time. Turn off hot 

plate and let the solution cool. 

4.5 Synthesis of PVA-SA-X 

The objective of this synthesis is to increase the molecular weight of the PVA-SA 

polymer, using DCC, with DMAP as the catalyst, to enable intermolecular reactions between 

carboxyl groups on the polymer. This synthesis is important because to achieve a desired 

viscosity, a lower concertation of PVA-SA when slightly crosslinked with DCC is required 

instead of a higher concentration of PVA-SA without DCC. Consequently, this system ensures 

minimal polymer residue post-fracturing, and can prove to be cost-effective when scaled up. 

First, a stock solution of DCC, DMAP, and DMF is prepared. The objective of this 

mixture is to create a bulk solution (56.91g) from which desired amounts can be taken out for the 

synthesis of PVA-SA-X. Measure 600mg DCC and 60mg DMAP into appropriately sized 

beaker. Add 56.25g DMF with stir bar, cover beaker and stir semi-vigorously for 15 minutes to 

ensure complete dissolution.  
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Table 3. Synthesis Recipe for 3.0% PVA-SA-X 

Reagents Amount, g wt.% 

8.41% PVA-SA 25.000 35.714 

DMF 11.875 16.964 

DCC/DMAP/DMF Stock Solution 13.125 18.750 

DI Water 20.000 28.572 

 

 

 

The following is the procedure for preparing a 70g stock solution of 3.0% Poly(vinyl alcohol) 

slightly crosslinked with a mixture of 2.8g DCC/g polymer solution, DMF, and DMAP. 

1. Prepare ~4.21% PVA-SA with DCC, DMF, and DMAP at 2.8mg DCC/g polymer solution. 

This creates a slight crosslink of the PVA-SA polymer with DCC. 

a. Measure 8.41% PVA-SA solution. 

b. Calculate DCC amount needed in solution 

mDCC,  g = 
2.8 mg DCC

1000mg
g

*mtot,  4.21% PVA-SA 

c. Calculate amount required from 56.25g DCC/DMAP/DMF stock solution 

mDCC.DMAP.DMF stock,  g = (mDCC,  g)*
1000mg

g
*

56.25g DCC,DMAP,DMF stock

600mg DCC
 

d. Dilute PVA-SA solution in DMF 

mDMF,  g = m8.41% PVA-SA,  g-mDCC.DMAP.DMF stock,  g 

e. Place appropriate stir bar and stir at 400 rpm. 

f. While stirring, add calculated required amount of DCC/DMAP/DMF solution to 

diluted 8.41% PVA-SA solution in appropriate beaker. 
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g. Stir solution for 5 hours. 

2. After 5 hours, measure viscosity of a small sample via a viscometer to ensure viscosity is 

between 200-400 cP at a shear rate of 2.25 s-1. If viscosity isn’t within this range, check 

viscosity approximately every 5 minutes until desired viscosity is reached. 

3. Quench/significantly slow reaction down by adding DI water.  

4. Very gently mix solution until it is a homogenous solution. Bubbles and exothermic heating 

are expected.  

5. Ensure thorough quench by allowing solution and produced precipitate to settle for at least 12 

hours in low temperature. 

6. Gently centrifuge solution and decant liquid solution into a beaker, making sure to leave any 

precipitate behind. 

4.6 Synthesis of PVA-SA-X Gel 

The objective of this section is to detail the preparation of PVA-SA-X gel capable of 

increasing the viscosity of a hydraulic fracturing fluid and controlling the final gel viscosity 

necessary for conventional hydraulic fracturing treatments. This is important because it ensures 

proppant carrying capability, while maintaining low drag effects as the hydraulic fluid is pumped 

towards the target zone in conventional reservoirs. This section describes the synthesis of 

poly(vinyl alcohol)-succinic acid crosslinked with DCC and Cr3+ crosslinker. 
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Table 4. Synthesis Equations & Recipe for PVA-SA-X Gel 

Equation 1. 

m4000ppm Cr3+,g = 

100ppm*
(m3.0%PVA-SA sxlnkd,  g+mDI,  g+m4000ppm Cr3+ g+m1% NaOH,  g)

4000 pppm

Equation 2. 

70g = m3.0%PVA-SA sxlnkd,  g + mDI,  g + m4000ppm Cr3+ g + m1% NaOH,  g 

Equation 3. 

PVA-SA wt.% = 

0.03*
m3.0%PVA-SA sxlnkd,  g

m3.0%PVA-SA sxlnkd,  g + mDI,  g + m4000ppm Cr3+, g + m1%NaOH, g

Equation 4. 

m1% NaOH,  g = 0.1* m3.0%PVA-SA sxlnkd,  g 

Reagents 

Sample PVA-SA-X Gel Concentrations, g 

1.8 wt.% 2.0 wt.% 2.5 wt.% 

3.0% PVA-SA with DCC 42.00 46.67 58.33 

DI Water 22.05 16.92 4.08 

1% NaOH 4.20 4.67 5.83 

4000 ppm Cr3+ stock soln 1.75 1.75 1.75 

The following is the procedure for preparing 70g PVA-SA-X gel, consisting of 100ppm Cr3+, at 

any desired concentration: 
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Measure PVA-SA with DCC into an appropriately sized vial with stir bar. Add DI water and 

NaOH into the vial and gently stir after each reagent has been added. Chromium [III] from the 

chromium [III] stock solution is then added, and the mixture stirred for ~2 mins. 

