
WORKLOAD CHARACTERIZATION FOR BRANCH PREDICTION

A Thesis

by

 VIKAS

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Paul V. Gratz
Co-Chair of Committee, Daniel A. Jiménez
Committee Member, Pierce E. Cantrell
Head of Department, Miroslav M. Begovic

May 2020

Major Subject: Computer Engineering

Copyright 2020 Vikas

ABSTRACT

Branch prediction is a method adopted in modern processors that tries to infer the outcome of

a conditional branch instruction and prepare for the most probable result. An accurate predictor

reduces the number of instructions executed on the incorrect path in modern superscalar out-of-

order pipelined processors, which results in an overall improvement of performance and energy

consumption. Thus, branch prediction has become a vital component in all modern CPU designs.

Predicting a branch’s direction is a pattern recognition problem where we learn mappings from a

context to the branch outcome. The branch prediction model is typically trained against the context,

and then the outcome is reproduced when the same context is presented again in the future.

We present a workload characterization methodology for the branch prediction. We have pro-

posed two new trace-level branch prediction accuracy identifiers - branch working set size and

branch predictability. These parameters are highly correlated with branch misprediction rates of

two state-of-art branch prediction techniques - Andre Seznec’s TAgged GEometric length predictor

(TAGE) [1, 2] and Daniel Jiménez’s multiperspective perceptron branch predictor [3, 4]. We have

defined the branch working set as the most frequently occurring branch context present in a trace

and analyzed its size and predictability to find strong correlations with the modern branch predic-

tor’s accuracy. We present this analysis in multiple configurations with varying lengths of branch

histories and branch working set threshold to find a sweet spot for the workload characterization.

We have characterized 2451 workload traces in 7 branch working set size based and 9 pre-

dictability based categories after analyzing their branch behavior. We present insights on the source

of prediction accuracies and favored workload categories for modern branch predictors. We show

that the winner of the Championship Branch Prediction competition [CBP5] [2] outperforms the

runner-up design [4] in almost all the workload categories except a few having a smaller working

set or low inherent predictability, where the runner up design seems to be a better choice.

ii

DEDICATION

To my family and my friends.

iii

ACKNOWLEDGEMENTS

I would like to extend my most profound gratefulness to my advisors - Dr. Paul V. Gratz and

Dr. Daniel A. Jiménez. It was a privilege to work with two of the brightest minds in the area

of computer architecture. Dr. Jiménez’s guidance in understanding the behavior of branches and

identifying major analysis points was instrumental in the completion of the work in its present

form. Dr. Gratz’s patience, guidance, and support was unwavering and kept me going throughout

my master’s journey. I value the weekly technical discussions with my advisors, which helped me

define the context of my work along with the understanding of the results and trends. I would also

like to thank Dr. Pierce Cantrell for agreeing to be on my committee and providing me valuable

feedback on my work and its documentation.

A special thanks to all the members of the CAMSIN research group; they all were terrific

colleagues to work with, and I always enjoyed the technical discussions that happened.

I would also like to acknowledge my close friends - Paras, Anirudh, Sanat, Sidhant, Rohan,

Akshay, Saloni, and Pooja, for being there for my graduate student journey and giving me support

and encouragement. I am eternally grateful to my parents and sister for always being there as

pillars of moral support.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis (or) dissertation committee consisting of Prof. Paul V.

Gratz (ECEN Department) and Prof. Daniel A. Jiménez (CSCE Department) as the co-advisors

and Prof. Pierce A. Cantrell (ECEN Department) as the committe member.

All the work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was partly supported by merit based scholarship from the ECEN Department

at Texas A&M University.

v

NOMENCLATURE

ARM Advanced RISC machine

BA Branch Address

BHR Branch History Register

BP Branch Predictor

BWSET Branch Working Set

CAMSIN Computer Architecture, Memory Systems and Interconnec-
tion Networks

CBP Championship Branch Prediction Competition

CPU Central Processing Unit

CVP Championship Value Prediction Competition

GEHL Geormtric History Length

GHR Global History Register

NT Not Taken

PC Program Counter

PHT Pattern History Table

RISC Reduced Instruction Set Computer

T Taken

TAGE TAgged GEometric length predictor

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION AND MOTIVATION . 1

1.1 Thesis Statement . 3
1.2 Document Organization. 3

2. BACKGROUND AND RELATED WORK . 4

2.1 Branch prediction fundamentals . 4
2.2 Dynamic branch prediction techniques . 5

2.2.1 Two-level predictor organization . 6
2.2.2 Single-level predictor organization . 8
2.2.3 Exploiting bias in branches . 10
2.2.4 Path Based Predictor . 11
2.2.5 Tagged geometric history length predictior . 11
2.2.6 Perceptron branch predictors. 13

2.3 Characterizing branch behavior . 18
2.3.1 Taken Rate . 18
2.3.2 Transition Rate . 19
2.3.3 Branch Entropy . 19
2.3.4 Markov Predictor . 20
2.3.5 Linear Branch Entropy . 20

3. WORKLOAD CHARACTERIZATION FOR BRANCH PREDICTION. 22

vii

3.1 Branch Working Set [BWSET] . 23
3.1.1 PC based branch working set . 24
3.1.2 Tuple based branch working set . 25

3.2 Predictability in the branch working set . 26
3.3 Characterization based on branch working set’s size . 27
3.4 Characterization based on predictability in branch working set. 28
3.5 Comparing TAGE vs. Perceptron branch prediction . 29

4. METHODOLOGY AND RESULTS . 30

4.1 Workloads . 30
4.2 Analysis Framework . 31
4.3 Results and Analysis . 35

4.3.1 BWSET based on branch PCs . 35
4.3.1.1 Trace Categorization . 35
4.3.1.2 Miss Rate vs. Branch Working Set Size. 38
4.3.1.3 Predictability in Branch Working Set . 40

4.3.2 BWSET based on branch tuples . 40
4.3.2.1 Trace categorization based on branch working set. 41
4.3.2.2 Miss Rate vs. Branch Working Set Size. 43
4.3.2.3 Predicability in Branch Working Set Bins . 45
4.3.2.4 Trace categorizations based on branch predictability 46

4.3.3 TAGE vs Perceptron . 50
4.3.3.1 Original Application group bins . 51
4.3.3.2 BWSET bins . 52
4.3.3.3 Predictability bins . 53

5. CONCLUSIONS . 55

5.1 Conclusion. 55
5.2 Future Work . 56

REFERENCES . 57

viii

LIST OF FIGURES

FIGURE Page

2.1 Program control flow and misprediction penalty in a modern processor pipeline 5

2.2 Two-level branch predictor organizations - GAg, PAg, and PAp . 6

2.3 Alloyed index branch predictor with concurrent access to BHT and PHT 8

2.4 Gshare branch predictor . 8

2.5 Gskewed branch predictor . 9

2.6 Bi-mode branch predictor. 10

2.7 TAgged GEometric history length predictor [TAGE] . 12

2.8 Perceptron learning . 13

2.9 Dynamic branch prediction using perceptrons. 15

2.10 Variations of perceptron branch predictor. 16

2.11 Multiperspective perceptron branch predictor . 18

3.1 Branch PC based working set definition . 24

3.2 Tuple based working set definition . 26

4.1 Workload characterization and analysis framework - based on branch working set
and predictability . 32

4.2 Trace distribution based on BWSET of branch PCs . 37

4.3 Multiperspective perceptron branch predictor : MPKB vs BWSET based on Branch
PCs . 39

4.4 TAGE : MPKB vs BWSET based on Branch PCs . 39

4.5 Predictability in branch PC based working set . 40

4.6 Trace distribution based on BWSET of branch PCs . 43

4.7 Multiperspective perceptron branch predictor: MPKB vs. BWSET based on Tuples 44

ix

4.8 TAGE: MPKB vs. BWSET based on Tuples . 44

4.9 Predictability in tuple based working set . 46

4.10 Trace distribution based on Predictability in BWSET. 48

4.11 Multiperspective perceptron branch predictor: MPKB vs. Predictability in BWSET 49

4.12 TAGE: MPKB vs. Predictability in BWSET . 49

4.13 Comparison of 64KB TAGE and Perceptron predictors on original CBP+CVP trace
categorization. 52

4.14 Comparison of 64KB TAGE and Perceptron predictors for workloads categorized
in BWSET bins . 52

4.15 Comparison of 64KB TAGE and Perceptron predictors for workloads categorized
in Predictability bins . 54

x

LIST OF TABLES

TABLE Page

4.1 Workload characterization based on application group and source . 31

4.2 Range of branch working set sizes for workloads with PC based defintion 36

4.3 BWSET bins for branch PC based defintion . 37

4.4 Range of branch working set sizes for workloads with tuple based defintion 41

4.5 BWSET bins for tuple based defintion . 42

4.6 Predicatbility range for workloads with tuple based defintion . 47

4.7 BWSET bins for tuple based defintion . 48

xi

1. INTRODUCTION AND MOTIVATION

Branch prediction is one of the significant contributors to getting high performance from x86

and ARM-based modern processors. A program typically has multiple branch instructions that can

change the direction of the program flow. The branch outcome is unknown for many cycles. How-

ever, the processor must be continually fed to exploit all the instruction-level parallelism present in

a program. Due to this very reason, branch predictors are employed to forecast the branch outcome

and, thus, improve the flow of the instruction pipeline. It leads to instructions getting speculatively

executed on the predicted path. If the predictor correctly determines the branch condition, the

execution continues uninterruptedly; otherwise, the pipeline has to be flushed to get rid of the in-

structions executed on the wrong path. Based on how deep the pipeline is, the branch misprediction

can lead to multi-cycle penalties resulting in wastage of both time and energy.

The branch predictor, in its true essence, tries to identify a pattern and follow it to give the

prediction. An ideal branch predictor remembers the behavior of all previous branches with a con-

text to give near-zero misprediction rate. However, any modern branch predictor with a limited

hardware budget does not predict with high accuracy all the time. The mispredictions can occur

due to multiple reasons - too many independent branch contexts to remember within the restricted

hardware budget, no recognizable pattern whatsoever, or the patterns are rooted very deep down

in history. Misprediction rate and the associated penalty determines the impact on a processor’s

performance. Many previous works have precisely quantified this misprediction penalty [5]. How-

ever, to the best of our knowledge, there have been very few attempts at analyzing the misprediction

rate patterns in workloads to come up with a branch prediction based workload-characterization

methodology. We note that past Championship Branch Prediction [CBP] competitions have been

comparing the designs for their performance in application-based workloads groups. This type of

comparison serves the purpose of finding out an overall superior branch predictor. However, this

gives us no further insight into the relationship between a predictor’s accuracy and branch charac-

teristics of a workload, and if a design prefers a particular type of branch distribution. Applications

1

are evolving at a high pace, and its imperative that we understand a workload’s inherent branch

behavior and predictability to estimate the scope of improvement in the current state of the art in

branch predictor designs.

