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ABSTRACT

Scale-resolving simulations (SRS) of turbulence offer a computationally viable alternative to

direct numerical simulations (DNS) and large eddy simulations (LES) for many flows of engi-

neering interest. SRS seeks to achieve significant computational cost reduction over LES (large

eddy simulations) by selective resolution of key coherent structures and modeling the remainder

of the flow field using higher fidelity closures. SRS aims to provide significant improvements

over Reynolds-averaged Navier-Stokes (RANS) method with only a reasonable increase in com-

putational effort. The objective of this thesis is to advance bridging scale-resolving simulations to

a state-of-the-art computational tool for the analysis, comprehension and prediction of turbulent

flows of engineering interest. Toward this end, this thesis addresses key challenges facing SRS in

near-wall subgrid closures, spatially-evolving flows and transition to turbulence. Scale-resolving

simulations can be broadly classified into zonal (Z-SRS) and bridging (B-SRS) approaches. In

Z-SRS different subgrid closure methods (e.g., RANS and LES) are used in different parts of the

computational domain. One the other hand, B-SRS uses the same closure approach over the entire

computational domain. The physical resolution (cut-off scale) of the subgrid model is controlled

by changing the closure coefficients in a manner that is consistent with turbulence physics. The

partially-averaged Navier-Stokes (PANS) method is a B-SRS approach that employs RANS-type

two-equation (or better) closures that are suitably adapted to represent the required degree of spec-

tral resolution. Three studies are undertaken in the thesis to advance PANS in wall-bounded flows

with spatially-evolving turbulence and laminar-to-turbulence transition. Although all of the de-

velopment is in the context of PANS, the findings of the thesis are generally applicable to other

SRS methods. In the first study, equilibrium boundary layer (EBL) analysis is performed on the

filtered turbulence to drive key closure models for scale resolving simulations (SRS) of turbulence.

The objective is to convey the advantages of RANS near-wall closure modeling to SRS method-

ology. In the context of two-equation SRS turbulence closure, the EBL analysis of filtered-flow
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fields leads to closure models for turbulent transport of unresolved kinetic energy and dissipation

as a function of degree of resolution. The resulting model is then employed to perform SRS-

PANS computations of a fully developed turbulent channel flow. It is demonstrated that PANS

computations yield flow-field statistics that are consistent with filtered-field closure modeling as-

sumptions. (This work has appeared in (1)). The second study aims to enhance the applicability

and accuracy of SRS-PANS in fully-developed wall-bounded spatially-evolving turbulent flows.

Scale resolving simulations of turbulence that employ two-equation subgrid closures require phys-

ically consistent boundary conditions for unresolved kinetic energy and dissipation (or frequency).

Hence, the second work aims to develop accurate inflow turbulent boundary layer description by

(i) adapting recycling/rescaling technique and (ii) extending equilibrium boundary layer scaling to

partially resolved inflow fields. The proposed scheme is employed to compute a spatially-evolving

zero pressure gradient flat plate boundary layer (ZPGFPBL) over a continuous range of Reynolds

numbers based on the momentum thickness (650 ≤ Reθ ≤ 1434). The SRS results are then eval-

uated in the following categories: wall coefficients; mean-flow profiles; second-moment profiles;

high-order statistics; and multi-point correlations. The third study is a preliminary investigation

of adapting SRS in general, and PANS in particular, for simulating the laminar-turbulent natural

K-type transition. The goal is to simulate key aspects of transition behavior in boundary layers at

an affordable computational cost, which is significantly lower than that of LES. The development

ensures that the appropriate physics, Tollmien-Schlichting (TS) waves and transport of momentum

through the ejection and sweep mechanisms, are reasonably simulated in the near-wall region. The

departure of the skin friction coefficient from the laminar curve, along with its overshoot in the

post-transition regime are well-captured. The development of statistics into the fully-developed

equilibrium state are confirmed.
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1. INTRODUCTION

Turbulence is found almost everywhere in our daily life. It is inherently complex and pro-

foundly affects a broad range of engineering applications. Design and optimization of facilities in

different sectors, e.g., weather and climate, power and energy, and global ocean circulation, rely

on the accurate prediction of transitional and turbulent flow features. Depending on the type of

application, its presence can be either beneficial or detrimental. Turbulence, for example, helps

air and fuel mix more efficiently in combustion chambers. It energizes the boundary layer over

moving bodies and boost tsubhe resistance against the separation. On the other hand, compared to

laminar flow fields, turbulence increases the friction drag acting on the streamlined bodies.

One of the key features that renders computation and comprehension of turbulence complex is

the wide range of scales of motion- length and time scales. Non-linearity, non-locality and chaotic

character of turbulence make it one of the most challenging problems not only in fluid dynamics,

but also in the whole classical physics.

There are three approaches established for analyzing turbulent flows: (i) Reynolds averaged

Navier-Stokes (RANS) (11), (ii) large eddy simulation (LES) (12), and (iii) direct numerical simu-

lation (DNS) (13). As shown in Figure 1.1, RANS and DNS represent the two extremes of a typical

turbulent energy spectrum. In RANS, only the mean flow field is resolved, and all the turbulent

motion is modeled. This justifies the affordability of RANS simulations for engineering problems.

However, resolving no unsteadiness in the flow field can affect the level of accuracy. DNS, on the

other hand, resolves all the temporal and spatial scales of turbulence for a specific level of accu-

racy. Clearly, the high accuracy of DNS solution comes with an excessive computational cost. For

the sake of computational saving, LES explicitly resolves large energy containing turbulent eddies

and model the subgrid scales. In LES, the effects of small subgrid scales on the resolved scale is

modeled using subgrid closures. The reason for modeling only small scales emanates from the fact

that they contain low energy level and show somehow universal dynamics. Besides, they require a

very fine resolution to be resolved.
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RANS is computationally straightforward, but its accuracy is not adequate for many industrial

applications. DNS and LES, on the other hand, provide accurate solutions but are only computa-

tionally feasible for a small subset of canonical flows.

1.1 Scale-resolving simulations

For industrial applications, the need for fast turn-around while maintaining maximum accuracy

motivates the need for innovative and robust scale-resolving turbulence models. In recent years,

scale-resolving simulations (SRS) have attracted much attention. SRS is an accuracy-on-demand

type of turbulence computations. In order to achieve adequate results at a reasonable computa-

tional cost, SRS selectively resolves high energy containing turbulence structures and models the

remainder time and length scales. In SRS, the physical completeness of Navier-Stokes equations

is merged with the computational affordability of turbulence modeling. Hence, the goal of SRS

is to judicially resolve the key coherent, non-universal features of the given flow and to model

residual ‘canonical’ turbulence fields with a reasonable closure to achieve optimal cost-accuracy

balance. Exclusive dependence on the closure model in coherent structure region can lead to large

errors, and excessive resolution in regions of background turbulence will increase computational

cost without commensurate increase in accuracy. High fidelity closures can decrease the need for

resolution and yield more accurate predictions at lower levels of resolution.

SRS techniques can be classified into zonal and bridging methods. Zonal-SRS (Z-SRS) ap-

proaches (14; 15; 16) combine RANS and LES in different parts of the computational domain.

Bridging SRS (B-SRS) (17; 18; 19; 20), on the other hand, employs the same closure model – with

scale-dependent coefficients – throughout the entire domain. The focus of this thesis is partially

averaged Navier-Stokes (PANS), which is a bridging SRS (B-SRS) approach.

PANS seeks to achieve computational advantage over conventional LES by employing higher-

order closure which, in turn, allows resolving narrower range of coherent large scales (Figure 1.1).

PANS adapts two-equation RANS or Second Moment Closure (SMC) models to account for the

subfilter scales residing in the flow field. Hence, the modifications made over the years for the

RANS two-equation closures can be transferred to the PANS subfilter modeling. In PANS, the
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Figure 1.1: A typical PANS energy spectrum.

subfilter length and velocity scales are obtained from the two-equation closure. The various PANS

features and the corresponding physical/mathematical principles are discussed below.

• In PANS, the partition between resolved and unresolved scales of motion is characterized

in terms of the fractions of unresolved kinetic energy and (specific) dissipation (Figure 1.1).

PANS solves evolution equations for subgrid kinetic energy and dissipation (or frequency)

to obtain length and velocity scales of the subfilter field. Hence, the fidelity of subfilter

modeling is associated with a complete description of the unresolved field. While this com-

pleteness is missed in most other SRS approaches, leading to important deficiencies.

• All of the closure modeling theories (e.g., rapid distortion theory, representation theory),

physical classification (e.g., pressure-strain correlation physics) and mathematical constraints

(e.g., realizability) developed over the decades for RANS and Reynolds stress closure model

(RSCM) principles can be carried over to PANS (21; 22).

• Spectral scaling laws can be invoked to specify closure model coefficients as a function of

degree of scale resolution or cut-off length scale (18).

• The PANS unsteady flow features and multi-point statistics have been demonstrated to be

consistent with Kolmogorov scaling laws (23).
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• RANS to LES transition in the boundary layer is accomplished by scaling down equilibrium

boundary layer analysis to cut-off scale energy dynamics. PANS inherently does not have a

log-layer mismatch (24).

So far, the PANS model has been used to compute many canonical, benchmark and complex aero-

dynamic flows with good success. This approach has already been well-documented for the tur-

bulent channel flow (1), flows over periodic hills (25), flows past square and circular cylinders

(26; 27), smooth flow separation (28; 29; 24), flow past bluff bodies (30), flow around a land-

ing gear configuration (31; 32), flow around a bulk carrier (33), and flow past a vehicle model

(34; 35; 36). Although PANS has been founded on a solid background, it still faces some chal-

lenges.

1.2 Challenges

The near-wall modeling of turbulent flow fields is one of the main challenges involved in the

scale-resolving simulations. PANS offers the mathematical framework and analytical techniques

to rigorously convey the physics incumbent in advanced RANS/RSCM methods to SRS subgrid

closures. The near-wall flow physics is amenable to one-point closure as has been demonstrated

by the success of RANS closures. LES and SRS subgrid closure models are yet to fully exploit

this advantage. Inadequate near-wall strategy leads to log-layer mismatch in LES and gray (RANS

to LES transition) area issues in Z-SRS methods.

It is well-accepted that the DNS study of coherent structures in turbulence takes an excessive

computational effort. The main question that has yet to be answered is Can wall-resolved PANS

capture the flow physics and structures adequately with much less computational effort compared

to DNS? If so, what is the required level of resolution? Toward this end, features of turbulence in

the subfilter scales have to be characterized by physics-based equations.

Prescription of perturbed inflow condition for spatially evolving turbulent flows is another im-

portant controlling measure which has not yet been addressed. In PANS, evolution of length and

velocity scales of unresolved turbulence is defined by two-equation closure. The prescription of
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modeled kinetic energy and modeled dissipation rate (or turbulence frequency) at the perturbed

inflow must be consistent with the resolved field to ensure the functionality of the model.

Although the concepts, developed in this research, are in the context of PANS method, the

fundamental findings will also benefit other SRS approaches.

1.3 Dissertation outline

This thesis is organized as follows. Chapter II provides a literature survey of previous works

relevant to the current studies. Chapter III presents the PANS methodology and identifies chal-

lenges which are addressed in this thesis. The development of PANS near-wall closure modeling

and application to turbulent channel flow at Reτ = 180, 550, 950 is presented in Chapter IV. Chap-

ter V discusses the development of consistent perturbed inflow for PANS and its application to

spatially evolving turbulent boundary layers in the range of 650 ≤ Reθ ≤ 1434. Chapter VI

presents the PANS simulation of laminar-to-turbulent K-type transition over a flat plate. The thesis

concludes with a summary of all important findings in chapter VII.
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2. LITERATURE SURVEY

2.1 Near-wall subgrid modeling

In chapter 4, we will develop a near-wall model for SRS computations. One of the main differ-

ences between PANS and LES is the nature of filtering. In LES, the filter size is commensurate with

the grid spacing, while in PANS the filter width is proportional to the resolution control parame-

ters. When it comes to real-world engineering applications, the high grid resolution requirements

in the near-wall region impose strenuous computational demands. Near-wall turbulence modeling

is a technique towards alleviating the strict resolution requirements of the viscous layer in SRS

(37). The ‘wall-modeled’ LES (WM-LES) is motivated using the equilibrium arguments of RANS

(38). There have been many attempts to reduce the LES computational cost at the wall by incorpo-

rating features of EBL into subgrid stress models (39; 40; 41; 42). Yang and Bose (38) argue that

the equilibrium wall model in turbulent channel flow results in reasonable agreement with DNS.

While the resulting WM-LES approaches have achieved success, there is opportunity for further

improvement of SRS models in the near-wall region.

The turbulent channel flow has already been extensively analyzed with Direct Numerical Sim-

ulations in (43; 44; 45). Theodorsen (46) is amongst the first who argue that structures similar to

‘horseshoe vortex’ exist in the wall-bounded turbulence. As to the dynamics of flow, there is a

rich body of literature on the arrangement of turbulence structures within the channel flow over

a wide range of Reynolds numbers (47; 48; 49; 50; 51) and for differnet types of applications

(52; 53; 54; 55; 56; 57; 58). The existence of vortex packets is considered a universal feature of

wall-bounded turbulence (48; 49). The visualization of coherent structures have been accomplished

either using highly accurate DNS experimentations or highly accurate experimental observations.

Adrian and Liu (49) report that visualization of even a single hairpin in a fully turbulent flow needs

a careful examination and is regarded as a tricky study. In the first study, the benchmark channel

flow problem has been chosen in order to demonstrate that PANS has the capability of capturing
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the flow physics in wall-bounded flows. Also, the visualization of hairpin packets using PANS is

sought.

2.2 Physical inflow boundary condition for spatially-evolving flows

In chapter 5 chapter, we will propose a physics-based perturbed inflow condition for the sim-

ulation of spatially-evolving turbulent flows. Flow dynamics of zero-pressure-gradient flat-plate

boundary layer heavily relies on the inflow characteristics (4; 59; 5; 60; 61; 62; 63). Regarding the

spatial analysis of turbulent boundary layers, there have been numerous techniques in literature in

order to drive the flow to fully-developed equilibrium state. Streamwise inhomogeneity in spatially

evolving flows have been treated using different techniques: (i) employing a precursor homoge-

neous channel flow simulation (64); (ii) using spatio-temporal cyclic condition in the streamwise

direction (4; 65) and (iii) implementing concurrent internally-mapped inflow condition (66).

