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ABSTRACT 

 

Slickwater fracturing is one of the key techniques for successful development of 

unconventional reservoirs. However, due to the low viscosity of slickwater, proppant-suspending 

capacity is very limited. Proppants settle down quickly in the fracture and form a proppant bed. 

The traditional continuous model for simulating proppant transport cannot capture the main 

physics of proppant transport in the slickwater and predict proppant placement. The models of 

Computational Fluid Dynamics Discrete Element Method (CFD-DEM) are computationally 

demanding and only can simulate proppant transport in the small-scale fractures. This study 

applied the Multiphase Particle-in-Cell (MP-PIC) model to simulate the proppant transport process 

in a field-scale fracture.  

The present simulation attempts to study the effect of crucial factors (fracture height, 

proppant concentration, fluid viscosity, and injection rate) on proppant placement. We constructed 

a 180 m long vertical fracture for simulation. When we injected 40/70 mesh proppants into this 

field scale fracture, the case studies can be performed. Our simulation results show as follows: 

⚫ When the fracture reaches a certain height, increasing fracture height has an insignificant 

effect on proppant placement. Decreasing this certain height can result in longer proppant 

length due to a stronger wash-out effect. 

⚫ The viscosity is sensitive to the proppant height. The proppant bed height will decrease 

significantly with a larger fluid viscosity. 

⚫ The injected slurry with relatively low proppant concentration can form a longer proppant 

length. 
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⚫ Changing the injection rate without adding more proppant will not influence the final 

proppant distribution. 

⚫ Proppants injected at different times can distribute differently with various injection rate. 

⚫ The higher injection rate and proppant concentration can respectively help injected 

proppants reach proppant dune height and maximum fracture length faster. 
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NONMENCLATURE 

 

MP-PIC           Multiphase Particle-in-Cell 

CFD              Computational Fluid Dynamics 

DEM              Discrete Element Method 

𝛼𝑓                Fluid volume fraction 

𝜌𝑓                Fluid density, kg/m3 

𝑡                 Time, s 

𝑢𝑓                Fluid velocity, m/s 

𝑝                     Fluid pressure, Pa 

𝐹𝑓𝑝               Momentum change between fluid and particle, kg∙m/s 

𝑔                     Gravity acceleration, m/s2 

𝜏𝑓                Fluid microscopic viscous stress, Pa 

𝑆𝑖𝑗                Nonhydrostatic stress tensor, Pa 

𝜏𝑖𝑗                Deviatoric stress, Pa 

𝜇𝑓                Fluid viscosity, Pa∙s 

𝛿𝑖𝑗               Isotropic second-order tensor, Pa 

𝜙                Probability distribution 

𝑥                    Particle position, m 

𝑢𝑝               Particle velocity, m/s 

𝜌𝑝               Particle density, kg/m3 

𝑉𝑝               Particle Volume, m3
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(
𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙

𝐷

          Collision damping term 

𝐴               Particle acceleration, m/s2 

𝜏𝑝               Resistance of particles, Pa 

𝐷𝑝              Drag force coefficient  

𝐶𝑑              Dimensionless coefficient of interphase drag force 

𝑅𝑒              Reynolds number 

𝑟𝑝               Radius of particles, m 

𝛼𝑐𝑝              Particle volume fraction under condition of close packing 

L               Fracture length, m 

W               Fracture width, m 

H                Fracture height, m 

C               Proppant concentration, kg/m3 

D               Proppant diameter, m 

𝑉               Inlet slurry velocity, m/s   
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1. INTRODUCTION* 

 

1.1 Hydraulic Fracturing 

Hydraulic fracturing has become the main solution for hydrocarbon recovery in 

unconventional reservoirs. During the process, the fluid is pumped into the reservoir at sufficiently 

high pressure, and the reservoir rock will crack. Keep pumping of the fluid at this high pressure 

will propagate the fracture into the subsurface reservoir. A slurry can be pumped into the fracture 

to generate a slab-shaped zone of high permeability known as a hydraulic fracture. The created 

fracture geometry is closely related to the well productivity (Chu et al., 2019a; Chu et al., 2019b； 

Zhang et al., 2018; Zhang et al., 2020; Li et al., 2019; Li et al., 2020; Guo et al., 2019). The main 

controlling factor of the conductivity and closure behaviors of induced fractures is the distribution 

of injected proppant (Liu et al., 2017; Liu et al., 2018). Therefore, understanding the proppant 

transport behavior plays an important role in increasing well productivity. 

 

1.2 Proppant Transport in Slickwater Fracturing 

Slickwater fracturing has commonly been used in unconventional resources. It not only 

reduces the environmental impact and cost but also generates the complexity of created fracture 

networks (Tang et al., 2019; Weng, 2015; Wu et al., 2018; Rui et al., 2017). However, proppant 

transport behaviors are complex in slick water. This is because the proppant carried by low viscous 

fluid will settle early instead of suspension, leading to the unpropped area and reduced fracture 

 
* Reprinted with permission from “Numerical Study of Proppant Transport in Field-scale Fractures for Slickwater Fracturing” by 

Zhang, Z., Mao, S., Shang, Z., Chun, T and Wu, K. 2020. Proceedings of the 54th US Rock Mechanics/Geomechanics 

Symposium, Copyright [2020] by American Rock Mechanics Association.  paper ARMA 20-1170 
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conductivity (Donaldson et al., 2014). As a result, numerous studies of numerical simulations and 

experimental observations of proppant transport were conducted. 