In this work, we show that a branch predictor’s accuracy can be judged by identifying and

studying a suitable subset of branch context present in the workload, called the branch working

set (BWSET). We note that a tuple consisting of branch instruction’s program counter (PC) and

global branch history constitutes the most basic unit of branch context. The branch working set

is defined as a collection of most frequently seen tuples in a workload. Our work introduces two

new architecture-independent parameters- size and inherent predictability of branch working set to

define the branch characteristics of workloads. While the size of the branch working set indicates

the amount of branch context that needs to be tracked and learned for prediction, the inherent pre-

dictability is a conservative measure for achievable prediction accuracy. These parameters strongly

correlate with the actual branch misprediction rate of modern branch predictors.

We present a BWSET based characterization for 2451 traces into 7 size and 9 predictabil-

ity bins. Equipped with the knowledge of branch behavior of these workloads bins, we compare

the winner and runner-up design of the last Championship Branch Prediction [CBP5] competition

for their prediction accuracy. Our results show that CBP5’s winner TAGE branch predictor[2] is

more accurate than the runner-up, Multiperspective perceptron branch predictor [4] for most of the

newly characterized workload bins. However, we also note that the perceptron design performs

marginally better than TAGE for workload groups with smaller working sets and lower inherent

predictabilities. The branch behavior-based categorization and comparison provides further in-

sights into a predictor’s accuracy and favoritism for specific workloads.

2

To summarize, we make the following contribution through this thesis work :

1. We propose the definition of branch working set (BWSET) in workloads and identify BWSET’s

size and predictability as a measure for the accuracy of a branch predictor.

2. We empirically show that branch working set’s size and predictability correlate strongly with

the misprediction rates of the modern state of the art branch predictors.

3. We present an analysis and characterization framework for a wide range of industry provided

traces based on its branch working set and inherent predictability.

4. We compare the winners and runners-up of CBP5 competition in newly categorized trace

bins to show some interesting trends. Our work identifies a workload category where the

runner-up design can be a better choice.

1.1 Thesis Statement

"The branch prediction accuracy on a workload is related to branch working set size and inherent

branch predictability of the workload"

1.2 Document Organization

In this thesis document, we start with the background and related work in Chapter 2. We

look at the branch prediction fundamentals and then briefly talk about some prominent dynamic

branch prediction techniques from the past and modern predictor such as TAGE and perceptron

based predictors. Then we discuss some previous attempts at characterizing the branch behavior

and discuss similarities and differences in their approaches. In Chapter 3, we define the branch

working set and branch predictability. We talk about both the PC and tuple based approaches to

identify and characterize the branch behavior in traces. We present the methodology and results

in Chapter 4. along with a comprehensive analysis of trends and comparative studies. In Chapter

5, we conclude our observation and discuss some possible analysis points for the future, which is

presently not covered in this work.

3

2. BACKGROUND AND RELATED WORK

2.1 Branch prediction fundamentals

It is crucial to maintain a high instruction fetch rate for modern pipelined processors. Branch

instructions are the one which can lead to a change in the program flow and thus needs to be

resolved at the fetch time to have an uninterrupted flow of instruction down the pipeline. To

resolve a branch instruction, we need to predict the branch direction as well as it’s target address.

In this thesis, our focus is on branch direction prediction. In this chapter, we discuss a few of

the prominent branch prediction techniques along with prior attempts for the characterization of

branch behavior.

Branch prediction is a pattern-recognition mechanism where we train our predictor against

the already seen branch context and then reproduce the outcome when the same context presents

itself again in the future. The branch prediction in a modern processor pipeline (Figure 2.1), starts

with leading speculation in the fetch stage depending on potential branches in the current fetch

group, followed by a trailing confirmation in execute stage. The branch outcome gets known at

the execution time and is used to make necessary updates and corrections in the branch predictor.

Based on the pipeline architecture, branch misprediction leads to varying levels of pipeline flushes

resulting in loss of both performance and energy. Previous branch prediction literature shows that

even a little improvement in prediction accuracy can lead to a lot of performance enhancement.

The branch prediction techniques are organized into two major classes – static and dynamic

branch prediction. In a static branch prediction scheme, the decision is usually made based on

certain rules :

• always taken, always not taken, or backward taken/forward not-taken;

• program heuristics such as loops, calls, returns, etc. ;

• profile based where we run with a representative set and then recompile the program to

annotate branches with hint-bits or restructure the code to predict not-taken.

4

Figure 2.1: Program control flow and misprediction penalty in a modern processor pipeline

The static branch prediction only provides a 75-80% branch prediction accuracy. Thus, mod-

ern predictors primarily use dynamic branch prediction techniques. The dynamic branch prediction

designs learn branch behavior autonomously without the need for a prior compiler analysis, heuris-

tics, or profiling. It can also adapt to changing program behavior. This technique was first proposed

in [6] and has been continuously refined since then. Smith Predictor (proposed by Jim E. Smith) [7]

is one of the earliest dynamic branch prediction techniques, where we use a few-bits of branch PC

to access a table of 2-bit saturating counters. These counter values represent the taken/not-taken

prediction. In the following section, we see some prominent dynamic branch prediction strategies.

2.2 Dynamic branch prediction techniques

More complex branch prediction schemes utilize current branch PC along with a prior branch

history either in a two-level organization to give a more accurate prediction or combine them in to

get a single level organization. Some other predictors seem to exploit the branch bias behavior as

well. We shall also discuss two of the most prominent modern dynamic branch predictors using

5

tagged geometric history lengths and perceptron learning, respectively, in the following sections.

2.2.1 Two-level predictor organization

Yeh et al. [8, 9] introduce a branch predictor scheme where they have two-level organization

consisting of Branch History Register table (BHR) and Pattern History Table (PHT). BHR table

stores the "n" most recent branch results while PHT stores the branch behavior of "m" recent

occurrences for a given pattern of these "n" branches indexed out of BHR. They propose three

implementations - GAg, PAg, and PAp. Figure 2.2 shows the basic organization of these three

schemes. GAg design has a unique global branch history register, and a single global pattern

history table for all branches thus faces aliasing in both of these levels. In PAg, they maintain

separate branch histories and have a BHR table along with a global PHT. This method removes

the aliasing from the first level. In PAp, they maintain per branch address information in both of

the levels. They show that PAp comes out to be most accurate, while GAg is least accurate due to

destructive aliasing. For achieving the same level of accuracy, GAg requires a much longer history

while PAp and PAg require individual PHTs.

Figure 2.2: Two-level branch predictor organizations - GAg, PAg, and PAp

6

Yeh et al. [10] extend their work to analyze and compare nine varieties of the two-level branch

predictor schemes [G/P/S]A[g/p/s] based on whether BHR and PHT are global, per-address or set

based. Their findings show that for an application with lots of if-else constructs, the global history

branch predictor is most effective because branches correlate well with the earlier branches. Global

branch predictors have a considerable disadvantage in terms of their hardware costs as they require

either extended history tracking or multiple pattern history tables to mitigate the aliasing. In the

applications having lots of loop control instructions, per-address local branch predictors are the

most effective because it can easily track the periodic behavior of loops. Additionally, Local

branch predictors have reduced storage requirements since they need smaller table structures due

to the low level of aliasing. Per-set branch predictors are useful for both of these application types,

but their area cost is even more than global branch predictors because they need pattern history

tables for each of the set.

Skadron et al. [11] proposes a new design where he adds a Global History Register [GHR]

to the two-level branch prediction organization. In this design, both global histories from GHR

and local history from the BHR table are "alloyed" to index into the pattern history table index.

Their predictor requires fewer bits when compared to earlier designs to achieve similar levels

of anti-aliasing. The disadvantage of this design is that two serial accesses increase the latency.

They solved this by splitting a single PHT in multiple tables for concurrent accesses along with

the addition of a multiplexer. The modified design is shown in Figure 2.3. They achieve higher

accuracy at low area budgets and comparable accuracies at large area budget when compared to the

hybrid predictor (predictor design consisting of two predictors selected by a third meta-predictor).

Pan et al. [12] show that there is a correspondence between different branches. Thus the result of a

particular branch condition should be predicted using branch history of other branches in addition

to its history.

7

Figure 2.3: Alloyed index branch predictor with concurrent access to BHT and PHT

2.2.2 Single-level predictor organization

To reduce aliasing, McFarling [13] proposes "gshare" and "gselect" predictors that use the

global and local branch history together. Figure 2.4 shows that "m" least significant bits of branch

address (BA) are XORed with "h" bits of global history in "gshare," while these bits are concate-

nated in the "gselect" predictor to index the table.

Figure 2.4: Gshare branch predictor

8

Due to XORing, "gshare" can create more randomized indices and thus reduces aliasing better

for a large-sized branch predictor when compared to "gselect." However, in the case of small-sized

branch predictors, "gshare" shows a poorer accuracy. The inclusion of global history with a branch

address to index a predictor table increases the already high contention for saturating counters.

McFarling paper also proposes some hybrid techniques where they use bi-mode [14] and gshare

predictors together accompanied by a meta-predictor to chose the fittest out of these two.

Michaud et al. [15] propose a "gskewed" predictor, where multiple PHT banks are indexed by

different hash functions, as shown in Figure 2.5. The assumption is that conflicting branch pair is

unlikely to conflict in more than one banks of the PHT. The majority vote scheme determines the

prediction for this design. The different hash functions can be generated by either using different

indexing mechanisms or different history lengths.

Figure 2.5: Gskewed branch predictor

9

2.2.3 Exploiting bias in branches

Chang et al. [16] note than error checking code and other dynamically constant branches are

highly biased. Thus, when identified, these branches should be filtered from PHT, i.e., no further

updates to these entries. This technique increases prediction accuracy for workloads with high

bias. Lee et al. [14] propose a Bi-Mode predictor where they partition the Pattern History Table

[PHT] into Taken/ Not Taken halves called "direction predictors." The direction predictors have

identical "gshare" indexing, and one out of these is selected using the "Choice Predictor," accessed

by branch PC only. The Bi-mode predictor design is shown in Figure 2.6. The technique reduces

the negative interference, since most entries in the PHT0 tend towards Not Taken direction, and

most entries in PHT1 tend towards the Taken direction. Most of the branches are either biased

towards taken or not taken direction, and the choice predictor remembers this bias. They also use

the partial-update policy in which a chosen counter is updated based on a specific branch outcome.

Due to the removal of negative interference, this strategy achieves high prediction accuracy.

Figure 2.6: Bi-mode branch predictor

Sprangle et al. [12] propose an "agree" predictor where they convert the destructive interference

to a neutral or constructive interference by changing the interpretation of the PHT entry. In this

10

technique, PHR records whether branch bias matches or agrees with the outcome. In contrast,

the bias table records the actual bias of the branch (using compiler analysis or branch profiling).

Bias table is indexed using some least significant bits of PC to provide a branch bias, while PHT

is indexed in a gshare way. The output of the PHT table determines whether the branch outcome

agrees with the bias table output or not.

