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ABSTRACT

This dissertation consists of three essays on applied econometrics.

The first essay is entitled A Structural Analysis on US Spectrum Auctions. The spectrum auc-

tion allocates spectrum licenses to companies. This paper provides a structural analysis on US

spectrum auctions to estimate bidders’ values, which is essential for auction policy evaluations. I

first perform a theoretical analysis, then construct a structural model to rationalize bidders’ bid-

ding behaviors as a bundle choice problem. I propose a multiple-step estimation to recover the

parameters in bidders’ value function from the model. In the estimation, I develop a framework to

handle the high-dimensionality issue in the bundle choice model with individual-level data. This

paper analyzes the 1995-1996 spectrum auction in the US. I find evidence of complementarity in

this auction, as well as heterogeneity in the complementarity valuation across bidders.

The second essay is entitled Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline

Regressions, and it is coauthored with Qi Li and Jeffrey S. Racine. Model averaging has a rich his-

tory dating from its use for combining forecasts from time-series models and presents a compelling

alternative to model selection methods. We propose a model average procedure defined over cat-

egorical regression splines. Theoretical underpinnings are provided, finite-sample performance

is evaluated, and an empirical illustration reveals that the method is capable of outperforming its

nonparametric peers in applied settings.

The third essay is entitled Multivariate Density Forecast Combination. Density forecasts are

able to convey the uncertainty in addition to the point forecasts, and multivariate density forecasts

further allow people to capture the interdependency among different variables of interest. This

paper develops a class of combination schemes for multivariate density forecasts, in view of that

the forecast combination could effectively improve the forecast performance upon single forecasts.

I prove the asymptotic optimality of the estimated combination weight. Monte-Carlo simulations

are provided to demonstrate the theoretical results.
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1. INTRODUCTION

This dissertation concerns developing econometric methods for studying economic issues. The

first essay presents a structural approach to analyze US spectrum auctions. The second essay

establishes model averaging in the mixed-data environment. The third essay provides a forecast

combination scheme for multivariate density forecasts.

In the first essay, I provide a structural analysis on the US spectrum auctions. The spectrum

auction allocates spectrum licenses to companies. The evaluation of its efficiency and revenue calls

for a structural approach to recover bidders’ values from the empirical data. The difficulty arises

because the spectrum licenses are heterogeneous and complementary. In this article, I analyze the

1995-1996 C-block spectrum auction in the US. To begin with, I perform a theoretical analysis to

motivate the subsequent modeling. Next, I construct a structural model to capture bidders’ bid-

ding behaviors in the auction, which are rationalized as a bundle choice problem. Specifically,

bidders choose the bundle of licenses to bid by maximizing their current-round expected payoffs. I

propose a multiple-step estimation procedure to recover the structural primitives in the model, the

parameters in bidders’ value function. In particular, I first estimate the winning probabilities for

the purpose of obtaining the current-round expected payoffs. Then I estimate the high-dimensional

bundle choice problem with individual-level data, where the high-dimensionality stems from the

large number of bundles. I find strong evidence of complementarity in the auction. The comple-

mentarity of the nationwide bundle is worth 8 billion dollars for an average bidder, which equals

59.54% of the sum of final prices of all licenses. Moreover, I explore the bidder heterogeneity in the

complementarity values and find that large bidders value the complementarity higher than medium

and small bidders. The stand-alone values are mostly reflected by the license-characteristic, rather

than the bidder-characteristic.

In the second essay, we study model averaging in the mixed-data environment where both con-

tinuous and categorical covariates are present, using regression spline models as candidates. Model

averaging is an appealing tool to deal with model uncertainty and presents a compelling alternative
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to model selection methods. Our target is estimating the conditional expectation. Practitioners who

adopt model averaging often construct a weighted average defined over a set of parametric candi-

date models. Our approach adopts a nonparametric perspective that allows people to approximate

a wide range of data generating processes. In addition, we admit both continuous and categorical

predictors in the model for the full flexibility of empirical uses. We estimate each candidate model

using a regression spline method. We combine the candidate model with a weighted average and

estimate the optimal weight using the Mallows criterion. We demonstrate the asymptotic optimal-

ity of the selected weight, in the sense that we attain the minimized predictive loss as if we knew

the infeasible optimal weight. We take into account the heteroskedasticity and consider both cases

where the error structure is known and unknown. Simulation studies support the superiority of our

method over the extant ones. We illustrate our approach using an empirical dataset.

In the third essay, I provide a forecast combination for the multivariate density forecasts. Den-

sity forecasts are more and more popular because they could communicate with users about the

uncertainty around the point forecasts. Multivariate density forecasts achieve an extra advantage

that they are able to reveal the interactions among variables of interest. This paper aims to improve

the multivariate density forecasts via forecast combination. Specifically, I combine the different

multivariate density forecasts via a weighted average. The estimation of optimal weights relies

on the Probabilistic Integral Transformation and the Kullback-Leibler Information Criterion. I

show that the selected weight is consistent, and use simulation to demonstrate the validity of my

theoretical results.
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2. A STRUCTURAL ANALYSIS ON US SPECTRUM AUCTIONS

2.1 Introduction

The wireless communication has deeply changed our lives, and will be continually influencing

the world in the upcoming 5G era, and in the future. In many countries and regions, the spectrum

usage of the wireless service is allocated to the telecommunication companies via auctions by

the government. The spectrum auctions generate large revenue for the government, and due to

its relevance in the economy and society, its allocation effectiveness also concerns the public [1].

In view of that, the choice of auction formats and design of auction rules are crucial. However,

there exist different auction formats for spectrum auctions in different countries, for example,

the Simultaneous Ascending Auction (SAA) conducted in US [2], and the Combinatorial Clock

Auction (CCA) held by some other countries [3].1 Even for a same format, for example, the SAA

in US, there also exist various versions in terms of detailed auction rules. Therefore, quantifying

the performance of spectrum auctions becomes an important issue for the government and policy

makers.

To achieve the policy evaluation in the spectrum auction, which is an exquisitely designed

market mechanism participated by sophisticated players [5], we need a structural analysis to re-

cover bidders’ private values. In this paper, I analyze the Simultaneous Ascending Auction format,

which has been the baseline design for the US spectrum auction since its launch into practice in

1994. The auction sells many licenses simultaneously, where each license represents the right to

transmit signals for this band of electromagnetic spectrum of a specific geographic area. SAA is a

multiple-round process. As rounds evolve, bidders raise the prices on the licenses, and the auction

stops until no new bids appear on any license. The licenses are heterogeneous, since licenses for

different areas are valued differently by the bidders. In addition, licenses may be complementary,

in the sense that for a bidder, the value for a bundle of licenses is higher than the sum of individual

1Countries adopting CCA for spectrum auctions include Australia, Austria, Canada, Denmark, Ireland, the Nether-
lands, Slovenia, Slovakia, Switzerland, and the United Kingdom [4].
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values for each license in this bundle. This is because bidders might be more willing to obtain a

group of licenses, potentially due to the saving in fixed costs and economies of scale [6].2 The

heterogeneity and complementarity of licenses, along with the large number of licenses, make it

infeasible neither for the economists to solve for the equilibrium of the model [7], nor for the bid-

ders to calculate their optimal strategy [5].3 Accordingly, learning the bidders’ private values from

this complex mechanism is challenging.

This paper aims to solve this problem. So far, the evaluation of spectrum auction designs has

mainly come from the economic theories and laboratory experiments. Explorations of this question

using empirical data, in spite of its importance, remain relatively sparse. I study the US spectrum

auction of the licenses for the C block of the 1900 MHz PCS band in 1995-1996, which has raised

13.43 billion dollars in total.4 There are 493 licenses to be sold, with 255 bidders participating in

the auction. It lasts for 184 rounds, from December 1995 to April 1996.

In this article, I first perform a theoretical analysis to guide the subsequent structural modeling.

Due to the infeasibility of the full equilibrium for SAA, I study a multiple-object clock auction

(MCA) model with complementarity, which could be viewed as an approximation of SAA [9].

On the one hand, I derive the Bayesian Nash equilibrium (BNE) of MCA, and prove some useful

equilibrium properties in an attempt to understand the bidding strategies in SAA. I find that the

BNE bidding strategy of MCA is non-decreasing in bidders’ private values, and non-increasing in

the number of remaining bidders in the auction, which corresponds to a piece of the current-round

information in SAA. On the other hand, using numerical solutions for the BNE, this analysis

demonstrates the existence of the exposure problem, which is widely documented for SAA [10].

The exposure problem means that when a bidder is bidding on a bundle of licenses, she is exposed

to the risk of obtaining only a subset of the bidding set, and thus tends to bid lower than her

true value. I find that in MCA, bidders’ BNE strategy is indeed lower than their true values.

Furthermore, the extent of the exposure problem is associated with the number of bidders. Such

2For example, the cost in building radio stations for two adjoining areas will be lower than for two distant areas.
And mobile service companies with a wide range of coverage will attract more consumers.

3The spectrum auctions typically have a large number of licenses. See Section 2.2.
4It is also referred to Auction 5 by FCC. [8] analyzed the same auction as in this paper.
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difference from the single-object clock auction (where bidding the true value is a weakly dominant

strategy) results from the complementarity among objects.

Next, I develop a structural model to capture bidders’ bidding behaviors revealed from the

theoretical insights and preliminary data explorations. While maintaining tractability, the model

is able to rationalize bidders’ decisions at each round based on their private values and current-

round information. Since in the data most submitted bids equal the minimum acceptable bids,

we model the a bidder’s decision at a given round as the choice of bidding bundle: the set of

licenses she will place bids on. In particular, at each round, a bidder chooses the bundle that

maximizes her current-round expected payoffs. The current-round expected payoff on a bundle are

constructed using the bidder’s beliefs about the probability of provisionally winning each license in

this bundle at the current round, using the current-round price. The winning probabilities depend on

their private values and the current-round information. This current-round expected payoff reflects

the expected profit of a bidder if the auction ends at the current round. The bidding strategy is

inherited from the Straightforward Bidding (SB) strategy in [2]. However, this model differs from

SB in that I incorporate the current-round information into bidders’ decision making, leading to

the explicit underbidding behaviors which respond to the exposure problem, and is thus consistent

with our theoretical results. I specify the equilibrium concept for the structural model, requiring

that bidders’ beliefs are consistent with the true winning probabilities. [11] use a similar way

to represent the expected utility of bidders, whereas they consider bidders’ beliefs of winning a

license at the end of the auction.

Finally, I propose a four-step estimation scheme for the structural model and recover the pa-

rameters in bidders’ private value function. Remarkably, within this procedure I provide a general

framework for estimating the high-dimensional bundle choice problem with individual-level data.

I parametrize the bidders’ private value to be composed of the stand-alone values and the com-

plementarity values. Firstly, since bidders’ decisions are based on their current-round expected

payoffs, we need to estimate the winning probabilities. Subsequently, we are faced with a bundle

choice problem based on the current-round expected payoffs, where the total number of bundles
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is extremely large. There are 480 licenses in the estimation, resulting in 2480 bundles in total.5

I apply the semiparametric estimation method for multinomial discrete choice proposed by [12]

into our bundle choice problem. There are two essential properties of this approach. On the one

hand, it allows for arbitrary dependence across different choices, which particularly fits our case

because bundles containing the same licenses are correlated. On the other hand, one can use a

random projection technique to achieve dimension reduction on the number of choices, which is

proposed by [13]. In addition, the method is designed for panel data, which corresponds to our

data structure. However, [12]’s method demands the choice probabilities for each bidder at each

round, while we only observe the realized chosen bundle. In view of that, we need to estimate the

choice probabilities beforehand.

Below I provide an overview of the estimation steps. In step 1, I estimate the winning proba-

bilities for each license, for the purpose of constructing the current-round expected payoff. I use

the current-round provisionally winning results for the bidding bundle of a bidder, i.e. whether

she wins the licenses she bids on, as the outcome variable, and use her private value as well as

current-round information as covariates. A challenge is that, the size of bidding bundle is usually

much smaller than the size of the full set of licenses, while we need the estimation of winning prob-

abilities for all licenses.6 This calls for a more accurate prediction approach than the traditional

ones. To this end, I first fit six models, including the traditional logit model, and five machine

learning classification methods: LASSO, Random Forest, Boosting, Support Vector Machine, and

Neural Nets. Next, I combine these models using the model averaging method to further enhances

the predictive performance. The combined estimation model improves the prediction accuracy by

reducing the (cross-validation) misclassification rate by 2.6%.

In step 2, I estimate the choice probabilities for each bundle of licenses, which is an input for

the estimation in the last step.7 The major difficulty is that, if we regard each bundle as a discrete

choice, then the direct application of the traditional multinomial discrete choice models would be

5Attention is limited to the licenses in the continental US.
6See Table 2.3. The average size of bidding bundle is 5.2.
7Note that the sequence of step 1 and step 2 does not matter for the final result.
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computationally expensive or even infeasible. To address this issue, I view the choice of bidding

bundle as a multivariate Bernoulli (MVB) variable, and instead of modeling the joint distribution of

the MVB, I model the (univariate) conditional distributions in a logit form following [14]. Involv-

ing only the conditional probabilities in the likelihood function for MLE still produces consistent

estimators, while greatly accelerates the computation. This model of conditional probabilities im-

plies a multinomial logit model for bundles, and thus we can estimate the choice probabilities

using the estimators from MLE. Notably, since the multinomial logit model corresponds to a ran-

dom utility model, we obtain the current-round decisional utility (containing private values and

current-round information) for the bidders, which could be interpreted as that bidders use it to

decide which bundle to bid on at each round. Such an interpretation is also consistent with my

theoretical analysis that bidding strategies are associated with current-round information.

In step 3, I proceed to deal with the high-dimensionality issue in the bundle choice problem.

Now, our data is bidders’ current-round expected payoff estimated from step 1, and their choice

probabilities estimated from step 2, for each bundle. Since we have 480 licenses in total for esti-

mation, the number of all possible bundles is 2480. I first restrict the attention to the bundles that

has once appeared during the whole course of the auction. This gives us 3998 different bundles of

licenses. Nevertheless, this number is still far from feasible for the estimation approach by [12].

Next, I apply the method proposed by [13], which exploits the Random Projection (RP) technique

from machine learning to reduce the dimensionality.8 The RP method is to premultiply the original

d-dimensional data by a k × d random matrix, and then obtain a k-dimensional projected-down

data. The reason RP could be used to reduce dimensionality is that RP preserves the Euclidean

distance between data vectors to the projected-down subspace with high probability, and the opti-

mization objective function in [12] only involves Euclidean distance among data points.

In step 4, we use the projected-down data, and apply the semiparametric estimation of multi-

nomial discrete choice with panel data proposed in [12]. This method makes use of the cyclic

monotonicity property of the choice probability function to construct inequalities for estimation.

8If I skip the random projection step, the computational time is 150 times of that with random projection.
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It allows arbitrary interdependence of the unobserved terms among different bundles and across

different rounds, which is essential for the bundle choice problem. In addition, it does not need

to assume any distributional form of the error term, and it allows for bidder fixed effect in the

panel data environment. Notice that step 2 to step 4 is a complete procedure of estimating the

high-dimensional bundle choice problem with individual-level data, where the high-dimensionality

refers to the large number of single objects.

I analyze Auction 5 of the US spectrum auction, which is held by FCC in 1995-1996. From

the structural estimation, I find a large and significant effect of the complementarity on bidders’

private values. The complementarity of the nationwide bundle is worth 8 billion dollars for an

average bidder, which equals 59.54% of the sum of final prices of all licenses. Suppose a bidder

with average eligibility wins the nationwide bundle, the complementarity contributes 24.46% of the

private value. For the bidders’ stand-alone values, on the one hand, I document large and significant

effect of the license-characteristic. For an average bidder, a license with 1 more million population,

will be valued 98.71 million dollars higher. On the other hand, we find small and insignificant effect

of the bidder-characteristics. Therefore, the variation of the stand-alone values is mostly generated

by the licenses. Moreover, I explore the bidder heterogeneity in the complementarity values, and

find that large bidders value the complementarity higher than medium and small bidders.

Structural analysis on spectrum auctions is sparse in the literature. [8] use a matching ap-

proach to estimate the value function parameters of bidders. They assume that the final outcome of

matches between bidders and licenses is pairwise stable, and only use the data of final allocation

and prices of the auction for estimation. I analyze the same auction as [8], while taking a different

structural modeling and estimation method. Specifically, instead of focusing on the outcome at the

end, I model bidders’ bidding behaviors at each round, and make use of the information during the

full course of the auction. [15] adapt [8]’s method to the Canadian spectrum auction to estimate

the implicit cost. In terms of the structural model, this paper shares similar spirits with [11], where

bidders also maximize their expected payoffs at each round. This paper differs from [11] in two

folds. On the one hand, for the structural model, [11] assume that bidders form beliefs of winning a
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license at the end of the auction, which requires that bidders can perfectly foresee the final results,

potentially far from the present round. Instead, in my model bidders have consistent beliefs of the

current-round winning probabilities, which is more realistic given the complex bidding environ-

ment, and the current-round expected payoff has an interpretation close to [2]. On the other hand,

their estimation approach is based on several behavioral assumptions which are necessary condi-

tions of the structural model, as in [16]. In contrast, my structural estimation comes directly from

bidders’ optimization problem over bundles of licenses, and thus makes use of the full information

of bidders’ decisions. This comes with the cost of the high dimensionality issue in the estimation.

The high dimensionality issue has attracted much attention in the multinomial discrete choice

models. [13], which is our closest predecessor, leverage the random projection method to reduce

the dimension of discrete choices using aggregate level data. Other approaches for dealing with

high dimensionality in multinomial discrete choice models include [17] and [18] that rely on tak-

ing subsets of choices for estimation; [19] who use a Bayesian method to manage the large number

of parameters; [20] who propose a machine learning model of demand for bundles with sequential

search; and [21] with indirect inference estimation. For the high dimensional bundle choice prob-

lem, the literature is still at the growing stage, but starts to be more and more appealing. [22] use

a novel demand inverse to estimate demand for bundles with a large number of goods. I add to the

literature by providing an estimation approach of bundle choice models with many objects, where

only individual-level choice data is observed. Similar economic problems and data structures also

rise in, for instance, the retailing data.

The literature in the combination of machine learning and structural econometrics or indus-

trial organization is rapidly growing. Our estimation of winning probabilities follows [23], who

apply several machine learning methods to estimate consumer demand, accompanied with model

averaging of all the considered methods. [24] estimate the consumer preferences using probabilis-

tic models of matrix factorization. [25] use LASSO to handle the high dimensionality in BLP

models where covariates are rich. Our practice shows that economists and econometricians can

beneficially leverage the power of the machine learning in the structural model, especially when
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(1) the estimation involves predictions as intermediate steps; and (2) we are faced with the high

dimensionality issue.

The literature on theoretical analysis of spectrum auctions and SAA is rich. I summarizes

the related literature and the contribution of my theory model in Section 2.3.1. There are also

extensive exploration of spectrum auction from the perspective of lab experiments, including [26],

[27], among others.

The rest of this essay proceeds as follows. Section 2.2 introduces the basics of spectrum auc-

tions and the auction rules of the Simultaneous Ascending Auction design. In Section 2.3 I con-

duct a theoretical analysis and provide guidance for the following structural modeling. Section 2.4

describes the data we are studying, and perform preliminary analysis which motivates our struc-

tural estimation. Section 2.5 presents my structural model. Section 2.6 elaborates the estimation

approach step by step, and shows the estimation results. Section 2.7 discusses the bidder hetero-

geneity. Section 2.8 concludes.

2.2 US Spectrum Auctions

In this section, I first review the history and current status of the spectrum auctions, along with

a summary statistics of the US spectrum auctions. Next, I introduce the basic auction rules of the

US spectrum auction, which uses the Simultaneous Ascending Auction (SAA) design.

2.2.1 An Overview of US Spectrum Auctions

The first spectrum auction in US was launched in 1994 held by the Federal Communications

Commission (FCC). It not only pioneered the spectrum auctions all over the world, but also opened

the era of putting auction theory to work [7]. Before, the spectrum rights in the US and many other

countries were assigned using non-market mechanisms, such as comparative hearing (also known

as “beauty contests") or lottery. In 1994, the Simultaneous Ascending Auction (SAA) designed by

Preston McAfee, Robert Wilson, and Paul Milgrom, was adopted by FCC and created the first of

the large modern auctions. Since then, SAA has been popularized worldwide for spectrum auctions
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and earned the compliment “The Greatest Auction Ever".9

Nowadays, the world is entering the 5G era. The first 5G spectrum auction is just fulfilled in

January 2019 in the 28 GHz band (Auction 101), with more auctions for other bands taking place

or being prepared for auctioning. Other countries, for example, German and China, have also

started the allocation of 5G spectrum rights.

So far, the FCC has conducted 89 spectrum auctions since 1994 until 2018, with total revenue

being over 120 billion dollars. I summarize the primary statistics for the auctions in Table 2.1,

where the data is from FCC.10 We see that on average, the number of licenses is large, where for

some auctions it is extremely large. Therefore, oftentimes analysts are faced with an auction with

many heterogeneous licenses sold simultaneously, which is quite different from the traditional

single-object auction. In addition, the number of rounds and number of bidders are also large,

making the game-theoretical analysis of this auction considerably hard, and the bidding strategy

for the bidders very complicated. Consequently, people are demanding an appropriate framework

to conduct empirical analysis on the spectrum auction.

Table 2.1: US Spectrum Auctions: 1994-2018

Average Median Min Max Std Obs

Gross Bids (×109) 1.4610 0.0148 2.50e-5 44.8994 5.7819 89
Net Bids (×109) 1.3592 0.0136 2.50e-5 41.32 5.3743 89
Winners 31.47 12 1 182 40.28 89
Bidders 55.75 25 2 456 77.68 89
Licenses Won 519.75 90 1 5323 1084.04 89
Licenses FCC 114.38 0 0 4889 612.42 89
Licenses Total 634.13 96 1 9603 1481.80 89
Rounds 72.56 44 1 341 74.13 88

9William Safire, “The Greatest Auction Ever", New York Times, March 16, 1995.
10The observation of Rounds is 88, because Auction 2 used the “Oral Outcry" design.
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2.2.2 Auction Rules

The spectrum auction sells multiple objects simultaneously, where an object is the license

of spectrum for a geographic area. The auction format is referred as Simultaneous Ascending

Auction, which is a multiple-round process. At each round, bidders simultaneously submits sealed

bids on the objects they are interested in. After the end of a round, the highest bid for each license

is referred to standing high bid [2]. The corresponding bidder is called standing high bidder.11 If

nobody has ever bid on an object, then the standing high bidder is defined to be the auctioneer.

The minimum acceptable bids at next round are computed as the standing high bids plus some

smallest increment.12 The auction proceeds in an ascending way in the sense that at each round

any submitted bids should be higher than the minimum acceptable bids.

At the end of each round, round results are posted. These results include all new bids and

the corresponding bidder identities, the standing high bids and the standing high bidder identities,

as well as the minimum acceptable bids. The auction stops at a round when no new bids are

submitted for any objects in this round. The licenses are allocated to their standing high bidders,

at the standing high bids.

The standing high bidder is allowed to withdraw her standing high bid for an object. If the

standing high bidder withdrawed at an object, then the high bid of this object becomes the second

highest bid, and the standing high bidder becomes the corresponding bidder. Such permission

of “regret" serves an alleviation of the widely discussed exposure problem of SAA. Meanwhile,

it risks generating irrational tentative bids and strategic collusive behavior (intimidating bids).

Therefore, a penalty is designed to associate the withdrawls: if the final price of the object is less

than the withdrawn bid, the withdrawing bidder must pay the difference (otherwise the penalty is

just zero). In the empirical analsis, I consider the after-withdrawl bidding data so as to ignore the

strategic uses of withdrawls.

11In the event of tie bids, the standing high bidder will be identified by the order of the bids received by FCC,
starting from the earliest bid

12In Auction 5, the smallest increment is equal to the greater of $0.02 per bidding unit, or 5% of the standing high
bid.
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Before the auction, the auctioneer posts the “bidding unit" of every license, roughly measur-

ing the value of it. In practice, the bidding unit is the population in this area. The eligibility,

measured by bidding units, is to provide an upper bound of each bidder’s bidding activity at each

round. Before the first round, each bidder is required to submit its initial eligibility by making a

corresponding deposit. In the C block of Auction 5, the eligibility payments were 1.5 cents per

MHz-individual. Afterwards, a bidder’s current-round eligibility at each round is evolved accord-

ing to the activity rule.

To accelerate the auction and ensure that it ends in a reasonable amount of time, an activity

rule is introduced to SAA by Paul Milgrom. At the end of round, a bidder is considered active in

an object if she places a bid on this object at round t, or she was the standing high bidder of this

object at last round. A bidder’s activity at each round is the sum of bidding units of the objects

in which she is active. In a round, a bidder’s activity cannot exceed her eligibility at this round.

What’s more, the eligibility at the next round depends on the current round’s activity: if a bidder’s

current activity is no less than a prespecified fraction of her current eligibility, then her eligibility

at next round remains unchanged; otherwise, the eligibility is reduced by a proportion, until she is

no longer eligible for bidding any license.13

In Auction 5, FCC designed different levels of activity rules in three different stages during

the auction. The transition from Stage 1 to Stage 2 and finally to Stage 3 was determined by the

aggregate level of the bidding activity, subject to FCC’s discretion.14. The transition is irreversible.

In Stage 1, a bidder who wishes to maintain its current eligibility is required to be active on li-

censes encompassing at least 60% of the bidding units for which it is currently eligible. Failure

to maintain the requisite activity level will result in the reduction of eligibility for the next round,

which amounts to 5/3 of the current round activity. For Stage 2 and 3, these two numbers become

80%, 5/4, and 95%, 20/19, respectively. In other words, the activity rule would be more and more

13In the design described in [2], the reduction proportion is different for different stages during the auction, which
is determined before the auction begins.

14The transition rules may depend on several measures, which are not informed to the bidders. These measure may
include, for example, the auction activity level, which is the sum of activity units of those licenses whose high bid
increased in the current round. Other measures could include, but not limited to, the percentage of licenses (measured
in terms of activity units) on which there are new bids, the number of new bids, and the percentage increase in revenue.
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strict, as stage evolves. In the reality, Stage 2 started at round 58, and Stage 3 started at round 70.

The auction provides several waivers of the activity rule for each bidder. The waivers are

introduced to prevent errors in the bid submission process from causing unintended reduction is a

bidder’s eligibility [2]. In Auction 5, bidders are offered 5 activity waivers. In our model, we do

not consider strategic uses of waivers.

To prevent collusion, the auctioneer (FCC) prohibits communications during the course of

the auction among applicants for the same geographic license areas when such communications

concern bids, bidding strategies or settlements.

2.3 Theoretical Analysis

In this section I study the Bayesian Nash equilibrium (BNE) and its properties in a multiple-

object clock auction, where objects are heterogeneous and complementary. It has been widely

discussed in the literature that solving the full equilibrium of the Simultaneous Ascending Auction

(SAA) would be infeasible. However, conducting a theoretical analysis on a clock auction, which

is an approximation of the SAA, would be necessary for us to deeply understand the complex

auction mechanism and bidding strategies in the realistic SAA. The insights from the theory model

can guide the construction of the structural model and the interpretation of the estimation results.

Aside, the BNE for multiple-object clock auction with heterogeneity and complementarity and the

equilibrium properties also add to the economic theory literature, and could be of independent

interest.

In this section, I first review the literature of theoretical analysis of SAA and related auction

models, which has a long tradition since the seminal paper by [2]. Next, I present the setup of

my multiple-object clock auction model. Finally, I provide a proposition characterizing impor-

tant properties of the Bayesian Nash equilibrium, along with discussions of the heuristics for the

subsequent structural analysis. The full BNE will be given in Appendix A.1.
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2.3.1 Related Literature

There is a rich literature concerning SAA and its related auction mechanisms, due to the mo-

mentous impact of its application into the spectrum auctions. [2] provides one of the earliest

comprehensive theoretical analysis on SAA, and served as the fundamental for the following re-

searches. He proposes the Straightforward Bidding (SB) strategy in SAA, meaning that bidders

make decisions on which bundle of licenses to place bids on, based on their current-round payoffs.

In other words, at each round, bidders behave as if it is the last round of the auction, and truly reveal

their preference in the bidding. Milgrom showed that if licenses are substitutes, then SB is individ-

ually rational and consists of an efficient competitive equilibrium. However, the difficulty arises in

the presence of complementarity, under which the equilibrium does not always exists. Afterwards,

on the one hand, there are more theoretical results achieved under substitution. For example, [28]

studies the multiple-object clock auction where preferences satisfy the “substitution condition",

and proves that SB consists of an ex post perfect equilibrium, whose outcome is a modified VCG

mechanism; [29] and [30] also focus on multiple-object clock auction under no or large comple-

mentarities, and showed the existence of the collusive equilibrium. [31] point out an intrinsic link

between multiple-object auctions and matching models, when preferences satisfy substitution and

law of aggregate demand. On the other hand, the study of the case with complementary objects

remains challenging.

Of the literature my theory model is closest to our predecessors [9] and [32], both providing

Bayesian Nash equilibrium analysis on the multiple-object clock auction with complementarity,

using different settings. My model differs from them in the following ways. [9] consider n objects,

each of which has one local bidder, and there are multiple global bidders. In their setting, the global

bidders treat all objects homogeneously, in the sense that they assign the same values to two bundles

with the same number of objects: Vi(L) = α(|L|) · Vi, where Vi ∼ F . This assumption does not

take the heterogeneity among objects into account in bidders’ preferences, which is unlikely to be

true in reality.15 In addition, such assumption implies that the a global bidder has a single drop-

15Our structural estimation indeed shows that bidders’ private values are indeed heterogeneous in objects.
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out level b: when p ≤ b, she stays in all objects; when p > b, she drops out at all objects and

quits the auction. However, in the data we observe that bidders have different drop-out levels on

different objects. In comparison, I consider heterogeneous objects in my model. [32] consider

two objects, one global bidder, and multiple local bidders. Similar to our model, they assume

that bidders will order the objects in the same way (in terms of stand-alone values). We consider

a more general setting with multiple global bidders, which gives a more realistic insight to the

practical spectrum auction. Moreover, I consider the case with multiple heterogeneous objects,

and characterize the BNE using a recursive representation. [33] presents an impossibility result,

stating that when objects are not substitutes, there is no standard ascending auction that yields a

bidder-optimal competitive equilibrium under truthful bidding.

