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ABSTRACT

The theory of weak Maass forms has been studied extensively in recent years, resulting in
many striking results. Examples include the fundamental work of Bruinier and Ono which relates
the Fourier coefficients of half-integral weight harmonic (weak) Maass forms to periods and central
values/central derivatives of modular L—functions.

In this work, we investigate the distribution of Fourier coefficients of a generic family of weak
Maass forms. For integral weight forms, we prove a quantitative Sato-Tate distribution for nor-
malized Fourier coefficients of these forms of integral weight £ and prime level p as p — oco. As
a direct application, we prove similar results for harmonic Maass forms of integral weight £ < 0
and prime level p along with the results for weakly holomorphic modular forms of integral weight
k > 2 and prime level p. The proofs involve geometrical method related to bounding the analytic
conductor of a suitable ¢-adic Fourier sheaf and approximating the normalized Fourier coefficients
of the weak Maass forms by normalized Kloosterman sums.

For half-integral weight forms, we prove that these coefficients are quantitatively equidis-
tributed with respect to the pushforward of the Haar measure on the unitary group U(1). Similarly,
we prove quantitative equidistribution for normalized Fourier coefficients of these forms of half-
integral weight £ < 1/2 and level 4p as p — oo along with the results for weakly holomorphic
modular forms of half-integral weight &£ > 3/2 and level 4p. The proofs involve analytic methods
and approximating the normalized Fourier coefficients of the weak Maass forms by normalized
Salié sums. As a crucial part of our analysis, we prove quantitative vertical equidistribution of
Salié¢ sums, and a uniform bound for sums of half-integral weight (opposite sign) Kloosterman

sums with f-multiplier.
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1. INTRODUCTION AND MOTIVATION

In this work, we focus on studying the distribution of Fourier coefficients of an arithmetically
rich class of automorphic forms called weak Maass forms. The theory of weak Maass forms has
been developed extensively over the past 15 years leading to many striking results. In particular,
their Fourier coefficients have been shown to be related to a wide range of arithmetic objects such
as integer partitions, central values and derivatives of modular L—functions, and singular moduli
(see e.g. [5, 6, 28]). To motivate the distribution problems, first recall the classical Sato-Tate
conjecture.

An elliptic curve F over QQ is given by an equation of the form
E:y=2+ar+b, abeQ

such that the discriminant dg := —16(4a® +27b%) # 0. Given a prime p which does not divide d,
one can reduce the coefficients of £ modulo p and obtain a new elliptic curve E, : y* = 2% +ax +b
over the finite field F,,. The set of all points (z,y) € Ff) satisfying this equation form a finite group

E,(F,). The trace of Frobenius of £, is then defined by

tp:=p+1-— ‘Ep(Fp)‘-

A classical bound of Hasse asserts that |¢,| < 2,/p. Hence the normalized trace A, := ¢,,/2,/p lies
in the interval [—1, 1].
There is a natural probability measure on [—1, 1] called the Sato-Tate measure which is defined

by
2
,UST(t) Y 1 — t2dt.
T

If the endomorphism ring of £ satisfies End(E) = Z (that is, £ is “non-CM”), then a celebrated



conjecture of Sato and Tate asserts that the sets {\, : p{dg, p < X} become equidistributed on

[—1, 1] with respect to ust as X — oo; namely, for any subinterval [«, 5] of [—1, 1], we have

. fp<X:a<) <B} /5
| = d t).
froe {p < X} . psr(t)

The Sato-Tate conjecture was proved in a landmark series of papers by Clozel, Harris, Shepherd-

Barron and Taylor ([8, 19, 37]).

Remark 1.0.1. By the Eichler-Shimura theory, the Sato-Tate conjecture implies that the normal-

ized p-th Fourier coefficients of a weight 2 non-CM newform f are equidistributed with respect to

HST-

In view of Remark 1.0.1, we can phase the question in term of the distribution of normalized
p-th Fourier coefficients of a weight 2 non-CM newform in the interval [—1, 1]. It is natural to ask
how the normalized coefficients of weak Maass forms distribute in the interval [—1, 1]. That is our
main goal for this work. In the following two chapters, we will show quantitative equidistribution

for certain weak Maass forms of integral and half-integral weights, respectively.



2. SATO-TATE FOR WEAK MAASS FORMS OF INTEGRAL WEIGHT

In this chapter, we prove a Sato-Tate law for normalized Fourier coefficients of weak Maass
forms of integral weight and prime level. Roughly speaking, for each fixed m € Z" and k € Z,
we consider a family of weak Maass forms P, ;. ,(z, s) of weight k& and prime level p. We define
a finite set X;, C [—1, 1] of normalized Fourier coefficients of P, . ,(z, s), and prove that the sets

{X,} become quantitatively equidistributed on [—1, 1] with respect to the Sato-Tate measure
2
pst(t) = =1 — 2dt
m

asp — o0o. When s = 1 — k/2 and k < 0, the family {P,, x (2,1 — k/2) },nez+ spans the vector
space of harmonic Maass forms of weight k£ and level p. See Theorem 2.1.1 and Corollary 2.1.2

for precise statements of our results.
2.1 Introduction and statement of results
2.1.1 Background on weak Maass forms of integral weight

In this section we review some facts concerning the weak Maass forms whose coefficients we
will study. More details can be found in the fundamental works of Bruinier [2, 3], Bruinier/Funke
[4] and Bruinier/Ono [5, 6].

A weak Maass form of weight k € 7Z and level N is a smooth function f : HH — C on the

complex upper half-plane H := {z = = + iy : y > 0} satisfying the following conditions:

(1) fi,y = fforall y € I'y(N).

(2) f is an eigenfunction of the weight k& hyperbolic Laplacian

0? 02 0 0
Aki=—y (8:102 + 8y2> - iky (0x +28y) '

(3) There is a non-constant polynomial Py (2) := >_, as(n)¢" € Clg~'] such that f(z) —



Proo(2) = O(e™%) as y — oo for some € > 0, where ¢ := €™, A similar growth condition

holds for all other cusps.

One can construct an ample supply of weak Maass forms as follows. For m € Z™, define the

Maass-Poincaré series (see e.g. [3, 6])

Pm,k7N<Z7 S) = ! Z [Ms,k(4ﬂmy)€<_mx)] |k’77 FAS Ha RC(S) > 17 (211)

M () = t72M (1)

2

with M, , equal to the usual M-Whittaker function (see [29, Section 13.14]).
The Maass-Poincaré series P, ;. v(2,s) is a weak Maass form of weight £ and level N with

Fourier expansion at co given by (see Proposition 2.2.1)

M ;. (4mmy)
I'(2s)

W, (4
+ > g (En, S)Me(inx) 2.1.2)

1—s—k/2

Poen(z,s) = e(—mx) + amin(0,8)y

where
Wi (t) = |t|_k/2Wsign(t)§,S—% (I¢)

with W, , equal to the usual Whittaker function (see [29, Section 13.14]).
Note that P, ; n(z, ) is an eigenfunction for A;, with eigenvalue s(1 — s) + (k? — 2k) /4.
Importantly, the family P,  v(2, s) can be used to generate certain vector spaces of harmonic
Maass forms.
A harmonic Maass form (resp. weakly holomorphic modular form) of weight k& € Z and level

N with a pole only at the cusp a = oo is a smooth (resp. holomorphic) function f : H — C on the

4



complex upper half-plane H satisfying (1) — (3), and the following additional conditions:
4 Ayf=0.
(5) fi,7a(2) is bounded as y — oo for any matrix v, € SL2(Z) such that y,(c0) = a % oo.

Let H'(N) (resp. M; (N)) denote the vector space of harmonic Maass forms (resp. the
subspace of weakly holomorphic modular forms) of this type.

We define

Pn(2) == Pogpn(z,1—k/2), k<0,

Qm,k,N(Z) = F(k‘)PmJC’N(Z, k)/2), k Z 2,

where by P, r n(z,1), we mean the value of the analytic continuation of P, ; y(z,s) at s = 1
(see Section 2.2). Then P, .y € H; (N) is a harmonic Maass form with Fourier expansion at oo

given by (see Proposition 2.2.2)

o0

Prgn(2) ="+ ampn(n,1—k/2)q"
n=0

+ > (ampen(—n,1—k/2) - 5m(”))r(1p?1ki4;$ny)qn7 (2.1.3)

n=1

where I'(s, x) is the incomplete Gamma function and d,,(n) is the Kronecker delta function.
Similarly, Q. xn € M, ,fé (N) is a weakly holomorphic modular form with Fourier expansion

at oo given by (see Proposition 2.2.3)

oo

Quan(2) ="+ ampn(n k/2)q". (2.1.4)
n=1
In Appendix B.1, we explain how these Fourier expansions give the decompositions

HY (N) = Span(6o(k), { P sen (2) Ymez+ ), k<0 2.15)



and
M (N) = Span({ Qv (2) mezt) U Me(N), k> 2 (2.1.6)

where M (N) denotes the vector space of holomorphic modular forms of weight & for I'o(V).
2.1.2 Main results

Let s > 3/4,

(45 — 1)8 6561
> 5,84 log [ o) ) 84log | o
O‘—max{ &+ log (655367r8m4 O 108 | G5536mmt ) [

and p be a prime number satisfying
1|72
a— 8
— 2 a—2 .

p> max{?;, ‘(23— 1)?— =

In Section 2.6, we show there is a natural choice of normalizing factor N (m, k, s, p, &, n) such

that if n > p®, then the normalized Fourier coefficients

Am,k,s,p(n) = a’myk’,p(n7 S)/N<ma kv 37 pa Oé, n)a

lie in the interval [—1, 1].

Now, given an interval /, C [F, choose a complete set of residue classes

]p = {[np71]7 s [”pﬂle
such that the class representatives n,,; satisfy the bound n,; > p® fori = 1,...,|I,|. This choice
determines a set

Sa,lp = {nlhlv s >np7|fp\}'



Let BV ([—1,1]) be the space of functions f : [—1,1] — C whose total variation Var(f) is
bounded.

The following is our main result.

Theorem 2.1.1. Let I, C F be an interval of length |I,| > \/p. Then if f € BV ([-1,1]), we

have

ﬁ Z f()‘m,k’,s,p(n)) - . f(t)d,uST(t) + R(f, m, ]{I, S,p)

nESa,Ip

where

4| (151N
[R(f,m. k. 5,p)| < (7208 + (4864)C(m, k, 5)) Var( ) log ( NG ) (ﬁ)

for the explicit constant C'(m, k, s) > 0 defined by (2.3.10).

Theorem 2.1.1 implies that for “short” intervals I, C F satisfying the growth condition
\Ip|/\/P — oo, the Fourier coefficients Ay, ;s ,(n) for n € S, ;, become quantitatively equidis-
tributed on [—1, 1] with respect to the Sato-Tate measure st as p — oo.

More precisely, let X be a locally compact Hausdorff space and x be a Borel probability mea-
sure on X. A sequence {X,} of finite subsets X, C X is said to become equidistributed on X

with respect to p if for any continuous function f : X — C we have

@ S fa) — /X f(@)dp()

Z‘GX[

as { — oo.

Define the sequence of finite subsets
Xa,lp = {)\m7k757p(n) n e Sa,lp} C [—1, 1]

The following result is an immediate consequence of Theorem 2.1.1.

7



Corollary 2.1.2. Let I, C )\ be as in Theorem 2.1.1, and assume further that |I,|/\/p — oo as
p — oo. Then the sets {X,,1,} become equidistributed on [—1,1] with respect to the Sato-Tate

measure [ist ds p — Q.

2.1.3 Numerical examples

We used SageMath [36] to give examples which illustrate the equidistribution of the sets
{Xodﬁ';f} with respect to pgt as p — oco. Our calculations suggest that the rate of equidistribution
is O.(p~1/27¢), which is plainly much faster than the rate O.(p~*/*¢) implied by Theorem 2.1.1.

Letm =1,k =0,s =1, a = 5.3, and p > 3. Divide the interval [—1, 1] into N, :=
2[(p— 1)/?] subintervals T}, ; of length |T,,;| = (p—1)~'/2. Let xr, , be the characteristic function
of T,,;. An approximation argument shows that if the sets {X 5.3,@} become equidistributed with

respect to pgt as p — oo, then

Np 1

1
>0 > g oas() — [ dust() 2.17)

-1

as p — oo. Now, define the rectangles R, ; := T},; x [0, H, ;] where the height of R, ; is defined to

be
Hpﬂ- = (p — 1)_1/2‘{77, c 55.3711;;; : )\1707171,(71) c Tp,i}"

Then (2.1.7) is equivalent to

Np 1

Ay = Area(R,;) — 1 dpst(t)

=1

as p — o0o. The histograms in Figure 2.1 display how A, approximates the area bounded by the

function (2/7)y/1 — t2 on the interval [—1, 1] for successively larger values of p.



(a) p = 1601 (b) p = 5477 (c) p = 8101 ) p = 15377

Figure 2.1: Histograms for X , FJ

2.2 Coefficients of Maass-Poincaré series

In this section, we give formulas for the coefficients appearing in the Fourier expansions (2.1.2),
(2.1.3) and (2.1.4).

Recall that the Kloosterman sum of modulus c is defined by

Swovic)= ¥ e <“3t“d) .

d (mod c)
(d,e)=1

Let I, and J, denote the I and J-Bessel functions of order v, respectively (see [29, Section 10.2

and 10.25]).