Regarding the first approach, inflow is extracted from a precursor channel flow simulation and

introduced at the inlet of the main domain. Due to the one-way coupling, there is no information

transfer from the main to the precursor computation. Besides, the storage of a large amount of

information from the precursor simulation can be challenging (64). Also, the precursor compu-

tation might be as expensive as the main simulation which would not be reasonable for practical

applications.

In the second category, two workflows have been proposed in literature based on employing:

(a) coordinate transformation (4), (b) fringe zone (65; 8). Much of the theoretical advancements on

ZPGFPBL started from the DNS of Spalart (4), where the author employs the cyclic condition in

the stream parallel direction by accounting for the streamwise inhomogeneity through additional

source terms in the Navier-Stokes equations. Using a spatio-temporal approach, statistics are re-

ported at four streamwise stations: Reθ ≈ 225, 300, 670 and 1410, with Reθ being a measure of

the streamwise position. Schlatter et al. (65) present a DNS of ZPGFPBL at Reθ = 2500. They

employ the cyclic condition in the streamwise direction by recasting the outflow within a ‘fringe

zone’ to the inlet momentum thickness. Schlatter and Orlu (67) report a DNS study of boundary

layer flow and report how the tripping effects using localized random disturbances change the dy-
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namics of the flow at low Reynolds numbers. Schlatter et al. (8) also study large eddy simulation

(LES) of boundary layer over a flat plate with zero-pressure-gradient. Their computation covers

Reθ = 189 − 4300 with 605 million grid points. Similar to their DNS setup, accounting for the

streamwise inhomogeneity is reflected by adding a ‘fringe region’ at the end of the domain.

In the case of superimposing disturbances over a laminar profile, either random or determin-

istic, the transition to fully-developed turbulence and emergence of coherent structures occur af-

ter a long development section. Within the development section, numerical noises and spurious

structures are damped out. Another downside to this method is that a priori estimation of inte-

gral quantities, e.g. momentum thickness, after the development section is not possible. In 2009,

Wu and Moin (5) document a direct solution of Navier-Stokes equations for a zero-pressure gra-

dient incompressible boundary layer for which the transition is triggered by feeding intermittent

isotropic turbulence patches at the inlet. Their computation covers the range of 80 ≤ Reθ ≤ 940

with 210 million grid points. Due to the nature of the excitation employed, it is foreseeable that the

equilibrium state is not reached beforeReθ ≈ 750 (5). This substantiates the importance of the last

class of inflow conditions (synthetic perturbed inflows), which are the basis of the second study in

this thesis. In this category, attempts have been made to prescribe the inflow properties according

to physics based scaling laws such that spurious structures fed at the inlet are minimized. As a

subcategory, Lund et al. (66) propose the perturbed inflow velocity field, rescaled/recycled from

a downstream recycling station, for LES computations. Siemens et al. (63) report a high-order

accurate DNS of ZPGFPBL for the range of 620 ≤ Reθ ≤ 2140 using Lund’s recycling/rescaling

inflow. All of these efforts have been made for DNS and LES computations. However, PANS-

SRS requires not only prescription of the perturbed velocity field, but also consistent scaling of

turbulence quantities (e.g. k, ε, ω) at the inlet.

2.3 SRS of laminar-turbulent transition

In chapter 6, we will have a discussion on the PANS study of natural K-type laminar-to-

turbulent transition. There is a rich body of articles on the transition from laminar-to-turbulent

over flat plates. Schubauer and Skramstad (68) were the first who argued that the ‘temporal’ sim-
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ulation analysis cannot account for the ‘non-parallel effects’ in the non-linear stage of instability

development. Therefore, convective instabilities oblige scientists to follow spatially-evolving flow

simulations and analyses. Experiments of Kachanov and Levchenko (69) serves as the benchmark

work for Klebanov-type (‘K-type’) and Herbertand-type (‘H-type’) transitions. In the same setup,

the K-type transition occurs earlier than H-type transition, meaning the post-transition and turbu-

lent regimes will be reached faster. Hence, the computational study of K-type transition requires

a more strenuous grid resolution compared to the H-type transition. Rist and Fasel (70) reproduce

the results of Kachanov and Levchenko for the K-type natural transition by mimicking their ex-

perimental setup. Due to the high computational demand of the DNS of K-type transition, they

only reproduce the non-linear interaction and breakdown of the laminar flow. DNS of Sayadi et al.

(10), however, reach to the fully-developed turbulence by a huge number of grid points.

Nearly all the available scale-resolving computations in literature report on the H-type transi-

tion. Huai et al. (71) present LES of H-type laminar-to-turbulent transition over a flat plate. They

show how the localized dynamic model of eddy viscosity in LES can predict the development of

disturbances from linear growth to fully-developed turbulence. Although the overshoot of skin

friction coefficient in the post transition is not captured in their results. Sayadi and Moin (72)

carry out a grid resolution study of controlled transition over a flat plate using LES with differ-

ent subgrid scale models. In their work, with the level of resolutions studied, K-type transition

is not reconstructed. Lozano-Duran et al. (73) study the evolution of H-type transition using

both wall-modeled and wall-resolved LES, coupled with the parabolized stability equations (PSE),

representing the linear growth of modes. Since the wall-modeled LES relies on the developed

log-layer profile, wall-modeling cannot be successful in the post-transition region. They argue

that the wall-resolved LES is required to capture the evolution of non-linear instabilities in the

post-transition region. Kim et al.(74), and Jee et al. (75) report on the H-type transition using

wall-resolved LES coupled with PSE. Yin and Durbin (76) also study H-type transition of laminar

boundary layer over a flat-plate using the adaptive detached eddy simulation. The third study of

this thesis tries to reproduce the laminar-to-turbulent natural K-type transition using an affordable
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PANS simulation.
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3. PANS METHODOLOGY AND OBJECTIVES OF THE PRESENT STUDY

The continuity equation together with the Navier-Stokes equations form a coupled and non-

linear system of partial differential equations (PDEs) which fully describe the velocity and pressure

evolution of incompressible flow fields:

∂Vi
∂xi

= 0, (3.1)

∂Vi
∂t

+ Vj
∂Vi
∂xj

= − ∂p

∂xi
+ ν

∂2Vi
∂xj∂xj

, (3.2)

where V and p represent the instantaneous velocity and pressure fields, respectively. Here, density

is absorbed into the pressure term. Using PANS implicit filtering, the velocity and pressure fields

can be decomposed into filtered and fluctuating parts:

Vi = Ui + u′i, Ui = 〈Vi〉, 〈u′i〉 6= 0, (3.3)

p = P + p′, P = 〈p〉, 〈p′〉 6= 0. (3.4)

In the equations above, angle bracket and prime symbols denote the filtered and fluctuating quan-

tities, respectively. Substituting the decomposed flow properties in equation (3.2) and considering

the commutation of applied filter with respect to temporal and spatial derivatives, the filtered mo-

mentum equation reads as:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −∂τ(Vi, Vj)

∂xj
− ∂〈p〉

∂xi
+ ν

∂2Ui
∂xj∂xj

. (3.5)

Taking the divergence of the momentum equation (equation 3.5), and recalling that the velocity

field is divergence free (equation 3.1), we obtain the following filtered Poisson equation describing
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the ellipticity of the pressure field in incompressible flows:

− ∂2〈p〉
∂xi∂xi

=
∂Ui
∂xj

∂Uj
∂xi

+
∂2τ(Vi, Vj)

∂xi∂xj
. (3.6)

In equations (3.5) and (3.6), τ(Vi, Vj) represents the generalized ‘subfilter stress’ (SFS) which is

the communicator between the resolved and unresolved fields. The influence of the unresolved

field on resolved velocity-field evolution is manifested via the generalized subfilter stress τ(Vi, Vj)

(77). The goal of any bridging SRS model is to develop a suitable closure for the subfilter stress

(SFS). The general form of the subfilter stress, τ(Vi, Vj) is represented as (77):

τ(Vi, Vj) = 〈ViVj〉 − 〈Vi〉〈Vj〉. (3.7)

The PANS bridging SRS approach is based on the premise that RANS-type turbulence clo-

sure are well suited for SFS closure as they were originally developed to represent the physics of

the entire spectrum of scales on the mean flow. Accordingly the original PANS works (21; 22)

develop the physical foundation and mathematical framework to adapt RANS models for filtered

flow fields.

In principle, any RANS closure including full Reynolds Stress Closure Model (RSCM) that

solves transport equations for all Reynolds stress components can be adapted to the PANS frame-

work. However, the more sophisticated RANS models will increase the stiffness of the equations

and the complexity of the computations. It is therefore important to consider the overall benefits of

using higher-level closures. There are two main reasons for employing more complex closure mod-

els in RANS context: (i) anisotropy and non-linearity of the constitutive relation; and (ii) non-local

effects of turbulence due to history effects and the elliptic nature of pressure. Both these effects are

strong functions of wave number. With increasing wave numbers, these effects become less and

less significant. In a SRS computation, when the cut-off wave-number is high enough to capture

any resident coherent structures (i) much of anisotropy and non-locality effects are captured in the

resolved scales; and (ii) any of these effects residing in the unresolved scales do not significantly
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affect the main statistics of the flow field. For these reasons, in this work, we utilize the simple and

robust Boussinessq approximation (21) for the subgrid stress:

τ(Vi, Vj) =
2

3
kuδij − 2νuS̄ij; νu =

ku
ωu

; ωu =
εu
β∗ku

, (3.8)

in which νu, Sij = 1
2
(∂Ui
∂xj

+
∂Uj
∂xi

), ku, εu, ωu and β∗ are the unresolved eddy viscosity, strain rate

tensor of the resolved field, unresolved kinetic energy, unresolved dissipation rate, unresolved spe-

cific dissipation rate, and closure coefficient, respectively. The overbar identifies the time-averaged

quantities. The goal of PANS closure is to derive suitable evolution equations for the kinetic en-

ergy and (specific) dissipation of the unresolved field as a function of the desired resolution. The

motivation for a two-equation closure stems from the fact that, at a minimum, unresolved-field

length and velocity scales are required to specify SFS with some degree of generality. As the mag-

nitude of SFS increases, the influence of unresolved field on the resolved part rises, and the filtered

field cannot retain unsteady fluctuating motions (78). In other words, more scales of motion are

suppressed as a result of an increase of the eddy viscosity (large P/ε).

The near-wall modeling of turbulent flow fields is one of the main challenges involved in the

scale-resolving simulations. It’s been known that k−ω closure demonstrates superior performance

for wall-bounded and low-Reynolds-number near-wall turbulence. In PANS this argument holds at

the expense of a high grid resolution at the near-wall region. The derivation of the PANS subfilter

scale modeling starts from the standard k − ω two-equations closure. For which, the unresolved

length-scales are computed from k and ω equations. This two-transport-equation modeling solves

one equation for the turbulent kinetic energy (k) and one equation for the specific turbulent dissi-

pation rate (or turbulent frequency) (w).

In terms of the distribution of the resolution control parameters, the PANS method can be used

in two different modes: constant-fk (uniform filter) or variable-fk (non-uniform filter) simulations.

Constant-fk formulation, which is the subject of this research, is extremely useful from an analyt-

ical view-point. This formulation permits rigorous theoretical analysis using the paradigm that
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PANS is equivalent to DNS of a non-Newtonian fluid with variable viscosity. Indeed, Kolmogorov

hypotheses can be formally adapted to a PANS flow field (Reyes, Cooper and Girimaji, 2014).

Variable-fk formulation – which we call WM-PANS – is more useful for simulation of near-wall

and complex geometry flows, wherein large changes in resolution are needed (24). The commuta-

tion residue arising from changing filter size is formally modeled using total energy conservation

principle in Girimaji and Wallin (2013).

PANS is a scale resolving simulation wherein the subgrid model is derived from RANS closure

using the scale invariance property of Navier-Stokes equations. It can be shown that two parameters

- unresolved velocity scale and unresolved length scale - are needed to completely describe the

unresolved flow field. Hence, the PANS subfilter closure is at a minimum a two-equation model.

As discussed, this research is based on the two-equation k-ω RANS model. In PANS the sensitivity

of the closure model to the cut-off length scale is achieved via two resolution control parameters:

unresolved-to-total ratios of kinetic energy and dissipation rate (21):

fk =
ku
k

; fε =
εu
ε

; fω =
ωu
ω

=
fε
fk
. (3.9)

Only two of the above three ratios are independent. The two independent parameters determine

the effective cut-off length scale of the simulation as a function of the Reynolds number and are

called the resolution control parameters. These control parameters prescribe the effective viscosity

due to the unresolved scales. Smaller the effective viscosity, more and more scales of the resolved

field will be liberated.

In this thesis, the filtering is carried out by imposing a fixed level of scale resolution and

creating a cut-off in the energy spectrum. The cut-off, in turn, is specified by defining the ratios of

the unresolved-to-total kinetic energy (fk = ku/k) and unresolved-to-total specific dissipation rate

(fω = ωu/ω) (21; 79). Hence, a proper filtering operation by partial-averaging of the flow statistics

is defined. Non-universal large-scale structures are calculated from the Partially-Averaged Navier-

Stokes equations, and isotropic small scales are modeled by the modified transport equations. In
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spite of the existence of a great body of literature on turbulence modeling, the literature lacks

enough discussion on the transport closure models of scale-resolving simulations.

In high Reynolds number flows, it can be reasonably assumed that all of the dissipation is

contained in modeled scales, leading to fε = 1.0. Thus at high Reynolds numbers, only one

parameter (fk) needs to be specified. For simulating low Reynolds number flows, both independent

parameters need to be specified. The quantitative criteria for determining optimal fk value is

discussed in Pereira et al. (80).

