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ABSTRACT

There is strong evidence that some states in 10Be exhibit a molecular-like α:2n:α config-

uration. Based on theoretical studies, it appears that the 6.179 MeV 0+ state in 10Be has

a pronounced α:2n:α configuration with an α-α inter-distance of 3.55 fm. This is 1.8 times

more than the corresponding value for the 10Be ground state. The 2+ state at 7.542 MeV

in 10Be is believed to be the next member of this rotational band. The state at 10.2 MeV

was identified as a 4+ member in recent experiments. The algebraic model predicts that the

next member of this band is the 6+ state that should be found around 13 MeV.

An experiment was performed to search for the 6+ state in 10Be at around 13 MeV

excitation energy in the excitation function for 6He+α scattering, which populated states in

the excitation energy range from 4.5 MeV to 8 MeV in 10Be using a 6He rare-isotope beam

and a thick helium gas target. No new excited states in 10Be have been observed. However,

stringent limitation on the possible degree of α-clustering of the hypothetical yrast 6+ state

has been obtained using Monte Carlo methods. We concluded that the high-spin members

of the α:2n:α molecular-like rotational band configuration, that is considered to have a 0+

bandhead at 6.18 MeV, either do not exist or have small overlap with the 6He(g.s.)+α

channel.
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1. INTRODUCTION

Nuclear physics began with the discovery of radioactivity by Henri Becquerel in 1896 [1].

Radioactive decay is a stochastic process by which an unstable nucleus transitions to a lower

energy state by decaying or disintegrating. The following year, J. J. Thomson discovered

the electron, leading him to postulate the existence of an internal structure for an atom [2].

In 1904, the “plum pudding” model was put forth by Thomson, that described an atom

as consisting of a positively-charged core with negatively-charged electrons that occupy the

inside of the core. Following this, extensive understanding of radioactivity was elucidated

by Thomson’s student, Ernest Rutherford, by interpreting the results of the Geiger-Marsden

experiment [3]. By the 1900s, they had discovered three types of radiation emerging from

an atom. These were named α, β and γ respectively. By performing experiments with

α-particles passing through air, foil and gold leaf, Rutherford conjectured that the atom

consisted of a small, dense nucleus making up most of its mass. To balance out the overall

charge to be neutral, a dense negatively-charged cloud of electrons orbit the nucleus. This,

combined with the discovery of the neutron, allowed for a rudimentary understanding of the

nuclear force [4, 5].

Our rudimentary understanding of the nucleus follows from Weizsäcker’s liquid-drop

model. The liquid-drop model is also able to predict the nuclear binding energies (the

binding energy of a nucleus is the difference between the mass energy of the nucleus and its

constituent nucleons) as well as the fission barrier. A representation of these three models

is shown in Figure 1.1. To expand on this further, one must look at the semi-empirical mass

formula, which can predict the binding energy of a nucleus [7]. The binding energy form is

shown in Equation 1.1. The liquid-drop model assumes all the nucleons behave similar to

droplets and just coalesce together to form a sphere.

EB = aVA− aSA
2/3 − acZ(Z − 1)A−1/3 − asym

(A− 2Z)2

A
+ δ (1.1)
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Figure 1.1: The evolution of the nuclear theory is shown here. The “plum pudding” model
by Thomson described the nucleus as having a rather large positively charged core with
negatively-charged electrons inside it. Rutherford’s nuclear model comprised of a positively
charged core that is rather small, being orbited by electrons. The last iteration of this is
the liquid drop model. This model gave us a rudimentary understanding of the atom. This
model is able to reconstruct nuclear binding energies as well as the fission barrier. Reprinted
with permission from [6].

The first term, aVA is the volume term that arises due to the strong nuclear force. The

coefficient aV is empirically determined to be around 15.5 MeV/A [8]. EB scales linearly

with A, suggesting that each of the nucleons only attracts its closest neighbors. Since the

nucleons on the surface of a sphere do not have nearest neighbors on all sides, a correction

in the form of the second term (aSA2/3), is introduced which is proportional to the surface

area of a sphere. The third term is the Coulomb term, to account for the electrostatic

repulsion between protons in the nucleus. The next term is known as the asymmetry term

or Pauli term as it is derived in part due to the Pauli Exclusion Principle (PEP). The Pauli

Exclusion Principle states that a state cannot be occupied by any two identical fermions with

the same quantum numbers. At a given energy, there are only a finite amount of quantum

2



states available for the particles. Consequently, as more nucleons are added to the nucleus,

they must occupy higher energy levels, thus, increasing the total energy of the nucleus and

decreasing the binding energy. The final component, δ, is the pairing term, accounting for

the spin-coupling, where nucleons prefer to couple in a spin-singlet state, so s = 0, which

is given by Equation 1.2. The shell model, which deals with individual nucleons is partly

responsible for the last two terms, along with the Pauli Exclusion Principle.

δ =


+δ0 Z,N even

0 A odd

−δ0 Z,N odd

(1.2)

Here, δ0 is empirically determined to be 1 MeV, slowly decreasing as A increases. The

pairing term, δ, suggests that like nucleons couple pairwise to form an energetically favorable

configuration. This suggests a two-fold degenerate energy level, which indicates that any

coupling between the two states lowers the energy of the ground state of the system, thus

increasing their attraction, making it more stable. The binding energy from Equation 1.1,

plotted against mass number A, is shown in Figure 1.2.

In order to describe the nuclear structure, one must construct a nuclear model that still

contains the essentials of nuclear physics. One such model is the nuclear shell model. The

nuclear shell model has developed the formulation of the nuclear energy levels and their

degeneracies. It starts with the harmonic oscillator and uses the Pauli exclusion principle

to describe the energy levels of a nucleus, and thus its structure. While this is the starting

point of the shell model, one can use more realistic potentials to get the proper single-particle

energy levels. When these energy levels or shells are fully occupied, “magic numbers” are

expected. This is discussed in further detail in Section 2.3.1. These are a set of numbers

(A) where the next nucleon requires a lot more energy to be added, resulting in an increased

binding energy. This is described in more detail in Section 2.3.1.
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Figure 1.2: Binding energy per nucleon plotted for a range of masses using the semi-empirical
mass formula and data available from the Nuclear Energy Agency. This plot shows the close
agreement of mean binding energies between the approximation of the semi-empirical mass
formula and published values for these binding energies.

1.1 Dissertation work

One of the main goals of nuclear physics is to develop a comprehensive understanding of

nuclear structure. The nuclear shell model, introduced almost 70 years ago, provided a useful

framework and became the leading nuclear structure model. In order to make quantitative

predictions in this framework, it was necessary to introduce many parameters that had to

be fitted to the experimental data. For example, in the most simple case of p-shell nuclei,

there are 15 independent parameters for residual interactions (two body matrix elements)

and 2 single-particle energies (for p3/2 and p1/2 shells). Calculations that include p-s-d shells
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require 203 independent parameters in total. Naturally, as one moves away from well-studied

stable nuclei, toward more exotic nuclear species, predictions of the “stable” nuclear shell

model that are based on phenomenological fits become less reliable.

Nuclear clustering is the coalescing of nucleons that leads to interesting structures in

nuclei [9]. Clustering has long been known to be influential in the structure of ground and

excited states of N = Z (self-conjugate) nuclei, and more specifically, 4n (n = 2, 3, 4, ...), self-

conjugate nuclei, otherwise referred to as α-conjugate nuclei. Nuclear clustering is described

in further detail in Section 2.3.2.

The high binding energy of the α-particle results in the formation of cluster structures

in light nuclei such as 6Li, which display an α + d structure. We can also look at the α-

conjugate nuclei, of which the two α-particle system 8Be is the simplest case. This nucleus

has a dumbbell structure that gives rise to rotational bands where there is a deformation

that can only be described by clustering. The high binding energies of the α-particle and a

few of the α-conjugate nuclei are shown in Figure 1.3. The binding energy of these nuclei

further increases as they form additional bonds with α-particles. This relationship is shown

in Figure 1.4.

Recent theoretical advances open up an exciting prospect of being able to make robust

nuclear structure and nuclear reactions calculations starting from “bare” nucleon-nucleon

and three-nucleon interactions, or from interactions derived in the framework of Effective

Field Theory and constrained to nucleon-nucleon scattering phase shifts and the triton bind-

ing energy. The development of powerful theoretical machinery, such as Green’s Function

Monte Carlo (GFMC), No Core Shell Model (NCSM), Antisymmetrized Molecular Dynam-

ics (AMD, see Section 2.3.3) , Coupled Clusters and other approaches provide a variety of

theoretical tools and methods for predicting phenomena in atomic nuclei from first princi-

ples. Experimental verification of these predictions is, of course, paramount. Further details

on some of these models are presented in Chapter 2.

The focus of this dissertation is on clustering phenomenon in light nuclei. There is strong
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Figure 1.3: The binding energies per nucleon for light beta-stable nuclides (subset of Figure
1.2), with α-conjugate nuclei highlighted. The spikes in binding energies per nucleon can be
observed for these α-conjugate nuclei.

experimental and theoretical evidence that some states in 10Be exhibit molecular-like α:2n:α

configurations. Recent NCSM calculations provide additional support for this idea.

The role of clustering in 10Be has been studied extensively both theoretically and ex-

perimentally since the inception of the Molecular Orbital (MO) model, which described the

structure of neutron-rich Be and B isotopes [12, 13, 14]. The dimer α + α core structure of
10Be bound states has been discussed in Ref. [15], and confirmed by AMD calculations [16].

More details about this method is discussed in Section 2.3.3.

There is strong experimental and theoretical evidence that some states in 10Be exhibit

molecular-like α : 2n : α configurations. This appears to be a robust prediction of Orbital

Molecular theory and AMD. Recent No Core Shell Model calculations provide additional

support for this idea. Experimental searches for the 0+, 2+ and 4+ members of the α : 2n : α

6



Figure 1.4: Binding energies vs. number of α-particle bonds is shown in the top figure and
was originally suggested by Ref. [10]. The proposed arrangements of the α-particle in the
molecules is shown in the bottom figure. Reprinted from Ref. [11] (CC BY-NC-SA 3.0).

band in 10Be has been performed and results are reported in Ref. [17, 18, 19]. Experiments

searching for the yet unobserved, but predicted, 6+ member of the α:2n:α rotational band

have been performed and their results are reported in Ref. [20, 21]. We performed an

experiment to search for the 6+ state in 10Be at around 13 MeV excitation energy using
6He + α scattering at the Cyclotron Institute. Details about the experimental setup are

presented in Chapter 3. The results from this measurement as well as a comparison of our
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results with previous measurements are presented here in Chapters 4 and 5.
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2. THEORY

Clustering aspects in the nuclear structure of 10Be are studied in this work using nuclear

reactions between a rare-isotope beam of 6He and α-particles. An introduction to nuclear

reaction and nuclear structure theory that is relevant for this work is provided below in

this chapter. In particular, the R-Matrix approach (Section 2.2) that is commonly used to

describe resonance reactions is reviewed. I also focus on classical shell model description

of nuclear structure (Section 2.3.1) and review some of the modern microscopic theoretical

models (Sections 2.3.3 and 2.3.4) that can be used to reproduce clustering phenomena in

atomic nuclei. Contemporary understanding of clustering in beryllium isotopes is reviewed

at the end of this chapter (Section 2.4).

2.1 Nuclear reactions

A reaction that involves a projectile a impinging on a target A, resulting in two products,

b and B, can be conveyed by two different notations. The more explicit notation is written

as

a+ A→ b+B, (2.1)

whereas a more compact notation can be expressed as

A(a, b)B. (2.2)

In its simplest form, a nuclear reaction is a process by which two nuclei interact to

produce nuclides that are often different from the parent nuclei. If the nuclei resulting from

the reaction are the same nuclei in the same states as the parent nuclei, the process is called

elastic scattering. The time scale of the reaction discriminates the type of reaction that

proceeds. Reactions that take place on a faster time scale (of the order of magnitude that

it takes the nucleons to traverse the reaction nucleus, 10−22 s) are named direct reactions.
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Reaction that are comparatively slower are known as compound nucleus reactions, where

the reaction proceeds through an intermediate state, forming a compound nucleus.

2.1.1 Direct reactions

Direct reactions are the fastest reactions that occur between two nuclei (on the order

of 10−22 s) , where the interaction between the incident particle and the target particle

happens primarily at the surface of the target particle. These reactions tend to occur at

higher energies with fewer internal collisions. As the incident particle energy increases,

the de Broglie wavelength decreases. At higher energies (20 MeV proton has a de Broglie

wavelength of 1 fm), the incident particle is more likely to interact with nucleon rather

than nucleus sized objects. This allows for direct processes which interacts with a single

nucleon on valence nucleons at the surface of the target nuclei [8]. The initial direction and

energy of the incoming particle generally plays a big role in the final energy and direction

of the resulting particle. If, during this type of reaction, both the interacting nuclei are the

same before and after the reaction albeit left in an excited state, this is known as inelastic

scattering.

Another type of direct reaction is a transfer reaction. This is where one or more nucleons

from the projectile or target nuclei are transferred to the other nuclei. A common type of

transfer reaction that often occurs through a direct process is a (d, p) reaction. Here, an

incoming deuteron particle collides with the target, transferring a neutron to the target. In

these reactions, at lower energies, formation of a compound nucleus is still possible. However,

the compound nucleus decays isotropically in the center of mass (for L=0 decays), whereas

a direct (d, p) reaction has a forward-focused cross section, allowing it to be distinguished

from the compound nucleus formation.

Another type of direct reaction is when a projectile or a target nucleus can break apart,

resulting in three or more final particles, without going through a compound nucleus. This

type of reaction is known as a breakup reaction. A schematic of the three different types of

direct reactions is shown in Figure 2.1.
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Figure 2.1: Schematic illustrating the three different types of direct reactions. Reprinted
with permission from Ref. [6].