Proposition 2.2.1. We have

M, .(47mm e
Prs(218) = ST () + a0, 5)1
Ws k<i4ﬂny>
+ A N (N, S) e(£nz)
né; I'(s+k/2)

where the coefficients a,, ;. v (£n, s) are given by

92—hplts=5 k=3 S(—m,0;c
kN (0, 8) = —— ~ > ¥
(2s = 1)I(s+ k/2)I'(s — k/2) ¢

c>0
¢=0 (mod N)




m C &
c>0
¢=0 (mod N)
k—1
Z S(— 47/
amkN(_n, S) — 27_[_27’{ (2) 2 ( m7 n,C) J2S*1 v mn
Y m & &
c>0
¢=0 (mod N)

Proof. We may express the Maass-Poincaré series defined by (2.1.1) as

Pain(z:9) = o 30 [alwlel=ma)] by

S
'YEFOO\FO(N)

where

Yarly) = (dmmy) "My o (dmmy)e”>.
We have the double coset decomposition
10
[o(N) = I Pl | || Toowsels
0 1 c>0
¢=0 (mod N)
de(Z/cT)>
where
x ok
Wy/e 1= € FO(N)
c d
Then using this decomposition we get
1
P jen (2, 8) = > [ar@)e(—m2)] [k
['(2s)
'YEFOO\FO(N)
1
= T(2s) Y Cer(Im(y2))e(—m(yz))(cz +d)

’YGFOO\FO (N)

10



M . (4mmy) 1

d (mod ¢) n€Z
c=0 (mod N) (c,d)=1

where

Ons p(2) = Vs p(IM(waye(z + n)))e(—m(wqse(z +n)))(cz + cn + d)~k

Now, by Poisson summation we have

Z Gns.k( Z / Vs p(Im(wgye(z +t)))e(—m(wase(z +t)))(cz + ct + d)"*e(—nt)dt.

neL neL

(2.2.1)
Note that

1
Alt+z+dfe+iy)

wd/c(z + t) = —

Then using the change of variables ¢ — ¢ — z — d/c, the integral in (2.2.1) becomes

cFe (mz + "d)
AT TS|

Hence
Ms k(47rmy) S(_ma U C)
Pm ) :7— - 1 Uns bl
kN (25 8) T(2s) e(—m 25 ;6 nz) ; G k(6 y)
¢=0 (mod N)

(2.2.2)

11



where

m LN

Finally, by Lemma A.1.1 we have

4

. I'(2s _ n L= 4m/mn
2mi kp(sg_k;Q)Ck ! (E) 2 ]23—1 ( ﬁ) Ws,k(4ﬂ-ny)v n Z ]-7

92—kplts =5 ko= § 1-s—§ k- 257(25) N
nsi(c,y) = - ; n =0,
n,s,k\C, Y (2s—1)T(s+k/2)T(s—k/2)

m C

k-1
ottt () 7 s () Wostamm, <o

\

Then substituting these identities in (2.2.2) gives the desired result. 0

Using the Weil bound
|S(m,n;c)| < T(c)(m,n,c)%c%,

one can show that the Fourier expansion (2.1.2) is absolutely and uniformly convergent for Re(s) >
3/4, and hence gives an analytic continuation of P, ;. x(z, s) to this region. In particular, we can
analytically continue P, ; n(z, s) to Re(s) > 3/4.

Now, recall that P, , nv(2) = Ppn(2z,1 —k/2) for k <O0.

Proposition 2.2.2. We have

o0

Prgn(2) ="+ ampn(n.1—k/2)q"
n=0

['(1 -k, 4mny)
I'(1-k)

—n

q

+ > (ampn(—n,1 = k/2) = 6,(n))

n=1

12



where

o miTk S(—m,0;c
am,k,N(Oa 11— k/2) = (27?1)2 km Z ( CZ*]C )’
>0

c
¢=0 (mod N)

k—1
o k(D T S(—=m,n;c) 4m/mn
ampn(n, 1 —k/2) = 2mi <E> g — Iy ( ,

C

] n\E S(—m, —n;c 4mv/mn
i (@)% S (1)
c>0

¢=0 (mod N)

Proof. Let s = 1 — k/2 with k < 0in (2.1.2). Using [29, Eq. 13.18.4] we get

k
2

M7%7%(47Tmy) = (1 —k)e*™™ (4rmy) 2 [['(1 — k) — ['(1 — k, 4mmy)].

Then the functional equation I'(2 — k) = (1 — k)I'(1 — k) yields

Ml—g,k<4ﬂ-my) ~ oemy onmy L (1 — K, dmmy)
re—& T(1— k)
so that
Misatdmmy) |y g - D= kodmmy)
T2—Fk T -k

Next, by applying [29, Eq. 13.18.2] we have
W, e, (47ny) = (dnny) 2 Wi 1 (dmny) = e 2™,
and by applying [29, Eq. 13.18.5] we have

W17%7k(—47my) = (47my)_§W

-5,

%(47my) =T(1 — k, —4mny)e >,



Hence after combining the preceding identities we get

1—-k . .
Gy (0,1 = k/2) = 2mi) F o % S(=m, 0;c)

I'2—k) i 2k
¢=0 (mod N)
k—1
B ok (N T S(—=m,n;c) 4m\/mn
ampn(n, 1 —k/2) = 2mi <m> Z — Iy ( . :
c>0
¢=0 (mod N)
k—1
k(M T S(—m,—n;c) 4m\/mn
—n,1 —k/2)=2 k(—) — .
U e, N (=1, /2) = 2mi - DZO - 1-k .
¢=0 (mod N)

Similarly, recall that Q,, x v (%) 1= P (2, k/2) for k > 2.

Proposition 2.2.3. We have

[e.9]

Qmrn(z) =¢ ™+ Z A k,N (10, K /2)q"
n=1

where

Cc

/NN T S(—m,n;c 4m/mn
am NN, k/2) = 2mi k <E> Z %Ik_l ( il ) )

Proof. Let s = k/2 with k > 2in (2.1.2). Using [29, Eq. 13.18.3] we get

N

27rmy(

M_E7%(47rmy) =e drmy)z.

It follows that

2mmy

Mg}k(élﬁmy) =e

14



and thus
M%k(élﬁmy)e(—mx) =q "
Next, by applying [29, Eq. 13.18.2] we have
Wg’k(47my) = (47my)_§W§’%(47my) =e ™,

Finally, since I'(s) has a simple pole at s = 0, the constant and non-holomorphic terms in the

Fourier expansion vanish. Hence by combining the preceding facts we get

am’k’N(O, k)/2) = am,k,N(—n, k?/?) == 07
= S(—=m,n;c) 4m\/mn
s Semmd, (i)

C

ok (T
am N (N, k/2) = 2mi <m>
c>0

¢=0 (mod N)

2.3 Approximation by Kloosterman sums

Let p be a prime number. By Proposition 2.2.1, the Fourier coefficient a,y, . ,(1, s) of P,,, 1. (2, 5)

is given by

k(1 8) = 2 (£>5 3 stemnie), <47”m"). 2.3.1)

C C
c>0
¢=0 (mod p)

We define the modified Fourier coefficients

- Am ke p(N, S)
a1 5) = 7 )

15



where

N(m, k,p,n) = 2% Fm 5 n* T exp (4”\/W) _
p

Then from (2.3.1) we get the decomposition

~ S(—m,n;p)
" ’ - —,A ’k’ » L B 7]{;7 s M ) 2.3.2
A kp(1; 5) 2./p (m, k,s,p,n) + B(m,k,s,p,n) ( )
where
Amy/ d\/mn
A(m, k,s,p,n) = 7T23/2(mn)1/4128—1 ( il mn) p_]‘/2 exp (— T mn) ,
p p
47/ S(— ] 1
B(m,k,s,p,n) = 7T21/2(mn)1/4 exp (— T mn) Z M]2s—1 ( van> '
p c>p ¢ (&
¢=0 (mod p)

We will need the following estimates.

Proposition 2.3.1. Let Re(s) > 3/4 and

[1 + 2Re(2s — D 6361
> max 4 8 +1 8+1og | = | ¢
‘= max{ " Og( 65536m°mt ) '° %\ 65536mem

(i) There is a function C(m, k, s, p, n) such that if n > p®, then
A(m7 k? 8’p7n) - ]' + C(m7 k? 87p7n)
where

a—2
|C(m, k,s,p,n)| < Crmksp = Cmk,sp1 + €Xp <_8W\/EPT> {1 + Cm,kv&p,l} )

_ (425 =1 —1)(4(25 = 1)* = 9)| 20 |(2s — 1)% — 4] 20
Comfsip1 = dm/m p = exp imym L)

16



(i) If n > p°, then

|B(m7 k7 S, P, TL)| S Bm,k,s,l exp <_27T\/mpa7_2)

+ Bm,k,s,Q(l + Cm,k,s,p)p_l exXp (—ﬂ'\/ﬁp&Tﬁ)
where

14 Re(2s— s— 34 Re(2s—1) 1 > 1
B s =22 TRO@s ) L ARe(a 1) 5725 2 (5 + Re(2s — 1)) Z 44T (25 + £) [0V
=0

ot

7.1
Brkso =223 2m?mi.

Proof. (1) Consider the following asymptotic formula for the /-Bessel function (see [27, p. 269]

or [29, Eq. 10.40.12])

L(z) = eng:; [+ Ey(2)] — z’eXp(_;;m) 1+ Ey(2)], (2.3.3)

where

) : (2.3.4)

Then we can write

47T\/mn) Q%W(mn)ip*% exp (_47T\/mn>
p

A(m7 kasapu n) = 12371 (
p

- 1+C(m7k787p7n)7

where

17



8/ 47/
—iexp (— TV (2s — 1)m') [1 + Eoy_q < T mn)] )
p p
By (2.3.4), if n > p“ then

() () s e ()

|C(m, k, s,p,n)| <

p
< Cm,k,s,p (235)
where
Cm,k:,s,p == Cm,k,s,p,l + exXp <_87T\/EPQT72> {1 + Cm,k,s,p,l} )
425 —1)2 = 1)(4(2s — 1)> = 9)| 2-a 2s —1)2 =1 4,
O N2 =1 = DA =1 = 9)] e (@51 — ] e
e 4m\/m 4t\/m

(i1) Observe that (see [29, Eq. 10.25.2])

1= () Yrarrraa (5)

If 0 < z < 1, then we have

Re(v) 2 1

Z40|F(v +1+c)le”

c=0

L= )

(2.3.6)

Now, consider the decomposition

P e c c
¢=0 (mod p)
_ Q%W(mn)i exp (_47\/mn> Z S(—m,n;cp) Lo (4m/mn)
p )&= o cp
1 1 4 \/
= 227(mn)7 exp (— T mn) {R1 + Ry},
p

18



where

cp cp
|_47T\£WJ S( ) 4
m,n;cp T/ mn
Ry:= ) 1251< )
=2 P p

By the Weil bound

[SIES
N[

(2.3.7)

|S(=m,n;ep)| < 7(ep)(—=m,n, cp)z(cp)

and (2.3.6), we have

S(—m,n;cp o/ Ko &2 1
pis 3 Bommel (s S

¢
v cp cp — 40(2s + 0!
p

; - 1
< m§(2ﬂm)1{e(2571) Z Z 7(cp)
£=0

4T 2s + o0 4 v (cp)3+Res—1)

Moreover, we have

7(cp) = rle) (1
Z WSEW—C §+Re(23—1) .

4/ mn ( p c=
C>T

Hence

. 1 - 1
< m3 Re(2s—1) 2 [ — . ) 3
|Ry| < m2(2my/mn) ¢ <2 + Re(2s 1)> ;0 (s £ 00 (2.3.8)

Similarly, by (2.3.3), (2.3.5), (2.3.7) and the bound

7(c) < \/501/2,

19



we get

L4Tr\/mJ
- S(—m,n;c cp 4m\/mn
|Ry| < Z |5 » p)l VP 1exp( >(1+Cm,k,s,p)
g P VAm(mn)1 cp
' | |
o mA(lt Cm,kf,p) exp (Qm/—mn) S o)
VAm(mn)i p s
< m2(1+ Crigsp) exp (27r\/mn) g\/g_ (47r\/mn)§ (2:3.9)
= VAzx(mn)i gV p ' a
Combining (2.3.8) and (2.3.9) now gives
e(25— 1 - 1
Blm. k < 93+Re(2s—1) 14+Re(2s—1), 3+8C=D o2 [ 1 pooo
|B(m, k, s,p,n)| < ™ m ¢ T Re(2s—1) Z4f|r(2s+£)|e!

£=0

1, Re(25—1) A/ mn
X nit 2 exp (—
p

27/
(1 + Cm,k,s,Iinln% €xp (_ t mn) .

p

+
[}
“
N
3
N
S

Furthermore, since

1+ 2Re(2s — 1)]? 6561
> max {8 +1 log 201
“= max{ o8 ( 65536mmt )5 T8 6553600

6561p°% (1 + 2Re(2s —1))%p®
655368 m4’ 655368 m4 ’

— anO‘ZmaX{

it follows that

2

1, Re(25—1) dm/mn
nat exp (—

3
n4+ exp

;)
)

20



Hence

|B(m7 k: S, P, n)| S Bm,k,s,l exXp (_271_\/%]90‘7_2)

+ Bm,k,s,Q(l + Cm,k,s,p)p_l exXp (—W\/EpaTﬁ)

where

1 3 , Re(2s—1) 1 - 1
B = 2§+Re(2s—1) 1+Re(2s—1) 5 +—5— 2 [ Re(2s — 1 E
m,k,s,1 & m ¢ 2 + Re(2s ) 1=0 4125 + £)[¢)

N[ey

T,-1
Bugso = 2237 20°mi.

Now, by the Weil bound

|S(=m,n;p)| < 2¢/p,

there exists a unique real number 0,,, ,(n) € [0, 7] called the Kloosterman angle such that

S(_m7 n;p)

N = c0S(0 p(n)).

We will use Proposition 2.3.1 to deduce the following effective asymptotic formula.

Theorem 2.3.2. Let Re(s) > 3/4,

[1 4 2Re(2s — 1)]8 6561
> 3,841 8+log| oo s
a> maX{ 8+ og< 655365mi )70 %8\ G5536memt ) [

and p be a prime number satisfying

2
1 a—2
pZmaLX{?),‘@s_1)2_Z ’(a_g)afz}.
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Then if n > p*, we have
Qm op(, 8) = cos(0, p(n)) + E(m, k, s,p,n),
where
|E(m, k,s,p,n)| < C(m, k:,s)pz_Ta

with

425 —1)2 —1)(4(25s —1)2 =9
C(m,k,s) = Bpnsi+ Bngs2+ (1 + Bpkso) (1 + (425 = 1) J4@2s— 1) )|) :

T/m
(2.3.10)

Proof. By (2.3.2) and Proposition 2.3.1 we have
U o p(1, §) = c08(0pp(n)) + E(m, k, s,p,n),
where the error term
E(m,k,s,p,n) = cos(0pmp(n))C(m, k,s,p,n) + B(m,k,s,p,n)
satisfies the bound

E(m,k, s,p.n)| < [C(m.k,s,p.n)| + | B(m, k. 5.p,n)
S Cm,k’,s,p + Bm,k,s,l exp (—QW\/EPQT_Q>

+ Bm,k,s,2(1 + Cm,k,s,p)p_l exp (—Wﬁp%) .
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‘We have

2
1|e—2 |(2s—1)2—1| a=2
> —]_2—— — > 4
b= ‘(28 ) 4 b= ( 4my/mlog 2
(25— 1) = 3]
2 < 2.
- eXp( nym DY) S

Hence

1(4(2s — 1)? —271T)\(/47LT(123 — 1) — 9)|p277a [1 \exp <—87r\/ﬁpaT72>}

+ exp (—87r\/ﬁpa772> .