For other related theoretical researches about multiple-object auctions, [34] derive the BNE

for simultaneous second-price sealed-bid auction with complementary goods. [35] characterizes

the BNE in the simultaneous first-price sealed-bid auction. [36] provide a unified framework for

simultaneous standard auctions where objects are complementary and sold separately, and proved

the existence of a equilibrium which is monotonic in the sense of a suitable partial order. From

the mechanism design perspective, [37] propose a new auction design to implement SB in the ex

post perfect equilibrium for multiple-object auctions with complementarity. The idea is that the

auctioneer provides prices for each bundle of objects, instead of for each individual object.

2.3.2 Setup

We consider a Multiple-object Clock Auction (MCA), which is regarded as a stylized approxi-

mation of the Simultaneous Ascending Auction (SAA). There are m heterogeneous objects indexed

by j ∈ J = {1, · · · ,m}, to be allocated among n bidders, indexed by i ∈ N = {1, · · · , n}.

First, I present the auction rule of MCA. The time is continuous: t ∈ [0,∞). At every time t,

there is a price vector pt = (pt(1), . . . , pt(m)). Set p0 = (0, . . . , 0). At every time t, each bidder

makes a decision on each object: whether to stay or drop out. For an object j, if more than one

bidder stays, then its price pt(j) will increase, while if only one stays or all drop out, the price will

remain the same. The prices of all objects will increase (if any) continuously at the same rate. The
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auction ends when all prices stop at some time T .

We impose an activity rule in the auction: bidders are not allowed to place bid on an object

which she has already dropped out before. This is a simplified version of the activity rule used in

the practical spectrum auctions. It will be clear that, in the models we are looking at in this section,

the real-world activity rules (such as the ones used in US spectrum auction by FCC) will imply our

activity rule.

Next, we specify the model in the language of game theory. Generally, we use upper case

letters to denote random variables, and lower case their realizations. For distribution functions, we

use upper case to denote CDF, and lower case the corresponding pdf (assume it exists).

We consider independent private value (IPV) paradigm. Before the auction begins, each bidder

independently draws her value structure V from a commonly known distribution F with support

Λ, where V is a 2m- dimensional random vector, with every entry the value on a subset of J . Let

V : 2J → R be the value mapping. Without loss of generality, set V (ϕ) = 0 with probability one,

where ϕ is the empty set. Let vi(L) be bidder i’s private value on a set of object L ⊆ J .

The information structure is as follows. At every time t, (before bidding) a bidder observes:

the current price vector pt, the number of remaining bidders on each objects N t(j), and her own

bidding history wt
i . Therefore, the full history is ht = (pτ , (N τ (j))mj=1, w

τ
i )τ∈[0,t] ∈ H t.

Let the final price and allocation of the objects be ((p(j))mj=1, (Ji)
n
i=1), where (Ji)

n
i=1 is a

partition of J , with Ji the set of objects that bidder i wins finally. Then bidder i’s utility is

πi = vi(Ji) −
∑

j∈Ji p(j), which is in a quasi-linear form. Bidder i’s action space at each time is

{1, 0}m, where 1 denotes action stay, and 0 denotes out. Bidder i’s strategy at time t is a function

mapping her private and the current history to the action space, sti : Λ×Ht → {1, 0}m.

We use Bayesian Nash equilibrium as the solution concept of this dynamic game with incom-

plete information. We do not consider the sub-games on the off-equilibrium path.

2.3.3 Equilibrium Properties

In this subsection, I analyze the two-object clock auction, and provide the relevant equilibrium

properties to shed lights on the general bidding behaviors in SAA. The characterizations of BNE
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for the two-object and multiple-object case are provided in details in Appendix A.1, with related

proofs in Appendix A.2.

We denote the two objects by A and B. Let bidder i’s stand-alone value of A and B be

vAi ≡ vi({A}) and vBi ≡ vi({A}), with distribution FA and FB, respectively. Let the support of

FA and FB be [vA, vA] and [vB, vB], respectively. Denote the complementarity between the two

objects to be θi ≡ vi({A,B}) − vAi − vBi . Let θi ∼ F θ with support [θ, θ]. Therefore, bidder i’s

value structure is vi = (vAi , v
B
i , θi), with the commonly known distribution F = (FA, FB, F θ).

Bidders decide when (facing what price vector) to drop out on objects, conditional on their private

value structure and current history. Let the drop-out price of bidder i on object A and B be sAi and

sBi , respectively.

Suppose there are n > 1 bidders in the auction, who demand both objects.16 Next, we make an

assumption on the value structure distribution of the bidders.

Assumption 1 (Weak Value Ordering). The value structure distribution F satisfies:

P(V A
i > V B

i ) = 1. (2.1)

Assumption 1 says that for any bidder, object A is more valuable than object B. Although

bidders’ values are private information, this order between objects is common knowledge. This is

reasonable because in practice, bidders’ values are affected by some publicly observed character-

istics of the objects. For example, in the US spectrum auction, the objects to be auctioned are the

spectrum licenses in geometric areas. It is natural to assume that bidders all agree that the license

in Houston area is more valuable than the one in College Station-Bryan area, due to the population

difference.

With Assumption 1 and the activity rule, it is clear to see that a bidder will drop out on object B

first, and then (or simultaneously) drop out on object A. That is, sAi ≥ sBi . Moreover, the drop-out

price on B will not fall below the stand-alone value on B (see Lemma 1 in Appendix A.1). This

16In [34] and [9], these are called global bidders. Without loss of generality, we do not independently consider local
bidders.
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property greatly simplifies the equilibrium strategy analysis. The full characterization of BNE is

given in Appendix A.1. From Lemma 2 of Appendix A.1, we see that after winning or dropping

out at B, the bidding strategy on A is just the same as single-object English auction. Therefore, the

equilibrium drop-out level on B, sBi , is going to capture the unique feature of the multiple-object

auction with complementarity. The next proposition states the comparative static properties of sBi .

The proof is given in Appendix A.3.

Proposition 1. Let Assumption 1 hold. For a two-object clock auction, the Bayesian Nash equilib-

rium strategy sBi , which is the drop-out level on object B, satisfies the following:

1. sBi is non-decreasing in the stand-alone values vAi and vBi .

2. sBi is non-decreasing in the complementarity value θi.

3. sBi is non-increasing in the number of bidders remaining on object A, denoted as nA.

Since there is no analytical solution for the equilibrium, we find numerical solutions using

MATLAB. We plot sBi with respect to varying vAi , v
B
i , θi, and nA. I use (truncated) uniform distri-

bution to be the common distribution of vAi , and explore the case with (truncated) normal distribu-

tion for robustness check in Appendix A.4. The range of FA is vA = 0.3, vA = 1.

First, the graphs demonstrate Proposition 1. We see from Figure 2.1 that sBi is non-decreasing

in the complementarity value θi and non-increasing in the number of bidders nA, given different

values of fixed vAi and vBi . Figure 2.2 use the same parameter settings with Figure 2.1, and show

that sBi is non-decreasing in vAi and vBi .

Moreover, from Figure 2.1, we see that the equilibrium bidding strategy (drop-out level) sBi

does not exceed their true value (which corresponds to SB), i.e. sBi = (vAi + vBi + θi)/2.17 This

is obvious because bidders will have negative profit for bidding something higher than her true

value. When bidders’ value (vAi + vBi + θi) is not large enough (see Figure 2.1a and 2.1c), the BNE

bidding strategy is lower than the true value, which corresponds to the exposure problem for the

17Because by Lemma 1, sAi ≥ sBi , then when bidder i drops out at object B, the price for her at object A is also
equal to sBi . Therefore, at that moment, the total price is 2sBi .

19



Figure 2.1: Equilibrium Bidding Strategy sBi and Complementarity θi.
Property: sBi Non-increasing in nA and Non-decreasing in θi

(a) vAi = 0.5, vBi = 0.4 (b) vAi = 0.7, vBi = 0.4

(c) vBi = 0.3, vAi = 0.6 (d) vBi = 0.5, vAi = 0.6
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Figure 2.2: Equilibrium Bidding Strategy sBi and Complementarity θi.
Property: sBi Non-decreasing in vAi , v

B
i , and θi.

(a) nA = 3, vBi = 0.4 (b) nA = 9, vBi = 0.4

(c) nA = 3, vAi = 0.6 (d) nA = 9, vAi = 0.6
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multiple-object auction. Bidders will discount their true values in evaluating their optimal drop-out

level, or put in another way, use a discounted version of private value in the SB. The reason is, as

mentioned previously, that bidders will consider the risk of winning only a part of the bundle of

objects (in this case, only winning object B), and obtaining the complementarity θi only if she wins

both A and B. However, when a bidder value is large enough (see Figure 2.1b and 2.1d), the BNE

strategy converges to their true value. In other words, large bidders will reveal their true preference

in equilibrium, i.e. use straightforward bidding, and will not exhibit the exposure problem. This

is because for a large bidder, she has either strong enough belief that the bundle will belong to

her as a whole, or high enough complementarity such that the expected payoff of bidding exceeds

not-bidding.

2.4 Data and Preliminary Analysis

This paper analyzes the 1995-1996 US spectrum auction held by FCC, which is also referred

to Auction 5. I focus on the C block auction of 1900 MHz PCS band.18 There are 493 licenses

for sale, and 255 bidders in this auction. It lasts for 183 rounds, starting at 1995/12/18, ending at

1996/5/3. The auction has a gross total bids of 13 billion dollars, and a net total bids of 10 billion

dollars.19

In this section, I provide some preliminary analysis to show the data pattern, which motivates

our subsequent structural modeling. Firstly, I present evidence of Straightforward Bidding (SB)

for the bidders, meaning that: (1) they bid on the minimum acceptable bids; and (2) they behave

myopically and non-strategically. Secondly, I observe substantial variation of bidders’ decision of

bidding bundles across rounds. Finally, I look at the round-specific statistics to reveal the trend of

the auction across rounds.

2.4.1 Straightforward Bidding

First, I observe that most of the submitted bids are following the minimum acceptable bid

(MAB). Of all the submitted bids, 58.75% are exactly equal to the MAB, and 96.57% exceed

18The dataset is from [18].
19Some winners failed to fulfill the payments.
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the minimum acceptable price by less than 1% of the MAB. Therefore, jump bidding is hardly a

concern here. Bidders’ bidding strategy could be simplified as choosing the bundle of licenses to

place bids on (after the determination of the bundle, she just submits the MAB).

My second observation is that there is only a small proportion of first time bidders at each

round. This suggests that bidders are not likely to bid strategically based on other bidders’ action.

They may just make use of their own valuation and the current round information on objects to

make bidding decision. This motivates our non-strategic bidding strategy. See Figure 2.3.

Figure 2.3: Percentage of First Time Bidder in Each Round.

2.4.2 Variation in Bidders’ Choices

We observe substantive variation of bidders’ choices across rounds. See Figure 2.4, where

I plot the size of bidding set with respect to the round number, for the average bidder, average

winner, and two specific bidders. Such variation may provide rich information for us to recover

the bidders’ preferences. This motivates us to model bidders’ choices of bidding set across rounds.
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Figure 2.4: Variation of Choice Sets over Rounds

(a) All Bidders (b) Winners

(c) Bidder #2332 (d) Bidder #2358
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2.4.3 Round-Specific Statistics

I summarize the bidding statistics for every 20 rounds. See Table 2.2. I construct several

quantities, where choice_var is the number that bidders change their bidding set at the next round,

summing over the 20 rounds; mean_bid is the mean of total bids for a round, measured in thousand

dollars, summing over the 20 rounds; newbids is the number of new submitted bids compared to

last round, summing over the 20 rounds; num_bidder is the number of active bidders during the 20

rounds; bid_bidder_ratio is equal to newbids divided by num_bidder, which measures that during

the 20 rounds, how many new bids are submitted for an active bidder; license_win is the number

of licenses that are won (has stopped the price ascending thereafter) during the 20 rounds.

Firstly, we see that the first 20 rounds are chaotic and tentative. The variation of choice bundle

is large, and the number of new bids per bidder is very high. In addition, no license is won at

this stage. That is because bidders might be learning their private values and the optimal bidding

strategy at the beginning, knowing that the auction will not end this early. Secondly, for the rounds

after 120, we see that the bidding behaviors become stable. When the auction approaches to the

end, there are only small number of licenses subject to bidding, so it becomes feasible for bidders to

consider their competitors in specific licenses.20 Therefore, the bidding behavior tends to be more

strategic and forward-looking, and may violate the straightforward bidding style in our structural

model. In view of the above considerations, I select rounds 21−120 as our sample in the estimation

in Section 2.6.

2.5 Structural Model

In this section, I present the structural model. We model the bidders’ bidding strategy as

choosing the bundle of licenses that maximizes their current-round expected payoffs. Along the

auction, a bidder has private values for each bundle of licenses, which is fixed across rounds. At

each round, she forms the current-round expected payoffs based on her beliefs on the current-

round winning probabilities on each license on her bidding bundle. The winning probability is the

20For the Auction 5 that we analyze, bidders could observe the identities of all other bidders for all licenses at each
round.
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Table 2.2: Bidding Statistics by Rounds

round choice_var mean_bid newbids num_bidder bid_bidder_ratio license_win

1-20 1825 9761.58 13389 253 52.92 0
21-40 1217 16237.20 7726 199 38.82 16
41-60 915 18586.41 4510 156 28.91 49
61-80 647 21930.57 2571 124 20.73 183

81-100 349 24802.28 895 106 8.44 108
101-120 199 26215.82 321 97 3.31 53
121-140 157 26623.58 239 93 2.57 32
141-160 159 26961.47 141 89 1.58 31
161-183 120 27120.83 73 89 0.82 21

probability that she becomes the provisional winner on a license at the end of the current round,

which depends on the current-round information. Therefore, bidders make decisions at each round

based on their private values and current-round information, as if this would be the final round. The

equilibrium is such that bidders’ decision maximize their current-round expected payoffs, and their

beliefs are consistent with the realized outcome. Finally, I describe the specification of bidders’

private value function, which includes the stand-alone value and complementarity.

[11] use a similar model, while they assume that bidders form beliefs about the final winning

probabilities, which is hard for bidders to consistently predict, especially in the middle of the

auction.

2.5.1 Setup

There are m heterogeneous licenses indexed by j ∈ J = {1, · · · ,m}, to be allocated among

n bidders, indexed by i ∈ N = {1, · · · , n}. I formalize the setup of Simultaneous Ascending

Auction (SAA) as follows.

The SAA is a multiple-round process. Denote the rounds by t = 1, ..., T . During each round t,

each bidder i could submit sealed bids for (possibly) multiple licenses. Denote the bidding amount

of bidder i on license j by bti(j), and the bidding set Lt
i. After the end of round t, the highest bid for

object j is referred to “standing high bid", denoted as rt(j) = maxi∈N bti(j). The corresponding
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bidder is the “standing high bidder”.21 The minimum acceptable bids at round t + 1, denoted

as pt+1(j) are computed as the standing high bids rt(j) plus some smallest increment dt(j), i.e.

pt+1(j) = rt(j) + dt(j).22 The auction proceeds in an ascending way in the sense that at each

round any submitted bids should be higher than the minimum acceptable bids. The auction stops

at round T when no new bids are submitted for any objects in this round. The objects are allocated

to their high bidders at round T − 1, at the standing high bids.

We consider the independent private value (IPV) paradigm. Before the auction begins, bidder

i forms her private value vi(L) on each set of license L ∈ L, where L is all potential combinations

of licenses that bidders will consider. In total there are 2m subsets of J = {1, ...,m}, but not all

combinations are beneficial for the bidders. In particular, vi(L) is composed of the stand-alone

values and complementarity:

vi(L) =
∑
j∈L

vi(j) +
1

2

∑
j∈L

∑
j′ ̸=j,j′∈L

η(j, j′), (2.2)

where vi(j) is the value of obtaining license j alone, and η(j, j′) is the complementarity between

the two licenses j and j′, i.e. η(j, j′) = vi({j, j′}) − vi(j) − vi(j
′). The private value is invariant

across rounds. Note that We assume the complementarity among the set L is composed of all

pairwise complementarities of pairs {j, j′} ∈ L. That is, we assume away the higher order com-

plementarities among licenses (extra complementarities generated from triples, quadruples, etc).

The payoff of obtaining a set of license L is ui(L) = vi(L) −
∑

j∈L p(j), where p(j) is the final

price on license j.

At the end of a round t, round results will be posted. These include the minimum acceptable

price for each license at next round t + 1, pt+1 = (pt+1(j))j∈J , and all new submitted bids along

with bidder identities on each license. Denote the round results up to t that bidder i could observe

21If nobody has ever bid on an object, or the standing high bidder withdraws, then the standing high bidder is defined
to be the auctioneer. Ties are broken randomly.

22The initial minimum acceptable bid for each license is zero. Once a bid has been received on a license, the
minimum bid increment dt(j) for that license will be the greater of 5% of the previous high bid or $0.02 per bidding
unit.
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as ht
i.

Before the auction, bidders are informed of the characteristics of all licenses, and their private

values. During each round t, bidder i’s information set It
i contains all historical round results ht

i,

and the before-auction information, which is her private value vi.

2.5.2 Strategy and Decision Making

From the previous discussion, I assume that bidders are bidding in a similar manner of Straight-

forward Bidding as in [2]. At each round, bidders make decisions on which licenses to bid, based

on their current information set. Therefore, the action space for the bidders is the collection of all

combinations of licenses to be considered during the auction, denoted by L. Let Y t
i = (Y t

i (j))
m
j=1,

where Y t
i (j) is a binary variable indicating whether bidder i bids on license j at round t, and with

slight abuse of notation, I sometimes use Y t
i = L to denote the bidding set. Moreover, bidders do

not take into account neither the strategic interactions with other bidders, nor do they focus on the

current round payoff. Hence, bidder i’s strategy at round t is sti : H → L. That is, a bidder chooses

a set of licenses L ∈ L to place bids on, based on her information set It
i ∈ H.

In [2], bidders choose the bidding set to maximize their current round payoff. To address

the exposure problem in the Simultaneous Ascending Auction, we modify the original version of

Straightforward Bidding, such that the bidders are maximizing their expected current round payoff.

To calculate their expected current round payoff, bidders need to form beliefs about their winning

probabilities on their bidding licenses at this round. We discuss the beliefs in the next subsection.

2.5.3 Belief and Current-Round Expected Payoff

At a round t, bidder i’s current-round payoff for set L is the difference between her private

value on L and the current-round personalized price on L:

ut
i(L) = vi(L)−

∑
j∈L

pti(j) (2.3)

Bidders form beliefs of the current-round winning probabilities on each license she bids or

provisionally wins, given her information set at the current round. Specifically, if bidder i places
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a bid on license j at round t or she is the provisional winner on license j at round t − 1, then

qti(j) = q(j|It
i ) is bidder i’s belief that she will (provisionally) win license j at round t, given her

information set at the beginning of round t, It
i .

Assumption 2 (Independence). qti({j, j′}) = qti(j)q
t
i(j

′).

This assumes that all complementarity effects in the current round winning probabilities have

been revealed in the information set.

Given the current-round payoff function and the belief, bidder i’s current-round expected pay-

off at round t on a set of licenses L is

E[ut
i(L)|qt

i , It
i ] =

∑
j∈L

vi(j)q
t
i(j) +

1

2

∑
j′∈L

∑
j′ ̸=j,j′∈L

η(j, j′)qti(j)q
t
i(j

′)−
∑
j∈L

pti(j)q
t
i(j), (2.4)

where the expectation is with respect to the winning probabilities qt
i , and the price for a license is

the current-round personalized price of bidder i, pti(j).

Therefore, at round t, bidder i places bids on Lt
i if and only if

Lt
i = argmax

L∈L
E[ut

i(L)|qt
i , It

i ]. (2.5)

2.5.4 Equilibrium

The equilibrium concept of the structural model is the Bayesian Nash equilibrium, defined

as follows. In the equilibrium, bidders are choosing the bundle of licenses to place bids on by

maximizing their current-round expected payoffs, and their beliefs about the current-round winning

probabilities are consistent with the realized outcome.

Definition 1 (Bayesian Nash Equilibrium). Let a bidding strategy of bidder i at round t be σt
i(It

i , q
t
i),

and a belief system be qt
i . Then (σt

i , q
t
i)

n,T
i=1,t=1 is a Bayesian Nash Equilibrium such that σt

i(It
i , q

t
i) =

Lt
i, if and only if for any L′ ∈ L,

E[ut
i(L

t
i)|qt

i , It
i ] ≥ E[ut

i(L
′)|qt

i , It
i ], (2.6)
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and the true winning probabilities are consistent with bidders’ belief system.

2.5.5 Parametrization

We parametrize the deterministic part of bidders’ stand-alone value to be

vi(j) = α0 + α1 eligi +α2 pop(j) + α3 eligi pop(j). (2.7)

Here pop(j) is the population in the area of license j from the 1990 census data, normalized in

the fraction of the total US population. eligi is bidder i’s initial eligibility. This initial eligibility is

measured in population, meaning that at any round, bidder i cannot bid on a set of licenses with to-

tal population larger than eligi. This number is submitted by to bidders to the auctioneer before the

auction begins, and is associated with an upfront payment. Therefore it could represent a bidder’s

maximum willingness to pay during the auction, and could serve as the bidders’ characteristic.

The deterministic part of pairwise complementarity is modeled as

η(j, j′) = βτ(j, j′), (2.8)

where τ(j, j′) is the complementarity measure between license j and j′, which is associated with

their populations, and the geographic distance between them:

τ(j, j′) = pop(j)

pop(j) pop(j′)

distδ(j,j′)∑
k∈J,k ̸=j

pop(j) pop(k)

distδ(j,k)

+ pop(j′)

pop(j) pop(j′)

distδ(j,j′)∑
k∈J,k ̸=j′

pop(j′) pop(k)

distδ(j′,k)

. (2.9)

This complementarity measure follows from [11] and [8]. We also set δ = 2 following the spec-

ification of the above two papers. Notice that the nationwide complementarity constructed from

this pairwise complementarity measure is
∑

j,j′∈J,j ̸=j′ τ(j, j
′) = 1, making us easier to interpret

the estimated complementarity effect.
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Hence, bidder i’s deterministic private value on a set of license L is

vi(L; θ) = α0 + α1 eligi +α2 pop(j) + α3 eligi pop(j) +
1

2
β

∑
j ̸=j′;j,j′∈L

τ(j, j′), (2.10)

where θ = (α′, β)′ is the structural parameter we are interested in.

2.6 Estimation and Results

In this section, I elaborate on the four-step estimation approach of the structural model for the

parameters in bidders’ private values. I first describe the sample to be used. Next, I provide an

overview of the four steps that consisting the estimation. Finally, I illustrate the four estimation

steps in detail, along with the results.

2.6.1 Data Preparation

We focus on the 480 licenses in the continental United States, and assume that the complemen-

tarity between the oversea licenses and any continental licenses is always 0. Therefore, it can be

regarded that the oversea licenses are held in another separate auction.

There exist only a few withdrawls from the high bidder of a current round. We drop the obser-

vation if there is a withdrawl. We treat the withdrawing as a mistake of bidding and is unintentional.

That is to say, assuming away the penalty, the remaining effective bidding set maximizes her ex-

pected utility at the current round, although she realized that afterwards. During the auction, 184

withdrawls are observed, amounting to 0.6% of the total 29865 submitted bids.

In view of Section 2.4.3, I select round 21-120 for the sample in the structural estimation. The

middle stage of the auction avoids the noisy information (e.g. bidders are learning their private

values and optimal bidding strategy) at the beginning stage as well as the strategic behaviors at the

ending stage, so it is more suitable for our proposed structural model.

2.6.2 Overview of the Estimation Procedure

In this subsection, I provide an overview of our estimation method for recovering bidders’

private values. Firstly, since bidders’ decisions are based on their current-round expected payoffs,
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we need to estimate the winning probabilities (Step 1). Subsequently, we are faced with a bundle

choice problem based on the current-round expected payoffs, where the total number of bundles is

extremely large. There are 480 licenses in the estimation, resulting in 2480 bundles in total. I apply

the semiparametric estimation method for multinomial discrete choice proposed by [12], into our

bundle choice problem (Step 4). This method is based on the cyclic monotonicity of the choice

probability function. There are two essential properties of this approach. It allows for arbitrary

dependence across different choices, which particularly fits our case because bundles containing

the same licenses are correlated. To deal with the high-dimensionality issue, I leverage the random

projection technique in machine learning to achieve dimension reduction on the number of choices,

which is proposed by [13] (Step 3). However, [12]’s method demands the choice probabilities

for each bidder at each round, while we only observe the realized chosen bundle. In view of

that, I need to estimate the choice probabilities beforehand (Step 2). Therefore, in the proposed

estimation procedure, I first estimate the winning probabilities and calculate the current-round

expected payoffs. Secondly, I estimate the choice probabilities for each bundle. Third, I apply the

random projection to the quantities obtained from Step 1 and 2. Finally, I carry the projected down

data to the multinomial discrete choice estimation to recover the structural parameters.

2.6.3 Estimating the Winning Probabilities

In this subsection, we discuss the estimation of bidders’ current-round winning probabilities,

i.e. the probability of provisionally winning a license she bids on at the current round. In particular,

we want to estimate qti(j),∀j ∈ J , that is, for all the 480 licenses. However, we only observe the

outcome of on the bidding set Lt
i of bidder i at round t: whether she provisionally wins license

j ∈ Lt
i or not. Table 2.3 summarizes the number of licenses in bidders’ bidding sets.

Table 2.3: Size of Bidding Set

Min. 1st Qu. Median Mean 3rd Qu. 95 Qu. Max.
Round 1-183 1 1 3 5.29 6 16 483

Round 21-120 1 1 3 5.21 6 17 103
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We see that most bidders in most rounds have a small size of bidding sets. 95% of the bidding

sets contain less than 17 licenses, which is about 3.5% of all the licenses. In other words, we are

going to fit our prediction model in a relatively small training set and make predictions in a rela-

tively large test set. This calls for a powerful prediction model with good predictive accuracy. On

the other hand, we only need the estimated winning probabilities in the next steps for calculating

the expected current round payoff of the bidders. Thus, in this step what we only care about is the

predictive performance, rather than model parameters. In view of that, we look for a method which

could provide good prediction accuracy for the probability of a binary classification problem.

We consider the traditional linear logit model, as well as five off-the-shelf machine learning

classification methods: LASSO, Random Forest, Boosting, Support Vector Machine, and Neural

Nets. In general, the machine learning algorithms haven been demonstrated to possess better

predictive power than the traditional parametric models, because they are all trying to balance the

bias and variance of the model, and thus avoid overfitting and improve predictive performance

in the test set. Except for LASSO, which is a penalized linear regression model, all other four

methods are nonparametric. See [38] for details of these machine learning methods.

Moreover, we apply model averaging to the above mentioned six models, in an attempt to

further improve the predictive performance compared to any single method. Model averaging is a

general idea of combining several single models to alleviate model uncertainty. Specifically, when

all existing models are misspecified, model averaging could improve the prediction accuracy upon

each single model [39]. We adopt the model averaging scheme in [23], whose final prediction is a

weighted average of each individual model prediction.

The covariates we use to estimate the winning probabilities are:

1. t: the round number

2. eligi: bidder i’s initial eligibility.

3. pop(j): license j’s population.

4. nbidt
i: number of bids that bidder i places at round t− 1.
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5. rwint
i(j): number of rounds that bidder i is the provisional winner on license j before round

t.

6. nt
i(j): number of bidders on license j at last round t− 1 except bidder i.

7. pti(j): bidder i’s personalized price on license j at round t. Particularly, if bidder i is the

provisional winner on license j at round t−1, then pti(j) is the bidding amount she submitted

at round t − 1; if bidder i is not the provisionally winner on license j at round t − 1, then

pti(j) is the minimum acceptable price, which equals to the standing high bid at last round

plus a small increment.

8. cti(j) =
∑

j′ ̸=j τ(j, j
′)1(j′ ∈ Wi,t−1): the contribution of license j to the complementarity

effect in the provisional winning set of bidder i.

These covariates are all in the bidders’ current-round information set It
i . Next, we present

prediction results from the six models, as well as the model averaging scheme.

2.6.3.1 Logit

I first estimate the traditional logit model for the winning probabilities. The results are shown

in Table 2.4. We see that nt
i(j) and cti(j) have the largest explanatory and predictive power to

winning probabilities. On the one hand, holding all else constant, when there are more bidders

on a license at the previous round, a bidder may anticipate higher competition on this license, so

that her chance of winning this license is smaller. This is consistent with our theoretical analysis

in Section 2.3, as well as other general results in the auction theory. On the other hand, a strong

and positive coefficient on cti(j) demonstrates the existence of complementarity among licenses in

bidders’ values. Furthermore, population has a negative effect on winning probabilities, meaning

that in bidders beliefs, a license with higher value is more attractive and more difficult to win. The

positive sign on the number of rounds is intuitive, because as rounds increase, more competitors

will drop out, and if a bidder stays, she will be more confident that she could outbid other bidders.

The positive sign on rwint
i(j) is also reasonable, since the more times a bidder being the winner
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on a license, the more confident she feels for winning this license. However, the negative sign on

nbidt
i is counter-intuitive: if a bidder placed at last round, she will have less probability of winning

a license at the current round.

