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ABSTRACT

The well-known Purcell effect shows that the spontaneous decay rate of an emitter can be 

affected by the electromagnetic environment with which the emitters interact. One of the most 

famous and popular examples is the squeezed vacuum. Although the squeezed vacuum does not 

change the density of states of the electromagnetic modes, it can modify the decay rate as well 

as the dephasing rate of the emitters. The interaction between a single atom and the squeezed 

vacuum has been widely studied, while only a few publications deal with the multiple-atom system. 

Despite the fact that the dipole-dipole interaction induced by ordinary vacuum depends on the 

relative separation of atoms, there are only a few papers studying the impact of atomic separation 

in the squeezed vacuum. In this dissertation, we show that the interaction induced by the squeezed 

vacuum depends on the center of mass positions of the atoms, which is essentially different from 

that in the ordinary vacuum. We also illustrate how to choose the coordinate system to make the 

center of mass position reasonable and well-defined.

Although the squeezed vacuum theory has been widely studied, it is impractical to generate a 

broadband squeezed vacuum reservoir which squeezes all modes in the 3-dimensional (3D) space. 

Recently, photon transport in a one-dimensional (1D) waveguide coupled to quantum emitters 

(well known as "waveguide-QED") has attracted much attention due to its possible applications 

in quantum device and quantum information. In contrast to the 3D case, squeezing in 1D is more 

experimentally feasible. Suppression of the spontaneous decay rate and the linewidth of the res-

onance fluorescence atom has been experimentally demonstrated in a 1D microwave transmission 

line coupled to a single artificial a t om. However many-body interaction in a  1D waveguide QED 

system coupled to the squeezed vacuum has still not yet been studied. In this dissertation, we apply 

our theory to the 1D waveguide-QED system with the squeezed reservoir. Contrary to the tradi-

tional result that the dephasing rate of a single atom is a constant, our calculation shows that 

the dephasing rate is actually position-dependent. As the dipole-dipole interaction is involved in 

the atomic system, both the atomic separation and center of mass position have impacts on the 

decay
ii



rate, dephasing rate, and the emitted resonance fluorescence spectrum. Moreover, the stationary

maximum entangled NOON state can be achieved if atomic transition frequency is resonant with

the center frequency of the squeezed vacuum.

In light of the fact that two qubits can be treated as a whole to be a four level atomic system,

we also study the dynamics of Ξ-type atoms driven by a squeezed vacuum. We get the interesting

result that the atomic system’s steady state is a pure state, and a complete population inversion can

occur when the coupling between the atomic dipole and the squeezed vacuum satisfy some certain

conditions. We also mathematically prove that the steady state of a many-body system is nothing

else but the direct product of that in the single atom case even when dipole-dipole interaction is

involved.
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NOMENCLATURE

IQSE The Institute for Quantum Science and Engineering

TAMU Texas A&M University

QED Quantum electrodynamics

3D three dimensional

TE modes traverse electric modes

TM modes traverse magnetic modes
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1. INTRODUCTION1

Due to the well known Purcell effect [1], the spontaneous decay rate of an emitter can be

modified by engineering the electromagnetic bath environment with which the emitters interact.

One example of bath engineering is the squeezed vacuum. Although the squeezed vacuum does

not change the density of the electromagnetic modes, it can still modify the decay rate of the emitter

[2, 3, 4]. A single emitter interacting with the squeezed vacuum has been widely studied [5, 6, 7].

However, there are only a few publications dealing with multiple emitters interacting with squeezed

vacuum. Among these works, most are considering the case where emitters are separated by much

less than an optical wavelength which is the well known Dicke model [8]. It is shown that in a

broadband squeezed vacuum, emitter system evolves into a state whose properties are similar to

those of the squeezed vacuum. Only a very few papers study the case when the separation between

the emitters becomes important [9, 10, 11]. It is found that the dipole-dipole interaction induced by

ordinary vacuum depends on the relative emitter separation, while the interaction induced by the

squeezed vacuum depends on the center of mass coordinate of the emitters. Since it depends on the

position of the center of mass, the choice of the coordinate system should be no longer arbitrary.

However, it is not yet clearly illustrated in these literature on how to choose the coordinate system.

Actually, the dependence on the absolute position comes from the fact that the squeezed vacuum is

not vacuum but generated by a coherent light source. The phase of a coherent source is important

for the dynamics of the emitter system [12] and it is seldom considered in the previous literature[9,

10, 11]. People usually thought this phase can be included in the phase of the correlation function.

However, the phase in the correlation function is usually treated as a constant, while it can be a

function of position. In addition, the previous calculations mainly consider a broadband squeezing

in all directions of the 3-dimensional (3D) space which is difficult to be experimentally realized.

1Parts of the Abstract and this section are reprinted with permission from: “Waveguide QED in the Squeezed Vacuum”
by Jieyu You et al, 2018. Physical Review A, 97, 023810, Copyright 2018 by the American Physical Society and
“Steady-state population inversion of multiple Ξ-type atoms by the squeezed vacuum in a waveguide” by Jieyu You,
Zeyang Liao, and M. Suhail Zubairy, 2019. Physical Review A, 100, 013843, Copyright 2019 by the American
Physical Society
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Recently, photon transport in a one-dimensional (1D) waveguide coupled to quantum emitters

(well known as “waveguide-QED") has attracted much attention due to its possible applications in

quantum device and quantum information [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In

these previous studies, the photon modes in the waveguide are usually considered to be ordinary

vacuum modes. The case when the waveguide modes are squeezed is seldom studied. In contrast to

the 3D case, squeezing in 1D is more experimentally feasible. Suppression of the radiative decay

of atomic coherence and the linewidth of the resonance fluorescence have been experimentally

demonstrated in a 1D microwave transmission line coupled to single artificial atom [26, 27, 28, 29].

However, many-body interaction in a 1D waveguide-QED system coupled to squeezed vacuum has

not yet been studied.

In this dissertation we consider the phase of the squeezing source and rederive the master

equation for multi-atom dynamics in the squeezed vacuum based on the Weisskopf-Wigner ap-

proximation. We show that while the collective dipole-dipole interaction due to the ordinary vac-

uum depends on the emitter separation, the collective two-photon decay rate due to the squeezed

vacuum largely depends on the center of mass position of the emitters relative to the squeezing

source. We then apply this theory to the 1D waveguide-QED system with squeezing reservoir.

Contrary to the traditional result that the dephasing rate of a single atom in the squeezed vacuum

is a constant [4, 30], our calculation shows that the dephasing rate is actually position-dependent.

As dipole-dipole interaction is involved, both emitter separation and center of mass coordinate can

affect the decay rate, dephasing rate and the emitted resonance fluorescence spectrum. In addi-

tion, we also show that stationary quantum entanglement can be prepared in this system by the

squeezing reservoir. The stationary maximum entangled NOON state can be approached if the

center-of-mass of the emitters is at certain position.

Considering the fact that two qubits can be treated as a four-level system, the stationary NOON

state implies the occurrence of population inversion in the steady state. The concept of population

inversion is of fundamental importance in laser physics because the population inversion is a key

step of generating laser. However, the population inversion can never exist for a system at thermal

2



equilibrium because of the spontaneous emission. The achievement of population inversion there-

fore requires pushing the system into a non-equilibrated state [31]. Thus, the spontaneous emission

must be inhibited in order to maintain the population inversion in a steady state. In 1946, Purcell

showed that the spontaneous decay rate of an emitter can be modified by engineering the elec-

tromagnetic bath environment with which the emitters interact [1]. One famous example of bath

engineering is the squeezed vacuum which leads to many novel effects and techniques in quantum

optics and atomic spectroscopy. The reduction of quantum fluctuations below vacuum level by the

squeezed vacuum yields many interesting phenomenons, for example, the suppression of dephas-

ing rate in one direction and enhancment in the other for a two-level emitter [2, 3, 4, 7, 8, 9, 10, 11],

the subnatural linewidth of resonance fluorescence [32, 29], and improvement of an atomic clock

using squeezed vacuum [33]. The entanglement nature of the squeezed vacuum also leads to inter-

esting results like pairwise excitation of atomic states [34, 35, 36]. In 1993, Ficek and Drummond

studied the dynamical properties of a single three-level atom in the squeezed vacuum where they

showed that a single three-level atom in the cascade configuration coupled to squeezed modes in

a cavity can reach steady state with level population inversion relative to the ordinary laser spec-

troscopy [37, 38, 39]. In their model, they found a population inversion of about 78%.

In this dissertation, we consider multiple Ξ-type atoms coupled to a broadband squeezed vac-

uum in the quasi-1D waveguide where all resonant modes can be technically squeezed. We show

that for a single atom, it can always reach a population inversion of almost 100% or any other

ratio as long as the direction of its transition dipole moment is properly set. We also mathemati-

cally prove that this result can be generalized to arbitrary number of atoms coupled to each other

through dipole-dipole interaction, which may be a scenario for studying two-photon laser or col-

lective atomic effect.
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2. SQUEEZED VACUUM RESERVOIR AND TRADITIONAL RESERVOIR THEORY

In this section, we will first introduce the basic properties of the squeezed vacuum and why

it draws so much interests from researchers. Then we will discuss the traditional way to study

the interaction between the atomic system and the squeezed vacuum reservoir. Finally, we will

generalize the theory to multi-atom system where the dipole-dipole interaction is included.

2.1 Introduction to the squeezed vacuum

If two operators satisfy the commutation relation [Â, B̂] = iĈ, then according to the Heisen-

berg uncertainty relation, it follows that

〈
(∆Â)2

〉〈
(∆B̂)2

〉
≥ 1

4
|〈Ĉ〉|2 (2.1)

Thus, either
〈

(∆Â)2
〉
≥ 1

2
|〈Ĉ〉| or

〈
(∆B̂)2

〉
≥ 1

2
|〈Ĉ〉| must be satisfied. A state is defined to be

squeezed if one of the following is satisfied:

〈
(∆Â)2

〉
<

1

2
|〈Ĉ〉| or

〈
(∆B̂)2

〉
<

1

2
|〈Ĉ〉| (2.2)

Consider the case for quadrature operator where

Â = X̂1 =
1

2

(
â+ â†

)
B̂ = X̂2 =

1

2i

(
â− â†

) (2.3)

then we have [
X̂1, X̂2

]
=
i

2
(2.4)

For a coherent state |α〉, we have
〈(

∆X̂1

)2
〉

=

〈(
∆X̂2

)2
〉

= 1/4 which is the same as that

in ordinary vacuum. Thus, quadrature squeezing, which satisfies one of the equations in Eq.(2.2),

has even less noise than vacuum. One way to generate such a quadrature squeezing state is hitting

4



the squeeze operator

Ŝ(ξ) = exp

[
1

2

(
ξ∗a2 − ξa†2

)]
(2.5)

on vacuum state |0〉, which is called "the single mode squeezed vacuum". The fluctuation of the

squeezed vacuum can be calculated as follows:

〈(
∆X̂1

)2
〉

=
1

4

[
cosh2 r + sinh2 r − 2 sinh r cosh r cos θ

]
〈(

∆X̂2

)2
〉

=
1

4

[
cosh2 r + sinh2 r + 2 sinh r cosh r cos θ

] (2.6)

To study the role of θ, we define the rotated quadrature operators Ŷ1 and Ŷ2 as follows:

 Ŷ1

Ŷ2

 =

 cos θ/2 sin θ/2

− sin θ/2 cos θ/2


 X̂1

X̂2

 (2.7)

Substituting Eq.(2.6) , we have 〈(
∆Ŷ1

)2
〉

=
1

4
e−2r〈(

∆Ŷ2

)2
〉

=
1

4
e2r

(2.8)

which can be represented in Fig. 2.1. Thus, for the squeezed vacuum, squeezing occurs along θ/2

in the phase space.

The most famous approach to generate the above squeezed vacuum is based on degenerate

parametric process through nonlinear optical crystal, which is shown in Fig. 2.2 . A degenerate

parametric down-converter pumped by a field of frequency ωP can split photons of that field into a

pair of entangled "signal" photons with the same frequency ωP/2. This process is called degenerate

parametric down-conversion with the Hamiltonian as below:

Ĥ = ~ωâ†â+ ~ωPb̂
†b̂+ i~χ(2)

(
â2b̂† − â†2b̂

)
(2.9)

where b is the pump mode operator, a is the signal mode operator, and χ(2) is the second-order

5



Figure 2.1: The error ellipse for the squeezed vacuum. (a) θ = 0. (b) A general value of θ.
Reproduced with permission of The Licensor through PLSclear. Original author: Christopher
Gerry, Peter Knight, Introductory Quantum Optics. Copyright by Cambridge University Press.[40]
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nonlinear susceptibility of the device. When the pump field is a strong classical field, we can

make the "parametric approximation" whereby the operators b̂ and b̂† can be replace by βe−iωPt

and β∗eiωPt, respectively. Thus, the Hamiltonian in Eq.(2.9) can be reduced to

Ĥ(PA) = ~ωâ†â+ i~
(
η∗â2eiωPt − ηâ†2e−iωPt

)
(2.10)

with η = χ(2)β. This Hamiltonian can be simplified further in the interaction picture since energy

is conserved ωP = 2ω:

ĤI = i~
(
η∗â2 − ηâ†2

)
(2.11)

Thus, the associated evolution operator Û1(t) = exp
(
−iĤ1t/~

)
= exp

(
η∗tâ2 − ηtâ†2

)
is exactly

the squeezed operator in Eq.(2.5) with ξ = 2ηt.

The degenerate four-wave mixing where two pump photons are converted into two signal pho-

tons of the same frequency can also be used to generate the squeezed vacuum, which relies on the

third order nonlinear susceptibility of the device. The calculation is almost identical to the above

process. The photon number statistics of the above squeezed vacuum is interesting. Hitting Eq.

(2.5) on vacuum gives

|ξ〉 =
1√

cosh r

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ(tanh r)m|2m〉 (2.12)

whose photon number probability vanishes for all odd photon numbers, as shown in Fig. 2.3.

Quantum damping is a very significant topic in quantum optics, which is caused by interacting

with a system with a large number of degrees of freedom. Such a system is called reservoir. For

example, Atomic decay and decoherence is caused by electromagnetic interaction between atomic

dipole and radiative fields. Engineering the reservoir requires modifying the infinite number of

modes in the reservoir. For vacuum, all the electromagnetic modes are in the ground state with zero

photon. For black body radiation in a thermal equilibrium at temperature T , the photon number

distribution in each mode can be described by the Bose-Einstein distribution[30]. For the single-

mode squeezed vacuum, it is implausible to engineer a reservoir with all modes in the single-mode

squeezed vacuum state because different modes requires different materials and pump fields of

7



Figure 2.2: An SPDC scheme with the Type I output. This figure is licensed un-
der the Creative Commons Attribution-Share Alike 3.0 Unported license: https:
//en.wikipedia.org/wiki/File:Scheme_of_spontaneous_parametric_
down-conversion.pdf[41].
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Figure 2.3: The photon number distribution for the single mode squeezed vacuum. Reproduced
with permission of The Licensor through PLSclear. Original author: Christopher Gerry, Peter
Knight, Introductory Quantum Optics. Copyright by Cambridge University Press.[40]
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Figure 2.4: An SPDC scheme with the Type II output. This figure is licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license: https://en.wikipedia.org/
wiki/File:Scheme_of_spontaneous_parametric_down-conversion.pdf[41]
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different frequency. To engineer such a squeezed vacuum reservoir, we need two-mode squeezed

vacuum. The two-mode squeezed vacuum can be generated by the spontaneous parametric down-

conversion process described by the following Hamiltonian:

Ĥ = ~ωaâ†â+ ~ωbb̂†b̂+ ~ωPĉ
†ĉ+ i~χ(2)

(
âb̂ĉ† − â†b̂†ĉ

)
(2.13)

which is the non-degenerate form of (2.10), with the process shown in Fig. 2.4. We can impose the

same parametric approximation to replace c by γe−iωP t and define η = χ(2)γ. Then the Hamilto-

nian becomes

Ĥ(PA) = ~ωaâ†â+ ~ωbb̂†b̂+ i~
(
η∗eiωPtâb̂− ηe−iωPtâ†b̂†

)
(2.14)

Considering the energy should be conserved for this three-wave mixing process, we have the fol-

lowing Hamiltonian in the interaction picture:

ĤI = i~
(
η∗âb̂− ηâ†b̂†

)
(2.15)

Thus, the associated evolution operator is

Û1(t, 0) = exp
[
−iĤ1t/~

]
(2.16)

Defining ξ = ηt, we have the two-mode squeezed vacuum

|ξ〉2 = Û1(t, 0)|ξ〉2 = Ŝ2(ξ)|0, 0〉 = exp
(
ξ∗âb̂− ξâ†b̂†

)
|0, 0〉 (2.17)

Expanding the exponential operator, we have

|ξ〉2 =
1

cosh r

∞∑
n=0

(−1)neinθ(tanh r)n|n, n〉 (2.18)

It is interesting that this two-mode squeezed vacuum state is a photon number entangled state with

photons in the correlated modes always generated by pair, as shown in Fig. 2.5
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Figure 2.5: The photon number distribution for the two-mode squeezed vacuum. Reproduced with
permission of The Licensor through PLSclear. Original author: Christopher Gerry, Peter Knight,
Introductory Quantum Optics. Copyright by Cambridge University Press.[40]
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However, when we only focus on one mode by taking the partial trace of the other mode, we

can find that each mode seems to be in the thermal state:

ρ̂a =
∞∑

nb=0

〈nb|ξ〉2〈ξ|2|nb〉

=
1

cosh r

∞∑
na=0

(−1)naeinaθ(tanh r)na|na〉〈na|
(2.19)

whose photon number distribution is

Pn = 〈n |ρ̂|n〉 =
(tanh r)2n

(cosh r)2
(2.20)

which is exactly the Boltzmann distribution with the average photon number 〈n〉 = sinh2 r. The

two-mode squeezed vacuum is also a squeezed state. Considering the following quadrature opera-

tors:
X̂1 =

1

23/2

(
â+ â† + b̂+ b̂†

)
X̂2 =

1

23/2î

(
â− â† + b̂− b̂†

) (2.21)

which satisfies the commutation relation
[
X̂1, X̂2

]
= i/2, we have the fluctuations as follows:

〈(
X̂1

)2
〉

=
1

4

[
cosh2 r + sinh2 r − 2 sin r cosh r cos θ

]
〈(

X̂2

)2
〉

=
1

4

[
cosh2 r + sinh2 r + 2 sin r cosh r cos θ

] (2.22)

This is identical to Eq. (2.6). Thus, the two-mode squeezed vacuum is also a squeezed state. If all

modes are squeezed in the above way, the reservoir is called the squeezed vacuum reservoir.