In SRS the smallest resolved scale (ηr) is referred to as the computational Kolmogorov scale

which is approximated by:

ηr = (
ν3u
εu

)1/4, (3.10)

where, εu is the subfilter (unresolved) dissipation rate. The modeled eddy viscosity (νu) is ex-

pressed as:

νu = cµ
k2u
εu
. (3.11)

By substituting scaling relations into the modeled turbulent kinetic energy (ku = fkk), and assum-

ing that the total dissipation rate lies within the subfilter range (fε = 1), ηr can be rewritten in the

form:

ηr = c3/4µ (
f
3/2
k k3/2

ε
). (3.12)

On the other hand, the length-scale of large energy containing eddies (integral length scales) is

given by:

Λ =
k3/2

ε
. (3.13)

After substituting equation (3.13) into equation (3.12), the relation between the computational

Kolmogorov and integral length scales takes the form:

ηr = c3/4µ f
3/2
k Λ. (3.14)

Based on the definition, the computational Kolmogorov length scale has to be greater than the
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numerical grid size (ηr > ∆). Subsequently, the following relation defines the lower bound of the

resolution control parameter for a specific grid size (∆):

fk >
1

c
1/2
µ

(
∆

Λ
)2/3. (3.15)

Model equations for the unresolved turbulent kinetic energy (ku) and specific dissipation rate

(ωu) as functions of resolution control parameters are derived from parent RANS equations using

averaging invariance principle (77) and fixed point analysis in homogeneous turbulence flows in

Girimaji et al. (22). These equations are given by:

∂ku
∂t

+ Uj
∂ku
∂xj

= Pu − β∗kuωu +
∂

∂xj
((ν +

νu
σku

)
∂ku
∂xj

), (3.16)

∂ωu
∂t

+ Uj
∂ωu
∂xj

= α
Puωu
ku
− αβ∗ω2

u + αβ∗
ω2
u

fω
− βω

2
u

fω
+

∂

∂xj
((ν +

νu
σωu

)
∂ωu
∂xj

), (3.17)

where the closure coefficients are: β∗ = 0.09, α = 5/9, and β = 0.075. The last term on the

right hand side of the above evolution equations represents the transport effects. The turbulent

transport closure is not a part of the homogeneous flow fixed point analysis. In the original works

(21; 22), simple scale-interaction arguments are used to suggest a range of physically permissible

unresolved kinetic energy and dissipation Prandtl numbers.

Over the last decade, the PANS methodology has experienced several important developments:

1. The paradigm that PANS is a DNS of a variable viscosity medium is developed in Reyes

et al. (23) to adapt Kolmogorov hypotheses to characterize the unsteady features of the

simulated flow field. It is shown that PANS unsteady field captures important high-order and

multi-point statistics of turbulence in accordance with Kolmogorov theory.

2. Closure model for commutation residual terms is derived in Girimaji and Wallin (81) from

conservation of total energy principle.

16



3. The DNS of variable viscosity paradigm is used to derive important criteria for optimal

PANS resolution in flows with spatially evolving coherent structures (80).

4. PANS has been bench-marked against DNS, LES and experimental data in several canonical

flows (82; 25; 83; 84; 27; 26).

5. A near-wall low Reynolds number version of PANS is developed in (84) but it does not

address turbulent transport closure.

As mentioned in the introduction, the objective of the present study is to formally derive and

validate the PANS turbulent transport model using the EBL analysis.

3.1 Thesis objectives

The premise of this thesis is that a successful predictive SRS computation requires an accurate

subgrid or subfilter closure model with a broad range of applicability, along with deterministic

boundary conditions for the unresolved turbulence profiles. For the near-wall modeling, the theo-

retical development of a turbulent transport closure in the equilibrium boundary layer is addressed

through modifying the turbulent Prandtl coefficients. The modification is based on the equilibrium

boundary layer (EBL) analysis. It is also tried to show how this analysis is consistent with the

physics of transport in wall-bounded turbulence for three different benchmark cases. One of the

main explanations to this consistency is that the transport of subgrid scale turbulence can be treated

well using the EBL assumption. In this way, the following tasks are undertaken:

(i) To advance the SRS approaches for wall-bounded flows using the equilibrium boundary

layer analysis.

(ii) To carry out temporal PANS simulation of turbulent boundary layers.

(iii) To develop a physics-based perturbed inflow field for spatial analysis of fully-developed

turbulent flows.

(iv) To carry out spatial PANS simulation of transitional and turbulent boundary layers.
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3.1.1 Near-wall model development

In the first study, we develop bridging SRS (B-SRS) partially-averaged Navier-Stokes (PANS)

near-wall closures that overcome the log-layer mismatch. In PANS the filtered flow equations are

supplemented with model equations for unresolved kinetic energy and (specific) dissipation. The

filtered kinetic energy and (specific) dissipation equations are subject to equilibrium boundary layer

scaling, leading to closure expressions for SRS turbulent transport models. The degree of filtering

is characterized in terms of the ratio of resolved-to-total kinetic energy (k) and dissipation. For the

proof of concept, an investigation of the equilibrium-boundary-layer (EBL) model is carried out

by a detailed comparison with the DNS data of Hoyas and Jimenez (2) for turbulent channel flows.

Turbulent channel flow PANS simulations are performed at various Reynolds numbers and degrees

of resolutions to confirm the scaling relationships and to validate the transport closure models. It

is established that the resolution criteria is objective oriented in that achieving convergence in

terms of higher order statistics requires not only a high numerical (grid) resolution but also a high

physical resolution (small fk). We employ the planar analysis to manifest the sweep and ejection

mechanisms dictating the physics of momentum transport. In terms of the multi-point physics,

this PANS study not only evaluates single hairpin structures, but it also studies the organization

of structures in tandem. The resolved coherent structures with PANS are compared with those

reported by Adrian (50) and Jimenez and Lozano-Duran (51). This work investigates the hairpin

packet paradigm, and also the capability of the equilibrium boundary layer analysis in capturing

the so-called ‘hairpin vortex packet’ in the complex fully turbulent environment.

The following tasks are undertaken in the first study:

(i) To present equilibrium boundary layer analysis performed for bridging scale-resolving sim-

ulations: Analysis leads to closure model (σku,σεu) as a function of partition(fk,fε)

(ii) To examine the validity of the EBL model in terms of the one-point first and second order

statistics of the velocity field, along with the multi-point physics and vortex dynamics as to

the topology of coherent structures.
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3.1.2 Inflow condition for unresolved turbulence profiles

In the second study, we develop a physics-based perturbed inflow condition for bridging scale-

resolving simulations (B-SRS) of spatially evolving problems. The SRS approach of choice is the

partially-averaged Navier-Stokes (PANS) model. PANS adapts two-equation RANS approaches

to model different degrees of scale resolution based on the objective function defined a priori.

For the proof of concept, a systematic study of zero-pressure-gradient flat-plate boundary layer

(ZPGFPBL) with a continuous range of Reynolds number based on the momentum thickness

(650 ≤ Reθ ≤ 1434) is presented. When it comes to ‘spatial’ simulations, implementing proper

inflow and outflow boundary conditions are of critical importance. In order to circumvent the need

for a lengthy development section for the development of organized turbulent motions and to have

control over the skin friction and integral thicknesses at the end of the development section, we

adapt the recycling/rescaling method of Lund et al. (66) to B-SRS. According to this method, the

velocity field at a downstream station is rescaled and reintroduced at the inlet, and the turbulence

profiles are scaled using the equilibrium nature of logarithmic layer.

The accuracy of the results in terms of higher order statistics and multi-point physics is exam-

ined. The integral quantities, mean velocity, Reynolds stresses, skewness and flatness, two-point

correlation and near-wall coherent structures are meticulously studied. The organization of near

wall structures are also examined through study of two-point correlation of different components

of the fluctuating velocity. The hairpin forest, which is considered the signature of boundary layer

flow in moderate Reynolds number flows (5), is meticulously studied. In order to obtain realistic

turbulent structures and the ‘forest of hairpins’ in a spatially-evolving PANS simulation, different

properties as to the grid resolution, numerical scheme, initial state, and the accurate prescription

of the inflow turbulent eddies as a function of time have to be properly dealt with.

The main question that arises is how expensive it would be to run the spatially evolving flow

using the PANS model as opposed to DNS. One of the important features of this study is that the

underlying physics is recovered with a less computational cost compared to LES (8) and far less

compared to DNS (5). It is worth noting that when it comes to higher ranges of Reθ, specification
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of an optimum spatial distribution of physical and computational resolutions can save significant

computational resources.

For this study, the following tasks are performed:

(i) To develop a fully-deterministic perturbed inflow field for the resolved velocity and unre-

solved turbulence quantities for a spatially growing boundary layer.

(ii) To assess all the underlying physics of a turbulent boundary layer as to single and multi-point

statistics and coherent structures.

3.1.3 Lamniar-to-turbulent transition

For the last study, we address the laminar-to-turbulent transition using PANS methodology.

We focus on the evolution of unstable Tollmien-Schilchting waves fed using an unsteady zero net

mass flux blowing/suction strip. This method of excitation was first introduced by Rist and Fasel

(70). Frequencies of the two-dimensional Tollmien-Schlichting (TS) and oblique waves are chosen

based on experiments of Kachanov and Levchenko (69). There has already been a number of DNS

works on the transition phenomenon over a flat-plate. According to the physics of the problem,

spatial evolution of the turbulence structures imposes a critical requirement on the computational

resolution. Hence, providing such level of resolution can be unfeasible in capturing unstable modes

of flow in real-life applications. The main impetus of the third study is to employ PANS method

to resolve only the dynamically prominent scales, dictating the physics. It’s been tried to show

how systematic modeling of the effect of unresolved on resolved scales using the PANS approach

leads to vast saving in terms of the CPU time. It should be noted that the initial growth of the

perturbations is highly dependent on the level of subfilter eddy viscosity. The proper transfer of

energy from the resolved to unresolved scales plays a key role in the non-linear dynamics. In other

words, in the non-linear stage of transition, energy exchange between the modeled and resolved

part has to be recovered so that the growth of perturbations is predicted. Hence, a key objective

of this study is to assess the performance of PANS in terms of prediction of transition point and

skin friction overshoot by scrutinizing the evolution of skin friction coefficient in the streamwise
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direction.

In terms of the level of eddy viscosity within the computational domain, the computational

discretization methods have to be aslo chosen such that the least amount of numerical diffusion

is imposed. The demonstration of autogeneration mechanism occurring after the post-transition

region is also sought in this work. It’s been well-known that the autogeneration mechanism is re-

sponsible for formation of forests of hairpins. This mechanism is manifested in terms of obtaining

the lag-law behavior of the velocity, as well as settling asymptotically to the fully-developed state

of turbulence in the skin friction coefficient plot. The main goals of this study are as follows:

(i) To excite the flow by three-dimensional interaction between TS and oblique waves through

applying an unsteady zero net mass flux blowing/suction strip.

(ii) To examine the evolution of flow dynamics while transitioning from laminar-to-turbulent at

different downstream locations.
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4. SCALE RESOLVING SIMULATION OF TURBULENCE: EQUILIBRIUM BOUNDARY

LAYER ANALYSIS LEADING TO NEAR-WALL CLOSURE MODELING1

4.1 Introduction

In recent years scale-resolving simulations (SRS) have emerged as an attractive option for com-

puting complex turbulent flows of engineering interest. In order to achieve reasonable results at

an affordable computational cost, SRS is envisioned to selectively resolve only vital large-scale

turbulence structures on a ‘accuracy-on-demand’ basis. The SRS methods can be broadly clas-

sified into two categories: zonal and bridging approaches. In zonal approaches the partitioning

of the flow field into high and low fidelity parts occurs in physical space. In the regions of the

flow with complex coherent structures, the flow field is computed with high-fidelity large-eddy

simulations (LES). Other regions of canonical turbulence are computed with Reynolds-averaged

Navier-Stokes (RANS) models. Thus, zonal models achieve computational savings due to the use

of inexpensive RANS in flow regions of simple turbulence features. The main challenge in the

SRS zonal approach is the treatment of the ‘hand-shake’ or ‘grey’ region at the interface of the

RANS and LES domains. On the other hand, much like LES, the bridging SRS approach uses the

same filtered Navier-Stokes equations throughout the flow domain. The key differences between

LES and bridging SRS methods are: (i) the bridging SRS methods are intended for resolving a

much narrower range of scales than LES; (ii) the SRS filter is implicit and the cut-off length scale

is determined by the effective eddy viscosity; and (iii) the SRS closure models solve additional

equations for computing the eddy viscosity of the unresolved scales of motion. The SRS effective

cut-off can be varied by suitably modifying the coefficients in the eddy-viscosity model equations

in a manner consistent with turbulence physics. The main challenge of bridging SRS approach is to

develop subgrid stress model equations that are suitably sensitive to the implied cut-off length. In

principle, bridging SRS computation reduces to RANS in the low-resolution limit and asymptotes

1Reprinted with permission from P. Tazraei and S. S. Girimaji, “Scale-resolving simulations of turbulence: Equi-
librium boundary layer analysis leading to near-wall closure modeling,” Physical Review Fluids, vol. 4, no. 10, p.
104607, 2019. Copyright 2019 American Physical Society.
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to DNS in the high-resolution limit. In order to accommodate cut-off in larger scales of motion,

the bridging SRS subgrid closure model must account for more complex turbulence physics than

its LES counterpart.

For computing important statistical features of turbulent boundary layers, RANS method offers

useful advantages over SRS or LES. The SRS and LES approaches are inherently more accurate

away from the wall as they resolve important flow features, but they can be prohibitively expensive

for resolving the small scales of motion encountered at the walls. The RANS advantage at the

wall is due to the fact that the closure models are derived from scaling laws established within the

equilibrium boundary layer (EBL). There have been many attempts to reduce the LES computa-

tional cost at the wall by incorporating features of EBL into subgrid stress models (39; 40; 41; 42).

While the resulting ‘wall-modeled’ LES approaches have achieved success, there is opportunity

for further improvement of SRS models in the near-wall region.

The focus of this work is on the near-wall modeling for SRS approaches. The bridging SRS

approach of choice in this work is the Partially-Averaged Navier-Stokes (PANS) model of Giri-

maji (21), which has many features in common with the single-point Partially-Integrated transport

Model (PITM) (85; 18; 86). Multi-scale closure of PITM is also discussed in (87). PANS adapts

and extends proven two-equation RANS or Second Moment Closure (SMC) models for represent-

ing the effects of subgrid scales on the resolved flow field. The physical rationale and mathematical

framework for modifying the RANS model to represent the subgrid physics as a function of scale

resolution have been developed in (22; 21; 18; 85). The motivation for using a two-equation clo-

sure is that individual evolution equations must be solved for the subgrid velocity and length scales

to determine subgrid stress. This approach has already been well-documented for a variety of

canonical flows (26; 27; 25). The partition between resolved and unresolved fields is effected by

specifying the ratios of the unresolved-to-total kinetic energy (fk = ku/k) and unresolved-to-total

specific dissipation rate (fω = ωu/ω) (21; 79). The PANS framework for adapting RANS model

developed in (21; 22) does not comprehensively address the turbulent transport closure or near wall

behavior. Those works propose a model based solely on scale-interaction arguments. There is a
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clear and imminent need for advancing the physical fidelity of the SRS transport models.