2.1.2 Compound nucleus reactions

Compound nucleus reactions proceed through an intermediate state - compound nucleus.

As a result, the decays of the compound nucleus are independent of the initial conditions.

Symbolically, the reaction

a+X → Y + b (2.3)

becomes

a+X → C∗ → Y + b , (2.4)

where C∗ represents a compound nucleus. This process is illustrated in Figure 2.2. This

concept of the independence hypothesis was originally postulated by Niels Bohr. These

reactions involve all the nucleons from the projectile and target nuclei. Many nucleon-

nucleon scatterings will take place, dispersing the kinetic energy from the initial nuclei to all
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Figure 2.2: Illustration of the stages of a compound nucleus (adopted from Ref. [22]).

the nucleons of a compound nucleus. Example of a compound nucleus reaction is shown in

Figure 2.3

p+63 Cu
<latexit sha1_base64="8yw9crjyYo8M6o56/UL9/zJkhbo=">AAAB+3icbVBNS8NAEN34WetXrEcvi0UQhJK0oh6LvXisYD+gjWWz3bZLN5uwO5GWkL/ixYMiXv0j3vw3btsctPXBwOO9GWbm+ZHgGhzn21pb39jc2s7t5Hf39g8O7aNCU4exoqxBQxGqtk80E1yyBnAQrB0pRgJfsJY/rs381hNTmofyAaYR8wIylHzAKQEj9exChC/wY3JVSbvAJpDU4rRnF52SMwdeJW5GiihDvWd/dfshjQMmgQqidcd1IvASooBTwdJ8N9YsInRMhqxjqCQB014yvz3FZ0bp40GoTEnAc/X3REICraeBbzoDAiO97M3E/7xODIMbL+EyioFJulg0iAWGEM+CwH2uGAUxNYRQxc2tmI6IIhRMXHkTgrv88ipplktupVS+vyxWb7M4cugEnaJz5KJrVEV3qI4aiKIJekav6M1KrRfr3fpYtK5Z2cwx+gPr8wcIzpPO</latexit>

↵+60 Ni
<latexit sha1_base64="XubVCnLBb1MHO5qBkBiU8w7T8mg=">AAACAHicbVDLSsNAFJ3UV62vqAsXbgaLIAglqaIui25cSQX7gCaWyXTSDp08mLkRS8jGX3HjQhG3foY7/8Zpm4W2HrhwOOde7r3HiwVXYFnfRmFhcWl5pbhaWlvf2Nwyt3eaKkokZQ0aiUi2PaKY4CFrAAfB2rFkJPAEa3nDq7HfemBS8Si8g1HM3ID0Q+5zSkBLXXPPISIeEHyM79MzK3OAPUJ6w7OuWbYq1gR4ntg5KaMc9a755fQimgQsBCqIUh3bisFNiQROBctKTqJYTOiQ9FlH05AETLnp5IEMH2qlh/1I6goBT9TfEykJlBoFnu4MCAzUrDcW//M6CfgXbsrDOAEW0ukiPxEYIjxOA/e4ZBTESBNCJde3YjogklDQmZV0CPbsy/OkWa3YJ5Xq7Wm5dpnHUUT76AAdIRudoxq6RnXUQBRl6Bm9ojfjyXgx3o2PaWvByGd20R8Ynz/WWpXu</latexit>

64Zn⇤<latexit sha1_base64="bXOzDN3XrmtV8nokvF/1irsErCA=">AAAB+3icbVBNT8JAEN3iF+JXxaOXRmJiPJAWiXokevGIiXxEKGS7bGHDdtvsTg2k6V/x4kFjvPpHvPlvXKAHBV8yyct7M5mZ50WcKbDtbyO3tr6xuZXfLuzs7u0fmIfFpgpjSWiDhDyUbQ8rypmgDWDAaTuSFAcepy1vfDvzW09UKhaKB5hG1A3wUDCfEQxa6pvFXnJZTbtAJ5A8irSXnKd9s2SX7TmsVeJkpIQy1PvmV3cQkjigAgjHSnUcOwI3wRIY4TQtdGNFI0zGeEg7mgocUOUm89tT61QrA8sPpS4B1lz9PZHgQKlp4OnOAMNILXsz8T+vE4N/7SZMRDFQQRaL/JhbEFqzIKwBk5QAn2qCiWT6VouMsMQEdFwFHYKz/PIqaVbKzkW5cl8t1W6yOPLoGJ2gM+SgK1RDd6iOGoigCXpGr+jNSI0X4934WLTmjGzmCP2B8fkDJ++UhA==</latexit>

63Zn + n
62Cu + n+ p
62Zn + 2n

<latexit sha1_base64="f5wzFQgmWJZw3Ot/sEGNImWx63g=">AAACL3icbZDLSgMxFIYzXmu9VV26CRZFKJSZVtRlsSAuK9gLdmrJpGkbmskMyRmxDH0jN75KNyKKuPUtTNtZaOuBwM/3n5Pk/F4ouAbbfrOWlldW19ZTG+nNre2d3czefk0HkaKsSgMRqIZHNBNcsipwEKwRKkZ8T7C6NyhP/PojU5oH8g6GIWv5pCd5l1MCBrUz1w/xeXHkAnuC+F6O8EkOS+y6aYMLCS5HCc7hcM5KJgrmoqydt6eFF4WTiCxKqtLOjN1OQCOfSaCCaN107BBaMVHAqWCjtBtpFhI6ID3WNFISn+lWPN13hI8N6eBuoMyRgKf090RMfK2Hvmc6fQJ9Pe9N4H9eM4LuZSvmMoyASTp7qBsJDAGehIc7XDEKYmgEoYqbv2LaJ4pQMBGnTQjO/MqLolbIO8V84fYsW7pK4kihQ3SETpGDLlAJ3aAKqiKKntEYvaMP68V6tT6tr1nrkpXMHKA/ZX3/AB0/pgc=</latexit>

Figure 2.3: Examples of reactions forming the compound nucleus 64Zn∗, and subsequent
decays [8].

A special type of compound nucleus reaction is resonance scattering. At relatively low

c.m. energies of colliding nuclei, a few resonances in the compound system can dominate the

reaction cross section and form a distinct pattern of "peaks" in the cross section as a function

of energy (excitation function). In situations like this the cross section can be described by

R-Matrix formulation (see. Section 2.2). The R-Matrix approach is particularly relevant for

the results presented in this work and it is reviewed in the next section (Section 2.2).
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2.2 R-Matrix theory

R-Matrix theory, pioneered by Wigner and Eisenbud [23, 24], puts forth an effective

framework to characterize resonance reactions. R-Matrix theory can be phenomenological

and calculable. The basic goal of phenomenological R-Matrix is to fit experimental data

to calculate phase shifts and cross sections. This allows the extraction of nuclear structure

information from the observables (excitation functions and angular distributions). Calculable

R-Matrix provides an effective way to solve the Schrödinger equation to calculate phase shifts

and cross sections. An outline of this is shown in Figure 2.4.

Cross sections

Phase shifts

R-Matrix

R-Matrix

Phenomenological 
R-Matrix

Microscopic 
models

Calculable R-Matrix

Figure 2.4: Flow chart describing the general overview of R-Matrix theory. In the case of
phenomenological R-Matrix, experimental data are used to calculate the R-Matrix, which is
then used to calculate phase shifts and cross sections. For calculable R-Matrix, parameters
from models are used to calculate the R-Matrix, which is then used to calculate phase shifts
and cross sections.

At its core, the nuclear potential is divided into two separate regions as shown in Figure
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2.5. The first is the internal region (r ≤ a), which contains the nuclear and Coulomb

interactions. The second region is the external region (r > a), that contains Coulomb

interactions only. This radius r must therefore be chosen to be sufficiently far away from the

core of the nucleus that the nuclear force is no longer felt.

V(r)

0
a r

Internal 
region

V

External 
region

V => VCoulomb

Figure 2.5: R-Matrix formulation for the compound nucleus divides the nuclear potential
into two regions (internal and external). The internal region is where r < a. The external
region is r > a. The nuclear force is no longer felt in the external region and the contributions
for the potential come from the Coulomb and the centrifugal forces.

In its simplest form, R-Matrix theory reduces to the Breit-Wigner equation for a single

resonance shown in Equation 2.5,

σif =
π(2J + 1)

k2(2Si + 1)(2Sf + 1)

ΓiΓf

(Ei − Ec)2 + (Γ/2)2
, (2.5)
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where, Γi is the partial width for the incoming channel, Γf is the partial width for the

outgoing channel and Γ is the total width of the resonance, Ei and Ec are the energy and

resonance energy in the center of mass reference frame, k is the wave number (radians per

unit distance), J is the spin of the resonance, Si is the spin of the incoming channel, and Sf

is the spin of the outgoing channel. For a full derivation and further details not presented

in this work, see Ref. [23]. We consider a system of nucleons that has two solutions, Ψi and

Ψ2. We can define the Schrödinger equations as shown in Equations 2.6 and 2.7,

HΨ1 = E1Ψ1, (2.6)

and

HΨ2 = E2Ψ2, (2.7)

where the Hamiltonian operator for the a+ A channel, H is defined as

H = H0 +Hrel +Ha +HA, (2.8)

with,

H0 =
−ℏ2

2(ma +mA)
∇2

R, (2.9)

describing the motion of a + A, where masses ma and mA are the masses of the respective

particles.

Hrel =
−ℏ2

2µaA
∇2

raA
+ Vrel(raA) (2.10)

Equation 2.10 describes the relative motion of the two particles with

µaA =
mamA

ma +mA

, (2.11)

being the reduced mass, raA is the distance between a and A. The internal Hamiltonians for
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a and A are

Ha = (Tinternal)a + (Vinternal)a, (2.12)

HA = (Tinternal)A + (Vinternal)A. (2.13)

Similar to Equation 2.8, the total wave function Ψ for a given channel is expressed as

Ψ = Φ(R)χ(raA)ψa(ra)ψA(rA), (2.14)

where the wave functions Φ, χ, ψa(ra), and ψA(rA) describe the centroid motion, the relative

motion of a and A and the internal states of a and A respectively. Here, R is the centroid

position vector of the whole system, raA is the radius vector between a and A. ra and aA

are the radial coordinates of a and A respectively.

If we multiply Equation 2.6 by Ψ∗
2, and the complex conjugate of Equation 2.7 by Ψ1,

we have

HΨ1Ψ
∗
2 = E1Ψ1Ψ

∗
2 (2.15)

H∗Ψ∗
2Ψ1 = E2Ψ

∗
2Ψ

∗
1. (2.16)

If we subtract Equation 2.16 from Equation 2.15 and integrate over the internal region τ ,

we get

(E2 − E1)

∫
τ

Ψ∗
2Ψ1dτ =

∫
τ

(H∗Ψ∗
2Ψ1 −Ψ∗

2HΨ1)dτ. (2.17)

Considering Equation, 2.8, 2.9 and 2.10, as well as assuming that the potentials Vinternal

and Vrel are self-adjoint as in

∫
τ

[(VΨ2)
∗Ψ1 −Ψ∗

2VΨ1]dτ = 0, (2.18)

and using Green’s Theorem (
∮
S
LdS =

∫
τ
(∂L/∂y)dτ)

∫
τ

(∇ · ∇Ψ2)
∗Ψidτ =

∮
S

(∇nΨ2)
∗Ψ1dS, (2.19)
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where ∇n ⊥ S, to integrate the kinetic energy terms. The following can be derived

(E2 − E1)

∫
τ

Ψ∗
2Ψ1dτ =

−ℏ2

2µc

∫
Sc

(Ψ∗
2∇nΨ1 −Ψ1∇nΨ

∗
2)dSc =

∑
c

(γ∗2cD1c − γ1cD
∗
2c), (2.20)

where aA = c, and γλc is the cth channel of the λth resonance, and is defined as,

γλc =

(
ℏ2

2µcac

) 1
2

uc(ac)

=

(
ℏ2

2µcac

) 1
2 ∫

Sc

φ∗
cXλJMdA ,

(2.21)

and the derivative of the radial part of the wave function (Eq. 2.14) at the surface Dλc, and

is defined as,

Dλc =

(
ℏ2

2µcac

) 1
2
[
duc
dr

]
r=ac

, (2.22)

φc and XλJM from Eq. 2.21 are the channel wave function and a set of states for the channel,

respectively. The radial part of the relative motion wave function, χ is uc(r), and the channel

radius ac is defined as

ac = r0(A
1/3
1 + A

1/3
2 ) , (2.23)

which, at the surface has r0 ≡ 1.4 fm [23].

We now define boundary conditions that are satisfied by a complete set of states XλJM

on the surface Sc and are independent of λ. This boundary condition is of the form

Bc =
Dλc

γλc
. (2.24)

When this boundary condition (Eq. 2.24) is applied to Eq. 2.20 to two proper solutions Xλ
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and Xλ′ , they are mutually orthogonal and normalized

∫
τ

X∗
λ′Xλdτ = δλλ′ . (2.25)

The wave function Ψ can then be expressed in terms of these solutions as

Ψ =
∑
λ

AλXλ , (2.26)

where Aλ are coefficients defined as

Aλ =

∫
τ

X∗
λΨdτ. (2.27)

Eq. 2.20 can be applied to the wave function Ψ with energy E and solution Xλ with energy

Eλ, which yields:

Aλ = (Eλ − E)−1
∑
c

D0
λcγλc , (2.28)

where, D0
λc = Dλc −Bcγλc.