4.7 Results and Discussion 

4.7.1 Viscosity Measurements of PVA-SA, PVA-SA-X, and PVA-SA-X Gel 

The results plotted below in Figure 7 show the effects of crosslinking PVA-SA with 

DCC. Using the rheometer, the room temperature viscosities of three different polymer 

concentrations of PVA-SA with a measured pH of 7-8 were analyzed at a shear rate of 50s-1: 

1.0%, 1.6%, and 2.5%. These three concentrations showed three different polymer strengths, 

with increasing polymer concentration resulting in increasing strength and viscosity. These 

results are compared to PVA-SA-X at the same concentrations, and at three different 

temperatures: 25°C, 65°C, and 80°C. At 25°C, 1.0% PVA-SA and PVA-SA-X measured at ~11 

cP and ~37 cP, respectively. 1.6% PVA-SA and PVA-SA-X measured at ~12 cP and ~103 cP, 

respectively. 2.5% PVA-SA and PVA-SA-X measured at ~15 cP and ~262 cP, respectively. It is 

evident that at 25°C, increasing PVA-SA concentration has a very minimal effect on overall 

viscosity change, while increasing PVA-SA-X concentration has a significant effect on overall 

viscosity change. Even at higher temperatures of 65°C and 80°C, PVA-SA-X proved to have 

greater viscosity than PVA-SA at room temperature. Based on these results, we can justifiably 

say that slightly crosslinking PVA-SA with DCC increases the overall viscosity of PVA-SA, 

which invariably indicates an increase in the polymer’s average molecular weight. 
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Figure 7. Effect of Crosslinking PVA-SA with DCC at different temperatures 

 

 

 

Figure 8 depicts a plot of PVA-SA, PVA-SA-X, and PVA-SA-X gel prepared and 

measured at 25°C, at pH values within the 7-8 range. Measurements were made with the 

viscometer at a shear rate of 2.25s-1. Viscosity measurements above 1000 cP indicates a gel that 

cannot be accurately measured by the viscometer, due to the bob’s inability to properly grip the 

gel. Therefore, viscosity values above or equal to 1000 cP have been constrained to a 1000 cP 

limit in the plots presented in Figure 8. PVA-SA solutions proved to be the lowest overall 

viscosity when measured at a shear rate of 2.25s-1. PVA-SA-X showed an increase in viscosity 

overall when compared to all PVA-SA concentrations, but showed to be greater in viscosity than 
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PVA-SA-X gel, up until approximately 1.2% polymer concentration, before showing a lower 

viscosity than PVA-SA-X gel. This is due to syneresis. Due to the insufficient amount of 

polymers at lower polymer concentrations, adding 100ppm Cr3+ crosslinker causes over-

crosslinking to occur, separating out liquid from the gel and exhibiting an overall lower 

concentration. By increasing the polymer concentration, the crosslinking mechanism in PVA-

SA-X gel switches from a predominantly intramolecular crosslinking reaction, to an 

intermolecular crosslinking reaction. 

Figure 8. Viscosity versus polymer concentration for different polymer systems at 25°C – 

PVA-SA, PVA-SA-X, PVA-SA-X gel 
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4.8 Synthesis Conclusions 

The objective of this synthesis section is to prove that DCC is capable of increasing the 

molecular weight of PVA-SA, and thus show that the same fluid viscosity can be achieved with a 

lower PVA-SA polymer amount when slightly crosslinked with DCC, than without DCC. 

Resultantly, PVA-SA-X gives a greater viscosity at 25°C, 65°C, and 80°C, than just PVA-SA at 

25°C. Although the increase in viscosity is not significant for conventional fracturing treatment 

(which requires a fluid viscosity of at least 1000 cP), the viscosity increase enabled by DCC is 

suitable as a linear polymer gel that acts as a hydraulic fracturing viscosifier, enabling proppant 

suspendability and transport, while acting as a drag reducing agent for reducing friction pressure 

losses along the tubulars. Further, this polymer system is capable of creating the fracture 

networks necessary to increase hydrocarbon conductivity in unconventional reservoirs, and 

effectively reduce the amount of polymer left in the formation post-fracturing. 

Furthermore, the viscosity of PVA-SA-X can further increase via intermolecular 

crosslinking with Cr3+ crosslinker. This creates a high viscosity fluid that will improve the 

proppant carrying capacity necessary for conventional fracturing treatments. 
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CHAPTER V 

RHEOLOGICAL STUDIES 

5.1 Objective 

The objective of this section is to characterize the various polymer systems that include 

PVA-SA-X, and PVA-SA-X gel. This is important because by determining the rheological 

behavior(s) of this novel polymer fluid, we can better understand its functionality at various 

reservoir conditions and optimize its use. Further analysis will also help determine fluids 

appropriate for proppant suspendability and transport. 