2.2.4 Path Based Predictor

In modern predictors, path history is an essential context because sometimes, T/NT history is

not enough. Nair et al. [17] propose a path history-based correlation predictor, where they utilize

k-bits from all of the previous "n" branch addresses. Thus these "k*n" bits encode the branch path

of the last "n" branches and is called path history. This path history, along with the current branch

PC, is used to access the pattern history table to get high accuracy prediction.

2.2.5 Tagged geometric history length predictior

Branches have varied behavior and require a proper context to predict correctly and train faster.

Different branches prefer different history-lengths. While some of the branches prefer a short

history requiring less training time, others require a much longer history due to its high complexity.

Thus, predictors should also use varied history lengths; they can be chosen through profiling or

compile-time hints or can be learned dynamically.

Seznec [18] proposed a geometric history length (GEHL) branch predictor, which enables the

design to capture both new and old correlations. GEHL has multiple tables storing prediction

values in the form of signed counters. Each of these tables is hashed with different combinations

of branch addresses and global/path histories. Also, different tables use different history lengths

in geometric series numbers, 0, 2, 4, 8, 16, 64, 128. Using history lengths in geometric series

enables the predictor to track the long history in higher-order tables while still using most of the

tables with shorter histories. One counter value is read from each of the tables and is summed

to give the prediction. If "Sum ≥ 0", the prediction is taken otherwise not. The predictor is

updated either on misprediction or when the Sum value is smaller than a certain threshold. The

11

design allows adaptive history lengths such that shorter history lengths can be used in the case of

high aliasing. Additionally, the latency of this predictor can be kept low using ahead pipelining.

However, the limitation of this design is a large state checkpointing requirement to restore states

on misprediction in addition to the high design complexity.

Seznec [19] improves on his GEHL predictor by introducing the concept of tagged tables in

the Tagged geometric history length predictor [TAGE], shown in Figure 2.7.

Figure 2.7: TAgged GEometric history length predictor [TAGE]

The design has a base predictor (T_0), which is a 2-bit bimodal predictor, along with multiple

partially-tagged components “T_a” (1 ≤ a ≤M) which are accessed by geometric history length

L(a) = 0.5+αa−1 ∗L(1). Each entry in these "T_a" tables consists of a signed prediction counter,

a tag, and a useful counter (U). Both the base and partially tagged predictor tables are indexed

to give a branch prediction. If more than one tagged tables get hit, the prediction is given by the

12

longest history length table (T_c); otherwise, the base prediction is used. The table entry’s "U"

counter values are increased or decreased depending on if the prediction given by a particular table

matches with the ultimate prediction, "U" counter is incremented/decremented based on ultimate

prediction is correct/incorrect. The prediction counter of "T_c" is updated on correct and incorrect

predictions. Additionally, a new entry is allocated into a table “T_k” when there is an incorrect

prediction and c < M (c < k < M). The prediction provided by T_k using this newly allocated

entry is not used for some time as newly allocated table entries tend to mispredict due to lack

of training. Their work shows that using multiple partially tagged tables with geometric history

lengths provide a cost-effective prediction.

It is shown that for equivalent hardware budgets, TAGE and GEHL track 2000 and 200 branches,

respectively, while perceptron and gshare predictors could only track 60 and 20 branches, respec-

tively. The TAGE family of branch predictors [1, 2, 20] has been quite successful in Championship

Branch Prediction competitions (Winner of CBP5). The recent TAGE predictors [1, 2] use a per-

ceptron predictor as a "statistical correlator" to find the relationships connecting a branch history

and branch outcome when the TAGE algorithm fails.

2.2.6 Perceptron branch predictors

Jiménez et al. [21] introduced a novel perceptron based branch predictor that uses a single

perceptron to represent each branch, shown in Figure 2.8.

Figure 2.8: Perceptron learning

13

Perceptron information gets stored in the form of a vector of multiple weighs (w) that show the

degree of correlation between multiple branches. A perceptron takes branch history information (

Taken = 1, Not Taken = -1) and signed weights as inputs along with a bias (always 1) as inputs.

The perceptron output is the dot product of the branch history and weights, added with the bias.

Thus output,

Z = bias+
∑

(w_i ∗ x_i)

Figure 2.9 shows the perceptron branch predictor. The taken or not taken prediction is deter-

mined based on whether Z has a positive or negative value. After the branch outcome gets known

in the execution stage, the weight tables are updated based on the rightness and confidence of the

prediction. If the prediction is wrong, or a low-confidence right prediction, the weights agreeing

with the result are increased and the weights disagreeing are decreased. Also, the weights are

increased in saturating fashion. The branch predictor designs where we utilize the branch PC to

index the pattern history table leads to an exponential growth in the predictor’s size with an in-

creasing history length. But, Jim énez’s perceptron predictor’s size only increases linearly with the

branch history. Thus for the same size, the perceptron predictor can also track and learn branch

correlation deep down in history. As we have discussed before, longer history length leads to high

accuracy prediction in general. When there is an agreement between prediction and outcome, i.e.,

positive correlation, weight becomes large and saturate. Similarly, for disagreement, weight be-

comes negative with a large magnitude. The weight stays very close to zero and contributes little

to the perceptron’s output in the case of a weak correlation between prediction and outcome. This

technique shows the confidence level of prediction in terms of the magnitude of the perceptron’s

output. This branch predictor performs well for application, which has lots of linear separable

branches, but with the linear inseparable functions, perceptron branch prediction has lower accu-

racy. The other disadvantage being the high latency of prediction.

14

Figure 2.9: Dynamic branch prediction using perceptrons

Jiménez [22] overcomes the latency limitations of the previous design by proposing a path-

based neural branch predictor, shown in Figure 2.10(a). The delay in prediction is reduced by

using the "ahead pipelining." In this technique, the branch predictor learns its weight values based

on the path that reaches to that particular branch. For making the prediction, the weight vector

needs to be read, and only the bias information is added to the running-sum. The running sum of

multiple previous branches is updated in one go. The effective computation in this scheme gets

distributed over time using the ahead pipelining technique. Thus a computation starts much before

an actual prediction is made. The disadvantage of this approach is the reduced accuracy due to

not using the branch PC to access the weight information. A branch misprediction also has graver

15

consequences in this design as a large amount of processor state information has to be rolled back

to the checkpoint state.

Figure 2.10: Variations of perceptron branch predictor

Jiménez [23] proposes the generalization of the previous two techniques - piecewise linear

branch prediction scheme. The proposed design tracks components of all individual paths leading

to the current branch, and a prediction is generated by aggregating correlation of all the individual

components of the current path by which this branch is reached. Thus, this technique generates

a linear function for each of the paths and is accurate for linear inseparable branches as well. A

realistic version of this design stores branch PC, and PC of branches in the path history as modulo

M and N. Perceptron based branch prediction has M=1 while path-based neural predictor has N=1.

They note that even a realistic version of their design beats other predictors. Jiménez et al. [24, 25]

show that longer branch history lengths give higher prediction accuracy. However, having a similar

lengthed branch and path histories increase the storage budget significantly. They resolve this issue

by proposing the "modulo-path history" lengths to interleave the weights to reduce the number of

tables. Additionally, they employ a history-folding approach to exploit the correlations deep down

in history.

16

Tarjan et al. [26] combine the ideas from gshare, perceptron, and path-based branch prediction

to propose a hashed perceptron branch prediction. By XORing branch address with a portion of the

global branch history, this design assigns many branches to the same weight. Rather than making a

single match with history, they now split it into several segments to achieve many partial matches,

as seen in Figure 2.10(b). With this hashed indexing mechanism, each perceptron weight table

serves as a small gshare kind of branch predictor. Many linearly inseparable branches mapped to

the same weight table entry can be predicted with this design scheme. When compared to other

perceptron branch predictors, this scheme allows the use of long history and increases accuracy

while decreasing the number of adders. This design increases the prediction accuracy by merging

many methods to access a single perceptron.

The multiperspective perceptron branch predictor [3, 4] is a hashed perceptron predictor [23,

26] that utilizes a variety of features based on different organizations of branch histories in addition

to the traditional global path and pattern histories. This predictor technique hashes a portion of the

branch history information with the branch address. The hashed data is then taken modulo the

size of the prediction table to index multiple feature specific weight tables. All of these indexed

weights are summed together and then compared against a threshold to predict taken/not-taken.

The perceptron learning rule [21] is used to update the weights after the branch outcome gets

known. The multiperspective perceptron branch prediction scheme is summarized in Figure 2.11.

The authors note that none of the novel features provide a particularly useful prediction on their

own. However, when used collectively along with the traditional features, they succeed in finding

alternate perspectives on branch histories and allow finding new relationships.

17

Figure 2.11: Multiperspective perceptron branch predictor

2.3 Characterizing branch behavior

There have been prior attempts to create an architecture-independent branch characterization to

attain a good correlation with prediction accuracy for a variety of branch predictors discussed in the

previous section. This task is not simple because the prediction accuracy rate not only depends on

the distinct branch characteristics of the workload but also the predictor’s algorithm and physical

structure. We saw a wide range of branch predictors in the literature, each having a branch history

pattern that they can or can not detect. It is difficult to find a single characteristic/ parameter that

relates strongly to the prediction accuracy for a wide variety of modern branch predictors. In the

following sections, we discuss a few such attempts at characterizing the branch behavior.

2.3.1 Taken Rate

Chang et al. [16] propose a branch classification mechanism based on taken rate. This work

defines the taken rate as the fraction of taken branches out of the total branch occurrence in a

program’s execution. Taken rate close to 1 or 0 signifies that branch is easy to predict as it’s biased

towards one direction. Taken rate close to 0 means branch is tough to predict, as the outcome alters

between taken and not taken. The disadvantage of this technique lies in its false classification of

some simple to predict branches as difficult to predict. E.g., a branch showing the periodic shift

between taken cases and not taken case produces its taken rate as 0.5 and is classified as difficult

18

to predict, but in reality, this should be simple to predict branch.

2.3.2 Transition Rate

Haungs et al. [27] propose a branch classification methodology based on transition rate to alle-

viate the limitation of taken rate based method. They define transition rate as a fraction of branches

that changes its direction from taken case to not-taken case, or vice versa, out of the all branches in

the program’s execution. In this classification, a branch with a low or high transition rate is said to

be easy to predict. A low transition indicates a branch bias towards one of the outcome, and a high

transition rate means there might be a regular pattern which can be predicted. The author shows

that a branch classification method using both taken and transition rate parameters show an even

superior accuracy. However, this method is unable to detect a branch with a regular but slightly

complex pattern.

2.3.3 Branch Entropy

Yokota et al. [28] propose a branch classification based on the concept of branch entropy from

information theory. This work calculates the entropy of the branch outcome using,

E = −
∑

log2 p(S_i).p(S_i)

Above mentioned is the conventional entropy formula where S_i denotes all potential branch

result patterns and p(S_i) the probability of branch pattern S_i.