As mentioned earlier, the RANS turbulent transport models for kinetic energy and dissipation

are derived from EBL analysis. This raises the question whether a similar EBL analysis can be

developed for filtered flow fields leading to SRS transport models. The RANS turbulent transport

models are expected to reproduce physically consistent one-point statistics only. On the other hand,

the SRS approaches are required to yield not only the correct one-point statistical behavior, but

also emulate important non-local and unsteady flow features. Therefore, it is important to ensure

that any SRS turbulent transport model produces one-point statistics and key coherent-structure

features consistent with flow physics.

The three key objectives of the current work are:

1. Adapt and extend equilibrium boundary layer (EBL) analysis to filtered turbulent fields lead-

ing to turbulent transport models for unresolved kinetic energy and unresolved (specific)

dissipation.

2. Perform SRS-PANS simulations of benchmark channel flow and evaluate the PANS behavior

in equilibrium log-layer by comparison against DNS statistics of Hoyas and Jimenez (2).

3. Examine the ability of PANS to capture key qualitative and quantitative aspects of coherent

structures in channel flows.

Although much of the closure model development in this work is in the context of PANS, the

analytical framework and closure expressions are applicable to other bridging SRS methods.

The chapter is organized as follows. First, section 4.2 describes the equilibrium boundary layer

analysis. Section 4.3 discusses the simulated test cases. In section 4.4, the results of the proposed

transport model are assessed by comparing PANS results with DNS data and known features of

coherent structures.
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4.2 Near-wall modeling

4.2.1 Equilibrium boundary-layer analysis for RANS

We first present the RANS-EBL formulation before developing a similar analysis for filtered

fields. In RANS approach, the functional form of the turbulent transport model is presumed from

gradient transport hypothesis and the closure coefficient (Prandtl number) is derived using equilib-

rium boundary layer (EBL) analysis.

The equilibrium boundary layer is amenable to the following simplifications:

dk

dt
=
dω

dt
= 0; and P = ε. (4.1)

Further, the following scaling is proposed (88):

k =
u2τ√
cµ

; τxy = −u2τ and
dU

dy
=
uτ
κy
, (4.2)

where uτ and κ are the friction velocity and von-Karman constant, respectively. From the above,

the following expressions for production can be derived:

P = −τxy
∂U

∂y
=
u3τ
κy
, (4.3)

P = νt(
∂U

∂y
)2 =

k

ω

u2τ
κ2y2

= ε. (4.4)

The eddy viscosity can be identified as:

νt =
k

ω
= κuτy. (4.5)
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These scalings are employed to determine σω for RANS transport models (88):

σω =
κ2√
β∗

(
β

β∗
− α

)−1
. (4.6)

There is a wide range of values from 0.384 to 0.41 suggested for the von Karman coefficient in

literature (89). In the current study, we use κ = 0.41 which is the standard value employed in open

source and commercial codes. After substituting the values of the closure coefficients along with

κ = 0.41 into the expression above, we obtain σω = 2.0. This value yields the correct slope of the

log-layer in an equilibrium boundary layer. The kinetic energy Prandtl number is set to be equal to

σω (88):

σk = σω. (4.7)

4.2.2 Equilibrium boundary-layer analysis for partially filtered fields

We now seek to develop a similar analysis for PANS equations of filtered fields. For practical

applications, variable resolution (VR-PANS)- going from RANS at the wall to desired resolution

in the wake- is desirable. For VR-PANS, additional modeling of the commutation error residue is

needed (81), which will be examined in a future study. Throughout this analysis, we will assume

that fk, fε and fω are uniform in space for ease of EBL model derivation. For any decomposition

of resolved and unresolved fields, one can write the following equations for corresponding kinetic

energies:

dkR
dt

= Pm
r − εr − γru + Tr, (4.8)

dku
dt

= Pm
u − εu + γru + Tu, (4.9)

here Pm
r and Pm

u are production of resolved and unresolved kinetic energy due to mean flow; εr and

εu are dissipation occurring in resolved and unresolved fields; γru is the spectral transfer of energy

from resolved to unresolved fields; and, Tr and Tu are turbulent transport of respective energies.

In order for the boundary layer to be in equilibrium state, the entire energy spectrum should be
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in equilibrium. Thus we propose (in a statistical average sense):

dkR
dt
≈ dku

dt
≈ 0; and Tr = Tu ≈ 0. (4.10)

Then it follows that:

Pm
r − εr − γru = 0, (4.11)

Pm
u − εu + γru = 0. (4.12)

Further the overall unresolved kinetic energy production is given by:

Pu = γru + Pm
u . (4.13)

That is, the unresolved kinetic energy is generated directly from mean flows as well as for spectral

energy transfer from larger scales. These arguments lead to the following:

Pu − εu ≈ 0. (4.14)

This relationship forms the basis of the filtered EBL analysis. In EBL, we thus suggest the follow-

ing simplifications to hold true on an average:

dku
dt

=
dωu
dt

= 0; and Pu = εu. (4.15)

Let us first consider the unresolved kinetic energy equation. Following the RANS analysis

(88), we assume that the molecular viscosity is negligible compared to the eddy viscosity in the

EBL. The energy equation is trivially satisfied confirming that

ku(y) = constant, (4.16)
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within the EBL.

Now we consider the unresolved turbulence frequency equation within EBL. Once again, ne-

glecting the effect of molecular transport within EBL leads to:

0 ≈ α
ωuPu
ku
− β′ω2

u +
∂

∂y

(
νu
σωu

∂ωu
∂y

)
. (4.17)

In the equilibrium boundary layer, from the definitions of ku and ωu, it follows that:

ku = fkk = fk
u2τ√
β∗
, (4.18)

ωu = fωω = fω
uτ

κy
√
β∗
, (4.19)

νu =
fk
fω
νt =

fk
fω
uτκy. (4.20)

After substituting for ku and ωu from scalings defined in equations (4.18) to (4.19) into the evolu-

tion equation of the modeled specific dissipation rate, equation (4.17), the following relationship

between the modified specific dissipation rate, σωu, and other PANS closure coefficients is ob-

tained:

σωu =
fk
fω

κ2√
β∗

(
β

β∗
− α

)−1
. (4.21)

Comparison of equation (4.21) with the RANS counterpart (equation 4.6) leads to the following

Prandtl number for unresolved turbulence frequency:

σωu =
fk
fω
σω. (4.22)

We propose that the kinetic energy Prandtl numbers maintain the same ratio as the RANS counter-

part. This leads to

σku =
fk
fω
σk, (4.23)
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in which, σk and σω are the RANS Prandtl numbers.

The Prandtl number for unresolved kinetic energy and dissipation obtained above from the EBL

analysis is consistent with the Zero-Transport-Model (ZTM) proposed in (22). The ZTM model

is obtained when the transport of unresolved turbulence due to the resolved field is negligible. In

the remainder of this section we perform PANS simulations to verify and validate the proposed

transport model in the turbulent channel flow.

4.3 Simulation procedure

We perform the benchmark turbulent channel flow PANS simulations using the incompressible

finite volume solver in OpenFOAM (90). Table 4.1 summarizes different computational and phys-

ical resolutions of the conducted PANS simulations. DNS of Hoyas and Jimenez (2) serves as the

reference for the purpose of validation study.

A computational domain of dimensions 4h × 2h × 2h respectively in the streamwise, wall-

normal and spanwise directions has been considered, where h is the channel half-height. Hexa-

hedral meshes with uniform streamwise and spanwise grid resolutions and stretched wall-normal

spacing have been generated. All the grid resolutions reported in Table 4.1 are in viscous wall

units.

Flow through the channel is sustained by prescribing a constant pressure gradient in the stream-

wise direction. Cyclic boundary condition is applied in the streamwise and spanwise directions,

and no-slip condition is employed at the top and bottom walls. All of the statistics reported here

are obtained by temporal averaging over 50h/uτ time units and spatial averaging in homogeneous

directions.

The discretization in space and time is of second order, and the number of sub-iterations is

dictated by the requirement that the residuals at each time step should not exceed 10−6. In addition,

in order to ensure the stability of the time integration, the maximum local Courant number is set to

a conservative value – CFL < 0.6.
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Table 4.1: Details of the test cases examined for the turbulent channel flow.

Simulation ∆+
x y+1 ∆+

z Reτ Ny fk σku , σωu
Case1 11.25 0.72 5.6 180 50 0.2 0.08
Case2 34.4 1.7 17.2 550 50 0.1 0.02
Case3 34.4 0.3 17.2 550 150 0.1 0.02
Case4 34.4 0.19 17.2 550 200 0.1 0.02
Case5 34.4 1.7 17.2 550 50 0.15 0.045
Case6 34.4 1.7 17.2 550 50 0.2 0.08
Case7 23 1.7 17.2 550 50 0.1 0.02
Case8 34.4 0.19 17.2 550 200 0.1 2.0 (unmodified)
Case9 59 0.53 19 950 120 0.1 0.02
DNS1 9 - 6.7 186 97 - -
DNS2 13 - 6.7 547 257 - -
DNS3 11 - 5.7 934 385 - -

4.4 Results and Discussion

The results are presented in three parts. In the first part we ensure that the key modeling

assumptions are upheld in the computed results. Next, we demonstrate that the PANS single-point

statistics in the EBL compare well against DNS data. Finally, the PANS vorticity structures are

examined for qualitative and quantitative consistency against established experimental results.

4.4.1 Internal consistency

The principal function of any subgrid model is to simulate the correct level of eddy viscosity

and ensure the overall energy level is captured. For the PANS approach to serve as a reasonable

SRS scheme, it is very important to ensure that the simulation produces (i) the prescribed degree

of viscosity reduction; and (ii) the correct kinetic energy balance. We will first examine if PANS

simulations produce the desired behavior. In this subsection, we verify that PANS computed results

are consistent with the prescribed parameters and modeling assumptions.

Consider a PANS simulation with prescribed fk and fε or fω. We define the viscosity reduction

factor (fν) as the ratio between PANS viscosity value and that of the total fluctuations or RANS
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under similar conditions:

fν ≡
νu
νt
. (4.24)

The expected or prescribed value of the ratio is:

(fν)prescribed =
f 2
k

fε
=
fk
fω
. (4.25)

It is reasonable to demand that, on an average, the computed results are consistent with the pre-

scribed eddy-viscosity ratio.

For the case of channel flow, the average subgrid PANS viscosity is a function of the wall-

normal distance and can be computed as follows:

νu(y) = (ku/ωu)(y). (4.26)

The viscosity of the total field is estimated from the computations using the total kinetic energy

and total dissipation:

νt(PANS) = cµ
k2t
εt

= cµ
(ku + kr)

2

(εu + εr)
, (4.27)

where kr, εu and εr are obtained as follows from the PANS computation:

kr(y) = ViVi − V̄iV̄i, (4.28)

εu = β∗kuωu; and εr = 2ν[SijSij − S̄ijS̄ij]. (4.29)

A second approach to estimating the total viscosity is to perform a RANS simulation for the same

flow conditions. Based on these two estimates of total viscosity, we define two metrics for com-

puted eddy viscosity ratio:

(fν)C1 =
νu(PANS)

νt(PANS)
, (4.30)
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and

(fν)C2 =
νu(PANS)

νt(RANS)
. (4.31)

First we verify the consistency between the two estimates of the computed eddy-viscosity ratio

and the prescribed ratio for the case of Reτ = 550. We also include results from PANS calculation

(Case 8) in which the turbulent transport is not modified according to the EBL analysis. As shown

in Table 4.1, the PANS transport coefficients in Case 8 are retained at the RANS values. Figure

4.1a shows the comparison between prescribed and computed values for Case 2 (fk = 0.1) in

which the PANS transport coefficient is modified according to the EBL analysis. Clearly both

C1 and C2 computed eddy-viscosity estimates are in good agreement with prescribed value of

0.01. In Figure 4.1b, a similar comparison is made for Case 5 (fk = 0.15) in which the transport

coefficients are also modified. Again the agreement between computed and prescribed ratios are

in good agreement. Next, we compare Case 8 (fk = 0.1) in which the transport coefficients

are unmodified from RANS values (Figure 4.1c). The computed eddy-viscosity ratio is close to

unity rather than the prescribed value of fν = 0.01. This clearly demonstrates the importance

of modifying the transport coefficient in accordance with EBL analysis. Unless, the transport

coefficients are modified, the PANS eddy viscosity value approaches that of RANS irrespective of

fk values specified. It will be shown later that the flow structures computed in Case 8 (unmodified

coefficients) do not display a large range of resolved scales.

Having established that the PANS simulation (with modified coefficients) does indeed produce

the required reduction in eddy viscosity, we next investigate if the correct balance between pro-

duction and dissipation is attained. Toward this end, we examine two important ratios: production-

dissipation ratio of the unresolved field (Pu/εu) and total field (Pt/εt). The various production

terms are obtained as follows:

Pu = 2νuSijSij; and Pt = −u′iu′j
∂Vi
∂xj

. (4.32)

It is important to note that due to the unsteady nature of Pu and εu, they have been averaged over
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(a) (b)

(c)

Figure 4.1: Consistency profiles for Reτ = 550: (a) Case 2, (b) Case 5, (c) Case 8.

homogeneous planes as a function of wall distance. The two important ratios as a function of wall

normal distance is shown in Figure 4.2a. There is a clear balance between unresolved production

and unresolved dissipation of energy within the logarithmic layer, which effectively decouples the

buffer layer and wake flow regions as dictated by physics. Comparison of total production-to-

dissipation ratio obtained from the same PANS simulation is now compared against the DNS data

of Hoyas and Jimenez (2). Apart from the region very close to the wall, the agreement is quite

reasonable.

We have now established that the PANS model produces the prescribed degree of viscosity

reduction and reasonable production-dissipation balance. Now we proceed to the validation stage

where the PANS statistics and flow structures are compared against established data.
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(a) (b)

Figure 4.2: Production-to-dissipation ratio for Reτ = 550 in terms of budgets of: (a) subgrid
kinetic energy, (b) total kinetic energy.