 

1.3 Literature Review 

1.3.1 Proppant Transport Experiments 

Kern et al. (1959) conducted the first experiment to explore proppant transport. Schols 

and Visser (1974) then introduced the three consecutive phases of proppant bank buildup and 

confirmed those phases by experiment. Blot and Medlin (1985) developed a theory of three types 

of sand transport behaviors using an analytical model and verified the theory by experiment 

(Medlin et al., 1985). The three sand transport behaviors are viscous drag, turbulence and bed 

load transport. Babcock et al. (1967) found that factors including proppant diameters and density, 

pumping rate, and fluid viscosity can influence proppant distribution differently in laminar flow 

and turbulence flow. The proppant dune shape in constant fracture geometry can also be 

predicted based on those factors. Clark and Guler (1983) reported that the proppant settling 

velocity is related to fluid and proppant parameters. The large-scale model was firstly introduced 

by Sievert et al. (1981) to investigate the effects of proppant concentration and fluid viscosity in 

both Newtonian and non-Newtonian fluid. Shah and Lord (1990) proposed that the critical 

deposition and resuspension velocity of fracturing fluid can slightly increase in low viscous fluid 

with an increasing proppant concentration. McMechan and Shah (1991) used a field-scale 

experiment to study the impact of concentration on proppant settling in different fracturing 

fluids. Barree and Conway (1994) used commercial software and found the injection rate and 

proppant ramping can modify the proppant placement. Clark and Zhu (1995) demonstrated the 
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effect of increasing viscosity and its different effects of Newtonian and non-Newtonian fluids. 

Later on, the effect of fracture width on proppant placement was studied in the experiment of Liu 

and Sharma (2005). Sahai et al. (2014) examined and explained this effect from primary to 

secondary fracture slots in complex fracture networks experiment. Alotaibi and Miskimins 

(2015) extended this work and developed an analytical model to predict the proppant bed height 

in the primary fracture for 30/70 mesh sand. The same lab model was used by Ahmad and 

Miskimins (2019) to study the effect of proppant type. Analysis of factors controlling proppant 

transport became popular in experiments of recent years. Mohammed Ba Geri and Abdulmohsin 

Imqam (2019) investigated the impact of perforation technique, shear rate and proppant size on 

proppant distribution. Four dominant mechanisms of proppant transport were noticed during the 

experiment. Tong and Mohanty (2016); Chun et al. (2019a) both tested the effect of proppant 

size and injection rate in a T-shaped fracture. The effect of inclination angle and proppant size in 

an inclined fracture were investigated by Mohammed Ba Geri (2018); Chun et al. (2019b). 

Although recent experimental works have been carried out to study proppant transport behaviors 

in complex fractures, no existing experiment study focused on the proppant transport in field-

scale vertical fracture. Moreover, scaling up observations from small laboratory scale to field 

scale can cause unavoidable uncertainties. Therefore, numerical models were developed to 

provide complementary insights to learnings from experimental work. 

 

1.3.2 Proppant Transport Numerical Simulations 

Two main approaches, as the basis of numerical models, are accessible to simulate the 

mechanism of two-phase flow: Eulerian-Eulerian method and Eulerian-Lagrangian method. The 
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Eulerian-Eulerian model considers both the fluid and particle as interpenetrating continua and 

solves both momentum conservation equation separately (Ariyaratne et al., 2018). Kong et al. 

(2016) once validated this model by showing consistency with the experimental observation by 

Clark (2006). By employing this model, Kong and McAndrew (2017) indicate fracture width and 

viscosity can significantly impact on proppant placement, and the dune height will rise with an 

increasing injection rate. This model is reported to be applied by major large-scale proppant 

transport processes in previous work because it takes less computational cost (Zeng et al., 

2019)). Since this approach has limitations in capturing variations of particle properties, the 

Eulerian-Lagrangian method has been used. This approach treats particles by tracking a large 

number of particles using a Newtonian equation. As an example, the Computational Fluid 

Dynamics Discrete Element Method (CFD-DEM) is commonly used in recent work for its high 

accuracy (Zhang et al., 2019). Kou et al. (2018a) validated CFD-DEM and extend this work to 

solve large scale problems (Kou et al., 2018b). However, the computational cost is too high to 

address the real field problems so that the CFD-DEM is unable to simulate the physical 

behaviors of proppant transport in the field-scale. 

 

1.4 Problem Summary 

From previous experimental observations and numerical simulations of proppant 

transport, we summarize the distinct behaviors of proppant delivering in hydraulic fracturing: 

⚫ The proppant placement differs with key factors, such as proppant diameter, density and 

concentration, pumping rate, fluid viscosity, and fracture geometry (Babcock et al., 1967; 

Mao et al., 2019; Zeng et al., 2019; Hu et al., 2018; Chun et al., 2019). 
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⚫ The relatively small grades of proppant (40/70 and 100 mesh) carried by a low viscosity 

fluid with friction reducer to allow high pump rate is the preferred fracturing treatment in 

an unconventional gas play (Patel et al., 2014; Ba Geri et al., 2019). 

⚫ Viscosity has a complex impact on proppant placement. When fluid viscosity is between 

0.1cp to 10 cp (Zeng et al., 2019), the proppant bed height will decrease with higher 

viscosity fluid. While fluid viscosity increases from 10 cp to 100 cp, higher viscosity 

leads to a higher proppant bed in fracture (Kong and McAndrew, 2017). 

⚫ The proppant bed height can first increase and then decrease with the increase of 

proppant concentration (Hu et al., 2018). 

⚫ With an increasing injection rate, the proppant length will increase while the proppant 

equilibrium height decreases. Besides, the proppant will evenly distribute (Hu et al., 

2018). 

⚫ The higher fracture height can suspend more proppant and transport proppant further in a 

small-scale simulation (Suri et al., 2019). The effect of fracture height is negligible for 

very high fracture in large scale simulation, and the decrease of fracture height can 

increase proppant bed wash-out and increase proppant transport distance (Hu et al., 

2018).   

Although propositions from previous works can give us intuitive insights into the 

mechanism of proppant settling, we found that fractures that used in the majority of numerical 

and experimental works are in a small scale (within 10 m) rather than a field-scale (larger than 

100 m). Despite some recent numerical works performed validation by reaching the consistency 
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with existing lab work, scaling up observations to a field scale is problematic when focusing 

fracture geometry. 