This work notes that entropy corresponds favorably with the misprediction rate of a branch

predictor. Additionally, this work also estimates the topmost bound for the accuracy of a predictor.

This method is very complex to implement, and a simplified version of this method is implemented

by Pestel et al. [29]. The branch predictability parameter defined in this work draws some motiva-

tion from works done by both of these works.

19

2.3.4 Markov Predictor

Chen et al. [30] show that a simple branch prediction is nothing but a partial-matching al-

gorithm that uses a collection of Markov predictors of multiple orders. A "nth" order Markov

predictor uses the most prevalent branch outcome seen in the last n branches to predict the re-

sult of the next branch. Our tuple definition also has branch history information of "m" previous

branches, which is used to calculate the predictability measure for the workload. Chen et al. utilize

this information to offer more accurate branch predictors while we use this information as a means

to classify the branches.

2.3.5 Linear Branch Entropy

Pestel et al. [29] have done the most recent work in the domain of branch profiling. They

introduce linear branch entropy as a parameter to measure the regularity in the branch behavior of

a workload. Their profiling work is similar to work done by Yokota et al. [28]. However, their

method is much simpler as they prove that linear branch entropy corresponds well with the pre-

diction accuracy of branch predictors. For each set of PC and branch history, they calculate the

probability of the taken outcome. Their taken rate definition is different than Chang et al. [16]

as they calculate taken probability for every combination of history pattern and branch PC. They

estimate linear branch entropy using the following formula

E_L(p) = 2.min(p, 1− p)

p is the probability of a taken branch, given specific branch history.

As per this equation when p = 1 or p = 0 linear branch entropy equals to 0 , and it equals 1

when p = 0.5. Branch entropy value of 0 signifies a biased branch, thus highly predictable and

branch entropy of 1 signifies a random branch behavior, thus lower predictability. Linear branch

entropy number is averaged for the set of branch PC and its history to get a single linear branch en-

tropy number for the trace. They empirically explain that linear branch entropy relates better with

20

branch predictor accuracy when compared to work done in [28]. They use this branch profiling

information to create a model that relates branch entropy with the predictor’s misprediction rate.

Later, they try to predict the misprediction rates for different branch prediction strategies based on

their model for design space exploration.

Similarity and Differences with our work

1. My thesis aims to characterize the workloads based on branch behavior independent of both

pre-determined application workload groups and branch predictor architecture. We then use

this information to compare two states of the art modern predictors TAGE and Multiper-

spective perceptron branch predictor in these newly characterized workloads bins. However,

Pester et al. try to profile the branch behavior to create a separate predictor-dependent model

to estimate a predictor’s branch misprediction rate.

2. Both of these works identify the branch and its associated history as the most basic unit

for characterizing a branch’s behavior. Pester et al. directly use this information to create

their linear branch entropy model, while this thesis work introduces an additional level of

profiling where we identify a sub-set of total branch contexts present in a workload based

on occurrence count. We do this exercise to determine the most frequent contexts. We call

this sub-set as a branch working set and then relate the branch working set’s size and its

predictability with a modern predictor’s accuracy.

3. Our approach is much more robust and simpler to execute, where we also see a much clearer

correlation of branch working set size and its predictability with the misprediction rate. Our

work is also validated with the help of a much larger set of industry provided traces from

varying application domains.

21

3. WORKLOAD CHARACTERIZATION FOR BRANCH PREDICTION

The general idea behind any branch prediction technique is to identify the branch correlations

and learn them to guess the future branch outcomes accurately. As we have discussed earlier, the

very initial branch prediction ideas revolved around either remembering the outcome of all previous

branches (global branch history) or remembering the outcome of each of the individual branches

uniquely identified by its branch PC (local branch history). The predictors usually had saturating

counter to keep track of branch outcomes and guess a new outcome based on the confidence in the

saturating counter value. Later on, modern predictor techniques started to note that branch context

lies not just in the PC value, but both branch PC and histories together constitute the actual branch

context. It’s this context that needs to be tracked to find correlation behaviors among multiple

branches.

Additionally, the majority of the branch instructions are either biased towards taken or not

taken. If we can find a way to profile branch bias, we can conservatively estimate the ease of

prediction for any generic, fairly accurate modern branch predictor. Biased branches or a branch

showing more favor for a particular outcome are historically easy to learn for a predictor. A branch

that frequently changes its direction can be an indication for a hard to predict branch.

An ideal branch prediction would be the one that can track all of the possible branch contexts

present in a workload to accurately determine the future branch outcome with a 100% accuracy.

But, it is practically not possible and would require an infinitely sized hardware budget to learn

millions of contexts present in some applications even when we ignore the training time require-

ments. In a practical branch predictor, many of these branch contexts (PC+branch-history) would

be mapped to a single tracking element or entry in the prediction table that leads to interference.

Interferences can be positive, negative, or neutral. A positive interference helps in correcting fu-

ture outcomes, while neutral will not affect the branch outcome. But, it’s the negative interference,

which is problematic and will result in destroying a predictor’s accuracy. Thus, aliasing is a real

problem in the practically sized predictors.

22

In this work, we are proposing a way to characterize branch behavior independent of both

the application category they belong to or the branch predictor technique/architecture used. We

aim to find a classification mechanism for traces based on their branch characteristics and ease

of prediction. We have come up with a very simplistic characterization methodology, which we

build upon the basic concepts of bias and aliasing. We note that in any practically sized predictor,

aliasing is bound to happen. Thus, having a large number of basic branch context units (PC or

PC+history) in any trace will lead to increased aliasing and, therefore, high misprediction rates.

Additionally, having more bias in the basic unit of branch context means having higher inherent

predictability in the trace. We build upon these two basic ideas to define branch working set and

predictability metrics to characterize close to 2451 traces in different categories, which show a

high correlation with misprediction rates of both the TAGE and Perceptron predictors.

3.1 Branch Working Set [BWSET]

As we have discussed before, what we call branch context is something that distinguishes any

predictor’s behavior for a specific branch - Program Counter (PC) and branch history. These asso-

ciated branch histories can be as simple as a global history of’ n’ previous branches, local history,

path history, or a complex mixture of these. How this pattern is learned and then used to predict, is

what determines the accuracy of any branch prediction strategy. In our analysis, we first identify all

the branch context present in a particular trace and then arrange them in decreasing order of their

occurrence count values. We define branch working set as the subset of these branch contexts to

find out the most frequent and prominent branch contexts present in the trace based on their occur-

rence count values. We define a threshold, θ, to determine the branch working set out of the total

branch context. We keep this threshold value high enough to capture the prominent branch context

and disregard some stray or in-frequent branch contexts. The branch working set size indicates the

extent of all the context which needs to be tracked and learned from the workload. We later show

that branch working set size directly correlates with the misprediction rate of a predictor because

more branch context means more aliasing in a practically sized modern predictor. Thus, the branch

working set can be a straightforward yet beneficial measure for workload characterization based on

23

ease of branch prediction. This measure is not dependent on any particular predictor architecture

and is determined just based on branch behavior present in the workload.

3.1.1 PC based branch working set

In this scheme, we focus on individual branch PCs that change their direction through the

course of trace execution, i.e., non-trivial dynamic branches. As shown in Figure 3.1(a), we main-

tain a branch profile table indexed by branch PC. Each entry in this table stores the occurrence

count, taken count, and a branch predictor’s miss-prediction rate for a specific branch PC.

Figure 3.1: Branch PC based working set definition

In this most basic approach, we identify all the dynamic branch PCs that exist in the trace

and arrange them in decreasing order of their occurrence counts in the trace execution. We define

branch working set based on dynamic PC as a subset of all dynamic branches thresholded by

θ based on their occurrence count numbers. E.g., with a threshold θ = 95% and total branch

occurrence count of 100, branch working set consists of such high-frequency dynamic branch PCs

whose occurrence counts add up to at least 95. In Figure 3.1(b), we show the calculations to find a

PC based branch working set. We note that only four branches constitute more than 95% of total

branch occurrence count. We don’t expect the size of PC based branch working set to correlate

24

strongly with the accuracy of a generic branch predictor as branch predictor’s accuracy is also

dependent on the associated branch history to determine the full branch context.

3.1.2 Tuple based branch working set

It is established in the literature that there exists a relationship between several branch out-

comes, which is leveraged by all the modern predictors to give reasonably accurate branch pre-

dictions. A branch can have a higher probability of being taken or not taken based on the prior

outcomes of the same branch (local history) or all the branches in the program’s execution history.

A better correlation between the history of prior branches with the result of the current branch

ensures a low misprediction rate in predictors. Thus, the confidence of a branch outcome for a

particular history pattern determines the accuracy of any branch prediction scheme. We employ

this knowledge to update the branch working set definition to incorporate the branch history with

the conditional branch PC. We define the basic unit of branch context in the form of a "tuple"

consisting of branch PC and "N" bits of global branch history preceding the current branch.

The proposed tuple based branch profiling data-structure is shown in Figure 3.2. We identify

all the unique tuples existing in a particular trace and create tuple tables for each of the existing

branch PCs. The number of global history bits in the tuple determines the depth of tuple tables. We

later see that the tuple table never gets full as we do not see all the 2N possible history patterns. We

create a new entry in the tuple list when we see a new tuple or increment the count of a previously

seen tuple. This framework measures the occurrence count, taken count, and misprediction count

for both TAGE and perceptron predictors for each of the tuple entries in the tuple tables. We

create an ordered list of the tuples in decreasing order of their occurrence count to identify the

most frequent branch context present in the trace. The Figure 3.2 also shows that only seven tuples

constitute more than 95% of total branch/tuple occurrence count.

25

Figure 3.2: Tuple based working set definition

This methodology gives us a way of combining a branch PC and different branch history sce-

narios under which the prediction is made. Here, the number of elements in a branch working set

would be the number of unique tuples, which comprises 95% (θ = 95%) of total tuples seen in the

entire trace. This qualifier can help us categorize the trace pool we have based on this definition

of branch working set. We run this study for N=8,16,24,32,48 and 64 with θ = 95% and 99%

to determine the optimum branch history length to see the correlation between branch working

set size and misprediction rates of modern predictors. We limit the scope of our studies to global

histories only because that’s the most simplistic yet compelling way of tracking branch histories

and is utilized in most of the branch predictor designs.

3.2 Predictability in the branch working set

In our analysis framework, we also propose a method to determine a particular branch context’s

(PC or Tuple) predictability based on its inherent bias. We calculate the predictability number for

each of the uniquely identified branch contexts in the following way :

Predictability = max(takencount,not−takencount)
occurrence_count_of_tuple

We average this predictability parameter for all unique branch contexts present in the branch

26

working set to get one quantitative predictability measure for the entire trace. We define the tuple

of the branch PC and global branch history as the branch context. Tuples can uniquely identify

branches showing similar taken/not-taken counts or a regular transition pattern between outcomes.

