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ABSTRACT

With the advent of technologies related to the miniaturization of devices, the

ability to predict the fluid motion in and around these devices assumes importance

for their design and optimization. Because of the small dimensions and very low

speeds that are involved, the flows within these components are generally laminar.

Such laminar flows are a consequence of the limitations imposed by viscous stresses

and the devices associated with them are important for a range of applications in

areas such as pharmaceutics, medicine, heat transfer, biomedical engineering, and

electronics cooling. In every case, the devices associated with these application areas

would generally benefit by augmented transport of a scalar and/or heat to facilitate

the processes which are underway.

Polymer additives, such as polyacrylamide, have unique characteristics in liquids,

including highly non-linear, viscoelastic behavior. The extensibility of the polymer

and the resulting polymer deformation leads to a sharp growth in the local elastic

stress. This gives rise to an instability that develops into turbulence in a sequence

of events referred to as the elastic turbulence. Such changes also increase the mixing

of scalars and enhance heat transfer in the fluid flow.

The afore-mentioned chaotic flow at vanishingly low Reynolds number called

elastic turbulence is a strongly fluctuating regime of fluid flow. This phenomenon,

observed in viscoelastic polymer solutions is driven by the strong coupling between

the fluid velocity and its elasticity. Current research is an attempt to numerically

capture the phenomenon by developing a generalized 3D module to solve hyperbolic

viscoelastic partial differential equations in ANSYS-FLUENT and thereby provide

some insight into the phenomenon.
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1. INTRODUCTION

In recent years, much attention has been devoted to technological advances re-

lated to miniaturization, with particular attention to technologies at milli-scales and

micro-scales. For example, improvements in manufacturing technology and micro-

fabrication have led to the miniaturization of devices and sensors such as heat ex-

changers, micro-sensors, micro-pumps, biological reactors, selective membranes, and

other devices. The ability to predict the fluid motion in and around these devices

is essential for their design and optimization. As the length scales of these devices

decrease for the liquid flow, effects such as near-wall slip flow, altered surface rough-

ness effects, non-Newtonian fluid behavior, and variations of fluid properties become

significant. Because of the small dimensions and very low speeds that are involved,

the flows within these components are generally laminar. Corresponding Reynolds

numbers are very low, even significantly less than 1, along with the concomitant

thermal transport.

Such small length scale flows are dominated by viscous stresses, and this impedes

molecular transport and consequently, mixing in the fluid. Such flows are ubiquitous

in a wide range of applications in areas such as pharmaceutics, medicine, heat trans-

fer, biomedical engineering, and electronics cooling. In every case, the devices associ-

ated with these application areas would generally benefit by augmented transport of

a scalar and/or heat to facilitate the processes which are underway. In many cases,

enhanced mixing of items advected within different fluid components or streams is

required. Such mixing is important for a variety of situations within the mentioned

application areas, including the use of liquids to cool electronic components, mix-

ing of different chemical components to manufacture pharmaceuticals, lab-on-a-chip
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devices which involve the interaction and mixing of different fluid streams, and of

course, miniature heat exchangers for use in devices ranging from automobiles to

appliances, to components within space systems, including satellites.

Non-Newtonian fluids like polymer solutions and colloidal suspensions are preva-

lent in a wide range of engineering and industrial applications. Typical examples

include applications in the chemical industry, food industry, and biomedical indus-

try, to name a few. In a broad sense, non-Newtonian behavior can be characterized

by the non-linear relation between the stress endured by a macroscopic fluid element

and the shear rate. The atypical characteristics of viscoelastic fluids give rise to phe-

nomena that can significantly affect the dynamics of momentum, heat transport, and

mixing of other scalars. Comprehending these phenomena could offer new avenues

in thermal and scalar transport.

1.1 Present investigation and overall objectives

The use of polymer additives, such as polyacrylamide, to enhance mixing, is the

prime motivation of the present study. This is because of the unique characteristics

of polymers in liquids, which are generally associated with highly non-linear, non-

Newtonian behavior. With λ as the characteristic relaxation time of the polymer

flow, the Weissenberg number is given by λV
L

, where V and L are characteristic

velocity and length scale, respectively. It is important to note that such polymer

flows are also characterized by other multiple time scales, including ones related to

the elastic deformation, in addition to λ. When the polymers are stretched by the

strain induced by the velocity gradients in the flow, the extensibility of the polymer

and resulting polymer deformation leads to a sharp growth in the local elastic stress.

This causes a chain of events referred to as the Weissenberg instability, which occurs

when the Weissenberg number is greater than a critical value. The focus of the
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present study is to capture such changes numerically.

Past investigations have reported turbulence that results from elastic polymer

distortion using flow fluctuation measurements, measurements of Reynolds stress

tensor components, and measurements of spectra of unsteady velocity motions. The

fluid dynamical phenomenon is sometimes referred to as elastic turbulence. This was

initially discovered by Groisman and Steinberg [21].

Their initial experiments were performed in a swirling flow, also known as the Von

Karman swirling flow, in which a rotating disk imparts shear to a fluid composed of a

high molecular weight polymer (polyacrylamide with a molecular weight of 18×106)

dissolved in a water-sugar solvent to form a dilute (80ppm) polymer solution. They

found that when the strain rate imparted to the fluid exceeded a certain limit, the

torque needed to maintain a given rotation rate increased to nearly 20 times that of

laminar Newtonian flow with the same shear rate. In a more familiar Newtonian,

turbulent pipe flow, a similar increase in drag, would require a Reynolds number of

105. The increase in torque was found to be accompanied by a chaotic velocity field,

even though the Reynolds number V L
ν

, where V and L are characteristic velocities

and dimensions of the flow and ν is the kinematic viscosity of the solution, remained

less than one. A chaotic flow was observed at Reynolds numbers as low as 10−3.

It was found that the Weissenberg number, defined as the ratio of the polymer

relaxation time, λ, to a characteristic flow time scale, L/V , or as the product of

the relaxation time to a characteristic flow strain rate, γ̇, Wi = λV
L

= λγ̇, was

the key non-dimensional number in determining the nature of the flow. Chaotic

fluid motions were observed only when Wi exceeded one, and in these particular

experiments, chaos was first observed for Wi = 3.5. Fluid dynamical instabilities in

non-Newtonian fluids exhibiting elasticity have been reported earlier [30] [43], but

not the development of chaotic flows.
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The initial discovery of elastic turbulence [21] was followed by a number of other

experimental investigations in which elastic turbulence was found not only in swirling

flow [11] [12], but also in Taylor-Coutte flow [23] and Dean flow [22] [23] [10] [28].

Most commonly reported properties of elastic turbulence are as follows:

• It has been found experimentally only in flows with curved streamlines, al-

though some recent numerical studies [4] [3] have hinted that elastic turbulence

may appear in flows with rectilinear mean streamlines.

• A wide range of length scales are excited. The flows appear spatially smooth

but temporally chaotic.

• Significant increases in mass and momentum transport are observed, compa-

rable to those found in inertial turbulence.

Note that the term ‘inertial turbulence’ is used here to refer to the turbulent flows

in Newtonian fluids such as in pipe, channel, and boundary layer flows at higher

Reynolds number [45], where the sources of nonlinearity are inertial forces, as distin-

guished from elastic turbulence, where the dominant source of nonlinearity is derived

from elastic stresses.

In all these elastic turbulent flows, the energy spectrum of the velocity fluctua-

tions behaves typically as E(k) ≈ k−n, where E is the spectral energy density of the

velocity fluctuations, k is the wavenumber, and n is typically found to be about 3.5.

This very steep drop off in the energy spectrum, when compared to the much smaller

n = 5/3 found in classical inertial turbulence, leads one to think of a possible close

analogy between elastic turbulence and inertial turbulence. Despite some differences

between elastic turbulence and standard high-Reynolds-number-inertial turbulence,

elastic turbulence gives rise to significant increases in transport well above the lam-

inar state and for this reason remains intriguing as a possible means of increasing
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the flux of mass, momentum, and heat in flow devices that are not large enough to

develop ordinary inertial turbulence.

With that note in mind, the overall objectives of the present investigation are as

follows:

• Develop numerical and analytic models to describe and represent the related

physical phenomena. These goals represent only a first step in understanding

this complex phenomenon.

• Develop a reliable viscoelastic solver for the purpose of capturing the physical

phenomena numerically.

• Enhance the fundamental understanding of the effects of polymers in liquids

and the physical processes associated with elastic turbulence.

The success in achieving these objectives may lead not only to a fundamental physical

understanding of the processes involved but also to the development of a means to

control elastic turbulence in liquids.

1.2 Mechanism of elastic turbulence

The chaotic state referred to as elastic turbulence arises at nearly vanishing Re

but for Wi greater than a critical value, and it is therefore tempting to compare the

properties and mechanism of formation of elastic turbulence with those of the more

familiar inertial turbulence, which occurs in Newtonian flows (Wi = 0) at high Re.

Superficially, elastic turbulence appears to have some similar characteristics with

inertial turbulence, such as (1) a full Fourier-wave number spectra for the velocity

field, indicating the existence of a broad range of spatial scales, (2) chaotic in both

space and time, and (3) large increases in mass, and momentum transport. Despite
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these similarities, there are fundamental differences involved in the basic physical

processes leading to both the forms of turbulence.

In Newtonian fluids, the occurrence of turbulence is attributed to the dominance

of inertial forces over viscous forces, where inertial forces are represented by the non-

linear advective term in the momentum equation given by ui∂iuj, where ui is the fluid

velocity. This is embodied in the requirement that the Reynolds number be large.

On the other hand, elastic turbulence occurs at low Reynolds numbers, indicating

that inertial nonlinearities are entirely negligible. Instead, elastic turbulence is due

to the growth and dominance of elastic stresses over viscous dissipation. Moreover,

elastic stresses are nonlinearly dependent on the rate of deformation of the flow as

represented in standard constitutive models (e.g., FENE-P, Oldroyd, Geiskus, etc.)

for dilute polymer solutions. As a result of the inertial nonlinearity in standard

Newtonian turbulence, increases in flow resistance are due to the existence of the so-

called Reynolds stresses τij = ρu′iu
′
j where ρ is the density and u′i are the fluctuating

components of fluid velocity. In elastic turbulence, however, these Reynolds stresses

are typically orders of magnitude lower than elastic stresses, τ pij, which is a function

of the conformation tensor, represented by < rirj >, where ri is the component of

the end-to-end vector associated with a given polymer molecule, and averaged over

all possible molecular configurations. This significant increase in the elastic stress,

which may lead to elastic turbulence, is responsible for the increased transport in

these flows. In effect, the high Reynolds stresses associated with inertial turbulence

are replaced in elastic turbulence by polymer stresses. Elastic turbulence should then

lead not only to increased momentum transport but also to increases in heat and

mass transport.

Polymer additive effects are important, both from microscopic and macroscopic

perspectives. The subsequent abrupt increase in non-linear elastic polymer stresses
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is attributed to the instability caused by the elongation of the polymer molecules.

These then give rise to local fluid distortion, local increases in mixing, and the

development of secondary and oscillatory vortex flows, all of which lead to increased

transport at extremely low Reynolds number. According to Groisman and Steinberg

[23], such fluctuations are excited over broad ranges of frequency and wavenumbers,

as indicated by the experimentally determined spectra of the velocity fluctuations

in these flows. The transport then generally exhibits characteristics of traditional

inertial turbulence, including three-dimensionality, vertical motions, unsteadiness,

random mixing, and organized flow structures [30] [43]. The changes induced by the

polymers thus have an essential relationship to transport and turbulence, especially

to increased transport of passive scalars, and increased transport of thermal energy.

The shear rate and viscosity changes which result from the polymer distortion are

expected to lead also to important changes to the effective eddy diffusivity for heat

and momentum. The primary motivation of the research is to be able to capture

such changes.

As mentioned, a key component in characterizing the development of elastic tur-

bulence is the Weissenberg number Wi given by λV
L

, where V
L

can be thought of

as the characteristic rate of deformation. When the Weissenberg number is greater

than a critical value, an instability appears and involves a sharp growth in local elas-

tic stress as a result of the extensibility of the polymers and the resulting polymer

deformation. This occurs as the relaxation time scale becomes of the order of the

rate of deformation. The sharp growth in elastic stress is accompanied by emergence

of velocity fluctuations in the flow. Overall consequences include increased poly-

mer viscosity, increases in polymer thermal diffusivity, and augmentation of thermal

transport. Here, the characteristic relaxation time λ is related to the flow history,

and is determined as the time interval over which fluid stress decays, starting at the
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point when fluid motion stops. This means that the stress does not become zero

at the moment the fluid stops moving [21], and the relationship between the stress

τ p and the local rate of flow deformation is nonlinear, with significant hysteresis.

Longer characteristic relaxation times generally mean larger stresses that linger on

over longer time intervals.