 In our previous paper (Zhang et al., 2020), the three-dimensional MP-PIC method was 

applied to explore the factors controlling proppant transport in field-scale fractures. The MP-PIC 

method was verified to be a powerful tool for proppant transport simulation that can take 

massive computational cost. Moreover, with the analysis of proppant distribution in the age plot, 

the detailed mechanism which can help us address complicated engineering problems was 

captured.  

 

1.5 Objectives 

In this thesis, the same input parameter was applied at this time, and one more case 

concerning the effect of fracture height was added to the original 14 cases. We would draw 

additional age plots and one particle settling plot to figure out the mechanism behind the effects 

of fracture height, fluid viscosity, proppant concentration and injection rate. The results of this 

thesis would better explain the effects of each factor. 
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2. METHODOLOGY* 

 

2.1 Introduction of Multiphase Particle-in-Cell Method (MP-PIC) 

The MP-PIC method termed in the Eulerian-Lagrangian method was introduced by 

(Andrews and O'Rourke, 1996) as an extension of the PIC methods by separating gas and particle 

velocities. For the particle phase, this method applies a Liouville equation for the distribution 

function of particles, including particle positions, velocities, and sizes. While it solves the fluid as 

the continuous phase by the mass and momentum equations, which was a typical Eulerian 

continuum description (Ariyaratne et al., 2018). This coupled feature can help produce a 

formulation that can readily handle particle characteristics. Moreover, this model divides the 

distribution of particles into finite computational parcels according to their similarity of mass 

density, volume, velocity, and location. This characteristic allows this method to significantly 

reduce computational requirements with a small impact on its accuracy. For these reasons, this 

model is suitable for addressing proppant transport in the field scale. 

 

2.2 Governing Equations for MP-PIC 

The methodology in the thesis attempted to replicate Zhang et al. (2020)’s governing 

equations that followed Mao et al. (2019)’s and Mao et al. (2020)’s work since the same model 

code was applied. 

 
* Reprinted with permission from “Numerical Study of Proppant Transport in Field-scale Fractures for Slickwater Fracturing” by 

Zhang, Z., Mao, S., Shang, Z., Chun, T and Wu, K. 2020. Proceedings of the 54th US Rock Mechanics/Geomechanics 

Symposium, Copyright [2020] by American Rock Mechanics Association.  paper ARMA 20-1170 
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2.2.1 Governing Equations for Fluid Phase 

The fluid motion is governed by 3D equations in the Eulerian framework shown as follows: 

𝜕(𝛼𝑓𝜌𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝛼𝑓𝜌𝑓𝑢𝑓) = 0  ,                                (1) 

where the 𝛼𝑓 is the fluid volume fraction, 𝜌𝑓 is the fluid density (in kg/m3), 𝑡 is the time (in s) 

and 𝑢𝑓 is the fluid velocity (in m/s). 

The momentum equation is given by a modification of the Navier-Stokes equations,  

𝜕(𝛼𝑓𝜌𝑓𝑢𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝛼𝑓𝜌𝑓𝑢𝑓𝑢𝑓) = −𝛻𝑝 − 𝐹𝑓𝑝 + 𝛼𝑓𝜌𝑓𝑔 + 𝛻 ⋅ 𝛼𝑓𝜏𝑓  ,             (2) 

where 𝑝 is the fluid pressure (in Pa), 𝐹𝑓𝑝 is the momentum change between fluid and particle (in 

kg∙m/s), 𝑔 is the gravity acceleration (in m/s2) and 𝜏𝑓 is fluid microscopic viscous stress (in Pa).  

The nonhydrostatic stress tensor 𝑆𝑖𝑗 is solved by the following equation, 

𝑆𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)  ,                                  (3) 

where 
𝜕𝑢𝑖

𝜕𝑥𝑗
 and 

𝜕𝑢𝑗

𝜕𝑥𝑖
 are both the deformation tensor (in Pa). 

The equation for determining the stress of Newtonian fluid is shown below,  

𝜏𝑖𝑗 = 2𝜇𝑓𝑆𝑖𝑗 −
2

3
𝜇𝑓𝛿𝑖𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
  ,                             (4) 

where 𝜏𝑖𝑗 is the deviatoric stress (in Pa), 𝜇𝑓 is the fluid viscosity (in Pa∙s) and 𝛿𝑖𝑗 is the isotropic 

second-order tensor (in Pa). 

 



 

9 

 

 

 

2.2.2 Kinetic Equations for Particle Phase 

The particle phase is governed by the probability distribution function, 𝜙(𝑥, 𝑢𝑝, 𝜌𝑝, 𝑉𝑝, 𝑡), 

which describes the dynamic behavior of particles, 

𝜕𝜙

𝜕𝑡
+ 𝛻 ⋅ (𝜙𝑢𝑝) + 𝛻𝑢𝑝

⋅ (𝜙𝐴) = (
𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙

𝐷

  ,                    (5) 

where 𝜙  is the probability distribution proposed in (Andrews and O'Rourke, 1996), 𝑥  is the 

particle position (in m), 𝑢𝑝 is particle velocity (in m/s), 𝜌𝑝 is particle density (in kg/m3) and 𝑉𝑝 

is the particle volume (in m3). (
𝜕𝑓

𝜕𝑡
)

𝑐𝑜𝑙𝑙

𝐷

 is the collision damping term, 𝐴 is particle acceleration 

(in m/s2) respectively impacted by an interphase drag force, dynamic pressure gradient, dynamic 

pressure gradient, gravity and interparticle stress gradient,  

𝐴 =
𝑑𝑢𝑝

𝑑𝑡
= 𝐷𝑝(𝑢𝑓 − 𝑢𝑝) −

1

𝜌𝑝
𝛻𝑝 + 𝑔 −

1

𝛼𝑝𝜌𝑝
𝛻𝜏𝑝 ,                 (6) 

where 𝜏𝑝 at the RHS of the following equation represents the resistance of particles (in Pa),  