Thus, we can establish a very realistic predictability characteristic for branch contexts. These

individual branch predictability numbers are averaged over all the identified branch contexts in the

branch working set to get quantitative predictability measure for the entire trace. The predictability

measure is also shown to have a very high correlation with the branch misprediction rates of the

modern predictors – TAGE and Perceptron. A predictability value close to 100% implies that

branch context is entirely biased towards either taken or not taken, and the workload is bound to

show a very low miss-prediction rate in any practical design. In our framework, the predictability

value is bounded by a lower minimum of 50%. This value indicates branch behavior is very random

and difficult to track, thus leading to high misprediction rates.

3.3 Characterization based on branch working set’s size

In our work, we create a branch profile of traces for multiple configurations by varying branch

working set threshold θ and the amount of global history in the tuple, N . Branch working set size

is a straightforward metric to do the first-level characterization of traces for their ease of branch

prediction. A workload trace having a large working set size indicates that there is a lot more

context that needs to be tracked and learned for effective branch prediction. In a practically sized

predictor, this will lead to a high level of destructive interference and result in a high mispredic-

tion rate. Similarly, a small branch working set is an indication that branch contexts can be easily

learned by any modern generic predictor, thus leading to a very low misprediction rate. We have

observed through our analytical studies that trace having similar branch working set sizes have

similar mispredictions rates as well for any given branch predictor design. Thus, the branch work-

ing set size correlates very well with the misprediction rate. It leads to a realization that the branch

working set size is an excellent branch behavior indicator for prediction ease in a given trace.

Through this study, we have proposed a characterization methodology where we categorize

traces in branch working set bins. We do this study for both PC and Tuple based branch working

27

set definitions and see an emerging trend. The containers having larger branch working set sizes

show higher misprediction rates for both TAGE and perceptron predictors, while traces belonging

to smaller branch working sets show a very high prediction accuracy. These trends show a very

regular pattern for tuple based BWSET definition than the PC based definition. It is because branch

PC and it’s associated branch history together constitute the branch context required for making

a high accuracy prediction. We run these studies for multiple branch working set thresholds and

branch history length in the tuple. With smaller values of N in tuples, we do not see any identifiable

trend because the predictor is not able to find all the existing branch context in the workload.

Although, we note a solid correlation for branch working set size vs. misprediction rates in both

TAGE and perceptron predictor designs for N = 24. It implies that for our current trace set,

an ideal predictor will be able to capture branch contexts with very high confidence for the tuple

definition of PC and 24 bits of branch history. The trend is comparably unclear for branch history

lengths smaller or larger than 24.

3.4 Characterization based on predictability in branch working set

In our proposed framework, we calculate a quantitative predictability measure for the workload

trace based on the inherent bias of the PC or tuple based branch context. We estimate this pre-

dictability measure by averaging individual predictability values for all PC or tuples in our defined

branch working set. This predictability measure indicates in-built ease of learning and predicting

the most frequent branches (top 95% for θ = 95%). We note that predictability correlates very

well with any reasonably accurate branch prediction scheme and thus can be a metric in itself to

characterize workloads for branch prediction. We divide the traces into several predictability bins

and plot the predictability values vs. the misprediction rate for both TAGE and hashed perceptron

predictor. We show through our results that traces in high predictability bins have low mispredic-

tion rates and vice versa. We see a reasonably regular correlation with misprediction for N = 8, 16,

24, and 32. But with a large amount of history captured in the tuple, branch context gets lost due to

aliasing in practically sized predictors. Looking at both size and predictability trends, we propose

that tuple with PC and 24 bits of global history can accurately characterize all the workloads for

28

their branch prediction accuracy.

3.5 Comparing TAGE vs. Perceptron branch prediction

TAGE and multiperspective hashed perceptron branch predictor has been two of the most accu-

rate branch prediction of recent times. These designs have been taking winning positions in all the

previous Championship Branch Prediction competitions. The last branch prediction competition

was won by TAGE, which showed a lower MPKI than perceptron design in all the presented trace

categories. As we have discussed earlier, comparing a predictor behavior for application-domain

dependent groups might not be the right comparison methodology. Workloads belonging to very

different application-domains can have very similar branch behavior, while workloads in the same

application-domain group can have an extensive range of branch contexts. Thus, we undertook this

whole branch profiling exercise and created this framework where we extract the branch character-

istics from all the predefined trace categories from CVP and CBP competitions, and re-characterize

all workloads based on branch working set size and its predictability. The proposed workload char-

acterization methodology is application-independent and purely based on branch behavior. We un-

dertake this whole exercise where we compare the 64 KB TAGE and multiperspective perceptron

branch prediction submissions from the last championship branch prediction [CBP5] competition

on these newly characterized workloads. This comparison leads to a lot more insights into the

state of the art branch predictors than an application-based comparison strategy used in CBP5. In

our analysis, we identify the strengths, weaknesses, and scope of improvement for modern branch

predictors. These additional insights have only been possible due to this new workload characteri-

zation methodology based on branch behavior.

29

4. METHODOLOGY AND RESULTS

4.1 Workloads

As we ventured out to create a branch profiling and analysis infrastructure, it was imperative

that we use a large set of branch rich workload traces to get high confidence correlations and

trends for meaningful observations. We decided to start our analysis with 440+ traces in the BT9

format that Samsung had released for the CBP5 competition in 2016. As these traces have been

released specifically for a branch prediction competition, we are sure that these traces have a good

mix of branch characteristics and branch scenarios that can give us a high confidence correlation

for our proposed work. These traces have been pre-categorized based on application groups and

total number of instructions. These 437 BT9 traces are present in 4 categories – long mobile, short

mobile, long server, and short server. The CBP5 infrastructure already provides a BT9 trace reader,

which is utilized in our framework with minimal changes. The trace reader already identifies

branches in conditional and unconditional categories, which is useful for us. We run our analysis

on conditional branches for which the branch predictor is called to make a prediction.

We still felt the need to have additional traces from more varied application groups to get ro-

bust results and trends. We identified 2014 traces that were publicly released by Qualcomm for

Championship Value Prediction competition [CVP] in 2018. Even though these traces were re-

leased for a completely different competition, but we find them to have the right mix of branch

behavior, which can be utilized by our branch profiling and analysis framework. These traces are

also pre-categorized in 4 application domain categories – compute-int, compute-fp, server, and

crypto workloads. We utilized these new traces by writing a trace reader to extract branch-specific

information similar to the BT9 trace reader. We integrated this new trace reader for CVP traces in

our existing CBP infrastructure that we extended to create our branch profiling framework. This

way, we work with a rich pool of 2451 industry released traces, given in Table 4.1, for defining

our characterization parameters – branch working set and predictability. By looking at the trends

30

and correlations of these parameters with misprediction rates of two of the most prominent modern

branch predictors, we characterize these traces in several new categories. The proposed character-

ization goes beyond the boundaries of application domain-dependent categories that these traces

earlier belonged to. Our characterization methodology is independent of any specific application

domain and is valid for any generic workload. We then use this new characterization to do a

re-comparison of TAGE and perceptron predictor’s accuracy.

Application-group Source Publically released for No. of traces
LONG_SERV ER Samsung CBP5 8
LONG_MOBILE Samsung CBP5 31
SHORT_SERV ER Samsung CBP5 293
SHORT_MOBILE Samsung CBP5 105
COMPUTE_INT Qualcomm CVP 982
COMPUTE_FP Qualcomm CVP 140
SRV Qualcomm CVP 786
CRY PTO Qualcomm CVP 106

Table 4.1: Workload characterization based on application group and source

4.2 Analysis Framework

We have extended the most recent Championship Branch Prediction [CBP5] competition’s in-

frastructure to create our branch profiling and analysis framework, shown in Figure 4.1. The moti-

vation behind using this existing infrastructure was to get access to the trace reader and simulation

set-up for the BT9 trace format that Samsung provided for CBP5. Additionally, having the whole

CBP infrastructure core gives us a way to simulate multiple CBP5 branch predictor submissions,

make predictor function calls for the conditional branches, and calculate branch misprediction

rates to correlate with our defined branch characteristics - branch working set size and predictabil-

ity. Additionally, we make the following enhancements to the CBP’s existing infrastructure to

create our branch profiler and analysis framework:

31

Figure 4.1: Workload characterization and analysis framework - based on branch working set and
predictability

Trace Reader for CVP - All the CVP traces are compressed and were in gzip format. We

first needed to uncompress those and then extract all the branch instructions based on its trace

format. The trace reader identifies whether the branch instruction is conditional or unconditional.

We extract branch characteristics for conditional branch instructions and then use that data in our

analysis framework. Another vital modification that we made was to make this CVP trace reader

accessible inside the CBP5 infrastructure. The appropriate trace reader (CVP or CBP) can be

selected and run within this modified infrastructure based on whether we run Samsung’s BT9 trace

format or Qualcomm’s compressed trace format.

PC based branch working set definition - We do this analysis for all the branch PC and

then modify it to analyze just the dynamic branches which change their direction during the trace

execution. We maintain a flag to indicate whether a branch is static or dynamic. Whenever a branch

changes its outcome’s direction, we mark that branch as dynamic. We maintain a PC indexed vector

data-structure to keep track of the occurrence count of all the branches in the workload trace.

Additionally, we keep track of taken branch outcomes, and misprediction count for each of the

32

individual branch PCs. We iterate over taken count data to measure the predictability measure for

each of the individual branch PCs. Predictability number per PC is calculated by taking maximum

value out of taken and not-taken counts divided by total occurrence count. For defining the branch

working set, we sort the branch PCs in the order of decreasing occurrence counts. To calculate the

branch working set, we start adding the occurrence count of most-frequent unique branch PCs till

we cross the threshold value of θ. E.g., for θ = 95%, we define branch working set as the sub-set of

branch PCs such that it contains most occurred branch PCs to have their total occurrence count as

95% of the total branch occurrence count. After defining the branch working set, we calculate the

predictability measure for branch working set as the weighted average of individual predictability

numbers for all branches in the working set. Additionally, we also define the miss rate in the form

of MPKB in the branch working set for both the 64 KB TAGE and the multiperspective hashed

perceptron branch predictor design in CBP5.