5.2 Material and Methods 

The compositions of the gelling solutions involved are: DI water, 10% NaOH (for 

maintaining solutions to pH 7-8), 100ppm chromium (III), and PVA-SA-X. All gels are 

incubated at room temperature. All component concentrations are determined according to the 

equations shown in Table 4.  

5.3 Experimental Equipment 

Rheological measurements were made with a M5600 HPHT Rheometer manufactured by 

Grace Instrument, while viscosity measurements were made with both the rheometer and 

viscometer. The rheometer can be seen in Figure 5 and the viscometer can be seen in Figure 4. 

5.4 Results and Discussion 

5.4.1 PVA-SA-X 

Rheological test results below show that PVA-SA solutions crosslinked with DCC at 

room temperature and then measured at 25°C, 65°C, and 80°C, show an exponentially declining 
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viscosity curve under increasing shear rates in Figure 9. On a log-log plot, shear stress versus 

shear rate for the varying concentrations of PVA-SA-X at the three temperatures, is linearized 

and fitted using a power-law model as shown in Figure 10. The flow behavior indices (n΄) and 

flow consistency indices (K΄) for 1.0%, 1.6%, and 2.5% polymer concentration with DCC are 

recorded in Table 5. With n΄ less than 1 for all concentrations at all temperatures, coupled with a 

declining viscosity trend with increasing shear rate, this data further supports that PVA-SA-X is 

a shear thinning fracturing fluid. Additionally, at each temperature, K΄ increases with increasing 

polymer concentration, pointing to the greater crosslinking network between DCC and PVA-SA 

as additional polymer becomes present in the solution. 
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Figure 9. Viscosity versus shear rate of varying concentrations of PVA-SA-X at different 

temperatures. 
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Figure 10. Log shear rate versus log shear stress for varying concentrations of PVA-SA-X 

at different temperatures using the power law model. 

 

 

 

Table 5. Power law parameters for varying concentrations of PVA-SA-X at different 

temperatures. 
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1.0% 
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5.4.2 PVA-SA-X Gel 

Figure 11 shows the effect of concentrations of PVA-SA-X with 100ppm Cr3+ on 

viscosity at 25˚C. The apparent viscosity was measured with the viscometer for each 

concentration at a shear rate of 2.25s-1. Viscosity measurements above 1000 cP indicates a gel 

that cannot be accurately measured by the viscometer due to the bob’s inability to properly grip 

the gel. Therefore, viscosity values above or equal to 1000 cP have been constrained to a 1000 

cP limit in Figure 11. It is apparent that at low polymer concentrations, the apparent viscosity is 

low, and no significant changes in viscosity is observed from 0.4-1.0% PVA-SA-X 

concentrations. The apparent viscosity then increases rapidly when the critical overlap 

concentration of 1.1% is reached, and then a gel is formed at the critical entanglement 

concentration of 1.4%, showing viscosity values greater than 1000 cP. With increasing polymer 

gel concentration, viscosity gradually increases until it reaches a critical overlap concentration at 

approximately 1.1% polymer concentration, after which the slope abruptly increases. Viscosity 

continues to increase exponentially until the threshold gelation viscosity of 1000 cP is reached at 

approximately 1.4% polymer concentration. At this point, the apparent viscosity of the gelling 

solution is out of range of the viscometer, and a gel is visibly formed. At gel concentrations 

greater than or equal to 1.4%, it is safe to assume that the consequent solutions are gel like and 

further viscosity measurements by the viscometer insufficiently describe the gel’s characteristics, 

since the viscometer’s top plate no longer properly grips the gel. Thus additional gel properties 

were studied for varying polymer concentrations of PVA-SA-X at 25°C using the rheometer. 
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Figure 11. Viscosity versus polymer concentration for PVA-SA-X gel at 25°C. 
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regime, both oscillatory stress, σ, and oscillatory strain, γ, are harmonic. These can be described 

by the following equations: 

γ = γ
0
cos ωt 

σ = σ0cos(ωt+δ) 

Where ω is the excitation frequency in rad/s, and δ is the phase angle by which the oscillatory 

strain lags behind the oscillatory stress. G* can then be defined by 

G
*
=

σ0ei(ωt+δ)

γ
0
eiωt

 = G' + iG'' 

Where i2 is -1, G΄ is the storage modulus, and G΄΄ is the loss modulus. The storage modulus G΄ is 

associated with the storage of energy during the applied stress, and is an indicator of the building 

of a network structure in a crosslinking reaction, while G΄΄ is associated with the loss of energy 

as heat (Klaveness, Ruoff, & Kolnes, Kinetics of the Crosslinking of Poly (acrylamide) with Cr 

(III) Rheological Measurements of the Gelation, 1995). 