Table 2.4: Logit

Winning Prob Estimate Std. Error t value Pr(>|z|)

(Intercept) 0.2369 0.0355 6.6680 0.0000
Number of Rounds: t 0.0122 0.0005 22.9106 0.0000

Eligibility: eligi 0.0045 0.0009 5.2710 0.0000
Population: pop(j) -0.5304 0.1391 -3.8144 0.0001

Number of Bidders: nt
i(j) -0.3469 0.0084 -41.3120 0.0000

Complementarity Effect: cti(j) 0.4974 0.1114 4.4639 0.0000
Price: pti(j) 0.0056 0.0010 5.5346 0.0000

Number of Bids: nbidt
i -0.0048 0.0008 -6.1881 0.0000

Winning Rounds: rwint
i(j) 0.0338 0.0009 38.5801 0.0000

Adj R Squared 0.213148

2.6.3.2 LASSO

LASSO (Least Absolute Shrinkage And Selection Operator) is a penalized or regularized re-

gression method that would achieve variable selection and improve prediction accuracy compared

to the traditional linear regression. The regression coefficients are estimated by

β̂L
λ = argmin

β
(yi − x′

iβ)
2 + λ∥β∥1, (2.11)

where the first part of the objective function is the squared loss which corresponds to the optimiza-

tion objective of OLS, and the second part is the penalty term that shrinks the size of estimator β̂.

Due to the introduction of the penalty, the LASSO estimator will shrink towards zero, and thus will

be biased. However, the shrinkage also serves to reduce the variance of β̂. The tunning parameter

λ controls for the amount of penalization and therefore balance the bias-variance trade-off. An

appropriate value of λ can reduce the variance substantially, at the cost of a little increase in bias,
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and thus achieve lower test MSE. Hence, LASSO deals with the overfitting problem that may occur

in linear regression, especially when there are many regressors. Moreover, LASSO is using the ℓ1

penalty of the parameter. This results in that some estimated coefficients will be shrunk to exactly

zero, leading to a variable selection in the regression.

Table 2.5 shows the estimation results of LASSO. We see that the magnitude and sign of logit

and LASSO estimation are quite consistent. In particular, LASSO drops the predictor pop(j) and

nbidt
i, where in the logit model, pop(j) is the least significant variable and nbidt

i has the smallest

coefficient. In addition, both logit and LASSO give very small estimates on eligi and pti(j), and

the signs are consistent. More importantly, nt
i(j) and cti(j) obtain the largest coefficients, which is

the same as the logit estimation. The sign and magnitude of the estimates on rwint
i(j) and t are

comparable to the logit model.

I implement LASSO using the glmnet package in R. The tuning parameter λ is chosen by

cross validation.

Table 2.5: LASSO

Winning Prob Estimate

(Intercept) 0.2041082
Number of Rounds: t 0.0122

Eligibility: eligi 2.0720e-05
Population: pop(j) .

Number of Bidders: nt
i(j) -0.3351

Complementarity Effect: cti(j) 0.2319
Price: pti(j) 1.2968e-03

Number of Bids: nbidt
i .

Winning Rounds: rwint
i(j) 0.0316

2.6.3.3 Random Forest

Random Forest (RF) is an ensembling method (which shares similar spirits with model averag-

ing) based on the decision tree model. It is a nonparametric estimation method for the conditional
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expectation, which is typically useful when there are high-dimensional predictors. When there

are many covariates, the traditional nonparametric estimation methods like k-nn, kernel, series or

splines, will suffer from curse of dimensionality. However, random forest has been demonstrated

to work very well when the number of features is large. We first introduce the regression tree and

classification tree, and then turn to the algorithm of random forest.

Decision tree is based on partitioning the feature space into regions. Then we simply make

predictions for a given test sample using the mean (for regression problem) or mode (for classifica-

tion problem) of the region that the test sample falls into. This idea is similar to the k-nn or kernel

estimation, while the tree-based models determine the distance among observations via trees. The

tree-based models could also be viewed as the generalized fixed effect models, where the fixed

effects are allowed to vary over the characterstic space.

Suppose we have covariates Xij and response Yi, we select a predictor Xj and a cutpoint s

splitting the predictor space into two regions R1(s, j) = {X|Xj < s} and R2(s, j) = {X|Xj ≥ s},

which leads to the greatest possible reduction in RSS (regression tree) or Gini index (classification

tree). We repeat the same procedure on each obtained region, and find new splits that results in

the greatest reduction is RSS or Gini index.23 We stop until some stopping criterion is reached,

e.g. no region contains more than a certain number observations, or until certain times of splits are

made. Such algorithm is called Recursive Binary Splitting. Finally, the predicted response for a

test sample x is the mean (regression) or mode (classification) of the response in the region where

x falls into.

RF is originated from bagging, which has the similar idea of model averaging. In bagging,

we grow B trees where each tree uses a bootstrap sample from the training data. For regression,

the final prediction is the average of the B predictions: f̂ bag(x) = 1
B

∑B
b=1 f̂b(x), where f̂b(x) is

the prediction from tree b on the test sample with covariate x. And for classification, the final

prediction is made from the majority vote of the B trees. Since bagging is the mean of many

different estimators, it can reduce the variance and enhance the out-of-sample prediction compared

23It captures the node purity: if a node contains predominant observations from a single class, then the Gini index
tends to be close to zero.
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to a single-tree model. Moreover, in bagging, each tree is grown deep, in the sense that we do not

need to prune the trees to avoid overfitting, because via bagging, we can ensemble many weak

learners and generate a strong learner.

RF generalizes the idea of bagging by bringing randomness to the set of predictors in each

tree. In particular, we randomly select m predictors out of the total set of p predictors in each tree.

Then like bagging, we make predictions for each tree, and the final prediction is the average of

each single tree prediction. The motivation is that there might be (potentially strong) correlation

between the B trees. For example, when there is a strong predictor, then most trees will use this

predictor to do the first split, and finally most trees will look similar. RF aims at decorrelating the

trees and reducing the variance of the final prediction. A recommendation for number of features

to be used in each tree is m = p/3 for regression and m =
√
p for classification [40].

I implement RF using function randomForest in package randomForest in R. I use ntree=1000

trees.

2.6.3.4 Boosting

Boosting is a general ensembling method to overcome the overfitting problem. Here I consider

boosting based on the decision trees. The idea is to grow trees sequentially, instead of indepen-

dently as in bagging. Therefore, boosting learns slowly. Specifically, we try to fit the current

residuals from a tree in each step, instead of the outcome. Each tree could be rather small, so

we are improving the prediction slowly in areas where it does not perform well. The shrinkage

parameter λ even slows the process, allowing more and different shapes of trees to attack the resid-

uals. In general, statistical learning approaches that learn slowly tend to perform well. The typical

algorithm of boosting is as follows:

1. Set f̂(x) = 0 and ri = yi for all i.

2. For b = 1, 2, ..., B, repeat:

(a) Fit a tree f̂ b with d splits (base learner) to the training data (X, r);
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(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x) = f̂(x) + λf̂ b(x). (2.12)

(c) Update the residuals:

ri = ri − λf̂ b(xi). (2.13)

3. The final prediction of the boosting model is f̂(x) =
∑B

b=1 λf̂
b(x).

I implement boosting using function boosting in package adabag in R.

2.6.3.5 Support Vector Machine

Support Vector Machine (SVM) is often considered one of the best out of the box classifiers

[38]. Consider a binary classification problem where the response yi ∈ {−1, 1}. The idea is to find

a hyperplane f(x) which could separate the data into two classes according to the response y, such

that the margin (distance from the hyperplane to the closest data point) is maximized. The SVM

allows some training data points to be on the wrong side of the hyperplane, even the wrong side of

the margin, in order to overcome the overfitting problem and obtain a more robust classification.

This is known as soft margin. The optimization problem is:

max
β,ϵ

M, s.t. yif(xi) > M(1− ϵi),

p∑
k=1

β2
k = 1, ϵi ≥ 0,

n∑
i=1

ϵi ≤ C. (2.14)

C is a non-negative tuning parameter, which determines the severity of violations to the margin

(and the hyperplane). Think of a budget for the violations. As C increases, our tolerance increases,

so the margin widens. C controls the bias-variance trade-off of this statistical learning process.

When C is too small, we tend to overfit the data and lead to high variance. M is the width of the

margin, which we want to maximize. ϵ’s are the slack variables that allow individuals to be on the

wrong side of the margin or the hyperplane. We make the prediction of a test sample x via the sign
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of f(x).

Observations that lie directly on the margin, or on the wrong side of the margin, are called

support vectors. They are the only data that affect the hyperplane, and hence the classifier. Such

robustness for observations that are far away from the hyperplane, is distinct from other classifica-

tion methods.

SVM also allows for the nonlinear boundary: f(x) = α+h(x)′β. It turns out that the algorithm

involves h(·) only through the inner product ⟨h(x), h(x′)⟩, instead of specifying h, so we could just

provide the kernel function K(x, x′) = ⟨h(x), h(x′)⟩.

It can be shown that SVM could be solved with the optimization problem, which is a penalized

regression with hinge loss and L2 penalty.

min
β

{ n∑
i=1

max{0, 1− yif(xi)}+ C

p∑
j=1

β2
j

}
, (2.15)

I implement SVM using the rminer package, which calls function ksvm in package kernlab.

2.6.3.6 Neural Nets

The Neural Nets (NN) classification model could be regarded as a non-linear generalization of

the multinomial logit model. Here we present a basic NN model, which is a single hidden layer

feed-forward NN. Suppose we have response Y ∈ {0, 1} and X ∈ Rp. The algorithm is:

1. Zm = σ(X ′α),m = 1, ...,M , where Zm is a neuron in the hidden layer, which is the non-

linear transformation of a linear combination of the features X . The activation function σ is

often chosen to be the sigmoid function σ(v) = 1/(1 + e−v).

2. Tk = Z ′βk, k = 0, 1.

3. fk(X) = gk(T ), k = 0, 1, where gk is the soft-max function gk(V ) = eVk/(eV1 + eV2). The

predicted probability is P̂[Y = 1|X] = f1(X).

We see that if σ is the identity function, then NN collapses to the linear logit model. We can think

of the hidden layer as a data-driven way of selecting basis function in the nonparametric series
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or spline regression, while in standard series and spline methods, the basis functions are chosen

ex-ante. The estimation of NN is usually conducted via back-propagation and stochastic gradient

descent.

I implement NN using the rminer package, which calls function nnet in the nnet package.

Table 2.6 shows the variable importance for the four machine learning methods.

Table 2.6: Variable Importance of Machine Learning Methods

Variable Importance RF Boosting SVM NN

Number of Rounds: t 3602.53 30.0646 0.2313 0.0707
Eligibility: eligi 1647.16 0.0999 0.1129 0.1250

Population: pop(j) 2424.56 0.2285 0.0323 0.0950
Number of Bidders: nt

i(j) 4117.50 58.6597 0.3015 0.3729
Complementarity Effect: cti(j) 3221.71 0.0999 0.0782 0.1288

Price: pti(j) 3176.05 1.2154 0.0227 0.1136
Number of Bids: nbidt

i 2044.16 0.0000 0.1557 0.0235
Winning Rounds: rwint

i(j) 3464.92 9.6320 0.0653 0.0705

For RF, the variable importance is measured by the mean decrease in Gini index. For Boosting,

the measure of importance takes into account the gain of the Gini index given by a variable in a

tree and the weight of this tree in the case of boosting. For SVM and NN, the variable importance

is calculated via the sensitivity analysis.

From Table 2.6, we see that across all methods, nt
i(j) is the most important predictor for the

winning probability, which coincides with the logit and LASSO estimation, as well as our theoret-

ical analysis. In addition, most methods agree that pop(j) and nbidt
i are of the least crucial to the

prediction, which is also concluded from the previous two linear models.

2.6.3.7 Model Averaging

Following [23], our model averaging scheme is:

1. For each sample observation i, make predicted probabilities using the six models proposed
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above, denoted as (ŷ1i, ..., ŷ6i). We use a 5-fold cross-validation to train the models and

make predictions.

2. Run a linear regression the observed response yi on the predicted probabilities (ŷ1i, ..., ŷ6i),

with the constraint that all estimates are non-negative and sum up to 1. Obtain estimated

coefficients (ŵ1, ..., ŵ6).

3. The model averaging predicted probability on a test point is the weighted average of the six

predicted probabilities, using (ŵ1, ..., ŵ6) as the weights:

q̂ti(j) = q̂(j|It
i ) =

6∑
k=1

ŵkq̂k(j|It
i ), ∀j ∈ J. (2.16)

I implement this procedure using ForecastComb package. Table 2.7 shows the 5-fold cross-

validated predictive performance of the six individual methods and the model averaging prediction,

as well as the estimated weight in the model averaging. The measure of model performance is the

Root Mean Square Eroor (RMSE) and Misclassificiation Rate (MCR) on the (cross-validation) test

set.

Table 2.7: Cross Validation and Model Averaging

Model RMSE MCR Weight (%)

Logit 0.3804 0.2174 0.00
LASSO 0.3807 0.2172 0.00

RF 0.3629 0.2002 50.11
Boosting 0.3680 0.2068 8.62

SVM 0.3807 0.2028 11.84
NN 0.3636 0.2057 29.43

Combined 0.3572 0.1915 100

We see that in terms of RMSE and MCR, logit and LASSO have similar performances, and are

beaten by the other four nonparametric machine learning methods. Within the last four machine
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learning algorithms, we see that RF turns to the best model. In the weight of the model averaging

estimation, we find that logit and LASSO receive zero weights, meaning that they are universally

outperformed by the rest four predictive models. RF obtain the largest weight, which is consistent

with its superiority over all other algorithms. NN turns out to be the second best model, followed

by SVM and Boosting. The final model averaging prediction further improves the RMSE and MCR

upon each single method. Compared to the traditional linear logit model, the combined model has

a 2.32% decrease in RMSE, and 2.59% decrease in MCR.

We also explore several existing model averaging schemes. In terms of RSME, the best scheme

is the OLS Model Averaging (OLS-MA), which yields the RSME of 0.3571. However, the OLS-

MA can generate arbitrary weights, so that the combined predictive winning probabilities will no

longer be a well-defined probability distribution. In this case, the weights selected by OLS-MA

is w = (−0.0467,−0.0051, 0.4948, 0.1193, 0.1505, 0.3169). While the heavy weight on RF, NN,

and SVM are consistent with the constrained least square model averaging (CLS-MA), OLS-MA

assigns negative weights to Logit and Lasso models. On the other hand, the RMSE from CLS-

MA is very close the that of OLS-MA. The RMSE and MCR of OLS-MA are 0.3570 and 0.1914,

respectively, which are just slightly lower than CLS-MA. Therefore, we use the CLS-MA scheme

to combine our six models.

2.6.4 Estimating the Choice Probabilities

2.6.4.1 The High Dimensionality Issue

In this subsection, we discuss the estimation of the choice probabilities over different set of

licenses for each bidder at a round. In particular, We are going to estimate P[Y t
i = L|It

i ], that is,

the probability that, at round t bidder i chooses the set of licenses L ∈ L to bid, where L is all the

combinations of licenses that bidders could consider.

The number of all possible sets of licenses would be huge. Since we have 480 licenses, then the

total number of subsets of the 480 licenses would be 2480, which far exceeds the computation power

and storage of any ordinary computer. First, we need to restrict our attention to the sets of licenses
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that bidders would really consider. Having a consideration set with the size 2480 is infeasible for the

bidders, both intuitively and computationally. Instead, there must be only a part of the bundles that

bidders are interested in. One of the distinct features of Simultaneous Ascending Auction (SAA)

compared to Combinatorial Auction (CA), is that SAA allows the bidders to construct bundles

of objects by themselves, so that the potentially beneficial combinations are revealed during the

auction. So we set the considerations set L to be the collection of sets of licenses Lt
i that have

been constructed during the course of the auction (including the empty set). That is, we believe

that a combination of licenses that has ever been proposed by any bidder, is potentially acceptable

by the bidders, and during the long course of this auction (183 rounds), the underlying possible

combinations have all been raised. From that, we obtain our consideration set L with d = |L| =

3998 different bundle of licenses.

However, 3998 choices is still very high-dimensional for a multinomial discrete choice prob-

lem. The computation for a multiclass classification algorithm a multinomial logit with this large

number of classes will still be extremely expensive. In regard of that, we leverage the multivariate

logit model in [14], which could provide a consistent estimator of the choice probabilities, while

saving a significant time of computation. The idea is that, instead of modeling the joint distribu-

tions of the 480-dimensional multivariate Bernoulli variable and take it to a traditional Maximum

Likelihood Estimation, we only use the conditional distributions and conduct a Composite Con-

ditional Likelihood Estimation. Although we lose part of the information by only including the

conditional distributions and therefore lose some efficiency, the estimators are still consistent.

2.6.4.2 The Model and Interpretation

Specifically, let Y t
i = (Y t

i (j))j∈J be a multivariate Bernoulli variable. If Y t
i (j) = 1, then

bidder i has chosen license j at round t. We model the conditional probabilities of choosing j,

given the selection outcome of the rest licenses being yt
i(−j), as

P[Y t
i (j) = 1|Y t

i (−j) = yt
i(−j), It

i ] =
exp(Zt

i (j))

1 + exp(Zt
i (j))

, (2.17)
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with

Zt
i (j) = W t

i (j)
′γ + ϕ

∑
j′ ̸=j

yti(j
′)τ(j, j′). (2.18)

Here W t
i (j) is a vector of covariates that only concern license j, and τ(j, j′) is the complementarity

measure defined in (2.9). We use the same covariates for W t
i (j) (except for the complementarity

effect cti(j)) in Step 1. The parameter ϕ captures the (pairwise) complementarity effect between

j and other chosen licenses in the set L. This is consistent with our pairwise complementarity

specification in bidders’ utility function.

[41] show that the conditional distribution implies that the joint distribution of Y t
i is

πt
i(L) = π(L|It

i ) = P[Y t
i = L|It

i ] =
exp(µt

i(L))

1 +
∑

L∈L exp(µ
t
i(L))

, (2.19)

where

µt
i(L) =

∑
j∈L

W t
i (j)

′γ + ϕ
∑

j ̸=j′;j,j′∈L

τ(j, j′). (2.20)

It is consistent with the multinomial logit model, where bidder i’s “current-round utility" for

making decisions at round t on set L is ut
i(L) = µt

i(L)+ϵti(L), with ϵti(L) being i.i.d. type I extreme

value distributed.24 The deterministic part of “current-round utility" is composed of two parts. The

first part
∑

j∈L Wit(j)′γ is the sum of “current-round" stand-alone values of each license in set L,

with covariates including eligi, pop(j), which consists of bidders’ static stand-alone value defined

in (2.7), and t, nt
i(j), nbid

t
i, rwin

t
i(j), p

t
i(j), which are the current-round information. The second

part ϕ
∑

j ̸=j′;j,j′∈L τ(j, j
′) is the complementarity value among set L, which is of the same form as

(2.2) and (2.8).

Therefore, we can also think of (2.20) a penalized utility:

µt
i(L) = vi(L)−

∑
j∈L

pti(L) + g(ht
i), (2.21)

where vi(L) is the private value, and g(ht
i) is the penalty term on the current-round utility based

24This is consistent with the Multivariate Bernoulli model by [42] with second order interactions.
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on the current-round observed bidding history ht
i = (t, nt

i, nbid
t
i, rwin

t
i(j)). Here we normalize

the coefficient on price to be −1, so the other coefficients are measured in the unit of (million)

dollars. By our theoretical analysis Section 2.3, we expect that with more competitors, bidders

may discount more on their “current-round utility", and thus the coefficient on nt
i(j) should be

negative.

2.6.4.3 The Estimation Method and Results

As we have mentioned, using the joint likelihood function (2.19) for Maximum Likelihood

Estimation would involve a large amount of computation. Instead, we focus on the conditional dis-

tributions (2.17), and conduct Composite Conditional Likelihood (CCL) estimation [43]. Specifi-

cally, our composite conditional log-likelihood function is

ℓ(γ, ϕ) =
∑
i,t

m∑
j=1

logP[Y t
i (j) = yti(j)|Y t

i (−j) = yt
i(−j), It

i ]. (2.22)

[43] show that the estimator (γ̂, ϕ̂) that maximizes ℓ(γ, ϕ) is consistent. Such optimization could

be processed very fast, and the standard errors can be computed from the standard way using

information matrix.

Because a bidder at one round only places bids on a small subset of J , there are much more

zeros (not chosen licenses, yti(j) = 0) than ones (chosen licenses, yti(j) = 1) in the response of the

likelihood function. Such rare event data will dramatically slow the computation and occupy the

storage of the machine, while in fact the rare events (not chosen licenses) are much less informative

than the events (chosen licenses). In view of that, we randomly sample the data of “not chosen

license", and keep all the data of “chosen license", and make the proportion of zeros of yti(j)

around 90%. This is referred to as choice-based sampling in [44], which also pointed out that such

sampling may cause bias in the estimated intercept. I use [45]’s method to correct for this bias,

which is implemented in the Zelig package in R. The result of the choice probability estimation is

in Table 2.8.

We see that the coefficient on nt
i(j) is significantly negative, which coincides with what our
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Table 2.8: Choice Probabilities

Choice Prob Estimate Std. Error t value Pr(>|z|)

(Intercept) -8.3596 0.3711 -22.53 0.0000
Number of Rounds: t -0.0025 0.0048 -0.52 0.6057

Eligibility: eligi -0.3310 0.0181 -18.24 0.0000
Population: pop(j) 61.1494 1.5588 39.23 0.0000

eligi × pop(j) 0.8548 0.0258 33.08 0.0000
Number of Bidders: nt

i(j) -1.0619 0.1284 -8.27 0.0000
Number of Bids: nbidt

i 0.0270 0.0093 2.92 0.0035
Winning Rounds: rwint

i(j) 0.3925 0.0195 28.558 0.0000
Complementarity:∑

j≥j′;j,j′∈L τ(j, j
′) 28.4948 2.8042 10.16 0.0000

theory expects. For the other covariates in ht
i, we observe that nbidt

i and rwint
i(j) both have

significantly positive effect, meaning that a more aggressive and successful bidding history may

encourage bidders to bid at the current round. The number of rounds has insignificant and neg-

ligible effect. We find strong complementarity effect in bidders’ private value between licenses.

For bidders’ stand-alone values, the license’s population plays a crucial role, while the bidder

characteristic eligi and the interaction term only have relatively small effects.

We then use the estimated parameters to calculate the predicted choice probabilities π̂t
i(L) =

π̂(L|It
i ) = P̂[Y t

i = L|It
i ] for all sets L ∈ L for every (i, t) observation, using (2.19). We evaluate

the predictive performance in Table 2.9.

Table 2.9: Evaluation of Predicted Choice Probabilities

Rank (≤) 1 2 3 4 5 10 100

Proportion 0.2173 0.3045 0.3496 0.3778 0.4054 0.4623 0.6323

In Table 2.9, we calculate for each observation (i, t), what is the rank of the true chosen set

Lt
i among the consideration set L, based on the predicted choice probabilities. There are 21.73%
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observations making the correct prediction, which assign the highest probability to the actually

chosen set. There are 40.54% observations ranking the actually chosen bundle at top 5, and 46.23%

at top 10. Since we are effectively conducting a multiclass classification with 3998 classes, we

regard this result as a satisfactory one.

2.6.5 Dimension Reduction Using Random Projection

From the previous two steps, we obtain the estimated expected current round utility, and the

estimated choice probability, which are both of dimension d = |L| for each (i, t) observation. In

this subsection, we apply the Random Projection (RP) method in [13] to reduce the dimension (on

the number of choices) in this multinomial discrete choice problem. RP is a popular machine learn-

ing method for dimension reduction. This dimension reduction is achieved by conducting a linear

projection on the high-dimensional vector to a low dimensional space, and such linear transforma-

tion is defined via a random matrix. By the Johnson-Lindenstrauss lemma, the Euclidean distance

between original vectors on the high-dimensional space will be preserved to the low-dimensional

space after RP, with large probability. On the other hand, in the last step of our estimation, the

optimization objective function only involves Euclidean distance between data points. Therefore,

RP could be used to do dimension reduction for our purpose, and it greatly saves the computational

burden in the last step.

Particularly, let R be a random projection matrix with size k × d, where d = |L|, and k < d is

the projected down dimension. Let the deterministic part of the expected current round payoff be:

νt
i (L; θ) = E[ut

i(L)|q, It
i ; θ]

=
∑
j∈L

(α0 + α1 eligi +α2 pop(j) + α3 eligi pop(j))q̂
t
i(j)

+
1

2
β
∑
j′∈L

∑
j′ ̸=j,j′∈L

τ(j, j′)q̂ti(j)q̂
t
i(j

′)−
∑
j∈L

pti(j)q̂
t
i(j)

≡ X t
i (L)

′θ (2.23)

where q̂ti(j) are estimated from Step 1, and θ = (α′, β,−1)′. For a d× 1 vector z, define z̃ = Rz.
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Then the projected down data is (X̃t
i,
˜̂πt

i).

Following [13], we use [46]’s sparse random projection matrix as R, where a large number

of elements are zero with high probability. Sparse random projection matrices are an attractive

alternative to dense Gaussian random projection matrix that guarantees similar embedding quality

while being much more memory efficient and allowing faster computation of the projected data.

The sparse random projection matrix in [46] is:

Rij =

√
s

k


1, with probability 1/2s

0, with probability 1− 1/s

−1, with probability 1/2s

, (2.24)

where k is the dimension of the projected down space, and s =
√
d. We see that Li’s random

projection exercises a random subsampling or bootstrapping of the original data (some are sampled

directly, some are sampled with a negative sign). In fact, it is a random drawing from both the

dimension of observation and feature, so it is somewhat similar to a random forest algorithm.

The computational enhancement brought by RP is significant. For the optimization problem in

the next step, if we use the original data (X t
i , π̂

t
i), it takes twice the time to compute the objective

function compared to using the RP with k = 300. More importantly, directly using the original data

takes more than 500 iterations for the optimization algorithm to converge, which is very expensive

in terms of making inference. On the other hand, if we use the projected down data (X̃t
i,
˜̂πt

i), it

only takes around 20 iterations for the algorithm to find the optimum point.

2.6.6 Estimating the Structural Parameters Using Cyclic Monotonicity

In this subsection, we discuss the final step of our structural estimation, which is the estimation

of our structural parameters of interest θ = (α′, β)′ in (2.10). We use the method proposed in

[12], which is a semiparametric estimation approach for multinomial discrete choice in panel data.

It does not need to assume a specific distribution for the errors in the random utility model, and

moreover, allows flexible dependence structure of errors among choices and across time. We
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could also include individual fixed effects in bidders’ utility function. This estimation is based

on the cyclic monotonicity property of the choice probability function in the multinomial discrete

choice model, and we use a series of inequalities from the cyclic monotonicity to construct the

optimization objective function. Since these inequalities only concern Euclidean distance between

the data vectors, RP could be applied to reduce the dimension.

2.6.6.1 Cyclic Monotonicity

Let bidders’ expected current round payoff be

E[ut
i(L)|qt

i , It
i ] = νt

i (L; θ) + ϵti(L), (2.25)

where ϵti(L) is the error term, which may include the unobserved variables, random shocks, mea-

surement errors, and estimation errors from previous steps.

Bidders choose the set Lt
i which maximizes their current-round expected payoffE[ut

i(L)|qt
i , It

i ].

Thus, the choice probability function is

π(L|νt
i ) = P[νt

i (L) + ϵti(L) ≥ max
L′ ̸=L,L′∈L

νt
i (L

′) + ϵti(L
′)]. (2.26)

Let π(ν) = (π(L|ν))L∈L, and ν = (ν(L))L∈L ∈ U ⊆ R
d, ϵ = (ϵ(L))L∈L. Suppose ϵ and ν

are independent, then π is cyclic monotone in U .

Definition 2. Consider a function f : F → R
d with F ⊆ R

d. Take a length M -cycle in

F , denoted as (u1,u2, ...,uM ,u1). Then f is called cyclic monotone with respect to the cycle

(u1,u2, ...,uM ,u1) if
M∑

m=1

(um − um+1) · f(um) ≥ 0. (2.27)

If f is cyclic monotone with respect to all possible cycles of all lengths on F , then we say f is

cyclic monotone on F .

The reason that choice probability function π is cyclic monotone is as follows. The indepen-

dence between ϵ and ν implies that the social surplus function [47] S(ν) = E[maxL∈L(ν(L) +
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ϵ(L))|ν] is convex in ν. In addition, the choice probability function lies in the sub-gradient of the

social surplus function: π(ν) ∈ ∂S(ν). And it is known from the convex analysis [48] that, the

sub-gradient of a convex function satisfies cyclic monotonicity.

Remark 1. For a univariate convex and differentiable function, its gradient (derivative) is mono-

tonically non-decreasing. Therefore, the cyclic monotonicity could be viewed as an appropriate

extension of this feature to multivariate convex function.

Remark 2. Take ν1,ν2 ∈ U , we have

(ν1 − ν2) · π(ν1) + (ν2 − ν1) · π(ν2) ≥ 0. (2.28)

Rearranging the terms, we get

ν1π(ν1) + ν2π(ν2) ≥ ν1π(ν2) + ν2π(ν1). (2.29)

The left hand side is the sum of expected utility for the two deterministic utilities ν1,ν2, using

the true choice probabilities. The right hand side is the sum of expected utility using the wrong

choice probabilities, because they exchange the choice probabilities with each other. Therefore,

the cyclic monotonicity for the length 2-cycle could be interpreted as that, using the true choice

probabilities will always generate higher expected utility among the choices than exchanging the

choice probabilities. This shares the similar idea with the pairwise stability property in the two-

sided matching model [49].

In a general M -cycle, we have

M∑
m=1

νmπ(νm) ≥
M∑

m=1

νmπ(νm+1), (2.30)

which could be interpreted similarly.
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2.6.6.2 Panel Data

Now consider the panel data environment as in our case. We only assume the errors to be

identically distributed for different rounds. Without loss of generality, let T ≥ t2 > t1 ≥ 1. Let

Ai be the bidder fixed effect in bidder i’s value function, that is not taken into the expectation with

respect to the winning probabilities.

Assumption 3. ϵt1i ∼ ϵt2i |(ν
t1
i ,νt2

i , Ai),∀i ∈ N,∀t1, t2.

Remark 3. (i) First, we allow for time dependent shocks, for example, some outside information

coming in for the licenses during each round t, possibly correlated across rounds, while we

assume to have the same marginal distribution.