To summarize, the scenario by which elastic turbulence is generated [11] [12]

[23] [23] [10] and [28], is complex and needs to be considered from both microscopic

and macroscopic viewpoints. From a microscopic perspective, in the absence of flow

gradients, polymer molecules in solution are thought to be coiled in spheres with

radii much smaller than the total length of the molecule. In the presence of velocity

gradients, the polymer shapes become more ellipsoidal but are not elongated enough

to have a great macroscopic effect on the flow. However, when a match occurs

between the time scales of the strain field and the polymer realization time, the

polymers can be stretched to nearly their maximal length. This abrupt change in

polymer conformation is referred to as the coil-transition [32] [14], and can be thought

of as the transition point between Newtonian and non-Newtonian behavior. The coil-

stretch transition has important macroscopic effects on the flow, such as inducing a

dramatic growth in elastic stresses that in turn start affecting the flow, causing flow

instabilities, usually termed as the Weissenberg effect [30] [43]. At sufficiently high

Wi, the growth rate of the elastic energy exceeds that of viscous dissipation, leading

to the evolution of a chaotic state called elastic turbulence. This state becomes

saturated or quasi-statistically stationary when elastic forces come into balance with

viscous forces.
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1.3 Other properties

Once elastic turbulence appears, the heat transfer rate is expected to increase,

with a corresponding many-fold increase in the effective thermal diffusivity. This

should be expected since, with the appearance of elastic turbulence, momentum

transport is strongly enhanced, as mixing between fluid layers with differing tem-

peratures and velocities increases. Similarly, elastic instabilities arising due to the

Weissenberg instability should increase mixing between fluid layers of differing tem-

peratures, thereby increasing thermal transport.

Up to now, elastic turbulence has been observed only in geometries with curved,

rather than rectilinear, mean streamlines. To achieve elastic turbulence in flows such

as ordinary channel flow, very high elastic nonlinearities may be required.

1.4 Modeling of non-Newtonian fluids

This section is dedicated to the introduction of models that are used for the

numerical simulation of the flow of dilute viscoelastic fluids. The idea is to focus on

the differential formulation of these equations, as this is well suited for solving flow

problems with inlets and outlets in a Eulerian description. Though integral versions

of such equations also exist, these are better suited for a Lagrangian description

and transient problems with free interfaces. Maxwell is credited with some of the

earliest work in developing a differential constitutive model for a viscoelastic fluid. He

combined the properties of a Newtonian fluid with those of elastic solids in a simple

way. It is also sometimes referred to as the Maxwell “spring - dashpot” model. These

mechanical analogs use a “Hookean” spring and a linear dashpot connected in series

and are used to model the viscoelasticity of the fluid. The entropic uncoiling process

is fluid like in nature and can be modeled by a linear dashpot in which the stress

produces a strain rate. The following are the equations of a Hookean spring and

9



linear dashpot, respectively.

σ = Eε, (1.1)

σ = µε̇. (1.2)

where σ and ε and ε̇ denote stress, strain and strain rate respectively.

In summary, the “Maxwell” solid is a mechanical model in which a Hookean

spring and a linear dashpot are connected in series. The spring can be visualized as

representing the elastic or energetic component of the response, while the dashpot

represents the dissipative component due to viscosity. In a series connection such

as the Maxwell model, the stress on each element is the same and equal to the

imposed stress, while the total strain is the sum of the strain in each element. σ =

σs = σd and ε = εs + εd. The subscripts s and d represent the spring and dashpot,

respectively. In order to arrive at a single equation relation of the stress to the strain,

the strain equation can be differentiated, and the spring and dashpot strain rates

can be rewritten in terms of the stress as follows:

∂ε

∂t
= ∂εs

∂t
+ ∂εs

∂t
= 1
E

∂σ

∂t
+ σ

µ
. (1.3)

It is convenient to introduce the ratio of viscosity to elastic modulus as λ = µ
E

. The

unit of λ is time and it is useful in measuring the time of the material’s viscoelastic

response. It is often referred to as the time constant. Multiplying equation (1.3) by

E and using the definition of λ we have,

E
∂ε

∂t
= ∂σ

∂t
+ σ

λ
. (1.4)

This Maxwell model can be generalized to arbitrary deformations by taking its ten-
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sor equivalent, however, the Eulerian time derivative equation (1.4) is not frame-

invariant. The solution is to adopt a special frame-invariant time derivative denoted

by ∇τ and give by equation (1.5). From this point on, τ and γ̇ are used as the stress

tensor and shear rate tensor, respectively.

∇
τ = Dτ

Dt
− τL−LTτ , (1.5)

τ

λ
+ ∇
τ = µpγ̇. (1.6)

When excluding a solvent contribution (µs = 0), one can arrive at the Upper Con-

vected Maxwell Model (UCM), while the Oldroyd-B model can be obtained other-

wise. L is the velocity gradient of the flow. Oldroyd [37] named his models: Oldroyd

- A and Oldroyd - B. He solved the problem of invariance with respect to the rotation

of the coordinate system by inventing the upper and lower convected derivatives. The

Oldroyd -A model is largely unused today, because agreement with experiment tends

to be superior for the Oldroyd-B model. In contrast to the generalized Newtonian

models, both the Oldroyd - B and UCM model have a constant shear viscosity and

give rise to large normal stresses.

The derivation of the Maxwell and Oldroyd - B models takes a phenomenological

approach with the upper convected derivative introduced as a fix, but it is also possi-

ble to start by considering the micro-structure of a viscoelastic fluid and arrive at the

same result. The idea is the that two point masses connected with a spring can de-

scribe the elastic components in what is called a dumbbell model. The conformation

tensor is the statistical average of the dyadic product between the end-to-end vector

r and itself normalized with the maximum extension l0 of the polymer molecules
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(Refer to Fig. 1.1).

C = 〈r ⊗ r
l20
〉. (1.7)

en
d-
to
-en

d
ve
ct
or
r

Fig. 1.1: Two point masses connected with a spring denoting the end-to-end vector
of the dumbbell

For this approach, it becomes substantially easier to write and understand, when

expressed in terms of the conformation tensor, in particular the FENE-P (Finitely

Extensible Non-Linearly Elastic - Peterlin) model discussed in the following. Another

point is that it makes the model compatible with the log-conformation formulation

that will be detailed later. Finally, the derivation of the constitutive equations from

the starting point relates the relaxation and polymer viscosity to properties of the

micro-structure, namely

λ = ζ

4H and µp = nκBTζ

4H . (1.8)

where ζ is a friction coefficient between the fluid and the dumbbells, H is the spring

constant, n is the dumbbell concentration, T is the temperature and κB is the Boltz-

mann constant. Bird et al. [8] showed that the Oldroyd-B model can rewritten as
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the following equations, if one assumes a Hookean spring force for the dumbbell.

DC

Dt
=
(
∂u

∂x

)T
C +C

(
∂u

∂x

)
︸ ︷︷ ︸

stretching/orientation

− 1
λ

[C − I]︸ ︷︷ ︸
relaxation

(1.9)

τ p = µp
λ

[C − I] (1.10)

The Hookean spring force of the Oldroyd-B and UCM models can give rise to ex-

ponential growth in time for the conformation tensor in the case of an extensional

flow. This is unphysical, because the ratio of extension to equilibrium length quickly

exceeds that of the elastic micro component. This behavior can also prevent conver-

gence of numerical algorithms. The remedy is to introduce a varying spring constant,

such that the relaxation term balances the stretching term, when the dumbbells be-

come very extended. The evolution equation for the conformation tensor for the

FENE-P model is as follows,

DC

Dt
=
(
∂u

∂x

)T
C +C

(
∂u

∂x

)
− 1
λ

[f(R)C − I]. (1.11)

Also the polymeric stress τ P is given by the following equation:

τ p = µp
λ

[f(R)C − I] (1.12)

f(R), called the Peterlin function, is introduced to take into account the non-linear

spring-like behavior of the polymer molecules. f(R) = L2
0−3

L2
0−R2 , where R2 is the trace

of C.
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1.5 Dissertation overview

This dissertation, broadly speaking, targets to explore and understand the com-

plex phenomenon of elastic turbulence numerically. To this cause, the dissertation

is divided into five main parts, each presented as a chapter.

Chapter 2 focuses on developing the FENE-P model within a thermodynamic

framework and establishing an analogy between the conformation tensor, which is a

microscopic definition, and the left Cauchy-Green elastic stretch, which is a macro-

scopic definition.

Chapter 3 shows the work of code verification against exact solutions for the

fully developed viscoelastic problem that has been derived by Cruz et al. [13]. This

exact solution allowed us to directly compare the code for validity. For the sake

of clarity, a detailed description of the analytical solution of the FENE-P model in

a pipe has been developed. Also, the details of how the FENE-P model and its

constitutive equations are incorporated into ANSYS-FLUENT via UDF interface,

have been provided.

Chapter 4 discusses the infamous High Weissenberg number Numerical Problem

(HWNP) and how it inhibits the ability to numerically simulate viscoelastic flows

beyond a low to moderate value of Weissenberg number. This chapter delineates the

log-conformation reformulation introduced by Fattal and Kupferman [17] [18] as a

remedy to the HWNP and its implementation in ANSYS-FLUENT.

Chapter 5 details the original experiment performed by Groisman and Steinberg

[21] and then proceeds to recreate the experiment on ANSYS-FLUENT numeri-

cally and presents the comparison of the results with the original experiment. This

numerical experiment involves swirling flow simulation in a confined cylinder of a

viscoelastic solution modeled using the FENE-P model. The torque required to ro-
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tate the viscoelastic fluid for varying shear rates has been calculated and compared

against an equivalent Newtonian case.

Chapter 6 presents an alternate technique to tackle the problem of the flow of

viscoelastic fluids at low Reynolds numbers, namely, the ‘pseudo-spectral’ method.

Dynamics of a single buoyant plume in a FENE-P fluid have been investigated by per-

forming a series of direct numerical simulations using the ’pseudo-spectral’ method.
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2. THE DERIVATION OF THE FENE-P MODEL WITHIN A CONTEXT OF

A THERMODYNAMIC PERSPECTIVE

2.1 Introduction

Ever since the seminal work of Maxwell [34] for describing the viscoelastic re-

sponse of air, there have been a plethora of models that have been proposed to

describe the response of a variety of viscoelastic fluids spanning the gamut from

materials such as asphalt, numerous polymeric liquids, and biological fluids. Con-

trary to popular belief, Maxwell [34] did not develop his model by appealing to

analogs based on springs and dashpots; rather, he based his work on the viscoelas-

tic body possessing a means for storing energy and a means for dissipating energy.

Using these two ideas, Maxwell developed a rate type viscoelastic model. Maxwell’s

model was meant to describe the one-dimensional response of viscoelastic fluids, and

hence, questions such as whether the model satisfied invariance requirements such

as frame-indifference were not germane. It was Oldroyd [37], using a phenomeno-

logical approach, who developed a systematic framework for generating models that

were properly frame-indifferent and could be used to describe the three-dimensional

response of rate type viscoelastic fluids. Oldroyd [37], however, did not concern him-

self with questions concerning the restrictions imposed by thermodynamics on the

development of such fluid models.

Another stream of studies arrives at models for viscoelastic fluids based on ap-

pealing to ideas that stem from the kinetic theory of gases, interestingly once again

an area that was initiated by Maxwell [34]. Warner Jr [50], appealing to spring-

dashpot-dumbbell analogs developed by Bird and Warner Jr [6], introduced a model

that is referred to as the FENE model. The FENE-P model uses the work of Peterlin
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[7] to provide closure to the FENE model and is a popular model in Non-Newtonian

fluid mechanics. Much has been written concerning the restrictions placed by ther-

modynamics on these models. In this chapter, the approach used by Rajagopal and

Srinivasa [40] shall be adopted. This approach leads to models that bear a striking

similarity to the FENE-P model and show that these models can be obtained from a

totally different perspective, which is closer in spirit to the original work of Maxwell

in terms of the choices made for the energy storage and energy dissipation mech-

anisms. Proper identifications are also made between the conformation tensor and

the Cauchy-Green tensor from the evolving natural configuration.

The main idea behind the development of models by Rajagopal and Srinivasa

[40] is based on appealing to the following two notions, the first that as a body is

subject to a thermodynamic process, the bodies underlying natural configuration

evolves (a notion first propounded by Eckart [16]; see also Rajagopal [38] for a de-

tailed discussion of the notion of natural configuration), and second the manner in

which the natural configuration evolves is such that the entropy production is max-

imized. The response of a viscoelastic body can then be viewed as a one-parameter

family of response from an evolving natural configuration (see Fig. 2.1). Associating

different energy storage and energy dissipation mechanisms (by picking appropriate

Helmholtz potentials and rate of dissipation functions), one can derive different vis-

coelastic fluid models and Rajagopal and Srinivasa [40] showed how models due to

Maxwell, Oldroyd, and Burgers as well as their generalizations could be derived using

such an approach. This approach, however, does not deliver the models that are a

consequence of adopting a kinetic theory approach, such as the FENE-P model that

is popular amongst some rheologists. Later Rajagopal and Srinivasa [39] showed how

models such as the FENE-P and other models that stem from the kinetic theory ap-

proach could be generated by choosing an appropriate Gibbs potential that depends
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on the stress and a rate of the entropy production function.

