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ABSTRACT

Caching is a technique to reduce the communication load in peak hours by prefetching con-

tents during off-peak hours. In 2014, Maddah-Ali and Niesen introduced a framework for coded

caching, and showed that significant improvement can be obtained compared to uncoded caching.

Considerable efforts have been devoted to identify the precise information theoretic fundamental

limit of such systems, however the difficulty of this task has also become clear. One of the reasons

for this difficulty is that the original coded caching setting allows multiple demand types during

delivery, which in fact introduces tension in the coding strategy to accommodate all of them. We

seek to develop a better understanding of the fundamental limit of coded caching.

In order to characterize the fundamental limit of the tradeoff between the amount of cache

memory and the delivery transmission rate of multiuser caching systems, various coding schemes

have been proposed in the literature. These schemes can largely be categorized into two classes,

namely uncoded prefetching schemes and coded prefetching schemes. While uncoded prefetching

schemes in general over order-wise optimal performance, coded prefetching schemes often have

better performance at the low cache memory regime. At first sight it seems impossible to connect

these two different types of coding schemes, yet finding a unified coding scheme that achieves the

optimal memory-rate tradeoff is an important and interesting problem. We take the first step on this

direction and provide a connection between the uncoded prefetching scheme proposed by Maddah

Ali and Niesen (and its improved version by Yu et al.) and the coded prefetching scheme proposed

by Tian and Chen. The intermediate operating points of this general scheme can in fact provide

new memory-rate tradeoff points previously not known to be achievable in the literature. This new

general coding scheme is then presented and analyzed rigorously, which yields a new inner bound

to the memory-rate tradeoff for the caching problem.

While studying the general case can be difficult, we found that studying the single demand type

systems will provide important insights. Motivated by these findings, we focus on systems where

the number of users and the number of files are the same, and the demand type is when all files
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are being requested. A novel coding scheme is proposed, which provides several optimal memory

transmission operating points. Outer bounds for this class of systems are also considered, and their

relation with existing bounds is discussed.

Outer-bounding the fundamental limits of coded caching problem is difficult, not only because

there are tons of information inequalities and problem specific equalities to choose from, but also

because of identifying a useful subset (and often a quite small subset) from them and how to

combine them to produce an improved outerbound is a hard problem. Information inequalities can

be used to derive the fundamental limits of information systems. Many information inequalities

and problem-specific constraints are linear equalities or inequalities of joint entropies, and thus

outer bounding the fundamental limits can be viewed as and in principle computed through linear

programming. However, for many practical engineering problems, the resultant linear program

(LP) is very large, rendering such a computational approach almost completely inapplicable in

practice. We provide a method to pinpoint this reduction by counting the number of orbits induced

by the symmetry on the set of the LP variables and the LP constraints, respectively. We proposed a

generic three-layer decomposition of the group structures for this purpose. This general approach

can also be applied to various other problems such as extremal pairwise cyclically symmetric

entropy inequalities and the regenerating code problem.

Decentralized coded caching is applicable in scenarios when the server is uninformed of the

number of active users and their identities in a wireless or mobile environment. We propose a

decentralized coded prefetching strategy where both prefetching and delivery are coded. The pro-

posed strategy indeed outperforms the existing decentralized uncoded caching strategy in regimes

of small cache size when the numbers of files is less than the number of users. Methods to manage

the coding overhead are further suggested.
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1. INTRODUCTION*

Caching is a technique that has been studied for almost half a decade and are now widely

used in computer systems. CPU cache refers to a type of memory which is physically close to

CPU, with smaller amount of memory size compared to the hard disk and RAM (Figure 1.1).

The advantage of cache memory is that it can increase the speed of computer program by storing

the most frequently visited data and instructions in the cache. The data access time for CPU can

significantly reduce compared to the accessing time from RAM or the hard disk.

CPU Core

L1 Cache

L2 Cache

Memory (RAM)

Hard Disk Drive

L3 Cache

Figure 1.1: Memory hierarchy in a computer.

*© 2018 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “Fundamental limits of coded
caching: From uncoded prefetching to coded prefetching”, IEEE Journal on Selected Areas in Communications,
vol. 36, no. 6, pp.1153-1164, 2018.
© 2019 IEEE. Reprinted, with permission,from Shuo Shao, Jesus Gómez-Vilardebó, Kai Zhang and Chao Tian, “On
the fundamental limit of coded caching systems with a single demand type", 2019 IEEE Information Theory Workshop
(ITW), pp. 1-5, 2019.
© 2018 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “On the symmetry reduction of informa-
tion inequalities”, IEEE Transactions on Communications, vol. 66, no. 6, pp. 2396-2408, 2016.
© 2017 IEEE. Reprinted, with permission, from Kai Zhang, Chao Tian and Hushengli, “Coded prefetching and ef-
ficient delivery in decentralized caching systems”, 2017 IEEE 18th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1-5, 2017.
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Since cache has limited amount of memory size, smart strategies need to be proposed in terms

of what data need to be stored in it and how to update its content. Eviction policies such as LRU

(Least Recently Used), LFU (Least Frequently Used), MRU (Most Recently Used) and FIFO (First

In, First Out) have been widely used [7–16].

1.1 Caching Network

The idea of computer cache has been utilized in the network setting, especially the global CDN

(Content Delivery Network, Figure 1.2) [17, 18], which significantly improves the performance

of content delivery by reducing the need to repeatedly access the frequently requested files from

remote server. When a user requests file contents from the server using CDN, after fulfill the user’s

request, the CDN stores the content into the local cache to satisfy the future same request. Various

CDN strategies including pricing policies are discussed [19–32].

Figure 1.2: Content delivery network (CDN).
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Caching has also been used for wireless networks such as mobile network. Wireless network

itself is an attractive communication setting where broadcasting strategies have been widely stud-

ied. However, a cache-aided wireless network does not receive much attention until recent years.

Studies such as [33–39] serve as the seminal works in this field.

Caching is specifically useful in the video-on-demand system (Figure 1.3). This is mainly

because video contents’ multiplier effect on the internet traffic. Below are several facts about

internet traffic according to the Cisco Annual Internet Report (2018–2023) White Paper.

Figure 1.3: Video-on-demand service providers.

By 2023, 66% of the installed flat-panel TV sets will be UHD, up from 33% in 2018 [40].

Nowadays, the HD television are almost used by every household. Moreover, the amount of UHD

(Ultra-High Definition), or 4K, video streaming is more and more frequently requested compared

to traditional 720P or 1080P video streaming. The bit rate for UHD videos are more than double

the bit rate for HD videos, and nine times more than the bit rate of SD (Standard Definition) videos.

The amount of applications related to video are continuing to grow, this puts significant band-

width demands in the future. Scenarios such as Cloud Gaming, 8K IP video and UHD VR requires

significant amount of bandwidth which cannot be globally achieved in current networks.
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An important feature of internet video traffic is that it is highly temporal. A research on the

Internet traffic [41] studied the average daily internet traffic rate at two large globally Internet

Exchange Traffic points, London and Amsterdam, and confirmed this phenomenon. Among all

the Internet usage categories, the TV watching has an interesting feature: it remains relatively low

for most of the time of the day but significantly grows between 7:00pm-11:00pm. The reason is

actually very simple: most people are either working or sleeping during the other time when they

do not have time to sit in front of TVs and watch movies or TV shows. But during evening, most

people are off-work and a majority of them will spend this time at home with families watching

TV.

The video content accounts for most of the internet traffic due to its large size, especially 4K

videos, this places a lot of burden on the internet during the evening.

A straightforward solution to this problem is if there is a technique that is able to move some

of the traffic during peak traffic time to the off-peak traffic time, then the traffic rate during a day

can be smoothed and evenly spreaded during a whole day, which will release the burden on the

internet at evening. This burden can actually be solved with the help of cache [20, 42–55].

Modern caching systems are studied in various aspects, from cache deployment to cache di-

mensioning [17, 56–61], from general caching networks [42, 62–64] to special caching networks

such as hierarchical caching network [19, 20, 65, 66]. Figure 1.4 demonstrates how cache can be

used to alleviate the burden in the above situation [67]. When a user requests some contents from

the server, the router first requests the cache engine to find the content, if it is not in the cache

engine. If it is not there, the server will create a separate IP and reroute that request to the remote

server, the server sends the content back to the content engine, and the content engine will send

it back to the user, at the same time store that content locally. Then future requests for the same

content, by the same or other users, can be fulfilled by the local cache engine.
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Content Engine

Figure 1.4: Transparent network caching.

1.2 General Cache Use Cases

Cache has been used and successfully deployed in many existing systems. Below are some

well-known cache systems.

Google Global Cache (GGC) is deployed by Google that lets ISPs to be able to serve Google

contents within their own networks. According to google support, it has the advantage of being 1.

Transparent to users; 2. Able to reduce external traffic; 3. Robust; 4. Easy to set up [68].

Facebook is using Facebook Photo CDN [69] to deliver the photos. Facebook has 1.7 billion

user photos and take 160TB of photo storage. Facebook uses a fleet of servers to receive photo

uploads, and to feed images to CDN partners. Facebook also has its own hierarchical CDN to

fulfill the photo storage and requests.

Netflix also has its own CDN called Netflix Open Connect [70, 71]. Netflix lunched open

connect in 2011. It is a global network that has the responsibility to delivery Netflix TV shows and

movies worldwide.
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Other applications such as Amazon AWS, Cadami, and Akamai Intelligent Platform [72, 73]

are all such user cases. They together set an example of how useful cache could be in networks in

reality.

1.3 Coded Caching

The technique of caching can be used to relieve the congestion on the broadcast channel by

prefetching file contents to local memory space close to the user, and thus reducing the amount of

data retrieved from the remote data center in peak traffic time. Traditionally, caching has mainly

been considered in single user settings such as CPU cache. The hit-ratio is the key measure of

performance. As networked systems become more prevalent, caching systems involving multiple

users have attracted increasingly more research attention.

The performance of different caching strategies has been widely analyzed from an information

theoretic perspective. These works can be categorized into two general categories: the innerbound

and the outerbound [2,39,74–86]. In the article [39], Maddah-Ali and Niesen provided a formal in-

formation theoretic formulation for the caching problem in multiuser settings. In this formulation,

there areN files, each of F bits, andK users. Each user has a local cache memory of capacityMF

(thus a normalized capacity of M ). In the prefetching (or sometimes referred to as the placement)

phase, the users can fill their caches with contents from the central server without the knowledge

of the precise requests at the deliver phase. In the delivery phase, each user reveals the request

for a single file from the central server, and the central server must multicast certain common (and

possibly coded) information to all the users in order to accommodate these requests. Since in the

prefetching phase, the requests in the later phase are unknown a-prior, the cached contents must

be strategically prepared at all the users. The goal is to minimize the amount of multicast infor-

mation which has rate RF (or equivalently the normalized rate of R), under the constraint on the

normalized cache memory M . There is a natural tradeoff between the amount of cache memory

and the delivery transmission rate, which is often referred to simply as the memory-rate tradeoff

or the (M,R) tradeoff. It was shown in [39] that in terms of this memory-rate tradeoff, coding

can be rather beneficial, while solutions based on uncoded prefetching and delivery will suffer
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a significant loss. Subsequent works extended it also to decentralized caching placements [87],

caching with nonuniform demands [88], online caching placements [89], and hierarchical coded

caching [90], and many others.

Recently, there were quite a few works [2, 39, 77, 91–100] aiming to find better codes with

improved memory-rate tradeoff and the purpose is to find the optimal codes and thus completely

characterize the fundamental limit of this tradeoff. Yu et al. [100] proposed a strategy that is op-

timal when prefetching is restricted to be uncoded, which in fact directly improves on the scheme

in [39]. The key insight is that the original delivery strategy in [39] may have redundancy in the

transmissions, which can be systematically removed to reduce the delivery rate in some cases.

Tian and Chen [77] proposed a coded prefetching and the corresponding delivery strategy, which

relies on a combination of rank metric codes and maximum distance separable (MDS) codes in

a non-binary finite field. In the regime when the memory size M is relatively small, the scheme

in [77] can achieve a better performance than that in [100]. Another code construction using coded

prefetching was proposed more recently by Gómez-Vilardebó in [101], which can provide further

improvement, over the schemes in [100] and [77], in the low memory regime for a specific range

of (N,K). The characterization of the fundamental limit of the memory-rate tradeoff however re-

mains open, which appears to require both improved coding schemes and stronger outer bounding

techniques [92,102–104]. Schemes for both uncoded prefetching and coded prefetching have been

proposed and various outer bounds have also been discovered [92,102–104]. Nevertheless, except

a few special cases, the fundamental limit of coded caching systems still remains unknown.

Information theory provides a natural framework and a rich set of tools to determine the fun-

damental limits of communication systems and information systems. The derivation of such fun-

damental limits (or outer bounds) in a coding problem, requires a strategic combination of infor-

mation equalities and inequalities. The most often used set of information inequalities are the

Shannon-type inequalities, which were first formally identified by Yeung [105]. Moreover, Yeung

identified the minimal set of such inequalities, referred to as elemental inequalities. Although there

exist non-Shannon-type inequalities [106], in many cases, Shannon-type inequalities together with
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problem-specific constraints are sufficient to produce the (true) fundamental limits, particularly for

systems with strong symmetries [107–109].

Since Shannon-type inequalities and many problem specific constraints are linear in the joint

entropies, the overall derivation of the fundamental limits or outer bounds can be viewed as a series

of linear programs where the variables are these joint entropies, and can in principle be solved us-

ing any linear program (LP) solver. However, for practical engineering problems, the resultant LPs

are usually very large, which make solving them numerically impossible. In a recent work [110],

it was shown that symmetry (together with other problem-specific reductions) can be effectively

utilized to reduce the scale of the LP, which led to a conclusive solution for the (4, 3, 3) regen-

erating code problem, and moreover, proved the existence of a fundamental difference between

functional repair regenerating codes and exact repair regenerating codes. The intuition behind the

reduction is that, the inherent symmetry structure in the problem implies the existence of symmet-

ric optimal solutions, and thus many LP variables can be assumed to have the same values, and

as a consequence there is no need to represent them differently. This further induces a significant

reduction in terms of the LP constraints, and a computer solver can be used on this much reduced

problem. Although the intuition itself is straightforward, our understanding on the amount of re-

duction through symmetry is limited. In this work, we seek to develop a better understanding on

this issue.

Although the computational complexity in many modern solvers is more directly related to the

number of nonzero elements in the LP [111], the scale of the LP are also good indicators of the

LP computational scale, particularly in the context we are interested in. There is in fact a simple

method to estimate these quantities. The group action defined through the permutation group on

the power set of the random variables in the problem induces certain equivalence classes, and the

maximum number of elements in any class is the number of permutations in the specific problem

setting. Therefore, lower bounds to the two quantities can be obtained by dividing the total number

of LP variables and that of LP constraints by the number of permutations. However, since some

orbits can have fewer elements, these lower bounds are not precise. A method to pinpoint the
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symmetry structure and count these numbers accurately is thus needed.

Pólya counting theorem is a powerful tool to tackle this type of orbit counting problem which

requires finding the cycle index of the group action. Our main task thus reduces to first identifying

the group and group action, and then finding the cycle index.

In practical systems where a central coordinating mechanism can be costly, e.g., in more dy-

namic and mobile environments, decentralized coding becomes necessary. In this setting, rather

than letting the server centrally control the placement of cached contents, each user independently

determine the prefetching contents [87, 95, 100]. Decentralized coded caching has been studied

under other settings, non-uniform demand was studied in [88], random demand in [112], online

caching in [89], distinct cache capacities in [113] and various other delivery schemes in [114,115].

Given the current state of the art, a natural question to ask is whether it is possible to extend the

coded prefetching strategy in [77] from the centralized setting to a decentralized setting. Moreover,

since the codes in [77] is not binary, it is anticipated that the coding overhead will increase, and

thus it is important to understand how to reduce its impact.

1.4 Dissertation Outline

In Chapter 2, we show that the scheme in [77] can be slightly modified, where the MDS code

used in the delivery phase can be replaced by a code using only binary additions (XOR). Though

the alternative perspective itself does not provide further improvement on the known memory-

rate tradeoff, it allows us to make a conceptual connection between the scheme in [77] and that

in [100]. It further enables us to view these two schemes as the extremes of a more general scheme.

The intermediate operating points of this more general scheme can indeed provide new tradeoff

points previously not known in the literature, which we demonstrate using an explicit example for

(N,K) = (3, 4). Extending this example, a general explicit code construction is then rigorously

presented and analyzed, which provides a new inner bound to the fundamental limit of the memory-

rate tradeoff region in the caching problem. The inner bound does not have a simple closed form

expression, but can be represented as a linear program to facilitate its computation.

In Chapter 3, we study single-demand type systems, where during the placement phase, the
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users and server know a priori that the demand vector in the delivery phase must be of a given

demand type. Clearly, single-demand type systems have a more relaxed coding requirement than

the original setting, however, it is still highly nontrivial since for each single demand type, a large

number of different demand vectors are possible, with a rich set of symmetry relations among

them [92]. Because of the relaxed coding requirement, any inner bound for the fully mixed demand

type system will also be an inner bound for a single demand system, however, an outer bound for

the fully mixed demand type systems may not be a valid outer bound for the single demand type

systems.

Our first step is to collect the best-known inner bounds and outer bounds for both fully mixed

demand type systems and single demand type systems in the literature for the canonical (N,K) =

(3, 3) system, some of which are from very recent developments [97,98] in the area. This exercise

reveals important insight and fundamental differences between the different classes of systems. It

is shown that the demand type where all files are requested poses the most significant challenged

in terms of characterizing the fundamental limit, however, codes designed for this demand type

can in fact achieve (M,R) pairs that are strictly impossible for another demand type. This is

contrary to popular belief that such a demand type is the “worst case", and also confirms that there

is indeed a tension for codes designed for different demand types, and a fully mixed system would

need to balance such conflicting interests. Next we focus on the case N = K and for the demand

type where all files are requested, and propose a new code construction based on a novel sub-

packetization design. The construction is a generalization of the code recently proposed in [98],

however, in contrast to the code specific designed for N = K = 3 or 4 that yields a single (M,R)

pair each, our construction is for generalN whenN = K which can produce multiple new (M,R)

points. Finally, we consider outer bounds for such single demand type systems, where several

existing bounds are first verified to be valid for this relaxed setting, and additionally a new outer

bound is identified; the outer bounds indeed match the proposed scheme in some cases.

In Chapter 4, we study the outerbound problem of coded caching network, specifically, the

symmetry of information inequalities when used to derive the outerbound of caching network.
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We propose a generic three-layer decomposition of the group structure in typical coding problems

and information systems, which allows us to conveniently apply the Pólya counting theorem. In

addition, we apply this approach to two other similar problems: the problem of extremal pairwise

cyclically symmetric entropy inequalities in [116, 117] and the regenerating code problem [110,

118, 119]. For all these problems, we provide explicit formulae for or efficient algorithms to

compute the two quantities of interest. In fact, two of them lead to cycle indices previously studied

in the literature [120–122], while the other appears less well studied before.

The three-layer decomposition not only fits the three problems we study here, but also is well

motivated in general. The first layer, referred to as the base layer, can be viewed as reflecting cer-

tain physically meaningful permutations of the components in the communication or information

systems, while the second layer is a permutation induced by the base layer on the random variables

representing more abstract relations among the system components. The third layer is on the power

set of the random variables, which directly relates to the joint entropies.

It should also be clarified that the cycle index is a concept associated with a group action, and a

group acting on different sets may induce different cycle indices. A more intuitive interpretation of

a group action is through its permutation representation, which in fact directly relates to the cycle

index. In this chapter, we make a conscientious effort to reduce explicit reliance on the notion

of group actions, but rather favor permutation representations because of the explicit physical

interpretation. We will occasionally revert to group actions, which sometimes are more concise,

and may be more meaningful for readers familiar with the mathematical tools developed using

group actions.

The proposed method can be used to calculate the numbers of LP variables and LP constraints

after symmetry reduction, while the aforementioned estimates are inaccurate. Numerically we ob-

serve that their relative difference becomes negligible as they both grow large, and thus our result

is more reassuring than surprising in nature. We only consider the reduction due to the symmetry,

which does not include other possible reductions, for example, reductions due to implication rela-

tions among the random variables. Such reductions were indeed utilized in [110] and can in fact
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be rather significant, however, it is difficult to identify the general amount of reduction since it is

highly problem dependent; this topic is thus beyond the scope of our current study. Furthermore,

our focus is on the reduction of the LP variables and the LP constraints, not the isomorphic rela-

tion among asymmetric problem instances, nor the symmetry in the geometry of the constrained

entropic polytope; results related to these aspects can be found in [123, 124]. A less obvious but

important byproduct of our study is the formalization of the permutation representations of the

symmetry in the three problems, which are in fact needed in representing the problem in a com-

puter program, and may be of value to researchers interested in implementing such software.

In Chapter 5, we propose a decentralized coded placement with prefetching in a binary exten-

sion field F2m , and an efficient delivery scheme in the base binary field. We show that this de-

centralized caching scheme can achieve improvement over the decentralized strategy in [87, 100].

Moreover, we provide methods to reduce or balance the impacts of coding overheads.

Chapter 6 concludes this dissertation.
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2. FUNDAMENTAL LIMITS OF CODED CACHING: FROM UNCODED PREFETCHING

TO CODED PREFETCHING*

Caching can be used to relieve contention on communication resources by prefetching data

to a local or fast memory space, and thus avoiding data retrieval from the remote or slower data

source during peak traffic time. Traditionally, caching has mainly been considered in single user

settings, e.g., on-CPU caches vs. RAM in computers, where the hit-ratio is the key measure of

performance. As networked systems become more prevalent, caching systems involving multiple

users have attracted increasingly more research attention.

cached contents in 
users' memory of size     

multicasted message
in the delivery phase

central server
has N=3 files

Figure 2.1: An example caching system instance, where there are N = 3 files, denoted as
(W1,W2,W3), and K = 4 users, whose cached contents are (Z1, Z2, Z3, Z4), respectively. In
this instance the users request files (W1,W2,W2,W3), respectively. Reprinted with permission
from [1, 2], © 2018 IEEE.

*© 2018 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “From Uncoded Prefetching to
Coded Prefetching in Coded Caching Systems”, 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 2087-2091, 2018.
© 2018 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “Fundamental limits of coded caching:
From uncoded prefetching to coded prefetching”, IEEE Journal on Selected Areas in Communications, vol. 36, no. 6,
pp.1153-1164, 2018.
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In their award-winning article [39], Maddah-Ali and Niesen provided a formal information the-

oretic formulation for the caching problem in multiuser settings (Figure 2.1). In this formulation,

there areN files, each of F bits, andK users. Each user has a local cache memory of capacityMF

(thus a normalized capacity of M ). In the prefetching (or sometimes referred to as the placement)

phase, the users can fill their caches with contents from the central server without the knowledge

of the precise requests at the deliver phase. In the delivery phase, each user reveals the request

for a single file from the central server, and the central server must multicast certain common (and

possibly coded) information to all the users in order to accommodate these requests. Since in the

prefetching phase, the requests at the later phase are unknown a-prior, the cached contents must

be strategically prepared at all the users. The goal is to minimize the amount of multicast infor-

mation which has rate RF (or equivalently the normalized rate of R), under the constraint on the

normalized cache memory M . There is a natural tradeoff between the amount of cache memory

and the delivery transmission rate, which is often referred to simply as the memory-rate tradeoff

or the (M,R) tradeoff. It was shown in [39] that in terms of this memory-rate tradeoff, coding

can be rather beneficial, while solutions based on uncoded prefetching and delivery will suffer

a significant loss. Subsequent works extended it also to decentralized caching placements [87],

caching with nonuniform demands [88], online caching placements [89], and hierarchical coded

caching [90], and many others.

There were quite a few recent efforts [77, 93–96, 99–101] aiming to find better codes with

improved memory-rate tradeoff, toward the eventual goal of finding the optimal codes and thus

completely characterizing the fundamental limit of this tradeoff. In particular, Yu et al. [100] pro-

posed a strategy that is optimal when prefetching is restricted to be uncoded, which in fact directly

improves on the scheme in [39]. The key insight in [100] appears to be that the original delivery

strategy in [39] may have redundancy in the transmissions, which can be systematically removed

to reduce the delivery rate in some cases. In another recent work, Tian and Chen [77] proposed a

coded prefetching and the corresponding delivery strategy, which relies on a combination of rank

metric codes and maximum distance separable (MDS) codes in a non-binary finite field. In the
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regime when the memory sizeM is relatively small, the scheme in [77] can achieve a better perfor-

mance than that in [100]. Another code construction using coded prefetching was proposed more

recently by Gómez-Vilardebó in [101], which can provide further improvement, over the schemes

in [100] and [77], in the low memory regime for a specific range of (N,K). The characterization of

the fundamental limit of the memory-rate tradeoff however remains open, which appears to require

both improved coding schemes and stronger outer bounding techniques [92, 102–104].

In this chapter, we show that the scheme in [77] can be slightly modified, where the MDS code

used in the delivery phase can be replaced by a code using only binary additions (XOR). Though

the alternative perspective itself does not provide further improvement on the known memory-

rate tradeoff, it allows us to make a conceptual connection between the scheme in [77] and that

in [100]. It further enables us to view these two schemes as the extremes of a more general scheme.