Cmik:7s7p S

Similarly, we have

> 3,(a—2)a2 > 3, (222 o
p_rnax{,(a—) } — p > max \onvim

= exp (—W\/ﬁp%?) < pz_Ta.

It follows that

Hence

a— _ a2
Cresp + B k,s,1 €XD (—27u/ﬁp72> + Bks2(1 + Crksp)D Lexp (—w\/ﬁp 3 )

2—«a

2—a —
S Cm,k,s,p + Bm,k:,s,lpT + Bm,k,s,2<1 + Cm,k,s,p)p 1]? 2

2—a 2—a
S Bm,k,s,lp 2 +Bm,k,s,2p 2

(425 — 1) = (A(2s — 12 = 9)[ 20
T/m )p ‘

+ (1 + Buks2) (1 +
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2.4 Discrepancy bounds

In this section we give some bounds concerning the star discrepancy of a set which we will
need.

Given any finite set X C [—1, 1], we define the averaged Dirac measures on [—1, 1] by

pix (t) = ’71’ > X@a(®),

zeX

where X (,,1](t) denotes the characteristic function of the interval (z,1] C [—1,1]. It follows that

for any y € [—1, 1] we have the corresponding distribution function

i (y) = / " dpux(t).

-1

On the other hand, recall the Sato-Tate measure
2
pst(t) = =1 — 12dt.
T
Then we define the distribution function of ugr(t) on [—1, 1] by

Gly) = /y dps(t).

-1

The star discrepancy of X with respect to the measures yx and ugr is defined by

Dx = sup |ux(y) —G(y)|.

ye[—l,l]

Recall that BV (|—1, 1]) denotes the space of functions f : [—1,1] — C whose total variation
Var( f) is bounded.

We have the following Koksma-Hlawka type inequality for the Sato-Tate measure.
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Lemma 2.4.1. Given any finite set X C [—1, 1] and function f € BV ([—1,1]), we have

< Dk Var(f).

e oS = [ Fdusi()

zeX

Proof. Define the function

Then using integration by parts for the Riemann-Stieltjes integral, we get

/_IRX<y>df<y> = / px ()7 (4) — / G(y)df (v)

1 -1

= [ nxldrtn) = G110+ GE0D + [ F)act)
= [ st = s+ [ redusao

On the other hand, we have
[ ) = o S [ ) = o S - @) = 50 - 1 S
L X 2+ /., x| X]
Combining these identities gives
| Rt = [ s - 55 3 so)
-1 -1 zeX

Finally, it follows that

- \ / 1 Rx(y)df(y)‘ <y [ 4 ()] < DiVar(f).

1

ONOE | 10t

reX
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Now, recall that for € Z* the Chebyshev polynomials of the second kind are defined by

sin((r + 1) cos™1(¢))

VI—1#2

U(t) := . te[-1,1].

The polynomials {U,(¢)},, form an orthonormal system with respect to the measure jgp on
[—1,1].

We will need the following Erdos-Turén type inequality due to Niederreiter [26, Lemma 3].
Proposition 2.4.2. Given any finite set X C [—1, 1] and positive odd integer d, we have

2d—1

8 4d — 3

r+1
D% <
X' = (0.362)7d + 4 * (0.362)7d + 27 2:: (r+2)

|X|ZU

2.5 Analytic conductor of the Kloosterman sheaf

We will need an explicit formula for the analytic conductor of the r-th symmetric power of the
rank 2 Kloosterman sheaf.
Let KI; be the rank 2 Kloosterman sheaf on the affine line A]}p and consider the Fourier sheaf

defined by the r-th symmetric power
K1Y := Sym”(Kl,).
The analytic conductor of Kl is defined by (see e.g. [14, Section 2.2])

c(K1) == rank(K15") + [S(KIS)) [+ > Swan, (K1)

zeS(KIS))

where rank(K1{") is the rank of K1{",

S(K1y)) C Py

is the set of singularities of Klg), and Swanx(Klgr)) is the Swan conductor at z.
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We will deduce the following result from Fu and Wan [15, Theorem 3.1].

Proposition 2.5.1. For p > 2 we have
. 1
c(KI{)) =r+3+ 5 (1 +1—di(2.p)

where d,.(2, p) is the number of 2-tuples of non-negative integers (a, as) satisfying a; + ay = r

and a; = ay (mod p).

Proof. Since Kls has rank 2, the rank of Klér) equals the number of 2-tuples of non-negative inte-

gers (ay, az) satisfying a; + ay = r, which is r 4 1 (see e.g. [20, Exercise 5.16]). Hence
rank(K1{”) = r + 1.

Now, by Deligne [9] (see e.g. [24, Theorem 4.1.1]) the Kloosterman sheaf Kl is lisse except at

the two ramified points 0 (tame) and oo (wild). Hence Klg) is also lisse except at the two ramified

points 0 (tame) and oo (wild). In particular,
S(KIY) = {0, 00}
Since Klg) is tamely ramified at O, by [24, Proposition 1.9] we have
Swany (K1) = 0.
Let
Lo < Gal(F,(X)*?/F, (X))

be the inertia group at co and I.(2) < I, be the unique index 2 open subgroup. By [24, 1.13.1]
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we have
(r) 1 * (1)
Swan,, (Kly’) = 5 % Swan, ([2]*(Kly "))

where [2]*(K1g")) is the restriction of Klg) to I(2). Then by (the proof of) [15, Theorem 3.1] we

have
Swan ([2]*(KI$)) = r + 1 — d,.(2, p)

where d,.(2,p) is the number of 2-tuples of non-negative integers (aq, as) satisfying a; + ay = r
and a; = ay (mod p).

The result now follows by combining the preceding facts. 0

2.6 Proof of Theorem 2.1.1

Let s > 3/4,

(4s — 1)% 6561
> 5,8 tlog [~ ) ) 84log (s
O‘—max{ & log (655367r8m4 S 108\ S5536m5mA ) [

and p be a prime number satisfying

2
1|a=2
pZmax{?),‘(Qs_l)?_Z ’(a_g)a%}.

For n > p“, we define the normalized Fourier coefficients

am,k,p(”y S)
N(m,k,s,p,a,n)

)\m,k,s,p(n) =
where

N(m,k,s,p,a,n) := (1+ C(m,k, s)p%Ta)N(m, k,p,m).
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Then by Theorem 2.3.2 we have

|>‘m,k757p(”) | <1,

so that A, . s »(n) € [—1,1].

Given an interval [, C IF; , choose a complete set of residue classes

Ly =A{lnpals s [, 1}
such that the class representatives n,,; satisfy the bound n,; > p® fori = 1,...,|I,|. This choice
determines a set

Sa,lp = {np,la s 7nP:|Ip‘}'

Now, define the sequence of finite sets
Xot, = {Ampsp(n) - n€ Sap,} C[—1,1].
We will deduce Theorem 2.1.1 from the following effective bound for the star discrepancy of
Xa,1,-

Proposition 2.6.1. Let I, C X be an interval of length |I,| > ,/p. Then we have

X = m,K,S R ) R .
o, Ip g \/— \/_

Proof. By Proposition 2.4.2, for any positive odd integer d we have

2d—1

8 4d—3 rrl |1
Dx,, < — Ur(Amoks .
Xty = (0.362)7d +4 | (0.362)7d + 27 2 o 1] 2 UrOmiap(n)

TLESQJP
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Now, by the triangle inequality,

D;(Mp <51+ 5
where
8 4d—3 = r+l |1
S = - U i :
VT 0362)7d+4 | (0362)md + 27 2 r(r+2) |1L,] E; (cos (O p(12)))
r= n OZIp
4d-3 " or+1 o1
Sz 1= 17 U, >\m s - U, em .
2 OB 1 27 2 g D] O U Comsal)) = Urleos(Pmy ()
r= n€Saq, 1,

In order to estimate S; we will use of the following bound of Fouvry, Kowalski, Michel, Raju,
Rivat and Soundararajan [14] for sums of complex-valued functions on short intervals in cyclic

groups which goes beyond the Pélya-Vinogradov range.

Theorem 2.6.2 ([14], Theorem 1.1.). Let ¢ : Z — C be an m-periodic function. Then for any

interval I C 7 of length \/m < |I| < m we have

4¢e8|1|

> p(n) NG

< c(p) log ( ) Vm,

where c¢(¢) := max {||¢|]oo, ||P||o0 } and @ is the normalized finite Fourier transform of ¢,

a(h) ‘:%m S e (%) hel.

Since S(m,n + p;p) = S(m,n;p), the function ¢ : Z — R defined by

30



is a p-periodic function. Hence by Theorem 2.6.2 we have

Z Uy (cos(0mp(n)))| < c(p)log (46—\);”> V/D- (2.6.1)

nESa,Ip

Now, it is known that ¢ is the Frobenius trace function of the Fourier sheaf Klg) (see e.g. [24,

Chapter 13]). Then by [14, (2.6)], which utilizes [13, Proposition 8.2], we have the crucial bound
c(p) < 10e(K1S)2.

It follows from Proposition 2.5.1 that

3r+7\°
c(p) < 10 ( r; ) < 53r +7)% (2.62)
For notational convenience, we define
| 1|
Bp) = —=.
(p) /b

Then by (2.6.1) and (2.6.2) we get

1

L »log (4e*5(p))
. ‘

2.6.3
B(p) (263

> Un(cos(Omp(n))| < 5(3r+7)

ESQJP

Applying the bound (2.6.3) gives

2d—1

5(r 4+ 1)(3r + 7)% log(4e®3(p))
; r(r+2) B(p)

8 4d-3 =, log(de*B(p)
= (0362)7d 14 | (0362)7d + 27 ;“00)7” B(p)

3 8 100(4d — 3)(2d — 1)d log(4eB(p))

= (0.362)7d + 4 (0.362)7d + 2 B(p)

8 4d — 3

S <
'S 0362)md 14 (0.362)7d + 27
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log(4e®5(p)) '

< 8d™! 4 (800)d == B

We choose d such that
Blp)'* < d < B(p)* + 2.
Then we have
S1 < 8B(p)~"* [1+900log(4e*B(p))] -

To estimate S5 we will require the following lemma.

Lemma 2.6.3. We have
U7 oo < r(r 4 1)%.
Proof. For § € [0, 7], we have

U eos(0) =

d sin((r + 1)0)
Iz ST

df  sin(0)

= % Z cos(nf)(cos(f)) ™

= =3 [nsin(nf) (cos(®)) " + ( — ) cos(nf) sin(8) (cos(0)) "]
(2.6.4)

On the other hand, we have

‘%UT(COS(Q))‘ = U, (cos(0))| x | — sin(8)]. (2.6.5)
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Hence, by combining (2.6.4) and (2.6.5), we get

U (cos(8))] = nz% nsin(nd)(cos())"" + (r ;I:L()e ():os(ne) sin(0)(cos(6))" !
< ; nSin(nZi)I(l((jxw))“n‘ * ; |(r = n) cos(nf)(cos(6))" |
< ; %((g)e)‘ +r(r+1)

- nz_‘an 0)" | +r(r +1)

<y Rt +r(r+1)
n=0
< 7"2(7"—|— +r(r+1)

=r(r+1)>%

By the mean-value theorem, Lemma 2.6.3, and Theorem 2.3.2, we get

2d—1

4d — 3 r+1 1
Sy (0.362)7d + 27 ; r(r +2) 15| ; U (Amies,p (1)) — Up (€08 (0 p (1))
= n a,Ip
< _ / /\ o 0
= (O362)7Td + 27T Zl ,r.(,r. + 2) |-[p| GSZ ||Ur||00 | m,k,s,P(n) COS( m7p<n))|
r= n a,Ip
4d—-3 & 41 or(r+1)?

Y Pksp(n) = cos(Bnp(n))|

nESy, Ip

~ (0.362)wd + 27 ; r(r+2) |1

— c08(0mp(1))

(4d)*(2d —1)(4d —3) 1 cos(6 )+ E(m,k,s,p,n)
= | I, SZ 1+C(

- (0362)7Td+ 21 m, k 5) 2a

16d?(2d — 1)(4d — 3)
~—  (0.362)7d + 27

[e3

x 2C(m, k, s)p%

< 256(8(p)"* + 2)°C(m, k,s)p 7.
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Finally, by combining our bounds for S and S5, we have

*

D, < 80() ™ [1+9001og(4e™B(p))] + 256(3(p)""* +2)°Clom, ki 5)p ™",

Moreover, by our assumption on o we have o > 5, hence

— _
pz <Bp) <Bpm
2—«a 10—3«

pz <Bp) s <B(p)

P < B(p)T < Bp) V.

It follows that

*

D%, , <8B3(p)~"* + 7200log(4¢*B(p))B(p)~"/* + 256C (m, k, 5)B(p) =R

10—3«a

+1536C (m, k, s)B(p)”~ o

8—-3«

+3072C (m, k, s)B(p)+

< (7208 + (4864)C(m, k, 5))B(p) "/ log(4e® B(p)).