However, it is worth nothing that generating the two-mode squeezed vacuum in all modes with

the same mid frequency ω0 and the same squeezing parameter r is still experimentally impossible

due to many reasons. The most significant reason is that, both the three-wave mixing and four-

wave mixing must satisfy the phase-matching condition so that both energy and momentum must

be conserved, as depicted in Fig. 2.6. Thus, it is theoretically impossible to squeeze all modes

in all directions in the 3D space with one pump field. Furthermore, even those squeezed modes
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do not have a uniform squeezing parameter r, since the second-order nonlinear susceptibility χ(2)

depends on the frequency of the output field. Hence in experiments, the concept of "broadband

squeezed light" is used. Instead of the single-mode quadrature operators in Eq. (2.3) or two-mode

quadrature operators in Eq. (2.21), collective quadrature operators are considered:

X̂
(c)
1 (t) =

1

2

[
Ê(+)(t) + Ê(−)(t)

]
X̂

(c)
2 (t) =

1

2i

[
Ê(+)(t)− Ê(−)(t)

] (2.23)

where the annihilation part is Ê(+)(r, t) = i
∑

k,s

√
~ω

2V ε0
e(s)â(s)(k)eik·r−iωkt and the creation part

is Ê(−)(r, t) = −i
∑

k,s

√
~ω

2V ε0
e(s)â†(s)(k)e−ik·r+iωkt. If we have the following commutation rela-

tion measured from experiments

[
Ê(+)(t), Ê(−)(t)

]
= C (2.24)

then we have [
X̂

(c)
1 , X̂

(c)
2

]
=
i

2
C (2.25)

Thus, the broadband squeezing is defined if

〈(
∆X̂

(c)
i

)2
〉
<

1

4
|C|

is satisfied for i = 1 or i = 2.

2.2 Traditional reservoir theory

Considering the fact that a reservoir is a system with a large number of degrees of freedom, the

reservoir can be interpreted as an open system. Thus, if an atom in the excited state interacts with

the reservoir, the atom will decay to the ground state with photon emitted to the reservoir and never

re-absorbed by the atom, which is called quantum damping. Since the reservoir requires so many

degrees of freedom to be fully described, we can apply Markovian assumption on this process that
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Figure 2.6: The phase matching condition in SPDC process. This figure is li-
censed under the Creative Commons Attribution-Share Alike 3.0 Unported license:
https://upload.wikimedia.org/wikipedia/commons/7/74/Spontaneous_
Parametric_Downconversion.png[41].

the damping destroys memory of the past. Thus, for a system represented as ρS interacting with a

reservoir represented as ρF , its evolution can be described by the following equation[30]:

ρ̇S =− i

~
TrR[V (t), ρS(0)⊗ ρF (0)]

− 1

~2
TrR

t∫
0

[V (t), [V (t− τ), ρS(t− τ)⊗ ρF (0)]]dτ
(2.26)

where V (t) is the interaction Hamiltonian in the interaction picture. For a two-level system (qubit)

in free space, the interaction Hamiltonian is

V (t) = d ·E = ~[µS†(t) + µ∗S−(t)] · [uks(ri)âks(t) + u∗
ks(ri)â

†
ks(t)] (2.27)
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where S− = |b〉〈a| is the lowering operator and S+ = |a〉〈b| is the raising operator of the qubit.

In the interaction picture, we have S±i (t) = S±i e
±iω0t, âks(t) = âkse

−iωkst, and â†ks(t) = â†kse
iωkst.

uks(ri) is the mode function which is typically given by

uk,s(ri) =

√
ωk,s

2ε0~V
ek,se

ik·ri (2.28)

where s indicates the polarization. For a thermal reservoir which is described by the density oper-

ator

ρR =
∏
k,s

[
1− exp

(
− ~vk
kBT

)]
exp

(
−~vkb†kbk

kBT

)
(2.29)

where kB is the Boltzmann constant and T is the thermal equilibrium temperature, we have

〈ak,s〉 =
〈
a†k,s

〉
= 0〈

a†k,sak′,s′
〉

= n̄k,sδk′kδss′〈
ak,sa

†
k′,s′

〉
= (n̄k,s + 1)δk′kδss′〈

a†k,sa
†
k′,s′

〉
= 〈ak,sak′,s′〉 = 0

(2.30)

where n̄k,s is the average photon number with n̄k,s = 1

exp
(

~vk
kBT

)
−1

. Substituting them into Eq.(2.26)

and applying Wigner-Weisskopf approximation, we have

dρS

dt
=− 1

2
γ(N + 1)

(
ρSS+S− + S+S−ρS − 2S−ρSS+

)
− 1

2
γN

(
ρSS−S+ + S−S+ρS − 2S+ρSS−

) (2.31)
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where γ = 1
4πε0

4ω3µ2

3~c3 is the spontaneous decay rate and N is the average photon number in the

resonant frequency mode. Analyzing each element in Eq.(2.31), we have

ρ̇aa = − (N + 1) γρaa +Nγρbb

ρ̇ab = ρ̇∗ba = −
(
N +

1

2

)
γρab

ρ̇bb = −Nγρbb + (N + 1) γρaa

(2.32)

At T = 0, this reduces to

ρ̇aa = −γρaa

ρ̇ab = −γ
2
ρab

ρ̇bb = γρaa

(2.33)

In general, for Na multi-level atoms interacting with the electromagnetic field, the total Hamil-

tonian can be written as

H = HA +HF +HAF (2.34)

where the atomic free Hamiltonian is

HA =
Na∑
l=1

∑
e=a,b,c

~ωe,l |el〉 〈el| (2.35)

with |el〉 representing the energy state of the lth atom with energy ~ωe,l. The Hamiltonian of the

EM field is

HF =
∑
ks

~ωks(â
†
ksâks +

1

2
) (2.36)

where âks and â†ks are the annihilation and creation operators of the filed mode with wavevector k

and polarization s. The interaction Hamiltonian in the electric-dipole approximation is

HAF = −i~
∑
ks

∑
i

Na∑
l=1

[µl,i · uks(rl,i)S
+
l,iâks + µ∗l,i · uks(rl,i)S

−
l,iâks −H.c.] (2.37)

where i denotes the ith atomic transition. Transforming the total Hamiltonian H into the interac-
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tion picture, and substituting them into Eq.(2.26), considering the thermal reservoir described in

Eq.(2.30), we have the following equation[42]: (The calculation will be derived in a very detailed

manner in section 2, here we just jump to the conclusion)

dρS

dt
=− i

∑
ijkl

Λijkl[S
+
i,jS

−
k.l, ρ

S]ei(ωj−ωl)t

− 1

2

∑
ijkl

γijkl(1 +N)(ρSS+
i,jS

−
k.l + S+

i,jS
−
k.lρ

S − 2S−k.lρ
SS+

i,j)e
i(ωj−ωl)t

− 1

2

∑
ijkl

γijklN(ρSS−i,jS
+
k.l + S−i,jS

+
k,lρ

S − 2S+
k,lρ

SS−i,j)e
−i(ωj−ωl)t

(2.38)

The collective energy shifts Λijkl and decay rates γijkl due to the ordinary vacuum are given by

[43, 42]

Λijkl =
3

4

√
γijγkl{−(1− cos2 α)

cos(k0rik)

k0rik

+ (1− 3 cos2 α)[
sin(k0rik)

(k0rik)2
+

cos(k0rik)

(k0rik)3
]}

γijkl =
√
γijγklF (k0rik)

(2.39)

where subscripts i, k label the atom index, j(l) labels the transitions of the ith(kth) atom, γ =

ω3
0µ

2

3πε0~c3 is the spontaneous decay rate of the atom in ordinary vacuum andF (x) = 3
2
{(1−cos2 α) sinx

x
+

(1− 3 cos2 α)[ cosx
x2
− sinx

x3
]}.

However, if we apply the above calculations to a single atom interacting with the squeezed

vacuum, we will have some weird result. Since we have

〈ak,s〉 =
〈
a†k,s

〉
= 0〈

a†k,sak′,s′
〉

= sinh2 rδk′kδss′〈
ak,sa

†
k′,s′

〉
= cosh2 rδk′kδss′〈

a†k,sa
†
k′,s′

〉
= −e−iθ cosh(r) sinh(r)δk′,2k0−kδss′

〈ak,sak′,s′〉 = −eiθ cosh(r) sinh(r)δk′,2k0−kδss′

(2.40)
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Substituting them into Eq.(2.26), we have

dρS

dt
= sinh(r) cosh(r)γ′(S+ρSS+ +H.c.)

− 1

2
γ cosh2(r)(ρSS+S− + S+S−ρS − 2S−ρSS+)

− 1

2
γ sinh2(r)(ρSS−S+ + S−S+ρS − 2S+ρSS−)

(2.41)

with γ′ij = γF (2k0r)). However, although the position of atom is well-defined, its coordinate is

ill-defined since there is no requirement on the origin of the coordinate system. This value varies

from 0 to γ by the value of r, which is not physical. For example, if we choose r = 0, then

γ′ij = γ which is the perfect squeezing; if r is the zero point of F (2k0r), Eq.(2.41) reduces to the

thermal reservoir as Eq.(2.31). As we mentioned before, the choice of r completely depends on

the coordinate system, which can be built arbitrarily. Thus, the above theory cannot be applied on

the squeezed vacuum, and putting forward a modified theory is the main goal of this dissertation.
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3. A MODIFIED RESERVOIR THEORY IN THE SQUEEZED VACUUM1

In the last section, we discussed about the limitation of the traditional reservoir theory when

it is applied on the squeezed vacuum. In this section, we will bring forward a modified theory.

We will show that this theory works properly with the squeezed vacuum, and remains consistent

with the traditional theory in the thermal reservoir case. We will discuss the new behaviors of the

system based on our new theory.

3.1 A new master equation from a modified mode function

First of all, we need to analyze the origin of the unphysical quantity γ′ in Eq.(2.41), and here we

start from the most typical single-qubit case with transition frequency ω. The interaction Hamilto-

nian is

V (t) = −i~
∑
ks

[µ · uks(r)S+(t)âks(t) + µ∗ · uks(r)S−(t)âks(t)−H.c.] (3.1)

with the mode function

uks(r) =

√
ωks

2ε0~V
ekse

ik·r (3.2)

Considering that 〈ak,s〉 =
〈
a†k,s

〉
= 0 for both thermal reservoir and the squeezed vacuum reser-

voir, we can drop the first term in Eq. (2.26), so we have the master equation

dρS

dt
=− 1

~2

∫ t

0

dτTrF{[V (t), [V (t− τ), ρS(t− τ)ρF}

=− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF + ρS(t− τ)ρFV (t− τ)V (t)

− V (t)ρS(t− τ)ρFV (t− τ)− V (t− τ)ρS(t− τ)ρFV (t)}.

(3.3)

1Part of this section is reprinted with permission from: “Waveguide QED in the Squeezed Vacuum” by Jieyu You
et al, 2018. Physical Review A, 97, 023810, Copyright 2018 by the American Physical Society and “Steady-state
population inversion of multiple Ks-type atoms by the squeezed vacuum in a waveguide” by Jieyu You, Zeyang Liao,
and M. Suhail Zubairy, 2019. Physical Review A, 100, 013843, Copyright 2019 by the American Physical Society.
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which is of the second order in the interaction Hamiltonian V (t) and mode function uks(ri). To

make the derivation simple in form, we define

D(t) = [µ · uk,s(r)S
†(t) + µ∗ · uk,s(r)S

−(t)] (3.4)

so the interaction Hamiltonian Eq.(3.1) becomes

V (t) = −i~
∑
ks

[D(t)aks(t)−D+(t)a†ks(t)] (3.5)

Here we just show the way to deal with the first term in Eq.(3.3), the remaining terms can be

calculated in the same way. For the first term, we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=

∫ t

0

dτ
∑

ks,k′s′

{D(t)D(t− τ)TrF [ρFaks(t)ak′s′(t− τ)]−D(t)D+(t− τ)TrF [ρFaks(t)a
†
k′s′(t− τ)]

−D+(t)D(t− τ)TrF [ρFa†ks(t)ak′s′(t− τ)] +D+(t)D+(t− τ)TrF [ρFa†ks(t)a
†
k′s′(t− τ)]}ρS(t− τ)}.

(3.6)
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Using the correlation functions Eq.(2.40), we have the following result under the rotating wave

approximation (RWA):

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=
∑

ks,k′s′

∫ t

0

dτ{µ · uks(r)S
+eiωtµ · uk′s′(r)S

+eiω(t−τ)e−i(ωks+ωk′s′ )t+iωk′s′τ

× [− sinh(r) cosh(r)δk′,2k0−kδss′ ]

− µ · uks(r)S
+eiωtµ∗ · u∗k′s′(r)S−e−iω(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗ · uks(r)S
−e−iωtµ · u∗k′s′(r)S+eiω(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗ · u∗ks(r)S−e−iωtµ · uk′s′(r)S
+eiω(t−τ)eiωk′s′τ sinh2 rδkk′δss′

− µ · u∗ks(r)S+eiωtµ∗ · uk′s′(r)S
−e−iω(t−τ)eiωk′s′τ sinh2 rδkk′δss′

+ µ∗ · u∗ks(r)S−e−iωtµ∗ · u∗k′s′(r)S−e−iω(t−τ)ei(ωks+ωk′s′ )t−iωk′s′τ

× [− sinh(r) cosh(r)δk′,2k0−kδss′ ]}ρS(t− τ)

(3.7)

For the second to the fifth terms, uks(r)u
∗
k′s′(r)’s positional dependence is canceled. However,

the first depends on eik·r and the sixth term depends on eik·r. This is not an issue for the thermal

reservoir since 〈ak,sak′,s′〉 = 〈a†k,sa
†
k′,s′〉 = 0 so these two terms vanish. For the squeezed vacuum,

these terms are positional dependent. What’s more, since there is no constraint on the choice of

coordinate system, r can be arbitrary which yields the arbitrary value of the first and sixth terms in

the above equation. This unphysical behavior originates from the definition of the mode function in

Eq.(3.2). However, this formula is so famous that it appears in almost every textbook on quantum

mechanics and quantum mechanics, so challenging it should be very cautious. We noticed that

the usage of Eq. (3.2) is always related to the quantization of radiation field with the running

wave boundary condition, for example in Quantum Optics by M.O. Scully and M.S. Zubairy[30].

However, if the standing wave boundary condition is applied, eik·r should be replace by cos(k·r) or

sin(k ·r). Thus, equation (3.2) can only be used when the space translational symmetry is satisfied.

In the thermal reservoir, the space translational symmetry is satisfied. However, this is not the case
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Figure 3.1: Demonstration for squeezing all modes in a single direction. The Electromagnetic
wave propagates in two opposite directions, so two pumps are needed to squeeze all modes.

for the squeezed vacuum reservoir. Considering the squeezed vacuum reservoir in one dimensional

case, two pump beams interacting with the nonlinear crystal from opposite directions are needed

to form a broad-band squeezed vacuum, which is shown in Fig. 3.1. Due to the existence of the

nonlinear crystal and the pump field, the space translational symmetry is broken. Thus, we cannot

use Eq. (3.2) as the mode function. Here we propose a new mode function which incorporate both

the existence of the squeezing source and the nature of running wave of the squeezed vacuum:

uk,s(ri) =

√
ωk,s

2ε0~V
ekse

ik·(ri−ok,s) (3.8)

where oks includes the effects of the initial phase and the position of the squeezing source with

wavevector ks. Here we need to make two assumptions: first, one specific mode is generated from

a single source, i.e., mode ks is only generated from the source located at oks; second, the phases

of all modes can be well defined by k · (r − oks). In the ordinary vacuum or thermal reservoir,

there is no source and we can set oks = 0, so the mode function shown in Eq. (3.8) is reduced

to the normal cases as Eq. (3.2). In fact, oks can be any value since their effects will be canceled

in Eq. (3.6). Considering the fact that the squeezed vacuum is generated by the pump field from

different directions, oks should be different for different modes.