The intermediate operating points of this more general scheme can indeed provide new tradeoff

points previously not known in the literature, which we demonstrate using an explicit example for

(N,K) = (3, 4). Extending this example, a general explicit code construction is then rigorously

presented and analyzed, which provides a new inner bound to the fundamental limit of the memory-

rate tradeoff region in the caching problem. The inner bound does not have a simple closed form

expression, but can be represented as a linear program to facilitate its computation.

The rest of the chapter is organized as follows. Section 2.1 first provides some necessary back-

ground on existing results and rank metric codes, and then introduces the notion of transmission

type. A critical observation is given in Section 2.2 which connects the two classes of schemes as

extreme cases, and then a new memory-rate pair previous unknown in the literature is produced

by considering the intermediate cases for (N,K) = (3, 4). The new inner bound is given formally

in Section 2.3, and the corresponding coding scheme, its analysis, the proof of the correctness are

given in Section 2.4. A technical proof is relegated to the appendix.

2.1 Relevant Results and Preliminaries

In this section, we first briefly review existing results on the coded caching problem, and then

provide necessary background on rank metric codes, which serve an instrumental role in the new
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code construction. A new concept important in our code construction, i.e., the transmission type,

is then introduced.

2.1.1 Existing Schemes Using Uncoded Prefetching

The scheme in [39], which uses uncoded prefetching, can achieve the following memory-rate

pairs

(M,R) =

(
tN

K
,
K − t
1 + t

)
, t = 0, 1, . . . , K, (2.1)

and since another trivial point is clearly (M,R) = (0, N), the lower convex hull of them provides

an upper bound to the optimal tradeoff, as stated in [39]. More recently, Yu et al. [100] gave a

scheme which achieves the memory-rate tradeoff points of

(M,R) =

(
tN

K
,

(
K
t+1

)
−
(
K−min{K,N}

t+1

)(
K
t

) )
, t = 0, 1, . . . , K. (2.2)

These points strictly improve the rate component R in (2.1) when K −N ≥ t + 1. Both schemes

in [39] and [100] use the same uncoded prefetching strategy, but the delivery strategy in [100] is

a direct improvement to that in [39]. It was shown in [100] that in the restricted class of schemes

where only uncoded prefetching is allowed, the tradeoff provided in (2.2) is in fact optimal. These

two coding schemes can roughly be understood as follows.

Choose a fixed integer t, where 0 ≤ t ≤ K, and partition each file into
(
K
t

)
segments of

equal size; each segment is thus uniquely associated with a cardinality-t subset S of the full user

set {1, 2, . . . , K}, and this segment is placed in the caches of users in S during the prefetching

phase. During the delivery phase, consider each (t+ 1) subset B of users: within this group, each

user is requesting a segment that is in all the other users’ caches, and the server thus sends the

XOR of all such segments of this group. Each user in this group can recover their respectively

desired segment, since all other segments involved in this transmission are known to this user. As

mentioned earlier, these transmissions as a whole, taken over all the possible choices of B, may
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in fact have redundancy among themselves (i.e., they are linearly dependent) for certain (N,K)

parameters, and eliminating such redundancy results in the scheme in [100].

Let us examine an example with N = 3 files, denoted as A,B,C, respectively, and K = 4

users. Set the auxiliary variable t = 2, then each file is partitioned into
(

4
2

)
= 6 segments, for

example, file A has segments A1,2, A1,3, A1,4, A2,3, A2,4, A3,4, and the segment A1,2 is given to

users 1 and 2, etc.. Suppose now the users’ requests are (A,A,B,C), i.e., the first two users

request file A, the third user requests file B, and the fourth user requests file C. Consider the set

of users B = {1, 2, 3}, associated with which we should transmit A2,3 + A1,3 + B1,2 according

to the coding scheme discussed above, where the addition is in the binary field. Clearly the three

users in B can recover their individually desired segments, i.e., A2,3, A1,3, B1,2, respectively. For

other subsets of users, the transmissions are formed similarly, and the complete set of delivery

transmissions is

A2,3 + A1,3 +B1,2, A2,4 + A1,4 + C1,2, A3,4 +B1,4 + C1,3, A3,4 +B2,4 + C2,3. (2.3)

In this particular case, the transmissions of (2.3) do not have any redundancy.

The schemes in both [95] and [96] use uncoded prefetching, and since the scheme in [100] is

optimal for this class of codes, the two schemes in [95] and [96] do not provide any additional

improvement over (2.2).

2.1.2 Existing Schemes Using Coded Prefetching

Even in the pioneering work [39], it was observed that uncoded prefetching schemes are not

sufficient to characterize the fundamental limit of the memory-rate tradeoff, and one code example

using coded prefetching was given for the case (N,K) = (2, 2) as an illustration. In [93], Chen

et al. extended this example to the general case N ≤ K, and showed that the single memory-rate

pair
(

1
K
, N(K−1)

K

)
is achievable and in fact optimal.

More recently, Tian and Chen [77] proposed a more general scheme with coded prefetching for
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N ≤ K. It was shown that the scheme can achieve the memory-rate tradeoff pairs

(M,R) =

(
t[(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

K

)
, t = 0, 1, . . . , K. (2.4)

With t = 1, it produces exactly the memory-rate pair given in [93].

The general scheme in [77] is somewhat involved, but the digest is as follows. Each file is again

partitioned into
(
K
t

)
segments of equal size, and given to the relevant users as in [100]; however,

instead of directly storing them, each user caches certain linear combinations of these correspond-

ing segments, mixed across all the files. During delivery, each symbol being transmitted is a linear

combination of the segments from a single file, that serves two roles: firstly, the segments form-

ing a single linear combination being transmitted are all present at certain user’s cache that is not

requesting this file, thus this user can use it to help resolve the cached symbols when sufficient

such transmissions are collected; secondly, these segments are not present at some users which are

requesting that file, thus can also help them to recover the missing segments. In order to guar-

antee the decodability, the cached contents and the transmitted contents should be made linearly

independent, and for this purpose, rank metric codes can be utilized to produce the cached linear

combinations, and MDS codes can be used to produce the delivery transmissions.

Let us consider again the example (N,K) = (3, 4) and t = 2. In this case, the linear combina-

tions of the segments

A1,2, A1,3, A1,4, B1,2, B1,3, B1,4, C1,2, C1,3, C1,4 (2.5)

are placed at user 1’s cache, where each segment is viewed as a symbol in a large finite field.

According to the scheme in [77], there should be a total of 5 linear combinations cached; the

coefficients of these linear combinations are not critical in this construction, for which either deter-

ministic rank metric codes can be used, or random assignments can be used with a high probability

of being a valid choice in a sufficiently large finite field (which implies the existence of a deter-

ministic assignment). Now consider again the requests (A,A,B,C). In this case, the server will

18



send the following 9 symbols

A3,4, B1,2, B1,4, B2,4, C1,2, C1,3, C2,3, A1,3 + A2,3, A1,4 + A2,4, (2.6)

where the addition is in the same finite field of the information symbol which is usually not binary.

The last two linear combinations can also be viewed as the parity symbols of two MDS codes.

Now user 1 collects from (2.6) the symbols B1,2, B1,4, C1,2, C1,3, which, together with 5 cached

linear combinations, leads to a total of 9 linear combinations of the basis in (2.5). Since the linear

combinations are designed to be linearly independent, all of the symbols can be resolved. User 1

then collects A1,3 + A2,3, A1,4 + A2,4 from which A2,3 and A2,4 can be recovered by eliminating

A1,3 and A1,4, since they have been resolved from the cached content. It can be verified in a similar

manner that all other users can also recover the requested files, and for any other demand patterns,

transmissions of 9 symbols will always suffice. The memory-rate pair achieved by the scheme

in [39] is (M,R) = (3
2
, 2

3
) while the scheme in [77] gives (M,R) = (5

6
, 3

2
), which are illustrated

in Fig. 2.2.

Amiri and Gunduz [99] showed that the following tradeoff point is achievable when N ≤ K

(M,R) =

(
N − 1

K
,
N(2K −N)

2K

)
, (2.7)

using a coded prefetching scheme. However, it can be verified that the pair (M,R) in (2.7) is

precisely on the time-sharing line between (2.2) and (2.4) with t = 1. More recently, Gómez-

Vilardebó [101] showed that the following memory-rate pairs are achievable:

(M,R) =

(
N

Kg
,N − N(N + 1)

K(g + 1)

)
, g = 1, ..., N, (2.8)

which can offer further improvement when N ≤ K ≤ (N2 +1)/2. The lower convex hull of (2.2),

(2.4) and (2.8) provides the best known upper bound to the fundamental limit of (M,R) tradeoff

known in the literature.
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2.1.3 Linearized Polynomial and Rank Metric Codes

Similar as in [77], rank metric codes based on linearized polynomials (see [125]) can be used

to facilitate our code constructions. The following lemma is relevant in this regard; see, e.g., [126].

Lemma 1. A linearized polynomial in finite field Fqm

f(x) =
P∑
i=1

vix
qi−1

, vi ∈ Fqm (2.9)

can be uniquely identified from evaluations at any P points x = θi ∈ Fqm , i = 1, 2, . . . , P , that

are linearly independent over Fq.

Another relevant property of linearized polynomials is that they satisfy the following condition

f(ax+ by) = af(x) + bf(y), a, b ∈ Fq, x, y ∈ Fqm , (2.10)

which is the reason that they are called “linearized”. This property implies the following lemma,

the proof of which can be found in [77].

Lemma 2. Let f(x) be a linearized polynomial in Fqm as given in (2.9), and let θi ∈ Fqm , i =

1, 2, . . . , Po, be linearly independent over Fq. Let G be a Po × P full rank (rank P ) matrix with

entries in Fq, then f(x) can be uniquely identified from

[f(θ1), f(θ2), . . . , f(θPo)] ·G. (2.11)

With a fixed set of θi ∈ Fqm , i = 1, 2, . . . , Po, which are linearly independent, we can view

(v1, . . . , vP ) as information symbols to be encoded, and the evaluations [f(θ1), f(θ2), . . . , f(θPo)]

as the coded symbols. This is a (Po, P ) MDS code in terms of rank metric [125], where Po ≥ P .

More importantly, the above lemma says any full rank (rank P ) Fq linear combinations of the coded

symbols are sufficient to decode all the information symbols. This linear-transformation-invariant

property had been utilized previously in other coding problems such as network coding with errors
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and erasures [127], locally repairable codes with regeneration [128], and layered regenerating

codes [129].

The codes thus obtained are not systematic, but they can be converted to systematic codes by

viewing the information symbols (w1, w2, . . . , wP ) as the first P evaluations [f(θ1), f(θ2), . . .,

f(θP )], which can be used to find the coefficients of the linearized polynomial (v1, v2, . . . , vP ),

and then the additional parity symbols can be generated by evaluating this linearized polynomial

at the remaining points (θP+1, . . . , θPo). Systematic rank-metric codes are instrumental in our

construction.

2.1.4 Demand Vectors and Transmission Types

Denote the N files in the system as W1,W2, . . . ,WN , and denote the demands by the users in

the delivery phase as d = (d1, d2, . . . , dK), where dk ∈ {1, 2, ..., N} is the index of the file that

user-k requests. For convenience, denote the set {1, 2, . . . , n} as In. Recall that once the auxiliary

parameter t is fixed, each file Wn in the scheme of [39] is the collection of all segments Wn,S

where S ⊆ IK and |S| = t, where |S| is the cardinality of the set S. For a given demand vector

d = (d1, d2, . . . , dK), denote the set of users requesting file Wn as

I [n] , {k ∈ IK : user k requests file Wn}, n = 1, 2, . . . , N. (2.12)

Further define mn , |I [n]|, n = 1, 2, . . . , N . In the coding scheme we shall present, an arbitrary

element (for example, the minimum element) in I [n] will be chosen, denoted as `[n], as the leader

of I [n]. The support of vector m is written as supp(m), i.e., supp(m) = {n|mn > 0}, and its

cardinality is denoted as N∗ = |supp(m)|, which is the number of files being requested in d. For

convenience, also define Ñ , min(N,K).

The notion of the transmission type is associated with each transmission in the scheme in [39].

For a set of users B ⊆ IK where |B| = t + 1, the associated delivery transmission in the scheme

of [39], for a fixed demand vector (d1, d2, . . . , dK), can be compactly written as the binary field
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summation

⊕k∈BWdk,B\k. (2.13)

Each such transmission, or alternatively the subset B, is thus associated with an N -dimensional

vector t, whose n-th coordinate tn specifies the number of users that are demanding file Wn in the

set B. We call this vector the transmission type of the subset B. For example, in the (3, 4) case

discussed above when the demand vector is (W1,W2,W3,W4) = (A,A,B,C), the transmission

type of the user set B = {1, 2, 3} is t = (2, 1, 0), and the exact transmission is A2,3 + A1,3 +

B1,2 where there are exactly two W1 = A symbols involved and one W2 = B symbol involved.

Similarly, the transmission types of the user sets {2, 3, 4} and {1, 3, 4} are both t = (1, 1, 1).

Denote the collection of all valid transmission types for a given demand vector d with the

auxiliary parameter being t as T (t)
d . It is clear that for any valid transmission type t ∈ T (t)

d , we

have
∑N

n=1 tn = t + 1, and thus the auxiliary parameter t can be uniquely determined from any

valid t. The support of a transmission type t is denoted as supp(t). With a slight abuse of notation,

we write the transmission type of a given set B ⊆ IK , where |B| = t+ 1, as T (B).

The notion of transmission type should be contrasted to the notion of demand type introduced

in [91], which is a length-N vector formed by sorting (m1,m2, . . . ,mN). This notion is also

important in our work, because the symmetry in the proposed code implies that only one demand

vector per demand type needs to be considered. Denote the collection of the representative demand

vectors, one representative demand vector per demand type, as D.

2.2 A Hidden Connection and Partial Decomposition

The two schemes in [77] and [39] (and its improved counterpart [100]) may seem very different

at the first sight: one uses coded prefetching and the other uncoded, one is non-binary code while

the other is binary, and one relies on sophisticated coding techniques such as rank metric codes and

the other only relatively simple combinatorics. Nevertheless, a closer look reveals some curious

connections between the two schemes. For example, the tradeoff points in (2.4) lead to the rate
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values R = N(K−t)
K

for t = 0, 1, . . . , K, which are exactly the same set of M values given in (2.2).

This connection may or may not be a simple coincidence, however we next describe a much less

obvious observation which leads to the main result of this paper.

2.2.1 A Hidden Connection

Consider again the example case for (N,K) = (3, 4) and t = 2. Let us decompose the

transmissions in (2.3) by separating different files in the same linear combination. For example, the

linear combinationA2,3+A1,3+B1,2 is decomposed into a pair of transmissions (A2,3+A1,3, B1,2).

It can be verified that decomposing all the linear combinations in (2.3) in fact produces exactly the

same set of linear combinations in (2.6), after removing the repeated transmissions. Thus in this

example, the delivery transmissions in the scheme [77] can be obtained by fully decomposing the

delivery transmissions of the scheme in [39], when the auxiliary parameter t is chosen to be the

same in the two schemes.

We note that the addition in (2.6) is not in a binary field, while the addition in (2.3) is in the

binary field. However, if a binary extension field F2m is used in (2.6), the delivery can indeed be

accomplished using only additions of the information symbols in this binary extension field, i.e.,

the coefficients of the linear combinations are either 0 or 1. Clearly, such additions are equivalent

to additions in the base binary field, when the information and coded symbols are represented in

their binary vector form.

2.2.2 Partial Decomposition and a New Code Example

The above observation naturally raises the following question: since the delivery strategy in the

scheme of [77] can be viewed as being obtained from fully decomposing the delivery transmissions

of the scheme in [39], will partial decomposition, with a correspondingly modified prefetching

strategy, produce new memory-rate tradeoff pairs? Next we provide an example code, which

shows that the answer to this question is indeed positive.

Consider again the case (N,K) = (3, 4) and t = 2, but this time each user caches 8 (instead

of 9 as in Sec. 2.1.1, or 5 as in Sec. 2.1.2) linear combinations of the information symbols of
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Figure 2.2: A new tradeoff point for (N,K) = (3, 4). Reprinted with permission from [1, 2], ©
2018 IEEE.

the corresponding uncoded file segments. The coefficients of the linear combinations can again

be either from deterministic rank metric codes (see Section 2.4), or generated randomly in a large

finite field.

We next argue that delivering a total of 5 coded symbols is sufficient in this case, which gives

an achievable memory-rate pair (M,R) = (4/3, 5/6). The memory-rater pair is strictly better

than (4/3, 23/27) achieved by the lower convex hull of the schemes [77, 100, 101], which is cur-

rently the best known upper bound in the literature; see Fig. 2.2 for an illustration. For com-

pleteness, a computer-generated outer bound is also included in the figure, which was obtained

in a separate work [92]. Interestingly, both (M,R) = (3/8, 2) given by the code in [101] and

(M,R) = (4/3, 5/6) obtained in this work are in fact on this outer bound, and thus optimal.

Due to the symmetry in the code, we only need to consider the demand vectors (A,A,B,C),

(A,A,B,B), (A,A,A,C), and (A,A,A,A).

• For the demand (A,A,B,C), instead of fully decomposing the transmissions in (2.3), we
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now partially decompose them as

A2,3 + A1,3 +B1,2, A2,4 + A1,4 + C1,2, B1,4 + C1,3, B2,4 + C2,3, A3,4. (2.14)

User 1 first collects B1,4 + C1,3, and thus together with the 8 cached linear combinations,

can resolve all the symbols in (2.5) since he has a total of 9 linearly-independent linear

combinations of the 9 symbols; now user 1 essentially has uncoded cache contents, and thus

can recover the needed file segments of A (which are A2,3, A2,4, A3,4) using the remaining

transmissions. Users 2, 3, and 4 can use a similar strategy.

• For the demand (A,A,B,B), we can transmit the following symbols

A2,3 + A1,3 +B1,2, A2,4 + A1,4 +B1,2, B1,4 +B1,3, B2,4 +B2,3, A3,4. (2.15)

User 1 can collect B1,4 + B1,3 in order to resolve the cached symbols, and the decoding is

similar to the previous case. It is also obvious user 3 and user 4 can indeed recover file B.

• For the demand (A,A,A,C), we can transmit

A2,3 + A1,3 + A1,2, A2,4 + A1,4 + C1,2, A1,4 + C1,3, A2,4 + C2,3, A3,4. (2.16)

The decoding strategies of other users are similar to the previous cases, and let us only

consider user 3 as an illustration. User 3 can use A3,4 to resolve the symbols in the cache,

then recover A1,4 from A1,4 +C1,3, A2,4 from A2,4 +C2,3, and A1,2 from A2,3 +A1,3 +A1,2.

• For the demand (A,A,A,A), we can transmit

A2,3 + A1,3 + A1,2, A2,4 + A1,4 + A1,2, A1,4 + A1,3, A2,4 + A2,3, A3,4. (2.17)

Using a similar strategy as above, it is seen that all users can indeed recover file A.
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In this example case, the delivery transmissions are obtained by partially decomposing the

transmissions in the scheme of [39], and in compensation, the number of cached linear combina-

tions in users’ memory is reduced from that of [39]. The number of linear combinations stored

in the cache needs to guarantee that the coded symbols can all be resolved to their uncoded form,

after a sufficient number of symbols have been collected from the delivery. The rest of the paper

is devoted to the task of using this idea to build a general class of codes which yield a new inner

bound to the memory-rate tradeoff.

2.3 A New Inner Bound to the Optimal Memory-Rate Tradeoff

We first formally define the partial decomposition patterns, and then present the new inner

bound. The prefetching strategy and the delivery strategy behind this new bound are presented and

analyzed in the next section.

2.3.1 A Formal Description of Partial Decomposition

Fix the auxiliary parameter t ∈ IK , and for now also consider a fixed demand vector d. A valid

partial decomposition pattern on a transmission type t is specified by a partition Pt,d on supp(t),

i.e., the elements of Pt,d are mutually exclusive and jointly exhaustive subsets of supp(t). For a

given transmission type t and its partial decomposition pattern Pt,d, the decomposed transmissions

are formed by keeping the symbols in the same partition inPt,d together, but those across partitions

separated. More precisely, let T (B) = t, then the transmission (2.13) can be rewritten and thus

decomposed as

⊕k∈BWdk,B\k = ⊕P∈Pt,d

[
⊕n∈P

(
⊕k∈B∩I[n]Wn,B\k

)]
⇒ ⊕n∈P

(
⊕k∈B∩I[n]Wn,B\k

)
, P ∈ Pt,d, (2.18)

where P ⊆ supp(t) is used to enumerate over the partitions specified by Pt,d. Note that Pt,d

is the decomposition pattern for a transmission type t (and a demand vector d), which implies

that the transmissions of the same transmission type are not allowed to use different decompo-
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sition patterns. In order to specify the delivery transmissions for a given demand vector d, the

decomposition patterns for all transmission types should be given, which are written as a set

P (t)
d , {Pt,d|t ∈ T (t)

d }.

Consider again the example for (N,K) = (3, 4): suppose the demand vector is

d = (A,A,B,C) = (1, 1, 2, 3),

and for the transmission type t = (1, 1, 1), the decomposition pattern is P(1,1,1),(1,1,2,3) = {{1},

{2, 3}}. With these settings the two transmissions A3,4 + B1,4 + C1,3 and A3,4 + B2,4 + C2,3

in the coding scheme [39] will be decomposed into {A3,4, B1,4 + C1,3} and {A3,4, B2,4 + C2,3},

respectively.

For any demand vector d, a special uncoded transmission pattern, denoted as P̆
(t)

d , is also

allowed. When K − t ≥ Ñ , this strategy corresponds to directly transmitting a subset of files in

the uncoded form. For general parameters, the transmission strategy will be given more precisely

in Section 2.4.2. The introduction of this pattern is motivated by the coding strategy in [77] when

N∗ < Ñ .

2.3.2 A New Inner Bound

Define the following quantity for any transmission pattern P (t)
d except P (t)

d = P̆
(t)

d

R
d,P(t)

d
,
∑
t∈T (t)

d

∑
P∈Pt,d

(∏
n∈P

(
mn

tn

)
−
∏
n∈P

(
mn − 1

tn

))
·

∏
n∈supp(t)\P

(
mn

tn

) , (2.19)

and for k = 1, 2, . . . , K,

M
d,P(t)

d ,k
, N

(
K − 1

t− 1

)
−∆M

d,P(t)
d ,k

, (2.20)
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where

∆M
d,P(t)

d ,k
,

∑
t∈T (t)

d :
tdk>0

∑
P∈Pt,d:
dk /∈P

(
mdk − 1

tdk − 1

)
·

(∏
n∈P

(
mn

tn

)
−
∏
n∈P

(
mn − 1

tn

))
·

∏
n∈supp(t)\{P∪{dk}}

(
mn

tn

) . (2.21)

For the special transmission pattern P (t)
d = P̆

(t)

d , the corresponding quantities are defined as

R
d,P̆(t)

d
, min(K − t, Ñ)

(
K

t

)
, (2.22)

and for k = 1, 2, . . . , K,

M
d,P̆(t)

d ,k
, N

(
K − 1

t− 1

)
−∆M

d,P̆(t)
d ,k

, (2.23)

where

∆M
d,P̆(t)

d ,k
, min(K − t, Ñ)

(
K − 1

t− 1

)
. (2.24)

In the above, the following convention for the degenerate cases of combinatorics has been used

(
a

b

)
=


0, if a < b

1, if a ≥ 0 and b = 0

. (2.25)

Intuitively speaking, the vector (M
d,P(t)

d ,1
, ...,M

d,P(t)
d ,K

, R
d,P(t)

d
) provides the cache memory

requirements at the users and the rate requirement on the delivery transmission in the proposed

coding scheme, when the demand vector d and the decomposition patterns P (t)
d are fixed. Thus

these numbers roughly provide the memory-rate tradeoff for the specific demand vector for a fixed

decomposition pattern.
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We first observe that there may still be unbalance among the cache memory requirements at

different users (M
d,P(t)

d ,1
, ...,M

d,P(t)
d ,K

), meaning that different users may have different cache

memory requirements under the decomposition pattern P (t)
d . This issue can be mitigated by coding

across multiple instances in the prefetching phase and then producing the delivery transmissions

using multiple different decomposition patterns on different instances to achieve better balance

among users; note that simple space-sharing is not sufficient to achieve such a performance. A

second important observation is that regardless the demand vectors or the decomposition patterns,

the caching strategy can essentially be kept the same, which is to store a certain number of linear

combinations of a fixed set of symbols. The two observations lead to the following definition and

the main theorem below, the formal proof of which will be given in the sequel.