𝐷𝑝 = 𝐶𝑑
3

8

𝜌𝑓

𝜌𝑝

|𝑢𝑓−𝑢𝑝|

𝑅𝑝
  ,                                 (7) 

where 𝐷𝑝 is the drag force coefficient from the model developed by (Wen, 1966), and is shown as 

follows: 

𝐶𝑑 = {

24

𝑅𝑒
(𝛼𝑓

−2.65 +
𝑅𝑒

2
3

6
𝛼𝑓

−1.78) , 𝑅𝑒 < 1000 ,

0.44𝛼𝑓
−2.65, 𝑅𝑒 > 1000

                 (8) 

𝑅𝑒 =
2𝜌𝑓|𝑢𝑓−𝑢𝑝|𝑟𝑝

𝜇𝑓
 ,                                   (9) 
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𝑟𝑝 = (
3𝑉𝑝

4𝜋
)

1

3
  ,                                    (10) 

where 𝐶𝑑 represents the dimensionless coefficient of interphase drag force. 𝑅𝑒 is the Reynolds 

number governed by Eq. (9). 𝑟𝑝 is the radius of particles (in m) and 𝑉𝑝 is the particle volume (in 

m3). 

In this thesis, an extension of the model of (Harris and Crighton, 1994) is applied for 

determining isotropic interparticle stress: 

𝜏𝑝 =
𝑃𝑠𝛼𝑝

𝛽

𝑚𝑎𝑥[𝛼𝑐𝑝−𝛼𝑝,𝜀(1−𝛼𝑝)]
 ,                             (11) 

where 𝑃𝑠 is a constant with units of pressure, 𝛽 is a constant (Auzerais et al., 1988) recommend 

between 2 to 5, 𝛼𝑐𝑝 is the particle volume fraction under the condition of close packing, 휀 is a 

number on the order of 10-7, this interparticle stress enables the volume fraction to reach possible 

close pack (Snider, 2001). 

 

2.2.3 Interphase coupling 

The rate of momentum exchange 𝐹𝑓𝑝 when the momentum of the fluid is coupling to the 

particle is defined from the particle population distribution as: 

𝐹𝑓𝑝 = ∭ 𝜙𝑉𝑝𝜌𝑝 [𝐷𝑝(𝑢𝑓 − 𝑢𝑝) −
1

𝜌𝑝
𝛻𝑝] 𝑑𝑉𝑝𝑑𝜌𝑝𝑑𝑢𝑝 .                (12) 
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2.3 Model Validation 

The validation process of this model is achieved by comparing our results with small scale 

indoor lab results of Tran et al. (2017) and the results of CFD-DEM (Kou et al., 2018a). This 

experiment examined proppant transport in a high viscosity fluid. In the experiment, 30/60 mesh 

size sand was injected in linear guar (3.5 cp) into a vertical slot for 210 seconds. Figure 1 shows 

the small-scale experimental slot. The same proppant transport behavior of the experiment was 

captured in the simulation result of Kou et al. (2018a). We applied the same parameters in our 

model to compare both of their results. The input parameters collected from the experiment of 

Tran et al. (2017) were listed in Table 1. 

 

Figure 1. Proppant Transport Slot Equipment in Experiment of Tran et al. (2017) 
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Table 1. Simulation Parameters for Model Validation, Reprinted from Zhang (2020) 

Parameter Symbol Unit Value 

Fracture length L m 1.2 

Fracture width W m 0.005 

Fracture height H m 0.3 

Proppant concentration C kg/m3 99 

Proppant diameter D mm 0.25~0.6 

Proppant density 𝜌𝑝 kg/m3 2650 

Clean fluid density 𝜌𝑓 kg/m3 1000 

Clean fluid viscosity 𝜇𝑓 Pa*s 3.5×10-3 

Inlet slurry velocity 𝑉 m/s 0.014 

 

After we completed the simulation in the same scale fracture, consistent simulation results 

were obtained. Figures 2-7 show the comparison between simulation and experiment result of 

proppant distribution after 30, 90, 180 s injection. As is shown in the figures, regardless of the 

small difference of proppant suspension, the MP-PIC method captured the complex physics of 

particles. Besides, compared to the experiment results shown in half of the experimental slot, our 

simulation results obtained the same size proppant beds for every time step.  
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Figure 2. Proppant Volume Fraction using MP-PIC Method with 30 s Injection 

 

 
Figure 3. Experiment Observation of Tran et al. (2017) with 30 s Injection 

 

 
Figure 4. Proppant Volume Fraction using MP-PIC Method with 90 s Injection 
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Figure 5. Experiment Observation of Tran et al. (2017) with 90 s Injection 

 

 
Figure 6. Proppant Volume Fraction using MP-PIC Method with 180 s Injection 

 

 
Figure 7. Experiment Observation of Tran et al. (2017) with 180 s Injection 
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Figure 9 shows the experiment observation at 210 s, the equilibrium dune height was at 

half of the experimental slot height, and fewer proppants were suspended on the top of the dune. 

Proppant length was at one-quarter of the slot length. Figure 8 shows the consistent proppant 

distribution in our simulation results, proppants with low volume fraction were suspended at the 

same position, the proppant length and height are almost the same as that in the experiment. After 

that, we plot the particle settling velocity to compare results in CFD-DEM. As shown in Figure 

11, the proppants with relatively high velocity (shown in red color) entered the fracture, moved 

along the top of the dune, and gradually lose momentum. Finally, they settled at nearly zero 

velocity (shown in dark blue color) (Kou et al., 2018a). Figure 10 reveals the same trend of particle 

settling velocity from the simulation result of MP-PIC model.  