Next, we will derive the master equation from Eq. (3.6) based on the new mode function

23



Eq.(3.8). We start from a more general case where atoms are not identical but ωi ≈ ωj , and we

make the squeezing center frequency ω0 =
∑
i

ωi/l. Then we can rewrite the interaction Hamilto-

nian as

V (t) = −i~
∑
ks

[D(t)aks(t)−D+(t)a†ks(t)], (3.9)

where

D(t) =
∑
i

[µi · uk,s(ri)S
†
i (t) + µ∗i · uk,s(ri)S

−
i (t)] (3.10)

Therefore, we have

dρS

dt
=− 1

~2

∫ t

0

dτTrF{[V (t), [V (t− τ), ρS(t− τ)ρF}

=− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF + ρS(t− τ)ρFV (t− τ)V (t)

− V (t)ρS(t− τ)ρFV (t− τ)− V (t− τ)ρS(t− τ)ρFV (t)}.

(3.11)

Here we just show how to deal with the first term in Eq.(3.11), the remaining terms can be

calculated in the same way. For the first term, we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=

∫ t

0

dτ
∑

ks,k′s′

{D(t)D(t− τ)TrF [ρFaks(t)ak′s′(t− τ)]−D(t)D+(t− τ)TrF [ρFaks(t)a
†
k′s′(t− τ)]

−D+(t)D(t− τ)TrF [ρFa†ks(t)ak′s′(t− τ)] +D+(t)D+(t− τ)TrF [ρFa†ks(t)a
†
k′s′(t− τ)]}ρS(t− τ)}.

(3.12)

Considering that the time scale t0 we care satisfies ω0t0 � 1, the average effects of the oscilla-

tions terms like eiωt are ceased. Thus, we impose the rotating wave approximation(RWA), which
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discards all terms containing eiωt. Using Eq.(3.10) and the correlation function Eq.(2.40), we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=
∑
ij

∑
ks,k′s′

∫ t

0

dτ{µi · uks(ri)S
+
i e

iωitµj · uk′s′(rj)S
+
j e

iωj(t−τ)e−i(ωks+ωk′s′ )t+iωk′s′τ

× [− sinh(r) cosh(r)δk′,2k0−kδss′ ]

− µi · uks(ri)S
+
i e

iωitµ∗j · u∗k′s′(rj)S−j e−iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗i · uks(ri)S
−
i e
−iωitµj · u∗k′s′(rj)S+

j e
iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗i · u∗ks(ri)S−i e−iωitµj · uk′s′(rj)S
+
j e

iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

− µi · u∗ks(ri)S+
i e

iωitµ∗j · uk′s′(rj)S
−
j e
−iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

+ µ∗i · u∗ks(ri)S−i e−iωitµ∗j · u∗k′s′(rj)S−j e−iωj(t−τ)ei(ωks+ωk′s′ )t−iωk′s′τ

× [− sinh(r) cosh(r)δk′,2k0−kδss′ ]}ρS(t− τ)

(3.13)

Assuming all oks are located on the spherical surface with distance D to the origin (0, 0, 0), for

the thermal terms (the second to the fifth terms), we can replace the summation of discrete modes

with the integral of continuous modes in the free space in the limit of L→∞:

∑
k

→ L3

(2π)3

∫
k2dk

∫
Ωk

(3.14)

In Ref. [42], it has been shown that the integral can be calculated as

L3

(2π)3

∫
k2dk

∫
Ωk

∑
s

µi · uks(ri)µ
∗
j · u∗ks(rj) ≈

√
γiγj

2πω3
0

∫ ∞
0

dωω3F (krij) (3.15)

with

F (krij) =
3

2
{[1− cos2 α]

sin(krij)

krij
+ [1− 3 cos2 α][

cos(krij)

(krij)2
− sin(krij)

(krij)3
]}

γi =
ω3
i µ

2
i

3πε0~c3

(3.16)
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where rij = ri − rj , rij = |rij|, α is the angle between rij and µi, and the approximation in

Eq.(3.15) becomes equality when ω1 = ω2. We can also show that

L3

(2π)3

∫
k2dk

∫
Ωk

∑
s

µi · uks(ri)µj · u2k0−k,s(rj)

≈
√
γiγj

2πω3
0

∫ ∞
0

dωω2
√
ω(2ω0 − ω)F (k0|

k

k0

rij + 2rj|)e2ik0R

(3.17)

where R is the distance from the sources to the center mass of two atoms, and the approximation

becomes equality when ω1 = ω2. Next, we will show how to calculate the first and the second

terms in Eq.(3.13), and the remaining terms can be approached in the same way. Using Eq.(3.15),

the second term in Eq.(3.13) can be simplified as

∑
ks

∫ t

0

dτµi · uks(ri)S
+
i e

iωitµ∗j · u∗ks(rj)S−j e−iωj(t−τ)e−iωksτ cosh2 rρS(t− τ)

= cosh2 r

√
γiγj

2πω3
0

∫ t

0

dτ

∫ ∞
0

dωω3F (krij)e
i(ωi−ωj)tei(ωj−ωk)τS+

i S
−
j ρ

S(t− τ)

(3.18)

with F (krij) given in Eq.(3.16). We here calculate the integral of the first term in F (krij) (i 6= j)

and the other terms can be calculated similarly.

cosh2 r

√
γiγjc

4

2πω3
0

3

2

∫ t

0

dτ

∫ ∞
0

dkk3 sinkrij
krij

ei(ωj−ωk)τS+
i S
−
j ρ

S(t− τ)ei(ωi−ωj)t

= cosh2 r

√
γiγjc

4

2πω3
0

3

2

∫ t

0

dτ

∫ ∞
−∞

dkk2 1

2irij
(ei(k−kj)rij+ikjrij − e−i(k−kj)rij−ikjrij)

× e−i(k−kj)cτS+
i S
−
j ρ

S(t− τ)ei(ωi−ωj)t

≈ cosh2 r

√
γiγjc

4

2πω3
0

3

2

∫ t

0

dτk2
j

1

irij
[δ(rij − cτ)eikjrij − δ(rij + cτ)e−ikjrij ]S+

i S
−
j ρ

S(t− τ)ei(ωi−ωj)t

≈ cosh2 r

√
γiγjc

4

2πω3
0

3

2
k2
j

π

icrij
eikjrijS+

i S
−
j ρ

S(t)ei(ωi−ωj)t

≈ 3

4

√
γiγj cosh2 r

eik0rij

ik0rij
S+
i S
−
j ρ

S(t)ei(ωi−ωj)t

(3.19)

In the second line of the equations, we replace
∫∞

0
dk by

∫∞
−∞ dk since the main contribution comes
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from the frequency around ω0 and the negative frequency part leads to fast-oscillating term such

that its integration
∫ t

0
dτ vanishes. From the second line to the third line, the Weisskopf-Wigner

approximation[30] is applied and k is replaced by kj because the contribution comes mainly from

the resonant frequency. From the third line to the fourth line, we assume that the two atoms are

very close that the time-retarded effect can be neglected. In the last line, we use the fact that

ωi ≈ ω0

The other terms in Eq.(3.18) can be calculated in a similar way, and the result is given by

√
γiγj

2πω3
0

∫ t

0

dτ

∫ ∞
0

dkk3F (krij)e
i(ωi−ωj)tei(ωj−ωk)τS+

i S
−
j ρ

S(t− τ) = (
1

2
γij + iΛij)S

+
i S
−
j ρ

S(t)ei(ωi−ωj)t

(3.20)

where

Λij =
3

4

√
γiγj{−(1− cos2 α)

cos(k0rij)

k0rij
+ (1− 3 cos2 α)[

sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3
]}

γij =
√
γiγjF (k0rij)

(3.21)

All the other terms with the combination of S+
i and S−i can also be calculated in the same way.

Thus, all the thermal terms and oscillation terms in Eq.(3.6) can be given.

Next we need to calculate the squeezed vacuum terms containing S+
i S

+
j or S−i S

−
j . Here we

calculate the first term in Eq.(3.6) as an example. Inserting Eq.(3.17), the first term of Eq.(3.6)

yields

∑
ks,k′s′

∫ t

0

dτ

∫
d3k{µi · u2k0−k,s(ri)µj · uks(rj)e

i(ωks−ωj)τS+
i S

+
j ρ

S(t− τ)

=

√
γiγjc

4

2πω3
0

∫ t

0

dτ

∫ 2k0

0

dkk2
√
k(2k0 − k)F (k0|

k

k0

rij + 2rj|)ei(ωk−ωj)τS+
i S

+
j ρ

S(t− τ)e2ik0R

≈
√
γiγjc

2π

∫ t

0

dτ

∫ ∞
−∞

dkF (k0|
k

k0

rij + 2rj|)ei(ωk−ω0)τS+
i S

+
j ρ

S(t− τ)e2ik0R

(3.22)

From the second line to the third line, we make the following approximations: (1) The integral limit

27



is extended to ±∞ because the principal part is near ωk ≈ ωi. (2) k2
√
k(2k0 − k) is pulled out of

the integral as a constant k3
0 according to the Weisskopf-Wigner approximation. To calculate one

term with fixed i, j, we need to rebuild the coordinate system where ri+rj = 0 for i 6= j(We need

to build different coordinate systems for different pairs of i, j). For example, we here consider the

first two atoms, i, j = 1, 2. When i = j, this term directly gives 1
2
γ cosh2 rF (2k0|rj|)S+

i S
+
i ρ

S(t).

When i 6= j, since there is a singular point at k = k0, the calculation is a little bit more complicated

but can still be calculated. We have the following integrals:

∫ ∞
−∞

dk
sin krij
krij

e−ikcτ =
π

rij
θ1(rij − cτ),∫ ∞

−∞
dk
[cos krij

(krij)2
− sin krij

(krij)3

]
e−ikcτ =

π(cτ − rij)(cτ + rij)

2r3
ij

θ2(rij − cτ),

(3.23)

where θ1,2(x) are step functions: θ1,2(x) = 0 when x < 0, θ1,2(x) = 1 when x > 0, and θ1(0) =

1/2 and θ2(0) = 0. Since F (k0| kk0rij + 2rj|) = F ((k − k0)r12), we have

∫ t

0

dτ

∫ ∞
−∞

dkF ([(k − k0)r12]ei(ω0−ωk)τρS(t− τ)

=

∫ rij
c

0

dτ
3

2
[(1− cos2 α)

π

rij
+ (1− 3 cos2 α)

π(cτ − rij)(cτ + rij)

2r3
ij

]ρS(t− τ)

≈ π

c
ρS(t).

(3.24)

In Eq.(3.24), the emitter separation is assumed to be small and the Markovian approximation is

applied such that ρS(t − τ) ≈ ρS(t). Hence, Eq.(3.22) gives sinh r cosh r
γ′ij
2
S+
i S

+
j ρ

S(t) with

γ′ij = e2ik0RγF (k0|ri + rj|) after transforming the above results to the original coordinate sys-

tem(Although replacing k by k0 in Eq.(3.22)’s last line yields the same result, it is not always safe

to do so since F (x) is an oscillating function). Having dealt with all the squeezed vacuum terms,
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we can get the final master equation in the 3D free space for arbitrary number of qubits:

dρS

dt
=− 1

2

∑
α=±

∑
i,j

γ′ijM(ρSSαi S
α
j + Sαi S

α
j ρ

S − 2Sαj ρ
SSαi )

− 1

2

∑
i,j

γij(1 +N)(ρSS+
i S
−
j + S+

i S
−
j ρ

S − 2S−j ρ
SS+

i )ei(ωi−ωj)t

− 1

2

∑
i,j

γijN(ρSS−i S
+
j + S−i S

+
j ρ

S − 2S+
j ρ

SS−i )e−i(ωi−ωj)t

− i
∑
i 6=j

Λij[S
+
i S
−
j , ρ

S]ei(ωi−ωj)t

(3.25)

where the last three terms agree with the traditional reservoir theory in the thermal reservoir

case, and the first term is the collective decay due to the squeezed vacuum. We have M =

sinh(r)cosh(r) and average photon number N = sinh2(r). The collective energy shifts Λij and

decay rates γij due to the ordinary vacuum are the same as those given by [43, 42], which are

shown as follow:

Λij =
3

4

√
γiγj{−(1− cos2 α)

cos(k0rij)

k0rij

+ (1− 3 cos2 α)[
sin(k0rij)

(k0rij)2
+

cos(k0rij)

(k0rij)3
]}

γij =
√
γiγjF (k0rij)

where γ =
ω3
0µ

2

3πε0~c3 is the spontaneous decay rate of the atom in ordinary vacuum. Different from

the thermal reservoir terms, the squeezed vacuum can contribute to the additional collective two-

photon decay rate of the system which is given by

γ′ij = γe2ik0RF (k0|ri + rj|). (3.26)

Thus, the collective decay due to the squeezed vacuum depends on the position of the center of

mass of the emitters instead of their separation. One may think this reult is identical to the privious

work[9, 10] except the phase e2ik0R, but that is not true. No matter how the coordinate system

is built, to reach the neat form of Eq.(3.26), ri must still be interpreted as the displacement from
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the center of squeezing sources to the ith atom. When their center of mass is at equal distances

from all squeezing sources (i.e., ri + rj = 0), the decay induced by the squeezing is the strongest

due to the perfectly constructive interference of the two-photon excitation from all directions. It

decreases when it deviates from the center due to the destructive interference.

One way to verify the validity of our theory is to prove the positive definition of Eq.(3.25).

The above master equation can be transformed to the Lindblad form [44] and the density matrix is

positive. The phase factor e2ik0zR can be effectively regarded as an controllable phase of M , which

can be incorporated into θ. The master equation can be transformed as

dρS

dt
= −i

∑
i

[H, ρS] +
∑
m,n

hnm(LnρL
†
m −

1

2
(ρL†mLn + L†mLnρ)) (3.27)

where

H =
∑
i 6=j

ΛijS
+
i S
−
j

L1 = S+
1 , L2 = S+

2 , L3 = S−3 , L4 = S−4

h =



γ11 sinh2 r γ12 sinh2 r γ′11 sinh r cosh r γ′12 sinh r cosh r

γ12 sinh2 r γ11 sinh2 r γ′12 sinh r cosh r γ′11 sinh r cosh r

γ′11 sinh r cosh r γ′12 sinh r cosh r γ11 cosh2 r γ12 cosh2 r

γ′12 sinh r cosh r γ′11 sinh r cosh r γ12 cosh2 r γ11 cosh2 r


(3.28)

here for simplicity, we have already used the relations: γ′12 = γ′21, γ12 = γ21, γ11 = γ22, γ′11 = γ′22.

The last relation γ′11 = γ′22 is not always satisfied, but without it we cannot diagonalize matrix h

analytically. Hence we set ri + rj = 0. Now matrix h can be diagonalized:

h = u†



ζ1

ζ2

ζ3

ζ4


u (3.29)
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where u is a unitary matrix, and

ζ1 =
1

2
[(γ11 − γ12)(1 + 2 sinh2 r)−

√
(γ11 − γ12)2 + 4 sinh2 r cosh2 r(γ′11 − γ′12)2]

ζ2 =
1

2
[(γ11 − γ12)(1 + 2 sinh2 r) +

√
(γ11 − γ12)2 + 4 sinh2 r cosh2 r(γ′11 − γ′12)2]

ζ3 =
1

2
[(γ11 + γ12)(1 + 2 sinh2 r)−

√
(γ11 + γ12)2 + 4 sinh2 r cosh2 r(γ′11 + γ′12)2]

ζ4 =
1

2
[(γ11 + γ12)(1 + 2 sinh2 r) +

√
(γ11 + γ12)2 + 4 sinh2 r cosh2 r(γ′11 + γ′12)2]

(3.30)

We noticed that since |γ11− γ12| = |γ′11− γ′12| for ri + rj = 0, none of the eigenvalues is negative,

so the density matrix is completely positive for any initial condition. For arbitrary ri, rj , we can

only get the positive eigenvalues numerically.

It is worth noting that the master equation derived from the traditional reservoir theories[8, 9,

10] does not have the positive definition in the first place. In fact, the coefficients in their equations

are modified by hand to enforce the positive definition.

3.2 Master equation in the quasi-one-dimensional waveguide

In practice, it is very difficult to squeeze all photon modes in 3D case. Since squeezing in 1D is

experimentally achievable [28, 29], in this section we discuss the dynamics of the waveguide-QED

in the squeezed vacuum. Here, we consider a perfect rectangular waveguide with negligible loss

out of the waveguide as is shown in Fig. 3.2(a). We assume that the cross section of the waveguide

is a square with dimensions a× b. The origin of the coordinate system is chosen to be at the center

of the two squeezing sources with the positions of the sources to be (0, 0,±R). The emitters are

located along the longitudinal centerline of the waveguide at (0, 0, ri) (i = 1, 2, · · · , Na) with the

squeezed vacuum injected from both ends by the parametric process. Compared with the 3D case,

the master equation in the 1D case is the same as Eq. (3.25) except that the values of γij, γ′ij,Λij

are different.