An advantage of the approach adopted by Rajagopal and Srinivasa in [40] and [39]

is that one can enforce the requirement of incompressibility in the normal fashion,

one cannot do the same within the context of the approach that appeals to the

conformation tensor. As most viscoelastic fluids are incompressible, Rajagopal and

Srinivasa [40] required that the viscoelastic fluid be constrained to undergo only

isochoric motion, and thus both the elastic response from the natural configuration

as well as the evolution of the natural configuration be isochoric. Málek et al. [33]

used a different constraint in order to obtain the models, while they required that the

total response of the fluid be isochoric, namely detFκR = 0 (see Fig 2.1), they did not

enforce the constraint on the individual responses; namely, the elastic response, and

the dissipative response. In order to obtain models, such as Maxwell and Oldroyd, in

the approach used by Rajagopal and Srinivasa [40], the energy storage mechanism has

to be assumed as neo-Hookean. The resulting nonlinear constitutive relation, when

linearized, gives rise to the Maxwell model. On the other hand, the approach adopted

by Málek et al. [33] delivers the Maxwell model without requiring any linearization;

however, the model is incapable of an instantaneous isochoric elastic response as

it is assumed apriori to be not necessarily isochoric. Note that the instantaneous

response is a mathematical idealization, no real response can be instantaneous. The

model that is developed is capable of instantaneous elastic response, however such a

response cannot be isochoric.

In this chapter, the approach used by Málek et al. [33] shall be adopted to show

how models that are exactly the same as the FENE-P model but with the conforma-

tion tensor now being identified with the left Cauchy-Green tensor, can be generated.

In order to obtain the FENE-P constitutive relation, one has to assume that the body

stores energy like the model developed by Gent [20] and dissipates energy like a vis-
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cous fluid. Then, on requiring that the rate of entropy production be maximized

during the process, one can obtain an evolution equation for the left Cauchy-Green

strain from the evolving natural configuration that is exactly the same as that for

the conformation tensor in the FENE-P model.

The organization of the chapter is as follows:

• The necessary kinematic relations are introduced.

• The appropriate choices for the stored energy and the rate of dissipation are

made.

• The maximization procedure is carried out to arrive at the FENE-P model.

2.2 Kinematic relations

This section provides preliminary kinematics required to describe the model. A

detailed discussion of the kinematics of continua can be found in Truesdell and Noll

[46]. Let placer κR denote the reference configuration and κt denote the current

configuration of the fluid of interest, as shown in Fig. 2.1. The motion χκR of

the fluid is a mapping that at a time t assigns to each position in the reference

configuration, a corresponding position in the current configuration, i.e.,

x := χκR(X, t) (2.1)

. The deformation gradient associated with the motion given by equation (2.1) is

defined through

FκR = ∂χκR
∂X

. (2.2)

The left and right Cauchy-Green tensors BκR and CκR are defined through

BκR := FκRF
T
κR
, (2.3)
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FκRX x

Fκp(t)G

χκR(X, t)

κR
κt

κp(t)

Fig. 2.1: Schematic diagram to illustrate the notion of current natural configuration
of the material

CκR := F T
κR
FκR , (2.4)

where the superscript T denotes the transpose operation. Let κp(t) denote the “nat-

ural configuration” corresponding to the current configuration κt. The “natural con-

figuration” is the configuration the body in the current configuration attains when

all the external stimuli are removed. There could be more than one natural con-

figuration corresponding to the current configuration κt and it depends on how the

external stimuli are removed (see Rajagopal [38] for a detailed discussion of the role

of natural configurations in mechanics). The gradient of the mapping from κp(t) to

κt is given by Fκp(t). The corresponding left and right Cauchy-Green elastic stretch

tensors are given by,

Bκp(t) := Fκp(t)F
T
κp(t), (2.5)
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Cκp(t) := F T
κp(t)Fκp(t). (2.6)

The mapping G given in Fig. 2.1 is given by

G = FκR→κp(t) := F−1
κp(t)FκR . (2.7)

The tensor CκR→κp(t) is defined through:

CκR→κp(t) := GTG. (2.8)

It immediately follows that

BκR→κp(t) = FκRC
−1
κR→κp(t)F

T
κR
. (2.9)

The velocity gradient L and the tensor Lκp(t) can be defined through:

L := ˙FκRF−1
κR
, (2.10a)

Lκp(t) := ĠG−1. (2.10b)

The corresponding symmetric parts are given through:

D := 1
2(L+LT ), (2.11a)

Dκp(t) := 1
2(Lκp(t) +LTκp(t)). (2.11b)

It follows from equations (2.9) through (2.11b),

Ḃκp(t) = LBκp(t) +Bκp(t)L
T + FκRĊ−1

κR→κp(t)F
T
κR
. (2.12)
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The ‘Oldroyd’ or ‘upper-covected’ derivative
∇
Bκp(t) is given by,

∇
Bκp(t) = Ḃκp(t) −LBκp(t) −Bκp(t)L

T , (2.13)

∇
Bκp(t) = FκRĊ

−1
κR→κp(t)F

T
κR
. (2.14)

Equations (2.8), (2.10b), (2.11a) imply that

Ċ−1
κR→κp(t) = −2G−1Dκp(t)G

−T , (2.15a)
∇
Bκp(t) = −2Fκp(t)Dκp(t)F

T
κp(t). (2.15b)

2.3 Derivation of FENE-P type models

As mentioned in the introduction, the approach for developing models to describe

viscoelastic behavior involves taking into consideration two constitutive relations, one

for describing the elastic response, namely the stored energy W , and the other for

describing the dissipative response, namely ξ. Here, the elastic energy proposed on

a phenomenological basis by Gent [20] is picked. This model takes into account the

property of limiting chain extensibility in rubber-like materials. It is important to

note that the constitutive model proposed by Gent [20] assumes that the material is

incompressible. An alternate compressible form of the Gent model shall be considered

in the next section. The relation for the stored energy introduced by Gent [20] is as

follows:

W = −µJm2 ln

(
1− I1 − 3

Jm

)
, (2.16)

where I1 = trBκp(t) and Jm is the stretch limit. The assumption for the rate of

dissipation is of the form ξ = ξ̃(D,Dκp(t),Cκp(t)) as given in equation (2.25). Upon
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differentiating equation (2.16) with respect to time we obtain,

Ẇ = µ

2

(
Jm

Jm − (I1 − 3)

)
dI1

dt
. (2.17)

Let f(I1) = Jm
Jm−(I1−3) . Note that this f(I1) is similar to the Peterlin function of the

FENE-P model. Equation (2.17) can be re-written as follows:

Ẇ = µ

2 f(I1)dI1

dt
. (2.18)

The time derivative of the first invariant of Bκp(t) is given by,

dI1

dt
= 1 · Ḃκp(t). (2.19)

It can be shown that the time derivative of Bκp(t) is:

Ḃκp(t) = LBκp(t) +Bκp(t)L
T − 2Fκp(t)Dκp(t)F

T
κp(t). (2.20)

From equation (2.20) one can obtain,

1 · Ḃκp(t) = tr(LBκp(t)) + tr(Bκp(t)L
T )− 2tr(Fκp(t)Dκp(t)F

T
κp(t)),

= LT ·Bκp(t) +Bκp(t) ·LT − 2Cκp(t) ·Dκp(t),

= 2Bκp(t) ·D − 2Cκp(t) ·Dκp(t).

(2.21)

Combining equations (2.18), (2.19) and (2.21) one can arrive at,

Ẇ = µf(I1)(Bκp(t) ·D −Cκp(t) ·Dκp(t)). (2.22)
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Let ξ denote the rate of dissipation associated with the material. In an isothermal

process, the rate of dissipation ξ is given by,

ξ = T ·D − Ẇ , (2.23)

where T · D is referred to as the stress power. Substituting equation (2.22) in

equation (2.23),

ξ = T ·D − µf(I1)(Bκp(t) ·D −Cκp(t) ·Dκp(t)). (2.24)

As mentioned earlier, the assumption for the dissipation function is of the form

ξ = ξ̃(D,Dκp(t),Cκp(t)). A specific assumption is made for the rate of dissipation as

given by,

ξ = ηDκp(t)Cκp(t) ·Dκp(t) + η1D ·D. (2.25)

From equations (2.24) and (2.25) one can obtain,

(
T − µf(I1)Bκp(t) − η1D

)
·D +

(
µf(I1)Cκp(t) − ηDκp(t)Cκp(t)

)
·Dκp(t) = 0. (2.26)

A sufficient condition for equation (2.26) to hold is,

T = −p1 + µf(I1)Bκp(t) + η1D, (2.27a)

µf(I1)Cκp(t) ·Dκp(t) − ηDκp(t)Cκp(t) ·Dκp(t) = 0, (2.27b)

where, p = p̂+µf(I1)λ. The rate of dissipation ξ is maximized subject to the elastic

response from the natural configuration being isochoric (which is 1 ·Dκp(t) = 0) and

equation (2.27b). The constrained maximization of the dissipation function is carried
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out as follows:

L(D,Dκp(t)) = ξ + λ1
(
µf(I1)Cκp(t) − ηDκp(t)Cκp(t)

)
·Dκp(t) + λ21 ·Dκp(t). (2.28)

Taking the derivative of equation (2.28) with respect toDκp(t) and equating ∂L
∂Dκp(t)

=

0 and rearranging the terms it can be shown that,

2ηDκp(t)Cκp(t)
(1− λ1)
λ1

+ µf(I1)Cκp(t) + λ2

λ1
1 = 0. (2.29)

Taking the dot product of equation (2.29) with Dκp(t) leads to,

η
(1− λ1)
λ1

Dκp(t)Cκp(t) ·Dκp(t) + µf(I1)Cκp(t) ·Dκp(t) = 0. (2.30)

Comparing equation (2.30) with equation (2.27b) one can see that λ1 = −1. Equation

(2.29) can be now rewritten as,

µf(I1)Cκp(t) − 2ηDκp(t)Cκp(t) −
λ2

2 1 = 0. (2.31)

The deformation gradient Fκp(t) can be split as follows,

Fκp(t) = RUκp(t), ∀R ∈ Q 3 QQT = 1. (2.32)

It follows from equation (2.32) that,

Cκp(t) = U 2
κp(t), (2.33)
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where, Uκp(t) is the right stretch tensor in the polar decomposition. Substituting

equation (2.33) in equation (2.31) and replacing λ2 by 2λ,

µf(I1)U 2
κp(t) − 2ηDκp(t)U

2
κp(t) − λ1 = 0. (2.34)

Pre and post multiplying equation (2.34) with Uκp(t) and U−1
κp(t) and rearranging the

terms as shown in equations (2.35a), (2.35b), (2.35c) and taking trace of the resultant

equation one can arrive at equation (2.35c) as shown below,

µf(I1)U 2
κp(t) − 2ηUκp(t)Dκp(t)Uκp(t) − λ1 = 0, (2.35a)

µf(I1)1− 2ηDκp(t) − λU−2
κp(t) = 0, (2.35b)

3µf(I1)− λtr(B−1
κp(t)) = 0. (2.35c)

Note that tr(Dκp(t)) = 0 due to the incompressibilty condition that has been im-

posed on the elastic response. Also, tr(U−2
κp(t)) = tr(C−1

κp(t)) = tr(B−1
κp(t)) implies

λ = 3µf(I1)
tr(B−1

κp(t)) . Rewriting equation (2.31) in terms of Fκp(t) and pre and post multi-

plying by Fκp(t) and F−1
κp(t),

µf(I1)F T
κp(t)Fκp(t) − 2ηDκp(t)F

T
κp(t)Fκp(t) −

3µf(I1)
tr(B−1

κp(t))
1 = 0, (2.36a)

µf(I1)Fκp(t)F
T
κp(t) − 2ηFκp(t)Dκp(t)F

T
κp(t) −

3µf(I1)
tr(B−1

κp(t))
1 = 0, (2.36b)

µf(I1)Bκp(t) − 2ηFκp(t)Dκp(t)F
T
κp(t) −

3µf(I1)
tr(B−1

κp(t))
1 = 0. (2.36c)

Combining equation (2.15b) and equation (2.36c) one can arrive at,

−1
2
∇
Bκp(t) = µf(I1)

η

(
Bκp(t) −

3
tr(B−1

κp(t))
1
)
. (2.37)
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2.4 The FENE-P model derivation

In the previous section, the stored elastic energy function proposed by Gent [20]

was chosen, which assumed that the material is incompressible. This incompressibil-

ity assumption is a theoretical idealization. Málek et al. [33] pointed out that vis-

coelastic models with three-dimensional generalizations of the spring-dashpot analogs

lead to models in which the individual components are compressible. In this section,

the approach used by Málek et al. [33], which does not require the elastic response to

be isochoric, shall be adopted. To achieve this, a modified version of the Gent model

[20] proposed by Horgan and Saccomandi [27] is considered. This model takes into

account the compressibility of the material. The stored energy function for such a

material is given by the following,

W = −µ2

Jm ln
(

1− I1 − 3
Jm

)
+ ln(detBκp(t))

, (2.38)

where I1 = trBκp(t) and Jm is the stretch limit. Upon differentiating equation (2.38)

with respect to time one can obtain,

Ẇ = µ

2

( Jm
Jm − (I1 − 3)

)
dI1

dt
− ˙ln(detBκp(t))

, (2.39)

The result we have in equation (2.22) can be extended to the above equation as

follows,

Ẇ = µ

2 (2f(I1)(Bκp(t) ·D −Cκp(t) ·Dκp(t))− ˙ln(detBκp(t))
)
. (2.40)
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where, f(I1) = Jm
Jm−(I1−3) . Also to evaluate ˙ln(detBκp(t)) one can use the relation in

equation (2.13),

˙ln(detBκp(t)) = tr(Ḃκp(t)B
−1
κp(t)),

= tr((LBκp(t) +Bκp(t)L
T − 2Fκp(t)Dκp(t)F

T
κp(t))B−1

κp(t)),

= tr(2D − 2Dκp(t)),

= 2(1 ·D − 1 ·Dκp(t)).