Define the region R(t) to be the collection of the memory-rate pairs (M,R) such that there

exists a set of real-valued {α
d,P(t)

d
} such that

∑
P(t)

d

α
d,P(t)

d
= 1, ∀d ∈ D (2.26)

α
d,P(t)

d
≥ 0, ∀d ∈ D, ∀P (t)

d (2.27)

α
d,P(t)

d
≤ 1, ∀d ∈ D, ∀P (t)

d (2.28)∑
P(t)

d

α
d,P(t)

d
R

d,P(t)
d
≤ R

(
K

t

)
, ∀d ∈ D (2.29)

∑
P(t)

d

α
d,P(t)

d
M

d,P(t)
d ,k
≤M

(
K

t

)
, ∀d ∈ D,∀k ∈ IK . (2.30)

The auxiliary variables {α
d,P(t)

d
} serve a similar role to the time-sharing variables, however

the region cannot be directly obtained by the time-sharing argument, and is instead obtained by a

slightly more elaborate coding approach. We need the following technical definition * to state the

*Here we allow a sequence of codes to achieve the (M,R) pair in an asymptotic manner, i.e., approaches this
normalized memory-rate pair as the size of the file grows to infinity. Strictly speaking, this approach of definition
is not necessary for us, since the quantities we obtain in (2.19) and (2.20) are always integers, and thus the extreme
points of the constrained polytope in (2.26)-(2.30) will always be rational, which can be achieved precisely using the
proposed scheme. Then a time-sharing argument can be invoked to argue any irrational-valued memory-rate pairs in
the region can be achieved. Definition 1 however avoids this line of argument altogether.
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main result, which is a new inner bound to the memory-rate tradeoff region.

Definition 1. A memory-rate pair (M,R) is called achievable, if for any δ > 0, and for any

sufficiently large file size F , there exists a code with a normalized memory size no greater than

M + δ and a normalized transmission rate no greater than R + δ.

Theorem 1. For any t = 0, 1, 2, . . . , K, any (M,R) ∈ R(t) is achievable. Consequenctly, the

convex closure cl
(
∪t=0,...,KR(t)

)
is achievable, where cl(·) means the convex closure.

The proof of this theorem will be given in Section 2.4. We also have the following corollary,

whose proof is given in the appendix.

Corollary 1. The memory-rate pairs in (2.2) and those in (2.4) are in the region cl
(
∪t=0,...,KR(t)

)
.

Since R(t) is a polytope constrained by the conditions in (2.26)-(2.30), cl
(
∪t=0,...,KR(t)

)
is

also a polytope. Using standard technique [130], cl
(
∪t=0,...,KR(t)

)
can be conveniently written as

a region constrained by only linear constraints, and thus its boundary can be efficiently computed

using linear programming.

To illustrate Theorem 1, we show that for the case (N,K) = (3, 4), the aforementioned new

memory-rate pair (4
3
, 5

6
) is indeed in the region R(2). For this purpose, we need to find a set of

{α
d,P(t)

d
} such that the conditions in (2.26)-(2.30) hold for each d ∈ D.

• For d = (A,A,B,C) = (1, 1, 2, 3), let α = 1 for the decomposition pattern P (2)
(1,1,2,3)

P(2,1,0),(1,1,2,3) = {{1, 2}} = {{A,B}},

P(2,0,1),(1,1,2,3) = {{1, 3}} = {{A,C}},

P(1,1,1),(1,1,2,3) = {{1}, {2, 3}} = {{A}, {B,C}}, (2.31)

which is exactly the decomposition pattern used for (2.14). It can be verified that here

R
d,P(t)

d
= 1 + 1 + [(2− 1) + (1 ∗ 2)] = 5 (2.32)
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using (2.19), and

M
d,P(t)

d ,1
= 9− 1 = 8, (2.33)

where the only nonzero term comes from the transmission type (1, 1, 1) and partition P =

{2, 3} = {B,C} in (2.21). It can be verified similarly that M
d,P(t)

d ,k
= 8 for k = 2, 3, 4.

• For d = (A,A,B,B) = (1, 1, 2, 2), two decomposition patterns are used: the first is the one

without any decomposition, and the second is

P(2,1,0),(1,1,2,2) = {{1}, {2}} = {{A}, {B}},

P(1,2,0),(1,1,2,2) = {{1}, {2}} = {{A}, {B}}. (2.34)

Note that this suggests a different coding approach than that used in the example of Section

2.2: the existence of two decomposition patterns implies that we can achieve this memory-

rate pair by coding across two instances, using the two decomposition patterns given above.

It is clear that for the first pattern

M
d,P(t)

d ,k
= 9, k = 1, 2, 3, 4, and R

d,P(t)
d

= 4, (2.35)

and it can be verified that for the second pattern

M
d,P(t)

d ,k
= 7, k = 1, 2, 3, 4, and R

d,P(t)
d

= 6. (2.36)

It is clear that choosing α = 0.5 for both patterns satisfies the conditions (2.26)-(2.30).

• For d = (A,A,A,C) = (1, 1, 1, 3), again two decomposition patterns are used: the first is
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the one without any decomposition, and the other is

P(2,0,1),(1,1,1,3) = {{1}, {3}} = {{A}, {C}},

P(3,0,0),(1,1,1,3) = {{1}} = {{A}}. (2.37)

This case is similar to the previous one, and the parameter α can also be chosen to be 0.5

each.

• For d = (A,A,A,A) = (1, 1, 1, 1), two decomposition patterns are used: the first is the one

without any decomposition, and the second is the special uncoded transmission. For the first

pattern

M
d,P(t)

d ,k
= 9, k = 1, 2, 3, 4, and R

d,P(t)
d

= 3, (2.38)

and for the second pattern

M
d,P̆(t)

d ,k
= 3, k = 1, 2, 3, 4, and R

d,P(t)
d

= 12. (2.39)

We can choose α = 5
6

for the first pattern and the conditions (2.26)-(2.30) indeed hold.

2.4 The New Coding Scheme

We first give the prefetching strategy and the delivery strategy. The correctness of the code is

then proved, which establishes Theorem 1.

2.4.1 The Prefetching Strategy

The prefetching strategy is in fact rather straightforward, which is to encode the symbols allo-

cated to a user using a rank metric code to produce the linear combinations. However, since we

allow coding across multiple instances, a technical issue arises as what are the proportions of dif-

ferent delivery patterns. These values are needed to determine two parameters: the total number of

instances to code across, and the total number of coded symbols to cache. To address this technical
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issue, we consider the following line of argument.

Suppose a memory-rate tradeoff pair (M,R) ∈ R(t). The definition of R(t) implies that there

exists a set of {α
d,P(t)

d
} for which the conditions in (2.26)-(2.30) hold. Let us assume that a positive

integer r is chosen such that there exists a set of non-negative integers {r
d,P(t)

d
}

∣∣∣∣rd,P(t)
d

r
− α

d,P(t)
d

∣∣∣∣ ≤ ε. (2.40)

Clearly ε can be arbitrarily small by choosing r sufficiently large. Essentially, during the delivery

phase, for each demand type d, within the total of r instances that are being coded across, we will

use the decomposition pattern P (t)
d on r

d,P(t)
d

of them during delivery.

Let us now fix r and {r
d,P(t)

d
}. For d ∈ D, define the memory-rate pair

(M ′
d, R

′
d) ,

1

r
(
K
t

)
max
k∈IK

∑
P(t)

d

r
d,P(t)

d
M

d,P(t)
d ,k

,
∑
P(t)

d

r
d,P(t)

d
R

d,P(t)
d

 , (2.41)

Let us also define M ′
r , maxd∈DM

′
d and R′r , maxd∈D R

′
d, which will be the effective memory-

rate pair of this code.

The key design constraint is that the prefetching strategy needs to be independent of the demand

vector, which we describe next. In the proposed code, each file contains r
(
K
t

)
symbols. Each

symbol is thus denoted as W (i)
n,S , where i ∈ Ir, n ∈ IN and S ⊆ IK with |S| = t, is assumed

to be a symbol in F2m for some sufficiently large m to be specified shortly. Each file symbol

(segment) will be provided to t users as indicated by S, to be stored as a component of some linear

combinations. There are a total of

P , rN

(
K − 1

t− 1

)

symbols allocated to each user, however, only Po − P linear combinations of them are stored in
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the cache, and the parameter Po is directly related to the normalized memory M ′
r as

Po − P = rM ′
r

(
K

t

)
. (2.42)

Note that Po is always an integer. A (Po, P ) systematic rank metric code is then used to encode the

P symbols at each user, and the Po − P parities of this code are placed at each user’s cache. For

such a rank metric code to exist, m ≥ Po suffices.

Our plan next is to show that for each d ∈ D, a valid delivery strategy exists with a deliv-

ery rate R′d. Then by making the integer r sufficiently large, and choosing the integers {r
d,P(t)

d
}

appropriately such that ε ≥ 0 is made arbitrarily small, we have

lim
r→∞

(M ′
r, R

′
r) =

1(
K
t

)
max

d∈D
max
k∈IK

∑
P(t)

d

α
d,P(t)

d
M

d,P(t)
d ,k

,max
d∈D

∑
P(t)

d

α
d,P(t)

d
R

d,P(t)
d


� (M,R). (2.43)

This would prove that the targeted (M,R) is indeed achievable.

2.4.2 The Delivery Strategy

Consider any demand vector d ∈ D, and recall the parameters {r
d,P(t)

d
} have been chosen. For

convenience, suppose there are a total of q possible decomposition patterns for the demand vector

d, with the first one as P (t)
d,1 = P̆

(t)

d which is the special case associated with the uncoded trans-

missions, and P (t)
d,j , for j = 2, 3, . . . , q other decomposition patterns. For a specific transmission

type t, the corresponding decomposition in P (t)
d,j is written as Pt,d,j . Note that

∑q
j=1 rd,P(t)

d,j
= r.

For the demand vector d, the transmissions in the proposed scheme are as given in Algorithm 1.

The transmissions on line-6 and line-13 in Algorithm 1 are uncoded, which stem from the

special transmission pattern P̆
(t)

d . We first need to show that the steps on line-4 and line-10 are

valid, i.e., such a set A∗ or A can always be found. The latter case is immediate by observing that

in this case K − t ≥ N∗, and thus N∗ ≤ min(K − t, Ñ) ≤ Ñ , and we can always find a set A
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Algorithm 1: The delivery strategy. Reprinted with permission from [1,2], © 2018 IEEE.

Input: t, d, {r
d,P(t)

d
}, and {W (i)

n,S}
1 Computem, supp(m), and N∗ from d.
2 if K − t ≤ N∗ − 1 then
3 for S ⊆ IK: |S| = t do
4 Find a set A∗ ⊆ supp(m) such that ∪n∈A∗I [n] ⊆ S and |A∗| = N∗ −K + t
5 for i = 1 to r

d,P̆(t)
d

do

6 Transmit W (i)
n,S , all n ∈ supp(m) \ A∗.

7 end
8 end
9 else

10 Choose a set A ⊆ IN , such that |A| = min(K − t, Ñ) and supp(m) ⊆ A
11 for n ∈ A do
12 for i = 1 to r

d,P̆(t)
d

do

13 Transmit W (i)
n,S , all S ⊆ IK such that S = t.

14 end
15 end
16 end
17 for j = 2 to q do
18 for t ∈ T (t)

d do
19 for P ∈ Pt,d,j do
20 for B : T (B) = t,

(⋃
n∈P{`[n]}

)
∩ B 6= ∅ do

21 for i =
∑j−1

k=1 rd,P(t)
d ,k

+ 1 to
∑j

k=1 rd,P(t)
d ,k

do

22 Transmit ⊕n∈P
(
⊕k∈B∩I[n]W

(i)
n,B\k

)
;

23 end
24 end
25 end
26 end
27 end
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such that supp(m) ⊆ A ⊆ IN . To see that the step on line-4 is also valid, first observe that in

this case K − t ≤ N∗ − 1, and we need to find a set of files A∗, such that the given set of users S

(where |S| = t) includes all the users that request files in A∗. Suppose we cannot find such a set,

this means that there are less than N∗−K+ t such files, or more than N∗− (N∗−K+ t) = K− t

files that are being requests by some users not in S, but this is impossible, since there are only

K − t users not in the set S. Thus the supposition is not true, and we can always find such a set

A∗. It is straightforward to count the total number of transmissions as r
d,P̆(t)

d
min(K − r, Ñ)

(
K
t

)
,

when Algorithm 1 completes line-16.

The transmissions on line-22 in Algorithm 1 have the following property: at least one of the

component Wn,B\k (for any fixed superscript (i)) in the transmission must have k that is a leader. It

is a simple combinatorial counting task to show that the total number of transmissions in this part of

the algorithm is given by
∑q

j=2 rd,P(t)
d,j
R

d,P(t)
d,j

. Essentially we examine all the transmission types,

for which the decomposition pattern for the transmission type follows P (t)
d,j in the corresponding

instances (indexed by the superscript (i)), then count the transmitted linear combinations associated

with each partition in this decomposition. We must eliminate the transmissions where no leader in

this partition P is included, which is indeed accounted for as the term −
∏

n∈P
(
mn−1
tn

)
in R

d,P(t)
d,j

.

Thus after the algorithm runs to completion, a total of
∑q

j=1 rd,P(t)
d,j
R

d,P(t)
d,j

symbols are transmitted.

The transmissions on line-22 in Algorithm 1 are a subset of the decomposed transmissions

given in (2.18) for the patterns P (t)
d,j , since transmissions without any leader are not allowed as

mentioned early. This removes the redundancy in the transmissions after a native decomposition.

The precise linear independence relations can be captured in a set of lemmas given in the sequel.

2.4.3 Three Auxiliary Lemmas

When stating these lemmas, we omit the superscript (i) which is used to index the code instances

that are being coded across, as well as the decomposition pattern index j = 2, 3, . . . , q, since they

are irrelevant in these settings. We shall return to this notation later on when it becomes important.

Lemma 3 (Redundancy Reduction Lemma). Fix a demand vector d and a valid transmission

type t. Designate a subset P ⊆ supp(t) as the variable set, and P̄ = supp(t) \ P as the fixed
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set. Further fix an arbitrary subset A ⊆ ∪n∈P̄I [n] such that A ∩ I [n] = tn for all n ∈ P̄. Let

L , ∪n∈P{`[n]} be the leader set. Let Qn ⊆ I [n] \ `[n] be any subset such that |Q| = tn, and let

Q , ∪n∈PQn. The following equation holds

⊕ V⊆Q∪L:
|V∩I[n]|=tn,
∀n∈P

⊕k∈V Wdk,V∪A\{k} = 0. (2.44)

Proof. Observe that

LHS = ⊕`∈L ⊕ V⊆Q∪L:
|V∩I[n]|=tn,
∀n∈P

⊕k∈V∩I[`]Wd`,V∪A\{k} (2.45)

Consider any fixed ` ∈ L, and enumerate all set V by parts V , (V̂ , Ṽ)

⊕ V⊆Q∪L:
|V∩I[n]|=tn,
∀n∈P

⊕k∈V∩I[`]Wd`,V∪A\{k}

= ⊕V̂⊆(Q\Qd` )∪(L\{`}):
|V∩I[n]|=tn,
∀n∈P\{d`}

⊕Ṽ⊆Qd`∪{`}:
|Ṽ|=td`

(
⊕k∈ṼWd`,(V̂∪A)∪(Ṽ\{k})

) . (2.46)

Now consider a fixed V̂ , and consider the inner summation

⊕Ṽ⊆Qd`∪{`}:
|Ṽ|=td`

(
⊕k∈ṼWd`,(V̂∪A)∪(Ṽ\{k})

)
. (2.47)

This is a summation of (td` + 1)td` file symbols, each of which is in the form Wd`,(V̂∪A)∪V̇ , where

V̇ is a subset ofQd` ∪ {`} such that |V̇| = td` − 1. Since |Qd` ∪ {`}| = td` + 1 and the summation

form in (2.47) is symmetric, each file symbol appears exactly twice, which cancel out each other

in this binary (extension) field. The proof is thus complete.

The above lemma can be used to show that the decomposed transmissions without any leaders
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are redundant. To see this, notice that (2.44) can be rewritten as

(
⊕ V⊆Q∪L:V6=Q
|V∩I[n]|=tn,∀n∈P

⊕k∈V Wdk,V∪A\{k}

)
⊕
(
⊕k∈QWdk,Q∪A\{k}

)
= 0 (2.48)

Clearly the summation in the second bracket, which is one of decomposed parts from (2.18) with-

out any leaders, can be expressed as a linear combination of those in the first bracket, which all

have some leaders and are indeed in the delivery transmissions given on line-22 in Algorithm 1.

Conversely, the transmissions obtained by directly decomposing those in the delivery transmissions

of [39] can be reconstructed using the transmissions given on line-22 in Algorithm 1. Lemma 3 is

a generalized version of a similar lemma in [100], which was used to remove the redundancy in

the coding scheme given in [39].

The next two lemmas essentially state that there is no further linear redundancy in the transmis-

sions in line-22 of Algorithm 1 to be removed. In order to state the lemmas, the following definition

is needed. For any fixed d, t, P ∈ Pt,d, and A ⊆ ∪n∈supp(t)\PI
[n] for which A ∩ I [n] = tn for all

n ∈ supp(t) \ P, let

Wd,t,P,A ,
⋃

B⊆∪n∈PI[n]:

B∩I[n]=tn,
∀n∈P

{
Wdk,A∪B\k : dk ∈ P

}
. (2.49)

The next lemma states that the decomposed transmissions can in fact be separated naturally into

mutually exclusive groups.

Lemma 4. For any d and P (t)
d , and any (t′,P′,A′) 6= (t′′,P′′,A′′), where P′ ∈ Pt′,d and P′′ ∈

Pt′′,d, we haveWd,t′,P′,A′ ∩Wd,t′′,P′′,A′′ = ∅.

Proof. Suppose that the two sets have a common element Wn,C . Then this implies that,

t′n = t′′n = |{k̂ ∈ C : dk̂ = n}|+ 1,

t′i = t′′i = |{k̂ ∈ C : dk̂ = i}|, i ∈ IN , i 6= n. (2.50)
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i.e., t′ = t′′; let us write this transmission type as t. It also follows that P′ = P′′, since n ∈ P′ and

n ∈ P′′, but P′ ∩ P′′ = ∅ if P′ and P′′ are distinct; we can thus denote this partition as P. It further

follows that A′ = A′′ = C ∩ ∪n∈supp(t)\PI
[n]. This is a contradiction, and thus there is no common

element between the two sets. The proof is thus complete.

Lemma 5. Each transmission on line-22 in Algorithm 1 is a linear combination of the elements in

a single set Wd,t,P,A. All the linear combinations in the transmissions on line-22 of Algorithm 1

using symbols in a single setWd,t,P,A are linearly independent.

Proof. The first statement is through direct inspection. We can prove the second statement by

analyzing the rank of the corresponding coding matrix, which is however rather long and tedious.

We instead prove it through a shortcut, directly utilizing the optimality result established in [100].

Fix a demand vector d ∈ D, a transmission type t, and a partition P ∈ Pt,d. We only need to

prove that for a fixed A, the transmissions

⊕n∈P
(
⊕k∈B∩I[n]Wn,(B\k)∪A

)
, (2.51)

when B ranges over all subsets of ∪n∈PI [n] that satisfy the condition

B ⊆ ∪n∈PI [n] : B ∩ I [n] = tn,∀n ∈ P (2.52)

are indeed linearly independent. For this purpose, the exact choice of A is not relevant, and thus

we might as well simply drop it by defining

Ŵn,B\k , Wn,(B\k)∪A, (2.53)

which lead to the representation

⊕n∈P
(
⊕k∈B∩I[n]Ŵn,B\k

)
, (2.54)
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where B has the same range as (2.52). Now consider a caching system that has files {Ŵn : n ∈ P},

the users ∪n∈PI [n], and the demand vector formed by taking the demand vector d at the coordinates

∪n∈PI [n]. The transmissions (2.54) are in fact part of the transmissions in the scheme in [100]

for this system when choosing t = |P| − 1. These transmissions cannot possibly be linearly

dependent, because if so, the dependence could have been removed to further improve the delivery

transmission rate, but it was shown in [100] that this transmission scheme is in fact optimal for

each demand vector. The proof is thus complete.

2.4.4 The Correctness of the Coding Scheme

The next proposition shows that the code is indeed valid for any d ∈ D.

Proposition 1. Each user can use the delivery transmissions in Algorithm 1 and the cached content

to recover the requested file for any d ∈ D.

Proof. Consider an arbitrary user ko, whose demands is dko . From the transmissions in line-1 to

line-16, the user can clearly collect for each S, where ko ∈ S, a total of r
d,P̆(t)

d
min(K − r, Ñ)

uncoded symbols, in the form of W i
n,S for n ∈ supp(m) \ A∗ (or n ∈ A), and there are clearly(

K−1
t−1

)
possible ways to choose such a S. Thus a total of r

d,P̆(t)
d

∆M
d,P̆(t)

d ,k
symbols are collected.

Then consider the transmissions on line-22 in the algorithm. For each transmission type t

such that dko ∈ supp(t), consider every B such that T (B) = t, |B| = t + 1, ko ∈ B, and(⋃
n∈P{`[n]}

)
∩B 6= ∅. User-k collects the following transmissions in the corresponding instances:

⊕n∈P
(
⊕k∈B∩I[n]W

(i)
n,B\k

)
,P such that P ∈ Pt,d,j and dko /∈ P; (2.55)

First note that since dko /∈ P but n ∈ P, and k ∈ I [n], we have ko 6= k in the inner enumera-

tion. Thus ko ∈ B \ k. This implies that all the collected transmissions are linear combinations

of the symbols of the form W
(i)
n,S where ko ∈ S, which are the components of the linear combi-

nations stored in the cache of user-ko. It is straightforward to count that user-k collects a total of

∆M
d,P(t)

d,j ,ko
for the decomposition pattern P (t)

d,j such transmissions in (2.55) for each fixed i value.
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Together with the cached contents, user-ko has a total of

M ′ +

q∑
j=1

r
d,P(t)

d,j
∆M

d,P(t)
d,j ,ko

≥ rN

(
K − 1

t− 1

)
, (2.56)

linear combinations of the rN
(
K−1
t−1

)
symbols W (i)

n,S where ko ∈ S. The collected linear combina-

tions from the delivery transmissions are clearly linearly independent due to Lemma 4 and Lemma

5. Thus these linear combinations that user-ko has gathered can be viewed as a full rank transfor-

mation of the corresponding rank metric code symbols, which were produced at the prefetching

stage by user-ko. By Lemma 2, user ko can recover all these symbols to their uncoded form. At

this point, user-ko essentially has all the symbols as if the uncoded prefetching strategy in [39] was

used. It remains to argue that user-ko can also recover the file symbols of file dko , which is in the

form W
(i)
dko ,S

such that ko /∈ S. This is straightforward to check for i = 1, . . . , r
d,P̆(t)

d
, because all

the needed symbols are transmitted in the uncoded form. For the other cases, since by Lemma 3,

the original transmissions in the delivery scheme in [39] can be completely reconstructed using the

transmissions in Algorithm 1, and with these transmissions and the uncoded prefetched symbols

in the cache, user-ko can indeed recover the missing file symbols through the decoding strategy

in [39]. The proof is thus complete.

2.5 Conclusion

In this chapter, we proposed a connection between the caching strategy in [77] and that in [100],

that is decomposing the delivery transmissions in [100] yields those in [77] in some cases. This

allows us to view the coding strategy in [77] and that in [100] as the two extremes of a more

general scheme. The general scheme can achieve some memory-rate pairs previously unknown in

the literature, and can be computed using a linear programming approach.

We note that although the new scheme unifies the codes in [77] and [100], it does not appear

to include the codes in [101]. We suspect that an improved code can be found by analyzing the

transmission types more carefully to optimize explicitly the decomposition patterns, and then in-

corporate certain coding components in [101]; this is part of our ongoing work. Our work reported
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here is information theoretic in nature, and little attention has been paid to the complexity of the

codes. Particularly, the proposed code has a large alphabet size, a large subpacketization factor,

and needs to code across a large number of instances. Such a code is challenging to use directly in

practical systems, and effort toward simplifying it appears worthwhile.
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3. ON THE FUNDAMENTAL LIMIT OF CODED CACHING SYSTEMS WITH A SINGLE

DEMAND TYPE*

Caching is a technique to alleviate communication load during peak hours by prefetching cer-

tain contents to the memory of the end users during off-peak hours. Recently, Maddah-Ali and

Niesen [39] proposed a framework for caching, and showed that coded caching can achieve signif-

icant improvement over uncoded caching. This caching system, withN files andK users, operates

in two stages: during the prefetching stage, each user fills the cache memory of size M with in-

formation on the files, and during the delivery stage, the users reveal their requests, and the central

server broadcasts common information of size R to all the users, which can be used jointly with

the cached contents to fulfill the requests.

The optimal tradeoff between M and R is of fundamental importance in this setting. De-

spite significant efforts, the problem of characterizing this fundamental limit still remains open.

Schemes for both uncoded prefetching and coded prefetching have been proposed [2,39,77,93,94,

97–100], and various outer bounds have also been discovered [92, 102–104]. Nevertheless, except

a few special cases, the fundamental limit of coded caching systems still remains unknown.

In the placement phase, each user has no prior knowledge of the demands in the delivery phase,

and the prefetched contents need to be properly designed to accommodate all possible demand

vectors. In a recent work [91] (see also [92]), the notion of demand type was introduced to classify

the demand vectors, which lead to simplifications in a computer-aided investigation of the outer

bounds. From this perspective, the original setting [39] in fact allows fully mixed demand types,

and it appears that one reason for the afore-mentioned difficult is the tension among the coding

requirements to accommodate different demand types. Thus a natural question is how different

demand types impact this optimal (M,R) tradeoff.