4.4.2 One-point statistics

4.4.2.1 Mean flow field

The grid convergence study in terms of the mean velocity field is shown in Figure 4.3a. Cases

2, 3, and 4 in Table 4.1 examine the grid convergence in the wall normal direction, while Cases

2 and 7 assess the grid convergence in the stream parallel direction. For the cases with modified

coefficients, all three grids considered (Ny = 50, 150, 200) converge to the DNS data. The case

with unmodified coefficient (Case 8) however exhibits a significant deviation, even with the highest

resolution studied (Ny = 200). This finding once again emphasizes the importance of turbulent-

transport coefficients.

Figure 4.3b exhibits the PANS mean velocity profiles at three different Reτ values: 180, 550

and 950. The results show that the right slope of log-layer is recovered at all Reynolds numbers.

In Figure 4.3c, the mean profiles obtained for three different fk values are shown for the case

of Reτ = 550. All these simulations are run on the coarsest grid resolution with only 204,000 grid

cells. As expected, by decreasing the fk value, a higher amount of unsteadiness within the flow

field is resolved, and PANS result converges to the DNS profile.
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(a) (b)

(c)

Figure 4.3: Mean velocity profiles for different simulation parameters: (a) Grid size - Ny, (b)
Reτ , (c) fk values; The DNS data is taken from [2].

4.4.2.2 Reynolds stresses

Figure 4.4 displays the Reynolds shear stress and anisotropy profiles for fk = 0.1 andRτ = 550

at different grid resolutions. For all resolutions considered, the PANS shear stress is in excellent

agreement with the DNS data. The anisotropy of PANS Reynolds stresses is exhibited on the

invariant map (91), shown in Figure 4.4b. All cases shown exhibit correct degree of anisotropy

as a function of wall distance. The anisotropy starts at the two-component limit near the wall and

proceeds toward the one-component state. Finally it evolves along the axisymmetric expansion

line, approaching isotropic state near the centerline.

The fk-dependence of the different Reynolds stress components is shown in Figure 4.5. Once

again, the PANS results converge to DNS values with decreasing fk. For the case of fk = 0.1, the

agreement is quite good.
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(a) (b)

Figure 4.4: Reynolds stresses at different grid resolutions for Reτ = 550: (a) shear stress profile,
(b) anisotropy profile on invariant map.

(a) (b)

(c) (d)

Figure 4.5: Reynolds stresses as a function of physical resolution (fk) for Reτ = 550: (a) shear
stress, (b) normal streamwise stress, (c) wall-normal stress, (d) normal spanwise stress.
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4.4.3 Multi-point statistics and structures

4.4.3.1 Energy spectra

To demonstrate the scale-resolving capability of WR-PANS, plots of power spectral density

of streamwise velocity fluctuations corresponding to Case 4 in Table 4.1 are shown in Figure 4.6.

In order to obtain the temporal energy spectra, a large number of samples are recorded at three

different wall-normal locations: y+ = 50, 100 and 150. The spectrum is normalized by the local

turbulent kinetic energy, and frequency is scaled by the centerline velocity Uc and channel half-

height (h). In addition, to improve the signal clarity, Hanning window (92) has been applied to

obtain the spectra. Figure 4.6 illustrates the computed spectra at the three locations. Each spectrum

exhibits a -5/3 slope at the large-scale side of the inertial range. Then at smaller inertial scales,

the spectrum exhibits a -7 slope. The slopes of spectra agree very well with the spectral behavior

of boundary layer shown in Wu and Moin (5). Thus, PANS simulation results yield the correct

spectral scaling.

4.4.3.2 Two-point correlation

To further demonstrate the ability of PANS to capture turbulence structures, we now examine

the spatial two-point correlations (Figure 4.7). The PANS two-point streamwise velocity correla-

tion function is compared against the DNS data of Sillero et al. (3). The agreement is reasonable for

small separation distances and excellent for larger separations. The discrepancy at small separation

distances is to be expected as PANS uses a closure model for representing small-scale physics. The

larger scales are captured more accurately leading to better agreement of the two-point correlations

at larger separation distances.

4.4.3.3 Coherent structures

In evaluating SRS methods, it is very important to look beyond low-order statistics and examine

unsteady features and flow structures. Our goal here is to establish that PANS computations capture

key vorticity features characteristic of boundary layers. For the purpose of vortex visualization, λ2

iso-surfaces, representing the minimum local pressure has been employed (93).
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Figure 4.6: One-dimensional frequency spectra of streamwise velocity at three wall distances in
Case 4.

Figure 4.8 illustrates λ2 iso-surfaces, colored by the local streamwise velocity, for Cases 4

and 8. The difference between PANS simulations with modified transport coefficients (Case 4)

and unmodified coefficients (Case 8) is immediately evident. The reduced eddy viscosity in the

modified case leads to the liberation of broader range of unsteady scale (Case 4). On the other

hand, the unmodified case (Case 8) exhibits very few unsteady scales. This finding is consistent

with the viscosity ratio exhibited in Figure 4.1. Thus, the modified model leads to prescribed

degree of viscosity reduction and captures a wider range of scales. Next, we will establish that the

unsteady scales exhibit correct physical behavior.

While Cases 2 to 4 show adequate resolution for capturing one-point statistics, for scrutiniz-

ing the details of small-scale vorticity structures we use the highly resolved Case 4 in Figure 4.9.

Figure 4.9a provides a three-dimensional illustration of the λ2 iso-surfaces, colored by the local
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Figure 4.7: Two-point correlations Ruu in the streamwise direction at y+ = 330. The DNS data is
taken from [3]

(a) (b)

Figure 4.8: Assessment of the modified transport coefficients in terms of turbulence structures for
Reτ = 550: (a) Case 4, (b) Case8.
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streamwise velocity. For a more quantitative examination, we also present the vorticity contours on

a streamwise-wall normal plane in Figure 4.9b . From these figures we can identify different sets

of organized motions referred to as ‘coherent structures’. These structures mostly take the form of

hairpin, which is consistent with the observations of Theodorsen (94). Figure 4.9b shows resolved

hairpin structures of different forms: symmetric, asymmetric or cane shape. Three distinguishable

hairpins, along with some partially formed ones are observed in the figure shown. Since the span-

wise component of velocity is non-zero, one-legged hairpins are most prominent. This figure also

shows that the grouped hairpins are aligned in a ramp-like shape in the streamwise direction at an

angle φ = 12.5◦. This value of streamwise alignment angle lies in the range of 12◦ < φ < 20◦

established by Christensen and Adrian (48) for fully-developed wall-bounded turbulent flows in

this Reynolds number range.

Next we focus on a single packet to examine the flow structure organization using the ‘quadrant

analysis’ (95). Figures 4.9c–4.9e capture ejection and sweep mechanisms on the x − y plane of

z/h = 0.7, going through the head of hairpins in the packet. By following fluctuation velocity

field vectors, this plot depicts how the low-speed near-wall fluid ejects away from the wall and

the high-speed outer layer fluid sweeps toward the wall. The shear layer, at which low and high

momentum fluids meet is also clearly seen. The head of hairpins, often referred to as the signature

of coherent structures, which correspond to strong spanwise vorticity region is also clearly evident.

It should be emphasized that Case 7 (with unmodified coefficients) does not capture any of the flow

structures at the same degree of computational resolution.

Overall, PANS, with transport equations modified according to EBL analysis, captures the

channel flow statistics and flow structures adequately at reasonable computational expense.
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(a) (b)

(c) (d)

(e)

Figure 4.9: Organization of turbulence structures for Reτ = 550 (a) λ2 iso-surfaces colored by
streamwise velocity, (b) hairpin packet in spanwise vorticity contour, (c) first hairpin, (d) second

hairpin, (e) third hairpin.
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5. CONSISTENT INFLOW TURBULENCE BOUNDARY CONDITIONS FOR SCALE

RESOLVING SIMULATIONS OF SPATIALLY EVOLVING FLOWS

5.1 Introduction

Spatially developing turbulent flows are vital in many engineering applications. These flows

are particularly challenging for turbulence closure computations due to the fact that precise pre-

scription of boundary conditions is an absolute necessity. Depending on the nature of turbulence

computations, incorrect inflow conditions can lead to a very lengthy development section or, in

some cases, a wrong solution. Within the development section, the spurious noises decay and re-

laxation of error due to poor inflow conditions happens. As the prescription of inflow properties

becomes rudimentary, a longer development section is needed to forget the startup transient of

convective flows. To reduce the length of development section, further physics have to be incorpo-

rated into the perturbed inflow field. Although there have been numerous studies in literature on

the specification of perturbed inflow field for LES and DNS (66; 96; 97; 98; 99), there seems to be

a lack of attention to inflow field for bridging scale resolving simulation.

One of the differences between partially averaged Navier-Stokes (PANS) model of Girimaji

(21) and LES is related to definition of the cut-off wave number. In LES, as the grid resolution

increases, the cut-off wave number moves to higher frequencies and eventually coincides with

DNS. In PANS, however, the cut-off is dependent on the resolution control parameters. It means

that PANS cut-off wave number matches that of DNS if both the computational and physical res-

olutions approach to DNS. This dictates the necessity of meaningful prescription of unresolved

turbulence profiles for the inflow of spatially-evolving PANS simulation.

PANS is a high-fidelity bridging scale-resolving method. The fidelity of PANS model is at-

tributed to its robust and physics based subfilter stress (SFS) modeling. PANS adapts two-equation

RANS or Second Moment Closure (SMC) models to account for the subfilter scales residing in the

flow field. Hence, the modifications made over the years for the RANS two-equation closures can

42



be transferred to the PANS subfilter modeling. In PANS, the subfilter length and velocity scales

are obtained from the two-equation closure. For generating inflow turbulence, not only scaling of

the resolved velocity field is required, but also turbulent kinetic energy and (specific) dissipation

must be properly scaled at the inlet. The main objective of the present study is to address how the

subfilter turbulence profiles are scaled at the inlet in proportion to the resolved field.

The developed consistent inflow condition for the resolved and unresolved turbulence is exam-

ined in a zero-pressure-gradient turbulent boundary layer over a continuous range of momentum

thickness Reynolds numbers 650 ≤ Reθ ≤ 1434. The case is set up in a very cost-effective way in

terms of selected boundary conditions and treatment of turbulent flow field. Results show that the

synergy between the proposed turbulence generator and partially-averaged Navier-Stokes (PANS)

model lead to an efficient spatially developing computation. The cost efficiency of computation

is justified through minimizing the length of turbulence development and selectively resolving

turbulence structures.

In the results, one-point statistics in terms of the integral quantities, mean flow field, second

order moments, skewness and flatness, budgets of kinetic energy along with multi-point physics of

structures with respect to two-point correlation and visualization of coherent structures are metic-

ulously studied. Comparing the results with the established experimental, DNS and well-resolved

LES data (4; 5; 6; 7; 8), fidelity of PANS in recovering the underlying physics of the turbulent

boundary layer flow is assessed.

The structure of this chapter is as follows. First, the derivation of perturbed inflow for PANS

is discussed. Then, the computational setup with regard to the domain size, grid resolution, initial

field, and boundary conditions is described. Next, the results of turbulent boundary layer, de-

veloped from the proposed inflow condition, in terms of one-point and multi-point statistics are

reported.
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5.2 Perturbed inflow for SRS

5.2.1 Recycling–rescaling of the velocity field

To define the perturbed resolved velocity field at the inlet, recycling/rescaling method (66)

is used. In this way, we first average velocity field in time and spanwise direction. Next, the

momentum thickness and friction velocity are computed at the recycling station. Friction velocity

is iteratively computed at the inlet based on the equilibrium scaling laws to achieve the specified

inflow momentum thickness. Then the interpolation of the velocity field in the inner and outer

fields, where log-law and defect law hold, is conducted. It is followed by employing a composite

formula to yield the rescaled velocity field from the recycling station to the inlet. The Reynolds

decomposition of the velocity field reads as:

ui(x, y, z, t) = Ui(x, y) + u
′

i(x, y, z, t), (5.1)

in which Ui is the averaged velocity in both spanwise direction and time; u′i is the velocity fluctu-

ations.

For the flow to forget the initial transition to the fully-developed equilibrium state, an efficient

approach has been followed (66). The usage of three different time averaging intervals will expe-

dite the transition to fully-developed state. The switch points in time are suggested to be 10δ/U∞

and 100δ/U∞. Averaging is respectively conducted during the last %1 and %10 of time segments,

and after the second switch, we average velocity in time to the end of simulation:

Un+1 =
∆t

T
< un+1

z > +(1− ∆t

T
)Un, (5.2)

the angle bracket denotes spanwise averaging; T is the switching time between time segments; ∆t

is the averaging interval for each time segment.

Rescaling of the velocity field is conducted through breaking down the field into inner and

wake regions. Log-law holds in the inner region, while velocity defect law is valid in the outer
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region:

U+inner = f(y+),

U+
∞ − U+outer = g(η),

(5.3)

where U+ = U/uτ , uτ = (τwall/ρ)
1
2 , y+ = yuτ/ν, and η = y/δ. Functions f and g are re-

spectively based on the log-law and velocity-defect law definitions. τwall is the wall shear stress;

ρ is the fluid density; δ is the boundary layer thickness; y is the wall distance; Uτ is the friction

velocity; ν is the kinematic viscosity. After writing these velocity scalings for both recycling and

inlet stations, we will have (66):

U inner
inlt = Uτ (xinlt)f1(y

+),

U inner
recy = Uτ (xrecy)f1(y

+),
(5.4)

U outer
inlt = U∞ − Uτ (xinlt)g1(η),

U outer
recy = U∞ − Uτ (xrecy)g1(η),

(5.5)

The velocity field at the recycling station can be mapped to the inlet by:

U inner
inlt = γU inner

recy (y+inlt),

U outer
inlt = U∞(1− γ) + γU outer

recy (ηinlt),
(5.6)

where γ = Uτ (xinlt)/Uτ (xrecy). At this step, a linear interpolation of the mean recycling velocity

field on the inlet grid spacing is carried out.