Parameters :

1. Mode – 1 and 2: All Branches; Mode – 3 and 4: Dynamic Branches only.

2. Branch Working Set threshold θ : 95% and 99%.

Branch Characteristics :

1. Total number of individual branch PCs.

2. Total Occurrence count of all branches.

3. Branch Working Set of PC in Trace

4. Branch predictability in Working Set

5. Total Mis-predicted branches in branch working set – TAGE and Perceptron

6. Mis-predicted branches per 1000 branches in branch working set (MPKB)

33

Tuple based branch working set definition - We define the branch context as a tuple of branch

PC along with N bits of global branch history directly preceding the current branch outcome. We

need to keep track of all the global history before a branch. For every taken branch in the past,

we shift a "1" in the history variable; otherwise, we shift in a "0". We associate N bits of branch

history with the seen branch PC during the program run to create the most basic unit of branch

context. We maintain a vector data structure for occurrence count, misprediction count (for TAGE

and perceptron), and taken count for all the unique tuples (pair of history and branch PC) in the

workload trace. To determine the branch working set for a workload, we reorder the unique tuples

in decreasing order of their occurrence count. We then select all the high occurring tuples such

that their cumulative occurrence count is more than the thresholded value of the total tuple occur-

rence count (for θ = 95%, top 95% of total tuple occurrence count). Due to the involvement of

history along with the branch PC, each of the branch contexts is uniquely identifiable. Even the

same branch PC with a regular alternate taken and the not-taken pattern gets categorized in two

different tuples. After defining the branch working set, we take a weighted average of the tuple

predictability numbers to generate one predictability measure for the given trace. We additionally

calculate the branch misprediction rate for both the TAGE and perceptron predictors for all the

branch context present in the tuple based branch working set. This way, we extract all the relevant

branch characteristic information from an individual trace along with the misprediction rates for

two of the most accurate branch predictor techniques for further correlation studies and analysis.

Parameters

1. Mode – 5 to15: Tuple

2. Branch Working Set threshold θ : 95% and 99%.

3. Length of tracked global history, N = 8, 16, 24, 32, 48, and 64.

Branch Characteristics :

1. Total number of unique tuples

34

2. Total occurrence count of all tuples

3. Branch working set of all tuples in trace

4. Tuple predictability in branch working set

5. Total number of mispredicted branches in the tuple based branch working set – TAGE and

Perceptron

6. Mis-predicted branches per 1000 branches in tuple based branch working set (MPKB)

4.3 Results and Analysis

In the following sections, we discuss the workload characterization results for all the 16 con-

figuration modes based on branch PC and the tuple of branch PC+global history. We also identify

the new workload characterization groups that we have defined depending on both branch working

set size and predictability. We analyze our results to study the correlation of the extracted branch

behavior parameters with different analysis modes, threshold, and history length of tuples. Finally,

we do a re-comparison of the 64 KB CBP15 submissions by Andre Seznec (TAGE) and Daniel

Jiménez (Multiperspective perceptron branch predictor) in the context of newly characterized trace

bins.

4.3.1 BWSET based on branch PCs

When we started this work for the workload characterization based on branch behavior, we

wanted to start with a clean slate. Thus we try to characterize traces based on branch PC as a

first-order analysis and see the trends and discussion in the following sub-sections.

4.3.1.1 Trace Categorization

In this section, we discuss the trace characterization results based on the branch working set

size. We do two sets of analysis, one for all the branches in the trace, and other for just the dynamic

branches. When clubbed with branch working set threshold, θ, we come up with 4 characterization

modes – all_BR_PCs_95, alll_BR_PCs_99, dyn_BR_PCs_95 and dyn_BR_PCs_99, given

35

in Table 4.2. The size of the branch working set ranges from 1 to 28,013 for θ = 99% and from

1 to 14152 for θ = 95% when we consider all branch PCs in the trace. By setting a smaller

threshold factor, framework becomes more exclusive and filters out more low-frequency branch

PCs. However, branch working set definition makes more sense for dynamic branches because

they change their direction during a program’s execution.Thus, a dynamic branch’s behavior is

more difficult to track and predict compared to a static branch that does not change its direction.

When we do the branch working set analysis with just the dynamic branches, working set size

ranges from 1 to 9,777 for θ = 99% and from 1 to 6,029 for θ = 95%.

Characterization modes BWSET size
all_BR_PCs_95 1 - 14,152
alll_BR_PCs_99 1 - 28,013
dyn_BR_PCs_95 1 - 6,029
dyn_BR_PCs_99 1 - 9,777

Table 4.2: Range of branch working set sizes for workloads with PC based defintion

We divide the branch working set range into different buckets depending on whether we have

a low, medium, or very large-sized branch working set. We decided on having different sized

buckets to cover the entire range, such that to have 8 categories which increase exponentially in

their BWSET size. We have sub-divided the low, medium, and high categories, such that the low

category has the distinction for 1 to 4, 4 to 16, and 16 to 64 different branches in the working set.

Similarly, the medium category has multiple sub-categories to have 64-256 and 256-1024 different

branches. Finally, the large branch working set group has three sub-categories having 1,024-4,096,

4,096-16,384, and 16,384 to 65,536 unique branches. Table 4.3 shows all the identified BWSET

bins. When we increase the threshold from 95% to 99%, we see more traces being characterized

in a large branch working set categories. All the workloads have been characterized into the dis-

cussed BWSET bins, and the distribution is shown in Figure 4.2. Overall, the traces that we have

selected show an excellent distribution profile across the range for branch working set sizes. We

36

study correlations of branch working set size with a predictor’s accuracy for these newly identified

workload categories in the next section.

BWSET Size Characterized BWSET bin
1 - 4 PCLOW1
4 - 16 PCLOW2
16 - 64 PCLOW3
64 - 256 PCMED1
256 - 1,024 PCMED2
1,024 - 4,096 PCHIGH1
4,096 - 16,384 PCHIGH2
16,384 - 65,536 PCHIGH3

Table 4.3: BWSET bins for branch PC based defintion

Figure 4.2: Trace distribution based on BWSET of branch PCs

37

4.3.1.2 Miss Rate vs. Branch Working Set Size

We now look at the correlation for each of the identified trace categories in the last section.

We note that for each of the identified categories Mis-Prediction per Kilo Branches (MPKB) for

both TAGE and perceptron predictor show a little variance and are in a similar range. Thus, we

average out the MPKB numbers for traces in each category and come up with a representative

MPKB number that is a miss-rate identifier for the trace category. We plot branch working set

categories vs. representative MPKB numbers to see any identifiable pattern. We plot this infor-

mation for all 4 of the modes mentioned in the last section on the same scale. Figure 4.3 shows

relationship between multiperspective perceptron [4] predictor’s accuracy with BWSET size in all

4 configuration modes. Similar trends for TAGE [2] is shown in Figure 4.4. We observe that there

is no identifiable correlation in this characterization methodology as the branch PC does not define

the entire branch context used by any modern branch predictor. Any branch predictor’s prediction

is also based on the prior branch histories associated with a particular branch PC. These histories

give the full context, which is essential to give a high accuracy prediction by any branch predictor.

With the help of long enough history, it gets easier to distinguish different branch contexts and thus

different outcomes for the same branch PC.

We undertook this analysis to cover the most basic definition of the branch context used by

primitive branch predictors. Through the literature survey and results that we have got, we note that

even though the branch PC is one of the most basic and vital elements in defining a branch context,

but it is not enough in itself to define a predictor’s behavior. Thus, branch PC based working set

definition is not a good measure for workload characterization based on branch prediction easiness.

38

Figure 4.3: Multiperspective perceptron branch predictor : MPKB vs BWSET based on Branch
PCs

Figure 4.4: TAGE : MPKB vs BWSET based on Branch PCs

39

4.3.1.3 Predictability in Branch Working Set

In this section, we analyze the predictability data for the branch working sets for all the newly

characterized trace categories. The predictability numbers shown in Figure 4.5 are independent

of predictor-architecture and represent the raw branch behavior in a trace. We can see these num-

bers as part of the justification for the representative MPKB numbers seen for both TAGE and

perceptron predictors. We note that all the trace categories showing high MPKB numbers have

low comparative predictabilities. Similarly, trace categories having higher predictabilities result in

higher accuracy, thus lower MPKB, for both of the modern state-of-art predictors.

Figure 4.5: Predictability in branch PC based working set

4.3.2 BWSET based on branch tuples

We note that branch PC is just one part of the branch context and does not entirely define the

branch behavior even for a very simplistic characterization model. It is crucial to consider both

conditional branch PC along with prior global history for defining the branch context. We do a

re-analysis and present the results for a tuple based characterization model in the following sub-

sections. Using just the global history gives us a simplistic enough model, which still correlates

40

very well with the modern branch predictor’s misprediction rate. There are other components of

branch history, such as local history or staggered histories, which are difficult to track and increase

the complexity of the characterization model.

4.3.2.1 Trace categorization based on branch working set

In the tuple based analysis methodology, we identify more individual branch contexts for each

of the branch PC. We associate a certain length of global history with the branch PC to give a

simplistic yet powerful measure for branch context in the trace. Due to these additional criteria,

we have a lot more branch identifiable branch context than the previous methodology for just the

PC based branch working set. We also have additional parameters to control the number of history

bits in a tuple. We have tried out several different history lengths ranging from 8 to 64 and thus

depending on threshold value θ, we have analyzed 12 configuration modes given in Table 4.4. The

table lists the range of BWSET sizes seen over all the traces in each of the configuration modes.

Characterization modes BWSET size
tuple_8_95 1 - 80k
tuple_8_99 1 - 149k
tuple_16_95 1 - 300k
tuple_16_99 1 - 557k
tuple_24_95 1 - 1.3M
tuple_24_99 1 - 2.5M
tuple_32_95 1 - 5.6M
tuple_32_99 1 - 7.2M
tuple_48_95 1 - 23M
tuple_48_99 1 - 24.3M
tuple_64_95 1 - 27M
tuple_64_99 1 - 28M

Table 4.4: Range of branch working set sizes for workloads with tuple based defintion

With increasing history bits in the tuple, the range of branch working set sizes displayed by

traces also increases. But this increase for any particular trace is not exponential, as all possible

history values are not seen when we increase the amount of history information in our tuple. We

41

see branch working set range from 1 to 80k, 1 to 300k, 1 to 1.3M, 1 to 5.6M, 1 to 23M, 1 to 27M

for history lengths of 8,16,24,32,48 and 64 respectively for threshold, θ = 95%. These numbers

increase when increasing the thresholding factor to 99%, as more branch context is made part of

the branch working set. A higher branch working set indicates a higher amount of branch context

to learn and track, which can be done by the idealistic predictor. However, it is difficult to track all

these contexts without aliasing in any practical predictor design.

We categorize traces based on whether they have small, medium, or large branch working set

sizes. We further subdivide small branch working set in 2 categories having the distinction for 1 to

100 and 100-1k different branches in the working set. Similarly, medium branch working set traces

to have a further distinction for 1k-10k, 10k-100k different branches in the working set. Finally, a

large working set size is divided into 3 sub-categories having 100k to 1M, 1M to 10M, and >10M

branches in the working set. Table 4.5 show all the identified tuple based BWSET bins. We note

that with increasing branch history, a lot more traces shift from low branch working set categories

to high branch working set categories. All the workloads have been characterized in the discussed

tuple based BWSET bins, and the distribution is shown in Figure 4.6. We discuss the correlation

studies for these categories in the next few sections.