The rheometer is used to measure the viscoelasticity of varying concentrations of PVA-

SA-X gel, while the Syndansk gel code, Table 6, is used to qualitatively describe its strength. 

Oscillatory frequency sweep tests were performed to determine the rheological behavior of the 

gelling system, varying with an applied frequency range of 0.01-5.00 Hz, as illustrated in Figure 
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12. A deformation amplitude of 10% was selected to ensure that the oscillatory deformation is

within the linear regime. The rheometer also measured viscosity values of different gel 

concentrations at varying temperatures at increasing and decreasing shear rates. Gel strength is 

expressed as an alphabetic code of A through I, which is shown in Table 6. For no detectable gel 

that has the same viscosity as the initial solution, it is coded as “A”. Likewise, code “I” indicates 

that there is no deformation on the gel surface upon inversion. 

Table 6. Syndansk Gel Code / Gel Strength Code (Reprinted from Jia, Pu, Zhao, & Liao,

2011).
Gel Strength Code Gel Description 

A No detectable gel formed: The gel appears to have the same viscosity as the 

original polymer solution. 

B Highly flowing gel: The gel appears to be only slightly more viscous than the 

initial polymer solution. 

C Flowing gel: Most of the gel flows to the bottle cap by gravity upon inversion. 

D Moderately flowing gel: Only a small portion (5-10%) of the gel does not 

readily flow to the bottle cap by gravity upon inversion (usually characterized 

as a tonguing gel). 

E Barely flowing gel: The gel can barely flow to the bottle cap and/or a 

significant portion (>15%) of the gel does not flow by gravity upon inversion. 

F Highly deformable non flowing gel: The gel does not flow to the bottle cap by 

gravity upon inversion. 

G Moderately deformable non flowing gel: The gel deforms about half way 

down the bottle by gravity upon inversion. 

H Slightly deformable non flowing gel: only the gel surface slightly deforms by 

gravity upon inversion. 

I Rigid gel: There is no gel surface deformation by gravity upon inversion. 
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According to Figure 12, G΄΄ is initially larger than G΄ at the low PVA-SA-X gel 

concentration of 1.0%, with G΄ valued at 0 dyne/cm2. This is expected since the sample is still in 

the liquid state where viscous properties dominate, and most of the energy is lost as viscous heat. 

With the viscous modulus dominating the elastic modulus at this concentration, the gel solution 

is mainly fluid-like and is characterized as ‘A’ according to the Syndansk gel code, since no 

detectable gel is formed and the solution is water-like. As polymer gel concentration increases 

from 1.2% - 2.0%, the gelant begins to gel and a crosslinked network is formed, decreasing the 

difference between G΄ and G΄΄; the plots show both parameters almost overlapping each other. 

With the viscous modulus similar to the elastic modulus at these concentrations, the gel solution 

is both fluid-like and gel-like and characteristically progresses from a highly flowing gel, ‘code 

B’, at 1.2%, to a flowing gel, ‘code C’, at 1.4%, to a moderately flowing gel, ‘D’, at both 1.6% 

and 2.0%, according to the Syndansk gel code. At polymer concentrations of 2.5% (and above), 

the difference between G΄ and G΄΄ increases, with G΄ larger than G΄΄.  With the elastic modulus 

dominating the viscous modulus at this concentration, the gel solution is mainly solid-like and is 

characterized as a highly deformable gel, ‘F’, according to the Syndansk gel code, and is like a 

rubbery material. The consistent increase in G΄ and G΄΄ with increasing PVA-SA-X gel 

concentration, suggests the viscoelastic nature of this hydrogel under the applied physical 

conditions. 



38 

 G΄΄=Viscous Modulus (dyne/cm2)  G΄=Elastic Modulus (dyne/cm2) 

Figure 12. Frequency sweep test for varying PVA-SA-X gel concentrations at 25°C and 

10% amplitude. 
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Figure 13 highlights the effects of shear rate on 1.6% and 2.5% PVA-SA-X gel 

concentrations (lower gel concentrations are not included as they classified as code C and below, 

and did not form a visibly strong enough gel), at 25°C, 65°C, and 80°C. All concentrations show 

a decrease in viscosity with increasing shear rate (forward and reverse) for all temperatures, 

indicating that PVA-SA-X gel is a shear thinning fluid. The fact that viscosity reaches low values 

at high shear rates indicates that fluid flow encounters less resistance at higher shear rates. This 

can be attributed to the fact that as shear rate is increased, the polymer chain disentangles and 

stretches, flowing in the direction of the applied force, resulting in a reduced polymer gel 

viscosity. Figure 13 also shows the viscosities achieved by increasing and decreasing shear rates. 

The rheometer was programmed to continuously measure viscosity from shear rates 30 s-1 to 500 

s-1 for increasing shear measurements, and immediately followed by a continuous shear from 500 

s-1 to 30 s-1, for decreasing shear measurements. This data shows that both shearing methods 

provided closely related viscosity values for 1.6% PVA-SA-X gel, indicating that hysteresis is 

negligible for polymer gel concentrations that exhibit fluid-like characteristics. However, 

hysteresis is evident for 2.5% PVA-SA-X gel, indicating incomplete re-crosslinking post-shear 

between the crosslinker and polymer for polymer gel concentrations that exhibit solid-like 

characteristics. The higher the gel concentration, the more shear dependent the solution viscosity 

is. 