Proof of Theorem 2.1.1. By Lemma 2.4.1 we have

ﬁ Z fmksp(n)) — /1 f)dusr(t)| < D}a’lpVar(f)_

nESa,Ip

The result now follows immediately from Proposition 2.6.1.
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3. EQUIDISTRIBUTION FOR WEAK MAASS FORMS OF HALF-INTEGRAL WEIGHT

In this chapter, we prove quantitative equidistribution for normalized Fourier coefficients of
weak Maass forms of half-integral weight and level 4p. Briefly, for each fixed m € Z* and
k € 3Z\ Z, we consider a family of weak Maass forms Py, . ,(z,s) of weight k and level 4p.
We define a finite set X}, C [—1, 1] of normalized Fourier coefficients of P, x (2, s), and prove
that the sets { X,,} become quantitatively equidistributed on [—1, 1] with respect to the probability

measure

1 1

Parc(t) = ;ﬁdt

as p — 0o. This measure is the pushforward of the Haar measure on the unitary group U(1).
When s =1 — k/2 and k < 1/2, the family {P,, x (2,1 — k/2) },nez+ spans the vector space
of harmonic Maass forms of weight k£ and level 4p. For the precise statements of these results, see

Theorem 3.1.1 and Corollary 3.1.2.
3.1 Introduction and statement of results
3.1.1 Background on weak Maass forms of half-integral weight

In this section we review some facts concerning the weak Maass forms whose coefficients we
will study. More details can be found, for example, in the fundamental works of Bruinier [2, 3],
Bruinier/Funke [4] and Bruinier/Ono [5, 6].

Let f : H — C be a function on the complex upper half-plane H := {z = x + iy : y > 0}.

Recall that the slash operator for half-integral weight k& € %Z \ Z is defined by

fin(z) = ez + ! f (Zis)
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for

with

1 d=1 (mod 4),
Eq =

i d =3 (mod 4).

Here (5) is the extended Kronecker symbol in the sense of Shimura [32].

Now, we introduce weak Maass forms of half-integral weight.
A weak Maass form of weight k € 37 \ Z for I'y(4N) is a smooth function f : H — C

satisfying the following conditions:
(1) fi,y = fforall y € ['y(4N).

(2) f is an eigenfunction of the weight k£ hyperbolic Laplacian

02  0? 5, 5,
Ari=y (5):}02 + 8y2> - iky <0x +28y) '

(3) There is a non-constant polynomial Py (z) := Y., ,af(n)q" € C[g~'] such that f(z) —
Proo(z) = O(e™%¥) as y — oo for some € > 0, where ¢ := ¢*™*. A similar growth condition

holds for all other cusps.

Similarly, there is a generic family of weak Maass forms of half-integral weight called Maass
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Poincaré series. For m € Z*, define the Maass-Poincaré series of weight k for I'o(4N) by

Pm,k,N(zv S) = Sa Z [Ms7k(47rmy)e(—mx)] |7€77 VRS Ha RC(S) > 17 (311)
YET oo \I'o (4N)

with M, , equal to the usual M-Whittaker function (see [29, Section 13.14]).
Pk (2, 8) is an eigenfunction for Ay, with eigenvalue s(1—s)+(k?—2k)/4. Also, the Maass-

Poincaré series P, x n(z, s) has the Fourier expansion at co given by (see Proposition 3.4.1)

M ;. (4mmy)
['(2s)

W, (44
+ 3 aman (0, S)Me(ﬂ:nx) (3.1.2)

1—s—k/2

Poin(z,8) = e(—mx) + am i n (0, 5)y

where
Wk (t) := |t’_k/2WSign(t)§,S—% (It)

with W, ,, equal to the usual Whittaker function (see [29, Section 13.14]).

It is important that the family P, , n(z,s) can be used to generate certain vector spaces of
harmonic Maass forms.

A harmonic Maass form (resp. weakly holomorphic modular form) of weight k € %Z \ Z for
['o(4N) with a pole only at the cusp a = oo is a smooth (resp. holomorphic) function f : H — C

on the complex upper half-plane H satisfying (1) — (3), and the following additional conditions:
4 Ayf =0.

(5) fi,7a(2) is bounded as y — oo for any matrix v, € SL2(Z) such that y,(c0) = a % oo.
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Let HY(4N) (resp. M (4N)) denote the vector space of harmonic Maass forms (resp. the
subspace of weakly holomorphic modular forms) of this type.

We define

Poin(2) = Pogn(z,1—K/2), k<1/2

Qm,k,N(Z) = F(k)Pme,N(Z,l{/Z), k Z 3/2

where by P, x n(2,3/4) we mean the value of the analytic continuation of P, ; y(z,s) at s = 3/4

(see Section 3.4). Then P, n € H, f (4N) is a harmonic Maass form with Fourier expansion at

oo given by
Poin(z) =q¢"+ > ampn(n1—k/2)q"
n=0
= L(1—k,4mny) _,
+ ) (tmpn(—n,1 = k/2) = 6,(n)) taon ¢ (3.1.3)

n=1

where I'(s, ) is the incomplete Gamma function and 6,,(n) is the Kronecker delta function.
Similarly, Q,, s N € M, ,f (4N) is a weakly holomorphic modular form with Fourier expansion

at oo given by

Quan(2) =q "+ amun(n k/2)q" (3.1.4)
n=1

In Appendix B.2, we explain how these Fourier expansions give the decompositions

HY(4N) = Span({ P v (2) Ymezt ), k< —1/2, (3.1.5)

H{(4N) = Span({Pp,1/2.5(2) ez ) UO(AN), &k =1/2, (3.1.6)
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and
M7 (4N) = Span({Qus.n (2) mez+) U Mp(4N), k> 3/2, (3.1.7)

where ©(4N) consists of those twisted theta functions which generate M 5(4V), where M;,(4N)

denotes the vector space of holomorphic modular forms of weight & for T'o(4NV).

Convention. If s = 3/4, then we only deal with P,, ;. v (%, s) for the most interesting cases k = 1/2

and k = 3/2.
3.1.2 [Equidistribution of weak Maass form coefficients for half-integral weight

Lets =3/4(k=1/2or k= 3/2)or s > 3/4. Fix a positive real number

(4s — 18 6561
aZmaX{3,8—|—lOg (m ,8 + log ) ,

and p be a prime number satisfying
1|5=
, (a0 — 2)&22} :

p> max{& ’(23— 1)% - =

4

In Section 3.8, we show there is a natural choice of normalizing factor N (m, k, s, p, &, n) such

that if n > p®, then the normalized Fourier coefficients

)\mvk787p(n) = a’m7k,p(n7 S)/N(mv ka S, p, &, n),

lie in the interval [—1, 1].

Now, given an interval /, C [F¥, we choose a complete set of residue classes

IP = {[nPJL ceey I:npv‘lp”}

such that the class representatives n,,; satisfy the bound n,,; > p® fori = 1,...,|,|. This choice
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determines a set

Sa,lp = {np,la cee 7np,|1p‘}’

Let BV (|—1,1]) be the space of functions f : [—1,1] — C whose total variation Var(f) is
bounded.

Finally, recall the measure

() = 1 1
ﬂArc - T m

dt.

We will prove the following quantitative equidistribution theorem.

Theorem 3.1.1. Let I, C F) be an interval of length |1,| > \/p such that each n € I, satisfies

(=) = 1. Then if f € BV ([-1,1]), we have

S FOunnpln) = / O (®) + R m ks, p)

nGSa,IP

1
|2, |
where

-1
R(f,m, k, s,p)| < (147° + 427°C (m, k, 5))Var(f) log? (&\)g) (%)

for the explicit constant C'(m, k, s) > 0 defined by (3.7.11).

Theorem 3.1.1 implies that for “short” subintervals [, C F satisfying the growth condition
\Ip|/\/P — oo, the Fourier coefficients Ay, ;s ,(n) for n € S, ;, become quantitatively equidis-
tributed on [—1, 1] with respect to the measure fia,c as p — 0.

Define the sequence of finite subsets

Xog, = {Ampsp(n) s n€Sap} C[—1,1].
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The following result is an immediate consequence of Theorem 3.1.1.

Corollary 3.1.2. Let I, C 5 be as in Theorem 3.1.1, and assume further that |1,|/\/p — oo as
p — 00. Then the sets { X, 1,} become equidistributed on [—1, 1] with respect to the measure [ixy.

as p — oo.

3.1.3 Vertical equidistribution of Salié sums

As an important step in the proof of Theorem 3.1.1, we will require the “vertical” equidistribu-
tion of Salié sums.

Recall that the Salié sum of prime modulus p is defined by

Timnip) = 3 (f)e(m) m,n € Z.

z (mod p) p p

Assume that p satisfies (p, 2n) = 1 and (*)*) = 1. A fundamental identity of Sarnak [34] asserts

that

T(m,n; p) = (g) Y. e (%) . (3.1.8)

v2=4mn (mod p)

In particular, let v (mod p) be a solution of v? = 4mn (mod p), then one can write
T(m,n;p) =: 2 (g) €p/D €08 (1))
for a real number
Omp(n) = — € [0,7] (3.1.9)

called the Salié angle. Accordingly, the normalized Salié sum is defined by

T mip) 1y q)

2(3)enV/P
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A remarkable theorem of Duke, Friedlander, and Iwaniec [11] shows that the Salié sums be-
come “horizontally” equidistributed with respect to pa. as p — 00; more precisely, given any

interval [, 5] C [—1, 1], we have

lim ’{p < X: COS<9m,p(n)) € [OZ,B]H _ /ﬁ d,UArc(t)-

X—00 {p < X}

Here we will prove the quantitative “vertical” equidistribution of Salié sums in short intervals.

Theorem 3.1.3. Let I, C F) be a interval of length |I,| > \/p such that each n € I, satisfies

(%) = 1. Then if f € BV([-1,1]), we have

S H(cos(Bnpn))) = | F@din(t) + RULm.p)

nelp

1
|1,
where

IR(f.m.p)| < 14m*Var(f) log? (%) (%)

Define the sequence of finite subsets consisting of the normalized Salié¢ sums
Xp, = {cos(Opp(n)): nel,} C[-1,1].

The following result is an immediate consequence of Theorem 3.1.3.

Corollary 3.1.4. Let I, C F be as in Theorem 3.1.3, and assume further that |1,|/\/p — oo as
p — oo. Then the sets { X} become equidistributed on [—1, 1] with respect to the measure [iay.

asp — oo.

Remark 3.1.5. A fundamental theorem of Katz [24] shows that the Kloosterman sums become
vertically equidistributed with respect to the Sato-Tate measure on [—1,1] as p — oo. Corollary

3.1.4 is an analog of this result for Salié sums.
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3.1.4 Bounds for sums of half-integral weight Kloosterman sums

For the proof of Theorem 3.1.1, we will also require a power-saving bound for sums of (oppo-
site sign) half-integral weight Kloosterman sums with -multiplier which is uniform in all param-
eters.

Recall that for k € %Z \ Z, the Kloosterman sum with §-multiplier is defined by

Sk(u,v;c) := Z <§>2k e%e (udl—vd) :

d (mod ¢)
(d,e)=1

We will prove the following bound.

Theorem 3.1.6. Assume that m,n, N € Z" and k = 1/2 or k = 3/2. Then for any ¢ > 0, we

have

Z Sk(_man;c) <. (mn)i+€N7%+€X%+€.
0<c<X ¢
¢=0 (mod 4N)

Several years ago, Sarnak and Tsimerman [35] proved the analogous bound for sums of clas-
sical Kloosterman sums over SLs(Z). Our approach is modeled on theirs. The crucial tool is
a Kuznetsov-Proskurin formula for half-integral weight opposite sign Kloosterman sums with 6-
multiplier due to Blomer [7]. We note that by modifying our analysis we can give a same sign
version of the bound in Theorem 3.1.6. We focus here on the opposite sign case since this is what

is needed for our applications.
3.1.5 A numerical example

Here we use SageMath [36] to give an example which illustrates that the sets {X (F;)z} be-
come equidistributed with respect to the measure 114, as p — 0o. Our calculations indicate that the
rate of equidistribution is O_(p~'/27¢), which is faster than the rate O, (p~'/?*¢) given by Theorem
3.1.3.

Let m = 1 and p > 3. Divide the interval [~1,1] into N, := 2[(p — 1)*/?] subintervals
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T, of length |T,;| = (p — 1)~"/2. Let xr,, be the characteristic function of T},;. A standard

approximation argument shows that the equidistribution of the sets {X (Fx)z} implies that
p

N,
2 — !
s Z Z X1, (cos(01,(n))) — / dptarc(t) (3.1.10)
p—1 i1 2 -1
e(Fy)
as p — 00. Now, define the rectangles
Rpﬂ‘ = TpJ‘ X [O, Hp,i]
where the height is given by
H,;=2(p—1)"?[{n € (FX)*: cos(f1,(n)) € Tp}|.
Then (3.1.10) is equivalent to
Np 1
Ay =) Area(R,;) — / dpiare(t)
i=1 -1

as p — oo. The histograms in Figure 3.1 display how A, approximates the area bounded by the

function 1/(mv/1 — t2) on the interval [—1, 1] for successively larger values of p.

(a) p = 401 (b)p = 677 (c) p = 1061 (d) p = 3137

Figure 3.1: Histograms for X .2
(Fp)
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3.2 Erdos-Turan for 1ia .

Given any finite subset X C [—1, 1], we define the averaged Dirac measures on [—1, 1] by

px(t) = % > X@(t)

rzeX

where x(,1)(t) denotes the characteristic function of the interval (x, 1] C [—1, 1]. It follows that

for any y € [—1, 1], we have the corresponding distribution function

px(y) = /y dun (t).

-1
Additionally, recall the measure

1 1

Parc(t) = ;ﬁdt-

Then we define the distribution function of ja.(¢) on [—1, 1] by

Gly) = [ dusnlt)

Finally, we define the star discrepancy of X by

Dy = sup |ux(y) —G(y)l.

yE[—l,l}

Now, recall that the Chebyshev polynomials of the first kind are defined by
T,(t) == cos(rcos™(t)), te[-1,1].

The polynomials {7, (¢)},-, form an orthonormal system with respect to the measure jz, on
[_1’ 1]~

We use the framework of Chebyshev, Markov and Stieltjes [1, Chapter 3] and Feldheim and
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Sodin [16] to prove the following effective Erdos-Turén type inequality for the measure fiayc.