The position of reference plane is of critical importance because in case of any correlation with

the inlet plane contamination of turbulence statistics will rise (100; 63). The point in choosing the

recycling planes is that as the distance between recycling stations increases, the generated inflow

will be less realistic and more artificial (γ increases). As such the development section will expand

further downstream because of the long lifetimes of the large eddies. Eddy turn-over time provides

an estimate on the recovery distance of the inflow (3). Also, care must be taken about the distance

to the outlet due to propagation of spurious waves from the outlet plane.
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The streamwsie velocity is scaled by the friction velocity, and the wall normal component of

velocity is scaled by the free-stream velocity as:

V inner
inlt = U∞f2(y

+),

V inner
recy = U∞f2(y

+),
(5.7)

V outer
inlt = U∞g2(η),

V outer
recy = U∞g2(η),

(5.8)

Similar to the streamwise component of velocity, the wall-normal component of velocity at

recycling station also has to be interpolated on to the inlet grid spacing. As a result, the mapped

vertical velocity field at the inlet would take the form of:

V inner
inlt = V inner

recy (y+inlt),

V outer
inlt = V outer

recy (ηinlt).
(5.9)

The mean spanwise velocity is nominally zero in the equilibrium boundary layer. To account

for the effect of boundary layer growth in the streamwise direction, Lund et al. (66) recommend

explicit dependence of fluctuation field on the friction velocity uτ . The fluctuation field thus takes

the following form:

u
′
i

inner
(xinlt) = Uτ (xinlt)f3(xinlt, y

+, z, t),

u
′
i

outer
(xinlt) = Uτ (xinlt)g3(xinlt, η, z, t),

(5.10)

u
′
i

inner
(xrecy) = Uτ (xrecy)f3(xrecy, y

+, z, t),

u
′
i

outer
(xrecy) = Uτ (xrecy)g3(xrecy, η, z, t).

(5.11)

Assuming that all the inhomogeneity in the streamwise direction is represented by the friction

velocity (66), the scaled perturbed velocity reads as:

u
′
i

inner
(xinlt) = γu

′
i

inner
(xrecy)f3(y

+
inlt, z, t),

u
′
i

outer
(xinlt) = γu

′
i

outer
(xrecy)f3(ηinlt, z, t).

(5.12)
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Now that all the rescaled components are known, the velocity components in the inner and

outer regions can be combined together through the weighting function (equation 5.13) to form the

inflow velocity field:

ui(xinlt) = [Ui
inner(xinlt) + u

′
i

inner
(xinlt)][1−W (ηinlt)]

+[Ui
outer(xinlt) + u

′
i

outer
(xinlt)]W (ηinlt),

(5.13)

where W is the weighting function defined as (66):

W (η) = 1
2
[1 +

tanh(
α(η−b)

(1−2b)η+b
)

tanh(α)
], (5.14)

in which α = 4 and b = 0.2.

In the process of rescaling velocity field, we need two physical quantities at the inlet and

recycling station. In the current work, we chose to specify the momentum thickness at the inlet

and to obtain the corresponding friction velocity by (66):

uτ,inlt = uτ,recy[
θrecy
θinlt

]1/(2(n−1); n = 5, (5.15)

where θ is the momentum thickness. θrecy and uτ,recy are directly calculated from the flow field. It

is worth noting that the upper bound of momentum thickness integration needs the boundary layer

thickness value. Hence, the iterative procedure has to be followed to make sure that the momentum

thickness and boundary layer thickness are consistent.

5.2.2 Scaling of turbulence profiles

Numerical treatment of partial differential equations (PDEs) requires specification of meaning-

ful boundary conditions. There are different methods proposed in literature to generate a perturbed

inflow velocity field for spatially evolving flows. Lund et al. (66), as a case in point, proposed

a robust concurrent internally-mapped perturbed inflow velocity field for LES computations. The

method is based on recycling/rescaling of velocity field from a proper downstream recycling sta-
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tion to the inlet. This study argues that in B-SRS however, not only realistic inflow velocity field

is required, but also deterministic prescription of subgrid turbulence quantities, turbulent kinetic

energy and (specific) dissipation, for the subfilter closure equations are necessary.

Elucidating the equilibrium states of turbulent flows, fixed-point analysis is known to be a

proper way to predict the attracting solutions of turbulence evolution equations (22). In temporal

analysis of turbulent flows, e.g. channel flow, the fixed-point of the dynamical system is sensitive

to the initial field. While spatial computations need detailed specification of the inflow turbulence

properties as they are advected downstream. Hence, for spatially evolving simulations, inflow

characteristics dictate the flow dynamics inside the computational domain. In section 5.4, it will

be shown that poor inflow condition will lead to the failure of subgrid-scale modeling.

In B-SRS, both the resolved and modeled turbulent kinetic energies contribute toward con-

serving the total energy of the system. Therefore, it must be ensured that the prescribed level

of contribution from each part is maintained throughout the simulation time. Consistency of the

physics with the prescribed resolution control parameter fk is a criterion, revealing the functional-

ity of B-SRS (1).

In an attempt to control the level of unresolved unsteadiness in B-SRS, meaningful prescription

of the modeled turbulence (ku and ωu) profiles at the inlet of spatially evolving simulations is

necessary. Instantaneous modeled turbulence properties at the inlet must be consistent with the

prescribed physical resolution, fk. In order to control the ratio between the resolved and unresolved

turbulent kinetic energies at the inlet, the modeled part is expressed as a function of the resolution

control parameter fk:

ku(y) =
fk

1− fk
kr(y) ; kr(y) = ViVi − V̄iV̄i. (5.16)

Excessive dissipation of turbulence in the unresolved part would lead to destruction of the

modeled turbulent kinetic energy. Hence, the level of modeled (specific) dissipation has to be

defined based on the underlying physics within subfilter scales such that the intended level of
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modeled kinetic energy survives. According to the ‘equilibrium analysis’ within the logarithmic

layer, the production of unresolved turbulent kinetic energy is balanced with its dissipation:

Pu ≈ εu. (5.17)

The unresolved production term is calculated from:

Pu = 2νuSijSij, (5.18)

in which

νu = cµ
k2u
εu
. (5.19)

Upon substitution of νu from equation (5.19) into equation (5.18), the scaled inflow dissipation

rate is given by

εu =

√
2cµk2uSijSij, (5.20)

ωu in turn can be extracted from εu through:

εu = β∗kuωu. (5.21)

Finally, the scaled specific dissipation rate at the inlet is expressed as:

ωu =

√
2cµSijSij

β∗
, (5.22)

where β∗ = 0.09; and cµ = 0.09. In the remainder of this work, we perform PANS simulation

of zero- pressure-gradient turbulent boundary layer to verify and validate the proposed consistent

inflow properties. Although the scaling development in this study is in the context of PANS, the

established framework is applicable to other bridging scale-resolving methods.
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5.3 Simulation procedure

5.3.1 Computational setup

In order to investigate the performance of the proposed inflow properties, we conduct PANS

simulation of a spatially evolving flat-plate boundary layer with a momentum thickness Reynolds

number in the range 650 ≤ Reθ ≤ 1434. Simulations are conducted over a range of numerical

and physical resolutions listed in Table 5.1. The dimensions of the computational domain are

53δ0 × 4δ0 × 4.5δ0 in the streamwise, wall-normal and spanwise directions, with δ0 being the

inflow boundary layer thickness (Figure 5.1). These dimensions are examined in the results section

in terms of covering the largest energy containing eddies present in the flow field.

Figure 5.1: Three-dimensional schematic of the computational domain for PANS of ZPGFPBL.

Table 5.1: Details of the test cases examined for the turbulent boundary layer.

Simulation Nx Ny Nz N fk ∆x+ ∆y+min ∆z+

CaseA-1 503 55 55 1.5M 0.1 33.6 0.92 17.2
CaseA-2 503 55 64 1.7M 0.1 33.6 0.92 14.5
CaseA-3 503 60 64 1.9M 0.1 33.6 0.84 14.5
CaseA-4 503 64 60 1.9M 0.1 33.6 0.77 15.5
CaseB-1 503 55 55 1.5M 0.2 33.6 0.92 17.2
CaseB-2 503 55 64 1.7M 0.2 33.6 0.92 14.5
CaseB-3 503 60 64 1.9M 0.2 33.6 0.84 14.5
CaseB-4 503 64 60 1.9M 0.2 33.6 0.77 15.5
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As shown in Figure 5.1, the recycling plane is located at xrec = 8.5δ0 downstream of the inlet.

This choice is made based on two considerations. In case of any turbulence correlation between the

recycling planes, contamination of statistics will arise (100; 63). On the other hand, as the distance

between the recycling stations increases, the scaling factor grows and the generated inflow in turn

will be less realistic.

The accuracy-on-demand reasoning makes the computational cost of PANS simulations de-

pendent on the objective functions (1). Convergence of statistics using different numerical and

physical resolutions is verified in Table 5.1. In this table, the grid spacing is normalized by the

viscous wall units at the inflow friction velocity. The free stream velocity and kinematic viscosity

are set to U∞ = 1(m/s) and ν = 10−5(m2/s), respectively. The grid spacing is uniform in the

streamwise and spanwise directions. The essence of boundary layers dictates grid clustering in the

near-wall region. The distribution of grid points in the wall-normal direction is such that there are

8 grid points within 0 < y+ < 10 and 22 grid points between 10 < y+ < 100. After comparing the

computational resolution of PANS in Table 5.1 with the established DNS and LES computations

in Table 5.2, one would notice a fair amount of computational cost saving.

Table 5.2: Computational cost of boundary layer simulations compared to the reference works.

Reference Method Reθ Number of grid points
Spalart (4) DNS; spectral 1410 11 million
Wu and Moin (5) DNS; finite difference 80 ≤ Reθ ≤ 940 210 million
Schlatter et al. (8) LES; spectral 180 ≤ Reθ ≤ 4300 605 million
Simens et al. (63) DNS; finite difference 600 ≤ Reθ ≤ 950 128 million

5.3.2 Initial condition

In the recycling/rescaling of the resolved velocity field, the recycling station has to be in an

equilibrium condition to be valid for rescaling purposes (66). In the current work, the initial tur-

bulent velocity field is represented by the Spalding law, which is a power-series fit of the laminar,
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buffer and logarithmic regions of an equilibrium boundary layer (101):

y+ = u+ +
1

E
[eκu

+ − 1− κu+ − (κu+)2

2
− (κu+)3

6
], (5.23)

where κ = 0.42, E = 9.1, y+ = yuτ/ν and u+ = ū/uτ ; uτ denotes the friction velocity. To

expedite the development of turbulence from the base flow, the initial velocity field is superimposed

with the spanwise sinusoidal waviness (102):

u′3(x
+, y+) = cεsin(a+x+)y+exp(−cσy+2), (5.24)

where cε is the linear perturbation amplitude, a+ is the wavenumber of perturbation in the x-

direction and cσ is the transverse decay.

5.3.3 Boundary conditions

In order to mimic the viscous flow over a flat plate, the no-slip condition is applied on the wall.

The free-slip condition for the velocity field, along with constant zero pressure condition represent

the free-stream condition:

∂v

∂y
= 0;

∂u

∂y
= 0; p∞(x) = constant. (5.25)

Assuming the flow is homogeneous in the spanwise direction, the cyclic condition holds in the

statistical sense. We employ the Dirichlet boundary conditions for the subgrid turbulence prop-

erties (k and ω) on the wall. The inflow turbulence properties are defined using the proposed

inflow condition described in Section 5.2.2. A constant zero pressure is defined at the outlet plane.

Disturbances generated at the outlet can potentially change the flow behavior throughout the flow

domain. Therefore, in order to minimize the reflection of waves from the outlet boundary into

the interior domain, a smooth convection of flow structures through the outlet plane has to be es-

tablished. Over the outflow boundary, a relatively undistorted traveling vortex is fulfilled by the
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convective boundary condition (103; 104):

∂u

∂t
+ Uconv

∂u

∂x
= 0, (5.26)

where Uconv is the mean convective velocity. At each time step, Uconv is updated so that the

conservation of mass flux throughout the whole domain is satisfied (105).

5.3.4 Accuracy of solver

Our in-house OpenFOAM-based simulator is used to integrate the evolution equations using

the finite volume approach. The proposed inflow condition has been implemented as a new library

in OpenFOAM. The employed transient solver is the so-called pimpleFOAM. Spatial and temporal

derivatives are respectively approximated by the second-order accurate central differencing and

Crank-Nicolson schemes (∆2
x and ∆2

t ). The level of numerical stability is controlled by prescribing

a tight criteria on the maximum CFL number value at each time-step (CFL < 0.8).

5.4 Results and discussion

In the results, first we ensure the functionality of the scale-resolving computations. Next, the

single-point statistics are compared against the established DNS data. Finally, we discuss the

analysis of two-point correlation properties and visualization of turbulence structures.

5.4.1 Internal consistency

The physics of the turbulence bridging models is described by three evolution equations; mo-

mentum equation (U ), subfilter turbulent kinetic energy (ku), and subfilter specific dissipation rate

(ωu). Herein it is ensured that the equations are solved in the right way via implementation of

a meaningful inflow for the ZPGFPBL. The prescribed reduction of eddy viscosity, especially in

the near-wall region, defines the functionality of the bridging subfilter closure modeling. In this

subsection, we attempt to establish that the scaling of turbulent quantities at the inlet is prerequi-

site for consistency of the PANS results with the prescribed resolution control parameter (fk). In

PANS, to ensure that the correct level of unsteadiness based on the prescribed control parameter
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is captured in the simulation, the internal consistency study is critical (1). According to the defi-

nition, the DNS solution will be recovered as fk asymptotes to zero. PANS results of ZPGFPBL

reveal that the trivial fixed-point, corresponding to ku ≈ 0, will be permitted for a system with ill-

defined boundaries. From Figure 5.2, either small values of turbulent kinetic energy or excessive

amount of dissipation rate at the inlet could make a B-SRS computation asymptote to the trivial

DNS solution.

Figure 5.2: Posteriori fk calculation associated with unscaled quantities for CaseA-3.

Figure 5.3 shows that the consistency of the eddy viscosity reduction with the prescribed value

is contingent upon the right scaling of ku and ωu at the inlet. In spatially evolving simulations, first

the recovery of correct physical resolution (fk) is ensured at the inlet (Figures 5.3a-b), then for the

rest of flow field, the system evolves such that the flow dynamics converge to the correct PANS

solution (Figures 5.3c-d).
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(a) (b)

(c) (d)

Figure 5.3: fk consistency for (a) fk = 0.1 at inlet, (b) fk = 0.2 at inlet, (c) fk = 0.1 at
Reθ = 1410, (d) fk = 0.2 at Reθ = 1410.