At all PVA-SA-X gel concentrations, gel viscosity decreases with increasing temperature. 

With higher temperatures, intermolecular crosslinking becomes weaker, and thus the gel is 

broken, lowering overall gel viscosity. 
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Figure 13. Semi-log plot of the effects of shear rate, reversibility and temperature on PVA-

SA-X gel at 25°C, 65°C, 80°C in the range 30-500 s-1;  

Solid lines = increasing shear; Dotted lines = decreasing shear. 
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PVA-SA-X gel solutions at 25°C, 65°C, and 80°C show an exponentially declining curve 

under increasing shear rates. On a log-log plot, Figure 14, the shear stress vs shear rate curve is 

linearized and fitted using a power-law model. The flow behavior indices (n΄) and flow 

consistency indices (K΄) for 1.6% and 2.5% PVA-SA-X gel are recorded in Table 7. With n΄<1 

for all temperatures, in addition to the declining viscosity trend with shear rate, this data further 

supports that this polymer gel solution is a shear thinning fracturing fluid. This data reveals that 

for weak gels, n΄ generally tend toward unity and K΄ decreases with increasing temperature. 

Figure 14. Log shear rate versus log shear stress for 1.6% and 2.5% PVA-SA-X gel at 

25°C, 65°C, and 80°C using the power law model. 
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Table 7. Power law parameters for 1.6% and 2.5% PVA-SA-X gel at 25°C, 65°C, and 80°C. 

PVA-SA-X Gel Concentration Temp n' K' (lbf s^n'/ ft^2) 

1.6% 

25°C 0.87 1.06 

65°C 0.89 0.39 

80°C 0.84 0.38 

2.5% 

25°C 0.06 943.99 

65°C 0.24 171.34 

80°C 0.27 98.76 

5.5 Rheological Studies Conclusions 

The objective of these rheological studies is to show that PVA-SA-X, and PVA-SA-X gel 

has the capacity to suspend and carry proppant in an unconventional and conventional hydraulic 

fracturing treatment, respectively. Based on the data presented previously we can conclude the 

following: 

1. Crosslinking PVA-SA with DCC is a non-Newtonian fluid capable of improving proppant

carrying capabilities while maintaining low pumping requirements, even at high temperatures 

up to 80˚C. 

2. The viscosity of PVA-SA-X can further increase via intermolecular crosslinking with Cr3+

crosslinker. This creates a non-Newtonian fluid capable of improving proppant carrying 

capabilities while maintaining low pumping requirements. 

3. With this polymer gel system, 1.4% is defined as the gelation critical concentration at a

viscometer shear rate of 2.25 s-1.

4. PVA-SA-X gel viscoelastic properties can be modified to suit desired proppant

suspendability and achieve eventual gel strength, by changing its concentration. 
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5. G΄, G΄΄ data qualitatively proves that the more gel-like the solution is, the greater its ability to

suspend proppant and minimize proppant settling velocity. 

6. PVA-SA-X gel is a shear thinning fluid with hysteresis evident at higher polymer gel

concentrations. 

7. PVA-SA-X gel is temperature sensitive with increasing temperature resulting in decreasing

viscosity. 

8. The greater crosslinking network of PVA-SA-X provides the elevated viscosity suitable for

unconventional fracturing, without the additional need of a metal crosslinker like Cr3+, which

could potentially damage the well. 

9. PVA-SA-X gel’s ability to exhibit solid-like characteristics with viscosity values greater than

1000 cP make it a suitable polymer for fracturing conventional reservoirs. 
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CHAPTER VI 

DEGRADATION STUDIES 

6.1 Objective 

The objective of this section is to prove that PVA-SA-X and PVA-SA-X gel have the 

ability to self-break/degrade without any internal breakers at elevated temperatures. This is 

important because it ensures that there will be little to no gel residue post fracturing, minimizing 

formation damage in both unconventional and conventional fracturing treatments. 

6.2 Material and Methods 

Samples of PVA-SA-X and PVA-SA-X gel were prepared and incubated for ~48 hours at 

room temperature, incubated in Thermo Scientific ovens at three different temperatures (65°C, 

80°C, and 95°C), and loaded periodically into the viscometer to measure the viscosity at room 

temperature for safety measure. Two analytical methods were utilized to measure gel breaking: 

bottle testing method and monitoring viscosity over time. 

6.3 Experimental Equipment 

Viscosity measurements were made with the Brookfield DV2T Viscometer. The 

instrument can be seen in Figure 4. 