To develop better understanding of this issue, in this section we consider single-demand type

*© 2019 IEEE. Reprinted, with permission, from Shuo Shao, Jesus Gómez-Vilardebó, Kai Zhang and Chao Tian,
“On the Fundamental Limit of Coded Caching Systems with a Single Demand Type”, 2019 IEEE Information Theory
Workshop (ITW), pp. 1-5, 2019.
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systems, where during the placement phase, the users and server know a priori that the demand

vector in the delivery phase must be of a given demand type. Clearly, single-demand type systems

have a more relaxed coding requirement than the original setting, however, it is still highly non-

trivial since for each single demand type, a large number of different demand vectors are possible,

with a rich set of symmetry relations among them [92]. Because of the relaxed coding requirement,

any inner bound for the fully mixed demand type system will also be an inner bound for a single

demand system, however, an outer bound for the fully mixed demand type systems may not be a

valid outer bound for the single demand type systems.

Our first step is to collect the best known inner bounds and outer bounds for both fully mixed

demand type systems and single demand type systems in the literature for the canonical (N,K) =

(3, 3) system, some of which are from very recent developments [97,98] in the area. This exercise

reveals important insight and fundamental differences between the different classes of systems. It

is shown that the demand type where all files are requested poses the most significant challenged

in terms of characterizing the fundamental limit, however, codes designed for this demand type

can in fact achieve (M,R) pairs that are strictly impossible for another demand type. This is

contrary to popular belief that such a demand type is the “worst case", and also confirms that there

is indeed a tension for codes designed for different demand types, and a fully mixed system would

need to balance such conflicting interests. Next we focus on the case N = K and for the demand

type where all files are requested, and propose a new code construction based on a novel sub-

packetization design. The construction is a generalization of the code recently proposed in [98],

however, in contrast to the code specific designed for N = K = 3 or 4 that yields a single (M,R)

pair each, our construction is for generalN whenN = K which can produce multiple new (M,R)

points. Finally, we consider outer bounds for such single demand type systems, where several

existing bounds are first verified to be valid for this relaxed setting, and additionally a new outer

bound is identified; the outer bounds indeed match the proposed scheme in some cases.
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3.1 Single Demand Type Systems

In an (N,K) coded caching system, there are N mutually independent uniformly distributed

files (W1,W2, . . . ,WN), each of F bits. There are K users, each with a cache memory of capacity

MF bits. In the placement phase, each user stores some content, denoted as Zk for user-k’s

content, in its cache memory. In the delivery phase, user-k requests a file d(k), and a central server

broadcasts a message Xd(1),d(2),...,d(K) of rate RF bits to every user, such that each user can decode

the requested file, together with the cached contents. The optimal tradeoff between M and R is the

fundamental mathematical object of interest.

The notion of demand type was first introduced in [91] (see also [92]), which is restated below.

Definition 2. For a demand vector (d(1), d(2), . . . , d(K)) in an (N,K) coded caching system,

denote the number of users requesting file Wn as mn, where n ∈ [1 : N ]. We call the vector

obtained by sorting the values (m1,m2, . . . ,mN) in a decreasing order as the demand type of

(d(1), d(2), . . . , d(K)).

For example, in an (N,K) = (3, 3) system, the demand vector (d(1), d(2), d(3)) = (1, 2, 1)

belongs to the demand type (2, 1, 0). As mentioned earlier, characterizing the fundamental tradeoff

between M and R for fully mixed demand type systems appears rather difficult, despite consider-

able efforts. In a single demand type system, however, it is known a priori that the demand must

have the form of a given type, and thus the prefetching can be designed accordingly. Our interest is

thus to characterize the achievable region of all (M,R) pairs for such single demand type systems.

For example, for the (N,K) = (3, 3) system, the coded caching system for the single demand type

(2, 1, 0) only needs to accommodate the following demand vectors

(d(1), d(2), d(3)) =

(1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2), (1, 2, 2)

(1, 1, 3), (1, 3, 1), (3, 1, 1), (3, 3, 1), (3, 1, 3), (1, 3, 3)

(2, 2, 3), (2, 3, 2), (3, 2, 2), (3, 3, 2), (3, 2, 3), or (2, 3, 3).
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Figure 3.1: Inner bounds and outer bounds for (3, 3) systems: fully mixed and single demand
types. Reprinted with permission from [3], © 2019 IEEE.

3.2 Fully Mixed and Single Demand Type Systems: The (3, 3) Case

In this section, we consider the canonical (N,K) = (3, 3) system, and collect the best known

inner bounds and outer bounds for both fully mixed demand type systems and single demand

type systems in the literature. This exercise reveals important insight and fundamental differences

between the two classes of systems.

3.2.1 The Fully Mixed Demand Type System

The best known outer bound for this system can be found in [92], which are all the non-negative

pairs of (M,R) satisfying the constraints

3M +R ≥ 3, 6M + 3R ≥ 8,M +R ≥ 2,

2M + 3R ≥ 5,M + 3R ≥ 3.
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The lower convex hull of the best known inner bound, on the other hand, is given by the lower

convex hull of the points

(0, 3), (1/3, 2), (1/2, 5/3), (1, 1), (2, 1/3), (3, 0),

where the second and third points are achieved by the scheme in [97], while the others can be

achieved by that in [39].

3.2.2 Single Demand Type Systems

Next we provide the best known results for the three single demand type systems for (N,K) =

(3, 3).

1. For the system with the demand type (3, 0, 0), the achievable region is precisely all the non-

negative (M,R) such that

M + 3R ≥ 3, (3.1)

i.e., in this case, the inner bound and the outer bound match. The outer bound can be obtained

by a simple cut-set argument [39], while the inner bound is trivial through a memory-sharing

argument.

2. For the system with the demand type (2, 1, 0), the achievable region is precisely all the non-

negative (M,R) such that

M +R ≥ 2, 2M + 3R ≥ 5, M + 3R ≥ 3.

In this case, the corner points (1, 1) and (2, 1/3) can be achieved using the scheme in [39],

and (0, 2) and (3, 0) are trivial. The outer bound was established in [92].

47



3. For the system with the demand type (1, 1, 1), the best known outer bound is given as [92]

3M +R ≥ 3, 6M + 3R ≥ 8,M +R ≥ 2,

12M + 18R ≥ 29, 3M + 6R ≥ 8,M + 3R ≥ 3.

The lower convex hull of the best known inner bound is given by the lower convex hull of

the points

(0, 3), (1/3, 2), (1/2, 5/3), (1, 1),

(5/3, 1/2), (2, 1/3), (3, 0).

The second and the third points can be achieved by the scheme in [97], the point (5/3, 1/2)

by the scheme in [98], and the others by that in [39].

3.2.3 Fully Mixed vs. Single Demand

By comparing the rate region of different demand type systems in Fig.3.1, we make the follow-

ing observations:

1. The point (5/3, 1/2), which is achievable for the system with the single demand type (1, 1, 1)

as shown in [98], is in fact not achievable for the (2, 1, 0) demand type, thus also not achiev-

able for the fully mixed demand type system.

2. Between fully mixed and single demand type systems, single demand type systems can in-

deed achieve lower rates than the fully mixed demand system.

3. Different single demand type systems provide different out bounds for the fully mixed sys-

tem, with the one with fewer files demanded produce better bounds at high memory regimes,

while those with more files being better at low memory regimes.

The first observation implies that the case when all files are requested is not necessarily the

“worst case", contrary to popular belief. Thus designing codes for this demand type alone is
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not sufficient to yield the optimal scheme for the fully mixed demand type systems, however the

optimal codes constructed for such a demand type are likely to play a role in the optimal codes

for the fully mixed system. Motivated by the observations above and the new code construction

in [98], which only provided a single point N = K = 3 or N = K = 4, in the sequel we focus

on the case N = K for general N , and the demand type when all files are requested, i.e., when

the demand type is (1, 1, . . . , 1). From now on, we shall also refer to this special case as the fully

demanded coded caching system, or fully demanded system for short.

3.3 Inner Bounds for (N,K = N) Fully Demanded Coded Caching

We propose a novel code construction (N,K = N) for general N values, whose performance

is given in the following theorem.

Theorem 2. For an (N,K) caching system with the single demand type (1, 1, . . . , 1) and N = K,

the following rate-memory pairs are achievable.

(M,R) =

(
r +

r + 1

K
,
K

r + 1
− 1

)
, (3.2)

for r = {0, ..., K − 1}.

Note that for N = 3 and N = 4, by setting r = K − 1, we recover the operating points given

in [98]; on the other hand, setting r = 0 gives the point in [93] (see also [77]). Operating points for

other values of r are previously unknown to be achievable in this system. In the sequel we provide

the code construction, which is also illustrated with an example for N = K = 4, and r = 2.

3.3.1 Prefetching

Let us define the set of all user indexes as K = {1, ..., K} and the set of all file indexes as

F = {1, ..., N}, and in this case we have N = K. We partition each file Wf , for all f ∈ F into

a number of non-overlapping subfiles of equal size. One subfile Wf,R,s, for each pair of integer s

and set R, with s /∈ R, and s = 1, 2, . . . , K and |R| = r, where r ∈ {0, ....K − 1}. The total
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number of subfiles is thus (
K

r

)(
K − r

1

)
= K

(
K − 1

r

)
. (3.3)

We will prefetch these subfiles in three different ways, called type I to type III respectively.

3.3.1.1 Type I Subfiles

Given a user k, consider the subfiles Wf,R,s satisfying k ∈ R and thus k 6= s for every file

f ∈ F . The total number of these subfiles is

mI = N

(
K − 1

r − 1

)
(K − r).

3.3.1.2 Type II Subfiles

Next, consider the subfiles Wf,R,s for each file f ∈ F . We define the coded subfiles

ZR,s =
⊕
f∈F

Wf,R,s

for each setR and s satisfying s /∈ R. Observe that there aremII =
(
K−1
r

)
of these coded subfiles.

3.3.1.3 Type III Subfiles

In addition, we define the coded subfiles

Zf,R−,s =
⊕

u∈K\{R−,s}

Wf,u∪R−,s

for each file f ∈ F and each set R− satisfying |R−| = r − 1 and R− ⊂ K\s. Each user k

caches the above coded subfiles for K − 1 subfiles (all except one), and except for the set tuples

{R−, s} including one arbitrary user different from k. The total number of these coded subfiles is

mIII = (K − 1)
(
K−2
r−1

)
.

Our coded caching scheme caches the mI uncoded subfiles, the mII coded subfiles ZR,s and

the mIII coded subfiles Zf,R−,s. Because each subfile has F

K(K−1
r )

bits, the required cache load at
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users equals MF with

M =
mI +mII +mIII

K
(
K−1
r

) = r +
r + 1

K
.

3.3.2 Delivery

Next, we describe the broadcasted coded subfiles for a fixed s. For every set R+ ⊂ K\s with

r + 1 users, i.e. |R+| = r+1, the server broadcasts

YR+,s =
⊕
u∈R+

Wd(u),R+\u,s.

Since s /∈ R+, the total number of transmissions associated to a given s is
(
K−1
r+1

)
, and the total

number of transmission is

T =
∑
s∈K

(
K − 1

r + 1

)
= K

(
K − 1

r + 1

)
,

and over the number of each file’s subfiles F

K(K−1
r )

, the communication load RF is

R =

(
K
1

)(
K−1
r+1

)
K
(
K−1
r

) =
K

r + 1
− 1. (3.4)

3.3.3 Decoding Subfiles Uncoded at Users Different from u

Firstly we consider the decoding at user u of subifiles Wd(u),R,s with u 6= s. If u ∈ R, then file

Wd(u),R,s can be found uncoded at the cache of user u. Instead, if u /∈ R then user u computes

Wd(u),R,s

=Wd(u),R,s ⊕
⊕
j∈R

Wd(j),{R∪u}\j,s ⊕
⊕
i∈R

Wd(i),{R∪u}\i,s

=YR∪u,s ⊕
⊕
i∈R

Wd(i),{R∪u}\i,s
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using YR∪u,s and the subfiles Wd(i),{R\i}∪u,s for all i ∈ R that are uncoded in the cache of user u.

3.3.4 Decoding Subfiles Coded at the Cache of User u

Next, we show how user u obtains Wd(u),R,u for all R. Recall that these subfiles are all coded

in coded subfiles of its own cache. First user s computes

⊕
v/∈R∪u

YR∪v,u =
⊕
v/∈R∪u

⊕
t∈R∪v

Wd(t),{R∪v}\t,u

=
⊕
v/∈R∪u

Wd(v),R,s

⊕
⊕
t∈R

Wd(t),R,s
⊕
v/∈R\t

Wd(t),{R\t}∪v,s.

Recall that user u caches

Zd(t),R\t =
⊕
v/∈R\t

Wd(t),{R\t}∪v,u.

Thus, user u can compute

ΩR,u =
⊕
v/∈R∪u

YR∪v ⊕
⊕
t∈R

Zd(t),R\t

=
⊕
v/∈R∪u

Wd(v),R,u ⊕
⊕
t∈R

Wd(t),R,u

= Wd(u),R,u ⊕
⊕
f∈F

Wf,R,u,

where
⊕

f∈FWf,R,u is cached in user u as well, hence Wd(u),R,u can be decoded by the user u.

3.3.5 An Example: (N,K) = (4, 4) and r = 2

Let the parameter r = 2, and thus there are
(
K
r

)(
K−r

1

)
= 12 subfiles per file. This cor-

responds to the point (M,R) = (11/4, 1/3). This point can be achieved by the scheme in

[98], and now we present a new approach using the proposed scheme. The prefetching strat-

egy is shown in Table 3.1, which contains all cached symbols in User 1. Consider demand

(W1,W2,W3,W4), our delivery strategy yields a transmission of four coded symbols, as speci-
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Table 3.1: Prefetched symbols at user 1 for caching system (N = 4, K = 4), r = 2. Reprinted
with permission from [3], © 2019 IEEE.

Cached Symbols at User 1

Type I

W1,12,3,W1,12,4,W1,13,2,W1,13,4,W1,14,2,W1,14,3

W2,12,3,W2,12,4,W2,13,2,W2,13,4,W2,14,2,W2,14,3

W3,12,3,W3,12,4,W3,13,2,W3,13,4,W3,14,2,W3,14,3

W4,12,3,W4,12,4,W4,13,2,W4,13,4,W4,14,2,W4,14,3

Type II
(1)W1,23,1 ⊕W2,23,1 ⊕W3,23,1 ⊕W4,23,1

(2)W1,24,1 ⊕W2,24,1 ⊕W3,24,1 ⊕W4,24,1

(3)W1,34,1 ⊕W2,34,1 ⊕W3,34,1 ⊕W4,34,1

Type III
(4)W2,23,1 ⊕W2,24,1, (5)W3,23,1 ⊕W3,24,1

(6)W4,23,1 ⊕W4,24,1, (7)W2,23,1 ⊕W2,34,1

(8)W3,23,1 ⊕W3,34,1, (9)W4,23,1 ⊕W4,34,1

Table 3.2: Delivery for demand d = (W1,W2,W3,W4). Reprinted with permission from [3], ©
2019 IEEE.

Delivery
(10)W2,34,1 ⊕W3,24,1 ⊕W4,23,1

(11)W1,34,2 ⊕W3,14,2 ⊕W4,13,2

(12)W1,24,3 ⊕W2,14,3 ⊕W4,12,3

(13)W1,23,4 ⊕W2,13,4 ⊕W3,12,4

fied in Table 3.2. The decoding process is as follows. First, observe that, the 6 requested subfiles

W1,13,2,W1,14,2,W1,12,3,W1,14,3,W1,12,4,W1,13,4 are stored uncoded by User 1. Second, the 3 sub-

files W1,34,2,W1,34,2,W1,34,2 can be directly decoded from the three transmissions (11-13), respec-

tively, since in each transmission all other subfiles are stored uncoded by User 1. Third, we can

use the transmission (10), to recover the remaining 3 subfiles of W1, which are coded at the cache

of User 1, as

W1,23,1 = (1)⊕ (5)⊕ (7)⊕ (10),

W1,24,1 = (2)⊕ (4)⊕ (6)⊕ (7)⊕ (10),

W1,34,1 = (3)⊕ (5)⊕ (8)⊕ (9)⊕ (10).
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Hence all the 12 subfiles of W1 are successfully recovered by User 1. The decoding steps for the

other users follows the same pattern.

3.4 General Outer Bounds and Evaluation

In this section, we consider the outer bounds of the fully demanded coded caching system,

i.e. the demand type is (1, 1, . . . , 1). We first verify the validity of several existing outer bounds

derived for the fully mixed demand type system, in the context of this single demand type system

setting. Then, a new outer bound is provided, which is only applicable to the fully demanded coded

caching system.

3.4.1 General Outer Bounds for Fully Demanded System

In this subsection we give out two outer bounds in Theorem 3 and Theorem 4. Theorem 3

is induced from the outer bounds of the original fully mixed demand type system in [104], and

Theorem 4 is identified merely for the fully demanded coded caching system.

Two different sets of outer bounds were given in [104]. One is obtained by the intersection of

outer bounds derived using single demand types, hence only one particular outer bound remains

valid for our setting which however becomes trivial, another set of outer bounds still holds, as its

core inequality

RF ≥
K∑
k=1

H(Wk|Z[1:k],W[1:k−1])

holds exactly for the fully demanded coded caching system. Therefore, we have the following

theorem.

Theorem 3 (Yu et al. [104]). In the (N,K = N) coded caching system with demand type

(1, 1, . . . , 1), all achievable (M,R) rate pairs are lower-bounded by the lower convex envelop

of the points

(
K − `+ 1

s
,
s− 1

2
+
`(`− 1)

2s

)
,
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where s ∈ {1, 2, . . . , K} and ` ∈ 0, 1, . . . , K.

Similary, the outer bound of the worst case rate in [103] is also valid for this setting. However

it is weaker than Theorem 3 (see Fig. 3.2), hence the details are omitted here. We can also prove

the following outer bound.

Theorem 4. In the (N,K = N) coded caching system with demand type (1, 1, . . . , 1), all achiev-

able (M,R) rate pairs must satisfy:

KM +K(K − 1)R ≥ K2 − 1. (3.5)

The proof of this bound is omitted due to space constraint. We note that [98], a similar outer

bound was established for N = 3, 4, and Theorem 4 generalizes those bounds. When setting

r = K − 1 in Theorem 2, the achievable rate pair (M,R) = (K − 2 + K−1
K
, 1
K−1

) indeed matches

this outer bound, hence optimal for the fully demanded system.

3.4.2 Example Evaluation: (N,K) = (5, 5)

When (N,K) = (5, 5), Theorem 3 reduces to

5M +R ≥ 5, 20M + 5R ≥ 24, 36M + 10R ≥ 47,

6M + 2R ≥ 9, 2M +R ≥ 4, 5M + 4R ≥ 13,

5M + 6R ≥ 16, 5M + 9R ≥ 19, 5M + 12R ≥ 21,

5M + 16R ≥ 23, 5M + 20R ≥ 24, M + 5R ≥ 5.

and Theorem 4 reduces to

5M + 20R ≥ 24.

The inner bounds and outer bounds are shown in Fig. 3.2. It can be seen that three new operating

points (7/5, 3/2), (13/5, 2/3) and (19/5, 1/4) are obtained by the proposed code construction.
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Scheme by Maddah-Ali & Niesen in Reference [1]

Scheme by Tian & Chen in Reference [6]

Scheme by Gómez in Reference [7]

Proposed Scheme in Theorem 1

Outer Bound in Theorem 2

Outer Bounds by Wang et al in Reference [13]

Best Known Inner Bound

Outer Bound in Theorem 3

Figure 3.2: Inner bounds and outer bounds for the (5, 5) system with demand type (1, 1, 1, 1, 1).
Reprinted with permission from [3], © 2019 IEEE.

3.5 Conclusion

We considered the single demand type coded caching systems in this work. For the canonical

(3, 3) system, the single demand type systems are compared thoroughly with fully mixed demand

type systems. Even in this case, we see that codes designed for the demand type (1, 1, 1) in fact

operates strictly outside of the achievable region of the (2, 1, 0). This is contrary to the popu-

lar belief that the full demand is the worst case demand type. We then proposed a new scheme

for the fully demanded system, which can achieve rate pair (M,R) = (r + r+1
K
, K

1+r
− 1) with

r ∈ [0 : K − 1]. Lastly, we adapted several outer bounds original obtained for the fully mixed

demand type systems, and also identified a new outer bound specific for the single demand type

(full demand) system. The proposed code construction provide operating point that indeed match

the outer bounds in some cases.
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4. ON THE SYMMETRY REDUCTION OF INFORMATION INEQUALITIES*

Information theory provides a natural framework and a rich set of tools to determine the fun-

damental limits of communication systems and information systems. The derivation of such fun-

damental limits (or outer bounds) in a coding problem, requires a strategic combination of infor-

mation equalities and inequalities. The most often used set of information inequalities are the

Shannon-type inequalities, which were first formally identified by Yeung [105]. Moreover, Yeung

identified the minimal set of such inequalities, referred to as elemental inequalities. Although there

exist non-Shannon-type inequalities [106], in many cases, Shannon-type inequalities together with

problem-specific constraints are sufficient to produce the (true) fundamental limits, particularly for

systems with strong symmetries [107–109].

Since Shannon-type inequalities and many problem specific constraints are linear in the joint

entropies, the overall derivation of the fundamental limits or outer bounds can be viewed as a series

of linear programs where the variables are these joint entropies, and can in principle be solved us-

ing any linear program (LP) solver. However, for practical engineering problems, the resultant LPs

are usually very large, which make solving them numerically impossible. In a recent work [110],

it was shown that symmetry (together with other problem-specific reductions) can be effectively

utilized to reduce the scale of the LP, which led to a conclusive solution for the (4, 3, 3) regen-

erating code problem, and moreover, proved the existence of a fundamental difference between

functional repair regenerating codes and exact repair regenerating codes. The intuition behind the

reduction is that, the inherent symmetry structure in the problem implies the existence of symmet-

ric optimal solutions, and thus many LP variables can be assumed to have the same values, and

as a consequence there is no need to represent them differently. This further induces a significant

reduction in terms of the LP constraints, and a computer solver can be used on this much reduced

*© 2018 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “On the symmetry reduction of
information inequalities”, IEEE Transactions on Communications, vol. 66, no. 6, pp. 2396-2408, 2016.
© 2016 IEEE. Reprinted, with permission, from Kai Zhang and Chao Tian, “Symmetry reduction of information
inequalities”, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1-5,
2016.
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problem. Although the intuition itself is straightforward, our understanding on the amount of re-

duction through symmetry is limited. In this work, we seek to develop a better understanding on

this issue.

There are two useful measures of the scale of the LP: the number of LP variables, and the

number of LP constraints. Although the computational complexity in many modern solvers is

more directly related to the number of nonzero elements in the LP [111], these two measures are

usually good indicators of the computational scale, particularly in the context we are interested in.

The key questions we ask are thus the following:

• After the symmetry reduction, how many unique joint entropy terms will still remain?

• After the symmetry reduction, how many unique elemental information inequalities will still

remain?

There is in fact a simple method to estimate (lower bound) these quantities. The group action

defined through the permutation group on the power set of the random variables in the problem

induces certain equivalence classes (often referred to as orbits of a group action), and the maximum

number of elements in any class is the number of permutations in the specific problem setting.

Therefore, lower bounds to the two quantities can be obtained by dividing the total number of LP

variables and that of LP constraints by the number of permutations. However, since some orbits

can have fewer elements, these lower bounds are not precise. A method to pinpoint the symmetry

structure and count these numbers accurately is thus needed.

A powerful tool to tackle this type of orbit counting problem is the Pólya counting theorem,

which requires finding the cycle index of the group action. Our main task thus reduces to first

identifying the group and group action, and then finding the cycle index. In this study, we propose

a generic three-layer decomposition of the group structure in typical coding problems and infor-

mation systems, which allows us to conveniently apply the Pólya counting theorem. In particular

we apply this approach on three problems: the problem of extremal pairwise cyclically symmetric

entropy inequalities in [116, 117], the regenerating code problem [110, 118, 119], and the caching
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problem [39,77,91,131,132]. For all these problems, we provide explicit formulae for or efficient

algorithms to compute the two quantities of interest. In fact, two of them lead to cycle indices pre-

viously studied in the literature [120–122, 133], while the other appears less well studied before.

The three-layer decomposition not only fits the three problems we study here, but also is well

motivated in general. The first layer, referred to as the base layer, can be viewed as reflecting cer-

tain physically meaningful permutations of the components in the communication or information

systems, while the second layer is a permutation induced by the base layer on the random variables

representing more abstract relations among the system components. The third layer is on the power

set of the random variables, which directly relates to the joint entropies.

It should also be clarified that the cycle index is a concept associated with a group action, and a

group acting on different sets may induce different cycle indices. A more intuitive interpretation of

a group action is through its permutation representation, which in fact directly relates to the cycle

index. In this work, we make a conscientious effort to reduce explicit reliance on the notion of

group actions, but rather favor permutation representations because of the explicit physical inter-

pretation. In the rest of the chapter, we will occasionally revert to group actions, which sometimes

are more concise, and may be more meaningful for readers familiar with the mathematical tools

developed using group actions.