Different from the free-space case, the square waveguide can only support certain photon

modes. Generally, the allowed modes in the waveguide are very complex which need to be ex-

pressed in terms of the Dyadic Green functions[45]. Here we consider the simplest case, which
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(b)

(a)

Figure 3.2: (a) Schematic setup for waveguide-QED in the 1D squeezed vacuum where the vac-
uum is squeezed from both directions. (b) The dispersion relations inside the waveguide. Here the
atomic transition frequency is 1.2cπ

a
, which is below the cut-off frequency of TE11 mode. Consid-

ering the fact that the atomic dipole moment is along y-axis and Ey 6= 0 only for TE10, we only
need to consider TE10 mode in our calculation.
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is the perfect reflective rectangular waveguide with cross section a × b. The rectangular waveg-

uide can support both TE and TM electric field modes and they are given as follows(To get a

neat expression of field equation, we set the origin of our coordinate system at the corner of the

waveguide):

ETM
z = E0sin

mπx

a
sin

nπy

b
eikzz, HTE

z = H0 cos
mπx

a
cos

nπy

b
eikzz

ETM
x = E0

ikz
h2
mn

mπ

a
cos

mπx

a
sin

nπy

b
eikzz, ETE

x = H0
iωkµ

h2
mn

nπ

a
cos

mπx

a
sin

nπy

b
eikzz

ETM
y = E0

ikz
h2
mn

nπ

a
sin

mπx

a
cos

nπy

b
eikzz, ETE

y = −H0
iωkµ

h2
mn

mπ

a
sin

mπx

a
cos

nπy

b
eikzz

HTM
x = E0

iωkε

h2
mn

nπ

a
sin

mπx

a
cos

nπy

b
eikzz, HTE

x = −H0
ikz
h2
mn

mπ

a
sin

mπx

a
cos

nπy

b
eikzz

HTM
y = −E0

iωkε

h2
mn

mπ

a
cos

mπx

a
sin

nπy

b
eikzz, HTE

y = −H0
ikz
h2
mn

nπ

a
cos

mπx

a
sin

nπy

b
eikzz

(3.31)

where hmn =
√

(mπ
a

)2 + (nπ
b

)2, ε(µ) is the permittivity (permeability), and H0, E0 are arbitrary

constants. For quantized modes, we haveE0 =
√

4~h2
mn/ε

2µνLS andH0 =
√

4~h2
mn/εµ

2νLS[46].

The dispersion relation inside the waveguide is given by ω2
k/c

2 = (mπ/a)2 + (nπ/b)2 + k2
z . For

simplicity, we here consider the waveguide with square cross section, i.e., a = b and the dispersion

curves of different modes are shown in Fig. 3.2(b). For square waveguide, TEmn(TMmn) and

TEnm(TMnm) modes are degenerate, and TE10 and TE01 have the lowest energy.

We assume that the all emitters’ transition frequencies are the same and they are below the

cutoff frequency of TE11 and TM11 modes. Since the rectangular waveguide cannot support the

TM10 and TM01 mode, the emitter can only couple to the TE01 or TE10 modes. Here, without

loss of generality we assume that the transition dipole moment of the emitter is in the y direction.

Thus, it can only couple to the TE10 mode. The emitters are assumed to be located at the center of

the waveguide cross section, i.e., (a
2
, a

2
, ri) and (a

2
, a

2
, rj). In this case, the mode function for TE10

mode is given by ukz(ri) =
√

ωkz~
ε0LS

ŷeikz(r−okz ) with S = a2. By reducing the cross section, we

can increase the amplitude of the mode function and therefore the coupling strength. are shown in
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Fig. 3.2(b). To simplify the problem, we assume that the transtion dipole moment of the emitter

is along the y direction and the size of the waveguide satisfies λ0/2 < a < λ0/
√

2 where λ0 =

2πc/ω0 with ω0 being the transition frequency of the emitter. In this case, the emitter is mainly

coupled to the TE10 mode (Fig. 3.2(b)). The density of states of EM field in the waveguide is

D(ν) = L
πc2

ν√
( ν
c

)2−(π
a

)2
. The coupling strength between the emitter and the TE10 mode is therefore

given by g ≡ µ · E/~ = µ
√
ν/ε0LS~ [46]. The single emitter decay rate due to the waveguide

modes is

γ1d = 2π
∑
ν

|g(ν)|2δ(ω0 − ν) =
2µ2ω2

0

~ε0Sc2k0z

≡ ηγ0, (3.32)

where η = 3λ0λ0z/(2πa
2) is the enhancement factor, λ0z = 2π/k0z is the effective longitudinal

wavelength and γ0 is the spontaneous decay rate in the free space. Around the cutoff frequency,

we have k0z → 0 and therefore η → ∞, i.e., the spontaneous decay rate can be greatly enhanced.

The dispersion relations

Then we need to derive the master equation in the waveguide case. Compared with the free

space case, the only modification to the calculation for the waveguide is
∑

ks →
∑

kz
in Eq.(3.13).

We here calculate the first and the second term in Eq.(3.13) as an example. For the second term,
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we have

−
∑
kz

∫ t

0

dτµi · uks(ri)S
+
i e

iω0tµ∗j · u∗k′s′(rj)S−j e−iω0(t−τ)e−iωk′s′τ cosh2 rρS(t− τ)δkk′δss′

=− L

2π

∫ ∞
−∞

dkz

∫ t

0

dτeiω0τe−iωkz τ
ωkµ

2

ε0LS~
eikz(ri−rj) cosh2 rS+

i S
−
j ρ

S(t− τ)

≈− L

2π

∫ ∞
0

dkz

∫ t

0

dτeiω0τe−i[ω0+c2k0z(kz−k0z)/ω0]τ ωkµ
2

ε0LS~
[eikz(ri−rj) + e−ikz(ri−rj)] cosh2 rS+

i S
−
j ρ

S(t− τ)

≈− L

2π

∫ ∞
−k0z

dδkz

∫ t

0

dτe−iτc
2k0zδkz/ω0

ωkµ
2

ε0LS~
[ei(k0z+δkz)(ri−rj) + e−i(k0z+δkz)(ri−rj)] cosh2 rS+

i S
−
j ρ

S(t− τ)

≈− L

2π

∫ ∞
−∞

dδkz

∫ t

0

dτe−i(c
2k0zδkz/ω0)τ ωkµ

2

ε0LS~
[ei(k0z+δkz)(ri−rj) + e−i(k0z+δkz)(ri−rj)] cosh2 rS+

i S
−
j ρ

S(t− τ)

≈− L

2π

∫ t

0

dτ
ω0µ

2

ε0LS~
2π[eik0z(ri−rj)δ((ri − rj)−

c2k0z

ω0

τ) + e−ik0z(ri−rj)δ((ri − rj) +
c2k0z

ω0

τ)]

× cosh2 rS+
i S
−
j ρ

S(t− τ)

≈− L

2π
eik0zrij

ω0µ
2

ε0LS~
2π

ω0

c2k0z

cosh2 rS+
i S
−
j ρ

S(t)

≈− [
γ1d

2
cos(k0zrij) + i

γ1d

2
sin(k0zrij)] cosh2 rS+

i S
−
j ρ

S(t)

≡− (
γij
2

+ iΛij) cosh2 rS+
i S
−
j ρ

S(t)

(3.33)

where emitter separation rij = |ri − rj|, γ1d = 2µ2ω2
0/~ε0Sc2k0z is the spontaneous decay rate

in the waveguide, γij = γ1d cos(k0zrij) is the collective decay rate, and Λij = γ1d sin(k0zrij)/2

is the collective energy shift. In the third line we expand ωk = c
√

(π
a
)2 + (kz)2 around kz = k0z

since resonant modes provide dominant contributions. In the fifth line we extend the integration∫∞
−k0z dkz →

∫∞
−∞ dkz because the main contribution comes from the components around δkz = 0.

In the next line, Weisskopf-Wigner approximation is used. Thus, we have obtained γij and Λij .
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Next we need to calculate the first term (squeezing term) in Eq.(3.13):

∑
kz

∫ t

0

dτ{µi · u2k0−k(ri)S
+
i µj · uk(rj)S

+
j e

i(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτei(ωkz−ω0)τei(2k0z−kz)(ri−o1)eikz(rj−o1)

×
√
ωkzω2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτei(ωkz−ω0)τei(−2k0z−kz)(ri−o2)eikz(rj−o2)

×
√
ωkzω−2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

(3.34)

For i = j, Eq.(5.8) reduces to

∑
kz

∫ t

0

dτ{µi · u2k0−k(ri)S
+
i µj · uk(rj)S

+
j e

i(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t− τ)

= − L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
ei2k0z(ri−o1)

√
ωkzω2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
e−i2k0z(ri−o2)

√
ωkzω−2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

= − L

2π
[ei2k0z(ri−o1) + e−i2k0z(ri−o2)]

ωk0zµ
2

ε0LS~

∫ t

0

dτ2πδ(
c2k0z

ω0

τ) sinh(r) cosh(r)S+
i S

+
j ρ

S(t− τ)

= − L

2π
[ei2k0z(ri−o1) + e−i2k0z(ri−o2)]

ωk0zµ
2

ε0LS~

∫ t

0

dτ2πδ(
c2k0z

ω0

τ) sinh(r) cosh(r)S+
i S

+
j ρ

S(t− τ)

= −ei2k0zR ω2
0µ

2

ε0~Sc2k0z

cos(2k0zri) sinh(r) cosh(r)S+
i S

+
j ρ

S(t)

= −ei2k0zRγ1d

2
cos(2k0zri) sinh(r) cosh(r)S+

i S
+
j ρ

S(t)

(3.35)

where we have used the fact that the origin of coordinate system is at equal distant from two

sources(i.e., o2 = −o1 = R) in the second last line. Thus, we have γ′ii = γ1d cos(2k0zri). For
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i 6= j, Eq. (5.8) reduces to

∑
kz

∫ t

0

dτ{µi · u2k0−k(ri)S
+
i µj · uk(rj)S

+
j e

i(ωk−ω0)τ [− sinh(r) cosh(r)]ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
ei2k0z(rc−o1)e−i(kz−k0z)(ri−rj)

×
√
ωkzω2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2k0z
ω0

(−kz−k0z)τ
e−i2k0z(rc−o2)e−i(kz+k0z)(ri−rj)

×
√
ωkzω−2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
ei2k0z(rc−o1)e−i(kz−k0z)(ri−rj)

×
√
ωkzω2k0z−kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
e−i2k0z(rc−o2)e−i(−kz+k0z)(ri−rj)

×
√
ω−kzω−2k0z+kzµ

2

ε0LS~
sinh(r) cosh(r)S+

i S
+
j ρ

S(t− τ)

=− L

2π
ei2k0z(rc−o1)ωk0zµ

2

ε0LS~

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
e−i(kz−k0z)(ri−rj)

× sinh(r) cosh(r)S+
i S

+
j ρ

S(t− τ)

− L

2π
e−i2k0z(rc−o2)ωk0zµ

2

ε0LS~

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2k0z
ω0

(kz−k0z)τ
ei(kz−k0z)(ri−rj)

× sinh(r) cosh(r)S+
i S

+
j ρ

S(t− τ)

=− L

2π
ei2k0zR

ω0µ
2

ε0LS~

∫ t

0

dτ2π[ei2k0zrcδ(ri − rj −
c2k0z

ω0

τ) + e−i2k0zrcδ(ri − rj +
c2k0z

ω0

τ)]

× sinh(r) cosh(r)S+
i S

+
j ρ

S(t− τ)

=− ei2k0zR ω2
0µ

2

ε0~Sc2k0z

ei2k0zrcsgn(i−j)S+
i S

+
j ρ

S(t)→ −γ1d

2
ei2k0zR cos(k0z(ri + rj))S

+
i S

+
j ρ

S(t)

(3.36)

where sgn(i − j) is the sign function. The last arrow is because we need to sum over i, j, so the

imaginary part of ei2k0zrcsgn(i−j) vanishes and the neat result is that γ′ij = ei2k0zRγ1d cos(k0z(ri +
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rj)). As for S+
i ρ

S(t)S+
j terms, the combination of the last two terms in Eq.(3.11) will make the

imaginary part of ei2k0zrcsgn(i−j) vanish. Thus, we have γ′ij = ei2k0zRγ1d cos(k0z(ri + rj)). If one

needs to get γij, γ′ij and Λijin the unidirectional waveguide case, we just need to discard the second

terms in the parenthesis of Eq.(5.7) and Eq.(5.10).

In conclusion, the master equation in the 1D waveguide is also given by Eq. (3.25), but the

coefficients are replaced by:

γij = γ1d cos(k0zrij)

Λij =
γ1d

2
sin(k0zrij)

γ′ij = γ1d cos[k0z(ri + rj)]

(3.37)

where k0z =
√

(ω0

c
)2 − ( cπ

a
)2 is the wave vector along the waveguide direction and rij = |ri − rj|

is the separation between two emitters. It is worth noting that Eq. (3.25) is valid not only for the

rectangular waveguide, but also for arbitrary type of waveguide with arbitrary atomic transition

frequency. The only difference for different types of waveguide and different transition frequency

is the value of γ1d in Eq. (5.13).

Similar to the 3D case, the two-photon decay rate induced by the squeezed vacuum depends on

the center of mass of the emitters. This can be explained by the interference shown in Fig. 3.2(b).

The emitters can absorb two photons from the squeezing sources either from the left or the right.

These two processes can interfere with each others and we have

γ
′

ij ∝ S1
LS

2
L + S1

RS
2
R = 2e2ik0zR cos[k0z(ri + rj)]

which is a periodic function with period λ0z. Thus, when the center of mass happens to be at the

antinodes (nodes) of the standing wave, the two-photon decay rate is maximized (minimized).
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Figure 3.3: (a) The dephasing dynamics of a single emitter in the squeezed vacuum. The black and
red solid curves are the results of σx and σy, respectively. The blue dotted line is the result when
there is no squeezing (thermal reservoir). (b) The dephasing rates of σx and σy as a function of the
emitter position. For (a)&(b), the squeezing parameters are chosen to be r = 0.5.
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3.3 Dynamics of a single qubit

In this section, we will show the difference between the traditional theory and our theory when

applied to the single two-level atom case. We still assume that the atom is located at (0, 0, δ), with

the transition dipole moment along the y-axis. By eliminating the terms with i 6= j, the master

equation shown in Eq.(3.25) is reduced to the single-atom case which is given by

dρS

dt
= sinh(r) cosh(r)γ′(e2ik0zRS+ρSS+ +H.c.)

− 1

2
γ cosh2(r)(ρSS+S− + S+S−ρS − 2S−ρSS+)

− 1

2
γ sinh2(r)(ρSS−S+ + S−S+ρS − 2S+ρSS−)

(3.38)

with γ = γ1d and γ′ = γ1d cos(2k0δ). It is worth noting that the squeezing terms like S+ρSS+

and S−ρSS− in Eq. (5.15) only affect the non-diagonal terms but not the diagonal terms. Thus, for

single emitter, the squeezing can only modify the dephasing rate rather than the population decay

rate. We also notice that the dephasing rate due to the squeezed vacuum is dependent on the emitter

position because the interference between the two squeezing sources generates a standing wave.

The dynamical equations for the expectation value of σ+ and σ− are given by

d

dt

 〈σ+〉

〈σ−〉

 = U

 〈σ+〉

〈σ−〉

 (3.39)

where

U = γ1d

 −(N + 1
2
) Me−2ik0zR cos(2k0zδ)

Me2ik0zR cos(2k0zδ) −(N + 1
2
)

 . (3.40)

The eigenvalues of U are γdp,± = [N + 1
2
± M cos(2k0zδ)]γ1d which are the dephasing rate.

In fact, such a position-dependent property of the dephasing rate can be associated with the

variance in the quadrature phases of the squeezed field at the site of the atom. Considering
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the operator X(δ, α, β) = 1
2
√

2
(ei(k0z+kz)δak0z+kze

iα + ei(k0z−kz)δak0z−kze
iβ + H.c.) which de-

scribes the entangled modes of the two-mode squeezing, we can find its variance ∆X(δ, α, β) =

1
2
[N+ 1

2
−M cos(2k0zδ+α+β)]. Therefore, we have the relation that γdp,+ = 2∆X(δ, α+β = 0)

and γdp,− = 2∆X(δ, α + β = π).

We can see that when there is no squeezing, i.e., M = 0, both σx and σy have the same

dephasing rate cosh2(r)γ1d/2 (blue dotted line in Fig. 3.3(a)). However, if there is squeezing, i.e.,

M 6= 0, σx and σy have different dephasing rates with one being enhanced and the other one being

suppressed (solid lines in Fig. 3.3(a)). The dephasing rate can be tuned by changing the position

of the emitter. In Fig. 3.3(b), it is shown that the dephasing rates of σx and σy vary periodically as

the emitter position changes. At some regions, σx decays faster than σy, while at other regions, σx

decays slower than σy. This result challenges the traditional conclusion where dephasing rate is a

position-independent constant[4, 30].

The power spectrum of the resonance fluorescence can also be calculated and the result is

similar to Ref. [32] with the simple replacements of M by Mγ′ and the phase of M by e2ik0zR.