(2.41)

In section 2.3, the condition of incompressibility was imposed on the material for

the derivation of FENE-P-type models. Recall that the total deformation gradient

FκR was split into a purely elastic part corresponding to Fκp(t) and a transforma-

tion associated with the dissipative process related to the body’s changing natural

configuration, referred to as G. Condition of incompressibility for the total solu-

tion corresponds to detFκR = 1. This upon differentiation with respect to time

corresponds tr(DκR) = 0 or simply tr(D) = 0. Unlike the previous derivation, one

does not assume that the elastic response from the evolving natural configuration or

the dissipative response associated with the evolution of the natural configuration is

isochoric. Combining equation (2.40) and equation (2.41),

Ẇ = µ
(
f(I1)Bκp(t) ·D − (f(I1)(Cκp(t) − 1) ·Dκp(t)

)
. (2.42)

Recall that in an isothermal process, the rate of dissipation is given by equation

(2.23). Substituting the compressible Gent model stored energy form in equation

(2.23), one can obtain the following equation for the dissipation rate ξ,

ξ = T ·D − µ
(
f(I1)Bκp(t) ·D − (f(I1)(Cκp(t) − 1) ·Dκp(t)

)
. (2.43)
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As mentioned in the previous section, the dissipation function ξ = ξ̃(D,Dκp(t),Cκp(t))

is assumed to be of the form given in equation (2.26). By equating equation (2.25)

and equation (2.43) one can obtain,

(
T − µf(I1)Bκp(t) − η1D

)
·D +

(
µ(f(I1)(Cκp(t) − 1)− ηDκp(t)Cκp(t)

)
·Dκp(t) = 0.

(2.44)

The rate of dissipation ξ = ξ̃(D,Dκp(t),Cκp(t)) is now maximized. This idea follows

from the notion that the rate of entropy production is maximized. In order to achieve

this, a Langrange function L(D,Dκp(t)) is introduced, subject to the constraints given

by equation (2.43) and the isochoric total response of the fluid, tr(D) = 0.

L(D,Dκp(t)) = ξ+λ1
(
ξ−T ·D−µ

(
f(I1)Bκp(t)·D−(f(I1)(Cκp(t)−1)·Dκp(t)

))
+λ21·D.

(2.45)

Maximization of ξ is achieved by solving for ∂L
∂D

= 0 and ∂L
∂Dκp(t)

= 0;

∂L

∂D
= 0 = (1 + λ1) ∂ξ

∂D
+ λ1(T − µ

(
f(I1)Bκp(t)) + λ21, (2.46)

∂L

∂Dκp(t)
= 0 = (1 + λ1) ∂ξ

∂Dκp(t)
+ λ1(f(I1)(Cκp(t) − 1)). (2.47)

Upon differentiation equation (2.25), ∂ξ
∂D

= 2η1D and ∂ξ
∂Dκp(t)

= 2ηDκp(t)Cκp(t). Mak-

ing the appropriate substitutions and taking scalar product of equation (2.46) with

D and equation (2.47) with Dκp(t) one can obtain the following equations,

2(1 + λ1)η1D ·D + λ1(T − µ
(
f(I1)Bκp(t)) ·D + λ21 ·D = 0, (2.48)

2(1 + λ1)ηDκp(t)Cκp(t) ·Dκp(t) + λ1(f(I1)(Cκp(t) − 1)) ·Dκp(t) = 0. (2.49)

29



Using the constraint of incompressibility of the fluid, which is 1 ·D = 0 along with

equation (2.25) and equation (2.43), one can show that the combination of equation

(2.48) and equation (2.49) can be reduced to,

2(1 + λ1)ξ − λ1ξ = 0. (2.50)

Equation (2.50) requires λ1 = −2. One can now reduce equation (2.46) as follows

T = −p1 + η1D + µ(f(I1)Bκp(t) − 1), (2.51)

where, p = −
(
λ2
2 + µ

)
. Consider the equation (2.47),

ηDκp(t)Cκp(t) = µ(f(I1)Cκp(t) − 1), (2.52a)

ηDκp(t)F
T
κp(t)Fκp(t) = µ(f(I1)F T

κp(t)Fκp(t) − 1), (2.52b)

ηFκp(t)Dκp(t)F
T
κp(t) = µ(f(I1)Fκp(t)F

T
κp(t) − 1). (2.52c)

Combining equation (2.15b) and equation (2.52c) one can show that,

−1
2
∇
Bκp(t) = µ

η

(
f(I1)Bκp(t) − 1

)
. (2.53)

Thus, a constitutive relation that is identical in form the FENE-P model is obtained.
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2.5 Comparison with the FENE-P model

Recall the evolution equation of the conformation tensor C is given by equation

(1.11) and can be rewritten as follows,

DC

Dt
=
(
∂u

∂x

)T
C +C

(
∂u

∂x

)
− 1
λ

[f(R)C − I] (2.54a)

−
∇
C = 1

λ

(
f(R2)C − 1

)
(2.54b)

Where λ is the relaxation time constant of the material and f(R) = L2
0−3

L2
0−R2 (R2 is

the trace of C, L0 is the maximum extension of the polymer molecules). Comparing

equation (2.54b) with equation (2.53) one can identify that the role played by Peterlin

function f(R) is similar to that of f(I1) and the relaxation time constant λ = η/(2µ).

Similarly, tensor Bκp(t) and the conformation tensor C play the same roles with

respect to the constitutive models. Hence, it has been shown that the FENE-P model

can be derived from a generalized compressible form of stored energy proposed by

Horgan and Saccomandi [27].
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3. ANALYTICAL SOLUTION AND CODE VERIFICATION

The primary objective of this research is to simulate and capture the onset of

the viscoelastic phenomenon of elastic turbulence in dilute polymer solutions. The

first step towards this purpose is to establish a reliable viscoelastic solver. As has

been discussed in the previous chapters the rheology of dilute polymer solutions on a

macro-scale is determined by the micro-structures of the polymer molecules involved.

These elastic polymer molecules interact with the fluid flow and supplement the fluid

with an additional polymeric stress component. For this work, the FENE-P model is

chosen to model the flow of these viscoelastic dilute polymer solutions. This chapter

focuses on two objectives.

• Obtaining the exact solutions for steady fully developed laminar pipe flow for

a FENE-P fluid.

• Comparing the exact solutions with the numerical solutions that were devel-

oped using a finite volume solver.

The numerical solutions have been carried out to not only compare them with the

exact solutions but also to study the effects of grid resolution, boundary conditions,

and artificial diffusion.

3.1 General problem formulation

The problem of interest is governed by the momentum equation and the continuity

equation for an incompressible fluid given respectively by:

ρ
Du

Dt
= − ∂p

∂x
+∇ · T , (3.1)
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and

∇ · u = 0, (3.2)

where u is the fluid velocity, p is the pressure, T is the stress tensor, ρ is the density.

For a dilute polymer solution, the stress is decomposed into a Newtonian component

and a polymeric component via:

T = µ0βD + τ p, (3.3)

where τp is the polymeric component of the stress, µ0 is the solution viscosity, β is

the ratio of the solvent viscosity to the solution viscosity, and D is the symmetric

part of the velocity gradient. For a FENE-P fluid the polymeric stress is given by:

τ p = µ0(1− β)
λ

[f(R)C − I], (3.4)

where λ is the polymer relaxation time, C is the conformation tensor defined as

the tensor representing the average over all possible molecular configurations of the

production of the end-to-end vectors associated with the polymer molecular length,

R2 = tr(C), I is the unit tensor, and f(R) = L2
0−3

L2
0−R2 is the Peterlin function, where

L0 is the maximum allowable molecular extension. In the equations above, and in

all subsequent ones, C, L0, and R are made non-dimensional by the rest length, or

square of the length as appropriate, of the polymer molecule. Finally, the conforma-

tion tensor C is governed by:

DC

Dt
=
(
∂u

∂x

)T
C +C

(
∂u

∂x

)
− 1
λ

[f(R)C − I] + Γ∇2C, (3.5)
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where Γ is the polymer diffusivity. The inclusion of polymer diffusion, although not

included in the original formulation of the FENE-P model, is included here since one

of our objectives is to investigate the effects of diffusion on the solutions for pipe

flow.

3.2 Exact solution for a fully developed laminar pipe flow for a FENE-P fluid

The exact solution for steady, fully developed laminar pipe flow for a FENE-

P fluid has been derived, details of which are provided below. For this purpose

cylindrical coordinates r, θ and z, defined as the coordinate perpendicular to the

pipe axis, the azimuthal coordinate, and the coordinate parallel to the pipe axis

are used. ur, uθ and uz are used to define the radial, azimuthal, and streamwise

velocity components respectively. Solutions are sought of the form ur = uθ = 0 and

uz = uz(r), which makes all components of the conformation, C tensor depend only

on r.

Although similar solutions were obtained by Cruz et al. [13], for reasons of clarity

and completeness the derivation has been included here. With these assumptions,

six equations for the unique components of the symmetric conformation tensor, Crr,

Crθ, Crz, Cθθ, Cθz, Czz, are obtained from equation (3.5) with Γ = 0, and are given

below:

0 = Crr
duz
dr
− 1
λ

[f(R)Crz], (3.6)

0 = 2Crz
duz
dr
− 1
λ

[f(R)Czz − 1]. (3.7)

It follows from equation (3.6), equation (3.7) that Crr = 1
f(R) , Crθ = 0, Cθθ = 1

f(R) ,

and Cθz = 1
f(R) . From equation (3.4) and the expressions above for the conformation
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tensor, the polymeric stress τp are determined as follows, where the superscript p

has been removed for clarity:

τrz = µp
λ

[f(R)Crz], (3.8)

τzz = µp
λ

[f(R)Czz − 1], (3.9)

and τrr = τrθ = τθθ = τθz = 0. Using equation (3.6), equation (3.7), equation (3.8)

and equation (3.9), and Crr = 1
f(R) , the following relationships can be obtained:

0 = µp
duz
dr
− f(R)τrz, (3.10)

and

0 = 2λτrz
duz
dr
− f(R)τzz. (3.11)

Using Crr = 1
f(R) , Cθθ = 1

f(R) , and equation (3.9), the Peterlin function can be

expressed as:

f(R) = F (τzz) = 1 + λτzz
µpL2 , (3.12)

and equation (3.10) and equation (3.11) are used to give:

τzz = 2λ
µp

(τrz)2. (3.13)

From equation (3.1), the momentum equation in the z-direction is:

0 = −pz + µs
∂

r∂r

(
r
∂uz
∂r

)
+ ∂(rτrz)

r∂r
, (3.14)

where pz < 0 is a temporally and spatially constant driving pressure gradient in

the z-direction. Integration of equation (3.14) from the pipe center (r = 0) to an
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arbitrary radial position r, using the symmetry conditions dur
dr

= 0 and consequently

τrz = 0, gives:

0 = −pzr2 + µs
duz
dr

+ τrz. (3.15)

Substitution of equation (3.10), equation (3.12), equation (3.13) into equation (3.14)

gives, for τrz:

τ 3
rz + 3Aτrz − 2B(r) = 0, (3.16)

where

A =
(
µs + µp
µs

)(
µ2
pL

2

6λ2

)
, (3.17)

and

B(r) =
(
µp
µs

)(
µ2
pL

2

8λ2

)
pzr. (3.18)

It is important to note that the equation (3.16) is identical to Cruz et al. [13] with

ε = L2, where ε is used in the Phan-Thien-Tanner (PTT) model to representation

extensional flow properties. The exact solution to equation (3.16) for τrz is:

A =

(
µs+µp
µs

)
6λ2

µ2
pL

2

,

B =
µp
µs

(
pzR

2

)
4λ2

µ2
pL

2

.