The proposed method can be used to calculate the numbers of LP variables and LP constraints

after symmetry reduction, while the aforementioned estimates are inaccurate. Numerically we ob-

serve that their relative difference becomes negligible as they both grow large, and thus our result

is more reassuring than surprising in nature. We only consider the reduction due to the symmetry,

which does not include other possible reductions, for example, reductions due to implication rela-

tions among the random variables. Such reductions were indeed utilized in [110] and can in fact

be rather significant, however, it is difficult to identify the general amount of reduction since it is

highly problem dependent; this topic is thus beyond the scope of our current study. Furthermore,

our focus is on the reduction of the LP variables and the LP constraints, not the isomorphic rela-

tion among asymmetric problem instances, nor the symmetry in the geometry of the constrained
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entropic polytope; results related to these aspects can be found in [123, 124]. A less obvious but

important byproduct of our study is the formalization of the permutation representations of the

symmetry in the three problems, which are in fact needed in representing the problem in a com-

puter program, and may be of value to researchers interested in implementing such software.

The rest of this chapter is organized as follows, in section 4.1 we provide a generic three-

layer decomposition to investigate the problem. Section 4.2 gives an introduction to the critical

mathematical tool. In sections 4.3, 4.4, 4.5, we provide the results on three different problems.

Technical proofs are given in the appendices.

4.1 Permutation Group, Cycle Index and the Pólya Counting Theorem

In this section we provide some necessary backgrounds on groups, group actions, and the Pólya

counting theorem.

4.1.1 Permutation Group

A group is a set G with a binary operation ◦ : G×G→ G, satisfying the four axioms:

• (Closure) ∀a, b ∈ G, a ◦ b ∈ G;

• (Identity) ∃e ∈ G,∀a ∈ G, e ◦ a = a ◦ e = a;

• (Associativity) ∀a, b, c ∈ G, (a ◦ b) ◦ c = a ◦ (b ◦ c);

• (Inverse) ∀a ∈ G,∃b ∈ G, a ◦ b = b ◦ a = e.

Therefore, a group is formally denoted as (G, ◦). In the sequel, we will omit ◦ and just write G

as a group for simplicity, and may also omit ◦ in a ◦ b. A permutation π defined on the finite set

Y is a bijective mapping from Y to itself, and a permutation group G is a group with its elements

being distinct permutations (of set Y), and the operation ◦ is the composition of permutations.

Two specific permutation groups are particularly important in this study. The symmetric group

Sym(Y) defined on the set Y is a permutation group which contains all possible permutations of

Y . Especially, when Y contains n elements, the symmetric group can be written as Sn without

loss of any generality. The symmetric group plays an important role in the theory of group action.
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Cayley’s theorem states that every group is isomorphic to a subgroup of some symmetric group

[134]. The cyclic group Cn defined on an n-element set is a permutation group where there exists

a π ∈ Cn such that Cn = {πk : k ∈ Z}.

A group action of a group G on a set Y is a function ∗ : G × Y → Y , which satisfies the two

axioms:

• (Identity) ∀y ∈ Y , e ∗ y = y;

• (Associativity) ∀g, h ∈ G and ∀y ∈ Y , g ∗ (h ∗ y) = (gh) ∗ y.

In the rest of the chapter, we shall use g(y) to represent a group action, which is particularly

meaningful for permutation groups, i.e., g is a permutation that maps an element y to g(y).

The permutation representation of a group action (G,Y) is a group homomorphism φ : G →

Sym(Y) [135]. Especially, when G is a permutation group, each permutation in G will permute Y

in a canonical way. Group actions and permutation representations are simply different viewpoints

of the same mathematical concept. This claim is made formal by the following theorem which can

be found in [135].

Theorem 5. (Equivalence of group actions and permutation representations [135]) For a fixed

group G and a set Y , let A be the set of all group actions of G on Y , and P be the set of all

permutation representations of G on Y , there exist mutually inverse bijections F : A → P and

I : P → A, given by

F (∗) : φ(g) = (y 7→ g ∗ y : y ∈ Y), (4.1)

I(φ) : g ∗ y = φ(g)(y) (g ∈ G, y ∈ Y), (4.2)

where ∗ : G× Y → Y is a group action and φ : G→ Sym(Y) is a permutation representation.

A special group action (in its permutation representation) related to our study is the power

group†, which is a group action produced by two group actions [120]. Let G be a group acting
†The permutation representation of the power group is in fact isomorphic to the direct product of the two groups

[120].
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on the set Y , and H be a group acting on the set V , then the power group HG is defined to be

acting on the set VY = {f : Y → V}, i.e., all mappings from Y to V . The cardinality of this set is

clearly |VY | = |V||Y|, where | · | denotes the cardinality of a set. Let us assign an arbitrary but fixed

order on the distinct elements of Y and write them in order as y1, y2, . . . , y|Y|. Any such function

f : Y → V can be represented by the vector, [ay1 , ay2 , . . . , ay|Y| ] , [f(y1), f(y2), . . . , f(y|Y|)]. The

case particularly relevant to our study is when G and H are permutation groups. For this case, let

g ∈ G, h ∈ H , then hg ∈ HG acts on a vector [ay1 , ay2 , . . . , ay|Y| ] as

hg
(
[ay1 , ay2 , . . . , ay|Y| ]

)
=hg

(
[f(y1), f(y2), . . . , f(y|Y|)]

)
=[h(f(g(y1))), h(f(g(y2))), . . . , h(f(g(y|Y|)))]

=[h(ag(y1)), h(ag(y2)), . . . , h(ag(y|Y|))]. (4.3)

4.1.2 The Cycle Index

A permutation π acting on a finite set Y can be represented by its cycle notation, which is a

product of disjoint cycles, with each cycle being a subset of Y in which the elements are cyclically

permuted by π. The order of the cycles does not matter, and moreover, the rotations of elements

in a cycle yield the same cycle. The cycle index of a permutation π is a monomial xc11 x
c2
2 . . . xcnn ,

which indicates that there are ci length-i cycles in this permutation. For example, permutation

π =
(

1 2 3 4 5
3 5 4 1 2

)
defined on set Y = {1, 2, 3, 4, 5} can be represented by the cycle notation π =

(2 5)(1 3 4), and its cycle index is x1
2x

1
3. Notice that a permutation of n elements can have a cycle

length of at most n, and some of the exponents in its cycle index may be zero. Let G be a group

whose elements are permutations of Y , then the cycle index of group G is the summation of the

cycle indices of all permutations in G divided by the number of permutations in G,

PG(x1, x2, . . . , xn) =
1

|G|
∑
π∈G

xc11 x
c2
2 . . . xcnn . (4.4)
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Some permutations in G may have the same cycle index, thus they together yield a monomial in

PG with the coefficient being greater than one, in fact, PG(x1, x2, . . . , xn) is a posynomial function

in terms of variables x1, x2, . . . , xn. Since there is no special meaning associated with the variable

x, we omit it and just write PG instead. In the sequal, we use In to denote the set {1, 2, . . . , n}.

The cycle indices of several permutation groups have been well studied [136].

• The cycle index of the symmetric group Sn acting on In is

PSn =
1

n!

∑
(i)

h(i)
n∏
k=1

xikk , (4.5)

where (i) = (i1, i2, . . . , in) is a partition of n, ik is the number of parts equal to k; the summa-

tion is over all partitions (i), and h(i) is given as h(i) = n!/
∏n

k=1 k
ikik!. For example, S3 =

{I, (12)(3), (13)(2), (23)(1), (123), (132)} has a cycle index of PS3 = 1
6
(x3

1 + 3x1x2 + 2x3).

• The cycle index of the cyclic group Cn acting on In is

PCn =
1

n

∑
k|n

φ(k)x
n/k
k , (4.6)

where the summation is over all positive divisors k of n, including 1 and n; φ(k) is the Euler’s

totient function, giving the number of natural numbers which are less than and relatively

prime to k. For example, C3 = {I, (123), (132)} has a cycle index of PC3 = 1
3
(x3

1 + 2x3).

• The cycle index of a power group HG acting on the set VY is

PHG =
1

|G||H|
∑

hg∈HG

|V||Y|∏
k=1

x
jk(g;h)
k , (4.7)

where for k > 1,

jk(g;h) =
1

k

∑
s|k

µ
(k
s

)
j1(gs;hs), (4.8)
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and

j1(g;h) =

|Y|∏
k=1

(∑
s|k

sjs(h)
)jk(g)

, (4.9)

where function jk(π) gives the number of length-k cycles in a permutation π; µ(n) is the

Möbius function, taking a value from {−1, 0, 1} depending on the factorization of n into

prime numbers.

4.1.3 The Pólya Counting Theorem

The Pólya counting theorem is a useful tool in combinatorics to count the number of orbits of

a group acting on a set, which plays an instrumental role in our study. It is a generalized version of

the Burnside’s lemma.

The coloring problem is a standard route to introduce the Pólya counting theorem, which can

be described as follows. There are a finite number of objects (vertices / beads / etc.) forming a

set D, and a finite number of colors (red, green, blue, etc.) forming another set R = {r, g, b, . . .}

that can be used to color the objects. Different ways of coloring may be viewed as identical under

some group actions: this can be specified as a permutation groupG acting onD, reflecting different

operations (rotations, reflections, etc.) that can be applied on these objects. The coloring problem

asks the number of unique ways of performing such coloring. In the sequel, we write the set D as

a subscript in GD, to make explicit what set the permutation group G is acting on.

To state the Pólya counting theorem, several more concepts are necessary [137]. Let z be a

coloring of all the objects fromD, then the set of all colorings isDR = {z : D → R}. For a group

action (written in its permutation representation GD), two colorings z1, z2 ∈ DR are equivalent,

denoted as z1 ∼ z2, if and only if there exists a π ∈ GD such that

z1(π(d)) = z2(d), ∀d ∈ D. (4.10)

The equivalence relation partitions all possible colorings DR into disjoint subsets, and each subset
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is denoted as an equivalence class (often referred to as an orbit), denoted as B.

The weight w of an element in a set R is a (any) symbol assigned to this element. The symbol

itself means nothing but a placeholder to denote the existence of an element in a formula. For

example, we can simply assign w(r) = r, w(g) = g and so on. A weight is assigned to each

coloring, and the weight of a coloring z is

W (z) =
∏
d∈D

w[z(d)]. (4.11)

Note that if z1 ∼ z2, then W (z1) = W (z2). The orbit weight W (B) is this (common) weight value

of the colorings in this orbit. The orbit inventory is the sum of all orbit weights,

∑
B⊆DR

W (B), (4.12)

where each orbit weight W (B) can be meaningfully interpreted as a way of coloring using a spe-

cific number of each color. The coloring problem posed above is thus reduced to finding the orbit

inventory, which is well solved by the Pólya counting theorem.

Theorem 6. (The Pólya Counting Theorem) Let D be a finite set of objects andR be a finite set of

colors, and GD be a permutation group acting on D. The orbit inventory from domain D to range

R is ∑
B⊆DR

W (B) = PGD

(∑
r∈R

w(r),
∑
r∈R

(w(r))2, . . . ,
∑
r∈R

(w(r))n

)
, (4.13)

that is, the orbit inventory is obtained by substituting
∑

r∈Rw(r) into x1,
∑

r∈R(w(r))2 into x2,

. . . ,
∑

r∈R(w(r))n into xn in the cycle index PGD .

Example 1. (The necklace problem) Consider a necklace made of four beads, i.e., D = I4,

acted on D by a cyclic group GI = C4 = {I, (1234), (13)(24), (1432)}, corresponding to

the 0o, 90o, 180o and 270o rotations, respectively. Different ways to color the beads using,

e.g., three colors R = {r, g, b}, can be found using the theorem above. The cycle index is

PGI = 1
4
(x4

1 + x2
2 + 2x4). Assigning the weights w(r) = r, w(g) = g, w(b) = b and substi-
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tuting x1 = r + g + b, x2 = r2 + g2 + b2, x4 = r4 + g4 + b4 give PGI = b4 + b3g + 2b2g2 + bg3 +

g4 + b3r+ 3b2gr+ 3bg2r+ g3r+ 2b2r2 + 3bgr2 + 2g2r2 + br3 + gr3 + r4. Thus there is one way to

color the necklace into three blue balls and one green ball, two ways to color it into two blue balls

and two green balls, one way to color it into one blue ball and three green balls, and so on.

In the example above, we wrote GI and PGI instead of GI4 and PGI4 for notational conve-

nience. In the sequel, we will use the same simplification on In when the value of n is clear from

the context.

4.2 A Generic Three-Layer Decomposition

4.2.1 Linear Programming on the Entropy Space

The overall derivation of the fundamental limits or outer bounds of information systems and

communication systems can be viewed as a series of linear programs. For a set of m random vari-

ables, X = {X1, X2, . . . , Xm}, the corresponding LP variables in the LP of interest will represent

the following quantities:

H(XA), A ⊆ Im, (4.14)

where H(XA)
def
= H(Xi : i ∈ A) and we take the convention that H(X∅) = 0. The LP constraints

are the following elemental Shannon-type inequalities [105]:

H(Xi|{Xk, k 6= i}) ≥ 0, i, k ∈ Im, (4.15)

I(Xi;Xj|XK) ≥ 0, where K ⊆ Im\{i, j}, i 6= j. (4.16)

As aforementioned, there may be also problem-specific constraints in each problem, however,

they are usually simple to represent, and we will only mention them when necessary in the three

problems we treat.

4.2.2 A Generic Three-Layer Decomposition

The above LP has a set of random variables X indexed by the base set Im. However, in many

coding problems the set of random variables cannot be simply indexed by Im. Moreover, the LP
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variables (4.14) are defined on all subsets of X , i.e., the power set P(X ), which implies that the

set P(X ) is the set we should be interested in.

The symmetry embedded in a problem induces certain group structure on the power set P(X ),

but the overall symmetry can be decomposed into different layers. The core symmetry in an en-

gineering problem can usually be defined on one or more simple base set Im, formally introduced

as a permutation group GIm defined on the set Im. Then the group GIm acting on the set of ran-

dom variables X and set P(X ) can be defined through their permutation representations, thus as

two induced permutation groups GX and GP(X ). The orbits of LP variables and LP constraints

are directly related to the permutation group GP(X ). To paraphrase, the following three layers are

usually present in a typical coding problem:

• Layer 1: The base index set(s) Imi and simple permutation group(s) GImi , i = 1, 2, . . . , k;

• Layer 2: The induced random variable set X and the induced permutation group GX ;

• Layer 3: The power set P(X ) and the induced permutation group GP(X ).

The following example comes from the regenerating code problem with n = 4 nodes.

Example 2. The nodes can be indexed by the index set In = I4 = {1, 2, 3, 4}. In Layer 1, there

is only one base index set I4 with a symmetric group GI = S4. In Layer 2, the set of random

variables is X = {Xij : i, j ∈ I4}, thus there are m = n2 = 16 random variables. Each

permutation π ∈ S4 acting on set I4 produces a permutation πindX acting on set X ,

πindX : X → X as πindX (Xij)
def
= Xπ(i)π(j),

and all the permutations πindX form an induced permutation group‡ GX . Permutation πindX per-

mutes Xij in the way that it is isomorphic to the permutation π permuting i, j. For example, the

‡We use the permutation representation GX to replace the group action of the group GI acting on the induced set
X . The fact that GX is a group directly follows from the fact that it is homomorphic to the symmetric group. The
same interpretation applies for all induced permutation groups defined in this study.
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permutation π = (2)(143) ∈ S4 induces a permutation in Layer 2 as

πindX = (X22)(X11X44X33)(X12X42X32)(X13X41X34)(X14X43X31)(X21X24X23).

In Layer 3, the power set is P(X ) = {X∅, XA1 , XA2 , . . . , XA216−1
}, where§ XA1 = {X44}, XA2 =

{X43}, XA3 = {X43, X44}, . . . , XA215 = {X11}, . . . , XA216−1
= X . Each permutation πindX ∈ GX

acting on set X produces a permutation πindP(X ) acting on set P(X ),

πindP(X ) : P(X )→ P(X ) as πindP(X )(XA)
def
= {πindX (Xij) : Xij ∈ XA},

and all the πindP(X ) permutations form an induced permutation group GP(X ). Permutation πindP(X )

permutes XA in the way that it is isomorphic to the permutation πindX permuting Xij ∈ XA, which

is further isomorphic to the permutation π permuting i and j. In particular, the above πindX induces

a permutation in Layer 3 as

πindP(X ) = (X∅)(XA1024)(XA32768XA1XA32) . . . . . . (XA3072XA1280XA1536) . . . . . . (XA216−1
).

In order to answer the two questions we posed earlier, there is in fact no need to directly study

the structure of GP(X ) in the third layer, because through a proper coloring problem formulation,

the Pólya counting theorem can be invoked, and only the cycle index of the groupGX in the second

layer is needed. With this in mind, a meta algorithm that decomposes the computation of the Pólya

counting theorem is given below. As we shall show, all three problems considered in this work can

be solved this way.

§This notation comes from that we see P(X ) as isomorphic (denoted as ' for short) to the binary representation
of all integers from 0 to 216 − 1. To be specific, each element (subset) in P(X ) corresponds to a 16-digit binary
sequence, where “1" indicates the corresponding random variable being present in this subset, whereas “0” indicates
nonexistence. Therefore, {X44} ' 0 . . . 001 (Binary) ' XA1

(Decimal), {X11, X12, X21} ' 1100100 . . . 0 '
XA51200

(215 + 214 + 211 = 51200).
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Meta Algorithm 1.

Step 1 (Layer 1): Find the cycle index PGI ;

Step 2 (Layer 2): Derive the cycle index PGX , after confirming GX is a group;

Step 3 (Layer 3): (Number of LP variables) For PGX , apply (4.13) using a two-color set

R = {r, g} and assign w(r) = w(g) = 1; output the obtained number subtracting one;

Step 4 (Layer 3): (Number of LP constraints of form (4.16)): For PGX , apply (4.13)

using a three-color setR = {r, g, b}, then expand the formula and output the summation

of all the coefficients before the terms including r2.

Step 1 of the meta algorithm may be omitted, if one can directly identify PGX . However,

our experience suggests that Step 3 and 4 can be significantly simplified if PGI is identified. In

Step 2, confirming that GX is a group is necessary but usually trivial, as we will discuss in each

problem. Step 3 of the algorithm turns calculating the number of patterns into a coloring problem

with two colors, one for the random variables in the set XA in H(XA) and the other for those in

the set X\XA. The number of patterns is the summation of all coefficients of the orbit inventory

(4.13), and by assigning w(r) = w(g) = 1, we can directly obtain it. To eliminate the empty set

H(X∅) = 0, one is subtracted in the end. Step 4 of the algorithm provides the number of constraints

of form (4.16) as the summation of all coefficients before terms r2gpbq. To see this indeed gives

the number of orbits, consider using red for Xi and Xj , green for the random variables in XK, and

blue for all other random variables in X\(Xi∪Xj ∪XK). The same (red) color can be used for Xi

and Xj because I(Xi;Xj| • ) = I(Xj;Xi| • ), thus Xi, Xj can be colored indistinguishably as one

group, and we have used p, q to denote the cardinality of XK and X\(Xi∪Xj ∪XK), respectively.

For constraints of form (4.15), the number of orbits is usually trivial to find, and thus we have

omitted it in the meta algorithm.

From now on, we slightly abuse the notation for simplicity: in the second layer, the subscript

X in each πindX will be omitted, since we do not need to study πindP(X ) and GP(X ) in the third layer

directly, writing πind will cause no confusion.
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4.3 Extremal Pairwise Cyclically Symmetric Entropy Inequalities

The extremal pairwise cyclically symmetric entropy inequalities were proposed in [116, 117],

which generalize the celebrated Han’s inequalities [138]. There are a total of n random variables

in this problem, thus m = n, which are denoted as X = {X1, X2, . . . , Xn}, and the corresponding

index set is In. The group GI is a cyclic group defined on In, i.e., GI = Cn. The orbit O of a

nonempty subset A ⊆ In is a collection of distinct subsets resulted by performing Cn on A,

O(A) = {A, π(A), . . . , πn−1(A)}. (4.17)

In an orbit O there are |O| elements and each element is a subset of In with cardinality `O. For

any given A ⊆ In, the joint entropy of a subset of random variables with probability distribution

P (X1, X2, . . . , Xn) is written as

HP (XA) = HP ({Xi : i ∈ A}). (4.18)

The cyclic orbit entropy HP (O) is the average entropy defined on a non-empty orbit O,

HP (O) =
1

|O|
∑
A∈O

HP (XA). (4.19)

The average orbit entropy for orbit O is defined as

hP (O) =
1

|O|`o

∑
A∈O

HP (XA). (4.20)

The following extremal value of c ∈ R+ is of particular interest [117],

cO,O′ = min{c : chP (O) ≥ hP (O′) for any distribution P}, (4.21)
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when the minimum exists. A moment of thought reveals that this definition can be rewritten as

cO,O′ = sup
P :hP (O)>0

hP (O′)
hP (O)

. (4.22)

The constraint hP (O) > 0 can be safely ignored in this context, since for any orbit, hP (O) ≤ 0 if

and only if HP (Xi) = 0 for i = 0, . . . , n− 1.

Analytically characterizing the upper bound of cO,O′ turns out to be difficult and thus a

computer-aided approach was used in [117]. An upper bound of cO,O′ is the optimal value of

the following LP problem¶,

maximize:
`O
|O′|`O′

HP (O′) (4.23)

subject to: HP (On)−HP (On−1) ≥ 0, (4.24)

HP (O({i} ∪ Q)) +HP (O({j} ∪ Q))−HP (O(Q))

−HP (O({i} ∪ {j} ∪ Q)) ≥ 0, i 6= j, i, j ∈ In, Q ⊆ In\{i, j}, (4.25)

HP (O) = 1, (4.26)

where Ol, l ∈ {0, 1, n− 1, n} denotes the unique orbit O of In with `O = `.

The constraint (4.26) is a problem-specific equality, and there is only one such equality for

a specific pair of orbits, and thus for the given LP. We are interested in the number of distinct

constraints (4.24) and (4.25), which are already symmetry-reduced from (4.15) and (4.16), respec-

tively. It is straightforward to see that there is only one inequality of form (4.24).

In this problem, the first layer is on In with cyclic group Cn. In the second layer, the induced

¶There are two distinct arguments to reach this symmetric version of the LP. The first argument is that we can
show that without loss of generality, only symmetric distributions need to be considered. As such the joint entropies in
each orbit are equal for such probability distributions, which lead to a symmetric optimization problem. In this specific
problem, this optimization problem has a non-LP objective, and we can further show that it can be replaced with a
linear objective without loss of generality. The second approach is to start with an optimization problem without any
symmetry on the solution, and directly show that it is equivalent to a symmetric LP in the problem setting. Generally
speaking, the first argument is usually more straightforward and intuitive, thus is what we follow for the other two
problems. To be complete, in Appendix A we provide a proof following the second argument for this problem as an
illustration.
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Table 4.1: The numbers of LP variables and LP constraints in the extremal pairwise cyclically sym-
metric entropy inequalities problem, problem parameter n from 5 to 10. Reprinted with permission
from [4, 5], © 2017,2018 IEEE.

n 5 6 7 8 9 10

Number of
LP Variables

Original 31 63 127 255 511 1023
Estimated 6.2 10.5 18.1429 31.875 56.7778 102.3

After Symmetry Reduction 7 13 19 35 59 107

Number of
LP Constraints

Original 85 246 679 1800 4617 11530
Estimated 17 41 97 225 513 1153

After Symmetry Reduction 17 43 97 229 513 1161

set is the set of random variables X , and the induced permutation πind (by a permutation π ∈ Cn)

is

πind : X → X as πind(Xi)
def
= Xπ(i), (4.27)

and all such πind permutations form a permutation group,

GX = {πind : πind induced by π ∈ Cn}, (4.28)

which is clearly a cyclic group as well. As a consequence, the cycle index PGX is simply (4.6), and

Meta Algorithm 1 can now be invoked straightforwardly.

Example 3. For n = 4, in the first layer, I4 = {1, 2, 3, 4} and GI is a cyclic group C4 =

{e, (1234), (13)(24), (1432)}. The second layer is X = {X1, X2, X3, X4} and GX = C4, which

is isomorphic to the first layer. The numbers of LP variables and constraints can be estimated as

follows. Since there are 2n − 1 = 15 variables and n +
(
n
2

)
2n−2 = 28 elemental Shannon-type

constraints originally, we can lower bound the number of LP variables as 15/|C4| = 3.75, and

lower bound the number of LP constraints as 28/|C4| = 7.

The precise number of orbits (LP variables) can be calculated using (4.6), which in this exam-

ple is PGX = 1
4

(
x4 · φ(4) + x2

2 · φ(2) + x4
1 · φ(1)

)
. Step 3 of Meta Algorithm 1 gives

PGX =
1

4

(
(r4 + g4) · φ(4) + (r2 + g2)2 · φ(2) + (r + g)4 · φ(1)

)
= r4 + r3g + 2r2g2 + rg3 + g4.
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The sum of all coefficients is 6, which is the number of orbits. These orbits can be listed as

O0 = ∅,O1 = {{1}, {2}, {3}, {4}},O2 = {{1, 2}, {2, 3}, {3, 4}, {1, 4}},O3 = {{1, 3}, {2, 4}},

O4 = {{1, 2, 3}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}},O5 = {{1, 2, 3, 4}}. Removing the empty orbit O0

gives the number of LP variables as 5.