Proposition 3.2.1. Let X be a finite subset of [—1, 1]. Then for any d € Z™, we have

, _ 6w 5 1

1
m ZXTr(x>

Proof. We apply the argument in [16, Section 3 and (3)] to the measures px and fia, to get the

upper bound

2ng—2

1
Dx < So+ > S / T, (t)dpx (t)
r=1 -

1

Y

valid for any ng € Z™", where

1 T (t)Q
S, ::/ o0 dpiare(t),
0= | T o) = goyp el

_ [ T @) 1
o /1 T, ot — g2 P2l /y Tt

and yo is any one of non-negative roots of T, (t).
We first estimate Sp. Recall the following identities for Chebyshev polynomials of the first

kind,

T, (cos8) = cos(rd),

7 sin(rd)

T (cosf) = (3.2.1)

sin 6

By setting ¢ = cos # and (3.2.1), we have

! T (1)? sin?fy " cos?(ngf)
S — 0 dpipe(t) = do
' /1 77 ot — " = /o sin” (252 sin” (452)

02 /7r cos?(ngb)
de. 322
~ 4mnd J, sin? (@) sin? (@) ( )
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Now, by applying

2
—60 <sinf < 4, (3.2.3)
T

we get

0" Bng cos?(ngb) 4/ 0~ 3ng 1
df < do
/0 sin? (—9290) sin? (—0_90) =7 0 (04 6)%(0 — 6p)?

= — —dH
3
< 7;2% (3.2.4)
0
Similarly, by (3.2.3) and the same argument, we have
i cos?(ngh) 3m3ng
. —5 g 40 < : (3.2.5)
fovs B e <
On the other hand, if y — 57- < 0 < 0y + 3, then by (3.2.1) we have
O+ =\ T4 25
0t 3,0 72
T, (cos0)| < | ———2"2— | |T0 (cosbp)| < 0 0o)|-
17, (cos0)] < (SMO : _)) 17, (c0s o) (( )) 171, (c05 60)] = 222 |17, (cos o)
(3.2.6)
Moreover, by mean value theorem and (3.2.6), we get
/90+3ZO cos?(ngh) g0 — /0“320 T, (cos6)? o
i sin? (£5%) sin? (&) o2 T! (cos fp)?(cos 6 — cos b)?
- / e T(eost)
002 17 (cos by)
13007°
< : 2.7
= 243n, (3-27)

47



Hence, by combining (3.2.2), (3.2.4), (3.2.5) and (3.2.7), we have

32 32570 3o
< 20

S < — ) 3.2.8
O = 9n, + 486n3 — ng ( )
Next, we estimate S,.. By definition of S,., we have
! 1
S < S0+ [ ITOldunelt) < S0+ -
v r
Then by (3.2.8) it follows that
370 1 670 1 s
S <4 =<y = <D (3.2.9)
ng  wr r r r
Hence, by (3.2.8) and (3.2.9), and letting ng = (g} + 1, we get
3 | 6 aeee
Dy < — +77° - T.(t)dux (t)| < — +7r° —/TTtd t
sty | [ dex(] < 5 + “3 | (dex(0)
65 1)1
= — 4+ 77 - |— T, )
g ZT |X,Z (@)
r=1 rzeX
]

3.3 Quantitative vertical equidistribution of Salié sums

We briefly recall the setup from the introduction. Let m, n € Z and p be a prime which satisfies

(p,2n) = 1 and (**) = 1. The Sali€¢ sum of modulus p is defined by

= 3 (G)e(5).

z (mod p)

and the normalized Salié sum is defined by

08 (O p(n)) := %Zi}g € [-1,1].
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Let I, C [F;’ be an interval such that each n € I, satisfies (%) = 1 and define the sequence of

finite subsets

Xp, = {cos(Opp(n)) : nel,} C[-1,1].
We will deduce Theorem 3.1.3 from the following effective upper bound for the star discrep-
ancy D%Ip.

Proposition 3.3.1. Assume that |/,,| > ,/p. Then we have

4e8|1 LI\ !
D%, < 14r°log’ (%) (%) .
P P P

Proof. By Proposition 3.2.1, we have

L 6m K11
D, <= +Tr > s > T (cos(Omp(n)))| -
r=1 nelp
Again, we will use the following result of Fouvry, Kowalski, Michel, Raju, Rivat and Soundarara-

jan [14] which gives a bound for sums of complex-valued functions on short intervals in cyclic

groups.

Theorem 3.3.2 ([14], Theorem 1.1.). Let ¢ : Z — C be an m-periodic function. Then for any
interval I C Z of length \/m < |I| < m we have

481

Jm

> p(n)

nel

< c(p) log (

)m,

where ¢(p) := max {||¢||so, ||P||o0 } and @ is the normalized finite Fourier transform of ¢,

a(h) ::%m S e (%) hel.
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By T'(m,n + p;p) = T(m, n; p) the function ¢ : Z — R defined by

Z T(cos(Omp(n)))| < c(p)log <46 |Ip|

nelp

where

c(p) := max {||@[|oo; ||l }

For convenience, we define

Then applying (3.3.1) gives

L 6T S Le(y) log(4e*B(p))
D, <= +Tm ;; 50 .

Lemma 3.3.3. We have

c(p) < 1.

Proof. By Sarnak’s identity (3.1.8) and the identity (3.1.9), we have

1

o) = Teostbpn)) =eostBp) =5 30 o).

v2=4mn (mod p)
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Hence |¢(n)| < 1 so that

lelloo < 1.

Now, using (3.3.3) we compute the Fourier transform of ¢ as

R 1 hn rv + hn
I
n (mod p) n (mod p) v2=4mn (mod p)
If ~ = 0 (mod p), then by the one-to-one correspondence

F, «— {v€F,: v’ =4mn (modp), forsomen € F,}

and the orthogonal relations for Dirichlet characters, we have

TV 1 T
i L Y o(F)=ap = e(5)-0
2
(mod p) v2=4mn (mod p) p \/ﬁ z (mod p) p
On the other hand, if 2 # 0 (mod p), then by the change of variables

n = 4mv? (mod p)

we have

Z Z e(rv—;hn) 2\1/_ Z e(ﬂhv;Jrrv

n (mod p) v2=4mn (mod p) (mod p)

Now, it is known that (see e.g. [22, Lemma 4.8])

() e () (50)

v (mod p)
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Hence, by (3.3.4) we have

o () (55 -

It follows that

)20

N | —

1] <

O]
Continuing, by Lemma 3.3.3 we have
G 1log(4e®(p)) log(4e®A(p))
D} _——|—75 —S —|—77r 1+ logd)———F—.
=7 Z B S a T esd g0
Finally, we choose d such that 5(p) < d < (p) + 1. Then we get
672 ‘1 log(4e®B(p))
DY < — 471 —_—
= d Z B(p)
G log(4e®5(p))
< —— +77°(1 4+ log(B(p) + 1)) ———
B(p) B(p)
2048
B(p)
This completes the proof of Proposition 3.3.1. [

Proof of Theorem 3.1.3. If f € BV (|—1, 1]), then by the same argument as in Lemma 2.4.1

with the Sato-Tate measure replace with pa,., we have the Koksma-Hlwaka type inequality

S H(cos(Bnp(n))) = [ F(Odsnlt)| < Var(1)D5,

|p|n€]

Then by combining this bound with Proposition 3.3.1, we complete the proof. [l
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3.4 Fourier coefficients of Maass-Poincaré series

In this section, we give formulas for the coefficients appearing in the Fourier expansions (3.1.2),
(3.1.3) and (3.1.4).

Recall that the Kloosterman sum with #-multiplier of weight k € %Z\Z is defined by

Sk(u,v;¢) == Z <§>2k e2ke (ud—l—vd) .

d (mod ¢)
(d,e)=1

Also, we recall the special function

Ws,k’(y) = |y|_k/2WSign(y)%,sfé(’y|)

where W, , is the usual Whittaker function, and let 7, and J,, denote the I and J-Bessel functions

of order v, respectively.

Proposition 3.4.1. We have

M s (4mmy)
['(2s)

+ Z A kN (N, S)

neZ+

e(—mz) + apm i (0, s)yl_s_k/2

Ws,k(iélﬂ-ny)
I'(s+k/2)

Pm,k:,N(Z7 S) =

e(+nx) (3.4.1)

where the coefficients a,, ;. v (£n, s) are given by

k. k
22~ kplts=5=kms—2

Si(—m, 0; ¢
3 ( )

am,k,N(Oa 5) = (

2s = DI'(s + k/2)T(s — k/2) 25 ;
¢=0 (mod 4N)
k—1
5 S, (— ) 4
o, (12, 8) = 270 (2) > MIQH ( van) |
m c>0 c C
¢=0 (mod 4N)
k—1
k-1 S (. —m: A
AN (—n,8) = 2mi " (ﬁ) 3 Z w(—m, —n;c) T ( m/mn) |
m >0 ¢ c
¢=0 (mod 4N)
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Proof. We may express the Maass-Poincaré series defined in (3.1.1) as

Pm,k,mz,s):@ S Wase-m2)] iy

Y€l \I'0(4N)

where

k

ws,k(y) = (47rmy)_§M7§’87% (4ﬂ—my)€—2ﬂmy.

We have the double coset decomposition

10
To(4N) =Ty Tl | || Tootarel
01 0

c>
¢=0 (mod 4N)
de(Z/cZ)*

where

Wq/e = S F0(4N)
c d

Then using this decomposition we get

Poin(z8) = s 2 Wadwel-ma)lle

7€l o\ (4N)
1 c\ 2k ok i
7€l \I'0(4N)
M,

k(4mmy) 1
s 85 S

¢>0 d (mod c) n€Z
¢=0 (mod 4N) (c,d)=1

where

Gn,sk(2) = g p(Im(waye(z + n)))e(—m(wqse(z +n))) (§>2k e (cz 4 en +d)7*.
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By Poisson summation, we have

Z ¢n,s,k (Z)

nez
=3 [ natimluge + O)e(munlz+ ) (5) < (ez et + ) e(—nt)ar
nez
(3.4.2)
Note that

(z+1) a 1
Wase(2 =—-— —.
4/ c cAlt+z+d/c+iy)

Then using the change of variables t — t — x — d/c, the integral in (3.4.2) becomes

() e (e 1)
o n (2 ) (o2 )

Hence
M . (4dmmy) 1 Sk(—m,n;c)
Pm,k,N(Z7 S) = 1—\(25) 6(—m2’) + F(2S) Z e(nm) Z ok an,s,k(c7 y)
nez c=0 (fno% 4N)
(3.4.3)
where
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Now, by Lemma A.1.1 we have

4

- I(2s - n Bt T/ mn
2m kl"(s—(fk}Q)ck Y(2) 7 Iy (4 ‘Cﬁ> W, i (4mny),
227k771+87%iikm87§y1757%ckfzsf‘(25)
@n,s,k(ca y) = (2s—1)D(s+k/2)T'(s—k/2) )
k—1
L I'(2s _ nl\ 2 47/ m|n|
it et () %y () W),

\

Then substituting these identities in (3.4.3) gives the desired result.

Using the Weil-type bound (see e.g. [21, (1.6)])

N|=

1
2
c2,

|Sk(m,n; )| < 7(c)(m,n,c)

n>1,
n =0,
n<-—1
0
(3.4.4)

one can show that the Fourier expansion (3.1.2) is absolutely and uniformly convergent for Re(s) >

3/4, and hence gives an analytic continuation of P, x x(z, s) to this region. Moreover, using the

bound for sums of Kloosterman sums in Theorem 3.1.6, one can show that the Fourier expansion

(3.1.2) is conditionally convergent at s = 3 /4.

Now, recall that P, , n(2) = Pin(2,1 —k/2) for k < 1/2.

Proposition 3.4.2. We have

Purn(z)=q¢"+ Z am v (0, 1 —k/2)q"

n=0
I'(1— k,47mny)
I'(l—k)

—-n

+ ) (ampn(=n, 1= k/2) = 8u(n)) q

n=1

where

o miTk Sk(—m, 0;¢)
s O 1=k = @R g s D T
c=0 ((r:n>o%4N)
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k-1

ampn(n, 1 —k/2) = 2mi ™ (%)* 3 Selzmymic) (47n/_mn> |

c>0 ¢ C
¢=0 (mod 4N)
k—1
k=1 S (— . 4
(=1, 1 — k/2) = 21k ny Z w(—m, —n;c) I Tmn |
- m c>0 ¢ c
¢=0 (mod 4N)

Proof. Lets =1 — k/2 with k < 1/2in (3.1.2). Using the identity [29, Eq. 13.18.4] we get
Mg 1o (dmmy) = (1= k)e™ (4mmy) 2 [D(1 = k) = D(1 — k, 4wmy)].

Then the functional equation I'(2 — k) = (1 — k)I'(1 — k) yields

Ml—%,k(47rmy) ~ owmy emeyF(l — k, 4mmy)
re—k I'(1-k)
so that
Ml_g’k(élwmy) ( " I'(l—k,4mmy) _,,
e(—mz) = .
T2 k) 1 ra—k ¢

Also, by applying [29, Eq. 13.18.2] we have
W () = (dmny) 5 Wy o (dny) = e,
and by applying [29, Eq. 13.18.5] we obtain

W1—§,k(—47rny) = (47rny)_§W %(47Tny) = D(1 — k, —dmny)e 2.

k
27

Hence, after combining the preceding identities we get the desired result.

Similarly, recall that Q, x n(2) := P (2,k/2) for k > 3/2.
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Proposition 3.4.3. We have

o0

Quan(2) ="+ ampn(n.k/2)q"
n=1

where

k(D)7 Sk(—m,n;c 4/ mn
A (0, k/2) = 21k <E> Z %L@—l ( \g—) |

c>0
¢=0 (mod 4N)
Proof. Let s = k/2 with k > 3/2 in (3.1.2). Then by the identity [29, Eq. 13.18.3], we have

k
2

Y (4rmy) 2.

M_?%(élﬂmy) =e
It follows that
Mg}k(élﬂmy) = 2™y
and thus
M%7k(47rmy)e(—mx) =q ™
Also, by the identity [29, Eq. 13.18.2], we get

Wg?k(4’ffny) = (47Tny)7gwg7%(47rny) — 6727rny'

Finally, since the Gamma function has a simple pole at s = 0, the constant term vanishes and
the non-holomorphic terms vanish. Hence, by combining the preceding facts we complete the

proof. [
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3.5 Bounds for integral transforms

In preparation for bounding sums of half-integral weight Kloosterman sums, we record some
bounds for integral transforms which will be needed.
Suppose that X > 1 and 1 < Z < X/2. Following the setup in [17, 35], we let ¢ : R — [0, 1]

be a test function satisfying the following conditions:

(1) ¢(t) = 1for 5 <t < &, where a = 4m\/mn.