(3.19)

Then τzz, Crz and Czz can be obtained from Eqs. (3.8)

3.3 Computational technique

The software of choice to carry out the simulations is ANSYS-FLUENT. Fig 3.1 is

the flow chart of the algorithm used to solve the constitutive equations of the FENE-

P model. This algorithm is a modification of the SIMPLE algorithm. SIMPLE is an

36



acronym for Semi-Implicit Method for Pressure-Linked Equations. In this method

the governing equations are discretized in a strong-conservation form using a finite-

volume approach. The non-linearities are tackled in the so called ‘outer loop’, which

is performed several times per time step until a satisfactory convergence is reached.

In each ‘outer loop’ the momentum conservation equation, mass conservation and

the modified version of the transport equation given in equation (3.20) is assembled

into a system of linear equations based on all the equation terms (time-derivatives,

convection, diffusion, source terms) in the associated mesh. This process creates a

relation between a sparse matrix of implicit terms (A) and a vector of explicit terms

b, which can be solved to find updated values for the flow field x: Ax = b. Iterative

solvers are used to solve for x until a specified convergence tolerance is used.

A series of simulations were performed using using ANSYS-FLUENT to deter-

mine the effects of diffusion and the boundary conditions on the solutions for laminar

of a FENE-P fluid. ANSYS-FLUENT contains the capability of solving an advective-

diffusion equation for a scalar φ as follows,

∂ρφ

∂t
+ ∂

∂xi

(
ρuiφ− Γ ∂φ

∂xi

)
= Sφ. (3.20)

where ρ is the density, ui are the components of the fluid velocity, Γ is diffussion co-

efficient, and Sφ is the source term. Using this capability, the six unique components

of the conformation tensor can be determined by letting φ be any of the six compo-

nents of Cij and including the stretching and rotational terms in equation (3.5) in

the source term, Sφ. The use of this model to solve equation (3.5) was achieved by

writing appropriate user-defined functions in the C-language. Once the conformation

tensor is obtained, the polymeric stresses are determined from equation (3.4). The

components of the divergence of the polymeric stress are then added as extra source
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STEP 0: Polymeric stress τ ∗p = f(C∗)

STEP 1: Solve discretized momentum
equations with the source term div(τ ∗p )

STEP 2: Solve pressure correction equation

STEP 3: Correct pressure and velocities

STEP 4: Solve evolution equa-
tions of the conformation tensor

Update
p∗ = p,
u∗ = u,
C∗ = C

Convergence?

stop

Initialize p∗, u∗, C∗
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p′

p, u, C∗

p, u, C

yes

no

Fig. 3.1: An extension to the SIMPLE algorithm for viscoelastic fluids
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terms to the momentum equation (3.1) which is then used to determine the flow

velocity in a pipe flow geometry. All the parameters for the simulations performed

are listed in Table 3.1.

Table 3.1: Simulation parameters

Parameter Representation Value
Density ρ 1× 103 kg/m3

Solvent viscosity µs 1× 10−3 Pa-s
Polymer viscosity µp 1.1111× 10−4 Pa-s

Viscosity ratio β 0.9
Polymer time scale λ 1 s

Pipe diameter D 1× 10−3 m
Pipe length L 20× 10−3 m

Added diffusion Γ Simulation specific
Reynolds number Re β

(
ρUD/µs

)
Weissenberg number Wi λU/D

Schmidt number Sc µs/(βΓ)
Maximum polymer extensibility L2

0 10, 000

It is important to pay attention to the hyperbolic nature of the conformation

tensor evolution equation. Because of the absence of the diffusion term, sharp gradi-

ents of polymer stress, in theory may be possibly formed. Capturing these gradients

can pose a challenge to the stability of the computational techniques employed. In

addition to the evolution equations of Cij through out the entire field, there is also

a constant artificial diffusion. For the purpose of rendering stability to the solution

an additional diffusion is added, modifying the equation (3.5).

3.4 Boundary conditions

Along the entire inlet C = I. At the domain outlet, no-flux boundary condition

is applied to both velocities as well as C. Along the wall of the pipe a no-slip con-
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dition is applied for the fluid velocity. In general, the hyperbolic nature of the C

evolution equation would require that no boundary condition for C be specified at

the wall, however, due to the presence of additional diffusion (including the inher-

ent artificial diffusion of the numerical scheme), a boundary condition needs to be

explicitly enforced on C. The additional diffusion term transforms the hyperbolic

evolution equations to parabolic. A no-flux boundary condition has been imposed

on the components of C along the pipe’s wall.

3.5 Results and discussions

The optimum value for the number of cells used for the following simulations

has been determined by carrying out a series of simulations to perform the grid

independence study, the details of which are given in Table 3.2. The Weissenberg

number Wi and the Reynolds number Re are varied by changing the inlet velocity

U (Refer to Table 3.1). The inlet velocity U has been picked such that the Re = 1

and Wi = 1.1111. For each simulation the area average value of the tr(C) has been

calculated at the outlet of the pipe and plotted against the corresponding number of

cells used. Fig. 3.2 shows that grid independence is achieved at 52,600 cells for the

given set of simulations.

Table 3.2: Different meshes for studying the grid independence

No. Re Wi Sc Grid nodes L/D
1 1 1.1111 11 8000 20
2 1 1.1111 11 24480 20
3 1 1.1111 11 52600 20
4 1 1.1111 11 64000 20
5 1 1.1111 11 250000 20
6 1 1.1111 11 512000 20
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Fig. 3.2: Area weighted average of (Czz +Crr +Cθθ) at the outlet for Re 1 Wi 1.1111

A series of simulations with varying Re and Wi were conducted to test the validity

of the simulation code (Refer to Table 3.3). Fig. 3.3 through Fig. 3.10 show the

comparison of Crz and Crr with the exact solution with varying Re and Wi.

Table 3.3: Simulations with varying Wi

No. Re Wi Sc Grid nodes L/D Fig.
1 1 1.1111 11 52600 20 3.3, 3.4
2 2 2.2222 11 52600 20 3.5, 3.6
3 3 3.3333 11 52600 20 3.7, 3.8
4 4 4.4444 1.1 52600 20 3.9, 3.10

It needs to be brought to the reader’s attention that the numerical solution di-

gresses from the analytical solution close to the walls because of the no-flux boundary

condition that was imposed on the conformation tensor components. This digression
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can be minimized by refining the mesh and further decreasing the added diffusion.

However, refining the mesh and decreasing the added diffusion directly affects the

stability of the numerical scheme. Finding the optimal mesh refinement and added

diffusion varies with the Weissenberg number Wi. It is important to note that, with

an increase in Wi the value of added diffusion Γ needs to be increased to attain sta-

ble, converging solutions. Fig. 3.9 and Fig. 3.10 show the comparison of numerical

solution and exact solution at Wi = 4.4444 with Γ = 1× 10−3 kgm−1s−1. Because

of the high value of Γ required for convergence, the numerical results are unable to

capture the steep gradients shown by the exact solutions of the same, at the wall.

Fig. 3.11 and Fig. 3.12 show the effect of the added diffusion Γ on the numer-

ical solution. As pointed out earlier, an increase of added diffusion Γ improves the

stability of the solution, compromising on the accuracy (Refer to Table 3.4).

Table 3.4: Different Schmidt numbers

No. Re Wi Sc Grid nodes L/D
1 1 1.1111 11 52600 20
2 1 1.1111 1.11 52600 20
3 1 1.1111 0.11 52600 20

3.6 Obstacles

There exist several obstacles related to the simulation of viscoelastic fluid flow.

The biggest hurdle is dealing with the convergence issues at high Wi. Specifically,

numerical breakdown occurs when solving the FENE-P model (or any another model

that involves hyperbolic PDEs). For the current study, numerical instabilities and

convergence issues start to emerge for Wi > 4. However the elastic instabilities
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Fig. 3.3: Crz for Re 1 Wi 1.1111

and elastic turbulence are reported to occur only at higher Wi. This numerical

break down that occurs at moderately high Weissenberg numbers is called the High

Weissenberg Number Problem (HWNP). This breakdown could be attributed to the

following reasons:

• The ineptitude of polynomial-based approximations to represent the conforma-

tion tensor profiles, which could be exponential in regions of high deformation

rate, or near stagnation points [17].

• The loss of symmetric positive definiteness of the conformation tensor.

Therefore, the numerical reconstruction and extensive study of the phenomenon of

elastic turbulence could be impeded by the HWNP.
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Fig. 3.4: Czz for Re 1 Wi 1.1111
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Fig. 3.5: Crz for Re 2 Wi 2.2222
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Fig. 3.6: Czz for Re 2 Wi 2.2222
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Fig. 3.7: Crz for Re 3 Wi 3.3333

45



0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

Analytical

Numerical

Fig. 3.8: Czz for Re 3 Wi 3.3333
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Fig. 3.9: Crz for Re 4 Wi 4.4444
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Fig. 3.10: Czz for Re 4 Wi 4.4444
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Fig. 3.11: Crz with different added diffusion values for Re 1 Wi 1.1111
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Fig. 3.12: Czz with different added diffusion values for Re 1 Wi 1.1111
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4. THE LOG-CONFORMATION REFORMULATION METHOD

The phrase ‘High Weissenberg Numerical Problem’ (HWNP) was coined to de-

scribe the common situation experienced by researchers in which numerical simula-

tions failed beyond some limiting value of the Weissenberg number. The limiting

value varies with the flow geometry and the fluid constitutive model of the problem.

As it has been mentioned in the previous chapter, it is generally recognized that the

HWNP stems from the loss of symmetric positive definiteness property of the con-

formation tensor and also the inability of a low order polynomial fitting to capture

the high gradients of the conformation tensor components.

Many efforts have been paid to deal with the HWNP. Vaithianathan and Collins

[47] proposed a decomposition algorithm for the conformation tensor to guarantee

symmetric positive definiteness and improve the overall stability of the simulation

of viscoelastic fluids at high Weissenberg numbers. Fattal and Kupferman [17] [18]

proposed formulating the equations in terms of the logarithm of the conformation

tensor, which is called the log-conformation reformulation. This method is a nu-

merical algorithm that preserves the symmetric positive definiteness property of the

conformation tensor and also eliminates the deviation that is caused by an improper

approximation at a high Weissenberg number. This formulation has been successfully

implemented for a flow around a cylinder [1], lid-driven cavity [18], and Poiseuille

flow [26] indicating the advantage and validity of using the log-conformation refor-

mulation for solving the HWNP.

4.1 Formulation

Based on the continuum hypothesis and incompressible flow condition, the con-

servation of mass implies u is divergence free, div(u) = 0. When the velocity gradient
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is traceless, Fattal and Kupferman [17] showed that grad(u) can be decomposed as

follows:

grad(u) = Ω +B +NC−1, (4.1)

where Ω, N are anti-symmetric matrices, andB is a symmetric and traceless matrix.

The are defined as follows:

Ω = R


0 ω1 ω2

−ω1 0 ω1

−ω2 −ω3 0

R
T , (4.2)

B = R


m11 0 0

0 m22 0

0 0 m33

R
T , (4.3)

N = R


0 n1 n2

−n1 0 n3

−n2 −n3 0

R
T . (4.4)

Using the decomposition from equation (4.1), equation (3.5) can be rewritten as,

DC

Dt
= ΩC −CΩ + 2BC + 1

λ
[I − f(R)C]. (4.5)

For the equation (4.5) to be well posed the conformation tensor needs to be a sym-

metric positive definite matrix, and it is decomposed as,

C = RΛRT . (4.6)
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where R is an orthogonal matrix composed by the eigen vectors of C, and Λ is a

diagonal matrix in which the diagonal elements are the eigenvalues of C as:

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 . (4.7)

where, λ1, λ2 and λ3 are the three eigenvalues of C. A matrix, M is defined for the

purpose of calculating Ω, N and B as,

M = RTgrad(u)R =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 . (4.8)

Substituting Eqs. (4.1), (4.2), (4.3), (4.4), (4.6), (4.7), it can be determined that

ω1 = λ2m12+λ1m21
λ2−λ1

, ω2 = λ3m13+λ1m31
λ3−λ1

, ω3 = λ3m23+λ2m32
λ3−λ2

. Also n1 = m12+m21
λ−1

2 −λ
−1
1

, n2 =
m13+m31
λ−1

3 −λ
−1
1

, n1 = m23+m32
λ−1

3 −λ
−1
2

. The logarithm of the dimensionless conformation tensor φ

can be calculated by taking the logarithm of each element in the diagonal matrix

[17] as:

φ = log(C) = Rlog(Λ)RT . (4.9)

With the definition in the equation (4.9), the decomposed evolution equation (4.5)

can be rewritten as follows,

Dφ

Dt
= Ωφ− φΩ + 2B +R[ 1

λ
(Λ−1 − f(R)I)]RT . (4.10)
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4.2 Calculations

Via LCR approach, the evolution equation in equation (3.5) is replaced by an

equivalent evolution equation for the logarithm of the conformation tensor. This is

vital in eliminating the deviation between the exponential variation and the poly-

nomial interpolation of the conformation tensor variables. Also, this reformulation

ensures SPD property of the conformation tensor. After solving φ using equation

(4.10), the conformation tensor can be updated using equations (4.6), (4.7), (4.8),

(4.9). All the equations discussed were implemented in ANSYS-FLUENT using user

defined functions. ANSYS-FLUENT is a software written in a C environment and

has a limited C compiler. However, this reformulation requires a series of linear alge-

bra operations including the evaluation of eigen values of C. In order to achieve this,

Visual Studio C compiler has been configured to become accessible from ANSYS-

FLUENT and using Linear Algebra PACKage in C called LAPACK, shared libraries

were created that could be linked with the rest of the solver. The algorithm is sim-

ilar to the one shown in Fig. 3.1 except for two intermediate steps involving the

conversion of the conformation tensor to its log form and back. The details of the

algorithm are given in the flow chart shown in Fig. 4.1.