 

Figure 8. Proppant Volume Fraction using MP-PIC Method with 210 s Injection, 

Reprinted from Zhang (2020) 
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Figure 9. Experiment Observation of Tran et al. (2017) with 210 s Injection, Reprinted 

from Zhang (2020) 

 

 
Figure 10. Particle Settling Velocity in Simulation Result Using the MP-PIC model, 

Reprinted from Zhang (2020) 

 

 
Figure 11. Particle Settling Velocity in Simulation Result of Kou et al. (2018), Reprinted 

from Zhang (2020) 
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Base on the comparison between the experiment results and CFD-DEM simulation 

results, we found that the MP-PIC method can provide accurate simulation results of proppant 

placement. Other than that, it can capture the crucial physical features of the particle-fluid 

system. Therefore, our proposition based on the simulation result of this model can be 

convincing. 
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3. RESULT AND DISCUSSION* 

3.1 Case Setup 

A field-scale vertical rectangular slot is constructed as a half wing of a fracture for our 

simulation. The length and width of this slot are respectively 180 m (590 ft) and 7.62 mm (0.3 in). 

A 3 m (118 in) long and the same wide rectangular injection area was designed. Although the 

injection length is defined to be larger than the actual wellbore size, since the injection flow has a 

very high velocity and varied from 9.5 to 38 m/s, the simulation would not get affected by this 

modification (Tsai et al., 2012). The computational cell configuration of this vertical fracture slot 

is shown in Figure 12. The flow starts from the center of the left side and exits through the right 

side of the slot. Additionally, a nonuniform size of 40/70 mesh sand is used. The slot size and sand 

are kept constant for all cases in the simulation. Magnitudes of fracture height, viscosity, proppant 

concentration, and injection rate for each case are listed in Table 2. 

 
Figure 12. Computational Cell Configuration of A Vertical Fracture, Reprinted from 

Zhang (2020) 

 

The fracture height of the base case (case 1) was established at 30 m. 2 lb/gal of 40/70 

mesh sand was pumped at 15 bpm into the fracture for 30 mins. The fluid viscosity was 1 cp for 

 
* Reprinted with permission from “Numerical Study of Proppant Transport in Field-scale Fractures for Slickwater Fracturing” by 

Zhang, Z., Mao, S., Shang, Z., Chun, T and Wu, K. 2020. Proceedings of the 54th US Rock Mechanics/Geomechanics 

Symposium, Copyright [2020] by American Rock Mechanics Association.  paper ARMA 20-1170 
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slickwater. Since the effect of fracture height and fluid viscosity on proppant transport is complex, 

another 5 cases (cases 2-6) and 5 cases (cases 7-11) were respectively configured to study the 

impact of fracture height and fluid viscosity on proppant transport. After that, two sets of 2 cases 

(cases 12-13 and cases 14-15) were conducted accordingly to study the effect of proppant 

concentration and injection rate. For these 4 cases, injection time was normalized to keep injected 

proppant volume the same. All parameters of the total 15 cases can be found in Table 2. 

Table 2. Simulation Parameters for Sensitivity Analysis, Reprinted from Zhang (2020) 

No. Fracture Height 

(m) 

Viscosity 

(10-3 Pa*s) 

Concentration 

(kg/m3) 

Injection Rate 

(m/s) 

Time 

(mins) 

1 30 1 240 

(2 lb/gal) 

1.74 

(15 bpm) 

30 

2 15 1 240 1.74 30 

3 25 1 240 1.74 30 

4 45 1 240 1.74 30 

5 75 1 240 1.74 30 

6 90 1 240 1.74 30 

7 30 0.5 240 1.74 30 

8 30 2 240 1.74 30 

9 30 3 240 1.74 30 

10 30 10 240 1.74 30 

11 30 30 240 1.74 30 

12 30 1 180 

(1.5 lb/gal) 

1.74 24 

13 30 1 300 

(2.5 lb/gal) 

1.74 40 

14 30 1 240 1.16 45 
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(10 bpm) 

15 30 1 240 2.32 

(20 bpm) 

22.5 

 

3.2 Case Study 1 – Base Case 

Figures 13-15 show the simulation results of the base case. Three stages different from 

phases of (Schols and Visser, 1974) were presented in our simulation of proppant transport with 

slick water in a field-scale fracture. In the early stage, most proppants quickly settled and formed 

a uniform proppant bed near the injection point. Fewer proppants were suspended on the top. In 

the mid stage, without reaching the equilibrium height near the injection point, the proppant bed 

greatly grew in both length and height. More proppants placed far from the injection point. For the 

late stage, when the proppant bed at the middle of fracture reached the equilibrium proppant height, 

some proppants went further and accumulated to create the proppant dune eventually.  

 

Figure 13. Proppant Transport in the Early Stage 
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Figure 14. Proppant Transport in the Mid Stage 

 

 

Figure 15. Proppant Transport in the Late Stage 

 

3.3 Case Study 2 – Fracture Height 

We investigated the effect of fracture height by applying fractures with different heights. 

The six different fracture heights are 15, 25, 30, 45, 75, and 90 m. The other parameters can be 

found in Table 2 (cases 1-6). Figures 16-33 include the contour plot of those cases. The final 

proppant length and suspension area from those figures were estimated by using Image J and listed 

in Table 3. It can be observed that the proppant length is different only for 15 m fracture height 

for every time step. This observation is consistent with the conclusion of Hu et al. (2018). 

Proppants injected into a fracture with smaller height has the strongest wash-out effect, in which 
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the newly injected proppants drove more settled proppants near the injection place to remobilize. 

Consequently, the proppant length with 15 m fracture height is the largest among these 5 cases, 

while its proppant settlement near the injection point is the least. On the other hand, once fracture 

height reaches to a certain value, increasing fracture height is verified to have a negligible impact 

on both proppant bed height and length. Proppant lengths of 75 and 90 m fracture heights got 

slightly longer than the base case as the injection proceeds. This result is caused by the influence 

of the gravity settling effect of particles. 