(2) ¢(t) =0fort < 53557 and t > 2.

-1

3) ¢t) < (725 — %)

(4) ¢(t) and ¢/(t) are piecewise monotone on a fixed number of intervals in | | and

_—_a _a
2X+277 2X

% x27)-

We use Figure 3.2 to illustrate the function ¢(¢) satisfying (1) — (4).

Smooth cutoff function ¢(t)

Figure 3.2: Smooth cutoff function ¢(t)

Define the integral transform

o10)i=2¢ (3 ) cosn(rt) [ Kautrotn) -

Y

Lemma 3.5.1. We have the following bounds.
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(1) ¢(t) < 1, ifte(0,%).
(2) ot) < (L+]t]) 77, if < 1.
(3) o) < |t|"2, if|t| > 1.
(4) @(t) < %\t!*g, if |t| sufficiently large.
Proof. (1) Lett =ir € (0,%). We first assume that X < a. Recall the integral representation of

Ko (y) (see [29, Eq. 10.32.9])

Kou(y) = /000 exp(—y cosh(u)) cos(2tu)du. (3.5.1)

Then following the approach in [10, Lemma 7.1], we integrate by parts to get

/OOO exp(—y cosh(U))¢Eyy) dy = 1(u) /OOO (%yexp(—y okl

cosh

! %7 1 h(u))d
< m/ . Eexp(—ycos (u))dy

2X+27

a
xX—z ]

< exp(—u) / — exp(—y cosh(u))dy

a

2X+2Z
1
< min {exp(—u) (ﬁ) , 1} . (3.5.2)

Hence by combining (3.5.1), (3.5.2) and cos(2iru) < exp(2ru), we obtain

610) = étor) = 2 (3 ) costtmin) [~ Koart)ol) 2

Y

= 2e (g) cosh(mir) /000 /000 exp(—y cosh(u)) cos(Qiru)%dydu

00 —1
< /0 exp(2ru) X min {exp(—u) (ﬁ) ,1} du

L+ (x%2)

< a
L+ 2X+27

< 1
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We next assume that X > a (y sufficiently small). Then by [29, Eq. 10.27.4] and the mean value

theorem, we get

dtir) = 2¢ (5 ) cosn(rin) [ K _an()oln)

= Te (E> cosh(mir) /000 Iarly) - Lzr(y)éé(y)@

2 sin(—2rm) Y

X=Z
<</ %
_a Y

2X+427

X+7Z
< log ~_ 7

< L

[\

(2) We apply an argument similar to that in [25, Lemma 7.1]. Recall the following identities

for the I and K -Bessel functions (see [29, Eq. 10.25.2 and 10.27.4])

0= () Yrprraa (5)

and

This yields the identity

where

D(t) == me (E) cosh(rt) i ¢(—2it + 2¢)

2 sin(2mit) £ 27220(=2it + 1+ ¢)c!
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and

)= [ oty

is the Mellin transform of ¢. Integrating by parts yields

Re(s)
3(s) < (ﬁ) (1+ s (3.5.3)

Since ¢(t) = ¢(—t), we only deal with the case 0 < ¢ < 1. By Stirling’s formula, we know that if

c+1> 2 then T(c+1— 2it) > c2(c+ 2)° exp(—% — ¢). By applying this bound and using

(3.5.3) and sin(27it) < exp(27t), we have
D(t) < (1+2¢)) ' < (1+t]) 2.

Similarly, the same upper bound holds for ®(—t), and hence holds for ¢(t). We remark that (2)

can be viewed as a special case of Lemma 6 in [7].

(3) We let t > 1 and follow the same argument in [35, p. 629-630]. Recall the asymptotic

expansion of K-Bessel function of purely imaginary order ([12, 7.13.2 (19)])

Kuly) = ﬂexp (—%t) [sin G — /& — 42 +tcosh™! (5)) ) (1)] .

(t2 — y?)7 y

Moreover, by replacing sin(x) with (exp(ix) — exp(—ix))/2i, it follows that

V2m (Y T . )
Ku(y) = m exp (Zﬁ <¥> t— Et + Z) + “lower order terms”,

where

£(s) := cosh™ (1) — V1 - s

S
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Moreover, by making the substitution y = ts, we are reduced to bounding

o(t) <173

/°° exp(i€(s)t)

ds
- ts)—
T o)

3
2

ots)

=t .
g(s)s(l —s?)¢

(3.5.4)

/0 " fexpli€(s)0)t¢ (s)]

Since &'(s) = —v/'1 — s2/s, we know that £’(s) is uniformly bounded away from zero and &'(s) ~
—1/s,as s — 0. Also, ¢ is monotonic implies that ¢(ts)/(¢'(s)s(1 — s2)1) is monotonic. Now,

by the mean value theorem for integrals (see [35, (46)]), we have

7 lexp (i€ (s)t)) ds

__a
t(2X+22)

¢(ts)

. < 1.
£'(s)s(1 — s?)s

ds <

/0 " [expli€(s))ee(s)

Then by (3.5.4), we obtain

o(t) < t7e.

We can apply the same argument for the case ¢ < —1 to get the same upper bound.

(4) For t sufficiently large, we have ¢(ts) = 0. Also, by construction of ¢, we know ¢(0) = 0.

Hence, we can get a better bound by integration by parts in (3.5.4). It follows that

olts) .
§()s(1— 52!

- olts) ) o
| elictain ( = 82)i> d

b(t) <t 3

/0 " lexpliE(s))

3
2

—
<t Ooexp@&(s)t)%ds ([ mexp(z’g(s)t)%ds

s | [Tx . , 5@ (ts) s | [T : , 5°0(ts)
<t /m[exp@g(s)m G| /m[exp@g(s)m TErak

(3.5.5)
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Moreover, by the condition (3) of ¢, we have

-1 -1
o' (ts) < (XQ_Z—%) < (?(—ZQ) .

It follows that

1

s/ (ts) s aZ\ "' 1 a aZ 71_ X
1—1 S (1= (Y) <<m(t7> (X_) Su_apz O

ot

Observe that 1/(1 — s2)1 and s2¢(ts)/(1 — s)1 are both monotonic. Hence by the mean value

theorem for integrals and combining (3.5.5) and (3.5.6), we get

I(t) < X3 NI X3
7 AR

3.6 Bounds for sums of half-integral weight Kloosterman sums

3.6.1 Background
We assume throughout this section that k = 1/2ork =3/2and N € Z™.

A cusp a is singular for I'y(4N') and weight k if

& _
(&)=

where

is a generator of the stabilizer I'; of the cusp a. For each singular cusp a, we define the Eisenstein
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series attached to a by

Eqi(z,8) = Z jloty, 2) 2 Im(o ' y2)%,  Re(s) > 1
YET\To(4N)

where o, is a scaling matrix for a and the automorphy factor is defined by

~1/2 b
: (Y -1 (lez+d| ! K

The Fourier expansion of F,(z; s) is given by (see e.g. [30, p. 3876])

k VV@ n(n)® l—s(47r|n|y)
lgu ; ::5a400 * a 07 1= ° - sl a ) £ 22 s
(55) = Bt + 60,50 4 7 4>;|n| ouln5) el

where

e T Qa()en

0<d<c
(% 5)oa ETo(4N)

Now, let Hy(4N) be the Hilbert space of L*-integrable functions f such that

flyz) = j(r,2)* f(2)

forall v € I'y(4N). Let {u;} C Hy(4N) be an orthonormal basis of eigenfunctions of A with
eigenvalues \; and spectral parameters ¢; such that \; = 1/4 + tjz-.
If t; ¢ R (so that A\; < 1/4), then )\; is a so-called exceptional eigenvalue and it is known that

Aj > 3/16 (see [31]). If t; = /4 (so that \; = 3/16) then we have

Yy 2u; € My(4N). (3.6.1)
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In all other cases, by the bound of Kim and Sarnak [23] we have

7
[Im(t;)| < 8" (3.6.2)

Recall that u; has the Fourier expansion

uj(2) = p;(0,9) + Y 0 (M) Wigny 1, (47| |y)e(nx).
n#£0

We will need the following version of the Kuznetsov-Proskurin formula for opposite signs

given by Blomer [7, Proposition 2].

Proposition 3.6.1. Let m,n € Z*. Further, let ¢ : [0, 00) — R be a smooth function satisfying
$(0) = ¢'(0) =¢"(0) =0 and ¢V (z) <« 272¢ (3.6.3)

for 0 < 57 < 3 and z — oo. Then we have

> Se(=m.mic) , <4W¢m)

c>0 ¢

¢=0 (mod 4N)
/)J ( ) -
=4dym ———————0(; .6.4
Z Cosh(mf) o(t3) (3.6.4)
—m, 3+ it)pa(n, 3 +it) -
+ — =2 t)dt.
. Smguzlar Cusp/ cosh )F(% - it)P(% + it)(b( )

We will also need the following crucial estimate from [7, Lemma 5].

Lemma 3.6.2. Let T > 1. Then we have

3 nlpy (Fn) P(L+ [t;]) =2

ST cosh(rt;)
|ba(En, 5 +it) (1 + [t])*4-2 3 1
+ dt <. T2+ (nT)z "=, 3.6.5
Z / cosh(mt)|T(£E + L +it) |2 (nT) ( )

a: singular cusp
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3.6.2 Bounding the weighted sum
Let ¢ be a test function satisfying conditions (1) — (4) of Section 3.5 and the condition (3.6.3).

Proposition 3.6.3. For all € > 0, we have

5 Se(=m,mic) (zmm

) < (XZ7Y)2 4 (mn)ite,
C C

c>0
¢=0 (mod 4N)

Proof. We begin by estimating the contribution from the discrete spectrum in the Kuznetsov-
Proskurin formula (3.6.4).
Assume first that £; ¢ R (the exceptional eigenvalues). By (3.6.1), there is no contribution

from the discrete spectrum when ¢; = i/4. Hence by Lemma 3.5.1 (1) we have
(1) < 1. (3.6.6)

It follows from (3.6.2), (3.6.6), the Cauchy-Schwarz inequality, and (3.6.5) that

COSh(?Tt ) Wi cosh(wt )
m|p;(=m)|? nlp;(n)f?
< Z cosh(rt;) Z cosh(rt;)
[t;1<7/128 [t;1<7/128
<. (mn)ite (3.6.7)

Next assume that ¢; € R with |¢;| < 1. By Lemma 3.5.1 (2), we have
(t;) < (1+ [t;])7=. (3.6.8)

Then by (3.6.8), the Cauchy-Schwarz inequality, and (3.6.5) we get

4WZ pj(_m>pj'< ) ( <<\/_Z |pj ( )|(1+|t |)—%

]<1 1< COSh(ﬂ )
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< |y mlp;(=m)*(1 + [t;))~* 3 nlp;(n)|?

cosh(rt;) cosh(rt;)

[t;1<1 [t5]<1

<. (mn)ite, (3.6.9)
Last, we assume that t; € R with |¢;| > 1. By Lemma 3.5.1 (3) and (4) we have
o(t;) <<min{|tj|‘3éltjl‘3}. (3.6.10)
Let A > 1. Then using (3.6.10) and the Cauchy-Schwarz inequality we get

4v/mn Z pi(— )/0]( )gb(tj)

cosh(rt;)
A<t;]<2A

X s m|p;(—=m)|2(1 + |¢;])~! nlp;(n)|?
cmin {4t Lath |5 meCPOLDT gl

A<ine24 cosh(rt;) a<in<on cosh(rt;)

Now, by (3.6.5) we have

(£n)|? +n, L +it)|?
L i +i0F
cosh(rt;) a<jj<24 cosh(mt)|['(£5 + 5 +it)[?

A<t;|<2A a: singular cusp

<. AT+ (A% + (nA)%+€) .

Then it follows that

4/mn Z pi(— )p]( )¢<tj)

cosh(rt;)
A<]|t;|<24
<. min {Ag,

<. min {A‘2,



Summing over the dyadic intervals gives

4\/_2'0]—<)¢( t;) < (XZ71)2 + (mn)ite, 3.6.11)

e cosh(rt;)

Finally, by combining (3.6.7), (3.6.9), and (3.6.11) we get

DY om0 5y (X7 + ()

cosh(rt;)

To estimate the contribution from the continuous spectrum in (3.6.4), we proceed in exactly the

same way by considering the cases [t| < 1 and |t| > 1 separately to get

> / (Zmop 4 it)0alr g Hil) g0y o (X270 4 (mn)ie.

k+1 . 1-k .
a: singular cusp COSh )F 2 Zt)F(T + Zt)

This completes the proof. ]
3.6.3 Proof of Theorem 3.1.6

We will require the following unsmoothed approximation.

Lemma 3.6.4. Given any € > 0, we have

Z Sk(_ma U C) (b (471-{%) B Z Sk(_mv n; C) <. (mn)stleE*%Z'

C C
c>0 X<e<L2X
¢=0 (mod 4N) ¢=0 (mod 4N)

Proof. By construction of ¢ (condition (4) and |¢| < 1), we have

S sk(—m,n;c)¢(4w\/m>_ 5 Si(—m, n; )

Cc c
c>0 X<eL2X
¢=0 (mod 4N) ¢=0 (mod 4N)

< ¥ ‘Sk(—m,n;C).

C

X—-Z<c<X
29X <c<2X 427
¢=0 (mod 4N)
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Then by applying the Weil-type bound

gives

o=
Q
o=

|Sk(—m, n; c)| < 7(c)(m,n,c)

S sk(—m,n;c)¢(4wm>_ 5 Siu(—m, n; )

C
c>0

¢=0 (mod 4N) ¢=0 (mod 4N)

1

7(c)(m,n,c)?

< > T

X—Z<e<X

2X<c<2X 427
¢=0 (mod 4N)

7(4N) 3 7(d)(m,n,d)?

ST(4N> Z T(dl) Z T<d2)

1

2

di|(m;n) XE<da< A d;
2X 2X+27
INShsTR

T(4N)
Sﬁ Z 7(dy) Z 7(da2)

di|(m,n) XL <dy< X

2X 2X+2Z2
av Sd2 <=y

T(4N) Zlog X
X3 4N > 7(d)

[N

<
di|(m,n)

<. (mn)*N X227

Now, by Lemma 3.6.4 and Proposition 3.6.3 we have

Z —Sk<_m’ nic) <. (XZ_l)% + (mn)iJr€ + (mn)ENe_lXe_%Z.