3.4 Dynamics of multiple qubits coupled by the dipole-dipole interaction

Next, we consider the two-emitter case where dipole-dipole interaction can occur and two-

photon process is allowed. In Fig. 3.4(a), we show the dynamics of the transverse polarization σx

and σy. Here, we compare two different emitter separations r12 = 0.5λ0z and r12 = 1.0λ0z. In both

cases, the x and y polarizations have the same decay dynamics in the thermal reservoir. However,

in the squeezed vacuum, the two orthogonal polarizations have different decay rates with one being

enhanced and the other being suppressed. When r12 = 0.5λ0z, σx decays faster than that in the

thermal reservoir, but σy decays much slower than that in the thermal reservoir. While opposite

result occurs when r12 = 1.0λ0z. This is similar to the one-emitter case.

Different from the one-emitter case, as is shown in Fig. 3.4(b), the squeezed vacuum can affect

the population decay of the two-emitter system. This is because two-photon process is allowed

in the two-emitter system. Without the squeezed vacuum, the system is finally in the thermal

equilibrium state (dotted lines). However, the squeezed vacuum can deplete the populations on
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Figure 3.4: Two-emitter case: Transverse polarization decay of the first emitter as a function of
time. (a) r12 = 0.5λ0z for superscript (1) and r12 = 1.0λ0z for superscript (2), r = 0.5 and rc = 0;
(b) population decay as a function of time when r12 = 0.5λ0z, r = 0.5 and rc = 0. Solid lines
are the results in squeezed vacuum and the dotted lines are the results in the thermal reservoir with
N = sinh2(r). Here the dynamics of ρ++ and ρ−− are highly identical. (c) Dephasing rate as
a function of atom separation with the center of mass fixed at rc = 0. (d) Dephasing rate as a
function of center of mass position with atom separation fixed at rij = λ0z, where the two-atom
case is plotted in solid lines and the five-atom case is plotted in dashed lines.
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| + +〉 and | − −〉 with |±〉 = 1√
2
(|e1〉|g2〉 ± |g1〉|e2〉). In fact, the atomic pair evolves into an

entanglement state in this case and we will discuss it later.

We also study the dephasing rate as a function of emitter separation and position of the center

of mass which are shown in Fig. 3.4(c) and (d) respectively. Here the dephasing rate is defined

to be the inverse of time for σx(σy) to damp to 1/e of its initial value. Similar to the one-emitter

case, the dephasing rate is a periodic function of both r12 and rc. However, due to the dipole-

dipole interaction, the dephasing rate is no longer a constant even in the thermal reservoir (dotted

line in Fig. 3.4(c)) so that the value ranges of σx and σy are no longer the same in the squeezed

vacuum(solid lines in Fig. 3.4(c)). It is noted that when r12 = 0.5nλ0z (n is any integer) σy does not

decay to 1/e of its initial value due to the subradiance effect. When we fix the atom separation and

change the center of mass(Fig. 3.4(d)), the dephasing rate changes periodically and harmonically

like one-emitter case. Therefore, the dephasing rate is tunable by changing the atom separation or

position of center of mass. Usually, the positions of the atoms are not easy to be tuned. However,

we can easily tune the position of the squeezing sources to effectively change the center of mass

of the atoms. Figure 3.4(d) also shows the result when there are five emitters (dashed lines). The

dephasing rate is significantly increased when Na increases due to the collective effect, which

depends on the number of atoms but not its parity.

3.5 Generalization to multi-level atoms

In this section, we will consider a more general case for atoms of arbitrary number of energy

levels in the squeezed vacuum reservoir. For the rectangular waveguide, there is no TM01 or TM10

mode. Assuming b < a, TE10 is the ground mode with the lowest cutoff frequency. For simplicity,

we assume that all electronic transitions only coupled to TE10 mode.

The atom-field system is described by the Hamiltonian

H = HA +HF +HAF (3.41)

where HA =
∑Na

l=1

∑
e=a,b,c ~ωe,l |el〉 〈el| is the atomic Hamiltonian, and |el〉 is the energy state of
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the lth atom with energy ~ωe,l. The Hamiltonian of the EM field is HF =
∑

ks ~ωks(â
†
ksâks + 1

2
)

where âks and â†ks are the annihilation and creation operators of the filed mode with wavevector

k, polarization s (in waveguide, it represents TEmn or TMmn), and frequency ωk,s. The inter-

action Hamiltonian in the electric-dipole approximation is HAF = −i~
∑

ks

∑
i=1,2

∑Na
l=1[µl,i ·

uks(rl,i)S
+
l,iâks +µ∗l,i ·uks(rl,i)S

−
l,iâks−H.c.] where µl,i is the electric dipole moment for the ith

transition of the lth atom, where i = 1 denotes the transition from |a〉 to |b〉, and i = 2 denotes the

transition from |b〉 to |c〉. Here, S+
l,i and S−l,i are the raising and lowering operator for the transition

i of the lth atom. The mode function of the squeezed vacuum in the TE10 mode is given by

uks(ri) =

√
ωks

2ε0~V
xeik·(ri−oks) (3.42)

Thus, the interaction Hamiltonian is where

D(t) =
∑
l,i

[µl,i · uk,s(rl,i)S
†
l,i(t) + µ∗l,i · uk,s(rl,i)S

−
l,i(t)] (3.43)

The reduced master equation of atoms in the reservoir is:

dρS

dt
=− 1

~2

∫ t

0

dτTrF{[V (t), [V (t− τ), ρS(t− τ)ρF}

=− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF + ρS(t− τ)ρFV (t− τ)V (t)

− V (t)ρS(t− τ)ρFV (t− τ)− V (t− τ)ρS(t− τ)ρFV (t)}

(3.44)

Here we just show how to deal with the first term in Eq. (3.11), the remaining terms can be
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calculated in the same way. For the first term, we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=

∫ t

0

dτ
∑

ks,k′s′

{D(t)D(t− τ)TrF [ρFaks(t)ak′s′(t− τ)]−D(t)D+(t− τ)TrF [ρFaks(t)a
†
k′s′(t− τ)]

−D+(t)D(t− τ)TrF [ρFa†ks(t)ak′s′(t− τ)] +D+(t)D+(t− τ)TrF [ρFa†ks(t)a
†
k′s′(t− τ)]}ρS(t− τ)}.

(3.45)

Under the rotating wave approximation(RWA), we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=
∑
ijlm

∑
ks,k′s′

∫ t

0

dτ{µl,i · uks(rl,i)S
+
l,ie

iωitµm,j · uk′s′(rm,j)S
+
m,je

iωj(t−τ)

× e−i(ωks+ωk′s′ )t+iωk′s′τ [−Mδk′,2k0−kδss′ ]

− µl,i · uks(rl,i)S
+
l,ie

iωitµ∗m,j · u∗k′s′(rm,j)S−m,je−iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗l,i · uks(rl,i)S
−
l,ie
−iωitµm,j · u∗k′s′(rm,j)S+

m,je
iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− µ∗l,i · u∗ks(rl,i)S−l,ie
−iωitµm,j · uk′s′(rm,j)S

+
m,je

iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

− µl,i · u∗ks(rl,i)S+
l,ie

iωitµ∗m,j · uk′s′(rm,j)S
−
m,je

−iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

+ µ∗l,i · u∗ks(rl,i)S−l,ie
−iωitµ∗m,j · u∗k′s′(rm,j)S−m,je−iωj(t−τ)ei(ωks+ωk′s′ )t−iωk′s′τ

× [−Mδk′,2k0−kδss′ ]}ρS(t− τ)

(3.46)

where l,m are used for labeling different atoms, and i, j are used for transitions within an atom.

Here we just calculate the first and second term. Since all atoms are identical, ωl,i = ωi, |µl,i| =

|µi|, and rl,i = rl can be used to simplify Eq. (3.46). For simplicity, we define µj to be the

45



projection of µj on the x axis. For the second term(thermal term), we have

−
∑
kz

∫ t

0

dτµl,i · uks(rl)S
+
l,ie

iωitµ∗m,j · u∗k′s′(rm)S−m,je
−iωj(t−τ)e−iωk′s′τ cosh2 rρS(t− τ)δkk′δss′

=− L

2π
ei(ωi−ωj)t

∫ ∞
−∞

dkz

∫ t

0

dτeiωjτe−iωkz τ
ωkµiµj
ε0LS~

eikz(rl−rm) cosh2 rS+
l,iS
−
m,jρ

S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
0

dkz

∫ t

0

dτeiωjτe−i[ωj+c
2kjz(kz−kjz)/ωj ]τ

ωkµiµj
ε0LS~

× [eikz(rl−rm) + e−ikz(rl−rm)] cosh2 rS+
l,iS
−
m,jρ

S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
−k0z

dδkz

∫ t

0

dτe−iτc
2kjzδkz/ωj

ωkµiµj
ε0LS~

× [ei(kjz+δkz)(rl−rm) + e−i(kjz+δkz)(rl−rm)] cosh2 rS+
l,iS
−
m,jρ

S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
−∞

dδkz

∫ t

0

dτe−i(c
2kjzδkz/ωj)τ

ωkµiµj
ε0LS~

× [ei(kjz+δkz)(rl−rm) + e−i(kjz+δkz)(rl−rm)] cosh2 rS+
l,iS
−
m,jρ

S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ t

0

dτ
ωjµiµj
ε0LS~

2π[eikjz(rl−rm)δ((rl − rm)− c2kjz
ω0

τ) + e−ikjz(rl−rm)δ((rl − rm) +
c2kjz
ω0

τ)]

× cosh2 rS+
l,iS
−
m,jρ

S(t− τ)

≈− L

2π
eikjzrlm

ωjµiµj
ε0LS~

2π
ωj
c2k0z

cosh2 rS+
l,iS
−
m,jρ

S(t)ei(ωi−ωj)t

≈− [

√
γiγj

2
cos(k0zrlm) + i

√
γiγj

2
sin(k0zrlm)] cosh2 rS+

l,iS
−
m,jρ

S(t)ei(ωi−ωj)t

(3.47)

where emitter separation rlm = |rl − rm|, collective decay rate γi = 2µ2
iω

2
i /~ε0Sc2kiz, and col-

lective energy shift Λij =
√
γiγj sin(k0zrij)/2. In the third line we expand ωk = c

√
(π
a
)2 + (kz)2

around kz = k0z since resonant modes provide dominant contributions. In the fifth line we extend

the integration
∫∞
−kjz dkz →

∫∞
−∞ dkz because the main contribution comes from the components

around δkz = 0. In the next line, Weisskopf-Wigner approximation is used.

Next we need to calculate the first term (squeezing term) in Eq. (3.46), putting aside the overall
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factor ei(ωi+ωj−2ω0)t, we have:

∑
kz

∫ t

0

dτ{µl,i · u2k0−k(rl)S
+
l,iµm,j · uk(rm)S+

m,je
i(ωk−ωj)τ (−M)ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτei(ωkz−ωj)τei(2kjz−kz)(rl−o1)eikz(rm−o1)

√
ωkzω2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
m,jρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτei(ωkz−ωj)τei(−2kjz−kz)(rl−o2)eikz(rm−o2)

√
ωkzω−2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
m,jρ

S(t− τ)

(3.48)

For terms with rl = rj , Eq. (5.8) reduces to

∑
kz

∫ t

0

dτ{µl,i · u2k0−k(rl)S
+
l,iµl,j · uk(rl)S

+
l,je

i(ωk−ωj)τ (−M)ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

ei2k0z(rl−o1)

√
ωkzω2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
l,jρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

e−i2k0z(rl−o2)

√
ωkzω−2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
l,jρ

S(t− τ)

=− L

2π
[ei2k0z(rl−o1) + e−i2k0z(rl−o2)]

√
ωiωjµiµj

ε0LS~

∫ t

0

dτ2πδ(
c2kjz
ωj

τ)MS+
l,iS

+
l,jρ

S(t− τ)

=− ei2kjzR ω2
0µiµj

ε0~Sc2k0z

cos(2k0zrl)MS+
l,iS

+
l,jρ

S(t)

=− ei2k0zR
√
γiγj

2
cos(2k0zrl)MS+

l,iS
+
l,jρ

S(t)

(3.49)

where we have used the fact that the origin of coordinate system is at equal distant from two

sources(i.e., o2 = −o1 = R) in the second last line. Incorporating index l into i, we have γ′ij =
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√
γiγj cos(2k0zri). For ri 6= rj , Eq. (5.8) reduces to

∑
kz

∫ t

0

dτ{µl,i · u2k0−k(rl)S
+
l,iµm,j · uk(rm)S+

m,je
i(ωk−ωj)τ (−M)ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

ei2k0z(rc−o1)e−i(kz−k0z)(rl−rm)

×
√
ωkzω2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
m,jρ

S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2kjz

ωj
(−kz−kjz)τ

e−i2k0z(rc−o2)e−i(kz+k0z)(rl−rm)

×
√
ωkzω−2k0z−kzµiµj

ε0LS~
MS+

l,iS
+
m,jρ

S(t− τ)

=− L

2π
ei2k0z(rc−o1)

√
ωiωjµiµj

ε0LS~

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

e−i(kz−k0z)(rl−rm)

×MS+
l,iS

+
m,jρ

S(t− τ)

− L

2π
e−i2k0z(rc−o2)

√
ωiωjµiµj

ε0LS~

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

ei(kz−k0z)(rl−rm)

×MS+
l,iS

+
m,jρ

S(t− τ)

≈− L

2π
ei2k0zR

ω2
0µiµj
ε0LS~

∫ t

0

dτ2π[ei2k0zrcδ(rl − rm −
c2k0z

ω0

τ) + e−i2k0zrcδ(rl − rm +
c2k0z

ω0

τ)]

×MS+
l,iS

+
m,jρ

S(t− τ)

≈− ei2k0zR ω2
0µiµj

ε0~Sc2k0z

ei2k0zrcsgn(rl−rm)S+
l,iS

+
m,jρ

S(t)

→−
√
γiγj

2
ei2k0zR cos(k0z(rl + rm))S+

l,iS
+
m,jρ

S(t)

(3.50)

where sgn(rl− rm) is the sign function. The last arrow is because we need to sum over i, j, so the

imaginary part of ei2k0zrcsgn(i−j) vanishes, so the neat result is that γ′ijkl = ei2k0zR
√
γjγl cos(k0z(ri+

rk)). As for S+
i ρ

S(t)S+
j terms, the combination of the last two terms in Eq. (3.11) makes the

imaginary part of ei2k0zrcsgn(rl−rm) vanish. Doing similar calculations for the remaining terms, we
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have the master equation

dρS

dt
=− i

∑
ijkl

Λijkl[S
+
i,jS

−
k.l, ρ

S]ei(ωj−ωl)t

− 1

2

∑
ijkl

γijkl(1 +N)(ρSS+
i,jS

−
k.l + S+

i,jS
−
k.lρ

S − 2S−k.lρ
SS+

i,j)e
i(ωj−ωl)t

− 1

2

∑
ijkl

γijklN(ρSS−i,jS
+
k.l + S−i,jS

+
k,lρ

S − 2S+
k,lρ

SS−i,j)e
−i(ωj−ωl)t

− 1

2

∑
α=±

∑
ijkl

γ′ijklMe2αik0zReiα(ωj+ωl−2ω0)t(ρSSαi,jS
α
k.l + Sαi,jS

α
k,lρ

S − 2Sαk,lρ
SSαi,j)

(3.51)

with

γijkl =
√
γjγl cos(k0zrik)

Λijkl =

√
γjγl

2
sin(k0zrik)

γ′ijkl =
√
γjγl cos[k0z(ri + rk)]

(3.52)

The above equation reduces to Eq. (3.25) when l = 0 indicating that the atom can be treated as a

qubit.
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4. THE STEADY STATE PROPERTIES OF ATOMS IN THE SQUEEZED VACUUM1

It is worth noting that in our scheme, the squeezed vacuum reservoir is not affected by the

atomic behaviors because of there are a great number of modes in the reservoir. What’s more, the

squeezed vacuum is pumped into the waveguide endlessly so that the effects left by the atoms will

be erased eventually. Therefore, the behaviors of the steady state of the atoms in the squeezed

vacuum are expected to be quite different from those in the ordinary vacuum or thermal reservoir.

In this section, we will study the properties of the steady state with different atomic structures.

4.1 Quantum entanglement of two qubits

Quantum entanglement is an important resource of the quantum information and quantum

metrology [47, 48]. Preparation of the maximum entangled state is still a central topic of inter-

est. It has been shown that stationary quantum entanglement can be dissipatively prepared by

engineering the bath enviroment [49, 50, 51, 52]. By squeezing the enviroment, quantum entan-

glement between emitters can be also created [53, 34, 35]. However, it is shown in Ref. [34] that

stationary maximum entanglement can not be reached by the squeezed vacuum for identical emit-

ters. Here, we show that identical emitters coupled to the 1D waveguide can also be driven to a

stationary maximum entangled NOON state by the squeezed vacuum as long as the center of mass

is put at the proper position.