 
Figure 16. Proppant Volume Fraction Distribution at 10 min for Fracture Height 15 m, 

Reprinted from Zhang (2020) 

 

 

Figure 17. Proppant Volume Fraction Distribution at 20 min for Fracture Height 15 m, 

Reprinted from Zhang (2020) 

 



 

23 

 

 

 

 

Figure 18. Proppant Volume Fraction Distribution at 30 min for Fracture Height 15 m, 

Reprinted from Zhang (2020) 

 

 
Figure 19. Proppant Volume Fraction Distribution at 10 min for Fracture Height 25 m 

 

 
Figure 20. Proppant Volume Fraction Distribution at 20 min for Fracture Height 25 m 
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Figure 21. Proppant Volume Fraction Distribution at 30 min for Fracture Height 25 m 

 

 

Figure 22. Proppant Volume Fraction Distribution at 10 min for Fracture Height 30 m, 

Reprinted from Zhang (2020) 

 

 
Figure 23. Proppant Volume Fraction Distribution at 20 min for Fracture Height 30 m, 

Reprinted from Zhang (2020) 
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Figure 24. Proppant Volume Fraction Distribution at 30 min for Fracture Height 30 m, 

Reprinted from Zhang (2020) 

 

 

Figure 25. Proppant Volume Fraction Distribution at 10 min for Fracture Height 45 m, 

Reprinted from Zhang (2020) 
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Figure 26. Proppant Volume Fraction Distribution at 20 min for Fracture Height 45 m, 

Reprinted from Zhang (2020) 

 

 
Figure 27. Proppant Volume Fraction Distribution at 30 min for Fracture Height 45 m, 

Reprinted from Zhang (2020) 
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Figure 28. Proppant Volume Fraction Distribution at 10 min for Fracture Height 75 m, 

Reprinted from Zhang (2020) 
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Figure 29. Proppant Volume Fraction Distribution at 20 min for Fracture Height 75 m, 

Reprinted from Zhang (2020) 

 

 
Figure 30. Proppant Volume Fraction Distribution at 30 min for Fracture Height 75 m, 

Reprinted from Zhang (2020) 
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Figure 31. Proppant Volume Fraction Distribution at 10 min for Fracture Height 90 m, 

Reprinted from Zhang (2020) 
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Figure 32. Proppant Volume Fraction Distribution at 20 min for Fracture Height 90 m, 

Reprinted from Zhang (2020) 
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Figure 33. Proppant Volume Fraction Distribution at 30 min for Fracture Height 90 m, 

Reprinted from Zhang (2020) 

 

Table 3. Effects of Fracture Height on the Proppant Distribution 

Fracture Heights 15 m 25 m 30 m 45 m 75 m 90 m 

Proppant Suspended (m2) 520  830  792  1715  771  800  

Proppant Length (m) 165.9  141.9  139.3  141.7  144  151  

 

Figures 34-39 provide the age plot of proppant distribution for each fracture height after 

30 min injection. The warmer colors in the figures represent the proppant injected earlier, and the 

proppant injected later is in colder colors. Results from figures confirmed the association 

between small fracture height and stronger wash-out effect. According to Figures 34-36, the old 
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proppant mixed with following newly injected proppant and transported near the outlet. 

Moreover, this effect can be mitigated by increasing fracture height. It can be seen in Figures 

37-39 that the proppant injected earlier and the newly injected proppant were layered with 

fracture heights of 45 m, 75 m, 90 m. We drew the particle settling velocity for 15 m fracture 

height to investigate the mechanism further. As is shown in Figure 40, the proppants gained 

larger settling velocity (shown in red) from their collision with the top layer of fracture and 

washed more proppant to the end of fracture. This result would explain the nearly unchanging 

proppant length under the effect of stronger wash-out in 25 m fracture height. 

 
Figure 34. Age Plot of Proppant Distribution at 30 min for Fracture Height 15 m 

 

 
Figure 35. Age Plot of Proppant Distribution at 30 min for Fracture Height 25 m 
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Figure 36. Age Plot of Proppant Distribution at 30 min for Fracture Height 30 m 

 

 
Figure 37. Age Plot of Proppant Distribution at 30 min for Fracture Height 45 m 
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Figure 38. Age Plot of Proppant Distribution at 30 min for Fracture Height 75 m 

 

 
Figure 39. Age Plot of Proppant Distribution at 30 min for Fracture Height 90 m 
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Figure 40. Particle Settling Velocity at 30 min for Fracture Height 15 m 

 

3.4 Case Study 3 – Fluid Viscosity 

It is commonly known that fluid viscosity is a key parameter affecting proppant transport. 

Since proppant placement is sensitive to the fluid viscosity, it is necessary to understand the role 

of fluid viscosity in proppant distribution. The following case study is designed to verify the effect 

of fluid viscosity. Five additional cases (cases 7-11) are fluid viscosity of 0.5, 2, 3, 10, 30 cp. The 

fluid viscosity of slickwater can be affected by both the reservoir pressure and temperature, and 

the first three cases (cases 7, 8, 9) were designed for this reason. The other two cases (cases 10 and 

11) were constructed in aim to know the proppant transport behavior in a high viscosity fluid.  

Figures 41-46 show the simulation results after 30 mins injection. Since the significant 

difference is shown from the results, the evolution of proppant volume fraction was not displayed 

in this investigation. The magnitudes of the final proppant length and suspension area are collected 

in Table 4. It can be seen that with the increase of fluid viscosity, the proppant bed height decreases 

significantly. At the same time, the lateral length of proppant bed firstly slightly decreases and 

then increases. After that, there was less proppant settlement with fluid viscosity of 30 cp (Figure 

46). The reason is that increasing fluid viscosity can decrease the fluid Reynold number, and the 

viscous force will become dominant. As a result, more proppants were suspended, and the 

interactions of particles decrease. With proppant suspension expanding, proppant bed length 
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decreases (Figures 43 and 44). As we kept increasing the viscosity to 10 cp, the flow would be 

closer to laminar, and the proppant bed would directly reach fracture length. With 30 cp fluid, very 

less proppant settled after 30 mins injection because proppants were suspended in the entire 

fracture. 