&
X<c<2X

¢=0 (mod 4N)
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Then choosing Z = (N X )% to balance the exponent of X gives

3y Si(=m, n;c) <. (mn)i™ + (mn)"N"3TE X1 < (mn)iteN"3tEX s,
X<e<2X ¢

¢=0 (mod 4N)

(3.6.12)

Since the total number of dyadic segments is at most < log X, Theorem 3.1.6 follows from
(3.6.12). O]

3.6.4 An auxiliary bound

We will require the following bound in our proof of Theorem 3.1.1.

Proposition 3.6.5. For all ¢ > 0, we have

l
C 2

> Si(=m,mic) | <4w\/—)

SN<e<X
¢=0 (mod 4N)

<. mitEnitE exp (WQ” ]Zm> 4 (mn) NSt Xt et

In particular, letting 0 < ¢ < 1/3 and X — oo gives

y  Smnie), <4W )<<E mi+en e exp (”V ) it (3.6.13)

c 2 2N
c>4N
¢=0 (mod 4N)

Proof. We may assume that £ = 1/2 since the same argument holds for & = 3/2 by the duality

Sk(_mv n; C) = S2—k(m7 - C)‘

Recall that
,/— sinh(z) < 4 / eXp > 0. (3.6.14)
Tz
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Then by (3.4.4) and (3.6.14) we get

Z Sk(—m,n;c)l

1
C 2

2N
8N <c<4my/mn 8N <c<4my/mn
¢=0 (mod 4N) ¢=0 (mod 4N)

1 1
L. min 1e
P ( ON

)

3. 1
<. miTenitEexp (

On the other hand, we have (see [29, Eq. 10.25.2])

2 — 1
I <4\ /= < Ii(1 0<zxl1
3(2) < \/;; TR e S Ve :
and

L(1
() < 1(1)

I
— 2\/; I

0<z<1.

=~

Then by Abel summation, Theorem 3.1.6, (3.4.4), (3.6.14), (3.6.15) and (3.6.16) we get

> Si(—m, n:c) L (MW)

c C
4dm/mn<c<X
¢=0 (mod 4N)
-1, <47T\X/mn) Z Sk(=m,n;c) 1.%(1) Z Sp(—=m,n;c)

c<X ¢ c<4m/mn ¢
c¢=0 (mod 4N) ¢=0 (mod 4N)
X Sk(—=m,n;c) dr/mn\ 1’
_ Z = L dt
dmy/mn c<t ¢ ’ t
¢=0 (mod 4N)

1 1 1 1 1 471'\/77% ) L
< (mn)iX72 x (mn)iTTNTETEXETE +/ mzt 2 tedt
0

) dAr/min
t5te [47n/mnl’l ( i mn) t—Q] dt

t

X

+ (mn)iﬁ-aN—é—i—a/
4m/mn
X

<<€ (mn)%-&-eN—%—i-eX—%—i-s 4 m%-&-sni-i—a + (mn);-&-sN—é-i-e/ t—%—l—adt
4m\/mn
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W_vmn> / ot
0

(4”@) <. min~1exp (WW> >, @

(3.6.15)

(3.6.16)



1 1 1 3 1
<, (mn)5+6N—§+eX—§+s 4 m1+€n1+€.

It follows from these two bounds that

C 2

> S(=m,mic) (47r\/%)

8N<c<X
¢=0 (mod 4N)

™

3 1 1 _1 _1 3 1
<<€ m4+€n4+€ exp ( ) + (mn)2+€N 3+€X 3+5 +m4+5n4+6'

mn
2N

3.7 Approximation by the Salié sum

Let p be a prime number. Then by Propositions 3.4.1 the Fourier coefficient a,, x,(n, s) of

P, kp(z, s) is given by

n) > Se(m.nic), (4w\/m> |

C C
c>0
¢=0 (mod 4p)

On the other hand, if p > 3, then by [21, Lemma 2] and a short calculation, we have
Si(—=m, n;4p) = Kr(m,n,p)T(—m,n;p), (3.7.1)

where

exp ((";m) m') + i%* exp <@m> , ifp=1(mod4),
Kk(manap) =

exp <@m> + %2 exp <@m> , if p = 3 (mod 4).

In particular, we have

Ki(m,n,p) = +1 +1. (3.7.2)
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Now, we define the modified Fourier coefficients

am,k,p(”a S)

N(m,k,p,n)

QU op(M, 8) 1=

where

N(m,k,p,n) = 2_1/2i_km1:12kn2k4_35p (E) Ki(m,n,p)exp (W mn) .
p p

Then by (3.7.1) we get the decomposition

A(m, k,s,p,n) + B(m,k,s,p,n), (3.7.3)
> (3) v

am,k,p(na 8) =

where

p

p
Bl ks, ) = 72 )y () o)
p
% oxp (_m/mn) Z Si(—m,n;c) Lo (47r\/mn) ‘
p c>4p ¢ ¢
¢=0 (mod 4p)

We will need the following estimates.

Proposition 3.7.1. Let s = 3/4 or Re(s) > 3/4 and

[1+ 2Re(2s — 1)]® 6561
a > max {8 + log ( ST~ , 8+ log gy, .

(1) There is a function C'(m, k, s, p, n) such that if n > p®, then

A(m,k,s,p,n) =1+ C(m,k,s,p,n)
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where

a—2
|C(m, k,s,p,n)| < Cmksp = Cmk,sp1 + €Xp <_27T\/EPT> {1 + Cm,k,s,pvl} )

(2) If n > p™ and Re(s) > 3/4 , then

T/ a—2
|B(m7k787p7 TL)| S Bm,k,s,l €exp <_ 9 p 2 )

/M ae
+ Bigs2(1+ Crgsp)p " exp (— 1 p22>

where
ol Re(25-1), _1{Re(2s—1), B4Rt o (1 — N L
ijkfs’l _2 e T € m4 2 C 2 +Re<28 1) Z 4Z|F<2S +€)|£|7
=0

3,1 5
Bikse (=223 7min’.

(3) Ifn>p*, s=3/4(k=1/20r k = 3/2) then

B(m, k,s,p,n) < miexp (—7T 4mpa22>

where the implied constant is independent of m, p and n.

Proof. (1) Consider the following asymptotic formula for the /-Bessel function valid for z > 0

and v > 1/2 (see [27, p. 269] or [29, Eq. 10.40.12])

L(z) = e\j‘%’? 1+ Ey(2)] — ieXp<?/Z7_Zm) 1+ Ey(2)], (3.7.4)
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where

) . (3.7.5)

Then we can write

A(m, k, s,p,n) = 723 (mn)i Iy _y, (W : mn) P77 exp (—W mn) =14+C(m,k,s,p,n),
p p

where

C(m7 k787p7 n) = E2s—1 (ﬂ- pmn)

—iexp (—27“;% — (25— 1)7m'> [1 + By (7T pm")l .

By (3.7.5), if n > p“ then

s () o (242 o (4]

< Cm,k,s,p (376)
where
a—2
Cm,k,ap = Um,k,s,p,1 + exp <_27T\/EPT> {1 + Om7k787p71} )
4(2s —1)2 —1)(4(25 — 1)2 = 9)| 2-a 25 —1)2 =1 ..
S Co R SR (CEDE E)
T/m m/m

(2) Observe that (see [29, Eq. 10.25.2])

1= () e (1)

c=0
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If 0 < z < 1, then we have

o0

1
Z4C|F(v+ 1+ ¢)le! (377

c=0

Re(v)

LGI<(5)

Now, consider the decomposition

B(m,k,s,p,n)

= Q%W(mn)ieljl (ﬁ) Ki(m,n,p) exp (—
p

wm)

p

Sk(— ; 4
« Z w(—m,n; 0)123_1 < m/mn)
C C
c>4p
¢=0 (mod 4p)

1

= Q%W(mn)isgl (ﬁ) Ki(m,n,p) texp (—
p

m/mn) f: Sk (—m,n;4cp) L <7r mn)
p S

1

= Q’EW(mn)i&‘;l (E) Ky(m,n,p) " exp (—W mn) {R1 + Ra},
D p

where

R = Z Sk(—m, n;4cp) L (m/mn) |

cp

mn

c>T

By the Weil-type bound (3.4.4)

(NI
[NIE

|Sk(—m,n;4ep)| < 7(4dep)(—m,n, 4ep)2 (4ep) (3.7.8)
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and (3.7.7), we have

IR |Sk(=m, n;dep)| (my/mn Re(2s_1)§: '
. v 2P = 440(2s + 0)]0!
>0 2

1 Re(25—1) 1 (40}9)
< 4dm?2 (2mv/m .
> ( m ) Z 4€|I‘(25 + g)wl Z (4Cp) 1+Re(2s—1)

T p

Moreover, we have

2
T/mn
>V TR
>P

7(4cp) ]
Z (4cp)? 1+Re(25—1) Z 1. 25 T = (5 + Re(2s — 1)) )

Hence

(e}

. 1 1
< 4mz (2my/mn)R D2 [ 2 £ Re(2s — 1 . 7.
|Ry| < 4m? (2my/mn) ¢ <2+ e(2s )>Z4f|r(23+£)|£! (3.7.9)

Similarly, by (3.7.2), (3.7.4), (3.7.6), (3.7.8) and the bound

7(0) < V3¢,

we get

| = |

"~ |Sk(—m, n;4e cp T/ mn
< Y 1M DTy (2
—2 cp V2m(mn)i cp

) (1 —+ Cm,k,s,p)

Ry

1
< 2m2 (1 + iji,s,p) exp (W\/mn> i
V2m(mn)4 2p s

- omz (1 + Om,;j,s,p) exp (m/mn) 4 Bp (W_\/m”) , (3.7.10)
V21 (mn)1 2p 3 p

7(4cp)
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Combining (3.7.9) and (3.7.10) now gives

|B(m, k’, s, p, TL)| < 21+Re(25—1)W1+Re(25—1)m%+Re(2;—1)CQ (% + RC(2S . 1))

w pitEe= exp (_W\/m)
p
mn
+ 2%3_%7r2m%(1 + Cm,k,svp)p_ln% P <_7T 2 > |
p

Furthermore, since

o> max{8+log ([1 + 2Re(2s — 1)]8) 1o (6561 )}

25673 mA m8ma
6561p° (1 + 2Re(2s —1))%p®
mma’ 2568 m4

= ano‘ZmaX{

it follows that

es(25—1) vmn
pit G exp (—7T )
b
3 ( W\/mn) <

n4 exp

Hence

T/M a—2 _ T/M a—2
|B(m7 k757p> TL)| < Bm,k,s,l exXp (_ \g_p 2 ) + Bm,k,s,Z(l + Cm,k,s,P)p ' exp (_ 4 p 2 )

where
_ ol4Re(2s-1)_1+Re(2s—1), S4Re=n) o (1 _ N !
Bm,k,s,l — 2 T m#4 2 C 2 + Re(25 1) Z 4€|F(2S + £)|£'7
=0

3,1 5
Bpgse =223 7min?,
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(3) By the same argument and taking € = 1/4 in (3.6.13), we have

B(m, k,3/4,p,n) < mains exp (_ﬂ 2mn> n mind exp (_7T mn)
P p
7n/mn>

2p

< mini exp (—

Moreover, since

6561

6561p°
a28—|—log<—4> = n>p*> P

m8m m8mad

it follows that

Hence

B(m7 k73/4ap7 n) < m% exp (—ﬂ- mpa22) .

]

Now, recall that there is a unique real number 0_,, ,(n) € [0, 7] called the Sali¢ angle such that

the normalized Salié sum is given by

cos(0_mp(n)) = —T(—m, n:p)

2(%)517\/]_9 ‘
We will use Proposition 3.7.1 to deduce the following effective asymptotic formula.

Theorem 3.7.2. Let s = 3/4 or Re(s) > 3/4 and

1+ 2Re(2s — 1)]8 1
aZmaX{?),S—i-log([ + 2Re(2s — 1) ),8+10g<£64>}’

25678 m4 m8m
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and p be a prime number satisfying

1 2
pZmax{S,’(?s—lf—Z ,(a—Q)M}.

Then if n > p®, we have

amyl“%l?(n? S) = COS(Q—m,p(n)) + E(m7 ka S, D, n)a

where
[E(m, k,s,p,n)| < C(m,k,s)p ="
with
01/2,3/2mg, if s =3/4,
C(m,k,s) =
Bm,k,s,l + Bm,k,s,2 + (]- + Bm,k,S,Q) <1 + 4‘(4(2871)2;1\}%(2871)279)‘> ) otherwise,

(3.7.11)

and the constant C\ 335 is independent of m, p and n.

Proof. We first deal with the case that Re(s) > 3/4. By (3.7.3) and Proposition 3.7.1 we have

am,km(n, S) = COS(Q—m,p(n)) + E(m7 ka S, D, n)a

where the error term

E(m,k,s,p,n) = cos(0_p,,(n))C(m,k,s,p,n)+ B(m,k,s,p,n)
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satisfies the bound

|[E(m, k,s,p,n)| < |C(m,k,s,p,n)|+|B(m,k,s,p,n)|

m a—
S Cm,k:,s,p + Bm,k,s,l exXp <_7T\g_p22)

™M a-
+ B s 2(1+ Crogesp)p” ' exp (— \i_p22> .
We have
1|+ (25 — 1)2 — L[\ =2
>1(2s—1)2 == — 4
P ‘( N ) 4 P= ( m/mlog2 )
2s —1)2 -1 ,_,
=  exp (|( s—U) 3 22) <2
m™/m
Hence
21(4(2s — 1)2 = 1)(4(2s — 1)> =9 —a a
g < BV U0y )]
+ exp (—zw\/ﬁp“T‘Q> . (3.7.12)

Similarly, we have

2 200 — 4 =
p> maX{B, (a—2)a*2} = p > max\ 3,
T/m

—  exp (—W\/ap”‘a?) < pF. (3.7.13)

It follows that
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Hence

TA/ M a—2 _ T/ TN a—2
\/_P 2 ) + Bigs2(l+ Crgsp)p ' exp (— \i_p 22)

Cm7k7s7p + Bm7k7s71 eXp (_

2-a ] 2=a
S Cm,k,s,p + Bm,k,lp 2+ Bm,k,s,Q(l + Cm,k,s,p>p lp 2

2—a 2—a
S Bm,k,s,lp 2 +Bm,k,s,2p 2

(4(25 — 1)2 = 1)(4(2s = 1)* = 9)|\ 2a
/i )p |

4
+ (1 + Bm,k,s,2) (1 + ‘

Next, if s = 3/4 and k = 1/2 or 3/2, then by combining Proposition 3.7.1, (3.7.12) and

(3.7.13), we directly get

5 2—«a

E(m, k,5,p,n) < mip™s* < Cm, k,s)p"%".