A rather important quantity here is γλc, which is the reduced width amplitude and is

related to the partial decay with by

Γγc = 2Pc(kac)γ
2
λc , (2.29)

where, Pc(kac) is the penetrability factor, defined as

Pc(kac) =
kac

F 2
l (η, kac) +G2

l (η, kac)
. (2.30)

Here Fl and Gl are the regular and irregular Coulomb wave functions, respectively, k is the

wave number and ac is the channel radius. Now the expansion for Ψ can be expressed as
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∑
c

D0
c

(∑
λ

Xλγλc
Eλ − E

)
. (2.31)

By using Eq. 2.21 on Eq. 2.31, the fundamental R-Matrix relation can be extracted, which

is:

γ
′

c =
∑
c

Rc′cD
0
c , (2.32)

which can be simplified into a matrix notation

γ = RD0 , (2.33)

where R ≡ Rc′c is the R-Matrix, and is defined as

Rc′c =
∑
λ

γλc′γλc
Eλ − E

. (2.34)

In the external region, shown in Figure 2.5, the solution Ψ can be expanded in terms of the

incoming and outgoing waves (Ic and Oc respectively), expressed as

Ψ =
∑
c

(xcOc + ycIc) . (2.35)

Hence, the γc and Dc are defined as

γc =

(
ℏ
2ρc

) 1
2

(xcOc + ycIc) (2.36)

Dc =

(
ℏρc
2

) 1
2

(xcO
′

c + ycI
′

c) , (2.37)

where ρc ≡ kac. The collision matrix Uc
′
c, is expressed in terms of the wave coefficients xc

and yc, such that,

xc′ = −
∑
c

Uc′cyc. (2.38)
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This can be expressed in matrix notation as

x = −Uy (2.39)

We can combine Equations 2.33, 2.36, 2.37 and 2.39 and solve for a relationship between

R-Matrix and the collision matrix, which is expressed as

UJ =
Iρ−1/2 −RJI

′0ρ1/2

Oρ−1/2 −RJO′0ρ1/2
(2.40)

The general form for the differential cross section for a particle with channel spin s,

component v, and type α is given by

dσαsv,α′s′v′ =
∣∣Aαsv,α′s′v′ (Ωα′ )

∣∣2dΩα′ , (2.41)

where Aαsv,α′s′v′ (Ωα′ ) is the scattering amplitude and is defined as

Aαsv,α
′
s
′
v
′ (Ωα

′ ) =
π1/2

kα
{−Cα′ (θα′ )δa′s′v′ ,αsv + i

∑
l′m′

l(2l + 1)
1
2

× [e2iωα
′
δa′s′v′ l′m′ ,αsvl0 − Ua′s′v′ l′m′ ,αsvl0]}Y (l)

m (Ωα′ ), (2.42)

where C represents the Coulomb amplitude,

Cα(θα) = (4π)−
1
2ηαcsc

2

(
θα
2

)
exp

{
−2iηα log sin

(
θα
2

)}
. (2.43)

The total cross section for most reactions (except charged-particle elastic scattering) is

extracted by summing over all the α′ ,

σTotal
α =

π

k2α

∑
J

2J + 1

(2I1 + 1)(2I2 + 1)

∑
sls

′
l
′

[1− Re(UJ
αsl,α′s′ l′

)], (2.44)

where Ii is the spin of the ith channel. For further details of this derivation and formalism,
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refer to Ref. [23, 24].

2.3 Nuclear structure

Certain aspects of nuclear structure theory that are relevant for the experimental work

presented in this thesis are reviewed in this section. Discussion of the nuclear shell model

is followed by a general overview of clustering phenomena in atomic nuclei and a brief

introduction to modern theoretical approaches that are capable of describing nuclear clusters

starting from nucleon-nucleon and three-nucleon forces. Finally, a more detailed discussion

of clustering in beryllium isotopes is presented.

2.3.1 Shell model

The nuclear shell model is a very successful, semi-phenomenological model of nuclear

structure that has been extensively used for more than 60 years. The main starting point of

this theory is to consider nuclei as quantum many-body systems that consist of independent

nucleons moving within the confines of a common potential. Nucleons in a nucleus have

quantized energy levels, defined by this common potential, as well as varying degrees of

degeneracy, allowed by Pauli exclusion principle, that gives rise to a shell structure.

The average nuclear force felt inside a nucleus by a nucleon can be approximated as a

simple harmonic oscillator potential shown in Equation 2.45, where m is the reduced mass,

ω is the angular frequency and r is the distance from the center of the system. While this is

a simplification, this potential is used because the Schrödinger equation with this potential

has an analytical solution, and is still able to represent the overall behavior of the system.

V (r) =
1

2
mω2r2 (2.45)

Beyond that, the Woods-Saxon potential is a more realistic potential to use [25], taking the

form:

V (r) =
−V0

1 + exp[(r −R)/a]
, (2.46)
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Figure 2.6: A plot of the Woods-Saxon potential using the parameters specified on the plot.
This plot shows that the V → 0 as r → ∞. This further demonstrates the short-range
nature of the strong nuclear force.

where V0 is the strength or depth of the potential well and is on order of 50 MeV, a is the

diffuseness parameter of the nuclear surface (describing the range of the strong force) and R

is the nuclear radius, which varies with mass number as

R = r0A
1/3, (2.47)

where r0 varies between 1.2 to 1.4 fm. A harmonic oscillator potential does not remain

finite as r → ∞, but rather, V → ∞. This is different with the Woods-Saxon potential

however, as shown in Figure 2.6. As r → ∞, the Woods-Saxon potential V → 0. Therefore,

the harmonic oscillator potential cannot be expected to reproduce the asymptotic behavior

(r → ∞) of nuclear wave functions, but provides a reasonable approximation in the nuclear

interior.

The Schrödinger equation in spherical coordinates is defined and solved as follows:
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ĤΨ = (T̂ + V̂ )Ψ = EΨ (2.48)

The solution to the Schrödinger equation in spherical coordinates (r, θ, ϕ) can be expressed

as a product of the radial part and the angular parts:

Ψ(r, θ, ϕ) = R(r)Θ(θ)Φ(ϕ). (2.49)

The product of Θ and Φ is defined as a spherical harmonic Yℓm, and thus, Equation 2.49 can

be rewritten as

Ψ(r, θ, ϕ) = R(r)Yℓm(θ, ϕ). (2.50)

And thus with V = 1
2
mω2r2,

[
− ℏ2

2µr2
d

dr

(
r2
d

dr

)
+

ℏ2ℓ(ℓ+ 1)

2µr2
+

1

2
µω2r2

]
R(r) = ER(r), (2.51)

with µ being the reduced mass. This is the radial wave equation and can be solved using

power series, yielding discrete energy eigenvalues:

E =

(
2n+ ℓ+

3

2

)
ℏω, (2.52)

where the principle quantum number n represents the number of nodes in the radial wave

function, and ℓ is the orbital angular momentum. The energy is independent of ml, which

can be any value between ±ℓ. This leads to (2l+1) projections of ml for each ℓ. The orbital

angular momentum, ℓ, is denoted by s, p, d, f,... for ℓ = 0, 1, 2, 3, ... and is known as the

spectroscopic notation. The parity of the wave function is determined by Ylm and is (−1)l.

Since the nucleons also have two possible spin projections (±1/2), we have a degeneracy of

2(2ℓ+ 1), neglecting the spin-orbit interaction. Looking at the first few energy levels: 3
2
ℏω,

5
2
ℏω, 7

2
ℏω, 9

2
ℏω, yields degeneracies of 2, 6, 12, 20 for the respective energy levels. This gives
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us magic numbers of 2, 8, 20, 40. However, since the spin-orbit coupling effects are neglected,

these (beyond 20) are ultimately incorrect. The shells in the shell model are organized by

their quantum numbers. These quantum numbers are properties of the spherical harmonic

function Ylm.

The spin-orbit coupling interaction term can be written as Vlsl⃗ · s⃗, where l ·s is responsible

for the reordering of the levels. In the presence of spin-orbit coupling, states are written in

terms of total angular momentum j⃗ = l⃗ + s⃗. A single nucleon has a spin s = 1
2
. Therefore,

the possible values of the total angular momentum quantum numbers are j = l + 1/2 or

j = l− 1/2. In the case of l = 0, j = 1/2 is the only allowed value. The magic numbers that

follow now are: 2, 8, 20, 28, 50, 82, 126 and 184. A level scheme can be seen in Figure 2.7

showing the degeneracy modification of this additional term.

The model space in the shell model comprises of three regions, which are the core, va-

lence space and the external space. The core region consists of the inert core with fully-filled

orbitals. The valence space, as the name suggests, consists of valence nucleons, which are

nucleons outside the filled orbitals. When a nucleus has more than one valence nucleon in the

valence space, a residual two-body interaction term must be included. The residual interac-

tion term is not included in the central potential. As such, these interactions are treated as

free parameters and phenomenological [26]. Extending the valence space to the inert core and

using realistic (“bare”) nucleon-nucleon and three-nucleon forces leads to a development of

the so called ab initio models, which is a significant contemporary breakthrough for nuclear

theory made during the last three decades.

To summarize, despite starting from rudimentary assumptions of the nuclear potential,

the shell model provides a reasonable prediction for the ground states across the chart of

nuclides. In an excited nucleus, protons or neutrons move to a higher shell, leaving a vacant

shell space, known as a hole. Whilst this provides a reasonable description of low-lying states,

predictions of higher states are often incorrect since the shell model treats these nucleons

as independent. However, in reality, these nucleons interact with each other. A preferential
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Figure 2.7: Shell model level scheme. At the left are the energy levels calculated with the
harmonic oscillator potential and their degeneracies. In the middle we have the effect of the
spin-orbit interaction, which splits levels with l > 0 into two new levels. On the right are
the magic numbers (orange). Adopted from Ref. [6].
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excitation may therefore involve the movement of multiple nucleons to a higher shell.

2.3.2 Nuclear clustering

Clustering phenomena has long been known to be influential in determining the structure

of light nuclei, and more specifically, the structure of ground and excited states of N = Z

nuclei. The idea of nuclear clustering was put forth in light of the discovery of α-decay of

heavy nuclei. Looking at the binding energy per nucleon of various nuclei, one can observe

a maxima for nuclei that are self-conjugate (N = Z) with an even number of protons and

neutrons. These nuclei such as, 4He, 8Be, 12C, 20Ne and 24Mg, are known as the 4n-type

nuclei (where n = 1,2,3,4...), and exhibit interesting features that are not explained by simple

shell-model theories [27].

The best examples of clustering revolve around α-particles, and specifically α-conjugate

nuclei. The famous Ikeda diagram (Figure 2.8) shows the cluster configurations and the

excitations at which they are expected to manifest. Since the residual interactions are

predicted to be weak around the decay threshold, cluster structures are expected to manifest

themselves near these energies. α-conjugate nuclei can manifest as N-α clustering, which is

where the nucleus is made up solely from α-particles. This structure manifests just above the

decay threshold of these α-particles. The seminal example of this is the 3-α cluster structure

of 12C. This specific cluster structure was predicted to manifest above the 3-α decay threshold

energy of 7.27 MeV. The Hoyle state, which is a 0+ state of great astrophysical importance

has been discovered at 7.65 MeV, and has been shown to have a 3-α cluster structure [28].

Experimental observations show that cluster structures are very common in light nuclei.

The earliest models that described these observations used α-particle cluster models. An

α particle also acts as an inert core since its first excited state is above 20 MeV. Cluster

structures can be found in ground states as well as excited states. In excited states, the

structures tend to be more deformed and form rotational bands. Here, due to the effective

potential, the α-particles act as pseudo-bosons, since sα = 0. However, in the ground state,

as the α-particles are closer to each other, the underlying protons and neutrons are resolved,
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Figure 2.8: The Ikeda diagram shows the different cluster configurations in α-conjugate
nuclei at various excitation energies (Image adapted from [29] by Ref. [6]. Reprinted with
permission.)

resulting in a more compact cluster structures where the nucleons are influenced by the Pauli

Exclusion Principle.

When the nucleons in a system can be well described by mean field characteristics, the

shell model can be used to describe it well. However, α-clusters exhibit deformations, which

play a crucial role in determining its structure. Therefore, the deformed harmonic oscillator

is used to characterize the α-particle motion. The energy levels of the deformed harmonic

oscillator are given by:

E = ℏω⊥n⊥ + ℏωznz +
3

2
ℏω0, (2.53)

where we now include oscillator frequencies in the perpendicular (⊥) and parallel (z) planes

to the deformed axis. There are now constraints placed on ω0 as well, which is now defined
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by:

ω0 = 2ω⊥ + ωz, (2.54)

and the quadrupole deformation is:

ϵ = ϵ2 =
ω⊥ + ωz

ω0

. (2.55)

Quadrupole deformation changes the degeneracy of the system. Oscillations along nz will

have different energy contributions from n⊥. Depending on if the quadrupole deformation

is positive, negative or zero, the nucleus deformation will be prolate, oblate or spherical,

respectively. At deformations of j : 1 (j = 1,2,3,...), the deformations are illustrated in

Figure 2.9. These deformations repeat j : 1 times, indicating that the j : 1 system is made

up of j interacting spherical potentials.

Figure 2.9: The energy levels of the deformed harmonic oscillator and the degeneracies at
deformations of 1:1, 2:1 and 3:1. Reprinted with permission from Ref. [6].
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These deformed harmonic oscillator calculations further demonstrate that linear chain

configurations in α-conjugate nuclei could also be described. The densities of 2:1, 3:1, and

4:1 deformations are shown in Figure 2.10.

Figure 2.10: Density calculations of 2:1, 3:1, and 4:1 deformed harmonic oscillators showing
2, 3, and 4-fold degeneracy patterns. This shows the α cluster structures. Reprinted with
permission from [9].

So far, we’ve discussed α-conjugate nuclei and their propensity of exhibiting cluster struc-

tures, specifically in light nuclei. However, there is significant evidence to show pronounced

cluster structures of these nuclei with the addition of neutrons to the system. For many of

these nuclei, the additional neutrons are labeled as “valence” neutrons, and their behavior is

not dissimilar to valence electrons in an atomic compound. A representation of these states

is shown in Figure 2.12.