The quantum entanglement can be measured by the concurrence which is defined as [54]:

C ≡ max{0, λ1 − λ2 − λ3 − λ4} in which λ1, λ2, λ3, λ4 are eigenvalues, in decreasing order, of

the Hermitian matrix R =
√√

ρρ̃
√
ρ with ρ̃ = (σy

⊗
σy)ρ

∗(σy
⊗

σy). For a pure two-qubit state

|Ψ〉 = α|ee〉 + β|eg〉 + γ|ge〉 + |gg〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1, the concurrence is given

by C = max{0, 2|αδ − βγ|}. According to the master equation Eq. (3.25) describing qubits in

the waveguide, the concurrence of two qubits as a function of time for different initial states can

1Part of this section is reprinted with permission from: “Waveguide QED in the Squeezed Vacuum” by Jieyu You
et al, 2018. Physical Review A, 97, 023810, Copyright 2018 by the American Physical Society and “Steady-state
population inversion of multiple Ks-type atoms by the squeezed vacuum in a waveguide” by Jieyu You, Zeyang Liao,
and M. Suhail Zubairy, 2019. Physical Review A, 100, 013843, Copyright 2019 by the American Physical Society.
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be calculated, which is shown in Fig. 4.1(a) where r = 1, rc = 0, and r12 = 0.25λ0z. Different

curves correspond to different initial states. We can see that no matter what the initial state is,

the two-emitter state will be driven to a very high entangled state. To see what the stationary

state is, we also show the fidelity of the emitter state with respect to the maximum entangled state

1√
2
(|gg〉 − |ee〉) which is shown in Fig. 4.1(b). We can see that the stationary state is very close

to it. Therefore, under these parameters the two emitters can be driven to the maximum entangled

state which may find important applications in quantum information and quantum computation.

To find the stationary state analytically, we rewrite the master equation in Eq. (3.25) as

ρ̇gg = −2Nγρgg + (N + 1)γ+ρ++ + (N + 1)γ−ρ−−

+Mγ
′

12ρu, (4.1)

ρ̇ee = −2(N + 1)γρee +Nγ+ρ++ +Nγ−ρ−−

+Mγ
′

12ρu, (4.2)

ρ̇++ = −(2N + 1)γ+ρ++ + (N + 1)γ+ρee +Nγ+ρgg

−Mγ
′

+ρu, (4.3)

ρ̇−− = −(2N + 1)γ−ρ−− + (N + 1)γ−ρee +Nγ−ρgg

−Mγ
′

−ρu. (4.4)

ρ̇u = −(2N + 1)γ11ρu − 2Mγ
′

+ρ++ − 2Mγ
′

−ρ−−

+2Mγ
′

12(ρee + ρgg). (4.5)

where ρee = 〈ee|ρ|ee〉, ρgg = 〈gg|ρ|gg〉, ρ±± = 〈±|ρ|±〉 with |±〉 = 1√
2
(|e1〉|g2〉 ± |g1〉|e2〉),

ρu = e−2ik0zR〈ee|ρ|gg〉 + e2ik0zR〈gg|ρ|ee〉, and γ = γ1d, γ± = γ1d(1 ± cos(k0zr12)), γ′12 =

γ1d cos(2k0zrc), γ′± = γ1d{cos[2k0zrc]± 1
2
[cos(2k0zr1)+cos(2k0zr2)]} with rc = (r1+r2)

2
. Then the
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Figure 4.1: (a) Concurrence evolution of different initial states in squeezed vacuum, where r = 1,
rc = 0, and r12 = 0.25λ0z. (b) Fidelity evolution of different initial states in the same environment.
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steady state solutions are given by

ρee =
N [−1−N − 2N2 + (−1 +N + 2N2) cos(4k0zrc)]

2(1 + 2N)[−1− 2N − 2N2 + 2N(1 +N) cos(4k0zrc)]

ρ++ = − N(1 +N)sin2(2k0zrc)

−1− 2N − 2N2 + 2N(1 +N) cos(4k0zrc)

ρ−− = − N(1 +N)sin2(2k0zrc)

−1− 2N − 2N2 + 2N(1 +N) cos(4k0zrc)

ρu =
−2
√
N(1 +N) cos(2k0zrc)

(1 + 2N)[−1− 2N − 2N2 + 2N(1 +N) cos(4k0zrc)]

(4.6)

where we have used the relation M2 = N(N + 1). Obviously, the population given by Eq. (5.16)

differs from that given by thermal reservoir: ρee(gg) = ρthee(gg) + ∆ρ, ρ++(−−) = ρth++(−−) − ∆ρ

with ∆ρ = N(N+1) cos2(2k0zrc)
(1+2N)2(1+2N+2N2−2N(1+N) cos(4k0zrc))

and ρthee = N2

(1+2N)2
, ρth++ = ρth−− = N(N+1)

(1+2N)2
,

ρthgg = (1+N)2

(1+2N)2
which obey the Boltzmann distribution. It is interesting that the steady state depends

only on the center of mass but not on the separation between the two emitters. Meanwhile, it is

worth noting that the dark state cannot always be reached since the ergodicity cannot be guaranteed

under every condition. For example, when cos(k0zr12) = 1, |+〉 becomes a dark state, while it is

|−〉 when cos(k0zr12) = −1.

Eq. (5.16) shows that as rc gets closer to n
4
λ0z, the magnitude of γ′± gets closer to ±1 which

leads to smaller population on |+〉 and |−〉 as well as bigger concurrence. When the position of

the center mass rc = n
4
λ0z, the steady states are given by

ρgg =
N + 1

(1 + 2N)
,

ρee =
N

(1 + 2N)
,

ρ++ = ρ−− = 0,

ρu = (−1)n+1 2
√
N(1 +N)

(1 + 2N)
.

(4.7)

which corresponds to the state |Ψs〉 = 1√
2N+1

(
√
N + 1|gg〉+ (−1)n+1

√
N |ee〉). The concurrence

of this state is given by C = |ρu| − (ρ++ + ρ−−) =
2
√
N(N+1)

(2N+1)
, which monotonically increases
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with the average photon number N . When N →∞, C → 1 which is a maximum-entangled state

1√
2
(|gg〉 − |ee〉) ( 1√

2
(|gg〉+ |ee〉)) with even(odd) n.

Fig. 4.2(a) shows the dependence of the stationary quantum entanglement on the photon num-

ber and the center-of-mass position. It is clearly seen that when rc is close to n
4
λ0z the system

can be prepared in a high entangled state, while the entanglement can never be formed when

rc = 2n+1
8
λ0z because the dipole-dipole interaction γ′12 vanishes. In experiments, the center of

mass position of emitters may be hard to control, but it can be effectively controllable by setting

the positions squeezing sources. Thus, as long as the pump beam in SPDC is strong enough to

guarantee the average photon number of the squeezed vacuum, the emitters can definitely evolve

into a NOON state. While the dephasing rate is not very sensitive to the fluctuations of the emit-

ter positions, the stationary quantum entanglement significantly depends on their center of mass.

Only when the center of mass position is around nλ/4, the quantum entanglement is nonzero. In

Fig. 4.2(b), we show half the range of center of mass where the quantum entanglement is non-zero.

The larger the squeezing is, the more sensitive the quantum entanglement is to the fluctuation of

center-of-mass. For example, when N = 1, a deviation of about 0.04λ from nλ/4 will make the

entanglement vanish.

4.2 Resonance fluorescence of a group of atoms

In this section, we study how the squeezing can affect the resonance fluorescence of the

waveguide-QED system. In the following we study how the collective interaction, squeezing

phase, squeezing degree, emitter separation, and the center of mass affect the resonance fluo-

rescence of this system.

The power spectrum of the resonance fluorescence is given by [30, 55, 56]

S(ω) ∝ Re

∫ ∞
0

dτTr[σ−(τ)σ+(0)]eiωτ . (4.8)

where we assume that the detector is perpendicular to the waveguide and σ± = σ±1 + σ±2 for the

two-emitter example. The two-time correlation function in the integration can be calculated by
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Figure 4.2: (a) Concurrence of the steady state as a function of average photon number N =
sinh(r)2 and the position of the center mass rc = r1+r2

2
.(b) The impact of rc’s fluctuations on

concurrence for different average photon number N . ∆rc is the distance from n
4
λ0z to the position

where the entanglement vanishes.
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Figure 4.3: Resonance fluorescence spectrum of the two-emitter system inside a 1D waveguide.
For better comparison, the spectra are normalized to the intensity at ω = ω0 with the coherent
elastic scattering singularity removed. Coherent driving Rabi frequency is ΩR = 4γ. In (a) and
(b), the solid curves are the spectra for the coupled emitters, while the dashed curves are the spectra
without emitter-emitter coupling. Parameters: (a) r1 = 0, r2 = 0.01λ0z, squeezing parameter r =
0.5. (b) r1 = 0, r2 = 0.25λ0z, r = 0.5. (c) r1 = 0, r2 = λ0z, φ = π/2, r = 0.5 for black line, r = 1
for red line. (d) r1 = −0.125λ0z, r2 = 0.125λ0z for the red line, r1 = −0.25λ0z, r2 = 0.25λ0z for
the black line. φ = 0, r = 0.5.
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the quantum regression theorem. Usually, the analytical result is difficult to get. However, we can

resort to the numerical method to calculate the resonance fluorescence [57].

To observe the resonance fluorescence, we need to apply an external coherent driving field.

The master equation is given by

dρ

dt
= −i[V, ρ] + Lρ (4.9)

where Lρ is the right hand side of Eq.(3.25) and V = ΩR
2
e−iα(e−ik0zr1σ−1 + e−ik0zr2σ−2 ) + H.c. is

the interaction between the driving field and the emitters with Rabi frequency ΩR = d·E
~ . From

Eq. (5.19) we can evolve and obtain the steady state of the system ρss. Next we use (σ−1 + σ−2 )ρss

as the initial condition to solve a density matrix c(t) which obeys the same equation of motion as

ρ in Eq. (5.19). The resonance fluorescence spectrum is then given by [57]

S(ω) ∝ Re

∫ ∞
0

dτTr[c(τ)(σ+
1 + σ+

2 )]eiωτ . (4.10)

In Fig. 4.3(a) and Fig. 4.3(b) we compare the resonance fluorescence spectrum with and without

the dipole-dipole interaction for different squeezing phases and emitter separations. When r12 =

0.01λ0z and φ = 0, we can see that the spectrum is very different with and without dipole-dipole

interaction. Without dipole-dipole interaction, the spectrum is very similar to the typical Mollow

triplet (red dashed line). However, with dipole-dipole interaction, there is a very narrow peak

around the center frequency (red solid line). This is due to the subradiant state induced by the

dipole-dipole interaction. On the contrary, when φ = π/2 the spectrum with and without the

dipole-dipole interaction is very similar (black solid and dashed lines). From Fig. 4.3(b) we see

that with dipole-dipole interaction, the spectrum can be asymmetric, i.e., the positive and negative

sidebands are different.

In Fig. 4.3(c) we compare the spectrum with different squeezing degrees. We can see that

greater squeezing parameter leads to the power spectrum in weak-driving-field limit(sidebands

disappear). FIG. 4.3(d) shows that different emitter separation has different spectrum. This is not
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only due to atomic interaction which is described by γ12, γ
′
12,Λ12, but also due to their positions

which determine the values of γ′ii, i.e., the effective phase and magnitude of M . Comparing the

red solid curve in Fig. 4.3(b) and the red dashed curve in Fig. 4.3(d) we can see that different

center-of-mass position can also have different resonance fluorescence.

4.3 The steady state population inversion of a single Ξ-type atom by the squeezed vacuum

The concept of population inversion is of fundamental importance in laser physics because the

population inversion is a key step of generating laser. However, the population inversion can never

exist for a system at thermal equilibrium because of the spontaneous emission. The achievement

of population inversion therefore requires pushing the system into a non-equilibrated state [31].

Thus, the spontaneous emission must be inhibited in order to maintain the population inversion in

a steady state. In 1993, Ficek and Drummond studied the dynamical properties of a single three-

level atom in the squeezed vacuum where they showed that a single three-level atom in the cascade

configuration coupled to squeezed modes in a cavity can reach steady state with level population

inversion relative to the ordinary laser spectroscopy [37, 38, 39]. In their model, they found a

population inversion of about 78%. Here, instead of a cavity, we consider that the case in quasi-

one-dimensional waveguide. The dynamic equation can be reduced from Eq. (3.51) with ri = rk,

ri = rj = 0 and the resonant condition ω1 + ω2 = 2ω0. It follows from Eq. (3.51) that various

matrix elements satisfy the following equation:

ρ̇aa = − γ1ch
2ρaa + γ1sh

2ρbb −
1

2

√
γ1γ2M(ρac + ρca) (4.11a)

ρ̇bb = γ1(ch2ρaa − sh2ρbb) + γ2(sh2ρcc − ch2ρbb)

+
√
γ1γ2M(ρac + ρca)

(4.11b)

ρ̇cc = γ2ch
2ρbb − γ2sh

2ρcc −
1

2

√
γ1γ2M(ρac + ρca) (4.11c)

<[ρ̇ac] = − 1

2
(γ1ch

2 + γ2sh
2)<[ρac]

− 1

2

√
γ1γ2M(ρaa − 2ρbb + ρcc)

(4.11d)
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<[eiδωtρ̇ba] = − 1

2

√
γ1γ2(M − 2sh2)sh<[eiδωtρbc]

− 1

2
((γ1 + γ2)ch2 + γ1sh

2 − γ1M)<[eiδωtρba]

(4.11e)

<[eiδωtρ̇bc] =
1

2

√
γ1γ2(2ch2 −M)<[(e−iδωtρab]

− 1

2
((γ1 + γ2)sh2 + γ2ch

2 − 2γ2M)<[eiδωtρbc]

(4.11f)

where < means real part, ch = cosh(r), sh = sinh(r), and γ1 = γab(γ2 = γbc) is the decay rate

from |a〉 to |b〉(|b〉 to |c〉) in ordinary vacuum due to the waveguide modes. Equations (4.11e) and

(4.11f) are for the off-diagonal elements ρab, ρbc. The steady state solution of these two equations

is ρab = ρbc = 0 because they are homogeneous linear equations. The first four equations Eqs.

(4.11a)-(4.11d) also have a steady state solution when they are combined with the normalization

condition ρaa + ρbb + ρcc = 1. It is also worth noting that Eqs. (4.11a)-(4.11d) are independent of

δω, so the difference between ωab and ωbc does not influence the steady state of the single atom case

as long as both ωab and ωbc are within the squeezing bandwidth. Thus, considering the minimum

uncertainty squeezed vacuum where M = cosh(r) sinh(r), the steady state solution is:

ρaa =
sh2γ2

ch2γ1 + sh2γ2

,

ρcc =
ch2γ1

ch2γ1 + sh2γ2

,

ρac = ρca = −
chsh

√
γ1γ2

ch2γ1 + sh2γ2

,

ρbb = ρba = ρbc = 0,

(4.12)

which is in fact a pure state of a superposition of |a〉 and |c〉.

|ψss〉 =
sh
√
γ2√

ch2γ1 + sh2γ2

|a〉 −
ch
√
γ1√

ch2γ1 + sh2γ2

|c〉. (4.13)

Since there is no population in the state |b〉, population inversion can always occur between states

|a〉 and |b〉 in the steady state. If tanh r >
√

γ1
γ2

, population inversion can also occur between the
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state |a〉 and |c〉. This result is similar to the result in Ref. [39]. However, in our scheme, the

population inversion can approach 100% with zero population in the ground state and the middile

state if γ2 � γ1. In comparision, the population inversion in the cavity case shown in Ref. [39] is

about of 78%.

The steady state population distribution for different ratios of γab
γbc

is shown in Fig. 4.4(a). The

mechanism of this population inversion can be interpreted with the help of Fig. 4.5. In Fig. 4.5 we

show that the direct transition between |a〉, |b〉, and |c〉 are allowed just like the thermal reservoir

case. However, in the squeezed vacuum, there are additional paths for the population flow: atom

in any of these three states can evolve into the other two through an intermediate “state" ρac.

Although ρac is an off-diagonal element rather than a state, it can be used to elucidate our idea.

When γab � γbc, the transition rate for the |a〉 → |b〉 transition is negligible compared to γbc and
√
γabγbc. Thus the atom in the state |c〉 can be excited to |a〉 through |c〉 → |b〉 → ρac → |a〉,

but |a〉 can not decay back to |c〉, which results in the population trapping in the level |a〉. This

phenomenon is similar to the coherent population trapping, but here we achieve the trapping for Ξ

structure with the squeezed vacuum reservoir, which cannot be realized with coherent pump due

to spontaneous emission. Since it is hard to achieve perfect squeezing with M =
√
N(N + 1) in

experiments, we also study the effect of different values of M on the steady state population with

parameters γab = 1
4
γbc and r = 1, which is shown in Fig. 4.4(b). In general, there is population

in all three energy levels. Although the steady state population distribution is very sensitive to the

value of M , the population inversion between |a〉 and |b〉 still holds for M = 0.8
√
N(N + 1).

Only when M is larger than 0.95 can the population inversion occur between the state |a〉 and the

state |c〉.