(ii) In addition, we do not impose any distributional assumption on the joint distribution of

(ϵti(L))L∈L, meaning that the marginal distribution of the unobservable term in the expected

current round utility can be arbitrary, and more importantly, they can be arbitrarily depen-

dent of each other. Such flexibility is crucial to us, because different sets L and L′ may have

overlap of the same licenses, and thus their corresponding unobservables may neither come

from the same marginal distribution, nor be independent of each other.

(iii) Furthermore, we allow for bidder fixed effect Ai.

(iv) Finally, the errors are permitted to be correlated with the covariates X t
i , as well as the bidder

fixed effect Ai. So we do not need to worry about endogeneity here.

Conclusively, the semiparametric feature of this estimation method is necessary in our setting.

Given Assumption 3, by the cyclic monotonicity of π, we have

(νt1
i − νt2

i ) · [π(νt1
i )− π(νt2

i )] ≥ 0. (2.31)

Remark 4. (i) Note that the fixed effect has been differenced out in (νt1
i −νt2

i ), and in [π(νt1
i )−

π(νt2
i )], the fixed effect is integrated out by the Law of Iterative Expectation.
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(ii) In [12], the choice probability function appears in the cyclic monotonicity inequality is

πt1
i (ν

t1
i ,νt2

i ) and πt2
i (ν

t1
i ,νt2

i ), which uses both information from round t1 and t2 to form

the choice probability at the two rounds. Nevertheless, since the later round information in-

cludes the early round information, then πt2
i (ν

t1
i ,νt2

i ) = πt2
i (ν

t2
i ). And since the decision on

the early round does not depend on later round information, then πt1
i (ν

t1
i ,νt2

i ) = πt1
i (ν

t1
i ).

[12] show that our parameter of interest θ in ν(θ) is point identified from (2.31). One essential

assumption of identification is the large support condition, i.e. the support of (ϵti|Ai,ν
t
i ) is Rd

with positive probability. It implies that bidders should have positive probabilities of choosing any

bundle L in L. In our estimation of choice probabilities (Section 2.6.4), the logit-type estimated

choice probability (2.19) ensures that all choice probabilities are non-zero.

2.6.6.3 The Estimation Method and Results

We use the projected-down data (X̃ t
i ,
˜̂πt

i) from RP in the last subsection in our final estimation.

Recall that for the original data, X t
i is the covariates for the expected payoff constructed from the

estimated winning probabilities, and π̂t
i is the estimated choice probabilities. We expect that the

expected payoff (with estimated winning probabilities) is consistent with the estimated choice

probabilities.

For each bidder i, we pick 10 rounds that she has bid on during round 21-120.25 Consider all

the 2-cycle’s within the 10 rounds. Let the set of selected 2-cycle’s of bidder i be Hi. Our objective

function for optimization is

Q(θ) =
∑
i∈N

∑
(t1,t2)∈Hi

[(
ν̃t1
i (θ)− ν̃t2

i (θ)

)
·
(˜̂πt1

i − ˜̂πt2
i

)]
−

=
∑
i∈N

∑
(t1,t2)∈Hi

{[
(X̃ t1

i − X̃ t2
i )′θ

]
·
(˜̂πt1

i − ˜̂πt2
i

)}
−
, (2.32)

where [z]− = |min(0, z)|. Our final estimator is θ̂ = argminθ∈ΘQ(θ). [12] show that θ̂ is

25If a bidder i bids less than 10 rounds during round 21-120, just use all the rounds she bids on.
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consistent.

Table 2.10: Estimation Result with 100 Random Projections, k = 300

Variable Mean Median (5%, 95%) (25%, 75%)

intercept: α0 1.73 1.64 (-14.91,20.59) (-7.41,8.39)
eligibility: α1 -0.10 -0.12 (-0.87,0.67) (-0.41, 0.16)
population: α2 245.5 247.5 (160.22,331.71) (207.5,279.2)
elig×pop: α3 -1.08 -1.12 (-2.79,0.95) (-1.98,-0.29)

complementarity: β 79.96 74.51 (-75.06,251.13) (16.66,130.08)

obs 1882

Table 2.10 shows the estimators for the parameters in bidders’ value function. I find a large

and significant effect of the complementarity on the private value. The complementarity of the

nationwide bundle is worth 8 billion dollars for an average bidder, which equals 59.54% of the

sum of final prices of all licenses (13.43 billion dollars). This is close to the finding in [11]. For

an bidder with average eligibility winning the nationwide bundle, the complementarity contributes

24.46% of the private value. This number is highly consistent with the result reported in [8].

Note that we use the same dataset as [8]. Even though we take different approaches for structural

analysis, we end up having similar results on the complementarity effects as in [11] and [8], which

demonstrates the validity of our structural modeling and estimation methods. For the bidders’

stand-alone values, I document large and significant effect of the license-characteristic. For an

average bidder, a license with 1 more million population, will be valued 98.71 million dollars

higher. In comparison, on average 1 more million population of a license is associated with 70.32

million dollars higher in the final price as shown in a reduced-form regression in Table 2.11. On

the other hand, we find very small and insignificant effect of the bidder-characteristics, as well as

the interaction between bidder-characteristics and license-characteristics. Therefore, the variation

of the stand-alone values is mostly generated by the heterogeneity of licenses, and the bidder

heterogeneity is not essential in bidders’ private value.
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The final results are consistent with the results in the estimation of choice probabilities shown in

Table 2.8, which are the estimated parameters for the “current-round utility for decision making".

Table 2.11: Regression of Final Price on Population for Licenses

Final Price Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.7861e6 7.6242e6 -11.52 0.0000
Population 70.3229 0.5459 128.82 0.0000

2.7 Bidder Heterogeneity

In this section, I explore the bidder heterogeneity in bidders’ stand-alone values and comple-

mentarity values. Because the effect of bidder-characteristic on value is insignificant, it is natural

to attribute the heterogeneity in bidders’ values to the complementarity, instead of the stand-alone

value.

2.7.1 Evidence of Bidder Heterogeneity

In this subsection I look at the complementarity values of the ultimate winning bundles of each

winner in the auction, calculated from the estimation results in Section 2.6.

There are 59 winners at the end of the auction who win at least two license, therefore the

winning bundles exhibit complementarity. In Table 2.12 I provide three measures to represent

the complementarity contribution of the winning bundle to a winner, where complem/price is the

fraction of complementarity value in the total final price of the winning bundle, complem/value is

the fraction of complementarity value in the value of the winning bundle, and complem/pop is the

complementarity for 1 unit (1% of the US population) of population.

In Figure 2.5 I plot the three measures of complementarity contribution with respect to bidders’

eligibility. We see that for all the winners, the complementarity contribution is increasing with

eligibility. More importantly, for large and small bidders, the trends are quite different.

Therefore, there exists large bidder heterogeneity in the complementarity among the winners.
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Table 2.12: Heterogeneity of Complementarity Value across Winners

complem/price complem/value complem/pop

Min 0.0144 0.0022 0.0059
25% Qu 2.2674 0.6215 1.5618
Median 6.6004 1.3547 3.3590

Mean 8.0280 2.9934 6.7637
75% Qu 12.3799 3.2689 8.0595

Max 27.4404 22.3904 37.8290
Sd 7.1024 4.2905 8.5681

Nation 18.75 11.85 24.80

Obs 59

Figure 2.5: Heterogeneity of Complementarity across Bidders

(a) complem/price (b) complem/value (c) complem/pop

Table 2.13 summarizes their initial eligibility, profit margin, as well as the number of licenses and

the total population in their winning bundles. We find a large variation among the winners and

their winning results.

The variation among bidders in complementarity as well as the final winning results, is going

to attribute to their private values. Since the stand-alone values are dominated by license char-

acteristics instead of bidder characteristics, the bidder heterogeneity is supposed to reveal in the

complementarity. I will estimate the bidder-heterogeneous complementarity effects in the next

subsection.
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Table 2.13: Winners and Their Bundles

elig # license totalpop margin

Min 0.01 1 0.01 -20.55
25% Qu 0.22 1 0.06 13.24
Median 0.58 3 0.22 37.44

Mean 3.8 5.6 1.15 88.83
75% Qu 2.51 6 0.59 91.33

Max 70.78 56 37.71 1350.08
Sd 10.77 8.09 4.34 175.19

Total 334.61 493 100 7817.09

Obs 88

2.7.2 Estimation of Bidder Heterogeneity

To explore the bidder heterogeneity, I separately estimate the model for large, medium, and

small bidders. I distinguish the types of bidders in terms of their initial eligibility: large bidders

refers to those with eligibility greater than 10, small bidders are those less than 1, and medium

bidders are the rest. The unit of eligibility is the total population (measured in the percentage point

of the total US population) that a bidder could bid for, at the beginning of the auction. In our full

sample of rounds 21-120, there are 12 large bidders, 54 medium bidders, and 133 small bidders.

Table 2.14, 2.15, and 2.16 shows the estimation results.

Table 2.14: Large Bidders

Variable Mean Median (5%, 95%) (25%, 75%)

intercept: α0 3.13 7.07 (-82.75, 74.20) (-28.03,36.05)
eligibility: α1 -0.17 -0.16 (-1.56, 1.43) (-0.75,0.39)
population: α2 219.10 209.32 (-83.76, 572.71) (68.42,345.42)
elig×pop: α3 -1.08 -0.99 (-5.79,3.30) (-3.25,0.81)

complementarity: β 175.55 168.78 (-179.55, 508.82) (51.31,328.08)

We find strong heterogeneity in bidders’ complementarity values. For an average large bidders,
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Table 2.15: Medium Bidders

Variable Mean Median (5%, 95%) (25%, 75%)

intercept: α0 -5.954 -6.076 (-34.29, 21.45) (-14.17,4.67)
eligibility: α1 1.16 0.98 (-5.73, 9.03) (-2.07,3.76)
population: α2 269.7 264.6 (168.83, 377.50) (219.4,318.3)
elig×pop: α3 -6.75 -6.55 (-30.33,17.19) (-15.05,3.86)

complementarity: β 42.21 41.73 (-93.98, 236.82) (-21.45,94.26)

Table 2.16: Small Bidders

Variable Mean Median (5%, 95%) (25%, 75%)

intercept: α0 4.93 1.19 (-26.68, 40.83) (-10.17,20.69)
eligibility: α1 -2.12 0.65 (-68.39, 51.80) (-22.91,21.59)
population: α2 264.05 259.07 (133.21, 387.63) (220.09,316.05)
elig×pop: α3 -50.23 -52.44 (-179.78,89.89) (-108.64,12.63)

complementarity: β 85.65 75.04 (-68.33, 286.02) (11.08,146.05)

the nationwide is worth 17.56 billion dollars, while for the medium and small bidders, this number

becomes 4.22 and 8.57. Nevertheless, the estimates for stand-alone values are less heterogeneous,

and quite robust to the full sample estimation. For all the large, medium, and small bidders, the

estimated parameters on population are highly consistent with the full sample estimate. And the

initial eligibility of bidders still plays insignificant role in their stand-alone values.

Hence, it is the heterogeneity on complementarity values that explains the variation on bidding

behaviors and final results across bidders. Large bidders become large winners, because they value

the complementarity among licenses higher. Medium and small bidders are less competitive in the

auction because for the same bundle, they generate less complementarities.

2.8 Conclusion

In this paper, I develop a structural approach to analyze the US spectrum auction and recover

the bidders’ private values including stand-alone values and complementarity values from the em-

pirical data, which will serve as the fundamental elements to quantify the performance of different

58



mechanism designs for the spectrum allocation. I find strong evidence of complementarity among

licenses. The complementarity of a national-wide license is worth 8 billion dollars for an average

bidder, which is 59.54% of the sum of final prices of all licenses. For the bidders’ stand-alone

values, I document large and significant effect of the license-characteristic. For an average bid-

der, a license with 1 more million population will be valued 98.71 million dollars higher. On the

other hand, small and insignificant effect of the bidder-characteristics is recorded. Therefore, the

variation in stand-alone values are mostly generated from the license rather than the bidder charac-

teristics. In addition, I find bidder heterogeneity in the complementarity. Particularly, large bidders

value the complementarity effects more than small and medium bidders.

The estimation method I propose for this structural model may be of independent interest. I

provide the estimation of high-dimensional bundle choice problem with individual-level data, with

rich applications in other contexts, for example, the demand estimation in industrial organization.
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3. OPTIMAL MODEL AVERAGING OF MIXED-DATA KERNEL-WEIGHTED SPLINE

REGRESSIONS

3.1 Introduction

When conducting applied econometric and statistical analysis, the presence of model uncer-

tainty is ignored at the practitioner’s peril [50]. The two dominant approaches for tackling this

source of uncertainty when conducting regression analysis involve either model selection or model

averaging [51]. Model selection deals with model uncertainty by selecting one model from among

a set of candidate models using a model selection criterion such as [52] Akaike Information Crite-

rion (AIC) or the Schwarz-Bayes information criterion [53], by way of illustration. That is, model

selection takes a set of candidate models and applies weight 1 to one model and 0 to all others. An

alternative is to apply model averaging, which deals with model uncertainty by instead averaging

over the candidate models using a model averaging criterion that applies a vector of weights to

the set of candidate models typically resulting in non-zero weights being applied to each of the

candidate models. The goal in model averaging is to control misspecification bias while reducing

estimation variance.

There is a longstanding literature on Bayesian model averaging; see [54] for a comprehensive

review. There is also a rapidly-growing literature on frequentist model averaging, including [55],

[56], [57], and [58], [59], [60] and [61], among others.

Practitioners who adopt model averaging often construct a weighted average defined over a

set of parametric candidate models, and interest typically lies in one or more parameters com-

mon to all models. Our interest here is somewhat different though, and we adopt a nonparametric

perspective. Ideally we want to average over a sufficiently rich set of candidate models so that

we can consistently estimate a large class of DGPs. We also want the approach to be useful for

practitioners and to admit a range of predictor types including continuous and categorical, both un-

ordered and ordered. For these reasons we consider averaging over a recently proposed regression
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spline technique that admits both categorical and continuous predictors [62]. The use of regression

splines is appealing from a variety of perspectives. From a practical perspective, regression splines

present global approximations that are computationally attractive since they require nothing more

than solving a simple weighted least squares problem. From the theoretical perspective, the use of

B-spline basis functions offers the maximally differentiable spline basis while its approximation

capabilities have been widely studied and are well-established. Furthermore, for those accustomed

to least-squares estimation methodology and the use of polynomials for modelling nonlinearities

in a regression setting, they present a familiar yet powerful alternative to the use of parametric

candidate models.

Our theoretical results, which are based on the Mallows criterion, apply both to nested and

non-nested regression models, and we also allow for heterogeneous errors. Related to this is the

work of [63] who examines the asymptotic risk of nested least-squares averaging estimators based

on minimizing a generalized Mallows criterion in a linear model with heteroskedasticity, and the

work of [64] who adopt the Mallows criterion to choose the weight vector in the model averaging

estimator for linear regression models with heteroskedastic errors.

The rest of this paper proceeds as follows. Section 3.2 presents the approach of [62] and then

derives an optimal weighting scheme for averaging across this set of candidate models. Section 3.3

considers the finite-sample behaviour of the proposed approach relative to popular model selection

criteria along with an illustrative application, while Section 3.5 presents some concluding remarks.

Detailed proofs appear in Appendix B. An R package that implements the proposed approach is

available for the practitioner [65].

3.2 Model Averaging of Kernel-Weighted Spline Regression

We consider a nonparametric regression model containing both continuous and categorical

predictors, which we write as

Yi = µi + ϵi = g(X̄i, Z̄i) + ϵi, i = 1, 2, . . . , n, (3.1)
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where X̄i = (X̄i1, . . . , X̄iq̄)
′ is a q̄-dimensional vector of continuous predictors, and Z̄i = (Z̄i1, . . . , Z̄ir̄)

′

is an r̄-dimensional vector of categorical predictors. However, we only observe a sub-vector

of (X̄i, Z̄i). Specifically, we assume that we observe (Xi, Zi), i = 1, 2, . . . , n, where Xi =

(Xi1, . . . , Xiq)
′ is a q-dimensional sub-vector of X̄i, and Zi = (Zi1, . . . , Zir)

′ is an r-dimensional

sub-vector of Z̄i. Thus, we require that (Xi, Zi) be a proper sub-vector of (X̄i, Z̄i), i.e., we need

either q < q̄, r ≤ r̄, or q ≤ q̄, r < r̄; the requirement that the candidate models are misspecified

is prevalent in the model averaging literature.

Letting zl denote the l-th component of z, l = 1, ..., r, we assume that zl takes cl different values

in Dl = {0, 1, . . . , cl − 1}, l = 1, . . . , r, where cl is a finite constant. Assume for l = 1, 2, . . . , q,

each Xil is distributed on a compact interval [al, bl], and without loss of generality, we take all

intervals [al, bl] = [0, 1]. Let the support of Z be MZ = Πr
l=1Dl, and the support of X be

MX = [0, 1]q. Let (Yi, X̄
′
i, Z̄

′
i)

n
i=1 be independent and identically distributed as (Y1, X̄

′
1, Z̄

′
1). To

allow for possibly heteroscedastic random errors, we assume E(ϵi|X̄i, Z̄i) = 0 and E(ϵ2i |X̄i, Z̄i) =

σ2(X̄i, Z̄i) ≡ σ2
i , i = 1, . . . , n. We denote the conditional expectation of the dependent variable

by µi = E[Yi|X̄i, Z̄i] = g(X̄i, Z̄i), where g(·, ·) is an unknown smooth function. Denote Y =

(Y1, . . . , Yn)
′, µ = (µ1, . . . , µn)

′, and ϵ = (ϵ1, . . . , ϵn)
′. Using matrix notation, Equation (3.1) can

be written as Y = µ+ ϵ.

Our goal is to approximate µi, which is particularly useful for prediction, and is also a typical

object of interest in the literature on model averaging estimation (e.g., [56]; [66]). To this end,

we use Sn candidate nonparametric regression models to approximate Equation (3.1). Since the

dimensionality of the observed predictors is finite, i.e., q < ∞, r < ∞, the total number of

candidate models (to be averaged) Sn is finite. For s = 1, . . . , Sn, let the s-th candidate model be

Yi = g(s)(Xi,(s), Zi,(s)) + ei,(s), i = 1, . . . , n, (3.2)

where Xi,(s) is a qs-dimensional sub-vector of Xi, Zi,(s) is a rs-dimensional sub-vector of Zi,

g(s)(·, ·) is an unknown smooth function, and ei,(s) = µi − g(s)(Xi,(s), Zi,(s)) + ϵi represents the
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approximation error in the s-th model. Also, we use MX,(s) and MZ,(s) to denote the supports of

X(s) and Z(s), respectively.

To provide an optimal weighting scheme, we first need to estimate each candidate model. To

handle the presence of categorical predictors, we follow [62] to estimate g(s)(·, ·) by tensor-product

polynomial splines weighted by categorical kernel functions. Let L(Zi,(s), z(s), λ(s)) be a product

categorical kernel function and let B(s)(x(s)) be the tensor-product polynomial splines, both of

which will be defined below. Then the nonparametric function g(s)(x(s), z(s)) can be approximated

by B(s)(x(s))
′β(s)(z(s)), where B(s)(x(s)) is of dimension K(s) ≡ Kn,(s), with Kn,(s) → ∞ as

n → ∞. We estimate β(s)(z(s)) by minimizing the following weighted least squares criterion:

β̂(s)(z(s)) = argmin
β∈RK(s)

n∑
i=1

[Yi − B(s)(Xi,(s))
′β]2L(Zi,(s), z(s), λ(s)). (3.3)

Thus g(s)(x(s), z(s)) can be estimated by ĝ(s)(x(s), z(s)) = B(s)(x(s))
′β̂(s)(z(s)).

With the following specifications of L(Zi,(s), z(s), λ(s)) and B(s)(x(s)), one can write β̂(s)(z(s))

defined in Equation (3.3) as a linear function of Y . First, for the univariate kernel function

l(Zil,(s), zl,(s), λl,(s)), let l(Zil,(s), zl,(s), λl,(s)) equal λl,(s) if Zil,(s) ̸= zl,(s), and equal 1 otherwise.

Then the product kernel function L(Zi,(s), z(s), λ(s)) = Πrs
l=1l(Zil,(s), zl,(s), λl,(s)) = Πrs

l=1λ
1(Zil,(s) ̸=zl,(s))

l,(s) .

We have the following expression for L(Z(s), z(s), λ(s)):

L(Zi,(s), z(s), λ(s)) = Πrs
l=1l(Zil,(s), zl,(s), λl,(s))

= 1(Zi,(s) = z(s)) +
rs∑
l=1

λl,(s)1(Zil,(s) ̸= zl,(s))
rs∏
j ̸=l

1(Zij,(s) = zj,(s)) +O(||λ(s)||2)

= 1(Zi,(s) = z(s)) +
rs∑
l=1

λl,(s)I(l,(s))(Zil,(s), zl,(s)) +O(||λ(s)||2), (3.4)

where λ(s) = (λ1,(s), . . . , λrs,(s)) is the vector of bandwidths for each of the categorical predic-

tors, ||λ(s)||2 =
∑rs

l=1 λ
2
l,(s), 1(·) is the indicator function, and I(l,(s))(Zil,(s), zl,(s)) = 1(Zil,(s) ̸=

zl,(s))
∏rs

j ̸=l 1(Zij,(s) = zj,(s)).

Next, we specify the tensor-product polynomial splines B(s)(x(s)). Let Gl,(s) = G
(ml,(s)−2)

l,(s) be
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the space of polynomial splines of order ml,(s) and pre-select an integer Nl,(s) = Nn,l,(s). Divide

[0, 1] into (Nl,(s) + 1) subintervals Ijl,l,(s) = [tjl,l,(s), tjl+1,l,(s)], jl = 0, . . . , Nl,(s) − 1, INl,l,(s) =

[tNl,(s),l,(s), 1], where {tjl,l,(s)}
Nl,(s)

jl=1 is a sequence of equally spaced points, called interior knots,

given as

t−(ml,(s)−1),l,(s) = · · · = t0,l,(s) = 0 < t1,l,(s) < · · · < tNl,(s),l,(s) < 1 = tNl,(s)+1,l,(s) = · · · = tNl,(s)+ml,(s),l,(s)

in which tjl,l,(s) = jlhl,(s), jl = 0, 1, . . . , Nl,(s) + 1, hl,(s) = 1/(Nl,(s) + 1) is the distance between

neighboring knots. Let Kn,l,(s) = Nl,(s) + ml,(s), where Nl,(s) is the number of interior knots

and ml,(s) is the spline order, and let Bl,(s)(xl,(s)) = {Bjl,l,(s)(xl,(s)) : 1 − ml,(s) ≤ jl ≤ Nl,(s)}′

be a basis system of the space Gl,(s). We define the space of tensor-product polynomial splines

G(s) = ⊗qs
l=1Gl,(s). It is clear that G(s) is a linear space of dimension K(s) ≡ Kn,(s) = Πqs

l=1Kn,l,(s).

Then

B(s)(x(s)) =
[
{Bj1,...,jps (x(s))}

N1,(s),...,Nrs,(s)

j1=1−m1,(s),...,jps=1−mps

]
= B1,(s)(x1,(s))⊗ · · · ⊗Bps,(s)(xqs,(s))

is a basis system of the space G(s), where x(s) = (xl,(s))
qs
l=1.

Let Lz(s) = diag{L(Z1,(s), z(s), λ(s)), . . . , L(Zn,(s), z(s), λ(s))} be a diagonal matrix with L(Zi,(s), z(s), λ(s))

being the i-th diagonal entries for 1 ≤ i ≤ n, and let B(s) = [{B(s)(X1,(s)), . . . ,B(s)(Xn,(s))}′]n×K(s)
.

Then β̂(s)(z(s)) defined in Equation (3.3) can be written as a linear function of Y , i.e.,

β̂(s)(z(s)) = (B′
(s)Lz(s)B(s))

−1B′
(s)Lz(s)Y.

Furthermore, we can estimate µi,(s) by

µ̂i,(s) = B(s)(Xi,(s))
′β̂(s)(Zi,(s)) = B(s)(Xi,(s))

′(B′
(s)LZi,(s)

B(s))
−1B′

(s)LZi,(s)
Y.

We can rewrite this expression in matrix form as µ̂(s) = P(s)Y , where µ̂(s) = (µ̂1,(s), . . . , µ̂n,(s))
′
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and P(s) is a square matrix of dimension n with the i-th row vector being

B(s)(Xi,(s))
′(B′

(s)LZi,(s)
B(s))

−1B′
(s)LZi,(s)

. (3.5)

Let the weight vector w = (w1, . . . , wSn)
′ belong to the set W = {w ∈ [0, 1]Sn :

∑Sn

s=1ws =

1}, and let P (w) =
∑Sn

s=1wsP(s). The model averaging estimator of µ is given by

µ̂(w) =
Sn∑
s=1

wsµ̂(s) = P (w)Y.

3.2.1 Weight Choice Criterion and Asymptotic Optimality

Up to now, the weight vector in µ̂(w) is unspecified. Motivated by the Mallows criterion for

model averaging estimators [56], we propose a similar method for choosing the weight vector w.

Let Ω = E(ϵϵ′) = diag(σ2
1, . . . , σ

2
n). Define the predictive squared loss by

Ln(w) = n−1∥µ̂(w)− µ∥2,

and the conditional expected loss by

Rn(w) = E[Ln(w)|X̄, Z̄] = n−1∥P (w)µ− µ∥2 + n−1 tr[ΩP (w)′P (w)], (3.6)

where X̄ = (X̄1, . . . , X̄n)
′ and Z̄ = (Z̄1, . . . , Z̄n)

′.

Let the Mallows-type criterion function be

Cn(w) = n−1∥P (w)Y − Y ∥2 + 2n−1 tr[P (w)Ω]. (3.7)

It is easy to show that Rn(w) = E[Cn(w)|X̄, Z̄]− n−1 tr(Ω), which suggests that for the optimal

choice of w in the sense of minimizing Rn(w), we can choose w to minimize Cn(w) by noting the

fact that n−1 tr(Ω) does not depend on w.
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Supposing for the moment that Ω is known, the optimal choice of the weight vector is given by

w̃ = argminw∈W Cn(w), (3.8)

where Cn(w) is defined in Equation (3.7). Then the optimal model averaging estimator of µ is

µ̂(w̃) = P (w̃)Y .

In order to provide regularity conditions for the optimal choice of the weight vector, we need

to introduce some notation. Let ξn = infw∈W nRn(w), and let w0
s be an Sn × 1 vector in which

the sth element is one and others are zeros. Recall that qs is the dimension of the continuous

covariate Xi,(s). Let g(s)(x(s), z(s)) be ms times differentiable with respect to x(s), for every fixed

z(s) ∈ MZ,(s) (see [67]). Let αs = ms/qs. Denote δmax(A) as the largest singular value of the

matrix A. Next, we give the assumptions required for establishing the asymptotic optimality of w̃

defined in Equation (3.8).

Assumption 4.

1. For every s = 1, 2, . . . , Sn, ms ≥ qs.

2. For some integer N ≥ 1, nN/(1+2α)ξ−2N
n

∑Sn

s=1[nRn(w
0
s)]

N → 0 (as n → ∞) almost surely,

where α = min1≤s≤Sn αs.

Assumption 4-1 states the required smoothness of the true conditional expectation function

g(s)(x(s), z(s)) with respect to the continuous component x(s). Assumption 4-2 requires ξn → ∞,

implying that there is no finite approximating model whose bias is zero. It also constrains the

divergence rate of
∑Sn

s=1[nRn(w
0
s)]

N → ∞. We emphasize that the observed predictors should

be a proper sub-vector of the true predictors. Therefore, we necessarily exclude the possibility of

having the true model in our candidate models. This type of assumption is prevalent in the model

averaging literature.

Assumption 5. For every s = 1, 2, . . . , Sn,

66



1. E[B(s)(Xi,(s))B(s)(Xi,(s))
′] = IK(s)

.

2. There exists a sequence of constants ζ0(K(s)) satisfying supx(s)∈MX,(s)
∥B(s)(x(s))∥ ≤ ζ0(K(s))

such that ζ0(K(s))
2K(s)/n → 0 as n → ∞.

Assumption 5 is commonplace in the spline regression literature (e.g., [67]).

Assumption 6.

1. For some fixed integer 1 ≤ N < ∞, max1≤i≤n E(ϵ4Ni |X̄i, Z̄i) < ∞ almost surely.

2. min1≤i≤n σ
2
i ≥ σ̄2 > 0 almost surely.

Assumption 6-1 is typical in the literature on model averaging estimation (see, e.g., [56], [58],

[57], and [68] by way of illustration). It imposes a finite moment bound and is satisfied by Gaussian

noise. Assumption 6-2 requires that the conditional variance be bounded below by a positive

constant, which is commonly used in the Mallows type model averaging literature [58, 69] as well

as models with heteroskedasticity [70].

Assumption 7. For every s = 1, 2, . . . , Sn,

1. K(s) = O(n1/(1+2αs)).

2.
∑rs

l=1 λl,(s) = O((n−1K(s))
1/2).

Assumption 7-1 is the optimal rate of K(s) as shown in [67]. Assumption 7-2 gives the optimal

order of the categorical smoothing parameter λ(s) in the tensor-product spline regression; see [62].

Theorem 1. Under Assumptions 4-7, letting w̃ be defined as in Equation (3.8) we have

Ln(w̃)

infw∈W Ln(w)
→ 1

in probability as n → ∞.
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Theorem 1 shows that the practitioner may do as well as if they knew the true µi, i.e., the weight

vector w̃ is asymptotically optimal in the sense that the average loss with w̃ is asymptotically equal

to that with the infeasible optimal weight vector.

Theorem 1 considers the case where the error variance Ω is known. In practice, however, Ω

is often unknown, and we now turn our attention to this important case. We will consider two

different ways of estimating Ω. The first estimator of Ω depends on w = (w1, . . . , wSn), and

the second estimator only depends on w∗, where w∗ is the weight for the largest model, i.e., the

model with the largest qs + rs. To render the Mallows-type criterion given in Equation (3.7)

computationally feasible, we estimate the unknown Ω based on residuals from model averaging

estimation by

Ω̂(w) = diag(ϵ̂21(w), . . . , ϵ̂
2
n(w)),

where ϵ̂i(w) = yi − µ̂i(w).