These nuclei with additional neutrons form more tightly-bound molecular structures with

deformed structures and rotational bands. If we consider the neutron-rich beryllium isotopes,
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Figure 2.11: The rotational band with the band-head at 0+ ground state, of which 2+, and
4+ states are members of, is shown here. A linear relationship between the excitation energy
and angular momentum of these states can be observed.

the valence neutrons orbit the α + α core. The molecular orbital approach was successful

in describing low-lying states in these types of nuclei that have two cores with additional

neutrons that make up rotational bands of π and σ orbitals, similar to the ones in atomic

molecules [30, 14]. In the π orbital, the valence neutrons traverse in a perpendicular direction

to the plane in which the α-cores lie, and in the σ orbital, the valence neutrons traverse in

the same plane as the α-cores. These two types of orbitals yield different deformations of

the nucleus. A representation of the two types of orbitals is shown in Figure 2.13.

The existence of molecular-type structures has garnered much theoretical and experimen-

tal efforts to describe these systems. These rotational bands have been explained in terms
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Figure 2.12: The extended Ikeda diagram is an extension of the Ikeda diagram shown in
Figure 2.8. This shows the cluster structures that can emerge when “valence” neutrons are
added to the α-conjugate nuclei. Reprinted with permission from Ref. [6].

of exchange nucleons in either π or σ orbitals. The rotational energy is defined by

Erot = E0 +
ℏ2

2I
J(J + 1), (2.56)

where J is the total angular momentum quantum number J⃗ = L⃗+S⃗ (L⃗ is the orbital angular

momentum and S⃗ is the spin angular momentum), E0 is the bandhead energy and I is the

moment-of-inertia of the system. These states form rotor-like rotational structures where

the excitation energies of the states that are part of a rotational bands are proportional to

J(J + 1). This is shown for the rotational band built on the ground state of 8Be in Figure

2.11. Similar relationships can be observed for other nuclei that exhibit cluster structures

and rotational bands as well.
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Figure 2.13: A representation of the π and σ bonding or neutrons to the α-particles for 10Be.
The ground state manifests as a (π)2 configuration, while the 0+ excited state is expected
to manifest as a (σ)2 configuration.

2.3.3 Antisymmetrized Molecular Dynamics (AMD)

Antisymmetrized molecular dynamics (AMD) is a useful theoretical tool for studying

cluster structures. In AMD, the basis wave function is that which describes an A nucleon

system Φ and is formulated by a Slater determinant, which is an expression that satisfies

the antisymmetry requirements of the Pauli principle, of single particle wave functions φi as

[31, 32]

ΦAMD(Z) =
1√
A!

A{φ1, φ2, ..., φ1}, (2.57)

with A being the antisymmetrization operator and,

φi = ϕzχiτi, (2.58)
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Figure 2.14: AMD calculations showing density distributions for the first few excited states
in 12C. Image taken from Ref. Reprinted with permission from [31].

where ϕ is the spatial part, χ is the spin and τ the isospin components of the wave function.

The spatial part is defined by a Gaussian wave packet centered at Zi/
√
ν as

ϕzi ∝ exp

[
− ν

(
rj −

Zi√
ν

)]
, (2.59)

where ν is the diffuseness of the Gaussian. This wave function is then used to minimize the

energy by varying Z. The energy-minimized wave function can then be used to study the

properties of a given state. AMD has successfully been used in cluster physics. The results

of an AMD density distribution calculation for some of the excited states of 12C are shown

in Figure 2.14. This shows strong evidence of clustering, including a highly-clustered Hoyle

state (12C(0+2 )) without assuming any clustering a priori. We can see the 8Be + α structure

for the higher order states.

For neutron rich isotopes of beryllium, theoretical frameworks such as molecular-orbital

models and AMD have been used to study the cluster structure. While molecular-orbital

models assume the existence of α + α clusters a priori, AMD makes no such assumptions.

Despite this, AMD calculations show a clear cluster structure with α + α core surrounded
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Figure 2.15: Density distributions for the band-head states of 10Be calculated using AMD.
The integrated densities of matter and the proton and neutron densities are shown in the
left and right panels respectively. Reprinted from [32] (CC BY).

by valence neutrons for molecular orbitals in low lying states [32].

For the specific case of 10Be, AMD calculations show the valence neutron configurations

of 10Be(0+1 ), regarded as π2, 10Be(1−), regarded as πσ, and 10Be(0+2 ), regarded as σ2. This

means that in the case of π2, both the valence neutrons occupy the π orbitals; πσ is where

one valence neutron occupies the π oribital and the other occpuies the σ orbital; and in σ2

both the valence neutrons occupy the σ oritals. The density distributions for some states in
10Be are shown in Figure 2.15 and the spatial density distributions of the π2 and σ2 orbitals

are shown in Figure 2.16.

2.3.4 Resonating group method

Resonating group method (RGM) comes about from the coupling of many-body struc-

tures to cluster reactions [33, 34]. This method has been successful in describing structure-

reaction interface in microscopic many-body calculations. RGM describes the nucleus as

a clustered state, while providing a microscopic description for the cluster fragments while

using an antisymmetrized wave function.
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Figure 2.16: Spatial density distributions for valence neutrons in 10Be(0+1 ) and 10Be(0+2 ).
These occupy the π and σ orbitals respectively. A representation of the π and σ orbitals are
shown with the α + α core. Reprinted from Ref. [32] (CC BY).

We can construct the variational channel wave function,

|Ψ(ζ,RGM)⟩ =
∑
n

χn |Φnζ⟩ , (2.60)

where χn is the RGM equation for the amplitudes, and can be written as

∑
n′

Hnn′χn′ = E
∑
n′

Nnn′χn′ , (2.61)

and ζ is the asymptotic channel. In Equation 2.61, H is the Hamiltonian, N is the norm

kernel and χ is a variational amplitudes vector. The kernels of the matrix in the channel

basis are:

Hnn′ ⟨Φnζ |H|Φ
n
′
ζ
⟩, Hnn′ ⟨Φnζ |Φn

′
ζ
⟩ (2.62)

The RGM wave functions derived in this form obey the symmetries of the Hamiltonian
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and are fully antisymmetrized. This wave function can further be used to enhance the

spectroscopic factor definition as

S(RGM)
β,ζ ≡ | ⟨Ψ(A)|Ψ(ζ,RGM)⟩ |2, (2.63)

where β represents a particular RGM solution to Equation 2.61.

2.4 Clustering in beryllium isotopes

As extolled in Section 2.3.2, clustering phenomena play an important role in structure of

light nuclei, and has been studied extensively [35].

2.4.1 8Be

The simplest case of an α-core cluster structure is 8Be. With a deformation of 2:1 [9], a

dumbbell like deformation appears. This has a well defined cluster structure and a rotational

band built on the ground state. 8Be is positioned above the α + α threshold as per Ref.

[29] (see Figure. 2.8) Ikeda suggested the cluster structures would appear about the cluster

breakup thresholds [29]. This can be seen here with the 8Be nucleus as the predicted energies

of the cluster states and the B(E2) electromagnetic transition strengths are in agreement

with experimental data. This can be used to measure the width, which can be used to

examine the ratio to the Wigner limit. The moment of inertia gives you the alpha-alpha

separation distance.

2.4.2 9Be

When a neutron is added to a 8Be nucleus, it forms a stable 9Be nucleus. The additional

valence neutron forms either π or σ type orbitals about the α + α core, thus increasing the

binding energy, resulting in a stable nucleus in its ground state. There are three known

rotational bands in 9Be. Experimental evidence has shown the ground state of 9Be (3/2−)

to form π-type orbital. This is the most compact arrangement, and therefore has a small

deformation and moment of inertia. The first excited state, 1/2+, forms a σ-type orbital

36



configuration. This is more deformed and thus has a larger moment of inertia. Consistent

with Figures 2.13 and 2.16, the σ type orbital formed by this 1/2+ state has a higher neutron

density in the center that acts to separate the α + α core. The known spectrum of 9Be less

than 12 MeV has been separated into three rotational bands [36].

2.4.3 10Be

The role of clustering in 10Be has been a subject of extensive experimental and theoretical

scrutiny for the past four decades, since the Molecular Orbital (MO) model was introduced

to describe the structure of neutron-rich Be and B isotopes [12, 13, 14]. The dimer α + α

structure of 10Be bound states has been qualitatively discussed by W. von Oertzen in Ref.

[15] and confirmed by microscopic antisymmetrized molecular dynamics (AMD) calculations

[16], that do not make any a priori assumptions of clustering. A detailed review paper on

the chemical bonding (molecular-like) structures in 10Be and 12Be has been published by Ito

and Ikeda [37].

It is generally believed that the level structure of 10Be can be described reasonably well as

having the two-center α+α structure bonded together by two neutrons that are orbiting the

two α-particle clusters. The single-particle levels of neutrons in this two-center system are

then analogous to the molecular orbitals of electrons in diatomic molecules like H2. The levels

in 10Be can then be assigned to specific molecular orbital configurations. For example, the

ground state of 10Be would correspond to the (π−
3/2)

2 configuration, in which both neutrons

orbit the two-center α+α system in the plane perpendicular to the axis that connects the

two α-particles (see [37] for a detailed discussion). Of particular interest for this work is the

(σ+
1/2)

2 MO configuration that corresponds to the two neutrons orbiting the two α-particles

along the α+α axis. The inter-cluster distance for this configuration is large due to energy

gain associated with the increased radius of σ+
1/2 orbitals. The moment of inertia of the states

that belong to this rotational band is therefore large compared to the ground state. Using

the more conventional language of shell model, in the limit of zero inter-cluster distance, the

(σ+
1/2)

2 configuration becomes ν(2s1d)2, or (1p)4(2s1d)2 if p-shell nucleons are included. The
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2-particle-2-hole (2p2h) configuration in 10Be is illustrated in Figure 2.17.

j= ± 1/2
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1p1/2

1d5/2
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1d3/2

j= ± 1/2

j=3/2, 1/2

Proton Neutron
Figure 2.17: The 2p2h configuration in 10Be that presumably dominates for the states in the
α:2n:α rotational band.

There is strong experimental evidence that some states in 10Be exhibit molecular-like

α:2n:α configuration [38]. Theoretically, these exotic structures can be explored microscop-

ically in the antisymmetrized molecular dynamics plus Hartree-Fock approach [39] or in a

Molecular Orbital model [30]. Based on these theoretical studies, it appears that the 6.179

MeV 0+ state in 10Be has a pronounced α:2n:α configuration with an α-α inter-distance of

3.55 fm. This is 1.8 times more than the corresponding value for the 10Be ground state. The

2+ at 7.542 MeV in 10Be is believed to be the next member of this rotational band [40].

The state at 10.2 MeV was identified as the next 4+ member [41]. This state was con-

firmed by [42] using a 7Li(7Li,α) reaction. While alternative, 3−, spin-parity assignments has

been made for this state before from the correlation of α + 6He particles following the α de-

cay [43], we believe that the later experiments [18, 17] provide a more reliable 4+ spin-parity

assignment. Ref [18] made the spin-parity assignment from a 6Li(6He,d)10Be measurement,

while Ref. [17] performed a measurement to populate the 10.2 MeV state in 10Be using the
6He + α resonant scattering. Subsequently two more 6He + α resonant scattering experi-
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Figure 2.18: The energy-spin systematics for states in the Kπ = 0+1 and Kπ = 0+2 rotational
band. The excitation energies are plotted as a function of the angular momentum J(J + 1).

ments were performed by [19, 44], further confirming the existence of the 4+ member of the

Kπ = 0+2 rotational band.

Experimental data on α-reduced widths [17] and spectroscopic factors for the 6.179,

7.542, and 10.2 MeV states are consistent with the highly-clustered nature of these states

and support assigning them to a single rotational band. Provided that these three states

are indeed the members of the same rotational band, the moment of inertia of this band

is very large, which supports the molecular-like α:2n:α picture for this band. However, the

4+ at 10.2 MeV is not the band-terminating state. The algebraic model based on SU(3)

symmetry [45] predicts that this rotational band (with the bandhead at 6.179 MeV) should

39



be designated as (λ,µ)=(8,0) and therefore should contain the 6+ and 8+ states, which are

predicted to be the yrast states (lowest energy for a given angular momentum) in 10Be.

Experimental observation of the 6+ state and a measurement of its width is the main goal

of this work. Figure 2.18 shows the energy-spin systematics of the rotational bands built

on the 0+ ground state as well as the 0+
2 bandhead at 6.18 MeV. The first indication for

a structure that could be interpreted as a relatively narrow high-spin, positive parity state

at 13.4 MeV excitation energy in 10Be were obtained in the excitation function for 6He+α

resonance elastic scattering measured at angles close to 90◦ in the center of mass (c.m.)