BWSET Size Characterized BWSET bin
1 - 100 BWSET-LOW1
100 - 1k BWSET-LOW2
1k - 10k BWSET-MEDIUM1
10k - 100k BWSET-MEDIUM2
100k - 1M BWSET-HIGH1
1M - 10M BWSET-HIGH2
>10M BWSET-HIGH3

Table 4.5: BWSET bins for tuple based defintion

42

Figure 4.6: Trace distribution based on BWSET of branch PCs

4.3.2.2 Miss Rate vs. Branch Working Set Size

In this section, we analyze the correlation of branch working set size with the representative

Miss-prediction Kilo Branches (MPKB) number for both TAGE and Perceptron predictor. We ex-

pect to see a very high correlation between a predictor’s accuracy and the amount of branch context

it tracks, learns, and uses to predict the branch outcome. All the practical branch predictors are

hardware constrained. With the increasing amount of branch context, these predictors tend to lose

prediction accuracy due to destructive interference in limited sized branch prediction tables. Again,

we note that most of the traces having similar branch working set sizes show a similar miss rate

numbers for both TAGE and Perceptron predictors. Figure 4.7 shows relationship between multi-

perspective perceptron [4] predictor’s accuracy with BWSET size in all 12 configuration modes.

Similar trends for TAGE [2] is shown in Figure 4.8. We have measured a predictor’s accuracy in

terms of MPKB.

43

Figure 4.7: Multiperspective perceptron branch predictor: MPKB vs. BWSET based on Tuples

Figure 4.8: TAGE: MPKB vs. BWSET based on Tuples

44

A workload trace having a larger branch working set size tends to show a lower accuracy than

traces having a smaller branch working set. We note that a high correlation is emerging between

MPKB and branch working set size for tuple definition of PC and more than 24 bits of global

history outcome. For history lengths lower than 24 bit, we don’t have an identifiable pattern. A

tuple definition with smaller global history is unable to uniquely determine all the identifiable

branch context in a trace, thus showing not much correlation with the predictor’s miss rate. The

configuration modes with 24 bits of branch history show a very regular correlation pattern for

both of the thresholding factors. The correlation pattern for tuple definition with history length,

N = 32,48 and 64, is also reasonably regular but with anomalies and a much higher number of

outliers. Thus, we have empirically established a relation between branch working set size and

misprediction rate for two of the most accurate modern branch predictors. However, a tuple having

a large amount of history is also unable to give good correlation results because the branch contexts

can get lost in longer histories for some specific traces, thus showing some deviation from the

expected correlation results. We shall see much more evident trends for a higher amount of history

in tuples when we discuss predictability based bins in the later section.

4.3.2.3 Predicability in Branch Working Set Bins

In Figure 4.9, we show the predictability results for each of the newly defined trace categories.

These results, in a way, justify the trends in miss-rate vs. working set size we observed in the

last section. These predictability numbers are based on the inherent bias in the tuple. A tuple

showing an extreme bias towards taken or not-taken outcomes would be easy to learn for a modern

branch predictor; thus, we say they have high predictability. We note that a very high predictability

number, i.e.,> 98%, leads to very high branch prediction accuracy. Looking at these plots, we can

see why the history length of 24 shows such a regular correlation pattern because it also shows a

high predictability correlation in the branch working set with the miss-rates of modern predictors.

With branch histories smaller than 24, the tuples don’t show a regular predictability plot as history

is too small to fully identify the majority of the branch context in trace set that we use. The longer

history tuples also show some anomalies in their predictability trends. The longer histories tend to

45

have noisy behavior, which leads to useful context getting lost in multiple individual low-frequency

tuples (filtered out in branch working set definition).

Figure 4.9: Predictability in tuple based working set

4.3.2.4 Trace categorizations based on branch predictability

We note that predictability measure for a trace has a solid correlation with a predictor’s accu-

racy. The predictability data show a trend of their own. Due to the way the predictability parameter

has been defined, it gives the probability for a tuple’s biased direction. We average out this pre-

dictability characteristics across all the tuples in the branch working set to get a branch prediction

easiness indicator. We see a sense in defining the predictability parameter for only branch work-

ing set because we do not want predictability to get affected by behavior of low-frequency tuples.

We characterize 2451 traces based on the its characteristic predictability. We see in Table 4.6, for

theta = 95% the predictability ranges between 75.29% to 100%, 75.76% to 100%, 76.20% to

100%, 78.30% to 100%, 62.24% to 100% and 51.04% to 100% for history length of 8, 16, 24,

32, 48 and 64, respectively. We see the predictability range improves and gets narrower till branch

history length of 32, and then the range opens up on the lower side. This behavior is seen due

46

to two reasons - small history length can capture less branch context; noise in the longer branch

history also restricts the extracted branch context. The predictability range for thresholding fac-

tor, θ = 99%, is 76.03% to 100%, 76.08% to 100%, 76.50% to 100%, 75.13% to 100%, 59.72%

to 100%, 49.32% to 100% for branch histories of 8,16,24,32,48 and 64 respectively which shoes

similar trend as seen for θ = 95%.

Characterization modes Predictability in BWSET
tuple_8_95 75.29% - 100%
tuple_8_99 76.03% - 100%
tuple_16_95 75.76% - 100%
tuple_16_99 76.03% - 100%
tuple_24_95 76.20% - 100%
tuple_24_99 76.50% - 100 %
tuple_32_95 78.30% - 100%
tuple_32_99 75.13% - 100%
tuple_48_95 62.24% - 100%
tuple_48_99 59.72% - 100%
tuple_64_95 51.04% - 100%
tuple_64_99 50.03% - 100%

Table 4.6: Predicatbility range for workloads with tuple based defintion

We characterize branches in the following predictability bins – low, medium, and high. We fur-

ther subdivide the low predictability bins to show the distinction between predictability lower than

75%, 75%-80%, 80%-85%, and 85%-90%. The medium predictability traces are subcategorized

into 90%-92.5%, and 92.5%-95%. Finally, we characterize high predictability traces into 95%-

97.5%, 97.5%-99%, and 99%-100% categories. The predictabiliy based characterization is shown

in Table 4.7. Figure 4.10 shows predictability based trace distribution for all the 12 configuration

modes. With increasing predictability, we see some lower predictability traces moving into high

predictability trace categories till N=32. For longer history lengths, we see several traces losing

their earlier high predictability status and move to low predictability categories.

47

Predictability in BWSET Characterized Predictability bin
< 75% Pred-VLOW1
75% - 80% Pred-LOW1
80% - 85% Pred-LOW2
85% - 90% Pred-LOW3
90% - 92.5% Pred-MEDIUM2
92.5% - 95% Pred-MEDIUM2
95% - 97.5% Pred-HIGH1
97.5% - 99% Pred-HIGH2
99% - 100% Pred-HIGH3

Table 4.7: BWSET bins for tuple based defintion

Figure 4.10: Trace distribution based on Predictability in BWSET

Predictability vs. Miss-Rate: We run the correlation studies for these predictability based

trace characterization in each of the 12 tuple based configuration modes. Figure 4.11 shows rela-

tionship between multiperspective perceptron [4] predictor’s accuracy with inherenent predictabil-

ity present in BWSET. Similar trends for TAGE [2] is shown in Figure 4.12.

48

Figure 4.11: Multiperspective perceptron branch predictor: MPKB vs. Predictability in BWSET

Figure 4.12: TAGE: MPKB vs. Predictability in BWSET

49

We see a strong correlation emerging for even smaller history lengths, N = 8, 16, 24 and

32 (only with θ = 95% for N=32). There is a fairly regular pattern which indicates that trace

having higher overall predictability also has a higher prediction accuracy for state of the art branch

predictors – TAGE [2] and Multiperspective perceptron predictor [4]. In the prior trends seen

for BWSET size vs. MPKB in Figure 4.11, we have already established how tuples with N=8

and 16 are not able to determine all the identifiable branch context in the workload uniquely.

This shortcoming resulted in no visible correlation between the modern predictor’s accuracy with

BWSET size. Similarly, seeing the trends for N=48 and 64, we establish with large amounts of

history, branch context gets lost due to aliasing in a hardware limited modern predictor resulting

in an unclear correlation between MPKB and inherent predictability in BWSET. This observation

leads us with a conclusion that tuple consisting of PC and 24 bits of global history presents a sweet

spot in workload charaterization for branch prediction accuracy. This configuration shows a strong

correlation between MKBP and BWSET size as well as BWSET predictability.

However, there is one interesting fact in this analysis. The accuracy of both TAGE and percep-

tron is better than the inherent predictability numbers we are projecting for workloads in most of

the workload bins. It is due to the fact these modern branch predictors extract and learn branch

context from very sophisticated branch histories where they can be selective about which histories

to choose. Our attempts are focused on providing a simplistic first order attempt at characterizing

branches based on the inherence branch behavior of traces. The predictability measure reported by

us is generally conservative because we work with generalized global histories.

4.3.3 TAGE vs Perceptron

In the following section, we compare two of the most accurate branch prediction schemes of

modern times in these re-categorized trace bins. We pick 64KB hardware budget submissions of

both the TAGE [2] and the multiperspective perceptron branch predictor [4] from CBP5 for our

comparison. We make this comparison on our modified CBP based infrastructure along with the

original branch prediction code submissions from Andre Seznec and Daniel Jiménez. In the orig-

inal competition, Andre Seznec’s TAGE design was declared the winner, while Daniel Jiménez’s

50

design stood second. In this work, we not only compare these two predictor techniques for Sam-

sung’s BT9 traces but also on the Qualcomm’s traces. In our opinion, a fresh comparison of these

two branch prediction schemes needs to be done for a broader workload set, which is character-

ized based on their branch behavior rather than their application domain. This exercise gives us

an insight into these design’s strengths and weaknesses, which can be instrumental in their future

development.

4.3.3.1 Original Application group bins

We first compare two of these predictors on the pre-categorized application domain based

workloads group. In the CBP5 competition, the designs were only compared for Samsung’s

BT9 traces. We extend that comparison to include CVP traces and show the results in figure

4.13. TAGE [2] outperforms multiperspective perceptron branch predictor [4] for all the cate-

gories except "CRYPTO". We also note that both the predictors show an inferior accuracy on the

"COMPUTE_INT " trace group. We are not able to extract any meaningful results from this

kind of comparison because we don’t know the inherent branch behavior of these workloads. Our

work shows that even though some of these traces belong to different application groups, they have

similar branch characteristics. We have used these characteristics to re-categorize these workloads

into BWSET and Predictability bins to get meaningful insights about the performance of these two

state-of-art predictors.

51

Figure 4.13: Comparison of 64KB TAGE and Perceptron predictors on original CBP+CVP trace
categorization

4.3.3.2 BWSET bins

We compare both TAGE, and multiperspective hashed perceptron branch predictor for their

prediction accuracy in each of the 7 branch working set size-based categories that we defined ear-

lier. We report the absolute difference in their Misses per Kilo Branches [MPKB] MPKB(TAGE)

- MPKB(Perceptron) for each of the 7 trace categories in tuple configuration modes having N=24

and 32, shown in Figure 4.14. We have seen in previous sections, these configuration modes have

a strong correlation for BWSET size and MPKB of TAGE/ Perceptron designs.