 
Figure 41. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 0.5 cp, 

Reprinted from Zhang (2020) 

 

 
Figure 42. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 1 cp, 

Reprinted from Zhang (2020) 

 



 

37 

 

 

 

 
Figure 43. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 2 cp, 

Reprinted from Zhang (2020) 

 

 
Figure 44. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 3 cp, 

Reprinted from Zhang (2020) 

 

 
Figure 45. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 10 cp, 

Reprinted from Zhang (2020) 
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Figure 46. Proppant Volume Fraction Distribution at 30 min for Fluid Viscosity 30 cp, 

Reprinted from Zhang (2020) 

 

Table 4. Effects of Fluid Viscosity on the Proppant Distribution 

Fluid Viscosities 0.5 cp 1 cp 2 cp 3 cp 10 cp 30 cp 

Proppant Suspended 

(m2) 

504  865  1442  1985  2777 4153 

Proppant Length (m) 152.5  139.2  139.6  130.5  180    

 

3.5 Case Study 4 – Proppant Concentration 

Investigate the effect of proppant concentration and injection rate with the same injection 

time is the typical approach applied in previous studies. For example, the higher injection rate was 

applied in the simulation with more proppants injected. Even though it is realistic in the field due 

to the low cost of sand, this approach ignored the influence of different proppant volumes. To 

address this concern, when we varied the proppant concentrations in case 12 (1.5lb/gal) and case 

13 (2.5 b/gal), the injection times were normalized for the same injected proppant volume. This 
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proppant volume can be calculated based on the injection condition and fracture geometry in the 

base case, which is 6.5 m3. 

Figures 47-49 and Figures 56-58 present a comparison between proppant distribution with 

different proppant concentrations at the same injection time and normalized injection time. It can 

be noticed that at the same injection time, high concentration slurry settled faster to reach the 

proppant equilibrium height. This observation was consistent with previous studies. However, for 

the normalized injection duration, the proppant length decreases as the proppant concentration 

increases, and the proppant bed height has rarely changed.  

Figures 50-58 show the evolution of proppant distribution at 0.3, 0.5, 1.0 of normalized 

injection time for three different proppant concentrations. According to the figures, the proppant 

bed length with higher concentration was firstly less than the base case and then arrived at the 

same distance. This is because more proppants would be injected at each time step for higher 

proppant concentration. Proppants firstly reached the equilibrium height around the injection point 

and then traveled in a distance by wash out. On the other hand, for low proppant concentration, it 

would be easier for the fluid to carry fewer proppants at each time step to the end of fracture. This 

explanation is in agreement with results obtained in the age plot for each case with various 

proppant concentrations (Figures 59-61). As is shown in the figures, the old proppant with lower 

concentration was transported and distributed near the outlet. When increasing the concentration, 

a few oldest proppants settled near the injection point, and the following injected proppants 

transported some earlier injected proppant to place further. As a result, early injected proppants 

tend to distribute evenly in the lower region of fracture. 
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Figure 47. Proppant Volume Fraction Distribution at 24 min for Proppant Concentration 

1.5 lb/gal 

 

 
Figure 48. Proppant Volume Fraction Distribution at 24 min for Proppant Concentration  

2 lb/gal 

 

 
Figure 49. Proppant Volume Fraction Distribution at 24 min for Proppant Concentration  

2.5 lb/gal 
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Figure 50. Proppant Volume Fraction Distribution at 13 min for Proppant Concentration 

1.5 lb/gal 

 

 
Figure 51. Proppant Volume Fraction Distribution at 10 min for Proppant Concentration  

2 lb/gal 

 

 
Figure 52. Proppant Volume Fraction Distribution at 8 min for Proppant Concentration   

2.5 lb/gal 
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Figure 53. Proppant Volume Fraction Distribution at 20 min for Proppant Concentration 

1.5 lb/gal, Reprinted from Zhang (2020) 

 

 
Figure 54. Proppant Volume Fraction Distribution at 15 min for Proppant Concentration  

2 lb/gal, Reprinted from Zhang (2020) 

 

 
Figure 55. Proppant Volume Fraction Distribution at 12 min for Proppant Concentration 

2.5 lb/gal, Reprinted from Zhang (2020) 
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Figure 56. Proppant Volume Fraction Distribution at 40 min for Proppant Concentration 

1.5 lb/gal, Reprinted from Zhang (2020) 

 

 
 Figure 57. Proppant Volume Fraction Distribution at 30 min for Proppant Concentration 

2 lb/gal, Reprinted from Zhang (2020) 

 

 
Figure 58. Proppant Volume Fraction Distribution at 24 min for Proppant Concentration 

2.5 lb/gal, Reprinted from Zhang (2020) 

 



 

44 

 

 

 

 
Figure 59. Age Plot of Proppant Distribution at 40 min for Proppant Concentration            

1.5 lb/gal 

 

 
Figure 60. Age Plot of Proppant Distribution at 30 min for Proppant Concentration           

2 lb/gal 

 

 
Figure 61. Age Plot of Proppant Distribution at 24 min for Proppant Concentration            

2.5 lb/gal 

 

3.6 Case Study 5 – Injection Rate 

An investigation was carried out to understand the role of injection rate in proppant 

placement. Injection time is also normalized to study the sensitivity of injection rate. The pumping 

rates varied in this case study are 10 bpm and 20 bpm (cases 14 and 15). According to the 
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comparison between each case at the same injection time and normalized time (Figures 62-64 and 

Figures 71-73), the proppant length would not increase dramatically with a higher injection rate 

at normalized injection time. Our results show that the proppant height was increasing faster, with 

a lower injection rate (Figures 65, 68, 71). When the injection was completed, these three cases 

reach nearly the same proppant height and length (Figures 71-73). Figures 65-73 show the 

evolution of proppant distribution at 0.3, 0.5, 1.0 of normalized injection time for three different 

injection rates. This result indicates that increasing the injection rate without adding proppants 

does not guarantee a significant increase in proppant length.   