Replacing Ω with Ω̂(w) in Cn(w), we obtain the feasible criterion

Ĉn(w) = n−1∥P (w)Y − Y ∥2 + 2n−1 tr[P (w)Ω̂(w)].

Correspondingly, the new optimal weights are defined as

ŵ = argminw∈W Ĉn(w). (3.9)

We now show that the weight ŵ is still asymptotically optimal. Let ρ(s)ii be the ith diagonal

element of P(s). Then

ρ
(s)
ii = B(Xi,(s))

′

(
n∑

m=1

B(Xm,(s))B(Xm,(s))
′L(Zm,(s), Zi,(s), λ(s))

)−1

B(Xi,(s)).

The additional assumption required for establishing the asymptotic optimality of ŵ is the fol-

lowing:
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Assumption 8. There exists a constant c such that |ρ(s)ii | ≤ cn−1| tr(P(s))|, ∀s = 1, . . . , Sn, ∀i =

1, . . . , n.

This condition is commonly used to ensure the asymptotic optimality of cross-validation (e.g.,

[70] and [58]).

Theorem 2. Under Assumptions 4-8, letting ŵ be defined as in Equation (3.9), then we have

Ln(ŵ)

infw∈W Ln(w)
→ 1 (3.10)

in probability as n → ∞.

An alternative strategy for estimating Ω is based on the largest model that includes all predictors

(e.g., see the estimation of the variance of homoscedastic error terms in [56]). We estimate the

unknown Ω based on residuals from the largest model indexed by s∗, therefore

Ω̂∗ = diag(ϵ̂2s∗,1, . . . , ϵ̂
2
s∗,n),

where (ϵ̂2s∗,1, . . . , ϵ̂
2
s∗,n)

′ = Y − µ̂(s∗) = Y − P(s∗)Y , and s∗ = argmax1≤s≤Sn
(qs + rs). The new

Mallows criterion function becomes

Ĉ∗
n(w) = n−1∥P (w)Y − Y ∥2 + 2n−1 tr[P (w)Ω̂∗].

The new optimal weights are defined as

ŵ∗ = argminw∈W Ĉ∗
n(w). (3.11)

Assumption 9. ∥µ∥2 = O(n).

Assumption 9 has been used in [57] and [59]. [57] demonstrate that replacing Ω̂∗ with Ω̂(s)

estimated from another model s will not alter the result of Theorem 3.
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Theorem 3. Under Assumptions 4-9, letting ŵ∗ be defined in Equation (3.11), then

Ln(ŵ
∗)

infw∈W Ln(w)
→ 1 (3.12)

in probability as n → ∞.

Proofs theorems 1-3 can be found in Appendix B.1.

3.3 Monte Carlo Assessment of Finite-Sample Performance

We consider two Monte Carlo simulation experiments designed to assess the finite-sample

performance of the proposed methods relative to a representative set of competing methods that

include a set of popular model selection techniques along with that based on the largest model (i.e.,

the model with the largest number of predictors).

3.3.1 Case (I)

Case (I) is a setting in which the candidate models are under-specified (the case covered by our

theory). For Case (I), data is simulated from the following DGP where x1, x2, and x4 are contin-

uously distributed as U [−1, 1] while x3 has discrete support generated as a binomially distributed

random variate drawn from three independent Bernoulli trials with probability of success π = 1/2.

The DGP is given by y = x1+x2+x1x2+x2
1+x2

2+x3+x1x3+x2x3+x4+x4x1+x4x2+ϵ, where the

variance of ϵ is set so that the signal/noise ratio is such that the expected R2 for a correctly spec-

ified model would be (0.95, 0.80, 0.50, 0.20) which corresponds to σ = (0.25, 0.50, 1.00, 2.00)

times the standard deviation of the systematic component of the DGP. Results are summarized in

Table 3.1 (model average weights are summarized in Table B.1 in Appendix B.2).

For Case (I) we estimate the following six models: (a) yi = g1(x1i)+ϵi, (b) yi = g2(x2i)+ϵi, (c)

yi = g4(x1i, x2i)+ϵi, (d) yi = g5(x1i, x3i)+ϵi, (e) yi = g6(x2i, x3i)+ϵi, (f) yi = g(x1i, x2i, x3i)+ϵi

(note that the model yi = g3(x3i) + ϵi is not included since x3 is discrete and we need at least one

continuous predictor in the kernel-weighted spline specification). For each of these six models,

we use cross-validation to select the degree of the tensor spline and smoothing parameter for the
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discrete predictor, when present, then estimate the model by nonparametric series methods using

kernel-weighted B-splines as outlined above. For the proposed approach we average these six

estimators by assigning weights w1, w2, w3, w4, w5 and w6 to these estimators using the Mallows

criterion outlined above. In particular, we choose weights to minimize the objective function in

Equation (3.11) in which the unknown Ω is estimated based on residuals from the largest model.

We consider five estimators: (1) Mallows model averaging (‘MMA’), (2) AIC model selection

(‘AIC’), (3) BIC model selection (‘BIC’), (4) Mallows’ Cp model selection, and (5) the largest

model (‘L’). To evaluate the estimators, we compute the risk (expected squared error). We do this

by computing means across 1, 000 simulation draws.

The AIC and BIC criterion are given by log(σ̂2
s)+2n−1 trace(P(s)) and log(σ̂2

s)+n−1 trace(P(s)) log(n),

respectively. The Cp criterion is given by σ̂2
s(n+2 trace(P(s))). Here s = 1, 2, ..., 6, P(s) is defined

via µ̂(s) = P(s)Y , σ̂2
s = n−1

∑n
i=1 ϵ̂

2
i,s, and the ϵ̂i,s are the residuals from the sth model.

Table 3.1: Relative MSE, Case (I); Numbers > 1 Indicate Inferior MSE Performance Relative to
the Proposed Model Averaging Approach.

n σ MMA AIC BIC Cp L
50 0.25 1.00 1.20 1.37 1.20 1.25

0.50 1.00 1.22 1.35 1.22 1.23
1.00 1.00 1.27 1.31 1.34 1.22
2.00 1.00 1.38 1.08 1.48 1.27

100 0.25 1.00 1.14 1.30 1.13 1.14
0.50 1.00 1.17 1.44 1.17 1.18
1.00 1.00 1.23 1.38 1.28 1.20
2.00 1.00 1.34 1.22 1.46 1.28

200 0.25 1.00 1.04 1.11 1.04 1.04
0.50 1.00 1.07 1.33 1.07 1.07
1.00 1.00 1.17 1.53 1.17 1.16
2.00 1.00 1.28 1.32 1.39 1.23

400 0.25 1.00 1.01 1.02 1.01 1.01
0.50 1.00 1.03 1.09 1.03 1.03
1.00 1.00 1.08 1.54 1.08 1.08
2.00 1.00 1.22 1.46 1.25 1.21
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3.3.2 Case (II)

Case (II) is a setting in which the candidate models contain the true model which also coincides

with the largest model, a case not covered by our theory but one that may be of interest to the reader.

The DGP is given by y = x1+x2+x1x2+x2
1+x2

2+x3+x1x3+x2x3+ϵ which is identical to Case

(I) except that x4 no longer appears, and the residual variance is set per Case (I). We use the same

set of models as per Case (I), and for each of the six models, we use the delete-one cross-validation

method to select the spline degree and kernel bandwidth, when present, then we average over these

estimates and select weights to minimize the Mallows objective function as per Case (I). Results

are summarized in Table 3.2 (model average weights are summarized in Table B.2 in Appendix

B.2).

Table 3.2: Relative MSE, Case (II); Numbers > 1 Indicate Inferior MSE Performance Relative to
the Proposed Model Averaging Approach.

n σ MMA AIC BIC Cp L
50 0.25 1.00 1.29 1.41 1.28 1.32

0.50 1.00 1.26 1.35 1.28 1.26
1.00 1.00 1.30 1.34 1.38 1.24
2.00 1.00 1.41 1.11 1.53 1.28

100 0.25 1.00 1.23 1.32 1.23 1.24
0.50 1.00 1.24 1.56 1.24 1.24
1.00 1.00 1.29 1.45 1.35 1.26
2.00 1.00 1.36 1.26 1.51 1.30

200 0.25 1.00 1.10 1.15 1.10 1.11
0.50 1.00 1.16 1.40 1.16 1.16
1.00 1.00 1.24 1.81 1.25 1.23
2.00 1.00 1.35 1.41 1.48 1.30

400 0.25 1.00 1.03 1.08 1.03 1.03
0.50 1.00 1.08 1.16 1.08 1.08
1.00 1.00 1.16 1.95 1.16 1.16
2.00 1.00 1.28 1.61 1.32 1.26
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3.3.3 Discussion

From Table 3.1 we observe that our proposed model averaging approach has the smallest esti-

mation MSE for all cases considered. In general, the gain of our model averaging method is more

substantial for smaller sample sizes with smaller signal/noise ratios.

Furthermore, Table 3.2 shows that, even when the true model is included in the set of candidate

models (an unlikely event not covered by our theory), the use of model averaging can outperform

model selection in small sample settings as Case (II) reveals.

3.4 Empirical Illustration

We consider panel data for two different groups of countries, the OECD and the “rest of the

world” consisting of the lesser developed countries. We treat OECD status as categorical and use

continuous predictors human capital and initial GDP [71]. We shuffle the data into two indepen-

dent samples of size n1 = 600 and n2 = 16, fit the models on the n1 training observations then

evaluate the predicted square error (PSE) on the independent evaluation observations. We repeat

this exercise 1,000 times then compute the average PSE for the models selected by the AIC, BIC,

and Cp criteria, as well as the estimate from the largest model, relative to that for the Mallows

procedure proposed herein, with numbers > 1 indicating that the proposed approach provides pre-

dictions that are more faithful to the underlying DGP than its model selection-based peers. The

relative PSE for the AIC, BIC, and Cp criterion are 1.04, 1.06, and 1.04, respectively, while that for

the largest model L is 1.04. We use the same set of candidate models as per Case (I) and Case (II),

and the mean model average weights for the six models are w̄1 = 0.001378478, w̄2 = 0.05537101,

w̄3 = 0.2105344, w̄4 = 0.2822475, w̄5 = 0.07193286, and w̄6 = 0.3785357.

3.5 Summary

We propose a novel model averaging approach where the candidate models are based on a

recently proposed kernel-weighted spline regression method that admits both continuous and cate-

gorical predictors [62]. We provide theoretical underpinnings for optimal model average weights in

this setting, assess finite-sample performance, and present an empirical illustration. The proposed
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model average approach is capable of outperforming a range of popular model selection strategies,

and may therefore be of interest to practitioners who wish to confront model uncertainty in applied

settings. An R package that implements the proposed approach is available for practitioners [65].
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4. MULTIVARIATE DENSITY FORECAST COMBINATION

4.1 Introduction

Density forecasts have attracted more and more attention among academic researchers as well

as professional forecasters. Its increasing popularity is attributed to the capability of depicting the

uncertainty around the point forecasts. Compared to univariate density forecasts, the multivariate

density forecasts allow us to study the cross-variable interactions, such as time-varying conditional

correlations between variables of interest. While the majority of the literature in multivariate den-

sity forecasts focuses on evaluation and testing ([72],[73]), less attention is paid to the attempts at

improving the forecast performance. Forecast combination has been demonstrated as a valid ap-

proach to offer people a more accurate description of the true underlying uncertainty. The density

forecast combination is pioneered by [74]. [75] establishes statistical asymptotic optimality for the

optimal estimators of the combination weight. When it turns to the multivariate density forecast

combination, little work is done so far. [76] consider the combination of multivariate density fore-

casts using the predictive likelihood as the weighting scheme. To the best of my knowledge, there

is no existing result concerning the asymptotic property of the estimated combination weight in

the context of multidimensional density forecasts.

This article aims to fill this blank space in the literature. I develop a density forecast combi-

nation scheme for the multivariate response. I prove the consistency of the estimated combination

weight, and use simulations to demonstrate the validity of the econometric theory. Specifically, I

decompose the multivariate distribution of the outcome variable into the product of the marginal

distribution and conditional distributions, which are all univariate distributions. Then I follow [75]

to construct the objective function with respect to the combination weight for each univariate distri-

bution. Finally, in the spirit of [77], I define the objective function for multivariate density forecast

combination to be a transformation of the univariate objective functions, for example, over the

maximum function. By providing a forecast combination scheme, I anticipate that researchers and
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policymakers may benefit from the combined multivariate density forecasts, especially from gain-

ing information on contemporary correlation between variables, which is conveyed particularly

from the multivariate structure.

The literature of multivariate density forecasts is still at its infancy. [72] discuss the evalua-

tion and calibration of the multivariate density forecasts. They propose to analyze the histograms

and correlograms of the marginal and conditional Probability Integral Transformation (PIT), to

assess the appropriateness of a particular joint density forecast. From their discussion about the

correlograms, we see that the multivariate density forecast indeed carries extra information about

the contemporary correlations between the variables of interest. [77] provide formal tests for the

multivariate distributions in GARCH models, where the null is joint normal or joint student-t.

[73] propose a modified approach to evaluate the multidimensional density forecast, which has

better power under the contemporary links between variables of interests. For the density forecast

combination, our closest predecessor is [75] who proposes the weighting scheme of univariate den-

sity forecast combination leveraging the Probability Integral Transformation (PIT) and Kullback-

Leibler Information Criterion (KLIC), and shows the statistical properties of the optimally chosen

weights.

The rest of this essay is organized as follows. Section 4.2 sets up the underlying econometric

structure, the estimation scheme of density forecasts, and the definition of a multivariate density

forecast combination. Section 4.3 and 4.4 illustrates the PIT and KLIC based combination objec-

tive function, respectively. Section 4.5 defines the optimal choice of the combination weight and

the asymptotic optimality. Section 4.6 presents the Monte-Carlo simulation. Section 4.7 provides

concluding remarks and discussions.

4.2 Setup

Throughout I use the uppercase letters to denote the random variables (vectors), and the low-

ercase counterparts for their realizations. We observe Zt = (Y ′
t , X

′
t)

′, t = 1, ..., T + h, where

Yt = (Yt1, ..., Ytk)
′ is a k-dimensional vector of variables of interest, and Xt = (Xt1, ..., Xtd)

′ is

a d-dimensional vector of predictors. I consider the h-step ahead density forecast. Let ϕ∗
t+h(y|It)

76



be the true conditional joint pdf of Yt+h, given It which is the information set at time t, where

y = (y1, ..., yk)
′.

Consider a rolling window estimation scheme with window size R, so that the density forecast

for time t + h is based on the truncated information set It
t−R+1, which contains information from

time t − R + 1 to t. For a fixed forecast origin f , the time index t runs from t = f − G − h + 1

to t = f − h, where G is the total number of rolling windows. The estimation procedure is

repeated for all forecast origins f from f = G + h + R − 1 to f = T . Therefore, we obtain

P = T −G− h−R out-of-sample density forecasts with the corresponding realizations, in order

to assess the performance of the forecast combinations. For ease of notations, below we consider

a fixed forecast origin f , and let the time index run from t = 1, ..., G.

We have M models to forecast the h-step ahead predictive joint pdf of Yt+h, each of them

being ϕm
t+h(y|It

t−R+1),m = 1, ...,M . The corresponding CDF is denoted as Φm
t+h(y|It

t−R+1). We

combine the M predictive densities using the convex combination, to have the combined predictive

pdf, denoted by

ϕC
t+h(y|It

t−R+1) =
M∑

m=1

wmϕ
m
t+h(y|It

t−R+1), (4.1)

where w ∈ W = {w ∈ [0, 1]M :
∑M

m=1 wm = 1}. The combined predictive CDF is then given by

ΦC
t+h(y|It

t−R+1) =

∫ y1

−∞
· · ·
∫ yk

−∞

M∑
m=1

wmϕ
m
t+h(y|It

t−R+1)

=
M∑

m=1

wmΦ
m
t+h(y|It

t−R+1). (4.2)

4.3 Probability Integral Transformation and Rosenblatt’s Transformation

For the sake of brevity, in this section we do not specify the information set It
t−R+1 in the pre-

dictive density and the corresponding CDF. We use [78]’s transformation to extend the univariate

PIT to a multivariate environment. To convey the idea in a clearer way, in this section, we discuss
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the bivariate case, i.e. k = 2. For a generic bivariate random vector (S1, S2) with pdf ϕ(s1, s2) and

CDF Φ(s1, s2), denote the marginal pdf and CDF of the first argument as ϕ1(s1) and Φ1(s1). De-

note the conditional pdf of S2 given S1 = s1 to be ϕ2|1(s2|s1), and the corresponding conditional

CDF to be Φ2|1(s2|s1). Then the marginal pdf and CDF of the combined predictive density are

ϕC
t+h,1(s1) =

∫ ∞

−∞
ϕC
t+h(s1, v)dv =

∫ ∞

−∞

M∑
m=1

wmϕ
m
t+h(s1, v)dv

=
M∑

m=1

wm

∫ ∞

−∞
ϕm
t+h(s1, v)dv =

M∑
m=1

wmϕ
m
t+h,1(s1). (4.3)

ΦC
t+h,1(s1) =

∫ s1

−∞
ϕC
t+h,1(v)dv =

M∑
m=1

wmΦ
m
t+h,1(s1). (4.4)

And the conditional pdf and CDF could be expressed as

ϕC
t+h,2|1(s2|s1) =

ϕC
t+h(s1, s2)

ϕC
t+h,1(s1)

=

∑M
m=1wmϕ

m
t+h(s1, s2)dv∑M

m=1 wmϕm
t+h,1(s1)

. (4.5)

ΦC
t+h,2|1(s2|s1) =

∫ s2

−∞
ϕC
t+h,2|1(v|s1)dv =

∫ s2

−∞

ϕC
t+h(s1, v)

ϕC
t+h,1(s1)

dv

=

∫ s2
−∞ ϕC

t+h(s1, v)dv

ϕC
t+h,1(s1)

=

∫ s2
−∞
∑M

m=1wmϕ
m
t+h(s1, v)dv∑M

m=1wmϕm
t+h,1(s1)

=

∑M
m=1wm

∫ s2
−∞ ϕm

t+h(s1, v)dv∑M
m=1wmϕm

t+h,1(s1)
. (4.6)

Define the Probability Integral Transformation (PIT) of the marginal and conditional distribu-

tion of the predictive density:

Ut,1 = ΦC
t+h,1(Yt+h,1), Ut,2 = ΦC

t+h,2|1(Yt+h,2|Yt+h,1). (4.7)
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If ϕC
t+h(y) coincides with the true conditional density ϕ∗

t+h(y|It), then Ut,1, Ut,2 are inde-

pendent U [0, 1] random variables (see [77]). For a fixed h, Let Ût,1 = ΦC
t+h,1(yt+h,1), Ût,2 =

ΦC
t+h,2|1(yt+h,2|yt+h,1), that is, to plug in the realized values of yt+h. Define

Vt,i(r, w) = 1(Ûti ≤ r)− r, i = 1, 2 (4.8)

for a given quantile r ∈ [0, 1], where 1(·) is the indicator function. Let J0,i = Pr(Uti ≤ r) − r,

which is supposed to be 0 under the correct specification of ϕC
t+h(·). Define the sample counterpart

of J0,i to be

JG,i(r, w) = G−1

G∑
t=1

Vti(r, w), i = 1, 2, (4.9)

which measures the distance between the empirical CDF of the PIT to the CDF of the uniform

distribution, at a given quantile r. The desired optimal combined density forecast should make this

discrepancy as small as possible. Next we introduce three commonly used statistics to represent

this distance uniformly over r. Let ρ ⊂ [0, 1] denote a finite union of neither empty nor singleton,

closed intervals, which is selected by the user.

In the spirit of Kolmogorov-Smirnov statistic, we construct three objective functions that allow

us to select the optimal weight. Similar statistics also appear in [77], where they are used as

test statistics for the test of the multivariate density function in GARCH models. The proposed

Kolmogorov-Smirnov type objective functions consist of three variants:

K
(1)
G (w) = max{ΨG,1(w),ΨG,2(w)},

K
(2)
G (w) = ΨG,1(w) + ΨG,2(w), (4.10)

K
(3)
G (w) = sup

r∈ρ
(|JG,1(r, w) + JG,2(r, w)|),

where ΨG,i(w) = supri∈ρ |JG,i(ri, w)|. Similarly, the Cramer-von Mises type objective functions
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are

C
(1)
G (w) = max{ΘG,1(w),ΘG,2(w)},

C
(2)
G (w) = ΘG,1(w) + ΘG,2(w), (4.11)

C
(3)
G (w) =

∫
ρ

(JG,1(r, w) + JG,2(r, w))
2dr.

where ΘG,i(w) =
∫
ρ
J2
G,i(r, w)dr. Finally, the Anderson-Darling type objective functions are

A
(1)
G (w) = max{ΛG,1(w),ΛG,2(w)},

A
(2)
G (w) = ΛG,1(w) + ΛG,2(w), (4.12)

A
(3)
G (w) =

∫
ρ

[
(JG,1(r, w) + JG,2(r, w))

2

r(1− r)

]
dr.

where ΛG,i(w) =
∫
ρ

J2
G,i(r,w)

r(1−r)
dr.

4.4 Kullback-Leibler Information Criterion

Another way to measure the discrepancy between the combined predictive density and the true

one is to leverage the Kullback-Leibler Information Criterion (KLIC). Let ϱ1 denote a finite union

of closed, non-empty, non-singleton intervals on the support of true CDF Φ∗
t+h,1, and ϱ2 for Φ∗

t+h,2|1

similarly. The KLIC between the marginal CDF is

KLIC(Φ∗
t+h,1(·),ΦC

t+h,1(·)) = Eϕ∗ [log ϕ∗
t+h,1(yt+h,1)1(yt+h,1 ∈ ϱ1)]

−Eϕ∗ [log ϕC
t+h,1(yt+h,1)1(yt+h,1 ∈ ϱ1)], (4.13)

and the KILC between the conditional CDF is

KLIC(Φ∗(·|yt+h,1),Φ
C
t+h,2|1(·|yt+h,1)) = Eϕ∗ [log ϕ∗(yt+h,2|yt+h,1)1(yt+h,2 ∈ ϱ2)]

−Eϕ∗ [log ϕC
t+h,1(yt+h,2|yt+h,1)1(yt+h,2 ∈ ϱ2)]. (4.14)
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Following [74], we construct the sample counterpart of the KLIC (leaving out the term that is

irrelevant to w)

KLICG,1(w) =
1

G

G∑
t=1

− log ϕC
t+h,1(yt+h,1)1(yt+h,1 ∈ ϱ1),

KLICG,2(w) =
1

G

G∑
t=1

− log ϕC
t+h,2|1(yt+h,2|yt+h,1)1(yt+h,2 ∈ ϱ2). (4.15)

Now we are able to define the KLIC-based objective function

H
(1)
G (w) = max{KLICG,1(w),KLICG,2(w)},

H
(2)
G (w) = KLICG,1(w) + KLICG,2(w). (4.16)

On the other hand, it is natural to directly use the multivariate density forecast to construct the

KLIC. Let ϱ3 be a finite union of closed, non-empty, non-singleton intervals on the support of true

CDF Φ∗
t+h. Define

H
(3)
G (w) = KLICG,3(w) =

1

G

G∑
t=1

− log ϕC
t+h(yt+h,1, yt+h,2)1(yt+h ∈ ϱ3) (4.17)

4.5 Optimal Weight Estimation

In this section we define our estimator for the optimal weight in the multivariate density forecast

combination, and establish its asymptotic optimality. The proofs are in Appendix C.1.

We select the combination weights by minimizing the distance between the combined density

and the true density.

ŵ = argmin
w∈W

FG(w), (4.18)

where FG(w) is either K(l)
G (w), C

(l)
G (w), A

(l)
G (w), or H(l)

G (w) with l = 1, 2, 3.
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For each type of the PIT-based objective functions K
(l)
G (w).C

(l)
G (w) and A

(l)
G (w) with l =

1, 2, 3, I define their population counterparts to be K
(l)
0 (w), C

(l)
0 (w) and A

(l)
0 (w), respectively,

where I replace JG,i(r, w) in the objective functions with J0,i(r, w).

I make parallel assumptions in [75]. Specifically, the continuity condition (Assumption 3 of

[75]) is modified with respect to the marginal and conditional CDF’s, and the identification condi-

tion (Assumption 5 of [75]) is in with respect to K
(l)
0 (w), C

(l)
0 (w) and A

(l)
0 (w).

Assumption 10. 1. (Dependence) {Zt}} is ϕ-mixing of size −k/(2k − 1), k ≥ 1 or α-mixing

of size −k/(k − 1), k > 1.

2. (Contunuity) The combined marginal and conditional CDF are both continuous, i.e.

Pr
(
ΦC

t+h,1(yt+h,1) = r
)
= 0, Pr

(
ΦC

t+h,2|1(yt+h,2|yt+h,1) = r
)
= 0, (4.19)

for all (w, r) ∈ W × ρ and for all t.

3. (Estimation Scheme) R < ∞ as G, T → ∞, 1 ≤ h < ∞ and fixed. The number of models

M is finite.

4. (Identification) There exists a unique w∗ ∈ W such that w∗ minimizes K(l)
0 (w), C

(l)
0 (w), or

A
(l)
0 (w), l = 1, 2, 3, depending on the user-chosen objective function.

5. (Anderson-Darling Assumption) There exists 0 < δ < 0.5 such that for i = 1, 2,

sup
w∈W

∣∣∣∣ ∫ δ

0

J2
G,i(r, w)− J2

0,i(r, w)

r(1− r)
dr

∣∣∣∣ a.s.−→ 0, sup
w∈W

∣∣∣∣ ∫ 1

1−δ

J2
G,i(r, w)− J2

0,i(r, w)

r(1− r)
dr

∣∣∣∣ a.s.−→ 0.

(4.20)

In addition, since the PIT-based estimation scheme involves conditional distributions, we re-

quire the conditional pdf to be well defined.

Assumption 11. Pr
[
ϕC
t+h,1(yt+h,1) > 0

]
= 1 for all w ∈ W .

We have the following result of the PIT-based estimators of the optimal weight.
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Theorem 4. Under Assumptions 10 and 11, we have ŵ a.s.−→ w∗, where w∗ is the unique minimizer

of K(l)
0 , C

(l)
0 , or A(l)

0 , l = 1, 2, 3.

For the KLIC-based objective function, define

KLIC0,1(w) =
1

G

G∑
t=1

−Eϕ∗ [log ϕC
t+h,1(yt+h,1)1(yt+h,1 ∈ ρ1)],

KLIC0,2(w) =
1

G

G∑
t=1

−Eϕ∗ [log ϕC
t+h,2|1(yt+h,2|yt+h,1)1(yt+h,2 ∈ ρ2)], (4.21)

KLIC0,3(w) =
1

G

G∑
t=1

−Eϕ∗ [log ϕC
t+h(yt+h,1, yt+h,2)1(yt+h ∈ ϱ3)].

And for l = 1, 2, 3, let H(l)
0 (w) be the population counterparts of H(l)

G with KLICG,i(w) replaced

by KLIC0,i(w).

I make parallel assumptions as in [75]. In particular, I require that ϕ∗
t+h,1 and ϕ∗

t+h,2|1 satisfying

Assumption 7 in [75]. In addition, ΦC
t+h,1 and ΦC

t+h,2|1 should satisfy Assumption 8-11 in [75].

Finally, the identification condition (Assumption 12 in [75]) is preserved.

Assumption 12. 1. (Existence) Eϕ∗ [log ϕ∗
t+h,1(yt+h,1)1(yt+h,1 ∈ ϱ1)],

Eϕ∗ [log ϕ∗
t+h,2|1(yt+h,2|yt+h,1)1(yt+h,2 ∈ ϱ2)], and Eϕ∗ [log ϕ∗

t+h(yt+h)1(yt+h ∈ ϱ3)] exist for

all t.

2. (Continuity) log ϕC
t+h,1(yt+h,1), log ϕC

t+h,2|1(yt+h,2|yt+h,1), and log ϕ∗
t+h(yt+h) are continuous

over ϱ1, ϱ2, and ϱ3, respectively.

3. (Dominance) For all w ∈ W and all t, we have | log ϕC
t+h,1(yt+h,1)| ≤ b1(yt+h,1),

| log ϕC
t+h,2|1(yt+h,2|yt+h,1)| ≤ b2(yt+h,2), and | log ϕC

t+h(yt+h)| ≤ b3(yt+h), over ϱ1, ϱ2, and

ϱ3, respectively, where bj, j = 1, 2, 3 are integrable with respective to its argument for all t.

4. (Moment Condition) E| log ϕC
t+h,1(yt+h,1)|k+τ < ∆ < ∞ for some τ > 0 for all t and for all

w ∈ W . So are ϕC
t+h,2|1(yt+h,2|yt+h,1) and ϕC

t+h(yt+h).
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5. (Identification) There exists a unique w∗ ∈ W minimizing H
(j)
0 (w), j = 1, 2, 3, depending

on the user-chosen objective function.

Then we have the following result for the KLIC-based estimator of the optimal weight.

Theorem 5. Under Assumptions 11 and 12, we have ŵ a.s.−→ w∗, where w∗ is the unique minimizer

of H(j)
0 , j = 1, 2, 3.

4.6 Monte-Carlo Simulation

I conduct simulation experiments to verify the validity of our estimators and the asymptotic

theory. I consider bivariate density forecast (Y = (Y1, Y2)) and one step ahead prediction (h = 1).

All simulations are repeated 2000 times. Sample sizes are G = {80, 500, 2000}. Without loss

of generality, we use the true parameters in the data generating process to estimate the weights.

For the true data generating process, I use VAR(1) models with bivariate normal innovations.