5.4.2 Integral quantities

According to Figure 5.4, evolution of the skin friction coefficient (cf ) and shape factor (H) are

validated using the DNS data of Spalart (4) and Wu and Moin (5). Shape factor (H), representing

the ratio of displacement to momentum thickness, manifests the nature of the flow. The fully

developed turbulence is clearly visible as the shape factor settles to the constant value of 1.4,

reported for fully-developed turbulent boundary layers (4; 5). The captured autogeneration of

near-wall vortical structures, shown later, leads to recovering turbulent stresses and subsequent

drag production.
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Figure 5.4: Stream-parallel evolution of friction coefficient and shape factor for CaseA-3
compared to the DNS data from [4] and [5].

5.4.3 One-point statistics

In this subsection, the one-point statistics up to the fourth-order central moment of velocity

field fluctuations are examined. The results are normalized by the local friction velocity (uτ ≡√
τw/ρ) and viscous length scale (lν ≡ ν/uτ ). τw and ρ are the wall shear stress and fluid density,

respectively.

5.4.3.1 Velocity field

In SRS computations, in order to avoid log-layer mismatch, either a robust subfilter modeling

or a proper physical resolution is needed. Having adapted the well-established RANS reasoning

into the subfilter closure(1), the log-law profile can be reproduced with coarser grid resolutions

compared to other B-SRS (1). Figures 5.5a and 5.5b respectively show the grid convergence study

for fk = 0.1, and fk = 0.2 for different cases listed in Table 5.1. As is evident, both sets of data
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are in agreement with the DNS of Spalart (4) at Reθ = 1410. Although there is a little deviation in

the logarithmic region for fk = 0.2 due to a lower liberated unsteadiness.

(a) (b)

Figure 5.5: Log-law profile at Reθ = 1410 as a function of grid resolution with (a) fk = 0.1, (b)
fk = 0.2.

5.4.3.2 Stress profiles

Figures 5.6a and 5.6b respectively show the second order moments of velocity field as a func-

tion of both inner (y+) and outer (y/δ) wall-normal coordinates at Reθ = 1410. All the second

order turbulence statistics agree well with the DNS of Spalart (4). In Figure 5.6a, the peak of

streamwise normal stress is located at y+ = 13, which agrees well with DNS. In addition, for

y+ < 4, zero shear stress implies a zero velocity gradient. The anisotropy of the flow in the near

wall region is clear from the stress profiles in the inner-wall coordinate (Figure 5.6a), while they

all settle to the same value in the outer wall region (Figure 5.6b). PANS can capture the near-wall

anisotropy, provided that an adequate level of unsteadiness is resolved (1). In Figure 5.6b, the

shear stress profile shows an overshoot at y/δ = 0.07 after which it asymptotes to zero in the outer

wall region.
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(a) (b)

Figure 5.6: Second moments of turbulence at Reθ = 1410 as a function of (a) inner wall
coordinate (y+); (b) outer coordinate (y/δ). Solid line and dashed line respectively correspond to

CaseA-1 and CaseB-1. The DNS data is taken from [4]. Diamond, streamwise stress; square,
spanwise stress; triangle, wall-normal stress; circle, shear stress.

5.4.3.3 Skewness and flatness

High-order statistics in terms of skewness (S) and flatness (F ) of streamwise velocity fluctua-

tions are defined as:

S(u′) =
u′3

u′2
3/2

; F (u′) =
u′4

u′2
2 . (5.27)

Figure 5.7 compares the skewness and flatness of streamwise velocity fluctuations with the ex-

perimental data of Barlow and Johnston (6) for Reθ = 1140. Quantitative analysis of sweep and

ejection mechanisms is manifested in the skewness of streamwise fluctuation. According to Figure

5.7a, in PANS y+ ≈ 19 separates the events which are dominant in the second and fourth quadrant

of the u′ − v′ plane (50). The corresponding value is y+ = 14 for the experiment of Barlow and

Johnston (6). The maximum flatness associated with the intermittent near-wall behavior is also

depicted in the flatness of streamwise fluctuations (Figure 5.7b).

5.4.4 Budgets of kinetic energy

Production (Pk) and viscous dissipation (εk) of turbulent kinetic energy are expressed as:

Pk = −u′iu′j
∂Ui
∂xi

; εk = ν
∂u′i
∂xj

∂u′i
∂xj

. (5.28)
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(a) (b)

Figure 5.7: (a) Skewness and (b) flatness of streamwise fluctuating velocity at Reθ = 1140. The
experimental data is adapted from [6].

Figure 5.8 shows the turbulent kinetic energy budgets, normalized by uτ 4/ν, for the near-wall

Figure 5.8: Turbulent kinetic energy budget compared to DNS of [7].
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region. Being dimensionless based on the local friction velocity (uτ ), the budget holds for every

downstream station along the plate. According to Figure 5.8 the computed budgets of energy is in

agreement with the DNS of Le et al. (7). Since the low-Reynolds-number effects are not included

in the subfilter stress modeling, the observed discrepancy in the dissipation term compared to DNS

is expected near the wall.

5.4.5 Two-point correlation

The spanwise two-point correlation of different velocity fluctuations is expressed as (106):

Ruiuj(z, t) =
u′i(z, t)u′j(z + dz, t)√

ū′i
2ū′j

2
. (5.29)

Although the subfilter scale modeling is based on the single-point physics, the fidelity of PANS

Figure 5.9: Spanwise two-point correlation of velocity field at y+ ≈ 8 for Reθ = 1410.
Well-resolved LES data corresponds to Reθ = 1430 from [8].
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in capturing multi-point physics originates from the fact that a proper level of unsteadiness is

resolved. To gain insight into the boundary layer flow dynamics in the near-wall region, exam-

ination of multi-point physics of boundary layer is conducted. Multi-point physics in terms of

spanwise two-point correlation of velocity field is shown in Figure 5.9. According to this figure,

the two-point correlation of all components of fluctuating velocity field in the spanwise direction

asymptotes to zero, emphasizing the fact that the flow statistics have not been affected by the span-

wise periodicity. Cross-correlation of turbulent flux (Ruv) between streamwise and wall normal

components have also been shown in Figure 5.9. Based on the definition, if the separation exceeds

the size of the largest eddies in one direction, the value of two-point correlation asymptotes to

zero as decorrelation of scales is achieved. The organization of structures can be implied from

the two-point correlation plot (Figure 5.9). The minimum of spanwise two-point correlation of

Table 5.3: Organization of structures in the near-wall region of boundary layer.

Quantity Feature PANS LES (8)
Rmin
uu Spacing 50 50

Rmin
vv diameter 25 25

Rmin
ww Vortex-pairing 50 50

streamwise component of velocity corresponds to the spanwise separation of high and low speed

streaks (∆z+ = 50). Furthermore, since negative correlation value shows that the two points are of

different signs, we can interpret the minimum of Ruu as the distance between neighboring streaks

in the spanwise direction. In the same figure, the spacing between counter-rotating streamwise

vortices is approximated by the extrema of Rww at ∆z+ = 50. The two-point correlation of the

wall-normal turbulent velocity field, Rvv, shows a minimum at ∆z+ ≈ 25, representing the di-

ameter of streamwise vorticities at y+ = 8. These values are in agreement with the counterpart

well-resolved LES values reported by Schlatter et al. (8) (Table 5.3). A fast decay of spanwise cor-

relation of the wall-normal velocity reveals the fact that the correlation length for that component
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is very small compared to stream parallel and spanwise components of velocity. It is apparent that

the zero crossing of normal velocity is earlier than the other components.

5.4.6 Turbulence structures

Figure 5.10 shows the scaled instantaneous streamwise velocity field (U∗x = Ux/U∞) in PANS

simulation of ZPGFPBL at y+ = 5, depicting ‘footprint’ of coherent structures on the wall. The

anisotropic near-wall structures are clear in the form of streamwise streaks. Alternating high and

low momentum near-wall streaks are a source of Reynolds shear stress production. The high

momentum regions correspond to legs of hairpin, surrounding low momentum regions in between.

Figure 5.10: Alternating high and low-speed streaks on xz plane visualized by instantaneous U∗x
at y+ ≈ 5 for CaseA-3.

Capability of PANS in capturing the momentum transport mechanisms in the near-wall re-

gion is also investigated through visualization of near-wall coherent structures using the so-called

Q criteria (107). Q is the second invariant of the velocity gradient tensor, expressed as Q =

−1
2
(SijSij − ΩijΩij). According to this criteria, the positive values of Q correspond to the spots

at which the rotation rate dominates over the strain rate. Q iso-surfaces for CaseA-3 and CaseB-3

are shown in Figure 5.11. This figure shows that for the same Q magnitude (Q = 70), fk = 0.1

resolves more near-wall turbulence structures compared to fk = 0.2 as a result of survival of more

unsteadiness. Although on the left side of Figure 5.11, it is clear that Case3-B still resolves large

coherent structures in the form of hairpin vortices.
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Figure 5.11: Iso-surfaces of second invariant of the velocity gradient tensor by Q = 70 colored by
the instantaneous streamwise velocity.
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6. SIMULATION OF LAMINAR-TO-TURBULENT K-TYPE TRANSITION

6.1 Introduction

Identification of transition point is of importance in the turbulence related engineering prob-

lems, e.g. heat transfer and shear stress. Application of transition from laminar-to-turbulent is two-

fold. Low drag in the laminar regime and delayed separation in the turbulent regime make each

flow regime attractive in specific applications. Hence, the controlled transition has long been of

critical importance to turbulence researchers. In wall-bounded shear flows, Tollmien-Schlichting

(T-S) waves, identified as the most unstable modes of Orr-Sommerfeld equations, are the primary

instability mechanism of transitioning from laminar-to-turbulent. This type of instability can be

studied in either temporal or spatial approach. Scientists have been facing challenges in spatially

transition simulations as to being computationally demanding. In this way, reproducing the under-

lying physics using affordable scale-resolving simulations deserves a critical attention.

Morkovin et al. (9) argues that transition in external flows is a product of progression of stages

shown in Figure 6.1. Depending on the power of excitation, transition from the laminar to turbu-

lent regimes falls into one of the two main categories: bypass transition and natural transition. In

the former, the linear growth of disturbances is bypassed due to a strong excitation of the unstable

modes. In the latter, however, the laminar to turbulent transition is a result of sequence of insta-

bilities. In the natural transition, the receptivity mechanism e.g. periodic blowing/suction waves,

is followed by primary instability, set in as two or three-dimensional T-S waves. Secondary in-

stabilities and formation of Λ vortices are the results of large growth rate of disturbances (108).

Concentrated shear layers, shown in the results section, develop tertiary instabilities which are re-

sponsible for the formation of turbulent spots in the post-transition region. Later, these spots will

develop and merge into fully-developed turbulence. klebanoff and his colleagues (109; 110) were

firsts who identified the ’tertiary’ instabilities, responsible for the laminar breakdown and subse-

quent emergence of turbulent fluctuations. In a transition scenario, the interaction of disturbances
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from different paths, shown in Figure 6.1, will add to the complexity of transitional flow physics

and its analysis.

Figure 6.1: The Roadmaps from receptivity to turbulence for external flows [9].

The ‘non-parallel effects’ are the essence of studying natural transition from laminar-to-turbulent

regime (111). Schubauer and Skramstad (68) were the first who argued that the temporal analysis is

not able to account for the ‘non-parallel effects’ in the non-linear stage of instability development.

In the study of transitional flows, linear-stability theory (112) is a powerful technique to analyze

the evolution of modes within small amplitudes. While it fails as the growth rate of disturbances

becomes finite and non-parallel effects come into play.

In the case of natural transition, the non-linear growth of instability is preceded by the linear

growth of unstable modes fed by the passive mechanism. The first stage of transition can be

65



established either through superimposing unstable modes in the form of free-stream turbulence to

the base flow or superimposing continuous unstable modes in the wall boundary. In either case, the

continuous excitation is the key to simulating the spatial transition analysis. While in the temporal

analysis one-time excitation triggers the transition to turbulence in time.

In this work, the natural transition setup is based on the numerical experimentation of Rist and

Fasel (70) for studying the convective type of instability. The continuous excitation via periodic

blowing/suction boundary condition from the wall is a technique proposed by Rist and Fasel (70) to

reproduce the unstable modes as in the experiment of Kachanov and Levchenko (69). Their pioneer

work introduces a smart technique to feed pure uncontaminated T-S waves through a localized

periodic blowing/suction strip on the wall. In the results section, DNS of Sayadi et al. (10) serves

as the reference work against which the results are validated.

The spatial growth of T-S waves by virtue of a series of instabilities, from primary to secondary

and tertiary, is calculated from the momentum equations, along with partial modeling of the physics

in the subgrid scales. PANS has already shown fidelity in capturing underlying physics of spatially-

evolving turbulent flows (Chapter 4). Although, this study is among the firsts which address the

laminar-to-turbulent transition using the partially averaged Navier-Stokes (PANS) method.

This work targets the spatial amplification of small-amplitude two-dimensional linear TS waves

in the downstream. It is well-established that the level of dissipation, in terms of numerical and

viscous dissipation, is critical to allow for the receptivity due to blowing/suction. Specially, when

it comes to bridging scale-resolving simulations (B-SRS), this criterion is more pronounced since

the logic behind B-SRS is to lower the computational Reynolds number by increasing the effective

viscosity.

In this chapter, details of the simulation is first described in section 6.2. Then, the results are

discussed in terms of the modeling consistency, integral quantities, first and second order moments,

and visualization of structures.
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6.2 Simulation procedure

6.2.1 Computational setup

Controlling the level of dissipation, numerical or viscous, is the key to make the computation

of natural transition to turbulence affordable yet accurate (71; 72). In order to generate the natural

progression of laminar-to-turbulent transition, we define the Blasius base flow, along with mean-

ingful infinitesimal turbulence quantities at the inlet to minimize the background turbulence. The

inflow boundary layer thickness is defined based on the fact that the distance of inlet plane from

the leading edge of the plate is x0 = 1(m). The boundary layer thickness for the laminar flow is

expressed as (113):
δ

x
=

5√
Rex

, (6.1)

where, δ is the boundary layer thickness; Rex is the Reynolds number; x is the distance from the

leading edge. The free-stream velocity is set to U∞ = 0.2(m/s), and the kinematic viscosity is

ν = 2 × 10−5(m/s2). The inflow Reynolds number based on the streamwise distance from the

leading edge is equal to Rexin = 105. The flow field is initialized with the laminar flow such that

the outflow boundary layer thickness equals δout = δin
√
xout/xin = 0.049(m).