For the number of constraints (4.25), following the Step 4 of the Meta Algorithm 1, we have

PGX =
1

4

(
(r4 + g4 + b4) · φ(4) + (r2 + g2 + b2)2 · φ(2) + (r + g + b)4 · φ(1)

)
= . . . . . .+ 2r2g2 + 3r2gb+ 2r2b2 + . . . . . . ,

the sum of the coefficients before the terms including r2 is 7. Thus there are 8 distinct elemental

Shannon-type constraints in total (7 of form (4.25) and 1 of form (4.24)).

The results for several other parameters can be found in Table 4.1. The numbers after symmetry

reduction are provided using our approach, and the estimates can be quite close or even match in

some cases.

4.4 The Regenerating Code Problem

Regenerating codes are a class of erasure codes that are useful in distributed storage systems

which can provide more efficient repair [118, 119]. In a system consisting of n nodes, a message

can be encoded using regenerating code and then stored separately in the n nodes, such that a user

can recover the entire message by connecting to k nodes. If a node fails, a repaired node can join in

the system by connecting to any d of the n− 1 remaining nodes and downloading messages from

them (Fig. 4.1). In this setting, one key issue is to study the trade-off between the amount of data

stored in the nodes (storage) and the amount of data downloaded during the regeneration (repair

bandwidth). We shall focus on the case d = n− 1 since this is the most practically important case,

and it is also the simplest notationally and conceptually.

The random variables form the set X = {Xij : i, j ∈ In}, when i = j, Xii represents the

information stored at each node i; when i 6= j, Xij represents the information transmitted from
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repaired node 1'

Figure 4.1: (4,3,3) regenerating code, node 1 fails. Reprinted with permission from [4, 5], ©
2017,2018 IEEE.

node i to help a failed node j during repair||. Therefore, there are m = n2 random variables

in this problem, implying that before symmetry reduction, there are (2n
2 − 1) LP variables and

n2 +
(
n2

2

)
2n

2−2 Shannon-type inequalities as constraints. It is clear that a permutation of the storage

nodes would yield another valid code, and without loss of generality, only symmetric codes need

to be considered. We will not write down the precise form of the LP for this problem, in terms

of the objective function and the constraints here, since this is rather straightforward and has been

given before [110].

The three-layer decomposition is as follows. The first layer is on the index set of the storage

nodes, i.e., In, with the symmetric group GI = Sn, which directly reflects the permutations of the

storage nodes. The second layer is on the random variable set X , and the induced permutation πind

by a π ∈ Sn is

πind : X → X as πind(Xij)
def
= Xπ(i)π(j), (4.29)

and all the πind permutations form a group

GX = {πind : πind induced by π ∈ Sn}. (4.30)

||In previous works, e.g., [110], W = {Wi : i ∈ In} were used to denote the contents stored in each node, and
S = {Sij : i, j ∈ In, i 6= j} were used to denote the transmitted contents during repair. The reason that we adopt Xij

will be clear in the sequel.
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The fact that GX is a group** can be checked by its definition, since each πind trivially corresponds

to a permutation π ∈ Sn. The cycle index of GX is given by the following theorem.

Theorem 7. In the (n, k, n− 1) regenerating code problem, if the cycle index of GI can be repre-

sented as the following posynomial

PGI =
∑

q=1,...,p(n)

aq · x
cq1
1 x

cq2
2 . . . xcqnn , (4.31)

where p(n) is the partition function giving the number of possible partitions of a natural number

n, and aq is a coefficient denoting the number of permutations in GI that correspond to a specific

partition, then the cycle index of GX is

PGX =
∑

q=1,...,p(n)

(
aq ·

∏
l1=1,2,...,n,
l2=l1+1,...,n

x
l1c2ql1
l1

x
cql1l2
lcm(l1,l2)

)
, (4.32)

where cql1l2 =
2l1l2cql1cql2

lcm(l1,l2)
, and “lcm” stands for “least common multiple".

The proof of this theorem can be found in Appendix B. Intuitively, the random variable set

X can be viewed as a matrix with the element Xij being on the ith row and jth column. Each

dimension is indexed by In, acted on by the same symmetric group Sn. Any permutation π ∈ Sn

produces one of the two cases: if i and j belong to cycles of the same length, say a length-l1 cycle,

then Xij will also belong to a length-l1 cycle; otherwise, if i belongs to a length-l1 cycle and j

belongs to a length-l2 cycle (l2 6= l1), then Xij will belong to a length-lcm(l1, l2) cycle.

The only remaining issue is the number of constraints of form (4.15) after symmetry reduction,

which is always 2 in this problem regardless of n, because the random variables in Layer 2 form

two orbits, one contains all random variables located on the diagonal of the matrix, the other one

contains those not on the diagonal.

**From the perspective of group action, this fact is straightforward to see in this case. Alternatively, one can also
check the four group axioms. To be specific, the closure is implied by its definition; the associativity also comes
with the definition since it is reduced to checking the associativity of π; the identity is the induced permutation of the
identity permutation e ∈ Sn; the inverse of each permutation πind

X is the permutation π taking the inverse π−1, and
then be induced, which is (π−1X )ind ∈ GX .
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The cycle index in (4.32) is similar to the cycle index of the direct product of two symmetric

groups acting on two independent sets, which can be found in [136]. The difference from the case

that we have at hand is the following: here there is only one symmetric group acting simultaneously

on the two sets (both indices in X’s subscript).
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Table 4.2: The numbers of LP variables and LP constraints in the (n, k, n− 1) regenerating code problem, problem parameter n from 3
to 8. Reprinted with permission from [4, 5], © 2017,2018 IEEE.

n 3 5 6 7 8

Number of
LP Variables

Original 511 3.3554× 107 6.8719× 1010 5.6295× 1014 1.8447× 1019

Estimated 85.6667 279620.2583 9.5444× 107 1.1170× 1011 4.5751× 1014

After Symmetry
Reduction 103 291967 9.6929× 107 1.1228× 1011 4.5820× 1014

Number of
LP Constraints

Original 4617 2.5166× 109 1.0823× 1013 1.6551× 1017 9.2972× 1021

Estimated 769.5 2.0972× 107 1.5032× 1010 3.2839× 1013 2.3058× 1017

After Symmetry
Reduction 802 21120194 1.5082× 1010 3.2885× 1013 2.3071× 1017
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Example 4. Consider the (4, 3, 3) regenerating code problem, since there are n = 4 nodes, the

random variables are X = {X11, X12, . . . , X44}. Estimates for the number of LP variables can be

found as (216 − 1)/|S4| = 2730.63, and that of LP constraints as (16 +
(

16
2

)
214)/|S4| = 81920.70

after symmetry reduction (neither of the estimates is an integer).

The group GI in the problem is a symmetric group S4, thus having a cycle index of

PGI =
1

24
(x4

1 + 3x2
2 + 6x4 + 6x2

1x2 + 8x1x3).

Theorem 7 gives the cycle index of the induced permutation group GX as

PGX =
1

24
(x16

1 + 3x8
2 + 6x4

4 + 6x4
1x

6
2 + 8x1x

5
3).

Using Step 3 of Meta Algorithm 1, the number of LP variables can be calculated as 3043, which

is about 4.6433% of the original number of LP variables 216 − 1 = 65535. The number of LP

constraints of type (4.16) can be calculated using Step 4 of Meta Algorithm 1, which gives the

summation of coefficients before terms including r2 as 83200. Therefore, the total number of LP

constraints is 83202, which reduces to about 4.2317% of the original number of LP constraints

16 +
(

16
2

)
214 = 1966096.

The results for problems with several other parameters can be found in Table 4.2. For the

(4, 3, 3) case, it was found through a computer program [110] that the number of unique LP vari-

ables, when taking the problem implication relations also into account, is in fact 176, which is

a reduction of approximately 372-fold from 65535. Using the calculation given in the example

above, it is seen that approximately 22-fold of this reduction is due to symmetry, while the remain-

ing is due to the problem-specific implication relations in this case.

4.5 The Caching Problem

Caching is a technique used in communication systems to reduce peak-hour transmission by

prefetching part of a file in the user’s local cache during off-peak hours. In the caching problem
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Figure 4.2: An (N,K) = (4, 3) cache network. Reprinted with permission from [4, 5], ©
2017,2018 IEEE.

formulated in [39], there areN files, each file has a size of F bits. There areK users, each user has

a cache memory of MF . In the placement phase, the users prefetch contents to fill up their local

caches. In the delivery phase, each user will reveal the request to the server, and then the server

should multicast information to fulfill all users’ requests at transmission size RF . The task is to

strategically fill up the caches in the placement phase, thus minimizing the amount of transmission

in the delivery phase.

Let the set of files be W = {W1,W2, . . . ,WN}, indexed by IN , and the set of the cached

contents at the users be Z = {Z1, Z2, . . . , ZK}, indexed by IK . The transmitted information also

form a set

XK
N

def
= {Xa1a2...aK : ak ∈ IN}, (4.33)

where Xa1a2...aK denotes the transmitted information when user k requests file ak, k = 1, 2, ..., K.

The random variables are thus the set X = W ∪ Z ∪ XK
N , therefore m = N + K + NK .

The symmetry embedded in this problem can be described as follows: suppose an efficient coding

scheme has been found for the system, it is clear that if the file indices are permuted, the indices in

the coding scheme can be permuted in a similar manner which gives an equivalent code. Similarly,

the user indices can also be permuted and an equivalent code can be found as well. The file index
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permutation and user index permutation can be combined together to operate on the set XK
N . It can

be shown that without loss of generality only symmetric solution needs to be considered [91]. We

omit the precise LP again here, and next focus on applying Meta Algorithm 1 on this problem.

The three-layer decomposition can thus be done as follows. In the first layer, there are two

base sets IN and IK with two symmetric groups GIN = SN and GIK = SK . Let us use π̂, π̄ to

represent any permutation from GIN and GIK , respectively, and additionally write π̄−1 as π̄′. In

the second layer, we first study the subset XK
N of X . Each pair of permutations π̂, π̄′ induces a

permutation π̂π̄′ , defined as

π̂π̄
′
: XK

N → XK
N as π̂π̄

′
(Xa1a2...aK )

def
= Xπ̂(aπ̄′(1))π̂(aπ̄′(2))...π̂(aπ̄′(K))

, (4.34)

and all the π̂π̄′ permutations form a permutation group

GXKN = {π̂π̄′ : π̂π̄
′

induced by π̂ ∈ GIN and π̄′ ∈ GIK}. (4.35)

Finally, the permutation acting on the set X can be defined as

πind : X → X as πind(x)
def
=


Wπ̂(i), if x = Wi ∈ W ,

Zπ̄(j), if x = Zj ∈ Z,

π̂π̄
′
(x), if x ∈ XK

N ,

(4.36)

and all the πind permutations form a permutation group

GX = {πind : πind induced by π̂ ∈ GIN and π̄′ ∈ GIK}. (4.37)

In other words, each pair of π̂, π̄′ permute two disjoint subsetsW ,Z of the setX , and their induced

permutation π̂π̄′ permutes the set XK
N . Obviously, there are |GX | = |GIN | · |GIK | = N !K! permu-

tations in GX . For example, in the (N,K) = (4, 3) caching problem, IN = {1, 2, 3, 4}, GIN = S4
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and IK = {1, 2, 3}, GIK = S3, then XK
N = {Xa1a2a3 : ak ∈ {1, 2, 3, 4}, k ∈ {1, 2, 3}}, and

permutation π̂ = (1)(234) and π̄′ = (123) would induce a permutation πind mapping each x ∈ X ,

πind(W2) = Wπ̂(2) = W3,

πind(Z1) = Zπ̄(1) = Z3, (since π̄ = (132))

πind(X124) = π̂π̄
′
(X124) = X321.

To derive the cycle index of the permutation groupGX , we first consider the groupGXKN . Recall

the definition of a power group, and specifically let Y = IK , G = SK and V = IN , H = SN . It

is clear that the mapping (4.3) induces exactly the same mapping as in (4.34) with h = π̂ and

g = π̄−1 = π̄′. Thus the permutation group GXKN is isomorphic to the permutation representation

of the power group SSKN acting on IIKN . The cycle index of GXKN can be directly given by (4.7), and

the cycle index of GX can now be given by the following theorem.

Theorem 8. In the (N,K) caching problem, the groupGIN acting on IN and the groupGIK acting

on IK are both symmetric groups, and π̂ and π̄′ are two permutations from them, respectively. The

random variable set is X =W ∪Z ∪ XK
N . The cycle index of the group GX is

PGX =
1

N !K!

∑
πind∈GX

( NK∏
k=1

x
jk(π̂;π̄′)
k ·

N∏
k=1

x
jk(π̂)
k ·

K∏
k=1

x
jk(π̄′)
k

)
. (4.38)

Proof. Each permutation π̂π̄′ permutes the subset XK
N , and its components π̂, π̄ permute two dis-

joint subsets that are also disjoint to XK
N . This implies that the overall cycle index of a permutation

is the product of the cycle indices of the three disjoint components. Finally, the PGX is the sum-

mation over all permutations in GX , divided by the number of permutations in it.

Directly evaluating the cycle index in Theorem 8 can be time consuming, since a total of N !K!

permutations exist. The following corollary can be used to simplify this computation.

Corollary 2. If two pairs of permutations (π̂1, π̄
′
1) and (π̂2, π̄

′
2) have the same cycle indices, that
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is, π̂1 has the same cycle index as π̂2 and π̄′1 has the same cycle index as π̄′2, then the permutations

πind1 and πind2 produced by them, respectively, will have the same cycle index.

The corollary can be proved simply by observing that the cycle index of a permutation πind in

the parenthesis of (4.38) is a function of only jk(π̂) and jk(π̄′) (since jk(π̂; π̄′) is a function of only

them as well), and the function jk(π) is only determined by the cycle index of a permutation π, but

not by what precise elements are in each cycle or how they are permuted. This corollary implies

that PGX needs only be computed from each type of cycle indices of (π̂, π̄′), thus the computa-

tional burden is significantly reduced from computing all N !K! permutations to computing only

p(N)p(K) of them.

Example 5. Consider the case of N = 4 files W = {W1,W2,W3,W4} and K = 3 users Z =

{Z1, Z2, Z3}; see Figure 4.2. The estimates are given as (24+3+64 − 1)/(|S3| · |S4|) =

16397105843297370000 ≈ 1.6397 × 1019 LP variables and (71 +
(

71
2

)
× 269)/(|S3| · |S4|) =

10186702005148490000000 ≈ 1.0187× 1022 LP constraints after symmetry reduction.

For Step 1 of Meta Algorithm 1, we have

PGIN =
1

24
(x4

1 + 3x2
2 + 6x4 + 6x2

1x2 + 8x1x3),

PGIK =
1

6
(x3

1 + 2x3 + 3x1x2).

Using (4.38), Step 2 of Meta Algorithm 1 gives

PGX = x71
1 + 3x3

1x
34
2 + 6x3

1x
17
4 + 6x13

1 x
29
2 + 8x5

1x
22
3 + 2x8

1x
21
3 + 6x4

2x3x
10
6 + 12x3x

2
4x

5
12

+ 12x4
1x

2
2x

3
3x

9
6 + 16x5

1x
22
3 + 3x21

1 x
25
2 + 9x1x

35
2 + 18x1x2x

17
4 + 18x11

1 x
30
2 + 24x3

1x2x
6
3x

8
6.

Step 3 of Meta Algorithm 1 gives the number of LP variables as 16397107774631008960 − 1 ≈

1.6397 × 1019. The total number of LP variables reduces to about 0.6944% of the original size

24+3+43 − 1 ≈ 2.3612 × 1021. The number of type (4.15) constraints is easily seen as 5. Step 4

of Meta Algorithm 1 gives the number of type (4.16) constraints as 10186702114698904297472 ≈
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1.0187×1022, the result of summation is 0.6944% of the original scale 71+
(

71
2

)
269 ≈ 1.4669×1024.

The results for several other parameters are given in Table 4.3.
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Table 4.3: The numbers of LP variables and LP constraints in the (N,K) caching problem. Reprinted with permission from [4, 5], ©
2017,2018 IEEE.

(N,K) (2, 3) (2, 4) (2, 5) (2, 6) (3, 3)

Number of
LP Variables

Original 8191 4194304 5.4976× 1011 4.7224× 1021 8.5899× 109

Estimated 682.5833 87381.3333 2.2906× 109 3.2794× 1018 2.3861× 108

After Symmetry
Reduction 1016 106783 2337846175 3.2798× 1018 2.3949× 108

Number of
LP Constraints

Original 159757 242221078 1.0184× 1014 3.0176× 1024 1.1339× 1012

Estimated 13313.0833 5046272.4583 4.2434× 1011 2.0956× 1021 3.1496× 1010

After Symmetry
Reduction

(form (4.15))
4 5 5 6 5

After Symmetry
Reduction

(form (4.16))
15240 5376072 426941056160 2.0956× 1021 3.1515× 1010
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4.6 Conclusion

We studied the symmetry structure in several problems and proposed a generic decomposition

of the group structure when applying the Pólya counting theorem, in order to count the exact

amount of reduction of variables and constraints in the LP problems through symmetry. In practice,

we would also like to directly generate isomorphic-free LP variables and constraints. The works

[139–141] indeed provide important insights in this direction, however, the task itself still appears

difficult. It should be emphasized again that there are indeed other possible reductions which are

not necessarily related to symmetry, that can be used to significantly reduce the scale of the LPs,

and thus there is considerable potential to further reduce the computational scale in the resultant

LP. This, however, is beyond the scope of the current work, but may be of interest in its own right.
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5. CODED PREFETCHING AND EFFICIENT DELIVERY IN DECENTRALIZED

CACHING SYSTEMS*

In content delivery systems, data traffic can be bursty and usually peaks at a particular time

period of a day. This variation in the traffic can induce significant stress on the content server and

the delivery network during this peak time. Caching techniques have been introduced to relieve the

stress on such networks, by means of letting the users prefetch certain file contents to store locally

during off-peak traffic hours. Recently, Maddah-Ali and Niesen [39] introduced an information

theoretic model to study the fundamental limit of caching in such settings.

In the model proposed in [39], there are a server and multiple users who are connected to the

server using a shared link, which may be a wireless broadcast channel. The overall system operates

in two phases, namely a prefetching (placement) phase when the server places file contents into

user’s cache, and a delivery phase when the server multicast certain content to fulfill each user’s

request. Users’ requests are not known during the placement phase, and thus the difficulty is to

design a caching strategy to enable, in the delivery phase, the least amount of data transmission

for all possible combination of demands. Existing caching strategies in this centralized setting

can be categorized according to whether the prefetching is uncoded or coded. The first class

includes those in [39, 96, 100], while the latter class includes those in [77, 94, 95, 99, 101, 142].

In particular, the strategy in [77] is unique in the sense that codes in more general finite fields

are used, which appears to provide further improvement over codes using only binary operations

[39, 94–96, 99–101, 142].

In practical systems where a central coordinating mechanism can be costly, e.g., in more dy-

namic and mobile environments, decentralized coding becomes necessary. In this setting, rather

than letting the server centrally control the placement of cached contents, each user independently

determine the prefetching contents (see [87,95,100]). Decentralized coded caching has been stud-

*© 2017 IEEE. Reprinted, with permission, from Kai Zhang, Chao Tian and Husheng Li, “Coded prefetching and
efficient delivery in decentralized caching systems”, 2017 IEEE 18th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1-5, 2017.
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Figure 5.1: A cache network with N files and K users with a cache size M . Reprinted with
permission from [6], © 2017 IEEE.

ied under other settings, non-uniform demand was studied in [88], random demand in [112], online

caching in [89], distinct cache capacities in [113] and various other delivery schemes in [114,115].

Given the current state of the art, a natural question to ask is whether it is possible to extend the

coded prefetching strategy in [77] from the centralized setting to a decentralized setting. Moreover,

since the codes in [77] is not binary, it is anticipated that the coding overhead will increase, and

thus it is important to understand how to reduce its impact. In this work, we propose a decentralized

coded placement with prefetching in a binary extension field F2m , and an efficient delivery scheme

in the base binary field. We show that this decentralized caching scheme can achieve improvement

over the decentralized strategy in [87, 100]. Moreover, we provide methods to reduce or balance

the impacts of coding overheads.

5.1 Preliminary and Motivation

In this section we will give the system model of the caching system and introduce the caching

problem, and briefly review several caching strategies and their performance.
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5.1.1 System Model

A centralized caching system contains a server withN files, which are all of the same size of F

bits, andK users, each has a local cache memoryM (normalized by the file size F ); see Figure 5.1.

We denote the files as W1,W2, . . . ,WN . The system operates in two phases, a placement phase

when the central server coordinates the prefetching of contents at all users. During the delivery

phase, each user requests one file, i.e., user k requests file Wdk . The server multicasts certain

information at a transmission rate R (also normalized by the file size) to the users, together with

the prefetched content at each user, to satisfy all the user demands.

When the central server does not know accurately the number of active users K and their

identities during the prefetching phase, centralized prefetching strategies are not applicable and

decentralized prefetching strategies are required. For both centralized and decentralized settings,

we wish to find efficient coding strategies to minimize the transmission rate R for a given memory

constraintM . Existing caching strategies can be categorized into strategies with uncoded prefetch-

ing and those with coded prefetching.

5.1.2 Uncoded Prefetching: Centralized vs. Decentralized

The strategy proposed in [39] used uncoded prefetching, which was further improved in [100]

by removing the redundant transmissions in the delivery phase. This improvement results in the

memory-transmission-rate pair

(MC(r), RC(r)) =

(
rN

k
,

(
K
r+1

)
−
(
K−min{K,N}

r+1

)(
K
r

) )
,

r = 0, . . . , K.

It should be emphasized that the delivery strategy in [39] and [100] requires only operations in the

binary field.

Following their initial work in [39] for the centralized setting, Maddah-Ali and Niesen proposed

a decentralized coded caching strategy in [87]. In this strategy, each user, independently from
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each other, determines whether each bit in each file is cached in the local memory with a given

probability. In the delivery phase, bits cached by the same number of users are grouped together,

then a similar delivery strategy as the centralized caching scheme in [39] can be applied (with

appropriate zero-padding). Similarly as in the centralized version, the performance can be further

improved by reducing the transmission [100], which gives the pair

(MD, RD) =

(
M,

N −M
M

(
1−

(N −M
N

)min{N,K}))
,

M ∈ [0, N ]. It should be noted that for the given strategy to achieve this performance, the file size

F needs to be sufficiently large, since otherwise the coding overhead becomes rather significant.

We will revisit the issue of coding overheads in the later part of this chapter.

5.1.3 Coded Prefetching: Centralized vs. Decentralized?

Tian and Chen proposed a centralized coding strategy in [77], which uses coded prefetching

and coded delivery in a more general finite field Fq. This strategy achieves the following (M,R)

pair

(MC(t), RC(t)) =

(
t[(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

K

)
,

t = 0, . . . , K.

The strategy is somewhat involved, but we provide an example to facilitate later discussions.

Consider an (N,K) = (2, 4) case, and set t = 2. Each file is partitioned into
(

4
2

)
symbols in

F24 , for example, file W1 is partitioned into W1,12,W1,13,W1,14,W1,23,W1,24,W1,34, where symbol

W1,12 is present in the cache of user 1 and user 2, etc.. The prefetching is coded, for example, user

1 can prefetch

W1,12 +W2,12,W1,13 +W2,13,W1,14 +W2,14

W1,12 +W1,13 +W1,14 + α(W2,12 +W2,13 +W2,14),
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for some α ∈ F24 to be specified. The other users can prefetch in a similar manner. Consider the

demand (W1,W1,W1,W2), then the following symbols are transmitted:

W2,12,W2,13,W2,23.W1,12 +W1,13 +W1,23

W1,14 + αW1,24 + βW1,34,W1,14 + βW1,24 + γW1,34,

for some β, γ ∈ F24 to be specified. It can be verified that once receiving W2,12,W2,13, user 1 can

resolve all the symbols present in the local cache (if α is chosen appropriately). Then with the

other transmissions, the missing symbolsW1,24,W1,34,W1,23 can also be successfully recovered by

user 1 (if β, γ are chosen appropriately).

A natural question is whether this strategy can be extended to the decentralized setting, and

whether improvement over existing decentralized caching strategies can be obtained. Before giving

such a decentralized prefetching strategy, we discuss a variation of the Tian-Chen scheme where

the delivery uses only binary operations.

5.1.4 A Variation of Tian-Chen Strategy

In a follow-up work [1], a variation of the delivery strategy of that given in [77] was discussed,

which achieves the same performance as the original strategy. This variation uses only binary

operation in the delivery, and this feature leads to the particular advantage of reduced the coding

overhead in the decentralized setting. We next provide an example to illustrate this variation, but

omit the details.

Let us consider the previous example of N = 2 files and K = 4 users. We observe that in the

second step the transmissions can instead be,

W1,14 +W1,24,W1,14 +W1,34.

The addition is performed in F24 , which clearly can be viewed as a binary field addition on the

individual bits.

90



5.2 A Decentralized Coded Caching Scheme with Coded Prefetching

The decentralized coded caching strategy we propose includes a random coded prefetching

phase and a coded delivery phase. From here on, we use N to denote the file index set and K to

denote the user index set.