I combine the true candidate models, so that according to the consistency result, the estimated

weight ŵ should converge to the true w∗. The (true) candidate models are given by

Zt+1 = c(j) + A(j)Zt + ϵ
(j)
t+1, j = 1, 2, 3, (4.22)

where Zt = [Zt1, Zt2]
′, and ϵ

(j)
t is iid bivariate normally distributed, i.e. ϵ

(j)
t ∼ N (0,Σ(j)), and

j ∈ {1, 2, 3} stands for model M1,M2 and M3, respectively. The true model is a weighted mixture

of M1, M2 and M3, with weight w = (w1, w2, w3). Then the true data generating process is

Zt+1 = c+ AZt + ϵt+1, (4.23)

where c = w1c
(1) + w2c

(2) + w3c
(3), A = w1A

(1) + w2A
(2) + w3A

(3), and ϵt ∼ N (0,Σ), with

Σ = w2
1Σ

(1) + w2
2Σ

(2) + w2
3Σ

(3).

M3 is an irrelevant model included in the estimation to see how our estimation procedure can

eliminate the redundant model. The true weight is set to be w∗ = (0.4, 0.6, 0). In addition, I let

the position parameters (c(j) and A(j)) of the candidate models are the same, so that the mixture
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density is a unimodal one. The parameter specification is as followed:

c(1) = c(2) =

1
1

 , A(1) = A(2) =

0.5 0.3

0.6 0.2

 , Σ(1) =

1 2

2 9

 , Σ(2) =

4 1

1 1

 .

The results are shown in Figure 4.1-4.4 and Table 4.1-4.4. We see that all the proposed esti-

mators of the optimal weight ŵ show convergence to the true weight w∗, as the sample size grows.

Within each type of the PIT-based estimators (KS, CvM, and AD), the second variation (KS2,

CvM2, and AD2) outperforms the other two variations. This advantage appears almost uniformly

over different sample sizes, different statistics (bias, variance, MSE), and different components

of w (w1, w2 and w3). The first variation (KS1, CvM1, and AD1) and the third variation (KS3,

CvM3, and AD3) make little differences. In a very tiny scale, the first variation is better than the

third one in CvM and AD type estimators, and the third one beats the first one in KS type estima-

tors. We therefore compare the second variation across the PIT-based estimators. We see that AD

has the best performance, and KS is the worst. This finding corresponds to [75]. For the KLIC type

estimator, the first (KLIC1) and the third variations (KLIC3) dominate the second one (KLIC2).

Computationally, the KLIC type estimation is much faster than the PIT-based estimations, and the

convergence rate (MSE) seems also better than its PIT-based competitors. Moreover, the KLIC

estimator performs extremely well in eliminating the irrelevant model M3, even in small sample

size.
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Figure 4.1: KS Type Estimator of w. True w∗ = (0.4, 0.6, 0)

Table 4.1: KS Type Estimators of w

Sample size Statistic
KS1 KS2 KS3

w1 w2 w3 w1 w2 w3 w1 w2 w3

G=80

Bias -0.0776 -0.0440 0.1217 -0.0625 -0.0529 0.1154 -0.1734 0.0686 0.1048

Variance 0.0081 0.0104 0.0004 0.0092 0.0121 0.0017 0.0042 0.0062 0.0002

MSE 0.0141 0.0124 0.0152 0.0131 0.0149 0.0150 0.0342 0.0109 0.0112

G=500

Bias -0.0502 -0.0688 0.1190 -0.0341 -0.0551 0.0892 -0.0659 -0.0506 0.1165

Variance 0.0009 0.0012 0.0005 0.0019 0.0030 0.0030 0.0036 0.0045 0.0012

MSE 0.0034 0.0059 0.0147 0.0031 0.0060 0.0110 0.0080 0.0071 0.0148

G=2000

Bias -0.0329 -0.0488 0.0817 -0.0065 -0.0153 0.0218 -0.0166 -0.0293 0.0459

Variance 0.0006 0.0010 0.0024 0.0004 0.0009 0.0013 0.0015 0.0018 0.0025

MSE 0.0017 0.0033 0.0090 0.0005 0.0011 0.0018 0.0018 0.0026 0.0046
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Figure 4.2: CvM Type Estimator of w. True w∗ = (0.4, 0.6, 0)

Table 4.2: CvM Type Estimators of w

Sample size Statistic
CvM1 CvM2 CvM3

w1 w2 w3 w1 w2 w3 w1 w2 w3

G=80

Bias -0.0177 -0.0429 0.0606 0.0055 -0.0314 0.0259 0.0114 -0.0391 0.0277

Variance 0.0152 0.0144 0.0029 0.0097 0.0100 0.0021 0.0104 0.0110 0.0024

MSE 0.0155 0.0162 0.0065 0.0097 0.0110 0.0028 0.0105 0.0125 0.0031

G=500

Bias -0.0138 -0.0186 0.0324 -0.0034 -0.0076 0.0110 -0.0023 -0.0088 0.0111

Variance 0.0012 0.0018 0.0011 0.0004 0.0005 0.0003 0.0004 0.0006 0.0003

MSE 0.0014 0.0021 0.0022 0.0004 0.0006 0.0004 0.0005 0.0006 0.0004

G=2000

Bias -0.0045 -0.0093 0.0138 -0.0015 -0.0040 0.0054 -0.0011 -0.0044 0.0055

Variance 0.0002 0.0004 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MSE 0.0003 0.0005 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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Figure 4.3: AD Type Estimator of w. True w∗ = (0.4, 0.6, 0)

Table 4.3: AD Type Estimators of w

Sample size Statistic
AD1 AD2 AD3

w1 w2 w3 w1 w2 w3 w1 w2 w3

G=80

Bias -0.0176 -0.0316 0.0492 -0.0035 -0.0176 0.0211 0.0006 -0.0217 0.0210

Variance 0.0067 0.0073 0.0025 0.0027 0.0032 0.0015 0.0034 0.0037 0.0016

MSE 0.0070 0.0083 0.0049 0.0027 0.0035 0.0020 0.0034 0.0042 0.0020

G=500

Bias -0.0093 -0.0142 0.0234 -0.0029 -0.0062 0.0091 -0.0023 -0.0070 0.0093

Variance 0.0007 0.0011 0.0007 0.0003 0.0004 0.0002 0.0003 0.0004 0.0002

MSE 0.0008 0.0013 0.0012 0.0003 0.0004 0.0003 0.0003 0.0005 0.0003

G=2000

Bias -0.0030 -0.0068 0.0098 -0.0013 -0.0033 0.0046 -0.0011 -0.0037 0.0047

Variance 0.0001 0.0002 0.0002 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000

MSE 0.0002 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
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Figure 4.4: KLIC Type Estimator of w. True w∗ = (0.4, 0.6, 0)

Table 4.4: KLIC Type Estimators of w

Sample size Statistic
KLIC1 KLIC2 KLIC3

w1 w2 w3 w1 w2 w3 w1 w2 w3

G=80

Bias 0.0004 -0.0005 0.0001 0.0310 -0.0310 0.0000 -0.0107 -0.0167 0.0274

Variance 0.0016 0.0016 0.0000 0.0012 0.0012 0.0000 0.0014 0.0019 0.0017

MSE 0.0016 0.0016 0.0000 0.0022 0.0022 0.0000 0.1099 0.0321 0.2054

G=500

Bias -0.0006 0.0000 0.0006 0.0317 -0.0317 0.0000 -0.3526 -0.1051 0.4577

Variance 0.0003 0.0003 0.0001 0.0001 0.0001 0.0000 0.0026 0.0038 0.0078

MSE 0.0003 0.0003 0.0001 0.0011 0.0011 0.0000 0.1269 0.0148 0.2173

G=2000

Bias -0.0002 -0.0002 0.0003 0.0322 -0.0322 0.0000 -0.3631 -0.1124 0.4755

Variance 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0008 0.0010 0.0023

MSE 0.0001 0.0001 0.0000 0.0011 0.0011 0.0000 0.1327 0.0136 0.2284
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4.7 Conclusion and Discussions

This paper develops a forecast combination method for multidimensional variables, which ren-

ders the information of interdependency between multiple quantities of interest. I provide a class

of weighting schemes over different forecasting models, prove the asymptotic optimality of the

estimated weights, and use simulation to demonstrate the validity of theoretical results.

The current study opens the revenue for further research in the multivariate density forecast

combination. Firstly, instead of using the Rosenblatt’s transformation to deal with the multivariate

density, one could work on the Kendell distribution function KW (r) = Pr(H(W ) ≤ r) where

H(w) is the joint CDF of W = (W1,W2)
′. This could be viewed as the multivariate probability

integral transformation (MPIT) of W . However, in general, KW is not necessarily uniformly dis-

tributed in [0, 1]. Actually, by [79], KW (r) ≥ r and KW (0−) = 0, and KW is U [0, 1] if and only

if W1,W2 are independent. In lack of an explicit way to derive the Kendall distribution, one could

use simulation to approximate it. Then we can choose the combination weight by minimizing

the distance between the empirical MPIT and the true MPIT as the operation with PIT. We may

also obtain the Kendall distribution via copulas. As a result of the Sklar’s Theorem, the Kendall

distribution function KW (·) depends only on the copula of W . We can estimate (or directly take)

the copula function of each forecast model and then derive the corresponding Kendall distribution.

Secondly, since it is easier to obtain univariate density forecasts for each variable of interest sep-

arately, one might be interested to know what if we just employ the marginal densities into our

combination scheme. Intuitively, this leaves out the important message of interactions among vari-

ables. The discrepancy between this “naive" combination and our proposed method would exhibit

the significance of interdependency. Thirdly, note that there are k! ways to factor the joint density

function where k is the dimension of Yt. Thus, we could conduct different ways of decomposition

in our method as a robustness check. Finally, exploring more sophisticated simulation designs

would help to verify the efficacy of our approach, and I am also interested in working with a real

dataset to combine multivariate density forecasts from different professional forecasters.
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5. CONCLUSION

In this dissertation, I develop econometric methods for studying three economic issues: the

structural analysis of spectrum auctions, the estimation of conditional expectations, and the multi-

variate density forecasts.

In the first essay, I provide a structural approach to analyze US spectrum auctions and recover

the bidders’ values including stand-alone values and complementarity values. I find that the com-

plementarity of a national-wide license is worth 8 billion dollars for an average bidder, which is

59.54% of the sum of final prices of all licenses, indicating strong evidence of complementarity.

For the bidders’ stand-alone values, I document a significant effect of the license-characteristic,

while the effect of the bidder-characteristic is insignificant. The exploration of bidder heterogene-

ity reveals that large bidders evaluate complementarity higher than small and medium bidders.

Methodologically, within the estimation scheme, I establish a framework for estimating the high-

dimensional bundle choice problem with individual-level data. I leverage the random projection

technique in machine learning to achieve dimension reduction. There are rich applications of this

method in other contexts, for example, the demand estimation in industrial organization and mar-

keting.

In the second essay, we study model averaging in the mixed-data environment with nonpara-

metric regression spline models. We provide conditions and proofs of the asymptotic optimality

properties of our estimators. The proposed model averaging approach performs better than several

appealing model selection methods, and may, therefore, be of interest to applied researchers faced

with model uncertainty in various settings.

In the third essay, I propose a multivariate density forecast combination method. My strategy

is to exploit the Rosenblatt’s transformation and decompose the multivariate density into univari-

ate densities. Then I construct the forecast combination scheme based on the univariate density

forecasts [75] and the test statistics in [77]. Simulation results support my theoretical results on

the asymptotic optimality of the estimated weights.
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APPENDIX A

APPENDIX FOR THE FIRST ESSAY

A.1 Equilibrium of the Multiple-Object Clock Auction

In this section, I derive the Bayesian Nash equilibrium (BNE) for the multiple-object clock

auction where objects are heterogeneous and complementary. I first consider the two-object case,

which is used in Section 2.3 for equilibrium analysis. Then I extent the results to multiple-object

case. Related proofs are provided in Appendix A.2.

A.1.1 Two Objects

Lemma 1 (Drop-Out Level Ordering). At any time, for a global bidder i, her strategy is the drop-

out levels (sAi , s
B
i ) such that vBi ≤ sBi ≤ sAi ≤ vAi + θi.

Next, we study several simple subgames, in which the (weakly) dominant strategies for the

global bidders are obvious. Similar results are also found in [32].

Lemma 2 (Trivial Subgames). For bidder i,

(i) If she has already dropped out on object B at a price sBi < vAi , then she would drop out on

A up to her stand-alone value of A, i.e. sAi,0 = vAi . In other words, she plays the weakly

dominant strategy in the English auction.

(ii) If she has already dropped out on object B at a price sBi > vAi , then she would drop out on

object A at the same time, i.e. sAi,0 = sBi .

(iii) If all other bidders have dropped out on object B, that is, bidder i obtains object B (at a

price sBi < vAi + θi). Then her drop-out level on object A is sAi,1 = vAi + θi.

Thus, the only situation left to be considered is where there are more than one bidders staying

on both objects. In this case, let pt(A) = pt(B) = p. Suppose there are nB other global bidders

99



staying on object B, and nA other global bidders staying on object A. For a bidder i, let sB−i =

sB−i(n
B) ≡ maxj ̸=i s

B
j be the maximum of other bidders’ drop-out level on B, which is a function

of all other bidders’ values. Let GB
−i(·|p, nB) be the CDF of sB−i, given sB−i ≥ p and the number of

other remaining bidder of B, nB. A bidder’s drop-out level on object A depends on whether she

wins object B or not, given by Lemma 2. Her belief about other bidders’ drop-out level on A also

depends on her winning or losing B. Let sA−i,1 and sA−i,0 be drop-out level on A when she wins B

and loses B, respectively. Then we have

sA−i,1 = sA−i,1(n
A) ≡ max

j ̸=i
sAj,0, sA−i,0 = sA−i,0(n

A) ≡ max

{
max
j ̸=i,k

sAj,0, s
A
k,1

}
, (A.1)

where k denotes the winner on B, suppose i did not win it. Let GA
−i,1(·|p, nA) and GA

−i,0(·|p, nA)

be the CDF (given they are no less than p) of sA−i,1 and sA−i,0, respectively.

It will be clear later on that GB
−i does not affect the equilibrium strategy of the global bidders.

Let FC(s) ≡ Pr(vAi + θi < s) be the distribution function of vAi + θi. By the drop-out level

analysis in Lemma 2, with simple calculations, we have

GA
−i,1(s|p, nA) =

(
FA(s)− FA(p)

1− FA(p)

)nA

(A.2)

GA
−i,0(s|p, nA) =

[FA(s)− FA(p)]n
A−1 · [FC(s)− FC(p)]

[1− FA(p)]nA−1 · [1− FC(p)]
. (A.3)

We have GA
−i,1 −GA

−i,0 ≥ 0. One can verify it from the above expression. In addition, it could

be directly seen because, if i loses B, then one of his opponent wins it, and this bidder’s updated

value for object A would be adding θ, so

P(sA−i,0 < s) = P(max
j ̸=i,k

vAj < s) ·P(vAk + θ < s) ≤ P(max
j ̸=i,k

vAj < s) ·P(vAk < s)

= P(max
j ̸=i

vAj < s) = P(sA−i,1 < s). (A.4)

Let λi ≡ min{vAi + θ, vA}. If bidder i’s drop-out level on object B is sBi , then her expected

utility when the current price is p = pA = pB is given by
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Πi(s
B
i ; p,vi,n, F ) =

∫ sBi

p

[
vBi − sB−i + 1(s

B
−i < vA)

∫ λi

sB−i

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sB−i, n

A)

+ 1(sB−i > vA)(vAi + θi − sB−i)

]
dGB

−i(s
B
−i|p, nB)

+

∫ max{vAi ,sBi }

sBi

[ ∫ vAi

sB−i

(vAi − sA−i)dG
A
−i,0(s

A
−i|sB−i, n

A)

]
dGB

−i(s
B
−i|p, nB),

(A.5)

where vi = (vAi , v
B
i , θi),n = (nA, nB), F = (FA, FB, F θ), and GA

−i,1 and GA
−i,0 are defined in

(A.2) and (A.3), respectively. The first term on the right hand side is the expected utility in the case

of winning B, i.e. sBi > sB−i, while the second term is when losing B, i.e. sBi < sB−i. Then the first

order condition results in:

sBi = vBi + 1(sBi < vA)

∫ λi

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)

+ 1(sBi > vA)(vAi + θi − sBi )− 1(sBi < vAi )

∫ vAi

sBi

(vAi − sA−i)dG
A
−i,0(s

A
−i|sBi , nA), (A.6)

The equilibrium drop-out level sBi solves the above equation. We see that the first order condi-

tion does not involve GB
−i. If sBi > vA, then the (A.6) simplifies to

sBi = vBi + vAi + θi − sBi . (A.7)

Therefore, in this case, sBi = sAi = (vAi + vBi + θ)/2. The condition is (vAi + vBi + θ)/2 > vA. In

the following we discuss a bidder with (vAi + vBi + θ)/2 < vA, so that we have sBi < vA and thus

sBi ∈ [vBi , λi]. The first order condition becomes:
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sBi = vBi +

∫ λi

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)

− 1(sBi < vAi )

∫ vAi

sBi

(vAi − sA−i)dG
A
−i,0(s

A
−i|sBi , nA), (A.8)

Let

J(s, nA) = vBi − s+

∫ λi

s

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|s, nA)

− 1(s < vAi )

∫ vAi

s

(vAi − sA−i)dG
A
−i,0(s

A
−i|s, nA). (A.9)

Hence, the equilibrium strategy sBi solves the equation J(sBi , n
A) = 0. In Appendix A.2 we prove

that J(s, nA) is non-increasing in s ∈ [vBi , λi]. One observes that J(vBi , n
A) > 0 since λi > vAi

and GA
−i,1 > GA

−i,0. In addition, J(λi, n
A) = vBi − λi < 0. Therefore, there is a unique root for

J(s, nA) = 0 in sBi ∈ [vBi , λi]. Further, if J(vAi , n
A) > 0, then the unique root is sBi ∈ [vAi , v

A
i +θi];

if J(vAi , n
A) < 0, then the unique root is sBi ∈ [vBi , v

A
i ]. One immediately sees that if vAi +θi < vA,

then

J(vAi , n
A) = J1(v

A
i , n

A) = vBi − vAi +

∫ vAi +θi

vAi

GA
−i,1(x|vAi , nA)dx, (A.10)

and if vAi + θi > vA, then

J(vAi , n
A) = J2(v

A
i , n

A) = vBi + θi − vA +

∫ vA

vAi

GA
−i,1(x|vAi , nA)dx. (A.11)

We summarize the above discussions in the following theorem.

Theorem 6. Let Assumption 1 holds. Suppose at a time bidder i is staying on both objects, and both

price clocks have not stopped. Then there exists a unique symmetric Bayesian Nash equilibrium,

at which bidder i will first drop out on object B, with the drop-out level sBi that solves equation

(A.6). Specifically, if bidder i’s average value (vAi +vBi +θ)/2, exceeds vA, then bidder i will drop

out on A and B simultaneously at her average value, i.e. sAi = sBi = (vAi + vBi + θ)/2. Otherwise,
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there are four situations:

(i) If vAi + θi < vA, and J1(v
A
i , n

A) > 0, then sBi ∈ [vAi , v
A
i + θi], and sAi = sBi after she drops

out on B.

(ii) If vAi + θi < vA, and J1(v
A
i , n

A) < 0, then sBi ∈ [vBi , v
A
i ], and sAi = vAi after she drops out

on B.

(iii) If vAi + θi > vA, and J2(v
A
i , n

A) > 0, then sBi ∈ [vAi , v
A
i + θi], and sAi = sBi after she drops

out on B.

(iv) If vAi + θi > vA, and J2(v
A
i , n

A) < 0, then sBi ∈ [vBi , v
A
i ], and sAi = vAi after she drops out

on B.

The full characterization of the Bayesian Nash Equilibrium in this two-object clock auction is

given in the following theorem.

Theorem 7 (Bayesian Nash Equilibrium). Consider a clock auction with two heterogeneous ob-

jects whose value structure distribution satisfies Assumption 1, where there are no local bidders

and multiple global bidders. Then the Bayesian Nash equilibrium is the strategy profile (sAi , s
B
i )

n
i=1

at every time, such that

(i) If bidder i has dropped out or won an object (which must be object B according to Lemma

1), then bidder i’s drop out level on A, sAi follow Lemma 2.

(ii) If bidder i is staying on both objects and both price clocks have not stopped, then bidder i’s

strategy (sAi , s
B
i ) follows Theorem 6.

A.1.2 Multiple Objects

For the case where there are m > 2 objects (j = 1, · · · ,m), we first analyze a two-bidder

situation (i = 1, 2), to show how the bidders update the information of the winner identity during

the auction. We derive the equilibrium strategy in a recursive manner. Finally we turn to the case

where there are multiple objects and multiple (global) bidders.

103



The knowledge of the identity of winners on previously closed objects will enormously com-

plicate bidders’ beliefs, because winners will update their values on the remaining objects, due to

the complementarity coming from the newly obtained object. As the number of objects increase,

such complexity will quickly explode so that bidders may not be able to form a correct belief. In

such a extremely complicated decision making, it is not unreasonable to assume that players only

make use of partial information in hand. We assume that bidders’ strategy only depend on the

number of active opponents in the remaining objects. In other words, a bidder does not take into

account which bidder has won which objects before. Such restricted information structure removes

the necessarity of updating opponents’ value functions, making bidders’ strategy more tractable.

Parallel to Assumption 1, in the multiple-object case, we also need to impose the assump-

tion on the value structure: bidders’ stand-alone values are ordered in the same way. Let Mj ≡

{1, · · · , j}, j = 1, · · · ,m.

Assumption 13 (Strict Value Ordering). The value structure distribution F satisfies:

P[vj ≥ vj+1 + θj+1
i ] = 1, j = 1, · · · ,m− 1, (A.12)

where vj and vj are the lower bound and upper bound of the distribution of the stand-alone value

of object j, and θji = θi(Mj) − θi(Mj−1) is the complementarity that object j brings to objects

Mj−1.

Let Πj
i (vi, p, w, F ) denote the expected utility of bidder i at equilibrium, when there are j

objects remaining in the auction. The current price is p, and the current allocation result is w =

(w1, w2), with wi being the set of objects bidder i has already won. F is the full distribution

function on all the m objects. vi = vi(Mj)|wi is the conditional value structure of bidder i on

object set Mj = {1, · · · , j}, given she obtains wi. Then,
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Πj
i (vi, p, w, F ) = max

sji

{∫ v1

sji

Πj−1
i (vi, s

j
−i, w

′′, F ′′)dGj
−i(s

j
−i|p, w, F )

+

∫ sji

p

[
vji − sj−i +Πj−1

i (v′i, s
j
−i, w

′, F ′)
]
dGj

−i(s
j
−i|p, w, F )

}
, (A.13)

where w′ is updated from w by adding object j to w−i, and w′′ is by adding j to wi; F ′ and F ′′ are

bidder i’s updated beliefs on the value structure of objects Mj−1 = {1, · · · , j − 1} of bidder −i,

given w′ and w′′, respectively; vji = vji |wi is the marginal stand-alone value of bidder i on object

j, given she wins wi; v′i = vi(Mj−1)|w′
i is the marginal value structure of bidder i on object set

Mj−1, given she wins w′
i. First order condition yields:

sji = vji +Πj−1
i (v′

i, s
j
i , w

′, F ′)− Πj−1
i (vi, s

j
i , w

′′, F ′′). (A.14)

The complementarity effect happens in v′i ≥ vi, (to be rigorously proved) leading to:

Πj−1
i (v′

i, s
j
i , w

′, F ′) ≥ Πj−1
i (vi, s

j
i , w

′′, F ′′). However, we expect that exposure problem exists as

well, i.e. sji < vji + θji , where θji = θi(Mj)− θi(Mj−1) is the complementarity that object j brings

to objects Mj−1, which is the difference between v′i and vi. The intuition is that the bidder is at risk

of winning only a subset of the remaining objects.

Theorem 8 (Multiple Objects with Two Bidders). Let Assumption 13 holds. Consider multiple

objects with two bidders. The Bayesian Nash equilibrium strategy sji solves equation (A.14), in

which Πj
i follows a recursive form (A.13). In addition, the belief system F (w) is consistent with

the equilibrium outcome. For j = 1, 2, the equilibrium strategy follows from Theorem 6.

Suppose there are n bidders in the auction. By Assumption 13 on the value structure, each

bidder will drop out on object m,m− 1, · · · , 1 in turn, i.e. the equilibrium drop-out level satisfies

smi ≤ sm−1
i ≤ · · · ≤ s1i . This is similar to Lemma 1 in A.1.1. What’s more, when the last bidder

is dropping out at object j, there will be n bidders active on object set Mj−1. Therefore, bidders
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do not update their beliefs on other bidders’ value based on number of remaining bidders. Let

Πj
i (vi, p, n, F (wi)) denote the expected utility of bidder i at equilibrium, when object set Mj is

alive in the auction. With some abuse of notation, let vi be the updated value structure, given

bidder i’s currently winning objects wi. Let F (wi) be the distribution on all other bidders’ value

structure on set Mj when objects J/Mj = {j+1, · · · ,m} are closed, given wi. Then, the expected

payoff is

Πj
i (vi, p, n, F (wi)) = max

sji

{∫ v1

sji

Πj−1
i (vi, s

j
−i, n, F (wi))dG

j
−i(s

j
−i|p, n, F (wi))

+

∫ sji

p

[
vji − sj−i +Πj−1

i (v′i, s
j
−i, n, F (w′

i))
]
dGj

−i(s
j
−i|p, n, F (wi))

}
,

(A.15)

And the first order condition is

sji = vji +Πj−1
i (v′i, s

j
i , n, F (w′

i))− Πj−1
i (vi, s

j
i , n, F (wi)). (A.16)

Theorem 9 (Multiple Objects with Multiple Bidders). Let Assumption 13 holds. Consider multiple

objects with multiple bidders. The Bayesian Nash equilibrium strategy sji solves equation (A.16),

in which Πj
i follows a recursive form (A.15). In addition, the belief system F (w) is consistent with

the equilibrium outcome. For j = 1, 2, the equilibrium strategy follows from Theorem 6.

A.2 Proof of Theorem 6

We consider the four cases in Theorem 6. From the previous discussion, it suffices to show that

J1(s, n
A) and J2(s, n

A) are non-increasing in s ∈ [vBi , λi]. Using the technique of integration by

part, we derive the first order condition for each case.

Case I. vAi + θi < vA, and sBi < vAi .

In this case the first order condition becomes:

106



sBi = vBi +

∫ vAi +θi

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)−

∫ vAi

sBi

(vAi − sA−i)dG
A
−i,0(s

A
−i|sBi , nA)

= vBi +

∫ vAi +θi

sBi

GA
−i,1(x|sBi , nA)dx−

∫ vAi

sBi

GA
−i,0(x|sBi , nA)dx

= vBi +

∫ vAi +θi

vAi

GA
−i,1(x|sBi , nA)dx+

∫ vAi

sBi

[
GA

−i,1(x|sBi , nA)−GA
−i,0(x|sBi , nA)

]
dx. (A.17)

Case II. vAi + θi < vA, and sBi > vAi .

In this case the first order condition becomes:

sBi = vBi +

∫ vAi +θi

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)

= vBi +

∫ vAi +θi

sBi

GA
−i,1(x|sBi , nA)dx. (A.18)

Case III. vAi + θi > vA, and sBi < vAi .

In this case the first order condition becomes:

sBi = vBi +

∫ vA

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)−

∫ vAi

sBi

(vAi − sA−i)dG
A
−i,0(s

A
−i|sBi , nA)

= vBi + θi + vAi − vA +

∫ vA

sBi

GA
−i,1(x|sBi , nA)dx−

∫ vAi

sBi

GA
−i,0(x|sBi , nA)dx. (A.19)

= vBi + θi + vAi − vA +

∫ vAi

vAi

GA
−i,1(x|sBi , nA)dx+

∫ vAi

sBi

[
GA

−i,1(x|sBi , nA)−GA
−i,0(x|sBi , nA)

]
dx.

Case IV. vAi + θi > vA, and sBi > vAi .

In this case the first order condition becomes:
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sBi = vBi +

∫ vA

sBi

(vAi + θi − sA−i)dG
A
−i,1(s

A
−i|sBi , nA)

= vBi + θi + vAi − vA +

∫ vA

sBi

GA
−i,1(x|sBi , nA)dx. (A.20)

From the four cases, it is clear that in order to show J1(s, n
A) and J2(s, n

A) are non-increasing

in s ∈ [vBi , λi], it suffices to show that GA
−i,1(x|s, nA) and ∆GA

−i(x|s, nA) ≡ GA
−i,1(x|s, nA) −

GA
−i,0(x|s, nA) are both non-increasing in s, ∀x ∈ [s, vA].

Without loss of generality, consider θi to be a constant. From equation (A.2), let GA
−i,1(x|s, n) =

[K(s, x)]n, where K(s, x) = (FA(x) − FA(s))/(1 − FA(s)). It is obvious that K(s, x) is non-

increasing in s for every x ∈ [s, vA], and so is GA
−i,1(x|s, n). On the other hand, we can write

∆GA
−i(x|s, n) = [K(s, x)]n−1 · [K(s, x)−K(s− θ;x− θ)]. Let k(s, x) = ∂K(s, x)/∂s, which is

non-positive from above. Then we have

∂∆GA
−i(x|s, n)
∂s

= (n− 1)k(s, x)
[
K(s, x)

]n−2[
K(s, x)−K(s− θ, x− θ)

]
+
[
K(s, x)

]n−1 ·
[
k(s, x)− k(s− θ, x− θ)

]
= n k(s, x)

[
K(s, x)

]n−1 −
[
K(s, x)

]n−2·[
(n− 1)k(s, x)K(s− θ, x− θ) +K(s, x)k(s− θ, x− θ)

]
≤ 0. (A.21)

A.3 Proof of Proposition 1

In this section, we prove the comparative static properties of the Bayesian Nash equilibrium of

the two-object clock auction, which is summarized in Proposition 1.
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A.3.1 sBi Increasing in vBi

For the four cases, differentiate with respect to vBi on both sides of the first order conditions

derived in Appendix A.2.

Case I. vAi + θi < vA, and sBi < vAi .