6.4 Results and Discussion 

6.4.1 Bottle Testing Method 

The bottle testing method is a quick and inexpensive method that provides a semi-

quantitative method of gelation rate and gel strength. Gel strength during degradation is 

expressed as an alphabetic code of A through I, which is shown in Table 8. For no detectable gel 
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that has the same viscosity as the initial solution, it is coded as “A”. Likewise, code “I” indicates 

that there is no deformation on the gel surface upon inversion. 

Table 8. Syndansk Gel Code / Gel Strength Code (Reprinted from Jia, Pu, Zhao, & Liao,

2011). 

Gel Strength Code Gel Description 

A No detectable gel formed: The gel appears to have the same viscosity as 

the original polymer solution. 

B Highly flowing gel: The gel appears to be only slightly more viscous 

than the initial polymer solution. 

C Flowing gel: Most of the gel flows to the bottle cap by gravity upon 

inversion. 

D Moderately flowing gel: Only a small portion (5-10%) of the gel does 

not readily flow to the bottle cap by gravity upon inversion (usually 

characterized as a tonguing gel). 

E Barely flowing gel: The gel can barely flow to the bottle cap and/or a 

significant portion (>15%) of the gel does not flow by gravity upon 

inversion. 

F Highly deformable non flowing gel: The gel does not flow to the bottle 

cap by gravity upon inversion. 

G Moderately deformable non flowing gel: The gel deforms about half 

way down the bottle by gravity upon inversion. 

H Slightly deformable non flowing gel: only the gel surface slightly 

deforms by gravity upon inversion. 

I Rigid gel: There is no gel surface deformation by gravity upon 

inversion. 
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The effect of polymer concentration on gelation strength and gel degradation is shown in 

Table 9. The samples were prepared with different PVA-SA-X  and PVA-SA-X gel 

concentrations, tested at 65°C, 80°C, and 95°C temperatures, and at a pH of 7-8. From the 

results, it is observed that the gel strength decreased with time, and the rate of degradation for 

both polymer systems at all temperatures is highest within the first few hours of incubation. It is 

also observed that the gel concentration affects the degradation time. Based on the results, one 

can infer that it takes longer for gel degradation to occur at higher polymer and polymer gel 

concentrations. This is due to the greater DCC-carboxylate and chromium-carboxylate group 

networks that are present in higher polymer and polymer gel concentrations, respectively, which 

require more time to dissociate, resulting in the decrease of viscosity and gel strength. 

From this data, one can estimate the flow-ability of the various PVA-SA polymer system 

during post-fracture process. With a typical flowback duration of approximately 2 days1, Table 9 

shows that at ~2.1 days (highlighted), all polymer systems will exhibit a solution that has no 

detectable gel, ensuring negligible residue in the formation, except for 2.5% PVA-SA-X gel at 

80°C which exhibits a highly flowing gel, 1.6% PVA-SA-X gel at 65°C which exhibits a highly 

flowing gel, and 2.5% PVA-SA-X gel at 65°C which exhibits a moderately flowing gel. 

 

 

 

                                                 

1 Dunn, Sharon. “Fracking 101: Here's the inside Mud on How the Process Works.” Post 

Independent Citizen Telegram, The Tribune, 20 Mar. 2016, 

www.postindependent.com/news/local/fracking-101-heres-the-inside-mud-on-how-the-process-

works/. 
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Table 9. Degradation Performance of PVA-SA-X and PVA-SA-X gel 

TIME 

PVA-SA-X PVA-SA-X GEL 

65°C, 80°C, 95°C 95°C 80°C 65°C 

~Days ~Hours 1.0% 1.6% 1.0% 1.6% 2.5% 1.0% 1.6% 2.5% 1.0% 1.6% 2.5% 

0 0 A B A D E A D E A D E 

0.01 0.3 A A A C D A C D A C E 

0.02 0.6 A A A B D A C D A C E 

0.05 1.1 A A A A D A C D A C E 

0.5 12 A A A A C A C C A C D 

0.7 17 A A A A B A C C A C D 

1.0 25 A A A A A A C C A C D 

1.7 40 A A A A A A B C A C D 

1.9 46 A A A A A A A B A C D 

2.1 51 A A A A A A A B A B D 

7.0 168 A A A A A A A A A A C 

8.0 192 A A A A A A A A A A B 

11.0 264 A A A A A A A A A A A 

 

 

 

6.4.2 Monitoring Viscosity Over Time 

Polymer and polymer gel degradation were quantitatively examined by measuring the 

apparent viscosities using the Brookfield DV2T Viscometer, placing the solution in 6mL glass 

vials at different temperatures. The apparent viscosities of varying concentrations of PVA-SA, 
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PVA-SA-X, and PVA-SA-X gel, were measured at 25°C after incubation at different 

temperatures, 65°C, 80°C, and 95°C. For accurate measurements with the viscometer, varying 

shear rates are used to make viscosity measurements over time: for viscosities greater than 200 

cP, a shear rate of 2.25s-1 is used; for viscosities less than 200 cP and greater than 20 cP, a shear 

rate of 9.00s-1 is used; for viscosities less than 20 cP, a shear rate of 22.50s-1 is used. The results 

are plotted in the graphs to follow.  