4.3 Initial and boundary conditions

The natural outflow boundary condition is given at the outlet with the developed

boundary condition. No slip velocity boundary conditions and a no-flux boundary

condition is imposed on φ, ∂φ
∂y

= 0 are prescribed on the walls. The conformation

tensor is initialized to be a unit tensor implying no elastic stress translating to φ = 0.

As for the numerical schemes, the conformation tensor equations were descretized by

second order accuracy.
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start

STEP 0: Polymeric stress τ ∗p = f(C∗)

STEP 1: Solve discretized momentum
equations with source term div(τ ∗p )

STEP 2: Solve pressure correction equation

STEP 3: Correct pressure and velocities

STEP 4: Evaluate φ∗ = log(C∗) by
computing eigen values and vectors of C∗

STEP 5: Solve evolution equations in φ

Update
p∗ = p,
u∗ = u,
C∗ = eφ

Convergence?

stop

Initialize p∗, u∗, C∗

p∗, u∗, τ ∗p

u∗

p′

p, u, C∗

φ∗

p, u, φ

yes

no

Fig. 4.1: Algorithm with the log-conformation reformulation.
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4.4 Results and discussion

The primary task is to validate the LCR solver by simulating flow in a pipe and

checking against the analytical solution similar to the procedure discussed in the pre-

vious chapter. The momentum conservation equation coupled with the constitutive

equation of the log-conformation reformulation are solved to arrive at the solutions.

As mentioned previously direct simulation of the evolution equation (3.5) is limited

by the fact that cases with Wi > 4.5 suffer from convergence issues.

Table 4.1: Simulations with varying Wi with LCR

No. Re Wi Grid nodes L/D Fig.
1 1 1.1111 52600 20 4.2, 4.3
2 4 4.4444 52600 20 4.4, 4.5
3 5 5.5555 52600 20 4.6, 4.7
4 8 8.8888 52600 20 4.8, 4.9

Fig. 4.2 and Fig. 4.3 show the comparison of the analytical solution with the

numerical results from the log-conformation reformulation of Crz and Czz for the base

case of Wi = 1.1111 and Re = 1. Fig. 4.4 through Fig. 4.9 show the comparison

of the analytical solution with the numerical results for different values of Wi and

Re, details of which are given in Table 4.1. As one can see, the log-conformation

reformulation allows the simulation at higher Wi. It is important to note that

without the log-conformation reformulation all simulations with Wi > 4 failed to

converge. The effect of no-flux boundary condition imposed on φ manifests in C

calculations. An extra diffusion term is added to the evolution equation of φ to

assist convergence. The inclusion of the diffusion term causes much more pronounced

54



0 0.1 0.2 0.3 0.4 0.5
-10

-8

-6

-4

-2

0

Analytical

Numerical

Fig. 4.2: Crz for Re 1 Wi 1.1111 with LCR
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Fig. 4.3: Czz for Re 1 Wi 1.1111 with LCR
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Fig. 4.4: Crz for Re 4 Wi 4.4444 with LCR
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Fig. 4.5: Czz for Re 4 Wi 4.4444 with LCR
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Fig. 4.6: Crz for Re 5 Wi 5.5555 with LCR
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Fig. 4.7: Czz for Re 5 Wi 5.5555 with LCR
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Fig. 4.8: Crz for Re 8 Wi 8.8888 with LCR
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Fig. 4.9: Czz for Re 8 Wi 8.8888 with LCR
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disagreement with the analytical solution when compared to the simulations carried

out without the log-conformation reformulation. This deviation is caused due to the

amplification of the error in φ via C = eφ.

In conclusion, this work has presented a new, improved solver for the simulation of

flows of viscoelastic fluids governed by the FENE-P constitutive model by adoption of

the technique proposed by Fattal and Kupferman [17]. The resulting method allows

one to obtain globally stable solutions, and has been validated in the benchmark

steady state pipe flow problem for relatively higher Weissenberg numbers. The results

in this chapter also demonstrate that the LCR method better mitigates against the

HWNP and delays its onset.
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5. NUMERICAL SIMULATION OF CONFINED SWIRLING FLOW OF

FENE-P FLUIDS

Swirling flows are ubiquitous both in nature and technology. Large rotating flows

are found both in the atmosphere and the oceans, whereas industrial applications of

swirling flows are found in viscometry, in lubrication, turbines, centrifugal pumps,

among others. A special case for such a flow is the flow between two coaxial rotating

plates or disks.

The flow of an incompressible fluid by an infinite rotating disk in an unbounded

fluid domain is a classical problem in fluid mechanics. Von Karman [29] was the first

to study this problem for Newtonian fluids by using an elegant similarity transforma-

tion, that transformed the Navier-Stokes equations to a set of Ordinary Differential

Equations. There is not extensive research available involving a single disk rotat-

ing problem for non- Newtonian fluids. Mitschka [36] showed that Von-Karman’s

similarity solution could be extended to power-law fluids. Ariel [2] showed that a

similarity solution does exist for a particular class of viscoelastic fluids. In the case

of polymeric fluids that are viscoelastic, rotating disk flows in a confined domain

assume much more practical importance.

The first attempt at investigating the effects of viscoelasticity on the flow behavior

of confined swirling flows of viscoelastic fluids was made by Stokes et al. [44]. They

observed some unsteady flow patterns by using polyacrylamide Borger fluid [9] with

relatively high viscosity, which minimized the inertial effects in the flow. By picking

a polymer solution with a high viscosity, they inferred that the observed phenomena

are caused by the purely elastic nature of the fluid. On the other hand, when the

fluid used is a low viscosity dilute polymer solution such that inertial effects could
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not be ignored anymore, they observed that the stress hike on the rotating plate that

is attributed to turbulent drag is delayed. In some extreme cases, the stress hike is

even suppressed due to the presence of the polymer in the solution when compared

to a Newtonian solution of comparable viscosity. By observing a different range of

fluids, they reported that swirling flows became unstable for both inertia dominated

flows [high Re low Wi] and elasticity dominated flows [low Re high Wi]. Thus, they

found an extremely strong correlation between the ratio of Wi/Re and the type of

instability developed in the flow. This ratio is referred to as the elasticity number El.

So, in short, the flow is dominated by elastic effects when El ≥ 1, and if El < 1 the

flow becomes inertia dominated. As discussed earlier, the numerical investigation of

viscoelastic fluids in a confined swirling flow poses a tall challenge of dealing with

high Weissenberg number numerical problem.

The flow between two rotating plates is of considerable importance and forms the

basis for rheological measurements of viscosity and normal stresses in both Newtonian

and non-Newtonian liquids. Some extrusion processes of polymers also employ such

flow geometries. The simplest case of the flow geometry consists of two coaxial disks,

separated by a small distance. In a typical rheological measurement, fluid samples

are contained in the narrow gap and subjected to the rotation of the upper plate at

a constant angular velocity while the bottom plate is kept fixed. This experimental

set-up is of particular importance since it was also used by Groisman and Steinberg

[21] to discover this anomalous phenomenon of elastic turbulence.

5.1 Groisman and Steinberg’s experiment

The focal point of this chapter is the findings of Groisman and Steinberg [21]

[23]. They used a dilute solution of a high molecular weight polyacrylamide in

viscous sugar syrup. When they conducted the experiment at vanishingly low Re < 1
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with a gradual increase in Wi, they found a strong tendency for the development

of turbulent behavior. They quantitatively analyzed the experiment by measuring

the shear stress on the top plate and normalized it with the shear stress in the

corresponding Newtonian case that the flow does not have the polymer.

Fig. 5.1: Normalized shear stress on the top plate in the top plate driven swirlflow
experiment by Groisman and Steinberg [21] is plotted on the y - axis and shear rate
on x - axis. Data from 3 different cases is shown: the curves labeled 1 and 2 are
flows with D/R = .263 and D/R = .526 respectively, curve 3 is the response of the
pure solvent without polymers.

In Fig. 5.1 the data sets labeled 1 and 2 correspond to different D/R ratio, where

D is the depth and R the radius of the geometry. The data set labeled 3 at the bottom

of the plot represents the pure solvent. For the curves labeled 1 and 2, the normalized

stress appears to increase with the rotation rate linearly. Upon further increase in

shear rate, the curves spike up sharply. This is the regime that is being referred to as

elastic turbulence. Arrows indicate that the this transition to turbulence is hysteretic;

when the rotation is decreased slowly, the emerged turbulence disappears at a lower
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Fig. 5.2: Two snapshots of the turbulent flow in the experiment at Wi = 13 and
Re = 0.7 in the top plate driven swirlflow experiment by Groisman and Steinberg
[21].

rotation rate. Visualization for the experiment was carried out by feeding the fluids

with a fluorescent dye. Fig 5.2 shows the snapshots suggesting the emergence of

chaotic flow that is captured by the spatial and temporal spectra shown in Fig 5.3.

This broad range of spatial and temporal frequencies is reflective of fluid motion’s

spatial and temporal scales. Groisman and Steinberg [21] reported that the power, P

of fluctations is fitted by a power law, P ≈ f−3.5 over about a decade in frequencies,

f as shown in Fig. 5.3. Hence, this viscoelastic phenomenon is accompanied by two

most common features that are usually associated with turbulence:

• An increase in the flow resistance.

• Excitation of a broad range of spatial and temporal scales.

5.2 Numerical simulation

In an attempt to recreate the experiment that lead to the discovery of elastic

turbulence, an exact geometric domain has been created. This flow system consists

of a fixed enclosed circular cylinder of Radius Ro = 43.6 mm and depth D = 10 mm

with a lid whose radius Ri = 38 mm is smaller than that of the cylinder the liquid is
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Fig. 5.3: Power spectra of velocity fluctuations taken at different shear rates γ̇ =
1.25, 1.85, 2.7, 4.0,& 5.9 s−1 reported by Groisman and Steinberg [21]

contained in. This lid is set to rotate with a constant angular velocity Ω. The liquid

properties chosen for the numerical simulation are exactly the same as those in the

experiment carried out by Groisman and Steinberg [21]. The density of the fluid is

ρ = 4240 kg/m3. The dynamic solvent(of the polymer) viscosity is µs = 0.324 Pa-

s, and the polymer added in the experiment is polyacrylamide at a concentration

of 80 ppm by weight. The total viscosity of the solution is µ = 0.424 Pa-s. The

relaxation time, λ was estimated to be around 3.4 s. The retardation ratio is defined

as β = µs/µ

Before moving on to the details of the problem formulation, it is necessary to

introduce the relevant non dimensional numbers and their definitions with respect to

current numerical simulations. The characteristic shear for the given flow is ΩRi/D,

The Weissenberg number which is defined as the ratio between relaxation time scale

and shear time scale is given by Wi = λΩRi/D. The Reynolds number is defined as

Re = (ρΩRiD)/µ. For a swirling flow such as this, there are two significant shear

rates in consideration, γ̇θr and γ̇θz. Since we have picked a geometry in which the
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Fig. 5.4: Schematic of the rotating plate experiment

radius Ri is greater than depth D, it is assumed that the characteristic shear rate

γ̇θz = ΩRi/D is the larger of the two. The elasticity number which is defined as

El = Wi/Re for the current consideration turns out to be El = λµ/ρD2.

5.3 Problem formulation

The objective is to simulate the flow of an isothermal, incompressible viscoelastic

fluid in a fixed closed cylinder at low Reynolds numbers and high Weissenberg num-

bers. As mentioned earlier, the purpose behind keep the Reynolds number low is to

reduce the inertial effects in the flow. The domain is assumed to be completely filled

with fluid and the lid is impulsively set to rotate with a constant angular velocity Ω.

The geometry of the flow is sketched in Fig. 5.4.

5.4 Governing equations

Since, the viscoelastic fluid is assumed to be incompressible, the mass conserva-

tionimplies equation (5.1).

div(u) = 0 (5.1)
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Like discussed previously, FENE-P model shall remain the choice for modeling visco-

elasticity of the polymer solution. The momentum equation is given by equation 5.2.

ρ
Du

Dt
= − ∂p

∂x
+ div

(
µs
∂u

∂x

)
+ div(τ p) (5.2)

The evolution equation of the conformation tensor is given by equation 5.3.