∂sBi
∂vBi

= 1 +

∫ vAi +θi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vBi

]
dx

+

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

∂sBi
∂vBi

]
dx−∆GA

−i(x|sBi , nA)
∂sBi
∂vBi

, (A.22)

which leads to

∂sBi
∂vBi

{
1−

∫ vAi +θi

vAi

∂GA
−i,1(x|sBi , nA)

∂sBi
dx−

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

]
dx+∆GA

−i(x|sBi , nA)

}
= 1.

(A.23)

Case II. vAi + θi < vA, and sBi > vAi .

∂sBi
∂vBi

=1 +

∫ vAi +θi

sBi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vBi

]
dx−GA

−i,1(x|sBi , nA)
∂sBi
∂vBi

, (A.24)

resulting in

∂sBi
∂vBi

{
1−

∫ vAi +θi

sBi

∂GA
−i,1(x|sBi , nA)

∂sBi
+GA

−i,1(x|sBi , nA)dx

}
= 1. (A.25)

Case III. vAi + θi > vA, and sBi < vAi .

The derivative is the same as Case I.

Case IV. vAi + θi > vA, and sBi > vAi .

The derivative is the same as Case II.
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It could be easily verified that
∂GA

−i,1(x|sBi ,nA)

∂sBi
≤ 0 and ∆∂GA

−i(x|sBi ,nA)

∂sBi
≤ 0. In addition,

∆GA
−i(x|sBi , nA) ≥ 0. Therefore, Hence, for all the four cases, we have ∂sBi

∂vBi
≥ 0.

A.3.2 sBi Increasing in vAi

Again, we differentiate sBi with respect to vAi on both sides of the first order conditions derived

in Appendix A.2.

Case I. vAi + θi < vA, and sBi < vAi .

∂sBi
∂vAi

=

∫ vAi +θi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vAi

]
dx+

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

∂sBi
∂vAi

]
dx

+∆GA
−i(x|sBi , nA)−∆GA

−i(x|sBi , nA)
∂sBi
∂vAi

,

which gives us,

∂sBi
∂vAi

{
1−

∫ vAi +θi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx−

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi
dx

]
+∆GA

−i(x|sBi , nA)

}
= ∆GA

−i(x|sBi , nA). (A.26)

Case II. vAi + θi < vA, and sBi > vAi .

∂sBi
∂vAi

=

∫ vAi +θi

sBi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vAi

]
dx+GA

−i,1(x|sBi , nA)−GA
−i,1(x|sBi , nA)

∂sBi
∂vAi

.

Thus,

∂sBi
∂vAi

{
1−

∫ vAi +θi

sBi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx+GA

−i,1(x|sBi , nA)

}
= GA

−i,1(x|sBi , nA). (A.27)

Case III. vAi + θi > vA, and sBi < vAi .
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∂sBi
∂vAi

= 1−GA
−i,1(x|sBi , nA) +

∫ vAi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vAi

]
dx

+

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

∂sBi
∂vAi

]
dx+∆GA

−i(x|sBi , nA)−∆GA
−i(x|sBi , nA)

∂sBi
∂vAi

, (A.28)

leading to

∂sBi
∂vAi

{
1−

∫ vAi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx−

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi
dx

]
+∆GA

−i(x|sBi , nA)

}
= 1−GA

−i,1(x|sBi , nA) + ∆GA
−i(x|sBi , nA). (A.29)

Case IV. vAi + θi > vA, and sBi > vAi .

∂sBi
∂vAi

= 1 +

∫ vA

sBi

∂GA
−i,1(x|sBi , nA)

∂sBi

∂sBi
∂vAi

dx−GA
−i,1(x|sBi , nA)

∂sBi
∂vAi

,

yielding

∂sBi
∂vAi

{
1−

∫ vA

sBi

∂GA
−i,1(x|sBi , nA)

∂sBi
dx+GA

−i,1(x|sBi , nA)

}
= 1.

Overall, for all the four cases, by the fact that
∂GA

−i,1(x|sBi ,nA)

∂sBi
≤ 0, ∆∂GA

−i(x|sBi ,nA)

∂sBi
≤ 0, and

∆GA
−i(x|sBi , nA) ≥ 0, we have ∂sBi

∂vAi
≥ 0.

A.3.3 sBi Increasing in θi

Take derivative of sBi with respect to θi for the four cases.

Case I. vAi + θi < vA, and sBi < vAi .
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∂sBi
∂θi

=

∫ vAi +θi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂θi

]
dx+GA

−i,1(x|sBi , nA) +

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

∂sBi
∂θi

]
dx

−∆GA
−i(x|sBi , nA)

∂sBi
∂θi

,

giving,

∂sBi
∂vAi

{
1−

∫ vAi +θi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx−

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi
dx

]
+∆GA

−i(x|sBi , nA)

}
= GA

−i,1(x|sBi , nA). (A.30)

Case II. vAi + θi < vA, and sBi > vAi .

∂sBi
∂θi

=

∫ vAi +θi

sBi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂θi

]
dx+GA

−i,1(x|sBi , nA)−GA
−i,1(x|sBi , nA)

∂sBi
∂θi

.

Thus, we have

∂sBi
∂θi

{
1−

∫ vAi +θi

sBi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx+GA

−i,1(x|sBi , nA)

}
= GA

−i,1(x|sBi , nA). (A.31)

Case III. vAi + θi > vA, and sBi < vAi .

∂sBi
∂θi

= 1 +

∫ vAi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

∂sBi
∂θi

]
dx

+

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi

∂sBi
∂θi

]
dx−∆GA

−i(x|sBi , nA)
∂sBi
∂θi

, (A.32)
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leading to

∂sBi
∂θi

{
1−

∫ vAi

vAi

[
∂GA

−i,1(x|sBi , nA)

∂sBi

]
dx−

∫ vAi

sBi

[
∂∆GA

−i(x|sBi , nA)

∂sBi
dx

]
+∆GA

−i(x|sBi , nA)

}
= 1.

(A.33)

Case IV. vAi + θi > vA, and sBi > vAi .

∂sBi
∂θi

= 1 +

∫ vA

sBi

∂GA
−i,1(x|sBi , nA)

∂sBi

∂sBi
∂θi

dx−GA
−i,1(x|sBi , nA)

∂sBi
∂θi

,

which give rise to

∂sBi
∂θi

{
1−

∫ vA

sBi

∂GA
−i,1(x|sBi , nA)

∂sBi
dx+GA

−i,1(x|sBi , nA)

}
= 1.

Hence, for all the four cases, since
∂GA

−i,1(x|sBi ,nA)

∂sBi
≤ 0, ∆∂GA

−i(x|sBi ,nA)

∂sBi
≤ 0, and ∆GA

−i(x|sBi , nA) ≥

0, we have ∂sBi
∂θi

≥ 0.

A.3.4 sBi Decreasing in nA

Observing the four cases, it suffices to show that

∂GA
−i,1(x|sBi , nA)

∂nA
≤ 0,

∂∆GA
−i(x|sBi , nA)

∂nA
≤ 0, (A.34)

which could be verified by their definition (A.2).

A.4 Numerical Solution for Equilibrium: FA is Normal

Based on Theorem 7, I calculate numerically the BNE of the two-object clock auction when

FA is a truncated normal distribution in [vA, vA]. Using the same parameter settings as Section

2.3.3, I plot the corresponding graphs with FA being normal. We can see that the pattern of sBi

is robust to the specification of the common distribution for bidders’ stand-alone value FA. See
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Figure A.1 and A.2.

Figure A.1: Equilibrium Bidding Strategy sBi and Complementarity θi.
Setting: FA Normal. Property: sBi Non-decreasing in θi, and Non-increasing in nA.

(a) vAi = 0.5, vBi = 0.4 (b) vAi = 0.7, vBi = 0.4

(c) vB = 0.3, vAi = 0.6 (d) vA = 0.5, vAi = 0.6
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Figure A.2: Equilibrium Bidding Strategy sBi and Complementarity θi.
Setting: FA Normal. Property: sBi Non-decreasing in vAi , v

B
i , and θi

(a) nA = 3, vBi = 0.4 (b) nA = 9, vBi = 0.4

(c) nA = 3, vAi = 0.6 (d) nA = 9, vAi = 0.6
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APPENDIX B

APPENDIX FOR THE SECOND ESSAY

B.1 Proofs of Main Theorems and Propositions

Throughout the Appendix, for a k × k matrix A, let δmax(A) and δmin(A) be the largest and

smallest singular value of A, respectively.

Lemma 3. When Zi,(s) is a scalar, and λ(s) = 0, we have

δ2max(P(s)) = O(K(s)).

Proof of Lemma 3. We leave out the subscript (s) in this proof for notational ease. In this case

L(Z, z, λ) = 1(Z = z), and 1(·) is the indicator function. Let 1z = diag{1(Z1 = z), . . . ,1(Zn =

z)}. Then Lz = 1z. We start by giving a simple identity: for every Zi,

1 =
∑

z∈MZ

1(Zi = z). (B.1)
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Then,

δ2max(P ) ≤ ∥P∥2 = tr(P ′P ) =
n∑

i=1

P ′
iPi

=
n∑

i=1

[
B′
i(B

′LZi
B)−1B′LZi

· LZi
B(B′LZi

B)−1Bi

]
=

n∑
i=1

[
B′
i(B

′1Zi
B)−1B′1Zi

· 1Zi
B(B′1Zi

B)−1Bi

]
=

n∑
i=1

[
B′
i(B

′1Zi
B)−1Bi

]
=

n∑
i=1

B′
i

(
n∑

m=1

BmB′
m1(Zm = Zi)

)−1

Bi


=

n∑
i=1

∑
z∈MZ

1(Zi = z)

B′
i

(
n∑

m=1

BmB′
m1(Zm = Zi)

)−1

Bi

 by Equation (B.1),

=
∑

z∈MZ

n∑
i=1

1(Zi = z)

B′
i

(
n∑

m=1

BmB′
m1(Zm = Zi)

)−1

Bi


=
∑

z∈MZ

tr


n∑

i=1

1(Zi = z)

B′
i

(
n∑

m=1

BmB′
m1(Zm = z)

)−1

Bi


=
∑

z∈MZ

tr


(

n∑
i=1

1(Zi = z)BiB′
i

)(
n∑

m=1

BmB′
m1(Zm = z)

)−1


=
∑

z∈MZ

tr{IK} = c ·K,

where c = Πr
l=1cl. Therefore, δ2max(P ) = O(K).

Lemma 4. Under Assumption 5, for every s = 1, 2, . . . , Sn,

δ2max(P(s)) ≤ tr(P ′
(s)P(s)) = Op

(
K(s) +

rs∑
l=1

λl,(s) ·K2
(s)

)
,

where P(s) is the projection matrix of the s-th model whose expression is given by Equation (3.5).

Proof of Lemma 4. We follow the notation in Lemma 3. Recall from Equation (3.4) that L(Z, z, λ) =
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1(Z = z) +
∑r

l=1 λlI(l)(Z, z) + O(||λ||2), where I(l)(Z, z) = 1(Zl ̸= zl)
∏r

j ̸=l 1(Zj = zj). Let

Hz,l = diag(I(l)(Z1, z), · · · , I(l)(Zn, z)). Then Lz = Jz +
∑r

l=1 λlHz,l + O(||λ||2) In. Because

I(l)(Z, z)I(j)(Z, z) = 0 for l ̸= j, and I2(l)(Z, z) = I(l)(Z, z) for any l, we have

L2(Z, z, λ) =

(
1(Z = z) +

r∑
l=1

λlI(l)(Zl, zl) +O(||λ||2)

)2

= 1(Z = z) +
r∑

l=1

λ2
l I2(l)(Zl, zl) +O(∥λ∥3)

= 1(Z = z) +
r∑

l=1

λ2
l I(l)(Zl, zl) +O(∥λ∥3)

Therefore, L2
z = Jz +

∑r
l=1 λ

2
lHl,z +O(∥λ∥3) In.

Letting Sz =
1
n
B′JzB, Si = SZi

= 1
n
B′JZi

B, Tl,i =
1
n
B′Hl,Zi

B, and U = 1
n
B′B, then

1

n
B′LZi

B = Si +
r∑

l=1

λlTl,i +O(||λ||2)U,

1

n
B′L2

Zi
B = Si +

r∑
l=1

λ2
l Tl,i +O(∥λ∥3)U.
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Hence,

δ2max(P ) ≤ ∥P∥2 = tr(P ′P ) =
n∑

i=1

P ′
iPi

=
1

n

n∑
i=1

[
B′
i

(
1

n
B′LZi

B

)−1
1

n
B′LZi

· LZi
B

(
1

n
B′LZi

B

)−1

Bi

]

=
1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1(
Si +

r∑
l=1

λ2
l Tl,i +O(||λ||3)U

)
(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


=

1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

· Si ·

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


+

r∑
l=1

λ2
l

1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Tl,i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


+

1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

U

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi

 ·O(∥λ∥3)

≡ Θn +
r∑

l=1

λ2
lΨn + O(∥λ∥3) Ξn.

We observe that I(l)(Z, z) =
∑

z̃∈MZ
1(Z = z̃), where z̃ satisfies z̃l ̸= zl, and z̃j = zj for any

j ̸= l. Thus,

Tl,i =
1

n
B′Hl,Zi

B =
1

n
B′

 ∑
z̃∈MZ
z̃l ̸=Zil

Jz̃

 B =
∑

z̃∈MZ
z̃l ̸=Zil

Sz̃.

And, obviously, U =
∑

z∈MZ
Sz. Thus, by Lemma C.4, the singular values of Si, Tl,i and U
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are all bounded below away from zero and bounded above from a finite constant, in probability.

Therefore,

δmax(S
−1
i ) = δ−1

min(Si) = Op(1), δmax(Tl,i) = Op(1), δmax(U) = Op(1) (B.2)

Consequently, with
∑r

l=1 λl = o(1), we have

δmax

(
r∑

l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)
≤

r∑
l=1

δmax(λlS
−1
i Tl,i) +O(||λ||2) δmax(S

−1
i U)

≤
r∑

l=1

λl δmax(S
−1
i ) δmax(Tl,i) +O(||λ||2) δmax(S

−1
i ) δmax(U)

= Op

(
r∑

l=1

λl

)
+O(||λ||2)Op(1)

= Op

(
r∑

l=1

λl

)
= op(1) < 1. (B.3)

In addition,

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

=

(
Si

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

))−1

=

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i , (B.4)

provided the inverse exists. Note that Si is positive definite and therefore invertible, and the invert-

ibility of
(
Ik +

∑r
l=1 λlS

−1
i Tl,i +O(||λ||2)S−1

i U
)

is guaranteed by Equation (B.3) and Lemma

C.3.

Now we calculate the rate of Θn, Ψn and Ξn.
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Θn =
1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Si

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


=

1

n

n∑
i=1

B′
i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Si

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Bi

 , by Equation (B.4)

=
1

n

n∑
i=1

tr

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1
2

=
1

n

n∑
i=1

tr
[
S−1
i BiB′

i

]
+

1

n

n∑
i=1

tr

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−2

− Ik


= Θ1,n +Θ2,n.

From Lemma 3 we have that

Θ1,n =
n∑

i=1

[
B′
i(B

′JZi
B)−1Bi

]
= O(K). (B.5)
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Next we find Θ2,n. Using Lemma C.2, C.5, and C.3, we have

Θ2,n ≤ 1

n

n∑
i=1

K · δmax

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−2

− Ik

 , by Lemma C.2

≤ 1

n

n∑
i=1

K · δmax

(
S−1
i BiB′

i

)
· δmax

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−2

− Ik


=

K

n

n∑
i=1

δmax

(
S−1
i BiB′

i

)
·O

(
δmax

(
r∑

l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

))
, by Lemma C.3-3

=
K

n

n∑
i=1

δmax

(
S−1
i BiB′

i

)
·Op

(
r∑

l=1

λl

)
, by Equation (B.3)

≤ K

n

n∑
i=1

δmax(S
−1
i ) · δmax(BiB′

i) ·Op

(
r∑

l=1

λl

)

=
K

n

n∑
i=1

δmax(BiB′
i) ·Op

(
r∑

l=1

λl

)
, by Equation (B.2)

=
K

n

n∑
i=1

(B′
iBi) ·Op

(
r∑

l=1

λl

)

= Op(K
2) ·Op

(
r∑

l=1

λl

)
, by Lemma C.5

= Op

((
r∑

l=1

λl

)
K2

)
,

where the seventh line follows by

1

n

n∑
i=1

δmax(BiB′
i) =

1

n

n∑
i=1

∥BiB′
i∥ =

1

n

n∑
i=1

(B′
iBi) = Op(K). (B.6)
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For Ψn, we have

Ψn =
1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Tl,i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U ]

)−1

Bi


=

1

n

n∑
i=1

B′
i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Tl,i×

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Bi

 , by Equation (B.4)

=
1

n

n∑
i=1

tr

B′
i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Tl,i×

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Bi


=

1

n

n∑
i=1

tr

S−1
i BiB′

i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Tl,i×

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1


≤ 1

n
K

n∑
i=1

δmax

S−1
i BiB′

i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Tl,i×

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1
 , by Lemma C.2

≤ K

n

n∑
i=1

δmax(S
−1
i BiB′

i) δmax(S
−1
i Tl,i) δ

2
max

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1


=
K

n

n∑
i=1

δmax

(
S−1
i BiB′

i

)
Op(1), by Lemma C.3-1 and Equation (B.2)

≤ Op(K
2),

where the last inequality is similar to the calculation of Θ2,n.

Finally, for Ξn we can see the proof should be similar to Ψn, which follows by noticing that by
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Lemma C.5,

Ξn =
1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1
1

n
B′B

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


=

1

n

n∑
i=1

tr

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1
1

n
B′B

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi


=

1

n

n∑
i=1

tr

 1
n

n∑
m=1

BiB′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

BiB′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1


≤ δmax

(
1

n

n∑
m=1

BiB′
i

)
K

n

n∑
i=1

δ2max

(Si +
r∑

l=1

λlTl,i +O(||λ||2)U

)−1
 δmax(BiB′

i)

≤ Op(1)
K

n

n∑
i=1

δ2max

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i

 δmax(BiB′
i), by Lemma C.4

= Op(K)
1

n

n∑
i=1

δmax(BiB′
i)Op(1), by Equation (B.2) and Lemma C.3

≤ Op(K)Op(K)Op(1), by Equation (B.6)

= Op(K
2).

Since λl = o(1), then combining the above results we have

δ2max(P ) ≤ tr(P ′P ) ≤ Θn +
r∑

l=1

λ2
lΨn + Ξn ·O(∥λ∥3)

≤ Op(K) +Op

((
r∑

l=1

λl

)
K2

)
+Op

((
r∑

l=1

λ2
l

)
K2

)
+Op

(
∥λ∥3K2

)
= Op

(
K +

(
r∑

l=1

λl

)
K2

)
.

This completes the proof of Lemma 4.

Proof of Theorem 1. The proof is similar to that of Theorem 1 of [57]. First it is straightforward
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to see that

δmax(Ω) = O(1). (B.7)

Following Assumption 4, Assumption 7, and Lemma 4, we obtain

δ2(P (wo
s)) = δ2(P(s)) = Op

(
K(s) +

rs∑
l=1

λl,(s) ·K2
(s)

)

= Op(K(s)) = Op

(
n1/(1+2αs)

)
≤ Op

(
n1/(1+2α)

)
.

Therefore, we have

δ(P (wo
s))

2Nξ−2N
n

Sn∑
t=1

[nRn(w
o
t )]

N → 0, ∀s, (B.8)

as n → ∞.

Let A(w) = I − P (w). Note that

Cn(w) = Ln(w) + n−1∥ϵ∥2 + 2n−1⟨ϵ, A(w)µ⟩+ 2n−1 {tr[P (w)Ω]− ⟨ϵ, P (w)ϵ⟩}

Theorem 1 is valid if the following is true: as n → ∞,

sup
w∈W

|⟨ϵ, A(w)µ⟩|/[nRn(w)]
p→ 0, (B.9)

sup
w∈W

| tr[P (w)Ω]− ⟨ϵ, P (w)ϵ⟩|/[nRn(w)]
p→ 0, (B.10)

sup
w∈W

|Ln(w)/Rn(w)− 1| p→ 0. (B.11)

First, we consider Equation (B.9). For any δ > 0, by the triangle inequality, Chebyshev’s inequal-

125



ity, Theorem 2 of [80], Equation (B.7), and Equation (B.8), we obtain

Pr

{
sup
w∈W

|⟨ϵ, A(w)µ⟩|/[nRn(w)] > τ

}
≤ Pr

{
sup
w∈W

Sn∑
s=1

ws|ϵ′(I − P(s))µ| > τξn

}

≤ Pr

{
max

1≤s≤Sn

|ϵ′(I − P(s))µ| > τξn

}
= Pr

{
{|⟨ϵ, A(wo

1)µ⟩| > τξn}
∪

{|⟨ϵ, A(wo
2)µ⟩| > τξn}

∪
. . .
∪{

|⟨ϵ, A(wo
Sn
)µ⟩| > τξn

}}
≤

Sn∑
s=1

Pr {|⟨ϵ, A(wo
s)µ⟩| > τξn} by the triangle inequality,

≤
Sn∑
s=1

E

{
⟨ϵ, A(wo

s)µ⟩2N

τ 2Nξ2Nn

}
by Chebyshev’s inequality,

≤ C1τ
−2Nξ−2N

n

Sn∑
s=1

∥Ω(2N)1/2A(wo
s)µ∥2N by (7) in Theorem 2 of [80],

where C1 is a constant, Ω(2N) = diag(γ2
1(2N), . . . , γ2

n(2N)), and γj(2N) = E(ϵ2Nj |Xj, Zj)
1/2N .

By Assumption 6-1, γj(2N) < ∞, thus δmax(Ω(2N))N = O(1). In addition, notice that µ′Aµ ≤

δmax(A)µ
′µ and δ(AA) = δmax(A)

2 for any symmetric positive semi-definite matrix A, along with

nRn(w
o
s) ≥ ∥A(wo

s)µ∥2, which is implied by Equation (3.6), we have

Pr

{
sup
w∈W

|⟨ϵ, A(w)µ⟩|/[nRn(w)] > τ

}
≤ C1τ

−2Nξ−2N
n δmax(Ω(2N))N

Sn∑
s=1

∥A(wo
s)µ∥2N

≤ C ′
1τ

−2Nξ−2N
n

Sn∑
s=1

[nRn(w
o
s)]

N → 0 as n → ∞ by Equation (B.7) and Equation (B.8).
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Similarly for Equation (B.10), we have

Pr

{
sup
w∈W

|tr[P (w)Ω]− ⟨ϵ, P (w)ϵ⟩| /[nRn(w)] > τ

}
= Pr

{
sup
w∈W

∣∣∣∣∣
Sn∑
s=1

ws[tr(P(s)Ω)− ⟨ϵ, P(s)ϵ⟩]

∣∣∣∣∣ /[nRn(w)] > τ

}

≤ Pr

{
max

1≤s≤Sn

∣∣tr(P(s)Ω)− ⟨ϵ, P(s)ϵ⟩
∣∣ /[nRn(w)] > τ

}
≤

Sn∑
s=1

Pr {|tr[P (wo
s)Ω]− ⟨ϵ, P (wo

s)ϵ⟩| > τξn}

≤
Sn∑
s=1

E

{
[tr[P (wo

s)Ω]− ⟨ϵ, P (wo
s)ϵ⟩]2N

τ 2Nξ2Nn

}

≤ C2τ
−2Nξ−2N

n

Sn∑
s=1

{tr [P (wo
s)

′Ω(4N)P (wo
s)]}

N by (8) in Theorem 2 of [80],

where C2 is a constant, Ω(4N) = diag(γ2
1(4N), . . . , γ2

n(4N)), and γj(4N) = E(ϵ4Nj |Xj, Zj)
1/4N .

By Equation (3.6) and Assumption 6-2, we have nRn(w
o
s) ≥ tr [ΩP (wo

s)
′P (wo

s)] ≥ σ̄2 tr[P (wo
s)

′P (wo
s)].

By Assumption 6-1, γj(4N) < ∞, thus δmax(Ω(4N))N = O(1). Along with Lemma C.1-3, we

have

Pr

{
sup
w∈W

|tr[P (w)Ω]− ⟨ϵ, P (w)ϵ⟩| /[nRn(w)] > τ

}
≤ C2τ

−2Nξ−2N
n δmax(Ω(4N))N

Sn∑
s=1

tr[P (wo
s)

′P (wo
s)]

≤ C ′
2τ

−2Nξ−2N
n

Sn∑
s=1

[nRn(w
o
s)]

N → 0 as n → ∞.

Note that Equation (B.11) is equivalent to

sup
w∈W

∣∣∣∣n−1∥P (w)ϵ∥2 − n−1 tr[ΩP (w)′P (w)]− 2n−1⟨A(w)µ, P (w)ϵ⟩
Rn(w)

∣∣∣∣ p→ 0.
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Thus, Equation (B.11) holds if, as n → ∞, we have

sup
w∈W

∣∣∣∣⟨A(w)µ, P (w)ϵ⟩
nRn(w)

∣∣∣∣ p→ 0, (B.12)

and

sup
w∈W

∣∣∣∣∥P (w)ϵ∥2 − tr[ΩP (w)′P (w)]

nRn(w)

∣∣∣∣ p→ 0. (B.13)

For Equation (B.12), we have

Pr

{
sup
w∈W

∣∣∣∣⟨A(w)µ, P (w)ϵ⟩
nRn(w)

∣∣∣∣ > τ

}
≤ Pr

{
sup
w∈W

Sn∑
m=1

Sn∑
s=1

wtws

∣∣ϵ′P(s)(I − P(m))µ
∣∣ > τξn

}

≤ Pr

{
max

1≤m≤Sn

max
1≤s≤Sn

∣∣ϵ′P(s)(I − P(m))µ
∣∣ > τξn

}
≤

Sn∑
t=1

Sn∑
s=1

E

[
⟨P (wo

m)ϵ, A(w
o
s)µ⟩2N

τ 2Nξ2Nn

]

≤ C3τ
−2Nξ−2N

n

Sn∑
m=1

Sn∑
s=1

∥∥P (wo
m)Ω(2N)1/2A(wo

s)µ
∥∥2N by (7) in Theorem 2 of [80],

≤ C3

(
max
m

δmax[P (wo
m)Ω(2N)1/2]2N

)
τ−2Nξ−2N

n

Sn∑
m=1

Sn∑
s=1

∥A(wo
s)µ∥

2N

≤ C ′
3Snδmax(Ω(2N))N

(
max
m

δmax[P (wo
m)]

2N
)
τ−2Nξ−2N

n

Sn∑
s=1

[nRn(w
o
s)]

N

≤ C ′
3Sn

(
max
m

δmax[P (wo
m)]

2N
)
τ−2Nξ−2N

n

Sn∑
s=1

[nRn(w
o
s)]

N → 0 as n → ∞,

where C3, C
′
3 are constants, the fifth inequality follows from Lemma C.1-5, and the last line follows
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from Equation (B.8). Also, for Equation (B.13)

Pr

{
sup
w∈W

∣∣∣∣∥P (w)ϵ∥2 − tr[ΩP (w)′P (w)]

nRn(w)

∣∣∣∣ > τ

}
≤ Pr

{
sup
w∈W

Sn∑
t=1

Sn∑
s=1

wtws|ϵ′P ′
(t)P(s)ϵ− tr[ΩP ′

(s)P(t)]| > τξn

}

≤ Pr

{
max

1≤t≤Sn

max
1≤s≤Sn

|ϵ′P ′
(t)P(s)ϵ− tr[ΩP ′

(s)P(t)]| > τξn

}
≤

Sn∑
t=1

Sn∑
s=1

E

{
[⟨Ω−1/2ϵ,Ω1/2P (wo

t )
′P (wo

s)Ω
1/2Ω−1/2ϵ⟩ − tr(ΩP (wo

t )
′P (wo

s))]
2N

τ 2Nξ2Nn

}

≤ C4τ
−2Nξ−2N

n

Sn∑
t=1

Sn∑
s=1

tr(P (wo
t )

′P (wo
s)Ω(4N)P (wo

s)
′P (wo

t ))
N

= C4τ
−2Nξ−2N

n δmax(Ω(4N))N
Sn∑
t=1

Sn∑
s=1

tr(P (wo
t )

′P (wo
s)P (wo

s)
′P (wo

t ))
N

= C4τ
−2Nξ−2N

n δmax(Ω(4N))N
Sn∑
t=1

Sn∑
s=1

tr(P (wo
t )P (wo

t )
′P (wo

s)P (wo
s)

′)N

≤ C ′
4Sn

(
max

s
δmax[P (wo

s)]
2N
)
τ−2Nξ−2N

n

Sn∑
t=1

[nRn(w
o
t )]

N → 0 as n → ∞,

where C4 and C ′
4 are constants. Thus we obtain Equation (B.12) and Equation (B.13) from Equa-

tion (B.8), which completes the proof.

Lemma 5. Under Assumption 5, for every s = 1, 2, . . . , Sn,

tr(P(s)) = Op

(
K(s) +

rs∑
l=1

λl,(s) ·K2
(s)

)
.
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Proof of Lemma 5. We follow the notations in the proof of Lemma 4.

tr(P ) =
n∑

i=1

ρii

=
n∑

i=1

B′
i(B′LZi

B)−1Bi

=
1

n

n∑
i=1

B′
i

(
Si +

r∑
l=1

λlTl,i +O(||λ||2)U

)−1

Bi

=
1

n

n∑
i=1

B′
i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

S−1
i Bi

=
1

n

n∑
i=1

tr

S−1
i BiB′

i

(
Ik +

r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1


=
1

n

n∑
i=1

tr
(
S−1
i BiB′

i

)
+

1

n

n∑
i=1

tr

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

− Ik


≡ Φ1,n + Φ2,n.