4.4 The steady state population inversion of multiple Ξ-type atoms by the squeezed vacuum

In the last section, we demonstrated that arbitrary population inversion can occur for a single

Ξ-type atom driven by the squeezed vacuum reservoir. However, with Eq. (4.12), this result can not

be simply generalized to the multi-atom case since γ′ijij =
√
γjγj cos[2k0zri], i.e., different atoms

have different γ′ijij for the usual case unless all the atoms are perioidically distributed with period
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Figure 4.4: (a) The steady state population distribution for different µab and µbc. The squeezing
parameter r = 1 and the squeezing is perfect (M =

√
N(N + 1)). (b) The steady state popu-

lation distribution for non-ideal squeezed vacuum which is characterized by the ratio of M and√
N(N + 1). The squeezing parameter r = 1, and γab = 1

4
γbc.
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Figure 4.5: The allowed population flow in the squeezed vacuum.

nλ/2. The squeezing term in Eq. (3.51) vanishes for atoms located around ri = π
4k0z

+ nπ
2k0z

. Thus,

for a group of randomly located atoms, if we want to achieve steady state population inversion in

the squeezed vacuum, we need to modify our scheme. Here we consider the following correlation

functions:

〈
a†k,sak′,s′

〉
= sinh2 rδk′kδss′〈

ak,sa
†
k′,s′

〉
= cosh2 rδk′kδss′〈

a†k,sa
†
k′,s′

〉
= −e−iθ cosh(r) sinh(r)δk′,−(2k0−k)δss′

〈ak,sak′,s′〉 = −eiθ cosh(r) sinh(r)δk′,−(2k0−k)δss′

(4.14)

which indicates that the photons are entangled with those from the opposite direction. In principle,

we can split the squeezed vacuum into two beams by a trianglar prism and inject them into opposite
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ends of the waveguide. Then the coefficients in the master equation shown in Eq. (3.51) become

γijkl =
√
γiγk cos(k0zrjl),

Λijkl =

√
γiγk

2
sin(k0zrjl),

γ′ijkl =
√
γiγk cos(k0zrjl).

(4.15)

We can see that γ′ijij is now independent of the atomic position because rjj = 0. The resulting

master equation is the traditionally studied master equation for atoms in squeezed reservoir [34].

The detailed derivation of these coefficients will be derived later. Based on the master equation in

Eq. (3.25) with coefficients given by above, we can show that a single atom can reach population

inversion anywhere in the waveguide. When there are multiple atoms in the waveguide where the

dipole-dipole interaction should be considered, our calculation shows that the population inversion

can still occur for all the atoms. In fact, it is very interesting that the final state of the multiple-atom

case is just the direct product of the steady state of independent atoms despite of the dipole-dipole

interaction. This result can be proved by the mathematical induction.

Considering the fact that |ω1 − ω2| � γi, it is reasonable to apply the secular approximation

on Eq. (3.51) such that those terms with e±i(ω1−ω2)t and e±i(2ωi−2ω0)t are dropped and the master

equation is then given by

dρS

dt
=− i

∑
i,k,j

Λijkl[S
+
i,jS

−
k.j, ρ

S]

− 1

2

∑
i,j,k

γijkl(1 +N)
(
{ρS, S+

i,jS
−
k,j} − 2S−k,jρ

SS+
i,j

)
− 1

2

∑
i,j,k

γijklN
(
{ρS, S−i,jS+

k,j} − 2S+
k,jρ

SS−i,j

)
− 1

2

∑
α=±

∑
i,k,j 6=l

γ′ijklM
(
{ρS, Sαi,jSαk,l} − 2Sαk,lρ

SSαi,j

)
(4.16)

In the following, we use mathemtics induction to prove that steady state of this system is direct

product of the steady state of a single atom. Assume that the steady state of N-atom system is ρS =
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Figure 4.6: (a) Fidelity evolution with different atomic separations. The atomic separations of
λ0, 0.1λ0, 0.2λ0 are plotted. Squeezing parameter r = 1, decay rate γ1

γ2
= 1

4
and time unit

τ = 1/
√
γabγbc is the geometric mean of the transition |a〉 → |b〉 and |b〉 → |c〉’s spontaneous

emission rates in ordinary vacuum. (b) Fidelity evolution with different squeezing parameters. De-
cay rate γ1

γ2
= 1

4
, and atomic separation r12 = λ0. (c) Fidelity evolution with different decay rates.

Squeezing parameter r = 1, and atomic separation r12 = λ0.
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ρ1ρ2...ρN where ρi = (A|ai〉+C|ci〉)(A〈ai|+C〈ci|) and A =
sh
√
γ2√

ch2γ1+sh2γ2
, C = − ch

√
γ1√

ch2γ1+sh2γ2
.

Then for (N + 1)-atom case, the extra terms induced by the (N + 1)th atom on the right hand side

of Eq. (4.16) are composed of three parts: i = k = N + 1 terms, i = N + 1, k = 1, 2, · · · , N

terms, and i = 1, 2, · · · , N, k = N + 1 terms. The i = k = N + 1 terms are the exact terms for

the the (N + 1)th atom as a single independent atom, so the net result of this term is 0. The terms

with i = N + 1, k = 1, 2, · · · , N are

− i
∑
j,k

ΛN+1,j,k,j[S
+
N+1,jS

−
k.j, ρ

S]

− 1

2

∑
j,k

γN+1,j,k,jch
2
(
{ρS, S+

N+1,jS
−
k,j} − 2S−k,jρ

SS+
N+1,j

)
− 1

2

∑
j,k

γN+1,j,k,jsh
2
(
{ρS, S−N+1,jS

+
k,j} − 2S+

k,jρ
SS−N+1,j

)
−
∑
α=±

∑
i,k,j 6=l

γ′N+1,j,k,j

M

2

(
{ρS, SαN+1,jS

α
k,l} − 2Sαk,lρ

SSαN+1,j

)
.

(4.17)

For the energy shift term (the first term) in expression (5.12), we have

S+
N+1,jS

−
k.jρ

S = ρ1...(S
−
k.jρk)...ρN(S+

N+1,jρN+1) = 0

ρSS+
N+1,jS

−
k.l = ρ1...(ρkS

−
k.l)...ρN(ρN+1S

+
N+1,j) = 0

(4.18)
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For the thermal terms (the second and third terms) in expression (5.12), we have

ρSS+
N+1,jS

−
k,j =S+

N+1,jS
−
k,jρ

S = 0

ρSS−N+1,jS
+
k,j =S−N+1,jS

+
k,jρ

S = 0

S−k,jρ
SS+

N+1,j =ρ1...(S
−
k.jρk)...ρN(ρN+1S

+
N+1,j)

=ρ1...(S
−
k.1ρk)...ρN(ρN+1S

+
N+1,1)

=ρ1...(A|bk〉)(A〈ak|+ C〈ck|)..ρN

⊗ (A|aN+1〉+ C|cN+1〉)(A〈bN+1|)

S+
k,jρ

SS−N+1,j =ρ1...(S
+
k.jρk)...ρN(ρN+1S

−
N+1,j)

=ρ1...(S
+
k.2ρk)...ρN(ρN+1S

−
N+1,2)

=ρ1...(C|bk〉)(A〈ak|+ C〈ck|)...ρN

⊗ (A|aN+1〉+ C|cN+1〉)(C〈bN+1|)

(4.19)

For the squeezed vacuum terms(the fourth term), we have

ρSSαN+1,jS
α
k,l = SαN+1,jS

α
k,lρ

S = 0

S+
k,1ρ

SS+
N+1,2 = ρ1...(S

+
k,1ρk)...ρN(ρN+1S

+
N+1,2) = 0

S+
k,2ρ

SS+
N+1,1 = ρ1...(S

+
k,2ρk)...ρN(ρN+1S

+
N+1,1)

= ρ1...(C|bk〉)(A〈ak|+ C〈ck|)...ρN

⊗ (A|aN+1〉+ C|cN+1〉)(A〈bN+1|),

S−k,1ρ
SS−N+1,2 = ρ1...(S

−
k,1ρk)...ρN(ρN+1S

−
N+1,2)

= ρ1...(A|bk〉)(A〈ak|+ C〈ck|)...ρN

⊗ (A|aN+1〉+ C|cN+1〉)(C〈bN+1|)

S−k,2ρ
SS−N+1,1 = ρ1...(S

−
k,2ρk)...ρN(ρN+1S

−
N+1,1) = 0

(4.20)
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On substituting from Eqs. (5.13)-(5.15) into expression (5.12), we have

∑
k

γN+1,1,k,1(ch2)S−k,1ρ
SS+

N+1,1 +
∑
j,k

γN+1,2,k,2sh
2S+

k,2ρ
SS−N+1,2

+
∑
α=±

∑
i,k,j 6=l

γ′N+1,j,k,lchshS
α
k,lρ

SSαN+1,j

=
∑
k

γN+1,1,k,1(ch2)ρ1...(A|bk〉)(A〈ak|+ C〈ck|)..ρN(A|aN+1〉+ C|cN+1〉)(A〈bN+1|)

+
∑
k

γN+1,2,k,2sh
2ρ1...(C|bk〉)(A〈ak|+ C〈ck|)...ρN(A|aN+1〉+ C|cN+1〉)(C〈bN+1|)

+
∑
k

γ′N+1,j,k,lchsh[ρ1...(C|bk〉)(A〈ak|+ C〈ck|)...ρN(A|aN+1〉+ C|cN+1〉)(A〈bN+1|)

+ ρ1...(A|bk〉)(A〈ak|+ C〈ck|)...ρN(A|aN+1〉+ C|cN+1〉)(C〈bN+1|)]

=
∑
k

(γN+1,1,k,1ch
2A2 + γN+1,2,k,2sh

2C2 + 2γ′N+1,j,k,lchshCA)

× ρ1...(|bk〉)(A〈ak|+ C〈ck|)..ρN(A|aN+1〉+ C|cN+1〉)(〈bN+1|).

(4.21)

It is not difficutlt to prove that ch2A2γN+1,1,k,1 + sh2C2γN+1,2,k,2 + 2chshCAγ′N+1,j,k,l = 0 by

substituting the expressions of A, B, C. Hence, the extra terms with the atom index i = N + 1

and k = 1 ∼ N when we add the N + 1th atom are 0. Similarly, the terms with i = 1 ∼ N and

k = N + 1 also vanish. Thus, we prove that the right hand side of Eq. (4.16) is zero when the state

of the system is direct product of the steady state of single atom. This indicates that direct product

of the steady state of single atom is the steady state of the multiple atoms driven by the squeezed

vacuum. It is interesting to note that while introducing the dipole-dipole interaction between the

atoms affects the evolution of the system, the final steady state still remains unaffected. Therefore,

for multiple atoms, a population inversion of almost 100% can also be achieved even the dipole-

dipole interaction is considered, under the condition that the dipole direction for all atoms are

properly oriented to satisfy γab � γbc. Actually, in the normal squeezed vacuum with correlation

shown in Eq. (2.40), the steady state of the atoms can also be direct product of the steady state of

a single atom if all the atoms are in the nodes of the standing wave.

To verify the above proof, we will do the numerical simulation to show that the steady state
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of multiple atoms is indeed the direct product of steady state of single atom. Since the cost for

numerical simulation increases exponentially as the number of atoms increases, we only show the

fidelity of two-atom state with respect to theoretical steady state as a function of time in Fig. 4.6,

where the system is initially in the ground state. From Fig. 4.6(a), we can see that different atom

separations have different evolution dynamics because they have different dipole-dipole interac-

tions. However, we can see that the system finally evolves into the following equation regardless

of the atomic separation, squeezing parameter, and the ratio of decay rate γab/γbc:

|ψss〉 =
( sh

√
γ2√

ch2γ1 + sh2γ2

|a1〉 −
ch
√
γ1√

ch2γ1 + sh2γ2

|c1〉
)

⊗
( sh

√
γ2√

ch2γ1 + sh2γ2

|a2〉 −
ch
√
γ1√

ch2γ1 + sh2γ2

|c2〉
) (4.22)

From Fig. 4.6(b), we see that the system takes less time to evolve into the steady state for a smaller

squeezing parameter. Fig. 4.6(c) shows that while smaller γab results in higher population inver-

sion, it takes much longer for the system to evolve into the steady state.
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5. CAVITY-CAVITY INTERACTION IN THE SQUEEZED VACUUM

In the previous sections, we studied the interactions between the squeezed vacuum and atoms,

or fermions with discrete energy levels. In this section, we study the interactions between the

squeezed vacuum and the harmonic oscillators, or bosons with continuous energy levels. A practi-

cal model is a leaky cavity, where the modes inside and outside the cavity are essentially harmonic

oscillators, and their coupling can be described by the Q factor[30].

5.1 General master equation of cavity-cavity interaction

In this section, we will derive the master equation for two single-mode leaky cavities placed

inside the waveguide with the squeezed vacuum injected from both ends. The schematic setup

is shown in Fig. 5.1. Then we will study how the modes inside the cavity will evolve under the

influence of the squeezed vacuum. The free Hamiltonian of cavity and waveguide modes is:

H0 =
∑
i

~ωi(a†iai +
1

2
) + ~

∑
k,s

ωk(a
†
k,sak,s +

1

2
) (5.1)

where ak stands for the modes in the waveguide and ai is the field operator of the single mode inside

ith the cavity. The waveguide is saturated with the squeezed vacuum with the center frequency ω0.

The interaction Hamiltonian between the cavity mode and waveguide modes is:

V = −i~
∑
ks

[Daks −D+a†ks] (5.2)

where

D =
∑
i

[g∗i,k,sa
†
i + gi,k,sai] (5.3)
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Here we define gi,k,s = |gi,k,s|e−ikzri where ri is just a phenomenological parameter describing the

location of cavity. The reduced master equation of atoms in the reservoir is[30]

dρS

dt
=− 1

~2

∫ t

0

dτTrF{[V (t), [V (t− τ), ρS(t− τ)ρF}

=− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF + ρS(t− τ)ρFV (t− τ)V (t)

− V (t)ρS(t− τ)ρFV (t− τ)− V (t− τ)ρS(t− τ)ρFV (t)}.

(5.4)

Here we just show how to deal with the first term in Eq.(5.4), the remaining terms can be calculated

in the same way. For the first term, we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=

∫ t

0

dτ
∑

ks,k′s′

{D(t)D(t− τ)TrF [ρFaks(t)ak′s′(t− τ)]−D(t)D+(t− τ)TrF [ρFaks(t)a
†
k′s′(t− τ)]

−D+(t)D(t− τ)TrF [ρFa†ks(t)ak′s′(t− τ)] +D+(t)D+(t− τ)TrF [ρFa†ks(t)a
†
k′s′(t− τ)]}ρS(t− τ)}.

(5.5)

Under the rotating wave approximation(RWA), we have

− 1

~2

∫ t

0

dτTrF{V (t)V (t− τ)ρS(t− τ)ρF}

=
∑
ij

∑
ks,k′s′

∫ t

0

dτ{g∗i,k,sa
†
ie
iωitg∗j,k′,s′a

†
je
iωj(t−τ)e−i(ωks+ωk′s′ )t+iωk′s′τ [− sinh(r) cosh(r)δk′,2k0−kδss′ ]

− g∗i,k,sa
†
ie
iωitgj,k′,s′aje

−iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− gi,k,saie−iωitg∗j,k′,s′a
†
je
iωj(t−τ)e−iωk′s′τ cosh2 rδkk′δss′

− gi,k,saie−iωitg∗j,k′,s′a
†
je
iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

− g∗i,k,sa
†
ie
iωitgj,k′,s′aje

−iωj(t−τ)eiωk′s′τ sinh2 rδkk′δss′

+ gi,k,saie
−iωitgj,k′,s′aje

−iωj(t−τ)ei(ωks+ωk′s′ )t−iωk′s′τ [− sinh(r) cosh(r)δk′,2k0−kδss′ ]}ρS(t− τ)

(5.6)
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Here we just calculate the first and second term to show how to get the master equation. For the

second term, we have

−
∑
kz

∫ t

0

dτg∗i,k,sa
†
ie
iωitgj,k′,s′aje

−iωj(t−τ)e−iωk′s′τ cosh2 rρS(t− τ)δkk′δss′

=− L

2π
ei(ωi−ωj)t

∫ ∞
−∞

dkz

∫ t

0

dτeiωjτe−iωkz τ |gi,k,sgj,k,s|

× eikz(ri−rj) cosh2 ra†iajρ
S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
0

dkz

∫ t

0

dτeiωjτe−i[ωj+c
2kjz(kz−kjz)/ωj ]τ |gi,k,sgj,k,s|

× [eikz(ri−rj) + e−ikz(ri−rj)] cosh2 ra†iajρ
S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
−k0z

dδkz

∫ t

0

dτe−iτc
2kjzδkz/ωj |gi,k,sgj,k,s|

× [ei(kjz+δkz)(ri−rj) + e−i(kjz+δkz)(ri−rj)] cosh2 ra†iajρ
S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ ∞
−∞

dδkz

∫ t

0

dτe−i(c
2kjzδkz/ωj)τ |gi,k,sgj,k,s|

× [ei(kjz+δkz)(ri−rj) + e−i(kjz+δkz)(ri−rj)] cosh2 ra†iajρ
S(t− τ)

≈− L

2π
ei(ωi−ωj)t

∫ t

0

dτ |gi,k,sgj,k,s|2π[eikjz(ri−rj)δ((ri − rj)−
c2kjz
ω0

τ)

+ e−ikjz(ri−rj)δ((ri − rj) +
c2kjz
ω0

τ)] cosh2 ra†iajρ
S(t− τ)