 

Figure 62. Proppant Volume Fraction Distribution at 21 min for Injection Rate 10 bpm 
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Figure 63. Proppant Volume Fraction Distribution at 21 min for Injection Rate 15 bpm 

 

 

Figure 64. Proppant Volume Fraction Distribution at 21 min for Injection Rate 20 bpm 

 

 
Figure 65. Proppant Volume Fraction Distribution at 15 min for Injection Rate 10 bpm 
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Figure 66. Proppant Volume Fraction Distribution at 10 min for Injection Rate 10 bpm 

 

 
Figure 67. Proppant Volume Fraction Distribution at 7.5 min for Injection Rate 10 bpm 

 

 
Figure 68. Proppant Volume Fraction Distribution at 22.5 min for Injection Rate 10 bpm, 

Reprinted from Zhang (2020) 
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Figure 69. Proppant Volume Fraction Distribution at 15 min for Injection Rate 15 bpm, 

Reprinted from Zhang (2020) 

 

 
Figure 70. Proppant Volume Fraction Distribution at 11 min for Injection Rate 20 bpm, 

Reprinted from Zhang (2020) 

 

 
Figure 71. Proppant Volume Fraction Distribution at 45 min for Injection Rate 10 bpm, 

Reprinted from Zhang (2020) 
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Figure 72. Proppant Volume Fraction Distribution at 30 min for Injection Rate 15 bpm, 

Reprinted from Zhang (2020) 

 

 
Figure 73. Proppant Volume Fraction Distribution at 22.5 min for Injection Rate 20 bpm, 

Reprinted from Zhang (2020) 

 

To further investigate the effect of injection rate, we provide the proppant distribution 

according to their injected time (Figures 74-76). As displayed in the figure, the proppants reached 

the same length regardless of the injection rate. On the other hand, newly injected proppant and 

old proppants placed at different locations with different injection rates. The oldest proppants at a 

lower injection rate could distribute closer to the injection point, and the following proppants 

injected placed on the other side. The same observation was obtained in the first proppant transport 

experiment of Kern et al. (1959). 
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In contrast to the higher injection rate, the oldest proppants with lower injection rates 

traveled to near the outlet side, while the following proppants placed on the top of previous 

proppants. This difference of proppant distribution can also explain the same proppant length 

produced with various injection rates. Proppants with a lower injection rate firstly injected tended 

to settle near the inlet, and then the following proppants injected for a longer time moved toward 

the end by bed load transport. For a higher injection rate case, turbulent transport occurred and 

enabled the earlier injected proppants directly to place further in a short time. The residual 

proppants injected later would finally settle near the injection point. 

 
Figure 74. Age Plot of Proppant Distribution at 45 min for Injection Rate 10 bpm, 

Reprinted from Zhang (2020) 

 

 
Figure 75. Age Plot of Proppant Distribution at 30 min for Injection Rate 15 bpm, 

Reprinted from Zhang (2020) 
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Figure 76. Age Plot of Proppant Distribution at 22.5 min for Injection Rate 20 bpm, 

Reprinted from Zhang (2020) 
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4. CONCLUSION* 

 

In this research, numerical simulation of proppant transport was studied by using a three-

dimensional multiphase particle-in-cell (MP-PIC) method. We validated the model with both 

CFD-DEM and one reported experimental study, and good agreement was obtained. After that, we 

conducted a sensitivity analysis and investigated the impact of fracture height, fluid viscosity, 

proppant concentration, and injection rate on proppant transport.  

Although the detailed animation of interactions of particles was captured in results through 

the MP-PIC model, we still have the following limitations. First, we assumed the geometry of the 

contact area between wellbore and fracture was rectangular instead of circular. Second, the leak-

off effect is not considered in our studies. Third, field-scale fracture geometry was predetermined 

and static. The effect of dynamic fracture propagation on proppant transport was not considered in 

this study. 

The conclusions can be drawn from this study as follows: 

⚫ The multiphase particle-in-cell (MP-PIC) method is a powerful method to address the field 

scale problem. Also, it can simulate more detailed transport behaviors of particles, such as 

wash-out effect. 

 
* Reprinted with permission from “Numerical Study of Proppant Transport in Field-scale Fractures for Slickwater Fracturing” by 

Zhang, Z., Mao, S., Shang, Z., Chun, T and Wu, K. 2020. Proceedings of the 54th US Rock Mechanics/Geomechanics 

Symposium, Copyright [2020] by American Rock Mechanics Association.  paper ARMA 20-1170 
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⚫ When the fracture reaches a certain height, the increasing fracture height has an insignificant 

impact on proppant transport in the field while decreasing this height can bring a strong 

wash-out effect and produce a longer proppant bed. 

⚫ The fluid viscosity has a strong influence on proppant placement. With increasing fluid 

viscosity, the proppant bed height decreases dramatically, and proppant length firstly slightly 

decreases and then increases. The proppant suspension area can also increase remarkably. 

⚫ Injecting slurry with low proppant concentration is an efficient way to increase proppant 

length.  

⚫ The injection rate rarely influences proppant placement unless the quantity of proppant varies, 

while the newly injected proppant and old proppant can place differently for different 

injection rates. 

⚫ Increasing the proppant concentration and injection rate can respectively help proppants 

reach equilibrium height and maximum fracture length faster. 
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