[46, 44]. The excitation function from this measurement at 90◦ in the center of mass is

shown in Figure 2.19. Due to a limited measured angular range and the dominance of what

Figure 2.19: Excitation function for 6He+α resonance elastic scattering at 90◦ ± 5◦ between
2-8 MeV (center of mass). An R-Matrix fit (red line) includes a 4+ state at Ec.m. = 2.79
MeV and a 6+ state at Ec.m. = 6.13 MeV. A broad 0+ resonance at lower energy and a broad
2+ at higher energy were included in the fit. Reprinted with permission from Ref. [44].
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appears to be non-resonant elastic scattering, the authors of [46] were not able to make firm

conclusions and they made a statement that “new experimental data at angles close to 180◦

may be necessary to confirm or rule out the existence of this state”. There have been more

observations of a state around 13 MeV more recently. It was observed in 10Be breakup to

α and 6He [20, 21]. The tentative spin-parity assignment was performed in [20] and it was

consistent with 6+. A CH2 target was used to induce the breakup of the incoming 10Be

beam ions and they were only sensitive to the elastic channel due to the requirement to

measure both 4He and 6He and reconstruct their relative energies. However, their results do

not have sufficient statistics to claim there is a state above the strong background, and if

there is a state that it is a 6+. In Figure 2.20, the peak at 13.5 MeV can be seen to have an

excess of about 10 counts above a background taken from either side of the peak suggesting

perhaps the event mixing does not accurately represent their experimental background. In

the angular correlation distribution in [20], we can see that there is an excess of yield at

11.8 MeV at cos(ϕ)=0.5 and 0.85, which is what the 6+ assignment at 13.5 MeV is based on.

There is also no background angular distribution study included in Ref. [20]. Calculations

from Ref. [47] show that this state would be dominant in the inelastic channel. Since this

measurement is not sensitive to the inelastic channel, the yield of the state at 13.5 MeV

would be expected to be considerably smaller than that of the 4+ state seen here although

the two peaks are of the same order of magnitude.

The experimental data presented here provide a stringent test on the existence of a

highly-clustered 6+ by measuring the excitation function for 6He+α elastic scattering at

angles where the state should have highest cross section - close to 180◦ in c.m (0◦ in the lab.

reference frame).
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Figure 2.20: 10Be relative energy spectrum from the α+6He decay channel. The dashed lines
represent the simulated detection efficiencies. The red dotted line assumes hydrogen recoil.
Orange dashed line assumes carbon recoil. The green dashed line represents the estimated
background by an event mixing procedure. The inset is the Monte Carlo simulation compared
to experimental data. Reprinted with permission from Ref. [20].
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3. EXPERIMENT

To probe the cluster structure of 10Be, looking for the highly clustered 6+ state with the
6He(α,α) reaction, an experiment was performed at the Texas A&M University Cyclotron

Institute. The goal was to further probe the broad peak of the 6He+α excitation function

at Ec.m. = 6.0 MeV observed in [46] but at angles close to θc.m. = 180◦ where the highly

clustered 6+ state should have a strong maximum in its cross section. A primary beam of
7Li at 60 MeV was produced using the K150 cyclotron. The 7Li primary beam was impinged

on a liquid nitrogen cooled gas cell filled with D2, yielding 6He ions via the d(7Li,6He)3He

reaction with an energy of 35.4 MeV. The 6He, our beam of interest, was then selected by

the Momentum Achromat Recoil Spectrometer (MARS) [48] (Figure 3.1).

3.1 MARS: A momentum achromat recoil spectrometer

MARS was designed for use with cyclotrons available at the Cyclotron Institute at Texas

A&M University. The optics were designed to work well for reactions in inverse kinematics.

As the primary beam from either of the two cyclotrons (K150 or K500, see Figure 3.2)

enters the MARS setup. The SW1 and SW2 dipole magnets form a beam swinger, allowing

a deflection angle ranging from 0◦ to 30◦. These magnets are located just upstream of the

target chamber (MARS gas cell). The gas cell was filled with D2 gas at 1,604 Torr and was

cryogenically cooled using liquid nitrogen to 77 K. The entrance and exit windows of the

target chamber comprised of 0.16 mil (4 µm) Havar.

The primary target chamber is followed by quadrupoles Q1, Q2 and Q3 along with dipoles

D1 and D2, which produce an achromatic beam as well as a nearly parallel transport into

the velocity filter (Wien filter) V1. The velocity filter can select for velocities based on the

electric and magnetic fields. The force experienced by a charged particle (q) in an electric

field (E⃗) is given by:

F⃗ = qE⃗. (3.1)
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Figure 3.1: Momentum Achromat Recoil Spectrometer (MARS) layout is shown here. MARS
is used to produce and separate radioactive nuclei. Radioactive beams are produced with
MARS using inverse kinematic reactions with the primary beam being the heavy projectiles
that are furnished by either the K150 or the K500 cyclotron [48].

The force experienced by a charged particle (q) in a magnetic field (E⃗) is given by:

F⃗ = qv⃗ × B⃗, (3.2)

where v⃗ is the velocity of the particle. In a velocity filter, the magnetic field is always

perpendicular to the velocity of the particle. Therefore, Eq. 3.2 simplifies to

F = qvB (3.3)
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Figure 3.2: Schematic of the Cyclotron Institute at Texas A&M University. This shows
the two cyclotrons (K150 and K500) at this facility as well as all the research facilities,
spectrometers and detectors [49].

Setting the two forces equal to each other yields:

vf =
E

B
. (3.4)

This means that tuning the B⃗ field and E⃗ field will allow particles with velocity v⃗f through.

Once past the velocity filter, the beam is bent upwards by the D3 dipole magnet before being

focused by the final quadrupole magnets, Q4 and Q5, providing focus in both the vertical

and horizontal planes. This gives the first order M/q focus where M is the mass of the

particle and q is the charge.

Momentum slits are placed after the quadrupole magnet Q3 in order to define the mo-
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Figure 3.3: Result of the 6He MARS production showing the main contaminant, tritium, at
the same focal plane as the 6He. Adapted from Ref. [50].

mentum acceptance of the system and eliminate the primary beam. MARS has a mass

resolution of δM/M ≃ 1/300, and an energy acceptance of ±9% ∆E/E and a geometric

angle of up to 9 milli-steradians [48].

For this experiment, the secondary beam of 6He was produced in inverse kinematics

using the d(7Li,6He)3He transfer reaction with a 7 MeV/u 7Li primary beam from the K150

cyclotron. A production rate of 397 events/nC was achieved with the MARS momentum

slits at ±1.5 mm, resulting in a momentum spread of the ∆p/p≈ 1.8%. The result was a

35.4 MeV 6He beam. A significant tritium (3H) contamination was present in the secondary

beam. The production plot along with the tritium contaminant can be see in Figure 3.3.
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3.2 Thick target inverse kinematics technique

The Thick Target Inverse Kinematics (TTIK) approach was used for this experiment.

This method was pioneered by Goldberg et al. [51] to measure a range of excitation en-

ergies for resonance scattering reactions. In a non-TTIK approach, one must aggregate

measurements with various beam energies to measure different excitation functions. TTIK

accomplishes this by using inverse kinematics (Abeam > Atarget), where the target is usually

a gas medium (helium (96%) + CO2 (4%) gas admixture for this measurement).

With the TTIK technique, a heavier beam particle is impinged on a lighter target. As

the beam traverses through the target, it looses energy by ionizing the target atoms. The

target thickness, or in our case, pressure of the target gas can be adjusted so that the beam

ions can achieve the range of excitation energies desired. When a beam ion interacts with a

target nucleus, some kinetic energy is transferred from the heavy projectile to the light recoil

(6He and α-particles respectively). The light recoil (α-particle) will lose less energy traversing

through the target medium than the heavy recoil will. The light recoil particles are measured

by a detector at the end of the chamber. The energy of the light recoil particle measured is

related to the energy of the beam ion at the vertex location, as well as scattering angle. If

there is a resonance present in the excitation function, an increased yield will be observed in

the spectrum of light nuclei. If a scattering vertex can be ascertained, one can account for

the energy losses of the light recoil particles and extract the excitation function. Another

advantage to this technique is the ability to measure at forward angles since the beam can

be stopped in the gas. This is an important advantage, since this allows measurements at

backward angles in the center of mass frame as described by Eq. 3.5.

θc.m. = 180◦ − 2θlab (3.5)

However, given the similarity in the masses of our beam and target ions, we were unable

to capitalize on this. Another advantage of TTIK is the ability to reach lower excitation
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energies in the excitation function. At a given center of mass energy, the energy of the recoil

particle is around four times greater in inverse kinematics compared to traditional geometry.

This makes it easier to measure lower excitation energies. The center of mass energy for

traditional and inverse kinematics are as follows:

Ec.m. = Ebeam
M

m+M
, (3.6)

and

Ec.m. = E
′

beam

m

m+M
, (3.7)

where E and E ′ are the beam energies in traditional and inverse geometries, respectively, m

and M are the masses of the light and heavy particles, respectively. The lab energies of the

light recoil in traditional and inverse kinematics are given by:

Em = Ebeam
m2

(m+M)2

[
cos(θlab) +

√(
M

m

)2

− sin2(θlab)

]2
(3.8)

and

E
′

m = E
′

beam

4mM

(m+m)2
cos2(θlab). (3.9)

If we assuming forward angles in the lab frame, and if we divide E ′
m by Em we arrive at,

E
′

m = 4Em
(M/m)2

(1 +M/m)2
. (3.10)

Equation 3.10 can be approximated to 4Em (if M >> m). This shows that for the same cen-

ter of mass energy, the light recoil particle is nearly four times greater for inverse kinematics,

compared to traditional geometry.

Since the target medium is usually a gas, there are some drawbacks of using this tech-

nique. These drawbacks include energy spread and angular divergence of the beam as well

as straggling of the light recoil particles. This results in deteriorating resolution as the scat-
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tering angle increases. With the advent of active target detector systems, the relevance of

these disadvantages of the TTIK technique are diminishing rapidly. Further details of our

experimental setup and conditions is detailed in Section 3.3.

3.3 Experimental setup

The 6He beam entered the scattering chamber, filled with a helium (96%) + CO2 (4%)

gas admixture at 1700 Torr (and low pressure runs at 1100 Torr), through a 5 µm Havar

window. The scattering chamber consisted of three 5x5 cm Micron MSQ25 silicon detectors,

each of which have four independent quadrants to measure the total energy of an impinging

charged particles. There were eight position-sensitive proportional counter wires, staggered

in two layers, positioned immediately upstream of the silicon detectors. This array of wires

were used for particle identification and scattering angle reconstruction. A windowless ion-

ization chamber was also used for overall normalization in addition to beam contaminant

identification. There was a removable 2-cm diameter aluminum disk (located upstream of

the proportional counter cells) which was inserted after the beam was characterized in order

to avoid permanently damaging the silicon detectors and saturating the data acquisition

system (DAQ). This disk blocked 95% of the beam. The setup was optimized to measure

the elastic and inelastic 6He+α scattering at angles as close to 180◦ in the center of mass

frame as possible. The scattering chamber and the overall schematic of the setup is shown

in Figure 3.4.
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Figure 3.4: (a). CAD rendering of the scattering chamber and detector set up used for this
experiment. (b). Cross sectional view of the set up with dimensions from the window to the
silicon detectors and the beam stopper. Reprinted with permission from [52].
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3.3.1 Scintillator and ionization chamber

The beam first passes through a BC-400 scintillator film of 10 mil (254 µm) thickness,

placed at 45◦ to the beam axis, that is read out by two photomultiplier tubes (PMTs).

Scintillators are materials that emit a small flash of light when exposed to radiation. This

flash of light is then amplified using a device such as a PMT, which are then converted to

electrical pulses and fed into our data stream. Once the beam enters the scattering chamber,

it interacts with a windowless ionization chamber. This apparatus consists of an anode, a

cathode, and a Frisch-Grid. When a particle traverses through a gas, electron-ion pairs are

created along the path. The ionization chamber works by measuring the total charge of

these electron-ion pairs. The ionization chamber, used in conjunction with the scintillator

allows us to select the particles associated with our beam and cut out the contaminants by

measuring the specific energy losses of the different particles. This setup is further used to

count the number of 6He beam ions for overall normalization. Figure 3.5, which plots the

scintillator energy vs. ionization chamber energy, shows the 6He beam enclosed within the

red contour along with the tritium contaminant.

3.3.2 Proportional counters

Following the ionization chamber and the removable aluminum disk which was used as

a beam stopper, are eight position sensitive, resistive proportional counter wires made from

carbon fiber. The field near a wire is inversely proportional to the distance (r). As a particle

traversing through the gas, it produces ionization. The electrons and ions liberated in the

process will be drifted due to the electric field, produced by the high voltage applied to

the wires. As the electrons approach a high field region near a wire, they are accelerated

to produce an avalanche. Positive ions will be liberated in this process, thus inducing a

negative signal on the anode wires, which is then further processed through our electronics

setup and integrated into our data stream.

Given that the multi-wire proportional counter functions through the ionization process,
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Figure 3.5: The region enclosed within the red line represents the 6He beam particles. Tri-
tium, the main contaminant can be observed at the bottom left of the plot. Reprinted with
permission from [52].

it requires a gas to function. Normally, there are several factors that dictate the type of

gas that is used for these devices. An ideal gas would have a high gain, and the ability to

function at a low voltage. Pure nobel gases are not the ideal candidates due to spurious

discharges caused by high energy photons at high gains (∼ 104). However, since we are

using this as an active-target system, which is when the gas in the chamber is used as a

target as well as a medium for detection, we are limited to using helium gas. To mitigate

this effect we used carbon dioxide gas acting as a quencher. Relatively small amounts of this

gas is sufficient to quench the spurious avalanches. In this experiment helium (96%) + CO2

(4%) gas admixture was used. A schematic of the proportional counter detector is shown in

Figure 3.4 [53].
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3.3.3 Silicon detectors

There are three MSQ25-1000 Micron Semiconductor silicon (Si) detectors placed at the

end of the chamber (CAD representation shown in Figure 3.6). The silicon detectors were

used to measure the energy of the recoil particles. Silicon detectors have been around for

close to 80 years and have been instrumental in the success of many high-energy experiments.

Silicon detectors work as a diode. The difference in energy between the valence band and

conduction band, also known as band gap is 1.1 eV (Figure 3.7). These detectors therefore

have a great inherent energy resolution. This stems from the fact that energy threshold

required to create an electron-hole pair (ionization energy) is as 3.6 eV. This energy is about

an order of magnitude lower than the ionization energy of a gaseous detector.