DC

Dt
=
(
∂u

∂x

)T
C +C

(
∂u

∂x

)
− 1
λ

[f(R)C − I] (5.3)

Also the polymeric stress τ P is given by the following equation:

τ p = µp
λ

[f(R)C − I] (5.4)

f(R) = L2
0−3

L2
0−R2 where R2 is the trace of C

The momentum equation that is given in equation 5.2 follows from the assumption

that stress in a viscoelastic fluid can be linearly split into the sum of solvent stress

(which is Newtonian) and the additional polymeric stress. The polymeric stress can

be obtained from equation (5.4) which is dependent on the conformation tensor C.

The evolution equations as discussed in section. 3.3 can be solved using the user-

defined scalar functionality of ANSYS-FLUENT. Since this simulation of swirling

flow is expected to have a high shear resulting in a high Weissenberg number, the

simulation is expected to suffer from the so-called ‘high Weissenberg number prob-

lem.’ The 3D version of the log-conformation reformulation has been implemented by

writing the appropriate user-defined functions in C-language. Once the conformation

tensor is obtained, the polymeric stresses are determined from equation (5.4).
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Fig. 5.5: Mesh used for the simulation

5.5 Boundary conditions and mesh

The mesh was created using an exclusive CFD meshing software called Ansys

ICEM. The mesh used for simulation has 1596 × 14 cells. The domain has been

divided into 14 cross sections parallel to the rotating disk. Each such section has

1596 elements, making it a total of 22344 cells. The total volume of the domain is

50240 mm3. The minimum and maximum volume of the cells are 1.123267 mm3 and

3.955476 mm3 respectively. The time step for the simulation was chosen to be 0.01s.

The boundary Conditions of the simulation are as follows:

• Bottom disk: no slip condition and is at rest.

• Side Wall: no slip condition and is at rest.

• The top disk has an inner disk of Ri = 38 mm, which is the lid that is impul-
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sively set to rotate at constant angular velocity.

• Initial condition: the fluid is assumed to be at rest at the beginning of the

simulation.

Note that a no-flux boundary condition has been imposed on the conformation tensor

components.

5.6 Results and analysis

The two most common features that are associated with the chaotic motion of

fluid particles are an increase in resistance to the flow and excitation of several time

and length scales. The motivation behind the simulation is to capture both the

mentioned features qualitatively and numerically. To estimate the increase in flow

resistance, the average shear stress has been computed from calculating the torque

on the top plate as shown in the equation below.

τavg

∫ Ri

0
r(2πr)dr =

∫ Ri

0
τzθr(2πr)dr (5.5)

τzθ is the wall shear stress. Quantifying the excited time scales will constitute the

latter part of this chapter.

Since the phenomenon of elastic turbulence occurs at a relatively high Weis-

senberg number, it is necessary to determine the range that will allow converging

solutions before the onset of the high Weissenberg number numerical problem. Al-

though the problem has been tackled to a large extent by the log-conformation

tensor reformulation technique, it is important to ascertain the maximum possible

Weissenberg number that the developed code can simulate for the target geometry.

This is achieved by carrying out a series of simulations with varying Wi, the details

of which are listed in the Table 5.1. The Wi is varied by varying the angular velocity
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of the upper plate. For every simulation run, a corresponding Newtonian case has

been run for comparison. The calculated value of shear stress is expected to reach a

steady-state since the lid is set to rotate at a constant angular velocity.

Table 5.1: List of parameters for the simulations performed with a fixed Ω

No. Ω(s−1) γ̇(s−1) Re Wi τ(Pa) τN(Pa)
1 0.263158 1 1 3.4 0.39968 0.42355
2 0.315789 1.2 1.2 4.08 0.47968 0.52139
3 0.368421 1.4 1.4 4.76 0.55971 0.62455
4 0.421053 1.6 1.6 5.44 0.63978 0.73205
5 0.473684 1.8 1.8 6.12 0.71990 0.84168
6 0.526316 2 2 6.8 0.80007 0.95337
7 0.578947 2.2 2.2 7.48 0.88029 1.06887
8 0.631579 2.4 2.4 8.16 0.96057 1.18803
9 0.684211 2.6 2.6 8.84 1.04092 1.31188
10 0.736842 2.8 2.8 9.52 1.12134 1.43969
11 0.789474 3 3 10.2 1.20183 1.57072
12 0.842105 3.2 3.2 10.88 1.28241 1.69776
13 0.894737 3.4 3.4 11.56 1.36307 1.81277
14 0.947368 3.6 3.6 12.24 1.44388 1.98169
15 1 3.8 3.8 12.92 1.52468 2.12174
16 1.052632 4 4 13.6 1.60563 2.27873
17 1.473684 5.6 5.6 19.04 2.2578 3.68005
18 1.763158 6.7 6.7 22.78 2.7691 4.68401

Fig. 5.6 shows the plot of average shear stress, normalized with the corresponding

average Newtonian shear stress plotted against the respective shear rate. It is inter-

esting to note that there is a linear trend to this plot. This linear trend continues

to exist till a shear rate value of γ̇ ≈ 7s−1. Beyond this range the solution begins to

diverge.

Row 17 and row 18 from Table 5.1 correspond to shear rate values of γ̇ = 5.6s−1
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Fig. 5.6: Normalized steady state shear stress values with varying shear rate

and γ̇ = 6.7s−1 respectively. These two shear rates are at the edge of the simula-

tion limit of the solver and have been chosen due to the development of interesting

features. Fig. 5.9 shows the comparison of the evolution of the shear stress val-

ues between viscoelastic and Newtonian simulation at γ̇ = 5.6s−1. The normalized

stress value at this shear rate was found to be 1.63. Fig. 5.7a and Fig. 5.7b show

contours of tr(C), from top view and side view respectively. This tr(C) which rep-

resents the measure of average extension of the polymers molecules. An upper limit

of L2
0 = 10, 000 has been imposed on tr(C) in the FENE-P model used for the sim-

ulation. Since, the rotating lid is smaller than the fluid containing cylinder, it is

reasonable to expect that the maximum tr(C) occurs at the edge of the lid, where

highest velocity gradients occur. Fig. 5.7a and Fig. 5.7b justify this expectation.

The steep gradients of the polymeric stress at the edge of the rotating disk could be

resolved with the help of log-conformation reformulation. A closer look at the aver-

age shear stress calculated versus time plot suggests the emergence of fluctuations

in the flow as shown in Fig. 5.10. These fluctuations appear to have a wide range of
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time scales. The average stress is converted to the frequency-domain using the FFT

functionality in Matlab to identify the frequency components in the flow, as shown

in Fig. 5.11. The frequency-domain plot in Fig. 5.10 appears to suggest a strong

periodic behavior due to a dominant frequency, which is reflected in the frequency

domain plots made.

Fig. 5.14 shows the comparison of the evolution of the shear stress values between

viscoelastic and Newtonian simulation at γ̇ = 6.7s−1. It is important to note that

this simulation case is at the edge of the shear rate range in which the simulations

can be performed with converging solutions. Fig. 5.14 shows the comparison of the

evolution of the shear stress values between viscoelastic and Newtonian simulation

at γ̇ = 6.7s−1. Fig. 5.14 shows the emergence of a distinct oscillatory behavior in

the flow. This apparent oscillatory behavior continues with time. The time-averaged

average shear stress value, however, did not seem to change at 4.68401 Pa, resulting

in a normalized average shear stress value of 1.7. Fig. 5.12a and Fig. 5.12b show

contours of tr(C), from top view and side view respectively. As pointed out in the

previous case, steep gradients in the tr(C) have been observed. A closer look at the

emerged oscillations suggests the existence of fluctuations of a wide range of time

scales, as shown in Fig. 5.15. The frequency-domain plot in Fig. 5.15, like in the

previous case, suggests a strong periodic behavior with a dominant frequency.

A comparison of frequency-domain spectral density plots of the average shear

stress for the two cases is given in Fig. 5.17. The dominant frequency of the flow

with γ̇ = 5.6s−1 is close to 0.05 Hz (red line), whereas the dominant frequency of the

flow with γ̇ = 6.7s−1 is close to 0.1 Hz (blue line). Both cases show the existence of

several low-amplitude, high-frequency time scales that are excited. Fig. 5.17 can be

compared to the spectral density plot provided by Groisman and Steinberg [21] given

in Fig. 5.3. It is important to note that the y-axis in Fig. 5.3 is the power spectra of
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the brightness profiles of the light reflecting particles used in the original experiment

conducted by Groisman and Steinberg [21], marked as arbitrary units. A direct

comparison can not be made quantitatively; however, the frequency scale seems to

be in good agreement with the experimental results. Beyond the dominant frequency,

it is observed that there exists a region of a gradual decrease in the amplitude. This

observation is consistent with the results reported by Groisman and Steinberg [21].

The oscillatory behavior is most likely caused due to the origin of elastic waves

throughout the flow geometry of the viscoelastic fluid. An “elastic wave” is a me-

chanical disturbance that propagates through a material, causing oscillations of the

fluid particles of that material about their equilibrium positions. The wave speed of

an elastic wave in an elastic medium can be determined by the relationship
√
E/ρ,

where E is the elastic modulus, and ρ is the density of the solution. Fig. 5.17

suggests the existence of elastic waves of different wave speeds throughout the fluid

domain. Through the simulations, it has been observed that a strong elastic wave

originated at the edge of the rotating top plate. It is suspected that the dominant

frequency corresponds to the elastic wave originating at the edge. For linearly elastic

materials, the elastic modulus E of the viscoelastic medium depends on the poly-

mer viscosity µp and the relaxation time constant λ. However, in reality, the elastic

modulus is found to increase with an increase in the magnitude of the stretch of the

polymer. The FENE-P model has been employed to capture the non-linear effect

of the polymer solution numerically. From the point of view of the FENE-P model,

the value of the Peterlin function f(R) increases with an increase of tr(C). tr(C),

as discussed in earlier chapters, can be viewed as a measure of the elastic stretch of

the elastic component of the fluid. The large velocity gradient at the edge of the

rotating plate causes the maximum value of tr(C), and a maximum value of f(R)

consequently.
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In the FENE-P model, the polymer viscosity µp is replaced by f(R)µp. So, an

increase in the effective elastic modulus and an increase in the wave speed of the

elastic waves formed can be attributed to the increase in the value of f(R). As

pointed out earlier, the maximum value of tr(C) and, as a consequence, maximum

wave-speed is found to occur at the edge of the rotating disk due to the formation

of steep gradients of velocity. Similarly, between the two cases that were simulated

(γ̇ = 5.6 s−1 and γ̇ = 6.7 s−1), a higher shear rate corresponded to a higher wave

speed, resulting in an increase in the dominant frequency as shown in Fig. 5.17. This

line of thought could also be used to explain the spectral density plot provided by

Groisman and Steinberg [21] given in Fig. 5.3.

All the simulation cases performed up to this point have been carried out at a

constant rotation rate. In the original experiment, Groisman and Steinberg [21],

the rotation rate was gradually increased, leading to a sudden, drastic increase in

the measured stress on the top plate. Numerically however, although an increase of

calculated average stress on the top plate was observed, it is essential to explore the

effect of a gradual increase in the rotation rate. To this cause, a case with the shear

rate varying with time t as γ̇ = .0210t has been performed. Similar to the previous

cases, a simulation of the corresponding equivalent Newtonian case has been carried

out as well.

A comparison of the shear stress with time has been shown in Fig. 5.18. A

plot of the corresponding normalized shear stress is shown in Fig. 5.19. For very low

shear rates, the average shear stresses calculated from the viscoelastic and Newtonian

simulations tend to be close to each other; this is reflected in Fig. 5.19. For shear

rate values of less than 1, the normalized average shear stress tends to be close to 1.

In the next range where the shear rate is between 1 s−1 and 4 s−1, the normalized

average shear stress shows a linear trend. This is consistent with our observation from
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Fig. 5.6. Beyond γ̇ ≈ 7s−1, an intense oscillatory behavior is observed. A dramatic

increase in the normalized average shear stress value begins to develop. The solution

suffers from divergence quickly after this transition. A possible solution to the issue

of divergence that occurs beyond γ̇ ≈ 7s−1 is using a finer grid and decreasing the

time step. As it was pointed out earlier, steep gradients of the conformation tensor

develop at the edge of the rotating lid, giving rise to steep gradients of polymeric

stresses.