≈− L

2π
eikjzrij |gi,k,sgj,k,s|2π

ωj
c2k0z

cosh2 ra†iajρ
S(t)ei(ωi−ωj)t

≈− [

√
γiγj

2
cos(k0zrij) + i

√
γiγj

2
sin(k0zrij)] cosh2 ra†iajρ

S(t)ei(ωi−ωj)t

≡− (

√
γiγj

2
+ iΛij) cosh2 ra†iajρ

S(t)ei(ωi−ωj)t

(5.7)

where rij = |ri−rj| is also a phenomenological parameter indicating the relative position between

cavities. γi = L|gi,k0 |2 is the leaking rate for the ith cavity, and Λij =
√
γiγj sin(k0zrij)/2 is the

energy shift. In the third line we expand ωk = c
√

(π
a
)2 + (kz)2 around kz = k0z since resonant

modes provide dominant contributions. In the fifth line we extend the integration
∫∞
−k0z dkz →∫∞

−∞ dkz because the main contribution comes from the components around δkz = 0. In the next

line, Weisskopf-Wigner approximation is used.
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Next we need to calculate the first term (squeezing term) in Eq.(5.6):

ei(ωi+ωj−2ω0)t
∑
kz

∫ t

0

dτ{g∗i,2k0−ka
†
ig
∗
j,ka

†
je
i(ωk−ωj)τ [− sinh(r) cosh(r)]ρS(t− τ)

=− L

2π
ei(ωi+ωj−2ω0)t

∫ 2k0z

0

dkz

∫ t

0

dτei(ωkz−ωj)τei(2kiz−kz)(ri−o1)eikz(rj−o1)

× |gi,2k0−kgj,k| sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

− L

2π
ei(ωi+ωj−2ω0)t

∫ 0

−2k0z

dkz

∫ t

0

dτei(ωkz−ωj)τei(−2kiz−kz)(ri−o2)eikz(rj−o2)

× |gi,2k0−kgj,k| sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

(5.8)

Putting the overall factor ei(ωi+ωj−2ω0)t aside, for i = j, Eq.(5.8) reduces to

∑
kz

∫ t

0

dτ{g∗i,2k0−ka
†
ig
∗
i,ka

†
ie
i(ωk−ωi)τ [− sinh(r) cosh(r)]ρS(t− τ)

= − L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2kiz
ωi

(kz−kiz)τ
ei2k0z(ri−o1)|gi,2k0−kgi,k| sinh(r) cosh(r)a†ia

†
iρ
S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2kiz
ωi

(kz−kiz)τ
e−i2k0z(ri−o2)|gi,2k0−kgi,k| sinh(r) cosh(r)a†ia

†
iρ
S(t− τ)

= − L

2π
[ei2k0z(ri−o1) + e−i2k0z(ri−o2)]|gi,2k0−kgi,k|

∫ t

0

dτ2πδ(
c2kiz
ωi

τ) sinh(r) cosh(r)a†ia
†
iρ
S(t− τ)

= −ei2k0zRγi
2

cos(2k0zri) sinh(r) cosh(r)a†ia
†
iρ
S(t)

(5.9)

where we have used the fact that the origin of coordinate system is at equal distance from two

sources(i.e., o2 = −o1 = R) in the second last line. Thus, we have γ′ii = γi cos(2k0zri). For
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ri 6= rj , Eq. (5.8) reduces to

∑
kz

∫ t

0

dτ{gi,2k0−ka
†
igj,ka

†
je
i(ωk−ωj)τ [− sinh(r) cosh(r)]ρS(t− τ)

=− L

2π

∫ 2k0z

0

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

ei2k0z(rc−o1)e−i(kz−k0z)(ri−rj)

× |gi,2k0−kgj,k| sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

− L

2π

∫ 0

−2k0z

dkz

∫ t

0

dτe
i
c2kjz

ωj
(−kz−kjz)τ

e−i2k0z(rc−o2)e−i(kz+k0z)(ri−rj)

× |gi,2k0−kgj,k| sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

=− L

2π
ei2k0z(rc−o1)|gi,2k0−kgj,k|

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

× e−i(kz−k0z)(ri−rj) sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

− L

2π
e−i2k0z(rc−o2)|gi,2k0−kgj,k|

∫ ∞
−∞

dkz

∫ t

0

dτe
i
c2kjz

ωj
(kz−kjz)τ

× ei(kz−k0z)(ri−rj) sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

≈− L

2π
ei2k0zR|gi,2k0−kgj,k|

∫ t

0

dτ2π[ei2k0zrcδ(ri − rj −
c2k0z

ω0

τ)

+ e−i2k0zrcδ(ri − rj +
c2k0z

ω0

τ)] sinh(r) cosh(r)a†ia
†
jρ
S(t− τ)

≈− ei2k0zRL|gi,k0gj,k0 |ei2k0zrcsgn(i−j)a†ia
†
jρ
S(t)

→−
√
γiγj

2
ei2k0zR cos(k0z(ri + rj))a

†
ia
†
jρ
S(t)

(5.10)

where sgn(i − j) is the sign function. The last arrow is because we need to sum over i, j, so the

imaginary part of ei2k0zrcsgn(i−j) vanishes and the neat result is that γ′ij = ei2k0zR
√
γiγj cos(k0z(ri+

rj)). As for a†iρ
S(t)a†j terms, the combination of the last two terms in Eq.(5.4) will make the

imaginary part of ei2k0zrcsgn(i−j) vanish. Thus, we have γ′ij = ei2k0zR
√
γiγj cos(k0z(ri + rj)).

Doing the above calculation for all terms in Eq.(5.4), we have the general equation for cavity-
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Figure 5.1: (a) Schematic setup: two single-mode cavities are placed inside the waveguide with
the broadband squeezed vacuum incident from both ends.

cavity interaction in the squeezed vacuum as follows:

ρ̇ =
∑
ij

γij cosh2 r(−ρa†iaj − a
†
iajρ+ 2aiρa

†
j)e

i(ωi−ωj)t

+
∑
ij

γij sinh2 r(−ρaia†j − aia
†
jρ+ 2a†iρaj)e

−i(ωi−ωj)t

+
∑
ij

γij cosh r sinh r[(eiθρaiaj + eiθaiajρ− eiθ2aiρaj)e−i(ωi+ωj)t +H.c.]

(5.11)

5.2 Steady state of non-resonant cavities

First, we study two non-resonant cavities coupled to the squeezed vacuum reservoir. The eigen

frequencies of these two cavities are ω1 = ω0 − δω and ω2 = ω0 + δω. Under the rotating wave

approximation(RWA), Eq.(5.11) becomes:

ρ̇ =
∑
i

γ(1 +N)(−ρa†iai − a
†
iaiρ+ 2aiρa

†
i )

+
∑
i

γN(−ρaia†i − aia
†
iρ+ 2a†iρai)

+
∑
i 6=j

γM(eiθρaiaj + eiθaiajρ− 2eiθaiρaj + h.c.)

(5.12)
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where we have assumed γij = γ for simplicity. The above equation can be re-arranged as:

ρ̇ =
∑
i 6=j

γ

2
[−ρ(cosh(r)a†i − eiθ sinh(r)aj)(cosh(r)ai − e−iθ sinh(r)a†j)

− (cosh(r)a†i − eiθ sinh(r)aj)(cosh(r)ai − e−iθ sinh(r)a†j)ρ

+ 2(cosh(r)ai − e−iθ sinh(r)a†j)ρ(cosh(r)a†i − eiθ sinh(r)aj)]

(5.13)

we use the following Bogoliubov transformation[58]:

S = exp(η?aiaj − ηa†ia
†
j)

Ai = S+aiS = cosh(r)ai − e−iθ sinh(r)a†j

A+
i = S+a+

i S = cosh(r)a+
i − eiθ sinh(r)aj

(5.14)

so the master equation Eq.(5.13) becomes:

ρ̇ =
∑
i

γ[−ρA†iAi − A
†
iAiρ+ 2AiρA

†
i ] (5.15)

Next we redefine the density matrix: ρs = SρS†. Thus Eq.(5.15) becomes:

ρ̇s =
∑
i

γ[−ρsa†iai − a
†
iaiρs + 2aiρsa

†
i ]

≡
∑
i

γ[−al†i aliρs − a
r†
i a

r
iρs + 2aria

l†
i ρs] ≡ Lρs

(5.16)

Here we define superoperator {ali, a
l†
i }({ari , al†r } ) only acting to the left(right) on density operator

ρ [59, 60]. These operators have the following commutation relations:

[ari , a
r†
j ] = δij, [ali, a

l†
j ] = −δij, [ali, a

r†
j ] = [ali, a

r
j ] = [al†i , a

r
j ] = [al†i , a

r†
j ] = 0 (5.17)

Thus, the steady state of Eq.(5.16) can be solved by solving Lρ = 0, which requires the diagno-

lization of superoperator L. Applying the similarity transformation U = e−a
r
1a
l†
1 −ar2a

l†
2 to Eq.(5.16)
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, since we have U−1(ar†i , a
l
i, a

r
i , a

l†
i )U = (ar†i +al†i , a

r
i +ali, a

r
i , a

l†
i ), the right hand side of Eq.(5.16)

becomes:

RHS =
∑
i

γU−1[−al†i ali − a
r†
i a

r
i + 2aria

l†
i ]UU−1ρs =

∑
i

γ[−al†i ali − a
r†
i a

r
i ]U

−1ρs (5.18)

The only solution toLρ = 0 isU−1ρs = |0, 0〉〈0, 0|, which yields ρ = S†ρSS = S†e−K−1−K−2|0, 0〉〈0, 0|S =

S†|0, 0〉〈0, 0|S which is the two mode squeezed vacuum.

5.3 Steady state of resonant cavities

Next we study the case where two cavities are identical, i.e., ω1 = ω2 = ω0. Then the master

equation becomes:

ρ̇ =
∑
ij

γ cosh2 r(−ρa†iaj − a
†
iajρ+ 2ajρa

†
i )

+
∑
ij

γ sinh2 r(−ρaia†j − aia
†
jρ+ 2a†jρai)

+
∑
ij

γ cosh r sinh r(eiθρaiaj + eiθaiajρ− eiθ2aiρaj + h.c.)

(5.19)

This equation can be rearranged as follows:

ρ̇ =
∑
ij

γ[−ρ(cosh ra†i − eiθ sinh rai)(cosh raj − e−iθ sinh ra†j)

− (cosh ra†i − eiθ sinh rai)(cosh raj − e−iθ sinh ra†j)ρ

+ 2(cosh raj − e−iθ sinh ra†j)ρ(cosh ra†i − eiθ sinh rai)]

(5.20)

We introduce the Bogoliubov transformation:

Si = exp(
1

2
η?a2

i −
1

2
ηa†2i )

Ai = S+
i aiSi = cosh(r)ai − e−iθ sinh(r)a†i

A+
i = S+

i a
+
i Si = cosh(r)a+

i − eiθ sinh(r)ai

(5.21)
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so master equation Eq.(5.20) becomes

ρ̇ =
∑
ij

γ[−ρA†iAj − A
†
iAjρ+ 2AjρA

†
i ] (5.22)

Next we define ρs = S1S2
˙ρS+

1 S
+
2 so the master equation is reduced to:

ρ̇s =
∑
ij

γ[−ρsa†iaj − a
†
iajρs + 2ajρsa

†
i ] (5.23)

To diagnolize this Lindblad equation, we introduce the transformation:

L1

L2

=
1√
2
(a1 − a2)

1√
2
(a1 + a2)

where [Li, L
†
j] = δij , and the master equation becomes:

ρ̇s = γ[−2ρsL
†
2L2 − 2L†2L2ρs + 4L2ρsL

†
2]

= γ[−2Lr†2 L
r
2ρs − 2Ll†2 L

l
2ρs + 4Ll2L

r†
2 ρs]

= Lρ

(5.24)

Operator L†2 has the following properties:

L†2|0〉 =
1√
2

(|01〉+ |10〉) ≡ |1L2〉

L†2
1√
2

(|01〉+ |10〉) =
√

2[
1

2
(|02〉+

√
2|11〉+ |20〉)] =

√
2|2L2〉

L†2
1

2
(|02〉+

√
2|11〉+ |20〉) =

√
3[

1

2
√

2
(|03〉+

√
3|12〉+

√
3|21〉+ |30〉)] =

√
3|3L2〉

...
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while the operator L†1 has the following properties:

L†1|0〉 =
1√
2

(−|01〉+ |10〉) ≡ |1L1〉

L†1
1√
2

(−|01〉+ |10〉) =
√

2[
1

2
(|02〉 −

√
2|11〉+ |20〉)] =

√
2|2L1〉

L†1
1

2
(|02〉 −

√
2|11〉+ |20〉) =

√
3[

1

2
√

2
(−|03〉+

√
3|12〉 −

√
3|21〉+ |30〉)] =

√
3|3L1〉

...

Thus, L1 and L2 is just another representation of a1 and a2. Then we use the similarity transfor-

mation: U = e−L
r
2L

l†
2 , which yields U−1(Lr†2 , L

l
2, L

l†
2 , L

r
2)U = (Lr†2 + Ll†2 , L

l
2 + Lr2, L

l†
2 , L

r
2). Thus,

the master equation Eq.(5.25) becomes:

RHS = γU−1[−Ll†2 Ll2 − L
r†
2 L

r
2 + 2Lr2L

l†
2 ]UU−1ρs = γ[−Ll†2 Ll2 − L

r†
2 L

r
2]U−1ρs (5.25)

The solutions to the steady state are ρs = e−L
r
2L

l†
2 |0L2mL1〉〈0L2nL1| = |mL1〉〈nL1| which yields

ρ = S+
1 S

+
2

1√
m!

(
a†1−a

†
2√

2
)m|0〉〈0| 1√

n!
(a1−a2√

2
)nS1S2. This solution degenerates to the single mode

squzeed vacuum in two modes whenm = n = 0. Generally, an initial state ρ(0) =
∑

mnpq Cmnpq|mn〉〈pq| =∑
mnpq C

′
mnpq|mL1pL2〉〈nL1qL2|will evolve into

∑
mnGmn|mL1〉〈nL1|whereGmn =

∑
mnpC

′
mnpp.

Therefore, we have shown that the entangled modes in the squeezed vacuum can be physically

separated by the resonant cavities, without any loss of entanglement between them.

78



6. SUMMARY AND CONCLUSIONS1

In this dissertation, we systematically studied the interactions between the squeezed vacuum

and the atoms. We challenged the traditional reservoir theory which fails to consider the effect of

the squeezing source. We put forward a new reservoir theory by modifying the mode function of the

electromagnetic fields, which includes the position information of the squeezing source. Then we

derived a master equation of the atomic dynamics based on the Weisskopf-Wigner approximation.

In our formalism, the density matrix is naturally positive-definite. We then apply this theory to the

1D waveguide-QED system where the squeezing in one direction is experimentally achievable. We

show that the enhancement and suppression of the dephasing rate caused by the squeezed vacuum

is actually dependent its position in the waveguide. In single-atom case, the squeezing does not

affect its population dynamics. However, in multi-atom case, the squeezing can strongly affect the

population dynamics of the system because two-photon absorption and emission are allowed in

multi-atom system. We also show that dipole-dipole interaction influences dephasing rate and we

can tune the position of the squeezing source to tune the dephasing rate of the system. Moreover,

we show that stationary entangled state can be achieved in this system independent of the initial

state and the emitter separation. Particularly, when the center of mass is close to nλ0z/4 and

the squeezing is large, the system can be prepared in GHZ state. Moreover, we study the power

spectrum of the resonance fluorescence. It is demonstrated that the phase of the squeezed vacuum,

emitter separation, and the center-of-mass position can affect the bandwidth and the intensity of

the sidebands.

We further generalized our theory to arbitrary atomic structures. We studied the Ξ-type atoms

coupled to a broadband squeezed vacuum reservoir in a quasi-one-dimensional waveguide, with

the overall transition frequency ωac = 2ω0. We showed that a single atom evolves into a steady

1Part of this section is reprinted with permission from: “Waveguide QED in the Squeezed Vacuum” by Jieyu You
et al, 2018. Physical Review A, 97, 023810, Copyright 2018 by the American Physical Society and “Steady-state
population inversion of multiple Ks-type atoms by the squeezed vacuum in a waveguide” by Jieyu You, Zeyang Liao,
and M. Suhail Zubairy, 2019. Physical Review A, 100, 013843, Copyright 2019 by the American Physical Society.
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state which is a superposition of the second excited state and the ground state. If the decay rate

from the second excited state to the first excited state is much smaller than that from the first excited

state to the ground state, the population can be almost 100% trapped in the second excited state,

which is a great improvement compared to the maximum ratio of 78% in Ref. [39]. What is more,

we proved that the above result can be generalized to an arbitrary number of atoms interacting

with each other via dipole-dipole interaction, and the system’s final steady state is a direct product

of that in the single-atom case with modified squeezed vacuum shown in Eq. (4.14). This is one

of the most interesting results here and its physical insight still needs further studies. We also

argued that the arbitrary ratio of the two transitions’ decay rates can be effectively controlled by

different waveguide structure. This population-inversed system is experimentally feasible since

the experiments on the broadband squeezed vacuum coupled to the artificial atom in a 1D cavity

have been widely conducted[26, 28, 29, 61, 62, 63].
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