The silicon used for virtually all detection or sensor applications is doped to increase the

probability of creating electron-hole pairs. Without these impurities, the valence band is full,

while the conduction band is empty. This means that the concentration of electrons in the

valence band and holes in the conduction band are the same, creating a charge equilibrium.

Since silicon has four valence electrons (group IV), doping can modify the free charge carrier

concentration. Silicon can be doped with two different types of materials. Materials with five

valence electrons (group V), such as phosphorus can be added, creating a “n-type” silicon.

This will create an excess of electrons that can act as charge carriers. The second type of

materials are those with three valence electrons (group III) such as boron. These create an

excess of holes that can act as charge carriers [54].

The energy deposited in the silicon by any ionizing radiation is acquired by counting the

number of electron-hole pairs produced. The noise here is governed by Poisson statistics.

The standard deviation is therefore
√
n for n >> 1. However, the detector resolution also

has to be scaled by the Fano Factor. Radiation detectors’ behavior exhibits fluctuations in

the signal that is less than that predicted by Poisson statistics. The Fano Factor is the ratio

between observed variance to the Poisson predicted variance. In silicon detector, there are

two possible types of collisions that can occur [55, 53]:
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Figure 3.6: CAD representation of the MSQ25-1000 series silicon detector. The four quad-
rants along with guard-rings on the outer perimeter, wire-bonds, and readout pins are shown
here.

(a) Lattice excitations - Phonon production.

(b) Ionization - Formation of electron-hole pairs.

Assuming that nx excitations produce np phonons and ni ionization interactions produce nq

electron-hole pairs, the average sum of energies deposited by the incident radiation is given

by:

E0 = Eini + Exnx, (3.11)

where Ei and Ex are energies required for a single lattice excitation or a single ionization,

respectively. Since, for large numbers, Poisson distribution approaches a normal distribution
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Figure 3.7: Representation of the valence and conduction bands in a silicon detector. This
shows the direction of the electric field and the direction of the force on an electron. The
electron is drifted towards the anode side, while the hole is drifted towards the cathode side.
Reprinted with permission from Ref. [6].

about its mean, we can assume Gaussian statistics. From this, the variance in the number

of lattice excitations and ionizations are:

σx =
√
nx Lattice excitations,

σi =
√
ni Ionizations.

(3.12)

For a given energy deposited, E0, fluctuations in the lattice excitations and ionizations

must balance each other out. If we take the total differential of Eq. 3.11, we get

dE0 =
∂E0

∂nx

dnx +
∂E0

∂ni

dni = 0 (3.13)
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Therefore,

Ex∆nx + Ei∆ni = 0. (3.14)

This ensures that for a given event, if more energy goes into lattice excitation, less energy

will be available for charge formation, and vice versa. This will give the proper total energy

for the event. When averaging over large statistics, the variances of the two processes must

be equal:

Eiσi = Exσx. (3.15)

Substituting Eq. 3.12:

σi =
Ex

Ei

√
nx. (3.16)

From Eq. 3.11, we get:

nx =
E0 − Eini

Ex

, (3.17)

giving us

σi =
Ex

Ei

√
E0

Ex

− Ei

Ex

E0

ϵi
. (3.18)

Since each ionization creates an electron-hole pair that contributes to the signal, we have:

ni = nQ =
E0

ϵi
, (3.19)

where ϵi is the average energy needed to produce an electron-hole pair, and nQ is the number

of charge pairs. From this, we have:

σi =
Ex

Ei

√
E0

Ex

− Ei

Ex

ni

=

√
E0

ϵi
·

√
Ex

Ei

(
ϵi
Ei

− 1

)
︸ ︷︷ ︸

Fano factor F

.
(3.20)
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We can thus rewrite Eq. 3.20 as:

σQ =
√
FnQ. (3.21)

The nominal Fano factor is 0.1 for silicon detectors [56, 53]. This means that the variance

of the signal is significantly smaller than that expected through Poisson statistics [57]. In

addition to this, leakage currents in the detector and electronic noise also limit the sensi-

tivity and detection efficiency of the detector by requiring a high energy threshold to avoid

erroneous triggering.

To acquire a signal out of the silicon detector, we apply a reverse bias voltage, creating an

equilibrium throughout the bulk preventing the electron-hole pairs from being reabsorbed.

This also ensures that the electrons and holes are drifted to the anode and cathode regions,

where their charge can be collected and read out for further processing. The current signal

this creates is then sent out to a preamplifier, followed by a shaper, which is then digitized

and integrated into our data stream.

3.4 Calibration

3.4.1 Silicon detectors calibration

The three silicon detectors were calibrated using a four-line α-source containing four

radioactive isotopes with well defined energy peaks. The isotopes and their corresponding

weighted average energies are: 148Gd - 3.117 MeV, 239Pu - 5.147 MeV, 241Am - 5.474 MeV, and
244Cm 5.787 MeV. The calibrations for these detectors are done on a quadrant by quadrant

basis. These peaks in the silicon detector spectra are fit with Gaussian functions. The pre-

amplifier used for the silicon detectors was linear, thus a linear fit was done to extract a

function that converts raw channel number to MeV. An example of the calibration run with

the four-line α-source is shwon in Figure 3.8.
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Figure 3.8: Calibration data from the four-peak alpha source with weighted averages of 3.11
MeV, 5.147 MeV, 5.474 MeV and 5.787 MeV for 148Gd, 239Pu, 241Am and 244Cm respectively,
fit with Gaussian functions. The mean of the Gaussian function was then used as the cor-
responding channel number for the corresponding α-particle energy for the calibration. The
red arrowhead indicating a peak is from the peak finding routine in ROOT. This technique
was used as an ansatz for the Gaussian fit.
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Figure 3.9: Signals from one of the proportional counter cells using evenly-spaced pulser
signals. Since the pre-amplifier was in logarithmic mode, the signals can be seen bunching
up in the higher ADC channels.

3.4.2 Proportional counter gain matching

While the proportional counter wires were not calibrated for absolute energy, their elec-

tronic gains were matched using a pulser. Pulser signals at evenly-spaced intervals were sent

to the pre-amplifier, which was set to a logarithmic scale to allow for a larger dynamic range.

The centroids for each of the peaks were extracted and fitted with their respective known

voltages as shown in Figure 3.9. After the wires have been gain matched, the signals from

both sides (left and right) were summed to achieve the specific energy loss of a particle as it

traverses through the cell.
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3.4.3 Proportional counter position calibration

The proportional counter wires are resistive and read out from both sides. Once the

proportional counter wires have been gain matched, the position of the particle passing

through the cell was extracted. We used the charge deposited in both sides, QL and QR

for left and right signals respectively, to get the position of the particle in the cell using the

formula:

x =
QR −QL

QR +QL

a+ b, (3.22)

where x is the position in a given proportional counter wire, a is the slope and b is the offset

introduced to give the real world coordinates inside the scattering chamber. An alpha source

was placed in our chamber at a known position in the target gas of helium (96%) + CO2 (4%)

gas admixture, albeit at a lower pressure. A mask with vertical slits was covering the silicon

detectors giving us a well-defined position in the silicon detectors. As the alpha particles

pass through the proportional counter cells, we extracted a raw position by using Eq. 3.22

without the slope and offset terms. The raw position values along with the known positions

of the source and the silicon detector were used to reconstruct the calibrated position of

the proportional counter wires. A schematic of the position calibration of the proportional

counter wires is shown in Figure 3.10.

3.4.4 Electronics

The electronics scheme for this experiment is shown in Figure 3.11. Signals from the

ionization chamber, multi-wire proportional counter detector, and silicon detectors were

sent through a pre-amplifier to a MESYTEC MSCF-16 shaper. The shaper amplified and

shaped the signal and provided a trigger if needed. The energy signal from the shapers were

sent to a MESYTEC analog to digital converters (ADCs) to record the energy. The timing

signal was sent to MESYTEC time to digital converters (TDCs) to record the time. Signal

from the two PMTs from the upstream scintillator was sent to a CAEN charge-to-digital

converter (QDC) to measure the integrated charge of the signals. The signal was also sent
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Figure 3.10: This shows a schematic of the position calibration of the proportional counter
wires. The α-source was placed at a known distance from the silicon detectors. This distance
along with the relative distance of each of the wires was used to calculate the position in
each of the wires. This was then used to calibrate the raw position signal in the wires.
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to a MESYTEC constant fraction discriminator (CFD) with a pre-determined threshold set.

The output from the CFD was then sent to a logic unit when the signals from the PMTs

exceeded the pre-determined threshold in coincidence with a signal from a silicon detector.

A veto signal from the data acquisition computer was also sent to the logic unit. This

prevented the setup from triggering when the data acquisition computer was busy and could

not accept a trigger.

The pulse signal that triggered the logic unit was then sent to a gate and delay generator

to generate gates for the QDCs, TDCs and ADCs as well as to the data acquisition computer

to record the data from all the modules mentioned using the VME-USB module. This data

was then processed and analyzed further using the ROOT analysis framework [58].
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4. SIMULATIONS

The Geant4 framework [60], along with MinRMatrix [61] and Azure2 [62], were used

to perform Monte Carlo simulations to better understand our experimental conditions as well

as to ascertain the experimental yields of parameters presented in Ref. [44, 47]. In addition

to this, the Geant4 simulations were also used to characterize our background. R-Matrix

calculations were performed with MinRMatrix, yielding cross sections that were then input

into the Geant4 simulations. After the detector and experimental conditions were replicated

in the Geant4 framework, the necessary physics classes were constructed. A generalized

reaction process titled InelasticProcess was written to handle non-relativistic elastic and

inelastic processes. The code to simulate the breakup of 6He as a three body continuum

(6He −→ α+ 2n) was also included to simulate the general shape of the background due to

the breakup process. A more detailed treatment of the Geant4 framework is presented in

Section 4.2.

4.1 R-Matrix calculations

The two programs that were used to generate cross sections pertaining to this reaction

were MinRMatrix and Azure2. The bulk of the calculations were performed using Min-

RMatrix, while Azure2 was used to validate the outputs from MinRMatrix. Details of

the MinRMatrix program are presented comprehensively in Ref. [61]. The relevant reso-

nance parameters that were used in the R-Matrix calculations included the energy eigenvalue

(resonance energy), spin, parity, angular momentum, boundary condition and the reduced

width amplitude for a given channel (γλ). Once these values were set, MinRMatrix was

run over a set of angles (90◦ − 180◦ for elastic and 0◦ − 180◦ for inelastic), resulting in an

angular distribution as well as the total cross section (angle integrated in the case of elastic).

Elastic cross sections were only evaluated between 90◦ and 180◦ to avoid the rise in cross

sections due to Rutherford scattering at forward angles. The initial parameters for these
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calculations were sourced from Ref. [44]. The partial widths, Γα and Γα′ from Ref. [44],

were converted to the reduced width amplitude γ using,

γ =

√
Γ

2Pl

, (4.1)

where Pl is the penetrability factor. The other parameter set used was from Ref. [47]. The

parameters provided here were the dimensionless reduced width amplitudes θ2α and θ2
α′ . The

respective reduced widths were calculated using,

γ =
√
θ2 · γ2w = θγw, (4.2)

where,

γ2w =
ℏ2

µa2
(4.3)

with µ being the reduced mass and a as the channel radius. A comprehensive discussion of

R-Matrix theory is presented in Section 2.2.

4.2 Geant4 simulations

A comprehensive Geant4 simulation package was created that is able to simulate both

elastic and inelastic scattering with their respective cross sections and angular distributions.

This allowed for the utilization of the outputs from MinRMatrix discussed in Section

4.1. The overall structure of this simulations package is shown in Figure 4.1. The goal of

this simulation was to simulate the experimental conditions with realistic conditions. The

scintillator and the Havar foil at the entrance of the chamber, the beam stopper towards

the silicon detectors and the silicon detectors themselves were included in the simulations.

The windowless ionization chamber and the multi-wire proportional counter system were not

included in the simulation. This is simply because the events are tagged and tracked by the

simulation framework, eliminating the need for using these detectors in the simulation.

A visualization of the simulation is shown in Figure 4.2.
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Figure 4.1: Flow chart describing the logic of the Geant4 simulation used for this analysis.

4.2.1 Event generator

In Geant4, the primary event, or the beam particle was a 6He ion. It was created

to have a certain initial kinetic energy to replicate our beam conditions. The initial beam
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Figure 4.2: A visualization of the Geant4 simulation. Here, we can see the 6He beam
ions interacting with the target gas, as well as being stopped by the beam stopper placed
upstream of the silicon detectors. This also shows the three silicon detectors (green squares).

energy and spread are shown in Figure 4.3. The beam contaminant of 3H was not included in

the simulation since we effectively selected just the 6He as shown in Figure 3.5 and discussed

in Section 3.3.1.

The initial beam energy and the detector set up were verified by ensuring the energy

distribution in the silicon detectors was identical for the simulation and the experiment.

The simulated beam energy and spread in the silicon detector was nearly identical to our

experimental beam characterization, which is shown in Figure 4.4.

4.2.2 Physics processes

The physics process in this simulation encompasses cross section biasing as well as all

the reaction processes that will be discussed in further detail below.
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Figure 4.3: Beam energy with a Gaussian profile consistent with the measurements during
the experiment was used for the simulations. The full width half maximum (FWHM) for
the simulated beam is 0.89 MeV.

4.2.2.1 Cross sections & mean free path

The Geant4 simulations are biased with cross sections dependent on energy and angle.

These are generated using the MinRMatrix R-Matrix software described in Section 4.1.

The energy-dependent total cross section provides the energy bias. This, along with sim-

ulating 5.3 × 109 6He ions (which is the total number accumulated during the experiment,

determined through the beam integration explained in Chapter 3), gives us the realistic total

yield that can be expected with various parameters.

The mean free path (λ) is the average distance a particle traverses between collisions.