Figure 6.2: Sketch of the flow domain.
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6.2.2 Boundary condition

Pure uncontaminated T-S waves are imposed on the base flow through a localized periodic

zero-net-mass-flux blowing/suction boundary condition on the wall (111; 71). Zero net-mass flux

is satisfied due to the fact that the temporal average of imposed wall-normal velocity along the

blowing/suction strip is zero. The wall-normal velocity over the blowing/suction strip is expressed

as the combination of the two-dimensional fundamental wave and three-dimensional oblique wave

(71):

v = A1f(x)sin(ω1t) + A1/2f(x)g(z)cos(ω1/2t), (6.2)

where A1, A1/2, ω1, ω1/2 are the amplitudes and frequencies of the fundamental and subharmonic

waves, respectively. Fundamental and subharmonic breakdowns have been respectively introduced

by Klebanoff et al. (109) and Kachanov et al. (114). For the fundamental K-type transition, which

is the subject of current research, the three-dimensional oblique wave has the same excitation fre-

quency as the two-dimensional fundamental wave, i.e. ω1 = ω1/2. The non-dimensional frequency

of excitation is chosen to be F = ων/U2
∞ = 1.24× 10−4. The amplitudes are set to A1 = 0.0001

and A1/2 = 0.000015. According to the neutral stability curve computed by Saric and Nayfeh

(115), the prescribed frequency of the blowing/suction waves lies within the unstable range. It

should be noted that the amplitudes are small enough to replicate the linear growth of disturbances

and not to directly bypass to non-linear growth of superimposed waves in the streamwise direction.

The spatial function of f(x) is written in the form:

|f(x)| = 15.1875ξ5 − 35.4375ξ4 + 20.25ξ3,

ξ =


x−x1
xm−x1 , for x1 ≤ x ≤ xm;

x2−x
x2−xm , for xm ≤ x ≤ x2.

(6.3)

where xm represents the midpoint of strip. λx is the wavelength of the two-dimensional wave in

the streamwise direction which is equal to the streamwise extension of strip, α = 2π
(1.81−1.65) . The
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three-dimensional oblique wave is defined by the superimposition of streamwise and spanwise

waves. The spanwise distribution of oblique wave is defined as:

g(z) = cos(
2πz

λz
), (6.4)

where λz is the wavelength of the three-dimensional oblique wave in the spanwise direction. As-

suming λz = 0.15(m), the wave number in the spanwise direction will be β = 2π
0.15

. Consequently,

the combination of waves makes an oblique wave in the plane of π/4 with respect to the z plane.

The blowing/suction coordinates are mapped such that all the points lay between -1 and 1 in x and

z directions:

X =
xmin − x

xmin − xmax
; Z =

zmin − z
zmin − zmax

. (6.5)

(a) (b)

Figure 6.3: Regulation functions for the blowing–suction: (a) f(x), (b) g(z).

6.2.3 Numerical scheme

The numerical diffusion is one of the main challenges in transitional flow computations. In this

work, the Crank-Nicolson time integration scheme, along with the central-differencing method
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for the spatial integration are employed. It is verified that the second-order temporal and spatial

schemes suffice for the purpose of numerical integration, considering the fact that a well-structured

mesh is used here. Solution of the system of algebraic discretized equations throughout the control

volumes is carried out using the pisoFOAM solver, a built-in transient solver in OpenFOAM.

6.3 Results and discussion

In order to study the effect of degree of resolution on the transitional flow behavior, three

different test cases, listed in (Table 6.1), are studied. It has been observed that inadequate spanwise

grid resolution leads to relaminarization of the excited flow field in the downstream direction as

the excessive numerical diffusion kills the T-S instability. In the next subsections, first we ensure

that the desired degree of unsteadiness is resolved. Then, the results in terms of one-point statistics

are discussed.

Table 6.1: Details of the test cases examined for the natural transition.

Simulation Lx Ly Lz Nx Ny Nz Ntotal fk
PANS-Case1 9.6 1 0.3 1000 150 100 15× 106 0.1
PANS-Case2 9.6 1 0.3 1000 150 70 10.5× 106 0.1
PANS-Case3 9.6 1 0.3 1000 100 45 4.5× 106 0.1
DNS (10) 9.6 0.92 0.6 4096 550 512 1.15× 109 −

6.3.1 Internal consistency

In order to ensure that the resolved portion of the unsteadiness is consistent with the prescribed

value of resolution control parameter fk, the ratio of kunresolved/ktotal is computed in the post-

processing stage. According to Figure 6.4, a posteriori value is in adequate agreement with the

prescribed fk quantity. In fact, the recovered quantity reveals the fact that almost %90 of the flow

unsteadiness is resolved in the PANS simulation. In the next part, it is shown that the resolved

portion is able to effectively predict the underlying physics of external transitional flow over a

zero-pressure gradient flat plate.
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Figure 6.4: Internal consistency of the resolution control parameter at Re = 6.8× 105.

6.3.2 Integral quantities

The evolution of skin friction coefficient, cf = τw/
1
2
ρU2, along the plate for each case is shown

in Figure 6.5. The transition point is the first key point where the flow departs from the laminar cf

curve at Rex ≈ 3× 105. The second main point is the overshoot in the cf plot at Rex ≈ 3.5× 105,

which is clearly observable (Figure 6.5). The overshoot of skin friction coefficient, being the

signature of natural transition, is captured even with a finite active turbulent viscosity throughout

the flow domain. Although Huai et al. (71) and Sayadi and Moin (72) have shown that a special

treatment of the LES subgrid scale modeling is required for the unstable T-S wave to survive.

This overshoot manifests the late transition, where the non-linear interaction with the emergence

of secondary instability is dominant. After Rex ≈ 5.5 × 105, the flow asymptotes to the fully-

developed turbulent state. According to Figure 6.5, the agreement of PANS with the DNS of

Sayadi et al.(10) and fully-turbulent curve (113) is noticeable in terms of the transition spot and
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evolution of skin-friction coefficient along the flat plate. It should be kept in mind that the observed

discrepancy in the friction coefficient between PANS and DNS can be due to different excitation

frequencies.

Figure 6.5: Evolution of skin friction as a function of Reynolds number.

Figure 6.6 depicts the evolution of shape factor H versus the momentum Reynolds number

Reθ. Shape factor is defined as the ratio of displacement thickness over the momentum thickness,

H = δ∗/θ. According to this figure, shape factor settles to constant value of H = 1.4 at the

fully-developed regime. It is worth mentioning that 1.4 is typical of fully-developed turbulence

(4).

According to Figure 6.7, starting from x = 2(m) corresponding to Rex ≈ 3× 105, the contour

of du′/dy reveals shear-layer bulges associated with the divergence from the laminar curve on cf

plot. The vortical role-up initiation elucidates the shear layer between sweep and ejection mecha-

72



Figure 6.6: Evolution of shape factor as a function of momentum thickness Reynolds number.

nisms. Figure 6.8 shows the iso-surfaces of the second invariant of the velocity gradient tensor for

Q = 0.04(1/s2). It clearly visualizes the evolution of vortical structures from the two-dimensional

waves in the laminar regime to spanwise undulation and breakdown to turbulence.

In the nonlinear secondary instability region, extra modes with fractions of subharmonic fre-

quency start forming. These interactions give rise to laminar breakdown at Rex ≈ 4× 105, where

large vortical structures emerge.

6.3.3 One-point statistics

6.3.3.1 Mean velocity field

Figure 6.9a and 6.9b display how the streamwise velocity profiles evolve in downstream for

PANS-Case2 and DNS computations, respectively. In particular, Figure 6.10 compares the dif-

ference between corresponding profiles point-by-point. Although some discrepancy is observable,
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Figure 6.7: Vertical shear du′/dy at 8Tf (s).

Figure 6.8: Iso-surfaces of the second invariant of the velocity gradient tensor.

both PANS and DNS experience the same path from laminar to turbulent regimes. The discrepancy

between PANS and DNS velocity profiles emanates from two main reasons: (i) different excita-

tion frequencies, and (ii) different effective viscosities. Figure 6.10h delineates the fact that as

Rex = 7× 105 is approached, the total agreement between PANS and DNS improves.

6.3.3.2 Stress profiles

Figure 6.11 shows different components of the second-order moments corresponding to PANS-

Case 2 in Table 6.1, where the results are benchmarked against the DNS of Sayadi et al. (10). In

this figure, from top to bottom, the streamwise normal stress, spanwise normal stress, wall-normal
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(a) (b)

Figure 6.9: Evolution of the mean streamwise velocity profile in the stream parallel direction (a)
PANS, (b) DNS taken from [10]

stress, shear stress are displayed, respectively. The agreement of stress profiles between PANS and

DNS confirms that PANS has settled to the fully-developed turbulence at Rex = 6.8× 105.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.10: Comparative study of the streamwise velocities for PANS and DNS along the plate
at: (a) RexPANS = 1.6× 105, (b) RexPANS = 2.5× 105, (c) RexPANS = 2.9× 105, (d)

RexPANS = 3.0× 105, (e) RexPANS = 3.2× 105, (f) RexPANS = 3.8× 105, (g)
RexPANS = 5.3× 105, (h) RexPANS = 6.8× 105.
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Figure 6.11: Wall-normal distribution of second order moments at Rex = 6.8× 105.
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7. CONCLUSION

The B-SRS approach of choice in this thesis is the Partially-Averaged Navier-Stokes (PANS)

model. According to this methodology, non-universal large-scale structures are calculated from

the partially averaged Navier-Stokes equations and unresolved scales are modeled by the modi-

fied PANS k − ω two-equation closures. This dissertation makes a contribution to incorporating

physics into the subfilter closures and meaningful perturbed inflow condition for turbulence evo-

lution equations. Capability of the developed subfilter closure is assessed for temporal analysis of

fully-developed turbulence and spatial analysis of turbulent and transitional flows. Important steps

toward commercializing PANS have been taken as a result of these advancements. This section

summarizes the main conclusions of each of the three studies.

(i) In the first study, we derive turbulent transport models for two-equation closures in the con-

text of scale resolving simulations (SRS) of turbulence. Toward this end, along the lines

of RANS methodology, we develop the equilibrium boundary layer analysis of filtered flow

fields. The analysis leads to a closure model for turbulent-transport Prandtl numbers σωu

and, ultimately, to σku, in terms of resolution control parameters - fk,fω.

Employing the new turbulent transport closure models, PANS simulations of turbulent chan-

nel flow are performed at different Reynolds numbers. It is first demonstrated that PANS

computations do yield the prescribed eddy-viscosity reduction. Further, the computations

exhibit the required balance between production and dissipation. Then the PANS results are

compared against established DNS and experimental data. The mean flow profile, Reynolds

stress magnitude and anisotropy are well captured by the PANS computations. Analyses of

the energy spectra and two-point correlation further confirm the fidelity of PANS method-

ology. It is also shown that unsteady flow structures such as hair-pin packets are simulated

adequately. This work is among the first bridging scale-resolving simulations which has

achieved such maturity as to capturing dynamics of coherent structures within the wall-
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bounded fully turbulent flows.

The development in this work focuses on constant fk resolution. Works are currently un-

derway to extend the model for spatially varying fk. This will enable PANS simulation to

go from RANS (fk = 1) at the wall to high degree of resolution (fk < 1) in the interior

of the flow. The analysis and simulations presented in this work represent an important

step forward toward using two-equation closures for scale resolving simulations of practical

turbulent flows.

(ii) The second study develops a perturbed inflow condition for turbulence properties, consistent

with the resolved field, in bridging scale-resolving simulations. Toward this end, we employ

PANS as a robust bridging scale-resolving method. The definition of the inflow velocity field

is based on the recycling/rescaling method. In PANS, in order for a computation to asymp-

tote to the desirable equilibrium state, functionality of PANS must be ensured. Through the

internal consistency studies, it is shown that the meaningful prescription of subfilter turbu-

lence quantities are prerequisite for a B-SRS to function. Since PANS adapts second moment

closure, the dynamical behavior of the PANS simulation is described by evolution equations

for filtered velocity, along with two subfilter turbulence quantities.

A cost-effective PANS simulation of incompressible turbulent boundary layer over a smooth

flat plate with the momentum thickness Reynolds number 650 ≤ Reθ ≤ 1434 is studied.

The results are compared with the established data in literature. In depth analysis of one-

point statistics in terms of the integral quantities, mean flow profile, Reynolds stress profile,

skewness and flatness, budget of kinetic energy show adequate agreements with DNS. Fur-

thermore, the two-point correlation and visualization of structures yield reasonably accurate

information as to the organization of coherent structures in the near-wall region.

By ensuring the functionality of scale-resolving simulations, the developed perturbed inflow

condition can be regarded as an important step toward increasing the reliability of scale-

resolving simulations in practical engineering problems.
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(iii) The third work targets the underlying physics recovery of natural transition using a viable

computational cost. We leverage the PANS capability in resolving the transitional behavior

of the external flow using an affordable computational cost. It has been shown that wall-

resolved PANS is capable of predicting the transition point effectively. The overshoot of

skin friction coefficient, being the signature of natural transition, is captured even with a

finite active turbulent viscosity in the pre-transition region. It has been demonstrated that

PANS can be regarded as a predictive approach for external transitional flows.

Although this work establishes the foundation of PANS in transition problems, in the future

attempts, employment of wall-modelled PANS (WM-PANS) in transitional flows will be

addressed, where the spatial variation of flow physics will be included in the subgrid scale

modeling using spatial variable fk function.

Future work

Despite a rich body of literature on PANS, there are some areas which have yet to be addressed,

in future efforts:

(i) To employ machine learning methods for data-driven turbulence modeling to account for the

anisotropy due to the near-wall effects.

(ii) To develop closure modeling for fε in low-Reynolds-number flows with fε < 1.

(iii) To advance capability of PANS to compressible and high-speed turbulent flows.

(iv) To leverage the variable-resolution PANS (VR-PANS) for transitional flows through mini-

mizing the eddy viscosity in the pre-transition region and alleviating the computational de-

mands of fully-developed turbulence.
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