According to the plots (Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Figure 20, 

Figure 21, and Figure 22), all viscosity profiles start off with a high slope, indicating a high rate 

of gel breakdown, before decreasing in slope and leveling off; this further substantiates results 

from the bottle testing experiment above depicting that the highest rate of degradation is within 

the first time period of breakdown. 

6.4.2.1 PVA-SA Degradation 

As a control, a viscosity profile of varying concentrations of PVA-SA is plotted below to 

gauge the anticipated final viscosity of PVA-SA-X and PVA-SA-X gel at various temperatures. 

By determining the final stable viscosity of PVA-SA, we are able to determine if either 

crosslinked polymer is capable of breaking down to its constituents after a period of time at the 

various temperatures. 

As Figure 15 shows, the starting viscosities for 0.5%, 1.0%, 1.6%, and 2.5% PVA-SA are 

~11.5 cP, ~11.8 cP, ~17.7 cP, and ~20.1 cP, respectively. After a week of incubation at different 

temperatures, final viscosity values range from approximately 11 cP-19 cP at 65°C, 5 cP-11 cP at 

80°C, and 4.7 cP-10.2 cP at 95°C. 
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Figure 15. Degradation of PVA-SA – 65°C, 80°C, and 95°C. 
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Figure 16 shows the effect of temperature on apparent viscosity for PVA-SA. It can be seen that 

the fluid degrades minimally over time, and that for elevated temperatures, the effects are more 

noticeable. 

 

 

 

 

Figure 16. Degradation of 0.5%, 1.0%, 1.6%, and 2.5% PVA-SA at 65°C, 80°C, and 95°C.  
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longest time to break. At 80°C and 95°C, it took all concentrations a maximum of 4 days to 

break down to a final viscosity ranging from ~9 cP to ~69 cP. At 65°C, 1.6% PVA-SA-X gel 

took ~7 days to break from ~500cP to 42cP, 1.0% PVA-SA-X gel took ~6 days to break from 

~395 cP to 42 cP, while 0.5% PVA-SA-X gel took ~2.3 days to break from ~120 cP to 42 cP. 

Furthermore, it is evident that at greater molecular polymer weights, longer times are required to 

achieve a low final breakdown viscosity, especially at lower temperatures. 
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Figure 17. Degradation of PVA-SA-X - 65°C, 80°C, and 95°C. 
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Figure 18 shows the effect of temperature on apparent viscosity for PVA-SA-X. It can be seen 

that the fluid degrades over time, and that for elevated temperatures, the effects are more 

pronounced. 

 

 

 

 

Figure 18. Degradation of 0.5%, 1.0%, and 1.6% PVA-SA-X at 65°C, 80°C, and 95°C. 
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6.4.2.3 PVA-SA-X Gel Degradation 

Adding chromium crosslinker to PVA-SA-X strengthens the polymer’s resistance to 

temperature, and increases its breaking time. Figure 19 shows the viscosity profile of 1.0%, 

1.6%, and 2.5% PVA-SA-X gel at 95°C, 80°C, and 65°C, over time. As expected, 2.5% PVA-

SA-X gel concentration at all temperatures took the longest time to break to the approximate 

viscosity range of 20-40 cP; it took ~3.9 days to break from >1000 cP to ~30 cP and ~32 cP at 

95°C and 80°C, respectively, and it took ~11 days to break to ~39cP at 65°C. 1.6% PVA-SA-X 

gel concentration took ~1 day, ~3.7 days, and >6.8 days to break from >1000 cP to ~26 cP at 

95°C, 80°C, and 65°C, respectively. Meanwhile, it took 1.0% PVA-SA-X gel concentration less 

than 24 hours to break down to approximately half its initial viscosity, from ~20 cP to ~10 cP, 

for all temperatures. 
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Figure 19. Degradation of PVA-SA-X Gel – 65°C, 80°C, and 95°C. 
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Figure 20 shows the effect of temperature on apparent viscosity for PVA-SA-X gel. It can be 

seen that the fluid degrades over time, and that for elevated temperatures, the effects increases 

drastically. 

 

 

 

 

Figure 20. Degradation of 1.0%, 1.6%, and 2.5% PVA-SA-X Gel at 65°C, 80°C, and 95°C. 
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6.4.2.4 Comparing PVA-SA, PVA-SA-X, and PVA-SA-X Gel Degradation 

Degradation of PVA-SA polymer and its various crosslinked systems is accomplished via 

an ester hydrolysis mechanism. Since the polymer solution is prepared to a slightly basic pH 

between 7 and 8, it is very likely that gel breaking occurred via a base hydrolysis of esters. 

Saponification is initiated by a hydroxide nucleophile attacking the electrophilic carbon atom of 

the ester C-O bond, leading to an acyl-oxygen cleavage. The rate of this reaction is temperature 

dependent with higher temperatures resulting in higher degradation rate. 