3.8 Proof of Theorem 3.1.1

Let s > 3/4 and

(45 — 1)8 6561
a2max{3,8+10g (W , 8+ log T8mA g

and p be a prime number satisfying

a—2 2

2
1
p2max{8,‘(23_1)2_1 ,(a_Q)a—Z}'

For n > p“, we define the normalized Fourier coefficients

am,k,p<n7 S)
N(m,k,s,p,a,n)

)\m,k,s,p(n) =
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where
N(m,k,s,p,a,n) := (1+C(m,k, ,9)102_7(1)./\/'(7117 k,p,n).
Then by Theorem 3.7.2 we have
[Ampsp(n)] <1,

so that \,,, s ,(n) € [—1,1].
Let I, C )’ be an interval such that each n € I, satisfies (_TT”) = 1, and choose a complete

set of residue classes

Ly = {lnpals- - [, ]}
such that the class representatives n,,; satisfy the bound n,; > p® for ¢ = 1,...,|I,|. This choice
determines a set

Sat, = {Np1s N1 }-

Define the set

XO‘JP = {Am7k7s7p(n) tne Sa,lp}'

We will deduce Theorem 3.1.1 from the following effective bound for the star discrepancy

*
Xa,Ip .

Proposition 3.8.1. Assume that |/,,| > ,/p. Then we have

LN
D% < (147° 4 427°C(m, k, 5)) log? ( > <—‘ b ) .
ch,fp ( ( )) g \/]_j \/]_9
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Proof. By Proposition 3.2.1, for any d € Z* we have the Erdos-Turdn type inequality

Dy, < 67 4 70 Z ’—1| Z Ty (Omsn ()]

Now, by the triangle inequality we have

D;( S Sl +527

a,lp

where

We first estimate S;. By Proposition 3.3.1 and (3.3.2), we have

1
S) < 147° log? <%> ('I—pl) = 147° log” (4¢*B(p)) B(p)~".

VP ) \VP

We next estimate Ss.

Lemma 3.8.2. We have

1770 < 72
Proof. For 6 € [0, 7], we have
21, —5 cos(rf)| = [—rsin(r6)|
= |—TSin .
d@ (cos(6 cos T 7 sin(r
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On the other hand, we have

‘jg (Cos(@))‘ = |7 (cos(0))| x | — sin(B)|.

Hence, by combining (3.8.1) and (3.8.2), it follows that

|77 (cos(0))] =

rsin(r6) ‘ B

sin(6)

By the mean value theorem, Lemma 3.8.2, Theorem 3.7.2 and (3.3.2) we get

= 77T5Z
< 77T5Z

Z mksp )) _TT(COS(Q—m,p(n))”

nES Ip

Z 1T oo [ Amk.sp(1) = cOS(0-m p(n))]

nESa Jp
< 77r52 T 2 Pmiea(n) = cos(m, ()
p neSaI
T ! c08(0_mp(n)) + E(m, k,s,p,n)
= 2" s 1))| 1| nesz 14+ C(m, k,s)p%Ta
< TR+ B2+ 5)) x 20(m. k. 5)p*T
< 427°C(m, k s)p B ﬁ( )2

By combining our bounds for S; and S5, we have

Dy, < 147" log” (4c*8(p)) B(p) ™" +427°C (m, k, s)p 2" B(p)”.

Moreover, by our assumption on o we have o > 8, hence

Z cos(nf)(cos(0)) 1| < r?.

— 080 p(n))

(3.8.2)



It follows that

D}Mp < 147° log? (4e®B(p)) B(p) " + 421°C(m, k, s)B(p) ™"

< (147° +421°C(m, k, 5)) B(p) " log*(4¢*5(p)).
This completes the proof. [

Proof of Theorem 3.1.1. Again, if f € BV ([—1, 1]), then by the same argument as in Lemma

2.4.1 with the Sato-Tate measure replaced with jia,., we have the Koksma-Hlwaka type inequality

1 ! .
= Y fOumksp(m) = [ f(O)dpare(t)| < Var(f)D, , .
’[P’ ne€Sy 1 —1 P
Then by combining this bound with Proposition 3.8.1, we complete the proof. [
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4. SUMMARY

The main theme of this work is to prove that the normalized Fourier coefficients of weak Maass
forms of both integral and half-integral weights are quantitatively equidistributed with respect to
the Sato-Tate measure and the pushforward of the Haar measure on the unitary group of degree
one, respectively. Therefore, this work can be viewed as an analogue of the equidistribution results
for holomorphic cusp forms. In fact, we prove that these equidistribution results also hold in short
intervals.

The crucial insight of our approach is that if n is sufficiently large compared to the level p, then
we can approximate the normalized Fourier coefficients A, 1 s ,(n) of the weak Maass forms by
normalized Kloosterman sums of modulus p. By doing so, we transfer (in essence) to a study of
the distribution of normalized Kloosterman sums. A fundamental theorem of Katz [24] asserts that
these Kloosterman sums become equidistributed with respect to the Sato-Tate measure as p — o0;
this is the so-called “vertical” equidistribution of Kloosterman sums. Rather than appealing directly
to Katz’s work, we instead use an elegant bound of Fouvry, Kowalski, Michel, Raju, Rivat and
Soundararajan [14] for periodic functions on short intervals in Z which goes beyond the Polya-
Vinogradov range. This bound is quite versatile for proving equidistribution in short intervals
(see e.g. [14, Section 1.3]). For example, if the test function arising in the Weyl criterion for
the equidistribution problem is p-periodic and can be realized as the Frobenius trace function of a
suitable /-adic Fourier sheaf, then equidistribution boils down to giving a bound which is uniform
in p for the sup-norm of the Fourier transform of the trace function. Further, if this bound can
be made effective (which can be difficult to do in practice and is one feature of our work), then
combined with a suitable Erdos-Turdn type inequality, one can prove quantitative equidistribution
as in Theorem 2.1.1.

Finally, the proof of the half-integral weight case involves two fundamental parts which are
of independent interest (see Chapter 3). First, we need the quantitative “vertical” equidistribution

of Salié sums which is analogous to Katz’s vertical equidistribution for Kloosterman sums [24].
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Second, we need a power-saving bound for sums of half-integral weight Kloosterman sums which
is uniform in all parameters. As a crucial step in the proof of Theorem 3.1.3, we must approximate
the normalized Fourier coefficients \,, s, s(n) by normalized Salié sums of modulus p. These
coefficients can be expressed as infinite sums of half-integral weight (opposite sign) Kloosterman
sums with 6-multiplier, which can then be related to infinite sums of Salié sums by a calculation
of Iwaniec [21]. We require a power saving bound for these sums of Kloosterman sums which is
uniform in all parameters. If the weight £ = 1/2 or k = 3/2, these sums are only conditionally
convergent. Hence, getting the necessary cancellation and uniformity in this case is a difficult

problem which requires advanced methods from the spectral theory of automorphic forms.
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APPENDIX A

INTEGRAL TRANSFORMS

A.1 Calculating integral transforms

In this Appendix we calculate the integral transforms defined by (2.2.3).

Lemma A.1.1. Let o, 5 i (c, y) be defined by (2.2.3). Then we have

(

k;l
e ) e (B) Wt 2,

22_k7r1+57%i_kmsfgylfsfgck_%l"@s)
(67 (C ) = _ _ } n= 07
n,s,k\C, Y (2s—1)I'(s+k/2)'(s—k/2)

k=1
ori et () 7 s () Woalamm), <o

\

Proof. By a direct calculation we have

7& 4Ttmy 9 o\ k mt Nk
nsi(c,y) = F(4rmy) 2/M o1 <m>(t +y)2e<m—nt) (t +iy) "dt.

Using [29, Eq. 13.14.2] we get

4tmy —2mmy 4my B k 4my
M — | = M —,28, ———
et ()~ () (sasm) 2 (0 o s

where M (a, b, z) is the Kummer Confluent Hypergeometric function (see [29, Section 13.2]). Then

the change of variables t = yu, A = 1/c%y, B = —ny gives

O‘nys,k@: Y)

T2s) = i h P (—drm) "2y L, (A.1.1)
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where

[NIES

L ::/G 4mmA 62ﬂi(%+3u> 1—Z.U du
R 1+ u? 1+u

and

e 2 M (s + £, 2s, 2)

G(z) :=
(=) I'(2s)
Using [18, Lemma 5.5, p. 357] we get
(
Tm e (s — k)2, 25, 4mny) [ T (M) >l
L = 27’I’S+1 ﬂ s o
") G2 GHE2T (kD) (c2y> ) n =0,
R (s + k2,2, —dmny), [ T (f=2m), <o,

where U (a, b, z) is the Tricomi Confluent Hypergeometric function (see [29, Section 13.2]). More-

over, by [29, Eq. 13.14.5] we have

U(s — k/2,2s,4mny) = 62”"9(47Tny)_5Wg7s_ (4mny),

1
2

U(s+k/2,2s,—4mny) = 6_2””3’(—47my)_5W_%75_% (—4mny).

Finally, we substitute these identities into (A.1.1) and simplify to complete the evaluation. U
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APPENDIX B

CONSTRUCTING HARMONIC MAASS FORMS

B.1 Constructing harmonic Maass Forms of integral weight

In this Appendix we briefly explain how to verify the decompositions (2.1.5) and (2.1.6) as-
serted in the introduction.

We first assume that £ < 0. Each f € H, ,’f (N) has a Fourier expansion at co of the form

Moo [e'e) [e%s)
f2)=> af(-=m)g™+Y af(n)g"+ > a;(—n)T(1 -k, 4mny)g .
m=1 n=0 n=1

Define the function

Moo
P(z) = af(=m)Puin(2).
m=1
Then by (2.1.3) we have
Mg n o > n " = I'(1 -k, 4mny)
P() = D af (=m)g™ + 3 b + 3 ap(-m) =g
m=1 n=0 n=1
where
Moo
ap(n) = Z a}r(—m)am,k,N(n, 1—£k/2),
T]\n/[:l
ap(—n) =Y af(=m)(ampn(=n,1 = k/2) = Gp(n))
m=1

The function P(z) has the same principal part as f(z) at co. Moreover, since k& < 0 the
growth condition (5) implies that the function f(7,(z)) is bounded as y — oc. It follows that

f(z) — P(z) is a bounded harmonic function on H and thus constant. In particular, we have
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f(z) = P(2) = af(0) — a}(0), or equivalently
f(2) = P(2) +1- (a7 (0) — ap(0)). (B.1.1)
Thus

f € Span(do(k), { Prn kN Fmez,)

which verifies (2.1.5). Note that if £ < —1, then by applying the slash operator |, to both sides
(B.1.1) we find that

@} (0) - a}(0) = 0.

in which case f € Span({P,, &~ }mez, )- Also, (B.1.1) implies that ap(—n) = 0 forall n > 1.

If £ > 2, a similar argument can be used to verify (2.1.6). The difference is that although the
analogous function ()(z) will have the same principal part as f € M,f (N) at oo, when k£ > 2
the growth condition (5) no longer implies that the harmonic function f(z) — Q(z) is bounded on
H, and hence f(z) — Q(z) not necessarily constant. In any case, f(z) — Q(z) is a holomorphic

modular form of weight &, which gives (2.1.6).
B.2 Constructing harmonic Maass Forms of half-integral weight

Next, we briefly explain how to verify the decompositions (3.1.5), (3.1.6), and (3.1.7) asserted
in the introduction.

First assume that £ < —1/2. Each f € H ,f (4N) has a Fourier expansion at co given by

f(z) = Z ay(=m)g™™ + Z ay(m)q™ + Z ay (—n)0(1 =k, 4mny)q "
m=1 m=0 n=1
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Define the function

P(z) := i a}r(—m)Pm,hN(z, 1—£k/2).

where
ap(n) = ZOO ay (=m)ampn(n,1—k/2),
ap(—n) = Zoo ay (=m)(ampn(—n,1 = k/2) = 0n(n)).

The function P(z) has the same principal part as f(z) at co. Moreover, since k < —1/2 the
growth condition (5) implies that the function f(7,(z)) is bounded as y — oo. It follows that
f(z) — P(z) is a bounded harmonic function on H and is thus constant. In particular, we have

f(2) = P(2) = a; (0) — ap(0), or equivalently,
f(2) = P(2) +1- (a7 (0) — ap(0)). (B.2.1)
Moreover, since k < —1/2, by applying the slash operator |, to both sides (B.2.1) we find that
af (0) — aj(0) =0,
and thus

f € Span({ Pk N (2) fmez+)
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which verifies (3.1.5).
Now, if & = 1/2 the condition (5) no longer implies that f(z) — P(z) is bounded on H.

However, since f(2) — P(z) € M;/2(4N), then by the Serre-Stark basis theorem [33] we have

f(z) — P(z) € ©(4N).

Hence

f € Span({ P 12,8 (2) }mez+) U O(4N)

which verifies (3.1.6).

Finally, assume that k > 3/2. As before, given f € M;*(4N) we define the function

Moo
Q(z) ==Y af(—=m)Quin(2).
m=1
Then by (3.1.4) we have
Moo o)
Qz) = ay(=m)g™™ + Z b5 (n)q"
m=1 n=0
where
Moo
ba(n) = Z a}_(_m)br—;,k,N(n)‘
m=1

The function ()(z) has the same principal part as f at co. Again, since £ > 3/2 the growth
condition (5) no longer implies that f(z) — (z) is bounded on H. However, since f(z) — Q(z) €

M;.(4N) we have

f € Span({ QN (2) bimez+) U My (4N)
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which verifies (3.1.7).
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