5.2.1 Prefetching Strategy

In the prefetching phase, each file is partitioned into F file symbols, each symbol is of size

m bits, which is in the finite field F2m . Each user decides independently at random for each file

symbol that whether it will be part of his cached content, with a probability p ∈ [0, 1]. Each user

maintains MDF linear combinations of file symbols to fill his cache. Thus the random prefetching

can be accomplished in an on-the-fly fashion: if a user k decides to use a specific file symbol, he

will randomly pick MDF coefficients from F2m , multiply with this symbol, respectively, then add

them to the existing MDF linear combinations in his cache.

At the delivery phase, the server will have the knowledge regarding whether a user has a file

symbol as a component in the linear combinations, but not necessarily the precise linear combina-

tion compositions. For simplicity of further discussions, we will group the file symbols as follows.

We use Wi,S , i ∈ N ,S ⊆ K to denote the collection of symbols from file Wi which are present

(as components of linear combinations) at the caches of the users in the set S, and W (j)
i,S is the jth

symbol in this set, j = 1, . . . , ci,S , where ci,S = |Wi,S | and | · | is the cardinality of a set.

We use Kt to denote the collection of all subsets of K which has cardinality t. Thus at the end

of the prefetching phase, each file Wi is partitioned into sets of symbols ∪t=0,1,...,KWi,Kt , where

Wi,Kt = ∪S∈KtWi,S

is the collection of all symbols of Wi that are cached by any t number of users. Further denote

WKt = ∪i∈NWi,Kt
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as the t-homogeneous group of file symbols, which contains all the symbols from all files that are

cached by t users.

Inside a t-homogeneous group, due to random prefetching, the cardinality of Wi,S may be

different for different i and S, i.e., ci,S 6= ci′,S′ when {i,S} 6= {i′,S ′}, we define

cmaxt , max
i∈N ,S∈Kt

ci,S .

In other words, cmaxt is the maximum of j in a t-homogeneous group such that there is at least one

symbol W (j)
i,S , i ∈ N ,S ∈ Kt exists. For a fix j, all the jth symbols from the t-homogeneous group

can be grouped together as a set

W(j)
Kt = {W (j)

i,S , i ∈ N ,S ∈ Kt}, j = 1, . . . , cmaxt .

Hence, the t-homogeneous group can be partitioned into different sets according to j,

WKt = ∪c
max
t
j=1 W

(j)
Kt .

We further define c̄t to be the smallest integer that is not less than the expectation of all ci,S inside

a t-homogeneous group,

c̄t = dE(ci,S)e, i ∈ N ,S ∈ Kt.

We introduce two other notations to represent the linear combinations in each user’s cache.

First, we useWk∈Kt to denote the set of those symbols that the subscript includes index k, i.e.,

Wk∈Kt = {Wi,S : i ∈ N , k ∈ S ∈ Kt},

and similar notation applies to the other sets defined above. Second, bold symbol W is used to

represent the column vector form of each set of symbols we defined, for example, Wk∈Kt denotes

a column vector containing all symbols inWk∈Kt .
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Table 5.1: A random instance of the file symbols after prefetching. Reprinted with permission
from [6], © 2017 IEEE.

t W1 W2 c̄t cmaxt

0 W
(1)
2,∅ , W

(2)
2,∅ 1 2

1
W

(1)
1,1 , W

(2)
1,1 W

(1)
2,1 , W

(2)
2,1 , W

(3)
2,1

2 3W
(1)
1,2 , W

(2)
1,2 W

(1)
2,2

W
(1)
1,3 W

(1)
2,3

2
W

(1)
1,12, W

(2)
1,12 W

(1)
2,12

2 2W
(1)
1,13 W

(1)
2,13

W
(1)
1,23 W

(1)
2,23

3 W
(1)
1,123,W

(2)
1,123 W

(1)
2,123 2 2

Using the above notations, the MDF linear combinations in user k’s cache can be represented

as 

α1
k∈K1

. . . α1
k∈Kt . . . α1

k∈K
... . . . ... . . . ...

αlk∈K1
. . . αlk∈Kt . . . αlk∈K

... . . . ... . . . ...

αMDF
k∈K1

. . . αMDF
k∈Kt . . . αMDF

k∈K





Wk∈K1

...

Wk∈Kt
...

Wk∈K


,

where each αlk∈Kt is a row vector of the coefficients before the vector Wk∈Kt .

Example 6. Let us consider an example of the (N,K) = (2, 3) caching system. Set p = 1
3
, suppose

each file contains F = 11 file symbols in the finite field F23 , thus each symbol is a 3-bit vector.

Depending on which users cache a file symbol after the random prefetching phase, all file symbols

are indexed as Table 5.1.
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Suppose the linear combinations in user 1’s cache are



3 2 5 5 1 1 2 1 6 0 4 2 7

3 5 6 1 5 4 7 7 3 1 7 4 7

4 4 5 0 5 5 2 3 7 0 1 6 0

2 5 4 7 0 2 7 4 4 6 0 2 2

3 6 0 1 1 0 3 2 6 4 3 0 5

0 6 1 7 0 4 0 7 2 3 4 3 6

1 0 2 4 6 1 2 0 3 0 7 0 3





W
(1)
1∈K1

W
(2)
1∈K1

W
(3)
1∈K1

W
(1)
1∈K2

W
(2)
1∈K2

W
(1)
1∈K3

W
(2)
1∈K3



,

where

[W
(1)T

1∈K1
,W

(2)T

1∈K1
,W

(3)T

1∈K1
]T = [W

(1)
1,1 ,W

(1)
2,1 ,W

(2)
1,1 ,W

(2)
2,1 ,W

(3)
2,1 ]T ,

[W
(1)T

1∈K2
,W

(2)T

1∈K2
]T = [W

(1)
1,12,W

(1)
1,13,W

(1)
2,12,W

(1)
2,13,W

(2)
1,12]T ,

[W
(1)T

1∈K3
,W

(2)T

1∈K3
]T = [W

(1)
1,123,W

(1)
2,123,W

(2)
1,123]T ,

and all coefficients are chosen uniformly at random from F23 generated by the primitive polyno-

mial x3 +x+1. Each coefficient is a 3-bit unsigned binary integer which is a vector representation

of the finite field element, for example, ‘7’ corresponds to the vector representation ‘[1 1 1]’.

5.2.2 Delivery Strategy

Denote the group of users requesting file n as I [n], and fix an arbitrary user `[n] in it as the

leader. Due to space constraint, here we only present in Algorithm 1 the delivery strategy when

all files are being requested, i.e., |I [n]| ≥ 1 for n = 1, 2, . . . , N . For other type of demands, the

delivery strategy can be similarly adapted from the centralized strategy for such cases given in [1].

In the delivery strategy, we need to consider all t-homogeneous groups for t = 0, . . . , K. For

each group, we compute the value of c̄t and deal with the set ∪c̄tj=1W
(j)
Kt in phase I and ∪c

max
t
j=c̄t+1W

(j)
Kt

in phase II, separately. For each setW(j)
Kt in phase I, its cardinality should beN

(
K
t

)
. Due to random

prefetching, there might be some symbols W (j)
i,S in this set that do not actually exist (see Table 5.2

for an example). In this case, the server will simply assign these symbols with all zeros.
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Algorithm 2: Coded delivery algorithm. Reprinted with permission from [6], © 2017
IEEE.
1 Delivery scheme (phase I):
2 Transmit all symbols in the set ∪c̄tj=1W

(j)
∅ uncoded;

3 for t = {1, . . . ,K − 1} do
4 for j = {1, . . . , c̄t} do
5 for A ⊆ ∪i′ 6=iI [i′] where t ≥ |A| > 0 do
6 Send the following summations in F2m :⊕

k∈B
W

(j)
i,A∪B\{k},

|B| = t+ 1− |A|, `[i] ∈ B ⊆ I [i].

7 end
8 end
9 end

10 Delivery scheme (phase II):
11 for t = {0, . . . ,K} do
12 Transmit all symbols in the set ∪c

max
t
j=c̄t+1W

(j)
Kt uncoded.

13 end

Example 7. (continuing example 1.) Suppose the demands of all three users are d =

(W1,W1,W2). The value of each c̄t is calculated in Table 5.1. For example, in the case t = 2,

W(1)
Kt and W(2)

Kt are both delivered in phase I, thus the transmissions should be exactly the same

except the superscript j. However, the symbols W (2)
1,13 and W (2)

1,23 do not exist in the latter, thus they

are all-zero, which are omitted in the transmission.

Consider the decoding steps of user 1, first he can collect the following 6 symbols from all the

above transmissions

W
(1)
2,1 ,W

(2)
2,1 ,W

(3)
2,1 ,W

(1)
2,12,W

(2)
1,12,W

(2)
1,123,

together with the 7 linear combinations in his cache, he can resolve all 13 present file symbols in

his cache (assuming the 13 linear combinations are all linear independent). Second, he uses the
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Table 5.2: The transmissions in each phase of the delivery. Reprinted with permission from [6], ©
2017 IEEE.

t Phase I Phase II
0 (j = 1) : W

(1)
2,∅ (j = 2) : W

(2)
2,∅

1

(j = 1) : W
(1)
1,3 ,W

(1)
2,1 ,W

(1)
2,2 ,

W
(1)
1,1 +W

(1)
1,2

(j = 3) : W
(3)
2,1

(j = 2) : W
(2)
2,1 ,W

(2)
1,1 +W

(2)
1,2

2
(j = 1) : W

(1)
1,13 +W

(1)
1,23,W

(1)
2,12

(j = 2) : W
(2)
1,12

3 (j = 1) : – (j = 2) : W
(2)
1,123

following transmissions

W
(1)
1,3 ,W

(1)
1,1 +W

(1)
1,2 ,W

(2)
1,1 +W

(2)
1,2 ,W

(1)
1,13 +W

(1)
1,23,

to he can decodeW (1)
1,3 ,W

(1)
1,2 ,W

(2)
1,2 ,W

(1)
1,23, till now he recovers all the 11 symbols from fileW1. The

memory-rate pair in this example is (MD, RD) = ( 7
11
, 13

11
).

It can be shown that user 1 can decode for all possible file demands, and similarly for user 2

throughK. Although the coding matrix may have different number of columns and different coding

coefficients at different users, the probability of successful decoding is guaranteed for all possible

demands, and this probability indeed approaches one as the size of the finite field grows.

5.3 Performance Analysis

The performance is summarized below.

Theorem 9. For N files and K users each with a cache of size M , where N ≤ K, the following

memory-rate tradeoff pair

(MD, RD) =
(

(N − 1)p2 + p,N(1− p)
)
, p ∈ [0, 1]

is achievable.
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An illustration is given in Figure 5.2. The proof of this theorem has two main parts. Firstly we

need to show that with the delivery strategy, each user with high probability can accumulate enough

linear combinations, such that all the symbols present in the cache can be resolved. Intuitively, this

is precisely the same problem as in [77], and the only difference is that there are more than one

t-homogeneous group here, and they are randomly mixed together during prefetching. However, it

can indeed be shown that this does not cause any essential difference, when the number of symbols

in a file is sufficiently large such that the law of large numbers can be properly invoked. After

the cached symbols are resolved, we essentially reduce it to an uncoded prefetching situation, and

the other transmissions in the delivery phase can provide any missing file segments. Secondly, we

have to also identify the performance of the given strategy, which though somewhat lengthy, is also

relatively straightforward again thanks to the law of large numbers. It should be further noted that

due to the random coding nature of the prefetching strategy, the alphabet F2m needs to be chosen

sufficiently large to drive the probability of decoding failure to zero. We omitted the technical

details here due to space constraint.

5.4 Coding Overheads

In the discussion until this point, we have largely ignored the coding overheads in the systems.

A close examination reveals that there are overheads associated with both the prefetching and de-

livery, which may considerably increase the memory M and the transmission rate R, respectively.

Next we discuss these two aspects, and focus on the difference from existing uncoded prefetching

strategies.

5.4.1 Coding Overhead in Prefetching

First consider the existing uncoded prefetching strategies in the decentralized setting (e.g.,

[87]), where each user needs to store the identities of the symbols in the cache. This overhead

can be rather overwhelming, if the bit-based strategy in [87] is applied directly. Since the identity

of each bit in a file is associated with the length of the file, prefetching one information bit in

fact requires multiple overhead bits, and thus the majority of the cache memory will be consumed
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Figure 5.2: The memory-rate tradeoff R(M) achieved by the proposed decentralized coded
caching scheme for an N = 4, K = 20 caching system. Reprinted with permission from [6],
© 2017 IEEE.

by the overhead. In order to mitigate this effect, a subfile division method can be adopted (see

also [88]): before prefetching, first divide each file into n subfiles, each of sufficiently large size.

Now we can randomly prefetch bits in the first subfiles of all the files as in [87], but for all the

subsequent subfiles, use this fixed prefetching pattern for each file. Thus, the coding overhead is

only associated with the first subfile, thus significantly less. There is however a tradeoff: larger

n reduces the relative overhead, however smaller n makes each subfile large and thus less zero-

padding is required in the delivery phase.

In the coded prefetching strategies we propose in this work, in addition to the identities of the

information symbols present in the cache, the coefficients used to form this linear combination also

need to be stored. This can be more significant since each stored symbol is in fact associated with

98



multiple coefficients. Using the same subfile division approach, this impact can be mitigated, how-

ever, it is clear that the same tradeoff effect still persists on the choice of n. We leave a quantitative

analysis of such effect to a future work, due to the space constraint. One may also wonder whether

a pseudo-random generator can be used to eliminate the necessity of storing coding coefficients,

by storing only the random seed. This approach is however futile, since in order to recover the

information symbols, the coding coefficients are generally required during decoding.

5.4.2 Coding Overhead in Delivery

In the delivery strategy of [87] for the decentralized setting proposed by Maddah-Ali and

Niesen, the server needs to include with each transmission the identity of the file bits that form

this eventual transmitted bit. This overhead can again be rather overwhelming, but the subfile

division strategy can also mitigate its impact. The delivery strategy we proposed in this work es-

sentially has the same overhead properties as that in [87], and thus the same technique can be used.

It should be noted that in the original centralized Tian-Chen strategy [77], the delivery is also not

binary, and thus the coding coefficients indeed need to be transmitted in this stage. The alternative

binary delivery strategy in [1] eliminates this burden altogether.

5.5 Conclusion

In this chapter, we proposed a coded prefetching coded delivery strategy for cache networks

in the decentralized setting, which provides performance improvement upon existing strategies.

Special attention is given to the coding overheads caused by the coded prefetching and the non-

binary nature of the code, and methods to mitigate the impact are discussed.

99



6. CONCLUSION

The technique of caching plays an important role in the Internet, and this importance has been

overlooked before. In recent years, as this importance has been rediscovered, a lot of researchers

have performed tremendous studies from different perspective of the caching network. A thorough

overview of the techniques can be found in this paper [143]. This dissertation, however, is mainly

focusing on the study of innerbound and outerbound of the memory-rate tradeoff in the basic

caching network setting from an information theoretic perspective, and a specific application of

our proposed coding scheme on the decentralized caching network setting.

The dissertation proposed two coding schemes that both improves the previous innerbound of

the memory-rate tradeoff. A symmetry reduction technique is also proposed to solve the problem

of high computational complexity when using information inequalities to derive the outerbound.

The proposed coding technique is applied onto the decentralized caching network which are more

common to see in reality networks and has its own problems. The proposed caching strategy are

proved to work with good performance under such setting.

In reality caching networks, there are some issues needs to be addressed. The fundamental

limits of memory-rate tradeoff are mostly derived in a simple setting, for example, the file size are

assumed to be the same, and the files need to keep fixed that cannot be changed, so the cached con-

tents need to be updated in a smart way otherwise will render the coded caching strategy unusable.

The users cannot be changed, such as user leaving the system or new user join in the system, which

also breaks the coding scheme. In reality, this often happens in a cellular network where users are

joining and leaving a certain network constantly since users are in a moving state. Some studies

have been conducted to tackle these problems, but these issues are still far away from being com-

pletely solved. Some other interesting directions include hierarchical caching and online caching,

where the former considers a network with multiple servers in different levels. The later tries to

solve the problem when files in the server can be changed. Other topics such as device-to-device

caching network is also considered, as it enables the communication between users and thus will
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further alleviate the burden on the bottleneck traffic.

In summary, caching is a useful technique and an interesting topic. This dissertation tries to

push the study of it a little bit further. During the writing of this dissertation, advanced techniques

such as machine learning are noticed that can be applied to the study of coded caching, for instance,

to predict which file are more popular compared to others, thus could put more of that file to the

user’s cache in the prefetching phase in the online caching problem. Indeed, non-deterministic

ways such as machine learning and statistical methods can play an important role in the coded

caching problem, especially when tackling the real caching systems as neither the files nor the

users are in a deterministic state, they are constantly changing during any time. Further studies of

these and other techniques will hopefully help the study of this topic.
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[62] T. Bektaş, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact algorithms for the joint object

placement and request routing problem in content distribution networks,” Computers & Op-

erations Research, vol. 35, no. 12, pp. 3860–3884, 2008.

[63] G. Carofiglio, L. Mekinda, and L. Muscariello, “Joint forwarding and caching with latency

awareness in information-centric networking,” Computer Networks, vol. 110, pp. 133–153,

2016.

[64] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose, D. Towsley, and

R. Sitaraman, “On the complexity of optimal request routing and content caching in hetero-

geneous cache networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1635–

1648, 2016.

[65] V. Pacifici, S. Jošilo, and G. Dán, “Distributed algorithms for content caching in mo-

bile backhaul networks,” in 2016 28th International Teletraffic Congress (ITC 28), vol. 1,

pp. 313–321, IEEE, 2016.

[66] K. Poularakis and L. Tassiulas, “On the complexity of optimal content placement in hierar-

chical caching networks,” IEEE Transactions on Communications, vol. 64, no. 5, pp. 2092–

2103, 2016.

[67] Cisco, Cisco Network Caching White Paper. [Online]. Available:

https://www.cisco.com/c/dam/global/de_at/assets/docs/Net_Caching.pdf, 2000.

[68] J. Leguay, G. S. Paschos, E. A. Quaglia, and B. Smyth, “Cryptocache: Network caching

with confidentiality,” in 2017 IEEE International Conference on Communications (ICC),

pp. 1–6, IEEE, 2017.

[69] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An analysis of

facebook photo caching,” in Proceedings of the Twenty-Fourth ACM Symposium on Oper-

ating Systems Principles, pp. 167–181, 2013.

109



[70] Netflix, How netflix works with isps around the globe to deliver a great viewing expe-

rience. [Online]. Available: https://media.netflix.com/en/company-blog/how-netflix-works-

with-isps-around-the-globe-to-deliver-a-great-viewing-experience, 2016.

[71] Netflix, Netflix Open Connect Overview. [Online]. Available:

https://openconnect.netflix.com/Open-Connect-Overview.pdf, 2019.

[72] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-

performance internet applications,” ACM SIGOPS Operating Systems Review, vol. 44, no. 3,

pp. 2–19, 2010.

[73] O. Katz, R. Perets, and G. Matzliach, “Digging deeper—an in-depth analysis of a fast flux

network,” Akamai, Cambridge, MA, USA, White Paper, 2017.

[74] A. Sengupta, R. Tandon, and O. Simeone, “Fog-aided wireless networks for content deliv-

ery: Fundamental latency tradeoffs,” IEEE Transactions on Information Theory, vol. 63,

no. 10, pp. 6650–6678, 2017.

[75] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-caching gains for fi-

nite file sizes,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1176–

1188, 2018.

[76] A. Malik, S. H. Lim, and W.-Y. Shin, “On the effects of subpacketization in content-centric

mobile networks,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8,

pp. 1721–1736, 2018.

[77] C. Tian and J. Chen, “Caching and delivery via interference elimination,” IEEE Transactions

on Information Theory, vol. 64, no. 3, pp. 1548–1560, 2018.

[78] J. Gómez-Vilardebó, “A novel centralized coded caching scheme with coded prefetching,”

IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1165–1175, 2018.

[79] Y. Lu, W. Chen, and H. V. Poor, “Coded joint pushing and caching with asynchronous user

requests,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp. 1843–

1856, 2018.

110



[80] S. M. Azimi, O. Simeone, A. Sengupta, and R. Tandon, “Online edge caching and wireless

delivery in fog-aided networks with dynamic content popularity,” IEEE Journal on Selected

Areas in Communications, vol. 36, no. 6, pp. 1189–1202, 2018.

[81] P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip, “On coding for cache-aided deliv-

ery of dynamic correlated content,” IEEE Journal on Selected Areas in Communications,

vol. 36, no. 8, pp. 1666–1681, 2018.

[82] J. Hachem, N. Karamchandani, S. Moharir, and S. N. Diggavi, “Caching with partial

adaptive matching,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8,

pp. 1831–1842, 2018.

[83] M. M. Amiri and D. Gündüz, “Caching and coded delivery over gaussian broadcast channels

for energy efficiency,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 8,

pp. 1706–1720, 2018.

[84] M. Mahdian, N. Prakash, M. Médard, and E. Yeh, “Updating content in cache-aided coded

multicast,” IEEE Journal on Selected Areas in Communications, vol. 36, no. 6, pp. 1203–

1216, 2018.

[85] Y.-P. Wei, K. Banawan, and S. Ulukus, “Cache-aided private information retrieval with par-

tially known uncoded prefetching: Fundamental limits,” IEEE Journal on Selected Areas in

Communications, vol. 36, no. 6, pp. 1126–1139, 2018.

[86] A. A. Zewail and A. Yener, “Combination networks with or without secrecy constraints:

The impact of caching relays,” IEEE Journal on Selected Areas in Communications, vol. 36,

no. 6, pp. 1140–1152, 2018.

[87] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal

memory-rate tradeoff,” IEEE/ACM Transactions On Networking, vol. 23, no. 4, pp. 1029–

1040, 2014.

[88] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE Trans-

actions on Information Theory, vol. 63, no. 2, pp. 1146–1158, 2016.

111



[89] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,” IEEE/ACM Trans-

actions on Networking, vol. 24, no. 2, pp. 836–845, 2015.

[90] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical coded

caching,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3212–3229, 2016.

[91] C. Tian, “Symmetry, demand types and outer bounds in caching systems,” in 2016 IEEE

International Symposium on Information Theory (ISIT), pp. 825–829, IEEE, 2016.

[92] C. Tian, “Symmetry, outer bounds, and code constructions: A computer-aided investigation

on the fundamental limits of caching,” Entropy, vol. 20, no. 8, p. 603, 2018.

[93] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: Improved bounds for

users with small buffers,” IET Communications, vol. 10, no. 17, pp. 2315–2318, 2016.

[94] S. Sahraei and M. Gastpar, “K users caching two files: An improved achievable rate,” in

2016 Annual Conference on Information Science and Systems (CISS), pp. 620–624, IEEE,

2016.

[95] M. M. Amiri, Q. Yang, and D. Gündüz, “Coded caching for a large number of users,” in

2016 IEEE Information Theory Workshop (ITW), pp. 171–175, IEEE, 2016.

[96] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,” in 2016

IEEE International Symposium on Information Theory (ISIT), pp. 135–139, IEEE, 2016.

[97] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved rate-memory tradeoff with

coded prefetching,” IEEE Transactions on Communications, vol. 66, no. 10, pp. 4488–4497,

2018.

[98] K. K. Vijith, B. K. Rai, and T. Jacob, “Towards the exact rate memory tradeoff in coded

caching,” in 2019 National Conference on Communications (NCC), pp. 1–6, IEEE, 2019.

[99] M. M. Amiri and D. Gündüz, “Fundamental limits of coded caching: Improved deliv-

ery rate-cache capacity tradeoff,” IEEE Transactions on Communications, vol. 65, no. 2,

pp. 806–815, 2016.

112



[100] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff for

caching with uncoded prefetching,” IEEE Transactions on Information Theory, vol. 64,

no. 2, pp. 1281–1296, 2017.

[101] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved bounds with coded

prefetching,” arXiv preprint arXiv:1612.09071, 2016.

[102] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded caching,” IEEE

Transactions on Information Theory, vol. 63, no. 7, pp. 4388–4413, 2017.

[103] C.-Y. Wang, S. S. Bidokhti, and M. Wigger, “Improved converses and gap results for coded

caching,” IEEE Transactions on Information Theory, vol. 64, no. 11, pp. 7051–7062, 2018.

[104] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory tradeoff

in cache networks within a factor of 2,” IEEE Transactions on Information Theory, vol. 65,

no. 1, pp. 647–663, 2018.

[105] R. W. Yeung, Information theory and network coding. Springer Science & Business Media,

2008.

[106] Z. Zhang and R. W. Yeung, “On characterization of entropy function via information in-

equalities,” IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1440–1452, 1998.

[107] R. W. Yeung and Z. Zhang, “On symmetrical multilevel diversity coding,” IEEE Transac-

tions on Information Theory, vol. 45, no. 2, pp. 609–621, 1999.

[108] C. Tian, “Latent capacity region: A case study on symmetric broadcast with common mes-

sages,” IEEE transactions on information theory, vol. 57, no. 6, pp. 3273–3285, 2011.