In conclusion, the two primary features, namely, an increase in stress and emer-

gence of fluctuations of different time scales, as reported by Groisman and Steinberg

[21], have been successfully reproduced through numerical simulations. The flow

behavior observed via numerical simulations when the inertial forces are negligibly

small, suggests that the above-mentioned features were caused by a mechanism asso-

ciated only with the elasticity of the fluid. Though an overall increase in normalized

average stress was observed numerically, the original experiment reported a much

higher growth.
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(a) Top view

(b) Side view

Fig. 5.7: Contour plot of tr(C) at γ̇ = 5.6s−1
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(a) Newtonian (b) Viscoelastic

Fig. 5.8: Contour plot of shear stress at γ̇ = 5.6s−1
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Fig. 5.9: Comparison with the corresponding Newtonian avg stress at γ̇ = 5.6s−1
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Fig. 5.10: A closer look of τavg at γ̇ = 5.6s−1

10
-1

10
0

10
1

10
-6

10
-4

10
-2

Fig. 5.11: Frequency-domain plot of τavg at γ̇ = 5.6s−1
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(a) Top view

(b) Side view

Fig. 5.12: Contour plot of tr(C) at γ̇ = 6.7s−1
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(a) Newtonian (b) Viscoelastic

Fig. 5.13: Contour plot of shear stress at γ̇ = 6.7s−1
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Fig. 5.14: Comparison with the corresponding Newtonian avg stress at γ̇ = 6.7s−1
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Fig. 5.15: A closer look of τavg at γ̇ = 6.7s−1
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Fig. 5.16: Frequency-domain plot of τavg at γ̇ = 6.7s−1
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Fig. 5.17: A comparison of the spectral density of τ
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Fig. 5.18: Comparison with corresponding Newtonian avg stress at γ̇ = 0.0210t
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Fig. 5.19: Normalized avg stress at γ̇ = 0.0210t
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6. OTHER RELATED WORK*

The focus of this research has been developing a reliable viscoelastic model

that can simulate the strange phenomenon called elastic turbulence. The primary

strategy has been to use finite volume software called ANSYS-FLUENT and change

its constitutive equations to suit our calculations, details of which have been discussed

in previous chapters. The biggest asset of this method is the flexibility it provides

with respect to the geometries that can be used for simulation. However, this strategy

suffers from the following drawbacks:

• The discretization schemes that are based on polynomial approximations can

not capture the steep gradients that could arise in the conformation tensor

components.

• In general, the hyperbolic nature of the C evolution equation would mandate

that no boundary condition be specified at the wall. However, due the presence

of diffusion that is inherent to the Finite Volume schemes and also due to added

diffusion for stability the accuracy of the solution is compromised.

• It is difficult to handle flows with Wi > 5 (which is resolved to some extent

with LCR formulation).

6.1 Pseudo-spectral codes

The answer to the difficult problems posed, could lie in employing an alternate

strategy, namely the ‘pseudo-spectral’ method. This method uses Fourier modes in

*Parts of this chapter are reprinted with permission from “Dynamics of a single buoyant plume
in a fene-p fluid”, Bhaskar Vajipeyajula, Tejasvi Khambampati, and Robert A Handler, 2017,
Physics of Fluids, 29(9):091701.
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x, z direction and Chebychev modes in the vertical y direction. The ‘pseudo-spectral’

technique addresses the most crucial drawback of diffusion to a large extent. How-

ever, this technique can not be used for curvilinear geometries. This is a major

hurdle, since all experimental sightings of elastic turbulence were reported only in

curvilinear geometries. Instead of curvilinear geometries, one can make the stream-

lines curvilinear by solving a problem involving a bouyant plume by imposing a

Guassian temperature profile at the bottom wall in a channel. Another important

merit of this method is that it can be used to capture or resolve much higher gra-

dients in the C components which permits us to work with much higher Wi. This

temperature distribution should be expected to cause fluid to rise vertically due to

buoyancy forces.

6.2 Boundary condition

The simulated domain lengths are Lx = πh, Ly = 2h, Lz = πh. The boundary

conditions on the bottom wall and the top wall are no slip, no-flux on C, θ =

θmaxe
−f(x)e−γy and no slip, no-flux on C, θ = 0 respectively. Periodic boundary

conditions are imposed in the x-direction, z-direction, also gravity g is in the negative

y-direction. The model described above gives rise to seven non-dimensional numbers:

a Rayleigh number Ra = (gαθmaxD3)/(ν0αT ), a Reynolds number Re = (UD)/ν0,

a Weissenberg number Wi = (λU)/D, a Prandtl number Pr = ν0/αT , a Schmidt

number Sc = ν0/αp, the maximum extensional length, L, and β. The time scale

t∗ = D/U . In these definitions the velocity scale is given by U =
√
gαθmaxD where

D = 2h. In all simulations to be presented in this chapter, the Weissenberg number

was varied from Wi = 0 (Newtonian case) to Wi = 20, while keeping all other non-

dimensional number fixed as follows: Ra = 2.53× 106 , Re = 570 , Pr = Sc = 7.78

, L = 100, and β = 0.9.
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6.3 Results and discussion

In Fig 6.1, vector flow fields superimposed upon the corresponding temperature

fields for Wi = 0 are shown at a number of time instants in the x − y plane for

z = π/2, which corresponds to the middle of the computational domain. Here and

subsequently, time t is made non-dimensional by t∗ = D/u∗. At time t = 0, for

which the flow is at rest, the temperature field exhibits a maximum at the bottom

boundary at x = π/2, which shall be referred to as hotspot. This temperature

distribution should be expected to cause fluid to rise vertically due to buoyancy

forces. This is in fact what is observed at t = 100, 200, and 300, where a plume

or jet of fluid is seen rising from the center of the domain. Due to the finite size

of the domain and the periodic boundary conditions imposed in the x-direction, the

flow forms essentially a system of two large counter-rotating vortices as can be seen

clearly in the fields in Fig 6.1. It is important to note that this flow is nominally

two-dimensional since the temperature field at the bottom wall varies only in the

x-direction, resulting in a flow that should depend only on x and y.

This kind of thermal forcing produces a so-called convergent flow at the bottom

wall (x = π/2, y = −h) in which ∂v/∂y > 0 and a divergent flow at the top of the

domain (x = π/2, y = h) for which ∂v/∂y < 0. These flows are formed, respectively,

as a result of the rising plume at the bottom and the impact of rising fluid upon

the top of the domain. It is evident that from the Fig. 6.1 and Fig. 6.2 that the

structure of the temperature field is significantly altered at t = 400, compared to

the thermal field at t = 20, by the convergent flow field at bottom wall. This is a

direct result of the advection of warmer fluid inward towards the point of maximal

convergence at x = π/2, y = −h, leading to a thinning of the thermal layer thickness.

The maximum stretching of the polymer molecules is observed at the centre of the
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geometry since the hotspot induces large velocity gradients close to itself. This can

be seen in Fig. 6.3

Fig. 6.1: Vector field of velocities, colored by θ/θmax at t = 20 for Wi = 20

The high Ra number for this flow indicates that the flow is turbulent (iner-

tial). The evolution of the heat flux at the bottom wall of the domain, defined

as q(t) = qD/(kθmax) where k is the thermal conductivity, q = −k∂θ/∂y|y=−h,

θ = 1/A
∫
A θdxdz is the horizontally averaged temperature, and A = LxLz. In the

transient period 0 ≤ t < 10 the heat flux rises rapidly from its initial value as the

thermal boundary layer thins for each Wi. A quasi-steady state is reached in each

case, with oscillations evident in the heat flux for Wi ≤ 2, and an apparent com-

plete elimination of these oscillations for higher Wi. The time averaged heat flux,

q
′′ = 1/(t1 − t0)

∫ t1
t0
qdt, shown in Fig 6.4, decreases monotonically for Wi > 4, with

a maximum reduction of about 28 % percent compared to its Newtonian value. This

compares reasonably well with the result of Dubief [15], who found about a 20 % heat

transfer reduction for Wi = 20 for L = 100 (see figure 1 of [15]). It is established
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Fig. 6.2: Vector field of velocities, colored by θ/θmax at t = 400 for Wi = 20

that the presence of polymer additives in turbulent flows tends to reduce the turbu-

lent drag. This reduction of turbulent drag is closely associated with a reduction in

mixing that is otherwise enhanced by turbulence [19] [35] [24] [25] [42] [5] [31] [41]

[49].

However, in the region corresponding to 2 < Wi < 4 (Fig 6.4), a dramatic increase

in heat flux was observed. This spike in the heat flux calculated was accompanied by

strong oscillations through out the flow. These oscillations are suspected to be similar

to the elastic waves generated in the swirling flow problem discussed in the previous

chapter. The calculated heat flux can be thought of as an index for the amount of

mixing in the flow and the sudden surge in its value underlines the emergence of

competing elastic stresses. This is an interesting result and could throw some more

light on the onset of elastic turbulence. These results are preliminary and need to

be investigated with prudence.
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Fig. 6.3: Contours of tr(C) at t = 400 for Wi = 20
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Fig. 6.4: Dimensionless time average heatflux q′′ vs Wi
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7. CONCLUSION

The primary purpose of this dissertation is to determine whether or not, in three

dimensions, elastic turbulence will emerge naturally from the discussed constitutive

equations in various geometries. Towards this purpose the following steps have been

taken:

The first part of chapter 1 provided a detailed overview of a phenomenon called

elastic turbulence and its properties, distinguishing it from the regular inertial tur-

bulence. The non-dimensional number called the Weissenberg number (Wi = λV/L)

was introduced as a parameter found to have a strong correlation with the emergence

of elastic turbulence. An account of the original experiment by Groisman and Stein-

berg [21], which lead to the discovery of the phenomenon, was provided. Potential

advantages and implications in the industry were discussed. The absence of numer-

ical simulations in a 3D domain, replicating the occurrence of elastic turbulence in

the real world, is brought to the readers’ attention.

Since elastic turbulence is a viscoelastic phenomenon that occurs in the flows

of dilute polymer solutions, the second part of chapter 1 focuses on the origin of

different types of spring-dashpot viscoelastic models. Here, the FENE-P model was

introduced and identified as the model for the numerical simulations of interest for

this research. The FENE-P model is based on a positive-definite tensor called the

conformation tensor C. The definition of C and its physical importance was pro-

vided.

In Chapter 2, the details of the derivation of the FENE-P model within the

context of a thermodynamic perspective are provided. The derivation is accomplished

by maximizing the rate of entropy production for a hyperelastic material. Here an
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analogy between the conformation tensor of the FENE-P model and the left Cauchy-

Green strain from the evolving natural configuration is established.

Chapter 3 presented the details of the computational technique developed for

solving the constitutive equations of the FENE-P model in ANSYS-FLUENT with

the aid of user-defined functions. Exact solutions for steady fully developed lami-

nar pipe flow for a FENE-P fluid were derived and compared against the numerical

solution for the same and were found to be in good agreement. At higher Wi, the

developed technique suffered from the so-called ‘high Weissenberg number numerical

problem,’ causing a numerical breakdown. The divergence is attributed to the in-

ability of the polynomial-based approximations to represent the conformation tensor

profiles, which could be exponential in regions of high deformation rate.

In chapter 4, the numerical stabilization scheme called the log-conformation re-

formulation proposed by Fattal and Kupferman [17] to overcome the challenge posed

by the ‘high Weissenberg number numerical problem’ was discussed in detail. This

method involved the transformation of the conformation tensor into the log-domain

and solving the equivalent evolution equation in the same. The procedure to em-

ploy the log-conformation reformulation technique to model the flow of a FENE-P

fluid in ANSYS-FLUENT was detailed. The reformulation was found to solve the

‘high Weissenberg number numerical problem’ to a large extent, as evidenced by the

results provided at the end of the chapter.

Chapter 5 focused on recreating the original swirling flow experiment conducted

by Groisman and Steinberg [21] that lead to the discovery of elastic turbulence using

the log-conformation technique developed in chapter 4. The two essential features

that characterize elastic turbulence, namely an increase in stress and excitation of

various time scales were observed and compared to the experimental results. Elastic

waves originated throughout the flow domain at sufficiently high shear rates. The
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emerged fluctuations span a range of frequencies with one clear dominant frequency.

Chapter 6 explored an alternate strategy, namely the ‘pseudo-spectral’ method,

to model for numerical simulation of viscoelastic fluids. The effects of polymers on

heat transfer by investigating the dominant kinematical feature of three-dimensional

turbulent Rayleigh-Benard convection, namely, the buoyant plume, were studied

using the spectral method.

7.1 Suggestions for future work

In the flow of liquids with polymer additives, one would like to predict all features

of elastic turbulence with accuracy. For this purpose, numerical investigation of such

processes has the potential to guide the development of augmented thermal transport

for a variety of applications at very low Reynolds numbers. Numerical and analytic

models of related physical phenomena, especially thermal transport, will then be a

natural product of the effort. Such flows, and the devices associated with them,

are vital for applications in areas such as pharmaceutics, medicine, heat transfer,

biomedical engineering, and electronics cooling.

Using numerical simulation, can elastic turbulence be produced in flows with rec-

tilinear streamlines in realistic geometries? Addressing this question is relevant to

the present study because the answers will guide the extent to which elastic tur-

bulence can be used to enhance thermal transport in very simple geometries, which

should be relatively inexpensive to manufacture. For example, can such thermal aug-

mentations be achieved with rectilinear streamlines, and if so, what is the maximum

size of devices in which this can be achieved? It is only now, with the advent of the

log-reformulation method and its successful numerical implementation through finite

volume methods, that such questions can be seriously addressed.

This leads to the major goal to be addressed for future work which is to determine:
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(a) to what extent elastic turbulence enhances thermal diffusivity and momentum

transport, (b) how this enhancement compares to the known enhancement of inertial

turbulence, and (c) what kind of influence does the geometry of the flow have? To

date, these questions remain unanswered.
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