From Equation (B.5), Φ1,n = O(K), furthermore

Φ2,n =
1

n

n∑
i=1

tr

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

− Ik


≤ K

n

n∑
i=1

δmax

S−1
i BiB′

i

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

− Ik

 , by Lemma C.2

≤ K

n

n∑
i=1

δmax

(
S−1
i BiB′

i

)
δmax

(Ik + r∑
l=1

λlS
−1
i Tl,i +O(||λ||2)S−1

i U

)−1

− Ik


=

K

n

n∑
i=1

δmax

(
S−1
i BiB′

i

)
·O

(
r∑

l=1

λl

)
, by Lemma C.3-2 and Equation (B.2)

= O

((
r∑

l=1

λl

)
K2

)
,

where the last inequality is similar to the proof of the rate of Θ2,n in the proof of Lemma 4. Hence,

tr(P ) ≤ Φ1,n + Φ2,n ≤ O (K + (
∑r

l=1 λl)K
2). This completes the proof of Lemma 5.
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Proof of Theorem 2. The proof is similar to Theorem 1 in [69]. Let ρ = max1≤s≤Sn max1≤i≤n ρ
(s)
ii .

Let Kn = max1≤s≤Sn K(s). By Lemma 5, Assumption 7 and Assumption 4, we know

tr(P(s)) = O

(
K(s) +

rs∑
l=1

λl,(s) ·K2
(s)

)
= O(K(s)). (B.14)

Thus, by Assumption 8,

ρ = O(n−1Kn). (B.15)

In addition, by Assumption 7 and Assumption 4,

O(n−1K3
(s)) = O(n3/(1+2αs)−1) = O(n(2−2αs)(1+2αs)) = o(1). (B.16)

Obviously,

Ĉn(w) = Cn(w) + 2n−1 tr[P (w)Ω̂(w)]− 2n−1 tr[P (w)Ω].

Therefore, Equation (3.10) holds if

sup
w∈W

| tr[P (w)Ω̂(w)]− tr[P (w)Ω]|/[nRn(w)] = op(1).

Moreover, by Equation (3.6), Assumption 6, and Lemma 4, we have nRn(w
o
s) ≥ tr(ΩP ′

(s)P(s)) ≥

σ̄2 tr(P ′
(s)P(s)) = O(K(s)). Therefore, by Assumption 4, we have

ξn → ∞. (B.17)
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Let H(s) = diag(ρ
(s)
11 , . . . , ρ

(s)
nn) and H(w) =

∑Sn

s=1 wsH(s). Then we obtain that

sup
w∈W

| tr[P (w)Ω̂(w)]− tr[P (w)Ω|/[nRn(w)]

= sup
w∈W

|[y − P (w)y]′H(w)[y − P (w)y]− tr[H(w)Ω]|/[nRn(w)]

= sup
w∈W

|[ϵ+ µ− P (w)y]′H(w)[ϵ+ µ− P (w)y]− tr[H(w)Ω]|/[nRn(w)]

≤ sup
w∈W

|ϵ′H(w)ϵ− tr[H(w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ϵ′H(w)[P (w)y − µ]|
[nRn(w)]

+ sup
w∈W

|[P (w)y − µ]′H(w)[P (w)y − µ]|
[nRn(w)]

≤ sup
w∈W

|ϵ′H(w)ϵ− tr[H(w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ϵ′H(w)[P (w)µ− µ]|
[nRn(w)]

+ 2 sup
w∈W

|ϵ′H(w)P (w)ϵ− tr[H(w)P (w)Ω]|
[nRn(w)]

+ 2 sup
w∈W

| tr[H(w)P (w)Ω]|
[nRn(w)]

+ sup
w∈W

|[P (w)y − µ]′H(w)[P (w)y − µ]|
[nRn(w)]

≡ D1 +D2 +D3 +D4 +D5.
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For any τ > 0,

Pr(D1 > τ) ≤ Pr

(
sup
w∈W

|ϵ′H(w)ϵ− tr[H(w)Ω]| > τξn

)
≤ Pr

(
max

1≤s≤Sn

|ϵ′H(s)ϵ− tr[H(s)Ω]| > τξn

)
≤ Pr

(
{|ϵ′H(wo

1)ϵ− tr[H(wo
1)Ω]| > τξn}

∪
· · ·
∪

{|ϵ′H(wo
Sn
)ϵ− tr[H(wo

Sn
)Ω]| > τξn}

)
≤

Sn∑
s=1

Pr
(
|ϵ′H(s)ϵ− tr[H(s)Ω]| > τξn

)
≤ τ−2Nξ−2N

n

Sn∑
s=1

E
[
|ϵ′H(s)ϵ− tr[H(s)Ω]|2N

]
≤ C5τ

−2Nξ−2N
n

Sn∑
s=1

(
tr(Ω(4N)1/2H(s)Ω(4N)H ′

(s)Ω(4N)1/2)
)N

by [80],

≤ C5τ
−2Nξ−2N

n δmax(Ω(4N))2NSn max
1≤s≤Sn

(
tr(H2

(s))
)N

≤ C ′
5τ

−2Nξ−2N
n SnO((n−1K2

n)
N)

= ξ−2N
n SnO((n−1K2

n)
N) by Equation (B.17) and Equation (B.16),

where one can obtain the seventh inequality by recognizing that tr(H2
(s)) ≤ tr(H(s))δmax(H(s)) ≤

tr(P(s))ρ, and then using Equation (B.14) and Equation (B.15). C5, C
′
5 are constants.

133



Similarly,

Pr(D3/2 > τ) = Pr

(
sup
w∈W

|ϵ′H(w)P (w)ϵ− tr[H(w)P (w)Ω]|
[nRn(w)]

> τ

)
≤

Sn∑
s=1

Pr (|ϵ′H(s)P (s)ϵ− tr[H(s)P (s)Ω]| > τξn)

≤ τ−2Nξ−2N
n

Sn∑
s=1

E
[
|ϵ′H(s)P (s)ϵ− tr[H(s)P (s)Ω]|2N

]
≤ C6τ

−2Nξ−2N
n

Sn∑
s=1

(
tr(Ω(4N)1/2H(s)P (s)Ω(4N)P (s)′H(s)′Ω(4N)1/2)

)N
by [80],

≤ C6τ
−2Nξ−2N

n δmax(Ω(4N))2NSn max
1≤s≤Sn

δmax(P (s)P (s)′)N max
1≤s≤Sn

(
tr(H(s)2)

)N
≤ C ′

6τ
−2Nξ−2N

n SnO(KN
n )O((n−1K2

n)
N)

= ξ−2N
n SnO(n−1K3

n))
N = o(1) by Equation (B.17) and Equation (B.16),

where the last inequality applies the result tr(H2
(s)) = O(n−1Kn) from the proof of D1, along with

δmax(P (s)P (s)′) ≤ δ2max(P (s)) = O(K(s)) by Lemma 4. C6, C
′
6 are constants.

From Equation (3.6) we have nRn(w) ≥ ∥P (w)µ − µ∥2. Along with the Cauchy-Schwarz

inequality, we have

D2 ≤ 2 sup
w∈W

(
∥ϵ∥2∥H(w)∥2∥P (w)µ− µ∥2/(nRn(w))

2
)1/2

≤ ∥ϵ∥ξ−1/2
n max

1≤s≤Sn

∥H(s)∥

= ∥ϵ∥ξ−1/2
n ρ

= O(n−1/2)ξ−1/2
n O(n−1Kn) by Equation (B.15),

= o(1) by Equation (B.17) and Equation (B.16).

134



Next,

D4 ≤ 2ξ−1
n max

1≤s≤Sn

δmax(H(s))δmax(Ω) tr(P(s)) by Lemma C.1-3,

≤ 2ξ−1
n max

1≤s≤Sn

ρO(1) tr(P(s))

≤ ξ−1
n O(n−1Kn)max

s
tr(P(s)) by Equation (B.15),

= ξ−1
n O(n−1K2

n) by Lemma 5,

= o(1) by Equation (B.17) and Equation (B.16).

Finally,

D5 ≤ ρ sup
w∈W

[(P (w)y − µ)′(P (w)y − µ)/(nRn(w))]

= ρ sup
w∈W

[Ln(w)/Rn(w)]

= O(n−1Kn)O(1) = o(1),

where the second equality comes from Equation (B.11) and Equation (B.15).

Proof of Theorem 3. The proof is similar to Theorem 2 in [59]. First observe that

Ĉ∗
n(w) = Cn(w) + 2n−1 tr[P (w)Ω̂∗]− 2n−1 tr[P (w)Ω].

Thus, Equation (3.12) holds if

sup
w∈W

| tr[P (w)Ω̂∗]− tr[P (w)Ω]|/[nRn(w)] = op(1).
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Recall H(s) and H(w) defined in the proof of Theorem 2. We have

sup
w∈W

| tr[P (w)Ω̂∗]− tr[P (w)Ω|/[nRn(w)]

= sup
w∈W

|[y − P(s∗)y]
′H(w)[y − P(s∗)y]− tr[H(w)Ω]|/[nRn(w)]

= sup
w∈W

|[ϵ+ µ− P(s∗)µ− P(s∗)ϵ]
′H(w)[ϵ+ µ− P(s∗)µ− P(s∗)ϵ]− tr[H(w)Ω]|/[nRn(w)]

≤ sup
w∈W

|ϵ′(In − P(s∗))
′H(w)(In − P(s∗)ϵ)− tr[(In − P(s∗))

′H(w)(In − P(s∗))Ω]|
[nRn(w)]

+ 2 sup
w∈W

|ϵ′(In − P(s∗))
′H(w)(In − P(s∗))µ|

[nRn(w)]

+ sup
w∈W

|µ′(In − P(s∗))
′H(w)(In − P(s∗))µ|

[nRn(w)]

+ sup
w∈W

| tr[P ′
(s∗)H(w)P(s∗)Ω]|
[nRn(w)]

+ 2 sup
w∈W

|P ′
(s∗)H(w)Ω|
[nRn(w)]

≡ D̃1 + D̃2 + D̃3 + D̃4 + D̃5.

We borrow the notation of A(w) from the proof of Theorem 1, and ρ,Kn in the proof of
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Theorem 2. Let B(w) = (In − P(s∗))
′H(w)(In − P(s∗)) = A(wo

(s∗))
′H(w)A(wo

(s∗)), then

Pr(D̃1 > τ) ≤ Pr

(
sup
w∈W

|ϵ′B(w)ϵ− tr[B(w)Ω]| > ξnτ

)
≤ τ−2Nξ−2N

n

Sn∑
s=1

E
[
|ϵ′B(w)ϵ− tr[B(w)Ω]|2N

]
≤ C7τ

−2Nξ−2N
n

Sn∑
s=1

[
tr
(
Ω(4N)1/2B(w)′Ω(4N)B(w)Ω(4N)1/2

)]N
≤ C7τ

−2Nξ−2N
n δ2Nmax(Ω(4N))

Sn∑
s=1

[tr(B(w)′B(w))]
N

≤ C ′
7τ

−2Nξ−2N
n Snρ

2N
[
tr(A(wo

(s∗))
′A(wo

(s∗))A(w
o
(s∗))

′A(wo
(s∗)))

]N
≤ C ′

7τ
−2Nξ−2N

n SnO(n−1Kn)
2N
[
δmax

(
A(wo

(s∗))
′A(wo

(s∗))
)
tr
(
A(wo

(s∗))
′A(wo

(s∗))
)]N

≤ C ′
7τ

−2Nξ−2N
n SnO(n−1Kn)

2N
[
O(K(s∗)) tr

(
A(wo

(s∗))
′A(wo

(s∗))
)]N

≤ C ′
7ξ

−2N
n O(n−1Kn)

2NO(Kn)
NSn

(
tr(In − P(s∗) − P ′

(s∗) + P(s∗)P
′
(s∗))

)N
≤ C ′

7ξ
−2N
n O(n−2K3

n)
NSn(n+O(K(s∗)))

N

= C ′
7ξ

−2N
n SnO(n−2K3

n)
NnN

= ξ−2N
n SnO(n−1K3

n)
N = o(1) by Equation (B.17) and Equation (B.16),

where the sixth inequality comes from Equation (B.15) and Lemma C.1-3, the seventh inequality

is by Lemma 4, and the ninth inequality comes from Lemma 5 and Lemma 5, and tr(A + B) =

tr(A) + tr(B) ≤ | tr(A)|+ | tr(B)|. C7, C
′
7 are constants.

By the Cauchy-Schwarz inequality, we have

D̃2 ≤ 2ξ−1
n ∥In − P(s∗)µ∥ sup

w∈W
∥H(w)(In − P(s∗))ϵ∥

≤ 2ξ−1
n ∥In − P(s∗)µ∥ · ρ(1 + δmax(P(s∗)))∥ϵ∥

≤ 2ξ−1
n (nRn(w))

1/2O(n−1Kn)O(K1/2
n )O(n1/2)

≤ ξ−1/2
n O(n−1K3

n)
1/2 = o(1) by Equation (B.17) and Equation (B.16),
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where the second inequality is by Lemma C.1-5, and the third inequality comes from Equation

(3.6), Equation (B.15) and Lemma 4. Similarly,

D̃3 ≤ ξ−1
n ρ∥(In − P(s∗))µ∥2

≤ ξ−1
n ρ∥(In − P(s∗))µ∥(1 + δmax(P(s∗)))∥µ∥

≤ ξ−1/2
n O(n−1Kn)O(K1/2

n )O(n1/2)

= o(n−1K3
n)

1/2 = o(1),

where we use Equation (3.6), Equation (B.15), Lemma 4, and Assumption 9 in the third inequality.

Next,

D̃4 ≤ ξ−1
n δmax(Ω)ρ · tr(P ′

(s∗)P(s))

≤ ξ−1
n O(n−1Kn)O(Kn), by Equation (B.15) and Lemma 4

= o(n−1K2
n) = o(1).

Finally,

D̃5 ≤ 2ξ−1
n δmax(Ω)ρ · tr(P(s∗))

≤ ξ−1
n O(n−1Kn)O(Kn), by Equation (B.15) and Lemma 4

= o(n−1K2
n) = o(1).
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B.2 Additional Simulation Results

We summarize the mean model average weights for Case (I) and Case (II) outlined in Section

3.3.

Table B.1: Case (I) MMA Weight Summary (Mean).

n σ w1 w2 w3 w4 w5 w6

50 0.25 0.01 0.02 0.10 0.11 0.11 0.66
0.50 0.02 0.03 0.12 0.12 0.12 0.59
1.00 0.05 0.06 0.16 0.14 0.14 0.45
2.00 0.09 0.10 0.14 0.16 0.16 0.35

100 0.25 0.00 0.00 0.09 0.08 0.08 0.75
0.50 0.01 0.01 0.10 0.10 0.10 0.68
1.00 0.02 0.02 0.14 0.14 0.15 0.53
2.00 0.07 0.07 0.16 0.17 0.17 0.36

200 0.25 0.00 0.00 0.08 0.03 0.03 0.86
0.50 0.00 0.00 0.10 0.05 0.05 0.79
1.00 0.01 0.01 0.12 0.11 0.11 0.64
2.00 0.04 0.04 0.16 0.17 0.17 0.42

400 0.25 0.00 0.00 0.05 0.02 0.02 0.92
0.50 0.00 0.00 0.08 0.03 0.03 0.86
1.00 0.01 0.01 0.12 0.06 0.06 0.75
2.00 0.02 0.02 0.16 0.14 0.14 0.53
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Table B.2: Case (II) MMA Weight Summary (Mean).

n σ w1 w2 w3 w4 w5 w6

50 0.25 0.01 0.01 0.09 0.09 0.09 0.70
0.50 0.02 0.02 0.11 0.11 0.11 0.63
1.00 0.05 0.05 0.16 0.14 0.13 0.46
2.00 0.09 0.09 0.16 0.17 0.16 0.33

100 0.25 0.00 0.00 0.06 0.05 0.05 0.83
0.50 0.00 0.00 0.08 0.09 0.09 0.73
1.00 0.02 0.02 0.13 0.14 0.14 0.56
2.00 0.07 0.07 0.17 0.17 0.17 0.36

200 0.25 0.00 0.00 0.04 0.02 0.02 0.92
0.50 0.00 0.00 0.09 0.04 0.04 0.83
1.00 0.01 0.01 0.13 0.10 0.10 0.66
2.00 0.04 0.04 0.17 0.17 0.16 0.43

400 0.25 0.00 0.00 0.02 0.01 0.01 0.97
0.50 0.00 0.00 0.06 0.02 0.02 0.90
1.00 0.00 0.01 0.12 0.05 0.05 0.77
2.00 0.02 0.02 0.15 0.13 0.13 0.55
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B.3 Supplementary Materials

Lemma C.1. For two matrices A and B, we have

1. δmax(AB) ≤ δmax(A)δmax(B),

2. δmax(A+B) ≤ δmax(A) + δmax(B),

3. for any symmetric matrix A and positive semi-definite matrix B, tr(AB) ≤ δmax(A) tr(B),

4. δmax(A) ≤ ∥A∥,

5. ∥Ax∥ ≤ δmax(A)∥x∥, where x is a k × 1 vector, and ∥x∥ denotes the Euclidean norm for a

vector.

Proof: See [81], page 288-290.

Lemma C.2. For a k × k matrix A, tr(A) ≤ k · δmax(A).

Proof of Lemma C.2.

tr(A) =
k∑

i=1

νi(A) ≤
k∑

i=1

δi(A) ≤ k · δmax(A), (C.1)

where the first inequality is from [81], page 291.

Lemma C.3. For a k × k matrix A with δmax(A) = o(1), we have

1. δmax((Ik + A)−1) = O(1),

2. δmax((Ik + A)−1 − Ik) = O(δmax(A)),

3. δmax((Ik + A)−2 − Ik) = O(δmax(A)).

Proof of Lemma C.3. By the result of the Neumann series, for a k × k matrix A, if δmax(A) < 1,

then (Ik + A) is invertible and

(Ik + A)−1 =
∞∑
j=0

(−1)jAj. (C.2)
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With Lemma C.1-1, Equation (C.2), and δmax(A) = o(1) < 1, for Lemma C.3-1 we have

δmax((Ik + A)−1) = δmax

(
∞∑
j=0

(−1)jAj

)

≤
∞∑
j=1

δmax(A
j)

≤
∞∑
j=1

δmax(A)
j

=
1

1− δmax(A)

= O(1).

For Lemma C.3-2, we first observe that

∞∑
j=0

(−1)jAj − Ik = −A+ A2 − A3 + · · ·

Then, similar to the proof of Lemma C.3-1,

δmax((Ik + A)−1 − Ik) = δmax

[(
∞∑
j=0

(−1)jAj

)
− Ik

]

= δmax

(
∞∑
j=1

(−1)jAj

)

≤
∞∑
j=1

(
δmax(A)

j
)

=
δmax(A)

1− δmax(A)

= O(δmax(A)).
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For Lemma C.3-3, notice that,

(
∞∑
j=0

(−1)jAj

)2

− Ik = (Ik − A+ A2 − A3 + · · · )2 − Ik

= (Ik − 2A+ 3A− 4A+ · · · )− Ik

=
∞∑
j=1

(−1)j(j + 1)Aj.

Hence,

δmax((Ik + A)−2 − Ik) = δmax

( ∞∑
j=0

(−1)jAj

)2

− Ik


= δmax

(
∞∑
j=1

(−1)j(j + 1)Aj

)

≤
∞∑
j=1

δmax

(
(−1)j(j + 1)Aj

)
≤

∞∑
j=1

(j + 1)
(
δmax(A)

j
)

=
δmax(A)(2− δmax(A))

(1− δmax(A))2

= O(δmax(A)).

In the next two lemmas, we leave out the subscript (s) for notational ease.

Lemma C.4. Let Sz = n−1
∑n

i=1 BiB′
i 1(Zi = z). Under Assumption 5, for any z ∈ MZ ,

0 < η
z
≤ δmin(Sz) ≤ δmax(Sz) ≤ ηz < ∞

in probability.

Proof of Lemma C.4. Let B̂(X, ẑ; z) = Q
−1/2
z B(x)1(ẑ = z), and B̂i,z = B̂(Xi, Zi; z) = Q

−1/2
z Bi 1(Zi =
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z). Since the matrices considered in this proof are all symmetric and positive semi-definite, their

eigenvalues and singular values coincide. Therefore,

δmax(Q
−1/2
z ) = (δmax(Q

−1
z ))1/2 = (δmin(Qz))

−1/2 = η−1/2

z
.

Then by Assumption 5-1, E[B̂i,zB̂′
i,z] = Ik. In addition, by Lemma C.1-5 and Assumption 5-2,

sup
X∈MX ,Z∈MZ

∥B̂(X,Z; z)∥ ≤ δmax(Q
−1/2
z ) sup

X∈MX ,Z∈MZ

∥B(x)1(Z = z)∥

≤ η−1/2

z
sup

X∈MX

∥B(x)∥

≤ η−1/2

z
ζ0(K) ≡ ζz(K).

Letting Rz = n−1
∑n

i=1 B̃i,zB̂′
i,z, similar to (A.1) in [67] we have

E
[
∥Rz − Ik∥2

]
=

K∑
l=1

K∑
j=1

E

( n∑
i=1

B̂i,z,lB̂i,z,j/n− Ijl

)2


=
K∑
l=1

K∑
j=1

E

[(
n∑

i=1

B̂2
i,z,lB̂2

i,z,j

)]
/n

= E

[
K∑
l=1

B̂2
i,z,l

K∑
j=1

B̂2
i,z,j

]
/n

≤ sup
X,Z

∥B̂(X,Z; z)∥2E

[
K∑
l=1

B̂2
i,z,l

]
/n

≤ ζz(K)2K/n → 0.

Hence, ∥Rz − Ik∥ = op(1). And using 0 ≤ δmin(A) ≤ δmax(A) ≤ ∥A∥ for any matrix A, we have

δmin(Rz)
p→ 1, and δmax(Rz)

p→ 1. Observing that Rz = Q−1
z Sz, with Lemma C.1-(i),

δmax(Sz) ≤ δmax(Qz) δmax(Rz) = ηzδmax(Rz)
p→ ηz < ∞.

144



δmin(Sz) ≥ δmin(Qz) δmin(Rz) = η
z
δmin(Rz)

p→ η
z
> 0.

Lemma C.5. Under Assumption 5-1 and 5-2,

1

n

n∑
i=1

B′
iBi = Op(K).

Proof of Lemma C.5. With Assumptions 5-1 and 5-2, by the result in [67], we have ∥ 1
n

∑n
i=1 BiB′

i−

IK∥ = op(1). In addition, for a k × k matrix A,

tr(A) ≤ | tr(A)| ≤
k∑

i=1

|aii| ≤

(
k∑

i=1

|aii|2
)1/2

·
√
k ≤ ∥A∥ ·

√
k.

Therefore,

1

n

n∑
i=1

B′
iBi = tr

(
1

n

n∑
i=1

BiB′
i

)

= tr

(
1

n

n∑
i=1

BiB′
i − IK

)
+ tr(IK)

≤

∣∣∣∣∣tr
(
1

n

n∑
i=1

BiB′
i − IK

)∣∣∣∣∣+K

≤ K + op(1) ·
√
K = Op(K). (C.3)
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APPENDIX C

APPENDIX FOR THE THIRD ESSAY

C.1 Proofs of Main Theorems

C.1.1 Proof of Theorem 4

We first provide proofs for the first two variations (j = 1, 2) for each type (KS, CvM, AD)

estimators. Notice that for a given w, the univariate KS, CvM, AD type objective functions, are

all norms of JG,i(r, w) with respect to r ∈ [0, 1]. In particular, the KS objective function is the

sup-norm ∥·∥∞, the CvM objective function is the L2-norm ∥·∥2, and the AD objective function is

an adjusted L2-norm ∥ · ∥2,AD (for a proof, see Appendix C.2). Therefore, our PIT-based objective

functions can be written as

F
(1)
G (w) = max

i
∥JG,i∥F , F

(2)
G (w) = ∥JG,1∥F + ∥JG,2∥F , (C.1)

where FG is either KG, CG, or AG, and the norm ∥ · ∥F is the corresponding norm for each type.

Recall that the population counterpart of JG,i(r, w) is J0,i(w) = G−1
∑G

t=1E[Vti(r, w)]. The pop-

ulation counterparts of the objective functions are

F
(1)
0 (w) = max

i
∥J0,i∥F , F

(2)
0 (w) = ∥J0,1∥F + ∥J0,2∥F . (C.2)

Following Appendix A in [75], under Assumption 10 and 11 we have

sup
w∈W

∣∣∣∣∥JG,i∥F − ∥J0,i∥F
∣∣∣∣ a.s.−→ 0, i = 1, 2. (C.3)

Then, for the first variation (j = 1) of each type (F=KS,CvM,AD), using the triangular in-
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equality of norm and the switch of ordering in supremum, we have

sup
w∈W

∣∣∣∣F (1)
G (w)− F

(1)
0 (w)

∣∣∣∣ = sup
w∈W

∣∣∣∣max
i

∥JG,i∥F −max
i

∥J0,i∥F
∣∣∣∣

≤ sup
w∈W

max
i

∣∣∣∣∥JG,i∥F − ∥J0,i∥F
∣∣∣∣

= max
i

sup
w∈W

∣∣∣∣∥JG,i∥F − ∥J0,i∥F |
∣∣∣∣

a.s.−→ 0. (C.4)

For the second variation (j = 2), using the triangular inequality of norm and supremum, we

have

sup
w∈W

∣∣∣∣F (2)
G (w)− F

(2)
0 (w)

∣∣∣∣ = sup
w∈W

∣∣∣∣∥JG,1∥F + ∥JG,2∥F − ∥J0,1∥F − ∥J0,2∥F
∣∣∣∣

≤ sup
w∈W

(∣∣∥JG,1∥F − ∥J0,1∥F
∣∣+ ∣∣∥JG,2∥F − ∥J0,2∥F

∣∣)
≤ sup

w∈W

∣∣∣∣∥JG,1∥F − ∥J0,1∥F
∣∣∣∣+ sup

w∈W

∣∣∣∣∥JG,2∥F − ∥J0,2∥F
∣∣∣∣

a.s.−→ 0. (C.5)

Following the argument in [75], results (C.4), (C.5) along with Assumption 10-4 lead to ŵ
a.s.−→

w∗, where w∗ is the unique minimzier of F (j)
0 , j = 1, 2.

Now we turn to prove the third variation (j = 3). Note that F (3)
G (w) = ∥JG,1 + JG,2∥F , and
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F
(3)
0 (w) = ∥J0,1 + J0,2∥F . Using the triangular inequality of norm, we have

sup
w∈W

∣∣∣∣F (3)
G (w)− F

(3)
0 (w)

∣∣∣∣ = sup
w∈W

∣∣∣∣∥JG,1 + JG,2∥F − ∥J0,1 + J0,2∥F
∣∣∣∣

≤ sup
w∈W

∣∣∣∣∥JG,1 + JG,2 − J0,1 − J0,2∥F
∣∣∣∣

≤ sup
w∈W

∣∣∣∣∥JG,1 − J0,1∥F + ∥JG,2 − J0,2∥F
∣∣∣∣

≤ sup
w∈W

∣∣∣∣∥JG,1∥F − ∥J0,1∥F
∣∣∣∣+ sup

w∈W

∣∣∣∣∥JG,2∥F − ∥J0,2∥F
∣∣∣∣

a.s.−→ 0. (C.6)

C.1.2 Proof of Theorem 5

Following the proof of Theorem 2 in [75], under Assumption 11 and 12 we have

sup
w∈W

∣∣KLICG,j(w)−KLIC0,j(w)
∣∣ a.s.−→ 0, j = 1, 2, 3. (C.7)

The result of j = 3 is immediately following the proof in [75]. For j = 1, using triangular

inequality and the switch of ordering of supremum, we have we have

sup
w∈W

∣∣H(1)
G (w)−H

(1)
0 (w)| = sup

w∈W

∣∣max
i

KLICG,i(w)−max
i

KLIC0,i(w)
∣∣

≤ sup
w∈W

max
i

∣∣KLICG,i(w)−KLIC0,i(w)
∣∣

= max
i

sup
w∈W

∣∣KLICG,i(w)−KLIC0,i(w)
∣∣

a.s.−→ 0. (C.8)
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For j = 2, using triangular inequality, we have

sup
w∈W

∣∣H(2)
G (w)−H

(2)
0 (w)| = sup

w∈W

∣∣KLICG,1(w) + KLICG,2(w)−KLIC0,1(w)−KLIC0,2(w)
∣∣

≤ sup
w∈W

(∣∣KLICG,1(w)−KLIC0,1(w)
∣∣

+
∣∣KLICG,2(w)−KLIC0,2(w)

∣∣)
≤ sup

w∈W

∣∣KLICG,1(w)−KLIC0,1(w)
∣∣

+ sup
w∈W

∣∣KLICG,2(w)−KLIC0,2(w)
∣∣

a.s.−→ 0. (C.9)

Similar to the proof in Theorem 4, results (C.8), (C.9) along with Assumption 12-5 lead to ŵ
a.s.−→

w∗, where w∗ is the unique minimzier of H(j)
0 , j = 1, 2.

C.2 Supplementary Materials

In this appendix I show that Anderson-Darling Statistic is a Norm. The key is to check the

triangular inequality. For f : X → R, let

∥f∥ =

(∫
X

f 2(x)

x(1− x)
dx

)1/2

.

Then, for 1 ≤ p < ∞,

∫
|f(x) + g(x)|p

x(1− x)
dx ≤

∫
(|f(x)|+ |g(x)|)|f(x) + g(x)|

x(1− x)
dx

=

∫
|f(x)|

[x(1− x)]1/p
|f(x) + g(x)|p−1

[x(1− x)](p−1)/p
dx

+

∫
|g(x)|

[x(1− x)]1/p
|f(x) + g(x)|p−1

[x(1− x)](p−1)/p
dx

= A+B. (C.10)
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Using Holder inequality,

A ≤
[ ∫

|f(x)|p

x(1− x)
dx

] 1
p
[ ∫ (

|f(x) + g(x)|
[x(1− x)]1/p

)(p−1) p
p−1

dx

]1− 1
p

=

[ ∫
|f(x)|p

x(1− x)
dx

] 1
p
[ ∫ (

|f(x) + g(x)|p

x(1− x)

)
dx

]1− 1
p

. (C.11)

Similar argument works for B. Then let p = 2, applying simple algebra, we obtain the result

∥f + g∥ ≤ ∥f∥+ ∥g∥.
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