[109] J. Jiang, N. Marukala, and T. Liu, “Symmetrical multilevel diversity coding and subset

entropy inequalities,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 84–103,

2013.

[110] C. Tian, “Characterizing the rate region of the (4, 3, 3) exact-repair regenerating codes,”

IEEE Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 967–975, 2014.

113



[111] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear programming and network flows. John

Wiley & Sons, 2011.

[112] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Order-optimal rate of caching and coded

multicasting with random demands,” IEEE Transactions on Information Theory, vol. 63,

no. 6, pp. 3923–3949, 2017.

[113] M. M. Amiri, Q. Yang, and D. Gündüz, “Decentralized coded caching with distinct cache

capacities,” in 2016 50th Asilomar Conference on Signals, Systems and Computers, pp. 734–

738, IEEE, 2016.

[114] A. Ramakrishnan, C. Westphal, and A. Markopoulou, “An efficient delivery scheme for

coded caching,” in 2015 27th International Teletraffic Congress, pp. 46–54, IEEE, 2015.

[115] K. Wan, D. Tuninetti, and P. Piantanida, “Novel delivery schemes for decentralized coded

caching in the finite file size regime,” in 2017 IEEE International Conference on Communi-

cations Workshops (ICC Workshops), pp. 1183–1188, IEEE, 2017.

[116] J. Chen, A. Salimi, T. Liu, and C. Tian, “Orbit-entropy cones and extremal pairwise orbit-

entropy inequalities,” in 2016 IEEE International Symposium on Information Theory (ISIT),

pp. 2614–2618, IEEE, 2016.

[117] J. Chen, H. Ye, C. Tian, T. Liu, and Z. Xiao, “Cyclically symmetric entropy inequalities,” in

2016 IEEE International Symposium on Information Theory (ISIT), pp. 2299–2303, IEEE,

2016.

[118] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network

coding for distributed storage systems,” IEEE transactions on information theory, vol. 56,

no. 9, pp. 4539–4551, 2010.

[119] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Distributed storage codes

with repair-by-transfer and nonachievability of interior points on the storage-bandwidth

tradeoff,” IEEE Transactions on Information Theory, vol. 58, no. 3, pp. 1837–1852, 2011.

114



[120] F. Harary and E. Palmer, “The power group enumeration theorem,” Journal of Combinato-

rial Theory, vol. 1, no. 2, pp. 157–173, 1966.

[121] M. A. Harrison and R. G. High, “On the cycle index of a product of permutation groups,”

Journal of Combinatorial Theory, vol. 4, no. 3, pp. 277–299, 1968.

[122] W.-D. Wei and J.-Y. Xu, “Cycle index of direct product of permutation groups and number

of equivalence classes of subsets of zv,” Discrete Mathematics, vol. 123, no. 1-3, pp. 179–

188, 1993.

[123] C. Li, S. Weber, and J. M. Walsh, “Multilevel diversity coding systems: Rate regions, codes,

computation, & forbidden minors,” IEEE Transactions on Information Theory, vol. 63,

no. 1, pp. 230–251, 2016.

[124] J. Apte and J. M. Walsh, “Exploiting symmetry in computing polyhedral bounds on net-

work coding rate regions,” in 2015 International Symposium on Network Coding (NetCod),

pp. 76–80, IEEE, 2015.

[125] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problemy Peredachi

Informatsii, vol. 21, no. 1, pp. 3–16, 1985.

[126] R. Lidl, H. Niederreiter, and P. Cohn, Encyclopedia of mathematics and its applications vol

20. Cambridge, Cambridge university press, 1983.

[127] R. Koetter and F. R. Kschischang, “Coding for errors and erasures in random network cod-

ing,” IEEE Transactions on Information theory, vol. 54, no. 8, pp. 3579–3591, 2008.

[128] N. Silberstein, A. S. Rawat, and S. Vishwanath, “Error-correcting regenerating and locally

repairable codes via rank-metric codes,” IEEE Transactions on Information Theory, vol. 61,

no. 11, pp. 5765–5778, 2015.

[129] C. Tian, B. Sasidharan, V. Aggarwal, V. A. Vaishampayan, and P. V. Kumar, “Layered

exact-repair regenerating codes via embedded error correction and block designs,” IEEE

Transactions on Information Theory, vol. 61, no. 4, pp. 1933–1947, 2015.

115



[130] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[131] C. Tian, “A note on the fundamental limits of coded caching,” arXiv preprint

arXiv:1503.00010, 2015.

[132] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation of storage-rate tradeoff

for caching via new outer bounds,” in 2015 IEEE International Symposium on Information

Theory (ISIT), pp. 1691–1695, IEEE, 2015.

[133] D. Younger, “Graph theory (frank harary),” SIAM Review, vol. 14, no. 2, p. 350, 1972.

[134] N. Jacobson, Basic algebra I. Courier Corporation, 2012.

[135] N. Loehr, Bijective combinatorics. Chapman and Hall/CRC, 2011.

[136] J. A. Barnes and F. Harary, Graph theory in network analysis. Elsevier, 1983.

[137] C. L. Liu, Introduction to combinatorial mathematics. McGraw-Hill, 1968.

[138] H. Te Sun, “Nonnegative entropy measures of multivariate symmetric correlations,” Infor-

mation and Control, vol. 36, pp. 133–156, 1978.

[139] A. Betten, “Classifying discrete objects with orbiter,” ACM Communications in Computer

Algebra, vol. 47, no. 3/4, pp. 183–186, 2014.

[140] A. Betten, Orbiter – A program to classify discrete objects. [Online]. Available:

https://github.com/abetten/orbiter, 2018.

[141] H. Brown, L. Hjelmeland, and L. Masinter, “Constructive graph labeling using double

cosets,” Discrete Mathematics, vol. 7, no. 1-2, pp. 1–30, 1974.

[142] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching: Improved bounds for

small buffer users,” arXiv preprint arXiv:1407.1935, 2014.

[143] G. S. Paschos, G. Iosifidis, M. Tao, D. Towsley, and G. Caire, “The role of caching in future

communication systems and networks,” IEEE Journal on Selected Areas in Communica-

tions, vol. 36, no. 6, pp. 1111–1125, 2018.

116



APPENDIX A

PROOF OF LEMMAS, THEOREMS AND COROLLARIES

This appendix includes the proofs of several lemmas and theorems in chapter 4.

A.1 Proof of Corollary 1

We first show that (2.2), i.e., the memory-rate tradeoff points given in [100], can be obtained by

specializing (2.19), (2.20), and (2.26)-(2.30). For this case, the decomposition patterns are given

by Pt,d = {supp(t)}, i.e., there is no decomposition. As such, (2.19) reduces to

R
d,P(t)

d
=
∑
t∈T (t)

d

∏
n∈supp(t)

(
mn

tn

)
−
∑
t∈T (t)

d

∏
n∈supp(t)

(
mn − 1

tn

)
. (A.1)

The first summation is clearly
(
K
t+1

)
, since it is simply the number of ways to choose (t+ 1) users

from the K users, however counted one transmission type at a time. To simplify the second term

in (A.1), let us consider any demand vector d ∈ D. For any transmission type t where there

exists n ∈ supp(t) such that tn = mn, the product
∏

n∈supp(t)

(
mn−1
tn

)
is clearly zero. The second

summation can thus be viewed as counting the number of ways to choose (t + 1) users, however,

with the leaders {`[n],mn 6= 0} not being chosen; there is clearly
(
K−N∗
t+1

)
ways to do so. This

implies that

R
d,P(t)

d
=

(
K

t+ 1

)
−
(
K −N∗

t+ 1

)
≤
(

K

t+ 1

)
−
(
K − Ñ
t+ 1

)
, ∀d ∈ D. (A.2)

Similarly (2.20) can be simplified for any d ∈ D as

M
d,P(t)

d ,k
= N

(
K − 1

t− 1

)
, (A.3)
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since the other term disappears with the choice Pt,d = {supp(t)}. The quantities (A.2) and (A.3)

are independent of d. It is clear that (2.2) is identical to (A.2) and (A.3) after normalization with

the file size F =
(
K
t

)
. It is easy to verify that they are indeed in the region R(t), thus it is clearly

inside cl
(
∪t=0,...,KR(t)

)
.

Next we show that (2.4), i.e., the memory-rate tradeoff points given in [77], can also be obtained

by specializing (2.19), (2.20), and (2.26)-(2.30). In this case, the decomposition patterns are given

by Pt,d = {{n} : n ∈ supp(t)}, i.e., supp(t) is partitioned into sets, where each set is a singleton.

It follows that

R
d,P(t)

d
=
∑
t∈T (t)

d

∑
n∈supp(t)

((mn

tn

)
−
(
mn − 1

tn

))
·

∏
n′∈supp(t)\{n}

(
mn′

tn′

)
=
∑
t∈T (t)

d

∑
n∈supp(t)

(mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n}

(
mn′

tn′

) . (A.4)

Define 1c to be the indicator function which is equal to 1 when the condition c holds, and is equal

to 0 otherwise. We can now rewrite the summation as

R
d,P(t)

d
=
∑
t∈T (t)

d

∑
n∈supp(m)

1n∈supp(t)

(mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n}

(
mn′

tn′

)
=

∑
n∈supp(m)

∑
t∈T (t)

d

1n∈supp(t)

(mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n}

(
mn′

tn′

) . (A.5)

Notice that the equality

∑
t∈T (t)

d

1n∈supp(t)

(mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n}

(
mn′

tn′

) =

(
K − 1

t

)
, (A.6)

since the left hand side is the number of ways to choose t + 1 users among the K users, with `[n]
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already chosen, counted one transmission type at a time. It follows that for any d ∈ D,

R
d,P(t)

d
= N∗

(
K − 1

t

)
. (A.7)

Let us turn to (2.20), the second term of which in this case can be simplified as

∆M
d,P(t)

d ,k
=

∑
t∈T (t)

d :tdk>0

∑
n∈supp(t)\{dk}

(mdk − 1

tdk − 1

)(
mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n,dk}

(
mn′

tn′

)
=

∑
t∈T (t)

d :tdk>0

∑
n∈supp(m)\{dk}

1n∈supp(t)

(mdk − 1

tdk − 1

)(
mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n,dk}

(
mn′

tn′

)
=

∑
n∈supp(m)\{dk}

∑
t∈T (t)

d

1{n,dk}⊆supp(t)

(mdk − 1

tdk − 1

)
·
(
mn − 1

tn − 1

)
·

∏
n′∈supp(t)\{n,dk}

(
mn′

tn′

)
= (N∗ − 1)

(
K − 2

t− 1

)
, (A.8)

where the last equality is because for each fixed n ∈ supp(m) \ {dk}, the inner summation is

simply the number of ways to choose t+ 1 users in the K users, with `[dk] and `[n] already chosen.

Thus we arrive at

M
d,P(t)

d ,k
= N

(
K − 1

t− 1

)
− (N∗ − 1)

(
K − 2

t− 1

)
. (A.9)

Note that neither (A.7) nor (A.9) depends on d or k.

For N∗ = Ñ , normalizing both of them by
(
K
t

)
already gives exactly the memory-rate trade-

off pairs in (2.4). This leaves us only the case when N∗ 6= Ñ to consider. We shall use two

decomposition patterns for this case. Define

α
P̆(t)

d
=


Ñ−N∗
K−N∗ K − t ≤ Ñ

(K−t)(Ñ−N∗)
K(Ñ−N∗)+tN∗ otherwise

(A.10)

which is clearly non-negative and is associated with the uncoded transmission pattern, and 1−α
P̆(t)

d
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which is also non-negative and is associated with the transmission pattern whose rate and memory

are given in (A.7) and (A.9). It is easy to check that when K − t ≤ Ñ ,

α
P̆(t)

d
M

d,P̆(t)
d ,k

+ (1− α
P̆(t)

d
)M

d,P(t)
d ,k

= N

(
K − 1

t− 1

)
− (Ñ − 1)

(
K − 2

t− 1

)
. (A.11)

and

α
P̆(t)

d
R

d,P̆(t)
d ,k

+ (1− α
P̆(t)

d
)R

d,P(t)
d ,k

= Ñ

(
K − 1

t

)
. (A.12)

On the other hand, when K − t > Ñ , (A.12) still holds, but

α
P̆(t)

d
M

d,P̆(t)
d ,k

+ (1− α
P̆(t)

d
)M

d,P(t)
d ,k

= N

(
K − 1

t− 1

)
−
(
K − 2

t− 1

)(
Ñ − Ñ(Ñ −N∗) + tÑ

K(Ñ −N∗) + tN∗

)

< N

(
K − 1

t− 1

)
−
(
K − 2

t− 1

)
(Ñ − 1), (A.13)

where the last inequality is because

Ñ(Ñ −N∗) + tÑ < (K − t)(Ñ −N∗) + tÑ = K(Ñ −N∗) + tN∗ (A.14)

by the condition K − t > Ñ . Thus for N∗ 6= Ñ , we have found the correct α
P̆(t)

d
to satisfy the

conditions in (2.26)-(2.30), and indeed the memory-rate pair (2.4) is in the region R(t). The proof

is thus complete.
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A.2 The Original Optimization Problem and Its Equivalence to the LP Problem

Without assuming any symmetry, the elemental inequalities of n random variables are

HP (XIn)−HP (XIn\{j}) ≥ 0, any j ∈ In,

HP (X{i}∪Q) +HP (X{j}∪Q)−HP (XQ)−HP (X{i}∪{j}∪Q) ≥ 0, any i 6= j, Q ⊆ In\{i, j},

HP (XA) ≥ 0, any A ⊆ In.

For simplicity, in the following we use ZA to represent entropy HP (XA), and the last inequality

can be safely omitted by the same reason that has been mentioned in section IV. Thus the following

optimization problem provides an upper bound on cO,O′ , we refer it as P1(O,O′),

P1(O,O′) : maximize:
|O|`O
|O′|`O′

∑
A∈O′ ZA∑
A∈O ZA

subject to: ZIn − ZIn\{j} ≥ 0, any j ∈ In,

Z{i}∪Q + Z{j}∪Q − ZQ − Z{i}∪{j}∪Q ≥ 0, any i 6= j,Q ⊆ In\{i, j}.

This optimization problem does not have a linear objective, however it can be transformed into an

equivalent LP problem, which is referred to as P2(O,O′),

P2(O,O′) : maximize:
`O
|O′|`O′

∑
A∈O′

ZA (A.15)

subject to: ZIn − ZIn\{j} ≥ 0, any j ∈ In, (A.16)

Z{i}∪Q + Z{j}∪Q − ZQ − Z{i}∪{j}∪Q ≥ 0,

any i 6= j, Q ⊆ In\{i, j}, (A.17)

1

|O|
∑
A∈O

ZA = 1. (A.18)

This LP problem can be further reduced to a symmetric LP, where all entropies of subsets inside

the same orbit are equal, this is referred to as P3(O,O′),
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P3(O,O′) : maximize:
`O
|O′|`O′

∑
A∈O′

ZA (A.19)

subject to: ZIn − ZIn\{j} ≥ 0, any j ∈ In, (A.20)

Z{i}∪Q + Z{j}∪Q − ZQ − Z{i}∪{j}∪Q ≥ 0,

any i 6= j, Q ⊆ In\{i, j}, (A.21)

ZA = 1, any A ∈ O, (A.22)

ZA = ZB, any A,B,O′′ such that A,B ∈ O′′. (A.23)

Next we prove that they are all equivalent. The optimal values of the objective functions in

three problems are denoted as (P1), (P2) and (P3), respectively.

Theorem 10. (P1) = (P2).

Proof. First notice that the objective function of P1(O,O′) becomes exactly that of P2(O,O′) by

letting 1
|O|
∑
A∈O ZA = 1, this implies that (P1) ≥ (P2) because P2(O,O′) is more constrained

than P1(O,O′). Thus we can focus on the other direction (P1) ≤ (P2).

Denote the optimal vector for P1(O,O′) as {Z∗A:A⊆In}, and suppose it yields 1
|O|
∑
A∈O Z

∗
A =

c. We only need to show that there is a vector {Ẑ∗A:A⊆In}, which satisfies all the constraints

of P2(O,O′) and has the same objective function value as P1(O,O′), because this would imply

(P2) ≥ (P1). This vector can be constructed as

Ẑ∗A =
1

c
Z∗A,A ⊆ In. (A.24)

Thus when substituting the vector {Ẑ∗A:A⊆In} in, it is obvious that the objective function P2(O,O′)

achieves the same value as P1(O,O′), and this vector satisfies all the constraints in P2(O,O′), by

observing that the linear scaling factor 1
c

can be canceled out on both sides of the inequalities.

The two conditions (P1) ≥ (P2) and (P1) ≤ (P2) yield (P1) = (P2).
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Theorem 11. (P2) = (P3).

Proof. First notice that (P2) ≥ (P3) because both problems have the same objective function,

but P3(O,O′) is more constrained than P2(O,O′). Thus we can focus on the other direction

(P2) ≤ (P3).

Denote the optimal vector for P2(O,O′) as {Z∗A:A⊆In}, we only need to show that there is

a vector {Ẑ∗A:A⊆In}, which satisfies all the constraints of P3(O,O′) and has the same objective

function value as P2(O,O′), because this would imply

(P3) ≥ `O
|O′|`O′

∑
A∈O′

ZA = (P2).

For this purpose, consider cyclic shift gk, k = 0, 1, . . . , n−1 of the indices In, and the induced

operations on {Z∗A:A⊆In},

gk(Z
∗
A) , Z∗gk(A), k = 0, 1, . . . , n− 1.

Consider the following vector,

Ẑ∗A =
1

n

n−1∑
k=0

Z∗gk(A) , Ẑ∗Õ, A ∈ Õ,

which implies that it is not a function of A, but only a function of the orbit it belongs, and thus

constraint (A.23) is satisfied. Furthermore, for any Õ, suppose d|Õ| = n, where d is an integer

and d ≥ 1, then

∑
A∈Õ

Ẑ∗A =
∑
A∈Õ

1

n

n−1∑
k=0

Z∗gk(A) =
∑
A∈Õ

1

d|Õ|
d

|Õ|−1∑
k=0

Z∗gk(A) =
∑
A∈Õ

1

|Õ|

∑
A∈Õ

Z∗A =
∑
A∈Õ

Z∗A.

Thus when substituting the vector {Ẑ∗A:A⊆In} in, the objective function achieves the same value

with P2(O,O′). It remains to show that {Ẑ∗A:A⊆In} satisfies the constraints (A.20-A.22) in P3(O,

O′).

123



First notice that by setting Õ = O, we have Ẑ∗A = 1
d
· d · 1

|O|
∑|O|−1

k=0 Z∗gk(A) = 1 by (A.18), thus

constraint (A.22) is satisfied. Now consider an arbitrary constraint of the form (A.20),

ZIn − ZIn\{j} ≥ 0,

in P3(O,O′), substituting {Ẑ∗A:A⊆In} into its left hand side gives

Ẑ∗In − Ẑ
∗
In\{j} = Z∗In −

∑
j∈In Z

∗
In\{j}

n
=

∑n
j=1

(
Z∗In − Z

∗
In\{j}

)
n

≥ 0,

where the last inequality is true because {Z∗A:A⊆In} is a valid solution for P2(O,O′), and the

quantity in the parenthesis is nonnegative as one of the constraints.

Similarly, for the second type of constraint (A.21),

Z{i}∪Q + Z{j}∪Q − ZQ − Z{i}∪{j}∪Q ≥ 0,

substitute {Ẑ∗A:A⊆In} into the left hand side and multiply it by n, we have

(
Ẑ∗{i}∪Q + Ẑ∗{j}∪Q − Ẑ∗Q − Ẑ∗{i}∪{j}∪Q

)
n

=
n−1∑
k=0

Z∗gk({i}∪Q) +
n−1∑
k=0

Z∗gk({j}∪Q) −
n−1∑
k=0

Z∗gk(Q) −
n−1∑
k=0

Z∗gk({i}∪{j}∪Q)

=
n−1∑
k=0

(
gk(Z

∗
{i}∪Q) + gk(Z

∗
{j}∪Q)− gk(Z∗Q)− gk(Z∗{i}∪{j}∪Q)

)
≥ 0,

where in the last step we again use the fact that {Z∗A:A⊆In} is a valid solution for P2(O,O′). Thus

the construction {Ẑ∗A:A⊆In} indeed satisfies all the constraints in P3(O,O′) and this completes the

proof.

It is straightforward to see that in the symmetric LP P3(O,O′), the last constraint (A.23) forces

all entropies of subsets in the same orbit to be equal, thus the LP variables are in fact all cyclic orbit

entropies ZO instead of all ZA. Hence, P3(O,O′) can be rewritten as exactly the LP in section IV.
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A.3 Proof of Theorem 7

Proof. In the regenerating code problem, the permutation group GI is a symmetric group Sn, thus

its cycle index is given as (4.5). Alternatively, it can be written in the form of (4.31), and the

number of monomials in it is the number of partitions p(n). This is implied by the fact that the

permutations associated with the same partition have the same cycle index.

Without loss of generality, only one permutation π ∈ PGI = PSn needs to be examined,

suppose that it has a cycle index of xcq11 x
cq2
2 . . . x

cqn
n , and we will prove that it induces a permutation

πind having a cycle index of
∏

l1=1,2,...,n;
l2=l1+1,...,n

x
l1c2ql1
l1

x
cql1l2
lcm(l1,l2), cql1l2 =

2l1l2cql1cql2
lcm(l1,l2)

. Since only one π is

under study, the notation ‘q’ in the subscript of each exponent c is omitted.

The proof is done by examining the mapping of each element in X under permutation πind.

The set X can be illustrated as a matrix where each Xij ∈ X is denoted as an element located on

the ith row and jth column. Let us assume that in permutation π, i belongs to a length-l1 cycle

and j belongs to a length-l2 cycle, i, j ∈ In, then this implies that πl1(i) = i and πl2(j) = j.

The elements in the matrix can be ordered according to the cycle notation, just as Figure A.1

shows. For the sake of simplicity but without loss of generality, we suppose that each cycle in

π contains consecutive increasing numbers, and the operation πind will map Xij to Xi′j′ , where

i′ = [(i−ai+1) mod l1]+ai and j′ = [(j−aj +1) mod l2]+aj , and ai (aj) is the starting value

of the length-l1 (length-l2) cycle containing i (j). That is, the induced permutation πind moves Xij

along the diagonal direction by one position within the same sub-matrix, and cycles back in the

sub-matrix when reaching to the boundary.

• For those Xij’s whose subscripts i and j belong to the same length cycle (not necessarily the

same cycle) in π, i.e., l1 = l2, Xij will also belong to a length-l1 cycle under the mapping by

πind, since

Xij → πind(Xij)→ (πind)2(Xij)→ . . .→ (πind)l1−1(Xij)→ (πind)l1(Xij), (A.25)

where (πind)l1(Xij) = Xπl1 (i)πl1 (j) = Xij .
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Figure A.1: The elements Xij where i belongs to a length-l1 cycle and j belongs to a length-l2
cycle, in this figure, l1 = 4, l2 = 3. Reprinted with permission from [4, 5], © 2017,2018 IEEE.

Since there are cl1 such length-l1 cycles in π, i and j would both have l1cl1 different choices,

therefore the number of distinct Xij is (l1cl1)2. Based on (A.25), the l21c
2
l1

distinct Xij’s

will form
l21c

2
l1

l1
= l1c

2
l1

cycles in permutation πind, each of length l1. That is, the term

x
cl1
l1
, l1 = 1, 2, . . . , n in the cycle index of π indicates the presence of a term x

l1c2l1
l1

in the

cycle index of πind.

• For those Xij’s whose subscripts i and j belong to different length cycles in π, i.e., l1 6= l2,

clearly, it will take exactly lcm(l1, l2) steps for πind to map such an Xij to itself,

Xij → πind(Xij)→ (πind)2(Xij)→ . . .→ (πind)lcm(l1,l2)−1(Xij)→(πind)lcm(l1,l2)(Xij),

where (πind)lcm(l1,l2)(Xij) = Xπlcm(l1,l2)(i)πlcm(l1,l2)(j) = Xij .

For any fixed l1, l2, the number of distinct Xij’s is l1cl1l2cl2 , they form l1l2cl1cl2
lcm(l1,l2)

cycles in the

induced permutation group πind, each of length lcm(l1, l2). That is, every possible paired-

term x
cl1
l1
x
cl2
l2
, l1 6= l2, l1, l2 = 1, 2, . . . , n, in the cycle index of π indicates the presence of a

term x

l1l2cl1
cl2

lcm(l1,l2)

lcm(l1,l2) in the cycle index of πind.
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In fact, in (b) if we just consider the Xij where i belongs to a cycle shorter than the cycle

j belongs to, i.e., l1 < l2, in other words, for all l1 6= l2 sub-matrices we only study exactly

half of them, then the other half is symmetric to the diagonal of the matrix and the same argu-

ment holds true, which leads to
∏

l1=1,2,...,n;
l2=l1+1,...,n

x
cl1l2
lcm(l1,l2), cl1l2 =

2l1l2cl1cl2
lcm(l1,l2)

. Hence, the final result is∏
l1=1,2,...,n;
l2=l1+1,...,n

x
l1c2l1
l1

x
cl1l2
lcm(l1,l2), cl1l2 =

2l1l2cl1cl2
lcm(l1,l2)

. This completes the proof.
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