This is inversely proportional to the density of the gas and the interaction cross section (σ).
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Figure 4.4: The beam energy in the silicon detector while at vacuum as measured during
the experiment. This spectrum has a mean of 22.14 MeV and a FWHM of 1.369 MeV. This
is comparable to the simulated beam energy in the silicon detector while at vacuum. This
energy loss from the simulated beam shown in Figure 4.3 is due to the scintillator and Havar
foil near the entrance of the chamber. This produces a mean energy of 22.12 MeV with a
FWHM of 1.38 MeV.

A particle that does not interact (zero cross section) has an infinite mean free path. The

mean free path (λ) is defined by the following relationship:

λ ≈ 1

nσ
, (4.4)

where n is the number density that can be obtained from the ideal gas law as shown in

Equation 4.5:

n =
N

V
=

P

kT
. (4.5)
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An example of a simulation with a cross section containing a resonance at 6 MeV (center of

mass) is shown in Figure 4.5. This figure also highlights center of mass energy range which

this setup is sensitive to.
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Figure 4.5: Vertex position vs. center of mass energy for a cross section biased simulation.
In this figure, a cross section distribution that has a higher cross section at 6 MeV in c.m.
was used.

4.2.2.2 Scattering process

Once the mean free path is calculated from the cross section established by the processes

discussed in Section 4.2.2.1, the simulation will then step through a finite step size. The

probability of an interaction occurring during this step is then calculated and whether this

interaction occurs or not is determined according to this probability.
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Figure 4.6: Schematic of a scattering event as seen in the lab and center of mass coordinate
systems. Scattering angles, energies, and masses are shown for a non-relativistic elastic
collision.

Fundamentally, reactions can be classified by their entrance and exit channels, where a

channel is a specific nucleus in a specific state. Elastic scattering is defined as a process

in which the entrance and exit channels are identical. This means that the Q-value of the

reaction is zero. A general schematic of this process is shown in Figure 4.6. Consequently,

when Q = 0 is given as an input, the reaction process performed by the simulation will be

treated as elastic in the Geant4 framework.

Conversely, for inelastic scattering, shown in Figure 4.7, the entrance and exit channels

are not identical, where either one or both of the nuclei from the entrance channel could

emerge in the exit channel in an excited state. Inelastic reactions describe reactions where

the Q-value does not equal zero and one or both of the nuclei are excited from its ground

state.

4.2.2.3 Breakup

To simulate the breakup of 6He as a result of interaction with target nuclei in the gas,

a decay process was modelled using the three-body (α-n-n) phase space available in the

system. The α-particles energy distribution resulting from the breakup process resembles a
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Figure 4.7: Schematic of a scattering event as seen in the lab and center of mass coordi-
nate systems. Scattering angles, energies, and masses are shown a non-relativistic inelastic
collision.

Maxwell-Boltzmann distribution as shown in Figure 4.8.
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Figure 4.8: Silicon detector energy for region A as a result of the 6He
∗ −→ α + 2n direct

breakup at the working gas pressure of the experiment. The distribution shows a phe-
nomenological consistency with a Maxwell-Boltzmann distribution. Inelastically scattered
α-particles have a higher energy, with the centroid of the distribution closer to 7 MeV.
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5. ANALYSIS ∗

The analysis of this experiment began with converting the raw data into ROOT data

format. The data streams from the VME-USB module were recorded using the Cyclotron

Institute’s data acquisition software suite, CycApps. This uses a GOOSY data format de-

veloped by GSI, which is discussed in detail in Ref. [63]. These files were then converted to

the ROOT data format for further analysis. All further analyses were performed using the

ROOT data analysis framework [58]. Once the ROOT data files were generated, steps were

taken to clean the data and acquire a spectrum of α-particles. Details of this process are

described in this chapter.

5.1 Particle identification

The incoming beam had two components to it, 6He and tritium. The tritium contami-

nation was identified in the beam tuning plot in Figure 3.3, as well as the scintillator energy

vs. ionization chamber energy plot in Figure 3.5. The “blob” at the lower left corner of the

plot is due to the tritium ions in the beam. The part highlighted is due to the 6He ions in

the beam. All further analysis is performed after selecting for the 6He ions highlighted in

Figure 3.5.

5.2 Extracting the α-particle spectrum

The specific energy loss of ions in a proportional counter cell is given by the Bethe-Bloch

formula for stopping power, which is proportional to:

− dE

dx
∝ mz2

E
log
(
4meE

mI

)
, (5.1)

∗Parts of Sections 5.2, 5.4, 5.5, and 5.6 are reprinted with permission from “Search for the high-spin
members of the α:2n:α band in 10Be” by S. Upadhyayula and G. V. Rogachev and J. Bishop and V. Z.
Goldberg and J. Hooker and C. Hunt and H. Jayatissa and E. Koshchiy and E. Uberseder and A. Volya and
B. T. Roeder and A. Saastamoinen, 2020, Physical Review C, 101, 034604, Copyright 2020 by the American
Physical Society.
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where E is the energy of the particle, z is the charge of the particle, and I is the mean

excitation potential [64]. The specific energy loss in the proportional-counter cell was used

to distinguish the α-particles of interest vs. 6He beam ions. The specific energy loss in each

of the cells can be acquired by summing both sides of the proportional counter cells, given

by Eq. 5.2.

Ep.c = QL +QR. (5.2)

Since the z for an α-particle and 6He is the same, these particles are more difficult to

distinguish at higher energies. The multi-wire proportional counter system was divided into

two layers. Layer 1 comprised of wires 1-5, and layer 2 included the remaining wires, numbers

6-8. It is possible that some of the particles traversed through more than one proportional

counter cell in each of the layers. This would give partial energy losses in two cells of a

layer. To address this issue, each event was assigned the wire ID of the wire with the highest

specific energy loss. A signal from the neighboring wires belonging to the same layer were

then summed. This yielded the total specific energy loss of the particle.

Using the two layers of the proportional counter cells, shown in Figure 5.1, α-particles

were selected for. The first layer showed a significant amount of beam ions in addition to

α-particles and scattered 6He ions. While these two particles could be separated at lower

silicon detector energies, the specific energy loss in the proportional counter cells was less

discernible at higher energies in the silicon detectors. We therefore selected for the 6He ions

and set an anti-gate for that selection. This process was repeated for each of the quadrants

on a wire by wire basis.

The specific energy loss deposited in the proportional counter cells of layer 1 plotted

against the energy of a quadrant of the silicon detector is shown in Figure 5.2. The region

enclosed by the red line corresponds to 6He particles. The same routine was followed for

the proportional counter cells of layer 2, after the anti-gate on the selected region in layer 1.

The resulting spectrum is shown in Figure 5.3.

Figure 5.3 shows two distinct bands of particles. The energy loss for the α-particles is
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Figure 5.1: Cross-sectional view of the eight multi-wire proportional counter cells. Wires 6-8
make up layer 2, while layer 1 is comprised of wires 1-5. Layer 2 is upstream, while layer 1
is downstream.

lower than that for 6He. Therefore, the band of events enclosed by the red line correspond

to α-particles. Using this two layer, anti-gate and gate combination, we were able to extract

a clean α-particle spectrum. By gating just above and below the α-band in the second

layer, we estimate that no more than 10% of counts in the α-spectrum correspond to the

misidentified 6He and virtually all of them are located around the 6He beam energy in the

silicon detector between 10 and 12 MeV.

The silicon detector quadrants were split into three different regions for the analysis: the

forward angle region, region A, and region B. The forward angle region comprised of the

entire center silicon detector. Region A comprised of the inside quadrants of the outside
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Figure 5.2: Scatter plot of energy losses of the recoil α-particles and 6He ions in the first layer
of the proportional counter wires. Events selected here with the red contour are associated
with the 6He ions and were anti-gated on to produce a spectrum in the second layer, shown
in Figure 5.3.

two silicon detectors. Region B included the remaining quadrants, which are the outside

quadrants of the outside two silicon detectors as shown in Figure 5.4.

Due to the beam spread and despite having a beam stopper immediately upstream of

the multi wire proportional counter setup, there was still a significant amount of beam

which made its way through the proportional counter cells and to the silicon detectors. The

forward region was inundated with 6He beam ions. Consequently, we could not achieve

a clean separation between the 6He ions and the α-particles in the energy range we are

interested in. Thus, we were not able to utilize the data from the forward region in any

further analysis. The extent of the beam contamination in our data is shown in Figure 5.5.

77



0 2 4 6 8 10 12 14 16 18 20
Si Energy (MeV)

0

1000

2000

3000

4000

5000

6000

7000

dE
 (

ch
an

ne
ls

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 5.3: Scatter plot of energy losses of the recoil α-particles and the 6He ions that follow
from anti-gating on 6He ions in the first layer shown in Figure 5.2. The events selected with
the red contour in this layer are the recoil α-particles.

The position calibration of the multi wire proportional counter detector was used to

further clean up the data. This was accomplished by plotting possible permutations of the

calibrated positions of the two layers of the wires, which yields a linear band, as shown in

Figure 5.6. Conditions were then placed on relative wire positions with respect to the two

layers to reject outlier events.

The α-particle spectra for the two different regions considered for analysis are shown

in Figure 5.7. We assume standard statistical errors here, which scale as
√
n. Region A

corresponds to the inside quadrants of the outside two detectors, and region B corresponds

to the outside quadrants of the outside detectors. Given the sub-optimum position resolution
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Region (b)

Figure 5.4: Schematic of the three silicon detectors represented as regions for the analysis.
The ‘forward region’ consists of the entire zero degree detector. ‘Region A’ consists of the
inside quadrants of the outside two silicon detectors. ‘Region B’ consists of the outside
quadrants of the outside two silicon detectors.

with our detector set up and the beam spread, it was not possible to reconstruct the scattering

vertex on an event by event basis. This made it challenging to ascertain the origins of these

α-particles.

However, since the different processes have different kinematic signatures, we made rea-

sonable assumptions to explain the various energy regions of the spectra seen in Figure 5.7.

We expect the α-particles between the energies of 8-12 MeV in region A and slightly lower

energies of 6-12 MeV in region B to be comprised mostly of elastic scattering. We expect a

distribution centering around 5 MeV and 7 MeV in regions A and B respectively to comprise
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Figure 5.5: dE-E plot from the forward region. The high-intensity region between energies
7 MeV and 12 MeV corresponds to 6He ions from the beam. Since this prevented us from
separating the 6He beam ions from the recoil α-particles, particularly in the energy region
of interest for us, we had to exclude this region from further analysis.

mostly of 6He(α,α)6He(2+,1.8 MeV), which is inelastic scattering, where 6He is excited to its

first excited state of 2+. We can also expect some background to contribute to the spectra

in Figure 5.7.

5.3 Low pressure data

The origin of α-particles, i.e. the specific reaction that produced them, could not be

determined on event-by-event basis in these measurements, except for the highest-energy

α-particles which are predominantly produced due to elastic scattering. The obvious feature

of the α-spectrum in Figure 5.7 is a strong peak with maximum at 7 MeV in angular region

A and at lower energy at larger angles (region B). In principle, this peak may potentially be

80



80− 60− 40− 20− 0 20 40 60 80

FrontWire Position (mm)

80−

60−

40−

20−

0

20

40

60

80

B
ac

kW
ire

 P
os

iti
on

 (
m

m
)

0

10

20

30

40

50

60

70

80

90

Figure 5.6: Calibrated position of a front layer wire (wire 7) vs. a back layer wire (wire 4).
The position in each of the wires depends on the scattering angle. However, given the close
proximity of the wires, these are expected to be relatively the same. This plot also shows
the forward region covered by the beam stopper, and spaces for the silicon detector frames.

an indication that there is a strong resonance in the excitation function for 6He+α elastic

scattering at energy about 6 MeV in c.m. To elucidate the origin of this peak, we performed

measurements at lower gas pressure - 1100 Torr. If the peak is due to a resonance then

it should not be observed at lower pressure because the energy of the 6He ions never drop

below 15 MeV (9 MeV in c.m.) - too high to populate the resonance at 6 MeV in c.m. The

spectrum of α-particles from low pressure measurements is shown in Figure 5.8.

A broad feature is observed, therefore evidence of a distinct peak due to a resonance

cannot be seen here. The natural explanation for this broad feature is that it is likely due

to an energy-independent cross section in the elastic and inelastic channels not populating

strong resonances.
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Figure 5.7: Plots (a) and (b) correspond to α-particle spectra for regions A and B of the
silicon detectors, respectively. These are particles that have been selected for in layer 2 of the
E vs.dE spectra, as described in this section. Region A corresponds to the inside quadrants
of the outside two silicon detectors, and region B corresponds to the outside quadrants of
the outside silicon detectors.
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Figure 5.8: Experimental spectrum of α-particles for region A at 1100 Torr. This spectrum
shows a broad feature without any discernible resonances. These α-particles have been
selected for using the same method of anti-gating and gating on the two layers of proportional
counter wires as used for higher pressure data set.

5.4 Hypothesis testing

The spectra of α-particles for two different angular regions are shown in Figure 5.7. The

region (a) corresponds to the inside, and the region (b) corresponds to the outside quadrants

of the two outside detectors. For an 6He+α c.m. energy of 6 MeV, regions (a) and (b) cover

120◦-170◦ and 100◦-150◦ c.m. scattering angles, respectively.

As discussed earlier, the origin of α-particles, i.e. the specific reaction process that

produced them, could not be determined on an event-by-event basis in these measurements.

The obvious feature of the α-spectrum in Figure 5.7 is a peak with a maximum at 7 MeV in

region (a) and a lower energy in region (b) (smaller c.m. but larger lab. scattering angles).

In principle, this peak may potentially be due to a resonance in the excitation function for
6He+α elastic and/or inelastic scattering. To understand our data, we are testing three

possible hypotheses: a strong α-cluster 6+ resonance at 13.5 MeV based on Ref. [44], a

83



null hypothesis which assumes an energy independent cross section for elastic and inelastic

scattering, and a 6+ resonance at 13.5 MeV that follows parameters obtained in ab initio

calculations of Ref. [47].