To accurately analyze the breakdown of this novel polymer system, PVA-SA, and PVA-

SA-X, and PVA-SA-X gel are comparatively studied at 1.6% and 2.5% concentrations at 95°C, 

80°C, and 65°C. At these concentrations, we are ensuring that the PVA-SA gel is at or above its 

critical gelation concentration, and thus exhibits a viscosity (>1000 cP) that can be utilized for 

conventional hydraulic fracturing treatments. According to Figure 21 and Figure 22, we can note 

that after some incubation time period at the three different temperatures, the viscosity profile of 

PVA-SA-X gel either approaches or closely aligns with that of PVA-SA-X, while PVA-SA-X 

generally approaches that of PVA-SA. The former indicates that PVA-SA-X gel is being broken 

down via a dissociation of the chromium [III] crosslinker and PVA-SA-X polymer, weakening 

the 3D structure of the gel. The latter indicates that PVA-SA-X is broken down into smaller 

average molecular weight polymers, however its slightly higher viscosity than PVA-SA can be 

attributed to the presence of DCC and DMAP in the broken down solutions. 
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Figure 21. Degradation of 1.6% PVA-SA, PVA-SA-X, PVA-SA-X gel – 65°C, 80°C, and 

95°C. 
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Figure 22. Degradation of 2.5% PVA-SA, PVA-SA-X, PVA-SA-X gel – 65°C, 80°C, and 

95°C. 
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6.5 Degradation Conclusions 

The objective of this degradation section is to show that PVA-SA-X and PVA-SA-X gel 

is capable of self-breaking under typical reservoir conditions, leaving negligible degradation 

residue after the fracturing treatment is administered, without the aid of internal breakers. Based 

on the data presented previously we can conclude the following: 

1. The rate of all PVA-SA polymer systems’ breaking is proportional to temperature, and 

inversely proportional to polymer and crosslinker concentration. 

2. The rate of degradation is highest within the first 24 hours, before leveling off. 

3. Complete breakdown of polymer can be achieved at higher temperature reservoirs, and the 

higher the incubation temperature, the shorter the breakdown time. 

4. Degradation of PVA-SA-X is a result of a saponification reaction at the ester linkages, 

reducing average molecular weights of the polymer solution. 

5. Degradation of PVA-SA-X gel is a result of a weakened 3D gel structure, as the crosslinker 

is dissociated from the polymer, PVA-SA-X. 

This proves that without the use of internal breakers, PVA-SA-X gel is capable of degrading into 

a solution that will flow during post-flush, minimizing formation and proppant-pack damage. 
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CHAPTER VII 

CONCLUSIONS 

7.1 Summary of Results 

The objective of this research is to synthesize and characterize a novel hydraulic 

fracturing fluid that can suspend proppant long enough to be properly placed within the fracture 

network of a hydraulic fracturing treatment, and break down after a conventional and 

unconventional fracturing treatment is complete, restoring proppant pack conductivity and 

ensuring proper hydrocarbon flow. Our system proves that it can be tailored specifically to fit the 

needs of the reservoir, as the process involves synthesizing a gel that can be modified. Using 

DCC and Cr3+, we can control the final fracturing fluid viscosity and fluid break down time 

depending on the concentrations used. PVA-SA slightly crosslinked with DCC (also known as 

PVA-SA-X) is a non-Newtonian fluid capable of increasing a hydraulic fracturing fluid viscosity 

necessary for proppant suspendability in unconventional hydraulic fracturing treatments. Adding 

chromium [III] crosslinker to this polymer system further enhances the viscosity of the hydraulic 

fracturing fluid necessary for proppant transport and fracture creation in conventional reservoirs, 

via the creation of 3D polymer networks. Both PVA-SA-X and PVA-SA-X gel are capable of 

self-breaking, especially under elevated temperature conditions, without the aid of internal 

breakers, minimizing formation and proppant-pack damage during the post-flush process of a 

hydraulic fracturing treatment. 

7.2 Primary Obstacles 

By far the biggest difficulty in experimentation is attributed to maintaining consistent gel 

strength when making new batches of PVA-SA. In order to obtain reproducible results in the 
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gelation studies, a consistent way of preparing the gelling solution/linear polymer was 

established and carefully followed. To combat the issue of gel strength inconsistency, it is highly 

recommended that a fresh batch of PVA-SA-X be synthesized immediately before use or test. 

Also, to ensure consistent gel strength after PVA-SA polymer preservation of approximately 24 

hours, it would be recommended to measure the polymer viscosity before application to confirm 

polymer strength stability.  

7.3 Recommendations for Future Work 

Based on our experiments, we have evidence of enhanced viscosity by this polymer 

system. To further understand the proppant carrying properties of this novel hydraulic fracturing 

fluid, recommended future work could include: 

1. Study the capacity of PVA-SA-X or PVA-SA-X gel to carry different types of 

proppant during hydraulic fracturing. 

2. Perform simulations of PVA-SA-X or PVA-SA-X gel application for hydraulic 

fracturing by investigating its performance after flowing through a porous media via a 

sandstone core flood experiment. 
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