Figure 4.14: Comparison of 64KB TAGE and Perceptron predictors for workloads categorized in
BWSET bins

52

We show that CBP5’s winner TAGE branch predictor design is more accurate than the runners

up design, multiperspective perceptron branch predictor, in most of the categories. However, we do

identify BWSET bins having 0-100 unique tuples for a variety of history lengths in the tuple, where

the runners up design performs marginally better than TAGE. This new workload characterization

scheme for branch prediction not only establishes the superiority of one design over other but also

enables us to presents a branch behavior-based comparison to identify the strengths, weaknesses,

and scope of improvement for modern branch predictor techniques.

4.3.3.3 Predictability bins

We also compare the TAGE and multiperspective hashed perceptron branch predictor for their

prediction accuracy in each of the 9 predictability based categories that we defined earlier. MPKB

absolute differences are shown in Figure 4.15. Here also, we report the absolute difference in their

MPKB for tuple based configuration modes with N=24 and 32 for 9 trace categories. The trends

for predictability based characterization are a little more evident than the branch working set bin

results. We observe that for certain low predictability categories for branch history lengths, N=

24 and 32, multiperspective perceptron branch predictor design shows marginally better accuracy

than CBP5’s winner TAGE branch predictor. Thus, the perceptron branch predictor seems to fares

better than TAGE for traces having low predictability and deeper branch context information. This

observation can be utilized during the design of next-generation Perceptron and TAGE family of

predictors. It also gets clear why Andre Seznec’s design wins the CBP5 competition because most

of the traces are in high predictability buckets than the low predictability buckets, where TAGE has

an advantage.

53

Figure 4.15: Comparison of 64KB TAGE and Perceptron predictors for workloads categorized in
Predictability bins

54

5. CONCLUSIONS

5.1 Conclusion

In this thesis, we propose two new branch behavior indicators for workloads - branch working

set and predictability, both of which are independently determined irrespective of application do-

main the trace belongs to or architecture of the branch predictor. We have identified that a tuple

consisting of branch PC and 24 bits of global history provides a good representation of branch con-

text and is the most basic unit which a predictor needs to learn. We first defined tuple based branch

working set for each of workloads, i.e., the total number of uniquely identifiable high-frequency

branch contexts present in that workload, which dominates a predictor’s accuracy. Based on the

bias of the tuples in the branch working set, we define the representative predictability measure for

the workload. We have created an analysis framework that can extract these two parameters along

with other branch-related information from a set of 2451 industry released traces having very rich

branch behavior.

Through our work, we show that the branch working set’s size and predictability correlate very

well with the achievable branch prediction accuracy for any modern branch prediction scheme.

Based on these newly identified branch characteristics, we present a workload characterization to

categorize traces into 7 branch working set size based bins and 9 predictability based bins. We

note that traces belonging to smaller branch working set bin to have a higher prediction accu-

racy than the traces belonging to the higher branch working set category. We also see that high

predictability bins guarantee a high branch prediction accuracy. Our analysis framework is also

capable of running two states of the art branch prediction schemes - TAGE and Multiperspective

hashed perceptron. We compare the prediction accuracy of these two designs for these newly cat-

egorized traces and uncover new insights about their possible strengths, weaknesses, and scope of

improvement for particular branch behaviors.

We expect that this proposed work would help identify the branch behavior in workloads and

55

can estimate a modern predictor’s accuracy conservatively. The observed trends can also help

spark a new interest in the further development of the currently existing branch prediction design.

We also provide a vast set of traces that are already characterized by their branch behavior and can

be used for a more robust comparison of upcoming branch prediction strategies.

5.2 Future Work

We would like to include local histories or an amalgamation of global and local histories in the

tuple definition for it to be a more robust branch context representation. It would be pretty inter-

esting to do a similar analysis on those tuple definitions. We expect correlations between branch

working set’s size and predictability and a predictor’s accuracy to be more strong for such tuple

definitions. We could also get a more realistic estimate of a modern branch predictor’s accuracy

by looking at those predictability numbers.

56

REFERENCES

[1] A. Seznec, “Tage-sc-l branch predictors,” JWAC4: Championship Branch Prediction (CBP-

4), 2014.

[2] A. Seznec, “Tage-sc-l branch predictors again,” Championship Branch Prediction (CBP-5),

2016.

[3] D. Jiménez, “Multiperspective perceptron predictor,” Championship Branch Prediction

(CBP-5), 2016.

[4] D. Jiménez, “Multiperspective perceptron predictor with tage,” Championship Branch Pre-

diction (CBP-5), 2016.

[5] S. Eyerman, J. E. Smith, and L. Eeckhout, “Characterizing the branch misprediction penalty,”

in 2006 IEEE International Symposium on Performance Analysis of Systems and Software,

pp. 48–58, IEEE, 2006.

[6] J. E. Smith, “Branch predictor using random access memory,” Jan. 25 1983. US Patent

4,370,711.

[7] J. E. Smith, “A study of branch prediction strategies,” in 25 years of the international sym-

posia on Computer architecture (selected papers), pp. 202–215, 1998.

[8] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,” in Proceedings of

the 24th annual international symposium on Microarchitecture, pp. 51–61, 1991.

[9] T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive branch predic-

tion,” ACM SIGARCH Computer Architecture News, vol. 20, no. 2, pp. 124–134, 1992.

[10] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use two levels

of branch history,” in Proceedings of the 20th annual international symposium on computer

architecture, pp. 257–266, 1993.

57

[11] K. Skadron, M. Martonosi, and D. W. Clark, “A taxonomy of branch mispredictions, and

alloyed prediction as a robust solution to wrong-history mispredictions,” in Proceedings 2000

International Conference on Parallel Architectures and Compilation Techniques (Cat. No.

PR00622), pp. 199–206, IEEE, 2000.

[12] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic branch prediction

using branch correlation,” in Proceedings of the fifth international conference on Architec-

tural support for programming languages and operating systems, pp. 76–84, 1992.

[13] S. McFarling, “Combining branch predictors,” tech. rep., Technical Report TN-36, Digital

Western Research Laboratory, 1993.

[14] C.-C. Lee, I.-C. Chen, and T. N. Mudge, “The bi-mode branch predictor,” in Proceedings of

30th Annual International Symposium on Microarchitecture, pp. 4–13, IEEE, 1997.

[15] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity aliasing in conditional

branch predictors,” in Proceedings of the 24th annual international symposium on Computer

architecture, pp. 292–303, 1997.

[16] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt, “Branch classification: a new mechanism for

improving branch predictor performance,” International Journal of Parallel Programming,

vol. 24, no. 2, pp. 133–158, 1996.

[17] R. Nair, “Dynamic path-based branch correlation,” in Proceedings of the 28th annual inter-

national symposium on Microarchitecture, pp. 15–23, IEEE, 1995.

[18] A. Seznec, “Analysis of the o-geometric history length branch predictor,” in 32nd Interna-

tional Symposium on Computer Architecture (ISCA’05), pp. 394–405, IEEE, 2005.

[19] A. Seznec, “A case for (partially)-tagged geometric history length predictors,” Journal of

InstructionLevel Parallelism, 2006.

[20] A. Seznec, “A 64 kbytes isl-tage branch predictor,” JWAC: Championship Branch Prediction,

2011.

58

[21] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,” in Proceed-

ings HPCA Seventh International Symposium on High-Performance Computer Architecture,

pp. 197–206, IEEE, 2001.

[22] D. A. Jiménez, “Fast path-based neural branch prediction,” in Proceedings. 36th Annual

IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36., pp. 243–252,

IEEE, 2003.

[23] D. A. Jiménez, “Piecewise linear branch prediction,” in 32nd International Symposium on

Computer Architecture (ISCA’05), pp. 382–393, IEEE, 2005.

[24] G. H. Loh and D. A. Jiménez, “Reducing the power and complexity of path-based neu-

ral branch prediction,” in Proceedings of the 5th Workshop on Complexity Effective Design

(WCED5), pp. 1–8, Citeseer, 2005.

[25] D. A. Jiménez and G. H. Loh, “Controlling the power and area of neural branch predictors

for practical implementation in high-performance processors,” in 2006 18th International

Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’06),

pp. 55–62, IEEE, 2006.

[26] D. Tarjan and K. Skadron, “Merging path and gshare indexing in perceptron branch pre-

diction,” ACM transactions on architecture and code optimization (TACO), vol. 2, no. 3,

pp. 280–300, 2005.

[27] M. Haungs, P. Sallee, and M. Farrens, “Branch transition rate: a new metric for improved

branch classification analysis,” in Proceedings Sixth International Symposium on High-

Performance Computer Architecture. HPCA-6 (Cat. No. PR00550), pp. 241–250, IEEE,

2000.

[28] T. Yokota, K. Ootsu, and T. Baba, “Potentials of branch predictors: From entropy view-

points,” in International Conference on Architecture of Computing Systems, pp. 273–285,

Springer, 2008.

59

[29] S. De Pestel, S. Eyerman, and L. Eeckhout, “Linear branch entropy: Characterizing and

optimizing branch behavior in a micro-architecture independent way,” IEEE Transactions on

Computers, vol. 66, no. 3, pp. 458–472, 2016.

[30] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction via data com-

pression,” ACM SIGPLAN Notices, vol. 31, no. 9, pp. 128–137, 1996.

60

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Motivation
	Thesis Statement
	Document Organization

	BACKGROUND AND RELATED WORK
	Branch prediction fundamentals
	Dynamic branch prediction techniques
	Two-level predictor organization
	Single-level predictor organization
	Exploiting bias in branches
	Path Based Predictor
	Tagged geometric history length predictior
	Perceptron branch predictors

	Characterizing branch behavior
	Taken Rate
	Transition Rate
	Branch Entropy
	Markov Predictor
	Linear Branch Entropy

	WORKLOAD CHARACTERIZATION FOR BRANCH PREDICTION
	Branch Working Set [BWSET]
	PC based branch working set
	Tuple based branch working set

	Predictability in the branch working set
	 Characterization based on branch working set's size
	 Characterization based on predictability in branch working set
	Comparing TAGE vs. Perceptron branch prediction

	METHODOLOGY AND RESULTS
	Workloads
	Analysis Framework
	Results and Analysis
	BWSET based on branch PCs
	Trace Categorization
	Miss Rate vs. Branch Working Set Size
	Predictability in Branch Working Set

	BWSET based on branch tuples
	Trace categorization based on branch working set
	Miss Rate vs. Branch Working Set Size
	Predicability in Branch Working Set Bins
	Trace categorizations based on branch predictability

	TAGE vs Perceptron
	Original Application group bins
	BWSET bins
	Predictability bins

	CONCLUSIONS
	Conclusion
	Future Work

	REFERENCES