5.4.1 A strong α-cluster 6+ at 13.5 MeV in 10Be

First, we adopt the parameters for the 6+ state at 13.5 MeV from Ref. [44] (Table 5.1).

Table 5.1: Resonance parameters for the yrast 6+ state in 10Be from [44, 20, 21, 47], and
this work. θ2α and θ2α′ were calculated using a channel radius of 4.77 fm (r0 = 1.4 fm). The
parameters from [44] were determined from a R-Matrix fit.

Ex [MeV] Γtot [keV] Γα [keV] Γα′ [keV] Γn [keV] θ2α θ2α′ Γα /Γα′ Ref.
13.54 914 99 763 52 0.99 1.25 0.13 [44]
(13.5) (< 350) - - - - - - [20]
(13.5) - - - - - - - [21]

- - - - - 0.1 0.66 0.02 [47]
13.5 - - - - - - <0.017 This work

Γ = 2 θ2 ℏ2
µa2

Pl and θ2 = γ2/γ2w. θ2 is the dimensionless reduced width. µ is the reduced mass
and a is the channel radius, γ is the reduced width amplitude and Pl is the penetrability factor.

These parameters were used with the Geant4 simulations mentioned in Section 4.2. R-

Matrix calculations were performed using codes MinRMatrix and verified using Azure2.

The total cross sections for the inelastic scattering and the angle integrated cross section

for the 6He + α elastic scattering are shown in Figure 5.9. Both cross sections include just

the 6+ resonance. The cross section for the elastic channel can be described by P 2
6 (sixth

order Legendre polynomial squared), where,

P6(cos(θ)) =
1

16

(
231 cos6(θ)− 315 cos4(θ) + 105 cos2(θ)− 5

)
(5.3)

At angles close to 180◦, the 6+ state is expected be manifest as a strong feature (see

Figure 5.10). These differential and angle integrated cross sections were then used to generate

interactions in the Geant4-based Monte Carlo simulations. This gave us the total expected

84



4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Center of Mass Energy (MeV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 (b
ar

ns
)

(Kuchera 2013) 6He( , )6He(g.s.)
(Kuchera 2013) 6He( , ′)6He(2 + , 1.8 MeV)

Figure 5.9: Total cross section for inelastic scattering (dash-dotted curve) and 90-180◦ an-
gle integrated cross section for elastic scattering (solid curve) produced by MinRMatrix
calculations using the partial widths the hypothetical 6+ state only.

yield as well as the α-particle spectrum due to elastic and inelastic channels of the possible 6+

state. The inelastic scattering simulation included the α-particles resulting from the decay

of the first excited state of 6He.

The results from these Geant4 simulations are presented in Figure 5.11. It is evident

that the yield produced through the elastic and inelastic processes in the Geant4 simula-

tion far exceeds what we observed in our experiment for both region A and region B. The

dimensionless reduced widths for these parameters are θ2α = 0.99 and θ2
α′ = 1.25. This indi-

cates a strongly clustered state. However, since our experimental yield shown in Figure 5.7

is significantly less than that shown in Figure 5.11, we arrive at two possible conclusions.
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Figure 5.10: Angular distribution for inelastic scattering (dash curve) and elastic scattering
(solid curve) produced by MinRMatrix calculations using the partial widths for the hy-
pothetical 6+ state from Ref. [44]. This plot shows a prominent feature at angles close to
180◦

c.m..

We can conclude that either there is no 6+ state near 13.5 MeV excitation energy in 10Be, or

this state’s 6He(g.s.) + α partial width is significantly smaller than that mentioned in Ref.

[44].

5.5 6+ state with parameters from microscopic calculations by Kravvaris 2018

Resonating Group Model (RGM) and no-core shell model (NCSM) approach were used by

Ref. [47] to calculate the α spectroscopic factors for the states in 10Be. The α spectroscopic

factors for the yrast 6+ state in 10Be are 0.1 and 0.66 for the elastic and inelastic channels

respectively. The cross sections were calculated for these parameters using MinRMatrix,
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Figure 5.11: Geant4 Monte Carlo simulations with parameters from Ref. [44] for the elastic
(dashed red) and inelastic channels (dashed green), overlaid with this work’s experimental
spectrum (solid blue) shown in Figure 5.7. The sum of the elastic and inelastic spectrum is
represented by the dashed black curve. (a) Experimental, elastic, inelastic, and total spectra
for region (a). (b) Experimental, elastic, inelastic and total spectra for region (b).

and subsequently used by Geant4 to generate realistic spectra that can be compared with

our experimental spectrum, in the same way as in Section 5.4.1. Consistent with Section
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5.4.1, the angle-integrated cross section for the elastic scattering and total cross section for

the inelastic scattering are shown in Figure 5.12. The resulting spectra from the Geant4

simulations are shown in Figure 5.13 and compared to the experimental data. These cross

sections were calculated using the widths of a sole 6+ resonance.
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Figure 5.12: MinRMatrix calculations using the spectroscopic factors provided by [47]
to give the total cross sections of the elastic and inelastic channels. In the case of the
elastic channel, forward angles were excluded from the calculations to omit the Rutherford
contribution. These cross sections were used as input to the Geant4 simulations, resulting
in Figure 5.13.

A 6+ state with the spectroscopic factors given in Ref. [47] would produce a significantly

higher event yield at some energies and the α-spectra that would have a different shape
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Figure 5.13: Geant4 Monte Carlo simulations with parameters from Ref. [47], overlaid with
this work’s experimental spectrum shown in Figure 5.7. While the Geant4 simulations
with parameters provided by Ref. [47] still far exceed the expected yield in this work’s
experimental spectra as shown here, this setup is still sensitive to the elastic and inelastic
channel of the 6+ state. (a) Experimental (solid blue), elastic (dashed red), inelastic( dashed
green), and total spectra (dashed black) for region (a). (b) Experimental (solid blue), elastic
(dashed red), inelastic( dashed green) and total spectra (dashed black) for region (b).
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than the experimentally observed one and therefore this hypothesis is not consistent with

the experimental data either.

5.5.1 Energy-independent cross section

We have thus far compared our data to simulations that assumed existence of the hypo-

thetical 6+ state with parameters from [44] and [47] and failed to explain the shape and yield

of the experimental spectra. Now we assume that the 6+ state does not exist (or that its
6He(g.s.)+α partial width is negligible) and simulate an energy-independent and isotropic (in

the center of mass) elastic and inelastic cross sections. Note that this is generally consistent

with the data presented in Ref. [19] for the energy range from 4 to 6 MeV in c.m.

The Geant4 simulations similar to those described in previous sections were performed,

except that now we assumed that the cross section does not depend on energy within the

relevant excitation energy region - from 4 to 10 MeV in c.m. An almost perfect fit to the

observed experimental spectrum (see Figure 5.14) can be achieved with the following simple

assumptions:

• The average differential cross section for the 6He(α,α’)6He(2+,1.8 MeV) reaction is 1.8

mb/sr for the region A and 1.1 mb/sr for region B.

• The average differential cross section for elastic scattering is 0.7 mb/sr for region A

and 0.2 mb/sr for region B.

• There is a small background that has a shape of Maxwell-Boltzmann distribution at

higher energies that is unrelated to elastic or inelastic channels accounted for in the

previous two assumptions.

Note that the assumptions above are generally consistent with the results presented in

Ref. [19], in which the 6He+α elastic and inelastic scattering cross sections were measured at

energies below 6 MeV in c.m. and in the angular range between 40◦ and 120◦ in c.m. Good

agreement between the spectrum simulated under the null hypothesis and the experimental
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Figure 5.14: Geant4 Monte Carlo simulations overlaid with this work’s experimental spec-
tra. The parameters used for the Geant4 simulations are consistent with the absence of the
6+ resonance. (a) Experimental (solid blue), elastic (dashed red), inelastic( dashed green),
and total spectra (dashed black) for region (a). (b) Experimental (solid blue), elastic (dashed
red), inelastic( dashed green) and total spectra (dashed black) for region (b).

data clearly favors the conclusion that there is no 6+ state or that its partial α+6He(g.s.)

width is very small.
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5.6 Establishing an upper limit for the partial width of the hypothetical 6+

state

The spectroscopic factors from [47] were shown to produce higher yields than those

observed in our experimental spectra. Further analysis shows that due to the fact that the

cross section for inelastic scattering, which provides the dominant contribution under all of

the scenarios considered above, is proportional to the ratio of Γα to Γα′ , we can place an

upper limit on this parameter. Figure 5.15 shows a simulated spectrum with Γα/Γα′ = 0.017

for the 6+ state in comparison with the experimental data. It is evident that the event yield

already exceeds the experimental one at this ratio and since no background was introduced

in these simulations the Γα/Γα′ = 0.017 should be considered as a safe upper limit. Note

that it is not too far off from the prediction of the microscopic model of Ref. [47], in which

the same ratio is 0.02 (see Table 5.1).

A peak at 13.5 MeV excitation energy of 10Be in the 6He(g.s.)+α coincidence spectrum

was observed in the breakup of 10Be on a CH2 target in Ref. [20]. Tentative spin-parity

assignment of 6+ was made for this state in the same work. It is not surprising that the

statistics were rather small in that experiment - the branching ratio for the decay that was

used to identify this state is below 2%. It appears that conclusive identification of the 6+

state in 10Be at 13.5 MeV will require another experiment in which the α-decay of this state

to the first excited state in 6He is measured. One possible measurement is discussed in

Section 6.1.
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Figure 5.15: Geant4 Monte Carlo simulations overlaid with this work’s experimental spec-
tra. The parameters used for the Geant4 simulations Γα/Γα′ = 0.017. This plot shows the
experimental (solid blue), elastic (dashed red), inelastic( dashed green), and total spectra
(dashed black) for region (a).
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6. CONCLUSION

We showed in Section 2.3.2 that there is strong experimental evidence that some states in
10Be exhibit a molecular-like α:2n:α configuration [18, 17, 19, 44]. Theoretically, these exotic

structures can be explored microscopically using the AMD (see Section 2.3.3) plus Hartree-

Fock approach [39, 16]. Based on theoretical studies, the 0+ state at 6.179 MeV in 10Be has

a pronounced α:2n:α configuration with an α−α inter-distance of 3.55 fm. This is 1.8 times

the corresponding value for the 10Be ground state. The 2+ state at 7.542 MeV in 10Be is the

next member of this highly deformed rotational band [40]. The 4+ resonance, identified at

10.2 MeV is the next member of this rotational band [18, 17, 44, 19]. The algebraic model

detailed in Ref. [45] predicts the 6+ state to be the next member of the rotational band, and

is expected to have an excitation energy of around 13.5 MeV. Identifying this resonance will

not only establish this α:2n:α rotational band conclusively, but would also provide a well

established case for molecular-like configurations in nuclei and advance our understanding

of clustering in atomic nuclei.

In Chapter 3, the measurement performed to search for the 6+ state at 13.5 MeV in 10Be

in the excitation function for 6He + α scattering was detailed. The Cyclotron Institute’s

K150 cyclotron and the MARS facility were used to produce a secondary beam of 6He at

6 MeV/u from the production reaction of 7Li(d, 3He). The thick-target inverse kinematics

approach was used to measure the 6He + α excitation function. Energies between 4.5-8 MeV

in the center of mass, along with an angular range of 100◦ and 170◦ in the center of mass,

were measured.

The α-particle spectrum measured included contributions from elastic and inelastic chan-

nels, along with contributions from other processes such as the breakup of 6He
∗
(2+) into

α+2n. Given the limitations in our setup, the precise origins of the α-particles in this

spectrum could not be determined on an event-by-event basis. Consequently, to elucidate

the origin of the α-particles, Geant4 simulations were performed with parameters from
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our experimental conditions. In these simulations, the reactions were scaled appropriately

using our overall beam normalization from the experiment. These simulations were also

scaled with integrated cross sections and angular distributions from R-Matrix calculations

performed using MinRMatrix and Azure2. The input parameters for these R-Matrix

calculations included parameters from Ref. [44, 47]. The simulation and analysis methods

were discussed in detail in Chapters 4 and 5 respectively.

Furthermore, in Section 5.4, we have demonstrated that no evidence for a strong reso-

nance have been observed at the energy of 13.5 MeV in either the elastic or inelastic channels.

However, if we assume that the dominant configuration for this state is 6He
∗
(2+) + α, and

that the coupling to the 6He(g.s.)+α channel is relatively small, as suggested in [47], then the

experimentally-observed spectrum can place an upper limit on the ratio between the partial

width of the elastic channel to the partial width of the inelastic channels, Γα/Γα′ < 0.017.

This experimental information provides important constraints on the theoretical models de-

scribing the 10Be. We have demonstrated that our data is consistent with the absence of any

strong resonances in the cross section (the hypothesis of energy independent cross section)

for elastic or inelastic scattering.

6.1 Future work

It is clear, however, that further experiments are needed to elucidate the existence and

properties of the 6+ state at 13.5 MeV in 10Be. It has been demonstrated by [47] that if this

resonance were to exist, it would decay strongly in the inelastic channel. Consequently, any

proposed measurement would have to take this into consideration. One such measurement

could be a breakup reaction with a 10Be
∗ beam. In this measurement, the 10Be

∗ would

be impinged on a target inducing it to breakup into 6He
∗
(2+) + α. The 6He

∗
(2+) would

subsequently decay into α + 2n. However, if an active-target detector is used in conjunction

with a neutron detector, all four constituents (two α-particles and two neutrons) could be

detected in coincidence. This would allow for the Q-value to be determined on an event-by-

event basis, thus making it possible to reconstruct an excitation function.
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